metadata
dict
text
stringlengths
60
3.49M
{ "source": "jockium/ert-downloader", "score": 3 }
#### File: ert-downloader/downloader/downloader.py ```python from multiprocessing.pool import ThreadPool import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) import requests import re import os import shutil def generate_download_list(url, chunklist): download_list = [] for chunk in chunklist: download_list.append(url + '/' + chunk) return download_list def download_process(link): if not os.path.exists('download_parts'): os.makedirs('download_parts') filename = re.split("/", link)[-1] with open("download_parts/" + filename, 'wb') as f: file = requests.get(link, verify=False) print("DOWNLOADING FILE {}". format(link)) f.write(file.content) f.close() def create_parts_txt(chunklist): if not os.path.exists('download_parts'): os.makedirs('download_parts') with open("download_parts/parts", 'w+') as file: for chunk in chunklist: file.write("file {}\n".format(chunk)) file.close() def clean_junk(): if os.path.exists('download_parts'): shutil.rmtree("download_parts") def download(stream_data): title = stream_data["title"] if os.path.exists( "{}//DLs//{}.mp4".format(os.getcwd(), title)): print("FILE EXISTS, SKIPPING:{}//DLs//{}.mp4".format(os.getcwd(), title)) else: stream_url = stream_data["stream_url"] chunklist = stream_data["chunklist"] create_parts_txt(chunklist) print("DOWNLOADING:{}".format(title)) download_list = generate_download_list(stream_url, chunklist) pool = ThreadPool(5) pool.map(download_process, download_list) pool.close() pool.join() # waiting for the downloads to complete os.system(('ffmpeg -f concat -i download_parts/parts -acodec copy -vcodec copy "{}//DLs//{}.mp4"'.format(os.getcwd(), title))) clean_junk() ``` #### File: ert-downloader/extractors/ertflix_feed_extractor.py ```python import feedparser def obtain_list(url): mylist = [] d = feedparser.parse(url) for i in range(len(d.entries)): mylist.append(d.entries[i].link) print('found '+ str(len(d.entries)) +' links on page 1, continuing...') mypage = 2 if "paged=" in url: checknext = 0 # do not try to add page reference if someone already gave a specific page url... else: checknext = 1 while (checknext==1): linksfound = 0 newurl = url+'?paged='+str(mypage) d = feedparser.parse(newurl) for z in range(len(d.entries)): mylist.append(d.entries[z].link) linksfound = z+1 if (linksfound == 0): checknext = 0 #stop trying to find pages... print('no links found on page '+str(mypage)) else: print('found '+ str(linksfound) +' links on page '+str(mypage)+', continuing...') mypage +=1 return mylist ```
{ "source": "jock-tanner/magicinvoke", "score": 2 }
#### File: magicinvoke/invoke/context.py ```python import os import re from contextlib import contextmanager from .config import Config, DataProxy from .exceptions import Failure, AuthFailure, ResponseNotAccepted from .runners import Result from .util import raise_from, iteritems from .watchers import FailingResponder class Context(DataProxy): """ Context-aware API wrapper & state-passing object. `.Context` objects are created during command-line parsing (or, if desired, by hand) and used to share parser and configuration state with executed tasks (see :ref:`why-context`). Specifically, the class offers wrappers for core API calls (such as `.run`) which take into account CLI parser flags, configuration files, and/or changes made at runtime. It also acts as a proxy for its `~.Context.config` attribute - see that attribute's documentation for details. Instances of `.Context` may be shared between tasks when executing sub-tasks - either the same context the caller was given, or an altered copy thereof (or, theoretically, a brand new one). .. versionadded:: 1.0 """ def __init__(self, config=None): """ :param config: `.Config` object to use as the base configuration. Defaults to an anonymous/default `.Config` instance. """ #: The fully merged `.Config` object appropriate for this context. #: #: `.Config` settings (see their documentation for details) may be #: accessed like dictionary keys (``c.config['foo']``) or object #: attributes (``c.config.foo``). #: #: As a convenience shorthand, the `.Context` object proxies to its #: ``config`` attribute in the same way - e.g. ``c['foo']`` or #: ``c.foo`` returns the same value as ``c.config['foo']``. config = config if config is not None else Config() self._set(_config=config) #: A list of commands to run (via "&&") before the main argument to any #: `run` or `sudo` calls. Note that the primary API for manipulating #: this list is `prefix`; see its docs for details. command_prefixes = list() self._set(command_prefixes=command_prefixes) #: A list of directories to 'cd' into before running commands with #: `run` or `sudo`; intended for management via `cd`, please see its #: docs for details. command_cwds = list() self._set(command_cwds=command_cwds) @property def config(self): # Allows Context to expose a .config attribute even though DataProxy # otherwise considers it a config key. return self._config @config.setter def config(self, value): # NOTE: mostly used by client libraries needing to tweak a Context's # config at execution time; i.e. a Context subclass that bears its own # unique data may want to be stood up when parameterizing/expanding a # call list at start of a session, with the final config filled in at # runtime. self._set(_config=value) def run(self, command, **kwargs): """ Execute a local shell command, honoring config options. Specifically, this method instantiates a `.Runner` subclass (according to the ``runner`` config option; default is `.Local`) and calls its ``.run`` method with ``command`` and ``kwargs``. See `.Runner.run` for details on ``command`` and the available keyword arguments. .. versionadded:: 1.0 """ runner = self.config.runners.local(self) return self._run(runner, command, **kwargs) # NOTE: broken out of run() to allow for runner class injection in # Fabric/etc, which needs to juggle multiple runner class types (local and # remote). def _run(self, runner, command, **kwargs): command = self._prefix_commands(command) return runner.run(command, **kwargs) def sudo(self, command, **kwargs): """ Execute a shell command via ``sudo`` with password auto-response. **Basics** This method is identical to `run` but adds a handful of convenient behaviors around invoking the ``sudo`` program. It doesn't do anything users could not do themselves by wrapping `run`, but the use case is too common to make users reinvent these wheels themselves. .. note:: If you intend to respond to sudo's password prompt by hand, just use ``run("sudo command")`` instead! The autoresponding features in this method will just get in your way. Specifically, `sudo`: * Places a `.FailingResponder` into the ``watchers`` kwarg (see :doc:`/concepts/watchers`) which: * searches for the configured ``sudo`` password prompt; * responds with the configured sudo password (``<PASSWORD>`` from the :doc:`configuration </concepts/configuration>`); * can tell when that response causes an authentication failure (e.g. if the system requires a password and one was not configured), and raises `.AuthFailure` if so. * Builds a ``sudo`` command string using the supplied ``command`` argument, prefixed by various flags (see below); * Executes that command via a call to `run`, returning the result. **Flags used** ``sudo`` flags used under the hood include: - ``-S`` to allow auto-responding of password via stdin; - ``-p <prompt>`` to explicitly state the prompt to use, so we can be sure our auto-responder knows what to look for; - ``-u <user>`` if ``user`` is not ``None``, to execute the command as a user other than ``root``; - When ``-u`` is present, ``-H`` is also added, to ensure the subprocess has the requested user's ``$HOME`` set properly. **Configuring behavior** There are a couple of ways to change how this method behaves: - Because it wraps `run`, it honors all `run` config parameters and keyword arguments, in the same way that `run` does. - Thus, invocations such as ``c.sudo('command', echo=True)`` are possible, and if a config layer (such as a config file or env var) specifies that e.g. ``run.warn = True``, that too will take effect under `sudo`. - `sudo` has its own set of keyword arguments (see below) and they are also all controllable via the configuration system, under the ``sudo.*`` tree. - Thus you could, for example, pre-set a sudo user in a config file; such as an ``invoke.json`` containing ``{"sudo": {"user": "someuser"}}``. :param str password: Runtime override for ``sudo.password``. :param str user: Runtime override for ``sudo.user``. .. versionadded:: 1.0 """ runner = self.config.runners.local(self) return self._sudo(runner, command, **kwargs) # NOTE: this is for runner injection; see NOTE above _run(). def _sudo(self, runner, command, **kwargs): prompt = self.config.sudo.prompt password = kwargs.pop("password", self.config.sudo.password) user = kwargs.pop("user", self.config.sudo.user) # TODO: allow subclassing for 'get the password' so users who REALLY # want lazy runtime prompting can have it easily implemented. # TODO: want to print a "cleaner" echo with just 'sudo <command>'; but # hard to do as-is, obtaining config data from outside a Runner one # holds is currently messy (could fix that), if instead we manually # inspect the config ourselves that duplicates logic. NOTE: once we # figure that out, there is an existing, would-fail-if-not-skipped test # for this behavior in test/context.py. # TODO: once that is done, though: how to handle "full debug" output # exactly (display of actual, real full sudo command w/ -S and -p), in # terms of API/config? Impl is easy, just go back to passing echo # through to 'run'... user_flags = "" if user is not None: user_flags = "-H -u {} ".format(user) command = self._prefix_commands(command) cmd_str = "sudo -S -p '{}' {}{}".format(prompt, user_flags, command) watcher = FailingResponder( pattern=re.escape(prompt), response="{}\n".format(password), sentinel="Sorry, try again.\n", ) # Ensure we merge any user-specified watchers with our own. # NOTE: If there are config-driven watchers, we pull those up to the # kwarg level; that lets us merge cleanly without needing complex # config-driven "override vs merge" semantics. # TODO: if/when those semantics are implemented, use them instead. # NOTE: config value for watchers defaults to an empty list; and we # want to clone it to avoid actually mutating the config. watchers = kwargs.pop("watchers", list(self.config.run.watchers)) watchers.append(watcher) try: return runner.run(cmd_str, watchers=watchers, **kwargs) except Failure as failure: # Transmute failures driven by our FailingResponder, into auth # failures - the command never even ran. # TODO: wants to be a hook here for users that desire "override a # bad config value for sudo.password" manual input # NOTE: as noted in #294 comments, we MAY in future want to update # this so run() is given ability to raise AuthFailure on its own. # For now that has been judged unnecessary complexity. if isinstance(failure.reason, ResponseNotAccepted): # NOTE: not bothering with 'reason' here, it's pointless. # NOTE: using raise_from(..., None) to suppress Python 3's # "helpful" multi-exception output. It's confusing here. error = AuthFailure(result=failure.result, prompt=prompt) raise_from(error, None) # Reraise for any other error so it bubbles up normally. else: raise # TODO: wonder if it makes sense to move this part of things inside Runner, # which would grow a `prefixes` and `cwd` init kwargs or similar. The less # that's stuffed into Context, probably the better. def _prefix_commands(self, command): """ Prefixes ``command`` with all prefixes found in ``command_prefixes``. ``command_prefixes`` is a list of strings which is modified by the `prefix` context manager. """ prefixes = list(self.command_prefixes) current_directory = self.cwd if current_directory: prefixes.insert(0, "cd {}".format(current_directory)) return " && ".join(prefixes + [command]) @contextmanager def prefix(self, command): """ Prefix all nested `run`/`sudo` commands with given command plus ``&&``. Most of the time, you'll want to be using this alongside a shell script which alters shell state, such as ones which export or alter shell environment variables. For example, one of the most common uses of this tool is with the ``workon`` command from `virtualenvwrapper <https://virtualenvwrapper.readthedocs.io/en/latest/>`_:: with c.prefix('workon myvenv'): c.run('./manage.py migrate') In the above snippet, the actual shell command run would be this:: $ workon myvenv && ./manage.py migrate This context manager is compatible with `cd`, so if your virtualenv doesn't ``cd`` in its ``postactivate`` script, you could do the following:: with c.cd('/path/to/app'): with c.prefix('workon myvenv'): c.run('./manage.py migrate') c.run('./manage.py loaddata fixture') Which would result in executions like so:: $ cd /path/to/app && workon myvenv && ./manage.py migrate $ cd /path/to/app && workon myvenv && ./manage.py loaddata fixture Finally, as alluded to above, `prefix` may be nested if desired, e.g.:: with c.prefix('workon myenv'): c.run('ls') with c.prefix('source /some/script'): c.run('touch a_file') The result:: $ workon myenv && ls $ workon myenv && source /some/script && touch a_file Contrived, but hopefully illustrative. .. versionadded:: 1.0 """ self.command_prefixes.append(command) yield self.command_prefixes.pop() @property def cwd(self): """ Return the current working directory, accounting for uses of `cd`. .. versionadded:: 1.0 """ if not self.command_cwds: # TODO: should this be None? Feels cleaner, though there may be # benefits to it being an empty string, such as relying on a no-arg # `cd` typically being shorthand for "go to user's $HOME". return "" # get the index for the subset of paths starting with the last / or ~ for i, path in reversed(list(enumerate(self.command_cwds))): if path.startswith("~") or path.startswith("/"): break # TODO: see if there's a stronger "escape this path" function somewhere # we can reuse. e.g., escaping tildes or slashes in filenames. paths = [path.replace(" ", "\ ") for path in self.command_cwds[i:]] return os.path.join(*paths) @contextmanager def cd(self, path): """ Context manager that keeps directory state when executing commands. Any calls to `run`, `sudo`, within the wrapped block will implicitly have a string similar to ``"cd <path> && "`` prefixed in order to give the sense that there is actually statefulness involved. Because use of `cd` affects all such invocations, any code making use of the `cwd` property will also be affected by use of `cd`. Like the actual 'cd' shell builtin, `cd` may be called with relative paths (keep in mind that your default starting directory is your user's ``$HOME``) and may be nested as well. Below is a "normal" attempt at using the shell 'cd', which doesn't work since all commands are executed in individual subprocesses -- state is **not** kept between invocations of `run` or `sudo`:: c.run('cd /var/www') c.run('ls') The above snippet will list the contents of the user's ``$HOME`` instead of ``/var/www``. With `cd`, however, it will work as expected:: with c.cd('/var/www'): c.run('ls') # Turns into "cd /var/www && ls" Finally, a demonstration (see inline comments) of nesting:: with c.cd('/var/www'): c.run('ls') # cd /var/www && ls with c.cd('website1'): c.run('ls') # cd /var/www/website1 && ls .. note:: Space characters will be escaped automatically to make dealing with such directory names easier. .. versionadded:: 1.0 """ # cast to str to avoid cryptic error (#583) self.command_cwds.append(str(path)) try: yield finally: self.command_cwds.pop() class MockContext(Context): """ A `.Context` whose methods' return values can be predetermined. Primarily useful for testing Invoke-using codebases. .. note:: Methods not given `Results <.Result>` to yield will raise ``NotImplementedError`` if called (since the alternative is to call the real underlying method - typically undesirable when mocking.) .. versionadded:: 1.0 """ def __init__(self, config=None, **kwargs): """ Create a ``Context``-like object whose methods yield `.Result` objects. :param config: A Configuration object to use. Identical in behavior to `.Context`. :param run: A data structure of `Results <.Result>`, to return from calls to the instantiated object's `~.Context.run` method (instead of actually executing the requested shell command). Specifically, this kwarg accepts: - A single `.Result` object, which will be returned once. - An iterable of `Results <.Result>`, which will be returned on each subsequent call to ``.run``. - A map of command strings to either of the above, allowing specific call-and-response semantics instead of assuming a call order. :param sudo: Identical to ``run``, but whose values are yielded from calls to `~.Context.sudo`. :raises: ``TypeError``, if the values given to ``run`` or other kwargs aren't individual `.Result` objects or iterables. """ # TODO: would be nice to allow regexen instead of exact string matches super(MockContext, self).__init__(config) for method, results in iteritems(kwargs): # Special convenience case: individual Result -> one-item list if ( not hasattr(results, "__iter__") and not isinstance(results, Result) # No need for explicit dict test; they have __iter__ ): err = "Not sure how to yield results from a {!r}" raise TypeError(err.format(type(results))) self._set("__{}".format(method), results) # TODO: _maybe_ make this more metaprogrammy/flexible (using __call__ etc)? # Pretty worried it'd cause more hard-to-debug issues than it's presently # worth. Maybe in situations where Context grows a _lot_ of methods (e.g. # in Fabric 2; though Fabric could do its own sub-subclass in that case...) def _yield_result(self, attname, command): # NOTE: originally had this with a bunch of explicit # NotImplementedErrors, but it doubled method size, and chance of # unexpected index/etc errors seems low here. try: value = getattr(self, attname) # TODO: thought there's a 'better' 2x3 DictType or w/e, but can't # find one offhand if isinstance(value, dict): if hasattr(value[command], "__iter__"): result = value[command].pop(0) elif isinstance(value[command], Result): result = value.pop(command) elif hasattr(value, "__iter__"): result = value.pop(0) elif isinstance(value, Result): result = value delattr(self, attname) return result except (AttributeError, IndexError, KeyError): raise_from(NotImplementedError, None) def run(self, command, *args, **kwargs): # TODO: perform more convenience stuff associating args/kwargs with the # result? E.g. filling in .command, etc? Possibly useful for debugging # if one hits unexpected-order problems with what they passed in to # __init__. return self._yield_result("__run", command) def sudo(self, command, *args, **kwargs): # TODO: this completely nukes the top-level behavior of sudo(), which # could be good or bad, depending. Most of the time I think it's good. # No need to supply dummy password config, etc. # TODO: see the TODO from run() re: injecting arg/kwarg values return self._yield_result("__sudo", command) def set_result_for(self, attname, command, result): """ Modify the stored mock results for given ``attname`` (e.g. ``run``). This is similar to how one instantiates `MockContext` with a ``run`` or ``sudo`` dict kwarg. For example, this:: mc = MockContext(run={'mycommand': Result("mystdout")}) assert mc.run('mycommand').stdout == "mystdout" is functionally equivalent to this:: mc = MockContext() mc.set_result_for('run', 'mycommand', Result("mystdout")) assert mc.run('mycommand').stdout == "mystdout" `set_result_for` is mostly useful for modifying an already-instantiated `MockContext`, such as one created by test setup or helper methods. .. versionadded:: 1.0 """ attname = "__{}".format(attname) heck = TypeError( "Can't update results for non-dict or nonexistent mock results!" ) # Get value & complain if it's not a dict. # TODO: should we allow this to set non-dict values too? Seems vaguely # pointless, at that point, just make a new MockContext eh? try: value = getattr(self, attname) except AttributeError: raise heck if not isinstance(value, dict): raise heck # OK, we're good to modify, so do so. value[command] = result ``` #### File: examples/args-kwargs/tasks.py ```python from __future__ import print_function from invoke import task from pprint import pformat @task def myfunc(ctx, *args, **kwargs): """ Note there is a bug where we couldn't do def mine(ctx, mypositionalarg, *args, **kwargs): pass But something is better than nothing :) Search "TODO 531" to find the comment describing our options. Keyword optional args work but they can be filled by positional args (because they're not KEYWORD_ONLY!) so we don't recommend their use. """ print("args: {}".format(args)) print("kwargs: {}".format(pformat(kwargs))) ``` #### File: examples/data-pipeline/tests.py ```python import pytest, six from cachepath import CachePath, Path @pytest.fixture def ctx(): from invoke import Context return Context() # pytest -k test_this --capture=no def test_this(ctx): # Includes workarounds for --clean and --force-run not working in PY2. from textwrap import dedent from colorama import Style only_print_expected_stdout = dedent( """ print_peoples_ages called Tom's age is 39 Jerry's age is 39 <NAME>'s age is 39 Done! """ ) both_stdout = dedent( """ print_peoples_ages called get_peoples_ages called Getting age for Tom Getting age for Jerry Getting age for <NAME> Done pulling results! Tom's age is 39 Jerry's age is 39 <NAME>'s age is 39 Done! """ ) def only_print_ran(stdout): assert only_print_expected_stdout.strip() == stdout.strip() def both_ran(stdout): assert both_stdout.strip() == stdout.strip() # Remove minv cache. if six.PY2: CachePath('.minv').rm() Path('.minv').rm() else: st = Path("people.txt").stat().st_mtime if Path("people.txt").exists() else None ctx.run("inv get-people --clean") st1 = Path("people.txt").stat().st_mtime assert st != st1 # Clean should delete and re-run. def bprint(s): print(Style.BRIGHT + s + Style.RESET_ALL) # Now actually start the test. We run get-people just to seed the file, # it shouldn't show up in actual @skippable testing in a few lines. bprint("Everything should run from scratch.") if six.PY2: Path('people.txt').rm() assert "Wrote" in ctx.run("invoke get-people").stdout else: assert "Wrote" in ctx.run("inv get-people --force-run").stdout.strip() # If get-people still runs here, it means caching for skippable doesn't work. both_ran(ctx.run("invoke print-peoples-ages").stdout) only_print_ran(ctx.run("invoke print-peoples-ages").stdout) bprint("Since latest outputs were generated by a task with different " "params, everything should run again when params change.") both_ran( ctx.run( "invoke -D people.important_flag=True print-peoples-ages" ).stdout ) only_print_ran( ctx.run( "invoke -D people.important_flag=True print-peoples-ages" ).stdout ) bprint("Flags changed _again_! But we still have the return value cached :)") only_print_ran(ctx.run("invoke print-peoples-ages").stdout) bprint("Make sure clean actually cleans.") if six.PY2: # If you fail here it's because we assume how minv implemented these paths :) CachePath('.minv', 'tasks.get_peoples_ages').rm() else: ctx.run("invoke get-people --clean") both_ran(ctx.run("invoke print-peoples-ages").stdout) bprint("We're good!") ``` #### File: examples/skip-if/tasks.py ```python from invoke import task import os @task(skip_ifs=[task(lambda ctx: os.getenv("SKIP_MYTASK", False))]) def mytask(ctx): print("Didn't skip!") ```
{ "source": "JockWang/Graph-based-CTR", "score": 3 }
#### File: JockWang/Graph-based-CTR/data.py ```python from torch.utils.data import Dataset import torch import logging import pandas as pd from sklearn.model_selection import train_test_split import numpy as np class MyDataset(Dataset): def __init__(self, mode='train', item_size=0, dataset='book'): super(MyDataset, self).__init__() df = pd.read_csv('/content/drive/My Drive/Colab Notebooks/Graph4CTR/data/' + dataset + '/ratings_final.txt', sep='\t', header=None, index_col=None).values train, test = train_test_split(df, test_size=0.2, random_state=2019) self.item_size = item_size if mode == 'train': self.data = train else: self.data = test logging.info(mode + ' set size:' + str(self.data.shape[0])) def __getitem__(self, index): temp = self.data[index] item = np.zeros(shape=(1, self.item_size)) item[0, temp[1]] = 1 return torch.tensor(temp[0], dtype=torch.long), torch.tensor(item, dtype=torch.float), torch.tensor( [temp[2]], dtype=torch.float) def __len__(self): return len(self.data) ```
{ "source": "jockyuiz/ImageProcessing", "score": 4 }
#### File: jockyuiz/ImageProcessing/imaging.py ```python import math import numpy as np from PIL import Image import tifffile # ************************************************************* # * From Photography Notebook * # ************************************************************* # ======================= white_balance ======================= # Input: # I: an RGB image -- a numpy array of shape (height, width, 3) # black_level: an RGB offset to be subtracted from all the pixels # gray: the RGB color of a gray object (includes the black level) # Output: # The corrected image: black level subtracted, then color channels scale to make gray come out gray def white_balance(I, black_level, gray): # A3TODO: Complete this function I = I - black_level I = I / gray np.clip(I,0,255,out = I) I = I.astype(np.float32) return I # Replace this with your implementation # ======================= color_transform ======================= # Input: # I: an RGB image -- a numpy array of shape (height, width, 3) # M: a 3x3 matrix, to be multiplied with each RGB triple in I # Output: # The image with each RGB triple multiplied by M def color_transform(I, M): # A3TODO: Complete this function I = np.array([[M @ I[i,j,:] for j in range(I.shape[1])] for i in range(I.shape[0])]) return I # Replace this with your implementation # ************************************************************* # * From Distortion Notebook * # ************************************************************* # ======================= shift_image_to_left ======================= # Input: # img: 2D numpy array of a grayscale image # k: The number of units/pixels to be shifted to the left (you can assume k < width of image) # Output: # A 2D array of img shifted to the left by k pixels # For points that fall out of range on the right side, repeat the rightmost pixel. def shift_image_to_left(img, k): new_img = np.zeros(img.shape, np.uint8) # A3TODO: Complete this function for i in range(img.shape[0]): for j in range(img.shape[1]): new_img[i,j,:] = img[i,(j+k) % img.shape[1],:] return new_img # ======================= rotate_image ======================= # Input: # img: 2D numpy array of a grayscale image # k: The angle (in degrees) to be rotated counter-clockwise around the image center # interp_mode: 0 for nearest neighbor, 1 for bilinear # Output: # A 2D array of img rotated around the original image's center by k degrees def rotate_image(img, k, interp_mode=0): new_img = np.zeros(img.shape, np.uint8) # A3TODO: Complete this function center = np.array([img.shape[0]/2,img.shape[1]/2]) angle = -math.pi * k/180; M = np.array([ [np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)], ]) if interp_mode == 0: # nearest neighbor for i in range(img.shape[0]): for j in range(img.shape[1]): position = np.array([i,j]) vector = position - center newvector = M @ vector newPos = center + newvector ix = newPos[0].astype(np.int) iy = newPos[1].astype(np.int) if (ix < img.shape[0] and iy < img.shape[1] and ix>= 0 and iy >= 0): new_img[i,j,:] = img[ix,iy,:] else: # bilinear for i in range(img.shape[0]): for j in range(img.shape[1]): position = np.array([i,j]) vector = position - center newvector = M @ vector newPos = center + newvector if newPos[0]>=0 and newPos[0]<img.shape[0]-1: x0 = math.trunc(newPos[0]) x1 = x0+1 dx = newPos[0]-x0 elif newPos[0]<0: x0 = 0 x1 = 0 dx = 0 elif newPos[0]>img.shape[0]-1: x0 = img.shape[0]-1 x1 = img.shape[0]-1 dx = 1 if newPos[1]>=0 and newPos[1]<img.shape[1]-1: y0 = math.trunc(newPos[1]) y1 = y0+1 dy = newPos[1]-y0 elif newPos[1]<0: y0 = 0 y1 = 0 dy = 0 elif newPos[1]>img.shape[1]-1: y0 = img.shape[1]-1 y1 = img.shape[1]-1 dy = 1 RGBx0 = img[x0,y0,:] RGBx1 = img[x1,y0,:] RGBy0 = img[x0,y1,:] RGBy1 = img[x1,y1,:] xRGB = (dx * RGBx1) + (1-dx) * RGBx0 yRGB = (dx * RGBy1) + (1-dx) * RGBy0 finalRGB = (dy * yRGB) + (1-dy) * xRGB new_img[i,j,:] = finalRGB return new_img # ======================= undistort_image ======================= # Input: # img: A distorted image, with coordinates in the distorted space # k1, k2: distortion model coefficients (see explanation above) # M: affine transformation from pixel coordinates to distortion-model coordinates # interp_mode: 0 for nearest neighbor, 1 for bilinear # Output: # An undistorted image, with pixels in the image coordinates # Write down the formula for calculating the distortion model first (see exercise above) # Put black in for points that fall out of bounds def undistort_image(img, k1, k2, M, interp_mode=0): Mi = np.linalg.inv(M) output = np.zeros_like(img) # A3TODO: Complete this function h, w = img.shape[:2] if interp_mode == 0: # nearest neighbor for i in range(h): for j in range(w): position = np.array([j,i,1]) x = Mi @ position vector = np.array([x[0],x[1]]) r = np.linalg.norm(vector) sr = 1 + (k1 * r**2) + (k2 * r**4) scale = np.array([ [sr, 0,0], [0, sr,0], [0, 0,1] ]) gx = scale @ x homo = gx[2] gx /= homo GPos = M @ gx ix = round(GPos[1]).astype(np.int) iy = round(GPos[0]).astype(np.int) if (ix < h and iy < w and ix>=0 and iy >= 0): output[i,j,:] = img[ix,iy,:] else: # bilinear for i in range(h): for j in range(w): position = np.array([j,i,1]) x = Mi @ position vector = np.array([x[0],x[1]]) r = np.linalg.norm(vector) sr = 1 + (k1 * r**2) + (k2 * r**4) scale = np.array([ [sr, 0,0], [0, sr,0], [0, 0,1] ]) gx = scale @ x homo = gx[2] gx /= homo GPos = M @ gx newPos = GPos y0 = math.trunc(newPos[0]) y1 = y0+1 x0 = math.trunc(newPos[1]) x1 = x0+1 dy = newPos[0]-y0 dx = newPos[1]-x0 if (x1 < img.shape[0] and y1 < img.shape[1] and x0>=0 and y0 >= 0): RGBx0 = img[x0,y0,:] RGBx1 = img[x1,y0,:] RGBy0 = img[x0,y1,:] RGBy1 = img[x1,y1,:] xRGB = (dx * RGBx1) + (1-dx) * RGBx0 yRGB = (dx * RGBy1) + (1-dx) * RGBy0 finalRGB = (dy * yRGB) + (1-dy) * xRGB np.clip(finalRGB,0,255,out = finalRGB) finalRGB = finalRGB.astype(np.uint8) output[i,j,:] = finalRGB return output # ************************************************************* # * From Convolution Notebook * # ************************************************************* # ======================= gen_gaussian_filter ======================= # Input: # dim: size of the filter in both x and y direction # sigma: standard deviation of the gaussian filter # Output: # A 2-dimensional numpy array of size dim*dim # (Note that the array should be normalized) # Hint: Use linspace or mgrid from numpy def gen_gaussian_filter(dim, sigma): # A3 implement #pass # Replace this line with your implementation f = np.zeros([dim, dim]) if (dim % 2 ==0): center = dim/2 else: center = (dim-1)/2 for i in range(dim): for j in range(dim): const = 2 * sigma**2 x = i - center y = j - center f[i,j] = (1/const*np.pi)*math.exp( -(x**2+y**2)/const ) sum = np.sum(f) f = f / sum return f # ======================= convolve ======================= # Input: # I: A 2D numpy array containing pixels of an image # f: A squared/non-squared filter of odd/even-numbered dimensions # Output: # A 2D numpy array resulting from applying the convolution filter f to I # All the entries of the array should be of type uint8, and restricted to [0,255] # You may use clip and astype in numpy to enforce this # Note: When convolving, do not operate on the entries outside of the image bound, # i.e. clamp the ranges to the width and height of the image # Tie-breaking: If f has an even number of dimensions in some direction (assume the dimension is 2r), # sweep through [i-r+1, i+r] (i.e. length of left half = length of right half - 1) # With odd # of dimensions (2r+1), you would sweep through [i-r, i+r]. def convolve(I, f): # A3TODO: Complete this function output = np.zeros_like(I) kernel_h = f.shape[0] kernel_w = f.shape[1] h = math.trunc(kernel_h / 2) w = math.trunc(kernel_w / 2) image_pad = np.pad(I, pad_width=( (kernel_h // 2, kernel_h // 2),(kernel_w // 2, kernel_w // 2),(0,0)), mode='constant', constant_values=0).astype(np.float32) print(image_pad.shape) for i in range(h,image_pad.shape[0]-h): for j in range(w,image_pad.shape[0]-h): s = np.zeros(im.shape[2]) for ii in range(-(kernel_h-h-1),h): for jj in range(-(kernel_w-w-1),w): s += f[ii+h,jj+w]*image_pad[i-ii,j-jj,:] np.clip(s,0,255,out = s) s = s.astype(np.uint8) output[i-h,j-w]=s return output # ======================= convolve_sep ======================= # Input: # I: A 2D numpy array containing pixels of an image # f: A squared/non-squared filter of odd/even-numbered dimensions # Output: # A 2D numpy array resulting from applying the convolution filter f to I # All the entries of the array should be of type uint8, and restricted to [0,255] # You may use clip and astype in numpy to enforce this # Note: When convolving, do not operate on the entries outside of the image bound, # i.e. clamp the ranges to the width and height of the image in the for loop # Tie-breaking: If f has an even number of dimensions in some direction (assume the dimension is 2r), # sweep through [i-r+1, i+r] (i.e. length of left half = length of right half - 1) # With odd # of dimensions (2r+1), you would sweep through [i-r, i+r]. # You will convolve with respect to the direction corresponding to I.shape[0] first, then I.shape[1] def convolve_sep(I, f): output = np.zeros_like(I) # A3TODO: Complete this function kernal_h = f.shape[0] kernal_w = f.shape[1] h = math.trunc(kernal_h / 2) w = math.trunc(kernal_w / 2) fh = f[h,:] fw = f[:,w] fh = fh / np.sum(fh) fw = fw / np.sum(fw) image_pad = np.pad(I, pad_width=( (kernal_h // 2, kernal_h // 2),(kernal_w // 2, kernal_w // 2),(0,0)), mode='constant', constant_values=0).astype(np.float32) temp = np.zeros_like(image_pad) for i in range(h,image_pad.shape[0]-h): for j in range(w,image_pad.shape[1]-w): s = np.zeros(im.shape[2]) for ii in range(-(kernal_h-h-1),h): s+= fh[ii+h]*image_pad[i-ii,j,:] temp[i,j]=s for i in range(h,image_pad.shape[0]-h): for j in range(w,image_pad.shape[1]-w): s = np.zeros(im.shape[2]) for jj in range(-(kernal_w-w-1),w): s += fw[jj+w]*temp[i,j-jj,:] np.clip(s,0,255,out = s) s = s.astype(np.uint8) output[i-h,j-w]=s return output # ======================= unsharp_mask ======================= # This function essentially subtracts a (scaled) blurred version of an image from (scaled version of) itself # Input: # I: A 2D numpy array containing pixels of an image # sigma: Gassian std.dev. for blurring # w: Sharpening weight # Output: # A sharpened version of I def unsharp_mask(I, sigma, w): output = np.zeros_like(I) # A3TODO: Complete this function f = gen_gaussian_filter(7, sigma) blurI = convolve_sep(I, f) o = (1+w)*I - w * blurI np.clip(o,0,255,out = o) o = o.astype(np.uint8) output = o return output ```
{ "source": "Jocoboy/Data-Visualization", "score": 2 }
#### File: Jocoboy/Data-Visualization/configurations.py ```python import os import geoip2.database from geoip2.errors import AddressNotFoundError import folium import webbrowser import plotly.graph_objs as go from plotly.offline.offline import plot import tkinter as tk import settings import tkinter.messagebox # from main_window import MainWindow class Configuration: path = { # City in China 'Anhui':'an_hui', 'Aomen':'ao_men', 'Beijing':'bei_jing', 'Chongqing':'chong_qing', 'Fujian':'fu_jian', 'Gansu':'gan_su', 'Guangdong':'guang_dong', 'Guangxi':'guang_xi', 'Guizhou':'gui_zhou', 'Hainan':'hai_nan', 'Hebei':'he_bei', 'Henan':'he_nan', 'Heilongjiang':'hei_long_jiang', 'Hubei':'hu_bei', 'Hunan':'hu_nan', 'Jilin':'ji_lin', 'Jiangsu':'jiang_su', 'Jiangxi':'jiang_xi', 'Liaoning':'liao_ning', 'Neimenggu':'nei_meng_gu', 'Ningxia':'ning_xia', 'Qinghai':'qing_hai', 'Shandong':'shan_dong', 'Sichuan':'si_chuan', 'Taiwan':'tai_wan', 'Tianjing':'tian_jing', 'Xizang':'xi_zang', 'Xianggang':'xiang_gang', 'Xinjiang':'xin_jiang', 'Yunnan':'yun_nan', 'Zhejiang':'zhe_jiang', # City in other country 'America':'America', 'Australia':'Australia', 'Brazil':'Brazil', 'Canada':'Canada', 'England':'England', 'Finland':'Finland', 'France':'France', 'Germany':'Germany', 'India':'India', 'Mexico':'Mexico', 'Mongolia':'Mongolia', 'Russia':'Russia', 'Saudi Arabia':'Saudi Arabia', 'Singapore':'Singapore', 'The Philippines':'The Philippines' } def __init__(self): pass def __get_response(self): settings.FULL_PATH = os.path.join( settings.MEDIA_ROOT, 'GeoLite2-City.mmdb') reader = geoip2.database.Reader(settings.FULL_PATH) try: self.response = reader.city(settings.IP) except AddressNotFoundError: return None return self.response def __get_location(self): response = self.__get_response() return [response.location.longitude, response.location.latitude] def get_local_map(self): print(settings.MAP_TYPE) # print(settings.API_KEY) try: # local_map = folium.Map(location=self.__get_location(), # zoom_start=12, tiles=settings.MAP_TYPE, API_key=settings.API_KEY) if settings.MAP_TYPE == 'custom tileset': local_map = folium.Map(location=self.__get_location(), zoom_start=12, tiles='http://{s}.tiles.yourtiles.com/{z}/{x}/{y}.png' , attr='My Data Attribution') else: if settings.MAP_TYPE == 'Mapbox': fig = dict( data = [ go.Scattermapbox( mode='markers', marker=dict( size=9 ) ) ], layout = go.Layout( autosize=True, hovermode='closest', mapbox=dict( accesstoken=settings.API_KEY, bearing=0, center=dict( lat=self.__get_location()[1], lon=self.__get_location()[0] ), pitch=0, zoom=10 ), ) ) plot(fig, filename='local_map.html') return else: local_map = folium.Map(location=self.__get_location(), zoom_start=12, tiles=settings.MAP_TYPE) except ValueError: tkinter.messagebox.showinfo('ValueError:','You must pass an API key if using Cloudmade or non-default Mapbox tiles.') print("Failed to open!") else: local_map.save('local_map.html') webbrowser.open('local_map.html') print("Successfully open!") def insert_info(self, var_infos):#,label_left,label_right): response = self.__get_response() if response is None: var_infos[0].set("The address "+settings.IP+" is not in the database.") return var_infos[0].set( "IP Info:") try: continent_names_zh = response.continent.names["zh-CN"] country_names_zh = response.country.names["zh-CN"] sub_names_zh = response.subdivisions.most_specific.names["zh-CN"] city_names_zh = response.city.names["zh-CN"] except KeyError: var_infos[1].set("Continent: {}({})".format(response.continent.names["es"], "None")) var_infos[2].set("Country: {}({}) ,iso_code: {}".format(response.country.name, "None", response.country.iso_code)) var_infos[3].set("State/Province: {}({})".format(response.subdivisions.most_specific.name, "None")) var_infos[4].set("City: {}({})".format(response.city.name, "None")) else: var_infos[1].set("Continent: {}({})".format(response.continent.names["es"], continent_names_zh)) var_infos[2].set("Country: {}({}) ,iso_code: {}".format(response.country.name, country_names_zh, response.country.iso_code)) var_infos[3].set("State/Province: {}({})".format(response.subdivisions.most_specific.name, sub_names_zh)) var_infos[4].set("City: {}({})".format(response.city.name, city_names_zh)) var_infos[5].set("Longitude: {} ,Latitude: {}".format(response.location.longitude, response.location.latitude)) var_infos[6].set("Time_zone: {}".format( response.location.time_zone)) var_infos[7].set("Postal code: {}".format(response.postal.code)) ''' Addons here. ''' try: m_name = self.path[response.subdivisions.most_specific.name] print(m_name) except KeyError: # MainWindow.photo_left = tk.PhotoImage(file='city_scenery/error.png') m_name = 'error' print('photo_left error') else: # MainWindow.photo_left = tk.PhotoImage(file='city_scenery/'+ # self.path[response.subdivisions.most_specific.name]+'.png') print('photo_left found') return m_name # MainWindow.label_left = tk.Label(image=MainWindow.photo_left).grid(row=6,column=0,rowspan=8,columnspan=1) # photo_right = tk.PhotoImage(file='city_description/'+ # self.path[response.subdivisions.most_specific.name]+'.png') ```
{ "source": "jocode/curso-python", "score": 3 }
#### File: curso-python/aplicacion-web/main.py ```python from flask import Flask, render_template, request, flash, redirect from ContactModel import ContactModel app = Flask(__name__) app.secret_key = "some_secret" app.debug = True @app.route(r'/', methods=['GET']) def contact_book(): contacts = ContactModel.query().fetch() return render_template('contact_book.html', contacts=contacts) @app.route(r'/add', methods=['GET', 'POST']) def add_contact(): if request.form: contact = ContactModel( name = request.form.get('name'), phone = request.form.get('phone'), email=request.form.get('email') ) # Se guarda en la base de datos contact.put() flash("¡Se añadió el contacto!") return render_template('add_contact.html') @app.route(r'/contacts/<uid>', methods=['GET']) def contact_detail(uid): contact = ContactModel.get_by_id(int(uid)) return render_template('contact.html', contact=contact) @app.route(r'/delete', methods=['POST']) def delete_contact(): contact = ContactModel.get_by_id(int(request.form.get('uid'))) if not contact: return redirect('/', code=301) contact.key.delete() return redirect('/') if __name__ == "__main__": app.run() ``` #### File: curso-python/estructuras-datos/temperatura_promedio.py ```python def average_temps(temps): sum_of_temps = 0 for temp in temps: sum_of_temps += float(temp) return sum_of_temps/len(temps) if __name__ == "__main__": print('\nVamos a calcular la temperatura promedio') temps = [21, 24, 22, 23, 24, 25, 21] promedio = round(average_temps(temps), 2) print('La temperatura promedio es: {}'.format(promedio)) ``` #### File: curso-python/hilos/thread.py ```python import threading import time class MiHilo(threading.Thread): # def run(self): print("{} inicio".format(self.getName())) time.sleep(1) print("{} terminado".format(self.getName())) if __name__ == "__main__": for x in range(4): hilo = MiHilo(name="Thread-{}".format(x+1)) hilo.start() time.sleep(.5) ``` #### File: jocode/curso-python/turtle_funciones.py ```python import turtle def main(): window = turtle.Screen() tortuga = turtle.Turtle() make_square(tortuga) turtle.mainloop() def make_square(turtle): lenght = int(raw_input('Digite el largo del lado: ')) for i in range(4): make_line_and_turn(turtle, lenght) def make_line_and_turn(turtle, lenght): turtle.forward(lenght) turtle.left(90) # Le indicamos a python que ejecute el método de entrada if __name__ == '__main__': main() ```
{ "source": "jocode/python-mysql", "score": 3 }
#### File: python-mysql/src/App.py ```python from flask import Flask, render_template, request, redirect, url_for, flash from flask_mysqldb import MySQL app = Flask(__name__) # MySQl Connection app.config['MYSQL_HOST'] = 'localhost' app.config['MYSQL_USER'] = 'root' app.config['MYSQL_PASSWORD'] = '<PASSWORD>' app.config['MYSQL_DB'] = 'flaskcontacts' mysql = MySQL(app) # Settings app.secret_key = 'mysecretkey' # Decorador de rutas @app.route('/') def index(): cursor = mysql.connection.cursor() cursor.execute('SELECT * FROM contacts') data= cursor.fetchall() # Por defecto flask tiene configurado el nombre la carpeta como templates return render_template('index.html', contacts = data) @app.route('/add', methods=['POST']) def add_contact(): if request.method == 'POST': fullname = request.form['fullname'] phone = request.form['phone'] email = request.form['email'] # Usamos la conexion a mysql cursor = mysql.connection.cursor() cursor.execute('INSERT INTO contacts (fullname, phone, email) VALUES (%s, %s, %s)', (fullname, phone, email)) mysql.connection.commit() flash('Contacto Agregado') return redirect(url_for('index')) @app.route('/edit/<id>') def getContact(id): cursor = mysql.connection.cursor() cursor.execute('SELECT * FROM contacts WHERE id = %s',(id)) data = cursor.fetchone() return render_template('edit_contact.html', contact = data) @app.route('/update/<id>', methods=['POST']) def update_contact(id): if request.method == 'POST': # Coloco los valores en una tupla data = ( request.form['fullname'], request.form['phone'], request.form['email'], id ) cursor = mysql.connection.cursor() cursor.execute(""" UPDATE contacts SET fullname = %s, phone = %s, email = %s WHERE id = %s """, data) mysql.connection.commit() flash('Contacto Actualizado Satisfactoriamente') return redirect(url_for('index')) @app.route('/delete/<string:id>') def deleteContact(id): cursor = mysql.connection.cursor() cursor.execute('DELETE FROM contacts WHERE id = {0}'.format(id)) mysql.connection.commit() flash('Contacto {0} eliminado'.format(id)) return redirect(url_for('index')) if __name__ == '__main__': app.run(port = 3000, debug = True) ```
{ "source": "jocoder22/Disaster_response", "score": 4 }
#### File: Disaster_response/data/process_data.py ```python import sys import numpy as np import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """The load_data function load the csv file into pandas dataframe Args: messages_filepath (filepath): the filepath for the messages categories_filepath (filepath): the filepath for the categories data Returns: DataFrame: The DataFrame for analysis """ # load the messages csv mess = pd.read_csv(messages_filepath) # load the categories csv catt = pd.read_csv(categories_filepath) # merge the datasets data = mess.merge(catt, on="id") return data def clean_data(dataset): """The clean_data function will return a clean DataFrame after removing, replacing and cleaning the DataFrame to a suitable form for further saving to database for analysis Args: dataset (DataFrame): the DataFrame for data wrangling Returns: DataFrame: The DataFrame for saving to database and later analysis """ # Split the values in the categories column on the ; character so that # each value becomes a separate column cat = dataset.categories.str.split(";", expand=True) # Use the first row of categories dataframe to create column names for the # categories data. row = cat.iloc[0] category_colnames = row.apply(lambda x: x[:-2]) cat.columns = category_colnames # extract only the digits in categories columns for column in cat: # set each value to be the last character of the string cat[column] = cat[column].str[-1:] # convert column from string to numeric cat[column] = cat[column].astype(int) # drop the original categories column from dataset dataset.drop(columns=["categories"], inplace=True) # concatenate the original dataframe with the new `categories` # dataframe df_ = pd.concat([dataset, cat], axis=1) # drop duplicates and columns not essential for further analysis df_.drop_duplicates(keep="first", inplace=True) # drop columns not needed df_.drop(columns=["id", "original"], inplace=True) return df_ def save_data(dtss, database_filepath): """The save_data function save the dataframe to sql database Args: dtss (DataFrame): the DataFrame to save to sql database_filepath (filepath): filepath of the sql database Returns: None """ # create engine engine = create_engine(f"sqlite:///{database_filepath}", echo=False) # save to database dtss.to_sql("disasterTable", engine, index=False, if_exists="replace") def main(): if len(sys.argv) == 4: print(" ") ( messages_filepath, categories_filepath, database_filepath, ) = sys.argv[1:] print( "Loading data...\n MESSAGES: {}\n CATEGORIES: {}".format( messages_filepath, categories_filepath ), end="\n\n", ) df = load_data(messages_filepath, categories_filepath) print("Cleaning data...\n\n") df = clean_data(df) print( "Saving data...\n DATABASE: {}".format(database_filepath), "\n\n", ) save_data(df, database_filepath) print("Cleaned data saved to database!") else: print( "Please provide the filepaths of the messages and categories " "datasets as the first and second argument respectively, as " "well as the filepath of the database to save the cleaned data " "to as the third argument. \n\nExample: python process_data.py " "disaster_messages.csv disaster_categories.csv " "DisasterResponse.db" ) if __name__ == "__main__": main() ``` #### File: Disaster_response/models/train_classifier.py ```python import sys import numpy as np import pandas as pd import pickle import joblib from sqlalchemy import create_engine from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MaxAbsScaler from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.multioutput import MultiOutputClassifier from sklearn.base import BaseEstimator, TransformerMixin from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer # custom transformer class dummyTransformer(BaseEstimator, TransformerMixin): """dummyTransformer class forms dummies from selected columns""" def fit(self, X, y=None): return self def transform(self, X): finaldata = pd.get_dummies(X) return finaldata # custom transformer class columnSelector(BaseEstimator, TransformerMixin): """columnSelector class select columns""" def __init__(self, col=0): self.columnlist = col def fit(self, X, y=None): return self def transform(self, X): col_ = X[:, self.columnlist] return col_ def tcolumn(dataframe, col, dtype): """The tcolumn function changes the dtype of dataframe column(s) Args: dataframe (DataFrame): the DataFrame for data_wrangling col (list): list for features to select from the DataFrame dtype (str): dtype to change to Returns: dataframe (DataFrame): The DataFrame for analysis """ for ele in col: dataframe.loc[:, ele] = dataframe.loc[:, ele].astype(dtype) return dataframe def load_data(database_filepath): """The load_data function Args: database_filepath (filepath): the sql database filepath Returns: X_tokenized (DataFrame): dataframe with text message column y (DataFrame): dataframe with target classes category_names(list): list containing the name of the categories """ # create sql engine engine = create_engine(f"sqlite:///{database_filepath}", echo=False) # read all data in sql table df = pd.read_sql_table('disasterTable', engine) # drop duplicates and original text message df.drop_duplicates(subset = ["message"], keep="first", inplace=True) # drop nan, na df.dropna(inplace=True) # Select categorical data, create strings catt = df.iloc[:,2:].columns df = tcolumn(df, catt, "str") # create new column of multicategories sum df['total'] = df.iloc[:,2:].sum(axis=1).astype('str') mask = df['total'].value_counts() mask2 = mask[mask==1].index.tolist() # create ones column df["ones"] = df["total"].apply(lambda x: "Noting" if x in mask2 else x ) mask2 = df['ones'].value_counts() # drop total column and pop ones df.drop(columns=['total'], inplace=True) strata = df.pop("ones") # convert to integers df = tcolumn(df, catt, "int") # Select text and target messages_ = df.iloc[:, 0].values # get categories names categories_ = df.iloc[:, 2:].values name = df.iloc[:, 2:] # get categories names category_names = name.columns.tolist() return messages_, categories_, category_names, strata def tokenize(text): """The tokenize function will form tokenization for the text messages to use for model training and testing Args: text (DataFrame): the DataFrame with text column for tokenization Returns: DataFrame: The DataFrame with words tokens and values for modelling """ tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() wordporter = SnowballStemmer("english") stopword = set(stopwords.words("english")) # Retain alphabetic words: alpha_only alpha_only = [t.lower() for t in tokens if t.isalpha()] # Remove all stop words: no_stops _tokens = [t for t in alpha_only if t not in stopword] no_stop_tokens = [wordporter.stem(word) for word in _tokens] clean_tokens = [] # for tok in tokens: for tok in no_stop_tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens def build_model(): """The build_model function build a model pipeline Args: None Returns: model(pipeline): model pipeline for fitting, prediction and scoring """ # create pipeline plu = Pipeline([ ('cvect', CountVectorizer(tokenizer=tokenize, max_df=0.86, ngram_range=(1,2))), ('tfidt', TfidfTransformer()), ("mascaler", MaxAbsScaler()), ('rforest', MultiOutputClassifier(RandomForestClassifier())) ]) return plu def evaluate_model(model, X_text, Y_test, category_names): """The evaluate_model function scores the performance of trained model on test (unseen) text and categories Args: model (model): model to evaluate X_text (numpy arrays): the test (unseen) tokenized text Y_test (numpy arrays): the test (unseen) target used for evaluation category_names(list): list containing the name of the categories Returns: None print out the accuracy and confusion metrics """ sp = {"end": "\n\n", "sep": "\n\n"} # predict using the model pred = model.predict(X_text) # Calculate accuracy accuracy = (pred == Y_test).mean() accuracyscore = model.score(X_text, Y_test) print(f"Model Accuracy: {accuracy*100:.02f}%\n") print(f"Model Accuracy: {accuracyscore*100:.02f}%\n") for i, label in enumerate(category_names): print("Printing for ", label) print(classification_report(Y_test[i] , pred[i]), **sp) def save_model(model, model_filepath): """The save_model function save the model Args: model (model): the model to save model_filepath (filepath): filepath where to save the modeld Returns: None print out: Done saving model! """ # # Save the model joblib.dump(model, f"{model_filepath}") print("Done saving model!") def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print( "Loading data...\n DATABASE: {}".format(database_filepath) ) X, Y, category_names, strata = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, stratify=strata ) print("Building model...") model = build_model() print("Training model...") model.fit(X_train, Y_train) print("Evaluating model...") evaluate_model(model, X_test, Y_test, category_names) print("Saving model...\n MODEL: {}".format(model_filepath)) save_model(model, model_filepath) print("Trained model saved!") else: print( "Please provide the filepath of the disaster messages database " "as the first argument and the filepath of the pickle file to " "save the model to as the second argument. \n\nExample: python " "train_classifier.py ../data/DisasterResponse.db classifier.pkl") if __name__ == "__main__": main() ```
{ "source": "jocoder22/Movie-Trailer-Website", "score": 3 }
#### File: jocoder22/Movie-Trailer-Website/media.py ```python class Movie(): """ This class provides a way to store movie related information """ def __init__(self, movie_title, poster_url, trailer_youtube_link): self.title = movie_title self.poster_image_url = poster_url self.trailer_youtube_url = trailer_youtube_link ```
{ "source": "jocodoma/coding-interview-prep", "score": 4 }
#### File: Problems/0027_Remove_Element/remove_element.py ```python from typing import List class Solution: def removeElement(self, nums: List[int], val: int) -> int: return self.__twoPointers(nums, val) # return self.__swapValues(nums, val) # time complexity: O(n), space complexity: O(1) def __twoPointers(self, nums: List[int], val: int) -> int: if len(nums) == 0: return 0 i = 0 for n in nums: if n != val: nums[i] = n i += 1 return i # time complexity: O(n), space complexity: O(1) def __swapValues(self, nums: List[int], val: int) -> int: if len(nums) == 0: return 0 l = 0 r = len(nums) - 1 while l <= r: if nums[l] == val: # nums[l], nums[r] = nums[r], nums[l] nums[l] = nums[r] r -= 1 else: l += 1 return l def printList(nums: List[int]) -> str: return ("[" + (', ').join(map(str, nums)) + "]") nums = [3,2,2,3] val = 3 print("Input: nums = " + printList(nums) + ", val = " + str(val)) size = Solution().removeElement(nums, val) print("Output: nums = " + printList(nums[:size])) nums = [0,1,2,2,3,0,4,2] val = 2 print("\nInput: nums = " + printList(nums) + ", val = " + str(val)) size = Solution().removeElement(nums, val) print("Output: nums = " + printList(nums[:size])) ``` #### File: Problems/0217_Contains_Duplicate/contains_duplicate.py ```python from typing import List class Solution: def containsDuplicate(self, nums: List[int]) -> bool: # return self.__bruteForce(nums) # return self.__sorting(nums) return self.__hashset(nums) # time complexity: O(n**2), space complexity: O(1) def __bruteForce(self, nums: List[int]) -> bool: for i, num in enumerate(nums): for j in range(i+1, len(nums)): if num == nums[j]: return True return False # time complexity: O(nlogn) due to sorting # space complexity: O(1) without considering the space taken by sorting def __sorting(self, nums: List[int]) -> bool: nums.sort() for i in range(1, len(nums)): if nums[i-1] == nums[i]: return True return False # time complexity: O(n), space complexity: O(n) def __hashset(self, nums: List[int]) -> bool: table = set() for num in nums: if num in table: return True else: table.add(num) return False nums = [1,2,3,1] print(f'Input: {nums}') print(f'Output: {Solution().containsDuplicate(nums)}\n') nums = [1,2,3,4] print(f'Input: {nums}') print(f'Output: {Solution().containsDuplicate(nums)}\n') nums = [1,1,1,3,3,4,3,2,4,2] print(f'Input: {nums}') print(f'Output: {Solution().containsDuplicate(nums)}\n') ``` #### File: coding-interview-prep/Python/fibonacci.py ```python class Solution: def fibonacci(self, n: int) -> int: # return self.__recursiveMethod(n) # return self.__iterativeDynamicProgramming(n) return self.__iterativeDP2(n) # time complexity: O(2^n), space complexity: O(n) def __recursiveMethod(self, n: int) -> int: if n < 0: print('Incorrect input') if n == 0: return 0 elif n == 1: return 1 else: return self.__recursiveMethod(n-1) + self.__recursiveMethod(n-2) # time complexity: O(n), space complexity: O(n) def __iterativeDynamicProgramming(self, n: int) -> int: if n < 0: print('Incorrect input') f = [0,1] for i in range(2, n+1): f.append(f[i-1] + f[i-2]) return f[n] # time complexity: O(n), space complexity: O(1) def __iterativeDP2(self, n: int) -> int: if n < 0: print('Incorrect input') a = 0 b = 1 if n == 0: return a if n == 1: return b for i in range(2, n+1): c = a + b a = b b = c return b for i in range(0, 15): print(Solution().fibonacci(i)) ```
{ "source": "jocon15/Voice_Assistant-JARVIS", "score": 3 }
#### File: Voice_Assistant-JARVIS/src/weather_peripheral.py ```python import geocoder import time import json import MasterConfig from datetime import datetime from rich.console import Console from rich.theme import Theme from rich.text import Text console = Console(theme=MasterConfig.custom_theme) def scaled_color(temp): """Scale the color value based on whats passed in""" temp = int(round(float(temp))) if temp > 110 or temp < 0: raise Exception('Temp out of bounds') r = g = b = 0 if temp < 37: b = 255 g = round((temp / 36) * 255) elif temp < 74: g = 255 b = 255 - round((temp/74)*255) else: r = round((temp/110)*255) return "#{0:02x}{1:02x}{2:02x}".format(r, g, b) def print_hourly_forecast(data): # the 0 index is the current point, which we don't want for i in range(1, 13, 1): point = data['hourly'][i] # get the unix timestamp ts = point['dt'] # find out which hour it corresponds to hour = int(datetime.fromtimestamp(ts).strftime("%H")) # convert if > 12 if hour > 12: hour = hour - 12 sufix = 'pm' else: if hour > 11: sufix = 'pm' else: if hour < 1: hour = hour + 12 sufix = 'pm' else: sufix = 'am' spacing = ' ' if hour != 10 and hour != 11 and hour != 12: spacing = ' ' # print data for that point # color = scaled_color(point["temp"]) # MasterConfig.colors['temp'] = color # console = Console(theme=Theme({"temp": color})) print( f'{hour}{sufix}{spacing}{point["temp"]:.0f}°F {point["wind_speed"]:.0f}mph {point["weather"][0]["description"]}') pass def main(): console = Console(theme=MasterConfig.custom_theme) with open('data\\weather_data.json', ) as file: data = json.load(file) with open(f'data\\forecast_data.json', ) as file: forecast = json.load(file) # print(json.dumps(data, indent=4)) # for now, we are going to assume that jarvis will # do all of the 'fixing' to all values will be in desired format # before they are written to the json file # ------header------ print(f'Weather for {data["name"]}:\n') # ------levels------ color = scaled_color(data["main"]["temp"]) MasterConfig.colors['temp'] = color console.print( f'Temperature: [light blue]{data["main"]["temp"]}[/light blue]°F') print(f'Humidity: {data["main"]["humidity"]}%') # still need units print(f'Pressure: {data["main"]["pressure"]} hPa') print(f'Wind speed: {data["wind"]["speed"]} mph {data["wind"]["deg"]}') if 'gust' in data['wind'].keys(): print(f'Wind gust: {data["wind"]["gust"]} mph\n') # ------current state------ print(f'State: {data["weather"][0]["description"].upper()}') print(f'Visibility: {data["visibility"]} ft\n') # ------sun stuff------ print(f'Sunrise: {data["sys"]["sunrise"]} am') print(f'Sunset: {data["sys"]["sunset"]} pm\n') # ------forecast------ print(f'Hourly Forecast:') print_hourly_forecast(forecast) # sleep for a while to keep the window open time.sleep(100000) if __name__ == '__main__': main() ```
{ "source": "JoCoSoft/pi", "score": 3 }
#### File: JoCoSoft/pi/motor.py ```python import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) control_pins = [ 7, # GPIO 04 (Pin 7) 11, # GPIO 17 (Pin 11) 13, # GPIO 27 (Pin 13) 15 # GPIO 22 (Pin 15) ] for pin in control_pins: GPIO.setup(pin, GPIO.OUT) GPIO.output(pin, 0) halfstep_seq = [ [1, 0, 0, 0], [1, 1, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 1, 1], [0, 0, 0, 1], [1, 0, 0, 1] ] def rotateMotor(clockwise, degrees): fullRotationSteps = 512 fullRotationDegrees = 360 halfstepExecutions = int(fullRotationSteps * (float(degrees) / float(fullRotationDegrees))) print "Looping for " + str(halfstepExecutions) + " half step executions" for _ in range(halfstepExecutions): for halfstep in range(8) if clockwise else reversed(range(8)): for pin in range(4) if clockwise else reversed(range(4)): GPIO.output(control_pins[pin], halfstep_seq[halfstep][pin]) time.sleep(0.0008) def openVent(degrees): print "Rotating " + str(degrees) + " degrees counter-clockwise" rotateMotor(False, degrees) def closeVent(degrees): print "Rotating " + str(degrees) + " degrees clockwise" rotateMotor(True, degrees) ``` #### File: JoCoSoft/pi/processor.py ```python import sched import time import requests import motor delay = 5 priority = 1 scheduler = sched.scheduler(time.time, time.sleep) def processJobs(): print "--- processJobs() ---" processJobsUrl = "http://jocosoft-api.herokuapp.com/api/v1/jobs/process" # PROD # processJobsUrl = "http://localhost:3000/api/v1/jobs/process" # DEV response = requests.post(processJobsUrl, json={ "serial": "dev-vent", "code": "123456"}) # Pull serial / code from some storage jsonResponse = response.json() for job in jsonResponse: print "Processing job " + job["id"] jobName = job["name"] jobDegrees = 90 try: jobDegrees = job["data"]["degrees"] except KeyError: pass if jobName == "open": motor.openVent(jobDegrees) continue if jobName == "close": motor.closeVent(jobDegrees) continue def processJobScheduler(_scheduler): print "--- processJobScheduler() ---" processJobs() scheduler.enter(delay, priority, processJobScheduler, (_scheduler,)) def main(): print "--- main ----" processJobs() scheduler.enter(delay, priority, processJobScheduler, (scheduler,)) scheduler.run() if __name__ == "__main__": main() ``` #### File: pi/RPi/GPIO.py ```python BOARD = 1 OUT = 1 IN = 1 def setmode(a): #print a return def setup(a, b): #print a return def output(a, b): #print a return def cleanup(): #print 'a' return def setwarnings(flag): #print 'False' return ```
{ "source": "Jocs/reading-notes", "score": 3 }
#### File: begin-python/cp11/chapter11.py ```python for char in open('./text.txt'): print char # ####11.1.1 文件模式 # 如果 open 只带一个文件名参数,那么我们可以获取得能读取文件内容的文件对象。 # open 方法支持5 中模式。`r` `w` `a` `+` `b` # ####11.1.2 缓存 # 当参数为 0 时,不缓存,当参数不为 0 缓冲。当参数为 -1 时,使用默认的缓冲区大小。 # ###11.2 基本的文件方法 # 文件对象是指支持 file 类方法的对象,最重要的是支持read 方法和 write 方法。 # ####11.2.1 读和写 f = open('./text.txt', 'w') f.write('ransixi\n') f.write('<EMAIL>\n') f.close() f = open('./text.txt', 'r') print f.read(4) print f.read() f.close() # ####11.2.2 管道输出 # ####11.2.3 读写行 f = open('./text.txt', 'r') print f.readline() f.close() f = open('./text.txt', 'r') for line in f.readlines(): print '#' + line f.close() f = open('./text.txt', 'w') lines = [ 'hello\n', 'nice to meet you\n', 'my name is ransixi' ] f.writelines(lines) f.close() f = open('./text.txt', 'w') f.write('nice to meet you\n') f.write('my name is jocs\n') f.close() # ####11.2.5 基本的文件方法 # ###11.3 对文件内容进行迭代 def process(string): print 'Process: ' + string f = open('./text.txt') while True: s = f.read(1) if not s: break process(s) f.close() f = open('./text.txt') while True: line = f.readline() if not line: break process(line) f.close() f = open('./text.txt') for line in f.readlines(): process(line) f.close() print list(open('./text.txt')) ``` #### File: begin-python/cp16/test_chapter16.py ```python import unittest, chapter16 class SquareTestCase(unittest.TestCase): def testInterers(self): for x in xrange(-10, 10): p = chapter16.square(x) self.failUnless(p == x * x, 'interger square failed') def testFloat(self): for x in xrange(-10, 10): x = x / 10.0 p = chapter16.square(x) self.failUnless(p == x * x, 'Float square failed') if __name__ == '__main__': unittest.main() ```
{ "source": "joctaTorres/treeasy", "score": 4 }
#### File: treeasy/treeasy/entropy.py ```python from math import log2 from typing import List def collection_entropy(collection: List[int]) -> float: """ collection: discrete target attribute count e.g.1: [7, 9, 4] """ collection_size = sum(collection) return entropy([(target / collection_size) for target in collection]) def entropy(probabilities: List[float], log=log2) -> float: """ probabilities: e.g.1: [(7/20), (9/20), (4/20)] e.g.2: [(4/11), (7/11)] e.g.3: [0.5, 0.2, 0.1, 0.1, 0.1] """ if not probabilities: return 0 entropy = 0 for p in probabilities: term = p * log(p) entropy -= term return entropy def target_collection_information_gain( target_collection: List[int], attribute_subsets: List[List[int]] ) -> float: target_instance_size = sum(target_collection) target_entropy = collection_entropy(target_collection) return attribute_information_gain( target_entropy, target_instance_size, attribute_subsets ) def attribute_information_gain( target_entropy: float, target_instance_size: int, attribute_subsets: List[List[int]] ) -> float: attribute_entropy = 0.0 for subset in attribute_subsets: subset_weigth = sum(subset) / target_instance_size attribute_entropy += subset_weigth * collection_entropy(subset) gain = target_entropy - attribute_entropy return gain ```
{ "source": "jocubeit/CDM", "score": 2 }
#### File: Python/tests/adls_test_helper.py ```python import os from cdm.storage import ADLSAdapter from cdm.enums import AzureCloudEndpoint class AdlsTestHelper: @staticmethod def create_adapter_with_shared_key(root_relative_path: str = None, test_blob_hostname: bool = False, https_hostname: bool = False): hostname = os.environ.get("ADLS_HTTPS_HOSTNAME") if https_hostname else os.environ.get("ADLS_HOSTNAME") root_path = os.environ.get("ADLS_ROOTPATH") shared_key = os.environ.get("ADLS_SHAREDKEY") if test_blob_hostname is True: hostname = hostname.replace('dfs', 'blob') return ADLSAdapter(hostname=hostname, root=AdlsTestHelper.get_full_root_path(root_path, root_relative_path), shared_key=shared_key) @staticmethod def create_adapter_with_client_id(root_relative_path: str = None, specify_endpoint: bool = False, test_blob_hostname: bool = False): hostname = os.environ.get("ADLS_HOSTNAME") root_path = os.environ.get("ADLS_ROOTPATH") tenant = os.environ.get("ADLS_TENANT") client_id = os.environ.get("ADLS_CLIENTID") client_secret = os.environ.get("ADLS_CLIENTSECRET") if test_blob_hostname is True: hostname = hostname.replace('blob', 'dfs') if specify_endpoint: return ADLSAdapter(hostname=hostname, root=AdlsTestHelper.get_full_root_path(root_path, root_relative_path), tenant=tenant, client_id=client_id, secret=client_secret, endpoint=AzureCloudEndpoint.AZURE_PUBLIC) return ADLSAdapter(hostname=hostname, root=AdlsTestHelper.get_full_root_path(root_path, root_relative_path), tenant=tenant, client_id=client_id, secret=client_secret) @staticmethod def get_full_root_path(first: str, second: str) -> str: if second is None or second == '': return first if first.endswith('/'): first = first[0:len(first) - 1] if second.startswith('/'): second = second[1:] return first + '/' + second ``` #### File: cdm/projection/test_projection_performance.py ```python import os import time import unittest from cdm.utilities.resolve_options import ResolveOptions from tests.common import TestHelper, async_test from cdm.objectmodel import CdmTypeAttributeDefinition class ProjectionPerformanceTest(unittest.TestCase): # The path between TestDataPath and TestName. tests_subpath = os.path.join('Cdm', 'Projection', 'ProjectionPerformanceTest') @async_test async def test_projection_performance_on_load(self): """A test class for testing the performance of projection operations""" corpus = TestHelper.get_local_corpus(self.tests_subpath, 'TestProjectionPerformanceOnLoad') entity = await corpus.fetch_object_async('largeProjectionEntity.cdm.json/largeProjectionEntity') operation = entity.attributes[0].entity.explicit_reference.operations[0] attGroup = operation.new_attribute.explicit_reference # add a large number of attributes to the projection for i in range(10000): attGroup.members.append(CdmTypeAttributeDefinition(corpus.ctx, 'a' + str(i))) start = time.time() # reindex the entity to run through the visit function await entity.in_document._index_if_needed(ResolveOptions(entity.in_document), True) stop = time.time() self.assertLess(stop - start, 500) ```
{ "source": "jod35/Fast-Food-Fast", "score": 3 }
#### File: app/controllers/methods.py ```python from ..utils.database import db from ..models.users import User def check_username_exists(username): user=User.query.filter_by(username=username).first() if user: return True else: return False def check_email_exists(email): user=User.query.filter_by(email=email).first() if user: return True else: return False ``` #### File: app/ui/routes.py ```python from flask import Blueprint,render_template,url_for from flask_login import login_required,current_user from ..models.users import Order ui_bp=Blueprint('ui',__name__,template_folder='templates') @ui_bp.route('/') def index(): return render_template('index.html') @ui_bp.route('/login_fail') def login_failed(): return render_template('login.html') @login_required @ui_bp.route('/orders') def users_orders(): orders=Order.query.filter_by(sender=current_user).all() return render_template('orders.html' ,orders=orders) @login_required @ui_bp.route('/admin') def new_orders(): orders=Order.query.filter_by(delivery_complete=False).all() return render_template('admin.html',orders=orders) @login_required @ui_bp.route('/complete-orders') def admin_complete_orders(): orders=Order.query.filter_by(delivery_complete=True).all() return render_template('orderscomplete.html',orders=orders) @login_required @ui_bp.route('/myorders') def user_complete_orders(): orders=Order.query.filter_by(sender=current_user).all() return render_template('myorders.html',orders=orders) ```
{ "source": "Joda89/parsedmarc", "score": 2 }
#### File: parsedmarc/parsedmarc/cli.py ```python import json import logging import sys import time from collections import OrderedDict from glob import glob from itertools import repeat from multiprocessing import Pool, Value from ssl import CERT_NONE, create_default_context from prometheus_client import start_http_server from tqdm import tqdm from parsedmarc import get_dmarc_reports_from_inbox, watch_inbox, \ parse_report_file, get_dmarc_reports_from_mbox, save_output, email_results, ParserError, InvalidDMARCReport from parsedmarc.config import Config from parsedmarc.logger import load_config from parsedmarc.output import syslog, elastic, s3, splunk, kafkaclient from parsedmarc.utils import is_mbox logger = logging.getLogger("parsedmarc") def cli_parse(file_path, sa, nameservers, dns_timeout, ip_db_path, offline, parallel=False): """Separated this function for multiprocessing""" try: file_results = parse_report_file(file_path, ip_db_path=ip_db_path, offline=offline, nameservers=nameservers, dns_timeout=dns_timeout, strip_attachment_payloads=sa, parallel=parallel) except ParserError as error: return error, file_path finally: global counter with counter.get_lock(): counter.value += 1 return file_results, file_path def init(ctr): global counter counter = ctr def _main(): """Called when the module is executed""" def process_reports(reports_): output_str = "{0}\n".format(json.dumps(reports_, ensure_ascii=False, indent=2)) if not opts.silent: print(output_str) if opts.kafka_hosts: try: ssl_context = None if opts.kafka_skip_certificate_verification: logger.debug("Skipping Kafka certificate verification") ssl_context = create_default_context() ssl_context.check_hostname = False ssl_context.verify_mode = CERT_NONE kafka_client = kafkaclient.KafkaClient( opts.kafka_hosts, username=opts.kafka_username, password=opts.kafka_password, ssl_context=ssl_context ) except Exception as error_: logger.error("Kafka Error: {0}".format(error_.__str__())) if opts.s3_bucket: try: s3_client = s3.S3Client( bucket_name=opts.s3_bucket, bucket_path=opts.s3_path, ) except Exception as error_: logger.error("S3 Error: {0}".format(error_.__str__())) if opts.syslog_server: try: syslog_client = syslog.SyslogClient( server_name=opts.syslog_server, server_port=int(opts.syslog_port), ) except Exception as error_: logger.error("Syslog Error: {0}".format(error_.__str__())) if opts.save_aggregate: for report in reports_["aggregate_reports"]: try: if opts.elasticsearch_hosts: shards = opts.elasticsearch_number_of_shards replicas = opts.elasticsearch_number_of_replicas elastic.save_aggregate_report_to_elasticsearch( report, index_suffix=opts.elasticsearch_index_suffix, monthly_indexes=opts.elasticsearch_monthly_indexes, number_of_shards=shards, number_of_replicas=replicas ) except elastic.AlreadySaved as warning: logger.warning(warning.__str__()) except elastic.ElasticsearchError as error_: logger.error("Elasticsearch Error: {0}".format( error_.__str__())) try: if opts.kafka_hosts: kafka_client.save_aggregate_reports_to_kafka( report, kafka_aggregate_topic) except Exception as error_: logger.error("Kafka Error: {0}".format( error_.__str__())) try: if opts.s3_bucket: s3_client.save_aggregate_report_to_s3(report) except Exception as error_: logger.error("S3 Error: {0}".format(error_.__str__())) try: if opts.syslog_server: syslog_client.save_aggregate_report_to_syslog(report) except Exception as error_: logger.error("Syslog Error: {0}".format(error_.__str__())) if opts.hec: try: aggregate_reports_ = reports_["aggregate_reports"] if len(aggregate_reports_) > 0: hec_client.save_aggregate_reports_to_splunk( aggregate_reports_) except splunk.SplunkError as e: logger.error("Splunk HEC error: {0}".format(e.__str__())) if opts.save_forensic: for report in reports_["forensic_reports"]: try: shards = opts.elasticsearch_number_of_shards replicas = opts.elasticsearch_number_of_replicas if opts.elasticsearch_hosts: elastic.save_forensic_report_to_elasticsearch( report, index_suffix=opts.elasticsearch_index_suffix, monthly_indexes=opts.elasticsearch_monthly_indexes, number_of_shards=shards, number_of_replicas=replicas) except elastic.AlreadySaved as warning: logger.warning(warning.__str__()) except elastic.ElasticsearchError as error_: logger.error("Elasticsearch Error: {0}".format( error_.__str__())) except InvalidDMARCReport as error_: logger.error(error_.__str__()) try: if opts.kafka_hosts: kafka_client.save_forensic_reports_to_kafka( report, kafka_forensic_topic) except Exception as error_: logger.error("Kafka Error: {0}".format( error_.__str__())) try: if opts.s3_bucket: s3_client.save_forensic_report_to_s3(report) except Exception as error_: logger.error("S3 Error: {0}".format(error_.__str__())) try: if opts.syslog_server: syslog_client.save_forensic_report_to_syslog(report) except Exception as error_: logger.error("Syslog Error: {0}".format(error_.__str__())) if opts.hec: try: forensic_reports_ = reports_["forensic_reports"] if len(forensic_reports_) > 0: hec_client.save_forensic_reports_to_splunk( forensic_reports_) except splunk.SplunkError as e: logger.error("Splunk HEC error: {0}".format(e.__str__())) aggregate_reports = [] forensic_reports = [] config = Config() config.load_config() opts = config.get_config() load_config(opts) if opts.imap_host is None and len(opts.file_path) == 0: logger.error("You must supply input files, or an IMAP configuration") exit(1) logger.info("Starting dmarcparse") if opts.save_aggregate or opts.save_forensic: try: if opts.elasticsearch_hosts: es_aggregate_index = "dmarc_aggregate" es_forensic_index = "dmarc_forensic" if opts.elasticsearch_index_suffix: suffix = opts.elasticsearch_index_suffix es_aggregate_index = "{0}_{1}".format( es_aggregate_index, suffix) es_forensic_index = "{0}_{1}".format( es_forensic_index, suffix) elastic.set_hosts(opts.elasticsearch_hosts, opts.elasticsearch_ssl, opts.elasticsearch_ssl_cert_path, opts.elasticsearch_username, opts.elasticsearch_password, timeout=opts.elasticsearch_timeout) elastic.migrate_indexes(aggregate_indexes=[es_aggregate_index], forensic_indexes=[es_forensic_index]) except elastic.ElasticsearchError as error: logger.error("Elasticsearch Error: {0}".format(error.__str__())) exit(1) if opts.hec: if opts.hec_token is None or opts.hec_index is None: logger.error("HEC token and HEC index are required when " "using HEC URL") exit(1) verify = True if opts.hec_skip_certificate_verification: verify = False hec_client = splunk.HECClient(opts.hec, opts.hec_token, opts.hec_index, verify=verify) kafka_aggregate_topic = opts.kafka_aggregate_topic kafka_forensic_topic = opts.kafka_forensic_topic file_paths = [] mbox_paths = [] for file_path in opts.file_path: file_paths += glob(file_path) for file_path in file_paths: if is_mbox(file_path): mbox_paths.append(file_path) file_paths = list(set(file_paths)) mbox_paths = list(set(mbox_paths)) for mbox_path in mbox_paths: file_paths.remove(mbox_path) counter = Value('i', 0) pool = Pool(opts.n_procs, initializer=init, initargs=(counter,)) results = pool.starmap_async(cli_parse, zip(file_paths, repeat(opts.strip_attachment_payloads), repeat(opts.nameservers), repeat(opts.dns_timeout), repeat(opts.ip_db_path), repeat(opts.offline), repeat(opts.n_procs >= 1)), opts.chunk_size) if sys.stdout.isatty(): pbar = tqdm(total=len(file_paths)) while not results.ready(): pbar.update(counter.value - pbar.n) time.sleep(0.1) pbar.close() else: while not results.ready(): time.sleep(0.1) results = results.get() pool.close() pool.join() for result in results: if type(result[0]) is InvalidDMARCReport: logger.error("Failed to parse {0} - {1}".format(result[1], result[0])) else: if result[0]["report_type"] == "aggregate": aggregate_reports.append(result[0]["report"]) elif result[0]["report_type"] == "forensic": forensic_reports.append(result[0]["report"]) for mbox_path in mbox_paths: strip = opts.strip_attachment_payloads reports = get_dmarc_reports_from_mbox(mbox_path, nameservers=opts.nameservers, dns_timeout=opts.dns_timeout, strip_attachment_payloads=strip, ip_db_path=opts.ip_db_path, offline=opts.offline, parallel=False) aggregate_reports += reports["aggregate_reports"] forensic_reports += reports["forensic_reports"] if opts.imap_host: try: if opts.imap_user is None or opts.imap_password is None: logger.error("IMAP user and password must be specified if" "host is specified") rf = opts.imap_reports_folder af = opts.imap_archive_folder ns = opts.nameservers sa = opts.strip_attachment_payloads ssl = True verify = True if opts.imap_skip_certificate_verification: logger.debug("Skipping IMAP certificate verification") verify = False if opts.imap_ssl is False: ssl = False reports = get_dmarc_reports_from_inbox( host=opts.imap_host, port=opts.imap_port, ssl=ssl, verify=verify, timeout=opts.imap_timeout, max_retries=opts.imap_max_retries, user=opts.imap_user, password=opts.imap_password, reports_folder=rf, archive_folder=af, ip_db_path=opts.ip_db_path, delete=opts.imap_delete, offline=opts.offline, nameservers=ns, test=opts.imap_test, strip_attachment_payloads=sa, batch_size=opts.imap_batch_size ) aggregate_reports += reports["aggregate_reports"] forensic_reports += reports["forensic_reports"] except Exception as error: logger.error("IMAP Error: {0}".format(error.__str__())) exit(1) results = OrderedDict([("aggregate_reports", aggregate_reports), ("forensic_reports", forensic_reports)]) if opts.output: save_output(results, output_directory=opts.output, aggregate_json_filename=opts.aggregate_json_filename, forensic_json_filename=opts.forensic_json_filename, aggregate_csv_filename=opts.aggregate_csv_filename, forensic_csv_filename=opts.forensic_csv_filename) process_reports(results) if opts.smtp_host: try: verify = True if opts.smtp_skip_certificate_verification: verify = False email_results(results, opts.smtp_host, opts.smtp_from, opts.smtp_to, port=opts.smtp_port, verify=verify, username=opts.smtp_user, password=<PASSWORD>, subject=opts.smtp_subject) except Exception as error: logger.error("{0}".format(error.__str__())) exit(1) if opts.imap_host and opts.imap_watch: logger.info("Watching for email - Quit with ctrl-c") ssl = True verify = True if opts.imap_skip_certificate_verification: logger.debug("Skipping IMAP certificate verification") verify = False if opts.imap_ssl is False: ssl = False try: sa = opts.strip_attachment_payloads watch_inbox( opts.imap_host, opts.imap_user, opts.imap_password, process_reports, port=opts.imap_port, ssl=ssl, verify=verify, reports_folder=opts.imap_reports_folder, archive_folder=opts.imap_archive_folder, delete=opts.imap_delete, test=opts.imap_test, nameservers=opts.nameservers, dns_timeout=opts.dns_timeout, strip_attachment_payloads=sa, batch_size=opts.imap_batch_size, ip_db_path=opts.ip_db_path, offline=opts.offline) except FileExistsError as error: logger.error("{0}".format(error.__str__())) exit(1) if __name__ == "__main__": start_http_server(8000) # _main() ``` #### File: parsedmarc/parsedmarc/config.py ```python import logging import os from argparse import ArgumentParser from configparser import ConfigParser from parsedmarc.utils import str_to_list logger = logging.getLogger("parsedmarc") __version__ = "7.1.1" class Config: opts = None def __init__(self): arg_parser = ArgumentParser(description="Parses DMARC reports") arg_parser.add_argument("-c", "--config-file", help="a path to a configuration file " "(--silent implied)") arg_parser.add_argument("file_path", nargs="*", help="one or more paths to aggregate or forensic " "report files, emails, or mbox files'") strip_attachment_help = "remove attachment payloads from forensic " \ "report output" arg_parser.add_argument("--strip-attachment-payloads", help=strip_attachment_help, action="store_true") arg_parser.add_argument("-o", "--output", help="write output files to the given directory") arg_parser.add_argument("--aggregate-json-filename", help="filename for the aggregate JSON output file", default="aggregate.json") arg_parser.add_argument("--forensic-json-filename", help="filename for the forensic JSON output file", default="forensic.json") arg_parser.add_argument("--aggregate-csv-filename", help="filename for the aggregate CSV output file", default="aggregate.csv") arg_parser.add_argument("--forensic-csv-filename", help="filename for the forensic CSV output file", default="forensic.csv") arg_parser.add_argument("-n", "--nameservers", nargs="+", help="nameservers to query") arg_parser.add_argument("-t", "--dns_timeout", help="number of seconds to wait for an answer " "from DNS (default: 2.0)", type=float, default=2.0) arg_parser.add_argument("--offline", action="store_true", help="do not make online queries for geolocation " " or DNS") arg_parser.add_argument("-s", "--silent", action="store_true", help="only print errors and warnings") arg_parser.add_argument("--verbose", action="store_true", help="more verbose output") arg_parser.add_argument("--debug", action="store_true", help="print debugging information") arg_parser.add_argument("--log-file", default=None, help="output logging to a file") arg_parser.add_argument("-v", "--version", action="version", version=__version__) self.opts = arg_parser.parse_args() self.opts.save_aggregate = False self.opts.save_forensic = False self.opts.imap_host = None self.opts.imap_skip_certificate_verification = False self.opts.imap_ssl = True self.opts.imap_port = 993 self.opts.imap_timeout = 30 self.opts.imap_max_retries = 4 self.opts.imap_user = None self.opts.imap_password = <PASSWORD> self.opts.imap_reports_folder = "INBOX" self.opts.imap_archive_folder = "Archive" self.opts.imap_watch = False self.opts.imap_delete = False self.opts.imap_test = False self.opts.imap_batch_size = None self.opts.hec = None self.opts.hec_token = None self.opts.hec_index = None self.opts.hec_skip_certificate_verification = False self.opts.elasticsearch_hosts = None self.opts.elasticsearch_timeout = 60 self.opts.elasticsearch_number_of_shards = 1 self.opts.elasticsearch_number_of_replicas = 0 self.opts.elasticsearch_index_suffix = None self.opts.elasticsearch_ssl = True self.opts.elasticsearch_ssl_cert_path = None self.opts.elasticsearch_monthly_indexes = False self.opts.elasticsearch_username = None self.opts.elasticsearch_password = None self.opts.kafka_hosts = None self.opts.kafka_username = None self.opts.kafka_password = None self.opts.kafka_aggregate_topic = None self.opts.kafka_forensic_topic = None self.opts.kafka_ssl = False self.opts.kafka_skip_certificate_verification = False self.opts.smtp_host = None self.opts.smtp_port = 25 self.opts.smtp_ssl = False self.opts.smtp_skip_certificate_verification = False self.opts.smtp_user = None self.opts.smtp_password = None self.opts.smtp_from = None self.opts.smtp_to = [] self.opts.smtp_subject = "parsedmarc report" self.opts.smtp_message = "Please see the attached DMARC results." self.opts.s3_bucket = None self.opts.s3_path = None self.opts.syslog_server = None self.opts.syslog_port = None self.opts.n_procs = 1 self.opts.chunk_size = 1 def get_config(self): return self.opts def load_config(self): if self.opts.config_file: abs_path = os.path.abspath(self.opts.config_file) if not os.path.exists(abs_path): logger.error("A file does not exist at {0}".format(abs_path)) exit(-1) self.opts.silent = True config = ConfigParser() config.read(self.opts.config_file) if "general" in config.sections(): self._load_config_general(config) if "imap" in config.sections(): self._load_config_imap(config) if "elasticsearch" in config.sections(): self._load_config_elasticsearch(config) if "splunk_hec" in config.sections(): self._load_config_splunk(config) if "kafka" in config.sections(): self._load_config_kafka(config) if "smtp" in config.sections(): self._load_config_smtp(config) if "s3" in config.sections(): self._load_config_s3(config) if "syslog" in config.sections(): self._load_config_syslog(config) def _load_config_general(self, config): general_config = config["general"] if "offline" in general_config: self.opts.offline = general_config.getboolean("offline") if "strip_attachment_payloads" in general_config: self.opts.strip_attachment_payloads = general_config[ "strip_attachment_payloads"] if "output" in general_config: self.opts.output = general_config["output"] if "aggregate_json_filename" in general_config: self.opts.aggregate_json_filename = general_config[ "aggregate_json_filename"] if "forensic_json_filename" in general_config: self.opts.forensic_json_filename = general_config[ "forensic_json_filename"] if "aggregate_csv_filename" in general_config: self.opts.aggregate_csv_filename = general_config[ "aggregate_csv_filename"] if "forensic_csv_filename" in general_config: self.opts.forensic_csv_filename = general_config[ "forensic_csv_filename"] if "nameservers" in general_config: self.opts.nameservers = str_to_list(general_config["nameservers"]) if "dns_timeout" in general_config: self.opts.dns_timeout = general_config.getfloat("dns_timeout") if "save_aggregate" in general_config: self.opts.save_aggregate = general_config["save_aggregate"] if "save_forensic" in general_config: self.opts.save_forensic = general_config["save_forensic"] if "debug" in general_config: self.opts.debug = general_config.getboolean("debug") if "verbose" in general_config: self.opts.verbose = general_config.getboolean("verbose") if "silent" in general_config: self.opts.silent = general_config.getboolean("silent") if "log_file" in general_config: self.opts.log_file = general_config["log_file"] if "n_procs" in general_config: self.opts.n_procs = general_config.getint("n_procs") if "chunk_size" in general_config: self.opts.chunk_size = general_config.getint("chunk_size") if "ip_db_path" in general_config: self.opts.ip_db_path = general_config["ip_db_path"] else: self.opts.ip_db_path = None def _load_config_imap(self, config): imap_config = config["imap"] if "host" in imap_config: self.opts.imap_host = imap_config["host"] else: logger.error("host setting missing from the " "imap config section") exit(-1) if "port" in imap_config: self.opts.imap_port = imap_config.getint("port") if "timeout" in imap_config: self.opts.imap_timeout = imap_config.getfloat("timeout") if "max_retries" in imap_config: self.opts.imap_max_retries = imap_config.getint("max_retries") if "ssl" in imap_config: self.opts.imap_ssl = imap_config.getboolean("ssl") if "skip_certificate_verification" in imap_config: imap_verify = imap_config.getboolean( "skip_certificate_verification") self.opts.imap_skip_certificate_verification = imap_verify if "user" in imap_config: self.opts.imap_user = imap_config["user"] else: logger.critical("user setting missing from the " "imap config section") exit(-1) if "password" in imap_config: self.opts.imap_password = imap_config["password"] else: logger.critical("password setting missing from the " "imap config section") exit(-1) if "reports_folder" in imap_config: self.opts.imap_reports_folder = imap_config["reports_folder"] if "archive_folder" in imap_config: self.opts.imap_archive_folder = imap_config["archive_folder"] if "watch" in imap_config: self.opts.imap_watch = imap_config.getboolean("watch") if "delete" in imap_config: self.opts.imap_delete = imap_config.getboolean("delete") if "test" in imap_config: self.opts.imap_test = imap_config.getboolean("test") if "batch_size" in imap_config: self.opts.imap_batch_size = imap_config.getint("batch_size") else: self.opts.imap_batch_size = None def _load_config_elasticsearch(self, config): elasticsearch_config = config["elasticsearch"] if "hosts" in elasticsearch_config: self.opts.elasticsearch_hosts = str_to_list(elasticsearch_config["hosts"]) else: logger.critical("hosts setting missing from the elasticsearch config section") exit(-1) if "timeout" in elasticsearch_config: timeout = elasticsearch_config.getfloat("timeout") self.opts.elasticsearch_timeout = timeout if "number_of_shards" in elasticsearch_config: number_of_shards = elasticsearch_config.getint( "number_of_shards") self.opts.elasticsearch_number_of_shards = number_of_shards if "number_of_replicas" in elasticsearch_config: number_of_replicas = elasticsearch_config.getint( "number_of_replicas") self.opts.elasticsearch_number_of_replicas = number_of_replicas if "index_suffix" in elasticsearch_config: self.opts.elasticsearch_index_suffix = elasticsearch_config[ "index_suffix"] if "monthly_indexes" in elasticsearch_config: monthly = elasticsearch_config.getboolean("monthly_indexes") self.opts.elasticsearch_monthly_indexes = monthly if "ssl" in elasticsearch_config: self.opts.elasticsearch_ssl = elasticsearch_config.getboolean("ssl") if "cert_path" in elasticsearch_config: self.opts.elasticsearch_ssl_cert_path = elasticsearch_config["cert_path"] if "user" in elasticsearch_config: self.opts.elasticsearch_username = elasticsearch_config["user"] if "password" in elasticsearch_config: self.opts.elasticsearch_password = elasticsearch_config["password"] def _load_config_splunk(self, config): hec_config = config["splunk_hec"] if "url" in hec_config: self.opts.hec = hec_config["url"] else: logger.critical("url setting missing from the splunk_hec config section") exit(-1) if "token" in hec_config: self.opts.hec_token = hec_config["token"] else: logger.critical("token setting missing from the splunk_hec config section") exit(-1) if "index" in hec_config: self.opts.hec_index = hec_config["index"] else: logger.critical("index setting missing from the splunk_hec config section") exit(-1) if "skip_certificate_verification" in hec_config: self.opts.hec_skip_certificate_verification = hec_config["skip_certificate_verification"] def _load_config_kafka(self, config): kafka_config = config["kafka"] if "hosts" in kafka_config: self.opts.kafka_hosts = str_to_list(kafka_config["hosts"]) else: logger.critical("hosts setting missing from the kafka config section") exit(-1) if "user" in kafka_config: self.opts.kafka_username = kafka_config["user"] else: logger.critical("user setting missing from the kafka config section") exit(-1) if "password" in kafka_config: self.opts.kafka_password = kafka_config["password"] else: logger.critical("password setting missing from the kafka config section") exit(-1) if "ssl" in kafka_config: self.opts.kafka_ssl = kafka_config["ssl"].getboolean() if "skip_certificate_verification" in kafka_config: kafka_verify = kafka_config.getboolean("skip_certificate_verification") self.opts.kafka_skip_certificate_verification = kafka_verify if "aggregate_topic" in kafka_config: self.opts.kafka_aggregate = kafka_config["aggregate_topic"] else: logger.critical("aggregate_topic setting missing from the kafka config section") exit(-1) if "forensic_topic" in kafka_config: self.opts.kafka_username = kafka_config["forensic_topic"] else: logger.critical("forensic_topic setting missing from the splunk_hec config section") def _load_config_smtp(self, config): smtp_config = config["smtp"] if "host" in smtp_config: self.opts.smtp_host = smtp_config["host"] else: logger.critical("host setting missing from the smtp config section") exit(-1) if "port" in smtp_config: self.opts.smtp_port = smtp_config["port"] if "ssl" in smtp_config: self.opts.smtp_ssl = smtp_config.getboolean("ssl") if "skip_certificate_verification" in smtp_config: smtp_verify = smtp_config.getboolean( "skip_certificate_verification") self.opts.smtp_skip_certificate_verification = smtp_verify if "user" in smtp_config: self.opts.smtp_user = smtp_config["user"] else: logger.critical("user setting missing from the smtp config section") exit(-1) if "password" in smtp_config: self.opts.smtp_password = smtp_config["password"] else: logger.critical("password setting missing from the smtp config section") exit(-1) if "from" in smtp_config: self.opts.smtp_from = smtp_config["from"] else: logger.critical("from setting missing from the smtp config section") if "to" in smtp_config: self.opts.smtp_to = str_to_list(smtp_config["to"]) else: logger.critical("to setting missing from the smtp config section") if "subject" in smtp_config: self.opts.smtp_subject = smtp_config["subject"] if "attachment" in smtp_config: self.opts.smtp_attachment = smtp_config["attachment"] if "message" in smtp_config: self.opts.smtp_message = smtp_config["message"] def _load_config_s3(self, config): s3_config = config["s3"] if "bucket" in s3_config: self.opts.s3_bucket = s3_config["bucket"] else: logger.critical("bucket setting missing from the s3 config section") exit(-1) if "path" in s3_config: self.opts.s3_path = s3_config["path"] if self.opts.s3_path.startswith("/"): self.opts.s3_path = self.opts.s3_path[1:] if self.opts.s3_path.endswith("/"): self.opts.s3_path = self.opts.s3_path[:-1] else: self.opts.s3_path = "" def _load_config_syslog(self, config): syslog_config = config["syslog"] if "server" in syslog_config: self.opts.syslog_server = syslog_config["server"] else: logger.critical("server setting missing from the syslog config section") exit(-1) if "port" in syslog_config: self.opts.syslog_port = syslog_config["port"] else: self.opts.syslog_port = 514 ``` #### File: parsedmarc/parsedmarc/logger.py ```python import logging logger = logging.getLogger("parsedmarc") def load_config(self, config): logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.WARNING) if config.verbose: logging.basicConfig(level=logging.INFO) logger.setLevel(logging.INFO) if config.debug: logging.basicConfig(level=logging.DEBUG) logger.setLevel(logging.DEBUG) if config.log_file: fh = logging.FileHandler(config.log_file) formatter = logging.Formatter( '%(asctime)s - ' '%(levelname)s - [%(filename)s:%(lineno)d] - %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) ```
{ "source": "jodabyte/bifrost", "score": 3 }
#### File: apa102_pi/colorschemes/colorschemes.py ```python from apa102_pi.driver import colorcycletemplate class StrandTest(colorcycletemplate.ColorCycleTemplate): """Runs a simple strand test (9 LEDs wander through the strip).""" color = None def init(self, strip, num_led): self.color = 0x000000 # Initialize with black def update(self, strip, num_led, num_steps_per_cycle, current_step, current_cycle): # One cycle = The 9 Test-LEDs wander through numStepsPerCycle LEDs. if current_step == 0: self.color >>= 8 # Red->green->blue->black if self.color == 0: self.color = 0xFF0000 # If black, reset to red bloblen = 9 if num_led - 1 < bloblen: bloblen = num_led - 3 if num_led <= 0: bloblen = 1 # The head pixel that will be turned on in this cycle head = (current_step + bloblen) % num_steps_per_cycle tail = current_step # The tail pixel that will be turned off strip.set_pixel_rgb(head, self.color) # Paint head strip.set_pixel_rgb(tail, 0) # Clear tail return 1 # Repaint is necessary class TheaterChase(colorcycletemplate.ColorCycleTemplate): """Runs a 'marquee' effect around the strip.""" def update(self, strip, num_led, num_steps_per_cycle, current_step, current_cycle): # One cycle = One trip through the color wheel, 0..254 # Few cycles = quick transition, lots of cycles = slow transition # Note: For a smooth transition between cycles, numStepsPerCycle must # be a multiple of 7 start_index = current_step % 7 # One segment is 2 blank, and 5 filled color_index = strip.wheel(int(round(255 / num_steps_per_cycle * current_step, 0))) for pixel in range(num_led): # Two LEDs out of 7 are blank. At each step, the blank # ones move one pixel ahead. if ((pixel + start_index) % 7 == 0) or ((pixel + start_index) % 7 == 1): strip.set_pixel_rgb(pixel, 0) else: strip.set_pixel_rgb(pixel, color_index) return 1 class RoundAndRound(colorcycletemplate.ColorCycleTemplate): """Runs three LEDs around the strip.""" def init(self, strip, num_led): strip.set_pixel_rgb(0, 0xFF0000) strip.set_pixel_rgb(1, 0xFF0000, 5) # Only 5% brightness strip.set_pixel_rgb(2, 0xFF0000) def update(self, strip, num_led, num_steps_per_cycle, current_step, current_cycle): # Simple class to demonstrate the "rotate" method strip.rotate() return 1 class Solid(colorcycletemplate.ColorCycleTemplate): """Paints the strip with one colour.""" def update(self, strip, num_led, num_steps_per_cycle, current_step, current_cycle): stripcolour = 0xFFFFFF if current_step == 1: stripcolour = 0xFF0000 if current_step == 2: stripcolour = 0x00FF00 if current_step == 3: stripcolour = 0x0000FF for led in range(0, num_led): strip.set_pixel_rgb(led, stripcolour, 5) # Paint 5% white return 1 class Rainbow(colorcycletemplate.ColorCycleTemplate): """Paints a rainbow effect across the entire strip.""" def update(self, strip, num_led, num_steps_per_cycle, current_step, current_cycle): # One cycle = One trip through the color wheel, 0..254 # Few cycles = quick transition, lots of cycles = slow transition # -> LED 0 goes from index 0 to 254 in numStepsPerCycle cycles. # So it might have to step up more or less than one index # depending on numStepsPerCycle. # -> The other LEDs go up to 254, then wrap around to zero and go up # again until the last one is just below LED 0. This way, the # strip always shows one full rainbow, regardless of the # number of LEDs scale_factor = 255 / num_led # Index change between two neighboring LEDs start_index = 255 / num_steps_per_cycle * current_step # LED 0 for i in range(num_led): # Index of LED i, not rounded and not wrapped at 255 led_index = start_index + i * scale_factor # Now rounded and wrapped led_index_rounded_wrapped = int(round(led_index, 0)) % 255 # Get the actual color out of the wheel pixel_color = strip.wheel(led_index_rounded_wrapped) strip.set_pixel_rgb(i, pixel_color) return 1 # All pixels are set in the buffer, so repaint the strip now ```
{ "source": "Jodagito/Diamonds", "score": 4 }
#### File: diamonds/game/board.py ```python from random import randint board = [] def board_creation(): while len(board) < 8: row = [] while len(row) < 8: cell = randint(1, 5) row.append(cell) board.append(row) return board def show_board(): for row in range(len(board)): for column in range(len(board[row])): print(board[row][column], end=" ") print() print() ``` #### File: diamonds/game/neighbors.py ```python board = [] def get_number_position(game_board, player_position, player_number, player): board = game_board position = "" player_row = player_position[0] player_column = player_position[1] if player_row in [0, len(board) - 1] and player_column in [0, len(board) - 1]: position = "corners" neighbors = get_orientation( player_number, player_position, position) elif (player_row not in [0, len(board) - 1] and player_column not in [0, len(board) - 1]): position = "middle" neighbors = get_neighbors(player_number, player_position, position) else: position = "bounds" neighbors = get_orientation( player_number, player_position, position) return neighbors def get_orientation(player_number, player_position, position): player_row = player_position[0] player_column = player_position[1] direction = "" orientation = "" location = "" if player_row == 0: direction = "up" elif player_row == len(board) - 1: direction = "down" if player_column == 0: orientation = "left" elif player_column == len(board) - 1: orientation = "right" location += direction + " " + orientation return get_neighbors(player_number, player_position, position, location) def get_neighbors(player_number, player_position, position, number_location=0): neighbors = [] formulas = {'middle': [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1, 0], [1, 1]], 'corners': {'up left': [[0, 1], [1, 0], [1, 1]], 'down left': [[-1, 0], [-1, 1], [0, 1]], 'down right': [[-1, -1], [0, -1], [-1, 0]], 'up right': [[0, -1], [1, -1], [1, 0]]}, 'bounds': {'up ': [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1]], ' left': [[-1, 0], [-1, 1], [0, 1], [1, 0], [1, 1]], 'down ': [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1]], ' right': [[-1, -1], [-1, 0], [0, -1], [1, -1], [1, 0]]}} formula_to_use = formulas[position] if isinstance(formula_to_use, type(dict())): formula_to_use = formula_to_use[number_location] for step in formula_to_use: neighbors.append([axis[1] + step[axis[0]] for axis in enumerate(player_position)]) return neighbors ```
{ "source": "Jodagito/Pandomit", "score": 3 }
#### File: Jodagito/Pandomit/main.py ```python import os import parser import pandas as pd def file_converter(filename, expected_format): """Given a file returns a converted file to a preferred format""" read_methods = [method for method in dir(pd) if method[:4] == 'read'] i = 0 while os.path.exists("converted filename {}.".format(i) + expected_format.replace("to_", "") + ""): i += 1 try: for method in read_methods[1:]: try: df = getattr(pd, method)(filename) df_converted = getattr(pd.DataFrame, expected_format)(df) if df_converted: with open("converted filename {}.".format(i) + expected_format.replace("to_", "") + "", 'w') as converted_file: converted_file.write(df_converted) break except: continue except ValueError: print("This format can't be converted.") if __name__ == "__main__": args = parser.arguments_parser() file_converter(args.filename, args.expectedformat) ```
{ "source": "Jodagito/YoutubeDownloader", "score": 3 }
#### File: YoutubeDownloader/YouTubeDownloader/__init__.py ```python import inspect import json import os from pytube import YouTube, Playlist from pytube.exceptions import RegexMatchError, PytubeError CONFIGURATIONS = {'destination_path': '', 'video_quality': '', 'audio_quality': '', 'when_unavailable': ''} CONFIGS_FILE = 'configs.json' def create_config_file(): with open(CONFIGS_FILE, 'w') as config_file: config_data = {'destination_path': '', 'video_quality': '', 'audio_quality': '', 'when_unavailable': 'Highest'} json.dump(config_data, config_file) def load_config_file(): with open(CONFIGS_FILE) as config_file: config_data = json.load(config_file) CONFIGURATIONS['destination_path'] = config_data['destination_path'] CONFIGURATIONS['video_quality'] = config_data['video_quality'] CONFIGURATIONS['audio_quality'] = config_data['audio_quality'] CONFIGURATIONS['when_unavailable'] = config_data['when_unavailable'] if not os.path.exists(CONFIGS_FILE): create_config_file() load_config_file() def main(): try: if not CONFIGURATIONS['destination_path']: print("A default path can be setted on settings menu.") destination_path = input( "\nInsert a destination path for the downloaded media ") if not destination_path: destination_path = "./" destination_path = CONFIGURATIONS['destination_path'] start() except KeyboardInterrupt: exit() def start(): clear_terminal() print("\tYouTube Downloader\n\n") menu_option = input( "Select and option to continue\n\n\t1) Start Downloading\n\t2) Settings\n\t3) Help\n\t4) Exit\n").lower() if menu_option in ['1', '1)', 'start downloading']: return downloads_menu() elif menu_option in ['2', '2)', 'settings']: return settings_menu() elif menu_option in ['3', '3)', 'help']: return help_menu() elif menu_option in ['4', '4)', 'exit']: return exit() else: return handle_invalid_input() def downloads_menu(): clear_terminal() print("\tDownloads Menu\n\n") download_source_url = "" try: download_source_url = input("Input the download source url ") if not download_source_url: return handle_invalid_input() except KeyboardInterrupt: return start() if not validate_youtube_url(download_source_url): return start() pytube_object = YouTube(download_source_url) playlist_videos = look_for_playlist(pytube_object) format_selection = input( "\n\nSelect a download option\n\t1) Audio only\n\t2) Video and audio\n") if format_selection in ['1', '1)']: for element in playlist_videos: download_audio(element) else: download_audio(pytube_object) elif format_selection in ['2', '2)']: for element in playlist_videos: download_video(element) else: download_video(pytube_object) else: return handle_invalid_input() input("\nPress enter to continue...") return start() def look_for_playlist(pytube_object): if validate_playlist(pytube_object.watch_url): pytube_object = Playlist(pytube_object.watch_url) return pytube_object.videos return [] def validate_youtube_url(url): try: YouTube(url) return True except RegexMatchError as e: input( f"Error: An invalid URL has been inserted.\n{e}\n\nPress enter to continue...") return False def validate_playlist(url): try: Playlist(url) return True except KeyError: return False def download_audio(pytube_object): print(f"\nDownloading {pytube_object.title}") try: if not CONFIGURATIONS['audio_quality']: unavailable_audio(pytube_object) else: default_quality = CONFIGURATIONS['audio_quality'] + 'kbps' filtered_pytube_object = pytube_object.streams.filter( type='audio', abr=default_quality, mime_type='audio/mp4').order_by('abr').desc() if not filtered_pytube_object: when_unavailable = CONFIGURATIONS['when_unavailable'] print( f"\nDefault quality isn't available. {when_unavailable}" + " quality will be downloaded.") return unavailable_audio(pytube_object) filtered_pytube_object = filtered_pytube_object[0] name_with_resolution = filtered_pytube_object.title + \ " " + filtered_pytube_object.abr + ".mp4" if os.path.isfile(destination_path + name_with_resolution): print( f"\nWarning: {name_with_resolution} already exists on this path.") return filtered_pytube_object.download(destination_path) os.rename(destination_path + filtered_pytube_object.title + ".mp4", name_with_resolution) print(f"\n{pytube_object.title} downloaded succesfully.") except (IOError, OSError, PytubeError) as e: print(f"{pytube_object.title} couldn't be downloaded.\n{e}\n") return def unavailable_audio(pytube_object): if CONFIGURATIONS['when_unavailable'] == "Highest": pytube_object = pytube_object.streams.filter(type='audio', mime_type='audio/mp4') pytube_object = pytube_object.order_by('abr').desc()[0] else: pytube_object = pytube_object.streams.filter(type='audio', mime_type='audio/mp4') pytube_object = pytube_object.order_by('abr')[0] name_with_resolution = pytube_object.title + " " + pytube_object.abr + ".mp4" if os.path.isfile(destination_path + name_with_resolution): print( f"\nWarning: {name_with_resolution} already exists on this path.") return pytube_object.download(destination_path) os.rename(destination_path + pytube_object.title + ".mp4", name_with_resolution) print(f"\n{pytube_object.title} downloaded succesfully.") def download_video(pytube_object): print(f"\nDownloading {pytube_object.title}") try: if not CONFIGURATIONS['video_quality']: unavailable_video(pytube_object) else: default_quality = CONFIGURATIONS['video_quality'] + 'p' filtered_pytube_object = pytube_object.streams.filter( type='video', res=default_quality, mime_type='video/mp4', progressive='True').order_by('resolution').desc() if not filtered_pytube_object: when_unavailable = CONFIGURATIONS['when_unavailable'] print( f"\nDefault quality isn't available. {when_unavailable}" + " quality will be downloaded.") return unavailable_video(pytube_object) filtered_pytube_object = filtered_pytube_object[0] name_with_resolution = filtered_pytube_object.title + \ " " + filtered_pytube_object.resolution + ".mp4" if os.path.isfile(destination_path + name_with_resolution): print( f"\nWarning: {name_with_resolution} already exists on this path.") return filtered_pytube_object.download(destination_path) os.rename(destination_path + filtered_pytube_object.title + ".mp4", name_with_resolution) print(f"\n{pytube_object.title} downloaded succesfully.") except (IOError, OSError, PytubeError) as e: print(f"{pytube_object.title} couldn't be downloaded.\n{e}\n") return def unavailable_video(pytube_object): if CONFIGURATIONS['when_unavailable'] == "Highest": pytube_object = pytube_object.streams.filter(type='video', mime_type='video/mp4', progressive='True') pytube_object = pytube_object.order_by('resolution').desc()[0] else: pytube_object = pytube_object.streams.filter(type='video', mime_type='video/mp4', progressive='True') pytube_object = pytube_object.order_by('resolution')[0] name_with_resolution = pytube_object.title + \ " " + pytube_object.resolution + ".mp4" if os.path.isfile(destination_path + name_with_resolution): print( f"\nWarning: {name_with_resolution} already exists on this path.") return pytube_object.download(destination_path) os.rename(destination_path + pytube_object.title + ".mp4", name_with_resolution) print(f"\n{pytube_object.title} downloaded succesfully.") def settings_menu(): clear_terminal() selected_option = input( f"\tSettings Menu\n\nSelect an option to continue" + "\n\n\t1) List actual settings" + "\n\t2) Set destination path\n\t3) Set qualities\n\t4) Go back\n").lower().replace(" ", "") if selected_option in ["1", "listactualsettings"]: return list_settings() elif selected_option in ["2", "setdestinationpath"]: set_destination_path() elif selected_option in ["3", "setqualities"]: set_qualities() elif selected_option in ["4", "goback"]: return start() else: return handle_invalid_input() def set_destination_path(): clear_terminal() default_destination_path = input( "\n\nInsert the default destination path ") if not default_destination_path: default_destination_path = "./" if (os.path.exists(default_destination_path) or os.access(os.path.dirname(default_destination_path), os.W_OK)): with open(CONFIGS_FILE, 'r+') as config_file: config_data = json.load(config_file) config_data['destination_path'] = default_destination_path config_file.seek(0) config_file.write(json.dumps(config_data)) config_file.truncate() else: return handle_invalid_input() return settings_menu() def set_qualities(): clear_terminal() video_qualities = ["1080", "720", "480", "360", "144"] audio_qualities = ["160", "128", "70", "50"] print("\n\n\t\tTo go back leave both in blank.") default_video_quality = input( "\n\tSelect the default video quality \n1) 1080px\n2) 720px\n3) 480px\n4) 360px\n5) 144px\n") default_audio_quality = input( "\n\tSelect the default audio quality \n1) 160kbps\n2) 128kbps\n3) 70kbps\n4) 50kbps\n") if default_video_quality in ["1", "2", "3", "4", "5"]: default_video_quality = video_qualities[int(default_video_quality) - 1] with open(CONFIGS_FILE, 'r+') as config_file: config_data = json.load(config_file) config_data['video_quality'] = default_video_quality config_file.seek(0) config_file.write(json.dumps(config_data)) config_file.truncate() if default_audio_quality in ["1", "2", "3", "4"]: default_audio_quality = audio_qualities[int( default_audio_quality) - 1] with open(CONFIGS_FILE, 'r+') as config_file: config_data = json.load(config_file) config_data['audio_quality'] = default_audio_quality config_file.seek(0) config_file.write(json.dumps(config_data)) config_file.truncate() elif default_video_quality == "" and default_audio_quality == "": return settings_menu() else: return handle_invalid_input() set_default_when_unavailable() return settings_menu() def set_default_when_unavailable(): clear_terminal() print(f"\t\tIf the default quality selected isn't " + "available then the highest quality will be downloaded.") change_default = input( f"\n\nSet lowest quality as default if" + " default one is unavailable\n\n\tYes\n\tNo\n").lower() if change_default in ["yes", "y"]: with open(CONFIGS_FILE, 'r+') as config_file: config_data = json.load(config_file) config_data['when_unavailable'] = 'Lowest' config_file.seek(0) config_file.write(json.dumps(config_data)) config_file.truncate() elif change_default in ["no", "n"]: return else: return handle_invalid_input() def list_settings(): clear_terminal() with open(CONFIGS_FILE, 'r+') as config_file: config_data = json.load(config_file) for setting, value in config_data.items(): print(f"{setting.capitalize().replace('_', ' ')} = {value}") input("\n\nPress enter to continue...") return settings_menu() def help_menu(): clear_terminal() input("Sorry, this menu is being developed\nPress enter to continue...") return start() def exit(): clear_terminal() print("YouTube Downloader has been closed.") def handle_invalid_input(): input("\n\nError: Invalid input.\nPress enter to continue...") clear_terminal() return globals()[inspect.stack()[1][3]]() def clear_terminal(): return os.system('cls' if os.name == 'nt' else 'clear') if __name__ == '__main__': main() ```
{ "source": "jodahoney/pyinterview", "score": 4 }
#### File: pyinterview/pyinterview/tries.py ```python class TrieNode: def __init__(self, letter=None): self.letter = letter self.children = {} self.is_end_of_word = False class Trie: def __init__(self): self.root = TrieNode("*") def add_word(self, word: str) -> None: itr = self.root for letter in word: if letter not in itr.children: itr.children[letter] = TrieNode(letter) itr = itr.children[letter] itr.is_end_of_word = True def search(self, word: str) -> bool: itr = self.root for letter in word: if letter not in itr.children: return False itr = itr.children[letter] return itr.is_end_of_word def starts_with(self, word: str) -> bool: itr = self.root for letter in word: if letter not in itr.children: return False itr = itr.children[letter] return True ```
{ "source": "jodaiber/semantic_compound_splitting", "score": 2 }
#### File: jodaiber/semantic_compound_splitting/compound.py ```python from lattice import * class Compound: def __init__(self, string, gold_splits, predicted_lattice): self.gold_splits = gold_splits self.predicted_lattice = predicted_lattice self.string = string def get_gold_splits(self): return self.gold_splits ``` #### File: semantic_compound_splitting/training/train_word2vec.py ```python import gensim import sys import glob import codecs from nltk.tokenize import RegexpTokenizer import glob import sys class CorpusReader(): """ Reads corpus from gzip file. """ def __init__(self, files): if isinstance(files, str): self.files = [files] else: self.files = files self.tokenizer = RegexpTokenizer(r'\w+') def __iter__(self): """ Generator that returns a list of tokens for each sentence. :return: list of tokens """ for f in self.files: print "Processing ", f for line in open(f, "r"): try: yield self.tokenizer.tokenize(line.decode("utf-8")) except: pass print "Starting W2V training..." files = glob.glob(sys.argv[1]) outfile_name = sys.argv[2] dataset = CorpusReader(files) model = gensim.models.Word2Vec(dataset, size=500, window=5, min_count=3, negative=5, workers=15) model.save(outfile_name) ``` #### File: semantic_compound_splitting/visualization_and_test/evaluate_prototypes.py ```python __author__ = 'rwechsler' import datetime import time import cPickle as pickle from annoy import AnnoyIndex import gensim import argparse import numpy as np import sys import random from scipy import spatial import multiprocessing as mp from collections import defaultdict import codecs def timestamp(): return datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') def load_candidate_dump(file_name): return pickle.load(open(file_name, "rb")) def load_annoy_tree(model_file_name, vector_dims): tree = AnnoyIndex(vector_dims) tree.load(model_file_name) return tree def load_prototype_dump(file_name): return pickle.load(open(file_name, "rb")) def load_word2vecmodel(file_name): return gensim.models.Word2Vec.load_word2vec_format(file_name, binary=True) def get_rank_annoy_knn(annoy_tree, vector, true_index, k=100): neighbours = annoy_tree.get_nns_by_vector(list(vector), k) try: return neighbours.index(true_index) + 1 except ValueError: return 0 def get_rank_word2vec_knn(word2vec_model, vector, true_index, k=100): neighbours, _ = zip(*word2vec_model.most_similar(positive=[vector], topn=k)) try: return neighbours.index(word2vec_model.index2word[true_index]) + 1 except ValueError: return 0 def candidate_generator(evaluation_set, rank_threshold, sim_threshold): for prefix_prototype_pair in evaluation_set: yield (prefix_prototype_pair, evaluation_set[prefix_prototype_pair], rank_threshold, sim_threshold) def mp_wrapper_evaluate_set(argument): return evaluate_set(*argument) def get_nn_hitrate(ranks): return (len(ranks) - ranks.count(0)) / float(len(ranks)) def get_sim_hitrate(similarities, threshold): return np.sum([1 for s in similarities if s >= threshold]) / float(len(similarities)) def get_average_rank(ranks): return np.mean([r for r in ranks if r > 0] or 0) def get_average_similarity(similarities): return np.mean(similarities) def get_hitrate(ranks, similarities, threshold): count = 0 for i, r in enumerate(ranks): if r > 0 and similarities[i] >= threshold: count += 1 return count / float(len(ranks)) def get_word_representation(prefix, comp_index, tail_index, word2vec_model): comp = word2vec_model.index2word[comp_index] tail = word2vec_model.index2word[tail_index] fl = comp[len(prefix):-len(tail)] if fl: fl = "[" + fl + "]" return fl + tail if __name__ == "__main__": #### Default Parameters-------------------------------------------#### rank_threshold = 30 vector_dims = 500 sim_threshold = 0.5 sample_set_size = np.inf n_processes = 2 ####End-Parametes-------------------------------------------------#### parser = argparse.ArgumentParser(description='Evaluate candidates') parser.add_argument('-w', action='store', dest="word2vec_file", required=True) parser.add_argument('-v', action="store", dest="prototypes_file", required=True) parser.add_argument('-d', action="store", dest="vector_dims", type=int, default=vector_dims) parser.add_argument('-t', action="store", dest="annoy_tree_file") parser.add_argument('-c', action="store", dest="candidates_index_file") parser.add_argument('-o', action="store", dest="result_output_file", required=True) parser.add_argument('-p', action="store", dest="n_processes", type=int, default=n_processes) parser.add_argument('-s', action="store", dest="sample_set_size", type=int, default=sample_set_size) parser.add_argument('-r', action="store", dest="rank_threshold", type=int, default=rank_threshold) parser.add_argument('-z', action="store", dest="sim_threshold", type=float, default=sim_threshold) arguments = parser.parse_args(sys.argv[1:]) print timestamp(), "loading word2vec model" word2vec_model = load_word2vecmodel(arguments.word2vec_file) print timestamp(), "loading prototypes" prototypes = load_prototype_dump(arguments.prototypes_file) if arguments.candidates_index_file: print timestamp(), "loading candidates" candidates = load_candidate_dump(arguments.candidates_index_file) evaluation_set = dict() # keys are (prefix, prototype_pair) for prefix in prototypes: for prototype, evidence_set in prototypes[prefix]: if arguments.candidates_index_file: evaluation_set[(prefix, prototype)] = candidates[prefix] else: evaluation_set[(prefix, prototype)] = evidence_set print timestamp(), "preprocess candidates" # only store vectors that we need. And sample already. word2vec_vectors = dict() for prototype_tup in evaluation_set: if len(evaluation_set[prototype_tup]) > arguments.sample_set_size: evaluation_set[prototype_tup] = set(random.sample(evaluation_set[prototype_tup], arguments.sample_set_size)) for (i,j) in evaluation_set[prototype_tup]: word2vec_vectors[i] = np.array(word2vec_model.syn0[i]) word2vec_vectors[j] = np.array(word2vec_model.syn0[j]) word2vec_vectors[prototype_tup[1][0]] = np.array(word2vec_model.syn0[prototype_tup[1][0]]) word2vec_vectors[prototype_tup[1][1]] = np.array(word2vec_model.syn0[prototype_tup[1][1]]) print timestamp(), "number of vectors: ", len(word2vec_vectors) if arguments.annoy_tree_file and arguments.vector_dims: del word2vec_model print timestamp(), "loading annoy tree" # global annoy_tree model = load_annoy_tree(arguments.annoy_tree_file, arguments.vector_dims) knn_method = get_rank_annoy_knn else: print timestamp(), "using word2vec model" model = word2vec_model knn_method = get_rank_word2vec_knn def evaluate_set(prefix_prototype_pair, evidence_set, rank_threshold=100, sim_threshold=0.5): global model global word2vec_vectors ranks = [] similarities = [] prefix, vector_pair = prefix_prototype_pair diff = word2vec_vectors[vector_pair[0]]- word2vec_vectors[vector_pair[1]] for comp, tail in evidence_set: predicted = word2vec_vectors[tail] + diff true_vector = word2vec_vectors[comp] rank = knn_method(model, predicted, comp, rank_threshold) ranks.append(rank) sim = spatial.distance.cosine(predicted, true_vector) similarities.append(sim) # returns hitrate, hitrate_nn, hitrate_sim, average_rank_if_found, average_similarity_if_found results = get_hitrate(ranks, similarities, threshold=sim_threshold), get_nn_hitrate(ranks), get_sim_hitrate(similarities, threshold=sim_threshold), get_average_rank(ranks), get_average_similarity(similarities) return (prefix_prototype_pair,results) print timestamp(), "evaluating candidates" pool = mp.Pool(processes=arguments.n_processes) params = candidate_generator(evaluation_set, arguments.rank_threshold, arguments.sim_threshold) results = pool.map(mp_wrapper_evaluate_set, params) pool.close() pool.join() del pool print timestamp(), "pickling" pickle.dump(results, open(arguments.result_output_file, "wb")) if arguments.annoy_tree_file: print timestamp(), "loading word2vec model" word2vec_model = load_word2vecmodel(arguments.word2vec_file) else: word2vec_model = model print timestamp(), "mapping indices to word" scores = defaultdict(dict) for ((prefix, vector), eval_scores) in results: vector_repr = get_word_representation(prefix, vector[0], vector[1], word2vec_model) scores[prefix][vector_repr] = eval_scores print timestamp(), "writing result file" outfile = codecs.open(arguments.result_output_file, "w", "utf-8") for prefix in scores: for vector in scores[prefix]: outfile.write("\t".join([prefix, vector] + map(str, scores[prefix][vector])) + "\n") outfile.close() print timestamp(), "done" ``` #### File: semantic_compound_splitting/visualization_and_test/map_prototypes_to_words.py ```python __author__ = 'rwechsler' import gensim import cPickle as pickle import argparse import sys import codecs def load_word2vecmodel(file_name): return gensim.models.Word2Vec.load_word2vec_format(file_name, binary=True) def load_prototype_dump(file_name): return pickle.load(open(file_name, "rb")) def get_word_representation(prefix, comp_index, tail_index, word2vec_model): comp = word2vec_model.index2word[comp_index] tail = word2vec_model.index2word[tail_index] fl = comp[len(prefix):-len(tail)] if fl: fl = "[" + fl + "]" return fl + tail if __name__ == "__main__": parser = argparse.ArgumentParser(description='Evaluate candidates') parser.add_argument('-w', action='store', dest="word2vec_file", required=True) parser.add_argument('-p', action='store', dest='prototype_file', required=True) parser.add_argument('-o', action="store", dest='output_file', required=True) arguments = parser.parse_args(sys.argv[1:]) word2vec_model = load_word2vecmodel(arguments.word2vec_file) prototype_set = load_prototype_dump(arguments.prototype_file) outfile = codecs.open(arguments.output_file, "w", "utf-8") for prefix in prototype_set: for prototype, evidence_set in prototype_set[prefix]: outfile.write(prefix + "\t" + get_word_representation(prefix, prototype[0], prototype[1], word2vec_model) + "\t" + " ".join([get_word_representation(prefix, t[0], t[1], word2vec_model)for t in evidence_set]) + "\n") outfile.close() ```
{ "source": "jodal/biip", "score": 2 }
#### File: biip/gs1/_element_strings.py ```python import calendar import datetime import re from dataclasses import dataclass from decimal import Decimal from typing import Iterable, List, Optional from biip import ParseError from biip.gln import Gln from biip.gs1 import DEFAULT_SEPARATOR_CHARS, GS1ApplicationIdentifier from biip.gtin import Gtin, RcnRegion from biip.sscc import Sscc try: import moneyed except ImportError: # pragma: no cover moneyed = None # type: ignore @dataclass class GS1ElementString: """GS1 Element String. An Element String consists of a GS1 Application Identifier (AI) and its data field. A single barcode can contain multiple Element Strings. Together these are called a "message." Example: >>> from biip.gs1 import GS1ElementString >>> element_string = GS1ElementString.extract("0107032069804988") >>> element_string GS1ElementString(ai=GS1ApplicationIdentifier(ai='01', description='Global Trade Item Number (GTIN)', data_title='GTIN', fnc1_required=False, format='N2+N14'), value='07032069804988', pattern_groups=['07032069804988'], gln=None, gtin=Gtin(value='07032069804988', format=GtinFormat.GTIN_13, prefix=GS1Prefix(value='703', usage='GS1 Norway'), payload='703206980498', check_digit=8, packaging_level=None), sscc=None, date=None, decimal=None, money=None) >>> element_string.as_hri() '(01)07032069804988' """ #: The element's Application Identifier (AI). ai: GS1ApplicationIdentifier #: Raw data field of the Element String. Does not include the AI. value: str #: List of pattern groups extracted from the Element String. pattern_groups: List[str] #: A GLN created from the element string, if the AI represents a GLN. gln: Optional[Gln] = None #: A GTIN created from the element string, if the AI represents a GTIN. gtin: Optional[Gtin] = None #: An SSCC created from the element string, if the AI represents a SSCC. sscc: Optional[Sscc] = None #: A date created from the element string, if the AI represents a date. date: Optional[datetime.date] = None #: A decimal value created from the element string, if the AI represents a number. decimal: Optional[Decimal] = None #: A Money value created from the element string, if the AI represents a #: currency and an amount. Only set if py-moneyed is installed. money: Optional["moneyed.Money"] = None @classmethod def extract( cls, value: str, *, rcn_region: Optional[RcnRegion] = None, separator_chars: Iterable[str] = DEFAULT_SEPARATOR_CHARS, ) -> "GS1ElementString": """Extract the first GS1 Element String from the given value. Args: value: The string to extract an Element String from. May contain more than one Element String. rcn_region: The geographical region whose rules should be used to interpret Restricted Circulation Numbers (RCN). Needed to extract e.g. variable weight/price from GTIN. separator_chars: Characters used in place of the FNC1 symbol. Defaults to `<GS>` (ASCII value 29). If variable-length fields are not terminated with a separator character, the parser might greedily consume later fields. Returns: A data class with the Element String's parts and data extracted from it. Raises: ValueError: If the ``separator_char`` isn't exactly 1 character long. ParseError: If the parsing fails. """ if any(len(char) != 1 for char in separator_chars): raise ValueError( "All separator characters must be exactly 1 character long, " f"got {list(separator_chars)!r}." ) ai = GS1ApplicationIdentifier.extract(value) for separator_char in separator_chars: value = value.split(separator_char, maxsplit=1)[0] pattern = ai.pattern[:-1] if ai.pattern.endswith("$") else ai.pattern matches = re.match(pattern, value) if not matches: raise ParseError( f"Failed to match {value!r} with GS1 AI {ai} pattern '{ai.pattern}'." ) pattern_groups = list(matches.groups()) value = "".join(pattern_groups) element = cls(ai=ai, value=value, pattern_groups=pattern_groups) element._set_gln() element._set_gtin(rcn_region=rcn_region) element._set_sscc() element._set_date() element._set_decimal() return element def _set_gln(self) -> None: if self.ai.ai[:2] != "41": return self.gln = Gln.parse(self.value) def _set_gtin(self, *, rcn_region: Optional[RcnRegion] = None) -> None: if self.ai.ai not in ("01", "02"): return self.gtin = Gtin.parse(self.value, rcn_region=rcn_region) def _set_sscc(self) -> None: if self.ai.ai != "00": return self.sscc = Sscc.parse(self.value) def _set_date(self) -> None: if self.ai.ai not in ("11", "12", "13", "15", "16", "17"): return try: self.date = _parse_date(self.value) except ValueError: raise ParseError( f"Failed to parse GS1 AI {self.ai} date from {self.value!r}." ) def _set_decimal(self) -> None: variable_measure = self.ai.ai[:2] in ( "31", "32", "33", "34", "35", "36", ) amount_payable = self.ai.ai[:3] in ("390", "392") amount_payable_with_currency = self.ai.ai[:3] in ("391", "393") percentage = self.ai.ai[:3] in ("394",) if ( variable_measure or amount_payable or amount_payable_with_currency or percentage ): # See GS1 General Specifications, chapter 3.6 for details. # Only group for variable_measure, amount_payable, and percentage. # Second and last group for amount_payable_with_currency. value = self.pattern_groups[-1] num_decimals = int(self.ai.ai[3]) num_units = len(value) - num_decimals units = value[:num_units] decimals = value[num_units:] self.decimal = Decimal(f"{units}.{decimals}") if amount_payable_with_currency and moneyed is not None: currency = moneyed.get_currency(iso=self.pattern_groups[0]) self.money = moneyed.Money(amount=self.decimal, currency=currency) def __len__(self) -> int: """Get the length of the element string.""" return len(self.ai) + len(self.value) def as_hri(self) -> str: """Render as a human readable interpretation (HRI). The HRI is often printed directly below the barcode. Returns: A human-readable string where the AI is wrapped in parenthesis. """ return f"{self.ai}{self.value}" def _parse_date(value: str) -> datetime.date: year, month, day = int(value[0:2]), int(value[2:4]), int(value[4:6]) year += _get_century(year) if day == 0: day = _get_last_day_of_month(year, month) return datetime.date(year, month, day) def _get_century(two_digit_year: int) -> int: """Get century from two-digit year. The two-digit year refers to a year in the range between 49 years past and 50 years into the future. Args: two_digit_year: A two-digit year, e.g. without century specified. Returns: The century the year is in. References: GS1 General Specifications, section 7.12 """ current_year = datetime.date.today().year current_century = current_year - current_year % 100 two_digit_current_year = current_year - current_century if 51 <= two_digit_year - two_digit_current_year <= 99: return current_century - 100 # Previous century elif -99 <= two_digit_year - two_digit_current_year <= -50: # Next century # Skipping coverage as this code won't run until year 2051 return current_century + 100 # pragma: no cover else: return current_century # Current century def _get_last_day_of_month(year: int, month: int) -> int: """Get the last day of the given month.""" return calendar.monthrange(year, month)[1] ``` #### File: biip/gtin/_gtin.py ```python from dataclasses import dataclass from typing import Optional, Type, Union from biip import EncodeError, ParseError from biip.gs1 import GS1Prefix from biip.gs1.checksums import numeric_check_digit from biip.gtin import GtinFormat, RcnRegion @dataclass class Gtin: """Data class containing a GTIN.""" #: Raw unprocessed value. #: #: May include leading zeros. value: str #: GTIN format, either GTIN-8, GTIN-12, GTIN-13, or GTIN-14. #: #: Classification is done after stripping leading zeros. format: GtinFormat #: The GS1 prefix, indicating what GS1 country organization that assigned #: code range. prefix: Optional[GS1Prefix] #: The actual payload, including packaging level if any, company prefix, #: and item reference. Excludes the check digit. payload: str #: Check digit used to check if the GTIN as a whole is valid. check_digit: int #: Packaging level is the first digit in GTIN-14 codes. #: #: This digit is used for wholesale shipments, e.g. the GTIN-14 product #: identifier in GS1-128 barcodes, but not in the GTIN-13 barcodes used for #: retail products. packaging_level: Optional[int] = None @classmethod def parse(cls, value: str, *, rcn_region: Optional[RcnRegion] = None) -> "Gtin": """Parse the given value into a :class:`Gtin` object. Both GTIN-8, GTIN-12, GTIN-13, and GTIN-14 are supported. Args: value: The value to parse. rcn_region: The geographical region whose rules should be used to interpret Restricted Circulation Numbers (RCN). Needed to extract e.g. variable weight/price from GTIN. Returns: GTIN data structure with the successfully extracted data. The checksum is guaranteed to be valid if a GTIN object is returned. Raises: ParseError: If the parsing fails. """ from biip.gtin import Rcn value = value.strip() if len(value) not in (8, 12, 13, 14): raise ParseError( f"Failed to parse {value!r} as GTIN: " f"Expected 8, 12, 13, or 14 digits, got {len(value)}." ) if not value.isnumeric(): raise ParseError( f"Failed to parse {value!r} as GTIN: Expected a numerical value." ) stripped_value = _strip_leading_zeros(value) assert len(stripped_value) in (8, 12, 13, 14) num_significant_digits = len(stripped_value) gtin_format = GtinFormat(num_significant_digits) payload = stripped_value[:-1] check_digit = int(stripped_value[-1]) packaging_level: Optional[int] = None if gtin_format == GtinFormat.GTIN_14: packaging_level = int(stripped_value[0]) value_without_packaging_level = stripped_value[1:] prefix = GS1Prefix.extract(value_without_packaging_level) elif gtin_format == GtinFormat.GTIN_12: # Add a zero to convert U.P.C. Company Prefix to GS1 Company Prefix prefix = GS1Prefix.extract(stripped_value.zfill(13)) elif gtin_format == GtinFormat.GTIN_8: prefix = GS1Prefix.extract(stripped_value.zfill(12)) else: prefix = GS1Prefix.extract(stripped_value) calculated_check_digit = numeric_check_digit(payload) if check_digit != calculated_check_digit: raise ParseError( f"Invalid GTIN check digit for {value!r}: " f"Expected {calculated_check_digit!r}, got {check_digit!r}." ) gtin_type: Type[Union[Gtin, Rcn]] if ( gtin_format <= GtinFormat.GTIN_13 and prefix is not None and "Restricted Circulation Number" in prefix.usage ): gtin_type = Rcn else: gtin_type = Gtin gtin = gtin_type( value=value, format=gtin_format, prefix=prefix, payload=payload, check_digit=check_digit, packaging_level=packaging_level, ) if isinstance(gtin, Rcn) and rcn_region is not None: gtin._parse_with_regional_rules(rcn_region) return gtin def as_gtin_8(self) -> str: """Format as a GTIN-8.""" return self._as_format(GtinFormat.GTIN_8) def as_gtin_12(self) -> str: """Format as a GTIN-12.""" return self._as_format(GtinFormat.GTIN_12) def as_gtin_13(self) -> str: """Format as a GTIN-13.""" return self._as_format(GtinFormat.GTIN_13) def as_gtin_14(self) -> str: """Format as a GTIN-14.""" return self._as_format(GtinFormat.GTIN_14) def _as_format(self, gtin_format: GtinFormat) -> str: if self.format.length > gtin_format.length: raise EncodeError(f"Failed encoding {self.value!r} as {gtin_format!s}.") return f"{self.payload}{self.check_digit}".zfill(gtin_format.length) def without_variable_measure(self) -> "Gtin": """Create a new GTIN where the variable measure is zeroed out. This method is a no-op for proper GTINs. For RCNs, see the method on the `Rcn` subclass. Returns: A GTIN instance with zeros in the variable measure places. Raises: EncodeError: If the rules for variable measures in the region are unknown. """ return self def _strip_leading_zeros(value: str) -> str: if len(value) in (12, 13, 14) and len(value.lstrip("0")) in (9, 10, 11, 12): # Keep up to three leading zeros in GTIN-12 num_zeros_before_gtin_12 = len(value) - 12 return value[num_zeros_before_gtin_12:] if len(value) >= 8 and len(value.lstrip("0")) <= 8: # Keep all leading zeros in GTIN-8 num_zeros_before_gtin_8 = len(value) - 8 return value[num_zeros_before_gtin_8:] return value.lstrip("0") ``` #### File: src/biip/_parser.py ```python from dataclasses import dataclass from typing import Callable, Iterable, List, Optional, Tuple from biip import ParseError from biip.gs1 import DEFAULT_SEPARATOR_CHARS, GS1Message, GS1Symbology from biip.gtin import Gtin, GtinFormat, RcnRegion from biip.sscc import Sscc from biip.symbology import SymbologyIdentifier from biip.upc import Upc ParseQueue = List[Tuple[Callable, str]] def parse( value: str, *, rcn_region: Optional[RcnRegion] = None, separator_chars: Iterable[str] = DEFAULT_SEPARATOR_CHARS, ) -> "ParseResult": """Identify data format and parse data. The current strategy is: 1. If Symbology Identifier prefix indicates a GTIN or GS1 Message, attempt to parse and validate as that. 2. Else, if not Symbology Identifier, attempt to parse with all parsers. Args: value: The data to classify and parse. rcn_region: The geographical region whose rules should be used to interpret Restricted Circulation Numbers (RCN). Needed to extract e.g. variable weight/price from GTIN. separator_chars: Characters used in place of the FNC1 symbol. Defaults to `<GS>` (ASCII value 29). If variable-length fields in the middle of the message are not terminated with a separator character, the parser might greedily consume the rest of the message. Returns: A data class depending upon what type of data is parsed. Raises: ParseError: If parsing of the data fails. """ value = value.strip() config = ParseConfig( rcn_region=rcn_region, separator_chars=separator_chars, ) result = ParseResult(value=value) # Extract Symbology Identifier if value.startswith("]"): result.symbology_identifier = SymbologyIdentifier.extract(value) value = value[len(result.symbology_identifier) :] # Select parsers queue: ParseQueue = [] if result.symbology_identifier is not None: if result.symbology_identifier.gs1_symbology in GS1Symbology.with_gtin(): queue.append((_parse_gtin, value)) if ( result.symbology_identifier.gs1_symbology in GS1Symbology.with_ai_element_strings() ): queue.append((_parse_gs1_message, value)) if not queue: # If we're not able to select a subset based on Symbology Identifiers, # run all parsers on the full value. queue = [ (_parse_gs1_message, value), (_parse_gtin, value), (_parse_sscc, value), (_parse_upc, value), ] # Work through queue of parsers and the values to run them on. Any parser may # add additional work to the queue. Only the first result for a field is kept. while queue: (parse_func, val) = queue.pop(0) parse_func(val, config=config, queue=queue, result=result) if result._has_result(): return result else: raise ParseError(f"Failed to parse {value!r}:\n{result._get_errors_list()}") @dataclass class ParseConfig: """Configuration options for parsers.""" rcn_region: Optional[RcnRegion] separator_chars: Iterable[str] @dataclass class ParseResult: """Results from a successful barcode parsing.""" #: The raw value. Only stripped of surrounding whitespace. value: str #: The Symbology Identifier, if any. symbology_identifier: Optional[SymbologyIdentifier] = None #: The extracted GTIN, if any. #: Is also set if a GS1 Message containing a GTIN was successfully parsed. gtin: Optional[Gtin] = None #: The GTIN parse error, if parsing as a GTIN was attempted and failed. gtin_error: Optional[str] = None #: The extracted UPC, if any. upc: Optional[Upc] = None #: The UPC parse error, if parsing as an UPC was attempted and failed. upc_error: Optional[str] = None #: The extracted SSCC, if any. #: Is also set if a GS1 Message containing an SSCC was successfully parsed. sscc: Optional[Sscc] = None #: The SSCC parse error, if parsing as an SSCC was attempted and failed. sscc_error: Optional[str] = None #: The extracted GS1 Message, if any. gs1_message: Optional[GS1Message] = None #: The GS1 Message parse error, #: if parsing as a GS1 Message was attempted and failed. gs1_message_error: Optional[str] = None def _has_result(self) -> bool: return any([self.gtin, self.upc, self.sscc, self.gs1_message]) def _get_errors_list(self) -> str: return "\n".join( f"- {parser_name}: {error}" for parser_name, error in [ ("GTIN", self.gtin_error), ("UPC", self.upc_error), ("SSCC", self.sscc_error), ("GS1", self.gs1_message_error), ] if error is not None ) def _parse_gtin( value: str, *, config: ParseConfig, queue: ParseQueue, result: ParseResult, ) -> None: if result.gtin is not None: return # pragma: no cover try: result.gtin = Gtin.parse(value, rcn_region=config.rcn_region) result.gtin_error = None except ParseError as exc: result.gtin = None result.gtin_error = str(exc) else: # If GTIN is a GTIN-12, set UPC on the top-level result. if result.gtin.format == GtinFormat.GTIN_12: queue.append((_parse_upc, result.gtin.as_gtin_12())) def _parse_upc( value: str, *, config: ParseConfig, queue: ParseQueue, result: ParseResult, ) -> None: if result.upc is not None: return # pragma: no cover try: result.upc = Upc.parse(value) result.upc_error = None except ParseError as exc: result.upc = None result.upc_error = str(exc) else: # If UPC, expand and set GTIN on the top-level result. queue.append((_parse_gtin, result.upc.as_upc_a())) def _parse_sscc( value: str, *, config: ParseConfig, queue: ParseQueue, result: ParseResult, ) -> None: if result.sscc is not None: return # pragma: no cover try: result.sscc = Sscc.parse(value) result.sscc_error = None except ParseError as exc: result.sscc = None result.sscc_error = str(exc) def _parse_gs1_message( value: str, *, config: ParseConfig, queue: ParseQueue, result: ParseResult, ) -> None: if result.gs1_message is not None: return # pragma: no cover try: result.gs1_message = GS1Message.parse( value, rcn_region=config.rcn_region, separator_chars=config.separator_chars, ) result.gs1_message_error = None except ParseError as exc: result.gs1_message = None result.gs1_message_error = str(exc) else: # If the GS1 Message contains an SSCC, set SSCC on the top-level result. ai_00 = result.gs1_message.get(ai="00") if ai_00 is not None and ai_00.sscc is not None: queue.append((_parse_sscc, ai_00.sscc.value)) # If the GS1 Message contains an GTIN, set GTIN on the top-level result. ai_01 = result.gs1_message.get(ai="01") if ai_01 is not None and ai_01.gtin is not None: queue.append((_parse_gtin, ai_01.gtin.value)) ``` #### File: tests/gs1/test_prefixes.py ```python import pytest from biip import ParseError from biip.gs1 import GS1Prefix @pytest.mark.parametrize("bad_value", ["abcdef", "1a2b3c"]) def test_invalid_gs1_prefix(bad_value: str) -> None: with pytest.raises(ParseError) as exc_info: GS1Prefix.extract(bad_value) assert str(exc_info.value) == f"Failed to get GS1 Prefix from {bad_value!r}." @pytest.mark.parametrize( "value, expected", [ ( "0000001999", GS1Prefix(value="0000001", usage="Unused to avoid collision with GTIN-8"), ), ("060999", GS1Prefix(value="060", usage="GS1 US")), ("139999", GS1Prefix(value="139", usage="GS1 US")), ("6712670000276", None), # Unassigned prefix ("701999", GS1Prefix(value="701", usage="GS1 Norway")), ("978-1-492-05374-3", GS1Prefix(value="978", usage="Bookland (ISBN)")), ], ) def test_gs1_prefix(value: str, expected: GS1Prefix) -> None: assert GS1Prefix.extract(value) == expected def test_is_hashable() -> None: prefix = GS1Prefix.extract("978") assert hash(prefix) is not None ``` #### File: tests/gtin/test_parse.py ```python import pytest from biip import ParseError from biip.gs1 import GS1Prefix from biip.gtin import Gtin, GtinFormat def test_parse_value_with_invalid_length() -> None: with pytest.raises(ParseError) as exc_info: Gtin.parse("123") assert ( str(exc_info.value) == "Failed to parse '123' as GTIN: Expected 8, 12, 13, or 14 digits, got 3." ) def test_parse_nonnumeric_value() -> None: with pytest.raises(ParseError) as exc_info: Gtin.parse("0123456789abc") assert ( str(exc_info.value) == "Failed to parse '0123456789abc' as GTIN: Expected a numerical value." ) def test_parse_gtin_13_with_invalid_check_digit() -> None: with pytest.raises(ParseError) as exc_info: Gtin.parse("5901234123458") assert ( str(exc_info.value) == "Invalid GTIN check digit for '5901234123458': Expected 7, got 8." ) def test_parse_strips_surrounding_whitespace() -> None: gtin = Gtin.parse(" \t 5901234123457 \n ") assert gtin.value == "5901234123457" @pytest.mark.parametrize( "value", [ # GTIN-8 "96385074", # 0-padded to GTIN-12 "000096385074", # 0-padded to GTIN-13 "0000096385074", # 0-padded to GTIN-14 "00000096385074", ], ) def test_parse_gtin_8(value: str) -> None: assert Gtin.parse(value) == Gtin( value=value, format=GtinFormat.GTIN_8, prefix=GS1Prefix(value="00009", usage="GS1 US"), payload="9638507", check_digit=4, ) @pytest.mark.parametrize( "value", [ "00000017", "00000123", "00001236", "00012348", "00123457", "01234565", "07038013", ], ) def test_parse_gtin_8_with_leading_zeros(value: str) -> None: gtin = Gtin.parse(value) assert gtin.value == value assert gtin.format == GtinFormat.GTIN_8 @pytest.mark.parametrize( "value", [ # GTIN-12 "614141000036", # 0-padded to GTIN-13 "0614141000036", # 0-padded to GTIN-14 "00614141000036", ], ) def test_parse_gtin_12_without_leading_zero(value: str) -> None: assert Gtin.parse(value) == Gtin( value=value, format=GtinFormat.GTIN_12, prefix=GS1Prefix(value="061", usage="GS1 US"), payload="61414100003", check_digit=6, ) @pytest.mark.parametrize( "value", [ # GTIN-12 "036000291452", # 0-padded to GTIN-13 "0036000291452", # 0-padded to GTIN-14 "00036000291452", ], ) def test_parse_gtin_12_with_1_leading_zero(value: str) -> None: assert Gtin.parse(value) == Gtin( value=value, format=GtinFormat.GTIN_12, prefix=GS1Prefix(value="003", usage="GS1 US"), payload="03600029145", check_digit=2, ) @pytest.mark.parametrize( "value", [ # GTIN-12 "006000291455", # 0-padded to GTIN-13 "00006000291455", # 0-padded to GTIN-14 "00006000291455", ], ) def test_parse_gtin_12_with_2_leading_zero(value: str) -> None: assert Gtin.parse(value) == Gtin( value=value, format=GtinFormat.GTIN_12, prefix=GS1Prefix(value="0006", usage="GS1 US"), payload="00600029145", check_digit=5, ) @pytest.mark.parametrize( "value", [ # GTIN-12 "000902914511", # 0-padded to GTIN-13 "0000902914511", # 0-padded to GTIN-14 "00000902914511", ], ) def test_parse_gtin_12_with_3_leading_zero(value: str) -> None: assert Gtin.parse(value) == Gtin( value=value, format=GtinFormat.GTIN_12, prefix=GS1Prefix(value="00009", usage="GS1 US"), payload="00090291451", check_digit=1, ) @pytest.mark.parametrize( "value", [ # GTIN-13 "5901234123457", # 0-padded to GTIN-14 "05901234123457", ], ) def test_parse_gtin_13(value: str) -> None: assert Gtin.parse(value) == Gtin( value=value, format=GtinFormat.GTIN_13, prefix=GS1Prefix(value="590", usage="GS1 Poland"), payload="590123412345", check_digit=7, ) def test_parse_gtin_14() -> None: assert Gtin.parse("98765432109213") == Gtin( value="98765432109213", format=GtinFormat.GTIN_14, prefix=GS1Prefix(value="876", usage="GS1 Netherlands"), payload="9876543210921", check_digit=3, packaging_level=9, ) def test_parse_gtin_with_unknown_gs1_prefix() -> None: assert Gtin.parse("6712670000276") == Gtin( value="6712670000276", format=GtinFormat.GTIN_13, prefix=None, payload="671267000027", check_digit=6, ) ``` #### File: tests/gtin/test_without_variable_measure.py ```python from typing import List import pytest from biip import EncodeError from biip.gs1.checksums import numeric_check_digit from biip.gtin import Gtin, Rcn, RcnRegion @pytest.mark.parametrize( "rcn_region, value, expected", [ (RcnRegion.ESTONIA, "2311111112345", "2311111100007"), (RcnRegion.FINLAND, "2311111112345", "2311111100007"), (RcnRegion.GREAT_BRITAIN, "2011122912346", "2011122000005"), (RcnRegion.LATVIA, "2311111112345", "2311111100007"), (RcnRegion.LITHUANIA, "2311111112345", "2311111100007"), (RcnRegion.NORWAY, "2302148210869", "2302148200006"), (RcnRegion.SWEDEN, "2088060112343", "2088060100005"), ], ) def test_without_variable_measure_strips_variable_parts( rcn_region: RcnRegion, value: str, expected: str ) -> None: original_rcn = Gtin.parse(value, rcn_region=rcn_region) assert isinstance(original_rcn, Rcn) stripped_rcn = original_rcn.without_variable_measure() assert isinstance(stripped_rcn, Rcn) assert stripped_rcn.value == expected assert stripped_rcn.region == original_rcn.region @pytest.mark.parametrize( "rcn_region, nonvariable_prefixes", [ ( RcnRegion.ESTONIA, ["02", "20", "21", "22", "26", "27", "28", "29"], ), ( RcnRegion.FINLAND, ["02", "20", "21", "22", "26", "27", "28", "29"], ), ( RcnRegion.GREAT_BRITAIN, ["21", "22", "23", "24", "25", "26", "27", "28", "29"], ), ( RcnRegion.LATVIA, ["02", "20", "21", "22", "26", "27", "28", "29"], ), ( RcnRegion.LITHUANIA, ["02", "20", "21", "22", "26", "27", "28", "29"], ), ( RcnRegion.NORWAY, ["02", "26", "27", "28", "29"], ), ( RcnRegion.SWEDEN, ["02", "26", "27", "28", "29"], ), ], ) def test_without_variable_measure_keeps_nonvariable_rcn_unchanged( rcn_region: RcnRegion, nonvariable_prefixes: List[str] ) -> None: for prefix in nonvariable_prefixes: payload = f"{prefix}1111111111" value = f"{payload}{numeric_check_digit(payload)}" original_rcn = Gtin.parse(value, rcn_region=rcn_region) assert isinstance(original_rcn, Rcn) stripped_rcn = original_rcn.without_variable_measure() assert isinstance(stripped_rcn, Rcn) assert stripped_rcn.value == original_rcn.value assert stripped_rcn.region == original_rcn.region @pytest.mark.parametrize( "rcn_region, value", [ (RcnRegion.NORWAY, "00012348"), (RcnRegion.NORWAY, "0412345678903"), ], ) def test_without_variable_measure_keeps_company_rcn_unchanged( rcn_region: RcnRegion, value: str ) -> None: original_rcn = Gtin.parse(value, rcn_region=rcn_region) assert isinstance(original_rcn, Rcn) stripped_rcn = original_rcn.without_variable_measure() assert isinstance(stripped_rcn, Rcn) assert stripped_rcn.value == original_rcn.value assert stripped_rcn.region == original_rcn.region @pytest.mark.parametrize( "value", [ "96385074", # GTIN-8 "614141000036", # GTIN-12 "5901234123457", # GTIN-13 "98765432109213", # GTIN-14 ], ) def test_without_variable_measure_keeps_gtin_unchanged(value: str) -> None: original_gtin = Gtin.parse(value) assert isinstance(original_gtin, Gtin) assert not isinstance(original_gtin, Rcn) stripped_gtin = original_gtin.without_variable_measure() assert isinstance(stripped_gtin, Gtin) assert not isinstance(stripped_gtin, Rcn) assert stripped_gtin.value == original_gtin.value def test_without_variable_measure_fails_if_rules_are_unknown() -> None: rcn = Gtin.parse("2302148210869", rcn_region=None) assert isinstance(rcn, Rcn) with pytest.raises(EncodeError) as exc_info: rcn.without_variable_measure() assert str(exc_info.value) == ( "Cannot zero out the variable measure part of '2302148210869' " "as the RCN rules for the geographical region None are unknown." ) ``` #### File: biip/tests/test_gln.py ```python import pytest from biip import ParseError from biip.gln import Gln from biip.gs1 import GS1Prefix def test_parse() -> None: gln = Gln.parse("1234567890128") assert gln == Gln( value="1234567890128", prefix=GS1Prefix(value="123", usage="GS1 US"), payload="123456789012", check_digit=8, ) def test_parse_strips_surrounding_whitespace() -> None: gln = Gln.parse(" \t 1234567890128 \n ") assert gln.value == "1234567890128" def test_parse_value_with_invalid_length() -> None: with pytest.raises(ParseError) as exc_info: Gln.parse("123") assert ( str(exc_info.value) == "Failed to parse '123' as GLN: Expected 13 digits, got 3." ) def test_parse_nonnumeric_value() -> None: with pytest.raises(ParseError) as exc_info: Gln.parse("123456789o128") assert ( str(exc_info.value) == "Failed to parse '123456789o128' as GLN: Expected a numerical value." ) def test_parse_with_invalid_check_digit() -> None: with pytest.raises(ParseError) as exc_info: Gln.parse("1234567890127") assert ( str(exc_info.value) == "Invalid GLN check digit for '1234567890127': Expected 8, got 7." ) def test_as_gln() -> None: gln = Gln.parse(" \t 1234567890128 \n ") assert gln.as_gln() == "1234567890128" ``` #### File: biip/tests/test_sscc.py ```python from typing import Optional import pytest from biip import ParseError from biip.gs1 import GS1Prefix from biip.sscc import Sscc def test_parse() -> None: sscc = Sscc.parse("376130321109103420") assert sscc == Sscc( value="376130321109103420", prefix=GS1Prefix(value="761", usage="GS1 Schweiz, Suisse, Svizzera"), extension_digit=3, payload="37613032110910342", check_digit=0, ) def test_parse_strips_surrounding_whitespace() -> None: sscc = Sscc.parse(" \t 376130321109103420 \n ") assert sscc.value == "376130321109103420" def test_parse_value_with_invalid_length() -> None: with pytest.raises(ParseError) as exc_info: Sscc.parse("123") assert ( str(exc_info.value) == "Failed to parse '123' as SSCC: Expected 18 digits, got 3." ) def test_parse_nonnumeric_value() -> None: with pytest.raises(ParseError) as exc_info: Sscc.parse("012345678901234abc") assert ( str(exc_info.value) == "Failed to parse '012345678901234abc' as SSCC: Expected a numerical value." ) def test_parse_with_invalid_check_digit() -> None: with pytest.raises(ParseError) as exc_info: Sscc.parse("376130321109103421") assert ( str(exc_info.value) == "Invalid SSCC check digit for '376130321109103421': Expected 0, got 1." ) @pytest.mark.parametrize( "prefix_length, expected", [ (None, "3 761 3032110910342 0"), (7, "3 761 3032 110910342 0"), (8, "3 761 30321 10910342 0"), (9, "3 761 303211 0910342 0"), (10, "3 761 3032110 910342 0"), ], ) def test_as_hri(prefix_length: Optional[int], expected: str) -> None: sscc = Sscc.parse("376130321109103420") assert sscc.as_hri(company_prefix_length=prefix_length) == expected def test_as_hri_with_unknown_gs1_prefix() -> None: # GS1 prefix 671 is currently unassigned. sscc = Sscc.parse("367130321109103428") assert sscc.as_hri() == "3 6713032110910342 8" def test_as_hri_with_too_low_company_prefix_length() -> None: sscc = Sscc.parse("376130321109103420") with pytest.raises(ValueError) as exc_info: sscc.as_hri(company_prefix_length=6) assert ( str(exc_info.value) == "Expected company prefix length between 7 and 10, got 6." ) def test_as_hri_with_too_high_company_prefix_length() -> None: sscc = Sscc.parse("376130321109103420") with pytest.raises(ValueError) as exc_info: sscc.as_hri(company_prefix_length=11) assert ( str(exc_info.value) == "Expected company prefix length between 7 and 10, got 11." ) ```
{ "source": "jodal/mopidy-beets", "score": 3 }
#### File: mopidy_beets/browsers/__init__.py ```python class GenericBrowserBase: def __init__(self, ref, api): self.ref = ref self.api = api def get_toplevel(self): """deliver the top level directories or tracks for this browser The result is a list of ``mopidy.models.Ref`` objects. Usually this list contains entries like "genre" or other categories. """ raise NotImplementedError def get_directory(self, key): """deliver the corresponding sub items for a given category key The result is a list of ``mopidy.models.Ref`` objects. Usually this list contains tracks or albums belonging to the given category 'key'. """ raise NotImplementedError ``` #### File: mopidy-beets/mopidy_beets/__init__.py ```python import os import pkg_resources from mopidy import config, ext __version__ = pkg_resources.get_distribution("Mopidy-Beets").version class BeetsExtension(ext.Extension): dist_name = "Mopidy-Beets" ext_name = "beets" version = __version__ def get_default_config(self): conf_file = os.path.join(os.path.dirname(__file__), "ext.conf") return config.read(conf_file) def get_config_schema(self): schema = super(BeetsExtension, self).get_config_schema() schema["hostname"] = config.Hostname() schema["port"] = config.Port() return schema def setup(self, registry): from .actor import BeetsBackend registry.add("backend", BeetsBackend) ```
{ "source": "jodal/mopidy-local", "score": 2 }
#### File: mopidy-local/mopidy_local/actor.py ```python import logging import pykka from mopidy import backend from mopidy_local import storage from mopidy_local.library import LocalLibraryProvider from mopidy_local.playback import LocalPlaybackProvider logger = logging.getLogger(__name__) class LocalBackend(pykka.ThreadingActor, backend.Backend): uri_schemes = ["local"] def __init__(self, config, audio): super().__init__() self.config = config storage.check_dirs_and_files(config) self.playback = LocalPlaybackProvider(audio=audio, backend=self) self.library = LocalLibraryProvider(backend=self, config=config) ``` #### File: mopidy-local/mopidy_local/translator.py ```python from __future__ import annotations import logging import os import urllib from pathlib import Path from typing import Union logger = logging.getLogger(__name__) def local_uri_to_file_uri(local_uri: str, media_dir: Path) -> str: """Convert local track or directory URI to file URI.""" path = local_uri_to_path(local_uri, media_dir) return path.as_uri() def local_uri_to_path(local_uri: str, media_dir: Path) -> Path: """Convert local track or directory URI to absolute path.""" if not local_uri.startswith(("local:directory:", "local:track:")): raise ValueError("Invalid URI.") uri_path = urllib.parse.urlsplit(local_uri.split(":", 2)[2]).path file_bytes = urllib.parse.unquote_to_bytes(uri_path) file_path = Path(os.fsdecode(file_bytes)) return media_dir / file_path def path_to_file_uri(path: Union[str, bytes, Path]) -> str: """Convert absolute path to file URI.""" ppath = Path(os.fsdecode(path)) assert ppath.is_absolute() return ppath.as_uri() def path_to_local_track_uri(path: Union[str, bytes, Path], media_dir: Path) -> str: """Convert path to local track URI.""" ppath = Path(os.fsdecode(path)) if ppath.is_absolute(): ppath = ppath.relative_to(media_dir) quoted_path = urllib.parse.quote(bytes(ppath)) return f"local:track:{quoted_path}" ``` #### File: mopidy-local/tests/__init__.py ```python import pathlib from mopidy.internal import deprecation def path_to_data_dir(name): path = pathlib.Path(__file__).parent / "data" / name return path.resolve() def generate_song(i): return "local:track:song%s.wav" % i def populate_tracklist(func): def wrapper(self): with deprecation.ignore("core.tracklist.add:tracks_arg"): self.tl_tracks = self.core.tracklist.add(self.tracks) return func(self) wrapper.__name__ = func.__name__ wrapper.__doc__ = func.__doc__ return wrapper class IsA: def __init__(self, klass): self.klass = klass def __eq__(self, rhs): try: return isinstance(rhs, self.klass) except TypeError: return type(rhs) == type(self.klass) # noqa def __ne__(self, rhs): return not self.__eq__(rhs) def __repr__(self): return str(self.klass) ```
{ "source": "jodal/mopidy-nad", "score": 2 }
#### File: mopidy-nad/tests/test_mixer.py ```python import mopidy.mixer from mopidy_nad import mixer def test_is_a_mopidy_mixer(): assert issubclass(mixer.NadMixer, mopidy.mixer.Mixer) # TODO Add more tests ```
{ "source": "jodal/mopidy-orfradio", "score": 2 }
#### File: mopidy-orfradio/mopidy_orfradio/playback.py ```python import logging from mopidy import backend from mopidy_orfradio.library import InvalidORFUri, ORFLibraryUri, ORFUriType from .client import ORFClient logger = logging.getLogger(__name__) class ORFPlaybackProvider(backend.PlaybackProvider): def __init__(self, audio, backend, client=None): super().__init__(audio, backend) self.client = client or ORFClient(backend=self.backend) def translate_uri(self, uri): try: library_uri = ORFLibraryUri.parse(uri) except InvalidORFUri: return None if library_uri.uri_type == ORFUriType.LIVE: return self.client.get_live_url(library_uri.shoutcast) if library_uri.uri_type == ORFUriType.ARCHIVE_ITEM: return self.client.get_item_url( library_uri.station, library_uri.shoutcast, library_uri.day_id, library_uri.show_id, library_uri.item_id, ) ```
{ "source": "jodal/mopidy-pandora", "score": 2 }
#### File: mopidy-pandora/mopidy_pandora/client.py ```python import logging import time import requests from cachetools import TTLCache from pandora.client import APIClient, BaseAPIClient from pandora.clientbuilder import ( DEFAULT_API_HOST, APITransport, Encryptor, SettingsDictBuilder, ) logger = logging.getLogger(__name__) class MopidySettingsDictBuilder(SettingsDictBuilder): def build_from_settings_dict(self, settings): enc = Encryptor(settings["DECRYPTION_KEY"], settings["ENCRYPTION_KEY"]) trans = APITransport( enc, settings.get("API_HOST", DEFAULT_API_HOST), settings.get("PROXY", None), ) quality = settings.get( "AUDIO_QUALITY", self.client_class.MED_AUDIO_QUALITY ) return self.client_class( settings["CACHE_TTL"], trans, settings["PARTNER_USER"], settings["PARTNER_PASSWORD"], settings["DEVICE"], quality, ) class MopidyAPIClient(APIClient): """Pydora API Client for Mopidy-Pandora This API client implements caching of the station list. """ def __init__( self, cache_ttl, transport, partner_user, partner_password, device, default_audio_quality=BaseAPIClient.MED_AUDIO_QUALITY, ): super().__init__( transport, partner_user, partner_password, device, default_audio_quality, ) self.station_list_cache = TTLCache(1, cache_ttl) self.genre_stations_cache = TTLCache(1, cache_ttl) def get_station_list(self, force_refresh=False): station_list = [] try: if self.station_list_cache.currsize == 0 or ( force_refresh and next(iter(self.station_list_cache.values())).has_changed() ): station_list = super().get_station_list() self.station_list_cache[time.time()] = station_list except requests.exceptions.RequestException: logger.exception("Error retrieving Pandora station list.") station_list = [] try: return next(iter(self.station_list_cache.values())) except StopIteration: # Cache disabled return station_list def get_station(self, station_token): try: return self.get_station_list()[station_token] except TypeError: # Could not find station_token in cached list, try retrieving from # Pandora server. return super().get_station(station_token) def get_genre_stations(self, force_refresh=False): genre_stations = [] try: if self.genre_stations_cache.currsize == 0 or ( force_refresh and next(iter(self.genre_stations_cache.values())).has_changed() ): genre_stations = super().get_genre_stations() self.genre_stations_cache[time.time()] = genre_stations except requests.exceptions.RequestException: logger.exception("Error retrieving Pandora genre stations.") return genre_stations try: return next(iter(self.genre_stations_cache.values())) except StopIteration: # Cache disabled return genre_stations ```
{ "source": "jodal/pykka", "score": 2 }
#### File: tests/proxy/test_mocking.py ```python from collections.abc import Callable import pytest @pytest.fixture def actor_class(runtime): class ActorForMocking(runtime.actor_class): _a_rw_property = "a_rw_property" @property def a_rw_property(self): return self._a_rw_property @a_rw_property.setter def a_rw_property(self, value): self._a_rw_property = value def a_method(self): raise Exception("This method should be mocked") return ActorForMocking @pytest.fixture def proxy(actor_class): proxy = actor_class.start().proxy() yield proxy proxy.stop() def test_actor_with_noncallable_mock_property_works(actor_class, stop_all, mocker): mock = mocker.NonCallableMock() mock.__get__ = mocker.Mock(return_value="mocked property value") assert not isinstance(mock, Callable) actor_class.a_rw_property = mock proxy = actor_class.start().proxy() # When using NonCallableMock to fake the property, the value still behaves # as a property when access through the proxy. assert proxy.a_rw_property.get() == "mocked property value" assert mock.__get__.call_count == 1 def test_actor_with_callable_mock_property_does_not_work(actor_class, stop_all, mocker): mock = mocker.Mock() mock.__get__ = mocker.Mock(return_value="mocked property value") assert isinstance(mock, Callable) actor_class.a_rw_property = mock proxy = actor_class.start().proxy() # XXX Because Mock and MagicMock are callable by default, they cause the # property to be wrapped in a `CallableProxy`. Thus, the property no # longer behaves as a property when mocked and accessed through a proxy. with pytest.raises(AttributeError) as exc_info: assert proxy.a_rw_property.get() assert "'CallableProxy' object has no attribute 'get'" in str(exc_info.value) def test_actor_with_mocked_method_works(actor_class, stop_all, mocker): mock = mocker.MagicMock(return_value="mocked method return") mocker.patch.object(actor_class, "a_method", new=mock) proxy = actor_class.start().proxy() assert proxy.a_method().get() == "mocked method return" assert mock.call_count == 1 ```
{ "source": "jodal/python-netsgiro", "score": 3 }
#### File: python-netsgiro/netsgiro/objects.py ```python import collections import datetime from decimal import Decimal from typing import Iterable, List, Mapping, Optional, Union import attr from attr.validators import instance_of, optional import netsgiro import netsgiro.records from netsgiro.records import Record from netsgiro.validators import str_of_length __all__ = [ 'Transmission', 'Assignment', 'Agreement', 'PaymentRequest', 'Transaction', 'parse', ] @attr.s class Transmission: """Transmission is the top-level object. An OCR file contains a single transmission. The transmission can contain multiple :class:`~netsgiro.Assignment` objects of various types. """ #: Data transmitters unique enumeration of the transmission. String of 7 #: digits. number = attr.ib(validator=str_of_length(7)) #: Data transmitter's Nets ID. String of 8 digits. data_transmitter = attr.ib(validator=str_of_length(8)) #: Data recipient's Nets ID. String of 8 digits. data_recipient = attr.ib(validator=str_of_length(8)) #: For OCR Giro files from Nets, this is Nets' processing date. #: #: For AvtaleGiro payment request, the earliest due date in the #: transmission is automatically used. date = attr.ib(default=None, validator=optional(instance_of(datetime.date))) #: List of assignments. assignments = attr.ib(default=attr.Factory(list), repr=False) @classmethod def from_records(cls, records: List[Record]) -> 'Transmission': """Build a Transmission object from a list of record objects.""" if len(records) < 2: raise ValueError( 'At least 2 records required, got {}'.format(len(records)) ) start, body, end = records[0], records[1:-1], records[-1] assert isinstance(start, netsgiro.records.TransmissionStart) assert isinstance(end, netsgiro.records.TransmissionEnd) return cls( number=start.transmission_number, data_transmitter=start.data_transmitter, data_recipient=start.data_recipient, date=end.nets_date, assignments=cls._get_assignments(body), ) @staticmethod def _get_assignments(records: List[Record]) -> List['Assignment']: assignments = collections.OrderedDict() current_assignment_number = None for record in records: if isinstance(record, netsgiro.records.AssignmentStart): current_assignment_number = record.assignment_number assignments[current_assignment_number] = [] if current_assignment_number is None: raise ValueError( 'Expected AssignmentStart record, got {!r}'.format(record) ) assignments[current_assignment_number].append(record) if isinstance(record, netsgiro.records.AssignmentEnd): current_assignment_number = None return [Assignment.from_records(rs) for rs in assignments.values()] def to_ocr(self) -> str: """Convert the transmission to an OCR string.""" lines = [record.to_ocr() for record in self.to_records()] return '\n'.join(lines) def to_records(self) -> Iterable[Record]: """Convert the transmission to a list of records.""" yield self._get_start_record() for assignment in self.assignments: yield from assignment.to_records() yield self._get_end_record() def _get_start_record(self) -> Record: return netsgiro.records.TransmissionStart( service_code=netsgiro.ServiceCode.NONE, transmission_number=self.number, data_transmitter=self.data_transmitter, data_recipient=self.data_recipient, ) def _get_end_record(self) -> Record: avtalegiro_payment_request = all( assignment.service_code == netsgiro.ServiceCode.AVTALEGIRO and assignment.type in ( netsgiro.AssignmentType.TRANSACTIONS, netsgiro.AssignmentType.AVTALEGIRO_CANCELLATIONS, ) for assignment in self.assignments ) if self.assignments and avtalegiro_payment_request: date = min( assignment.get_earliest_transaction_date() for assignment in self.assignments ) else: date = self.date return netsgiro.records.TransmissionEnd( service_code=netsgiro.ServiceCode.NONE, num_transactions=self.get_num_transactions(), num_records=self.get_num_records(), total_amount=int(self.get_total_amount() * 100), nets_date=date, ) def add_assignment( self, *, service_code: netsgiro.ServiceCode, assignment_type: netsgiro.AssignmentType, agreement_id: Optional[str] = None, number: str, account: str, date: Optional[datetime.date] = None ) -> 'Assignment': """Add an assignment to the tranmission.""" assignment = Assignment( service_code=service_code, type=assignment_type, agreement_id=agreement_id, number=number, account=account, date=date, ) self.assignments.append(assignment) return assignment def get_num_transactions(self) -> int: """Get number of transactions in the transmission.""" return sum( assignment.get_num_transactions() for assignment in self.assignments ) def get_num_records(self) -> int: """Get number of records in the transmission. Includes the transmission's start and end record. """ return 2 + sum( assignment.get_num_records() for assignment in self.assignments ) def get_total_amount(self) -> Decimal: """Get the total amount from all transactions in the transmission.""" return sum( assignment.get_total_amount() for assignment in self.assignments ) @attr.s class Assignment: """An Assignment groups multiple transactions within a transmission. Use :meth:`netsgiro.Transmission.add_assignment` to create assignments. """ #: The service code. One of :class:`~netsgiro.ServiceCode`. service_code = attr.ib(converter=netsgiro.ServiceCode) #: The transaction type. One of :class:`~netsgiro.TransactionType`. type = attr.ib(converter=netsgiro.AssignmentType) #: The assignment number. String of 7 digits. number = attr.ib(validator=str_of_length(7)) #: The payee's bank account. String of 11 digits. account = attr.ib(validator=str_of_length(11)) #: Used for OCR Giro. #: #: The payee's agreement ID with Nets. String of 9 digits. agreement_id = attr.ib(default=None, validator=optional(str_of_length(9))) #: Used for OCR Giro. #: #: The date the assignment was generated by Nets. date = attr.ib(default=None, validator=optional(instance_of(datetime.date))) #: List of transaction objects, like :class:`~netsgiro.Agreement`, #: :class:`~netsgiro.PaymentRequest`, :class:`~netsgiro.Transaction`. transactions = attr.ib(default=attr.Factory(list), repr=False) _next_transaction_number = 1 @classmethod def from_records(cls, records: List[Record]) -> 'Assignment': """Build an Assignment object from a list of record objects.""" if len(records) < 2: raise ValueError( 'At least 2 records required, got {}'.format(len(records)) ) start, body, end = records[0], records[1:-1], records[-1] assert isinstance(start, netsgiro.records.AssignmentStart) assert isinstance(end, netsgiro.records.AssignmentEnd) if start.service_code == netsgiro.ServiceCode.AVTALEGIRO: if ( start.assignment_type == netsgiro.AssignmentType.AVTALEGIRO_AGREEMENTS ): transactions = cls._get_agreements(body) else: transactions = cls._get_payment_requests(body) elif start.service_code == netsgiro.ServiceCode.OCR_GIRO: transactions = cls._get_transactions(body) else: raise ValueError( 'Unknown service code: {}'.format(start.service_code) ) return cls( service_code=start.service_code, type=start.assignment_type, agreement_id=start.agreement_id, number=start.assignment_number, account=start.assignment_account, date=end.nets_date, transactions=transactions, ) @staticmethod def _get_agreements(records: List[Record]) -> List['Agreement']: return [Agreement.from_records([r]) for r in records] @classmethod def _get_payment_requests( cls, records: List[Record] ) -> List['PaymentRequest']: transactions = cls._group_by_transaction_number(records) return [PaymentRequest.from_records(rs) for rs in transactions.values()] @classmethod def _get_transactions(cls, records: List[Record]) -> List['Transaction']: transactions = cls._group_by_transaction_number(records) return [Transaction.from_records(rs) for rs in transactions.values()] @staticmethod def _group_by_transaction_number( records: List[Record], ) -> Mapping[int, List[Record]]: transactions = collections.OrderedDict() for record in records: if record.transaction_number not in transactions: transactions[record.transaction_number] = [] transactions[record.transaction_number].append(record) return transactions def to_records(self) -> Iterable[Record]: """Convert the assignment to a list of records.""" yield self._get_start_record() for transaction in self.transactions: yield from transaction.to_records() yield self._get_end_record() def _get_start_record(self) -> Record: return netsgiro.records.AssignmentStart( service_code=self.service_code, assignment_type=self.type, assignment_number=self.number, assignment_account=self.account, agreement_id=self.agreement_id, ) def _get_end_record(self) -> Record: if self.service_code == netsgiro.ServiceCode.OCR_GIRO: dates = { 'nets_date_1': self.date, 'nets_date_2': self.get_earliest_transaction_date(), 'nets_date_3': self.get_latest_transaction_date(), } elif self.service_code == netsgiro.ServiceCode.AVTALEGIRO: dates = { 'nets_date_1': self.get_earliest_transaction_date(), 'nets_date_2': self.get_latest_transaction_date(), } else: raise ValueError( 'Unhandled service code: {}'.format(self.service_code) ) return netsgiro.records.AssignmentEnd( service_code=self.service_code, assignment_type=self.type, num_transactions=self.get_num_transactions(), num_records=self.get_num_records(), total_amount=int(self.get_total_amount() * 100), **dates ) def add_payment_request( self, *, kid: str, due_date: datetime.date, amount: Decimal, reference: Optional[str] = None, payer_name: Optional[str] = None, bank_notification: Union[bool, str] = False ) -> 'Transaction': """Add an AvtaleGiro payment request to the assignment. The assignment must have service code :attr:`~netsgiro.ServiceCode.AVTALEGIRO` and assignment type :attr:`~netsgiro.AssignmentType.TRANSACTIONS`. """ assert ( self.service_code == netsgiro.ServiceCode.AVTALEGIRO ), 'Can only add payment requests to AvtaleGiro assignments' assert ( self.type == netsgiro.AssignmentType.TRANSACTIONS ), 'Can only add payment requests to transaction assignments' if bank_notification: transaction_type = ( netsgiro.TransactionType.AVTALEGIRO_WITH_BANK_NOTIFICATION ) else: transaction_type = ( netsgiro.TransactionType.AVTALEGIRO_WITH_PAYEE_NOTIFICATION ) return self._add_avtalegiro_transaction( transaction_type=transaction_type, kid=kid, due_date=due_date, amount=amount, reference=reference, payer_name=payer_name, bank_notification=bank_notification, ) def add_payment_cancellation( self, *, kid: str, due_date: datetime.date, amount: Decimal, reference: Optional[str] = None, payer_name: Optional[str] = None, bank_notification: Union[bool, str] = False ) -> 'Transaction': """Add an AvtaleGiro cancellation to the assignment. The assignment must have service code :attr:`~netsgiro.ServiceCode.AVTALEGIRO` and assignment type :attr:`~netsgiro.AssignmentType.AVTALEGIRO_CANCELLATIONS`. Otherwise, the cancellation must be identical to the payment request it is cancelling. """ assert ( self.service_code == netsgiro.ServiceCode.AVTALEGIRO ), 'Can only add cancellation to AvtaleGiro assignments' assert ( self.type == netsgiro.AssignmentType.AVTALEGIRO_CANCELLATIONS ), 'Can only add cancellation to cancellation assignments' return self._add_avtalegiro_transaction( transaction_type=netsgiro.TransactionType.AVTALEGIRO_CANCELLATION, kid=kid, due_date=due_date, amount=amount, reference=reference, payer_name=payer_name, bank_notification=bank_notification, ) def _add_avtalegiro_transaction( self, *, transaction_type, kid, due_date, amount, reference=None, payer_name=None, bank_notification=None ) -> 'Transaction': if isinstance(bank_notification, str): text = bank_notification else: text = '' number = self._next_transaction_number self._next_transaction_number += 1 transaction = PaymentRequest( service_code=self.service_code, type=transaction_type, number=number, date=due_date, amount=amount, kid=kid, reference=reference, text=text, payer_name=payer_name, ) self.transactions.append(transaction) return transaction def get_num_transactions(self) -> int: """Get number of transactions in the assignment.""" return len(self.transactions) def get_num_records(self) -> int: """Get number of records in the assignment. Includes the assignment's start and end record. """ return 2 + sum( len(list(transaction.to_records())) for transaction in self.transactions ) def get_total_amount(self) -> Decimal: """Get the total amount from all transactions in the assignment.""" transactions = [ transaction for transaction in self.transactions if hasattr(transaction, 'amount') ] if not transactions: return Decimal(0) return sum(transaction.amount for transaction in transactions) def get_earliest_transaction_date(self) -> Optional[datetime.date]: """Get earliest date from the assignment's transactions.""" transactions = [ transaction for transaction in self.transactions if hasattr(transaction, 'date') ] if not transactions: return None return min(transaction.date for transaction in transactions) def get_latest_transaction_date(self) -> Optional[datetime.date]: """Get latest date from the assignment's transactions.""" transactions = [ transaction for transaction in self.transactions if hasattr(transaction, 'date') ] if not transactions: return None return max(transaction.date for transaction in transactions) @attr.s class Agreement: """Agreement contains an AvtaleGiro agreement update. Agreements are only found in assignments of the :attr:`~netsgiro.AssignmentType.AVTALEGIRO_AGREEMENTS` type, which are only created by Nets. """ #: The service code. One of :class:`~netsgiro.ServiceCode`. service_code = attr.ib(converter=netsgiro.ServiceCode) #: Transaction number. Unique and ordered within an assignment. number = attr.ib(validator=instance_of(int)) #: Type of agreement registration update. #: One of :class:`~netsgiro.AvtaleGiroRegistrationType`. registration_type = attr.ib(converter=netsgiro.AvtaleGiroRegistrationType) #: KID number to identify the customer and invoice. kid = attr.ib(validator=optional(instance_of(str))) #: Whether the payer wants notification about payment requests. notify = attr.ib(validator=instance_of(bool)) TRANSACTION_TYPE = netsgiro.TransactionType.AVTALEGIRO_AGREEMENT @classmethod def from_records(cls, records: List[Record]) -> 'Agreement': """Build an Agreement object from a list of record objects.""" assert len(records) == 1 record = records[0] assert isinstance(record, netsgiro.records.AvtaleGiroAgreement) assert ( record.transaction_type == netsgiro.TransactionType.AVTALEGIRO_AGREEMENT ) return cls( service_code=record.service_code, number=record.transaction_number, registration_type=record.registration_type, kid=record.kid, notify=record.notify, ) def to_records(self) -> Iterable[Record]: """Convert the agreement to a list of records.""" yield netsgiro.records.AvtaleGiroAgreement( service_code=self.service_code, transaction_type=self.TRANSACTION_TYPE, transaction_number=self.number, registration_type=self.registration_type, kid=self.kid, notify=self.notify, ) @attr.s class PaymentRequest: """PaymentRequest contains an AvtaleGiro payment request or cancellation. To create a transaction, you will normally use the helper methods on :class:`~netsgiro.Assignment`: :meth:`~netsgiro.Assignment.add_payment_request` and :meth:`~netsgiro.Assignment.add_payment_cancellation`. """ #: The service code. One of :class:`~netsgiro.ServiceCode`. service_code = attr.ib(converter=netsgiro.ServiceCode) #: The transaction type. One of :class:`~netsgiro.TransactionType`. type = attr.ib(converter=netsgiro.TransactionType) #: Transaction number. Unique and ordered within an assignment. number = attr.ib(validator=instance_of(int)) #: The due date. date = attr.ib(validator=instance_of(datetime.date)) #: Transaction amount in NOK with two decimals. amount = attr.ib(converter=Decimal) #: KID number to identify the customer and invoice. kid = attr.ib(validator=optional(instance_of(str))) #: This is a specification line that will, if set, be displayed on the #: payers account statement. Alphanumeric, max 25 chars. reference = attr.ib(validator=optional(instance_of(str))) #: This is up to 42 lines of 80 chars each of free text used by the bank to #: notify the payer about the payment request. It is not used if the payee #: is responsible for notifying the payer. text = attr.ib(validator=optional(instance_of(str))) #: The value is only used to help the payee cross-reference reports from #: Nets with their own records. It is not visible to the payer. payer_name = attr.ib(validator=optional(instance_of(str))) @property def amount_in_cents(self) -> int: """Transaction amount in NOK cents.""" return int(self.amount * 100) @classmethod def from_records(cls, records: List[Record]) -> 'Transaction': """Build a Transaction object from a list of record objects.""" amount_item_1 = records.pop(0) assert isinstance( amount_item_1, netsgiro.records.TransactionAmountItem1 ) amount_item_2 = records.pop(0) assert isinstance( amount_item_2, netsgiro.records.TransactionAmountItem2 ) text = netsgiro.records.TransactionSpecification.to_text(records) return cls( service_code=amount_item_1.service_code, type=amount_item_1.transaction_type, number=amount_item_1.transaction_number, date=amount_item_1.nets_date, amount=Decimal(amount_item_1.amount) / 100, kid=amount_item_1.kid, reference=amount_item_2.reference, text=text, payer_name=amount_item_2.payer_name, ) def to_records(self) -> Iterable[Record]: """Convert the transaction to a list of records.""" yield netsgiro.records.TransactionAmountItem1( service_code=self.service_code, transaction_type=self.type, transaction_number=self.number, nets_date=self.date, amount=self.amount_in_cents, kid=self.kid, ) yield netsgiro.records.TransactionAmountItem2( service_code=self.service_code, transaction_type=self.type, transaction_number=self.number, reference=self.reference, payer_name=self.payer_name, ) if self.type == ( netsgiro.TransactionType.AVTALEGIRO_WITH_BANK_NOTIFICATION ): yield from netsgiro.records.TransactionSpecification.from_text( service_code=self.service_code, transaction_type=self.type, transaction_number=self.number, text=self.text, ) @attr.s class Transaction: """Transaction contains an OCR Giro transaction. Transactions are found in assignments with the service code :attr:`~netsgiro.ServiceCode.OCR_GIRO` type, which are only created by Nets. """ #: The service code. One of :class:`~netsgiro.ServiceCode`. service_code = attr.ib(converter=netsgiro.ServiceCode) #: The transaction type. One of :class:`~netsgiro.TransactionType`. type = attr.ib(converter=netsgiro.TransactionType) #: Transaction number. Unique and ordered within an assignment. number = attr.ib(validator=instance_of(int)) #: Nets' processing date. date = attr.ib(validator=instance_of(datetime.date)) #: Transaction amount in NOK with two decimals. amount = attr.ib(converter=Decimal) #: KID number to identify the customer and invoice. kid = attr.ib(validator=optional(instance_of(str))) #: The value depends on the payment method. reference = attr.ib(validator=optional(instance_of(str))) #: Up to 40 chars of free text from the payment terminal. text = attr.ib(validator=optional(instance_of(str))) #: Used for OCR Giro. centre_id = attr.ib(validator=optional(str_of_length(2))) #: Used for OCR Giro. day_code = attr.ib(validator=optional(instance_of(int))) #: Used for OCR Giro. partial_settlement_number = attr.ib(validator=optional(instance_of(int))) #: Used for OCR Giro. partial_settlement_serial_number = attr.ib( validator=optional(str_of_length(5)) ) #: Used for OCR Giro. sign = attr.ib(validator=optional(str_of_length(1))) #: Used for OCR Giro. form_number = attr.ib(validator=optional(str_of_length(10))) #: Used for OCR Giro. bank_date = attr.ib(validator=optional(instance_of(datetime.date))) #: Used for OCR Giro. debit_account = attr.ib(validator=optional(str_of_length(11))) _filler = attr.ib(validator=optional(str_of_length(7))) @property def amount_in_cents(self) -> int: """Transaction amount in NOK cents.""" return int(self.amount * 100) @classmethod def from_records(cls, records: List[Record]) -> 'Transaction': """Build a Transaction object from a list of record objects.""" amount_item_1 = records.pop(0) assert isinstance( amount_item_1, netsgiro.records.TransactionAmountItem1 ) amount_item_2 = records.pop(0) assert isinstance( amount_item_2, netsgiro.records.TransactionAmountItem2 ) if len(records) == 1 and isinstance( records[0], netsgiro.records.TransactionAmountItem3 ): text = records[0].text else: text = None return cls( service_code=amount_item_1.service_code, type=amount_item_1.transaction_type, number=amount_item_1.transaction_number, date=amount_item_1.nets_date, amount=Decimal(amount_item_1.amount) / 100, kid=amount_item_1.kid, reference=amount_item_2.reference, text=text, centre_id=amount_item_1.centre_id, day_code=amount_item_1.day_code, partial_settlement_number=amount_item_1.partial_settlement_number, partial_settlement_serial_number=( amount_item_1.partial_settlement_serial_number ), sign=amount_item_1.sign, form_number=amount_item_2.form_number, bank_date=amount_item_2.bank_date, debit_account=amount_item_2.debit_account, filler=amount_item_2._filler, ) def to_records(self) -> Iterable[Record]: """Convert the transaction to a list of records.""" yield netsgiro.records.TransactionAmountItem1( service_code=self.service_code, transaction_type=self.type, transaction_number=self.number, nets_date=self.date, amount=self.amount_in_cents, kid=self.kid, centre_id=self.centre_id, day_code=self.day_code, partial_settlement_number=self.partial_settlement_number, partial_settlement_serial_number=( self.partial_settlement_serial_number ), sign=self.sign, ) yield netsgiro.records.TransactionAmountItem2( service_code=self.service_code, transaction_type=self.type, transaction_number=self.number, reference=self.reference, form_number=self.form_number, bank_date=self.bank_date, debit_account=self.debit_account, filler=self._filler, ) if self.type in ( netsgiro.TransactionType.REVERSING_WITH_TEXT, netsgiro.TransactionType.PURCHASE_WITH_TEXT, ): yield netsgiro.records.TransactionAmountItem3( service_code=self.service_code, transaction_type=self.type, transaction_number=self.number, text=self.text, ) def parse(data: str) -> Transmission: """Parse an OCR file into a Transmission object.""" records = netsgiro.records.parse(data) return Transmission.from_records(records) ``` #### File: python-netsgiro/tests/test_object_parsing.py ```python from datetime import date from decimal import Decimal import netsgiro def test_parse_agreements(agreements_data): transmission = netsgiro.parse(agreements_data) assert isinstance(transmission, netsgiro.Transmission) assert transmission.number == '1091949' assert transmission.data_transmitter == netsgiro.NETS_ID assert transmission.data_recipient == '00010200' assert transmission.date == date(2017, 4, 19) assert len(transmission.assignments) == 1 assignment = transmission.assignments[0] assert isinstance(assignment, netsgiro.Assignment) assert assignment.service_code == netsgiro.ServiceCode.AVTALEGIRO assert assignment.type == netsgiro.AssignmentType.AVTALEGIRO_AGREEMENTS assert assignment.agreement_id is None assert assignment.number == '0000002' assert assignment.account == '99991042764' assert len(assignment.transactions) == 16 agreement_1 = assignment.transactions[0] assert isinstance(agreement_1, netsgiro.Agreement) assert agreement_1.service_code == netsgiro.ServiceCode.AVTALEGIRO assert agreement_1.TRANSACTION_TYPE == ( netsgiro.TransactionType.AVTALEGIRO_AGREEMENT ) assert agreement_1.number == 1 assert agreement_1.registration_type == ( netsgiro.AvtaleGiroRegistrationType.NEW_OR_UPDATED_AGREEMENT ) assert agreement_1.kid == '000112000507155' assert agreement_1.notify is True agreement_2 = assignment.transactions[1] assert isinstance(agreement_2, netsgiro.Agreement) assert agreement_2.service_code == netsgiro.ServiceCode.AVTALEGIRO assert agreement_2.TRANSACTION_TYPE == ( netsgiro.TransactionType.AVTALEGIRO_AGREEMENT ) assert agreement_2.number == 2 assert agreement_2.registration_type == ( netsgiro.AvtaleGiroRegistrationType.NEW_OR_UPDATED_AGREEMENT ) assert agreement_2.kid == '001006300507304' assert agreement_2.notify is False def test_parse_payment_request(payment_request_data): transmission = netsgiro.parse(payment_request_data) assert isinstance(transmission, netsgiro.Transmission) assert transmission.number == '1000081' assert transmission.data_transmitter == '55555555' assert transmission.data_recipient == netsgiro.NETS_ID assert transmission.date == date(2004, 6, 17) assert len(transmission.assignments) == 1 assignment = transmission.assignments[0] assert isinstance(assignment, netsgiro.Assignment) assert assignment.service_code == netsgiro.ServiceCode.AVTALEGIRO assert assignment.type == netsgiro.AssignmentType.TRANSACTIONS assert assignment.agreement_id == '000000000' assert assignment.number == '4000086' assert assignment.account == '88888888888' assert len(assignment.transactions) == 6 transaction = assignment.transactions[0] assert isinstance(transaction, netsgiro.PaymentRequest) assert transaction.service_code == netsgiro.ServiceCode.AVTALEGIRO assert transaction.type == ( netsgiro.TransactionType.AVTALEGIRO_WITH_BANK_NOTIFICATION ) assert transaction.number == 1 assert transaction.date == date(2004, 6, 17) assert transaction.amount == Decimal('1.00') assert transaction.amount_in_cents == 100 assert transaction.kid == '008000011688373' assert transaction.reference is None assert transaction.text == ( ' Gjelder Faktura: 168837 Dato: 19/03/04' ' ForfallsDato: 17/06/04\n' ) # Specific to AvtaleGiro assert transaction.payer_name == 'NAVN' def test_parse_ocr_giro_transactions(ocr_giro_transactions_data): transmission = netsgiro.parse(ocr_giro_transactions_data) assert isinstance(transmission, netsgiro.Transmission) assert transmission.number == '0170031' assert transmission.data_transmitter == netsgiro.NETS_ID assert transmission.data_recipient == '00010200' assert transmission.date == date(1992, 1, 20) assert len(transmission.assignments) == 1 assignment = transmission.assignments[0] assert isinstance(assignment, netsgiro.Assignment) assert assignment.service_code == netsgiro.ServiceCode.OCR_GIRO assert assignment.type == netsgiro.AssignmentType.TRANSACTIONS assert assignment.agreement_id == '001008566' assert assignment.number == '0000002' assert assignment.account == '99991042764' assert len(assignment.transactions) == 20 transaction = assignment.transactions[0] assert isinstance(transaction, netsgiro.Transaction) assert transaction.service_code == netsgiro.ServiceCode.OCR_GIRO assert transaction.type == (netsgiro.TransactionType.PURCHASE_WITH_TEXT) assert transaction.number == 1 assert transaction.date == date(1992, 1, 20) assert transaction.amount == Decimal('1020') assert transaction.amount_in_cents == 102000 assert transaction.kid == '0000531' assert transaction.reference == '099038562' assert transaction.text == 'Foo bar baz' # Specific to OCR Giro assert transaction.centre_id == '13' assert transaction.day_code == 20 assert transaction.partial_settlement_number == 1 assert transaction.partial_settlement_serial_number == '01464' assert transaction.sign == '0' assert transaction.form_number == '9636827194' assert transaction.bank_date == date(1992, 1, 16) assert transaction.debit_account == '99990512341' ``` #### File: python-netsgiro/tests/test_record_parsing.py ```python from datetime import date import pytest import netsgiro import netsgiro.records def test_transmission_start(): record = netsgiro.records.TransmissionStart.from_string( 'NY00001055555555100008100008080000000000' '0000000000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.NONE assert record.RECORD_TYPE == netsgiro.RecordType.TRANSMISSION_START assert record.data_transmitter == '55555555' assert record.transmission_number == '1000081' assert record.data_recipient == '00008080' def test_transmission_start_fails_when_invalid_format(): line = 'XX' + ('0' * 78) with pytest.raises( ValueError, match='{!r} did not match TransmissionStart record format'.format(line), ): netsgiro.records.TransmissionStart.from_string(line) def test_transmission_end(): record = netsgiro.records.TransmissionEnd.from_string( 'NY00008900000006000000220000000000000060' '0170604000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.NONE assert record.RECORD_TYPE == netsgiro.RecordType.TRANSMISSION_END assert record.num_transactions == 6 assert record.num_records == 22 assert record.total_amount == 600 assert record.nets_date == date(2004, 6, 17) def test_assignment_start_for_avtalegiro_payment_requests(): record = netsgiro.records.AssignmentStart.from_string( 'NY21002000000000040000868888888888800000' '0000000000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.ASSIGNMENT_START assert record.assignment_type == netsgiro.AssignmentType.TRANSACTIONS assert record.agreement_id == '000000000' assert record.assignment_number == '4000086' assert record.assignment_account == '88888888888' def test_assignment_start_for_avtalegiro_agreements(): record = netsgiro.records.AssignmentStart.from_string( 'NY21242000000000040000868888888888800000' '0000000000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.ASSIGNMENT_START assert record.assignment_type == ( netsgiro.AssignmentType.AVTALEGIRO_AGREEMENTS ) assert record.agreement_id is None assert record.assignment_number == '4000086' assert record.assignment_account == '88888888888' def test_assignment_start_for_avtalegiro_cancellation(): record = netsgiro.records.AssignmentStart.from_string( 'NY21362000000000040000868888888888800000' '0000000000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.ASSIGNMENT_START assert record.assignment_type == ( netsgiro.AssignmentType.AVTALEGIRO_CANCELLATIONS ) assert record.agreement_id is None assert record.assignment_number == '4000086' assert record.assignment_account == '88888888888' def test_assignment_start_for_ocr_giro_transactions(): record = netsgiro.records.AssignmentStart.from_string( 'NY09002000100856600000029999104276400000' '0000000000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.OCR_GIRO assert record.RECORD_TYPE == netsgiro.RecordType.ASSIGNMENT_START assert record.assignment_type == netsgiro.AssignmentType.TRANSACTIONS assert record.agreement_id == '001008566' assert record.assignment_number == '0000002' assert record.assignment_account == '99991042764' def test_assignment_end_for_avtalegiro_payment_requests(): record = netsgiro.records.AssignmentEnd.from_string( 'NY21008800000006000000200000000000000060' '0170604170604000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.ASSIGNMENT_END assert record.assignment_type == netsgiro.AssignmentType.TRANSACTIONS assert record.num_transactions == 6 assert record.num_records == 20 assert record.total_amount == 600 assert record.nets_date_earliest == date(2004, 6, 17) assert record.nets_date_latest == date(2004, 6, 17) def test_assignment_end_for_avtalegiro_agreements(): record = netsgiro.records.AssignmentEnd.from_string( 'NY21248800000006000000200000000000000000' '0000000000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.ASSIGNMENT_END assert record.assignment_type == ( netsgiro.AssignmentType.AVTALEGIRO_AGREEMENTS ) assert record.num_transactions == 6 assert record.num_records == 20 assert record.total_amount is None assert record.nets_date_earliest is None assert record.nets_date_latest is None def test_assignment_end_for_avtalegiro_cancellations(): record = netsgiro.records.AssignmentEnd.from_string( 'NY21368800000006000000200000000000000060' '0170604170604000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.ASSIGNMENT_END assert record.assignment_type == ( netsgiro.AssignmentType.AVTALEGIRO_CANCELLATIONS ) assert record.num_transactions == 6 assert record.num_records == 20 assert record.total_amount == 600 assert record.nets_date_latest == date(2004, 6, 17) assert record.nets_date_earliest == date(2004, 6, 17) def test_assignment_end_for_ocr_giro_transactions(): record = netsgiro.records.AssignmentEnd.from_string( 'NY09008800000020000000420000000000514490' '0200192200192200192000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.OCR_GIRO assert record.RECORD_TYPE == netsgiro.RecordType.ASSIGNMENT_END assert record.assignment_type == netsgiro.AssignmentType.TRANSACTIONS assert record.num_transactions == 20 assert record.num_records == 42 assert record.total_amount == 5144900 assert record.nets_date == date(1992, 1, 20) assert record.nets_date_earliest == date(1992, 1, 20) assert record.nets_date_latest == date(1992, 1, 20) def test_transaction_amount_item_1_for_avtalegiro_payment_request(): record = netsgiro.records.TransactionAmountItem1.from_string( 'NY2121300000001170604 00000000' '000000100 008000011688373000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AMOUNT_ITEM_1 assert record.transaction_type == ( netsgiro.TransactionType.AVTALEGIRO_WITH_BANK_NOTIFICATION ) assert record.transaction_number == 1 assert record.nets_date == date(2004, 6, 17) assert record.amount == 100 assert record.kid == '008000011688373' def test_transaction_amount_item_1_for_avtalegiro_cancellation(): record = netsgiro.records.TransactionAmountItem1.from_string( 'NY2193300000001170604 00000000' '000000100 008000011688373000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AMOUNT_ITEM_1 assert record.transaction_type == ( netsgiro.TransactionType.AVTALEGIRO_CANCELLATION ) assert record.transaction_number == 1 assert record.nets_date == date(2004, 6, 17) assert record.amount == 100 assert record.kid == '008000011688373' def test_transaction_amount_item_1_for_ocr_giro_transactions(): record = netsgiro.records.TransactionAmountItem1.from_string( 'NY09103000000012001921320101464000000000' '000102000 0000531000000' ) assert record.service_code == netsgiro.ServiceCode.OCR_GIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AMOUNT_ITEM_1 assert record.transaction_type == ( netsgiro.TransactionType.FROM_GIRO_DEBITED_ACCOUNT ) assert record.transaction_number == 1 assert record.nets_date == date(1992, 1, 20) assert record.centre_id == '13' assert record.day_code == 20 assert record.partial_settlement_number == 1 assert record.partial_settlement_serial_number == '01464' assert record.sign == '0' assert record.amount == 102000 assert record.kid == '0000531' def test_transaction_amount_item_2_for_avtalegiro_payment_request(): record = netsgiro.records.TransactionAmountItem2.from_string( 'NY2121310000001NAVN ' ' 00000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AMOUNT_ITEM_2 assert record.transaction_type == ( netsgiro.TransactionType.AVTALEGIRO_WITH_BANK_NOTIFICATION ) assert record.transaction_number == 1 assert record.payer_name == 'NAVN' assert record.reference is None def test_transaction_amount_item_2_for_ocr_giro_transactions(): record = netsgiro.records.TransactionAmountItem2.from_string( 'NY09103100000019636827194099038562000000' '0160192999905123410000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.OCR_GIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AMOUNT_ITEM_2 assert record.transaction_type == ( netsgiro.TransactionType.FROM_GIRO_DEBITED_ACCOUNT ) assert record.transaction_number == 1 assert record.form_number == '9636827194' assert record.payer_name is None assert record.reference == '099038562' assert record.bank_date == date(1992, 1, 16) assert record.debit_account == '99990512341' def test_transaction_amount_item_2_for_ocr_giro_with_data_in_filler_field(): record = netsgiro.records.TransactionAmountItem2.from_string( 'NY09103100000029797596016097596016188320' '6160192999910055240000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.OCR_GIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AMOUNT_ITEM_2 assert record.transaction_type == ( netsgiro.TransactionType.FROM_GIRO_DEBITED_ACCOUNT ) assert record.transaction_number == 2 assert record.form_number == '9797596016' assert record.payer_name is None assert record.reference == '097596016' assert record.bank_date == date(1992, 1, 16) assert record.debit_account == '99991005524' assert record._filler == '1883206' def test_transaction_amount_item_3_for_ocr_giro_transactions(): record = netsgiro.records.TransactionAmountItem3.from_string( 'NY0921320000001Foo bar baz ' ' 0000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.OCR_GIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AMOUNT_ITEM_3 assert record.transaction_type == ( netsgiro.TransactionType.PURCHASE_WITH_TEXT ) assert record.transaction_number == 1 assert record.text == 'Foo bar baz' def test_transaction_specification_for_avtalegiro_payment_request(): record = netsgiro.records.TransactionSpecification.from_string( 'NY212149000000140011 Gjelder Faktura: 16' '8837 Dato: 19/03/0400000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_SPECIFICATION assert record.transaction_type == ( netsgiro.TransactionType.AVTALEGIRO_WITH_BANK_NOTIFICATION ) assert record.transaction_number == 1 assert record.line_number == 1 assert record.column_number == 1 assert record.text == ' Gjelder Faktura: 168837 Dato: 19/03/04' def make_specification_records(num_lines, num_columns=2): return [ netsgiro.records.TransactionSpecification( service_code=netsgiro.ServiceCode.AVTALEGIRO, transaction_type=( netsgiro.TransactionType.AVTALEGIRO_WITH_BANK_NOTIFICATION ), transaction_number=1, line_number=line, column_number=column, text='Line {}, column {}'.format(line, column), ) for line in range(1, num_lines + 1) for column in range(1, num_columns + 1) ] def test_transaction_specification_to_text_with_max_number_of_records(): records = make_specification_records(42) result = netsgiro.records.TransactionSpecification.to_text(records) assert len(result.splitlines()) == 42 assert 'Line 1, column 1' in result assert 'Line 42, column 2' in result def test_transaction_specification_to_text_with_too_many_records(): records = make_specification_records(43) with pytest.raises( ValueError, match='Max 84 specification records allowed, got 86' ): netsgiro.records.TransactionSpecification.to_text(records) def test_avtalegiro_active_agreement(): record = netsgiro.records.AvtaleGiroAgreement.from_string( 'NY21947000000010 00800001168837' '3J00000000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AGREEMENTS assert record.transaction_type == ( netsgiro.TransactionType.AVTALEGIRO_AGREEMENT ) assert record.transaction_number == 1 assert record.registration_type == ( netsgiro.AvtaleGiroRegistrationType.ACTIVE_AGREEMENT ) assert record.kid == '008000011688373' assert record.notify is True def test_avtalegiro_new_or_updated_agreement(): record = netsgiro.records.AvtaleGiroAgreement.from_string( 'NY21947000000011 00800001168837' '3N00000000000000000000000000000000000000' ) assert record.service_code == netsgiro.ServiceCode.AVTALEGIRO assert record.RECORD_TYPE == netsgiro.RecordType.TRANSACTION_AGREEMENTS assert record.transaction_type == ( netsgiro.TransactionType.AVTALEGIRO_AGREEMENT ) assert record.transaction_number == 1 assert record.registration_type == ( netsgiro.AvtaleGiroRegistrationType.NEW_OR_UPDATED_AGREEMENT ) assert record.kid == '008000011688373' assert record.notify is False ```
{ "source": "jodalyst/6302_spring18_sandbox", "score": 2 }
#### File: examples/ESP32_Streaming/base.py ```python import time import math from flask import Flask, render_template, session, request from flask_cors import CORS, cross_origin #Start up Flask server: app = Flask(__name__, template_folder = './',static_folder='../../src') #app.config['SECRET_KEY'] = 'secret!' #shhh don't tell anyone. Is a secret #socketio = SocketIO(app, async_mode = async_mode) CORS(app,resources={ r'/*/*': { 'origins': '*', 'allow_headers': ['Content-Type', 'Authorization'] } }) @app.route('/') def index(): print ("A user connected") #if thread is None: # thread = Thread(target=dataThread) # thread.daemon = True # thread.start() return render_template('base.html') if __name__ == '__main__': app.run(host="0.0.0.0", debug=True) ```
{ "source": "jodalyst/jinstrument", "score": 2 }
#### File: div_render/interface_dev/breadboard_1v9.py ```python from collections import OrderedDict from bokeh.plotting import figure, show, output_file, ColumnDataSource from bokeh.models import HoverTool from bokeh.embed import components import bokeh import random import math import sys import glob import serial import json import struct import time import matplotlib.pyplot as plt import sys import time import math from threading import Thread, Lock from flask import Flask, render_template, session, request from flask_socketio import SocketIO, emit, join_room, leave_room,close_room, rooms, disconnect from datetime import datetime def serial_ports(): if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in list(range(256))] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob.glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') result = [] for port in ports: try: #print("checking port "+port) s = serial.Serial(port) #print("closing port "+port) s.close() result.append(port) except (OSError, serial.SerialException): pass return result #------------------- # ports = serial_ports() #generate list of currently connected serial ports # print (ports) # ser = ports[0] # s = serial.Serial(ser) # print(s) left_nodes = 62 right_nodes = 62 left_bus = 2 right_bus = 2 node_v_spacing = 0.18 bus_h_spacing = 0.18 midline_gap = 0.25 node_to_bus_gap = 0.15 node_length = 1.0 node_height = 0.15 bus_height = node_v_spacing*left_nodes bb_node = [[0,0,node_length,node_length],[0,node_height,node_height,0]] bb_bus = [[0,0,node_height,node_height],[0,bus_height,bus_height,0]] image_height = 0.3+bus_height image_width = 0.3+midline_gap + 2*node_length+2*node_to_bus_gap+4*node_height BB_x = [] BB_y = [] orientation='horizontal' if orientation =='vertical': for q in range(left_nodes): BB_x.append([t for t in bb_node[0]]) BB_y.append([t+q*node_v_spacing for t in bb_node[1]]) for q in range(right_nodes): BB_x.append([t+node_length+midline_gap for t in bb_node[0]]) BB_y.append([t+q*node_v_spacing for t in bb_node[1]]) BB_x.append([t-node_to_bus_gap-node_height - bus_h_spacing for t in bb_bus[0]]) BB_x.append([t-node_to_bus_gap-node_height for t in bb_bus[0]]) BB_x.append([t+node_to_bus_gap+2*node_length + midline_gap for t in bb_bus[0]]) BB_x.append([t+bus_h_spacing+node_to_bus_gap+2*node_length + midline_gap for t in bb_bus[0]]) for y in range(4): BB_y.append(bb_bus[1]) image_height = 0.3+bus_height image_width = 0.3+midline_gap + 2*node_length+2*node_to_bus_gap+4*node_height pixel_scaler = 500/6 else: for q in range(left_nodes): BB_y.append([t for t in bb_node[0]]) BB_x.append([t+q*node_v_spacing for t in bb_node[1]]) for q in range(right_nodes): BB_y.append([t+node_length+midline_gap for t in bb_node[0]]) BB_x.append([t+q*node_v_spacing for t in bb_node[1]]) BB_y.append([t-node_to_bus_gap -node_height- bus_h_spacing for t in bb_bus[0]]) BB_y.append([t-node_to_bus_gap-node_height for t in bb_bus[0]]) BB_y.append([t+node_to_bus_gap+2*node_length + midline_gap for t in bb_bus[0]]) BB_y.append([t+bus_h_spacing+node_to_bus_gap+2*node_length + midline_gap for t in bb_bus[0]]) for y in range(4): BB_x.append(bb_bus[1]) image_width = 0.3+bus_height image_height = 0.3+midline_gap + 2*node_length+2*node_to_bus_gap+4*node_height pixel_scaler = 500/5 def color_getter(value,maximum): integer = int(math.floor(value*255/maximum)) #print (integer) hexval = hex(integer)[2:] #print (hexval) if len(str(hexval))==1: return "#" +"0" +hexval+"0000" else: return "#" +hexval+"0000" async_mode = None if async_mode is None: try: import eventlet async_mode = 'eventlet' except ImportError: pass if async_mode is None: try: from gevent import monkey async_mode = 'gevent' except ImportError: pass if async_mode is None: async_mode = 'threading' print('async_mode is ' + async_mode) # monkey patching is necessary because this application uses a background # thread if async_mode == 'eventlet': import eventlet eventlet.monkey_patch() elif async_mode == 'gevent': from gevent import monkey monkey.patch_all() #Start up Flask server: app = Flask(__name__, template_folder = './',static_url_path='/static') app.config['SECRET_KEY'] = 'secret!' #shhh don't tell anyone. Is a secret socketio = SocketIO(app, async_mode = async_mode) thread = None def dataThread(): unique = 456 ports = serial_ports() #generate list of currently connected serial ports print (ports) ser = ports[1] s = serial.Serial(ser) print(s) print("ALL GOOD") while True: #current = datetime.now().isoformat() #current = current.replace(":","_") #string_to_write = input() #7,3;single\n" string_to_write = "all*" print(string_to_write) s.write(bytes(string_to_write,'UTF-8')) print("sleeping now") time.sleep(4) #time running in the arduino code. Modify if needed print("post_sleep") no_more_data = False #this is a serious cludge: all_data = "" while not no_more_data: #print("going") time.sleep(0.1) data_left = s.inWaiting() if (data_left >0): all_data += s.read(data_left).decode() else: no_more_data = True print(all_data) x = all_data #x = x[1] #print(x) x = x.split("&") x = x[:-1] bins=[] for y in x: parts = y.split(":") #print(parts[0]) #print(parts[1]) bins.append((int(parts[0]),int(parts[1]))) #for random testing: #voltage = [3.3*random.random() for x in range(len(names))] print (bins) node_voltage = list() time_x = list() count = 0 #Create place holders when all is not called #organizing to operate different modes old_voltage = [0]*128 #create a list of zeros of 128 elements for y in bins: old_voltage[y[0]] = 3.3*y[1]/1023 old_names = list(range(128)) #print (old_names) #Reorganizing orders to match with the breadboard layout names = list() voltage = list() for i in old_names: index = old_names.index(i) if index >= 62: if index == 125: names.append(63) voltage.append(old_voltage[63]) elif index == 124: names.append(62) voltage.append(old_voltage[62]) elif (index == 126): names.append(127) voltage.append(old_voltage[127]) elif (index == 127): names.append(126) voltage.append(old_voltage[126]) else: names.append(i + 2) voltage.append(old_voltage[index + 2]) else: names.append(i) voltage.append(old_voltage[index]) #print (names) #print (voltage) #colors = ["#F1EEF6", "#D4B9DA", "#C994C7", "#DF65B0", "#DD1C77", "#980043"] colors = [color_getter(v,3.3) for v in voltage] #print (colors) source = ColumnDataSource( data = dict( x=BB_x, y=BB_y, color=colors, name=names, voltage=voltage, ) ) #output_file("bb_test_{}.html".format(current), title="Breadboard Visualizer v1.0") TOOLS="hover,save" p = figure(title="Breadboard Voltages", tools=TOOLS) p.toolbar.logo=None #print(pixel_scaler*image_width) #print(pixel_scaler*image_height) p.patches('x', 'y', fill_color='color', fill_alpha=0.7, line_color="white", line_width=0.0, source=source) p.xgrid.grid_line_color = None p.ygrid.grid_line_color = None p.plot_height=int(pixel_scaler*image_height) p.plot_width=int(pixel_scaler*image_width) p.axis.visible = False hover = p.select(dict(type=HoverTool)) hover.point_policy = "follow_mouse" hover.tooltips = OrderedDict([ ("Name", "@name"), ("Voltage)", "@voltage V"), ]) script, div = components(p) prep = script + div #val1 = amp1*math.sin(omega1*time.time()) #val2 = amp2*math.sin(omega2*time.time()) socketio.emit('update_{}'.format(unique),prep,broadcast =True) print('sending') @app.route('/') def index(): global thread print ("A user connected") if thread is None: thread = Thread(target=dataThread) thread.daemon = True thread.start() return render_template('div_render.example_1.html') if __name__ == '__main__': socketio.run(app, port=3000, debug=True) ``` #### File: jinstrument/py/primary.py ```python async_mode = None if async_mode is None: try: import eventlet async_mode = 'eventlet' except ImportError: pass if async_mode is None: try: from gevent import monkey async_mode = 'gevent' except ImportError: pass if async_mode is None: async_mode = 'threading' print('async_mode is ' + async_mode) # monkey patching is necessary because this application uses a background # thread if async_mode == 'eventlet': import eventlet eventlet.monkey_patch() elif async_mode == 'gevent': from gevent import monkey monkey.patch_all() import time from threading import Thread, Lock from flask import Flask, render_template, session, request from flask_socketio import SocketIO, emit, join_room, leave_room,close_room, rooms, disconnect import sys import glob import serial import json import struct import csv #Version 2.7 or Above? if sys.version_info[0] >2: version3 = True kwargs = {'newline':''} else: version3 = False kwargs = {} ##import logging ##log = logging.getLogger('werkzeug') ##log.setLevel(logging.ERROR) serialConnected = False #global flag for whether or not the serial port should be connected serialPort =0 # (init value is 3...junk) contains serial port object when in use...touching protected by serialLock below serialLock = Lock() #serial permission lock (protects shared resource of serial port) print (serialLock) #Taken from here on StackExchange: http://stackoverflow.com/questions/12090503/listing-available-com-ports-with-python #Want to give credit where credit is due! def serial_ports(): if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in list(range(256))] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob.glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') result = [] for port in ports: try: #print("checking port "+port) s = serial.Serial(port) #print("closing port "+port) s.close() result.append(port) except (OSError, serial.SerialException): pass return result #------------------- #serial variables: serialselection = '' baudselection = 115200 mcuMessage = [] '''system_parameters (dictionary where keys are user-variable parameters and entry is list consisting of current value (index 0 and single-character comm term for conveying value back to micro...for example you could have system_parameters['K_d']=[1.4,'D'] ''' system_parameters = {} #params_and_values an ordered list of the names of paramters, headroom, and values to be plotted #Used in generating CSV header list in order params_and_values = [] #A list pointing to parameter values for quick plotting (rather than list comprehend this every time param_vals = [] command_terms = ['HIHI'] #expected_length...how long each full message from Micro should be expected_length = 0 #function that will be stored for chopping up message into appropriate signed/unsignedness/float, etc... makes this processing arbitrarily expandable as needed...must obviously agree with encoding scheme on micro parseFunction = lambda x: [0] '''Kp = 0.0 Kd = 0.0 Ki = 0.0 direct = 0.0 desired = 0.0 alternate = 0.0 # global flag of whether or not we're alternating... ''' #ALTERNATING DATA STRUCTURE: # timer and state are used for storing/remembering the switching action # period is how often to switch (in seconds) # param is the user input that is switched (determined during initialization) alt_data = {'timer': time.time(), 'state':-1.0, 'period': 5, 'param': None} #data struture used to implement alternating behavior #Start up Flask server: app = Flask(__name__, template_folder = './',static_url_path='/static') app.config['SECRET_KEY'] = 'secret!' #shhh don't tell anyone. Is a secret socketio = SocketIO(app, async_mode = async_mode) thread = None #csv variables: global csv_default global csv_recent global current global archive csv_st = time.time() #variable which determines whether a csv is being generated or not. csv_yn = False #start out not writing csv files csvLock = Lock() keepRunning = True #set to True for default #global setup variables: #used during initialization of comms/building GUI isSetup = False setupString = "" allGoodFromGUI = False #Function run in parallel on infinite loop with #serves as serial listener outside of separate loop def serialThread(): print ("Starting serial background thread.") global desired global serialLock global csvLock global serialPort global system_parameters global params_and_values global expected_length global parseFunction global param_vals global csv_default global csv_recent global alt_data global alternate global isSetup global setupString global command_terms while True: if serialConnected: writeUpdates('~',0) time.sleep(2.0) serialLock.acquire() try: new_setupString = serialPort.readline() serialPort.flushInput() except: print ("initi string reading issue") serialLock.release() new_setupString = strip_until_marker(new_setupString) temp_commands = new_setupString.split('&') temp_commands = temp_commands[1:-1] if temp_commands != command_terms: #only reload the gui if the configuration setup string has changed! command_terms = temp_commands setupString = new_setupString temp = setupString.split('&',1)[1] temp = temp.rsplit('&',1)[0] setupString = temp try:#send up to javascript to sort its part out socketio.emit('startup',setupString,broadcast =True) except: print ("failed socket") #build structures based on setupString's contents and orderj plot_count =0 #used for tallying plots spaces = [] #used for determining how to chop data string (bytes per var) s=[] #list of sliders t=[] #list of temporal plots h = [] #contains headroom value if that is being plotted for x in command_terms: if len(x)>0 and x[0] =='S': #is a slider slider_vals = x.split('~') #chop string #next: add key to system_parameters dict of slider name #entry is starting val (0) and one char value used for comms system_parameters[slider_vals[1]]=[0,slider_vals[2]] s.append(slider_vals[1]) #add name of param to s list #next is to fill in the param_vals list with the current value param_vals.append(system_parameters[slider_vals[1]][0]) if len(x)>0 and x[0] == 'A': #we are alternating vals = x.split('~') #split substring alt_data['period'] = float(vals[2]) #period unpacked alt_data['param'] = vals[1] #link alternate to selected parameter if len(x)>0 and x[0]=='T': #we have a temporal plot plot_vals = x.split('~') #split substring t.append(plot_vals[1]) #add name to t list #next line: append list: [num_bytes,signed/unsigned/float,etc..] spaces.append([int(plot_vals[2][1]),plot_vals[2][0]]) plot_count +=1 #increment plot count if len(x)>0 and x[0]=='H': head_vals = x.split('~') h.append("Headroom") plot_count +=1 #headroom isn't a "plot" but treated same if head_vals[1] =='2': spaces.append([2,'S']) #needed since 16bit int on Arduino elif head_vals[1] =='4': spaces.append([4,'F']) #needed since ARM32 Teensy params_and_values = t+h+s #in order plots, headroom, sliders expected_length = sum(x[0] for x in spaces)+2 #2 from open/closing byte #parse_prototype is function that will chop up incoming bytes for sending up to the GUI def parse_prototype(listo): new_out = [] current_index=1 #start 1 up because of start byte for x in range(plot_count): val = 0 if spaces[x][0] == 1: if spaces[x][1] == 'S': val = struct.unpack('b',listo[current_index:current_index+1])[0] elif spaces[x][1] =='U': val = struct.unpack('B',listo[current_index:current_index+1])[0] elif spaces[x][0] == 2: if spaces[x][1] == 'S': val = struct.unpack('<h',listo[current_index:current_index+2])[0] elif spaces[x][1] == 'U': val = struct.unpack('H',listo[current_index:current_index+2])[0] elif spaces[x][0] == 4: if spaces[x][1] == 'F': val = struct.unpack('f',listo[current_index:current_index+4])[0] elif spaces[x][1] == 'S': val = struct.unpack('i',listo[current_index:current_index+4])[0] new_out.append(val) current_index += spaces[x][0] return new_out parseFunction = parse_prototype while not allGoodFromGUI: time.sleep(1.0) isSetup = True else: inform_dev() #just tell device that we are good serialLock.acquire() try: serialPort.flushInput() except: serialLock.release() for x in s: #reload gui and device socketio.emit('setup slider',{0:x,1:str(system_parameters[x][0])}, broadcast=True) #print("Writing %s to be %0.4f" %(system_parameters[x][1],system_parameters[x][0])) writeUpdates(system_parameters[x][1],system_parameters[x][0]) time.sleep(0.1) writeUpdates(system_parameters[x][1],system_parameters[x][0]) time.sleep(0.1) time.sleep(1) while serialConnected: serialLock.acquire() b = serialPort.read(expected_length) if len(b) != expected_length: print("expected=%d, actual=%d\n",len(b),expected_length) new_data = None if len(b) > 0 and messageRead(b,expected_length): new_data = parseFunction(b) if new_data != None: try: socketio.emit('note',new_data,broadcast =True) except: print ("failed socket") if csv_yn: temp_time = [time.time()-csv_st] #time since recording started csvLock.acquire() newb_list = temp_time+new_data+[system_parameters[x][0] for x in s] csv_default.writerow(newb_list) csv_recent.writerow(newb_list) csvLock.release() #elif bytesThere > expected_length: # try: # serialPort.flushInput() # except: # print ("failure to flush input") serialLock.release() time.sleep(0.01) if alternate == 1: if time.time()-alt_data['timer'] > alt_data['period']: print ('Switch to :') alt_data['timer'] = time.time() #reset timer poi = alt_data['param'] #param of interest print(type(system_parameters[poi][0])) print(system_parameters[poi][0]) system_parameters[poi][0] = system_parameters[poi][0]*-1.0 alt_data['state'] = alt_data.get('state')*-1 writeUpdates(system_parameters[poi][1],system_parameters[poi][0]) try: socketio.emit('state toggle', system_parameters[poi][0], broadcast=True) #tell the GUI that the desired has changed except: print('failed toggle socket') print ("Stopping serial read. Returning to idle state") time.sleep(0.01) def strip_until_marker(input_string): #return only text after last non-ascii character has been found #should *always* work...closing byte of plot package is \xff which is non-ascii and #should get caught in this scheme...there are of course ways to break this but they #require breaking the communication contract we have setup. new_string = '' for x in range(len(input_string)): poss = input_string[x:x+1] try: if version3: if type(poss)==type("hi"): poss = str.encode(poss,'ascii') #fail here possibly char = poss.decode('ascii') new_string+=char except: new_string="" return new_string #runtime variables... def messageRead(buff,exp): first = struct.unpack('b',buff[0:1])[0] last = struct.unpack('b',buff[exp-1:exp])[0] if first == 0 and last == -1: return True else: return False # if not version3: # newb = buff # buff = [ord(q) for q in newb] #converts yucky binary/string abominations of python 2.* into list of ascii numbers essentially...not issue in 3 # mcuMessage=list(range(expected)) # if buff[0] == 0 and buff[expected-1] == 255: #likely correct message # errorF = False # mcuMessage[0] = buff[0] # mcuMessage[expected-1] = buff[expected-1] # for i in range(1,expected-1): # bufI = buff[i] # if bufI ==0 or bufI == 255: # errorF = True; # mcuMessage[i] = bufI # if not errorF: # return mcuMessage # return None @app.route('/') def index(): global thread print ("A user connected") if thread is None: thread = Thread(target=serialThread) thread.daemon = True thread.start() return render_template('index.html') @socketio.on('connect') def test_connect(): print ('hey someone connected') ports = serial_ports() #generate list of currently connected serial ports print (ports) newb=[] for p in ports: newb.append({"comName": p}) print (json.dumps(newb)) #emit('serial list display', {'data': ports}) #emit socket with serial ports in it emit('serial list display', newb) #emit socket with serial ports in it #emit('my response', {'data': 'Connected'}) @socketio.on('disconnect') def test_disconnect(): global csv_yn global csvLock emit('serial disconnect request',broadcast=True) csv_yn = 0 #if current is not None and archive is not None: csvLock.acquire() try: current.close() archive.close() except NameError: pass #if didn't exist yet, don't try... csvLock.release() print('Client disconnected. Hopefully that was for the best.') writeUpdates('~',0)#for non-autoreset devices must tell it to enter child state again def writeUpdates(tag,val): global serialPort global serialLock string_to_write = tag+' %0.2f\n' %(float(val)) print(string_to_write) if serialConnected: serialLock.acquire() #claim serial resource if version3: b = bytes(string_to_write,'UTF-8') print(b) serialPort.write(bytes(string_to_write,'UTF-8')) else: serialPort.write(string_to_write.encode('utf-8')) #serialPort.write(string_to_write) serialLock.release() #release serial resource back out into big scary world else: print ("Change in %s to value %s not written since no live serial comm exists yet" %(tag,val)) # Specs @socketio.on('serial select') def action(port): global serialselection print ('serial port changed to %s' %(port)) serialselection = port @socketio.on('baud select') def action(baud): global baudselection print ('baud changed to %s' %(baud)) baudselection = baud @socketio.on('csv state') def csver(csv_val): global csv_default global csv_recent global current global archive global csv_yn global csvLock global csv_st if int(csv_val) == 0: print('closing csv files') csv_yn = 0 csvLock.acquire() try: current.close() archive.close() except NameError: pass #did not exist yet...totes fine csvLock.release() else: #do other thing print('Trying opening csv files up!') csv_st = time.time() #current = open('./csv_files/current.csv',"w",encoding='utf8',newline='') #archive = open('./csv_files/'+str(int(time.time()))+'.csv',"w",encoding='utf8',newline='') try: current = open('./csv_files/current.csv',"w",**kwargs) archive = open('./csv_files/'+str(int(time.time()))+'.csv',"w",**kwargs) csv_default = csv.writer(archive) csv_recent = csv.writer(current) csvLock.acquire() csv_default.writerow(['Time']+params_and_values) csv_recent.writerow(['Time']+params_and_values) csvLock.release() csv_yn = 1 print ('CSV File Open successful') except: print("Failed to open CSV Files") @socketio.on('serial connect request') def connection(already_built): global serialConnected global serialPort global serialLock global alternate global isSetup already_built = eval(str(already_built)) print("state of gui") print(already_built) isSetup = already_built['state'] #user this print(isSetup) alternate = 0 print ('Trying to connect to: ' + serialselection + ' ' + str(baudselection)) print (serialLock) print (serialConnected) try: serialLock.acquire() print ("Lock acquired") serialPort = serial.Serial(serialselection, int(baudselection),timeout=4) print ('SerialPort') print ('Connected to ' + str(serialselection) + ' at ' + str(baudselection) + ' BAUD.') emit('serial connected', broadcast=True) #tells page to indicate connection (in button) serialPort.flushInput() #serialPort.flushOutput() serialLock.release() serialConnected = True #set global flag except: print ("Failed to connect with "+str(serialselection) + ' at ' + str(baudselection) + ' BAUD.') @socketio.on('serial disconnect request') def discon(): global serialConnected global serialLock global serialPort print ('Trying to disconnect...') serialLock.acquire() serialPort.close() serialLock.release() serialConnected = False emit('serial disconnected',broadcast=True) print ('Disconnected...good riddance' ) @socketio.on("disconnected") def ending_it(): print ("We're done") @socketio.on('change') def action(data): global system_parameters data = eval(str(data)) system_parameters[data['id']][0]=float(data['val']) writeUpdates(system_parameters[data['id']][1],system_parameters[data['id']][0]) @socketio.on('all set from gui') def action(): global allGoodFromGUI allGoodFromGUI = True print("we are done from GUI Side") inform_dev() def inform_dev(): global serialPort global serialLock string_to_write = "SET\n" if serialConnected: serialLock.acquire() #claim serial resource if version3: serialPort.write(bytes(string_to_write,'UTF-8')) else: print(string_to_write) serialPort.write(string_to_write) serialPort.flushInput() serialLock.release() #release serial resource back out into big scary world else: print ("can't inform device since it isn't connected...what does this even mean") @socketio.on('alternate state') def action(alt): alt = int(alt) global alternate global alt_data if alt == 1: print ('%s changed to alternating at +/- %0.2f ' %(alt_data['param'],float(system_parameters[alt_data['param']][0]))) alt_data['timer'] = time.time() alt_data['state'] = 1.0 alternate = 1 else: print ('%s changed to fixed at %0.2f' %(alt_data['param'],float(system_parameters[alt_data['param']][0]))) alternate = 0 if __name__ == '__main__': socketio.run(app, port=3000, debug=True) ```
{ "source": "jodalyst/riscemu", "score": 2 }
#### File: riscemu/instructions/RV32I.py ```python from .InstructionSet import * from ..helpers import int_from_bytes, int_to_bytes, to_unsigned, to_signed from ..colors import FMT_DEBUG, FMT_NONE from ..debug import launch_debug_session from ..Exceptions import LaunchDebuggerException from ..Syscall import Syscall from ..Executable import LoadedInstruction class RV32I(InstructionSet): """ The RV32I instruction set. Some instructions are missing, such as fence, fence.i, rdcycle, rdcycleh, rdtime, rdtimeh, rdinstret, rdinstreth All atomic read/writes are also not implemented yet See https://maxvytech.com/images/RV32I-11-2018.pdf for a more detailed overview """ def instruction_lb(self, ins: 'LoadedInstruction'): rd, addr = self.parse_mem_ins(ins) self.regs.set(rd, int_from_bytes(self.mmu.read(addr, 1))) def instruction_lh(self, ins: 'LoadedInstruction'): rd, addr = self.parse_mem_ins(ins) self.regs.set(rd, int_from_bytes(self.mmu.read(addr, 2))) def instruction_lw(self, ins: 'LoadedInstruction'): rd, addr = self.parse_mem_ins(ins) self.regs.set(rd, int_from_bytes(self.mmu.read(addr, 4))) def instruction_lbu(self, ins: 'LoadedInstruction'): rd, addr = self.parse_mem_ins(ins) self.regs.set(rd, int_from_bytes(self.mmu.read(addr, 1), unsigned=True)) def instruction_lhu(self, ins: 'LoadedInstruction'): rd, addr = self.parse_mem_ins(ins) self.regs.set(rd, int_from_bytes(self.mmu.read(addr, 2), unsigned=True)) def instruction_sb(self, ins: 'LoadedInstruction'): rd, addr = self.parse_mem_ins(ins) self.mmu.write(addr, 1, int_to_bytes(self.regs.get(rd), 1)) def instruction_sh(self, ins: 'LoadedInstruction'): rd, addr = self.parse_mem_ins(ins) self.mmu.write(addr, 2, int_to_bytes(self.regs.get(rd), 2)) def instruction_sw(self, ins: 'LoadedInstruction'): rd, addr = self.parse_mem_ins(ins) self.mmu.write(addr, 4, int_to_bytes(self.regs.get(rd), 4)) def instruction_sll(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 3) dst = ins.get_reg(0) src1 = ins.get_reg(1) src2 = ins.get_reg(2) self.regs.set( dst, to_signed(to_unsigned(self.regs.get(src1)) << (self.regs.get(src2) & 0b11111)) ) def instruction_slli(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 3) dst = ins.get_reg(0) src1 = ins.get_reg(1) imm = ins.get_imm(2) self.regs.set( dst, to_signed(to_unsigned(self.regs.get(src1)) << (imm & 0b11111)) ) def instruction_srl(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 3) dst = ins.get_reg(0) src1 = ins.get_reg(1) src2 = ins.get_reg(2) self.regs.set( dst, to_signed(to_unsigned(self.regs.get(src1)) >> (self.regs.get(src2) & 0b11111)) ) def instruction_srli(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 3) dst = ins.get_reg(0) src1 = ins.get_reg(1) imm = ins.get_imm(2) self.regs.set( dst, to_signed(to_unsigned(self.regs.get(src1)) >> (imm & 0b11111)) ) def instruction_sra(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 3) dst = ins.get_reg(0) src1 = ins.get_reg(1) src2 = ins.get_reg(2) self.regs.set( dst, self.regs.get(src1) >> (self.regs.get(src2) & 0b11111) ) def instruction_srai(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 3) dst = ins.get_reg(0) src1 = ins.get_reg(1) imm = ins.get_imm(2) self.regs.set( dst, self.regs.get(src1) >> (imm & 0b11111) ) def instruction_add(self, ins: 'LoadedInstruction'): dst = "" if self.cpu.conf.add_accept_imm: try: dst, rs1, rs2 = self.parse_rd_rs_imm(ins) except: pass if not dst: dst, rs1, rs2 = self.parse_rd_rs_rs(ins) self.regs.set( dst, rs1 + rs2 ) def instruction_addi(self, ins: 'LoadedInstruction'): dst, rs1, imm = self.parse_rd_rs_imm(ins) self.regs.set( dst, rs1 + imm ) def instruction_sub(self, ins: 'LoadedInstruction'): dst, rs1, rs2 = self.parse_rd_rs_rs(ins) self.regs.set( dst, rs1 - rs2 ) def instruction_lui(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 2) reg = ins.get_reg(0) imm = ins.get_imm(1) self.regs.set(reg, imm << 12) def instruction_auipc(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 2) reg = ins.get_reg(0) imm = to_unsigned(ins.get_imm(1)) self.regs.set(reg, self.pc + (imm << 12)) def instruction_xor(self, ins: 'LoadedInstruction'): rd, rs1, rs2 = self.parse_rd_rs_rs(ins) self.regs.set( rd, rs1 ^ rs2 ) def instruction_xori(self, ins: 'LoadedInstruction'): rd, rs1, imm = self.parse_rd_rs_imm(ins) self.regs.set( rd, rs1 ^ imm ) def instruction_or(self, ins: 'LoadedInstruction'): rd, rs1, rs2 = self.parse_rd_rs_rs(ins) self.regs.set( rd, rs1 | rs2 ) def instruction_ori(self, ins: 'LoadedInstruction'): rd, rs1, imm = self.parse_rd_rs_imm(ins) self.regs.set( rd, rs1 | imm ) def instruction_and(self, ins: 'LoadedInstruction'): rd, rs1, rs2 = self.parse_rd_rs_rs(ins) self.regs.set( rd, rs1 & rs2 ) def instruction_andi(self, ins: 'LoadedInstruction'): rd, rs1, imm = self.parse_rd_rs_imm(ins) self.regs.set( rd, rs1 & imm ) def instruction_slt(self, ins: 'LoadedInstruction'): rd, rs1, rs2 = self.parse_rd_rs_rs(ins) self.regs.set( rd, int(rs1 < rs2) ) def instruction_slti(self, ins: 'LoadedInstruction'): rd, rs1, imm = self.parse_rd_rs_imm(ins) self.regs.set( rd, int(rs1 < imm) ) def instruction_sltu(self, ins: 'LoadedInstruction'): dst, rs1, rs2 = self.parse_rd_rs_rs(ins, signed=False) self.regs.set( dst, int(rs1 < rs2) ) def instruction_sltiu(self, ins: 'LoadedInstruction'): dst, rs1, imm = self.parse_rd_rs_imm(ins, signed=False) self.regs.set( dst, int(rs1 < imm) ) def instruction_beq(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins) if rs1 == rs2: self.pc = dst def instruction_bne(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins) if rs1 != rs2: self.pc = dst def instruction_blt(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins) if rs1 < rs2: self.pc = dst #jds pseudo-op def instruction_bgt(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins) if rs1 > rs2: self.pc = dst def instruction_bge(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins) if rs1 >= rs2: self.pc = dst #jds pseudo-op def instruction_ble(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins) if rs1 <= rs2: self.pc = dst def instruction_bltu(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins, signed=False) if rs1 < rs2: self.pc = dst #jds pseudo-op def instruction_bgtu(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins, signed=False) if rs1 > rs2: self.pc = dst def instruction_bgeu(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins, signed=False) if rs1 >= rs2: self.pc = dst #jds pseudo-op def instruction_bleu(self, ins: 'LoadedInstruction'): rs1, rs2, dst = self.parse_rs_rs_imm(ins, signed=False) if rs1 <= rs2: self.pc = dst # zero pseudo-ops: #beqz, bnez, bltz, bgez, bgtz, blez def instruction_beqz(self, ins: 'LoadedInstruction'): #rs1, dst = self.parse_rs_rs_imm(ins) ASSERT_LEN(ins.args, 2) rs1 = ins.get_reg(0) dst = ins.get_imm(1) if self.regs.get(rs1) == 0: self.pc = dst def instruction_bnez(self, ins: 'LoadedInstruction'): #rs1, dst = self.parse_rs_rs_imm(ins) ASSERT_LEN(ins.args, 2) rs1 = ins.get_reg(0) dst = ins.get_imm(1) if self.regs.get(rs1) != 0: self.pc = dst def instruction_bltz(self, ins: 'LoadedInstruction'): #rs1, dst = self.parse_rs_rs_imm(ins) ASSERT_LEN(ins.args, 2) rs1 = ins.get_reg(0) dst = ins.get_imm(1) if self.regs.get(rs1) < 0: self.pc = dst def instruction_bgtz(self, ins: 'LoadedInstruction'): #rs1, dst = self.parse_rs_rs_imm(ins) ASSERT_LEN(ins.args, 2) rs1 = ins.get_reg(0) dst = ins.get_imm(1) if self.regs.get(rs1) > 0: self.pc = dst def instruction_bgez(self, ins: 'LoadedInstruction'): #rs1, dst = self.parse_rs_rs_imm(ins) ASSERT_LEN(ins.args, 2) rs1 = ins.get_reg(0) dst = ins.get_imm(1) if self.regs.get(rs1) >= 0: self.pc = dst def instruction_blez(self, ins: 'LoadedInstruction'): #rs1, dst = self.parse_rs_rs_imm(ins) ASSERT_LEN(ins.args, 2) rs1 = ins.get_reg(0) dst = ins.get_imm(1) if self.regs.get(rs1) <= 0: self.pc = dst # technically deprecated def instruction_j(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 1) addr = ins.get_imm(0) self.pc = addr def instruction_jal(self, ins: 'LoadedInstruction'): reg = 'ra' # default register is ra if len(ins.args) == 1: addr = ins.get_imm(0) else: ASSERT_LEN(ins.args, 2) reg = ins.get_reg(0) addr = ins.get_imm(1) self.regs.set(reg, self.pc) self.pc = addr #jds pseudo-op def instruction_call(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 1) addr = ins.get_imm(0) self.regs.set('ra', self.pc) self.pc = addr #jds pseudo-op def instruction_jr(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 1) reg = ins.get_reg(0) val = self.regs.get(reg) thing = val&(0xFFFFFFFE) #self.regs.set(reg, self.pc) self.pc = thing #modified by jds def instruction_jalr(self, ins: 'LoadedInstruction'): reg = 'ra' # default register is ra if len(ins.args) == 1: addr = ins.get_reg(0) thing = self.regs.get(addr) addr = thing #&(0xFFFFFFFE) else: ASSERT_LEN(ins.args, 2) reg, addr = self.parse_mem_ins(ins) #reg = ins.get_reg(0) #addr = ins.get_imm(1) #thing = self.regs.get(addr) #addr = addr&(0xFFFFFFFE) #reg = ins.get_reg(0) #addr = ins.get_imm(1) self.regs.set(reg, self.pc) self.pc = addr ''' def instruction_jalr(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 2) reg = ins.get_reg(0) addr = ins.get_imm(1) self.regs.set(reg, self.pc) self.pc = addr ''' def instruction_ret(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 0) self.pc = self.regs.get('ra') def instruction_ecall(self, ins: 'LoadedInstruction'): self.instruction_scall(ins) def instruction_ebreak(self, ins: 'LoadedInstruction'): self.instruction_sbreak(ins) def instruction_scall(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 0) syscall = Syscall(self.regs.get('a7'), self.cpu, self.mmu) self.cpu.syscall_int.handle_syscall(syscall) def instruction_sbreak(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 0) if self.cpu.active_debug: print(FMT_DEBUG + "Debug instruction encountered at 0x{:08X}".format(self.pc - 1) + FMT_NONE) raise LaunchDebuggerException() launch_debug_session( self.cpu, self.mmu, self.regs, "Debug instruction encountered at 0x{:08X}".format(self.pc - 1) ) def instruction_nop(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 0) pass def instruction_li(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 2) reg = ins.get_reg(0) immediate = ins.get_imm(1) self.regs.set(reg, immediate) def instruction_la(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 2) reg = ins.get_reg(0) immediate = ins.get_imm(1) self.regs.set(reg, immediate) def instruction_mv(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 2) rd, rs = ins.get_reg(0), ins.get_reg(1) self.regs.set(rd, self.regs.get(rs)) def instruction_not(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 2) rd, rs = ins.get_reg(0), ins.get_reg(1) val = (-1)^self.regs.get(rs) self.regs.set(rd, val) def instruction_neg(self, ins: 'LoadedInstruction'): ASSERT_LEN(ins.args, 2) rd, rs = ins.get_reg(0), ins.get_reg(1) val = 0-self.regs.get(rs) self.regs.set(rd, val) """Need to add: * not, neg, call? * jr, bgt, ble, bgtu, bleu * beqz, bnez, bltz, bgez, bgtz, blez """ ``` #### File: riscemu/priv/ImageLoader.py ```python import json from functools import lru_cache from typing import Dict, List, Optional, TYPE_CHECKING from .ElfLoader import ElfInstruction, ElfLoadedMemorySection, InstructionAccessFault, InstructionAddressMisalignedTrap from .PrivMMU import PrivMMU from ..Config import RunConfig from ..Executable import LoadedMemorySection, MemoryFlags from ..IO.IOModule import IOModule from ..colors import FMT_ERROR, FMT_NONE, FMT_MEM from ..decoder import decode if TYPE_CHECKING: pass class MemoryImageMMU(PrivMMU): io: List[IOModule] data: bytearray io_start: int debug_info: Dict[str, Dict[str, Dict[str, str]]] def __init__(self, file_name: str, io_start: int = 0xFF0000): super(MemoryImageMMU, self).__init__(conf=RunConfig()) with open(file_name, 'rb') as memf: data = memf.read() with open(file_name + '.dbg', 'r') as dbgf: debug_info: Dict = json.load(dbgf) self.data = bytearray(data) # TODO: super wasteful memory allocation happening here if len(data) < io_start: self.data += bytearray(io_start - len(data)) self.debug_info = debug_info self.io_start = io_start self.io = list() def get_entrypoint(self): try: start = self.debug_info['symbols']['kernel'].get('_start', None) if start is not None: return start return self.debug_info['symbols']['kernel'].get('_ftext') except KeyError: print(FMT_ERROR + '[MMU] cannot find kernel entry in debug information! Falling back to 0x100' + FMT_NONE) return 0x100 @lru_cache(maxsize=2048) def read_ins(self, addr: int) -> ElfInstruction: if addr >= self.io_start: raise InstructionAccessFault(addr) if addr % 4 != 0: raise InstructionAddressMisalignedTrap(addr) return ElfInstruction(*decode(self.data[addr:addr + 4])) def read(self, addr: int, size: int) -> bytearray: if addr < 0x100: pc = self.cpu.pc text_sec = self.get_sec_containing(pc) print(FMT_ERROR + "[MMU] possible null dereference (read {:x}) from (pc={:x},sec={},rel={:x})".format( addr, pc, text_sec.owner + ':' + text_sec.name, pc - text_sec.base ) + FMT_NONE) if addr >= self.io_start: return self.io_at(addr).read(addr, size) return self.data[addr: addr + size] def write(self, addr: int, size: int, data): if addr < 0x100: pc = self.cpu.pc text_sec = self.get_sec_containing(pc) print(FMT_ERROR + "[MMU] possible null dereference (write {:x}) from (pc={:x},sec={},rel={:x})".format( addr, pc, text_sec.owner + ':' + text_sec.name, pc - text_sec.base ) + FMT_NONE) if addr >= self.io_start: return self.io_at(addr).write(addr, data, size) self.data[addr:addr + size] = data[0:size] def io_at(self, addr) -> IOModule: for mod in self.io: if mod.contains(addr): return mod raise InstructionAccessFault(addr) def add_io(self, io: IOModule): self.io.append(io) def __repr__(self): return "MemoryImageMMU()" @lru_cache(maxsize=32) def get_sec_containing(self, addr: int) -> Optional[LoadedMemorySection]: next_sec = len(self.data) for sec_addr, name in reversed(self.debug_info['sections'].items()): if addr >= int(sec_addr): owner, name = name.split(':') base = int(sec_addr) size = next_sec - base flags = MemoryFlags('.text' in name, '.text' in name) return ElfLoadedMemorySection(name, base, size, self.data[base:next_sec], flags, owner) else: next_sec = int(sec_addr) def translate_address(self, addr: int): sec = self.get_sec_containing(addr) if sec.name == '.empty': return "<empty>" symbs = self.debug_info['symbols'][sec.owner] for sym, val in reversed(symbs.items()): if addr >= val: return "{}{:+x} ({}:{})".format(sym, addr - val, sec.owner, sec.name) return "{}:{}{:+x}".format(sec.owner, sec.name, addr - sec.base) def symbol(self, symb: str): print(FMT_MEM + "Looking up symbol {}".format(symb)) for owner, symbs in self.debug_info['symbols'].items(): if symb in symbs: print(" Hit in {}: {} = {}".format(owner, symb, symbs[symb])) print(FMT_NONE, end="") ```
{ "source": "JodanGalas/Projeto_Integrador", "score": 3 }
#### File: src/controllers/usuario_controller.py ```python from flask import jsonify, request from flask_pymongo import ObjectId from bson.json_util import dumps from app import app, mongo from email_controller import Cadastro import pandas as pd import random import string @app.route('/create/user', methods=['POST']) def create(): if 'arq' in request.files: arquivo = request.files['arq'] df = pd.read_csv(arquivo) data = df.to_dict(orient="records") cod = 6 df['id'] = 0 df['senha'] = 0 df['status'] = 0 df['cod'] = 0 df['atividade'] = 1 df.reset_index(inplace=True) x=0 df = pd.DataFrame(data) while x < (len(data)): data[x]['id'] = mongo.db.usuarios.count() data[x]['senha'] = ''.join(random.choice(string.digits) for x in range(cod)) data[x]['status'] = 0 data[x]['cod'] = 0 data[x]['atividade'] = 0 email = data[x]['email'] senha = data[x]['senha'] print(email) print(senha) Cadastro.sender_email(email, senha) mongo.db.usuarios.insert_one(data[x]) mongo.db.dadosbkp.insert_one(data[x]) x+=1 mongo.db.dadosbkp.update_many( {}, { "$unset": { 'nome': "", 'telefone': "",'endereco': "", 'senha': "", 'status': "", 'cod': "", 'atividade': "", 'cpf': "" }} ) return 'Arquivo enviado com sucesso!' #lista todos os usuarios @app.route('/listar/usuarios', methods = ["GET"]) def users(): users = [] for usuario in mongo.db.usuarios.find(): if usuario['cod'] == 0: users.append({ '_id' : str(ObjectId(usuario['_id'])), 'nome' : usuario['nome'], 'cpf' : usuario['cpf'], 'email' : usuario['email'], 'telefone' : usuario['telefone'], 'endereco' : usuario['endereco'], 'id': usuario['id'], 'senha' : usuario['senha'], 'status' : usuario['status'], 'cod' : usuario['cod'], 'atividade' : usuario['atividade']}) return jsonify(users) #Quantos usuarios tem no total @app.route('/quantos/usuarios', methods = ["GET"]) def quantosUsers(): users = mongo.db.usuarios.find({"cod": 0}).count() return jsonify(users) #lista usuario por id @app.route('/listar/usuario/<id>', methods = ["GET"]) def user(id): usuario = mongo.db.usuarios.find_one({'id':int(id)}) return ({ '_id' : str(ObjectId(usuario['_id'])), 'nome' : usuario['nome'], 'cpf' : usuario['cpf'], 'email' : usuario['email'], 'telefone' : usuario['telefone'], 'endereco' : usuario['endereco'], 'id': usuario['id'], 'senha' : usuario['senha'], 'status' : usuario['status'], 'cod' : usuario['cod'], 'atividade' : usuario['atividade']}) #atualiza usuario @app.route('/atualizar/usuario/<id>', methods=["PUT"]) def update_user(id): _json = request.json _nome = _json['nome'] _cpf = _json['cpf'] _email = _json['email'] _telefone = _json['telefone'] _endereco = _json['endereco'] find_user =mongo.db.usuarios.find_one_and_update( {'id':int(id)}, {"$set":{ 'nome' : _nome, 'cpf': _cpf, 'email': _email, 'telefone': _telefone, 'endereco': _endereco,}}) resp = dumps(find_user) print(resp) return resp #exclui usuario @app.route('/deletar/usuario/<id>', methods=["PUT"]) def delete_user(id): mongo.db.usuarios.find_one_and_delete({'id':int(id)}) resp = jsonify("usuario deletado ") return resp ```
{ "source": "JodanGalas/PyQt5", "score": 3 }
#### File: PyQt5/Exemplo 02/Controle.py ```python from PyQt5 import uic, QtWidgets def listar_dados(): dado_lido = lista.lineEdit.text() lista.listWidget.addItem(dado_lido) lista.lineEdit.setText("") def deletar(): lista.listWidget.clear() app = QtWidgets.QApplication([]) lista = uic.loadUi("Pratica.ui") #chama o arquivo pratica lista.pushButton.clicked.connect(listar_dados) lista.pushButton_2.clicked.connect(deletar) lista.show() app.exec() ```
{ "source": "jodavaho/highfleet-ship-opt", "score": 3 }
#### File: py/hf/opt.py ```python import hfopt_lib def version(): return hfopt_lib.version() def is_module(name): return hfopt_lib.is_module(name) def module_names(): return hfopt_lib.get_module_names() def example(): d= Design() print("Create something like a Lightning") # Set a module requirement for 2 ak100s and some safety equipment d.require("100mm",2) d.require("pod",2) d.require("fss",2) # and landing gear b/c we're not a savage d.require("chassis_m",4) # and minimum range: d.set_min_range(800) # and make it fast d.set_min_spd(650) d.dump_modules() d.dump_constraints() d.fill_constraints() # Now we have a filled module list print("============================") print("Here's the list of modules: ") d.dump_modules() class Module: def __init__(self): self.cost=0 self.name="" self.energy=0 self.ammo=0 self.crew=0 self.weight=0 self.thrust=0 def __init__(self,name): attrdict = hfopt_lib.module_stats(name) if (attrdict is None): return self.cost=attrdict["cost"] self.name=attrdict["name"] self.energy=attrdict["energy"] self.ammo=attrdict["ammo"] self.crew=attrdict["crew"] self.weight=attrdict["weight"] self.thrust=attrdict["thrust"] class Design: def __init__(self): self.min_range =0 self.min_twr =1 self.min_spd =0 self.modules ={} def require(self, name, count): if is_module(name): self.modules[name]=count def dump_modules(self): for mc in self.modules.keys(): if self.modules[mc] > 0: print("{}={}".format(mc,self.modules[mc])) def dump_constraints(self): print('min_range={}'.format(self.min_range)) print('min_spd={}'.format(self.min_spd)) print('min_twr={}'.format(self.min_twr)) def set_min_range(self,r): self.min_range = r def set_min_spd(self,s): """ This will add the constraint that speed > s, which will impact min_twr. The solver will sort it out. """ self.min_spd = s def set_min_twr(self,t): """ This will add the constraint that T/W > T, which may also affect min_spd The solver will sort it out. """ self.min_twr = t def fill_constraints(self): """ This is the main method, which calls out to the C libraries to do optimization / fill-in of the missing modules. If you have not specified any required modules (set_req) or constraints (set_min_X), then it will return a trivial empty solution. """ self.modules = hfopt_lib.solve_fill( self.modules, self.min_range, self.min_spd, self.min_twr) ```
{ "source": "joddiy/LipNet", "score": 3 }
#### File: lipnet/lipreading/helpers.py ```python def text_to_labels(text, align_map): ret = [] for char in text: if char in align_map: ret.append(align_map[char]) elif char == ' ': ret.append(0) return ret def labels_to_text(labels, align_map): reverse_map = {v: k for k, v in align_map.items()} text = '' for c in labels: if c in reverse_map: text += reverse_map[c] elif c == 0: text += ' ' return text ```
{ "source": "joddiy/singa-auto", "score": 2 }
#### File: models/image_classification/test.py ```python import sys, os import json from singa import singa_wrap as singa from singa import opt from singa import device from singa import tensor from singa import sonnx from singa import layer from singa import autograd import numpy as np import time import argparse from PIL import Image import onnx import logging from tqdm import tqdm logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') sys.path.append(os.path.dirname(__file__) + '/../../cnn') sys.path.append(os.path.dirname(__file__) + '/..') from utils import download_model # Data Augmentation def augmentation(x, batch_size): xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], 'symmetric') for data_num in range(0, batch_size): offset = np.random.randint(8, size=2) x[data_num, :, :, :] = xpad[data_num, :, offset[0]:offset[0] + x.shape[2], offset[1]:offset[1] + x.shape[2]] if_flip = np.random.randint(2) if (if_flip): x[data_num, :, :, :] = x[data_num, :, :, ::-1] return x # Calculate Accuracy def accuracy(pred, target): # y is network output to be compared with ground truth (int) y = np.argmax(pred, axis=1) a = y == target correct = np.array(a, "int").sum() # print(correct) return correct # Data partition according to the rank def partition(global_rank, world_size, train_x, train_y, val_x, val_y): # Partition training data data_per_rank = train_x.shape[0] // world_size idx_start = global_rank * data_per_rank idx_end = (global_rank + 1) * data_per_rank train_x = train_x[idx_start:idx_end] train_y = train_y[idx_start:idx_end] # Partition evaluation data data_per_rank = val_x.shape[0] // world_size idx_start = global_rank * data_per_rank idx_end = (global_rank + 1) * data_per_rank val_x = val_x[idx_start:idx_end] val_y = val_y[idx_start:idx_end] return train_x, train_y, val_x, val_y # Function to all reduce NUMPY Accuracy and Loss from Multiple Devices def reduce_variable(variable, dist_opt, reducer): reducer.copy_from_numpy(variable) dist_opt.all_reduce(reducer.data) dist_opt.wait() output = tensor.to_numpy(reducer) return output def resize_dataset(x, image_size): num_data = x.shape[0] dim = x.shape[1] X = np.zeros(shape=(num_data, dim, image_size, image_size), dtype=np.float32) for n in range(0, num_data): for d in range(0, dim): X[n, d, :, :] = np.array(Image.fromarray(x[n, d, :, :]).resize( (image_size, image_size), Image.BILINEAR), dtype=np.float32) return X class MyModel(sonnx.SONNXModel): def __init__(self, onnx_model, num_classes=10, num_channels=3): super(MyModel, self).__init__(onnx_model) self.num_classes = num_classes self.input_size = 224 self.dimension = 4 self.num_channels = num_channels self.num_classes = num_classes self.linear = layer.Linear(512, num_classes) def forward(self, *x): # if you change to other models, please update the output name here y = super(MyModel, self).forward(*x, aux_output=['flatten_170'])[1] y = self.linear(y) return y def train_one_batch(self, x, y, dist_option, spars): out = self.forward(x) loss = autograd.softmax_cross_entropy(out, y) if dist_option == 'fp32': self.optimizer.backward_and_update(loss) elif dist_option == 'fp16': self.optimizer.backward_and_update_half(loss) elif dist_option == 'partialUpdate': self.optimizer.backward_and_partial_update(loss) elif dist_option == 'sparseTopK': self.optimizer.backward_and_sparse_update(loss, topK=True, spars=spars) elif dist_option == 'sparseThreshold': self.optimizer.backward_and_sparse_update(loss, topK=False, spars=spars) return out, loss def set_optimizer(self, optimizer): self.optimizer = optimizer def run(global_rank, world_size, local_rank, max_epoch, batch_size, model_config, data, sgd, graph, verbosity, dist_option='fp32', spars=None): dev = device.create_cuda_gpu_on(local_rank) dev.SetRandSeed(0) np.random.seed(0) if data == 'cifar10': from data import cifar10 train_x, train_y, val_x, val_y = cifar10.load() elif data == 'cifar100': from data import cifar100 train_x, train_y, val_x, val_y = cifar100.load() num_channels = train_x.shape[1] image_size = train_x.shape[2] data_size = np.prod(train_x.shape[1:train_x.ndim]).item() num_classes = (np.max(train_y) + 1).item() # read and make onnx model download_model(model_config['url']) onnx_model = onnx.load(os.path.join('/tmp', model_config['path'])) model = MyModel(onnx_model, num_channels=num_channels, num_classes=num_classes) # For distributed training, sequential gives better performance if hasattr(sgd, "communicator"): DIST = True sequential = True else: DIST = False sequential = False if DIST: train_x, train_y, val_x, val_y = partition(global_rank, world_size, train_x, train_y, val_x, val_y) ''' # check dataset shape correctness if global_rank == 0: print("Check the shape of dataset:") print(train_x.shape) print(train_y.shape) ''' if model.dimension == 4: tx = tensor.Tensor( (batch_size, num_channels, model.input_size, model.input_size), dev, tensor.float32) elif model.dimension == 2: tx = tensor.Tensor((batch_size, data_size), dev, tensor.float32) np.reshape(train_x, (train_x.shape[0], -1)) np.reshape(val_x, (val_x.shape[0], -1)) ty = tensor.Tensor((batch_size,), dev, tensor.int32) num_train_batch = train_x.shape[0] // batch_size num_val_batch = val_x.shape[0] // batch_size idx = np.arange(train_x.shape[0], dtype=np.int32) # attached model to graph model.set_optimizer(sgd) model.compile([tx], is_train=True, use_graph=graph, sequential=sequential) dev.SetVerbosity(verbosity) # Training and Evaluation Loop for epoch in range(max_epoch): start_time = time.time() np.random.shuffle(idx) if global_rank == 0: print('Starting Epoch %d:' % (epoch)) # Training Phase train_correct = np.zeros(shape=[1], dtype=np.float32) test_correct = np.zeros(shape=[1], dtype=np.float32) train_loss = np.zeros(shape=[1], dtype=np.float32) model.train() for b in tqdm(range(num_train_batch)): # Generate the patch data in this iteration x = train_x[idx[b * batch_size:(b + 1) * batch_size]] if model.dimension == 4: x = augmentation(x, batch_size) if (image_size != model.input_size): x = resize_dataset(x, model.input_size) y = train_y[idx[b * batch_size:(b + 1) * batch_size]] # Copy the patch data into input tensors tx.copy_from_numpy(x) ty.copy_from_numpy(y) # Train the model out, loss = model(tx, ty, dist_option, spars) train_correct += accuracy(tensor.to_numpy(out), y) train_loss += tensor.to_numpy(loss)[0] if DIST: # Reduce the Evaluation Accuracy and Loss from Multiple Devices reducer = tensor.Tensor((1,), dev, tensor.float32) train_correct = reduce_variable(train_correct, sgd, reducer) train_loss = reduce_variable(train_loss, sgd, reducer) if global_rank == 0: print('Training loss = %f, training accuracy = %f' % (train_loss, train_correct / (num_train_batch * batch_size * world_size)), flush=True) # Evaluation Phase model.eval() for b in tqdm(range(num_val_batch)): x = val_x[b * batch_size:(b + 1) * batch_size] if model.dimension == 4: if (image_size != model.input_size): x = resize_dataset(x, model.input_size) y = val_y[b * batch_size:(b + 1) * batch_size] tx.copy_from_numpy(x) ty.copy_from_numpy(y) out_test = model(tx) test_correct += accuracy(tensor.to_numpy(out_test), y) if DIST: # Reduce the Evaulation Accuracy from Multiple Devices test_correct = reduce_variable(test_correct, sgd, reducer) # Output the Evaluation Accuracy if global_rank == 0: print('Evaluation accuracy = %f, Elapsed Time = %fs' % (test_correct / (num_val_batch * batch_size * world_size), time.time() - start_time), flush=True) dev.PrintTimeProfiling() def loss(out, y): return autograd.softmax_cross_entropy(out, y) if __name__ == '__main__': with open(os.path.join(os.path.dirname(__file__), 'model.json')) as json_file: model_config = json.load(json_file) # use argparse to get command config: max_epoch, model, data, etc. for single gpu training parser = argparse.ArgumentParser( description='Training using the autograd and graph.') parser.add_argument('--model', choices=list(model_config.keys()), help='please refer to the models.json for more details', default='resnet18v1') parser.add_argument('--data', choices=['cifar10', 'cifar100'], default='cifar10') parser.add_argument('--epoch', '--max-epoch', default=10, type=int, help='maximum epochs', dest='max_epoch') parser.add_argument('--bs', '--batch-size', default=32, type=int, help='batch size', dest='batch_size') parser.add_argument('--lr', '--learning-rate', default=0.005, type=float, help='initial learning rate', dest='lr') # determine which gpu to use parser.add_argument('--id', '--device-id', default=0, type=int, help='which GPU to use', dest='device_id') parser.add_argument('--no-graph', '--disable-graph', default='True', action='store_false', help='disable graph', dest='graph') parser.add_argument('--verbosity', '--log-verbosity', default=1, type=int, help='logging verbosity', dest='verbosity') args = parser.parse_args() sgd = opt.SGD(lr=args.lr, momentum=0.9, weight_decay=1e-5) run(0, 1, args.device_id, args.max_epoch, args.batch_size, model_config[args.model], args.data, sgd, args.graph, args.verbosity) ```
{ "source": "Jodecir/exercicios_python", "score": 4 }
#### File: exercicios_python/array/contador de letras.py ```python de letras.py def letters_count(words_list): count = [] for x in words_list: quantity = len(x) count.append(quantity) return count fechado = False while fechado == False: if __name__ == '__main__': try: animal_list = ['cachorro', 'gato', 'elefante'] animal = input('Digite um animal a lista: \n') animal_list.append(animal) total_letters = letters_count(animal_list) print('Animais da lista:', animal_list) print('Total de letras por palavra da lista: {}'.format(total_letters)) except IndexError: print('Não foi possível acessar o index pois ele não existe na lista') except Exception: print('Ocorreu um erro desconhecido') finally: repetir = input("Deseja continuar (s/n): ") if repetir == "n": fechado = True ```
{ "source": "Jodeee/fasttest_selenium", "score": 2 }
#### File: fasttest_selenium/utils/testcast_utils.py ```python import os from fasttest_selenium.common.logging import log_error class TestCaseUtils(object): def __init__(self): self.__testcase_list = [] def __traversal_dir(self,path): for rt, dirs, files in os.walk(path): files.sort() for f in files: file_path = os.path.join(rt, f) if os.path.isfile(file_path): if not file_path.endswith('.yaml'): continue self.__testcase_list.append(file_path) def testcase_path(self,dirname,paths): if not paths: raise Exception('test case is empty.') for path in paths: file_path = os.path.join(dirname,path) if os.path.isdir(file_path): self.__traversal_dir(os.path.join(dirname, path)) elif os.path.isfile(file_path): if not file_path.endswith('.yaml'): continue self.__testcase_list.append(file_path) else: log_error(' No such file or directory: {}'.format(path), False) if not self.__testcase_list: raise Exception('test case is empty: {}'.format(paths)) return self.__testcase_list ```
{ "source": "JoDehli/LoxGui", "score": 2 }
#### File: JoDehli/LoxGui/main.py ```python import asyncio import json import logging import sys import traceback import qasync from PyQt5.QtWidgets import QMainWindow, QApplication from qasync import asyncSlot, asyncClose from Ui_Main import Ui_LoxQtGui from api import LoxApp, LoxWs logging.getLogger('asyncio').setLevel(logging.ERROR) logging.getLogger('asyncio.coroutines').setLevel(logging.ERROR) logging.getLogger('websockets.server').setLevel(logging.ERROR) logging.getLogger('websockets.protocol').setLevel(logging.ERROR) class LoxoneConnecionGui(QMainWindow): def __init__(self): super(LoxoneConnecionGui, self).__init__() # uic.loadUi('Main.ui', self) self.ui = Ui_LoxQtGui() self.ui.setupUi(self) self.api = None self.show() @asyncSlot() async def message_callback(self, data): print(data) if isinstance(data, dict): for k, v in data.items(): self.ui.log.appendPlainText("{} : {}".format(k, v)) else: self.ui.log.appendPlainText(str(data)) @asyncClose async def closeEvent(self, event): try: await self.api.stop() except: pass loop = asyncio.get_running_loop() loop.stop() loop.close() @asyncSlot() async def disconnect_from_loxone(self): if self.api is not None and self.api.state != "CLOSED": await self.api.stop() @asyncSlot() async def connect_to_loxone(self): if self.api is not None and self.api.state == "CONNECTED": self.ui.log.appendPlainText("Already connected...") return True username = self.ui.user.text() password = self.ui.password.text() ip = self.ui.ip.text() port = self.ui.port.text() lox_config = LoxApp() lox_config.lox_user = username lox_config.lox_pass = password lox_config.host = ip lox_config.port = port self.ui.json_txt.clear() self.ui.log.clear() self.ui.log.appendPlainText("Try to connect...") try: request_code = await lox_config.getJson() if request_code == 200 or request_code == "200": self.ui.log.appendPlainText("Got Config from Loxone. Port and Host ok.") self.ui.json_txt.setText(json.dumps(lox_config.json, indent=4, sort_keys=False, ensure_ascii=False)) self.api = LoxWs(user=username, password=password, host=ip, port=port, loxconfig=lox_config.json, loxone_url=lox_config.url) res = await self.api.async_init() self.ui.log.appendPlainText("Res {}".format(res)) if not res or res == -1: self.ui.log.appendPlainText("Error connecting to loxone miniserver #1") return False self.api.message_call_back = self.message_callback await self.api.start() else: self.ui.log.appendPlainText(f"Request Code {request_code}. Could not connect to Loxone.") except: traceback.print_exc() t = traceback.format_exc() self.ui.log.appendPlainText(str(t)) async def main(): loop = asyncio.get_running_loop() app = QApplication(sys.argv) # dark_palette = QPalette() # dark_palette.setColor(QPalette.Window, QColor(53, 53, 53)) # dark_palette.setColor(QPalette.WindowText, Qt.white) # dark_palette.setColor(QPalette.Base, QColor(25, 25, 25)) # dark_palette.setColor(QPalette.AlternateBase, QColor(53, 53, 53)) # dark_palette.setColor(QPalette.ToolTipBase, Qt.white) # dark_palette.setColor(QPalette.ToolTipText, Qt.white) # dark_palette.setColor(QPalette.Text, Qt.white) # dark_palette.setColor(QPalette.Button, QColor(53, 53, 53)) # dark_palette.setColor(QPalette.ButtonText, Qt.white) # dark_palette.setColor(QPalette.BrightText, Qt.red) # dark_palette.setColor(QPalette.Link, QColor(42, 130, 218)) # dark_palette.setColor(QPalette.Highlight, QColor(42, 130, 218)) # dark_palette.setColor(QPalette.HighlightedText, Qt.black) # app.setPalette(dark_palette) window = LoxoneConnecionGui() window.show() await loop.create_future() app.exec_() if __name__ == '__main__': qasync.run(main()) ```
{ "source": "JoDehli/pyloxone-api", "score": 3 }
#### File: pyloxone-api/pyloxone_api/message.py ```python from __future__ import annotations import json import math import struct import uuid from enum import IntEnum from pyloxone_api.exceptions import LoxoneException class LLResponse: """A class for parsing LL Responses from the miniserver An LL Response is a json object often returned by a miniserver in response to a command. It begins "{"LL": {..." and has a control, code and value keys. This class provides easy access to code (as an integer) and control attributes (as a string), which should be present in every case. LLResponse.value is a string containing the value of the response. LLResponse.as_dict is guaranteed to be a dict, with at least a value key, and if value has sub-values, keys for the sub-values as well. Raises ValueError if the response cannot be parsed. """ def __init__(self, response: str | bytes): try: self._parsed: dict = json.loads(response) # Sometimes, Loxone uses "Code", and sometimes "code" self.code: int = int( self._parsed.get("LL", {}).get("code", "") or self._parsed.get("LL", {}).get("Code", "") ) self.control: str = self._parsed["LL"]["control"] self.value: str = str(self._parsed["LL"]["value"]) except (ValueError, KeyError, TypeError) as exc: raise ValueError(exc) @property def value_as_dict(self) -> dict: d = self._parsed["LL"]["value"] retval = {"value": self.value} if isinstance(d, dict): return {**retval, **d} return retval class MessageType(IntEnum): """The different types of message which the miniserver might send""" TEXT = 0 BINARY = 1 VALUE_STATES = 2 TEXT_STATES = 3 DAYTIMER_STATES = 4 OUT_OF_SERVICE = 5 KEEPALIVE = 6 WEATHER_STATES = 7 UNKNOWN = -1 class MessageHeader: def __init__(self, header: bytes): # From the Loxone API docs, the header is as follows # typedef struct { # BYTE cBinType; // fix 0x03 # BYTE cIdentifier; // 8-Bit Unsigned Integer (little endian) # BYTE cInfo; // Info # BYTE cReserved; // reserved # UINT nLen; // 32-Bit Unsigned Integer (little endian) # } PACKED WsBinHdr; self.header = header if not header[0] == 3: raise LoxoneException(r"Invalid header received: first byte is not \0x03") try: unpacked_data = struct.unpack("<cBccI", header) except (struct.error, TypeError) as exc: raise LoxoneException(f"Invalid header received: {exc}") self.message_type: MessageType = MessageType(unpacked_data[1]) # First bit indicates that length is only estimated self.estimated: bool = ord(unpacked_data[2]) >> 7 == 1 self.payload_length: int = int(unpacked_data[4]) class BaseMessage: """The base class for all messages from the miniserver""" message_type = MessageType.UNKNOWN def __init__(self, message: bytes | str): self.message = message # For the base class, the dict is the message def as_dict(self) -> dict: """Return the contents of the message as a dict""" return {} class TextMessage(BaseMessage): message_type = MessageType.TEXT def __init__(self, message: bytes | str): super().__init__(message) ll_message = LLResponse(message) self.code = ll_message.code self.control = ll_message.control self.value = ll_message.value self.value_as_dict = ll_message.value_as_dict class BinaryFile(BaseMessage): message_type = MessageType.BINARY # The message is a binary file. There is nothing parse def as_dict(self): return {} class ValueStatesTable(BaseMessage): message_type = MessageType.VALUE_STATES # A value state is as follows: # typedef struct { # PUUID uuid; // 128-Bit uuid # double dVal; // 64-Bit Float (little endian) value # } PACKED EvData; def as_dict(self): event_dict = {} length = len(self.message) num = length / 24 start = 0 end = 24 for _ in range(int(num)): packet = self.message[start:end] event_uuid = uuid.UUID(bytes_le=packet[0:16]) fields = event_uuid.urn.replace("urn:uuid:", "").split("-") uuidstr = f"{fields[0]}-{fields[1]}-{fields[2]}-{fields[3]}{fields[4]}" value = struct.unpack("d", packet[16:24])[0] event_dict[uuidstr] = value start += 24 end += 24 return event_dict class TextStatesTable(BaseMessage): message_type = MessageType.TEXT_STATES # A text event state is as follows: # typedef struct { // starts at multiple of 4 # PUUID uuid; // 128-Bit uuid # PUUID uuidIcon; // 128-Bit uuid of icon # unsigned long textLength; // 32-Bit Unsigned Integer (little endian) # // text follows here # } PACKED EvDataText; def as_dict(self): event_dict = {} start = 0 def get_text(message: bytes, start: int, offset: int) -> int: first = start second = start + offset event_uuid = uuid.UUID(bytes_le=self.message[first:second]) # type: ignore first += offset second += offset icon_uuid_fields = event_uuid.urn.replace("urn:uuid:", "").split("-") uuidstr = "{}-{}-{}-{}{}".format( icon_uuid_fields[0], icon_uuid_fields[1], icon_uuid_fields[2], icon_uuid_fields[3], icon_uuid_fields[4], ) icon_uuid = uuid.UUID(bytes_le=self.message[first:second]) # type: ignore icon_uuid_fields = icon_uuid.urn.replace("urn:uuid:", "").split("-") first = second second += 4 text_length = struct.unpack("<I", message[first:second])[0] first = second second = first + text_length message_str = struct.unpack(f"{text_length}s", message[first:second])[0] start += (math.floor((4 + text_length + 16 + 16 - 1) / 4) + 1) * 4 event_dict[uuidstr] = message_str.decode("utf-8") return start if not isinstance(self.message, bytes): raise LoxoneException("Expected bytes table, got str") while start < len(self.message): start = get_text(self.message, start, 16) return event_dict class DaytimerStatesTable(BaseMessage): message_type = MessageType.DAYTIMER_STATES # We dont currently handle this. def as_dict(self): return {} class OutOfServiceIndicator(BaseMessage): message_type = MessageType.OUT_OF_SERVICE # There can be no such message. If an out-of-service header is sent, the # miniserver will close the connection before sending a message. class Keepalive(BaseMessage): message_type = MessageType.KEEPALIVE # Nothing to do. The dict is the message (which is b'keepalive') def as_dict(self): return {"keep_alive": "received"} class WeatherStatesTable(BaseMessage): message_type = MessageType.WEATHER_STATES def as_dict(self): return {} def parse_header(header: bytes) -> MessageHeader: return MessageHeader(header) def parse_message(message: bytes | str, message_type: int) -> BaseMessage: """Return an instance of the appropriate BaseMessage subclass""" for klass in BaseMessage.__subclasses__(): if klass.message_type == message_type: return klass(message) raise LoxoneException(f"Unknown message type {message_type}") ```
{ "source": "JoDehli/PyLoxone_beta", "score": 2 }
#### File: custom_components/loxone/cover.py ```python import logging from typing import Any import random from homeassistant.components.cover import (ATTR_POSITION, ATTR_TILT_POSITION, DEVICE_CLASS_AWNING, DEVICE_CLASS_BLIND, DEVICE_CLASS_CURTAIN, DEVICE_CLASS_DOOR, DEVICE_CLASS_GARAGE, DEVICE_CLASS_SHUTTER, DEVICE_CLASS_WINDOW, SUPPORT_CLOSE, SUPPORT_OPEN, CoverEntity) from homeassistant.const import STATE_OFF, STATE_ON from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.event import track_utc_time_change from . import LoxoneEntity, get_miniserver_from_config_entry from .const import (DOMAIN, SENDDOMAIN, SUPPORT_CLOSE_TILT, SUPPORT_OPEN_TILT, SUPPORT_SET_POSITION, SUPPORT_SET_TILT_POSITION, SUPPORT_STOP, SUPPORT_STOP_TILT) from .helpers import (get_all_covers, get_cat_name_from_cat_uuid, get_room_name_from_room_uuid, map_range) _LOGGER = logging.getLogger(__name__) NEW_COVERS = "covers" async def async_setup_platform(hass, config, async_add_devices, discovery_info={}): """Set up the Loxone covers.""" return True async def async_setup_entry(hass, config_entry, async_add_entites): """Set Loxone covers.""" miniserver = get_miniserver_from_config_entry(hass, config_entry) loxconfig = miniserver.loxone_config covers = [] for cover in get_all_covers(loxconfig): cover.update( { "hass": hass, "room": get_room_name_from_room_uuid(loxconfig, cover.get("room", "")), "cat": get_cat_name_from_cat_uuid(loxconfig, cover.get("cat", "")), } ) if cover["type"] == "Gate": new_gate = LoxoneGate(**cover) covers.append(new_gate) elif cover["type"] == "Window": new_window = LoxoneWindow(**cover) covers.append(new_window) else: new_jalousie = LoxoneJalousie(**cover) covers.append(new_jalousie) @callback def async_add_covers(_): async_add_entites(_) # miniserver.listeners.append( # async_dispatcher_connect( # hass, miniserver.async_signal_new_device(NEW_COVERS), async_add_entites # ) # ) async_add_entites(covers) class LoxoneGate(LoxoneEntity, CoverEntity): """Loxone Gate""" def __init__(self, **kwargs): LoxoneEntity.__init__(self, **kwargs) self.hass = kwargs["hass"] self._position_uuid = kwargs["states"]["position"] self._state_uuid = kwargs["states"]["active"] self._position = None self._is_opening = False self._is_closing = False if self._position is None: self._closed = True else: self._closed = self.current_cover_position <= 0 @property def supported_features(self): """Flag supported features.""" return SUPPORT_OPEN | SUPPORT_CLOSE | SUPPORT_STOP @property def should_poll(self): """No polling needed for a demo cover.""" return False @property def device_class(self): """Return the class of this device, from component DEVICE_CLASSES.""" if self.animation == 0: return DEVICE_CLASS_GARAGE elif self.animation in [1, 2, 3, 4, 5]: return DEVICE_CLASS_DOOR return self.type @property def animation(self): return self.details["animation"] @property def current_cover_position(self): """Return the current position of the cover.""" return self._position @property def is_closed(self): """Return if the cover is closed.""" return self._closed @property def is_closing(self): """Return if the cover is closing.""" return self._is_closing @property def is_opening(self): """Return if the cover is opening.""" return self._is_opening def open_cover(self, **kwargs): """Open the cover.""" if self._position == 100.0: return self.hass.bus.async_fire(SENDDOMAIN, dict(uuid=self.uuidAction, value="open")) self.schedule_update_ha_state() def close_cover(self, **kwargs): """Close the cover.""" if self._position == 0: return self.hass.bus.async_fire(SENDDOMAIN, dict(uuid=self.uuidAction, value="close")) self.schedule_update_ha_state() def stop_cover(self, **kwargs): """Stop the cover.""" if self.is_closing: self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="open") ) return if self.is_opening: self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="close") ) return async def event_handler(self, event): if self.states["position"] in event.data or self._state_uuid in event.data: if self.states["position"] in event.data: self._position = float(event.data[self.states["position"]]) * 100.0 if self._position == 0: self._closed = True else: self._closed = False if self._state_uuid in event.data: self._is_closing = False self._is_opening = False if event.data[self._state_uuid] == -1: self._is_opening = True elif event.data[self._state_uuid] == 1: self._is_opening = True self.schedule_update_ha_state() @property def extra_state_attributes(self): """Return device specific state attributes. Implemented by platform classes. """ return { "uuid": self.uuidAction, "device_typ": self.type, "category": self.cat, "platform": "loxone", } @property def device_info(self): return { "identifiers": {(DOMAIN, self.unique_id)}, "name": self.name, "manufacturer": "Loxone", "model": "Gate", "type": self.type, "suggested_area": self.room, } class LoxoneWindow(LoxoneEntity, CoverEntity): # pylint: disable=no-self-use def __init__(self, **kwargs): LoxoneEntity.__init__(self, **kwargs) self.hass = kwargs["hass"] self._position = None self._closed = True self._direction = 0 async def event_handler(self, e): if self.states["position"] in e.data or self.states["direction"] in e.data: if self.states["position"] in e.data: self._position = float(e.data[self.states["position"]]) * 100.0 if self._position == 0: self._closed = True else: self._closed = False if self.states["direction"] in e.data: self._direction = e.data[self.states["direction"]] self.schedule_update_ha_state() @property def current_cover_position(self): """Return current position of cover. None is unknown, 0 is closed, 100 is fully open. """ return self._position @property def extra_state_attributes(self): """ Return device specific state attributes. Implemented by platform classes. """ device_att = { "uuid": self.uuidAction, "device_typ": self.type, "platform": "loxone", "room": self.room, "category": self.cat, } return device_att @property def device_class(self): """Return the class of this device, from component DEVICE_CLASSES.""" return DEVICE_CLASS_WINDOW @property def is_closing(self): """Return if the cover is closing.""" if self._direction == -1: return True return False @property def is_opening(self): """Return if the cover is opening.""" if self._direction == 1: return True return False @property def is_closed(self): return self._closed def open_cover(self, **kwargs: Any) -> None: self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="fullopen") ) def close_cover(self, **kwargs: Any) -> None: self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="fullclose") ) def stop_cover(self, **kwargs): """Stop the cover.""" if self.is_closing: self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="fullopen") ) elif self.is_opening: self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="fullclose") ) def set_cover_position(self, **kwargs): """Return the current tilt position of the cover.""" position = kwargs.get(ATTR_POSITION) self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="moveToPosition/{}".format(position)), ) @property def device_info(self): return { "identifiers": {(DOMAIN, self.unique_id)}, "name": self.name, "manufacturer": "Loxone", "model": "Window", "suggested_area": self.room, } class LoxoneJalousie(LoxoneEntity, CoverEntity): """Loxone Jalousie""" # pylint: disable=no-self-use def __init__(self, **kwargs): LoxoneEntity.__init__(self, **kwargs) self.hass = kwargs["hass"] if "autoInfoText" not in self.states: self.states["autoInfoText"] = "" if "autoState" not in self.states: self.states["autoState"] = "" self._position = 0 self._position_loxone = -1 self._tilt_position_loxone = 1 self._set_position = None self._set_tilt_position = None self._tilt_position = 0 self._requested_closing = True self._unsub_listener_cover = None self._unsub_listener_cover_tilt = None self._is_opening = False self._is_closing = False self._animation = 0 self._is_automatic = False self._auto_text = "" self._auto_state = 0 if "isAutomatic" in self.details: self._is_automatic = self.details["isAutomatic"] if "animation" in self.details: self._animation = self.details["animation"] if self._position is None: self._closed = True else: self._closed = self.current_cover_position <= 0 @property def name(self): return self._name @name.setter def name(self, n): self._name = n @property def supported_features(self): """Flag supported features.""" supported_features = SUPPORT_OPEN | SUPPORT_CLOSE | SUPPORT_STOP if self.current_cover_position is not None: supported_features |= SUPPORT_SET_POSITION if self.current_cover_tilt_position is not None: supported_features |= ( SUPPORT_OPEN_TILT | SUPPORT_CLOSE_TILT | SUPPORT_SET_TILT_POSITION ) return supported_features async def event_handler(self, e): if ( self.states["position"] in e.data or self.states["shadePosition"] in e.data or self.states["up"] in e.data or self.states["down"] in e.data or self.states["autoInfoText"] in e.data or self.states["autoState"] in e.data ): if self.states["position"] in e.data: self._position_loxone = float(e.data[self.states["position"]]) * 100.0 self._position = map_range(self._position_loxone, 0, 100, 100, 0) if self._position == 0: self._closed = True else: self._closed = False if self.states["shadePosition"] in e.data: self._tilt_position_loxone = float(e.data[self.states["shadePosition"]]) * 100.0 self._tilt_position = map_range(self._tilt_position_loxone, 0, 100, 100, 0) if self.states["up"] in e.data: self._is_opening = e.data[self.states["up"]] if self.states["down"] in e.data: self._is_closing = e.data[self.states["down"]] if self.states["autoInfoText"] in e.data: self._auto_text = e.data[self.states["autoInfoText"]] if self.states["autoState"] in e.data: self._auto_state = e.data[self.states["autoState"]] self.schedule_update_ha_state() @property def should_poll(self): """No polling needed for a demo cover.""" return False @property def current_cover_position(self): """Return the current position of the cover.""" return self._position @property def current_cover_tilt_position(self): """Return the current tilt position of the cover.""" return self._tilt_position @property def is_closed(self): """Return if the cover is closed.""" return self._closed @property def is_closing(self): """Return if the cover is closing.""" return self._is_closing @property def is_opening(self): """Return if the cover is opening.""" return self._is_opening @property def device_class(self): """Return the class of this device, from component DEVICE_CLASSES.""" if self.animation in [0, 1]: return DEVICE_CLASS_BLIND elif self.animation in [2, 4, 5]: return DEVICE_CLASS_CURTAIN elif self.animation == 3: return DEVICE_CLASS_SHUTTER elif self.animation == 6: return DEVICE_CLASS_AWNING @property def animation(self): return self.details["animation"] @property def is_automatic(self): return self._is_automatic @property def auto(self): if self._is_automatic and self._auto_state: return STATE_ON else: return STATE_OFF @property def shade_postion_as_text(self): """Returns shade postionn as text""" if self.current_cover_tilt_position == 100 and self.current_cover_position < 10: return "shading on" else: return " " @property def extra_state_attributes(self): """ Return device specific state attributes. Implemented by platform classes. """ device_att = { "uuid": self.uuidAction, "device_typ": self.type, "platform": "loxone", "room": self.room, "category": self.cat, "current_position": self.current_cover_position, "current_shade_mode": self.shade_postion_as_text, "current_position_loxone_style": round(self._position_loxone, 0), } if self._is_automatic: device_att.update( {"automatic_text": self._auto_text, "auto_state": self.auto} ) return device_att def close_cover(self, **kwargs): """Close the cover.""" if self._position == 0: return elif self._position is None: self._closed = True self.schedule_update_ha_state() return self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="FullDown") ) self.schedule_update_ha_state() def open_cover(self, **kwargs): """Open the cover.""" if self._position == 100.0: return elif self._position is None: self._closed = False self.schedule_update_ha_state() return self.hass.bus.async_fire(SENDDOMAIN, dict(uuid=self.uuidAction, value="FullUp")) self.schedule_update_ha_state() def stop_cover(self, **kwargs): """Stop the cover.""" self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="stop") ) def set_cover_position(self, **kwargs): """Return the current tilt position of the cover.""" position = kwargs.get(ATTR_POSITION) mapped_pos = map_range(position, 0, 100, 100, 0) self.hass.bus.async_fire(SENDDOMAIN, dict(uuid=self.uuidAction, value=f"manualPosition/{mapped_pos}")) def open_cover_tilt(self, **kwargs): """Close the cover tilt.""" position = 0.0 + random.uniform(0.000000001, 0.00900000) self.hass.bus.async_fire(SENDDOMAIN, dict(uuid=self.uuidAction, value=f"manualLamelle/{position}")) def stop_cover_tilt(self, **kwargs): """Stop the cover.""" self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="stop") ) def close_cover_tilt(self, **kwargs): """Close the cover tilt.""" position = 100.0 + random.uniform(0.000000001, 0.00900000) self.hass.bus.async_fire(SENDDOMAIN, dict(uuid=self.uuidAction, value=f"manualLamelle/{position}")) def set_cover_tilt_position(self, **kwargs): """Move the cover tilt to a specific position.""" tilt_position = kwargs.get(ATTR_TILT_POSITION) mapped_pos = map_range(tilt_position, 0, 100, 100, 0) position = mapped_pos + random.uniform(0.000000001, 0.00900000) self.hass.bus.async_fire(SENDDOMAIN, dict(uuid=self.uuidAction, value=f"manualLamelle/{position}")) @property def device_info(self): return { "identifiers": {(DOMAIN, self.unique_id)}, "name": self.name, "manufacturer": "Loxone", "model": "Jalousie", "type": self.type, "suggested_area": self.room, } ``` #### File: custom_components/loxone/helpers.py ```python import numpy as np def map_range(value, in_min, in_max, out_min, out_max): return out_min + (((value - in_min) / (in_max - in_min)) * (out_max - out_min)) def hass_to_lox(level): """Convert the given HASS light level (0-255) to Loxone (0.0-100.0).""" return (level * 100.0) / 255.0 def lox_to_hass(lox_val): """Convert the given Loxone (0.0-100.0) light level to HASS (0-255).""" return (lox_val / 100.0) * 255.0 def lox2lox_mapped(x, min_v, max_v): if x <= min_v: return 0 if x >= max_v: return max_v return x def lox2hass_mapped(x, min_v, max_v): if x <= min_v: return 0 if x >= max_v: return lox_to_hass(max_v) return lox_to_hass(x) def to_hass_color_temp(temp): """Linear interpolation between Loxone values from 2700 to 6500""" return np.interp(temp, [2700, 6500], [500, 153]) def to_loxone_color_temp(temp): """Linear interpolation between HASS values from 153 to 500""" return np.interp(temp, [153, 500], [6500, 2700]) def get_room_name_from_room_uuid(lox_config, room_uuid): if "rooms" in lox_config: if room_uuid in lox_config["rooms"]: return lox_config["rooms"][room_uuid]["name"] return "" def get_cat_name_from_cat_uuid(lox_config, cat_uuid): if "cats" in lox_config: if cat_uuid in lox_config["cats"]: return lox_config["cats"][cat_uuid]["name"] return "" def get_all_roomcontroller_entities(json_data): return get_all(json_data, "IRoomControllerV2") def get_all_switch_entities(json_data): return get_all(json_data, ["Pushbutton", "Switch", "TimedSwitch", "Intercom"]) def get_all_covers(json_data): return get_all(json_data, ["Jalousie", "Gate", "Window"]) def get_all_analog_info(json_data): return get_all(json_data, "InfoOnlyAnalog") def get_all_digital_info(json_data): return get_all(json_data, "InfoOnlyDigital") def get_all_light_controller(json_data): return get_all(json_data, "LightControllerV2") def get_all_alarm(json_data): return get_all(json_data, "Alarm") def get_all_dimmer(json_data): return get_all(json_data, "Dimmer") def get_miniserver_type(t): if t == 0: return "Miniserver Gen 1" elif t == 1: return "Miniserver Go" elif t == 2: return "Miniserver" return "Unknown Typ" def get_all(json_data, name): controls = [] if isinstance(name, list): for c in json_data["controls"].keys(): if json_data["controls"][c]["type"] in name: controls.append(json_data["controls"][c]) else: for c in json_data["controls"].keys(): if json_data["controls"][c]["type"] == name: controls.append(json_data["controls"][c]) return controls ``` #### File: custom_components/loxone/scene.py ```python import logging from homeassistant.components.scene import Scene from homeassistant.helpers.entity_platform import async_call_later from . import get_miniserver_from_config from .const import (CONF_SCENE_GEN, CONF_SCENE_GEN_DELAY, DEFAULT_DELAY_SCENE, DOMAIN, SENDDOMAIN) _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass, config_entry, async_add_devices): """Set up Scenes.""" delay_scene = config_entry.options.get(CONF_SCENE_GEN_DELAY, DEFAULT_DELAY_SCENE) create_scene = config_entry.options.get(CONF_SCENE_GEN, False) async def gen_scenes(_): devices = [] entity_ids = hass.states.async_entity_ids("LIGHT") for _ in entity_ids: state = hass.states.get(_) att = state.attributes if "platform" in att and att["platform"] == DOMAIN: entity = hass.data["light"].get_entity(state.entity_id) if entity.device_class == "LightControllerV2": for effect in entity.effect_list: mood_id = entity.get_id_by_moodname(effect) uuid = entity.uuidAction devices.append( Loxonelightscene( "{}-{}".format(entity.name, effect), mood_id, uuid, entity.unique_id, ) ) async_add_devices(devices) if create_scene: async_call_later(hass, delay_scene, gen_scenes) return True async def async_setup_platform(hass, config, async_add_devices, discovery_info=None): """Set up Scenes.""" return True class Loxonelightscene(Scene): def __init__(self, name, mood_id, uuid, light_controller_id): self._name = name self.mood_id = mood_id self.uuidAction = uuid self._light_controller_id = light_controller_id @property def unique_id(self) -> str: """Return a unique ID.""" return f"{self._light_controller_id}-{self.mood_id}" @property def name(self): """Return the name of the scene.""" return self._name def activate(self): """Activate scene. Try to get entities into requested state.""" self.hass.bus.async_fire( SENDDOMAIN, dict(uuid=self.uuidAction, value="changeTo/{}".format(self.mood_id)), ) ```
{ "source": "jodemaey/climetlab", "score": 2 }
#### File: readers/grib/codes.py ```python import datetime import json import logging import os import eccodes from climetlab.core import Base from climetlab.core.caching import auxiliary_cache_file from climetlab.profiling import call_counter from climetlab.utils.bbox import BoundingBox LOG = logging.getLogger(__name__) def missing_is_none(x): return None if x == 2147483647 else x # This does not belong here, should be in the C library def _get_message_offsets(path): fd = os.open(path, os.O_RDONLY) try: def get(count): buf = os.read(fd, count) assert len(buf) == count return int.from_bytes( buf, byteorder="big", signed=False, ) offset = 0 while True: code = os.read(fd, 4) if len(code) < 4: break if code != b"GRIB": offset = os.lseek(fd, offset + 1, os.SEEK_SET) continue length = get(3) edition = get(1) if edition == 1: if length & 0x800000: sec1len = get(3) os.lseek(fd, 4, os.SEEK_CUR) flags = get(1) os.lseek(fd, sec1len - 8, os.SEEK_CUR) if flags & (1 << 7): sec2len = get(3) os.lseek(fd, sec2len - 3, os.SEEK_CUR) if flags & (1 << 6): sec3len = get(3) os.lseek(fd, sec3len - 3, os.SEEK_CUR) sec4len = get(3) if sec4len < 120: length &= 0x7FFFFF length *= 120 length -= sec4len length += 4 if edition == 2: length = get(8) yield offset, length offset = os.lseek(fd, offset + length, os.SEEK_SET) finally: os.close(fd) eccodes_codes_release = call_counter(eccodes.codes_release) eccodes_codes_new_from_file = call_counter(eccodes.codes_new_from_file) class CodesHandle: def __init__(self, handle, path, offset): self.handle = handle self.path = path self.offset = offset def __del__(self): eccodes_codes_release(self.handle) def get(self, name): try: if name == "values": return eccodes.codes_get_values(self.handle) size = eccodes.codes_get_size(self.handle, name) if size and size > 1: return eccodes.codes_get_array(self.handle, name) return eccodes.codes_get(self.handle, name) except eccodes.KeyValueNotFoundError: return None def get_long(self, name): try: return eccodes.codes_get_long(self.handle, name) except eccodes.KeyValueNotFoundError: return None def get_string(self, name): try: return eccodes.codes_get_string(self.handle, name) except eccodes.KeyValueNotFoundError: return None def get_double(self, name): try: return eccodes.codes_get_double(self.handle, name) except eccodes.KeyValueNotFoundError: return None class CodesReader: def __init__(self, path): self.path = path self.file = open(self.path, "rb") def __del__(self): try: self.file.close() except Exception: pass def at_offset(self, offset): self.file.seek(offset, 0) return next(self) def __iter__(self): return self def __next__(self): handle = self._next_handle() if handle is None: raise StopIteration() return handle def _next_handle(self): offset = self.file.tell() handle = eccodes_codes_new_from_file(self.file, eccodes.CODES_PRODUCT_GRIB) if not handle: return None return CodesHandle(handle, self.path, offset) @property def offset(self): return self.file.tell() def read(self, offset, length): self.file.seek(offset, 0) return self.file.read(length) class GribField(Base): def __init__(self, reader, offset, length): self._reader = reader self._offset = offset self._length = length self._handle = None def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): pass @property def path(self): return self.handle.path @property def handle(self): if self._handle is None: assert self._offset is not None assert self._reader is not None self._handle = self._reader.at_offset(self._offset) return self._handle @property def values(self): return self.handle.get("values") @property def offset(self): if self._offset is None: self._offset = int(self.handle.get("offset")) return self._offset @property def shape(self): return ( missing_is_none(self.handle.get("Nj")), missing_is_none(self.handle.get("Ni")), ) def plot_map(self, backend): backend.bounding_box( north=self.handle.get("latitudeOfFirstGridPointInDegrees"), south=self.handle.get("latitudeOfLastGridPointInDegrees"), west=self.handle.get("longitudeOfFirstGridPointInDegrees"), east=self.handle.get("longitudeOfLastGridPointInDegrees"), ) backend.plot_grib(self.path, self.handle.get("offset")) @call_counter def to_numpy(self, normalise=False): shape = self.shape if shape[0] is None or shape[1] is None: return self.values if normalise: return self.values.reshape(self.shape) return self.values.reshape(self.shape) def __repr__(self): return "GribField(%s,%s,%s,%s,%s,%s)" % ( self.handle.get("shortName"), self.handle.get("levelist"), self.handle.get("date"), self.handle.get("time"), self.handle.get("step"), self.handle.get("number"), ) def _grid_definition(self): return dict( north=self.handle.get("latitudeOfFirstGridPointInDegrees"), south=self.handle.get("latitudeOfLastGridPointInDegrees"), west=self.handle.get("longitudeOfFirstGridPointInDegrees"), east=self.handle.get("longitudeOfLastGridPointInDegrees"), south_north_increment=self.handle.get("jDirectionIncrementInDegrees"), west_east_increment=self.handle.get("iDirectionIncrementInDegrees"), ) def field_metadata(self): m = self._grid_definition() for n in ("shortName", "units", "paramId"): p = self.handle.get(n) if p is not None: m[n] = str(p) m["shape"] = self.shape return m def datetime(self): date = self.handle.get("date") time = self.handle.get("time") return datetime.datetime( date // 10000, date % 10000 // 100, date % 100, time // 100, time % 100, ) def valid_datetime(self): step = self.handle.get("endStep") return self.datetime() + datetime.timedelta(hours=step) def to_datetime_list(self): return [self.valid_datetime()] def to_bounding_box(self): return BoundingBox( north=self.handle.get("latitudeOfFirstGridPointInDegrees"), south=self.handle.get("latitudeOfLastGridPointInDegrees"), west=self.handle.get("longitudeOfFirstGridPointInDegrees"), east=self.handle.get("longitudeOfLastGridPointInDegrees"), ) def _attributes(self, names): result = {} for name in names: result[name] = self.handle.get(name) return result def _get(self, name): """Private, for testing only""" # paramId is renamed as param to get rid of the # additional '.128' (in climetlab/scripts/grib.py) if name == "param": name = "paramId" return self.handle.get(name) def __getitem__(self, name): """For cfgrib""" # print(name) proc = self.handle.get if ":" in name: try: name, kind = name.split(":") proc = dict( str=self.handle.get_string, int=self.handle.get_long, float=self.handle.get_double, )[kind] except Exception: LOG.exception(f"Unsupported kind '{kind}'") raise ValueError(f"Unsupported kind '{kind}'") return proc(name) def write(self, f): f.write(self._reader.read(self._offset, self._length)) class GribIndex: VERSION = 1 def __init__(self, path): assert isinstance(path, str), path self.path = path self.offsets = None self.lengths = None self.cache = auxiliary_cache_file( "grib-index", path, content="null", extension=".json", ) if not self._load_cache(): self._build_index() def _build_index(self): offsets = [] lengths = [] for offset, length in _get_message_offsets(self.path): offsets.append(offset) lengths.append(length) self.offsets = offsets self.lengths = lengths self._save_cache() def _save_cache(self): try: with open(self.cache, "w") as f: json.dump( dict( version=self.VERSION, offsets=self.offsets, lengths=self.lengths, ), f, ) except Exception: LOG.exception("Write to cache failed %s", self.cache) def _load_cache(self): try: with open(self.cache) as f: c = json.load(f) if not isinstance(c, dict): return False assert c["version"] == self.VERSION self.offsets = c["offsets"] self.lengths = c["lengths"] return True except Exception: LOG.exception("Load from cache failed %s", self.cache) return False ```
{ "source": "joders/logging_tqdm", "score": 2 }
#### File: joders/logging_tqdm/logging_tqdm.py ```python import logging import sys import types from typing import Union, Any, Callable from tqdm import tqdm logging.basicConfig(level=logging.INFO, format='%(asctime)s: %(message)s') LOGGER = logging.getLogger() class LoggingTqdm(tqdm): class PreserveLastOutputStreamInterceptor(): def __init__(self, output_stream: Any, last_output_initial_value: str = "(no output yet)") -> None: self.output_stream = output_stream if hasattr(output_stream, 'encoding'): self.encoding = output_stream.encoding self.last_output = last_output_initial_value def write(self, string: str) -> None: if string != '\n' and string != '': # don't store or print the end of line after the last iteration self.last_output = string self.output_stream.write(string) else: # get rid of the status bar line so that it is # effectively replaced by the log of the last output self.output_stream.write('\r') def flush(self) -> None: self.output_stream.flush() def __init__(self, *args, **kwargs) -> None: if 'file' not in kwargs: kwargs['file'] = LoggingTqdm.PreserveLastOutputStreamInterceptor(sys.stderr) super(tqdm, self).__init__(*args, **kwargs) def __iter__(self) -> types.GeneratorType: iterable = super(tqdm, self).__iter__() def iter_logging_wrapper(): count = 0 item = None try: for count, item in enumerate(iterable): yield item finally: if self.n != count + 1: print('') # kinda dirty but ensures that the next log line is not appended to the last output line LOGGER.info(f'failed on item: {item}') self.n = count self.refresh() LOGGER.info(self.fp.last_output[1:]) return iter_logging_wrapper() @classmethod def pandas(tclass: type, *targs, **tkwargs) -> None: # pylint: disable=C0202 # adhering to tqdm's definition if 'file' in tkwargs: super(tqdm, tclass).pandas(*targs, **tkwargs) else: tkwargs['file']=LoggingTqdm.PreserveLastOutputStreamInterceptor(sys.stderr) from pandas.core.frame import DataFrame from pandas.core.series import Series from pandas.core.groupby import DataFrameGroupBy from pandas.core.groupby import SeriesGroupBy from pandas.core.groupby import GroupBy from pandas.core.groupby import PanelGroupBy from pandas import Panel tqdm.pandas(tclass, *targs, **tkwargs) def wrap_progress_apply(original_progress_apply) -> Callable[[Any, Callable, Any, Any], Any]: def progress_apply(df: Union[DataFrame, Series, DataFrameGroupBy, SeriesGroupBy, GroupBy, PanelGroupBy, Panel], func: Callable, *args, **kwargs ) -> Union[DataFrame, Series, DataFrameGroupBy, SeriesGroupBy, GroupBy, PanelGroupBy, Panel]: # error handling in progress_apply is difficult because # the instance of the tqdm object only exists within # the tqdm progress_apply classmethod # we can still keep track of the invocations by wrapping # the apply function but we won't be able to produce an # updated version of the status bar in the case of # failure because at that point the tqdm object # does not exist anymore (this can only be changed # inside the tqdm code itself which we leave untouched) count = 1 def counter_wrapped_func(item, *args, **kwargs): nonlocal count try: res = func(item, *args, **kwargs) except Exception: # pylint: disable=W0703 # needs to be general print('') # kinda dirty but ensures that the next log line # is not appended to the last output line LOGGER.info(f'Failed on pandas apply during the {count}. invocation of the ' + f'provided apply function processing item: \n{item}') count+=1 return res progress_apply_res = original_progress_apply(df, counter_wrapped_func, *args, **kwargs) LOGGER.info(tkwargs['file'].last_output[1:]) return progress_apply_res return progress_apply for datatype in [DataFrame, Series, DataFrameGroupBy, SeriesGroupBy, GroupBy, PanelGroupBy, Panel]: datatype.progress_apply = wrap_progress_apply(datatype.progress_apply) tqdm = LoggingTqdm # pylint: disable=C0103 # we want users to be able to use logging.tqdm just like tqdm.tqdm ``` #### File: joders/logging_tqdm/test.py ```python from logging_tqdm import tqdm import time print("Testing tqdm-logging:") for i in tqdm(range(100)): time.sleep(.02) print("\n\n\n") print("Testing tqdm-logging with exception:") try: for i in tqdm(range(100)): if i == 75: raise Exception("Some Exception") time.sleep(.02) except: pass print("\n\n\n") import pandas as pd import numpy as np tqdm.pandas() print("Testing pandas tqdm-logging:") print("Processing 10 groups (needs 11 pandas operations):") df=pd.DataFrame({'classes':np.random.randint(0,10,size=1000), \ 'data':np.random.randn(1000)}) df.groupby('classes').progress_apply(lambda x:(time.sleep(.2),x.mean)[1]) print("\n\n\n") print("Testing pandas tqdm-logging with exception:") c=0 def exceptionMean(groupData): global c c+=1 if c==7: raise Exception("") return groupData.mean() df.groupby('classes').progress_apply(exceptionMean) ```
{ "source": "JodesL/catboost", "score": 2 }
#### File: build/scripts/vcs_info.py ```python import sys import os def merge_java_mf(out, infile): manifest = os.path.join(infile, 'META-INF', 'MANIFEST.MF') if not os.path.isfile(manifest): cont = 'Manifest-Version: 1.0' else: with open(manifest, 'r') as f: cont = f.read().rstrip() with open(out, 'w') as f: f.write(cont + '\n') append_vca_info_to_java_mf(out) def append_vca_info_to_java_mf(manifest): with open(manifest, 'a') as f: f.write('Vcs-Placeholder: 123\n\n') if __name__ == "__main__": merge_java_mf(sys.argv[1], sys.argv[2] if len(sys.argv) > 2 else os.curdir) ```
{ "source": "jodevsa/redash", "score": 2 }
#### File: redash/handlers/favorites.py ```python from flask import request from redash import models from redash.permissions import require_access, view_only from redash.handlers.base import BaseResource, get_object_or_404, filter_by_tags, paginate from redash.handlers.queries import order_results from redash.serializers import QuerySerializer, serialize_dashboard from sqlalchemy.exc import IntegrityError class QueryFavoriteListResource(BaseResource): def get(self): search_term = request.args.get('q') if search_term: base_query = models.Query.search(search_term, self.current_user.group_ids, include_drafts=True, limit=None) favorites = models.Query.favorites(self.current_user, base_query=base_query) else: favorites = models.Query.favorites(self.current_user) favorites = filter_by_tags(favorites, models.Query.tags) # order results according to passed order parameter, # special-casing search queries where the database # provides an order by search rank ordered_favorites = order_results(favorites, fallback=bool(search_term)) page = request.args.get('page', 1, type=int) page_size = request.args.get('page_size', 25, type=int) response = paginate( ordered_favorites, page, page_size, QuerySerializer, with_stats=True, with_last_modified_by=False, ) self.record_event({ 'action': 'load_favorites', 'object_type': 'query', 'params': { 'q': search_term, 'tags': request.args.getlist('tags'), 'page': page } }) return response class QueryFavoriteResource(BaseResource): def post(self, query_id): query = get_object_or_404(models.Query.get_by_id_and_org, query_id, self.current_org) require_access(query.groups, self.current_user, view_only) fav = models.Favorite(org_id=self.current_org.id, object=query, user=self.current_user) models.db.session.add(fav) try: models.db.session.commit() except IntegrityError as e: if 'unique_favorite' in e.message: models.db.session.rollback() else: raise e self.record_event({ 'action': 'favorite', 'object_id': query.id, 'object_type': 'query' }) def delete(self, query_id): query = get_object_or_404(models.Query.get_by_id_and_org, query_id, self.current_org) require_access(query.groups, self.current_user, view_only) models.Favorite.query.filter( models.Favorite.object_id == query_id, models.Favorite.object_type == u'Query', models.Favorite.user==self.current_user, ).delete() models.db.session.commit() self.record_event({ 'action': 'favorite', 'object_id': query.id, 'object_type': 'query' }) class DashboardFavoriteListResource(BaseResource): def get(self): search_term = request.args.get('q') if search_term: base_query = models.Dashboard.search(self.current_org, self.current_user.group_ids, self.current_user.id, search_term) favorites = models.Dashboard.favorites(self.current_user, base_query=base_query) else: favorites = models.Dashboard.favorites(self.current_user) favorites = filter_by_tags(favorites, models.Dashboard.tags) page = request.args.get('page', 1, type=int) page_size = request.args.get('page_size', 25, type=int) response = paginate(favorites, page, page_size, serialize_dashboard) self.record_event({ 'action': 'load_favorites', 'object_type': 'dashboard', 'params': { 'q': search_term, 'tags': request.args.getlist('tags'), 'page': page } }) return response class DashboardFavoriteResource(BaseResource): def post(self, object_id): dashboard = get_object_or_404(models.Dashboard.get_by_slug_and_org, object_id, self.current_org) fav = models.Favorite(org_id=self.current_org.id, object=dashboard, user=self.current_user) models.db.session.add(fav) try: models.db.session.commit() except IntegrityError as e: if 'unique_favorite' in e.message: models.db.session.rollback() else: raise e self.record_event({ 'action': 'favorite', 'object_id': dashboard.id, 'object_type': 'dashboard' }) def delete(self, object_id): dashboard = get_object_or_404(models.Dashboard.get_by_slug_and_org, object_id, self.current_org) models.Favorite.query.filter(models.Favorite.object==dashboard, models.Favorite.user==self.current_user).delete() models.db.session.commit() self.record_event({ 'action': 'unfavorite', 'object_id': dashboard.id, 'object_type': 'dashboard' }) ```
{ "source": "JodeZer/loss-landscape", "score": 3 }
#### File: JodeZer/loss-landscape/model_loader.py ```python import os import cifar10.model_loader import rnn.model_loader def load(dataset, model_name, model_file, data_parallel=False): if dataset == 'cifar10': net = cifar10.model_loader.load(model_name, model_file, data_parallel) elif dataset == "binaryAdd": net = rnn.model_loader.load(model_name, model_file, data_parallel) return net ``` #### File: loss-landscape/rnn/model_loader.py ```python import os import torch, torchvision import rnn.models.addRnn as rnn # map between model name and function models = { 'binaryAddRnn8_1' : rnn.BinaryAddRNN8_1, 'binaryAddRnn8_2' : rnn.BinaryAddRNN8_2, 'binaryAddRnn16_2' : rnn.BinaryAddRNN16_2, 'binaryAddRnn16_3' : rnn.BinaryAddRNN16_3, } def load(model_name, model_file=None, data_parallel=False): net = models[model_name]() if data_parallel: # the model is saved in data paralle mode net = torch.nn.DataParallel(net) if model_file: assert os.path.exists(model_file), model_file + " does not exist." stored = torch.load(model_file, map_location=lambda storage, loc: storage) if 'state_dict' in stored.keys(): net.load_state_dict(stored['state_dict']) else: net.load_state_dict(stored) if data_parallel: # convert the model back to the single GPU version net = net.module net.eval() return net ```
{ "source": "jodfedlet/Seguran-a-De-Sistemas", "score": 4 }
#### File: Seguran-a-De-Sistemas/Tasks/RSA.py ```python def divisor(a): i = 2 liste = [] while(a >= i): if a % i == 0: res = a // i liste.append(i) a = res else: i+=1 return liste def calcularD(e,fiN, d): i = 2 while(d >= i): dd = d if e * dd % fiN == 1: return d else: d+=1 def mdc(fin, l): listFin = divisor(fin) listE = divisor(l) a = [ e for e in listE if e in listFin] md = 1 for h in a: md *=h return md def calcularE(fiN,e): efin = e if mdc(fiN, efin) == 1: return efin else: e += 1 return calcularE(fiN,e) def isPrime(n): prim = 0 for i in range(2,n+1): if n % i == 0: prim+=1 if prim == 1: return True else: return False def cifrarMes(n, e, messLower): cifrar = [] for let in messLower: asc = ord(let) cryp = pow(asc,e,n) cifrar.append(cryp) print('Mensagem Normal: ', messLower.capitalize()) print('Mensagem Cifrada: ', end="") for cif in cifrar: print('{}'.format(cif), end="") print() return cifrar def decifrarMes(e,n,d, mess): while True: try: ddd,dn = input('Digite a chave privada: ').split(' ') dn = int(dn) ddd = int(ddd) if n != dn or ddd != d: print('Chave invalida') else: decifrar = [] for num in mess: decryp = pow(num,d,n) decifrar.append(decryp) print(55*'-') print('Mensagem Cifrada: ', mess) print('Mensagem Decifrada: ', end="") for cif in decifrar: print('{}'.format(cif), end="") print() print(55*'-') texto = input('Quer ver o texto da mensagem? (S para aceitar): ') if texto == 'S' or texto == 's': print('Mensagem Decifrada em texto: ', end="") for cif in decifrar: print('{}'.format(chr(cif)), end="") print() exit(1) else: exit(1) except ValueError: print('Voce deve digitar 2 numeros na mesma linha!') while True: try: p,q = input('Digite os 2 numeros primos: ').split(' ') p = int(p) q = int(q) if(isPrime(p) and isPrime(q)): n = p * q fiN = (p - 1) * (q - 1) max = 0 max = p if p > q else q maxNUm = max+1 e = calcularE(fiN, maxNUm) print(55*'*') print('Chave publica: ({} , {})'.format(e,n)) print(55*'*') print() message = input('Enter a message: ') messLower = message.lower() mess = cifrarMes(n,e,messLower) d = calcularD(e,fiN, maxNUm) print() print(55*'*') print('Chave privada: ({} , {})'.format(d,n)) print(55*'*') print() decifrarMes(e,n,d, mess) else: print('Os numeros devem ser primos!') except ValueError: print('Voce deve digitar 2 numeros na mesma linha!') ```
{ "source": "jodfie/bank2ynab", "score": 3 }
#### File: bank2ynab/bank2ynab/transactionfile_reader.py ```python import codecs import logging import os import re from os import path import chardet def get_files( name: str, file_pattern: str, try_path: str, regex_active: bool, ext: str, prefix: str, ) -> list[str]: """ Returns list of files matching the specified search parameters. :param name: Bank format name :type name: str :param file_pattern: filename or regex pattern to match :type file_pattern: str :param try_path: provided path to search initially :type try_path: str :param regex_active: whether or not to use regex in file name check :type regex_active: bool :param ext: file extension :type ext: str :param prefix: prefix attached to processed files :type prefix: str :return: list of matching files :rtype: list """ files: list[str] = list() missing_dir = False fpath = "" if file_pattern != "": try: fpath = find_directory(try_path) except FileNotFoundError: missing_dir = True fpath = find_directory("") fpath = path.abspath(fpath) try: directory_list = os.listdir(fpath) except FileNotFoundError: directory_list = os.listdir(".") if regex_active is True: files = [ path.join(fpath, f) for f in directory_list if f.endswith(ext) if re.match(file_pattern + r".*\.", f) if prefix not in f ] else: files = [ path.join(fpath, f) for f in directory_list if f.endswith(ext) if f.startswith(file_pattern) if prefix not in f ] if not files and missing_dir: logging.error( f"\nFormat: {name}\n\n" + "Error: Can't find download path:" + f"{try_path}\nTrying default path instead:\t {fpath}" ) return files def find_directory(filepath: str) -> str: """ Finds the downloads directory for active user if filepath is not set. :param filepath: Filepath specified by the configuration file. :type filepath: str :raises FileNotFoundError: Error raised if the filepath is invalid. :return: The desired directory to use. :rtype: str """ if filepath == "": if os.name == "nt": # Windows import winreg shell_path = ( "SOFTWARE\\Microsoft\\Windows\\CurrentVersion" "\\Explorer\\Shell Folders" ) dl_key = "{374DE290-123F-4565-9164-39C4925E467B}" with winreg.OpenKey(winreg.HKEY_CURRENT_USER, shell_path) as key: input_dir = winreg.QueryValueEx(key, dl_key)[0] else: # Linux, OSX userhome = os.path.expanduser("~") input_dir = os.path.join(userhome, "Downloads") else: if not os.path.exists(filepath): s = "Error: Input directory not found: {}" raise FileNotFoundError(s.format(filepath)) input_dir = filepath return input_dir # TODO add check of config to see if we have encoding specified def detect_encoding(filepath: str) -> str: """ Utility to detect file encoding. This is imperfect, but should work for the most common cases. :param filepath: string path to a given file :return: encoding alias that can be used with open() """ # First try to guess the encoding with chardet. Take it if the # confidence is >60% (randomly chosen) with open(filepath, "rb") as f: file_content = f.read() rslt = chardet.detect(file_content) conf, enc = rslt["confidence"], rslt["encoding"] if conf > 0.6: logging.info( f"\tOpening file using encoding {enc} (confidence {conf})" ) return enc # because some encodings will happily encode anything even if wrong, # keeping the most common near the top should make it more likely that # we're doing the right thing. encodings = [ "ascii", "utf-8", "utf-16", "cp1251", "utf_32", "utf_32_be", "utf_32_le", "utf_16", "utf_16_be", "utf_16_le", "utf_7", "utf_8_sig", "cp850", "cp852", "latin_1", "big5", "big5hkscs", "cp037", "cp424", "cp437", "cp500", "cp720", "cp737", "cp775", "cp855", "cp856", "cp857", "cp858", "cp860", "cp861", "cp862", "cp863", "cp864", "cp865", "cp866", "cp869", "cp874", "cp875", "cp932", "cp949", "cp950", "cp1006", "cp1026", "cp1140", "cp1250", "cp1252", "cp1253", "cp1254", "cp1255", "cp1256", "cp1257", "cp1258", "euc_jp", "euc_jis_2004", "euc_jisx0213", "euc_kr", "gb2312", "gbk", "gb18030", "hz", "iso2022_jp", "iso2022_jp_1", "iso2022_jp_2", "iso2022_jp_2004", "iso2022_jp_3", "iso2022_jp_ext", "iso2022_kr", "latin_1", "iso8859_2", "iso8859_3", "iso8859_4", "iso8859_5", "iso8859_6", "iso8859_7", "iso8859_8", "iso8859_9", "iso8859_10", "iso8859_11", "iso8859_13", "iso8859_14", "iso8859_15", "iso8859_16", "johab", "koi8_r", "koi8_u", "mac_cyrillic", "mac_greek", "mac_iceland", "mac_latin2", "mac_roman", "mac_turkish", "ptcp154", "shift_jis", "shift_jis_2004", "shift_jisx0213", ] result = "" error = ( ValueError, UnicodeError, UnicodeDecodeError, UnicodeEncodeError, ) for enc in encodings: try: logging.info(f"\tAttempting to open file using {enc} encoding...") with codecs.open(filepath, "r", encoding=enc) as f: for line in f: line.encode("utf-8") return enc except error: continue return result ```
{ "source": "jodhanijanki/django-dashboard-light", "score": 2 }
#### File: django-dashboard-light/authentication/models.py ```python from django.contrib.auth.models import User from django.db import models from django.utils import timezone class UserType(models.Model): user_type = models.CharField(max_length=10,blank=True, null=True) user=models.ForeignKey(User,on_delete=models.DO_NOTHING,null=True,blank=True,related_name='user_type') # user = models.OneToOneField(User, on_delete=models.CASCADE) def __str__(self): return self.user_type class BankDetails(models.Model): AccountType = [ (1, '--------------'), (2, 'Saving Account'), (3, 'Current Account'), (4, 'Overdraft Account') ] user=models.ForeignKey(User,on_delete=models.DO_NOTHING,null=True,blank=True,related_name='bank_detail') bank_name = models.CharField(max_length=200, null=True, blank=False) branch_name = models.CharField(max_length=20, null=True, blank=False) ifsc_code = models.CharField(max_length=20, null=True, blank=False) account_number = models.CharField(max_length=20,null=True, blank=False) account_type = models.IntegerField(choices=AccountType, blank=True,null=True) def __str__(self): return f'{self.account_number}' class BankStatement(models.Model): user=models.ForeignKey(User,on_delete=models.DO_NOTHING,null=True,blank=True,related_name='bank_data') bankdetails=models.ForeignKey(BankDetails,on_delete=models.DO_NOTHING,null=True,blank=True,related_name='bank_statements') date = models.DateField(null=True, blank=False) narration = models.CharField(max_length=100, null=True, blank=False) ref_no = models.CharField(max_length=40, null=True, blank=False) value_dt = models.DateField(null=True, blank=False) withdrawal_amt = models.FloatField(blank=True,null=True) deposite_amt = models.FloatField(blank=True,null=True) closing_balance = models.FloatField(blank=True,null=True) category =models.CharField(max_length=40, null=True, blank=False) def __str__(self): return f'{self.narration}' class Category(models.Model): name = models.CharField(max_length=255, null=True, blank=False) def __str__(self): return f'{self.name}' class Keyword(models.Model): name = models.CharField(max_length=255, null=True, blank=False) category=models.ForeignKey(Category,on_delete=models.DO_NOTHING,null=True,blank=True,related_name='keywords') def __str__(self): return f'{self.name}' class CompanyUser(models.Model): CompanyType = [ (1, "Partnership"), (2, "LLP"), (3, "Pvt Ltd"), (4, "Ltd"), (5, "others") ] BusinessType = [ (1, "FMCG"), (2, "Manufacturer"), (3, "Trader"), (4, "IMPEX"), (5, "Retailer"), (6, "IT"), (7, "Diversified") ] BusinessSize = [ (1, "Startup"), (2, "Small"), (3, "Medium"), (4, "Large"), (5, "Corporate"), (6, "Institution"), ] user=models.ForeignKey(User,on_delete=models.DO_NOTHING,null=True,blank=True,related_name='company_profile') first_name = models.CharField(max_length=200, null=True, blank=False) last_name = models.CharField(max_length=200, null=True, blank=False) contact_person_name = models.CharField(max_length=200, null=True, blank=False) contact_person_mobile = models.CharField(max_length=200, null=True,blank=False) brand_name = models.CharField(max_length=200, null=True, blank=False) address = models.TextField(null=True, blank=False) city = models.CharField(max_length=200, null=True, blank=False) state = models.CharField(max_length=200, null=True, blank=False) country = models.CharField(max_length=200, null=True, blank=False) pin_code = models.CharField(max_length=200, null=True, blank=False) logo = models.ImageField(upload_to='media/', null=True, blank=True) started_in_year = models.DateField(auto_now=False, auto_now_add=False, blank=True,null=True) website_address = models.URLField(null=True, blank=True) company_type = models.IntegerField(choices=CompanyType, blank=True,null=True) business_type = models.IntegerField(choices=BusinessType, blank=True, null=True) business_size = models.IntegerField(choices=BusinessSize, blank=True, null=True) annual_business_turnover = models.DecimalField(blank=True, max_digits=20, null=True, decimal_places=2) number_of_employees = models.IntegerField(blank=True, null=True) core_team_members = models.IntegerField(blank=True, null=True) GST_number = models.CharField(max_length=15, blank=True, null=True) PAN_number = models.CharField(max_length=10, blank=True, null=True) description = models.TextField(max_length=10, blank=True, null=True) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) def __str__(self): return self.first_name class IndividualUser(models.Model): CA='CA' CS='CS' ProfessionType = [ (CA, "CA"), (CS, "CS"), ("Tax_Adviser", "Tax Adviser"), ("Legal_Adviser", "Legal Adviser"), ("Analyst", "Analyst"), ("Business_Adviser", "Business Adviser"), ("Finance_Adviser", "Finance Adviser"), ("Diversified", "Diversified") ] SpecialityType = [ ("FMCG", "FMCG"), ("Manufacturer", "Manufacturer"), ("Trader", "Trader"), ("IMPEX", "IMPEX"), ("Retailer", "Retailer"), ("IT", "IT"), ("Diversified", "Diversified") ] BusinessCater = [ ("Startup", "Startup"), ("Small", "Small"), ("Medium", "Medium"), ("Large", "Large"), ("Corporate", "Corporate"), ("Institution", "Institution") ] Experience = [ (1, "1"), (2, "2"), (3, "3"), (4, "4"), (5, "5+") ] # user_id = models.OneToOneField(User, on_delete=models.DO_NOTHING,related_name='individual') user=models.ForeignKey(User,on_delete=models.DO_NOTHING,null=True,related_name='individual_profile') first_name = models.CharField(max_length=200, null=True, blank=False) last_name = models.CharField(max_length=200, null=True, blank=False) brand_name = models.CharField(max_length=200, null=True, blank=False) address = models.TextField(null=True, blank=False) city = models.CharField(max_length=200, null=True, blank=False) state = models.CharField(max_length=200, null=True, blank=False) country = models.CharField(max_length=200, null=True, blank=False) pin_code = models.CharField(max_length=200, null=True, blank=False) logo = models.ImageField(upload_to='media/', null=True, blank=True) started_in_year = models.DateField(auto_now=False, auto_now_add=False, blank=True,null=True) website_address = models.URLField(null=True, blank=True) profession_type = models.CharField(max_length=20 ,choices=ProfessionType, blank=True,null=True) speciality_type = models.CharField(max_length=20 ,choices=SpecialityType, blank=True, null=True) business_cater = models.CharField(max_length=20 ,choices=BusinessCater, blank=True, null=True) experience = models.IntegerField(choices=Experience, blank=True, null=True) annual_business_turnover = models.DecimalField(blank=True, max_digits=20, null=True, decimal_places=2) number_of_employees = models.IntegerField(blank=True, null=True) core_team_members = models.IntegerField(blank=True, null=True) GST_number = models.CharField(max_length=15, blank=True, null=True) PAN_number = models.CharField(max_length=10, blank=True, null=True) description = models.TextField(max_length=10, blank=True, null=True) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) # bank_details = models.ForeignKey(BankDetails, null=True) # user_type = models.ForeignKey(UserType, null=True) def __str__(self): return self.first_name ```
{ "source": "jodhernandezbe/standardizedinventories", "score": 3 }
#### File: standardizedinventories/stewi/egrid.py ```python import pandas as pd import numpy as np from stewi.globals import * # Set the year eGRIDyear = '2016' year_last2 = eGRIDyear[2:] #filepath eGRIDfilepath = '../eGRID/' egrid_file_begin = {"2014":"eGRID2014", "2016":"egrid2016"} egrid_file_version = {"2014":"_v2","2016":""} #filename for 2014 eGRIDfile = eGRIDfilepath + egrid_file_begin[eGRIDyear] + '_Data' + egrid_file_version[eGRIDyear] + '.xlsx' pltsheetname = 'PLNT'+ year_last2 untsheetname = 'UNT' + year_last2 # Import list of fields from egrid that are desired for LCI def imp_fields(fields_txt): egrid_req_fields_df = pd.read_csv(fields_txt, header=None) egrid_req_fields = list(egrid_req_fields_df[0]) return egrid_req_fields egrid_required_fields = (imp_fields(data_dir+'egrid_required_fields.txt')) # Import egrid file egrid = pd.read_excel(eGRIDfile, sheet_name=pltsheetname, skipinitialspace = True) #drop first row which are column name abbreviations egrid = egrid.drop([0]) #use_cols not working so drop them after import #get list of columns not in the required fields and drop them colstodrop = list(set(list(egrid.columns)) - set(egrid_required_fields)) egrid2 = egrid.drop(colstodrop,axis=1) def egrid_unit_convert(value,factor): new_val = value*factor; return new_val; #Read in unit sheet to get comment fields related to source of heat,NOx,SO2, and CO2 emission estimates unit_egrid_required_fields = (imp_fields(data_dir+'egrid_unit_level_required_fields.txt')) #@author: Wes unit_egrid = pd.read_excel(eGRIDfile, sheet_name=untsheetname, skipinitialspace = True) #drop first row which are column name abbreviations unit_egrid = unit_egrid.drop([0]) #Correction for 2014 unit sheet in column name if eGRIDyear == '2014': unit_egrid = unit_egrid.rename(columns={'Unit unadjusted annual heat input \n(MMBtu)':'Unit unadjusted annual heat input (MMBtu)'}) #get list of columns not in the required fields and drop them colstodrop = list(set(list(unit_egrid.columns)) - set(unit_egrid_required_fields)) unit_egrid2 = unit_egrid.drop(colstodrop,axis=1) #Import mapping between heat,NOx,SO2, and CO2 emissions source comments and reliability scores. Merge one by one. rel_scores_heat_SO2_CO2_NOx = pd.read_csv(data_dir+'eGRID_unit_level_reliability_scores.csv') unit_egrid2 = unit_egrid2.merge(rel_scores_heat_SO2_CO2_NOx, left_on =['Unit unadjusted annual heat input source'], right_on =['Source'], how = 'left') unit_egrid2 = unit_egrid2.rename(columns= {'ReliabilityScore':'ReliabilityScore_heat'}) del unit_egrid2['Source'] unit_egrid2 = unit_egrid2.merge(rel_scores_heat_SO2_CO2_NOx, left_on =['Unit unadjusted annual NOx emissions source'], right_on =['Source'], how = 'left') unit_egrid2 = unit_egrid2.rename(columns= {'ReliabilityScore':'ReliabilityScore_NOx'}) del unit_egrid2['Source'] unit_egrid2 = unit_egrid2.merge(rel_scores_heat_SO2_CO2_NOx, left_on =['Unit unadjusted annual SO2 emissions source'], right_on =['Source'], how = 'left') unit_egrid2 = unit_egrid2.rename(columns= {'ReliabilityScore':'ReliabilityScore_SO2'}) del unit_egrid2['Source'] unit_egrid2 = unit_egrid2.merge(rel_scores_heat_SO2_CO2_NOx, left_on =['Unit unadjusted annual CO2 emissions source'], right_on =['Source'], how = 'left') unit_egrid2 = unit_egrid2.rename(columns= {'ReliabilityScore':'ReliabilityScore_CO2'}) del unit_egrid2['Source'] unit_emissions_with_rel_scores = ['Heat','Nitrogen oxides','Sulfur dioxide','Carbon dioxide'] #Calculate reliability scores at plant level using flow-weighted average. rel_score_cols = ['ReliabilityScore_heat','ReliabilityScore_NOx','ReliabilityScore_SO2','ReliabilityScore_CO2'] flows_used_for_weighting = ['Unit unadjusted annual heat input (MMBtu)', 'Unit unadjusted annual NOx emissions (tons)', 'Unit unadjusted annual SO2 emissions (tons)', 'Unit unadjusted annual CO2 emissions (tons)'] #First multiply by flows unit_egrid2[rel_score_cols] = np.multiply(unit_egrid2[rel_score_cols],unit_egrid2[flows_used_for_weighting]) #Aggregate the multiplied scores at the plant level unit_egrid3 = unit_egrid2.groupby(['DOE/EIA ORIS plant or facility code'])['ReliabilityScore_heat','ReliabilityScore_NOx','ReliabilityScore_SO2','ReliabilityScore_CO2'].sum().reset_index() unit_egrid4 = unit_egrid2.groupby(['DOE/EIA ORIS plant or facility code'])['Unit unadjusted annual heat input (MMBtu)','Unit unadjusted annual NOx emissions (tons)','Unit unadjusted annual SO2 emissions (tons)','Unit unadjusted annual CO2 emissions (tons)'].sum().reset_index() unit_egrid5 = unit_egrid3.merge(unit_egrid4, left_on = ['DOE/EIA ORIS plant or facility code'],right_on = ['DOE/EIA ORIS plant or facility code'], how = 'inner') unit_egrid5[rel_score_cols] = np.divide(unit_egrid5[rel_score_cols],unit_egrid5[flows_used_for_weighting]) #Throws a RuntimeWarning about true_divide unit_egrid5[unit_emissions_with_rel_scores] = unit_egrid5[rel_score_cols] unit_egrid5['FacilityID'] = unit_egrid5['DOE/EIA ORIS plant or facility code'] rel_scores_heat_SO2_CO2_NOx_by_facility = pd.melt(unit_egrid5, id_vars=['FacilityID'], value_vars=unit_emissions_with_rel_scores, var_name='FlowName', value_name='ReliabilityScore') ##Create FLOWBYFACILITY output flowbyfac_prelim = egrid2[['DOE/EIA ORIS plant or facility code', 'Plant primary fuel', 'Plant total annual heat input (MMBtu)', 'Plant annual net generation (MWh)', 'Plant annual NOx emissions (tons)', 'Plant annual SO2 emissions (tons)', 'Plant annual CO2 emissions (tons)', 'Plant annual CH4 emissions (lbs)', 'Plant annual N2O emissions (lbs)', 'CHP plant useful thermal output (MMBtu)']] flowbyfac_prelim = flowbyfac_prelim.rename(columns={'DOE/EIA ORIS plant or facility code':'FacilityID', 'Plant total annual heat input (MMBtu)':'Heat', 'Plant annual net generation (MWh)':'Electricity', 'Plant annual NOx emissions (tons)':'Nitrogen oxides', 'Plant annual SO2 emissions (tons)':'Sulfur dioxide', 'Plant annual CO2 emissions (tons)':'Carbon dioxide', 'Plant annual CH4 emissions (lbs)':'Methane', 'Plant annual N2O emissions (lbs)':'Nitrous oxide', 'CHP plant useful thermal output (MMBtu)':'Steam'}) nox_so2_co2 = egrid_unit_convert(flowbyfac_prelim[['Nitrogen oxides','Sulfur dioxide','Carbon dioxide']],USton_kg) ch4_n2o = egrid_unit_convert(flowbyfac_prelim[['Methane','Nitrous oxide']],lb_kg) heat_steam = egrid_unit_convert(flowbyfac_prelim[['Heat','Steam']],MMBtu_MJ) electricity = egrid_unit_convert(flowbyfac_prelim[['Electricity']],MWh_MJ) facilityid = flowbyfac_prelim[['FacilityID','Plant primary fuel']] frames = [facilityid,nox_so2_co2,ch4_n2o,heat_steam,electricity] flowbyfac_stacked = pd.concat(frames,axis = 1) #Create flowbyfac flowbyfac = pd.melt(flowbyfac_stacked, id_vars=['FacilityID','Plant primary fuel'], value_vars=list(flowbyfac_stacked.columns[2:]), var_name='FlowName', value_name='FlowAmount') #Dropping zero emissions by changing name to NA #Do not drop zeroes - WI 1/16/2019 #flowbyfac['FlowAmount'] = flowbyfac['FlowAmount'].replace({0:None}) #Dropping na emissions flowbyfac = flowbyfac.dropna(subset=['FlowAmount']) flowbyfac = flowbyfac.sort_values(by = ['FacilityID'], axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') #Merge in heat_SO2_CO2_NOx reliability scores calculated from unit sheet flowbyfac = flowbyfac.merge(rel_scores_heat_SO2_CO2_NOx_by_facility,left_on = ['FacilityID','FlowName'],right_on = ['FacilityID','FlowName'], how = 'left') #Assign electricity to a reliabilty score of 1 flowbyfac['ReliabilityScore'].loc[flowbyfac['FlowName']=='Electricity'] = 1 #Replace NaNs with 5 flowbyfac['ReliabilityScore']=flowbyfac['ReliabilityScore'].replace({None:5}) #Methane and nitrous oxide reliability scores #Assign 3 to all facilities except for certain fuel types where measurements are taken flowbyfac.loc[(flowbyfac['FlowName']=='Methane') | (flowbyfac['FlowName']=='Nitrous oxide') ,'ReliabilityScore'] = 3 #For all but selected fuel types, change it to 2 flowbyfac.loc[((flowbyfac['FlowName']=='Methane') | (flowbyfac['FlowName']=='Nitrous oxide')) & ((flowbyfac['Plant primary fuel'] != 'PG') | (flowbyfac['Plant primary fuel'] != 'RC') | (flowbyfac['Plant primary fuel'] != 'WC') | (flowbyfac['Plant primary fuel'] != 'SLW')) ,'ReliabilityScore'] = 2 #Now the plant primary fuel is no longer needed flowbyfac = flowbyfac.drop(columns = ['Plant primary fuel']) #Import flow compartments flow_compartments = pd.read_csv(data_dir+'eGRID_flow_compartments.csv',header=0) #Merge in with flowbyfacility flowbyfac = pd.merge(flowbyfac,flow_compartments,on='FlowName',how='left') #Drop original name flowbyfac = flowbyfac.drop(columns='OriginalName') #Write flowbyfacility file to output flowbyfac.to_csv(output_dir + 'flowbyfacility/eGRID_'+ eGRIDyear +'.csv', index=False) ##Creation of the facility file #Need to change column names manually facility=egrid2[['Plant name','Plant operator name','DOE/EIA ORIS plant or facility code', 'Plant state abbreviation','eGRID subregion acronym','Plant county name', 'Plant latitude', 'Plant longitude','Plant primary fuel', 'Plant primary coal/oil/gas/ other fossil fuel category','NERC region acronym', 'Balancing Authority Name','Balancing Authority Code', 'Plant coal generation percent (resource mix)', 'Plant oil generation percent (resource mix)', 'Plant gas generation percent (resource mix)', 'Plant nuclear generation percent (resource mix)', 'Plant hydro generation percent (resource mix)', 'Plant biomass generation percent (resource mix)', 'Plant wind generation percent (resource mix)', 'Plant solar generation percent (resource mix)', 'Plant geothermal generation percent (resource mix)', 'Plant other fossil generation percent (resource mix)', 'Plant other unknown / purchased fuel generation percent (resource mix)']] facility = facility.rename(columns={'Plant name':'FacilityName', 'DOE/EIA ORIS plant or facility code':'FacilityID', 'Plant state abbreviation':'State'}) len(facility) #2016: 9709 #2014: 8503 facility.to_csv(output_dir + '/facility/eGRID_' + eGRIDyear + '.csv', index=False) ##Write flows file flows = flowbyfac[['FlowName','Compartment','Unit']] flows = flows.drop_duplicates() flows.to_csv(output_dir + '/flow/eGRID_' + eGRIDyear + '.csv', index=False) #Write metadata eGRID_meta = globals.inventory_metadata #Set time manually for now eGRID_meta['SourceAquisitionTime'] = 'Wed May 10 10:00:01 2018' eGRID_meta['SourceType'] = 'Static File' eGRID_meta['SourceFileName'] = eGRIDfile eGRID_meta['SourceURL'] = url eGRID_meta['SourceVersion'] = egrid_file_version[eGRIDyear] write_metadata('eGRID',eGRIDyear, eGRID_meta) #VALIDATE egrid_national_totals = pd.read_csv(data_dir + 'eGRID_'+ eGRIDyear + '_NationalTotals.csv',header=0,dtype={"FlowAmount":np.float}) egrid_national_totals = unit_convert(egrid_national_totals, 'FlowAmount', 'Unit', 'lbs', lb_kg, 'FlowAmount') egrid_national_totals = unit_convert(egrid_national_totals, 'FlowAmount', 'Unit', 'tons', USton_kg, 'FlowAmount') egrid_national_totals = unit_convert(egrid_national_totals, 'FlowAmount', 'Unit', 'MMBtu', MMBtu_MJ, 'FlowAmount') egrid_national_totals = unit_convert(egrid_national_totals, 'FlowAmount', 'Unit', 'MWh', MWh_MJ, 'FlowAmount') # drop old unit egrid_national_totals.drop('Unit',axis=1,inplace=True) validation_result = validate_inventory(flowbyfac, egrid_national_totals, group_by='flow', tolerance=5.0) write_validation_result('eGRID',eGRIDyear,validation_result) ```
{ "source": "jodhus/pyebur128", "score": 2 }
#### File: jodhus/pyebur128/setup.py ```python import platform from setuptools import setup, find_packages, Extension from distutils.ccompiler import new_compiler from distutils.msvccompiler import MSVCCompiler def is_msvc(): '''Checks to see if the detected C compiler is MSVC.''' try: # This depends on _winreg, which is not available on not-Windows. from distutils.msvc9compiler import MSVCCompiler as MSVC9Compiler except ImportError: MSVC9Compiler = None try: from distutils._msvccompiler import MSVCCompiler as MSVC14Compiler except ImportError: MSVC14Compiler = None msvc_classes = tuple(filter(None, (MSVCCompiler, MSVC9Compiler, MSVC14Compiler))) cc = new_compiler() return isinstance(cc, msvc_classes) macros = [] # MSVC won't use <math.h> unless this is defined. if platform.system() == 'Windows' and is_msvc(): macros.append(('_USE_MATH_DEFINES', None)) extensions = [ Extension( name='pyebur128.pyebur128', sources=[ "src/pyebur128/pyebur128.pyx", "src/lib/ebur128/ebur128.c", ], include_dirs=[ '.', 'src/lib/ebur128', 'src/lib/ebur128/queue', ], define_macros=macros, ), ] if __name__ == '__main__': from Cython.Build import cythonize setup( ext_modules=cythonize( extensions, compiler_directives={'language_level': 3, 'embedsignature': True}, ), ) ``` #### File: pyebur128/tests/test_loudness_shortterm.py ```python import pytest from pyebur128 import ( ChannelType, MeasurementMode, R128State, get_loudness_shortterm ) import soundfile as sf def get_max_loudness_shortterm(filename): '''Open the WAV file and get the loudness in short-term (3s) chunks.''' with sf.SoundFile(filename) as wav: state = R128State(wav.channels, wav.samplerate, MeasurementMode.MODE_S) if wav.channels == 5: state.set_channel(0, ChannelType.LEFT) state.set_channel(1, ChannelType.RIGHT) state.set_channel(2, ChannelType.CENTER) state.set_channel(3, ChannelType.LEFT_SURROUND) state.set_channel(4, ChannelType.RIGHT_SURROUND) # 10 ms buffer / 10 Hz refresh rate. max_shortterm = float('-inf') total_frames_read = 0 for block in wav.blocks(blocksize=int(wav.samplerate / 10)): frames_read = len(block) total_frames_read += frames_read for sample in block: state.add_frames(sample, 1) # Invalid results before the first 3 seconds. if total_frames_read >= 3 * wav.samplerate: shortterm = get_loudness_shortterm(state) max_shortterm = max(shortterm, max_shortterm) del state return max_shortterm def test_max_loudness_shortterm(r128_test_data): '''Test for the loudness value of a single file in short-term (3s) chunks. ''' expected = [ ('seq-3341-10-1-24bit.wav', -23.0), ('seq-3341-10-2-24bit.wav', -23.0), ('seq-3341-10-3-24bit.wav', -23.0), ('seq-3341-10-4-24bit.wav', -23.0), ('seq-3341-10-5-24bit.wav', -23.0), ('seq-3341-10-6-24bit.wav', -23.0), ('seq-3341-10-7-24bit.wav', -23.0), ('seq-3341-10-8-24bit.wav', -23.0), ('seq-3341-10-9-24bit.wav', -23.0), ('seq-3341-10-10-24bit.wav', -23.0), ('seq-3341-10-11-24bit.wav', -23.0), ('seq-3341-10-12-24bit.wav', -23.0), ('seq-3341-10-13-24bit.wav', -23.0), ('seq-3341-10-14-24bit.wav', -23.0), ('seq-3341-10-15-24bit.wav', -23.0), ('seq-3341-10-16-24bit.wav', -23.0), ('seq-3341-10-17-24bit.wav', -23.0), ('seq-3341-10-18-24bit.wav', -23.0), ('seq-3341-10-19-24bit.wav', -23.0), ('seq-3341-10-20-24bit.wav', -23.0), ] tolerance = 0.1 status_msg = '==== \'{}\': want {} \u00b1 {} ---> ' print('\n') for test in expected: print(status_msg.format(test[0], test[1], tolerance), end='') result = get_max_loudness_shortterm(r128_test_data / test[0]) print('got {} '.format(round(result, 1)), end='') assert (round(result, 1) <= test[1] + tolerance and round(result, 1) >= test[1] - tolerance) print('---> PASSED!') ```
{ "source": "jodiefostersarmy/T4A2", "score": 4 }
#### File: T4A2/src/commands.py ```python from main import db # This is the db instance created by SQLAlchemy from flask import Blueprint # Use blueprints instead of passing the app object around db_commands = Blueprint("db-custom", __name__) # Creates the blueprint """ A Blueprint is essentially a constructor, and is similar to a Flask application object, but is not an application. It is a set of operations which can be registered on an application, even multiple times. They provide separation at a Flask level, share app config, and can change an application object without being registered. However, you cannot unregister a blueprint once the application has been created, hence the reason why we drop the tables in testing if we add a new column or change the validations. """ @db_commands.cli.command("create") def create_db(): db.create_all() print("Tables created") @db_commands.cli.command("drop") # this function will run when "flask db-custom drop" is run" def drop_db(): db.drop_all() # Drop all tables db.engine.execute("DROP TABLE IF EXISTS alembic_version;") # Drop table for migrations print("Tables deleted") # Print message to indicate tables are dropped @db_commands.cli.command("seed") # this fronction will run when "flask db-custom seed" is run" def seed_db(): """Create arbitrary data for testing""" from models.User import User # Importing the User model from models.Word import Word # Importing the Profile model from models.SavedWord import SavedWord from main import bcrypt # Hashing module for the passwords from faker import Faker # Importing the faker module for fake data import random # Importing random from the python standard library faker = Faker() users = [] words = [] folders = [] for i in range(5): # Do this 5 times user = User() # Create an user object from the User model user.name = faker.name() # assigns fake name for user object from faker module user.email = f"<EMAIL>" # Assign an email to the user object user.password = <PASSWORD>.generate_password_hash("<PASSWORD>").decode("utf-8") # Assign ta hashed password to the user object user.mobile_number = faker.msisdn() user.join_date = faker.msisdn() db.session.add(user) # Add the user to the db session users.append(user) # Append the user to the users list db.session.commit() # Commit the seeion to the db for i in range(5): word = Word() # Create a profile object from the Profile model word.word = f"Word {i+1}" # Add a username to the profile object word.definition = f"Definition {i+1}" # Add a firstname to the profile object word.pronunciation = f"Pronunciation {i+1}" # Add a lastname to the profile object word.user_id = users[i].id # Add a user_id to the profile object. This comes from real ids from the users list words.append(word) db.session.add(word) # Add the profile to the session db.session.commit() # Commit the session to the database for i in range(5): savedWord = SavedWord() savedWord.user_id = users[i].id savedWord.word_id = words[i].id db.session.add(savedWord) db.session.commit() print("Tables seeded") # Print a message to let the user know they ``` #### File: src/controllers/auth_controller.py ```python from flask import Blueprint, request, jsonify, abort, render_template, flash, redirect, url_for from main import db, bcrypt from models.User import User from schemas.UserSchema import user_schema, users_schema from flask_jwt_extended import create_access_token import time from datetime import timedelta from flask_login import login_user, current_user, logout_user auth = Blueprint('auth', __name__) @auth.route("/create-account", methods=["GET","POST"]) def auth_register(): error = None if request.method == "GET": return render_template('register.html') name = request.form.get('name') email = request.form.get('email') password = request.form.get('password') user = User.query.filter_by(email=email).first() # user_number = User.query.filter_by(mobile_number=user_fields["mobile_number"]).first() if user: error='This email has already been registered' return render_template('register.html', error=error) # if user_number: # return abort(400, description="Mobile already registered") # kept this here, for when I fix up the app post bootcamp user = User() user.name = name # user.mobile_number = user_fields["mobile_number"] # kept this here, for when I fix up the app post bootcamp user.email = email # if admin: # user.is_admin = admin # kept this here, for when I fix up the app post bootcamp user.password = <PASSWORD>.generate_password_hash(password).decode("utf-8") user.join_date = time.time() db.session.add(user) db.session.commit() return redirect(url_for('user.all_users')) @auth.route("/login", methods=["GET","POST"]) def auth_login(): if request.method == "GET": return render_template('login.html') email = request.form.get('email') password = request.form.get('password') user = User.query.filter_by(email=email).first() if not user or not bcrypt.check_password_hash(user.password, password): return abort(401, description="Incorrect username or password") print(current_user) login_user(user) print(current_user.id) return redirect(url_for('user.search')) @auth.route("/", methods=["GET"]) def index(): return render_template('search.html') @auth.route("/logout", methods=["GET"]) def logout(): logout_user() return redirect(url_for('auth.auth_register')) ``` #### File: src/controllers/user_controller.py ```python from models.User import User from schemas.UserSchema import users_schema, user_schema from models.Word import Word from schemas.WordSchema import word_schema, words_schema from models.SavedWord import SavedWord from schemas.SavedWordSchema import savedword_schema, savedwords_schema from main import db, bcrypt from datetime import timedelta from flask import Blueprint, request, jsonify, abort, render_template, Response import json import requests from services.auth_service import verify_user user = Blueprint('user', __name__, url_prefix="/user") @user.route("/", methods=["GET"]) def all_users(): """Return all users""" users = User.query.all() return render_template("users_index.html", users = users) # return jsonify(users_schema.dump(users)) @user.route("/<int:id>", methods=["GET"]) def get_user(id): """Return single user""" # if user.id != id: # note to educator: yes, I know this isn't dry, I should have turned this into a service. Will fix this post bootcamp. # return abort(401, description="You are not authorized to view this database") user = User.query.get(id) if user: return render_template("account_details.html", user=user) # we assign the variable we want to access for our html template to the SQLalchemy query we have just defined. else: return "This user does not exist!" # turn this into an error page @user.route("/<int:id>", methods=["DELETE"]) def delete_user(id): """Delete single user""" user = User.query.get(id) db.session.delete(user) db.session.commit() return "User deleted" @user.route("/<int:id>", methods=["PUT", "PATCH"]) # when browser hits this endpoint def update_user(id): # it will run user update method """Update single user""" # i want to update a single user user_fields = user_schema.load(request.json) # I will load all the attributes for the User model user = User.query.filter_by(id=id) # I want to select the user with id = <int:id> from the URI user.update(user_fields) # I want you to update the User account with fields input in the JSON body from insomnia db.session.commit() # commit session to db with updated details return "Updated User" # Return if successful @user.route("/<int:id>/words", methods=["GET"]) def saved_words(id, user=None): """Return words saved by specific user""" # if user.id != id: # return abort(401, description="You are not authorized to view this database") saved_word = SavedWord.query.filter_by(user_id=id) is_there_a_word = SavedWord.query.filter_by(user_id=id).first() if not is_there_a_word: return render_template("no_words.html") else: return render_template("user_words.html", saved=saved_word) @user.route("/<int:id>/save", methods=["POST"]) def save_user_word(id): """Save word by user""" saveword_fields = savedword_schema.load(request.json) save_word = SavedWord.query.filter_by(word_id=saveword_fields["word_id"], user_id=id).first() """ word_id is equal to post input. user_id is equal to id in uri first() accesses first element in list return as a query is always returned as a list. :return: filtered query data :rtype: list """ if save_word: # checks saved words to see if save_word exists in db return abort(400, description='Word is already saved') # if exist, throw error and return message new_save = SavedWord() new_save.user_id = id new_save.word_id = saveword_fields["word_id"] new_save.date_added = 0 new_save.notification = saveword_fields["notification"] db.session.add(new_save) db.session.commit() return jsonify(savedword_schema.dump(new_save)) @user.route("/<int:user_id>/words/<int:word_id>", methods=["DELETE"]) def delete_user_word(user_id, word_id): "delete a user saved word" saved_word = SavedWord.query.filter_by(user_id=user_id, word_id=word_id).first() if saved_word: db.session.delete(saved_word) db.session.commit() return "Word deleted" else: return abort(400, description='This word does not exist in your saved words!') @user.route("/search", methods=["GET", "POST"]) def search(): if request.method == "GET": return render_template('search.html') else: word = request.form.get('word') saved_word = Word.query.filter_by(word=word).first() if saved_word: return render_template("search_results.html", saved=saved_word, word=word) else: r = requests.get(f'https://dictionaryapi.com/api/v3/references/collegiate/json/{word}?key=<KEY>') return render_template("search_results.html", request=r.json(), word_searched=word) ```
{ "source": "jodiemorton/4th-umpire", "score": 3 }
#### File: 4th-umpire/ML/api_data.py ```python import pandas as pd import numpy as np delivery_data = pd.read_csv('data/deliveries.csv') match_data = pd.read_csv('data/matches.csv') team_data = pd.read_csv('data/teams.csv') city_data = pd.read_csv('data/city_id.csv') def get_team(id): return teams_data[(team_data["team_id"] == id)] def get_match(id): return match_data[(match_data["id"] == id)] def get_winner(match): match_info = get_match(match).values winner = match_info[0,10] by_run = match_info[0,11] by_wicket = match_info[0,12] print(winner,by_run,by_wicket) return (winner,by_run,by_wicket) def get_inning_match(inning): data = delivery_data[(delivery_data["inning"]==inning)] inn = delivery_data[(delivery_data["inning"]==1)] return_data = [] for match in range(1,636): match_info = get_match(match) winner = get_winner(match) print("iter:",match) for_run = inn[(inn["match_id"]==match)] for_run["run"] = for_run.total_runs.cumsum() run = for_run['run'].max() print("max_run : " ,run) match = data[(data["match_id"]==match)] match["run"] = match.total_runs.cumsum() match["balls"] = 6 * (match["over"] - 1 ) + match["ball"] match["player_dismissed"] = np.where(match["player_dismissed"].isnull(),0,1) match["wicket"] = match.player_dismissed.cumsum() match["winner"] = winner[0] match["win_by_runs"] = winner[1] match["win_by_wickets"] = winner[2] match["1st_inning_run"] = run city = match_info["city"].astype(str) city_id = np.nan for index, row in city_data.iterrows(): #print(row['id'], row['name']) if row['name'] in str(city): city_id = row['id'] break match["city"] = city_id return_data.append(match) my_data = pd.concat(return_data) my_data = pd.DataFrame(data) return my_data #data = get_1st_inning_match() #data.to_csv("new.csv") def get_1st_inning_total_run(): data = delivery_data[(delivery_data["inning"]==2)] return_data = [] for match in range(636): print(match) match = data[(data["match_id"]==match)] match["run"] = match.total_runs.cumsum() run = match['run'].max() match["total"] = run return_data.append(match) data = pd.concat(return_data) data = data.iloc[:, [22]].values data = pd.DataFrame(data) return data def get_1st_inning_total_ball(): data = pd.read_csv('data/1st_inning.csv') return_data = [] for match in range(636): print(match) run = match['ball'].max() match["total"] = run return_data.append(match) data = pd.concat(return_data) data = data.iloc[:, [22]].values data = pd.DataFrame(data) return data max_run = get_1st_inning_total_run() def append_final_run(): dataset = pd.read_csv('data/deliveries_1st_inning.csv') run = pd.read_csv('data/run_1st_inning.csv') y = run.iloc[:, 4].values run = pd.DataFrame(y) data = dataset.join(run) data = data.drop(data.columns[[0]],axis=1) return data def get_2nd_inning_data(): data = get_inning_match(2) return data plk = get_2nd_inning_data() kl = pl.join(max_run) plk.to_csv("2nd_inng.csv") max_run.to_csv("maxrun.csv") y = kl.iloc[:,[0,2,3,21,22,23,24,25,26,27,28,29]].values klp = pd.DataFrame(y) klp.to_csv("main_2nd.csv") k_dataset = pd.read_csv("main_2nd.csv") k_run = pd.read_csv("maxrun.csv") k_data = k_dataset.join(k_run) k_data.to_csv("main_2nd.csv") def get_2st_inning_total_ball(): data = pd.read_csv('main_2nd.csv') return_data = [] for match in range(636): print(match) match = data[(data["match_id"]==match)] run = match["balls"].max() match["total_ball"] = run return_data.append(match) data = pd.concat(return_data) data = pd.DataFrame(data) return data toatal_ball = get_2st_inning_total_ball() total_final = toatal_ball[toatal_ball.columns[[2,4,5,23,24,25,26,27,28,29,30,32,33]]] total_final.to_csv("total_final.csv") #winner(0) def add_city_code(): all_data = match_data return_data = [] ctr = 0 for match in range(1,636): print(match) match = get_match(match) city = match["city"].astype(str) city_id = np.nan for index, row in city_data.iterrows(): #print(row['id'], row['name']) if row['name'] in str(city): city_id = row['id'] break match["city_id"] = city_id return_data.append(match) my_data = pd.concat(return_data) my_data = pd.DataFrame(data) return my_data new_data = add_city_code() ``` #### File: fourth_umpire/predictions/pred.py ```python import numpy as np from sklearn.externals import joblib import pickle import os script_dir = os.path.dirname(__file__) def pre_match_predict(season,team1,team2,city): rel_path = "pre_pred/pre_pred.pkl" abs_file_path = os.path.join(script_dir, rel_path) regressor = joblib.load(abs_file_path) rel_path = "pre_pred/pre_hot.pkl" abs_file_path = os.path.join(script_dir, rel_path) enc = pickle.load( open( abs_file_path, "rb" )) X_test = [[season,team1,team2,city]] X_test = enc.transform(X_test).toarray() print(len(X_test[0])) y_pred = regressor.predict(X_test) print("our_prediction:",y_pred) return y_pred[0] def predict_1st_inn(team_batting,team_bowling,run,ball,wicket,city): rel_path = "1st_inn/1st_inn_pred.pkl" abs_file_path = os.path.join(script_dir, rel_path) regressor = joblib.load(abs_file_path) rel_path = "1st_inn/1st_inn_hot.pkl" abs_file_path = os.path.join(script_dir, rel_path) enc = pickle.load( open( abs_file_path, "rb" )) X_test = [[team_batting,team_bowling,run,ball,wicket,city]] X_test = enc.transform(X_test).toarray() print(len(X_test[0])) y_pred = regressor.predict(X_test) print("our_prediction:",y_pred) return y_pred[0] def predict_if_bat_win(team_batting,team_bowling,run,ball,wicket,target,city): rel_path = "2nd_inn/bat_win/2nd_inn_bat_win_wicket.pkl" abs_file_path = os.path.join(script_dir, rel_path) regressor = joblib.load(abs_file_path) rel_path = "2nd_inn/bat_win/2nd_inn_bat_win_hot.pkl" abs_file_path = os.path.join(script_dir, rel_path) enc = pickle.load( open( abs_file_path, "rb" )) X_test = [[team_batting,team_bowling,run,ball,wicket,target,city]] X_test = enc.transform(X_test).toarray() y_pred = regressor.predict(X_test) print("our_prediction:bat_win:wicket",y_pred) return y_pred[0] def predict_if_bowl_win(team_batting,team_bowling,run,ball,wicket,target,city): rel_path = "2nd_inn/bowl_win/2nd_inn_bowl_win_run.pkl" abs_file_path = os.path.join(script_dir, rel_path) regressor = joblib.load(abs_file_path) rel_path = "2nd_inn/bowl_win/2nd_inn_bowl_win_hot.pkl" abs_file_path = os.path.join(script_dir, rel_path) enc = pickle.load( open( abs_file_path, "rb" )) X_test = [[team_batting,team_bowling,run,ball,wicket,target,city]] X_test = enc.transform(X_test).toarray() y_pred = regressor.predict(X_test) print("our_prediction:bowl_win:wicket",y_pred) return y_pred[0] def predict_2nd_end_ball(team_batting,team_bowling,run,ball,wicket,target,city): rel_path = "2nd_inn/end/2nd_inn_end.pkl" abs_file_path = os.path.join(script_dir, rel_path) regressor = joblib.load(abs_file_path) rel_path = "2nd_inn/end/2nd_inn_end_hot.pkl" abs_file_path = os.path.join(script_dir, rel_path) enc = pickle.load( open( abs_file_path, "rb" )) X_test = [[team_batting,team_bowling,run,ball,wicket,target,city]] X_test = enc.transform(X_test).toarray() y_pred = regressor.predict(X_test) print("our_prediction:2nd_inn_end",y_pred) return y_pred[0] def predict_2nd_inn(team_batting,team_bowling,run,ball,wicket,target,city): rel_path = "2nd_inn/who_win/2nd_inn_win_pred.pkl" abs_file_path = os.path.join(script_dir, rel_path) regressor = joblib.load(abs_file_path) rel_path = "2nd_inn/who_win/2nd_inn_win_hot.pkl" abs_file_path = os.path.join(script_dir, rel_path) enc = pickle.load( open( abs_file_path, "rb" )) X_test = [[team_batting,team_bowling,run,ball,wicket,target,city]] X_test = enc.transform(X_test).toarray() y_pred = regressor.predict(X_test) end_ball = predict_2nd_end_ball(team_batting,team_bowling,run,ball,wicket,target,city) if y_pred[0]>=0.5: info = predict_if_bat_win(team_batting,team_bowling,run,ball,wicket,target,city) else: info = predict_if_bowl_win(team_batting,team_bowling,run,ball,wicket,target,city) return [y_pred[0],info,end_ball] def get_team(id): teams = { "1":'<NAME>', "2":'Royal Challengers Bangalore', "3":'Chennai Super Kings', "4":'Kings XI Punjab', "5":'Rajasthan Royals', "6":'Delhi Daredevils', "7":'Mumbai Indians', "8":'Kolkata Knight Riders' } return teams[id] #pred = predict_1st_inn(2,5,12,15,2,4) #print("---------first-----------",pred) #pred = predict_2nd_inn(1,6,12,15,2,174,11) #print("-----------2nd---------------",pred) ``` #### File: web/fourth_umpire/views.py ```python from django.contrib.auth.decorators import login_required from django.core.exceptions import ObjectDoesNotExist from django.urls import reverse from django.http import HttpResponseRedirect from django.shortcuts import render,HttpResponse from django.views.generic.edit import CreateView, UpdateView, DeleteView from fourth_umpire.predictions.pred import * from .forms import * from .models import * # Create your views here. def main(request): return render(request, 'fourth_umpire/main.html', {}) def gallery(request): return render(request, 'fourth_umpire/gallery.html', {}) def icons(request): return render(request, 'fourth_umpire/icons.html', {}) def services(request): return render(request, 'fourth_umpire/services.html', {}) def typography(request): return render(request, 'fourth_umpire/typography.html', {}) def about(request): return render(request, 'fourth_umpire/about.html', {}) def contact(request): return HttpResponseRedirect('https://github.com/aasis21/4th_umpire') def first_inn(request): if request.method == 'POST': title_form = InningsFirst(request.POST) if title_form.is_valid(): team1 = title_form.cleaned_data['team1'] team2 = title_form.cleaned_data['team2'] venue = title_form.cleaned_data['venue'] overs_played = title_form.cleaned_data['overs_played'] runs = title_form.cleaned_data['runs'] wickets = title_form.cleaned_data['wickets_fallen'] run_predicted = int(predict_1st_inn(team1,team2,runs,6*overs_played,wickets,venue)) + 1 return render(request, 'fourth_umpire/firstinn.html', context={'form1': title_form,"runs":run_predicted}) else: title_form = InningsFirst() return render(request, 'fourth_umpire/firstinn.html', context={'form1': title_form}) def second_inn(request): if request.method == 'POST': title_form = InningsSecond(request.POST) if title_form.is_valid(): team1 = title_form.cleaned_data['team1'] team2 = title_form.cleaned_data['team2'] venue = title_form.cleaned_data['venue'] runs = title_form.cleaned_data['runs'] overs_played = title_form.cleaned_data['overs_played'] target_chasing = title_form.cleaned_data['target_set'] wickets = title_form.cleaned_data['wickets_fallen'] result = predict_2nd_inn(team1,team2,runs,6*overs_played,wickets,target_chasing,venue) by_run = 0 by_wicket = 0 if result[0]>0.5: winner = get_team(team1) probab = result[0] * 100 by_wicket = int(result[1]) elif result[0]<0.5: winner = get_team(team2) probab = (1-result[0])*100 by_run = int(result[1]) else: winner = "Can be any one" probab = 50 if(result[2]>=120): result[2]=119 end = str(int(result[2]/6)+1) return render(request, 'fourth_umpire/secondinn.html', context={'form2': title_form, "winner":winner,"probab":probab,"by_run":by_run,"by_wicket":by_wicket,"end":end}) else: title_form = InningsSecond() return render(request, 'fourth_umpire/secondinn.html', context={'form2': title_form}) def prematch(request): if request.method == 'POST': title_form = PreMatch(request.POST) if title_form.is_valid(): team1 = title_form.cleaned_data['team1'] team2 = title_form.cleaned_data['team2'] venue = title_form.cleaned_data['venue'] probab = pre_match_predict("2016",team1,team2,venue) if probab > 0.5 : winner = get_team(team1) probab = probab * 100 else: winner = get_team(team2) probab = (1- probab) * 100 return render(request, 'fourth_umpire/pre_pred.html', context={'form3': title_form,"winner":winner,"probab":probab}) else: title_form = PreMatch() return render(request, 'fourth_umpire/pre_pred.html', context={'form3': title_form}) ```
{ "source": "jodiemorton/txt", "score": 2 }
#### File: txt/app/views.py ```python from flask import Flask, render_template, session, redirect, url_for, jsonify from app import app import pandas as pd import os # FORM from flask_wtf import FlaskForm from wtforms import StringField, RadioField, SubmitField, validators from wtforms.widgets import TextArea # SCRAP import requests from bs4 import BeautifulSoup # TEXT import re from gensim.summarization.summarizer import summarize from gensim.summarization import keywords from transformers import pipeline os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "<KEY>" SECRET_KEY = os.urandom(32) app.config["SECRET_KEY"] = SECRET_KEY # abstract_summarizer = pipeline( # "summarization", model="t5-base", tokenizer="t5-base" # ) # TODO: # [ ] Fix RadioField issue # [ ] Token indices sequence length # [ ] Validate output length is shorter than input length class ReadingForm(FlaskForm): """input form""" input_txt = StringField( "Paste text or url(s) below", [validators.required()], widget=TextArea(), render_kw={"style": "width: 100%; height: 100px"}, ) output_len = StringField( "Enter desired output length in number of words or ratio of the original text", [validators.required()], render_kw={"style": "width: 100%; height: 30px"}, ) # smry_type = StringField( # "Select summary type: 1 for extractive or 2 for abstractive (under development)", # [validators.required()], # render_kw={"style": "width: 100%; height: 30px"}, # ) # smry_type = RadioField( # "Select summary methods", # choices=["Extractive summary", "Abstractive summary"], # default="Extractive summary", # ) submit = SubmitField( "Summarize", render_kw={"class": "btn btn-light", "style": "width: 100px; height: 36px"}, ) def checkInputFormat(input): """check if input is raw text, url or else""" if bool(re.match("http", input.replace('"', "").strip(), re.I)): inputFormat = "url" elif sum([t.isalpha() for t in list(input)]) > len(input) / 2: inputFormat = "text" else: inputFormat = "invalid" return inputFormat def checkOutputFormat(output_len): """check if output length is word count or percentage ratio of the original text""" if float(output_len) < 1: outputFormat = "ratio" else: outputFormat = "word_count" return outputFormat def calcOutputLen(outputFormat, article_len, wrd): """calc length of the summary. wrd is the user-specified output length or ratio""" if outputFormat == "word_count": return int(wrd) else: return article_len * float(wrd) def generate_smry(smry_type, text, word_count): """generate summary: extractive (original words) or abstractive (synthesized) """ if smry_type == "1": # use gensim return summarize(text, word_count=word_count) else: # use transformer T5 # return abstract_summarizer(text, min_length=5, max_length=word_count)[0][ # "summary_text" # ] pass def splitUrl(urllst): """when there are multiple urls, split them into individual ones to parse""" urls = [ "http" + i.replace("\n", "").replace('"', "").strip() for i in urllst.split("http") ] if "http" in urls: urls.remove("http") return urls def getUrlEnding(url): return url.rsplit("/", 1)[-1][-4:] def getText(url): """parse text on the web page""" page = requests.get(url) h = "" if page.status_code == 200 and getUrlEnding(url) not in [".pdf", ".ppt"]: if getUrlEnding(url) == ".txt": txt = page.text else: soup = BeautifulSoup(page.text, "html.parser") p = soup.find_all("p") h = max( [i.get_text().replace("\n", "").strip() for i in soup.find_all("h1")], key=len, ) txt = " ".join([i.get_text().replace('"', "'") for i in p]).replace( "\n", " " ) else: txt = "Content of the site not supported" return h, txt def timeSaved(txt, smry_result): time_original = len(txt.split(" ")) / 250 time_smry = len(smry_result.split(" ")) / 250 return round(time_original - time_smry, 1) @app.route("/", methods=["GET", "POST"]) def index(): form = ReadingForm() if form.validate_on_submit(): session["input_txt"] = form.input_txt.data session["output_len"] = form.output_len.data # session["smry_type"] = form.smry_type.data return redirect(url_for("summarizeText")) return render_template("index.html", form=form) @app.route("/summarizeText", methods=["GET", "POST"]) def summarizeText(): txt = session["input_txt"] wrd = session["output_len"] # smry_type = session["smry_type"] smry_type = "1" # temp inputFormat = checkInputFormat(txt) header = [] smry = [] time_saved = [] article_len = [] key_words = [] n = 1 if inputFormat == "text": l = len(txt.split(" ")) article_len.append(l) wrd_cnt = calcOutputLen(checkOutputFormat(wrd), l, wrd) gensim_result = generate_smry(smry_type, txt, wrd_cnt) # fallback measure if every sentence in the text is long smry_result = ( gensim_result if len(gensim_result) > 0 else ". ".join(txt.split(".", 3)[:3]) ) header.append("summary") smry.append(smry_result) time_saved.append(timeSaved(txt, smry_result)) kword = keywords(txt, words=3, lemmatize=True, pos_filter=["NN", "NNS"]) key_words.append(kword.split("\n")) elif inputFormat == "url": for url in splitUrl(txt.replace('"', "")): h, t = getText(url) l = len(t.split(" ")) article_len.append(l) header.append(h) # default to 20% in case the entered word count is higher than the original word count wrd_cnt = calcOutputLen(checkOutputFormat(wrd), l, wrd) gensim_result = generate_smry(smry_type, t, wrd_cnt) smry_result = ( gensim_result if len(gensim_result) > 0 else ". ".join(t.split(".", 3)[:3]) ) smry.append(smry_result) time_saved.append(timeSaved(t, smry_result)) kword = keywords(t, words=3, lemmatize=True, pos_filter=["NN", "NNS"]) key_words.append(kword.split("\n")) n = len(smry) return render_template( "smry.html", header=header, smry=smry, time_saved=round(sum(time_saved), 2), article_len=article_len, n=n, key_words=key_words, ) @app.route("/about") def about(): return render_template("about.html") ```
{ "source": "jodieritchie/MLHPortfolio", "score": 2 }
#### File: site-packages/werkzeug/useragents.py ```python import re import typing as t import warnings from .user_agent import UserAgent as _BaseUserAgent if t.TYPE_CHECKING: from _typeshed.wsgi import WSGIEnvironment class _UserAgentParser: platform_rules: t.ClassVar[t.Iterable[t.Tuple[str, str]]] = ( (" cros ", "chromeos"), ("iphone|ios", "iphone"), ("ipad", "ipad"), (r"darwin\b|mac\b|os\s*x", "macos"), ("win", "windows"), (r"android", "android"), ("netbsd", "netbsd"), ("openbsd", "openbsd"), ("freebsd", "freebsd"), ("dragonfly", "dragonflybsd"), ("(sun|i86)os", "solaris"), (r"x11\b|lin(\b|ux)?", "linux"), (r"nintendo\s+wii", "wii"), ("irix", "irix"), ("hp-?ux", "hpux"), ("aix", "aix"), ("sco|unix_sv", "sco"), ("bsd", "bsd"), ("amiga", "amiga"), ("blackberry|playbook", "blackberry"), ("symbian", "symbian"), ) browser_rules: t.ClassVar[t.Iterable[t.Tuple[str, str]]] = ( ("googlebot", "google"), ("msnbot", "msn"), ("yahoo", "yahoo"), ("ask jeeves", "ask"), (r"aol|america\s+online\s+browser", "aol"), (r"opera|opr", "opera"), ("edge|edg", "edge"), ("chrome|crios", "chrome"), ("seamonkey", "seamonkey"), ("firefox|firebird|phoenix|iceweasel", "firefox"), ("galeon", "galeon"), ("safari|version", "safari"), ("webkit", "webkit"), ("camino", "camino"), ("konqueror", "konqueror"), ("k-meleon", "kmeleon"), ("netscape", "netscape"), (r"msie|microsoft\s+internet\s+explorer|trident/.+? rv:", "msie"), ("lynx", "lynx"), ("links", "links"), ("Baiduspider", "baidu"), ("bingbot", "bing"), ("mozilla", "mozilla"), ) _browser_version_re = r"(?:{pattern})[/\sa-z(]*(\d+[.\da-z]+)?" _language_re = re.compile( r"(?:;\s*|\s+)(\b\w{2}\b(?:-\b\w{2}\b)?)\s*;|" r"(?:\(|\[|;)\s*(\b\w{2}\b(?:-\b\w{2}\b)?)\s*(?:\]|\)|;)" ) def __init__(self) -> None: self.platforms = [(b, re.compile(a, re.I)) for a, b in self.platform_rules] self.browsers = [ (b, re.compile(self._browser_version_re.format(pattern=a), re.I)) for a, b in self.browser_rules ] def __call__( self, user_agent: str ) -> t.Tuple[t.Optional[str], t.Optional[str], t.Optional[str], t.Optional[str]]: platform: t.Optional[str] browser: t.Optional[str] version: t.Optional[str] language: t.Optional[str] for platform, regex in self.platforms: # noqa: B007 match = regex.search(user_agent) if match is not None: break else: platform = None # Except for Trident, all browser key words come after the last ')' last_closing_paren = 0 if ( not re.compile(r"trident/.+? rv:", re.I).search(user_agent) and ")" in user_agent and user_agent[-1] != ")" ): last_closing_paren = user_agent.rindex(")") for browser, regex in self.browsers: # noqa: B007 match = regex.search(user_agent[last_closing_paren:]) if match is not None: version = match.group(1) break else: browser = version = None match = self._language_re.search(user_agent) if match is not None: language = match.group(1) or match.group(2) else: language = None return platform, browser, version, language # It wasn't public, but users might have imported it anyway, show a # warning if a user created an instance. class UserAgentParser(_UserAgentParser): """A simple user agent parser. Used by the `UserAgent`. .. deprecated:: 2.0 Will be removed in Werkzeug 2.1. Use a dedicated parser library instead. """ def __init__(self) -> None: warnings.warn( "'UserAgentParser' is deprecated and will be removed in" " Werkzeug 2.1. Use a dedicated parser library instead.", DeprecationWarning, stacklevel=2, ) super().__init__() class _deprecated_property(property): def __init__(self, fget: t.Callable[["_UserAgent"], t.Any]) -> None: super().__init__(fget) self.message = ( "The built-in user agent parser is deprecated and will be" f" removed in Werkzeug 2.1. The {fget.__name__!r} property" " will be 'None'. Subclass 'werkzeug.user_agent.UserAgent'" " and set 'Request.user_agent_class' to use a different" " parser." ) def __get__(self, *args: t.Any, **kwargs: t.Any) -> t.Any: warnings.warn(self.message, DeprecationWarning, stacklevel=3) return super().__get__(*args, **kwargs) # This is what Request.user_agent returns for now, only show warnings on # attribute access, not creation. class _UserAgent(_BaseUserAgent): _parser = _UserAgentParser() def __init__(self, string: str) -> None: super().__init__(string) info = self._parser(string) self._platform, self._browser, self._version, self._language = info @_deprecated_property def platform(self) -> t.Optional[str]: # type: ignore return self._platform @_deprecated_property def browser(self) -> t.Optional[str]: # type: ignore return self._browser @_deprecated_property def version(self) -> t.Optional[str]: # type: ignore return self._version @_deprecated_property def language(self) -> t.Optional[str]: # type: ignore return self._language # This is what users might be importing, show warnings on create. class UserAgent(_UserAgent): """Represents a parsed user agent header value. This uses a basic parser to try to extract some information from the header. :param environ_or_string: The header value to parse, or a WSGI environ containing the header. .. deprecated:: 2.0 Will be removed in Werkzeug 2.1. Subclass :class:`werkzeug.user_agent.UserAgent` (note the new module name) to use a dedicated parser instead. .. versionchanged:: 2.0 Passing a WSGI environ is deprecated and will be removed in 2.1. """ def __init__(self, environ_or_string: "t.Union[str, WSGIEnvironment]") -> None: if isinstance(environ_or_string, dict): warnings.warn( "Passing an environ to 'UserAgent' is deprecated and" " will be removed in Werkzeug 2.1. Pass the header" " value string instead.", DeprecationWarning, stacklevel=2, ) string = environ_or_string.get("HTTP_USER_AGENT", "") else: string = environ_or_string warnings.warn( "The 'werkzeug.useragents' module is deprecated and will be" " removed in Werkzeug 2.1. The new base API is" " 'werkzeug.user_agent.UserAgent'.", DeprecationWarning, stacklevel=2, ) super().__init__(string) ```
{ "source": "jodietrich/wgan_domain_adaptation", "score": 2 }
#### File: jodietrich/wgan_domain_adaptation/batch_augmentors.py ```python import numpy as np import adni_data_loader from batch_generator_list import iterate_minibatches def flip_augment(X, y_list=None, do_fliplr=True): N = X.shape[0] X_list = [] for ii in range(N): img = np.squeeze(X[ii,...]) # RANDOM FLIP if do_fliplr: coin_flip = np.random.randint(2) if coin_flip == 0: img = np.flip(img, 0) X_list.append(img[..., np.newaxis]) X_ = np.asarray(X_list) if y_list is None: return X_ else: return X_, y_list # translate the fraction generate_fraction of the given image batch with generator (class Generator) def generator_augment(generator, X, y_list=None, generate_fraction=0.5): if generate_fraction < 0 or generate_fraction > 1: raise ValueError('generate_fraction %f is outside the range [0, 1]' % generate_fraction) N = X.shape[0] N_generate = round(N*generate_fraction) X_translated = generator.translate(X[0:N_generate, ...]) X_ = np.concatenate((X_translated, X[N_generate:, ...]), axis=0) assert X.shape == X_.shape if y_list is None: return X_ else: return X_, y_list if __name__ == '__main__': from experiments import jia_xi_net as exp_config import matplotlib.pyplot as plt data = adni_data_loader.load_and_maybe_process_data( input_folder=exp_config.data_root, preprocessing_folder=exp_config.preproc_folder, size=exp_config.image_size, target_resolution=exp_config.target_resolution, label_list=exp_config.fs_label_list, force_overwrite=False ) for batch in iterate_minibatches(data['images_train'], [data['diagnosis_train'], data['age_train']], batch_size=exp_config.batch_size, augmentation_function=None, #flip_augment, exp_config=exp_config): X, [y, a] = batch X_, [y_, a_] = flip_augment(X, [y, a], exp_config.do_fliplr) fig1 = plt.figure() fig1.add_subplot(131) plt.imshow(np.squeeze(X[0,80,:,:])) fig1.add_subplot(132) plt.imshow(np.squeeze(X[0,:,80,:])) fig1.add_subplot(133) plt.imshow(np.squeeze(X[0,:,:,80])) fig2 = plt.figure() fig2.add_subplot(131) plt.imshow(np.squeeze(X_[0,80,:,:])) fig2.add_subplot(132) plt.imshow(np.squeeze(X_[0,:,80,:])) fig2.add_subplot(133) plt.imshow(np.squeeze(X_[0,:,:,80])) plt.show() ``` #### File: wgan_domain_adaptation/chrigi files/preprocess_adni_all.py ```python import pandas as pd import os import glob import datetime import time import csv import shutil import utils from subprocess import Popen import multiprocessing import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') INCLUDE_MISSING_IMAGES_IN_TABLE = True DO_ONLY_TABLE = True bmicdatasets_root = '/usr/bmicnas01/data-biwi-01/' bmicdatasets_originals = os.path.join(bmicdatasets_root, 'bmicdatasets-originals/Originals/') bmicdatasets_adni = os.path.join(bmicdatasets_originals, 'ADNI/') bmicdatasets_adni_tables = os.path.join(bmicdatasets_adni, 'Tables') bmicdatasets_adni_images = os.path.join(bmicdatasets_adni, 'adni_all_mri/ADNI/') bmidatasets_mni = os.path.join(bmicdatasets_originals, 'TemplateData/MNI/mni_icbm152_nlin_asym_09a') mni_template_t1 = os.path.join(bmidatasets_mni, 'mni_icbm152_t1_tal_nlin_asym_09a.nii') adni_merge_path = os.path.join(bmicdatasets_adni_tables, 'ADNIMERGE.csv') vitals_path = os.path.join(bmicdatasets_adni_tables, 'VITALS.csv') diagnosis_path = os.path.join(bmicdatasets_adni_tables, 'DXSUM_PDXCONV_ADNIALL.csv') mri_3_0_meta_path = os.path.join(bmicdatasets_adni_tables, 'MRI3META.csv') mri_1_5_meta_path = os.path.join(bmicdatasets_adni_tables, 'MRIMETA.csv') N4_executable = '/usr/bmicnas01/data-biwi-01/bmicdatasets/Sharing/N4' robex_executable = '/scratch_net/bmicdl03/software/robex/robex-build/ROBEX' def date_string_to_seconds(date_str): date, time = date_str.split(' ') year, month, day = [int(i.split('.')[0]) for i in date.split('-')] hours, minutes, secs = [int(i.split('.')[0]) for i in time.split(':')] acq_time = datetime.datetime(year, month, day, hours, minutes, secs) start_of_time = datetime.datetime(1970,1,1) return (acq_time - start_of_time).total_seconds() # # def find_by_conditions(pandas_df, condition_dict): # # for ii, (key, value) in enumerate(condition_dict.items()): # if ii == 0: # conds = pandas_df[key] == value # else: # conds = conds & (pandas_df[key] == value) # # return pandas_df.loc[conds] def find_by_conditions(pandas_df, and_condition_dict=None, or_condition_dict=None): if and_condition_dict is not None: conds_and = True for ii, (key, value_list) in enumerate(and_condition_dict.items()): if not isinstance(value_list, list): value_list = [value_list] for value in list(value_list): conds_and = conds_and & (pandas_df[key] == value) else: conds_and = False if or_condition_dict is not None: conds_or = False for ii, (key, value_list) in enumerate(or_condition_dict.items()): if not isinstance(value_list, list): value_list = [value_list] for value in list(value_list): conds_or = conds_or | (pandas_df[key] == value) else: conds_or = True conds = conds_and & conds_or # logging.info('conds:') # logging.info(sum(conds)) return pandas_df.loc[conds] def diagnosis_to_3categories_blformat(diag_str): if diag_str in ['EMCI', 'LMCI', 'MCI']: return 'MCI' elif diag_str in ['CN', 'SMC']: return 'CN' elif diag_str in ['AD', 'Dementia']: return 'AD' else: raise ValueError('Unknown diagnosis: "%s"'% diag_str) def diagnosis_to_3categories(diag_str): if diag_str in [2,4,8]: return 'MCI' elif diag_str in [1,7,9]: return 'CN' elif diag_str in [3,5,6]: return 'AD' elif diag_str in [0]: return 'unknown' else: raise ValueError('Unknown diagnosis: "%s"'% diag_str) def convert_weight_to_kg(weight, unit): if unit == 2: return weight elif unit == 1: return 0.453592*weight else: return weight # probably weight unknown = -1 def map_all_baseline_to_bl(list): return_list =[] for ll in list: if ll in ['bl', 'sc', 'scmri']: return_list.append('bl') else: return_list.append(ll) return return_list def all_same(items): return all(x == items[0] for x in items) def do_preprocessing(adnimerge_table_arg, tmp_index, processed_images_folder, summary_csv_file, do_reorientation=False, do_registration=False, do_bias_correction=False, do_cropping=False, do_skull_stripping=False, write_csv=True): if do_reorientation | do_registration | do_bias_correction | do_cropping | do_skull_stripping == False: do_postprocessing = False else: do_postprocessing = True vitals_table = pd.read_csv(vitals_path) mri_3_0_meta_table = pd.read_csv(mri_3_0_meta_path) mri_1_5_meta_table = pd.read_csv(mri_1_5_meta_path) diagnosis_table = pd.read_csv(diagnosis_path) tmp_file_folder = os.path.join(processed_images_folder, 'tmp') if do_postprocessing: utils.makefolder(tmp_file_folder) with open(summary_csv_file, 'w') as csvfile: if write_csv: csvwriter = csv.writer(csvfile, delimiter=',') csvwriter.writerow(['rid', 'phase', 'image_exists', 'site', 'viscode', 'exam_date', 'field_strength', 'diagnosis', 'diagnosis_3cat', 'age', 'gender', 'weight', 'education', 'ethnicity', 'race', 'apoe4', 'adas13', 'mmse', 'faq', 'counter' ]) for ii, row in adnimerge_table_arg.iterrows(): viscode = row['VISCODE'] # if viscode not in ['bl']: # or 'sc']: There are no 'sc' in adnimerge # continue rid = row['RID'] phase = row['COLPROT'] if phase in ['ADNI3']: continue site = row['SITE'] age_at_bl = row['AGE'] # Note ADNIMERGE age is always the same, even for the follow up scans years later gender = row['PTGENDER'] education = row['PTEDUCAT'] ethnicity = row['PTETHCAT'] race = row['PTRACCAT'] apoe4 = row['APOE4'] adas13 = row['ADAS13'] mmse = row['MMSE'] faq = row['FAQ'] exam_date_adnimerge = row['EXAMDATE'] # Not necessarily the same as the exam date in the MRIMETA files diagnosis_row = find_by_conditions(diagnosis_table, and_condition_dict={'RID': rid, 'VISCODE2': viscode}) if phase == 'ADNI1': diagnosis = diagnosis_row['DXCURREN'].values else: diagnosis = diagnosis_row['DXCHANGE'].values print('---- rid %s -----' % rid) print(viscode) print(diagnosis) if len(diagnosis) == 0: diagnosis = 0 if viscode == 'm03': diagnosis_bl = row['DX_bl'] diagnosis_3cat = diagnosis_to_3categories_blformat(diagnosis_bl) else: diagnosis_3cat = 'unknown' else: diagnosis = int(diagnosis[0]) diagnosis_3cat = diagnosis_to_3categories(diagnosis) # field_strength = row['FLDSTRENG'] # This field is incomplete, too many nan values vitals_row = find_by_conditions(vitals_table, {'RID': rid, 'VISCODE2': 'bl'}) # here also examdates sometimes don't correspond if len(vitals_row) == 0: vitals_row = find_by_conditions(vitals_table, {'RID': rid, 'VISCODE2': 'sc'}) assert len(vitals_row) <= 1, 'in vitals table found %d rows for case with rid=%s, and viscode=bl. Expected one.' \ % (len(vitals_row), rid) # Getting some vitals information if len(vitals_row) == 1: weight = vitals_row['VSWEIGHT'].values[0] weight_units = vitals_row['VSWTUNIT'].values[0] weight = convert_weight_to_kg(weight, weight_units) else: weight = 'unknown' mri_1_5_meta_row = find_by_conditions(mri_1_5_meta_table, and_condition_dict={'RID': rid, 'VISCODE2': viscode}) if len(mri_1_5_meta_row) == 0 and viscode == 'bl': mri_1_5_meta_row = find_by_conditions(mri_1_5_meta_table, and_condition_dict={'RID': rid, 'VISCODE2': 'sc'}) mri_3_0_meta_row = find_by_conditions(mri_3_0_meta_table, and_condition_dict={'RID': rid, 'VISCODE2': viscode}) if len(mri_3_0_meta_row) == 0 and viscode == 'bl': mri_3_0_meta_row = find_by_conditions(mri_3_0_meta_table, and_condition_dict={'RID': rid}, or_condition_dict={'VISCODE2': ['sc', 'scmri']}) exam_dates = list(mri_1_5_meta_row['EXAMDATE'].values) + list(mri_3_0_meta_row['EXAMDATE'].values) field_strengths = [1.5]*len(mri_1_5_meta_row['EXAMDATE']) + [3.0]*len(mri_3_0_meta_row['EXAMDATE']) viscodes = list(mri_1_5_meta_row['VISCODE2'].values) + list(mri_3_0_meta_row['VISCODE2'].values) subj_subfolder = '%s_S_%s' % (str(site).zfill(3), str(rid).zfill(4)) # Remove nans from exam dates and corresponding field strengths exam_dates_tmp = [] field_strengths_tmp = [] viscodes_tmp = [] for ed, fs, vc in zip(exam_dates, field_strengths, viscodes): if str(ed) != 'nan': exam_dates_tmp.append(ed) field_strengths_tmp.append(fs) viscodes_tmp.append(vc) exam_dates = exam_dates_tmp field_strengths = field_strengths_tmp viscodes = viscodes_tmp # If all exam dates are the same keep only one if len(exam_dates) > 1 and all_same(exam_dates): print('Multiple equal exam dates') print(field_strengths) exam_dates = [exam_dates[0]] field_strengths = [field_strengths[0]] viscodes = [viscodes[0]] # If all there are duplicate viscodes keep the first and say 1.5T because duplicates are almost always 1.5T if len(viscodes) > 1 and all_same(map_all_baseline_to_bl(viscodes)): print('Identical viscodes') print(field_strengths) exam_dates = [exam_dates[0]] if phase in ['ADNI1', 'ADNIGO']: field_strengths = [field_strengths[0]] # 1.5 is always the first item anyways else: print('!! Multiple viscodes. Duplicate that was in ADNI2') print(field_strengths) field_strengths = [field_strengths[0]] if not len(exam_dates) > 0: continue # Philips scanners have do not have the gradwarp preprocessed images. I am assuming MT1__N3m is fine even # though B1_Correctino is missing. # This webpage: http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/ says all files with a N3m # in the end are fine to use. I am assuming that MPR____N3 and MPR__GradWarp__N3 also indicate that the # whole preprocessing pipeline was applied. preproc_subfolders = ['MPR__GradWarp__B1_Correction__N3', 'MPR____N3', 'MT1__N3m', 'MT1__GradWarp__N3m', 'MPR__GradWarp__N3'] nii_files = [] for exam_date, field_strength in zip(exam_dates, field_strengths): # figure out age: # get baseline examdate from adnimerge baseline_row = find_by_conditions(adnimerge_table_arg, and_condition_dict={'RID': rid}, or_condition_dict={'VISCODE': ['sc', 'scmri', 'bl']}) baseline_exam_dates = baseline_row['EXAMDATE'].values if len(baseline_exam_dates) <= 0: current_age = 'unknown' else: baseline_exam_date = baseline_exam_dates[0] year_diff = int(exam_date.split('-')[0]) - int(baseline_exam_date.split('-')[0]) month_diff = int(exam_date.split('-')[1]) - int(baseline_exam_date.split('-')[1]) day_diff = int(exam_date.split('-')[2]) - int(baseline_exam_date.split('-')[2]) decimal_year_diff = year_diff + (1.0/12)*month_diff + (1.0/(12*30)*day_diff) assert decimal_year_diff >= -0.75, 'Year diff cannot be (too) negative! Was %f' % decimal_year_diff if decimal_year_diff < 0: decimal_year_diff = 0.0 current_age = age_at_bl + decimal_year_diff for preproc_subfolder in preproc_subfolders: nii_search_str = os.path.join(subj_subfolder, preproc_subfolder, exam_date + '_*', '*/*.nii') nii_files += glob.glob(os.path.join(bmicdatasets_adni_images, nii_search_str)) # If some files have gradwarp prefer those files contains_GradWarp = any(['GradWarp' in ff for ff in nii_files]) if contains_GradWarp: nii_files = [ff for ff in nii_files if 'GradWarp' in ff] # if some files have MT1 and MPR prefer the MT1 contains_MT1 = any(['MT1' in ff for ff in nii_files]) if contains_MT1: nii_files = [ff for ff in nii_files if 'MT1' in ff] # if some files have B1 correction prefer those contains_B1 = any(['B1_Correction' in ff for ff in nii_files]) if contains_B1: nii_files = [ff for ff in nii_files if 'B1_Correction' in ff] image_exists = True if len(nii_files) > 0 else False if image_exists: start_time = time.time() if not DO_ONLY_TABLE: nii_use_file = nii_files[0] logging.info(nii_use_file) gz_postfix = '.gz' if do_postprocessing else '' patient_folder = 'rid_%s' % (str(rid).zfill(4)) out_file_name = '%s_%sT_%s_rid%s_%s.nii%s' % (phase.lower(), field_strength, diagnosis_3cat, str(rid).zfill(4), viscode, gz_postfix) out_folder = os.path.join(processed_images_folder, patient_folder) utils.makefolder(out_folder) out_file_path = os.path.join(out_folder, out_file_name) if os.path.exists(out_file_path): logging.info('!!! File already exists. Skipping') continue else: logging.info('--- Doing File: %s' % out_file_path) if not do_postprocessing: logging.info('Not doing any preprocessing...') shutil.copyfile(nii_use_file, out_file_path) else: tmp_file_path = os.path.join(tmp_file_folder, 'tmp_rid%s_%s.nii.gz' % (str(rid).zfill(4), str(tmp_index))) shutil.copyfile(nii_use_file, tmp_file_path) if do_reorientation: # fsl orientation enforcing: logging.info('Reorienting to MNI space...') Popen('fslreorient2std {0} {1}'.format(tmp_file_path, tmp_file_path), shell=True).communicate() if do_cropping: # field of view cropping logging.info('Cropping the field of view...') Popen('robustfov -i {0} -r {1}'.format(tmp_file_path, tmp_file_path), shell=True).communicate() if do_bias_correction: # bias correction with N4: logging.info('Bias correction...') Popen('{0} {1} {2}'.format(N4_executable, tmp_file_path, tmp_file_path), shell=True).communicate() if do_registration: # registration with flirt to MNI 152: logging.info('Registering the structural image...') Popen( 'flirt -in {0} -ref {1} -out {2} -searchrx -45 45 -searchry -45 45 -searchrz -45 45 -dof 7'.format( tmp_file_path, mni_template_t1, tmp_file_path), shell=True).communicate() if do_skull_stripping: # skull stripping with bet2 logging.info('Skull stripping...') # Popen('bet {0} {1} -R -f 0.5 -g 0'.format(tmp_file_path, tmp_file_path), shell=True).communicate() # bet was not robust enough Popen('{0} {1} {2} -R -f 0.5 -g 0'.format(robex_executable, tmp_file_path, tmp_file_path), shell=True).communicate() logging.info('Finished.') logging.info('Copying tmp file: %s, to output: %s' % (tmp_file_path, out_file_path)) shutil.copyfile(tmp_file_path, out_file_path) if write_csv: csvwriter.writerow([rid, phase, image_exists, site, viscode, exam_date, field_strength, diagnosis, diagnosis_3cat, current_age, gender, weight, education, ethnicity, race, apoe4, adas13, mmse, faq, 1]) elapsed_time = time.time() - start_time logging.info('Elapsed time: %.2f secs' % elapsed_time) if not image_exists and INCLUDE_MISSING_IMAGES_IN_TABLE and write_csv: # If the include missing images constant is set to true it will write all the rows to the table csvwriter.writerow([rid, phase, image_exists, site, viscode, exam_date, field_strength, diagnosis, diagnosis_3cat, current_age, gender, weight, education, ethnicity, race, apoe4, adas13, mmse, faq, 1]) if __name__ == '__main__': # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI1_screening_noPP/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI1_screening_reorient_crop_strip/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI1_screening_reorient_crop/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI1_screening_reorient_crop_strip_mni/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_ender_selection_reorient_crop/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_ender_selection_noPP/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_ender_selection_allPP_robex/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_all_no_skullstrip/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_all_no_PP_2/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_all_no_skullstrip/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_all_allPP_robex/') ### ---------- processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_all_no_PP_3') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_allfixed_no_skullstrip/') # processed_images_folder = os.path.join(bmicdatasets_root, 'bmicdatasets/Processed/ADNI_Christian/ADNI_allfixed_allPP_robex/') utils.makefolder(processed_images_folder) summary_csv_file = os.path.join(processed_images_folder, 'summary_alldata.csv') do_reorientation = True #True do_registration = True #True do_bias_correction = True do_cropping = True #True do_skull_stripping = False #True # adnimerge_table = pd.read_csv(adni_merge_path, nrows=2) # adnimerge_table = pd.read_csv(adni_merge_path, chunksize=100) pool = multiprocessing.Pool(1) start_time = time.time() # func_list = [] # for tmp_index, df in enumerate(adnimerge_table): # # f = pool.apply_async(do_preprocessing, args=(df, tmp_index, processed_images_folder, summary_csv_file), # kwds={'do_reorientation': do_reorientation, # 'do_registration': do_registration, # 'do_bias_correction': do_bias_correction, # 'do_cropping': do_cropping, # 'do_skull_stripping': do_skull_stripping, # 'write_csv': True}) # # func_list.append(f) # # # for f in func_list: # f.get() adnimerge_table = pd.read_csv(adni_merge_path) do_preprocessing(adnimerge_table, 0, processed_images_folder, summary_csv_file, do_reorientation=do_reorientation, do_registration=do_registration, do_bias_correction=do_bias_correction, do_cropping=do_cropping, do_skull_stripping=do_skull_stripping, write_csv=True) logging.info('Elapsed time %f secs' % (time.time()-start_time)) ``` #### File: experiments/gan/FCN_disc_res_gen_bn.py ```python __author__ = 'jdietric' from experiments.gan.standard_parameters import * experiment_name = 'FCN_disc_res_gen_n16b3_no_noise_all_small_data_1e4l1_bn_i1' # Model settings batch_normalization = True # model to use def generator(xs, z_noise, training, scope_reuse=False, scope_name='generator'): return model_zoo.bousmalis_generator(xs, z_noise=z_noise, training=training, batch_normalization=batch_normalization, residual_blocks=3, nfilters=16, scope_reuse=scope_reuse, scope_name=scope_name) def discriminator(x, training, scope_reuse=False, scope_name='discriminator'): diag_logits = model_zoo.FCN_disc_bn(x, training, nlabels=1, scope_name=scope_name, scope_reuse=scope_reuse) return diag_logits ``` #### File: jodietrich/wgan_domain_adaptation/histograms.py ```python import config.system as sys_config import os import utils import numpy as np import matplotlib.pyplot as plt from pylab import savefig # make histograms to compare 1.5 T and 3 T images and generated images # histograms of intensity and intensity gradient with respect to the spacial dimensions def make_histogram_vectors(image): # image must be a numpy array vectors = {} vectors['intensity'] = image.flatten() vectors['gradient_norm'] = pixel_gradient_norm_list(image) return vectors def pixel_gradient_norm_list(image): difference_images = pixel_difference_gradients(image) pixel_gradient_norms = np.linalg.norm(difference_images, ord=2, axis=-1) pixel_gradient_norm_vector = pixel_gradient_norms.flatten() return pixel_gradient_norm_vector def pixel_difference_gradients(image): pixel_dif1 = image[1:, :-1, :-1] - image[:-1, :-1, :-1] pixel_dif2 = image[:-1, 1:, :-1] - image[:-1, :-1, :-1] pixel_dif3 = image[:-1, :-1, 1:] - image[:-1, :-1, :-1] return np.stack((pixel_dif1, pixel_dif2, pixel_dif3), axis=-1) def plot_histograms(hist_vectors, fig_name, saving_folder, n_bins='auto', cutoff_left=0.01, show_figure=True): # plots the intensity and gradient norm histograms fig = plt.figure(fig_name) plt.subplot(121) plt.hist(hist_vectors['intensity'], bins=n_bins, range=(-1 + cutoff_left, 1)) plt.xlabel('intensity') plt.ylabel('number of pixels') plt.subplot(122) plt.hist(hist_vectors['gradient_norm'], bins=n_bins, range=(cutoff_left, 2)) plt.xlabel('gradient norm') plt.ylabel('number of pixels') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) save_path = os.path.join(saving_folder, fig_name + '.svg') print('saving figure as: ' + save_path) savefig(save_path, bbox_inches='tight') if show_figure: plt.show() if __name__ == '__main__': # images path plot_name = 'real_1T5_avg' img_folder = os.path.join(sys_config.project_root, 'data/generated_images/final/all_experiments') saving_folder = '/scratch_net/brossa/jdietric/Documents/thesis/figures/histograms' sub_folder = 'source' field_strs = ['1.5'] labels = [0, 2] fs_label_combinations = [('1.5', 0), ('1.5', 2)] # get all images from the given combinations image_folder_path = os.path.join(img_folder, sub_folder) file_list = os.listdir(image_folder_path) # filter out relevant images filtered_file_list = [] for fs_label_tuple in fs_label_combinations: contain_strings = [fs_label_tuple[0] + 'T', 'diag%d' % fs_label_tuple[1]] filtered_file_list += [file_name for file_name in file_list if all([str in file_name for str in contain_strings])] hist_vectors = {'intensity': [], 'gradient_norm': []} for img_name in filtered_file_list: img_path = os.path.join(img_folder, sub_folder, img_name) # load image img_array, _, _ = utils.load_nii(img_path) hist_vectors['intensity'].append(make_histogram_vectors(img_array)['intensity']) hist_vectors['gradient_norm'].append(make_histogram_vectors(img_array)['gradient_norm']) avg_hist_vectors = {'intensity': np.mean(hist_vectors['intensity']), 'gradient_norm': hist_vectors['gradient_norm']} plot_histograms(hist_vectors, plot_name, saving_folder) # code for single image histogram # images path # img_folder = os.path.join(sys_config.project_root, 'data/generated_images/final/all_experiments') # sub_folder = 'residual_gen_n8b4_disc_n8_bn_dropout_keep0.9_10_noise_all_small_data_1e4l1_s3_final_i1' # img_num = 468 # field_str = '1.5' # label = 2 # img_name = 'generated_img_%sT_diag%d_ind%d.nii.gz' % (field_str, label, img_num) # saving_folder = '/scratch_net/brossa/jdietric/Documents/thesis/figures/histograms' # field_str = field_str.replace('.', '') # plot_name = 'separate_residual_no_noise_target' + field_str + 'T_' + str(img_num) # img_path = os.path.join(img_folder, sub_folder, img_name) # # load image # img_array, _, _ = utils.load_nii(img_path) # hist_vectors = make_histogram_vectors(img_array) # plot_histograms(hist_vectors, plot_name, saving_folder) ``` #### File: jodietrich/wgan_domain_adaptation/image_utils.py ```python import numpy as np from skimage import measure import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') try: import cv2 except: logging.warning('Could not import opencv. Augmentation functions will be unavailable.') else: def rotate_image(img, angle, interp=cv2.INTER_LINEAR): rows, cols = img.shape[:2] rotation_matrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1) return cv2.warpAffine(img, rotation_matrix, (cols, rows), flags=interp) def resize_image(im, size, interp=cv2.INTER_LINEAR): im_resized = cv2.resize(im, (size[1], size[0]), interpolation=interp) # swap sizes to account for weird OCV API return im_resized def convert_to_uint8(image): image = image - image.min() image = 255.0*np.divide(image.astype(np.float32),image.max()) return image.astype(np.uint8) def normalise_image(image): ''' make image zero mean and unit standard deviation ''' img_o = np.float32(image.copy()) m = np.mean(img_o) s = np.std(img_o) return np.divide((img_o - m), s) def map_image_to_intensity_range(image, min_o, max_o): if image.dtype in [np.uint8, np.uint16, np.uint32]: assert min_o >= 0, 'Input image type is uintXX but you selected a negative min_o: %f' % min_o if image.dtype == np.uint8: assert max_o <= 255, 'Input image type is uint8 but you selected a max_o > 255: %f' % max_o min_i = np.min(image) max_i = np.max(image) image = (np.divide((image - min_i), max_i - min_i) * (max_o - min_o) + min_o).copy() return image def normalise_images(X): ''' Helper for making the images zero mean and unit standard deviation i.e. `white` ''' X_white = np.zeros(X.shape, dtype=np.float32) for ii in range(X.shape[0]): Xc = X[ii,:,:,:] mc = Xc.mean() sc = Xc.std() Xc_white = np.divide((Xc - mc), sc) X_white[ii,:,:,:] = Xc_white return X_white.astype(np.float32) def reshape_2Dimage_to_tensor(image): return np.reshape(image, (1,image.shape[0], image.shape[1],1)) def keep_largest_connected_components(mask): ''' Keeps only the largest connected components of each label for a segmentation mask. ''' out_img = np.zeros(mask.shape, dtype=np.uint8) for struc_id in [1, 2, 3]: binary_img = mask == struc_id blobs = measure.label(binary_img, connectivity=1) props = measure.regionprops(blobs) if not props: continue area = [ele.area for ele in props] largest_blob_ind = np.argmax(area) largest_blob_label = props[largest_blob_ind].label out_img[blobs == largest_blob_label] = struc_id return out_img ``` #### File: jodietrich/wgan_domain_adaptation/joint_train.py ```python import logging import time import numpy as np import os.path import tensorflow as tf import shutil from sklearn.metrics import f1_score import config.system as sys_config import gan_model from tfwrapper import utils as tf_utils import utils import adni_data_loader_all import data_utils from batch_generator_list import iterate_minibatches_endlessly, iterate_minibatches import clf_model_multitask as clf_model_mt import joint_model logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') # Set SGE_GPU environment variable if we are not on the local host sys_config.setup_GPU_environment() ####################################################################### from experiments.joint import clf_allconv_gan_bousmalis as exp_config ####################################################################### log_dir = os.path.join(sys_config.log_root, exp_config.log_folder, exp_config.experiment_name) try: import cv2 except: logging.warning('Could not find cv2. If you want to use augmentation ' 'function you need to setup OpenCV.') def run_training(continue_run, log_dir): logging.info('===== RUNNING EXPERIMENT ========') logging.info(exp_config.experiment_name) logging.info('=================================') init_step = 0 if continue_run: logging.info('!!!!!!!!!!!!!!!!!!!!!!!!!!!! Continuing previous run !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') try: init_checkpoint_path = utils.get_latest_model_checkpoint_path(log_dir, 'model.ckpt') logging.info('Checkpoint path: %s' % init_checkpoint_path) init_step = int(init_checkpoint_path.split('/')[-1].split('-')[-1]) + 1 # plus 1 b/c otherwise starts with eval logging.info('Latest step was: %d' % init_step) log_dir += '_cont' except: logging.warning('!!! Didnt find init checkpoint. Maybe first run failed. Disabling continue mode...') continue_run = False init_step = 0 logging.info('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') # import data data = adni_data_loader_all.load_and_maybe_process_data( input_folder=exp_config.data_root, preprocessing_folder=exp_config.preproc_folder, size=exp_config.image_size, target_resolution=exp_config.target_resolution, label_list = exp_config.label_list, offset=exp_config.offset, rescale_to_one=exp_config.rescale_to_one, force_overwrite=False ) # extract images and indices of source/target images for the training and validation set images_train, source_images_train_ind, target_images_train_ind,\ images_val, source_images_val_ind, target_images_val_ind = data_utils.get_images_and_fieldstrength_indices( data, exp_config.source_field_strength, exp_config.target_field_strength) # get labels # the following are HDF5 datasets, not numpy arrays labels_train = data['diagnosis_train'] ages_train = data['age_train'] labels_val = data['diagnosis_val'] ages_val = data['age_val'] if exp_config.age_ordinal_regression: ages_train = utils.age_to_ordinal_reg_format(ages_train, bins=exp_config.age_bins) ordinal_reg_weights = utils.get_ordinal_reg_weights(ages_train) else: ages_train = utils.age_to_bins(ages_train, bins=exp_config.age_bins) ordinal_reg_weights = None if exp_config.age_ordinal_regression: ages_val = utils.age_to_ordinal_reg_format(ages_val, bins=exp_config.age_bins) else: ages_val= utils.age_to_bins(ages_val, bins=exp_config.age_bins) generator = exp_config.generator discriminator = exp_config.discriminator augmentation_function = exp_config.augmentation_function if exp_config.use_augmentation else None s_sampler_train = iterate_minibatches_endlessly(images_train, batch_size=2*exp_config.batch_size, exp_config=exp_config, labels_list=[labels_train, ages_train], selection_indices=source_images_train_ind, augmentation_function=augmentation_function) t_sampler_train = iterate_minibatches_endlessly(images_train, batch_size=exp_config.batch_size, exp_config=exp_config, labels_list=[labels_train, ages_train], selection_indices=target_images_train_ind, augmentation_function=augmentation_function) with tf.Graph().as_default(): training_time_placeholder = tf.placeholder(tf.bool, shape=[], name='training_time') # GAN # input noise for generator if exp_config.use_generator_input_noise: noise_in_gen_pl = tf.random_uniform(shape=exp_config.generator_input_noise_shape, minval=-1, maxval=1) else: noise_in_gen_pl = None # target image batch xt_pl = tf.placeholder(tf.float32, image_tensor_shape(exp_config.batch_size), name='x_target') # the classifier uses 2 times the batch size of the GAN clf_batch_size = 2 * exp_config.batch_size # source image batch xs_pl, diag_s_pl, ages_s_pl = placeholders_clf(clf_batch_size, 'source') # split source batch into 1 to be translated to xf and 2 for the classifier # for the discriminator train op half 2 of the batch is not used xs1_pl, xs2_pl = tf.split(xs_pl, 2, axis=0) # generated fake image batch xf_pl = generator(xs1_pl, noise_in_gen_pl, training_time_placeholder) # difference between generated and source images diff_img_pl = xf_pl - xs1_pl # visualize the images by showing one slice of them in the z direction tf.summary.image('sample_outputs', tf_utils.put_kernels_on_grid3d(xf_pl, exp_config.cut_axis, exp_config.cut_index, rescale_mode='manual', input_range=exp_config.image_range)) tf.summary.image('sample_xt', tf_utils.put_kernels_on_grid3d(xt_pl, exp_config.cut_axis, exp_config.cut_index, rescale_mode='manual', input_range=exp_config.image_range)) tf.summary.image('sample_xs', tf_utils.put_kernels_on_grid3d(xs1_pl, exp_config.cut_axis, exp_config.cut_index, rescale_mode='manual', input_range=exp_config.image_range)) tf.summary.image('sample_difference_xf-xs', tf_utils.put_kernels_on_grid3d(diff_img_pl, exp_config.cut_axis, exp_config.cut_index, rescale_mode='centered', cutoff_abs=exp_config.diff_threshold)) # output of the discriminator for real image d_pl = discriminator(xt_pl, training_time_placeholder, scope_reuse=False) # output of the discriminator for fake image d_pl_ = discriminator(xf_pl, training_time_placeholder, scope_reuse=True) d_hat = None x_hat = None if exp_config.improved_training: epsilon = tf.random_uniform([], 0.0, 1.0) x_hat = epsilon * xt_pl + (1 - epsilon) * xf_pl d_hat = discriminator(x_hat, training_time_placeholder, scope_reuse=True) dist_l1 = tf.reduce_mean(tf.abs(diff_img_pl)) learning_rate_gan_pl = tf.placeholder(tf.float32, shape=[], name='learning_rate') learning_rate_clf_pl = tf.placeholder(tf.float32, shape=[], name='learning_rate') if exp_config.momentum is not None: optimizer_handle = lambda learning_rate: exp_config.optimizer_handle(learning_rate=learning_rate, momentum=exp_config.momentum) else: optimizer_handle = lambda learning_rate: exp_config.optimizer_handle(learning_rate=learning_rate) # Build the operation for clipping the discriminator weights d_clip_op = gan_model.clip_op() # Put L1 distance of generated image and original image on summary dist_l1_summary_op = tf.summary.scalar('L1_distance_to_source_img', dist_l1) # Classifier ---------------------------------------------------------------------------------------- # for training usually false so xt and xf get concatenated as classifier input, otherwise directly_feed_clf_pl = tf.placeholder(tf.bool, shape=[], name='direct_classifier_feeding') # conditionally assign either a concatenation of the generated dataset and the source data # cond to avoid having to specify not needed placeholders in the feed dict images_clf, diag_clf, ages_clf = tf.cond( directly_feed_clf_pl, lambda: placeholders_clf(clf_batch_size, 'direct_clf'), lambda: concatenate_clf_input([xf_pl, xs2_pl], diag_s_pl, ages_s_pl, scope_name = 'fs_concat') ) tf.summary.scalar('learning_rate_gan', learning_rate_gan_pl) tf.summary.scalar('learning_rate_clf', learning_rate_clf_pl) # Build a Graph that computes predictions from the inference model. diag_logits_train, ages_logits_train = exp_config.clf_model_handle(images_clf, nlabels=exp_config.nlabels, training=training_time_placeholder, n_age_thresholds=len(exp_config.age_bins), bn_momentum=exp_config.bn_momentum) # Add to the Graph the Ops for loss calculation. [classifier_loss, diag_loss, age_loss, weights_norm_clf] = clf_model_mt.loss(diag_logits_train, ages_logits_train, diag_clf, ages_clf, nlabels=exp_config.nlabels, weight_decay=exp_config.weight_decay, diag_weight=exp_config.diag_weight, age_weight=exp_config.age_weight, use_ordinal_reg=exp_config.age_ordinal_regression, ordinal_reg_weights=ordinal_reg_weights) # nr means no regularization, meaning the loss without the regularization term train_ops_dict, losses_gan_dict = joint_model.training_ops(d_pl, d_pl_, classifier_loss, optimizer_handle=optimizer_handle, learning_rate_gan=learning_rate_gan_pl, learning_rate_clf=learning_rate_clf_pl, l1_img_dist=dist_l1, gan_loss_weight=exp_config.gan_loss_weight, task_loss_weight=exp_config.task_loss_weight, w_reg_img_dist_l1=exp_config.w_reg_img_dist_l1, w_reg_gen_l1=exp_config.w_reg_gen_l1, w_reg_disc_l1=exp_config.w_reg_disc_l1, w_reg_gen_l2=exp_config.w_reg_gen_l2, w_reg_disc_l2=exp_config.w_reg_disc_l2, d_hat=d_hat, x_hat=x_hat, scale=exp_config.scale) tf.summary.scalar('classifier loss', classifier_loss) tf.summary.scalar('diag_loss', diag_loss) tf.summary.scalar('age_loss', age_loss) tf.summary.scalar('weights_norm_term_classifier', weights_norm_clf) tf.summary.scalar('generator loss joint', losses_gan_dict['gen']['joint']) tf.summary.scalar('discriminator loss joint', losses_gan_dict['disc']['joint']) eval_diag_loss, eval_ages_loss, pred_labels, ages_softmaxs = clf_model_mt.evaluation(diag_logits_train, ages_logits_train, diag_clf, ages_clf, images_clf, diag_weight=exp_config.diag_weight, age_weight=exp_config.age_weight, nlabels=exp_config.nlabels, use_ordinal_reg=exp_config.age_ordinal_regression) # Build the summary Tensor based on the TF collection of Summaries. summary = tf.summary.merge_all() # Add the variable initializer Op. init = tf.global_variables_initializer() # Create a savers for writing training checkpoints. saver_latest = tf.train.Saver(max_to_keep=2) saver_best_disc = tf.train.Saver(max_to_keep=2) # disc loss is scaled negative EM distance saver_best_diag_f1 = tf.train.Saver(max_to_keep=5) saver_best_ages_f1 = tf.train.Saver(max_to_keep=1) saver_best_xent = tf.train.Saver(max_to_keep=5) # validation summaries gan val_disc_loss_pl = tf.placeholder(tf.float32, shape=[], name='disc_val_loss') disc_val_summary_op = tf.summary.scalar('validation_discriminator_loss', val_disc_loss_pl) val_gen_loss_pl = tf.placeholder(tf.float32, shape=[], name='gen_val_loss') gen_val_summary_op = tf.summary.scalar('validation_generator_loss', val_gen_loss_pl) val_summary_gan = tf.summary.merge([disc_val_summary_op, gen_val_summary_op]) # Classifier summary val_error_clf_ = tf.placeholder(tf.float32, shape=[], name='val_error_diag') val_error_summary = tf.summary.scalar('classifier_validation_loss', val_error_clf_) val_diag_f1_score_ = tf.placeholder(tf.float32, shape=[], name='val_diag_f1') val_f1_diag_summary = tf.summary.scalar('validation_diag_f1', val_diag_f1_score_) val_ages_f1_score_ = tf.placeholder(tf.float32, shape=[], name='val_ages_f1') val_f1_ages_summary = tf.summary.scalar('validation_ages_f1', val_ages_f1_score_) val_summary_clf = tf.summary.merge([val_error_summary, val_f1_diag_summary, val_f1_ages_summary]) val_summary = tf.summary.merge([val_summary_clf, val_summary_gan]) train_error_clf_ = tf.placeholder(tf.float32, shape=[], name='train_error_diag') train_error_clf_summary = tf.summary.scalar('classifier_training_loss', train_error_clf_) train_diag_f1_score_ = tf.placeholder(tf.float32, shape=[], name='train_diag_f1') train_diag_f1_summary = tf.summary.scalar('training_diag_f1', train_diag_f1_score_) train_ages_f1_score_ = tf.placeholder(tf.float32, shape=[], name='train_ages_f1') train_f1_ages_summary = tf.summary.scalar('training_ages_f1', train_ages_f1_score_) train_summary = tf.summary.merge([train_error_clf_summary, train_diag_f1_summary, train_f1_ages_summary]) # prevents ResourceExhaustError when a lot of memory is used config = tf.ConfigProto() config.gpu_options.allow_growth = True # Do not assign whole gpu memory, just use it on the go config.allow_soft_placement = True # If a operation is not defined in the default device, let it execute in another. # Create a session for running Ops on the Graph. sess = tf.Session(config=config) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) sess.graph.finalize() # Run the Op to initialize the variables. sess.run(init) if continue_run: # Restore session saver_latest.restore(sess, init_checkpoint_path) curr_lr_gan = exp_config.learning_rate_gan curr_lr_clf = exp_config.learning_rate_clf no_improvement_counter = 0 best_val = np.inf last_train = np.inf loss_history = [] loss_gradient = np.inf best_diag_f1_score = 0 best_ages_f1_score = 0 # initialize value of lowest (i. e. best) discriminator loss best_d_loss = np.inf for step in range(init_step, exp_config.max_steps): start_time = time.time() # discriminator and classifier (task) training iterations d_iters = 5 t_iters = 1 if step % 500 == 0 or step < 25: d_iters = 100 for iteration in range(max(d_iters, t_iters)): x_t, [diag_t, age_t] = next(t_sampler_train) x_s, [diag_s, age_s] = next(s_sampler_train) feed_dict_dc = {xs_pl: x_s, xt_pl: x_t, learning_rate_gan_pl: curr_lr_gan, learning_rate_clf_pl: curr_lr_clf, diag_s_pl: diag_s, ages_s_pl: age_s, training_time_placeholder: True, directly_feed_clf_pl: False} train_ops_list_dc = [] if iteration < t_iters: # train classifier train_ops_list_dc.append(train_ops_dict['clf']) if iteration < d_iters: # train discriminator train_ops_list_dc.append(train_ops_dict['disc']) sess.run(train_ops_list_dc, feed_dict=feed_dict_dc) if not exp_config.improved_training: sess.run(d_clip_op) elapsed_time = time.time() - start_time # train generator x_t, [diag_t, age_t] = next(t_sampler_train) x_s, [diag_s, age_s] = next(s_sampler_train) sess.run(train_ops_dict['gen'], feed_dict={xs_pl: x_s, xt_pl: x_t, learning_rate_gan_pl: curr_lr_gan, learning_rate_clf_pl: curr_lr_clf, diag_s_pl: diag_s, ages_s_pl: age_s, training_time_placeholder: True, directly_feed_clf_pl: False }) if step % exp_config.update_tensorboard_frequency == 0: x_t, [diag_t, age_t] = next(t_sampler_train) x_s, [diag_s, age_s] = next(s_sampler_train) feed_dict_summary={xs_pl: x_s, xt_pl: x_t, learning_rate_gan_pl: curr_lr_gan, learning_rate_clf_pl: curr_lr_clf, diag_s_pl: diag_s, ages_s_pl: age_s, training_time_placeholder: True, directly_feed_clf_pl: False } c_loss_one_batch, gan_losses_one_batch_dict, summary_str = sess.run( [classifier_loss, losses_gan_dict, summary], feed_dict=feed_dict_summary) summary_writer.add_summary(summary_str, step) summary_writer.flush() logging.info("[Step: %d], classifier_loss: %g, GAN losses: %s" % (step, c_loss_one_batch, str(gan_losses_one_batch_dict))) logging.info(" - elapsed time for one step: %f secs" % elapsed_time) if (step + 1) % exp_config.train_eval_frequency == 0: # Evaluate against the training set logging.info('Training data eval for classifier (target domain):') [train_loss, train_diag_f1, train_ages_f1] = do_eval_classifier(sess, eval_diag_loss, eval_ages_loss, pred_labels, ages_softmaxs, xs_pl, diag_s_pl, ages_s_pl, training_time_placeholder, directly_feed_clf_pl, images_train, [labels_train, ages_train], clf_batch_size=clf_batch_size, do_ordinal_reg=exp_config.age_ordinal_regression, selection_indices=source_images_train_ind) train_summary_msg = sess.run(train_summary, feed_dict={train_error_clf_: train_loss, train_diag_f1_score_: train_diag_f1, train_ages_f1_score_: train_ages_f1} ) summary_writer.add_summary(train_summary_msg, step) loss_history.append(train_loss) if len(loss_history) > 5: loss_history.pop(0) loss_gradient = (loss_history[-5] - loss_history[-1]) / 2 logging.info('loss gradient is currently %f' % loss_gradient) if exp_config.schedule_lr and loss_gradient < exp_config.schedule_gradient_threshold: logging.warning('Reducing learning rate of the classifier!') curr_lr_clf /= 10.0 logging.info('Learning rate of the classifier changed to: %f' % curr_lr_clf) # reset loss history to give the optimisation some time to start decreasing again loss_gradient = np.inf loss_history = [] if train_loss <= last_train: # best_train: logging.info('Decrease in training error!') else: logging.info('No improvment in training error for %d steps' % no_improvement_counter) last_train = train_loss if (step + 1) % exp_config.validation_frequency == 0: # evaluate gan losses g_loss_val_avg, d_loss_val_avg = do_eval_gan(sess=sess, losses=[losses_gan_dict['gen']['nr'], losses_gan_dict['disc']['nr']], images_s_pl=xs_pl, images_t_pl=xt_pl, training_time_placeholder=training_time_placeholder, images=images_val, source_images_ind=source_images_val_ind, target_images_ind=target_images_val_ind) # evaluate classifier losses [val_loss, val_diag_f1, val_ages_f1] = do_eval_classifier(sess, eval_diag_loss, eval_ages_loss, pred_labels, ages_softmaxs, xs_pl, diag_s_pl, ages_s_pl, training_time_pl=training_time_placeholder, directly_feed_clf_pl=directly_feed_clf_pl, images=images_val, labels_list=[labels_val, ages_val], clf_batch_size=clf_batch_size, do_ordinal_reg=exp_config.age_ordinal_regression, selection_indices=source_images_val_ind) feed_dict_val = { val_error_clf_: val_loss, val_diag_f1_score_: val_diag_f1, val_ages_f1_score_: val_ages_f1, val_disc_loss_pl: d_loss_val_avg, val_gen_loss_pl: g_loss_val_avg } validation_summary_msg = sess.run(val_summary, feed_dict=feed_dict_val) summary_writer.add_summary(validation_summary_msg, step) summary_writer.flush() # save best variables (if discriminator loss is the lowest yet) if d_loss_val_avg <= best_d_loss: best_d_loss = d_loss_val_avg best_file = os.path.join(log_dir, 'model_best_d_loss.ckpt') saver_best_disc.save(sess, best_file, global_step=step) logging.info('Found new best discriminator loss on validation set! - %f - Saving model_best_d_loss.ckpt' % best_d_loss) if val_diag_f1 >= best_diag_f1_score: best_diag_f1_score = val_diag_f1 best_file = os.path.join(log_dir, 'model_best_diag_f1.ckpt') saver_best_diag_f1.save(sess, best_file, global_step=step) logging.info( 'Found new best DIAGNOSIS F1 score on validation set! - %f - Saving model_best_diag_f1.ckpt' % val_diag_f1) if val_ages_f1 >= best_ages_f1_score: best_ages_f1_score = val_ages_f1 best_file = os.path.join(log_dir, 'model_best_ages_f1.ckpt') saver_best_ages_f1.save(sess, best_file, global_step=step) logging.info( 'Found new best AGES F1 score on validation set! - %f - Saving model_best_ages_f1.ckpt' % val_ages_f1) if val_loss <= best_val: best_val = val_loss best_file = os.path.join(log_dir, 'model_best_xent.ckpt') saver_best_xent.save(sess, best_file, global_step=step) logging.info( 'Found new best crossentropy on validation set! - %f - Saving model_best_xent.ckpt' % val_loss) logging.info("[Validation], generator loss: %g, discriminator_loss: %g" % (g_loss_val_avg, d_loss_val_avg)) # Write the summaries and print an overview fairly often. if step % exp_config.save_frequency == 0: saver_latest.save(sess, os.path.join(log_dir, 'model.ckpt'), global_step=step) sess.close() def image_tensor_shape(batch_size): return [batch_size] + list(exp_config.image_size) + [exp_config.n_channels] def image_placeholder(batch_size, name): return tf.placeholder(tf.float32, image_tensor_shape(batch_size), name=name) def placeholders_clf(batch_size, scope_name): with tf.variable_scope(scope_name): labels_tensor_shape = [batch_size] if exp_config.age_ordinal_regression: ages_tensor_shape = [batch_size, len(exp_config.age_bins)] else: ages_tensor_shape = [batch_size] images_pl = image_placeholder(batch_size, 'images') diag_pl = tf.placeholder(tf.uint8, shape=labels_tensor_shape, name='labels') ages_pl = tf.placeholder(tf.uint8, shape=ages_tensor_shape, name='ages') return images_pl, diag_pl, ages_pl def concatenate_clf_input(images_list, diag_list, ages_list, scope_name='fs_concat'): with tf.variable_scope(scope_name): images = tf.concat(images_list, axis=0, name='images') diag = tf.concat(diag_list, axis=0, name='diagnose') ages = tf.concat(ages_list, axis=0, name='ages') return images, diag, ages def do_eval_gan(sess, losses, images_s_pl, images_t_pl, training_time_placeholder, images, source_images_ind, target_images_ind, batch_size=exp_config.batch_size, num_batches=exp_config.num_val_batches): ''' Function for running the evaluations of the gan every X iterations on the training and validation sets. :param sess: The current tf session :param losses: list of loss placeholders :param images_placeholder: Placeholder for the images :param labels_placeholder: Placeholder for the masks :param training_time_placeholder: Placeholder toggling the training/testing mode. :param images: A numpy array or h5py dataset containing the images :param batch_size: The batch_size to use. :return: The average loss (as defined in the experiment), and the average dice over all `images`. ''' s_sampler_val = iterate_minibatches_endlessly(images, batch_size=2*batch_size, exp_config=exp_config, selection_indices=source_images_ind) t_sampler_val = iterate_minibatches_endlessly(images, batch_size=batch_size, exp_config=exp_config, selection_indices=target_images_ind) # evaluate the validation batch with batch_size images (from each domain) at a time loss_val_array = np.empty((num_batches, len(losses)), dtype=np.float32) for batch_ind in range(exp_config.num_val_batches): x_t = next(t_sampler_val) x_s = next(s_sampler_val) loss_val = sess.run( losses, feed_dict={images_s_pl: x_s, images_t_pl: x_t, training_time_placeholder: False}) loss_val_array[batch_ind, :] = np.array(loss_val) loss_val_avg = np.mean(loss_val_array, axis=0) logging.info(losses) logging.info(num_batches) logging.info('average val loss: ' + str(loss_val_avg.tolist())) return loss_val_avg.tolist() def do_eval_classifier(sess, eval_diag_loss, eval_ages_loss, pred_labels, ages_softmaxs, images_s_pl, diag_labels_pl, ages_pl, training_time_pl, directly_feed_clf_pl, images, labels_list, clf_batch_size, do_ordinal_reg, selection_indices=None): ''' Function for running the evaluations every X iterations on the training and validation sets. :param sess: The current tf session :param eval_loss: The placeholder containing the eval loss :param images_pl: Placeholder for the images :param labels_placeholder: Placeholder for the masks :param training_time_pl: Placeholder toggling the training/testing mode. :param images: A numpy array or h5py dataset containing the images :param labels_list: A numpy array or h45py dataset containing the corresponding labels :param clf_batch_size: The batch_size to use. :return: The average loss (as defined in the experiment), and the average dice over all `images`. ''' diag_loss_ii = 0 ages_loss_ii = 0 num_batches = 0 predictions_diag = [] predictions_diag_gt = [] predictions_ages = [] predictions_ages_gt = [] for batch in iterate_minibatches(images, labels_list, batch_size=clf_batch_size, selection_indices=selection_indices, augmentation_function=None, exp_config=exp_config): # No aug in evaluation # As before you can wrap the iterate_minibatches function in the BackgroundGenerator class for speed improvements # but at the risk of not catching exceptions x, [y, a] = batch assert y.shape[0] == clf_batch_size feed_dict = {images_s_pl: x, diag_labels_pl: y, ages_pl: a, training_time_pl: False, directly_feed_clf_pl: False} c_d_loss, c_a_loss, c_d_preds, c_a_softmaxs = sess.run([eval_diag_loss, eval_ages_loss, pred_labels, ages_softmaxs], feed_dict=feed_dict) # This converts the labels back into the original format. I.e. [0,1,1,0] will become [0,2,2,0] again if # 1 didn't exist in the dataset. c_d_preds = [exp_config.label_list[pp] for pp in c_d_preds] y_gts = [exp_config.label_list[pp] for pp in y] diag_loss_ii += c_d_loss ages_loss_ii += c_a_loss num_batches += 1 predictions_diag += c_d_preds predictions_diag_gt += y_gts if do_ordinal_reg: c_a_preds = np.asarray(c_a_softmaxs) c_a_preds = np.transpose(c_a_preds, (1, 0, 2)) c_a_preds = c_a_preds[:, :, 1] c_a_preds = np.uint8(c_a_preds + 0.5) predictions_ages += list(utils.ordinal_regression_to_bin(c_a_preds)) predictions_ages_gt += list(utils.ordinal_regression_to_bin(a)) else: c_a_preds = np.argmax(c_a_softmaxs, axis=-1) predictions_ages += list(c_a_preds) predictions_ages_gt += list(a) avg_loss = (diag_loss_ii / num_batches) + (ages_loss_ii / num_batches) # check whether the labels are in {0, 2} as expected logging.info('diagnose predictions and ground truth:') logging.info(predictions_diag) assert all([label in {0, 2} for label in predictions_diag]) logging.info(predictions_diag_gt) assert all([label in {0, 2} for label in predictions_diag_gt]) f1_diag_score = f1_score(np.asarray(predictions_diag_gt), np.asarray(predictions_diag), pos_label=2, average='binary') # micro is overall, macro doesn't take class imbalance into account # f1_ages_score = f1_score(np.asarray(predictions_ages_gt), np.asarray(predictions_ages), average='micro') # micro is overall, macro doesn't take class imbalance into account f1_ages_score = np.mean(np.abs(np.asarray(predictions_ages, dtype=np.int32) - np.asarray(predictions_ages_gt, dtype=np.int32))) logging.info(' Average loss: %0.04f, diag f1_score: %0.04f, age f1_score %0.04f' % (avg_loss, f1_diag_score, f1_ages_score)) return avg_loss, f1_diag_score, f1_ages_score def main(): continue_run = True if not tf.gfile.Exists(log_dir): tf.gfile.MakeDirs(log_dir) continue_run = False # Copy experiment config file if continue_run: tf.gfile.MakeDirs(log_dir + '_cont') shutil.copy(exp_config.__file__, log_dir + '_cont') else: shutil.copy(exp_config.__file__, log_dir) run_training(continue_run, log_dir=log_dir) if __name__ == '__main__': main() ```
{ "source": "jodilodi/Eyeshadow", "score": 3 }
#### File: jodilodi/Eyeshadow/color_analyse.py ```python import math import operator class Color_Class: def rgb_to_hex(rgb): return '%02x%02x%02x' % rgb class Color_Analysis: def Calculate_Mode_RGB(image, middle, borderdistance): start = x,y = middle[0] - borderdistance, middle[1] - borderdistance RGBDic = {} for i in range(int(start[0]), int(start[0] + borderdistance*2)): for j in range(int(start[1]), int(start[1] + borderdistance*2)): pixel = i,j RGB = r,g,b =image.getpixel(pixel) if RGB in RGBDic: RGBDic[RGB]+= 1 else: RGBDic[RGB] = 1 # return len(HSVDic) return len(RGBDic), max(RGBDic.items(), key=operator.itemgetter(1))[0] def Min_Max_RGB(image, middle, borderdistance): start = x,y = middle[0] - borderdistance, middle[1] - borderdistance R = [] G = [] B = [] for i in range(int(start[0]), int(start[0] + borderdistance*2)): for j in range(int(start[1]), int(start[1] + borderdistance*2)): pixel = i,j RGB = r,g,b =image.getpixel(pixel) # if RGB in RGBDic: # RGBDic[RGB]+= 1 # else: # RGBDic[RGB] = 1 R.append(RGB[0]) G.append(RGB[1]) B.append(RGB[2]) # return len(HSVDic) MIN = r,g,b = min(R), min(G), min(B) MAX = r,g,b = max(R), max(G), max(B) return MIN, MAX def within_rgb_frame(middle, topleft, topright, bottomleft, bottomright): #format r,g,b from each passed variable threshold = 15 if abs(middle[0] - topleft[0]) <= threshold \ and abs(middle[1] - topleft[1]) <= threshold \ and abs(middle[2] - topleft[2]) <= threshold \ and abs(middle[0] - topright[0]) <= threshold \ and abs(middle[1] - topright[1]) <= threshold \ and abs(middle[2] - topright[2]) <= threshold \ and abs(middle[0] - bottomleft[0]) <= threshold \ and abs(middle[1] - bottomleft[1]) <= threshold \ and abs(middle[2] - bottomleft[2]) <= threshold \ and abs(middle[0] - bottomright[0]) <= threshold \ and abs(middle[1] - bottomright[1]) <= threshold \ and abs(middle[2] - bottomright[2]) <= threshold : return True else: return False def AVG_Image_RGB(image, middle, borderdistance): start = x,y = middle[0] - borderdistance, middle[1] - borderdistance tot_r,tot_g,tot_b = 0,0,0 for i in range(int(start[0]), int(start[0] + borderdistance*2)): for j in range(int(start[1]), int(start[1] + borderdistance*2)): pixel = i,j RGB = r,g,b = image.getpixel(pixel) tot_r += r tot_g += g tot_b += b surfacearea = borderdistance * borderdistance * 4 RGBAvg = R,G,B = math.floor(tot_r/surfacearea), math.floor(tot_g/surfacearea), math.floor(tot_b/surfacearea) return RGBAvg def Calculate_Image_Box(image, middle): borderdistance = 200 middlex, middley = middle[0],middle[1] width, height = image.size middlergb = image.getpixel((middlex,middley)) topleftrgb =image.getpixel((max(1, middlex-borderdistance), max(1, middley - borderdistance))) toprightrgb = image.getpixel((min(width, middlex+borderdistance),max(1, middley-borderdistance))) bottomleftrgb = image.getpixel((max(1,middlex-borderdistance), min(height, middley+borderdistance))) bottomrightrgb = image.getpixel((min(width, middlex + borderdistance), min(height, middley + borderdistance))) if len(middlergb) != 3 or \ len(topleftrgb) != 3 or \ len(toprightrgb) != 3 or \ len(bottomleftrgb) != 3 or \ len(bottomrightrgb) != 3: print("Error") return 0 #do middle and try for 150 up/down and 150 right/left #check if the hue is within 60 degrees if not then go down by 50 all direction while not Color_Analysis.within_rgb_frame(middlergb, topleftrgb, toprightrgb, bottomleftrgb, bottomrightrgb) \ and borderdistance > 0: borderdistance -= 5 topleftrgb =image.getpixel((max(1, middlex-borderdistance), max(1, middley - borderdistance))) toprightrgb = image.getpixel((min(width, middlex+borderdistance),max(1, middley-borderdistance))) bottomleftrgb = image.getpixel((max(1,middlex-borderdistance), min(height, middley+borderdistance))) bottomrightrgb = image.getpixel((min(width, middlex + borderdistance), min(height, middley + borderdistance))) return borderdistance ``` #### File: jodilodi/Eyeshadow/html_scraping.py ```python from bs4 import BeautifulSoup import requests import re import sys #error handling #image stuff from PIL import Image from io import BytesIO class Brand: def __init__(self, name, id): self.name = name self.id = id class Eyeshadow: def __init__(self, name, imgsrc, src, foundin, grade, brand, finish): self.name = name self.imgsrc = imgsrc response = requests.get(imgsrc, timeout=5) self.byte = BytesIO(response.content).getvalue() self.src = src self.foundin = foundin self.temptaliagrade = grade self.brand = brand self.finish = finish class Temptalia_Scrapping: def Get_Brands(): url = "https://www.temptalia.com/p/_brands/" r = requests.get(url, timeout=5) html_doc = r.text soup = BeautifulSoup(html_doc, 'html.parser') #will print out all of the brands that temptalia has reviewed or mentioned # for option in soup.find(id='filter_brand'): # try: # if "Select" not in option.get_text() and "All Brands" not in option.get_text(): # print(option.get_text()) # except: # continue brands = [] for option in soup.find(id = 'filter_brand'): try: if "Select" not in option.get_text() and "All Brands" not in option.get_text(): #brands.append(option.get_text()) brands.append(Brand(option.get_text(), option['value'])) except: continue return brands def Brand_Contains_Eyeshadow(id): url = r"https://www.temptalia.com/product/page/1/?f_formula_search&f_formula=0&t%%5B0%%5D=12674&brand=%s&time=all&sorting=date_desc&archive=rated" % (id) try: r = requests.get(url, timeout=10) except: return True #dunno, false positive is better than false negative html_doc = r.text soup = BeautifulSoup(html_doc, 'html.parser') elements = soup.find_all("div", class_="alert alert-danger my-5 f-4 sans-serif text-center") if len(elements) == 0: #there is not warning for not eyeshadows return True else: return False def Print_Brands(): url = "https://www.temptalia.com/p/_brands/" r = requests.get(url, timeout=5) html_doc = r.text soup = BeautifulSoup(html_doc, 'html.parser') for option in soup.find(id = 'filter_brand'): print(option) print(option.get_text()) print(option['value']) def Get_Available_In_Palette(url): try: r = requests.get(url, timeout=5) html_doc = r.text soup = BeautifulSoup(html_doc, 'html.parser') section = soup.find(id="sectionAvailable") #section if section is None: return "Single" else: title = section.find("h4", class_="f-2 mb-0 regular text-uppercase").text return str.rstrip(title) except: return "Unknown" def Get_Eyeshadow_Rank(url): try: r = requests.get(url, timeout=5) html_doc = r.text soup = BeautifulSoup(html_doc, 'html.parser') # grade = soup.find("div", class_="glossover-grade large py-4").text gradebox = soup.find("div", class_="glossover-grade large py-4") if gradebox is None: return "" else: return gradebox.text except: return "" def Get_Eyeshadow_Finish(url): try: print(url) r = requests.get(url, timeout = 5) html_doc = r.text soup = BeautifulSoup(html_doc, 'html.parser') description = "none" for tag in soup.find_all("meta"): if tag.get("name", None) == "twitter:description": description = tag["content"] desSplit = description.split(" ") findex = 0 try: findex = desSplit.index('finish') except: findex = desSplit.index('finish.') print(desSplit[findex-1]) return desSplit[findex - 1] except: print(sys.exc_info()[0]) return -1 def Get_Eyeshadow(brand, id, pageindex): #brand, type is eyeshadow, date rangeis set to all time #https://www.temptalia.com/product/page/1/?f_formula_search&f_formula=0&t%%5B0%%5D=12674&brand=%s&time=all&sorting=date_desc&archive=rated url = r"https://www.temptalia.com/product/page/%s/?f_formula_search&f_formula=0&t%%5B0%%5D=12674&brand=%s&time=all&sorting=date_desc&archive=rated" % (pageindex, id) try: r = requests.get(url, timeout=10) except: print("Get Eyeshadow Page Error") return [] html_doc = r.text soup = BeautifulSoup(html_doc, 'html.parser') eyeshadowcolors = [] for element in soup.find_all("div", class_="display-badge"):#, class_="display-badge product product-archive"): try: #get the biggest image for the color allimg = element.find("img", class_="img-fluid").get('data-lazy-srcset') img_array = allimg.split(",") img = img_array[len(img_array)-1].strip() img = img[0:img.find(' ')] colorName = element.find("h5", class_="f-3 text-base text-ellipsis m-0").text src = element.find("h5", class_="f-3 text-base text-ellipsis m-0").find("a").get("href") foundin = Temptalia_Scrapping.Get_Available_In_Palette(src) grade = Temptalia_Scrapping.Get_Eyeshadow_Rank(src) finish = Temptalia_Scrapping.Get_Eyeshadow_Finish(src) eyeshadowcolors.append(Eyeshadow(colorName, img, src, foundin, grade, brand, finish)) print(colorName) except: print("Error in adding eyeshadow") print(sys.exc_info()[0]) continue return eyeshadowcolors def Get_Nav_Pages(id): url = r"https://www.temptalia.com/product/page/1/?f_formula_search&f_formula=0&t%%5B0%%5D=12674&brand=%s&time=all&sorting=date_desc&archive=rated" % id try: r = requests.get(url, timeout=5) html_doc = r.text soup = BeautifulSoup(html_doc, 'html.parser') maxpage = 1 for pages in soup.find_all(True, class_="page-link" ): try: maxpage = max(maxpage, int(pages.text)) except ValueError: continue return maxpage except: return 1 ``` #### File: jodilodi/Eyeshadow/Scrap_Insert.py ```python from html_scraping import Temptalia_Scrapping from demo_mongodb_test import Makeup_MongoDB from os import system, name from subprocess import call import os def Insert_New_Brands(): print("Get all brands from Temptalia") AllBrands = Temptalia_Scrapping.Get_Brands() #print(AllBrands) #print(Makeup_MongoDB.Contain_Brand(AllBrands[0])) print("Check if brand is already in db and insert") for brand in AllBrands: print(brand.name) brand_exist = Makeup_MongoDB.Contain_Brand(brand.name, brand.id) if not brand_exist: insertid = Makeup_MongoDB.Insert_Brand(brand.name, brand.id) print(insertid) else: print("exists") def clear(): _ = call('clear' if os.name == 'posix' else 'cls') if __name__ == "__main__": clear() #For Reset # Makeup_MongoDB.Delete_Makeup_DB() #Insert new brand names # Insert_New_Brands() #insert all eyeshadows branddata = Makeup_MongoDB.Get_Makeup_DB_After("<NAME>") for brand in branddata: print(brand) totalpages = Temptalia_Scrapping.Get_Nav_Pages(brand["temptalia_id"]) alleyeshadows = [] for pageindex in range(1, totalpages + 1): #for pageindex in range(1,2): alleyeshadows = alleyeshadows + Temptalia_Scrapping.Get_Eyeshadow(brand["name"], brand["temptalia_id"], pageindex) # for eyeshadow in alleyeshadows: # print(eyeshadow.name) # print(eyeshadow.src) # for i in range(0,10): # eyeshadow = alleyeshadows[i] for eyeshadow in alleyeshadows: exist = Makeup_MongoDB.Contain_Eyeshadow(eyeshadow.brand, eyeshadow.name) if not exist: insertid = Makeup_MongoDB.Insert_Eyeshadow(eyeshadow) print(insertid) else: print("Added") ```
{ "source": "JodisKripe/Python", "score": 4 }
#### File: project_euler/problem_092/sol1.py ```python def next_number(number: int) -> int: """ Returns the next number of the chain by adding the square of each digit to form a neww number. For example if number = 12, next_number() will return 1^2 + 2^2 = 5. Therefore 5 is the next number of the chain. >>> next_number(44) 32 >>> next_number(10) 1 >>> next_number(32) 13 """ num = 0 for i in range(len(str(number))): num += int(str(number)[i]) ** 2 return num def chain(number: int) -> bool: """ Generates the chain of numbers until the nest number generated is 1 0r 89. for example, if starting number is 44, then the function generates the following chain of numbers. chain: 44 → 32 → 13 → 10 → 1 → 1 once the next number generated is 1 or 89, the function Returns True if the next number generated by next_number() if 1. Returns False if the next number generated by next_number() is 89. >>> chain(10) True >>> chain(58) False >>> chain(1) True """ while number != 1 and number != 89: number = next_number(number) if number == 1: return True elif number == 89: return False def solution(number: int = 10000000) -> int: """ The function returns the total numbers that end up in 89 after the chain generation. The function accepts a range number and the function checks all the values under value number. if the chain generation leads to the end number as 1 or 89. If the chain() returns True, then total is incremented, implying that the number we started with ended up with 1 else total2 is incremented, implying that the number we started with ended up in 89 after chain generation. But the function returns total2 as the requirement of question is to find out how many ended up in 89. >>> solution(100) 80 >>> solution(10000000) 8581146 """ total = 0 total2 = 0 for i in range(1, number): val = chain(i) if val is True: total += 1 elif val is False: total2 += 1 return total2 if __name__ == "__main__": print(f"{solution() = }") ```
{ "source": "jodli/FritzScraper", "score": 2 }
#### File: FritzScraper/src/fritzscrapercargo.py ```python import time class FritzScraperCargo(object): def __init__(self, cargo): self.timestamp = time.time() self.cargo = cargo ```
{ "source": "j-o-d-o/accident_predictor", "score": 3 }
#### File: data/upload/sampler.py ```python import configparser from dlpipe.data_reader.mongodb import MongoDBConnect from dlpipe.utils import DLPipeLogger from accident_predictor.data.upload.data_encoder import sin_cos_representation from accident_predictor.data.upload.calc_class_distances import upload_distances from keras.utils.np_utils import to_categorical import numpy as np import copy def generate_synth_data(col, ids, insert=True): """ create synthetic data from distance calculation of entries to other classes and save to database :param col: collection to save synthetic data to :param ids: list of ids for the records that should be sampledn :param insert: bool to actually insert all entry (for debugging) :return: mongodb ids that where inserted as synthetic data """ # TODO: potentially change light condition depending on what time (e.g. shouldnt be dark at 13:00) # TODO: same for date, chance of snow and ice in summer is rather low... cursor = col.find({"_id": {"$in": ids}}) inserted_ids = [] for row in cursor: # change age org_age = copy.deepcopy(row["age"]) for age_idx in range(0, 18): age_min = 5 * age_idx age_max = 5 * (age_idx + 1) new_age = int(np.random.uniform(age_min, age_max, 1)[0]) row["age"] = int(new_age) if insert: del row["_id"] inserted_ids.append(col.insert_one(row)) row["age"] = org_age # change time org_time = copy.deepcopy(row["time"]) for time_idx in range(0, 24): time_min = 60 * time_idx time_max = 60 * (time_idx + 1) new_time = int(np.random.uniform(time_min, time_max, 1)[0]) sin_time, cos_time = sin_cos_representation(new_time, 1440) row["time"]["value"] = new_time row["time"]["sin"] = sin_time row["time"]["cos"] = cos_time if insert: del row["_id"] inserted_ids.append(col.insert_one(row)) row["time"] = org_time # change date org_date = copy.deepcopy(row["date"]) for date_idx in range(0, 18): date_min = 20 * date_idx date_max = 20 * (date_idx + 1) new_date = int(np.random.uniform(date_min, date_max, 1)[0]) sin_date, cos_date = sin_cos_representation(new_date, 361) row["date"]["value"] = new_date row["date"]["sin"] = sin_date row["date"]["cos"] = cos_date if insert: del row["_id"] inserted_ids.append(col.insert_one(row)) row["date"] = org_date # change class org_class = copy.deepcopy(row["class"]) for new_index in range(0, len(org_class["encoded"])): row["class"] = { "value": "generated", "encoded": to_categorical(new_index, num_classes=len(org_class["encoded"])).astype(int).tolist() } if insert: del row["_id"] inserted_ids.append(col.insert_one(row)) row["class"] = org_class # change weather org_class = copy.deepcopy(row["weather"]) for new_index in range(0, len(org_class["encoded"])): row["weather"] = { "value": "generated", "encoded": to_categorical(new_index, num_classes=len(org_class["encoded"])).astype(int).tolist() } if insert: del row["_id"] inserted_ids.append(col.insert_one(row)) row["weather"] = org_class # change gender org_class = copy.deepcopy(row["gender"]) for new_index in range(0, len(org_class["encoded"])): row["gender"] = { "value": "generated", "encoded": to_categorical(new_index, num_classes=len(org_class["encoded"])).astype(int).tolist() } if insert: del row["_id"] inserted_ids.append(col.insert_one(row)) row["gender"] = org_class # change vehicle type org_class = copy.deepcopy(row["vehicle_type"]) for new_index in range(0, len(org_class["encoded"]) - 1): row["vehicle_type"] = { "value": "generated", "encoded": to_categorical(new_index, num_classes=len(org_class["encoded"])).astype(int).tolist() } if insert: del row["_id"] inserted_ids.append(col.insert_one(row)) row["vehicle_type"] = org_class # change road_type org_class = copy.deepcopy(row["road_type"]) for new_index in range(0, len(org_class["encoded"]) - 1): row["road_type"] = { "value": "generated", "encoded": to_categorical(new_index, num_classes=len(org_class["encoded"])).astype(int).tolist() } if insert: del row["_id"] inserted_ids.append(col.insert_one(row)) row["road_type"] = org_class return inserted_ids def up_sample(col, cursor, nr_create): """ Sample a set amount of data by copying the existing data and saving it to mongodb :param col: mongodb collection where the new documents should be saved to :param cursor: pymongo cursor with the data that is getting sampled :param nr_create: how many additional documents should be created """ if nr_create < 0: raise ValueError("Can not create negative amount of entries") counter = 0 while counter < nr_create: for row in cursor: del row["_id"] col.insert_one(row) counter += 1 if counter >= nr_create: break cursor.rewind() if __name__ == "__main__": DLPipeLogger.remove_file_logger() cp = configparser.ConfigParser() if len(cp.read('./../../connections.ini')) == 0: raise ValueError("Config File could not be loaded, please check the correct path!") MongoDBConnect.add_connections_from_config(cp) col_train = MongoDBConnect.get_collection("localhost_mongo_db", "accident", "train") col_distance = MongoDBConnect.get_collection("localhost_mongo_db", "accident", "k_distance") # find class distances upload_distances() # get averaged class distances for class 1 and 2 raw_distance_data_avg_class_1 = col_distance.find({"class": 1, "compared_to": {"$all": [0, 2]}}) raw_distance_data_avg_class_2 = col_distance.find({"class": 2, "compared_to": {"$all": [0, 1]}}) if raw_distance_data_avg_class_1.count() == 0 or raw_distance_data_avg_class_2.count() == 0: raise ValueError("No distance data found, need to execute 'calc_class_distance.py' first") # generate synthetic data from class distances inserted_ids_1 = generate_synth_data(col_train, raw_distance_data_avg_class_1[0]["ids"][0:70], True) inserted_ids_2 = generate_synth_data(col_train, raw_distance_data_avg_class_2[0]["ids"][0:20], True) raw_data_train_0 = col_train.find({"accident_severity": 0}) raw_data_train_1 = col_train.find({"accident_severity": 1}) raw_data_train_2 = col_train.find({"accident_severity": 2}) print("Class distribution after synthetic data generation:") print("Class 0: " + str(raw_data_train_0.count())) print("Class 1: " + str(raw_data_train_1.count())) print("Class 2: " + str(raw_data_train_2.count())) # evenly sample data by copying existing data max_count = raw_data_train_0.count() up_sample(col_train, raw_data_train_1, (max_count - raw_data_train_1.count())) up_sample(col_train, raw_data_train_2, (max_count - raw_data_train_2.count())) ``` #### File: accident_predictor/accident_predictor/processors.py ```python from dlpipe.processors.processor_interface import IPreProcessor import numpy as np DATA_INFO = { "age": {"norm": 98}, "nr_person_hurt": {"norm": 3}, "nr_vehicles": {"norm": 4} } class PreProcessData(IPreProcessor): def process(self, raw_data, input_data, ground_truth, piped_params=None): ground_truth = np.zeros(3) if "accident_severity" in raw_data: index = min(int(raw_data["accident_severity"]), 2) ground_truth[index] = 1.0 list_input = [] # sin and cos components are already normalized list_input.append(float(raw_data["date"]["sin"])) list_input.append(float(raw_data["date"]["cos"])) list_input.append(float(raw_data["time"]["sin"])) list_input.append(float(raw_data["time"]["cos"])) # normalize features list_input.append(int(raw_data["age"]) / DATA_INFO["age"]["norm"]) list_input.append(int(raw_data["nr_person_hurt"]) / DATA_INFO["nr_person_hurt"]["norm"]) list_input.append(int(raw_data["nr_vehicles"]) / DATA_INFO["nr_vehicles"]["norm"]) # some classification features have "unknown" columns at the end which are sliced off list_input += raw_data["class"]["encoded"] list_input += raw_data["light"]["encoded"] list_input += raw_data["weather"]["encoded"][:-1] list_input += raw_data["ground_condition"]["encoded"][:-1] list_input += raw_data["gender"]["encoded"] list_input += raw_data["vehicle_type"]["encoded"][:-1] list_input += raw_data["road_type"]["encoded"][:-1] input_data = np.asarray(list_input) return raw_data, input_data, ground_truth, piped_params ``` #### File: dlpipe/callbacks/save_exp_mongodb.py ```python from dlpipe.callbacks import Callback from dlpipe.schemas import ExperimentSchema from dlpipe.utils import DLPipeLogger class SaveExpMongoDB(Callback): """ Callback class to save keras models during training, usually after each epoch or if self._epoch_save_condition(result) returns true. Append this Callback to the Trainer e.g.: >> callback = SaveExpMongoDB(model_db, "my_model_name", model.get_config()) >> trainer = Trainer(model=model, data_reader=data_reader, callbacks=[callback]) """ def __init__( self, mongo_db, name, keras_model, save_initial_weights: bool=True, epoch_save_condition=None): self._epoch_save_condition = epoch_save_condition self._save_initial_weights = save_initial_weights self._db = mongo_db self._collection = mongo_db["experiment"] self._keras_model = keras_model self._exp = ExperimentSchema(self._collection, name, keras_model) self._exp.log_file_path = DLPipeLogger.get_log_file_path() self._exp.save() def get_exp_id(self): return self._exp.id def training_start(self, result): self._exp.result = result self._exp.status = 100 self._exp.update(update_result=self._save_initial_weights) def batch_end(self, result): self._exp.result = result self._exp.update(update_result=False) def epoch_end(self, result): self._exp.result = result should_save_weights = self._epoch_save_condition is None or self._epoch_save_condition(result) self._exp.update(update_result=should_save_weights) def training_end(self, result): self._exp.status = 2 self._exp.update(update_result=False) def test_start(self, result): self._exp.status = 200 self._exp.update(update_result=False) def test_end(self, result): self._exp.status = 1 # no new weights to save after testing, just metrics self._exp.update(update_result=True, update_weights=False) ``` #### File: data_reader/mongodb/actions.py ```python from dlpipe.data_reader.mongodb import MongoDBConnect import configparser class MongoDBActions: @staticmethod def add_config(file_name): cp = configparser.ConfigParser() if len(cp.read(file_name)) == 0: raise ValueError("Config File could not be loaded, please check the correct path!") MongoDBConnect.add_connections_from_config(cp) ``` #### File: dlpipe/schemas/experiment.py ```python from dlpipe.result import Result from bson import ObjectId import gridfs import os class ExperimentSchema: def __init__(self, collection, name: str, keras_model, ): # model info self.keras_model = keras_model self.name: str = name self.result: Result = None # training info self.status: int = 0 self.log_file_path = "" self.id = None # mongodb connection self._collection = collection def get_dict(self) -> dict: """ :return: dict of serialized experiment data """ return_dict = { "name": self.name, "keras_model": self.keras_model, "status": self.status, "log_file_path": self.log_file_path, "curr_epoch": None, "curr_batch": None, "max_batches_per_epoch": None, "max_epochs": None } if self.result is not None: return_dict.update({ "curr_epoch": self.result.curr_epoch, "curr_batch": self.result.curr_batch, "max_batches_per_epoch": self.result.max_batches_per_epoch, "max_epochs": self.result.max_epochs }) return return_dict def save(self): data_dict = self.get_dict() data_dict["metrics"] = None data_dict["weights"] = [] if self._collection is not None: self.id = self._collection.insert_one(data_dict).inserted_id self.update_result() def update(self, update_result: bool=True, update_weights: bool=True): data_dict = self.get_dict() if self._collection is not None: self._collection.update_one( {'_id': ObjectId(self.id)}, { '$set': data_dict } ) if update_result: self.update_result(update_weights=update_weights) def update_result(self, update_weights: bool=True): if self.result is not None and self._collection is not None: if update_weights: fs = gridfs.GridFS(self._collection.database) tmp_filename = "tmp_model_weights_save.h5" model_gridfs = None if self.result.model is not None: self.result.model.save(tmp_filename) with open(tmp_filename, mode='rb') as file: file_bytes = file.read() model_gridfs = fs.put(file_bytes) os.remove(tmp_filename) weights = { "model_gridfs": model_gridfs, "epoch": self.result.curr_epoch, "batch": self.result.curr_batch } query = { '$set': { 'metrics': self.result.metrics, }, '$push': {'weights': weights} } else: query = { '$set': { 'metrics': self.result.metrics, } } self._collection.update_one( {'_id': ObjectId(self.id)}, query ) ``` #### File: dlpipe/utils/logger.py ```python import logging import io import os class DLPipeLogger: _logger_level = logging.DEBUG _logger_name = 'DLPipe.logger' _formatter = logging.Formatter('[%(asctime)s] %(levelname)-10s %(message)s') _log_contents = io.StringIO() _current_log_file_path = "dlpipe.log" logger = None string_handler = None file_handler = None console_handler = None @staticmethod def setup_logger(): if DLPipeLogger.logger is not None: print("WARNING: logger was setup already, deleting all previously existing handlers") for hdlr in DLPipeLogger.logger.handlers[:]: # remove all old handlers DLPipeLogger.logger.removeHandler(hdlr) # Create the logger DLPipeLogger.logger = logging.getLogger(DLPipeLogger._logger_name) DLPipeLogger.logger.setLevel(DLPipeLogger._logger_level) # Setup the StringIO handler DLPipeLogger._log_contents = io.StringIO() DLPipeLogger.string_handler = logging.StreamHandler(DLPipeLogger._log_contents) DLPipeLogger.string_handler.setLevel(DLPipeLogger._logger_level) # Setup the console handler DLPipeLogger.console_handler = logging.StreamHandler() DLPipeLogger.console_handler.setLevel(DLPipeLogger._logger_level) # Setup the file handler DLPipeLogger.file_handler = logging.FileHandler(DLPipeLogger._current_log_file_path, 'a') DLPipeLogger.file_handler.setLevel(DLPipeLogger._logger_level) # Optionally add a formatter DLPipeLogger.string_handler.setFormatter(DLPipeLogger._formatter) DLPipeLogger.console_handler.setFormatter(DLPipeLogger._formatter) DLPipeLogger.file_handler.setFormatter(DLPipeLogger._formatter) # Add the console handler to the logger DLPipeLogger.logger.addHandler(DLPipeLogger.string_handler) DLPipeLogger.logger.addHandler(DLPipeLogger.console_handler) DLPipeLogger.logger.addHandler(DLPipeLogger.file_handler) @staticmethod def set_log_file(path, mode: str='a'): DLPipeLogger._current_log_file_path = path DLPipeLogger.logger.removeHandler(DLPipeLogger.file_handler) DLPipeLogger.file_handler = logging.FileHandler(DLPipeLogger._current_log_file_path, mode) DLPipeLogger.file_handler.setLevel(DLPipeLogger._logger_level) DLPipeLogger.logger.addHandler(DLPipeLogger.file_handler) @staticmethod def remove_file_logger(): DLPipeLogger.logger.removeHandler(DLPipeLogger.file_handler) if os.path.exists(DLPipeLogger._current_log_file_path): os.remove(DLPipeLogger._current_log_file_path) @staticmethod def get_contents(): return DLPipeLogger._log_contents.getvalue() @staticmethod def get_log_file_path() -> str: return DLPipeLogger._current_log_file_path @staticmethod def set_level(lvl): DLPipeLogger._logger_level = lvl DLPipeLogger.setup_logger() DLPipeLogger.setup_logger() ```
{ "source": "jodoldar/AdventofCode18", "score": 4 }
#### File: jodoldar/Day 5/day5.py ```python def match_case(char1, char2): if char1.lower() == char2.lower(): if char1.islower() and char2.isupper(): return True elif char1.isupper() and char2.islower(): return True else: return False return False def second_match_a(char1, char2, char_f): if char1.lower() == char2.lower() and char1.lower() == char_f: return True else: return False def part_1(compare_func): input_file = open('./input','r') initial_cadena = input_file.read().splitlines()[0] cadena = initial_cadena #print(cadena) finished = False iter = 0 while (finished == False): modif = False for i in range(0,len(cadena)-1): if compare_func(cadena[i],cadena[i+1]): #print('Encuentro {}'.format(cadena[i:i+2])) newcadena = cadena[:i] + cadena[i+2:] cadena = newcadena modif = True break iter += 1 if iter%1000 == 0: print(iter) if modif == False: finished = True def part_1b(): input_file = open('./input','r') line = input_file.read() oldline = None while oldline != line: oldline = line for i in range(0,26): line = line.replace(chr(ord("a") + i) + chr(ord("A") + i),"") line = line.replace(chr(ord("A") + i) + chr(ord("a") + i),"") print(len(line)) def part_2(): input_file = open('./input','r') line = input_file.read().splitlines()[0] original = line best = len(line) for j in range(0,26): line = original line = line.replace(chr(ord("a") + j),"") line = line.replace(chr(ord("A") + j),"") oldline = None while oldline != line: oldline = line for i in range(0,26): line = line.replace(chr(ord("a") + i) + chr(ord("A") + i),"") line = line.replace(chr(ord("A") + i) + chr(ord("a") + i),"") best = len(line) if len(line) < best else best print("Part2:") print(best) #part_1(match_case) part_2() ```
{ "source": "jodom961/sparkmagic", "score": 2 }
#### File: sparkmagic/kernels/kernelmagics.py ```python from __future__ import print_function import json from IPython.core.magic import magics_class from IPython.core.magic import needs_local_scope, cell_magic, line_magic from IPython.core.magic_arguments import argument, magic_arguments from hdijupyterutils.utils import generate_uuid import importlib import sparkmagic.utils.configuration as conf from sparkmagic.utils.configuration import get_livy_kind from sparkmagic.utils import constants from sparkmagic.utils.utils import parse_argstring_or_throw, get_coerce_value, initialize_auth, Namespace from sparkmagic.utils.sparkevents import SparkEvents from sparkmagic.utils.constants import LANGS_SUPPORTED from sparkmagic.livyclientlib.command import Command from sparkmagic.livyclientlib.endpoint import Endpoint from sparkmagic.magics.sparkmagicsbase import SparkMagicBase from sparkmagic.livyclientlib.exceptions import handle_expected_exceptions, wrap_unexpected_exceptions, \ BadUserDataException def _event(f): def wrapped(self, *args, **kwargs): guid = self._generate_uuid() self._spark_events.emit_magic_execution_start_event(f.__name__, get_livy_kind(self.language), guid) try: result = f(self, *args, **kwargs) except Exception as e: self._spark_events.emit_magic_execution_end_event(f.__name__, get_livy_kind(self.language), guid, False, e.__class__.__name__, str(e)) raise else: self._spark_events.emit_magic_execution_end_event(f.__name__, get_livy_kind(self.language), guid, True, u"", u"") return result wrapped.__name__ = f.__name__ wrapped.__doc__ = f.__doc__ return wrapped @magics_class class KernelMagics(SparkMagicBase): def __init__(self, shell, data=None, spark_events=None): # You must call the parent constructor super(KernelMagics, self).__init__(shell, data) self.session_name = u"session_name" self.session_started = False # In order to set these following 3 properties, call %%_do_not_call_change_language -l language self.language = u"" self.endpoint = None self.fatal_error = False self.fatal_error_message = u"" if spark_events is None: spark_events = SparkEvents() self._spark_events = spark_events @magic_arguments() @cell_magic @wrap_unexpected_exceptions @handle_expected_exceptions @_event def help(self, line, cell="", local_ns=None): parse_argstring_or_throw(self.help, line) self._assure_cell_body_is_empty(KernelMagics.help.__name__, cell) help_html = u""" <table> <tr> <th>Magic</th> <th>Example</th> <th>Explanation</th> </tr> <tr> <td>info</td> <td>%%info</td> <td>Outputs session information for the current Livy endpoint.</td> </tr> <tr> <td>cleanup</td> <td>%%cleanup -f</td> <td>Deletes all sessions for the current Livy endpoint, including this notebook's session. The force flag is mandatory.</td> </tr> <tr> <td>delete</td> <td>%%delete -f -s 0</td> <td>Deletes a session by number for the current Livy endpoint. Cannot delete this kernel's session.</td> </tr> <tr> <td>logs</td> <td>%%logs</td> <td>Outputs the current session's Livy logs.</td> </tr> <tr> <td>configure</td> <td>%%configure -f<br/>{"executorMemory": "1000M", "executorCores": 4}</td> <td>Configure the session creation parameters. The force flag is mandatory if a session has already been created and the session will be dropped and recreated.<br/>Look at <a href="https://github.com/cloudera/livy#request-body"> Livy's POST /sessions Request Body</a> for a list of valid parameters. Parameters must be passed in as a JSON string.</td> </tr> <tr> <td>spark</td> <td>%%spark -o df<br/>df = spark.read.parquet('...</td> <td>Executes spark commands. Parameters: <ul> <li>-o VAR_NAME: The Spark dataframe of name VAR_NAME will be available in the %%local Python context as a <a href="http://pandas.pydata.org/">Pandas</a> dataframe with the same name.</li> <li>-m METHOD: Sample method, either <tt>take</tt> or <tt>sample</tt>.</li> <li>-n MAXROWS: The maximum number of rows of a dataframe that will be pulled from Livy to Jupyter. If this number is negative, then the number of rows will be unlimited.</li> <li>-r FRACTION: Fraction used for sampling.</li> </ul> </td> </tr> <tr> <td>sql</td> <td>%%sql -o tables -q<br/>SHOW TABLES</td> <td>Executes a SQL query against the variable sqlContext (Spark v1.x) or spark (Spark v2.x). Parameters: <ul> <li>-o VAR_NAME: The result of the SQL query will be available in the %%local Python context as a <a href="http://pandas.pydata.org/">Pandas</a> dataframe.</li> <li>-q: The magic will return None instead of the dataframe (no visualization).</li> <li>-m, -n, -r are the same as the %%spark parameters above.</li> </ul> </td> </tr> <tr> <td>local</td> <td>%%local<br/>a = 1</td> <td>All the code in subsequent lines will be executed locally. Code must be valid Python code.</td> </tr> <tr> <td>send_to_spark</td> <td>%%send_to_spark -i variable -t str -n var</td> <td>Sends a variable from local output to spark cluster. <br/> Parameters: <ul> <li>-i VAR_NAME: Local Pandas DataFrame(or String) of name VAR_NAME will be available in the %%spark context as a Spark dataframe(or String) with the same name.</li> <li>-t TYPE: Specifies the type of variable passed as -i. Available options are: `str` for string and `df` for Pandas DataFrame. Optional, defaults to `str`.</li> <li>-n NAME: Custom name of variable passed as -i. Optional, defaults to -i variable name.</li> <li>-m MAXROWS: Maximum amount of Pandas rows that will be sent to Spark. Defaults to 2500.</li> </ul> </td> </tr> </table> """ self.ipython_display.html(help_html) @cell_magic def local(self, line, cell=u"", local_ns=None): # This should not be reachable thanks to UserCodeParser. Registering it here so that it auto-completes with tab. raise NotImplementedError(u"UserCodeParser should have prevented code execution from reaching here.") @magic_arguments() @argument("-i", "--input", type=str, default=None, help="If present, indicated variable will be stored in variable" " in Spark's context.") @argument("-t", "--vartype", type=str, default='str', help="Optionally specify the type of input variable. " "Available: 'str' - string(default) or 'df' - Pandas DataFrame") @argument("-n", "--varname", type=str, default=None, help="Optionally specify the custom name for the input variable.") @argument("-m", "--maxrows", type=int, default=2500, help="Maximum number of rows that will be pulled back " "from the local dataframe") @cell_magic @needs_local_scope @wrap_unexpected_exceptions @handle_expected_exceptions def send_to_spark(self, line, cell=u"", local_ns=None): self._assure_cell_body_is_empty(KernelMagics.send_to_spark.__name__, cell) args = parse_argstring_or_throw(self.send_to_spark, line) if not args.input: raise BadUserDataException("-i param not provided.") if self._do_not_call_start_session(""): self.do_send_to_spark(cell, args.input, args.vartype, args.varname, args.maxrows, None) else: return @magic_arguments() @cell_magic @wrap_unexpected_exceptions @handle_expected_exceptions @_event def info(self, line, cell=u"", local_ns=None): parse_argstring_or_throw(self.info, line) self._assure_cell_body_is_empty(KernelMagics.info.__name__, cell) if self.session_started: current_session_id = self.spark_controller.get_session_id_for_client(self.session_name) else: current_session_id = None self.ipython_display.html(u"Current session configs: <tt>{}</tt><br>".format(conf.get_session_properties(self.language))) info_sessions = self.spark_controller.get_all_sessions_endpoint(self.endpoint) self._print_endpoint_info(info_sessions, current_session_id) @magic_arguments() @cell_magic @wrap_unexpected_exceptions @handle_expected_exceptions @_event def logs(self, line, cell="", local_ns=None): parse_argstring_or_throw(self.logs, line) self._assure_cell_body_is_empty(KernelMagics.logs.__name__, cell) if self.session_started: out = self.spark_controller.get_logs() self.ipython_display.write(out) else: self.ipython_display.write(u"No logs yet.") @magic_arguments() @cell_magic @argument("-f", "--force", type=bool, default=False, nargs="?", const=True, help="If present, user understands.") @wrap_unexpected_exceptions @handle_expected_exceptions @_event def configure(self, line, cell="", local_ns=None): try: dictionary = json.loads(cell) except ValueError: self.ipython_display.send_error(u"Could not parse JSON object from input '{}'".format(cell)) return args = parse_argstring_or_throw(self.configure, line) if self.session_started: if not args.force: self.ipython_display.send_error(u"A session has already been started. If you intend to recreate the " u"session with new configurations, please include the -f argument.") return else: self._do_not_call_delete_session(u"") self._override_session_settings(dictionary) self._do_not_call_start_session(u"") else: self._override_session_settings(dictionary) self.info(u"") @magic_arguments() @cell_magic @needs_local_scope @argument("-o", "--output", type=str, default=None, help="If present, indicated variable will be stored in variable" "of this name in user's local context.") @argument("-m", "--samplemethod", type=str, default=None, help="Sample method for dataframe: either take or sample") @argument("-n", "--maxrows", type=int, default=None, help="Maximum number of rows that will be pulled back " "from the dataframe on the server for storing") @argument("-r", "--samplefraction", type=float, default=None, help="Sample fraction for sampling from dataframe") @argument("-c", "--coerce", type=str, default=None, help="Whether to automatically coerce the types (default, pass True if being explicit) " "of the dataframe or not (pass False)") @wrap_unexpected_exceptions @handle_expected_exceptions def spark(self, line, cell="", local_ns=None): if self._do_not_call_start_session(u""): args = parse_argstring_or_throw(self.spark, line) coerce = get_coerce_value(args.coerce) self.execute_spark(cell, args.output, args.samplemethod, args.maxrows, args.samplefraction, None, coerce) else: return @magic_arguments() @cell_magic @needs_local_scope @argument("-o", "--output", type=str, default=None, help="If present, query will be stored in variable of this " "name.") @argument("-q", "--quiet", type=bool, default=False, const=True, nargs="?", help="Return None instead of the dataframe.") @argument("-m", "--samplemethod", type=str, default=None, help="Sample method for SQL queries: either take or sample") @argument("-n", "--maxrows", type=int, default=None, help="Maximum number of rows that will be pulled back " "from the server for SQL queries") @argument("-r", "--samplefraction", type=float, default=None, help="Sample fraction for sampling from SQL queries") @argument("-c", "--coerce", type=str, default=None, help="Whether to automatically coerce the types (default, pass True if being explicit) " "of the dataframe or not (pass False)") @wrap_unexpected_exceptions @handle_expected_exceptions def sql(self, line, cell="", local_ns=None): if self._do_not_call_start_session(""): args = parse_argstring_or_throw(self.sql, line) coerce = get_coerce_value(args.coerce) return self.execute_sqlquery(cell, args.samplemethod, args.maxrows, args.samplefraction, None, args.output, args.quiet, coerce) else: return @magic_arguments() @cell_magic @argument("-f", "--force", type=bool, default=False, nargs="?", const=True, help="If present, user understands.") @wrap_unexpected_exceptions @handle_expected_exceptions @_event def cleanup(self, line, cell="", local_ns=None): self._assure_cell_body_is_empty(KernelMagics.cleanup.__name__, cell) args = parse_argstring_or_throw(self.cleanup, line) if args.force: self._do_not_call_delete_session(u"") self.spark_controller.cleanup_endpoint(self.endpoint) else: self.ipython_display.send_error(u"When you clean up the endpoint, all sessions will be lost, including the " u"one used for this notebook. Include the -f parameter if that's your " u"intention.") return @magic_arguments() @cell_magic @argument("-f", "--force", type=bool, default=False, nargs="?", const=True, help="If present, user understands.") @argument("-s", "--session", type=int, help="Session id number to delete.") @wrap_unexpected_exceptions @handle_expected_exceptions @_event def delete(self, line, cell="", local_ns=None): self._assure_cell_body_is_empty(KernelMagics.delete.__name__, cell) args = parse_argstring_or_throw(self.delete, line) session = args.session if args.session is None: self.ipython_display.send_error(u'You must provide a session ID (-s argument).') return if args.force: id = self.spark_controller.get_session_id_for_client(self.session_name) if session == id: self.ipython_display.send_error(u"Cannot delete this kernel's session ({}). Specify a different session," u" shutdown the kernel to delete this session, or run %cleanup to " u"delete all sessions for this endpoint.".format(id)) return self.spark_controller.delete_session_by_id(self.endpoint, session) else: self.ipython_display.send_error(u"Include the -f parameter if you understand that all statements executed " u"in this session will be lost.") @cell_magic def _do_not_call_start_session(self, line, cell="", local_ns=None): # Starts a session unless session is already created or a fatal error occurred. Returns True when session is # created successfully. # No need to add the handle_expected_exceptions decorator to this since we manually catch all # exceptions when starting the session. if self.fatal_error: self.ipython_display.send_error(self.fatal_error_message) return False if not self.session_started: skip = False properties = conf.get_session_properties(self.language) self.session_started = True try: self.spark_controller.add_session(self.session_name, self.endpoint, skip, properties) except Exception as e: self.fatal_error = True self.fatal_error_message = conf.fatal_error_suggestion().format(e) self.logger.error(u"Error creating session: {}".format(e)) self.ipython_display.send_error(self.fatal_error_message) if conf.all_errors_are_fatal(): raise e return False return self.session_started @cell_magic @handle_expected_exceptions def _do_not_call_delete_session(self, line, cell="", local_ns=None): try: if self.session_started: self.spark_controller.delete_session_by_name(self.session_name) except: # The exception will be logged and handled in the frontend. raise finally: self.session_started = False @magic_arguments() @cell_magic @argument("-l", "--language", type=str, help="Language to use.") def _do_not_call_change_language(self, line, cell="", local_ns=None): args = parse_argstring_or_throw(self._do_not_call_change_language, line) language = args.language.lower() if language not in LANGS_SUPPORTED: self.ipython_display.send_error(u"'{}' language not supported in kernel magics.".format(language)) return if self.session_started: self.ipython_display.send_error(u"Cannot change the language if a session has been started.") return self.language = language self.refresh_configuration() @magic_arguments() @line_magic @argument("-u", "--username", dest='user', type=str, help="Username to use.") @argument("-p", "--password", type=str, help="Password to use.") @argument("-s", "--server", dest='url', type=str, help="Url of server to use.") @argument("-t", "--auth", type=str, help="Auth type for authentication") @_event def _do_not_call_change_endpoint(self, line, cell="", local_ns=None): args = parse_argstring_or_throw(self._do_not_call_change_endpoint, line) if self.session_started: error = u"Cannot change the endpoint if a session has been started." raise BadUserDataException(error) auth = initialize_auth(args=args) self.endpoint = Endpoint(args.url, auth) @line_magic def matplot(self, line, cell="", local_ns=None): session = self.spark_controller.get_session_by_name_or_default(self.session_name) command = Command("%matplot " + line) (success, out, mimetype) = command.execute(session) if success: session.ipython_display.display(out) else: session.ipython_display.send_error(out) def refresh_configuration(self): credentials = getattr(conf, 'base64_kernel_' + self.language + '_credentials')() (username, password, auth, url) = (credentials['username'], credentials['password'], credentials['auth'], credentials['url']) args = Namespace(auth=auth, user=username, password=password, url=url) auth_instance = initialize_auth(args) self.endpoint = Endpoint(url, auth_instance) def get_session_settings(self, line, force): line = line.strip() if not force: return line else: if line.startswith("-f "): return line[3:] elif line.endswith(" -f"): return line[:-3] else: return None @staticmethod def _override_session_settings(settings): conf.override(conf.session_configs.__name__, settings) @staticmethod def _generate_uuid(): return generate_uuid() @staticmethod def _assure_cell_body_is_empty(magic_name, cell): if cell.strip(): raise BadUserDataException(u"Cell body for %%{} magic must be empty; got '{}' instead" .format(magic_name, cell.strip())) def load_ipython_extension(ip): ip.register_magics(KernelMagics) ```
{ "source": "j-o-d-o/MLPipe-Trainer", "score": 3 }
#### File: examples/cifar10/processor.py ```python import numpy as np import cv2 from mlpipe.processors.i_processor import IPreProcessor class PreProcessData(IPreProcessor): def process(self, raw_data, input_data, ground_truth, piped_params=None): ground_truth = np.zeros(10) ground_truth[raw_data["label"]] = 1.0 png_binary = raw_data["img"] png_img = np.frombuffer(png_binary, np.uint8) input_data = cv2.imdecode(png_img, cv2.IMREAD_COLOR) return raw_data, input_data, ground_truth, piped_params ``` #### File: mlpipe/callbacks/update_manager.py ```python from mlpipe.utils import Config from mlpipe.callbacks.fill_training import FillTraining from mlpipe.utils.api_endpoints import create_training, update_weights, update_training, test_connection from tensorflow.keras.models import Model import os class UpdateManager(FillTraining): """ Callback to update the MLPipe - Manager via its API """ def __init__( self, name: str, keras_model: Model, epochs: int, batches_per_epoch: int, save_initial_weights: bool=True, update_frequency: int=1, epoch_save_condition=None): """ :param name: name of the training as string :param keras_model: keras model that should be saved to the training :param epochs: integer of how many epochs the model is trained :param batches_per_epoch: integer on how many batches per epoch are trained :param save_initial_weights: boolean to determine if weights should be saved initially before training, default = True :param update_frequency: defines how often data is sent to the server. In case there are many many batches it is wise to increase this number. It still sends all info to the server, just not every single batch. :param epoch_save_condition: a function to test if the weights of the model should be saved after the epoch, the function takes an TrainingSchema as argument. It defaults to None which will save the weights after each epoch """ super().__init__(name, keras_model, epochs, batches_per_epoch) self._epoch_save_condition = epoch_save_condition self._save_initial_weights = save_initial_weights self._update_frequency = update_frequency self._training_mongodb_id = None def _create_training(self): if Config.get_job_token() is None or Config.get_job_token() == "": print("Job Token is not set, therefore no data is transmitted, but the server connection is tested...") test_res = test_connection() if test_res.status_code == 200: print("Connection test: Success") else: raise ConnectionError("Connection test: Error, unable to connect!") else: json_resp = self._handle_response(create_training(self._training)) if "_id" in json_resp: self._training_mongodb_id = json_resp["_id"] def on_train_begin(self, logs=None): super().on_train_begin(logs) self._create_training() if self._training_mongodb_id is not None and self._save_initial_weights: self._update_weights() def on_batch_end(self, batch, logs=None): super().on_batch_end(batch, logs) should_update = (batch % self._update_frequency) == 0 if self._training_mongodb_id is not None and should_update: self._handle_response(update_training(self._training_mongodb_id, self._training)) def on_epoch_end(self, epoch, logs=None): super().on_epoch_end(epoch, logs) if self._training_mongodb_id is not None: self._handle_response(update_training(self._training_mongodb_id, self._training)) if self._epoch_save_condition is None or self._epoch_save_condition(self._training): self._update_weights() def on_train_end(self, logs=None): super().on_train_end(logs) if self._training_mongodb_id is not None: self._handle_response(update_training(self._training_mongodb_id, self._training)) def _update_weights(self): """ save file and update weights, remove tmp h5 file afterwards """ tmp_filename = "tmp_model_weights_save.h5" if self._training_mongodb_id is not None and self._training.result.model is not None: self._training.result.model.save(tmp_filename) self._handle_response(update_weights( self._training_mongodb_id, self._training.result.curr_epoch, self._training.result.curr_batch, tmp_filename )) os.remove(tmp_filename) @staticmethod def _handle_response(res): """ Check for errors and return json response in case of 200 HTTP response code :param res: response from a HTTP request :return: dict of json response """ if res.status_code != 200: if res.status_code == 404: raise ValueError("HTTP Response 404 (Not Found): " + res.text) if res.status_code == 403: raise ValueError("HTTP Response 403 (Forbidden): " + res.text) if res.status_code == 401: raise PermissionError("HTTP Response 401 (Not Authorized): " + res.text) if res.status_code == 400: raise ValueError("HTTP Response 400 (Validation Error): " + res.text) else: raise RuntimeError("Unkown HTTP Error: " + res.text) return res.json() ``` #### File: data_reader/mongodb/data_loader.py ```python from typing import Tuple from random import shuffle import numpy as np from mlpipe.utils import MLPipeLogger, Config from mlpipe.data_reader.mongodb import MongoDBConnect def load_ids( col_details: Tuple[str, str, str], data_split: Tuple = (60, 40), sort_by: dict = None, limit: int = None, shuffle_data: bool = False, shuffle_steps: int = 1): """ Load MongoDB Document Ids from a collection and split them in training and validation data set :param col_details: MongoDB collection details with a tuple of 3 string entries [client name (from config), database name, collection name] :param data_split: Tuple of percentage of training and test data e.g. (60, 40) for 60% training and 40% test data :param sort_by: MongoDB sort expression. e.g. { created_at: -1 } :param limit: maximum number of ids that should be fetched :param shuffle_data: determine if dataset should be shuffled before splitting it to train and validation data :param shuffle_steps: step size for the shuffling (e.g. for time series you want to have a shuffle_size of BATCH_SIZE + (TIME_STEPS - 1) :return: training and validation data """ MLPipeLogger.logger.info("Loading Document IDs from MongoDB") mongo_con = MongoDBConnect() mongo_con.add_connections_from_config(Config.get_config_parser()) collection = mongo_con.get_collection(*col_details) if sort_by is None: sort_by = {"_id": 1} db_cursor = collection.find({}, sort_by) if limit: db_cursor.limit(limit) tmp_docs = [] for doc in db_cursor: tmp_docs.append(doc["_id"]) if shuffle_data: if shuffle_steps == 1: shuffle(tmp_docs) else: # if reshape the tmp_docs must be a multiple of shuffle_steps, cut ids that do no fit overflow = len(tmp_docs) % shuffle_steps tmp_docs = tmp_docs[:len(tmp_docs) - overflow] x = np.reshape(tmp_docs, (-1, shuffle_steps)) np.random.shuffle(x) tmp_docs = x.flatten().tolist() train_range = int((data_split[0] / 100) * len(tmp_docs)) train_data = tmp_docs[:train_range] val_data = tmp_docs[train_range:] MLPipeLogger.logger.info("Documents loaded (train|validation): {0} | {1}\n\n".format( len(train_data), len(val_data))) return train_data, val_data ``` #### File: data_reader/mongodb/mongodb_connect.py ```python from pymongo import MongoClient from pymongo.database import Database from pymongo.collection import Collection import urllib.parse from typing import NamedTuple, List, NoReturn from configparser import ConfigParser import configparser class MongoDBConnectionConfig(NamedTuple): name: str url: str port: int user: str = None pwd: str = None client: MongoClient = None class MongoDBConnect: """ Class to store and manage mongoDB connections """ def __init__(self): self._connections: List[MongoDBConnectionConfig] = [] def add_connections_from_file(self, file_name) -> NoReturn: """ Add connections from config file :param file_name: path to config file """ cp = configparser.ConfigParser() if len(cp.read(file_name)) == 0: raise ValueError("Config File could not be loaded, please check the correct path!") self.add_connections_from_config(cp) def add_connection(self, config: MongoDBConnectionConfig) -> NoReturn: """ Adds a MongoDBConnectionConfig to the connection dict :param config: config that should be added of type MongoDBConnectionConfig """ self._connections.append(config) def add_connections_from_config(self, config_parser: ConfigParser) -> NoReturn: """ Takes a parsed .ini file as argument and adds all connections with type=MongoDB, Each section (= name) must have url, port and can have pwd and user :param config_parser: A ConfigParser of a .ini file """ for key in config_parser.sections(): if "db_type" in config_parser[key] and config_parser[key]["db_type"] == "MongoDB": self.add_connection(MongoDBConnectionConfig( name=key, url=config_parser[key]["url"], port=int(config_parser[key]["port"]), pwd=config_parser[key].get("pwd"), user=config_parser[key].get("user") )) def get_client(self, name: str) -> MongoClient: """ Get config data by name, connects the client if there is no prior MongoDB connection :param name: name of the connection config :return: MongoClient of the connection found for the name """ con, i = self.get_connection_by_name(name) if con.client is None: con = self.connect_to(name) return con.client def get_db(self, name: str, db_name: str) -> Database: """ Get mongoDB database by config name and database name, connects the client if there is no prior MongoDB connection :param name: name of the connection config :param db_name: name of the database :return: MongoDB database for the specified parameters """ client = self.get_client(name) return client[db_name] def get_collection(self, name: str, db_name: str, collection: str) -> Collection: """ Get collection, connects the client if there is no prior MongoDB connection :param name: name of the connection config :param db_name: name of the database :param collection: name of the collection :return: MongoDB collection for the specified parameters """ db = self.get_db(name, db_name) return db[collection] def connect_to(self, name: str) -> MongoDBConnectionConfig: """ Connect to connection which was previously added by its name :param name: Key of the connection config as string :return: The MongoDBConnectionConfig which the connection is to """ con, i = self.get_connection_by_name(name) host = con.url + ":" + str(con.port) if con.user is not None and con.pwd is not None: user = urllib.parse.quote_plus(con.user) pwd = urllib.parse.quote_plus(con.pwd) con_string = 'mongodb://%s:%s@%s' % (user, pwd, host) else: con_string = 'mongodb://%s' % host db_client = MongoClient(con_string) new_con = con._replace(client=db_client) self._connections[i] = new_con return new_con def close_connection(self, name: str) -> NoReturn: """ Close a single connection based on its config name :param name: name of the connection config """ con, i = self.get_connection_by_name(name) if con.client is not None: con.client.close() con.client = None def remove_connection(self, name: str) -> NoReturn: """ Remove a connection config by its name, closes the connection before :param name: name of the connection config """ self.close_connection(name) con, i = self.get_connection_by_name(name) del self._connections[i] def get_connection_by_name(self, name: str) -> (MongoDBConnectionConfig, int): """ Get connection config by its name, does not connect the client in the process! In case the connection name does not exist as ValueError is raised :param name: name of the connection config :return: NamedTuple of MongoDBConnectionConfig which includes all the configuration and MongoDB connection """ for i, con in enumerate(self._connections): if con.name == name: return con, i raise ValueError(name + ": Connection does not exist!") def reset_connections(self) -> NoReturn: """ Close all added connections """ for con in self._connections: if con.client is not None: con.client.close() self._connections = [] ``` #### File: data_reader/mongodb/mongodb_generator.py ```python import math import numpy as np from typing import List, Tuple from random import shuffle from mlpipe.utils import Config, MLPipeLogger from mlpipe.data_reader.base_data_generator import BaseDataGenerator from mlpipe.data_reader.mongodb import MongoDBConnect from mlpipe.data_reader.i_cache import ICache class MongoDBGenerator(BaseDataGenerator): def __init__(self, col_details: Tuple[str, str, str], doc_ids: List[any] = list(), batch_size: int = 32, processors: List[any] = list(), cache: ICache = None, shuffle_data: bool = True, data_group_size: int = 1, fix_batch_size: bool = False): """ :param col_details: MongoDB collection details with a tuple of 3 string entries [client name (from config), database name, collection name] :param doc_ids: List of doc ids which are used to get the specific data from the MongoDB :param batch_size: number of batch size :param processors: List of MLPipe data processors :param cache: Passing instance of a cache e.g. RedisCache, if it is None, no caching is used. Only possible if redis is locally available (not installed with mlpipe) :param shuffle_data: bool flag to determine if set should be shuffled after epoch is done :param data_group_size: number of steps that should be grouped e.g for time series. The data will still only move forward one time step. E.g. for data_group_size=3: [t-5, t-4, t-3], [t-4, t-3, t-2], [t-3, t-2, -1], etc. data will not be shuffled in case data_group_size > 1 :param fix_batch_size: if true batch size will always be the same, e.g. if batch_size=64 and there are only 63 datasamples left for the final batch, these 63 data points will be ignored. In case the batch size of your model is fixed, set this to True. """ assert (len(col_details) == 3) super().__init__(batch_size, processors) self.doc_ids = doc_ids self.cache = cache self.shuffle_data = shuffle_data self.data_group_size = max(data_group_size, 1) self.docs_per_batch = self.batch_size + (self.data_group_size - 1) self.col_details = col_details self.fix_batch_size = fix_batch_size self.collection = None self.mongo_con = MongoDBConnect() self.mongo_con.add_connections_from_config(Config.get_config_parser()) # in case a step_size is chosen > 1, make sure that len(doc_ids) is a multiple of that # otherwise reshape will not be working and throw errors if self.data_group_size > 1: overflow = len(self.doc_ids) % self.docs_per_batch self.doc_ids = self.doc_ids[:len(self.doc_ids) - overflow] def _fetch_data(self, query_docs: list) -> List[any]: """ Get a set of _ids from the database (in order) :param query_docs: A list of _ids :return: A pymongo cursor """ # to ensure the order of query_docs, use this method. For more details look at this stackoverflow question: # https://stackoverflow.com/questions/22797768/does-mongodbs-in-clause-guarantee-order/22800784#22800784 query = [ {"$match": {"_id": {"$in": query_docs}}}, {"$addFields": {"__order": {"$indexOfArray": [query_docs, "$_id"]}}}, {"$sort": {"__order": 1}} ] docs = self.collection.aggregate(query) return docs def __len__(self) -> int: """ :return: Number of batches per epoch """ if self.fix_batch_size: num_batches = int(math.floor(len(self.doc_ids) / self.docs_per_batch)) else: num_batches = int(math.ceil(len(self.doc_ids) / self.docs_per_batch)) return num_batches def __getitem__(self, idx): """ Get batch data :param idx: current idx in the doc_ids list :return: arrays for traning_data (x) and labels (y) """ # Connection should always be established on first __getitem__ class to support multiprocessing # every fork needs to have its own database connection if self.collection is None: self.collection = self.mongo_con.get_collection(*self.col_details) batch_ids = self.doc_ids[idx * self.docs_per_batch:(idx + 1) * self.docs_per_batch] if self.cache is not None and self.cache.exist(batch_ids): docs = self.cache.get(batch_ids) else: docs = self._fetch_data(batch_ids) if self.cache is not None: # save fetched data to cache for doc in docs: success = self.cache.set(str(doc["_id"]), doc) if not success: MLPipeLogger.logger.warning("Redis cache is full") break # Create new command cursor since the original one is finished after looping once docs = self._fetch_data(batch_ids) if self.data_group_size > 1: # reshape to fit step_size and copy data # since docs is a cursor, save in a temporary list tmp_data = list(docs) docs = [] start_idx = 0 end_idx = self.data_group_size while end_idx <= len(tmp_data): docs.append(tmp_data[start_idx:end_idx]) start_idx += 1 end_idx += 1 batch_x, batch_y = self._process_batch(docs) input_data = [] if len(batch_x) > 0: if isinstance(batch_x[0], dict): # multiple inputs, split them up by name input_data = {} for key in batch_x[0]: input_data[key] = [] # fill dict with data for each key for batch in batch_x: for key in batch: input_data[key].append(np.asarray(batch[key])) else: input_data = np.asarray(batch_x) ground_truth = [] if len(batch_y) > 0: if isinstance(batch_y[0], dict): # multiple inputs, split them up by name ground_truth = {} for key in batch_y[0]: ground_truth[key] = [] # fill dict with data for each key for batch in batch_y: for key in batch: ground_truth[key].append(np.asarray(batch[key])) else: ground_truth = np.asarray(batch_y) return input_data, ground_truth def on_epoch_end(self): """ Called after each epoch """ if self.shuffle_data: if self.data_group_size == 1: shuffle(self.doc_ids) else: # we made sure that len(self.doc_ids) is a multiple of self.docs_per_batch in the constructor x = np.reshape(self.doc_ids, (-1, self.docs_per_batch)) np.random.shuffle(x) self.doc_ids = x.flatten().tolist() ``` #### File: mlpipe/processors/i_processor.py ```python from abc import ABCMeta, abstractmethod class IPreProcessor(metaclass=ABCMeta): @abstractmethod def process(self, raw_data, input_data, ground_truth, piped_params=None): """ One at a time data processor interface :param raw_data: the raw_data fetched from a data source :param input_data: the input_data which will be used by the model :param ground_truth: the ground_truth / labels which will be used by the model :param piped_params: any additional parameters that need to be piped from processor to processor :return: same as input params as these will be the input of the next processor in the the pipline """ ... return raw_data, input_data, ground_truth, piped_params ``` #### File: mlpipe/schemas/result.py ```python from tensorflow.keras.models import Model class ResultSchema: """ Container class for the results of the model """ def __init__(self): self.metrics = { "training": {}, "validation": {} } self.model = None self.max_batches_per_epoch: int = None self.max_epochs: int = None self.curr_epoch: int = -1 # -1 represents initialization self.curr_batch: int = 0 def append_to_metric(self, metric_name: str, value: any, phase: str="training", epoch: int=None, batch: int=None): """ Append a value to a specific metric :param metric_name: name of the metric :param value: value of the metric :param phase: can be "training" or "validation" :param epoch: integer to specify the epoch :param batch: integer to specify the batch """ if phase not in self.metrics: raise ValueError("phase must be any of " + str(self.metrics.keys())) if epoch is None: epoch = self.curr_epoch if batch is None: batch = self.curr_batch if metric_name not in self.metrics[phase]: self.metrics[phase][metric_name] = [] self.metrics[phase][metric_name].append({"value": float(value), "epoch": epoch, "batch": batch}) def update_weights(self, model: Model, curr_epoch: int=None, curr_batch: int=None): """ Update weights by updating the model member variable :param model: keras model :param curr_epoch: integer to specify the current epoch :param curr_batch: integer to specify the current batch :return: """ if curr_epoch is not None: self.curr_epoch = curr_epoch if curr_batch is not None: self.curr_batch = curr_batch self.model = model def get_dict(self) -> dict: """ Return the serialized class data as dict :return: class data as dict """ return { "curr_epoch": self.curr_epoch, "curr_batch": self.curr_batch, "max_batches_per_epoch": self.max_batches_per_epoch, "max_epochs": self.max_epochs, "metrics": self.metrics } ```
{ "source": "jodonnell/django-countries-plus", "score": 2 }
#### File: django-countries-plus/tests/test_middleware.py ```python from django.core.handlers.base import BaseHandler from django.test import RequestFactory, TestCase from countries_plus.middleware import AddRequestCountryMiddleware from countries_plus.models import Country class RequestMock(RequestFactory): def request(self, **request): """Construct a generic request object.""" request = RequestFactory.request(self, **request) handler = BaseHandler() handler.load_middleware() for middleware_method in handler._request_middleware: if middleware_method(request): raise Exception("Couldn't create request mock object - " "request middleware returned a response") return request class TestCountryByRequest(TestCase): def setUp(self): self.request_without_geoip = RequestMock() self.request_without_geoip.META = {} self.request_with_geoip = RequestMock() self.request_with_geoip.META = { 'GEOIP_HEADER': 'TC', } self.middleware = AddRequestCountryMiddleware() self.default_country = Country.objects.create( name='DefaultCountry', iso='US', iso3='USA', iso_numeric='1', ) self.test_country = Country.objects.create( name='TestCountry', iso='TC', iso3='TCO', iso_numeric='2', ) def tearDown(self): Country.objects.all().delete() def test_country_by_request(self): # Test with missing/badly formed settings with self.settings(COUNTRIES_PLUS_COUNTRY_HEADER='', COUNTRIES_PLUS_DEFAULT_ISO=''): with self.assertRaises(AttributeError): Country.get_by_request(self.request_without_geoip) # Test without a default with self.settings(COUNTRIES_PLUS_COUNTRY_HEADER='GEOIP_HEADER', COUNTRIES_PLUS_DEFAULT_ISO=''): self.assertIsNone(Country.get_by_request(self.request_without_geoip)) # Test with a default with self.settings(COUNTRIES_PLUS_COUNTRY_HEADER='GEOIP_HEADER', COUNTRIES_PLUS_DEFAULT_ISO='US'): self.assertEqual(Country.get_by_request(self.request_without_geoip), self.default_country) self.assertEqual(Country.get_by_request(self.request_with_geoip), self.test_country) def test_middleware(self): with self.settings(COUNTRIES_PLUS_COUNTRY_HEADER='GEOIP_HEADER', COUNTRIES_PLUS_DEFAULT_ISO='US'): # This should always return none, and it adds country to the request self.assertEqual(self.middleware.process_request(self.request_with_geoip), None) self.assertIsInstance(self.request_with_geoip.country, Country) ```
{ "source": "jodonnell/Minesweeper-", "score": 3 }
#### File: Minesweeper-/minesweeper/tests.py ```python from django.test import TestCase from minesweeper.classes.create_board import CreateBoard, CreateTestBoard from minesweeper.classes.board import Board BOARD_COLUMNS = 8 BOARD_ROWS = 8 TOTAL_MINES = 10 class CreateBoardTest(TestCase): def setUp(self): self.create_board = CreateBoard(BOARD_ROWS, BOARD_COLUMNS, TOTAL_MINES) self.board = self.create_board.get_board() def test_create_board(self): self.failUnlessEqual(len(self.board), BOARD_ROWS) self.failUnlessEqual(len(self.board[0]), BOARD_COLUMNS) def test_created_10_mines(self): mines = 0 for row in range(BOARD_ROWS): for column in range(BOARD_COLUMNS): mines += self.board[row][column] self.failUnlessEqual(mines, TOTAL_MINES) class CreateTestBoardTest(TestCase): def test_testing_board(self): create_test_board = CreateTestBoard(BOARD_ROWS, BOARD_COLUMNS, TOTAL_MINES) self.failUnlessEqual(create_test_board.get_board(), self.get_test_board()) def get_test_board(self): return [[1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]] class BoardTest(TestCase): def setUp(self): create_test_board = CreateTestBoard(BOARD_ROWS, BOARD_COLUMNS, TOTAL_MINES) self.board = Board(create_test_board) def test_click_mine(self): self.failUnlessEqual(self.board.is_mined(0,0), True, 'There was no mine at 0,0') self.failUnlessEqual(self.board.is_mined(1,0), False, 'There was no mine at 1,0') def test_place_flag(self): self.board.place_flag(0,0) self.failUnlessEqual(self.board.flags_left(), TOTAL_MINES - 1, 'A flag was not placed') self.board.place_flag(0,0) self.failUnlessEqual(self.board.flags_left(), TOTAL_MINES, 'Flag was not unclicked') def test_win(self): for column in range(BOARD_COLUMNS - 1): self.board.place_flag(0, column) self.failUnlessEqual(self.board.has_won(), False, 'The player should not have won') for column in range(5, BOARD_COLUMNS): self.board.place_flag(1, column) self.failUnlessEqual(self.board.has_won(), True, 'The player should have won but did not') def test_get_num_surronding_mines(self): mines_surronding = self.board.get_num_surronding_mines(2, 4) self.failUnlessEqual(mines_surronding, 1, 'There should be one bordering mine at 2,4 found: ' + str(mines_surronding)) mines_surronding = self.board.get_num_surronding_mines(1, 0) self.failUnlessEqual(mines_surronding, 2, 'There should be two bordering mines at 1,0 found: ' + str(mines_surronding)) mines_surronding = self.board.get_num_surronding_mines(7, 7) self.failUnlessEqual(mines_surronding, 0, 'There should be zero bordering mines at 7,7 found: ' + str(mines_surronding)) def test_get_clear_area(self): clear_area = self.board.get_clear_area(7,7, []) NUM_CLEAR_RETURNED = 53 self.failUnlessEqual(len(clear_area), NUM_CLEAR_RETURNED) ```
{ "source": "jodsche/recsys2018-1", "score": 3 }
#### File: jodsche/recsys2018-1/json_to_dataframe.py ```python import os import json import pandas as pd os.makedirs('df_data', exist_ok=True) def create_df_data(): path = 'data/data' playlist_col = ['collaborative', 'duration_ms', 'modified_at', 'name', 'num_albums', 'num_artists', 'num_edits', 'num_followers', 'num_tracks', 'pid'] tracks_col = ['album_name', 'album_uri', 'artist_name', 'artist_uri', 'duration_ms', 'track_name', 'track_uri'] playlist_test_col = ['name', 'num_holdouts', 'num_samples', 'num_tracks', 'pid'] filenames = os.listdir(path) data_playlists = [] data_tracks = [] playlists = [] tracks = set() for filename in filenames: # delete mpd.slice.833000-833999.json fullpath = os.sep.join((path, filename)) f = open(fullpath) js = f.read() f.close() mpd_slice = json.loads(js) for playlist in mpd_slice['playlists']: data_playlists.append([playlist[col] for col in playlist_col]) for track in playlist['tracks']: playlists.append([playlist['pid'], track['track_uri'], track['pos']]) if track['track_uri'] not in tracks: data_tracks.append([track[col] for col in tracks_col]) tracks.add(track['track_uri']) df_playlists_info = pd.DataFrame(data_playlists, columns=playlist_col) df_playlists_info['collaborative'] = df_playlists_info['collaborative'].map({'false': False, 'true': True}) df_tracks = pd.DataFrame(data_tracks, columns=tracks_col) df_tracks['tid'] = df_tracks.index track_uri2tid = df_tracks.set_index('track_uri').tid df_playlists = pd.DataFrame(playlists, columns=['pid', 'tid', 'pos']) df_playlists.tid = df_playlists.tid.map(track_uri2tid) df_tracks.to_hdf('df_data/df_tracks.hdf', key='abc') df_playlists.to_hdf('df_data/df_playlists.hdf', key='abc') df_playlists_info.to_hdf('df_data/df_playlists_info.hdf', key='abc') f = open('data/challenge_set.json') js = f.read() f.close() mpd_slice = json.loads(js) data_playlists_test = [] playlists_test = [] for playlist in mpd_slice['playlists']: data_playlists_test.append([playlist.get(col, '') for col in playlist_test_col]) for track in playlist['tracks']: playlists_test.append([playlist['pid'], track['track_uri'], track['pos']]) if track['track_uri'] not in tracks: data_tracks.append([track[col] for col in tracks_col]) tracks.add(track['track_uri']) df_playlists_test_info = pd.DataFrame(data_playlists_test, columns=playlist_test_col) df_playlists_test = pd.DataFrame(playlists_test, columns=['pid', 'tid', 'pos']) df_playlists_test.tid = df_playlists_test.tid.map(track_uri2tid) df_playlists_test.to_hdf('df_data/df_playlists_test.hdf', key='abc') df_playlists_test_info.to_hdf('df_data/df_playlists_test_info.hdf', key='abc') create_df_data() ```
{ "source": "jodumagpi/tts_interface", "score": 2 }
#### File: tts_interface/dictionary/main.py ```python from dataset import Dataset from utils import create_dir, get_path import configs as cfg def main(): _ = create_dir(cfg.savedir) savedir = create_dir(cfg.savedir) savepath = create_dir(savedir, "wavs_with_lab") savepath_wavs = create_dir(savedir, "wavs") metadata_savepath = get_path(savedir) grapheme_dict_savepath = get_path(savedir, cfg.grapheme_dictionary_name) phoneme_dict_savepath = get_path(savedir, cfg.phoneme_dictionary_name) instance = Dataset( source_dataset_path = cfg.source_dataset_path, savepath = savepath, savepath_wavs = savepath_wavs, metadata_savepath = metadata_savepath, grapheme_dictionary_savepath = grapheme_dict_savepath, phoneme_dictionary_savepath = phoneme_dict_savepath, num_threads=cfg.NUM_THREADS) instance.prepare_mfa_training() if __name__ == "__main__": main() ```
{ "source": "jodur/HASS-Deepstack-object", "score": 2 }
#### File: custom_components/deepstack_object/image_processing.py ```python from collections import namedtuple import datetime import io import logging import os import re from datetime import timedelta from typing import Tuple, Dict, List from pathlib import Path from PIL import Image, ImageDraw import deepstack.core as ds import homeassistant.helpers.config_validation as cv import homeassistant.util.dt as dt_util import voluptuous as vol from homeassistant.util.pil import draw_box from homeassistant.components.image_processing import ( ATTR_CONFIDENCE, CONF_CONFIDENCE, CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE, DEFAULT_CONFIDENCE, DOMAIN, PLATFORM_SCHEMA, ImageProcessingEntity, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_NAME, CONF_IP_ADDRESS, CONF_PORT, HTTP_BAD_REQUEST, HTTP_OK, HTTP_UNAUTHORIZED, ) from homeassistant.core import split_entity_id _LOGGER = logging.getLogger(__name__) ANIMAL = "animal" ANIMALS = [ "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", ] OTHER = "other" PERSON = "person" VEHICLE = "vehicle" VEHICLES = ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck"] OBJECT_TYPES = [ANIMAL, OTHER, PERSON, VEHICLE] CONF_API_KEY = "api_key" CONF_TARGET = "target" CONF_TARGETS = "targets" CONF_TIMEOUT = "timeout" CONF_SAVE_FILE_FOLDER = "save_file_folder" CONF_SAVE_TIMESTAMPTED_FILE = "save_timestamped_file" CONF_SHOW_BOXES = "show_boxes" CONF_ROI_Y_MIN = "roi_y_min" CONF_ROI_X_MIN = "roi_x_min" CONF_ROI_Y_MAX = "roi_y_max" CONF_ROI_X_MAX = "roi_x_max" CONF_SCALE = "scale" CONF_CUSTOM_MODEL = "custom_model" DATETIME_FORMAT = "%Y-%m-%d_%H-%M-%S" DEFAULT_API_KEY = "" DEFAULT_TARGETS = [{CONF_TARGET: PERSON}] DEFAULT_TIMEOUT = 10 DEFAULT_ROI_Y_MIN = 0.0 DEFAULT_ROI_Y_MAX = 1.0 DEFAULT_ROI_X_MIN = 0.0 DEFAULT_ROI_X_MAX = 1.0 DEAULT_SCALE = 1.0 DEFAULT_ROI = ( DEFAULT_ROI_Y_MIN, DEFAULT_ROI_X_MIN, DEFAULT_ROI_Y_MAX, DEFAULT_ROI_X_MAX, ) EVENT_OBJECT_DETECTED = "deepstack.object_detected" BOX = "box" FILE = "file" OBJECT = "object" SAVED_FILE = "saved_file" MIN_CONFIDENCE = 0.1 # rgb(red, green, blue) RED = (255, 0, 0) # For objects within the ROI GREEN = (0, 255, 0) # For ROI box YELLOW = (255, 255, 0) # Unused TARGETS_SCHEMA = { vol.Required(CONF_TARGET): cv.string, vol.Optional(CONF_CONFIDENCE): vol.All( vol.Coerce(float), vol.Range(min=10, max=100) ), } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_IP_ADDRESS): cv.string, vol.Required(CONF_PORT): cv.port, vol.Optional(CONF_API_KEY, default=DEFAULT_API_KEY): cv.string, vol.Optional(CONF_TIMEOUT, default=DEFAULT_TIMEOUT): cv.positive_int, vol.Optional(CONF_CUSTOM_MODEL, default=""): cv.string, vol.Optional(CONF_TARGETS, default=DEFAULT_TARGETS): vol.All( cv.ensure_list, [vol.Schema(TARGETS_SCHEMA)] ), vol.Optional(CONF_ROI_Y_MIN, default=DEFAULT_ROI_Y_MIN): cv.small_float, vol.Optional(CONF_ROI_X_MIN, default=DEFAULT_ROI_X_MIN): cv.small_float, vol.Optional(CONF_ROI_Y_MAX, default=DEFAULT_ROI_Y_MAX): cv.small_float, vol.Optional(CONF_ROI_X_MAX, default=DEFAULT_ROI_X_MAX): cv.small_float, vol.Optional(CONF_SCALE, default=DEAULT_SCALE): vol.All( vol.Coerce(float, vol.Range(min=0.1, max=1)) ), vol.Optional(CONF_SAVE_FILE_FOLDER): cv.isdir, vol.Optional(CONF_SAVE_TIMESTAMPTED_FILE, default=False): cv.boolean, vol.Optional(CONF_SHOW_BOXES, default=True): cv.boolean, } ) Box = namedtuple("Box", "y_min x_min y_max x_max") Point = namedtuple("Point", "y x") def point_in_box(box: Box, point: Point) -> bool: """Return true if point lies in box""" if (box.x_min <= point.x <= box.x_max) and (box.y_min <= point.y <= box.y_max): return True return False def object_in_roi(roi: dict, centroid: dict) -> bool: """Convenience to convert dicts to the Point and Box.""" target_center_point = Point(centroid["y"], centroid["x"]) roi_box = Box(roi["y_min"], roi["x_min"], roi["y_max"], roi["x_max"]) return point_in_box(roi_box, target_center_point) def get_valid_filename(name: str) -> str: return re.sub(r"(?u)[^-\w.]", "", str(name).strip().replace(" ", "_")) def get_object_type(object_name: str) -> str: if object_name == PERSON: return PERSON elif object_name in ANIMALS: return ANIMAL elif object_name in VEHICLES: return VEHICLE else: return OTHER def get_objects(predictions: list, img_width: int, img_height: int) -> List[Dict]: """Return objects with formatting and extra info.""" objects = [] decimal_places = 3 for pred in predictions: box_width = pred["x_max"] - pred["x_min"] box_height = pred["y_max"] - pred["y_min"] box = { "height": round(box_height / img_height, decimal_places), "width": round(box_width / img_width, decimal_places), "y_min": round(pred["y_min"] / img_height, decimal_places), "x_min": round(pred["x_min"] / img_width, decimal_places), "y_max": round(pred["y_max"] / img_height, decimal_places), "x_max": round(pred["x_max"] / img_width, decimal_places), } box_area = round(box["height"] * box["width"], decimal_places) centroid = { "x": round(box["x_min"] + (box["width"] / 2), decimal_places), "y": round(box["y_min"] + (box["height"] / 2), decimal_places), } name = pred["label"] object_type = get_object_type(name) confidence = round(pred["confidence"] * 100, decimal_places) objects.append( { "bounding_box": box, "box_area": box_area, "centroid": centroid, "name": name, "object_type": object_type, "confidence": confidence, } ) return objects def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the classifier.""" save_file_folder = config.get(CONF_SAVE_FILE_FOLDER) if save_file_folder: save_file_folder = Path(save_file_folder) entities = [] for camera in config[CONF_SOURCE]: object_entity = ObjectClassifyEntity( ip_address=config.get(CONF_IP_ADDRESS), port=config.get(CONF_PORT), api_key=config.get(CONF_API_KEY), timeout=config.get(CONF_TIMEOUT), custom_model=config.get(CONF_CUSTOM_MODEL), targets=config.get(CONF_TARGETS), confidence=config.get(CONF_CONFIDENCE), roi_y_min=config[CONF_ROI_Y_MIN], roi_x_min=config[CONF_ROI_X_MIN], roi_y_max=config[CONF_ROI_Y_MAX], roi_x_max=config[CONF_ROI_X_MAX], scale=config[CONF_SCALE], show_boxes=config[CONF_SHOW_BOXES], save_file_folder=save_file_folder, save_timestamped_file=config.get(CONF_SAVE_TIMESTAMPTED_FILE), camera_entity=camera.get(CONF_ENTITY_ID), name=camera.get(CONF_NAME), ) entities.append(object_entity) add_devices(entities) class ObjectClassifyEntity(ImageProcessingEntity): """Perform a object classification.""" def __init__( self, ip_address, port, api_key, timeout, custom_model, targets, confidence, roi_y_min, roi_x_min, roi_y_max, roi_x_max, scale, show_boxes, save_file_folder, save_timestamped_file, camera_entity, name=None, ): """Init with the API key and model id.""" super().__init__() self._dsobject = ds.DeepstackObject( ip=ip_address, port=port, api_key=api_key, timeout=timeout, min_confidence=MIN_CONFIDENCE, custom_model=custom_model, ) self._custom_model = custom_model self._confidence = confidence self._targets = targets for target in self._targets: if CONF_CONFIDENCE not in target.keys(): target.update({CONF_CONFIDENCE: self._confidence}) self._targets_names = [ target[CONF_TARGET] for target in targets ] # can be a name or a type self._camera = camera_entity if name: self._name = name else: camera_name = split_entity_id(camera_entity)[1] self._name = "deepstack_object_{}".format(camera_name) self._state = None self._objects = [] # The parsed raw data self._targets_found = [] self._roi_dict = { "y_min": roi_y_min, "x_min": roi_x_min, "y_max": roi_y_max, "x_max": roi_x_max, } self._scale = scale self._show_boxes = show_boxes self._last_detection = None self._image_width = None self._image_height = None self._save_file_folder = save_file_folder self._save_timestamped_file = save_timestamped_file self._image = None def process_image(self, image): """Process an image.""" self._image = Image.open(io.BytesIO(bytearray(image))) self._image_width, self._image_height = self._image.size # resize image if different then default if self._scale != DEAULT_SCALE: newsize = (self._image_width * self._scale, self._image_width * self._scale) self._image.thumbnail(newsize, Image.ANTIALIAS) self._image_width, self._image_height = self._image.size with io.BytesIO() as output: self._image.save(output, format="JPEG") image = output.getvalue() _LOGGER.debug( ( f"Image scaled with : {self._scale} W={self._image_width} H={self._image_height}" ) ) self._state = None self._objects = [] # The parsed raw data self._targets_found = [] saved_image_path = None try: predictions = self._dsobject.detect(image) except ds.DeepstackException as exc: _LOGGER.error("Deepstack error : %s", exc) return self._objects = get_objects(predictions, self._image_width, self._image_height) self._targets_found = [] for obj in self._objects: if not ( (obj["name"] in self._targets_names) or (obj["object_type"] in self._targets_names) ): continue ## Then check if the type has a configured confidence, if yes assign ## Then if a confidence for a named object, this takes precedence over type confidence confidence = None for target in self._targets: if obj["object_type"] == target[CONF_TARGET]: confidence = target[CONF_CONFIDENCE] for target in self._targets: if obj["name"] == target[CONF_TARGET]: confidence = target[CONF_CONFIDENCE] if obj["confidence"] > confidence: if not object_in_roi(self._roi_dict, obj["centroid"]): continue self._targets_found.append(obj) self._state = len(self._targets_found) if self._state > 0: self._last_detection = dt_util.now().strftime(DATETIME_FORMAT) if self._save_file_folder and self._state > 0: saved_image_path = self.save_image( self._targets_found, self._save_file_folder, ) # Fire events for target in self._targets_found: target_event_data = target.copy() target_event_data[ATTR_ENTITY_ID] = self.entity_id if saved_image_path: target_event_data[SAVED_FILE] = saved_image_path self.hass.bus.fire(EVENT_OBJECT_DETECTED, target_event_data) @property def camera_entity(self): """Return camera entity id from process pictures.""" return self._camera @property def state(self): """Return the state of the entity.""" return self._state @property def name(self): """Return the name of the sensor.""" return self._name @property def should_poll(self): """Return the polling state.""" return False @property def device_state_attributes(self) -> Dict: """Return device specific state attributes.""" attr = {} attr["targets"] = self._targets attr["targets_found"] = [ {obj["name"]: obj["confidence"]} for obj in self._targets_found ] if self._last_detection: attr["last_target_detection"] = self._last_detection if self._custom_model: attr["custom_model"] = self._custom_model attr["all_objects"] = [ {obj["name"]: obj["confidence"]} for obj in self._objects ] if self._save_file_folder: attr[CONF_SAVE_FILE_FOLDER] = str(self._save_file_folder) if self._save_timestamped_file: attr[CONF_SAVE_TIMESTAMPTED_FILE] = self._save_timestamped_file return attr def save_image(self, targets, directory) -> str: """Draws the actual bounding box of the detected objects. Returns: saved_image_path, which is the path to the saved timestamped file if configured, else the default saved image. """ try: img = self._image.convert("RGB") except UnidentifiedImageError: _LOGGER.warning("Deepstack unable to process image, bad data") return draw = ImageDraw.Draw(img) roi_tuple = tuple(self._roi_dict.values()) if roi_tuple != DEFAULT_ROI and self._show_boxes: draw_box( draw, roi_tuple, img.width, img.height, text="ROI", color=GREEN, ) for obj in targets: if not self._show_boxes: break name = obj["name"] confidence = obj["confidence"] box = obj["bounding_box"] centroid = obj["centroid"] box_label = f"{name}: {confidence:.1f}%" draw_box( draw, (box["y_min"], box["x_min"], box["y_max"], box["x_max"]), img.width, img.height, text=box_label, color=RED, ) # draw bullseye draw.text( (centroid["x"] * img.width, centroid["y"] * img.height), text="X", fill=RED, ) # Save images, returning the path of saved image as str latest_save_path = ( directory / f"{get_valid_filename(self._name).lower()}_latest.jpg" ) _LOGGER.info("Deepstack saved file %s", latest_save_path) img.save(latest_save_path) saved_image_path = latest_save_path if self._save_timestamped_file: timestamp_save_path = directory / f"{self._name}_{self._last_detection}.jpg" img.save(timestamp_save_path) _LOGGER.info("Deepstack saved file %s", timestamp_save_path) saved_image_path = timestamp_save_path return str(saved_image_path) ```
{ "source": "joduss/alfred-workFlows-iossimulator", "score": 3 }
#### File: alfred-workFlows-iossimulator/core/device.py ```python import json import subprocess from core.application import number_of_applications class DeviceType: IPhone, IPad, Other = ("iPhone", "iPad", "other") def __device_type_with_name(name): deviceType = name.lower().find( "iphone") == 0 and DeviceType.IPhone or DeviceType.Other return name.lower().find("ipad") == 0 and DeviceType.IPad or deviceType class DeviceState: Unknown, Shutdown, Booted, Creating = ( "unknown", "shutdown", "booted", "creating") def __device_is_available(device): return ( ('availability' in device and device['availability'] == "(available)") # XCode 11^ or ('isAvailable' in device and device['isAvailable'] == True) ) def __prepare_runtime(runtime): return runtime.split(".")[-1].replace("-", " ", 1).replace("-", ".") def __device_state_with_name(state): if state == "Shutdown": return DeviceState.Shutdown elif state == "Booted": return DeviceState.Booted elif state == "Creating": return DeviceState.Creating else: return DeviceState.Unknown class Device: def __init__(self, name, udid, state, runtime, deviceType): self.name = name self.udid = udid self.state = state self.runtime = runtime self.type = deviceType self.numberOfApplications = number_of_applications(udid) def description(self): return "name: {0} id: {1} state: {2} runtime: {3} type: {4} number of applications: {5}".format( self.name, self.udid, self.state, self.runtime, self.type, self.numberOfApplications, ) def applications_description(self): if self.numberOfApplications == 0: return "No applications installed" elif self.numberOfApplications == 1: return "1 application installed" else: return "{} applications installed".format(self.numberOfApplications) def devices(): devicesJson = subprocess.check_output( ["/usr/bin/xcrun", "simctl", "list", "-j", "devices"]) allDevices = json.loads(devicesJson)["devices"] iosDevices = [device for device in allDevices.items() if ( device[0].find("iOS") >= 0)] devices = [] for runtime, rawDevices in iosDevices: devicesAvailables = (d for d in rawDevices if __device_is_available(d)) for rawDevice in devicesAvailables: device = Device( rawDevice["name"], rawDevice["udid"], __device_state_with_name(rawDevice["state"]), __prepare_runtime(runtime), __device_type_with_name(rawDevice["name"]) ) devices.append(device) return devices def device_with_id(udid): filteredDevices = [d for d in devices() if d.udid == udid] return filteredDevices[0] if filteredDevices else None if __name__ == '__main__': allDevices = devices() print("\n".join((d.description() for d in allDevices))) if allDevices: individualDevice = device_with_id(allDevices[0].udid) if individualDevice: print("\n{0}".format(individualDevice.description())) ```
{ "source": "joduss/ArticleClassifier", "score": 2 }
#### File: classifier/Data/GlobalDataset.py ```python import math import tensorflow as tf class GlobalDataset: def __init__(self, tf_dataset: tf.data.Dataset, train_ratio: float, validation_ratio: float, batch_size: int = 300): self.article_length = len(list(tf_dataset.as_numpy_iterator())[0][0]) self.theme_count = len(list(tf_dataset.as_numpy_iterator())[0][1]) self.count = len(list(tf_dataset.as_numpy_iterator())) self.dataset = tf_dataset.batch(batch_size).repeat().shuffle(batch_size) self.trainSize = int(train_ratio * self.count) self.validationSize = int(validation_ratio * self.count) self.testSize = self.count - self.trainSize - self.validationSize self.trainData = self.dataset.take(self.trainSize).repeat() self.validationData = self.dataset.skip(self.trainSize).take(self.validationSize).repeat() self.testData = self.dataset.skip(self.testSize) self.train_batch_count = int(math.ceil(self.trainSize / batch_size)) self.test_batch_count = int(math.ceil(self.testSize / batch_size)) self.validation_batch_count = int(math.ceil(self.validationSize / batch_size)) # def __init__(self, X, Y, train_ratio: float, validation_ratio: float, batch_size): # """ # Creates and wrap a tensorflow dataset. # :param X: Input # :param Y: Outputs # :param train_ratio: # :param validation_ratio: # :param batch_size: # """ # self.X_column_count = len(X[0]) # self.Y_column_count = len(Y[0]) # self.row_count = len(X) # # XY = list(zip(X, Y)) # shuffle(XY) # X, Y = zip(*XY) # # self.train_size = math.ceil(train_ratio * self.row_count) # self.validation_size = math.ceil(validation_ratio * self.row_count) # self.test_size = self.row_count - self.train_size - self.validation_size # # self.train_batch_count = int(math.ceil(self.train_size / batch_size)) # self.test_batch_count = int(math.ceil(self.test_size / batch_size)) # self.validation_batch_count = int(math.ceil(self.validation_size / batch_size)) # # self.X_test = X[0:self.test_size] # self.Y_test = Y[0:self.test_size] # # self.X_train = X[self.test_size:self.test_size + self.train_size] # self.Y_train = Y[self.test_size:self.test_size + self.train_size] # self.X_val = X[self.test_size + self.train_size:] # self.Y_val = Y[self.test_size + self.train_size:] # # # tf.Datasets creation # # # Only train shuffle. Not needed to evaluate/test # self.trainData = tf.data.Dataset.from_tensor_slices((self.X_train, self.Y_train)).batch(batch_size).repeat() # self.validationData = tf.data.Dataset.from_tensor_slices((self.X_val, self.Y_val)).batch(batch_size).repeat() # self.testData = tf.data.Dataset.from_tensor_slices((self.X_test, self.Y_test)).batch(batch_size).repeat() ``` #### File: classifier/training/TrainedModel.py ```python from classifier.models.IClassifierModel import IClassifierModel from classifier.preprocessing.article_text_tokenizer import ArticleTextTokenizer from classifier.preprocessing.article_theme_tokenizer import ArticleThemeTokenizer class TrainedModel: theme_tokenizer: ArticleThemeTokenizer article_tokenizer: ArticleTextTokenizer model: IClassifierModel def __init__(self, model: IClassifierModel, article_tokenizer : ArticleTextTokenizer, theme_tokenizer: ArticleThemeTokenizer): self.theme_tokenizer = theme_tokenizer self.article_tokenizer = article_tokenizer self.model = model def save(self, directory: str): self.model.save_model(directory) self.article_tokenizer.save(f"{directory}{self.model.get_model_name()}-article-tokenizer.json") self.theme_tokenizer.save(f"{directory}{self.model.get_model_name()}-theme_tokenizer.json") def load(self, directory: str): self.model.load_model(directory) ``` #### File: src/data_models/articles.py ```python from __future__ import annotations import random import math import time from typing import Callable, Dict, List, TextIO import json as jsonModule from data_models.article import Article from data_models.transformation.article_transformer import ArticleTransformer from utilities.utility import intersection class MetaArticles(type): @property def items(cls) -> List[Article]: return cls.items class Articles(object, metaclass=MetaArticles): jsonObject: Dict items: List[Article] def __init__(self, articles: List[Article] = None, article: Article = None): if articles is not None and isinstance(articles, list): self.items = articles elif article is not None and isinstance(article, Article): self.items = [article] elif article is None and articles is None: pass else: raise Exception("article or articles must be provided. NOT BOTH either!") def __iter__(self): return self.items.__iter__() def add(self, article: Article): self.items.append(article) @staticmethod def from_file(path: str, limit: int = None) -> Articles: with open(path, "r", encoding="utf-8") as file: try: return Articles.load_articles(file, limit) except Exception as e: time.sleep(5) return Articles.load_articles(file, limit) @staticmethod def load_articles(file: TextIO, limit: int = None) -> Articles: """ Creates an object data_models from a json file containing data_models. :param file: :param limit: """ json = jsonModule.loads(file.read()) if limit is not None: json = json[0:limit] articles: List[Article] = [] for jsonArticle in json: articles.append(ArticleTransformer.transform_to_article(jsonArticle)) return Articles(articles) def save(self, filepath: str): with open(filepath, 'w', encoding="utf-8") as outfile: jsonModule.dump([ArticleTransformer.transform_to_json(article) for article in self.items], outfile, indent=4, ensure_ascii=False) # def inherit_predictions(self, articles: Articles): # original_dic = { i.id : i for i in self.items } # # for predicted_article in articles: # original_article: Article = original_dic[predicted_article.id] # original_article.predicted_themes = predicted_article.predicted_themes # # print("done") def subset(self, size: int or None) -> Articles: """ Creates a subset of the articles. :param size: An integer or None. :return: The subset of size 'size' or all articles if size is None.. """ if size is None: return self return Articles(self.items[0:size]) def subset_ratio(self, ratio: float) -> Articles: return self.subset(size=math.ceil(self.count() * ratio)) def articles_with_theme(self, theme: str) -> Articles: """ Returns articles which have the given theme in the list of themes (property 'themes') :param theme: theme that must be present :return: articles having the given theme. """ return Articles( list( filter(lambda article: theme in article.themes, self.items) ) ) def get_by_id(self, article_id: str): for article in self.items: if article.id is article_id: return article raise Exception("Not found.") # def filter(self, filter_function: Callable[[Article], bool]) -> Articles: # return Articles( # list( # filter( # lambda article: filter_function(article), # self.items, # ) # ) # ) def articles_with_all_verified_themes(self, themes: List[str]) -> Articles: """ Returns a new Articles instance containing articles whose verified themes are containing a given list of themes. :param themes: All themes that must be have been verified in the articles. :return: """ return Articles( list( filter( lambda article: (len(intersection(themes, article.verified_themes)) == len(themes)), self.items ) ) ) def articles_with_any_verified_themes(self, themes: List[str]) -> Articles: """ Returns a new Articles instance containing articles whose verified themes are containing at least one of a theme from a given list of themes. :param themes: Themes. At least one must be present in the article verified themes. :return: """ return Articles( list( filter( lambda article: (len(intersection(themes, article.verified_themes)) > 0), self.items ) ) ) def themes(self) -> List[str]: """ Returns the list of themes for each articles according to the order of articles. """ return list( map(lambda article: article.themes, self.items) ) def title_and_summary(self) -> List[str]: return list( map(lambda article: article.title_and_summary(), self.items) ) def count(self) -> int: return len(self.items) def copyEachArticle(self) -> List[Article]: return list( map(lambda article: article.copy(), self.items) ) def deep_copy(self) -> Articles: return Articles(self.copyEachArticle()) def shuffle(self): random.shuffle(self.items) def contains(self, article_id: str) -> bool: for item in self.items: if item.id == article_id: return True return False def __sub__(self, other): """ Removes from this instance all the articles present in 'other' :rtype: Articles """ if not isinstance(other, Articles): raise Exception("Must be type Articles") # just for typing other_articles: Articles = other ids: set = set([article.id for article in other_articles]) filtered = [article for article in self.items if article.id not in ids] return Articles(filtered) def __getitem__(self, idx): return self.items[idx] ``` #### File: data_models/weights/theme_weights.py ```python from typing import Dict, List from classifier.preprocessing.article_theme_tokenizer import ArticleThemeTokenizer from data_models.ThemeStat import ThemeStat class ThemeWeights: theme_stats: List[ThemeStat] theme_tokenizer: ArticleThemeTokenizer def __init__(self, theme_stats: List[ThemeStat], theme_tokenizer: ArticleThemeTokenizer): self.theme_stats = theme_stats self.theme_tokenizer = theme_tokenizer def weight_list(self) -> List[float]: """ Returns a list of weight for each theme, ordered by theme index. """ theme_weight: List[float] = list([]) #raise Exception("To review") for theme in self.theme_tokenizer.orderedThemes: stat = [stat for stat in self.theme_stats if stat.theme == theme][0] theme_weight.append(stat.binary_weight_pos()) return theme_weight def weights_of_theme(self, theme_idx: int) -> Dict[int, float]: """ Returns the weights for a theme under the form {0 : VAL_1, 1 : VAL_2} :param theme_idx: index of the theme """ theme = self.theme_tokenizer.theme_at_index(theme_idx) theme_stat = list(filter(lambda stat: stat.theme == theme, self.theme_stats)) if len(theme_stat) == 0: raise Exception("Theme {} not found.".format(theme)) if len(theme_stat) > 1: raise Exception("Theme {} found multiple times.".format(theme)) return {0 : theme_stat[0].binary_weight_neg(), 1 : theme_stat[0].binary_weight_pos()} def weight_array(self) -> List[List[float]]: theme_weight_array: List[List[float]] = [] # raise Exception("To review") for theme in self.theme_tokenizer.orderedThemes: stat = [stat for stat in self.theme_stats if stat.theme == theme][0] theme_weight = [0,0] theme_weight[0] = stat.binary_weight_neg() theme_weight[1] = stat.binary_weight_pos() theme_weight_array.append(theme_weight) return theme_weight_array ``` #### File: src/tests/ArticlesPredictionTests.py ```python import unittest from classifier.prediction.articles_prediction import ArticlesPrediction from classifier.preprocessing.article_theme_tokenizer import ArticleThemeTokenizer from data_models.article import Article from data_models.articles import Articles class ArticlesPredictionTests(unittest.TestCase): def testApplyOnArticlesDefaultThreshold(self): article1 = Article("1", "title", "summary", ["theme1"], ["theme1", "old_prediction"], ["theme1"]) article2 = Article("2", "title", "summary", ["theme1", "theme2"], ["other__old_predicted_theme"], ["theme1", "theme2", "theme3"]) # article 3 is not used for test, but is necessary for the tokenizer to know the theme3. article3 = Article("3", "title", "summary", ["theme3"], [], []) articles = Articles([article1, article2]) theme_tokenizer = ArticleThemeTokenizer(Articles([article1, article2, article3])) predictions = ArticlesPrediction(theme_tokenizer, articles) predictions.addPredictionsForArticle([0.1, 0.7, 0], article1.id) predictions.addPredictionsForArticle([0.4, 0.89, 0.99], article2.id) # Apply prediction with standard threshold predicted_articles = predictions.get_articles_with_predictions() predicted_articles_one = predicted_articles[0] predicted_articles_two = predicted_articles[1] self.assertEqual(1, len(predicted_articles_one.predicted_themes)) self.assertFalse("theme1" in predicted_articles_one.predicted_themes) self.assertTrue("theme2" in predicted_articles_one.predicted_themes) self.assertFalse("theme3" in predicted_articles_one.predicted_themes) self.assertEqual(2, len(predicted_articles_two.predicted_themes)) self.assertFalse("theme1" in predicted_articles_two.predicted_themes) self.assertTrue("theme2" in predicted_articles_two.predicted_themes) self.assertTrue("theme3" in predicted_articles_two.predicted_themes) # Check that the 'verified themes' and 'themes' are not touched! self.assertEqual(1, len(predicted_articles_one.themes)) self.assertTrue("theme1" in predicted_articles_one.themes) self.assertFalse("theme2" in predicted_articles_one.themes) self.assertFalse("theme3" in predicted_articles_one.themes) self.assertEqual(2, len(predicted_articles_two.themes)) self.assertTrue("theme1" in predicted_articles_two.themes) self.assertTrue("theme2" in predicted_articles_two.themes) self.assertFalse("theme3" in predicted_articles_two.themes) self.assertEqual(1, len(predicted_articles_one.verified_themes)) self.assertTrue("theme1" in predicted_articles_one.verified_themes) self.assertFalse("theme2" in predicted_articles_one.verified_themes) self.assertFalse("theme3" in predicted_articles_one.verified_themes) self.assertEqual(3, len(predicted_articles_two.verified_themes)) self.assertTrue("theme1" in predicted_articles_two.verified_themes) self.assertTrue("theme2" in predicted_articles_two.verified_themes) self.assertTrue("theme3" in predicted_articles_two.verified_themes) # Apply prediction with custom threshold predicted_articles = predictions.get_articles_with_predictions(0.09) predicted_articles_one = predicted_articles[0] predicted_articles_two = predicted_articles[1] self.assertEqual(2, len(predicted_articles_one.predicted_themes)) self.assertTrue("theme1" in predicted_articles_one.predicted_themes) self.assertTrue("theme2" in predicted_articles_one.predicted_themes) self.assertFalse("theme3" in predicted_articles_one.predicted_themes) self.assertEqual(3, len(predicted_articles_two.predicted_themes)) self.assertTrue("theme1" in predicted_articles_two.predicted_themes) self.assertTrue("theme2" in predicted_articles_two.predicted_themes) self.assertTrue("theme3" in predicted_articles_two.predicted_themes) ``` #### File: src/tests/ArticlesTests.py ```python import unittest from data_models.article import Article from data_models.articles import Articles class ArticlesTests(unittest.TestCase): @staticmethod def create_articles() -> Articles: article1 = Article(title="Title", summary="summary", themes=[], verified_themes=[], predicted_themes=[], id="1") article2 = Article(title="Title", summary="summary", themes=["T"], verified_themes=["T"], predicted_themes=[], id="2") article3 = Article(title="Title", summary="summary", themes=["T", "T2"], verified_themes=[], predicted_themes=[], id="3") article4 = Article(title="Title", summary="summary", themes=[], verified_themes=["T"], predicted_themes=[], id="4") article5 = Article(title="Title", summary="summary", themes=["T2"], verified_themes=["T"], predicted_themes=[], id="5") article6 = Article(title="Title", summary="summary", themes=["T", "T2", "T3"], verified_themes=["T", "T2", "T3"], predicted_themes=["T3"], id="6") return Articles([article1, article2, article3, article4, article5, article6]) def test_articles_with_theme(self): articles = ArticlesTests.create_articles() filtered = articles.articles_with_theme("T2") self.assertEqual(3, filtered.count()) self.assertTrue(articles.items[2] in filtered) self.assertTrue(articles.items[4] in filtered) self.assertTrue(articles.items[5] in filtered) self.assertFalse(articles.items[3] in filtered) def test_articles_with_all_verified_themes(self): articles = ArticlesTests.create_articles() filtered = articles.articles_with_all_verified_themes(["T", "T2"]) self.assertEqual(1, filtered.count()) self.assertTrue(articles.items[5] in filtered) self.assertFalse(articles.items[0] in filtered) def test_articles_with_any_verified_themes(self): articles = ArticlesTests.create_articles() filtered = articles.articles_with_any_verified_themes(["T", "T2", "T3"]) self.assertEqual(4, filtered.count()) self.assertFalse(articles[0] in filtered) self.assertTrue(articles[1] in filtered) self.assertFalse(articles[2] in filtered) self.assertTrue(articles[3] in filtered) self.assertTrue(articles[4] in filtered) self.assertTrue(articles[5] in filtered) def test_themes(self): themes = ArticlesTests.create_articles().themes() self.assertEqual(0, len(themes[0])) self.assertEqual(1, len(themes[1])) self.assertEqual(2, len(themes[2])) self.assertEqual(0, len(themes[3])) self.assertEqual(1, len(themes[4])) self.assertEqual(3, len(themes[5])) self.assertEqual("T", themes[5][0]) self.assertEqual("T2", themes[5][1]) self.assertEqual("T3", themes[5][2]) def test_title_and_summary(self): articles = self.create_articles() self.assertEqual("Title. summary", articles.title_and_summary()[0]) def test_deep_copy(self): articles = self.create_articles() articles_copy = articles.deep_copy() for i in range(0,articles.count()): article = articles.items[i] article_copy = articles_copy.items[i] self.assertEqual(article.id, article_copy.id) self.assertEqual(article.summary, article_copy.summary) self.assertEqual(article.title, article_copy.title) self.assertEqual(article.themes, article_copy.themes) self.assertEqual(article.verified_themes, article_copy.verified_themes) self.assertEqual(article.predicted_themes, article_copy.predicted_themes) article_copy.predicted_themes.append("T4") self.assertNotEqual(article.predicted_themes, article_copy.predicted_themes) article.predicted_themes.append("T4") self.assertEqual(article.predicted_themes, article_copy.predicted_themes) def test_substraction(self): articles = self.create_articles() articles_to_remove = Articles(self.create_articles()[0:2]) filtered_articles = articles - articles_to_remove self.assertEqual(filtered_articles.count() + 2, articles.count()) self.assertFalse(filtered_articles.contains(articles_to_remove[0].id)) self.assertFalse(filtered_articles.contains(articles_to_remove[1].id)) self.assertTrue(filtered_articles.contains(articles[2].id)) self.assertTrue(filtered_articles.contains(articles[3].id)) self.assertTrue(filtered_articles.contains(articles[4].id)) self.assertTrue(filtered_articles.contains(articles[5].id)) if __name__ == '__main__': unittest.main() ``` #### File: src/tests/ArticleThemeTokenizerTests.py ```python import unittest from classifier.preprocessing.article_theme_tokenizer import ArticleThemeTokenizer from data_models.article import Article from data_models.articles import Articles class ArticleThemeTokenizerTests(unittest.TestCase): def test_boolean_vector_to_themes(self): article1 = Article("1", "title", "summary", ["theme1", "theme2", "theme3"], [], []) article2 = Article("2", "title", "summary", ["theme1", "theme4"], [], []) articles = Articles([article1, article2]) tokenizer = ArticleThemeTokenizer(articles) self.assertEqual(4, tokenizer.themes_count) self.assertEqual(["theme1", "theme2", "theme3", "theme4"], tokenizer.orderedThemes) self.assertEqual(["theme1", "theme4"], tokenizer.boolean_vector_to_themes([True, False, False, True])) self.assertEqual([], tokenizer.boolean_vector_to_themes([False, False, False, False])) self.assertEqual(["theme3"], tokenizer.boolean_vector_to_themes([False, False, True, False])) def test_save(self): article1 = Article("1", "title", "summary", ["theme1", "theme2", "theme3"], [], []) article2 = Article("2", "title", "summary", ["theme1", "theme4"], [], []) articles = Articles([article1, article2]) tokenizer = ArticleThemeTokenizer(articles) tokenizer.save("test.json") with open("test.json", "r") as file: content = file.readlines() print("f") ``` #### File: src/tests/mock_model.py ```python from tensorflow import keras as k from tensorflow.keras import layers, models import numpy as np from tensorflow.python.keras.models import Model class MockModel: @classmethod def get_model(cls) -> Model: # Create a fake model. Basically, we simulate a text classifier where we have 3 words which are represented with 3 # digits: 1, 2 and 3. 0 is reserved for padding. # There is an embedding matrix that encode each word into a vector containing exactly one 1 representing the word itself. # So word 2 is represented as [0, 1, 0] # The classifier tells if there is the occurence of a given word. The output consists of a binary vector, where # the position p_i of a 1 indicates that the word i was present in the input vector. model = models.Sequential([ layers.Embedding(input_dim=4, output_dim=3, input_length=3), layers.GlobalMaxPool1D(), ]) model.compile(loss=k.losses.BinaryCrossentropy()) model.layers[0].set_weights([np.array([[0,0,0],[1,0,0], [0, 1, 0], [0,0,1]])]) return model ``` #### File: src/utilities/utility.py ```python from typing import List # Removes the enclosed lists that are empty. def remove_empty_lists(list_of_lists: List[List[str]]): return list(filter(lambda list: len(list) > 0, list_of_lists)) def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 ```
{ "source": "jodygarnett/bridge-style", "score": 2 }
#### File: bridgestyle/mapserver/togeostyler.py ```python def convert(style, options=None): raise NotImplementedError("togeostyler.convert() has not been implemented") # TODO ```
{ "source": "Jodyheryanto/business-intelligence", "score": 2 }
#### File: app/model/word_cloud.py ```python from app import db from app.model.post import Posts from app.model.user import Users from app.model.source import Sources class Word_Clouds(db.Model): id = db.Column(db.BigInteger, primary_key=True, autoincrement=True) user_id = db.Column(db.BigInteger, db.ForeignKey(Users.id)) source_id = db.Column(db.BigInteger, db.ForeignKey(Sources.id)) word = db.Column(db.String(50), nullable=False) value = db.Column(db.BigInteger, nullable=False) sentiment = db.Column(db.BigInteger, nullable=False) sample_id = db.Column(db.BigInteger, db.ForeignKey(Posts.id)) posts = db.relationship("Posts", backref="sample_id") def __repr__(self): return '<Word_Clouds {}>'.format(self.word) ``` #### File: server/app/routes.py ```python from app import app from app.controller import APIController from app.controller import UserController from app.controller import PostController from app.controller import GooglePlayController from app.controller import AppStoreController from app.controller import TwitterController from app.controller import InstagramController from app.controller import WordCloudController from app.controller import NotifController from app.controller import HelpController from flask import request from app import response @app.route('/getgoogleplay') def view_googleplay(): args = request.args if(len(args) == 4): tanggal_awal = args["tanggal_awal"] tanggal_akhir = args["tanggal_akhir"] user_id = int(args["user_id"]) sentiment = args["sentiment"] sentiments = comma_separated_params_to_list(sentiment) if(user_id!='' and sentiment!='' and tanggal_akhir!='' and tanggal_awal!='' and user_id!=1): return GooglePlayController.printData(tanggal_awal, tanggal_akhir, sentiments, user_id) elif(user_id==1): return GooglePlayController.printAllData(tanggal_awal, tanggal_akhir, sentiments) else: return response.ok([], "") return {"msg":"Please fill the correct url!"}, 400 @app.route('/rungoogleplay') def run_googleplay(): args = request.args if(len(args) == 2): tanggal_awal = args["tanggal_awal"] tanggal_akhir = args["tanggal_akhir"] if(tanggal_akhir!='' and tanggal_awal!=''): return GooglePlayController.index(tanggal_awal, tanggal_akhir) else: return response.ok([], "") return {"msg":"Please fill the correct url!"}, 400 @app.route('/getinstagram') def view_instagram(): args = request.args if(len(args) == 4): tanggal_awal = args["tanggal_awal"] tanggal_akhir = args["tanggal_akhir"] user_id = int(args["user_id"]) sentiment = args["sentiment"] sentiments = comma_separated_params_to_list(sentiment) if(user_id!='' and sentiment!='' and tanggal_akhir!='' and tanggal_awal!='' and user_id!=1): return InstagramController.printData(tanggal_awal, tanggal_akhir, sentiments, user_id) elif(user_id==1): return InstagramController.printAllData(tanggal_awal, tanggal_akhir, sentiments) else: return response.ok([], "") return {"msg":"Please fill the correct url!"}, 400 @app.route('/runinstagram') def run_instagram(): args = request.args if(len(args) == 2): tanggal_awal = args["tanggal_awal"] tanggal_akhir = args["tanggal_akhir"] if(tanggal_akhir!='' and tanggal_awal!=''): return InstagramController.index(tanggal_awal, tanggal_akhir) else: return response.ok([], "") return {"msg":"Please fill the correct url!"}, 400 @app.route('/getappstore') def view_appstore(): args = request.args if(len(args) == 4): tanggal_awal = args["tanggal_awal"] tanggal_akhir = args["tanggal_akhir"] user_id = int(args["user_id"]) sentiment = args["sentiment"] sentiments = comma_separated_params_to_list(sentiment) if(user_id!='' and sentiment!='' and tanggal_akhir!='' and tanggal_awal!='' and user_id!=1): return AppStoreController.printData(tanggal_awal, tanggal_akhir, sentiments, user_id) elif(user_id==1): return AppStoreController.printAllData(tanggal_awal, tanggal_akhir, sentiments) else: return response.ok([], "") return {"msg":"Please fill the correct url!"}, 400 @app.route('/runappstore') def run_appstore(): args = request.args if(len(args) == 2): tanggal_awal = args["tanggal_awal"] tanggal_akhir = args["tanggal_akhir"] if(tanggal_akhir!='' and tanggal_awal!=''): return AppStoreController.index(tanggal_awal, tanggal_akhir) else: return response.ok([], "") return {"msg":"Please fill the correct url!"}, 400 @app.route('/gettwitter') def view_twitter(): args = request.args if(len(args) == 4): tanggal_awal = args["tanggal_awal"] tanggal_akhir = args["tanggal_akhir"] user_id = int(args["user_id"]) sentiment = args["sentiment"] sentiments = comma_separated_params_to_list(sentiment) if(user_id!='' and sentiment!='' and tanggal_akhir!='' and tanggal_awal!='' and user_id!=1): return TwitterController.printData(tanggal_awal, tanggal_akhir, sentiments, user_id) elif(user_id==1): return TwitterController.printAllData(tanggal_awal, tanggal_akhir, sentiments) else: return response.ok([], "") return {"msg":"Please fill the correct url!"}, 400 @app.route('/runtwitter') def run_twitter(): args = request.args if(len(args) == 2): tanggal_awal = args["tanggal_awal"] tanggal_akhir = args["tanggal_akhir"] if(tanggal_akhir!='' and tanggal_awal!=''): return TwitterController.index(tanggal_awal, tanggal_akhir) else: return response.ok([], "") return {"msg":"Please fill the correct url!"}, 400 def comma_separated_params_to_list(param): result = [] for val in param.split(','): if val: result.append(val) return result @app.route('/wordcloud') def wordcloud(): args = request.args if(len(args) == 1): user_id = args["user_id"] return WordCloudController.printData(user_id) return {"msg":"Please fill the correct url!"}, 400 @app.route('/login', methods=['POST']) def login(): return UserController.login() @app.route('/users', methods=['POST', 'GET']) def users(): if request.method == 'GET': return UserController.index() else: return UserController.store() @app.route('/users/<id>', methods=['PUT', 'GET', 'DELETE']) def usersDetail(id): if request.method == 'GET': return UserController.show(id) elif request.method == 'PUT': return UserController.update(id) elif request.method == 'DELETE': return UserController.delete(id) @app.route('/users/password/<id>', methods=['PUT']) def usersPass(id): if request.method == 'PUT': return UserController.updatePass(id) return {"msg":"Please fill the correct url!"}, 400 @app.route('/users/ubahstatus/<id>', methods=['PUT']) def usersStatus(id): if request.method == 'PUT': return UserController.updateStatus(id) @app.route('/getpost/<id>') def postDetail(id): return PostController.show(id) @app.route('/') def home(): return {"msg":"Please fill the correct url!"}, 400 @app.route('/refresh', methods=['POST']) def refresh(): return UserController.refresh() @app.route('/apiconfig', methods=['PUT', 'GET']) def apiconfig(): if request.method == 'GET': return APIController.index() @app.route('/apiconfig/<id>') def updateApi(id): return APIController.update(id) @app.route('/notifications', methods=['POST', 'GET']) def notifications(): if request.method == 'GET': args = request.args if(len(args) == 1): user_id = args["user_id"] return NotifController.showbyuser(user_id) else: return NotifController.index() else: return NotifController.store() @app.route('/notifications/<id>', methods=['PUT', 'GET', 'DELETE']) def sudahBaca(id): if request.method == 'GET': return NotifController.sudahBaca(id) elif request.method == 'DELETE': return NotifController.delete(id) else: return NotifController.update(id) @app.route('/helps', methods=['POST', 'GET']) def helps(): if request.method == 'GET': return HelpController.index() else: return HelpController.store() @app.route('/helps/<id>', methods=['PUT', 'DELETE']) def ubahHelp(id): if request.method == 'DELETE': return HelpController.delete(id) else: return HelpController.update(id) ```
{ "source": "jodyphelan/pathogenseq", "score": 2 }
#### File: pathogenseq/pathogenseq/abi.py ```python from collections import defaultdict from Bio import SeqIO import matplotlib.pyplot as plt from .files import * from .nucmer import * from .mvcf import * from .fasta import * #import matplotlib as mpl #mpl.use('TkAgg') class abi: def __init__(self,in_obj,prefix): if isinstance(in_obj,list): self.filenames = in_obj self.records = [SeqIO.read(x,'abi') for x in self.filenames] self.prefix = prefix elif isinstance(in_obj,SeqIO.SeqRecord): self.records = in_obj self.prefix = in_obj.prefix self.quals = {} for rec in self.records: self.quals[rec.name] = [ord(x) for x in rec.annotations["abif_raw"]["PCON1"]] def trim_seq(self,rec): return abi([SeqIO.AbiIO._abi_trim(x) for x in self.records]) def plot_chromatogram(self,start,end,refsequence): self.signals = {} self.channels = {'DATA9':"A", 'DATA10':"C", 'DATA11':"G", 'DATA12':"T"} for c in self.channels: self.signals[self.channels[c]] = self.record.annotations['abif_raw'][c] self.ploc1 = self.record.annotations["abif_raw"]["PLOC1"] cols = {"A":"gold","C":"red","G":"green","T":"blue"} signal_start = self.ploc1[start-1]-3 signal_end = self.ploc1[end]+5 xvals = list(range(signal_start,signal_end)) for c in ["A","C","G","T"]: plt.plot(xvals,self.signals[c][signal_start:signal_end], color=cols[c]) plt.xticks(self.ploc1[start-1:end],str(self.record.seq)[start-1:end]) for i,x in enumerate(refsequence): col = "red" if i==4 else "black" plt.text(self.ploc1[start-1:end][i],(plt.axis()[3] - plt.axis()[2])*-0.15 ,x,horizontalalignment='center',color=col) # plt.fill_between([self.ploc1[start-1],self.ploc1[end]],plt.axis()[2],plt.axis()[3]) plt.show() def write_seq(self): self.fasta = "%s.fasta" % self.prefix with open(self.fasta,"w") as F: for rec in self.records: F.write(">%s\n%s\n" % (rec.name,rec.seq)) def nucmer_align(self,refseq): add_arguments_to_self(self,locals()) self.write_seq() run_cmd("nucmer %(refseq)s %(fasta)s -p %(prefix)s" % vars(self)) return delta("%s.delta" % self.prefix) def get_variants_vcf(self,refseq,gff=None): add_arguments_to_self(self,locals()) self.write_seq() fa = fasta(self.prefix+".fasta") return bcf(fa.get_ref_variants(refseq,self.prefix,gff)) def get_variants(self,refseq): add_arguments_to_self(self,locals()) variants = [] for l in cmd_out("minimap2 %(refseq)s %(prefix)s.fasta --cs | sort -k6,6 -k8,8n | paftools.js call -l 100 -L 100 -" % vars(self)): row = l.strip().split() if row[0]!="V": continue variants.append({"refseq":row[1],"refpos":int(row[2]),"refnuc":row[6],"queryseq":row[8],"querypos":int(row[9]),"querynuc":row[7]}) return variants def load_maf(self,refseq): self.maf = {} for l in cmd_out("minimap2 %(refseq)s %(prefix)s.fasta --cs=long | sort -k6,6 -k8,8n | paftools.js view -f maf -" % vars(self)): row = l.strip().split() if l=="": continue if row[0]!="s": continue self.maf[row[1]] = {"start":int(row[2]),"seq":row[6].upper()} def get_maf_refseq(self,start,end,refseq = None): if "maf" not in vars(self): self.load_maf(refseq) start = start - self.maf[self.prefix]["start"]-1 end = end - self.maf[self.prefix]["start"] print((start,end)) return self.maf[list(self.maf.keys())[0]]["seq"][start:end] def plot_variants(self,refseq): variants = self.get_variants(refseq) for var in variants: print(var) refsequence = self.get_maf_refseq(var["querypos"]-3,var["querypos"]+5,refseq) self.plot_chromatogram(var["querypos"]-3,var["querypos"]+5,refsequence) ``` #### File: pathogenseq/pathogenseq/bam.py ```python from __future__ import division from .files import * from .utils import * from .mvcf import * from .qc import * from .delly import * from collections import defaultdict import re import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt plt.ioff() import vcf import pysam from tqdm import tqdm def get_overlapping_reads(infile,chrom,start,end,outfile,flank=30,threads=4): IN = pysam.AlignmentFile(infile,"rb") OUT = pysam.AlignmentFile(outfile,"wb",template=IN) if start-flank<0: OUT.close() return 0 else: i = 0 for read in IN.fetch(chrom,start,end): if read.reference_start<=start-flank and read.reference_end>=end+flank: i+=1 OUT.write(read) OUT.close() return i class bam: """ A class to perform operations on BAM files such as SNP calling Args: bam_file(str): The BAM file [required] prefix(str): A prefix for output files [required] ref_file(ref_file): A reference (needed by some methods) platform(str): Can be either ``Illumina`` or ``minION`` Returns: bam: A bam class object """ def __init__(self,bam_file,prefix,ref_file,platform="Illumina",threads=4): self.params = {} self.bam_file = bam_file self.ref_file = ref_file index_bam(bam_file,threads=threads) if filecheck(bam_file): self.params["bam_file"] = bam_file self.bam = bam_file self.params["prefix"] = prefix self.prefix = prefix if filecheck(ref_file): self.params["ref_file"] = ref_file self.ref_fa = fasta(self.params["ref_file"]) self.ref_fa_dict = self.ref_fa.fa_dict self.params["platform"] = platform self.platform = platform self.params["threads"] = threads def run_delly(self): run_cmd("delly call -g %(ref_file)s %(bam_file)s -o %(prefix)s.bcf" % vars(self)) return delly_bcf("%(prefix)s.bcf" % vars(self)) def generate_primer_bcf(self,threads=4,flank=30): self.params["failed_primers"] = "%(prefix)s.failed_primers.bed" % self.params primer_ids = [] FAILED = open(self.params["failed_primers"],"w") for l in tqdm(open(self.params["primer_bed_file"])): chrom,start,end,pid = l.rstrip().split()[:4] primer_ids.append(pid) start = int(start) end = int(end) tmp_bcf = "%s.%s.bcf" % (self.prefix,pid) tmp_bam = "%s.%s.bam" % (self.prefix,pid) self.params["tmp"] = "%s:%s-%s" % (chrom,start,end) self.params["pid"] = pid log("Extracting reads for %s" % pid)# read_num = get_overlapping_reads(self.bam,chrom,start,end,tmp_bam,flank=30,threads=threads) if read_num==0: #cmd = "bcftools mpileup -f %(ref_file)s %(bam_file)s %(mpileup_options)s -r %(tmp)s | bcftools call %(vtype)s -m | bcftools +setGT -Ob -o %(prefix)s.%(pid)s.bcf -- -t a -n ." % self.params log("No reads for %s" % pid) FAILED.write(l) else: pass #cmd = "samtools index %(prefix)s.%(pid)s.bam && bcftools mpileup -f %(ref_file)s %(prefix)s.%(pid)s.bam %(mpileup_options)s -r %(tmp)s | bcftools call -t %(tmp)s %(vtype)s -mg %(min_dp)s | bcftools norm -f %(ref_file)s | bcftools +setGT -Ob -o %(prefix)s.%(pid)s.bcf -- -t q -i 'FMT/DP<%(min_dp)s' -n ." % self.params FAILED.close() cmd = "cat %(primer_bed_file)s | parallel --progress --col-sep '\\t' -j %(threads)s \"samtools index %(prefix)s.{4}.bam && bcftools mpileup -f %(ref_file)s %(prefix)s.{4}.bam %(mpileup_options)s -B -r {1}:{2}-{3} | bcftools call -t {1}:{2}-{3} %(vtype)s -mg %(min_dp)s | bcftools norm -f %(ref_file)s | bcftools +setGT -Ob -o %(prefix)s.{4}.bcf -- -t q -i 'FMT/DP<%(min_dp)s' -n . && bcftools index %(prefix)s.{4}.bcf\"" % self.params run_cmd(cmd) cmd = "cat %(failed_primers)s | parallel --progress --col-sep '\\t' -j %(threads)s \"bcftools mpileup -f %(ref_file)s %(bam_file)s %(mpileup_options)s -r {1}:{2}-{3} | bcftools call %(vtype)s -m | bcftools +setGT -Ob -o %(prefix)s.{4}.bcf -- -t a -n .\"" % self.params run_cmd(cmd) cmd = "bcftools concat `cut -f4 %(primer_bed_file)s | awk '{print \"%(prefix)s.\"$1\".bcf\"}'` -a -d all | bcftools sort -Ob -o %(primer_bcf)s" % self.params run_cmd(cmd) rm_files(["%s.%s.bcf" % (self.prefix,x) for x in primer_ids]) rm_files(["%s.%s.bam" % (self.prefix,x) for x in primer_ids]) rm_files(["%s.%s.bam.bai" % (self.prefix,x) for x in primer_ids]) def get_calling_params(self): dp = [] cmd = "samtools depth %(bam_file)s" % self.params log("Optimising call method") for l in subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout: arr = l.rstrip().split() dp.append(int(arr[2])) med_dp = np.median(dp) log("Median depth: %s" % med_dp) if med_dp<30: log("Using low depth approach") return "low" else: log("Using high depth approach") return "high" def gbcf(self,prefix=None,call_method="low",max_dp=None,min_dp=10,threads=4,vtype="snps",bed_file=None,primers=None,overlap_search=True,chunk_size=50000,mpileup_options=None,low_dp_as_missing=False,platform=None): """ Create a gVCF file (for a description see:https://sites.google.com/site/gvcftools/home/about-gvcf) Args: ref_file(str): reference file (not required if passed to the bam initiator). call_method(str): optimise variant calling based on high or low depth. Options: high|low|optimise min_dp(int): Minimum depth required to group site into reference-block """ self.params["min_dp"] = min_dp self.params["max_dp"] = max_dp self.params["bcf_file"] = "%s.gbcf" % (prefix if prefix else self.prefix) self.params["bed_file"] = bed_file self.params["chunk_size"] = chunk_size self.params["cmd_split_chr"] = "splitchr.py %(ref_file)s %(chunk_size)s --bed %(bed_file)s --reformat" % self.params if bed_file else "splitchr.py %(ref_file)s %(chunk_size)s --reformat" % self.params self.params["threads"] = threads if platform: self.platform = platform if primers: self.params["primer_bed_file"] = "%(prefix)s.primers.bed" % self.params TMP = open(self.params["primer_bed_file"],"w") positions = self.ref_fa.find_primer_positions(primers) for x in sorted(positions,key=lambda d:positions[d]["start"]): p = positions[x] if p["start"] > p["end"]: p["start"],p["end"] = p["end"],p["start"] TMP.write("%s\t%s\t%s\t%s\n" % (p["chrom"],p["start"],p["end"],x)) TMP.close() if vtype=="snps": self.params["vtype"] = "-V indels" elif vtype=="indels": self.params["vtype"] = "-V snps" elif vtype=="both": self.params["vtype"] = "" else: sys.stderr.write("Please provide valid vtype: [snps|indels|both]...Exiting!"); quit(1) self.params["primer_cmd"] = " -T ^%(primer_bed_file)s" % self.params if primers else "" self.params["extra_cmd"] = "" if call_method=="optimise" and self.platform=="Illumina": call_method = self.get_calling_params() log("Variant calling optimised for %s" % self.platform) self.params["mpileup_options"] = "" if self.platform=="Illumina" and call_method=="high": self.params["mpileup_options"] = "-B -a DP,AD" elif self.platform=="Illumina" and call_method=="low": self.params["mpileup_options"] = "-ABq0 -Q0 -a DP,AD" elif self.platform=="minION": self.params["extra_cmd"] = "| bcftools filter -e 'IMF < 0.7' -S 0 -Ou" if vtype=="snps": self.params["mpileup_options"] = "-BIq8 -a DP,AD" else: self.params["mpileup_options"] = "-Bq8 -a DP,AD" else: log("Please choose a valid platform...Exiting!",ext=True) if mpileup_options: self.params["mpileup_options"] = mpileup_options self.params["min_dp_cmd"] = "| bcftools filter -e 'FMT/DP<%(min_dp)s' -Ou -S ." % self.params if low_dp_as_missing else "" self.params["max_dp_cmd"] = "| bcftools filter -e 'FMT/DP>%(max_dp)s' -Ou -S ." % self.params if max_dp else "" cmd = "%(cmd_split_chr)s | parallel --progress --col-sep '\\t' -j %(threads)s \"bcftools mpileup -f %(ref_file)s %(bam_file)s %(mpileup_options)s -r {1} | bcftools call %(primer_cmd)s %(vtype)s -mg %(min_dp)s | bcftools norm -f %(ref_file)s %(min_dp_cmd)s %(max_dp_cmd)s %(extra_cmd)s | bcftools view -Ob -o %(prefix)s_{2}.bcf \"" % self.params run_cmd(cmd) cmd = "%(cmd_split_chr)s | awk '{print \"%(prefix)s_\"$2\".bcf\"}' | parallel -j %(threads)s \"bcftools index {}\"" % self.params run_cmd(cmd) if primers: self.params["non_primer_bcf"] = "%(prefix)s.non_primer.bcf" % self.params self.params["primer_bcf"] = "%(prefix)s.primer.bcf" % self.params if overlap_search: #self.params["primer_bam"] = "%(prefix)s.primers.bam" % self.params self.generate_primer_bcf() #index_bam(self.params["primer_bam"]) #cmd = "bcftools mpileup -f %(ref_file)s %(primer_bam)s %(mpileup_options)s -R %(primer_bed_file)s | bcftools call -T %(primer_bed_file)s %(vtype)s -mg %(min_dp)s | bcftools norm -f %(ref_file)s | bcftools +setGT -Ob -o %(primer_bcf)s -- -t q -i 'FMT/DP<%(min_dp)s' -n ." % self.params else: cmd = "bcftools mpileup -f %(ref_file)s %(bam_file)s %(mpileup_options)s -B -R %(primer_bed_file)s | bcftools call %(vtype)s -m | bcftools +setGT -Ob -o %(primer_bcf)s -- -t a -n ." % self.params run_cmd(cmd) cmd = "bcftools concat -aD -Ob -o %(non_primer_bcf)s `%(cmd_split_chr)s | awk '{print \"%(prefix)s_\"$2\".bcf\"}'`" % self.params run_cmd(cmd) cmd = "bcftools concat %(primer_bcf)s %(non_primer_bcf)s | bcftools sort -Ob -o %(bcf_file)s " % self.params run_cmd(cmd) else: cmd = "bcftools concat -aD -Ob -o %(bcf_file)s `%(cmd_split_chr)s | awk '{print \"%(prefix)s_\"$2\".bcf\"}'`" % self.params run_cmd(cmd) cmd = "rm `%(cmd_split_chr)s | awk '{print \"%(prefix)s_\"$2\".bcf*\"}'`" % self.params run_cmd(cmd) if primers: rm_files([self.params["non_primer_bcf"],self.params["primer_bcf"]]) return bcf(self.params["bcf_file"],prefix=self.prefix) def call_variants(self,prefix=None,gff_file=None,bed_file=None,call_method="optimise",min_dp=10,threads=4,mixed_as_missing=False): self.params["min_dp"] = min_dp self.params["bed_file"] = bed_file self.params["gbcf_file"] = "%s.gbcf" % self.prefix if not prefix else prefix+".gbcf" self.params["missing_bcf_file"] = "%s.missing.bcf" % self.prefix # self.params["mixed_cmd"] = " bcftools +setGT -- -t q -i 'GT=\"het\"' -n . | bcftools view -e 'F_MISSING==1' |" % self.params if mixed_as_missing else "" self.gbcf(prefix=prefix,call_method=call_method,min_dp=min_dp,threads=threads,vtype="both",bed_file=bed_file,low_dp_as_missing=True) self.params["bcf_file"] = "%s.bcf" % self.prefix self.params["del_bed"] = bcf(self.params["gbcf_file"]).del_pos2bed() view_cmd = "bcftools view %(gbcf_file)s |" % self.params mix_cmd = " bcftools +setGT -- -t q -i 'GT=\"het\" & AD[:1]/(AD[:0]+AD[:1])<0.7' -n . |" % self.params if mixed_as_missing else "" out_cmd = "bcftools view -T ^%(del_bed)s -g miss -O b -o %(missing_bcf_file)s" % self.params cmd = "%s %s %s" % (view_cmd,mix_cmd,out_cmd) run_cmd(cmd) out_cmd = "bcftools view -g ^miss -c 1 -O b -o %(bcf_file)s" % self.params cmd = "%s %s %s" % (view_cmd,mix_cmd,out_cmd) run_cmd(cmd) final_bcf = self.params["bcf_file"] if gff_file and filecheck(gff_file): self.params["gff_file"] = gff_file self.params["ann_bcf_file"] = "%(prefix)s.csq.bcf" % self.params cmd = "bcftools csq -p m -f %(ref_file)s -g %(gff_file)s %(bcf_file)s -Ob -o %(ann_bcf_file)s" % self.params run_cmd(cmd) final_bcf = self.params["ann_bcf_file"] return bcf(final_bcf,prefix=self.prefix) def create_dummy_low_dp_bcf(self,gff_file,min_dp=10,bed_file=None): self.params["gff_file"] = gff_file contig_line = "\n".join(["##contig=<ID=%s,length=%s>" % (s,len(self.ref_fa_dict[s])) for s in self.ref_fa_dict]) header = """##fileformat=VCFv4.1 ##source=htsbox-pileup-r340 ##reference=%s ##contig=<ID=Chromosome,length=4411532> %s ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> #CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tSAMPLE """ % (self.ref_file,contig_line) self.params["dp_vcf_file"] = "%(prefix)s.low_cov.vcf" % self.params OUT = open(self.params["dp_vcf_file"],"w") OUT.write(header) self.do_pileup(bed_file) for l in open(self.params["temp_pileup"]): row = l.rstrip().split() ref = row[2] alleles = row[3].split(",") depth = [int(x) for x in row[4].split(":")[1].split(",")] tot_dp = sum(depth) if tot_dp>min_dp: continue tmp = ["A","C","G","T"] fake_allele = tmp.pop() if fake_allele==ref: fake_allele = tmp.pop() OUT.write("Chromosome\t%s\t.\t%s\t%s\t255\t.\t.\tGT\t1\n" % (row[1],ref,fake_allele)) OUT.close() self.params["ann_bcf_file"] = "%(prefix)s.low_cov.bcf" % self.params cmd = "bcftools csq -p m %(dp_vcf_file)s -f %(ref_file)s -g %(gff_file)s -Ob -o %(ann_bcf_file)s" % self.params run_cmd(cmd) return bcf(self.params["ann_bcf_file"]) def get_bam_qc(self,cov_thresholds=[1,5,10,20]): """ Get a qc_bam object Args: cov_thresholds(list): List of integers to use in the percentage genome covered calculation Returns: qc_bam: A qc_bam object """ return qc_bam(self.params["bam_file"],self.params["ref_file"],cov_thresholds) def do_pileup(self,bed_file=None): self.params["temp"] = bed_file self.params["temp_pileup"] = "%(prefix)s.temp.pileup" % self.params self.params["temp_bam"] = "%(prefix)s.temp.bam" % self.params if bed_file: cmd = "htsbox pileup -b %(temp)s -f %(ref_file)s -Q 8 %(bam_file)s > %(temp_pileup)s" % self.params else: cmd = "htsbox pileup -f %(ref_file)s -Q 8 %(bam_file)s > %(temp_pileup)s" % self.params run_cmd(cmd) def htsbox_calls(self,bed_file=None): self.do_pileup(bed_file=bed_file) if bed_file: bed_pos = set() for l in open(bed_file): arr = l.rstrip().split() for i in range(int(arr[1]),int(arr[2])+1): bed_pos.add((arr[0],str(i))) final_calls = defaultdict(lambda :defaultdict(list)) if self.params["platform"] == "Illumina": for l in open(self.params["temp_pileup"]): arr = l.rstrip().split() if bed_file and (arr[0],arr[1]) not in bed_pos: continue calls = arr[3].split(",") cov = [int(x) for x in arr[4].split(":")[1].split(",")] tot = sum(cov) for i in range(len(calls)): final_calls[arr[0]][arr[1]].append((calls[i],cov[i]/tot,cov[i])) elif self.params["platform"] == "minION": for l in open(self.params["temp_pileup"]): #Chromosome 23 G G,G-1C,G+3AAA 0/1:49,1,1 arr = l.rstrip().split() if bed_file and (arr[0],arr[1]) not in bed_pos: continue alleles = arr[3].split(",") depth = [int(x) for x in arr[4].split(":")[1].split(",")] max_allele_dp = max(depth) max_allele = alleles[depth.index(max_allele_dp)] max_allele_frac = max_allele_dp/tot_dp if len(max_allele)>1: max_allele = recode_indels([arr[1],max_allele])[1][0] if tot_dp<min_dp: call = "N" if max_allele_frac<min_frac: call = "N" else: call = max_allele final_calls[arr[0]][arr[1]].append((call,1,max_allele_dp)) return final_calls def pileup2vcf(self,min_het_frac=0.3,min_hom_frac=0.6,min_dp=10,bed_file=None,indels=True): self.params["contig_line"] = "\n".join(["##contig=<ID=%s,length=%s>" % (s,len(self.ref_fa_dict[s])) for s in self.ref_fa_dict]) header = """##fileformat=VCFv4.1 ##source=htsbox-pileup-r340 ##reference=%(ref_file)s %(contig_line)s ##INFO=<ID=DP4,Number=4,Type=Integer,Description="Number of high-quality ref-forward , ref-reverse, alt-forward and alt-reverse bases"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Raw Depth"> ##INFO=<ID=MinDP,Number=1,Type=Integer,Description="Minimum per-sample depth in this gVCF block"> ##INFO=<ID=END,Number=1,Type=Integer,Description="End position of the variant described in this record"> #CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t%(prefix)s """ % self.params self.params["temp_pileup"] = "%s.temp.pileup" % self.prefix if bed_file: self.do_pileup(bed_file) bed_pos = set() for l in open(bed_file): arr = l.rstrip().split() for i in range(int(arr[1]),int(arr[2])): bed_pos.add(str(i)) else: self.do_pileup() pass variants = [] self.params["vcf_file"] = "%s.vcf" % self.prefix OUT = open("%(vcf_file)s" % self.params,"w") OUT.write(header) ref_run_start_pos = -1 ref_run_start_ref = "X" ref_run_min_dp = 0 for l in open(self.params["temp_pileup"]): #Chromosome 23 G G,G-1C,G+3AAA 0/1:49,1,1 arr = l.rstrip().split() if bed_file: if arr[1] not in bed_pos: continue alleles = arr[3].split(",") depth = [int(x) for x in arr[4].split(":")[1].split(",")] tot_dp = sum(depth) ref = arr[2] if ref_run_start_pos==-1: ref_run_start_pos = arr[1] ref_run_start_ref = ref ref_run_min_dp = tot_dp max_allele_dp = max(depth) max_allele = alleles[depth.index(max_allele_dp)] max_allele_frac = max_allele_dp/tot_dp adjusted_allele_frac = max_allele_dp/(max_allele_dp+sorted(depth)[-2]) if len(depth)>1 else max_allele_frac ref_depth = depth[alleles.index(ref)] if ref in alleles else 0 if len(max_allele)>1: indel = recode_indels([max_allele]) max_allele = indel[1][0] ref = indel[0] DP4 = "0,%s,0,%s" % (ref_depth,tot_dp-ref_depth) call = max_allele # if arr[1]=="13228": import pdb; pdb.set_trace() if not indels and (len(max_allele)>1 or len(ref)>1): #INDELS!!!! ref_run_end_pos = arr[1] if tot_dp<ref_run_min_dp: ref_run_min_dp = tot_dp elif tot_dp<min_dp: OUT.write("%s\t%s\t.\t%s\t%s\t255\t.\tDP4=%s\tGT:DP\t%s:%s\n" % (arr[0],arr[1],ref,call,DP4,"./.",tot_dp)) ref_run_start_pos = -1 elif tot_dp>=min_dp and adjusted_allele_frac>min_hom_frac and call==ref: #REF base call ref_run_end_pos = arr[1] if tot_dp<ref_run_min_dp: ref_run_min_dp = tot_dp elif tot_dp>=min_dp and adjusted_allele_frac<=min_hom_frac and adjusted_allele_frac>min_het_frac: # mixed call if call==ref: call=alleles[depth.index(sorted(depth)[-2])] if (len(call)>1 or len(ref)>1) and not indels: ref_run_end_pos = arr[1] if tot_dp<ref_run_min_dp: ref_run_min_dp = tot_dp else: gt="0/1" if tot_dp<ref_run_min_dp: ref_run_min_dp = tot_dp OUT.write("%s\t%s\t.\t%s\t.\t.\t.\tEND=%s;MinDP=%s\tGT:DP\t0/0:%s\n" % (arr[0],ref_run_start_pos,ref_run_start_ref,int(arr[1])-1,ref_run_min_dp,ref_run_min_dp)) OUT.write("%s\t%s\t.\t%s\t%s\t255\t.\tDP4=%s\tGT:DP\t%s:%s\n" % (arr[0],arr[1],ref,call,DP4,gt,tot_dp)) ref_run_start_pos = -1 variants.append((arr[0],arr[1],ref,call,tot_dp,gt)) else: if call==ref: call="." gt="0/0" else: gt="1/1" OUT.write("%s\t%s\t.\t%s\t.\t.\t.\tEND=%s;MinDP=%s\tGT:DP\t0/0:%s\n" % (arr[0],ref_run_start_pos,ref_run_start_ref,int(arr[1])-1,ref_run_min_dp,ref_run_min_dp)) OUT.write("%s\t%s\t.\t%s\t%s\t255\t.\tDP4=%s\tGT:DP\t%s:%s\n" % (arr[0],arr[1],ref,call,DP4,gt,tot_dp)) ref_run_start_pos = -1 variants.append((arr[0],arr[1],ref,call,tot_dp,gt)) OUT.close() return variants def sambamba_depth(self,outfile,zero_start=False): index_bam(self.params["bam_file"]) fdict = fasta(self.params["ref_file"]).fa_dict cov = {} self.params["tmp"] = "%s.tmp" % self.prefix for s in fdict: cov[s] = ["%s\t%s\t0\t0\t0\t0\t0\t0\t0\t%s" % (s,i+1,self.prefix) for i in range(len(fdict[s]))] cmd = "sambamba depth base -q 20 -z -t %(threads)s %(bam_file)s > %(tmp)s" % self.params run_cmd(cmd) for l in open(self.params["tmp"]): row = l.rstrip().split() if row[0]=="REF": continue if zero_start: cov[row[0]][int(row[1])] = "\t".join(row) else: row[1] = str(int(row[1])+1) cov[row[0]][int(row[1])-1] = "\t".join(row) O = open(outfile,"w") for s in fdict: for i in range(len(fdict[s])): O.write("%s\n" % cov[s][i]) O.close() def get_bed_gt(self,bed_file): add_arguments_to_self(self,locals()) cmd = "bcftools mpileup -f %(ref_file)s -R %(bed_file)s %(bam_file)s -BI -a AD | bcftools call -m | bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT[\\t%%GT\\t%%AD]\\n'" % vars(self) results = defaultdict(lambda : defaultdict(dict)) for l in cmd_out(cmd): #Chromosome 4348079 0/0 51 chrom,pos,ref,alt,gt,ad = l.rstrip().split() pos =int(pos) d = {} alts = alt.split(",") ad = [int(x) for x in ad.split(",")] if gt=="0/0": d[ref] = ad[0] elif gt=="./.": d[ref] = 0 else: for i,a in enumerate([ref]+alts): d[a] = ad[i] results[chrom][pos] = d return results def bed_cov_plot(self,bed_file): add_arguments_to_self(self,locals()) bed = load_bed(self.bed_file,[1,2,3,4],4) for gene in bed: start = int(bed[gene][1]) end = int(bed[gene][2]) region_size = end-start offset = int(region_size*0.15) new_start = start-offset new_end = end+offset if region_size<100000: n,d = "K",1000 elif region_size>100000 and region_size<1000000000: n,d = "M",1000000 else: n,d = "G",1000000000 if region_size<10000: window,step=2,1 elif region_size<100000: window,step=100,50 elif region_size>100000 and region_size<1000000: window,step=1000,500 log("Outputting coverage plot for region (%sbp) with window=%s and step=%s" % (region_size,window,step)) self.loc = "%s:%s-%s" % (bed[gene][0],new_start,new_end) cmd = "samtools depth %(bam_file)s -r %(loc)s" % vars(self) ref_dp = [] ref_pos = [] for l in cmd_out(cmd): row = l.rstrip().split() ref_dp.append(int(row[2])) ref_pos.append(int(row[1])) x = [] y = [] hw = int(window/2) for i in range(hw,len(ref_dp)-hw): x.append((i+new_start)/d) y.append(int(np.median(ref_dp[i-hw:i+hw+1]))) fig = plt.figure() plot = fig.add_subplot(111) plot.plot(x,y) plot.set_ylim(bottom=0) if len(y)>0 and max(y)>200: plot.set_yscale('symlog') plot.set_xlabel("Genome Position (%sb)" % n) plot.set_ylabel("Median Coverage (Window size:%s)" % window) region_med_dp = np.median(ref_dp) if len(y)>0 and max(y)>region_med_dp: ymax = max(y) else: ymax = region_med_dp plot.set_ylim(top=ymax+ymax*0.05 if ymax>0 else 10) plot.axhline(xmin=0,xmax=1,y=region_med_dp,color="orange",linestyle="dashed") plot.axvline(ymin=0,ymax=0.05,x=start/d,color="orange") plot.axvline(ymin=0,ymax=0.05,x=end/d,color="orange") imgfile = "%s_%s_cov.png" %(self.prefix,gene) fig.savefig(imgfile) ``` #### File: pathogenseq/pathogenseq/delly.py ```python from .files import * from .mvcf import bcf class delly_bcf(bcf): def __init__(self,filename): bcf.__init__(self,filename) def get_robust_calls(self): results = [] for l in cmd_out(" bcftools query -f '%%CHROM\\t%%POS\\t[%%END\\t%%GT\\t%%DR\\t%%DV\\t%%RR\\t%%RV]\\n' %(filename)s" % vars(self)): row = l.split() if row[3]!="1/1":continue results.append(row) return results def overlap_bed(self,bed_file): results = [] bed = load_bed(bed_file,[1,2,3,4,5],4) calls = self.get_robust_calls() for call in calls: set_call_pos = set(range(int(call[1]),int(call[2]))) for region in bed: if bed[region][0]!=call[0]: continue set_region_pos = set(range(int(bed[region][1]),int(bed[region][2]))) intersect = set_call_pos.intersection(set_region_pos) if len(intersect)>1: results.append({"region":region,"start":min(intersect),"end":max(intersect)}) print(results) ``` #### File: pathogenseq/pathogenseq/gemma.py ```python from __future__ import division import subprocess from .files import * import os from tqdm import tqdm import random r = random.SystemRandom() class ann: annfile = "" tabix = "" def __init__(self,filename,tabix): self.annfile = filename self.tabix = tabix def pos2ann(self,pos_tuple_list): #pos_tuple_list = [("Chromosome",1),("Chromosome",2)] if len(pos_tuple_list)<5000: p1offset = -1 p2offset = 0 stype = "R" else: p1offset = 0 p2offset = 1 stype = "T" num = r.randint(1,1000000)+r.randint(1,1000000) temp_bed_file = "temp.%s.bed" % (num) OUT = open(temp_bed_file,"w") for chrom,pos in pos_tuple_list: OUT.write("%s\t%s\t%s\n" % (chrom,int(pos)+p1offset,int(pos)+p2offset)) OUT.close() results = defaultdict(dict) for l in subprocess.Popen("%s %s -%s %s " % (self.tabix,self.annfile,stype,temp_bed_file),stdout=subprocess.PIPE,shell=True).stdout: # added .decode() to convert binary output of subprocess.Popen to string l = l.decode() arr = l.rstrip().split() results[arr[0]][int(arr[1])] = {"alt_aa":{arr[3]:arr[12],arr[4]:arr[13],arr[5]:arr[14]},"change_pos":arr[7],"ref_nt":arr[2],"ref_codon":arr[6],"ref_aa":arr[11],"chr":arr[0],"pos":int(arr[1]),"rv":arr[15],"gene":arr[16],"gene_syn":arr[17],"ncr":arr[18],"start":arr[19],"end":arr[20],"strand":arr[21],"codon_num":arr[24],"gene_nt":arr[25],"operon":arr[26]} os.remove(temp_bed_file) return results class gemma_results: def __init__(self,filename=None): self.data = [] if filename: for l in tqdm(open(filename)): row = l.rstrip().split() if row[1]=="rs":continue chrom,pos,alt = row[1].split("_") self.data.append({"chrom":chrom,"pos":int(pos),"ref":row[4],"alt":row[5],"pval":float(row[11])}) self.data = sorted(self.data,key=lambda x:x["pval"]) def add_results(self,data): for d in data: self.data.append(d) self.data = sorted(self.data,key=lambda x:x["pval"]) def top_n_hits(self,n=10): tmp = gemma_results() tmp.add_results(self.data[:n]) return tmp def cutoff_hits(self,cutoff=1e-5): tmp = gemma_results() tmp.add_results([x for x in self.data if x["pval"]<cutoff]) return tmp def __str__(self): print(self.data) def tb_annotate_hits(self,ann_file): ann_obj = ann(ann_file,"tabix") annotation = ann_obj.pos2ann(sorted([(row["chrom"],row["pos"]) for row in self.data],key=lambda x:x[1])) for d in self.data: d["gene"] = annotation[d["chrom"]][d["pos"]]["rv"] d["annotation"] = annotation[d["chrom"]][d["pos"]] def restrict_hits_to_gene(self,genes): if "gene" not in self.data[0]: print("Please annotate hits with tb_annotate_hits()") return tmp = gemma_results() tmp.add_results([x for x in self.data if x["gene"] in genes]) return tmp def create_tb_panel(self,drug,ann_file,cutoff=1e-5): amino_acids = ['Cys', 'Ile', 'Ser', 'Val', 'Gly', 'Gln', 'Pro', 'Lys', 'Stop', 'Thr', 'Phe', 'Ala', 'Met', 'Asp', 'His', 'Leu', 'Arg', 'Trp', 'Glu', 'Asn', 'Tyr'] aa_long2short = {"Ala":"A","Arg":"R","Asn":"N","Asp":"D","Cys":"C","Gln":"Q","Glu":"E","Gly":"G","His":"H","Ile":"I","Leu":"L","Lys":"K","Met":"M","Phe":"F","Pro":"P","Ser":"S","Thr":"T","Trp":"W","Tyr":"Y","Val":"V","Stop":"*", "-":"-"} aa_short2long = {'A': 'Ala', 'R': 'Arg', 'N': 'Asn', 'D': 'Asp', 'C': 'Cys', 'Q': 'Gln', 'E': 'Glu', 'G': 'Gly', 'H': 'His', 'I': 'Ile', 'L': 'Leu', 'K': 'Lys', 'M': 'Met', 'F': 'Phe', 'P': 'Pro', 'S': 'Ser', 'T': 'Thr', 'W': 'Trp', 'Y': 'Tyr', 'V': 'Val', '*': 'Stop', '-': '-'} target_genes = { "amikacin":["rrs"], "bedaquiline":["Rv0678"], "capreomycin":["rrs","Rv1694"], "clofazimine":["Rv0678"], "cycloserine":["Rv2780","Rv3423c"], "ethambutol":["Rv3794","Rv3795","Rv3793","Rv1267c","Rv3793-Rv3794"], "ethionamide":["Rv1482c-Rv1483","Rv1484","Rv3854c","Rv3854c-Rv3855","Rv3855"], "fluoroquinolones":["Rv0005","Rv0006"], "isoniazid":["Rv2428","Rv2427A-Rv2428","Rv1482c-Rv1483","Rv1484","Rv2245","Rv1908c","Rv1908c-Rv1909c"], "kanamycin":["Rv2416c-Rv2417c","rrs"], "linezolid":["Rv0701","rrl"], "para-aminosalicylic_acid":["Rv2447c","Rv2671","Rv2764c","Rv2754c-Rv2755c"], "pyrazinamide":["Rv3601c","Rv2043c","Rv2043c-Rv2044c","Rv1630","Rv2042c"], "rifampicin":["Rv0667","Rv0668"], "streptomycin":["Rv3919c","Rv0682","rrs"]} self = self.cutoff_hits(cutoff) self.tb_annotate_hits(ann_file) self = self.restrict_hits_to_gene(target_genes[drug.lower()]) for d in self.data: mut = "" if "-" in d["gene"] or d["gene"]=="rrs" or d["gene"]=="rrl": mut = "%s%s%s" % (d["ref"],d["annotation"]["gene_nt"],d["alt"]) else: mut = "%s%s%s" % (aa_short2long[d["annotation"]["ref_aa"]],d["annotation"]["codon_num"],aa_short2long[d["annotation"]["alt_aa"][d["alt"]]]) print("%s\t%s\t%s\t%s\t%s\t%s" % (drug.upper(),d["pos"],d["ref"],d["alt"],d["gene"],mut)) class gemma_genesum_results: def __init__(self,filename=None): self.data = [] if filename: for l in tqdm(open(filename)): row = l.rstrip().split() if row[1]=="rs":continue self.data.append({"gene":row[1],"pval":float(row[11])}) self.data = sorted(self.data,key=lambda x:x["pval"]) def add_results(self,data): for d in data: self.data.append(d) self.data = sorted(self.data,key=lambda x:x["pval"]) def top_n_hits(self,n=10): tmp = gemma_results() tmp.add_results(self.data[:n]) return tmp def cutoff_hits(self,cutoff=1e-5): tmp = gemma_results() tmp.add_results([x for x in self.data if x["pval"]<cutoff]) return tmp def __str__(self): print(self.data) ``` #### File: pathogenseq/pathogenseq/logger.py ```python import json def log(key,log_file): x = json.load(open(log_file)) x[key] = True json.dump(open(log_file,"w"),x) def checkpoint(key,log_file): x = json.load(open(log_file)) return False if key in x else True ``` #### File: pathogenseq/pathogenseq/mvcf.py ```python from __future__ import division import sys import subprocess from .files import * from .fasta import * from .mutation_db import * from collections import defaultdict import itertools import json from tqdm import tqdm # from bokeh.plotting import figure, output_file, show # from bokeh.layouts import column from ete3 import Tree from colour import Color import multiprocessing as mp re_seq = re.compile("([0-9\-]*)([A-Z\*]+)") re_I = re.compile("([A-Z\*]+)") number_re = re.compile("[0-9\-]+") def parse_mutation(x): tmp = x.split(">") aa_changed = True if len(tmp)>1 else False re_obj = re_seq.search(tmp[0]) change_num = re_obj.group(1) ref_aa = re_obj.group(2) alt_aa = re_seq.search(tmp[1]).group(2) if aa_changed else None return change_num,ref_aa,alt_aa # def load_variants(filename): # variants = defaultdict(lambda:defaultdict(dict)) # vcf_reader = vcf.Reader(open(filename)) # for rec in tqdm(vcf_reader): # for s in rec.samples: # variants[rec.CHROM][rec.POS][s.sample] = s.gt_bases.split("/")[0] if s["GT"]!="./." else "N" # return variants def get_missing_positions(bcf_file): cmd = "bcftools query -f '%%CHROM\\t%%POS\\n' %s" % bcf_file results = [] for l in subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout: row = l.decode().rstrip().split() results.append((row[0],int(row[1]))) return results v = True class bcf: def __init__(self,filename,prefix=None,threads=4): self.samples = [] self.filename = filename self.threads = threads if prefix==None: if filename[-4:]==".bcf": self.prefix = filename[:-4] elif filename[-5:]==".gbcf": self.prefix = filename[:-5] elif filename[-7:]==".vcf.gz": self.prefix = filename[:-7] elif filename[-4:]==".vcf": self.prefix = filename[:-4] else: self.prefix = filename else: self.prefix = prefix self.prefix = self.prefix self.temp_file = get_random_file() index_bcf(filename,self.threads) cmd = "bcftools query -l %(filename)s > %(temp_file)s" % vars(self) run_cmd(cmd) for l in open(self.temp_file): self.samples.append(l.rstrip()) os.remove(self.temp_file) self.vcf = "%s.vcf" % self.prefix def per_sample_bcf2fa(self,s,ref,nochrom=False): self.tmp_sample = s self.ref = ref cmd = "bcftools view --threads %(threads)s -s %(tmp_sample)s %(filename)s -Ou | bcftools filter -e 'GT=\"het\"' -S . -Ou | bcftools view --threads %(threads)s -i 'GT==\"./.\"' -Ou | bcftools query -f '%%CHROM\\t%%POS\\n'" % vars(self) self.tmp_file = "%(prefix)s.%(tmp_sample)s.missing.bed" % vars(self) TMP = open(self.tmp_file,"w") for l in cmd_out(cmd): row = l.rstrip().split() TMP.write("%s\t%s\t%s\n" % (row[0],int(row[1])-1,row[1])) TMP.close() self.tmp_fa = "%(prefix)s.%(tmp_sample)s.tmp.fasta" % vars(self) cmd = "bcftools consensus -f %(ref)s %(filename)s -o %(tmp_fa)s -m %(tmp_file)s -s %(tmp_sample)s" % vars(self) run_cmd(cmd) fa_dict = fasta(self.tmp_fa).fa_dict self.final_fa = "%(prefix)s.%(tmp_sample)s.fasta" % vars(self) FA = open(self.final_fa,"w") for seq in fa_dict: log("Writing consensus for %s" % seq) if nochrom: FA.write(">%s\n%s\n" % (self.tmp_sample,fa_dict[seq].replace("*","N"))) else: FA.write(">%s_%s\n%s\n" % (self.tmp_sample,seq,fa_dict[seq].replace("*","N"))) FA.close() rm_files([self.tmp_file,self.tmp_fa]) def del_pos2bed(self): self.del_bed = "%s.del_pos.bed" % self.prefix OUT = open(self.del_bed,"w") cmd = "bcftools view --threads %(threads)s -Ou -v indels %(filename)s | bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT\\n' | awk 'length($3)>1'" % vars(self) sys.stderr.write(cmd) j = 0 for l in subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout: j+=1 row = l.decode().rstrip().split() start_pos = int(row[1])+1 for i in range(start_pos,start_pos+len(row[2])-1): OUT.write("%s\t%s\t%s\n" % (row[0],i-1,i)) if j==0: OUT.write("dummy\t1\t1\n") OUT.close() return self.del_bed def load_variants(self,chrom=None,pos=None): variants = defaultdict(lambda:defaultdict(lambda:defaultdict(dict))) raw_variants = defaultdict(lambda:defaultdict(lambda:defaultdict(dict))) if chrom and pos: cmd = "bcftools view --threads %(threads)s %s %s:%s | bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT[\\t%%TGT:%%AD]\\n' | sed 's/\.\/\./N\/N/g' | sed 's/\*[\/|]\*/\.\/\./g'" % (self.filename,chrom,pos) else: cmd = "bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT[\\t%%TGT:%%AD]\\n' %s | sed 's/\.\/\./N\/N/g' | sed 's/\*[\/|]\*/\.\/\./g'" % self.filename log(cmd) for l in cmd_out(cmd): row = l.decode().rstrip().split() alts = row[3].split(",") alleles = [row[2]]+alts for i in range(len(self.samples)): calls,ad = row[i+4].replace("|","/").split(":") call1,call2 = calls.split("[/|]") if calls=="N/N": raw_variants[row[0]][row[1]][self.samples[i]]["N"] = 1.0 continue elif calls=="%s/%s" % (row[2],row[2]) and ad==".": raw_variants[row[0]][row[1]][self.samples[i]][row[2]] = 1.0 continue ad = [int(x) if x!="." else 0 for x in ad.split(",")] sum_ad = sum(ad) for j in range(1,len(alleles)): if ad[j]==0: continue raw_variants[row[0]][row[1]][self.samples[i]][alleles[j]] = ad[j]/sum_ad for tchrom in raw_variants: for tpos in raw_variants[tchrom]: variants[tchrom][int(tpos)] = raw_variants[tchrom][tpos] if chrom and pos and len(variants)==0: log("Variant not found",True) if chrom and pos: return variants[chrom][int(pos)] else: return variants def load_variants_alt(self,tchrom=None,tpos=None): variants = defaultdict(lambda:defaultdict(dict)) raw_variants = defaultdict(lambda:defaultdict(dict)) if tchrom and tpos: cmd = "bcftools view --threads %s %s %s:%s | bcftools query -f '%%CHROM\\t%%POS[\\t%%IUPACGT]\\n' | sed 's/\.\/\./N/g'" % (self.threads,self.filename,tchrom,tpos) else: cmd = "bcftools query -f '%%CHROM\\t%%POS[\\t%%IUPACGT]\\n' %s | sed 's/\.\/\./N/g'" % self.filename log(cmd) for l in tqdm(subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout): row = l.decode().rstrip().split() for i in range(len(self.samples)): raw_variants[row[0]][row[1]][self.samples[i]] = row[i+2] for chrom in raw_variants: for pos in raw_variants[chrom]: variants[chrom][int(pos)] = raw_variants[chrom][pos] if chrom and pos and len(variants)==0: log("Variant not found",True) if tchrom and tpos: return variants[tchrom][int(tpos)] else: return variants def load_stats(self,convert=False,ref=None): add_arguments_to_self(self,locals()) self.smallest_bin = 1/len(self.samples) self.stats_file = "%s.stats.txt" % self.filename if convert: cmd = "bcftools convert --gvcf2vcf --fasta-ref %(ref)s -Ou %(filename)s | bcftools stats -v -s - > %(stats_file)s" % vars(self) else: cmd = "bcftools stats -v -s - %(filename)s > %(stats_file)s" % vars(self) run_cmd(cmd) results = defaultdict(lambda:defaultdict(dict)) for l in open(self.stats_file): row = l.rstrip().split("\t") if l[0]=="#": continue if row[0]=="SN": results["SN"][row[2][:-1]] = int(row[3]) elif row[0]=="AF": results["AF"]["SNP"][float(row[2])] = int(row[3]) results["AF"]["INDEL"][float(row[2])] = int(row[6]) elif row[0]=="QUAL": results["QUAL"]["SNP"][int(row[2])] = int(row[3]) results["QUAL"]["INDEL"][int(row[2])] = int(row[6]) elif row[0]=="IDD": results["IDD"][int(row[2])] = int(row[3]) elif row[0]=="ST": results["ST"][row[2]] = int(row[3]) elif row[0]=="DP": if row[2][0]==">": continue results["DP"][int(row[2])] = int(row[3]) elif row[0]=="PSC": results["PSC"][row[2]]["nRefHom"] = int(row[3]) results["PSC"][row[2]]["nNonRefHom"] = int(row[4]) results["PSC"][row[2]]["nHets"] = int(row[5]) return results def plot_stats(self,outfile): stats = self.load_stats() output_file(outfile) sn = figure(title="Summary stats", x_range=stats["SN"].keys(),toolbar_location=None, tools="") sn.vbar(x=stats["SN"].keys(),top=stats["SN"].values(),width=0.9) # show the results show(sn) def split_on_metadata(self,meta_file,remove_monomorphic = False, threads = 4): self.threads = threads meta = defaultdict(list) for l in open(meta_file): #sample data row = l.rstrip().split() meta[row[1]].append(row[0]) for m in meta: self.tmp_file = "%s.tmp.txt" % self.prefix open(self.tmp_file,"w").write("\n".join(meta[m])) self.tmp_bcf = "%s.%s.bcf" % (self.prefix,m) self.remove_monomorphic = "| bcftools +fill-AN-AC | bcftools view --threads %(threads)s -c1 " %vars(self) if remove_monomorphic else "" cmd = "bcftools view --threads %(threads)s -S %(tmp_file)s %(filename)s %(remove_monomorphic)s -Ob -o %(tmp_bcf)s" % vars(self) run_cmd(cmd) def annotate(self,ref_file,gff_file): self.ref_file = ref_file self.gff_file = gff_file self.ann_file = "%s.ann.bcf" % self.prefix cmd = "bcftools csq -p m -f %(ref_file)s -g %(gff_file)s %(bcf)s -o %(ann_file)s" % vars(self) run_cmd(cmd,verbose=v) def extract_matrix(self,matrix_file=None,fmt="old",annotation=False): self.matrix_file = matrix_file if matrix_file==True else self.prefix+".mat" if fmt=="new": O = open(self.matrix_file,"w").write("chr\tpos\tref\tinfo\ttype\t%s\n" % ("\t".join(self.samples))) if annotation: cmd = "bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%BCSQ\\t.[\\t%%IUPACGT]\\n' %(filename)s | sed 's/\.\/\./N/g' >> %(matrix_file)s" % vars(self) else: cmd = "bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t.\\t.[\\t%%IUPACGT]\\n' %(filename)s | sed 's/\.\/\./N/g' >> %(matrix_file)s" % vars(self) elif fmt=="old": O = open(self.matrix_file,"w").write("chr\tpos\tref\t%s\n" % ("\t".join(self.samples))) cmd = "bcftools query -f '%%CHROM\\t%%POS\\t%%REF[\\t%%IUPACGT]\\n' %(filename)s | sed 's/\.\/\./N/g' >> %(matrix_file)s" % vars(self) else: log("Choose valid format [old,new]...Exiting!",ext=True) run_cmd(cmd,verbose=v) def vcf_to_fasta(self,outfile,ref_file,threads=4,chunk_size = 50000, bed_file=None): self.ref_file = ref_file self.chunk_size = chunk_size self.cmd_split_chr = "splitchr.py %(ref_file)s %(chunk_size)s --bed %(bed_file)s --reformat" % vars(self) if bed_file else "splitchr.py %(ref_file)s %(chunk_size)s --reformat" % vars(self) self.tmp_file = "%s.tmp.txt" % self.prefix self.threads = threads cmd = "%(cmd_split_chr)s | parallel --col-sep '\\t' -j %(threads)s \"bcftools view %(filename)s -r {1} -Ou | bcftools query -f '%%POS[\\t%%IUPACGT]\\n' | sed 's/\*[\/|]\*/\.\/\./g' | datamash transpose > %(prefix)s.{2}.tmp.txt\"" % vars(self) run_cmd(cmd) cmd = "paste `%(cmd_split_chr)s | awk '{print \"%(prefix)s.\"$2\".tmp.txt\"}'` > %(tmp_file)s" % vars(self) run_cmd(cmd) cmd = "rm `%(cmd_split_chr)s | awk '{print \"%(prefix)s.\"$2\".tmp.txt\"}'`" % vars(self) run_cmd(cmd) O = open(outfile,"w") for i,l in enumerate(open(self.tmp_file)): row = l.rstrip().split() if i==0: continue s = self.samples[i-1] seq = "".join(row).replace("./.","N").replace("*","N") O.write(">%s\n%s\n" % ( s,seq)) O.close() def bcf2vcf(self): if nofile(self.vcf): cmd = "bcftools view --threads %(threads)s %(filename)s -Ov -o %(vcf)s" % vars(self) run_cmd(cmd) def get_venn_diagram_data(self,samples,outfile): samples = samples.split(",") if len(samples)>4: log(samples) log("Can't handle more than 4 samples...Exiting!",True) if nofile(self.vcf): self.bcf2vcf() vcf_reader = vcf.Reader(open(self.vcf,"r")) results = defaultdict(int) tot_snps = defaultdict(int) data = defaultdict(int) for record in vcf_reader: tmp = [] for s in record.samples: if s.sample not in samples: continue if s.gt_nums=="1/1": tmp.append(s.sample) tot_snps[s.sample]+=1 for x in itertools.combinations(tmp,2): tmp_str = "_".join(sorted([str(samples.index(d)) for d in x])) data["overlap_"+tmp_str] +=1 for x in itertools.combinations(tmp,3): tmp_str = "_".join(sorted([str(samples.index(d)) for d in x])) data["overlap_"+tmp_str] +=1 for x in itertools.combinations(tmp,4): tmp_str = "_".join(sorted([str(samples.index(d)) for d in x])) data["overlap_"+tmp_str] += 1 for i,si in enumerate(samples): if si not in self.samples: log("Can't find %s in samples...Exiting" % si,True) data["id_%s"%i] = si data["tot_snps_%s"%i] = tot_snps[si] data["outfile"] = outfile if len(samples)==2: rscript = """ library(VennDiagram) pdf("%(outfile)s") draw.pairwise.venn(area1=%(tot_snps_0)s, area2=%(tot_snps_1)s, cross.area=%(overlap_0_1)s, category = c("%(id_0)s","%(id_1)s"),fill=rainbow(2)) dev.off() """ % data elif len(samples)==3: rscript = """ library(VennDiagram) pdf("%(outfile)s") draw.triple.venn(area1=%(tot_snps_0)s, area2=%(tot_snps_1)s, area3=%(tot_snps_2)s, n12=%(overlap_0_1)s, n23=%(overlap_1_2)s, n13=%(overlap_0_2)s, n123=%(overlap_0_1_2)s, category = c("%(id_0)s","%(id_1)s","%(id_2)s"),fill=rainbow(3)) dev.off() """ % data elif len(samples)==4: rscript=""" library(VennDiagram) pdf("%(outfile)s") draw.quad.venn(area1=%(tot_snps_0)s, area2=%(tot_snps_1)s, area3=%(tot_snps_2)s, area4=%(tot_snps_3)s, n12=%(overlap_0_1)s, n13=%(overlap_0_2)s, n14=%(overlap_0_3)s, n23=%(overlap_1_2)s, n24=%(overlap_1_3)s, n34=%(overlap_2_3)s, n123=%(overlap_0_1_2)s, n124=%(overlap_0_1_3)s, n134=%(overlap_0_2_3)s, n234=%(overlap_1_2_3)s, n1234=%(overlap_0_1_2_3)s, category = c("%(id_0)s","%(id_1)s","%(id_2)s","%(id_3)s"),fill=rainbow(4)) dev.off() """ % data temp_r_script = "%s.temp.R" % self.prefix open(temp_r_script,"w").write(rscript) cmd = "Rscript %s" % temp_r_script run_cmd(cmd) rm_files([temp_r_script]) def merge_in_snps(self,bcf,outfile): self.new_bcf = bcf self.targets_file = "%(prefix)s.targets" % vars(self) self.tmp_file = "%(prefix)s.temp.bcf" % vars(self) self.tmp2_file = "%(prefix)s.temp2.bcf" % vars(self) self.outfile = outfile cmd = "bcftools view --threads %(threads)s -Ou -v snps %(bcf)s | bcftools query -f '%%CHROM\\t%%POS\\n' | awk '{print $1\"\t\"$2-1\"\t\"$2}' > %(targets_file)s" % vars(self) run_cmd(cmd) cmd = "bcftools view --threads %(threads)s -T %(targets_file)s %(new_bcf)s -Ob -o %(tmp_file)s" % vars(self) run_cmd(cmd) index_bcf(self.tmp_file,self.threads) cmd = "bcftools view --threads %(threads)s -T %(targets_file)s %(bcf)s -Ob -o %(tmp2_file)s" % vars(self) run_cmd(cmd) index_bcf(self.tmp2_file,self.threads) cmd = "bcftools merge --threads %(threads)s -Ou %(tmp2_file)s %(tmp_file)s | bcftools view --threads %(threads)s -i 'F_MISSING<0.5' -Ob -o %(outfile)s" % vars(self) run_cmd(cmd) def annotate_from_bed(self,bed_file,outfile=None,nested=False): temp_vcf = "%s.temp.vcf" % self.prefix self.vcf_from_bed(bed_file,temp_vcf) bed_dict = defaultdict(dict) for l in open(bed_file): #chrom pos pos allele data row = l.rstrip().split() bed_dict[row[0]][int(row[1])] = (row[3],row[4]) vcf_reader = vcf.Reader(open(temp_vcf)) results = defaultdict(list) for record in tqdm(vcf_reader): for s in record.samples: if s.gt_bases==None: continue nuc = s.gt_bases.split("/")[0] if nuc==bed_dict[record.CHROM][record.POS][0]: results[s.sample].append(bed_dict[record.CHROM][record.POS][1]) if outfile: O = open(outfile,"w") for s in self.samples: if nested: switch = True tmp = sorted(list(set(results[s]))) for i in range(len(tmp)-1): if tmp[i] not in tmp[i+1]: switch = False else: switch = False meta = tmp[-1] if switch else ";".join(sorted(list(set(results[s])))) if outfile: O.write("%s\t%s\n" % (s,meta)) if outfile: O.close() return results def extract_compressed_json(self,outfile): self.bcf2vcf() vcf_reader = vcf.Reader(open(self.vcf)) results = defaultdict(lambda: defaultdict(dict)) for record in tqdm(vcf_reader): tmp = defaultdict(list) for s in record.samples: if s.gt_bases==None: tmp["N"].append(self.samples.index(s.sample)) elif s.gt_nums=="1/1": tmp[s.gt_bases.split("/")[0]].append(self.samples.index(s.sample)) results[record.CHROM][record.POS] = tmp json.dump({"variants":results,"samples":self.samples},open(outfile,"w")) def bed_subset(self,bed_file,out_file,vcf=False): temp_bed = "%s.temp.bed" % self.prefix cmd = "awk '{print $1\"\\t\"$2-1\"\\t\"$3}' %s > %s" % (bed_file,temp_bed) run_cmd(cmd) if vcf: cmd = "bcftools view -R %s %s -o %s " % (temp_bed,self.filename,out_file) else: cmd = "bcftools view -R %s %s -Ob -o %s " % (temp_bed,self.filename,out_file) run_cmd(cmd) if not vcf: return bcf(out_file) def odds_ratio(self,bed_file,meta_file,ann_file): drugs,meta = load_tsv(meta_file) log(drugs) bed_dict = load_bed(bed_file,columns=[5,6],key1=4,key2=5) subset_bcf_name = "%s.subset.bcf" % self.prefix subset_bcf = self.bed_subset(bed_file,subset_bcf_name) variants = subset_bcf.load_csq(ann_file) for gene in bed_dict: for drug_combo in bed_dict[gene]: for var in bed_dict[gene][drug_combo][0].split(","): for drug in bed_dict[gene][drug_combo][1].split(","): if drug not in drugs: continue print(drugs) print(drug) tbl = [[0.5,0.5],[0.5,0.5]] change_num,ref_aa,alt_aa = parse_mutation(var) print(gene) print(var) if gene not in variants: continue if change_num not in variants[gene]: continue try: tbl[0][0] += len([s for s in meta.keys() if variants[gene][change_num][s]==alt_aa and meta[s][drug]=="1"]) tbl[1][0] += len([s for s in meta.keys() if variants[gene][change_num][s]==alt_aa and meta[s][drug]=="0"]) tbl[0][1] += len([s for s in meta.keys() if variants[gene][change_num][s]==ref_aa and meta[s][drug]=="1"]) tbl[1][1] += len([s for s in meta.keys() if variants[gene][change_num][s]==ref_aa and meta[s][drug]=="0"]) except: pass if tbl[0][0]+tbl[1][0]==1: continue OR = (tbl[0][0]/tbl[0][1])/(tbl[1][0]/tbl[1][1]) log("%s\t%s\t%s\t%s\t%s" % (var,gene,drug,OR,tbl)) def load_csq_alt(self,ann_file=None,changes=False,use_genomic=True,use_gene=True): ann = defaultdict(dict) if ann_file: for l in tqdm(open(ann_file)): #chrom pos gene gene/codon_pos row = l.rstrip().split() ann[row[0]][int(row[1])] = (row[2],row[3]) nuc_variants = self.load_variants() prot_dict = defaultdict(lambda:defaultdict(dict)) prot_variants = defaultdict(lambda:defaultdict(dict)) change_num2pos = defaultdict(lambda:defaultdict(set)) ref_codons = defaultdict(lambda:defaultdict(dict)) variants = {s:[] for s in self.samples} cmd = "bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT[\\t%%SAMPLE\\t%%TBCSQ\\t%%TGT\\t%%AD]\\n' %s" % self.filename sys.stderr.write("%s\n"%cmd) for line in tqdm(subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout): row = line.decode().rstrip().split() chrom = row[0] pos = int(row[1]) ref = row[2] alts = row[3].split(",") alleles = [ref]+alts if chrom in ann and pos in ann[chrom]: ann_pos = int(ann[chrom][pos][1]) ann_gene = ann[chrom][pos][0] else: ann_pos = None if len(row)==4: for alt in alts: if chrom in ann and pos in ann[chrom]: cng = "%s%s>%s" % (ann_pos,ref,alt) for sample in self.samples: if sample in nuc_variants[chrom][pos] and alt in nuc_variants[chrom][pos][sample]: variants[sample].append({"sample":sample,"gene_id":ann_gene,"chr":chrom,"genome_pos":pos,"type":"non_coding","change":cng,"freq":nuc_variants[chrom][pos][sample][alt]}) continue for i in range(4,len(row)-4,5): sample = row[i] info = row[i+1].split("|") if row[i+1]!="." else row[i+2].split("|") call1,call2 = row[i+3].split("/") ad = [int(x) if x!="." else 0 for x in row[i+4].split(",")] adr = {alleles[i]:d/sum(ad) for i,d in enumerate(ad)} if row[i+1][0]=="@": continue if info[-1]=="pseudogene": continue gene = info[1] if info[0]=="intron":continue if info[0]=="coding_sequence": cng = "%s%s>%s" % (ann_pos,call1,call2) variants[sample].append({"sample":sample,"gene_id":ann_gene,"chr":chrom,"genome_pos":pos,"type":"non_coding","change":cng,"freq":adr[call2]}) elif info[0]=="missense&inframe_altering" or info[0]=="missense" or info[0]=="*missense" or info[0]=="start_lost" or info[0]=="*start_lost" or info[0]=="stop_gained" or info[0]=="*stop_gained": variants[sample].append({"sample":sample,"gene_id":gene,"chr":chrom,"genome_pos":pos,"type":info[0],"change":info[5],"freq":adr[call2]}) elif info[0]=="synonymous&stop_retained" or info[0]=="inframe_insertion" or info[0]=="*inframe_insertion" or info[0]=="inframe_deletion" or info[0]=="*inframe_deletion" or info[0]=="synonymous" or info[0]=="*synonymous" or info[0]=="stop_retained": change_num,ref_nuc,alt_nuc = parse_mutation(info[6]) change = "%s%s>%s" % (ann_pos,ref_nuc,alt_nuc) if ann_pos else "%s%s>%s" % (pos,ref_nuc,alt_nuc) variants[sample].append({"sample":sample,"gene_id":gene,"chr":chrom,"genome_pos":pos,"type":info[0],"change":change,"freq":adr[call2]}) elif info[0]=="*stop_lost&frameshift" or info[0]=="*stop_lost" or info[0]=="stop_lost" or info[0]=="frameshift" or info[0]=="*frameshift" or info[0]=="stop_lost&frameshift" or info[0]=="non_coding" or info[0]=="*stop_lost&frameshift" or info[0]=="*stop_lost&inframe_deletion" or info[0]=="frameshift&start_lost": if chrom in ann and pos in ann[chrom]: gene = ann[chrom][pos][0] gene_pos = ann[chrom][pos][1] change = "%s%s>%s" % (gene_pos,ref,call2) variants[sample].append({"sample":sample,"gene_id":gene,"chr":chrom,"genome_pos":pos,"type":info[0],"change":change,"freq":adr[call2]}) else: sys.stderr.write(line) sys.stderr.write(info[0]+"\n") sys.stderr.write("Unknown variant type...Exiting!\n") quit(1) return variants def load_csq(self,ann_file=None,changes=False,use_genomic=True,use_gene=True): ann = defaultdict(dict) if ann_file: for l in tqdm(open(ann_file)): #chrom pos gene gene/codon_pos row = l.rstrip().split() ann[row[0]][int(row[1])] = (row[2],row[3]) nuc_variants = self.load_variants_alt() prot_dict = defaultdict(lambda:defaultdict(dict)) prot_variants = defaultdict(lambda:defaultdict(dict)) change_num2pos = defaultdict(lambda:defaultdict(set)) ref_codons = defaultdict(lambda:defaultdict(dict)) cmd = "bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT[\\t%%SAMPLE\\t%%TBCSQ]\\n' %s" % self.filename sys.stderr.write("%s\n"%cmd) for line in tqdm(subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout): row = line.decode().rstrip().split() chrom = row[0] pos = int(row[1]) ref = row[2] alt = row[3] if chrom in ann and pos in ann[chrom]: ann_pos = int(ann[chrom][pos][1]) ann_gene = ann[chrom][pos][0] else: ann_pos = None if len(row)==4: if chrom in ann and pos in ann[chrom]: for sample in self.samples: prot_variants[ann_gene][ann_pos][sample] = "%s%s>%s" % (ann_pos,ref,alt) prot_dict[ann_gene][ann_pos][sample] = nuc_variants[chrom][pos][sample] ref_codons[ann_gene][ann_pos] = ref continue for i in range(4,len(row)-2,3): sample = row[i] info = row[i+1].split("|") if row[i+1]!="." else row[i+2].split("|") if row[i+1][0]=="@": continue if info[-1]=="pseudogene": continue gene = info[1] if info[0]=="intron":continue if info[0]=="frameshift&start_lost" or info[0]=="missense&inframe_altering" or info[0]=="missense" or info[0]=="*missense" or info[0]=="start_lost" or info[0]=="*start_lost" or info[0]=="*stop_lost" or info[0]=="stop_lost" or info[0]=="stop_gained" or info[0]=="*stop_gained": change_num,ref_aa,alt_aa = parse_mutation(info[5]) change_num2pos[gene][change_num].add((chrom,pos)) ref_codons[gene][change_num] = ref_aa prot_variants[gene][change_num][row[i]] = info[5] prot_dict[gene][change_num][sample] = alt_aa elif info[0]=="stop_lost&frameshift" or info[0]=="inframe_insertion" or info[0]=="*inframe_insertion" or info[0]=="inframe_deletion" or info[0]=="*inframe_deletion" or info[0]=="frameshift" or info[0]=="*frameshift" or info[0]=="synonymous" or info[0]=="*synonymous" or info[0]=="stop_retained": change_num,ref_nuc,alt_nuc = parse_mutation(info[6]) change_num2pos[gene][change_num].add((chrom,pos)) ref_codons[gene][change_num] = ref_nuc change = "%s%s>%s" % (ann_pos,ref_nuc,alt_nuc) if ann_pos else None if use_genomic and use_gene and change: prot_variants[gene][change_num][row[i]] = change elif use_genomic: prot_variants[gene][change_num][row[i]] = info[6] elif use_gene and change: prot_variants[gene][change_num][row[i]] = change else: prot_variants[gene][change_num][row[i]] = info[5] prot_dict[gene][change_num][sample] = alt_nuc elif info[0]=="non_coding": if chrom in ann and pos in ann[chrom]: gene = ann[chrom][pos][0] gene_pos = ann[chrom][pos][1] prot_variants[gene][gene_pos][sample] = "%s%s>%s" % (gene_pos,ref,alt) prot_dict[gene][gene_pos][sample] = alt ref_codons[gene][gene_pos] = ref else: sys.stderr.write(line) sys.stderr.write("Unknown variant type...Exiting!\n") quit(1) for gene in prot_variants: for change_num in prot_variants[gene]: for s in set(self.samples)-set(prot_variants[gene][change_num].keys()): if "N" in [nuc_variants[chrom][pos][s] for chrom,pos in change_num2pos[gene][change_num]]: prot_variants[gene][change_num][s] = "?" prot_dict[gene][change_num][s] = "?" else: pass prot_dict[gene][change_num][s] = ref_codons[gene][change_num] # if nuc_variants[row[0]][int(row[1])][s]=="N": # prot_dict[gene][change_num] = "?" for locus in prot_variants: prot_variants[locus] = prot_variants[locus].values() return prot_variants if changes else prot_dict def ancestral_reconstruct(self,ref_file,tree_file): self.ref_file = ref_file self.tree_file = tree_file cmd = "bcftools query -f '%%CHROM\\t%%POS\n' %(filename)s" % vars(self) variants = {} for i,l in enumerate(subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout): row = l.decode().rstrip().split() variants[i] = (row[0],row[1]) self.reduced_bcf = "%(prefix)s.reduced.bcf" % vars(self) cmd = "bcftools view --threads %(threads)s -c 3 %(filename)s -Ob -o %(reduced_bcf)s" % vars(self) run_cmd(cmd) reduced = {} cmd = "bcftools query -f '%%CHROM\\t%%POS\n' %(reduced_bcf)s" % vars(self) for i,l in enumerate(subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout): row = l.decode().rstrip().split() reduced[i] = (row[0],row[1]) new_bcf = bcf(self.reduced_bcf) self.fasta_file = "%(prefix)s.reduced.snps.fa" % vars(self) new_bcf.vcf_to_fasta(self.fasta_file,self.ref_file) self.new_tree_file = "%s.newick.txt" % self.prefix self.reconstructed_fasta = "%s.reconstructed.fasta" % self.prefix cmd = "fastml -s %(fasta_file)s -t %(tree_file)s -x %(new_tree_file)s -j %(reconstructed_fasta)s -qf -mn" % vars(self) run_cmd(cmd,verbose=2) def itol_from_bcf(self,mutation_file,amino_acid=False,supress_ref=False,supress_missing=False): if amino_acid: all_csq = self.load_csq() ref = "" for l in open(mutation_file): mutation = l.rstrip() if amino_acid: gene,variant = mutation.split("__") change_num,ref_aa,alt_aa = parse_mutation(variant) ref = ref_aa if gene in all_csq and change_num in all_csq[gene]: variant_dict = all_csq[gene][change_num] else: continue else: chrom,pos = mutation.split("__") variant_dict = self.load_variants_alt(chrom,pos) for l in cmd_out("bcftools view %s %s:%s | bcftools query -f '%%REF'" % (self.filename,chrom,pos)): ref = l.rstrip() num_var = len(set(variant_dict.values())) if not supress_ref else len(set([d for d in variant_dict.values() if d!=ref])) tmp_col = {"A":"#c15959","C":"#77ad78","G":"#3b3561","T":"#76bed0","N":"#c5c5c5"} cols = [x.get_hex() for x in list(Color("red").range_to(Color("blue"),num_var))] col_dict = {d:cols[i] for i,d in enumerate(set(variant_dict.values()))} if amino_acid else {d:tmp_col[d] for d in list(set(variant_dict.values())) } shape_line = "\t".join(["1" for x in range(num_var)]) col_line = "\t".join(col_dict.values()) lab_line = "\t".join(col_dict.keys()) print(col_dict) outfile = "%s.itol.txt" % mutation OUT = open(outfile,"w") OUT.write("""DATASET_COLORSTRIP SEPARATOR TAB DATASET_LABEL %s COLOR #ff0000 LEGEND_TITLE Amino acid LEGEND_SHAPES %s LEGEND_COLORS %s LEGEND_LABELS %s DATA """ % (mutation,shape_line,col_line,lab_line)) for s in self.samples: if amino_acid: if variant_dict[s]==alt_aa: OUT.write("%s\t%s\n" % (s,col_dict[variant_dict[s]])) else: if supress_ref and variant_dict[s]==ref: continue if supress_missing and variant_dict[s]=="N": continue OUT.write("%s\t%s\n" % (s,col_dict[variant_dict[s]])) OUT.close() def compress_variants(self): cmd = "bcftools query -f '%%CHROM\\t%%POS[\\t%%GT]\\n' %(filename)s" % vars(self) results = defaultdict(list) for l in subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout: row = l.decode().rstrip().split() results[tuple(row[2:])].append([row[0],row[1]]) final_results = {} for i,key in enumerate(results): var_name = "variant_%s" % i O = open(var_name+".pheno","w") for j,s in enumerate(self.samples): tmp = "-9" if key[j]=="0/0": tmp = "1" elif key[j]=="1/1": tmp = "2" O.write("0\t%s\t%s\n" % (s,tmp)) final_results[var_name] = results[key] O.close() json.dump(final_results,open("%s.compressed_variants.json" % self.prefix,"w")) return final_results def reheader(self,index_file): idx = {} for l in open(index_file): row = l.rstrip().split() if row[0] in idx: sys.stderr.write("Duplicate values in index file (%s)...Exiting!\n"%row[0]); quit(1) idx[row[0]] = row[1] new_bcf_file = "%(prefix)s.reheader.bcf" % vars(self) tmp_header = "%(prefix)s.tmp.header" % vars(self) OUT = open(tmp_header,"w") for l in subprocess.Popen("bcftools view --threads %(threads)s -h %(filename)s" % vars(self),shell=True,stdout=subprocess.PIPE).stdout: if l.decode()[:2]=="##": OUT.write(l.decode()); continue row = l.decode().rstrip().split(); for i in range(9,len(row)): if row[i] not in idx: log("%s not found in index file...Exiting!" % row[i],True) row[i] = idx[row[i]] OUT.write("%s\n" % "\t".join(row)) OUT.close() cmd = "bcftools reheader -h %s %s > %s" % (tmp_header,self.filename,new_bcf_file) run_cmd(cmd) rm_files([tmp_header]) def filt_variants(self,outfile,bed_include=None,bed_exclude=None,threads=4,fmiss=0.1,remove_monomorphic=True): add_arguments_to_self(self,locals()) self.bed_include = "bcftools view --threads %(threads)s -T %s -Ou |" % bed_include if bed_include!=None else "" self.bed_exclude = "bcftools view --threads %(threads)s -T ^%s -Ou |" % bed_exclude if bed_exclude!=None else "" self.remove_monomorphic = "| bcftools +fill-AN-AC | bcftools view --threads %(threads)s -c1 " %vars(self) if remove_monomorphic else "" """Extract all variant positions""" cmd = "bcftools view --threads %(threads)s %(filename)s -Ou | %(bed_include)s %(bed_exclude)s bcftools view --threads %(threads)s -i 'AC>=0 && F_MISSING<%(fmiss)s' %(remove_monomorphic)s -o %(outfile)s -O b" % vars(self) run_cmd(cmd) return bcf(self.outfile,threads=self.threads) def extract_variants(self,outfile,min_dp=10,bed_include=None,bed_exclude=None,threads=4): add_arguments_to_self(self,locals()) self.bed_include = "bcftools view --threads %(threads)s -T %(bed_include)s -Ou |" % vars(self) if bed_include!=None else "" self.bed_exclude = "bcftools view --threads %(threads)s -T ^%(bed_exclude)s -Ou |" % vars(self) if bed_exclude!=None else "" cmd = "bcftools +setGT %(filename)s -Ou -- -t q -i 'FMT/DP<%(min_dp)s' -n . | %(bed_include)s %(bed_exclude)s bcftools view --threads %(threads)s -i 'AC>=1' -o %(outfile)s -O b" % vars(self) run_cmd(cmd) return bcf(self.outfile,threads=self.threads) def filt_non_uniq(self,mappability_file,outfile): """Filter out non unique positions""" add_arguments_to_self(self,locals()) non_uniq = [] self.non_uniq_bed = "%s.genome.non_uniq.bed" % self.prefix O = open(self.non_uniq_bed,"w") for l in open(self.mappability_file): arr = l.rstrip().split() if float(arr[3])<1: O.write(l) O.close() cmd = "bcftools view --threads %(threads)s -T ^%(non_uniq_bed)s %(filename)s -O b -o %(outfile)s" % vars(self) run_cmd(cmd) return bcf(self.outfile,threads=self.threads) def remove_monomorphic(self,outfile): add_arguments_to_self(self,locals()) cmd = " bcftools +fill-AN-AC %(filename)s | bcftools view -c 1 -Ob -o %(outfile)s" % vars(self) run_cmd(cmd) return bcf(self.outfile,threads=self.threads) def sample_filt(self,outfile,miss_cut=0.15,mix_cut=0.15,keep_samples=None): """Filter out low quality samples""" add_arguments_to_self(self,locals()) self.hq_sample_file = "%s.HQ.samples.txt" % self.prefix self.lq_sample_file = "%s.LQ.samples.txt" % self.prefix self.qual_file = "%s.sample_quals.txt" % self.prefix if keep_samples and filecheck(keep_samples): self.keep_samples = [x.rstrip() for x in open(keep_samples).readlines()] else: self.keep_samples = [] num_calls = int(subprocess.Popen("bcftools view --threads %(threads)s %(filename)s -H | wc -l" % vars(self),shell=True,stdout=subprocess.PIPE).communicate()[0].rstrip()) miss = {} mix = {} self.lq_samples = [] self.hq_samples = [] HQ = open(self.hq_sample_file,"w") LQ = open(self.lq_sample_file,"w") QF = open(self.qual_file,"w") QF.write("sample\tmix\tmiss\n") self.bcftools_stats_file = "%s.bcftools_stats.txt" % self.prefix cmd = "bcftools stats %(filename)s -s - | grep ^PSC > %(bcftools_stats_file)s" % vars(self) run_cmd(cmd) for l in open(self.bcftools_stats_file): row = l.rstrip().split() s = row[2] miss[s] = (num_calls-sum([int(row[i]) for i in [3,4,5]]))/num_calls mix[s] = int(row[5])/num_calls QF.write("%s\t%s\t%s\n" % (s,mix[s],miss[s])) if s in self.keep_samples: self.hq_samples.append(s) HQ.write("%s\n" % s) elif miss[s]>self.miss_cut or mix[s]>self.mix_cut: self.lq_samples.append(s) LQ.write("%s\n" % s) else: self.hq_samples.append(s) HQ.write("%s\n" % s) HQ.close() LQ.close() QF.close() cmd = "bcftools view --threads %(threads)s -S %(hq_sample_file)s -a -c 1 -o %(outfile)s -O b %(filename)s" % vars(self) run_cmd(cmd) return bcf(self.outfile,threads=self.threads) def mask_mixed(self,outfile,remove_monomorphic=True): """Create a BCF file with mixed called masked as missing""" add_arguments_to_self(self,locals()) self.remove_monomorphic = "| bcftools +fill-AN-AC | bcftools view --threads %(threads)s -c1 " %vars(self) if remove_monomorphic else "" cmd = "bcftools +setGT %(filename)s -Ou -- -t q -i 'GT=\"het\"' -n . | bcftools view --threads %(threads)s %(remove_monomorphic)s -Ob -o %(outfile)s" % vars(self) run_cmd(cmd) return bcf(self.outfile,threads=self.threads) def generate_consensus(self,ref,threads=4,no_chrom=False): add_arguments_to_self(self,locals()) cmd_file = get_random_file() O = open(cmd_file,"w") nochrom = "--no-chrom" if no_chrom else "" for s in self.samples: O.write("bcf2sample_consensus.py %s %s %s %s\n" % (self.filename,s,ref,nochrom)) O.close() run_cmd("cat %s | parallel -j %s" % (cmd_file,threads)) rm_files([cmd_file]) def distance(self,outfile): add_arguments_to_self(self,locals()) matrix = [[0 for x in self.samples] for s in self.samples] miss_matrix = [[0 for x in self.samples] for s in self.samples] sample_idx = {s:self.samples.index(s) for s in self.samples} cmd = "bcftools query -i'GT!=\"ref\"' -f '[\\t%%SAMPLE:%%GT]\\n' %(filename)s" % vars(self) num_snps = 0 for l in tqdm(cmd_out(cmd)): num_snps+=1 alt_samples = defaultdict(set) miss_samples = set() row = l.strip().split() for x in row: s,c = x.split(":") if c=="./.": miss_samples.add(s) else: alt_samples[c].add(s) for c in alt_samples: others = (set(self.samples)-alt_samples[c]) - miss_samples for s in alt_samples[c]: idx = sample_idx[s] for x in others: matrix[idx][sample_idx[x]]+=1 matrix[sample_idx[x]][idx]+=1 for si in miss_samples: for sj in set(self.samples)-miss_samples: miss_matrix[sample_idx[si]][sample_idx[sj]]+=1 miss_matrix[sample_idx[sj]][sample_idx[si]]+=1 for sj in miss_samples: if si==sj: continue if sample_idx[si]>sample_idx[sj]: miss_matrix[sample_idx[si]][sample_idx[sj]]+=1 for i in range(len(self.samples)): for j in range(len(self.samples)): if j>=i: continue scaler = num_snps / (num_snps-miss_matrix[i][j]) #log("Num SNPs: %s, %s-%s, missing: %s, non missing: %s, abs_dist: %s scale factor: %s, scaled_dist: %s" % (num_snps,self.samples[i],self.samples[j],miss_matrix[i][j],num_snps-miss_matrix[i][j],matrix[i][j],scaler,matrix[i][j]*scaler)) matrix[i][j] = matrix[i][j]*scaler matrix[j][i] = matrix[i][j] OUT = open(outfile,"w") OUT.write("\t".join(self.samples)+"\n") OUT.write("\n".join(["\t".join([str(d) for d in matrix[j]]) for j in range(len(self.samples))])) OUT.write("\n") OUT.close() return {"sample":self.samples,"matrix":matrix} def extract_dosage(self,outfile): add_arguments_to_self(self,locals()) cmd = "bcftools query %(filename)s -f '%%CHROM\\t%%POS\\t%%REF\\t.\\t.[\\t%%AD]\\n'" % vars(self) def process_ad(ad): if ad==".": return "%.3f" % 0 else: dp = [int(x) if x!="." else 0 for x in ad.split(",")] if sum(dp)==0: return "NA" if sum(dp)!=0: return "%.3f" % (dp[0]/sum(dp)) else: return "%.3f" % 1 idx = range(5,5+len(self.samples)) O = open(self.outfile,"w") O.write("chr\tpos\tref\tinfo\ttype\t%s\n" % ("\t".join(self.samples))) for l in tqdm(cmd_out(cmd)): row = l.decode().rstrip().split() row[5:] = [process_ad(x) for x in row[5:]] O.write("%s\n" % "\t".join(row)) O.close() def bed_consensus(self,bed_file,ref_file): add_arguments_to_self(self,locals()) bed = load_bed(self.bed_file,[1,2,3,4],4) for gene in bed: self.loc = "%s:%s-%s" % (bed[gene][0],bed[gene][1],bed[gene][2]) self.gene = gene for s in self.samples: self.samp = s.replace("/","\/") cmd = "samtools faidx %(ref_file)s %(loc)s | bcftools consensus -s %(samp)s -H 2 %(filename)s | sed 's/%(loc)s/%(samp)s_%(gene)s %(loc)s/' > %(samp)s_%(gene)s.fasta" % vars(self) run_cmd(cmd) def get_mean_genotype(self,outfile=None): add_arguments_to_self(self,locals()) if self.outfile==None: self.outfile = self.prefix+".geno" O = open(self.outfile,"w") for l in tqdm(cmd_out("bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT[\\t%%TGT]\\n' %(filename)s" % vars(self))): row = l.rstrip().split() alts = row[3].split(",") for alt in alts: ref = "%s/%s" % (row[2],row[2]) tmp = "%s/%s" % (alt,alt) genos = [] for x in row[4:]: if x==ref: genos.append("0") elif x==tmp: genos.append("1") else: genos.append("NA") O.write("%s, %s, %s, %s\n" % (row[0]+"_"+row[1]+"_"+alt,row[2],alt,", ".join(genos))) O.close() def get_variant_matrix(self,outfile=None): add_arguments_to_self(self,locals()) if self.outfile==None: self.outfile = self.prefix+".variants.matrix" csq = self.load_csq_alt() var = set() for s in csq: for v in csq[s]: var.add((v["gene_id"],v["change"])) O = open(self.outfile,"w") O.write("gene\tmutation\t%s\n" % ("\t".join(self.samples))) for gene,change in sorted(var,key=lambda x:x[0]): tmp = [] for s in self.samples: if len([x for x in csq[s] if x["change"]==change and x["gene_id"]==gene])>0: tmp.append("1") else: tmp.append("0") O.write("%s\t%s\t%s\n" % (gene,change,"\t".join(tmp))) O.close() def get_snp_ann(self,outfile=None): add_arguments_to_self(self,locals()) print("chrom\tpos\tref\talt\tgene\tchange\tconsequence") for l in cmd_out("bcftools query -f '%%CHROM\\t%%POS\\t%%REF\t%%ALT[\\t%%IUPACGT:%%TBCSQ{1}]\\n' %(filename)s" % vars(self)): # print l.rstrip() row = l.rstrip().split() chrom,pos,ref,alt = row[:4] gene = "-" change = "-" changetype = "-" if len(row)!=4: changes = {} changetypes = {} for x in row[4:]: allele,info = x.split(":") if info[0]=="@": continue gene = info.split("|")[1] changetypes[allele] = info.split("|")[0] if info.split("|")[0]!="non_coding": changes[allele] = info.split("|")[5] change = ",".join(changes[a] if a in changes else "-" for a in alt.split(",")) changetype = ",".join(changetypes[a] if a in changetypes else "-" for a in alt.split(",")) print("%s\t%s\t%s\t%s\t%s\t%s\t%s" % (chrom,pos,ref,alt,gene,change,changetype)) def get_bed_gt(self,bed_file,ref_file): add_arguments_to_self(self,locals()) cmd = "bcftools convert --gvcf2vcf -f %(ref_file)s %(filename)s | bcftools view -T %(bed_file)s | bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT[\\t%%GT\\t%%AD]\\n'" % vars(self) results = defaultdict(lambda : defaultdict(dict)) for l in cmd_out(cmd): #Chromosome 4348079 0/0 51 chrom,pos,ref,alt,gt,ad = l.rstrip().split() pos =int(pos) d = {} alts = alt.split(",") ad = [int(x) for x in ad.split(",")] if ad!="." else [100] if gt=="0/0": d[ref] = ad[0] elif gt=="./.": d[ref] = 0 else: for i,a in enumerate([ref]+alts): d[a] = ad[i] results[chrom][pos] = d return results def get_plink_dist(self): tmpfile = get_random_file() cmd = "bcftools view %s > %s" % (self.filename,tmpfile) run_cmd(cmd) cmd = "plink --vcf %s --distance square --allow-extra-chr --out %s --double-id" % (tmpfile,tmpfile) run_cmd(cmd) O = open("%s.dist" % (self.prefix),"w") dists = [] for l in open("%s.dist"%tmpfile): row = [float(d)/2 for d in l.rstrip().split()] O.write("%s\n" % "\t".join([str(x) for x in row])) dists.append(row) O.close() run_cmd("rm %s*" % tmpfile) return dists def get_clusters(self,cutoff=10,meta_file=None,col_scheme=None,shape_scheme=None,remove_singletons=False): if meta_file: meta = {} colour_vals = set() shape_vals = set() for l in open(meta_file): row = l.rstrip().split() meta[row[0]] = row[1:] colour_vals.add(row[1]) shape_vals.add(row[2]) meta_cols = {} if col_scheme: for l in open(col_scheme): row = l.rstrip().split() meta_cols[row[0]] = row[1] else: cols = [x.get_hex() for x in list(Color("red").range_to(Color("blue"),len(colour_vals)))] for i,x in enumerate(colour_vals): meta_cols[x] = cols[i] meta_shapes = {} if shape_scheme: for l in open(shape_scheme): row = l.rstrip().split() meta_shapes[row[0]] = row[1] else: shapes = ["circle","square","triangle","cross","diamond","star","wye"] for i,x in enumerate(shape_vals): meta_shapes[x] = shapes[i] print(meta_shapes) print(meta_cols) dists = self.get_plink_dist() edges = [] tmp_node_set = set() for i in range(len(dists)): for j in range(len(dists)): if j>=i:continue if dists[i][j]<cutoff: edge = {"source":self.samples[i], "target":self.samples[j], "snps":dists[i][j]} tmp_node_set.add(self.samples[i]) tmp_node_set.add(self.samples[j]) edges.append(edge) nodes = [{"id":s} for s in tmp_node_set] if remove_singletons else [{"id":s} for s in self.samples] if meta_file: for n in nodes: n["meta1"] = meta[n["id"]][0] print(meta[n["id"]]) n["col"]=meta_cols[meta[n["id"]][0]] if len(meta[n["id"]])>1: n["meta2"] = meta[n["id"]][1] print(meta_shapes) n["shape"]=meta_shapes[meta[n["id"]][1]] graph = {"nodes":nodes,"edges":edges} json.dump(graph,open("%s.distance_clusters.json" % self.prefix,"w")) return graph def num_one_sample_snps(self,cutoff=10): cmd = "bcftools query -i 'AC=2' %(filename)s -f '%%CHROM\\t%%POS\\n'" % vars(self) positions = [] for pos in cmd_out(cmd): positions.append(pos.split()) return positions def get_genesum(self,outfile=None): add_arguments_to_self(self,locals()) if self.outfile==None: self.outfile = self.prefix+".gensum" genesum = defaultdict(lambda:defaultdict(int)) O = open(self.outfile,"w") for l in tqdm(cmd_out("bcftools query -f '[%%SAMPLE\\t%%GT\\t%%TBCSQ\\n]' %(filename)s" % vars(self))): row = l.split() #por4A 1/1 synonymous|Rv0002|gene1|protein_coding|+|109L|2378G>A synonymous|Rv0002|gene1|protein_coding|+|109L|2378G>A info = row[2].split("|") if info[0]=="synonymous": continue if info[0][0]=="@": continue genesum[info[1]][row[0]]+=1 for gene in genesum: O.write("%s\tNA\tNA\t%s\n" % (gene,"\t".join(str(genesum[gene][s]) for s in self.samples))) O.close() def get_snp_pos(self): positions = [] for l in cmd_out("bcftools query -f '%%CHROM\\t%%POS\\n' %(filename)s" % vars(self)): row = l.rstrip().split() positions.append((row[0],int(row[1]))) return positions def get_snp_info(self): info = [] for l in cmd_out("bcftools query -f '%%CHROM\\t%%POS\\t%%REF\\t%%ALT\\t%%BCSQ\\n' %(filename)s" % vars(self)): row = l.rstrip().split() info.append(row) return info ``` #### File: pathogenseq/pathogenseq/qc.py ```python from __future__ import division import sys import subprocess from .files import * from .fasta import * from .fastq import * import numpy as np import gzip #import matplotlib as mpl #mpl.use('Agg') #import matplotlib.pyplot as plt #plt.ioff() import json import re from collections import defaultdict ################################ ########## Functions ########### ################################ def gsize_convert(x): d = {"G":1e9,"M":1e6,"K":1e3} num = float(x[:-1]) char = x[-1] if char not in d: log("%s not a valid value");quit() return num*d[char] def get_genome_cov(bam_file,ref_file,min_dp,bed_file=None): fdict = fasta(ref_file).fa_dict ref_cov = {} for s in fdict: ref_cov[s] = [0 for x in range(len(fdict[s]))] if bed_file: samtools_cmd = "samtools view -bL %s %s | samtools depth -aa --reference %s -" % (bed_file,bam_file,ref_file) else: samtools_cmd = "samtools depth -aa --reference %s %s" % (ref_file,bam_file) log("\nRunning command:\n%s" % samtools_cmd) for line in subprocess.Popen(samtools_cmd,shell=True,stdout=subprocess.PIPE).stdout: arr = line.decode().rstrip().split() if arr[0] not in ref_cov: log("Can't find %s in FASTA...Have you used the correct reference sequence?" % arr[0]);quit() ref_cov[arr[0]][int(arr[1])-1] = int(arr[2]) all_genome = [] for s in fdict: all_genome+=ref_cov[s] genome_cov = {} for dp in min_dp: genome_cov[dp] = len([1 for d in all_genome if d>=dp])/len(all_genome) med = int(np.median(all_genome)) return genome_cov,med,ref_cov def flagstat(bam_file): lines = [] samtools_cmd = "samtools flagstat %s" % (bam_file) for l in subprocess.Popen(samtools_cmd,shell=True,stdout=subprocess.PIPE).stdout: arr = l.rstrip().split() lines.append(arr) num = int(lines[4][0]) pct = 0.0 if num==0 else float(lines[4][4][1:-1]) return num,pct ################################ ########### Classes ############ ################################ class qc_fastq: """ A class to extract basic QC stats and run QC programs on fastQ files Args: prefix(str): Prefix for output files fq1(str): First read file [required] fq2(str): Second read file. Pass NoneType if there is no second read optimise(Bool): Choose if you want to calculate metrics based on whole read file or based on the first 10 percent. threads(int): Number of threads to use for multithreaded methods kraken_db(str): Location of the kraken database (if needed) Returns: qc_fastq: A qc_fastq class object """ def __init__(self,prefix,fq1,fq2=None,optimise=True,threads=4): self.params = {"fq1":"","fq2":""} self.read_len = [] self.read_num = 0 self.paired = False self.kraken_run = False if filecheck(fq1): self.params["fq1"] = fq1 if fq2 and filecheck(fq2): self.params["fq2"] = fq2 self.paired = True self.params["prefix"] = prefix self.params["threads"] = threads self.read_num = int(gz_file_len(fq1)/4)*2 if self.paired else int(gz_file_len(fq1)/4) self.read_pairs = self.read_num/2 if self.paired else self.read_num FQ = gzip.open(fq1) i = int(self.read_pairs*0.10) if optimise else self.read_pairs for j in range(i): FQ.readline() self.read_len.append(len(FQ.readline())) FQ.readline() FQ.readline() self.median_read_len = np.median(self.read_len) self.mean_read_len = np.mean(self.read_len) def approx_depth(self,genome_size): """Return approx depth for a given genome size""" return self.read_num*self.mean_read_len/gsize_convert(genome_size) def run_centrifuge(self,centrifuge_db,filter_fastq=None,threads=4): self.params["centrifuge_db"] = centrifuge_db self.params["centrifuge_report"] = "%(prefix)s.centrifuge.report.txt" % self.params self.params["centrifuge_log"] = "%(prefix)s.centrifuge.log" % self.params self.params["threads"] = threads if self.paired: cmd = "centrifuge -x %(centrifuge_db)s -1 %(fq1)s -2 %(fq2)s -S %(centrifuge_log)s --report-file %(centrifuge_report)s -p %(threads)s" % self.params else: cmd = "centrifuge -x %(centrifuge_db)s -U %(fq1)s -S %(centrifuge_log)s --report-file %(centrifuge_report)s -p %(threads)s" % self.params run_cmd(cmd) if filter_fastq: num_mtb = 0 taxa = filter_fastq.split(",") self.params["cf_filt_fq_1"] = "%(prefix)s_1.centrifuge_filt.fastq.gz" % self.params self.params["cf_filt_fq_2"] = "%(prefix)s_2.centrifuge_filt.fastq.gz" % self.params self.params["tmp_file"] = get_random_file() read_names = set() for l in open(self.params["centrifuge_log"]): #K00250:202:HNN53BBXX:8:1101:6066:998 NC_016947.1 1138382 21377 21377 235 302 4 row = l.rstrip().split() if row[2] in taxa: num_mtb+=1 read_names.add(row[0]) O = open(self.params["tmp_file"],"w") O.write("\n".join(list(read_names))) O.close() cmd = "seqtk subseq %(fq1)s %(tmp_file)s | pigz -p %(threads)s -c > %(cf_filt_fq_1)s" % self.params run_cmd(cmd) cmd = "seqtk subseq %(fq2)s %(tmp_file)s | pigz -p %(threads)s -c > %(cf_filt_fq_2)s" % self.params run_cmd(cmd) rm_files([self.params["tmp_file"]]) top_hit = "" top_num_reads = 0 for l in open(self.params["centrifuge_report"]): #Mycobacterium avium 1764 species 6256976 13835 352 2.10431e-06 row = l.rstrip().split("\t") if row[0]=="name": continue if int(row[5])>top_num_reads: top_hit = row[0].replace(" ","_") top_num_reads = int(row[4]) if filter_fastq: tmp = [top_hit,num_mtb/self.read_num] return self.params["cf_filt_fq_1"],self.params["cf_filt_fq_2"],tmp else: return top_hit,top_num_reads def run_kraken(self,kraken_db,filter_fastq = None): """ Run kraken with an option to create filtered fastq files Args: filter_fastq(str): NCBI Taxonomy code use when extracting reads """ self.params["kraken_db"] = kraken_db self.params["kraken_file"] = "%(prefix)s.kraken" % self.params cmd = "kraken --db %(kraken_db)s --threads %(threads)s --fastq-input --gzip-compressed --output %(kraken_file)s --paired --check-names %(fq1)s %(fq2)s" % self.params run_cmd(cmd) if filter_fastq: taxa = filter_fastq.split(",") o1 = "%(prefix)s_1.kraken_filt.fastq.gz" % self.params o2 = "%(prefix)s_2.kraken_filt.fastq.gz" % self.params self.params["kr_filt_fq_1"] = o1 self.params["kr_filt_fq_2"] = o2 readnames = set() for l in open(self.params["kraken_file"]): arr = l.rstrip().split() if arr[2] in taxa: readnames.add(arr[1]) R1 = gzip.open(self.params["fq1"]) R2 = gzip.open(self.params["fq2"]) O1 = gzip.open(o1,"wb") O2 = gzip.open(o2,"wb") for seqname1 in R1: seqname1 = seqname1.rstrip() seq1 = next(R1).rstrip() next(R1) qual1 = next(R1).rstrip() seqname2 = next(R2).rstrip() seq2 = next(R2).rstrip() next(R2) qual2 = next(R2).rstrip() if seqname1.split()[0][1:] in readnames: O1.write("%s\n%s\n+\n%s\n" % (seqname1,seq1,qual1)) O2.write("%s\n%s\n+\n%s\n" % (seqname2,seq2,qual2)) O1.close() O2.close() self.run_kraken = True class qc_bam: """ A class to extract basic QC stats and run QC programs on fastQ files Args: bam(str): Bam file ref(str): Refrence fasta cov_thresholds(list): List of integers to use in the percentage genome covered calculation Returns: qc_bam: A qc_bam class object """ def __init__(self,bam,ref,cov_thresholds=[1,5,10],threads=4,bed_file=None): self.bam = None self.ref = None self.threads = threads if filecheck(bam): self.bam = bam if filecheck(ref): self.ref = ref self.genome_cov,self.med_dp,self.ref_dp = get_genome_cov(bam,ref,cov_thresholds,bed_file=bed_file) self.num_reads_mapped,self.pct_reads_mapped = flagstat(bam) def plot_cov(self,chrom,imgfile,start=None,end=None,window=10000,step=5000,optimise=True,plot_median=True,primers=None): """ Plot coverage across chromosomes Args: chrom(str): Chromosome name imgfile(str): Name of the output png window(int): Window size for the sliding window coverage calculation step(int): Step size for the sliding window coverage calculation optimise(bool): Optimise window and step size for chromosome len """ if plot_median: chrom_med_dp = np.median(self.ref_dp[chrom]) if start and end: region_size = end-start offset = int(region_size*0.05) new_start = start-offset new_end = end+offset else: offset=False region_size = len(self.ref_dp[chrom]) start = 0 end = region_size new_start = start new_end = end if region_size<100000: n,d = "K",1000 elif region_size>100000 and region_size<1000000000: n,d = "M",1000000 else: n,d = "G",1000000000 if optimise: if region_size<10000: window,step=2,1 elif region_size<100000: window,step=100,50 elif region_size>100000 and region_size<1000000: window,step=1000,500 else: if region_size<10000: window,step=2,1 log("Outputting coverage plot for region (%sbp) with window=%s and step=%s" % (region_size,window,step)) x = [] y = [] hw = int(window/2) for i in range(new_start+hw,new_end-hw,step): x.append(i/d) y.append(int(np.median(self.ref_dp[chrom][i-hw:i+hw+1]))) fig = plt.figure() plot = fig.add_subplot(111) plot.plot(x,y) plot.set_ylim(bottom=0) if max(y)>200: plot.set_yscale('symlog') plot.set_xlabel("Genome Position (%sb)" % n) plot.set_ylabel("Median Coverage (Window size:%s)" % window) if plot_median: ymax = max(y) if max(y)>chrom_med_dp else chrom_med_dp plot.set_ylim(top=ymax+ymax*0.05) plot.axhline(xmin=0,xmax=1,y=chrom_med_dp,color="orange",linestyle="dashed") if offset: plot.axvline(ymin=0,ymax=0.05,x=start/d,color="orange") plot.axvline(ymin=0,ymax=0.05,x=end/d,color="orange") if primers: locations = fasta(self.ref).find_primer_positions(primers) for primer in sorted(locations,key=lambda x:locations[x]["start"]): p = locations[primer] plot.plot((p["start"]/d,p["end"]/d),(0,0),'r-',lw=3) fig.savefig(imgfile) def save_cov(self,filename,bed=None): """Save coverage to a json file""" if bed: bed_regions = load_bed(bed,[1,2,3],4) bed_cov = {d:[] for d in bed_regions.keys()} for locus in bed_regions: tmp = bed_regions[locus] for i in range(int(tmp[1]),int(tmp[2])): bed_cov[locus].append(self.ref_dp[tmp[0]][i]) json.dump(bed_cov,open(filename,"w")) else: json.dump(self.ref_dp,open(filename,"w")) def region_cov(self,regions): """ Return a dictionary with mean depth across selected regions Args: regions(list): A list with each element consisting of a ``tuple`` with 4 strings: 1) chromosome, 2) start, 3) end and 4) ID Returns: dict: A dictionary with mean depth across selected regions """ results = {} for chrom,start,end,name in regions: results[name] = np.mean(self.ref_dp[chrom][int(start)-1:int(end)]) return results def bed_cov(self,bed_file): """ Return a dictionary with mean depth across selected regions in BED file Args: bed_file(str): A bed file with the 4th column containing the region ID Returns: dict: A dictionary with mean depth across selected regions """ regions = [] for l in open(bed_file): #Chromosome start end name arr = l.rstrip().split() regions.append(tuple(arr[:4])) return self.region_cov(regions) def gff_cov(self,gff_file,key="ID"): """ Return a dictionary with mean depth across selected regions in GFF file Args: gff_file(str): A gff file region coordinates key(str): A key to use as the region ID (e.g. for ID=katG the key is 'ID') Returns: dict: A dictionary with mean depth across selected regions """ regions = [] key_re = re.compile("%s=([\w\.\-\_]+)"%key) for l in open(gff_file): if l[0]=="#": continue arr = l.rstrip().split() if "%s="%key not in l: log("Warining: %s not found in %s" % (key,l)) continue name = key_re.search(l).group(1) regions.append((arr[0],arr[3],arr[4],name)) return self.region_cov(regions) def extract_gc_skew(self,filename,window=1000,step=500): fa_dict = fasta(self.ref).fa_dict hw = int(window/2) results = defaultdict(list) for s in fa_dict: for i in range(hw,len(fa_dict[s])-hw,step): seq = fa_dict[s][i-hw:i+hw] tmp = dict((c, seq.count(c)) for c in ["C","G"]) results[int((tmp["G"]+tmp["C"])/(window)*100)].append(int(np.median(self.ref_dp[s][i-hw:i+hw]))) json.dump(results,open(filename,"w")) ``` #### File: pathogenseq/pathogenseq/varmatrix.py ```python from __future__ import division import sys from .files import * _chrom_key="chr" class varmat: def __init__(self,filename): self.filename = filename self.positions = [] self.header = [] self.genos = [] self.samples = [] self.ref = [] self.num_samples = None self.num_cols = None for l in open(self.filename): row = l.rstrip().split() if row[0]==_chrom_key: self.samples = row[3:] self.header = row self.num_samples = len(row)-3 self.num_cols = len(row) continue self.positions.append((row[0],row[1])) self.genos.append(row[3:]) self.ref.append(row[2]) self.set_positions = set(self.positions) def compare_varmat(mat1,mat2,report=None): if mat1.samples!=mat2.samples: log("Samples not identical",ext=True) mat1_uniq_pos = [] mat2_uniq_pos = [] intersect_pos = [] geno_discrepancies = {} genotype_call_discrepancies = 0 genotype_position_discrepancies = 0 for chrompos in mat1.set_positions.union(mat2.set_positions): if chrompos in mat1.set_positions and chrompos not in mat2.set_positions: mat1_uniq_pos.append(chrompos) elif chrompos not in mat1.set_positions and chrompos in mat2.set_positions: mat2_uniq_pos.append(chrompos) else: intersect_pos.append(chrompos) mat1_genos = mat1.genos[mat1.positions.index(chrompos)] mat2_genos = mat2.genos[mat2.positions.index(chrompos)] if mat1_genos!=mat2_genos: genotype_position_discrepancies+=1 tmp = [] for i in range(mat1.num_samples): if mat1_genos[i]!=mat2_genos[i]: tmp.append((mat1.samples[i],mat1_genos[i],mat2_genos[i])) genotype_call_discrepancies+=1 geno_discrepancies[chrompos] = tmp open(report+".general.txt","w").write("Intersecrion\t%s\nmat1_uniq\t%s\nmat2_uniq\t%s\ngenotype_call_discrepancies\t%s\ngenotype_position_discrepancies\t%s\n" % (len(intersect_pos),len(mat1_uniq_pos),len(mat2_uniq_pos),genotype_call_discrepancies,genotype_position_discrepancies) ) open(report+".mat1_uniq.txt" ,"w").write("\n".join(["%s\t%s" % (x,y) for x,y in mat1_uniq_pos])) open(report+".mat2_uniq.txt" ,"w").write("\n".join(["%s\t%s" % (x,y) for x,y in mat1_uniq_pos])) O = open(report+".genotype_discrepancies.txt" ,"w") for chrompos in geno_discrepancies: for s in geno_discrepancies[chrompos]: O.write("%s\t%s\t%s\t%s\t%s\n" % (chrompos[0],chrompos[1],s[0],s[1],s[2])) O.close() return geno_discrepancies ``` #### File: pathogenseq/scripts/generate_run_file.py ```python import sys import pathogenseq.files as ps import csv import argparse def main(args): out_script = "%s.run.sh" % args.prefix O = open(out_script,"w") samples = [] for row in csv.DictReader(open(args.sample_file)): params = {} params["ref_file"] = "%s/%s" % (args.ref_dir,row["Reference"]) ps.filecheck(params["ref_file"]) params["r1"] = "%s/%s" % (args.fastq_dir,row["ReadF"]) ps.filecheck(params["r1"]) params["prefix"] = row["ID"] samples.append(row["ID"]) params["threads"] = args.threads params["mapper"] = args.mapper params["centrifuge"] = "--centrifuge %s" % args.centrifuge if args.centrifuge else "" if "Primers" in row and row["Primers"]!="NA": params["primers"] = "--primers %s/%s" % (args.primer_dir,row["Primers"]) else: params["primers"] = "" if args.platform=="illumina": params["r2"] = "%s/%s" % (args.fastq_dir,row["ReadR"]) ps.filecheck(params["r2"]) O.write("illumina_pipeline.py %(ref_file)s %(r1)s %(r2)s %(prefix)s -t %(threads)s -m %(mapper)s %(primers)s %(centrifuge)s\n" % params) else: params["window"] = "--window %s" % args.window if args.window else "" O.write("minION_pipeline.py %(ref_file)s %(r1)s %(prefix)s -t %(threads)s %(primers)s %(centrifuge)s %(window)s\n" % params) O.close() open("%s.samples.txt" % args.prefix,"w").write("\n".join(samples)) parser = argparse.ArgumentParser(description='TBProfiler pipeline',formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('sample_file', help='First read file') parser.add_argument('prefix', help='First read file') parser.add_argument('--platform','-m',choices=["illumina","minION"],default="illumina", help='First read file') parser.add_argument('--ref_dir','-r',default=".",type=str, help='First read file') parser.add_argument('--fastq_dir','-f',default=".",type=str, help='First read file') parser.add_argument('--primer_dir',"-p",default=".",type=str, help='First read file') parser.add_argument('--threads',"-t",type=int,default=1, help='First read file') parser.add_argument('--mapper',type=str,choices=["bwa","minimap2","bowtie2"],default="bwa", help='First read file') parser.add_argument('--centrifuge','-c',type=str,default=None) parser.add_argument('--window',default=None,type=int, help='First read file') parser.set_defaults(func=main) args = parser.parse_args() args.func(args) ``` #### File: pathogenseq/scripts/mapping.py ```python import pathogenseq as ps import argparse def main(args): if not args.prefix: ps.log("Please specify prefix with -p") quit(1) if not args.ref: ps.log("Please use --ref to provide a reference... Exiting",ext=T) x= ps.fastq(args.prefix,args.ref,args.r1,args.r2,threads=args.threads) x.illumina(mapper=args.mapper) parser = argparse.ArgumentParser(description='TBProfiler pipeline',formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--r1','-1', help='First read file') parser.add_argument('--r2','-2', help='Second read file') parser.add_argument('--ref','-r', help='Reference Sequence') parser.add_argument('--threads','-t', type=int, default=1, help='Number of threads') parser.add_argument('--prefix','-p', help='Prefix for files') parser.add_argument('--mapper','-m', type=str,default="bwa",choices=["bwa","minimap2","bowtie2"],help='Mapping tool to use') parser.set_defaults(func=main) args = parser.parse_args() args.func(args) ``` #### File: pathogenseq/scripts/rename_tree_leaves.py ```python import pathogenseq as ps import sys import argparse def main(args): tree = ps.tree(args.tree) tree.rename_nodes(args.index_file,args.outfile,args.strict,args.append) parser = argparse.ArgumentParser(description='TBProfiler pipeline',formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('tree',help='bcf file') parser.add_argument('index_file',help='reference file') parser.add_argument('outfile',help='reference file') parser.add_argument('--strict',action="store_true",help='reference file') parser.add_argument('--append',default="_",type=str,help='reference file') parser.set_defaults(func=main) args = parser.parse_args() args.func(args) ```
{ "source": "jodyphou/liveFast", "score": 3 }
#### File: jodyphou/liveFast/theVault.py ```python import sqlite3 import sys import os THE_PATH = "PARTS.com.swag" ROOT_SUBSTRING = 'xxxxx' CHILD_REV_SUBSTRING = 'xx' ARCHIVE_SUBSTRING = 'archive' PDF_SUBSTRING = 'pdf' DB_FILE = 'vault.db' PART_NUBMER_SKIP = ['240','540'] DIRECTORY_LIST =[] def traverse(): cParentFolder = '' parentFolder = 'Test' tableName = 'Bob' for dirItems in DIRECTORY_LIST: currentPath = THE_PATH + '\\' + dirItems print currentPath for subdir, dirs, files in os.walk(currentPath): noVaultPath = subdir[len(THE_PATH) + 1: ] firstSlashIndex = noVaultPath.find('\\') if firstSlashIndex != -1: parentFolder = noVaultPath[:firstSlashIndex] if cParentFolder.find(parentFolder) == -1: cParentFolder = parentFolder folderSplit = cParentFolder.replace('_','-').replace(' ','').replace('&','').split('-') try: folderSplit.remove('xxxxx') except ValueError: print 'Opps' folderSplit.append(folderSplit[0]) folderSplit.pop(0) tableName = ''.join(folderSplit) print tableName else: pass else: pass subdirNoArch = subdir.lower() if subdirNoArch.find(ARCHIVE_SUBSTRING) == -1: if len(files) > 0: partNumberIndex = subdir.rfind('\\') partNumber = subdir[partNumberIndex + 1:] if len(partNumber) == 9: foundRev = revMatch( partNumber, files ) insertIntoDB(tableName, partNumber, files, foundRev ) else: #underscore underScoreIndex = partNumber.find('_') spaceIndex = partNumber.find(' ') if underScoreIndex > 0: foundRev = revMatch( partNumber[:underScoreIndex], files) insertIntoDB(tableName, partNumber[:underScoreIndex], files, foundRev ) elif spaceIndex > 0: foundRev = revMatch( partNumber[:9], files ) insertIntoDB(tableName, partNumber[:9], files, foundRev ) else: foundRev = revMatch( partNumber[:12], files ) insertIntoDB(tableName, partNumber[:12], files, foundRev ) else: pass else: pass def insertIntoDB(parentPart, partNumber, fileName, rev): conn = sqlite3.connect(DB_FILE) c = conn.cursor() fileNameStr = ','.join(fileName) #print parentPart + "," + partNumber + "," + fileNameStr + "," + rev try: c.execute ( "INSERT into %s VALUES(NULL, \'%s\', \'%s\', \'%s\')" % (parentPart, partNumber, fileNameStr , rev ) ) except sqlite3.OperationalError: print 'Failed! ' + ( "INSERT into %s VALUES(NULL, \'%s\', \'%s\', \'%s\')" % (parentPart, partNumber, fileNameStr , rev ) ) conn.commit() conn.close() pass def revMatch(partNumber, fileName): lHyphenIndex = partNumber.find('-') childPN = partNumber[lHyphenIndex + 1:lHyphenIndex + 6] for items in fileName: # the file name at least contains the child partnumber if items.find(childPN) > 0: #pdf... if items.find(PDF_SUBSTRING) > 0: childPNIndex = items.find(childPN) if len(partNumber) == 9: #XYZ-XXXXX if len(items[childPNIndex + 5:-4]) > 0: parsePNSub = items[childPNIndex + 5:-4] ################################################################ #first use case the word rev... parsePNlower = parsePNSub.lower() parsePNRevIndex = parsePNlower.find('rev') if parsePNRevIndex > 0: parsePNSplitSpace = parsePNSub[parsePNRevIndex:].split(' ') if len(parsePNSplitSpace) > 1: # Rev X if len(parsePNSplitSpace[0]) == 3: #print partNumber + " " + parsePNSplitSpace[1] + " " + items return parsePNSplitSpace[1] else: #print partNumber + " " + parsePNSplitSpace[0][3:] + " " + items return parsePNSplitSpace[0][3:] else: #print partNumber + " " + parsePNSub[parsePNRevIndex:][3] + " " + items return parsePNSub[parsePNRevIndex:][3] else: #print partNumber + " " + items[childPNIndex + 5:-4] + " " + items return items[childPNIndex + 5:-4] else: #print partNumber + " None " + items return "None" else: #XYZ-XXXXX-XX parsePNSub = items[childPNIndex + 5:-4] ################################################################ #first use case the word rev... parsePNlower = parsePNSub.lower() parsePNRevIndex = parsePNlower.find('rev') if parsePNRevIndex > 0: parsePNSplitSpace = parsePNSub[parsePNRevIndex:].split(' ') if len(parsePNSplitSpace) > 1: # Rev X if len(parsePNSplitSpace[0]) == 3: #print partNumber + " " + parsePNSplitSpace[1] + " " + items return parsePNSplitSpace[1] else: #print partNumber + " " + parsePNSplitSpace[0][3:] + " " + items return parsePNSplitSpace[0][3:] else: #print partNumber + " " + parsePNSub[parsePNRevIndex:][3] + " " + items return parsePNSub[parsePNRevIndex:][3] else: ################################################################ #dash number #-XX dashString = items[childPNIndex + 5:-4] dashIndex = dashString.find(partNumber[-2:]) underscoreIndex = dashString.find('_') if dashIndex > 0 and underscoreIndex == -1: #print partNumber + " " + dashString[dashIndex + 2:] + " " + items return dashString[dashIndex + 2:] elif dashIndex == 0 and underscoreIndex == -1: #print partNumber + " " + dashString[dashIndex + 2:] + " " + items return dashString[dashIndex + 2:] elif underscoreIndex > 0: #print partNumber + " " + dashString[underscoreIndex + 1:] + " " + items return dashString[underscoreIndex + 1:] else: if len(items[childPNIndex + 5:-4]) == 1: #print partNumber + items[childPNIndex + 5:-4] + " " + items return items[childPNIndex + 5:-4] else: #print partNumber + " None " + items return "None" else: pass #print "skip! " + items return 'None' def initDB(): cParentFolder = '' parentFolder = 'Test' if( os.path.isfile(DB_FILE)): os.remove(DB_FILE) #create table conn = sqlite3.connect(DB_FILE) c = conn.cursor() skipFlag = 0 for subdir, dirs, files in os.walk(THE_PATH): noVaultPath = subdir[len(THE_PATH) + 1: ] firstSlashIndex = noVaultPath.find('\\') for pnSkip in PART_NUBMER_SKIP: if subdir.find(pnSkip) >= 0: skipFlag = 1 #print 'Skip! ' + tableName break if firstSlashIndex != -1 and skipFlag == 0: parentFolder = noVaultPath[:firstSlashIndex] if cParentFolder.find(parentFolder) == -1: cParentFolder = parentFolder folderSplit = cParentFolder.replace('_','-').replace(' ','').replace('&','').split('-') try: folderSplit.remove('xxxxx') except ValueError: print 'Opps' folderSplit.reverse() tableName = ''.join(folderSplit) sqlStatement = "CREATE TABLE %s (id integer primary key autoincrement, partNumber varchar, files varchar, revision varchar)" % tableName print tableName #print sqlStatement c.execute(sqlStatement) else: pass else: print subdir pass conn.commit() conn.close() def initDirectoryFile(): cParentFolder = '' parentFolder = 'Test' if( os.path.isfile(DB_FILE)): os.remove(DB_FILE) #create table conn = sqlite3.connect(DB_FILE) c = conn.cursor() skipFlag = 0 fileDir = open('dir.txt', 'r') for dir in fileDir: #print dir cParentFolder = dir[:-1] DIRECTORY_LIST.append(cParentFolder ) folderSplit = cParentFolder.replace('_','-').replace(' ','').replace('&','').split('-') try: folderSplit.remove('xxxxx') except ValueError: print 'Opps' #folderSplit.reverse() folderSplit.append(folderSplit[0]) folderSplit.pop(0) tableName = ''.join(folderSplit) sqlStatement = "CREATE TABLE %s (id integer primary key autoincrement, partNumber varchar, files varchar, revision varchar)" % tableName #print "CREATE TABLE %s (id integer primary key autoincrement, partNumber varchar, files varchar, revision varchar)" % tableName #print tableName c.execute(sqlStatement) conn.commit() conn.close() fileDir.close() #print DIRECTORY_LIST def createDirectoryFile(): fileDir = open('dir.txt', 'w+') os.chdir(THE_PATH) for name in os.listdir("."): if os.path.isdir(name): DIRECTORY_LIST.append(name) fileDir.write(name + '\n') os.chdir(os.getcwd()) fileDir.close() print DIRECTORY_LIST #createDirectoryFile() initDirectoryFile() print "DB Table Init!" #initDB() print "Traverse!" traverse() ```
{ "source": "jodysankey/pythonpath", "score": 2 }
#### File: pythonpath/src/git_validation.py ```python import os import subprocess from subprocess import DEVNULL def _local_head(path): """Returns a tuple containing the hash of a local repo's head and an error string, exactly one of which will be None.""" try: output = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=path) except subprocess.CalledProcessError as ex: return (None, 'Failed to get hash of local repo, return code: {}'.format(ex.returncode)) return (output.decode().strip(), None) def _remote_head(url): """Returns a tuple containing the hash of a remote repo's head and an error string, exactly one of which will be None.""" try: output = subprocess.check_output(['git', 'ls-remote', url, 'HEAD'], cwd='/') except subprocess.CalledProcessError as ex: return (None, 'Failed to get hash of remote url, return code: {}'.format(ex.returncode)) return (output.decode().split()[0], None) def _has_untracked_files(path): """Returns True iff the git repository at path contains untracked files.""" try: output = subprocess.check_output(['git', 'ls-files', '--exclude-standard', '--others'], cwd=path) except subprocess.CalledProcessError: return True return len(output.decode().strip()) > 0 def _has_dirty_files(path): """Returns True iff the git repository at path contains dirty files.""" return subprocess.call(['git', 'diff-files', '--quiet'], cwd=path, stdout=DEVNULL, stderr=DEVNULL) != 0 def _has_staged_files(path): """Returns True iff the git repository at path contains staged files.""" return subprocess.call(['git', 'diff-index', '--quiet', '--cached', 'HEAD'], cwd=path, stdout=DEVNULL, stderr=DEVNULL) != 0 def check_repo(local_path, remote_url): """Determines if local_path is a valid git repo in sync with remote_url. Returns a dict containing the following values: * is_valid - True iff local_path is a git repository * is_synchronized - True iff local_path has no modified files or staged changes and the HEAD hash matches that of remote_url. * problem - If is_valid or is_synchronized is false, a string explaining why. * local_hash - The HEAD of local_path, if known. * remote_hash - The HEAD of remote_url, if known.""" # Start with an easy to return failure state. ret = { 'is_valid': False, 'is_synchronized': False, 'problem': None, 'local_hash': None, 'remote_hash': None, } # Check the local_path is a valid git repo and store its HEAD. if not os.path.isdir(local_path): ret['problem'] = '{} is not a valid directory'.format(local_path) return ret (ret['local_hash'], ret['problem']) = _local_head(local_path) if ret['local_hash'] is None: return ret ret['is_valid'] = True # Get the HEAD of the remote. (ret['remote_hash'], ret['problem']) = _remote_head(remote_url) if ret['remote_hash'] is None: return ret # Search for various forms of dirtyness on the local repo. if _has_untracked_files(local_path): ret['problem'] = 'Repository contains untracked files.' elif _has_dirty_files(local_path): ret['problem'] = 'Repository contains modified files.' elif _has_staged_files(local_path): ret['problem'] = 'Repository contains staged files.' elif ret['local_hash'] != ret['remote_hash']: ret['problem'] = 'Repository HEAD does not match remote url.' else: ret['is_synchronized'] = True return ret ``` #### File: src/sitemgt/actors.py ```python import socket import subprocess import datetime import tagwriter import xml.etree.ElementTree import os from xml.sax.saxutils import escape from .paths import getDeploymentFile, getStatusReportFile from .functionality import ActorRequirement from .general import SiteObject, Health, FAIL, DEGD, FAULT, UNKNOWN, OFF, GOOD from .deployment import Deployment from .statusreport import HostStatusReport _MAX_STATUS_REPORTS = 100 def _aptitudeSearchList(search): """Returns a list of package name,description tuples for the specified aptitude search""" args = ['aptitude', '--disable-columns', '--display-format', '%p %d', 'search', search] # Allow a none zero return code if nothing matches the search raw = subprocess.run(args, stdout=subprocess.PIPE).stdout.decode('utf-8')[:-1] # Define a table to strip characters that potentially cause a problem in XML strings drop_table = dict.fromkeys(map(ord, '"<>\\'), None) if len(raw) > 0: sanitized_lines = [line.translate(drop_table) for line in raw.split('\n')] return [line.split(maxsplit=1) for line in sanitized_lines] else: return [] class Actor(SiteObject): """A high level site capability""" _expand_dicts = [['members', 'groups', 'responsibility_dict', 'requirement_dict', 'expected_deployments']] _expand_objects = [] def __init__(self, x_definition, x_functionality, is_group, typename): """Initialize the object""" # Set basic attributes SiteObject.__init__(self, x_definition, typename) # Mark dictionaries with blanks until link attaches them self.responsibilities = {} if is_group: self.members = {} for x_m in x_definition.findall('Member'): self.members[x_m.get('name')] = None else: self.groups = {} self.requirements = {} if x_functionality is not None: for x_req in x_functionality.findall('*'): req = ActorRequirement(x_req, self) self.requirements[req.uid] = req def _classLink(self, siteDescription): """Initialize references to other actor objects""" # Define actor group membership if hasattr(self, 'members'): for member_name in sorted(self.members.keys()): member = siteDescription.actors[member_name] self.members[member_name] = member member.groups[self.name] = self def _crossLink(self, site_description): """Initialize references to other non-actor objects""" # Ask requirements to link their components, and deploy these requirements for req in self.requirements.values(): req._crossLink(site_description) self._deployRequirement(req) def isHostSet(self): """Returns true if this actor is a host or host group""" return isinstance(self, Host) or isinstance(self, HostGroup) def isGroup(self): """Returns true if this actor is a group or users or hosts""" return hasattr(self,'members') def _deployRequirement(self, requirement): """Document the deployment of all components needed by a requirement""" # More specific types of actor can override this with their own values pass def _setHealthAndStatus(self): """Unless overridden the actor health is unmonitored""" self._health = OFF class Host(Actor): """A computer within the site""" def __init__(self, x_definition, x_functionality): """Initialize the object""" Actor.__init__(self, x_definition, x_functionality, False, 'host') self.expected_deployments = {} def _deployRequiredComponent(self, component, requirement, primary): """Document the need for a component due to a requirement""" if component.name in self.expected_deployments.keys(): # If this deployment is already linked to the host, just add the requirement self.expected_deployments[component.name]._addRequirement(requirement, primary) else: # Must create a new deployment depl = Deployment(self, component) depl._addRequirement(requirement, primary) # Now mark this same requirement as secondary for any components necessary to support this component for dep_component in component.dependencies.values(): self._deployRequiredComponent(dep_component, requirement, False) def _deployRequirement(self, requirement): """Document the deployment of all components needed by a requirement""" for component in requirement.primary_components.values(): # Any component directly related to a requirement is primary self._deployRequiredComponent(component, requirement, True) def _deployComponent(self, component, location): """Document the deployment of a component to a location""" if component.name in self.expected_deployments.keys(): # If this deployment is already linked to the host, just set the location self.expected_deployments[component.name].location = location else: # Must create a new deployment (it will link itself to us) Deployment(self, component, location) def gatherDeploymentStatus(self, cm_working_root): """Determine the current state of all deployments on this host""" # This function only works if we *ARE* the host if self.name.lower() != socket.gethostname().lower(): raise Exception("Can only gather deployments for current host ({}), not {}".format(socket.gethostname(), self.name)) self.resetDeploymentStatus(); # Build a list unexpected packages (i.e. installed, orphan, but not expected) expected_packages = [] for package_set in [depl.component.package for depl in self.expected_deployments.values() if hasattr(depl.component,'package')]: expected_packages.extend(package_set) raw_orphaned = subprocess.check_output(['debfoster','-ns']).decode('utf-8') orphaned_packages = raw_orphaned[raw_orphaned.find('\n')+1:].split() orphaned_packages = [p for p in orphaned_packages if not p.startswith('linux-headers-') and not p.startswith('linux-image-')] installed_packages = _aptitudeSearchList('~i') self.unexpected_packages = [] for tupl in installed_packages: if tupl[0] in orphaned_packages and tupl[0] not in expected_packages: self.unexpected_packages.append(tupl) self.upgradable_packages = _aptitudeSearchList('~U') #Ask each expected deployment to deal with itself, providing the installed_set for speed for depl in self.expected_deployments.values(): depl.gatherStatus(installed_packages, cm_working_root) self.status_date = datetime.datetime.today() def getStatusReportList(self): """Returns a list of the top X status reports from the standard file, if this exists""" status_filename = getStatusReportFile(self.name) if os.path.exists(status_filename): return HostStatusReport.createListFromXmlFile(status_filename, _MAX_STATUS_REPORTS) else: return [] def resetDeploymentStatus(self): """Clears all existing component deployment information""" self.resetHealth() self._status = None if hasattr(self,'status_date'): delattr(self,'status_date') if hasattr(self,'upgradable_packages'): delattr(self,'upgradable_packages') if hasattr(self,'unexpected_packages'): delattr(self,'unexpected_packages') for depl in self.expected_deployments.values(): depl.resetStatus() def deploymentFileExists(self): """Returns true if the standard XML deployment file for the host exists""" return os.path.exists(getDeploymentFile(self.name)) def saveDeploymentStatusToXmlFile(self): """Dumps the current component deployment status using an XML tag writer object on the standard file""" tag_writer = tagwriter.TagWriter(getDeploymentFile(self.name)) tag_writer.open('DeploymentStatus') tag_writer.open('Host','name="{}" date="{}"'.format(self.name, self.status_date.strftime("%Y-%m-%d %H:%M"))) for depl in self.expected_deployments.values(): depl.saveStatus(tag_writer) for pkg in self.upgradable_packages: tag_writer.write('Upgradable','name="{}" description="{}"'.format(pkg[0], escape(pkg[1]))) for pkg in self.unexpected_packages: tag_writer.write('Unexpected','name="{}" description="{}"'.format(pkg[0], escape(pkg[1]))) tag_writer.close(2) def loadDeploymentStatusFromXmlFile(self): """Load the component deployment status from the standard file, using an XML ElementTree""" self.resetDeploymentStatus() # Find root element and check it is for the correct host. Throw but don't crash if the XML # is malformed because we've had errors from some of the many hosts in the past. status_file = getDeploymentFile(self.name) try: book = xml.etree.ElementTree.parse(status_file).getroot() x_host = book.find('Host') if x_host.get('name') == self.name: self.status_date = datetime.datetime.strptime(x_host.get('date'), "%Y-%m-%d %H:%M") for x_d in x_host.findall('Deployment'): if x_d.get('name') in self.expected_deployments.keys(): self.expected_deployments[x_d.get('name')].loadStatus(x_d) self.upgradable_packages = [(p.get('name'),p.get('description')) for p in x_host.findall('Upgradable')] self.unexpected_packages = [(p.get('name'),p.get('description')) for p in x_host.findall('Unexpected')] except xml.etree.ElementTree.ParseError as e: print("Error parsing status file {}: {}".format(status_file, e)) def _setHealthAndStatus(self): """Determines health of the host, based on state of its software deployments. Note this function sets status""" # Typically our state is based only on the deployments if len(self.expected_deployments) == 0: self._health = GOOD self._status = "No deployments" else: self._health = Health.amortized([d.health for d in self.expected_deployments.values()]) if self._health is UNKNOWN: self._status = "Unknown deployment state" elif self._health is OFF: #Dont see how this could happen self._status = "Unmonitored deployments" elif self._health in [FAIL, DEGD, FAULT]: self._status = "Deployment problem" else: self._status = "Good" # But if they look ok, check our off nominal packages if self._health is GOOD: if hasattr(self,'upgradable_packages') and len(self.upgradable_packages)>0: self._health = FAULT self._status = "PackagesNeedUpgrade" elif hasattr(self,'unexpected_packages') and len(self.unexpected_packages)>0: self._health = GOOD self._status = "UnexpectedPackages" class HostGroup(Actor): """A collections of computers within the site""" def __init__(self, x_definition, x_functionality): """Initialize the object""" Actor.__init__(self, x_definition, x_functionality, True, 'hostgroup') def _deployRequirement(self, requirement): """Document the deployment of all components needed by a requirement to our members""" for member in self.members.values(): member._deployRequirement(requirement) def _deployComponent(self, component, location): """Document the deployment of a component to a location to our members""" for member in self.members.values(): member._deployComponent(component, location) class User(Actor): """A user of the site""" def __init__(self, x_definition, x_functionality): """Initialize the object""" Actor.__init__(self, x_definition, x_functionality, False, 'user') class UserGroup(Actor): """A collection of users of the site""" def __init__(self, x_definition, x_functionality): """Initialize the object""" Actor.__init__(self, x_definition, x_functionality, True, 'usergroup') ``` #### File: src/sitemgt/paths.py ```python import os import subprocess from subprocess import DEVNULL SITE_BASE_DIR = os.environ["SITEPATH"] SITE_XML_FILE = os.path.join(SITE_BASE_DIR, "repo/site/xml/SiteDescription.xml") CHECK_RESULTS_DIR = os.path.join(SITE_BASE_DIR, "checks") CHECK_SRC_DIR = os.path.join(SITE_BASE_DIR, "repo/site/checks") CM_WORKING_DIR = os.path.join(SITE_BASE_DIR, "repo") CM_UPSTREAM_DIR = os.path.join(SITE_BASE_DIR, "repo.git") def getDeploymentFile(host_name): """Return the qualified path name of the deployment record for the specified host""" return os.path.join(SITE_BASE_DIR, "status/{}_deployment.xml".format(host_name)) def getStatusReportFile(host_name): """Return the qualified path name of the deployment record for the specified host""" return os.path.join(SITE_BASE_DIR, "status/{}_status_report.xml".format(host_name)) # Note these two functions are pretty fragile. Cannot afford to have multiple scripts that # using them in parallel, errors will be thrown up to the caller, and we rely on the environment # variable being mounted directly. All that said the effect of failure is pretty benign. class MountedSiteDirectories(object): """Simple context manager class to mount any unmounted filesystem mounts referencing the site path, then unmount the same set at completion.""" @staticmethod def _defined_mounts(): """Returns all the site mountpoints defined in fstab.""" lines = subprocess.check_output(['findmnt', '--fstab', '--noheadings', '--list', '--output', 'TARGET']).decode('utf-8').split() return set([line for line in lines if line.startswith(SITE_BASE_DIR)]) @staticmethod def _mounted_mounts(): """Returns all the site mountpoints currently mounted.""" lines = subprocess.check_output(['findmnt', '--kernel', '--noheadings', '--list', '--output', 'TARGET']).decode('utf-8').split() return set([line for line in lines if line.startswith(SITE_BASE_DIR)]) def __init__(self): self.mounted = set() def __enter__(self): for mount in set.difference(self._defined_mounts(), self._mounted_mounts()): if subprocess.call(['mount', mount], stdout=DEVNULL, stderr=DEVNULL) == 0: self.mounted.add(mount) else: raise Exception('Failed to mount site at {}'.format(mount)) def __exit__(self, type, value, traceback): to_unmount = list(self.mounted) for mount in to_unmount: if subprocess.call(['umount', mount], stdout=DEVNULL, stderr=DEVNULL) == 0: self.mounted.remove(mount) ``` #### File: pythonpath/tests/test_classifydir.py ```python import os import tempfile import unittest import classifydir class DateBatchTestCase(unittest.TestCase): def _rel_path(self, subdir_string): """Returns a path inside the test directory where each character in subdir_string defines a single letter subdirectory, e.g. _self_path(abc) = /tmp/UNIQUE_NAME/a/b/c.""" path = self.test_dir.name for char in subdir_string: path = os.path.join(path, char) return path def _create_directories(self, subdir_strings): """Create all the directories supplied in one character per path segment form.""" for path in [self._rel_path(s) for s in subdir_strings]: os.mkdir(path) def _create_classify(self, subdir_string, volume, protection, recurse='true', compress='false', name=None): """Create a standard .classify file in the requested location.""" lines = ['{}={}'.format(*tup) for tup in zip( ('volume', 'protection', 'recurse', 'compress'), (volume, protection, recurse, compress))] if name: lines.append('name={}'.format(name)) self._create_raw_classify(subdir_string, lines) def _create_raw_classify(self, subdir_string, lines): """Create a .classify file containing the suppled lines in the requested location.""" path = self._rel_path(subdir_string) with open(os.path.join(path, classifydir.MAGIC_FILE), 'w') as f: f.writelines(['{}\n'.format(l) for l in lines]) def _create_files(self, subdir_string, sizes): """Create a set of text files of the requested sizes in the requested location. Files will be named with a sequential number starting at 1.""" path = self._rel_path(subdir_string) for number, size in enumerate(sizes, start=1): with open(os.path.join(path, str(number)), 'w') as f: f.write("x" * size) def setUp(self): self.test_dir = tempfile.TemporaryDirectory(prefix='classifydir_test_') self.test_subdir = os.path.split(self.test_dir.name)[1] def tearDown(self): self.test_dir.cleanup() def test_single_recursive_tree(self): self._create_directories(('a', 'ab', 'abc', 'd')) self._create_classify('', 'huge', 'secret', recurse='true', name='root') self._create_files('ab', (100, 200, 300)) self._create_files('abc', (1000,)) self._create_files('d', (20000,)) cd = classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) # Test directory is the only root. self.assertTrue(cd.is_archive_root()) self.assertEqual([d.name for d in cd.descendants()], ['root', 'a', 'b', 'c', 'd']) self.assertEqual([d.name for d in cd.descendant_members()], ['root', 'a', 'b', 'c', 'd']) self.assertEqual([d.name for d in cd.descendant_roots()], ['root']) self.assertEqual([d.name for d in cd.descendant_attenuations()], []) # With lots of properties. self.assertEqual(cd.total_size(), 21668) # includes the classify file. self.assertEqual(cd.total_file_count(), 6) # includes the classify file. self.assertEqual(cd.volume, 'huge') self.assertEqual(cd.protection, 'secret') self.assertEqual(cd.archive_size(), 21668) self.assertEqual(cd.archive_file_count(), 6) self.assertEqual(list(cd.archive_filenames()), [ os.path.join(self.test_dir.name, '.classify'), os.path.join(self.test_dir.name, 'a', 'b', '1'), os.path.join(self.test_dir.name, 'a', 'b', '2'), os.path.join(self.test_dir.name, 'a', 'b', '3'), os.path.join(self.test_dir.name, 'a', 'b', 'c', '1'), os.path.join(self.test_dir.name, 'd', '1')]) # Adding a file should change the hash and date with open(os.path.join(self._rel_path('d'), 'new'), 'w') as f: f.write("y" * 80) updated_cd = classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) self.assertEqual(updated_cd.archive_file_count(), 7) self.assertNotEqual(cd.archive_hash(), updated_cd.archive_hash()) def test_single_tree_without_fetching(self): self._create_directories(('a', 'd')) self._create_classify('', 'large', 'secret', recurse='true', name='root') self._create_files('a', (100, 200, 300)) self._create_files('d', (20000,)) cd = classifydir.ClassifiedDir(self.test_dir.name, fetch_info=False) # If we don't fetch into many properties should be None, but the filenames still work. self.assertEqual([d.name for d in cd.descendants()], ['root', 'a', 'd']) self.assertEqual([d.name for d in cd.descendant_members()], ['root', 'a', 'd']) self.assertEqual([d.name for d in cd.descendant_roots()], ['root']) self.assertIsNone(cd.total_size()) self.assertIsNone(cd.total_file_count()) self.assertEqual(cd.volume, 'large') self.assertEqual(cd.protection, 'secret') self.assertIsNone(cd.archive_size()) self.assertIsNone(cd.archive_file_count()) self.assertIsNone(cd.archive_hash()) self.assertEqual(list(cd.archive_filenames()), [ os.path.join(self.test_dir.name, '.classify'), os.path.join(self.test_dir.name, 'a', '1'), os.path.join(self.test_dir.name, 'a', '2'), os.path.join(self.test_dir.name, 'a', '3'), os.path.join(self.test_dir.name, 'd', '1')]) def test_sibling_archives(self): self._create_directories(('a', 'b', 'c', 'cd')) self._create_classify('a', 'small', 'restricted', recurse='true') self._create_classify('b', 'medium', 'confidential', recurse='true') self._create_classify('c', 'large', 'none', recurse='true') self._create_files('a', (100, 200)) self._create_files('b', (2000,)) self._create_files('c', (30000,)) cd = classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) # Test directory is not itself a root. self.assertFalse(cd.is_archive_root()) self.assertEqual([d.name for d in cd.descendants()], [self.test_subdir, 'a', 'b', 'c', 'd']) self.assertEqual(cd.total_size(), 32486) # includes the classify files. self.assertEqual(cd.total_file_count(), 7) # includes the classify files. # But should contain three roots. roots = list(cd.descendant_roots()) self.assertEqual([d.name for d in roots], ['a', 'b', 'c']) for root in roots: self.assertTrue(root.is_archive_root()) # With lots of properties. self.assertEqual(roots[0].archive_size(), 363) self.assertEqual(roots[0].total_file_count(), 3) self.assertEqual(roots[0].volume, 'small') self.assertEqual(roots[0].protection, 'restricted') self.assertEqual([d.name for d in roots[0].descendants()], ['a']) self.assertEqual(roots[1].archive_size(), 2066) self.assertEqual(roots[1].total_file_count(), 2) self.assertEqual(roots[1].volume, 'medium') self.assertEqual(roots[1].protection, 'confidential') self.assertEqual([d.name for d in roots[1].descendants()], ['b']) self.assertEqual(roots[2].archive_size(), 30057) self.assertEqual(roots[2].total_file_count(), 2) self.assertEqual(roots[2].volume, 'large') self.assertEqual(roots[2].protection, 'none') self.assertEqual([d.name for d in roots[2].descendants()], ['c', 'd']) def test_archives_inside_non_recursive(self): self._create_directories(('a', 'ab', 'c')) self._create_classify('', 'small', 'restricted', recurse='false', name='root') self._create_classify('a', 'small', 'confidential', recurse='true') self._create_classify('c', 'none', 'none', recurse='true') self._create_files('', (100, 200)) self._create_files('ab', (1000,)) self._create_files('c', (20000,)) cd = classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) # Test directory should have one child root (volume=none gets ignored) but since its not # recursive these should not be considered members. self.assertTrue(cd.is_archive_root()) self.assertEqual([d.name for d in cd.descendants()], ['root', 'a', 'b', 'c']) self.assertEqual([d.name for d in cd.descendant_members()], ['root']) self.assertEqual([d.name for d in cd.descendant_roots()], ['root', 'a']) # Root totals include all files but the archive shouldn't include files in subdirectories. self.assertEqual(cd.total_size(), 21495) self.assertEqual(cd.total_file_count(), 7) self.assertEqual(cd.archive_size(), 374) self.assertEqual(cd.archive_file_count(), 3) self.assertEqual(list(cd.archive_filenames()), [ os.path.join(self.test_dir.name, '.classify'), os.path.join(self.test_dir.name, '1'), os.path.join(self.test_dir.name, '2')]) # The lower level archive should include its own files. child = list(cd.descendant_roots())[1] self.assertTrue(child.is_archive_root()) self.assertEqual(child.total_size(), 1065) self.assertEqual(child.total_file_count(), 2) self.assertEqual(child.archive_size(), 1065) self.assertEqual(child.archive_file_count(), 2) self.assertEqual(list(child.archive_filenames()), [ os.path.join(self.test_dir.name, 'a', '.classify'), os.path.join(self.test_dir.name, 'a', 'b', '1')]) def test_missing_classify_in_non_recursive(self): self._create_directories(('a', 'b')) self._create_classify('', 'small', 'restricted', recurse='false', name='root') self._create_classify('a', 'small', 'confidential', recurse='true') # Note: no classify in b, this is an error! with self.assertRaises(Exception): classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) def test_override_archives_inside_recursive_archive(self): self._create_directories(('a', 'ab', 'c', 'cd', 'e')) self._create_classify('', 'small', 'restricted', recurse='true', name='root') # Note this overrides a directory inside the recursive parent. self._create_classify('a', 'small', 'confidential', recurse='true') # Note this ceases archiving inside the recursive parent. self._create_classify('c', 'none', 'none', recurse='true') # Note this tries to restart archiving in a subdirectory with a different name. self._create_classify('cd', 'medium', 'restricted', recurse='true') self._create_files('', (100, 200)) self._create_files('a', (10000,)) self._create_files('ab', (20000,)) self._create_files('c', (1000,)) self._create_files('cd', (2000,)) self._create_files('e', (5000,)) cd = classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) self.assertTrue(cd.is_archive_root()) self.assertEqual([d.name for d in cd.descendants()], ['root', 'a', 'b', 'c', 'd', 'e']) # Members should not include the overridden directory or the attenuated directory. self.assertEqual([d.name for d in cd.descendant_members()], ['root', 'e']) self.assertEqual([d.name for d in cd.descendant_roots()], ['root', 'a', 'd']) self.assertEqual([d.name for d in cd.descendant_attenuations()], ['c']) # Root totals include all files but the archive shouldn't include files in the overridden # directory. self.assertEqual(cd.total_size(), 38558) self.assertEqual(cd.total_file_count(), 11) self.assertEqual(cd.archive_size(), 5373) self.assertEqual(cd.archive_file_count(), 4) self.assertEqual(list(cd.archive_filenames()), [ os.path.join(self.test_dir.name, '.classify'), os.path.join(self.test_dir.name, '1'), os.path.join(self.test_dir.name, '2'), os.path.join(self.test_dir.name, 'e', '1')]) # The lower level archives should include thier own files. child = list(cd.descendant_roots())[1] self.assertTrue(child.is_archive_root()) self.assertEqual(child.total_size(), 30065) self.assertEqual(child.total_file_count(), 3) self.assertEqual(child.archive_size(), 30065) self.assertEqual(child.archive_file_count(), 3) self.assertEqual(list(child.archive_filenames()), [ os.path.join(self.test_dir.name, 'a', '.classify'), os.path.join(self.test_dir.name, 'a', '1'), os.path.join(self.test_dir.name, 'a', 'b', '1')]) # The lower level archives should include thier own files. child = list(cd.descendant_roots())[2] self.assertTrue(child.is_archive_root()) self.assertEqual(child.archive_size(), 2064) self.assertEqual(child.archive_file_count(), 2) self.assertEqual(list(child.archive_filenames()), [ os.path.join(self.test_dir.name, 'c', 'd', '.classify'), os.path.join(self.test_dir.name, 'c', 'd', '1')]) def test_parse_with_comments(self): self._create_raw_classify('', [ '# Test file with some comments', ' # Some not at the start', 'volume=small', 'protection=none # Comments allowed after text', 'recurse=true', 'compress=true']) classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) def test_parse_fails_missing_parameter(self): self._create_raw_classify('', [ 'volume=small', 'recurse=true', 'compress=true']) with self.assertRaises(Exception): classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) def test_parse_fails_duplicate_parameter(self): self._create_raw_classify('', [ 'volume=small', 'protection=restricted', 'protection=restricted', 'recurse=true', 'compress=true']) with self.assertRaises(Exception): classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) def test_parse_fails_unknown_parameter(self): self._create_raw_classify('', [ 'volume=small', 'protection=restricted', 'mystery=what_am_i', 'recurse=true', 'compress=true']) with self.assertRaises(Exception): classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) def test_parse_fails_invalid_value(self): self._create_raw_classify('', [ 'volume=small', 'protection=super_dooper_spicy_secret', 'recurse=true', 'compress=true']) with self.assertRaises(Exception): classifydir.ClassifiedDir(self.test_dir.name, fetch_info=True) def test_parse_fails_malformed_line(self): self._create_raw_classify('', [ 'volume=' 'protection=none' 'recurse=true' 'compress=true']) with self.assertRaises(Exception): classifydir.ClassifiedDir(self.test_dir.name, fetch_info=False) if __name__ == "__main__": unittest.main() ``` #### File: pythonpath/tests/test_sitedescription.py ```python import sitemgt import os import shutil import unittest import platform # NOT WORKING YET !!!!! # NOT WORKING YET !!!!! # Need to actually define the expected output and check input thoroughly checks each condition # also possible that dictionary ordering wont be stable if platform.system()=='Windows': #test_path = os.getenv("TMP") + "/SiteDescriptionTest" # TMP set to some hideous directory test_path = r"C:\Temp\SiteDescriptionTest" else: test_path = "/tmp/SiteDescriptionTest" XML_NAME = "TestCase.xml" sd_filename = os.path.join(test_path,XML_NAME) SITE_DESCRIPTION_XML = """<?xml version="1.0" encoding="UTF-8"?> <SiteDescription xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <!--Start of Hosts and Users section--> <!--Start of Hosts and Users section--> <!--Start of Hosts and Users section--> <Actors> <Host name="server1" purpose="Server" os="Debian"/> <Host name="client1" purpose="First client" os="Ubuntu"/> <Host name="client2" purpose="Second client" os="Ubuntu"/> <Host name="client3" purpose="Third client" os="WindowsXP"/> <HostGroup name="ubuntu" description="All Ubuntu clients"> <Member name="client1"/> <Member name="client2"/> </HostGroup> <User name="user1" type="Human" email="<EMAIL>"/> <User name="user2" type="Human" email="<EMAIL>"/> <User name="guest" type="Human"/> <User name="root" type="Role" email="<EMAIL>"/> <User name="sysUser1" type="System"/> <UserGroup name="humans" description="All humans"> <Member name="user1"/> <Member name="user2"/> <Member name="guest"/> </UserGroup> </Actors> <!--Start of Capability and Requirements section--> <!--Start of Capability and Requirements section--> <!--Start of Capability and Requirements section--> <Functionality> <Capability name="Webcam" description="Capture, post, and store pictures from the webcam"> <SystemRequirement uid="S001" text="% shall post a webcam image every 2 minutes" importance="3"> <Requirement uid="H001"/> <Requirement uid="H002"/> </SystemRequirement> <SystemRequirement uid="S002" text="% shall store webcam image every 2 minutes for 3 days, and then every hour thereafter" importance="3"> <Requirement uid="H001"/> <Requirement uid="H003"/> </SystemRequirement> <HostResponsibility host_set="server1" description="server1 is responsible for all webcam duties"/> </Capability> <Capability name="Time Sync" description="Synchronize all hosts to current time"> <SystemRequirement uid="S003" text="% shall provide a local time sync service, synchronized to an atomic clock" importance="4"> <Requirement uid="H004"/> </SystemRequirement> <SystemRequirement uid="S004" text="All hosts should synchronize time using the local service" importance="3"> <Requirement uid="H005"/> <Requirement uid="H006"/> <Requirement uid="U001"/> </SystemRequirement> <HostResponsibility host_set="server1" description="server1 provides the time sync server"/> <HostResponsibility host_set="ubuntu" description="hosts in ubuntu must synchronize to the local server"/> <HostResponsibility host_set="client3" description="client3 must synchronize to the local server"/> <UserResponsibility user_set="root" description="root must verfify time sync is working"/> </Capability> <HostSet name="server1"> <HostRequirement uid="H001" text="% shall provide a webcam image capture service"> <Component name="webcam-app"/> <Component name="webcam-init"/> <Component name="reset-webcam"/> </HostRequirement> <HostRequirement uid="H002" text="% shall post a webcam image to www.jsankey.com every 2 minutes"> <Component name="webcam-netrc"/> <Component name="webcam-rc"/> </HostRequirement> <HostRequirement uid="H003" text="% shall store webcam image every 2 minutes for 3 days, and then every hour thereafter" notes="The webcam package is configured to store images all images in /home/open/webcam/live, and then archive-webcam is used to preserve the first image each hour after a certain age in /home/open/webcam/archive, and delete all others"> <Component name="webcam-rc"/> <Component name="archive-webcam"/> </HostRequirement> <HostRequirement uid="H004" text="% shall provide a local time sync service, synchronized to an atomic clock"> <Component name="ntp"/> <Component name="server-ntp.conf"/> </HostRequirement> </HostSet> <HostSet name="ubuntu"> <HostRequirement uid="H005" text="All hosts in % shall synchronize time to the local sync service"> <Component name="client-ntpdate"/> </HostRequirement> </HostSet> <HostSet name="client3"> <HostRequirement uid="H006" text="% shall synchronize time to the local sync service"> <Component name="windows-time-sync"/> </HostRequirement> </HostSet> <UserSet name="root"> <UserRequirement uid="U001" text="% shall verify correct time sync operation"/> </UserSet> </Functionality> <!--Start of Software components section--> <!--Start of Software components section--> <!--Start of Software components section--> <Software> <ScriptingLanguages> <Language name="python3"> <Application name="python3"/> </Language> <Language name="bash"> <Application name="bash"/> </Language> </ScriptingLanguages> <Components default_cm_repository="oberon/site"> <RepoApplication name="nfs-kernel-server"/> <RepoApplication name="python3"/> <RepoApplication name="bash"/> <!--Webcam--> <RepoApplication name="webcam-app" package="webcam"/> <ConfigurationFile name="fs-nfs-exports" cm_location="oberon/etc" cm_filename="exports" notes="NFS shares configuration"> <Deployment host_set="server1" directory="/etc"/> </ConfigurationFile> <ConfigurationFile name="webcam-rc" cm_location="oberon/webcam" cm_filename="webcamrc" notes="Configures intervals and storage location for webcam"> <Deployment host_set="server1" directory="/etc/webcam" filename=".webcamrc"/> </ConfigurationFile> <ConfigurationFile name="webcam-netrc" cm_location="oberon/webcam" cm_filename="netrc" notes="Configures FTP storage location for webcam"> <Deployment host_set="server1" directory="/etc/webcam" filename=".netrc"/> </ConfigurationFile> <Script name="webcam-init" cm_location="oberon/init" cm_filename="webcamd" language="bash" status="working"> <Deployment host_set="server1" directory="/etc/init.d"/> </Script> <Script name="reset-webcam" cm_location="oberon/cron" language="bash" status="working" notes="Restarts webcam service to avoid crash after too many image captures"> <Deployment host_set="server1" directory="/etc/cron.daily" filename="srv-01-reset-webcam"/> </Script> <Script name="archive-webcam" cm_location="oberon/cron" language="python3" status="working" notes="For images older than an age, moves the first for each hour and deletes the rest"> <Deployment host_set="server1" directory="/etc/cron.daily" filename="srv-01-reset-webcam"/> </Script> <!--Time Sync--> <RepoApplication name="ntp"/> <ConfigurationFile name="server-ntp.conf" cm_location="oberon/etc" notes="NTP time server configuration" cm_filename="ntp.conf"> <Deployment host_set="server1" directory="/etc"/> </ConfigurationFile> <ConfigurationFile name="client-ntpdate" cm_location="kubuntu/etc" cm_filename="ntpdate" notes="Ubuntu NTP time client FTP configuration"> <Deployment host_set="ubuntu" directory="/etc/default"/> </ConfigurationFile> <NonRepoApplication name="windows-time-sync" installationType="exe" installLocation="C:\Program Files\TimeSync" vendor="fictional"/> </Components> </Software> </SiteDescription> """ class SiteDescriptionTestCase(unittest.TestCase): def setUp(self): #Make sure test directory is fresh if os.path.isdir(test_path): shutil.rmtree(test_path) os.mkdir(test_path) #Create our standard input XML in the test directory f = open(sd_filename,'w') f.write(SITE_DESCRIPTION_XML) f.close() def testConstruction (self): """Just verify the string representation for the entire site matches the expectation""" sd = sitemgt.SiteDescription(sd_filename) result_string = str(sd) f_actual = open(os.path.join(test_path,"actual.txt"),'w') f_actual.write(result_string) f_actual.close() #self.failUnlessEqual(result,target,"Structure 1 - Did not return correct list") if __name__ == "__main__": # This way of running allows quick focus on a particular test by entering the number, or all # tests by just entering "test" ldr = unittest.TestLoader() #ldr.testMethodPrefix = "testStructureOne" ldr.testMethodPrefix = "test" suite = ldr.loadTestsFromTestCase(SiteDescriptionTestCase) unittest.TextTestRunner(verbosity=2).run(suite) ```
{ "source": "jodysankey/scripts", "score": 2 }
#### File: jodysankey/scripts/build_archives.py ```python from os import path import argparse import datetime import grp import os import pwd import subprocess import sys import tarfile import classifydir # Set VERBOSE to see added freshened archives and skipped files in stdout VERBOSE = False def freshen_archive_sets(search_paths, output_path, sizes, key_file): """Updates all tar files for archives of the specified sizes located on any of the supplied search paths. tars are created or freshened in size based directories in the output_path, and any unrecognized files in output_path will be deleted on completion. Where encryption is required, the contents of key_file will be used as the key.""" if not path.exists(output_path): _write_error('Archive output directory does not exist: ' + output_path) return if not path.exists(key_file): _write_error('Key file does not exist: ' + key_file) return cds = [classifydir.ClassifiedDir(s, True) for s in search_paths if path.exists(s)] for size in sizes: size_output_path = path.join(output_path, size) if not path.exists(size_output_path): _write_status('Creating archive size output directory: ' + size_output_path) os.makedirs(size_output_path) freshen_archives([a for cd in cds for a in cd.descendantRoots() if a.volume == size], size_output_path, key_file) def freshen_archives(archives, output_path, key_file): """Updates all tar files for a collection of archives in the same output directory. tars are created or freshened in output_path, and any unrecognized files in output_path will be deleted on completion. Where encryption is required, the contents of key_file will be used as the key.""" created_archive_names = set() existing_tars = set(os.listdir(output_path)) for archive in archives: # Handle and report the case where two archives were given the same name. if archive.name in created_archive_names: _write_error('Additional archive with same name ({}) in dir {}, skipping'.format( archive.name, output_path)) continue created_archive_names.add(archive.name) # Create or update the archive timestamp tar_name = _archive_tar_filname(archive) if tar_name in existing_tars: freshen_timestamp(path.join(output_path, tar_name), 'existing tar') existing_tars.remove(tar_name) create_tar(archive, output_path) if _should_encrypt_archive(archive): encrypt_tar(archive, output_path, key_file) # Anything else remaining in the archive directory is no longer needed for tar_name in existing_tars: remove_file(path.join(output_path, tar_name), 'unwanted existing tar') def create_tar(archive, output_path): """Creates an optionally compressed tarfile in the specified directory containing the contents of an classified directory object at an archive root.""" unencrypted_path = path.join(output_path, _archive_tar_filname(archive, before_encryption=True)) _write_status('Creating new tar: ' + unencrypted_path) tar_file = tarfile.open(unencrypted_path, 'w:gz' if archive.compress else 'w') for f in archive.archiveFilenames(): try: tar_file.add(f, path.relpath(f, archive.full_path), recursive=False) except IOError: if VERBOSE: _write_status('Skipping unreadable file {}'.format(f)) tar_file.close() def encrypt_tar(archive, output_path, key_file): """Creates an encrypted tarfile in the specified directory using an existing unencrypted version and a supplied key file. The unencrypted archive is removed after encryption.""" unencrypted_path = path.join(output_path, _archive_tar_filname(archive, before_encryption=True)) encrypted_path = path.join(output_path, _archive_tar_filname(archive, before_encryption=False)) _write_status('Encrypting archive to {}'.format(encrypted_path)) result = subprocess.run(['gpg', '--no-options', '--batch', '--cipher-algo', 'AES256', '--passphrase-file', key_file, '--output', encrypted_path, '--symmetric', unencrypted_path], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) if result.returncode != 0: _write_error('Non zero return code {} from PGP encrypting to {}: {}'.format( result.returncode, encrypted_path, result.stdout.decode('utf-8'))) remove_file(unencrypted_path, 'pre-encryption tar') def freshen_timestamp(filename, role): """Touches the specified file to freshen its timestamp.""" if VERBOSE: _write_status('Freshen timestamp on {}: {}'.format(role, filename)) try: os.utime(filename, None) except IOError: _write_error('Could not update timestamp on {}: {}'.format(role, filename)) def remove_file(filename, role): """Deletes the specified file, catching and logging any errors.""" _write_status('Removing {}: {}'.format(role, filename)) try: os.remove(filename) except (IOError, OSError): _write_error('Could not delete {}: {}'.format(role, filename)) def _write_status(text): """Record an informational note, complete with timestamp.""" print(datetime.datetime.now().isoformat() + ' ' + text, file=sys.stdout) def _write_error(text): """Record an problem, complete with timestamp.""" global errors_found errors_found = True print(datetime.datetime.now().isoformat() + ' ERROR ' + text, file=sys.stdout) print(datetime.datetime.now().isoformat() + ' ' + text, file=sys.stderr) def _should_encrypt_archive(archive): """Returns true iff the output of the supplied classified directory should be encrypted""" return archive.protection in ('secret', 'confidential', 'restricted') def _archive_tar_filname(archive, before_encryption=False): """Returns the expected filename for a classified directory, including hash.""" return '{}_{}{}.tar{}{}'.format( archive.name, archive.archiveHash(), '.secret' if archive.protection == 'secret' else '', '.gz' if archive.compress else '', '.aes' if _should_encrypt_archive(archive) and not before_encryption else '') def main(): parser = argparse.ArgumentParser(description='Builds tar archives with appropriate encryption ' 'and compression based on .classify files found in a set of ' 'search directories.') parser.add_argument('-k', '--keyfile', required=True, help='Path of encryption keyfile') parser.add_argument('-s', '--search_dirs', nargs='+', required=True, help='Paths to be searched for .classify files') parser.add_argument('-z', '--sizes', default='small,medium,large', help='Comma separated list of archive sizes') parser.add_argument('-a', '--archive_dir', required=True, help='Path to output archive files') parser.add_argument('-u', '--user', help='Username to run operations as') parser.add_argument('-g', '--group', help='Group name to run operations as') args = parser.parse_args() if args.group: os.setgid(grp.getgrnam(args.group).gr_gid) if args.user: os.setuid(pwd.getpwnam(args.user).pw_uid) os.environ['HOME'] = os.path.expanduser('~' + args.user) freshen_archive_sets(args.search_dirs, args.archive_dir, args.sizes.split(','), args.keyfile) sys.exit(0) if __name__ == '__main__': main() ``` #### File: jodysankey/scripts/hash_files.py ```python import argparse import base64 import hashlib import os import re import sys BLOCK_SIZE = 1024*1024 LOG_INTERVAL = 100 def _create_arg_parser(): """Returns a configured ArgumentParser.""" parser = argparse.ArgumentParser(description='Builds a list of files and their hashes ' 'sorted by hash') parser.add_argument('-i', '--in', required=True, action='append', dest='input', help='path to search for files, more than one may be used') parser.add_argument('-e', '--exclude', action='append', metavar='EX', help='regex to exclude files or directories from the search') parser.add_argument('-o', '--out', required=True, dest='output', help='output filename') parser.add_argument('-s', '--silent', action='store_true', help='don\'t output progress information') return parser def _gather_paths(in_dirs, exclude_regex, log_interval): """Returns a list of fully qualified paths for every not-excluded file in in_dirs.""" output = [] count_since_log, file_count, dir_count, exclude_file_count, exclude_dir_count = (0, 0, 0, 0, 0) excludes = [re.compile(r) for r in exclude_regex] for in_dir in in_dirs: for root, dirs, files in os.walk(in_dir): # Remove any directories that match the regex exclusion patterns so we don't walk them filtered_dirs = [d for d in dirs if not any((ex.search(d) for ex in excludes))] exclude_dir_count += (len(dirs) - len(filtered_dirs)) dirs[:] = filtered_dirs # Remove any files that match the regex exclusion patterns filtered_files = [f for f in files if not any((ex.search(f) for ex in excludes))] exclude_file_count += (len(files) - len(filtered_files)) dir_count += 1 for f in filtered_files: output.append(os.path.join(root, f)) file_count += 1 count_since_log += 1 if count_since_log >= log_interval: print("Gathered {} files from {} dirs, excluded {} files and {} dirs".format( file_count, dir_count, exclude_file_count, exclude_dir_count)) count_since_log = 0 return output def hash_file(path): """Returns a base64 encoded hash of the input file.""" hasher = hashlib.sha256() with open(path, 'rb') as f: buffer = f.read(BLOCK_SIZE) while len(buffer) > 0: hasher.update(buffer) buffer = f.read(BLOCK_SIZE) return base64.urlsafe_b64encode(hasher.digest()[:12]).decode('utf-8') def hash_paths(paths, log_interval): """Returns a map of the base64 hash to the filename for all paths in path.""" output = {} count_since_log = 0 for path in paths: output[hash_file(path)] = os.path.basename(path) count_since_log += 1 if count_since_log >= log_interval: print("Hashed {} of {} files: {}".format(len(output), len(paths), os.path.basename(path))) count_since_log = 0 return output def _output_hashes(hashes, output_path): """Writes the supplied dictionary of hashes to an ordered file.""" keys = sorted(hashes.keys()) with open(output_path, 'w') as f: for k in keys: f.write("{}\t{}\n".format(k, hashes[k])) def main(): """Hashes a set of files based on command line arguments.""" args = _create_arg_parser().parse_args() log_interval = sys.maxsize if args.silent else LOG_INTERVAL exclude_paths = ["^[.]"] + (args.exclude if args.exclude else []) if not args.silent: print("Gathering matching files.") paths = _gather_paths(args.input, exclude_paths, log_interval * 10) if not args.silent: print("Calculating hashes.") hashes = hash_paths(paths, log_interval) if not args.silent: print("Writing output file.") _output_hashes(hashes, args.output) if not args.silent: print("Done.") if __name__ == '__main__': main() ``` #### File: jodysankey/scripts/movable_host.py ```python import os import subprocess import sys CONNECT_OPTION = 'x-jms.connect' SITE_MOUNTPOINT = os.environ['SITEPATH'] BACKUP_SCRIPT = '/etc/backup-system' SITE_SYNC_SCRIPT = ['host_site_sync', '-x'] class MountableDirectory(object): """A class to manage a mount in fstab in terms of the local mount point.""" def __init__(self, mount_path): """Initialize given a mount point.""" if not os.path.exists(mount_path): raise IOError('MountableDirectory error: {} does not exist'.format(mount_path)) self.path = mount_path self.performed_mount = False def is_mounted(self): """Returns true if point is currently mounted.""" return subprocess.call(['findmnt', '-mln', self.path]) == 0 def mount(self): """Mounts the point, returning true on success and remembering if we needed to act""" self.performed_mount = False if self.is_mounted(): return True pprint("Mounting {}".format(self.path)) success = run_and_report(['mount', self.path]) if success: self.performed_mount = True return success def unmount(self, force): """(Optionally force) unmounts the point if currently mounted, returning true on success""" if not self.is_mounted(): return True pprint("Unmounting {}".format(self.path)) return run_and_report(['umount', '-f', self.path] if force else ['umount', self.path]) def restore(self, force): """Unmounts the point iff the most recent mount did mounting, returning true on success.""" if self.performed_mount: return self.unmount(force) return True def run_and_report(command): """Runs a command, returning True on success and printing retcode on error.""" ret_code = subprocess.call(command) if ret_code != 0: eprint("{} failed with code {}".format(command[0], ret_code)) return ret_code == 0 def pprint(string): """Prints a string with a standard prefix.""" print(' ' + string) def eprint(string): """Prints a string with a standard error prefix.""" print("ERROR: " + string) def print_usage(): """Print standard help string then quit""" print("\n Usage: {} connect|disconnect [force]|backup\n".format(sys.argv[0])) print(" connect Mount connectable network mounts") print(" disconnect [Forcibly] unmount connectable network mounts") print(" backup (Root only) Backup machine configuration, user homes, and logs to") print(" network and sync site status, temporarily mounting if necessary") print("Script (c)2011-2020 <NAME>") print("Currently running in Python v{}.{}.{}\n".format(*sys.version_info)) sys.exit() def do_backup(): """Perform a standard backup operation, mounting as necessary.""" if os.geteuid() != 0: eprint('Only root can perform a backup') return pprint("Executing backup script {}...".format(BACKUP_SCRIPT)) run_and_report(BACKUP_SCRIPT) site_mount = MountableDirectory(SITE_MOUNTPOINT) if not site_mount.mount(): eprint('Could not mount ' + SITE_MOUNTPOINT) else: pprint("Executing site status script {}...".format(SITE_SYNC_SCRIPT)) run_and_report(SITE_SYNC_SCRIPT) site_mount.restore(False) def connectable_mounts(): """Returns a list of MountableDirectory s for all mounts marked as connectable.""" # Findmnt can output dirs of everything in fstab with the magic option, allow non-zero # return codes since there might not be any matching mountpoints. try: mount_dirs = subprocess.check_output( ['findmnt', '-sn', '-O', CONNECT_OPTION, '-o', 'TARGET']).decode('utf-8').split('\n') return [MountableDirectory(mnt) for mnt in mount_dirs] except subprocess.CalledProcessError: return [] if __name__ == '__main__': # If run as a script take parameters to feed the function from the command line if not (len(sys.argv) == 2 or (len(sys.argv) == 3 and sys.argv[2] == "force")): print_usage() sys.exit(1) if sys.argv[1] == "connect": for mnt in connectable_mounts(): mnt.mount() elif sys.argv[1] == "disconnect": for mnt in connectable_mounts(): mnt.unmount(len(sys.argv) == 3 and sys.argv[2] == "force") elif sys.argv[1] == "backup": do_backup() else: print_usage() sys.exit(1) ``` #### File: jodysankey/scripts/pass_once_daily.py ```python import os import re import sys import subprocess from datetime import date, datetime def printUsage(): print("Usage:") print(" {} trigger_file [essid]".format(os.path.basename(__file__))) print(" trigger_file = a file to use to record previous executions") print(" essid = an optional ESSID srting that must be in the current") print(" iwconfig otherwise the script will fail") print("Return values:") print(" 0 = if supplied, essid is present and first time this") print(" condition has been met today.") print(" 1 = run has already succeeded for today") print(" 2 = mount_point was not mounted") print(" 3 = invalid arguments") print(" 4 = some other problem") # try: # mounts = subprocess.check_output(["mount"]).decode("utf-8").split("\n") # filtered = [m for m in mounts if (" " + mount_point + " ") in m] # except Exception as e: # print(sys.exc_info()) # sys.exit(4) # if len(filtered) == 0: # sys.exit(2) if __name__ == '__main__': #Just print usage if wrong number of arguments supplied if len(sys.argv) < 2 or len(sys.argv) > 3: printUsage() sys.exit(3) trigger_file = sys.argv[1] essid = None if len(sys.argv) == 2 else sys.argv[2] #If trigger file is present and modified today we're good if os.path.exists(trigger_file): if date.fromtimestamp(os.path.getmtime(trigger_file)) == date.today(): sys.exit(1) #If we had an ESSID check it is currently connected if essid is not None: finder = re.compile("ESSID.+" + essid) try: iwconfig = subprocess.check_output(["iwconfig"]).decode("utf-8").split("\n") filtered = [l for l in iwconfig if finder.search(l)] except Exception as e: print(sys.exc_info()) sys.exit(4) if len(filtered) == 0: sys.exit(2) #Write the current datetime to the file try: with open(trigger_file, "a") as fh: print(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), file=fh) except Exception as e: print(sys.exc_info()) sys.exit(4) #Return success sys.exit(0) ``` #### File: jodysankey/scripts/scanning.py ```python import os import re import sys import scan_core SCAN_PATH = os.path.expanduser('~/tmp/scan') def print_option_set(option_set, leader): """Print a line for each option in the set, prefixed with leader""" for option in option_set: labels = ",".join(option['labels']) option_set = leader + labels + " "*(20-len(labels)) + "- " + option['description'] print(option_set) def print_usage(): """Print standard help string then quit""" leader = " " print("\n Usage: scanning [-v|-c|-k=N] SOURCE PAPER SCALE COLOR [basename]\n") print(" SOURCE Paper source:") print_option_set(scan_core.SOURCES, leader) print(" PAPER Paper size:") print_option_set(scan_core.PAPERS, leader) print(" SCALE Scaling factor:") print_option_set(scan_core.SCALES, leader) print(" COLOR Colour mode:") print_option_set(scan_core.COLORS, leader) print(" basename Desired base filename, optionally including path") print(" -v View each scan when conversion is complete") print(" -c Confirm each scan before saving in final location") print(" -d Print the scanning a conversion commands used for debugging") print(" -k=N Do not convert page N of scan\n") print("SCANNING Script (c)2010 <NAME>") version = sys.version_info print("Currently running in Python v{}.{}.{}\n".format(*version)) sys.exit() def die(print_string): """Prints the specified string then exits with code 1""" print(print_string) sys.exit(1) def main(): """Run the scanning function using parameters from the command line.""" if len(sys.argv) < 2: print_usage() args = sys.argv[1:] #Declare and initialize the variables controlled by switch check = False view = False debug = False kills = [] #Eat any switches from the front while args and args[0].startswith('-'): arg = args.pop(0).lower() print("eating " + arg) mko = re.search(r"-k=([1-9]+)$", arg) if mko is not None: kills.append(int(mko.groups()[0])) elif arg == '-c': check = True elif arg == '-v': view = True elif arg == '-d': debug = True elif arg == '--help': print_usage() else: die("ERROR: Switch '{}' not recognized".format(arg)) # Do we have enough parameters left? if len(args) not in range(4, 6): print(args) die("ERROR: Wrong number of parameters supplied") dest = os.path.join(SCAN_PATH, args[4]) if len(args) == 5 else None scan_core.perform_scan(dest, args[0], args[1], args[2], args[3], view=view, check=check, kills=kills, debug=debug) if __name__ == '__main__': main() ```
{ "source": "jodythai/scoopy_kitty_recognition", "score": 2 }
#### File: scoopy_kitty_recognition/test/test_snoopy_kitty_recognition.py ```python from snoopy_kitty_recognition import snoopy_kitty_recognition def test_fib() -> None: assert snoopy_kitty_recognition.fib(0) == 0 assert snoopy_kitty_recognition.fib(1) == 1 assert snoopy_kitty_recognition.fib(2) == 1 assert snoopy_kitty_recognition.fib(3) == 2 assert snoopy_kitty_recognition.fib(4) == 3 assert snoopy_kitty_recognition.fib(5) == 5 assert snoopy_kitty_recognition.fib(10) == 55 ```
{ "source": "JodyZ0203/Virtual_Parent", "score": 3 }
#### File: JodyZ0203/Virtual_Parent/phase1.py ```python from random import randint from random import choice import json from portal import Checker #portal() #passwordVault = {'James': '<PASSWORD>', 'Kobe': '<PASSWORD>'} #todo: store this file #with open('intents.json') as file: # data = json.load(file) preMadeInformation = ''' { "users": [ { "userId": "JL7", "name": "<NAME>", "age": 12, "password": "<PASSWORD>&", "birthday": [ "2005", "02", "02" ], "country": "Finland" }, { "userId": "BB08", "name": "<NAME>", "age": 6, "password": "<PASSWORD>", "birthday": [ "2003", "03", "24" ], "country": "Canada" }, { "userId": "Ll213", "name": "<NAME>", "age": 25, "password": "<PASSWORD>", "birthday": [ "2005", "05", "06" ], "country": "Brazil" }, { "userId": "Tester1", "name": "Tester1", "age": 22, "birthday": [ "<PASSWORD>", "00", "00" ], "password": "<PASSWORD>", "country": "Null" }, { "userId": "king257", "name": "<NAME>", "age": 24, "birthday": [ "2002", "03", "12" ], "password": "<PASSWORD>", "country": "United States" }, { "userId": "Jinl7", "name": "<NAME>", "age": 19, "password": "D~b2374dsfdsf3427di&", "birthday": [ "2005", "02", "02" ], "country": "Finland" }, { "userId": "BBB0308", "name": "<NAME>", "age": 23, "password": "<PASSWORD>", "birthday": [ "2003", "03", "24" ], "country": "Canada" }, { "userId": "Ll223213", "name": "<NAME>", "age": 25, "password": "<PASSWORD>", "birthday": [ "2005", "05", "06" ], "country": "Brazil" }, { "userId": "JL7", "name": "<NAME>", "age": 18, "password": "<PASSWORD>&", "birthday": [ "2005", "02", "02" ], "country": "Finland" }, { "userId": "BB08", "name": "<NAME>", "age": 16, "password": "<PASSWORD>", "birthday": [ "2003", "03", "24" ], "country": "Canada" }, { "userId": "Ll213", "name": "<NAME>", "age": 15, "password": "<PASSWORD>", "birthday": [ "2005", "05", "06" ], "country": "Brazil" }, { "userId": "Tester1", "name": "Tester1", "age": 20, "birthday": [ "0000", "00", "00" ], "password": "<PASSWORD>", "country": "Null" }, { "userId": "king257", "name": "<NAME>", "age": 24, "birthday": [ "2002", "03", "12" ], "password": "<PASSWORD>", "country": "United States" }, { "userId": "Jinl7", "name": "<NAME>", "age": 13, "password": "<PASSWORD>&", "birthday": [ "2005", "02", "02" ], "country": "Finland" }, { "userId": "BBB0308", "name": "<NAME>", "age": 13, "password": "<PASSWORD>", "birthday": [ "2003", "03", "24" ], "country": "Canada" }, { "userId": "Ll223213", "name": "<NAME>", "age": 35, "password": "<PASSWORD>", "birthday": [ "2005", "05", "06" ], "country": "Brazil" }, { "userId": "JL7", "name": "<NAME>", "age": 47, "password": "<PASSWORD>&", "birthday": [ "2005", "02", "02" ], "country": "Finland" }, { "userId": "BB08", "name": "<NAME>", "age": 6, "password": "<PASSWORD>", "birthday": [ "2003", "03", "24" ], "country": "Canada" }, { "userId": "Ll213", "name": "<NAME>", "age": 11, "password": "<PASSWORD>232", "birthday": [ "2005", "05", "06" ], "country": "Brazil" }, { "userId": "Tester1", "name": "Tester1", "age": 10, "birthday": [ "0000", "00", "00" ], "password": "<PASSWORD>", "country": "Null" }, { "userId": "king257", "name": "<NAME>", "age": 21, "birthday": [ "2002", "03", "12" ], "password": "<PASSWORD>", "country": "United States" }, { "userId": "Jinl7", "name": "<NAME>", "age": 19, "password": "<PASSWORD>&", "birthday": [ "2005", "02", "02" ], "country": "Finland" }, { "userId": "BBB0308", "name": "<NAME>", "age": 20, "password": "<PASSWORD>", "birthday": [ "2003", "03", "24" ], "country": "Canada" } ] } data = json.loads(preMadeInformation) with open('basicInformation.json', 'w') as file: json.dump(data, file, indent=3) ''' class User: ''' the class that holds information about the user Attributes ---------- name : str The name of the user password : str This is the user password age : int The age of the user Methods ------- verifyLogin() Attempts to verify the password changePassword() Attempts to change a password ''' def __init__(self, name, password, age): ''' Constructor that initialize a user Parameters ---------- name : str The name of the user password : str The password of the user age: int The age of the user ''' self.id = self self.name = name self.password = password self.age = age def verifyLogin(self): ''' This function checks to see if the password our user enters is correct or not It asks the user to enter the password and see if it matches with what we have in the database Parameters ---------- none Returns ------- bool True if the verification is successful False if the attempted failed Warnings -------- If a incorrect name is entered, it will raise a key error. Raises ------ KeyError If the input of the username is incorrect, and it can not be found in the dictionary NameError If the input is a name and not a string, so it is not defined TypeError There should not be any input, otherwise it will raise a type error. ''' userName = input("name: ") passWord = input("password: ") checkName = passwordVault[userName] if checkName == passWord: print("Login Success") print('Loading...') return True else: print("False!!") return False def changePassword(self): ''' This function allows you to change your password Parameters ---------- Returns ------- void Warnings -------- If a incorrect option is choosed, a UnboundLocalError will surface. Raises ------ TypeError There should not be any input, otherwise it will raise a type error. ''' id = self.name option = input("Do you want me to generate a password for you? (yes/no): ") if option == 'yes': newPassword = generatePassword(True) elif option == 'no': newPassword = input("Enter your new password: ") passwordVault[id] = newPassword print('Your name is: '+ self.name) print('Your new password is: ' + passwordVault[id]) print(passwordVault) def generatePassword(x): ''' This function generates a random password Parameters ------------ x: bool Returns ------- str The password generated using this function should be a string because it consists of numbers and characters. Warnings -------- If will break if the input is not True. ''' alpha = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] length = len(alpha) if bool(x): for i in range(length): wordOne = choice(alpha) + choice(alpha) wordTwo = choice(alpha) + choice(alpha) password = rand<PASSWORD>(1<PASSWORD>, 9<PASSWORD>) newPassword = (wordOne+str(password)+wordTwo) return newPassword else: pass a = input(str('NMAE: ')) b = input(str('Password: ')) Jody111 = User(a, b, 18) #Jody111.verifyLogin() #print(generatePassword('str')) #Jody111.changePassword() ''' try: Jody111.changePassword(<PASSWORD>) except TypeError: print("Raised a TypeError as expected") try: Jody111.verifyLogin('james') Jody111.verifyLogin(1) except TypeError: print("Raised a TypeError as expected") except NameError: print("Raised a NameError as expected") except KeyError: print("Raised a KeyError as expected") ''' ```
{ "source": "jody-zeitler/pdfrelay", "score": 3 }
#### File: pdfrelay/pdfrelay/exception.py ```python class PdfRelayException(Exception): def __init__(self, *args, **kwargs): super(PdfRelayException, self).__init__(args, kwargs) class JobError(PdfRelayException): """Issue with the parameters of the conversion job""" class EngineError(PdfRelayException): """Engine process spawning/execution error""" class MetadataError(PdfRelayException): """An error occurred in the retrieval or saving of PDF metadata""" ``` #### File: pdfrelay/pdfrelay/model.py ```python import os import random from .exception import * class ConversionJob(object): """Container class for passing around job data""" def __init__(self, options): self.html = options.pop('html', None) self.url = options.pop('url', None) if not (self.html or self.url): raise JobError("'html' or 'url' parameter not supplied") self.arguments = options.pop('arguments', []) self.metadata = options.pop('metadata', {}) self.pdf = None self.error = None self.header_file = None self.footer_file = None for k,v in options.items(): if k.startswith('metadata'): self.metadata[k[8:]] = v elif k == '--header-html': self.arguments.append(k) self.arguments.append( self.make_header(v) ) elif k == '--footer-html': self.arguments.append(k) self.arguments.append( self.make_footer(v) ) else: self.arguments.append(k) self.arguments.append(v) def make_header(self, html): self.header_file = '/dev/shm/pdfrelay_header_{}.html'.format(random.randint(1000000, 9999999)) with open(self.header_file, 'w') as outfile: outfile.write(html) return self.header_file def make_footer(self, html): self.footer_file = '/dev/shm/pdfrelay_footer_{}.html'.format(random.randint(1000000, 9999999)) with open(self.footer_file, 'w') as outfile: outfile.write(html) return self.footer_file def cleanup_files(self): if self.header_file and os.path.isfile(self.header_file): os.remove(self.header_file) if self.footer_file and os.path.isfile(self.footer_file): os.remove(self.footer_file) ```
{ "source": "Joe0313/CS-12th-Grader", "score": 2 }
#### File: CS-12th-Grader/CS-12th-Joe/crawler.py ```python import re import os import time import random import pickle import datetime import argparse import prettytable from tqdm import tqdm from lxml import etree from DecryptLogin import login '''命令行参数解析''' def parseArgs(): parser = argparse.ArgumentParser(description='下载指定微博用户的所有微博数据') parser.add_argument('--username', dest='username', help='用户名', type=str, required=True) parser.add_argument('--password', dest='password', help='密码', type=str, required=True) args = parser.parse_args() return args '''目标用户微博数据爬取''' class WeiboSpider(): def __init__(self, username, password, **kwargs): self.session = WeiboSpider.login(username, password) self.headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.122 Safari/537.36' } self.savedir = os.path.join(os.getcwd(), 'datas') '''外部调用接口''' def start(self): while True: # 使用者输入目标用户的用户ID'请 user_id = 3537635312 # 提取该目标用户的基本信息供使用者确认输入是否有误 url = f'https://weibo.cn/{user_id}' res = self.session.get(url, headers=self.headers) selector = etree.HTML(res.content) base_infos = selector.xpath("//div[@class='tip2']/*/text()") num_wbs, num_followings, num_followers = int(base_infos[0][3: -1]), int(base_infos[1][3: -1]), int(base_infos[2][3: -1]) num_wb_pages = selector.xpath("//input[@name='mp']") num_wb_pages = int(num_wb_pages[0].attrib['value']) if len(num_wb_pages) > 0 else 1 url = f'https://weibo.cn/{user_id}/info' res = self.session.get(url, headers=self.headers) selector = etree.HTML(res.content) nickname = selector.xpath('//title/text()')[0][:-3] # 使用者确认是否要下载该用户的所有微博 tb = prettytable.PrettyTable() tb.field_names = ['用户名', '关注数量', '被关注数量', '微博数量', '微博页数'] tb.add_row([nickname, num_followings, num_followers, num_wbs, num_wb_pages]) print('获取的用户信息如下:') print(tb) is_download = input('是否爬取该用户的所有微博?(y/n, 默认: y) ——> ') if is_download == 'y' or is_download == 'yes' or not is_download: userinfos = {'user_id': user_id, 'num_wbs': num_wbs, 'num_wb_pages': num_wb_pages} self.__downloadWeibos(userinfos) # 使用者是否要继续下载 is_continue = input('是否还需下载其他用户的微博数据?(n/y, 默认: n) ——> ') if is_continue == 'n' or is_continue == 'no' or not is_continue: break '''下载某个用户的所有微博数据''' def __downloadWeibos(self, userinfos): # 用于存储微博数据 weibos_dict = {} # 一些必要的信息 num_wbs = userinfos.get('num_wbs') user_id = userinfos.get('user_id') num_wb_pages = userinfos.get('num_wb_pages') # 爬取所有微博数据 page_block_size = random.randint(1, 5) page_block_count = 0 for page in tqdm(range(1, num_wb_pages+1)): url = f'https://weibo.cn/{user_id}?page={page}' res = self.session.get(url, headers=self.headers) selector = etree.HTML(res.content) contents = selector.xpath("//div[@class='c']") if contents[0].xpath("div/span[@class='ctt']"): for i in range(0, len(contents)-2): content = contents[i] weibo_info = self.__parseWeiboContent(content) print(list(weibo_info.values())[0][-1]) weibos_dict.update(weibo_info) # --每爬一定页数保存一下 if page % 20 == 0: self.__save(weibos_dict, user_id) # --避免给服务器带来过大压力and避免被封, 每爬几页程序就休息一下 page_block_count += 1 if page_block_count % page_block_size == 0: time.sleep(random.randint(6, 12)) page_block_size = random.randint(1, 5) page_block_count = 0 filepath = self.__save(weibos_dict, user_id) print('用户%s的所有微博数据下载完毕, 数据保存在%s...' % (user_id, filepath)) '''处理不同类型的微博''' def __parseWeiboContent(self, content): weibo_info = {} # 是否为原创微博 is_ori = False if len(content.xpath("div/span[@class='cmt']")) > 3 else True # 微博ID weibo_id = content.xpath('@id')[0][2:] # 微博文本 if is_ori: if u'全文' in content.xpath('div//a/text()'): url = f'https://weibo.cn/comment/{weibo_id}' res = self.session.get(url, headers=self.headers) selector = etree.HTML(res.content) weibo_text_tmp = selector.xpath("//div[@class='c']")[1] weibo_text = weibo_text_tmp.xpath('string(.)').replace(u'\u200b', '').encode('utf-8', 'ignore').decode('utf-8') weibo_text = weibo_text[weibo_text.find(':')+1: weibo_text.rfind(weibo_text_tmp.xpath("//span[@class='ct']/text()")[0])] else: weibo_text = content.xpath('string(.)').replace(u'\u200b', '').encode('utf-8', 'ignore').decode('utf-8') weibo_text = weibo_text[:weibo_text.rfind(u'赞')] else: if u'全文' in content.xpath('div//a/text()'): url = f'https://weibo.cn/comment/{weibo_id}' res = self.session.get(url, headers=self.headers) selector = etree.HTML(res.content) weibo_text_tmp = selector.xpath("//div[@class='c']")[1] weibo_text = weibo_text_tmp.xpath('string(.)').replace(u'\u200b', '').encode('utf-8', 'ignore').decode('utf-8') weibo_text = weibo_text[weibo_text.find(':')+1: weibo_text.rfind(weibo_text_tmp.xpath("//span[@class='ct']/text()")[0])] weibo_text = weibo_text[:weibo_text.rfind(u'原文转发')] else: weibo_text = content.xpath('string(.)').replace(u'\u200b', '').encode('utf-8', 'ignore').decode('utf-8') weibo_text = weibo_text[weibo_text.find(':')+1: weibo_text.rfind(u'赞')][:weibo_text.rfind(u'赞')] # 微博发布的时间 publish_time = content.xpath("div/span[@class='ct']")[0] publish_time = publish_time.xpath('string(.)').replace(u'\u200b', '').encode('utf-8', 'ignore').decode('utf-8') publish_time = publish_time.split(u'来自')[0] if u'刚刚' in publish_time: publish_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M') elif u'分钟' in publish_time: passed_minutes = publish_time[:publish_time.find(u'分钟')] publish_time = (datetime.datetime.now() - datetime.timedelta(int(passed_minutes))).strftime('%Y-%m-%d %H:%M') elif u'今天' in publish_time: today = datetime.datetime.now().strftime('%Y-%m-%d') publish_time = today + ' ' + publish_time[3:] if len(publish_time) > 16: publish_time = publish_time[:16] elif u'月' in publish_time: year = datetime.datetime.now().strftime('%Y') month = publish_time[0: 2] day = publish_time[3: 5] publish_time = year + '-' + month + '-' + day + ' ' + publish_time[7: 12] else: publish_time = publish_time[:16] # 点赞, 转发, 评论数 info_from_others = content.xpath('div')[-1].xpath('string(.)').replace(u'\u200b', '').encode('utf-8', 'ignore').decode('utf-8') info_from_others = info_from_others[info_from_others.rfind(u'赞'):] info_from_others = re.findall(r'\d+', info_from_others, re.M) num_likes = int(info_from_others[0]) num_forwards = int(info_from_others[1]) num_comments = int(info_from_others[2]) # 整合数据 weibo_info[weibo_id] = [is_ori, publish_time, num_likes, num_forwards, num_comments, weibo_text] # 返回提取的数据 return weibo_info '''保存微博数据''' def __save(self, weibos_dict, user_id): if not os.path.exists(self.savedir): os.mkdir(self.savedir) filepath = os.path.join(self.savedir, user_id+'.pkl') f = open(filepath, 'wb') pickle.dump(weibos_dict, f) f.close() return filepath '''利用DecryptLogin模拟登录''' @staticmethod def login(username, password): lg = login.Login() _, session = lg.weibo(username, password, 'mobile') return session '''run''' if __name__ == '__main__': args = parseArgs() wb_spider = WeiboSpider(args.username, args.password) wb_spider.start() ```
{ "source": "Joe0400Student/fquery", "score": 3 }
#### File: Joe0400Student/fquery/interpreter.py ```python VERSION = "0.1.0-dev" YEAR = "2021" from functools import reduce from zipfile import ZipFile from io import TextIOWrapper as io_wrap class UnresolvableVariable(Exception): pass class Value: """Value Object This type stores the evaluation of any data Attributes: __init__: Constructor step: Small-step executive function pr: Human-Readable format string-builder value: Contained value of the type """ def __init__(self, value, environ={}): """Creates a Value Object Parameter: value -> any: The stored evaluation environ -> dict: """ self.value, self.environment = value, environ def step(self,local_environment: dict): """ Iteratively small-step execution Parameter: local_environment -> dict: local updates to the stored environment Returns: Value-Object """ return self def pr(self): return f"{self.value}" def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] def apply_all_dts(self,f): return f(self) class Operator: def __init__(self, oper, arg1, arg2, environ={}): self.oper = oper self.arg1, self.arg2 = arg1, arg2 self.environment = environ def step(self, local_environment: dict): #print("step in operator") temp_local = local_environment for k in self.environment: e = self.environment[k] temp_local[k] = e if(not isinstance(self.arg1, Value)): return Operator(self.oper, self.arg1.step(temp_local), self.arg2, self.environment) if(not isinstance(self.arg2, Value)): return Operator(self.oper, self.arg1, self.arg2.step(temp_local), self.environment) return Value(self.oper(self.arg1.value,self.arg2.value),self.environment) def pr(self): return f"{self.arg1.pr()} operator {self.arg2.pr()}" def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.arg1.update_all_variables(kwargs) self.arg2.update_all_variables(kwargs) def apply_all_dts(self,f): self.arg1 = self.arg1.apply_all_dts(f) self.arg2 = self.arg2.apply_all_dts(f) return self class Variable: def __init__(self, name: str, environment: dict): self.environment = environment if(name in environment): self.name = environment[self.name] self.resolved = True else: self.name = name self.resolved = False def step(self, local_environment): for k in self.environment: local_environment[k] = self.environment[k] if(self.resolved): return self.name else: if self.name in local_environment: temp = local_environment[self.name] temp.update_all_variables(self.environment) return temp else: raise UnresolvableVariable() def pr(self): return self.name def update_all_variables(self,diction): for k in diction: self.environment[k] = diction[k] def apply_all_dts(self,f): return f(self) class Apply: def __init__(self, name: str, assigned, program, environment: dict): self.name, self.program = name, program self.environment = environment self.name = name self.assigned = assigned #print(self.assigned.pr()) def step(self, local_environment: dict): #rint("step in apply") temp_env = local_environment for k in self.environment: temp_env[k] = self.environment[k] if(not isinstance(self.assigned, Value)): #self.assigned = self.assigned.step(temp_env) return Apply(self.name, self.assigned.step(temp_env), self.program, self.environment) self.program.update_all_variables({self.name:self.assigned}) return self.program def pr(self): return f"Apply {self.name}={self.assigned.pr()} on {self.program.pr()}" def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.assigned.update_all_variables(kwargs) self.program.update_all_variables(kwargs) def apply_all_dts(self,f): self.assigned = self.assigned.apply_all_dts(f) self.program = self.program.apply_all_dts(f) return self class If_Else: def __init__(self, conditional, yes, no, environment: dict): self.conditional, self.yes, self.no, self.environment = conditional, yes, no, environment def step(self, local_environment: dict): #print("step in if_else") updated_local_env = local_environment for k in self.environment: updated_local_env[k] = self.environment[k] if(isinstance(self.conditional, Value)): return self.yes if self.conditional.value else self.no else: return If_Else(self.conditional.step(updated_local_env),self.yes,self.no,self.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.conditional.update_all_variables(kwargs) self.yes.update_all_variables(kwargs) self.no.update_all_variables(kwargs) def apply_all_dts(self,f): self.conditional = self.conditional.apply_all_dts(f) self.yes = self.yes.apply_all_dts(f) self.no = self.no.apply_all_dts(f) return self def pr(self): return f"if {self.conditional.pr()} then {self.yes.pr()} else {self.no.pr()}" class QuitException(Exception): pass class Chain: def __init__(self, name: str, assigned, program, environment: dict): self.name, self.program = name, program self.environment = environment self.name = name self.assigned = assigned #print(self.assigned.pr()) def step(self, local_environment: dict): #rint("step in apply") temp_env = local_environment for k in self.environment: temp_env[k] = self.environment[k] name = self.name ass = self.assigned def tester(v): if(isinstance(v,Variable)): if(v.name == name): return ass return v return self.program.apply_all_dts(tester) def pr(self): return f"Apply {self.name}={self.assigned.pr()} on {self.program.pr()}" def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.assigned.update_all_variables(kwargs) self.program.update_all_variables(kwargs) def apply_all_dts(self,f): self.program = self.program.apply_all_dts(f) self.assigned = self.assigned.apply_all_dts(f) return self class FSLoader: def __init__(self,file_name,environment={}): descriptor=Value("a",{}) self.file_name = file_name self.descriptor = descriptor self.environment=environment def step(self, local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.file_name, Value)): return FSLoader(self.file_name.step(temp_env),self.descriptor,{}) if(not isinstance(self.descriptor, Value)): return FSLoader(self.file_name, self.descriptor.step(temp_env),{}) self.file_name = self.file_name.value self.descriptor = self.descriptor.value self.file = ZipFile(self.file_name,self.descriptor) self.manifest = io_wrap(self.file.open("manifest.txt")) table_names = map(lambda a: a[:-1], self.manifest.readlines()) self.tables = {line:io_wrap(self.file.open(f"{line}.table")) for line in table_names} return Loaded_Table(self.file, self.manifest, self.tables,self.environment) def update_all_variables(self, kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.file_name.update_all_variables(kwargs) self.descriptor.update_all_variables(kwargs) def apply_all_dts(self,f): self.file_name = self.file_name.apply_all_dts(f) return self class Loaded_Table: def __init__(self,file, manifest, tables, environment={}): self.file = file self.manifest = manifest self.tables = tables self.environment = environment def step(self, local_environment={}): raise Exception("Loaded table trying to be propogated back down the call trace, <you shouldnt be seeing this, make an issue on https://github.com/Joe0400Student/fquery>") def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] def apply_all_dts(self,f): return self class UnwrapTable: def __init__(self, file_loader, table_name,environment={}): self.file_loader = file_loader self.table_name = table_name self.environment = environment def step(self, local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.file_loader, Loaded_Table)): return UnwrapTable(self.file_loader.step(temp_env),self.table_name,self.environment) if(not isinstance(self.table_name, Value)): return UnwrapTable(self.file_loader,self.table_name.step(temp_env),self.environment) return Value(self.file_loader.tables[self.table_name.value],self.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.file_loader.update_all_variables(kwargs) self.table_name.update_all_variables(kwargs) def apply_all_dts(self,f): self.file_loader = self.file_loader.apply_all_dts(f) self.table_name = self.table_name.apply_all_dts(f) return self class Iterator: def __init__(self, iterator, environment={}): self.iterator = iterator self.environment = environment def step(self, local_environment={}): return self def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] def apply_all_dts(self,f): return self class FullResolvedIterator(Iterator): def __init__(self,iterator, environment={}): super().__init__(iterator, environment) class List(FullResolvedIterator): def __init__(self, lst, environment={}): super().__init__(lst, environment) from itertools import chain class ConcatenateIterator(Iterator): def __init__(self, iter1, iter2, environment={}): super().__init__((iter1,iter2), environment) def step(self, local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.iterator[0], FullResolvedIterator)): return ConcatenateIterator(self.iterator[0].step(local_env), self.iterator[1], self.environment) if(not isinstance(self.iterator[1], FullResolvedIterator)): return ConcatenateIterator(self.iterator[0],self.iterator[1].step(local_env),self.environment) return FullResolvedIterator(chain(self.iterator[0].iterator, self.iterator[1].iterator),self.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] for iterators in self.iterator: iterators.update_all_variables(kwargs) def apply_all_dts(self,f): for iterators in self.iterator: iterators = iterators.apply_all_dts(f) return self class Map(Iterator): def __init__(self, iter1, lambd, val, environment={}): super().__init__(iter1, environment) self.lambd = lambd self.val = val def step(self, local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.iterator, Map) and not isinstance(self.iterator, FullResolvedIterator)): return Map(self.iterator.step(temp_env), self.lambd, self.val, self.environment) if(not isinstance(self.val, Value)): return Map(self.iterator, self.lambd, self.val.step(temp_env), self.environment) if(isinstance(self.iterator, Map)): return Map(self.iterator.iterator, Chain(self.iterator.val.value,self.iterator.lambd,self.lambd,self.iterator.lambd.environment),self.val,self.environment) return FullResolvedIterator(map(lambda a: execute(Apply(self.val.value, a, self.lambd, self.lambd.environment), temp_env), self.iterator.iterator),self.environment) def update_all_variables(self, kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.iterator.update_all_variables(kwargs) self.lambd.update_all_variables(kwargs) self.val.update_all_variables(kwargs) def apply_all_dts(self, f): self.lambd = self.lambd.apply_all_dts(f) self.iterator.apply_all_dts(f) self.val.apply_all_dts(f) return self class Filter(Iterator): def __init__(self, iter1, lambd, val, environment={}): super().__init__(iter1, environment) self.lambd = lambd self.val = val def step(self, local_environment={}): temp_env = local_environment for k in self.environment: temp_env[k] = self.environment[k] if(not isinstance(self.iterator, Filter) and not isinstance(self.iterator, Map) and not isinstance(self.iterator, FullResolvedIterator)): return Filter(self.iterator.step(temp_env), self.lambd, self.val, self.environment) if(not isinstance(self.val, Value)): return Filter(self.iterator, self.lambd, self.val.step(temp_env), self.environment) if(isinstance(self.iterator, Map)): return Map(Filter(self.iterator.iterator, Chain(self.val.value, self.iterator.lambd, self.lambd,self.iterator.lambd.environment), self.iterator.val,self.iterator.environment),self.iterator.lambd, self.iterator.val, self.iterator.environment) if(isinstance(self.iterator, Filter)): return Filter(self.iterator.iterator, Apply(self.iterator.val.value, Variable(self.value.val,temp_env), And(self.lambd,self.iterator.lambd,temp_env),temp_env), self.value, self.environment) return FullResolvedIterator(filter(lambda a: execute(Apply(self.val.value,a,self.lambd,temp_env),temp_env).value, self.iterator.iterator),self.environment) def update_all_variables(self, kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.iterator.update_all_variables(kwargs) self.lambd.update_all_variables(kwargs) self.val.update_all_variables(kwargs) def apply_all_dts(self, f): self.lambd = self.lambd.apply_all_dts(f) self.iterator.apply_all_dts(f) self.val.apply_all_dts(f) return self class ToList: def __init__(self,iterator, environment={}): self.iterator = iterator self.environment=environment def step(self, local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.iterator, FullResolvedIterator)): return ToList(self.iterator.step(temp_env),self.environment) if(isinstance(self.iterator, List)): return self.iterator return List(list(self.iterator.iterator),self.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.iterator.update_all_variables(kwargs) def apply_all_dts(self,f): self.iterator = self.iterator.apply_all_dts(f) return self class Access: def __init__(self,array, location, environment={}): self.array = array self.location = location self.environment = enivronment def step(self,local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.array, List) and not isinstance(self.array,Iterator)): return Access(self.array.step(temp_env),self.location, self.environment) if(isinstance(self.array,Iterator)): return Access(ToList(self.array, self.environment), self.location,self.environment) if(not isinstance(self.location, Value)): return Access(self.array, self.location.step(temp_env),self.environment) return Value(self.array.iterator[self.location.value],self.array.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.array.update_all_variables(kwargs) self.location.update_all_variables(kwargs) def apply_all_dts(self,f): self.array = self.array.apply_all_dts(f) self.location = self.location.apply_all_dts(f) return self class Print: def __init__(self,expression,environment={}): self.expression = expression self.environment = environment def step(self, local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.expression, Value) and not isinstance(self.expression, List)): return Print(self.expression.step(temp_env),self.environment) if(isinstance(self.expression,List)): print(f'[{", ".join(map(lambda a: str(execute(a,temp_env).value) ,self.expression.iterator))}]') return Value(None,self.environment) if(isinstance(self.expression,NamedTuple)): for key in self.expression.value: while(not isinstance(self.expression.value[key],Value)): self.expression.value[key] = self.expression.value[key].step(temp_env) print({key:self.expression.value[key].value for key in self.expression.value}) return Value(None,self.environment) print(self.expression.value) return Value(None,self.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.expression.update_all_variables(kwargs) def apply_all_dts(self,f): self.expression = self.expression.apply_all_dts(f) return self class Get: def __init__(self,Input_Response=Value(">:",{}),force_type=lambda a:a,environment={}): self.force_type = force_type self.environment = environment self.input_response = Input_Response def step(self,local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.input_response,Value)): return Get(self.input_response.step(temp_env),self.force_type,self.environment) return Value(self.force_type(input(self.input_response.value)),self.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.input_response.update_all_variables(kwargs) def apply_all_dts(self,f): self.input_response = self.input_response.apply_all_dts(f) return self class Not(Operator): def __init__(self,arg1,env={}): super().__init__(lambda a,b: not a, arg1, arg1, env) class And(Operator): def __init__(self,arg1,arg2,env={}): super().__init__(lambda a,b: a and b, arg1, arg2, env) class Or(Operator): def __init__(self,arg1,arg2,env={}): super().__init__(lambda a,b: a or b, arg1, arg2, env) class Negate(Operator): def __init__(self,arg1,env={}): super().__init__(lambda a,b: -a, arg1, arg1, env) class Equal(Operator): def __init__(self, arg1, arg2, env={}): super().__init__(lambda a, b: a == b, arg1, arg2, env) class Less(Operator): def __init__(self, arg1, arg2, env={}): super().__init__(lambda a, b: a < b, arg1, arg2, env) class Add(Operator): def __init__(self, arg1, arg2, env={}): super().__init__(lambda a,b: a+b, arg1, arg2, env) class Mult(Operator): def __init__(self, arg1, arg2, env={}): super().__init__(lambda a,b: a*b, arg1, arg2, env) class Invert(Operator): def __init__(self, arg1, env={}): super().__init__(lambda a,b: 1/a, arg1, arg2, env) class NamedTuple(Value): def __init__(self,data,env={}): if(isinstance(data,list)): super().__init__({name:None for name in data},env) else: super().__init__(data,env) def step(self,local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] for vals in self.value: if(not isinstance(self.value[vals],Value)): data_cpy = self.value data_cpy[vals] = data_cpy[vals].step(temp_env) return NamedTuple(data_cpy,self.environment) return EvaluatedTuple(self.value,self.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] for keys in self.value: self.value[keys].update_all_variables(kwargs) def apply_all_dts(self,f): for keys in self.value: self.value[keys] = self.value[keys].apply_all_dts(f) return self class EvaluatedTuple(NamedTuple): def __init__(self,data,env={}): print("constructing") super().__init__(data,env) def step(self,local_environment={}): raise Exception(" YOU SHOULD NOT BE ABLE TO SEE THIS! ") class GetTupleData: def __init__(self,tup,attribute_name,environment={}): self.tup = tup self.attribute_name = attribute_name self.environment = environment def step(self,local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.tup,EvaluatedTuple)): return GetTupleData(self.tup.step(temp_env),self.attribute_name,self.environment) if(not isinstance(self.attribute_name,Value)): return GetTupleData(self.tup,self.attribute_name.step(temp_env),self.environment) if(self.attribute_name.value not in self.tup.value): raise Exception(f"Member Name {self.attribute_name.value} not in tuple!") return self.tup.value[self.attribute_name.value] class UpdateTuple: def __init__(self,tup,attribute_name,value,eager=True,environment={}): self.tup = tup self.attribute_name = attribute_name self.value = value self.eager = eager self.environment = environment def step(self,local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.tup,NamedTuple)): return UpdateTuple(self.tup.step(temp_env),self.attribute_name,self.value,self.eager,self.environment) if(not isinstance(self.attribute_name,Value)): return UpdateTuple(self.tup,self.attribute_name.step(temp_env),self.value,self.eager,self.environment) if(self.eager and not isinstance(self.value,Value)): return UpdateTuple(self.tup,self.attribute_name,self.value.step(temp_env),self.eager,self.environment) if(self.attribute_name.value not in self.tup.value): raise Exception(f"Member Name {self.attribute_name.value} not in tuple!") copy_of_tuple_data = self.tup.value copy_of_tuple_data[self.attribute_name.value] = self.value return NamedTuple(copy_of_tuple_data,self.tup.environment) def execute(program, environment: dict) -> Value: while(not isinstance(program, Value)): #print("stepping") #print(environment['A'].value) program = program.step(environment) #print(program.pr()) #input() return program class Type: def __init__(self,expression,environment={}): self.expression = expression self.environment = environment def step(self,local_environment={}): temp_env = local_environment for var in self.environment: temp_env[var] = self.environment[var] if(not isinstance(self.expression, Value)): return Type(self.expression.step(temp_env),self.environment) if(isinstance(self.expression,NamedTuple)): return Value("NamedTuple",self.environment) return Value(type(self.expression.value),self.environment) def update_all_variables(self,kwargs): for k in kwargs: self.environment[k] = kwargs[k] self.expression.update_all_variables(kwargs) def apply_all_dts(self,f): self.expression = self.expression.apply_all_dts(f) return self def main() -> None: print(f"fang[ver:{VERSION}][{YEAR}] -- Copyright <NAME> - Python 3.10") environment = {"collatz": If_Else( Operator( lambda a,b: a != b, Variable('A',{}), Value(1,{}), {} ), If_Else( Operator( lambda a,b: a % b == 0, Variable('A',{}), Value(2,{}), {} ), Apply( 'A', Operator( lambda a,b: a // b, Variable('A',{}), Value(2,{}), {} ), Variable("collatz",{}), {} ), Apply( 'A', Operator( lambda a,b: a + b, Operator( lambda c,d: c*d, Variable('A',{}), Value(3,{}), {} ), Value(1,{}), {} ), Variable("collatz",{}), {} ), {} ), Variable('A',{}), {} ), } execute(Print(Get(Value("please input something here: ",{})),{}),environment) execute(Print(Apply("A",Value(69,{}),Variable("collatz",{}),{}),{}),environment) execute(Print(Apply("B",Value(20,{}),Chain("C",Operator(lambda a,b: a*b,Variable("B",{}),Variable("B",{}),{}),Operator(lambda a,b: a+b,Variable("C",{}),Value(2,{}),{}),{}),{}),{}),environment) execute(Print(Add(Value(69,{}),Value(42000,{}),{}),{}),environment) execute(Print(GetTupleData(NamedTuple({"first":Value(2,{}),"second":Value(3,{})},{}),Value("second"),{}),{}),environment) execute(Print(UpdateTuple(UpdateTuple(NamedTuple({"first":Value(2,{}),"second":Value(1,{})},{}),Value("second"),GetTupleData(NamedTuple({"first":Value(2,{}),"second":Value(3,{})},{}),Value("first"),{}),True,{}),Value("first"),GetTupleData(NamedTuple({"first":Value(2,{}),"second":Value(3,{})},{}),Value("second"),{}),True,{}),{}),environment) execute(Print(List([Value("first"),Value("second"),Value("third")]),{}),environment) #print(execute(UnwrapTable(FSLoader(Value("./Loaders/table.ftab",{})),Value("table1",{}),{}),environment).value) execute(Print(Type(Value(None,{}),{}),{}),environment) execute(Print(ToList(Map(List([Value(3),Value(9),Value(2)]),Mult(Variable("var",{}),Value(2,{}),{}),Value("var",{}),{}),{}),{}),environment) while True: selected_text = input(">> ") try: main() except QuitException: print("Quitting the interpreter, bye!") except KeyboardInterrupt: print("\nKeyboard interrupt triggered") ```
{ "source": "Joe0708/zhilianRefresh", "score": 3 }
#### File: Joe0708/zhilianRefresh/refresh.py ```python import requests import argparse import json from bs4 import BeautifulSoup import time class ZlAccount: def __init__(self): self.loginname='' self.password='' self.loggedin=False self.session=requests.Session() self.session.headers.update({'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.89 Safari/537.36'}) #self.session.headers.update({'host':'i.zhaopin.com'}) def __del__(self): if self.session: self.session.close() def set_cookie(self,cookie): # cookies can be obtained from your Chrome console by the following command: 'document.cookie' # pass the raw string to this method. self.session.headers.update({'Cookie':cookie}) def refresh_resumes(self): s=self.session resp=s.get('https://i.zhaopin.com') soup=BeautifulSoup(resp.content,'html.parser') #print(soup.prettify()) search_result=soup.find_all('a',class_='myLinkA linkRefresh') if search_result: link=search_result[0].attrs['url'] params=link.split('?')[1] kvpairs=params.split('&') resume={} resume['resumeId']=kvpairs[1].split('=')[1] resume['resumenum']=kvpairs[2].split('=')[1] self.refresh(resume) else: print('no resume found.') #print(resp.content) def refresh(self,resume): # resume should be a dict contains two keys:resumeId,resumenum url='https://i.zhaopin.com/ResumeCenter/MyCenter/RefreshResume' resume['version']='1' resume['language']='1' resume['t']=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) #str(time.time()) print('resume dict: %s'%resume) r=self.session.get(url,data=resume) soup=BeautifulSoup(r.content,'html.parser') #print(soup.prettify()) sr=soup.find_all('h3',class_='entH setH') review=soup.find_all("p",class_='saleP') if sr: print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ": " + sr[0].text + "," + review[0].text) else: print('failed..') def main(): parser = argparse.ArgumentParser(description='refresh resume on zl') parser.add_argument('cookiefile',type=str,help='path/to/your/cookie/file') args = parser.parse_args() za=ZlAccount() f=open(args.cookiefile,'r') cookie=f.readline() #print(cookie) f.close() za.set_cookie(cookie.replace('\n','')) za.refresh_resumes() main() ```
{ "source": "joe1234wu/fbpcs", "score": 2 }
#### File: common/service/pcs_container_service.py ```python from typing import Optional, Dict, List from fbpcp.entity.container_instance import ContainerInstance from fbpcp.error.pcp import PcpError from fbpcp.service.container import ContainerService from fbpcp.service.container_aws import AWSContainerService from fbpcs.common.entity.pcs_container_instance import PCSContainerInstance from fbpcs.experimental.cloud_logs.log_retriever import CloudProvider, LogRetriever class PCSContainerService(ContainerService): def __init__(self, inner_container_service: ContainerService) -> None: self.inner_container_service: ContainerService = inner_container_service self.log_retriever: Optional[LogRetriever] = None if isinstance(self.inner_container_service, AWSContainerService): self.log_retriever = LogRetriever(CloudProvider.AWS) def get_region( self, ) -> str: return self.inner_container_service.get_region() def get_cluster( self, ) -> str: return self.inner_container_service.get_cluster() def create_instance( self, container_definition: str, cmd: str, env_vars: Optional[Dict[str, str]] = None, ) -> ContainerInstance: instance = self.inner_container_service.create_instance( container_definition, cmd, env_vars ) log_url = None if self.log_retriever: log_url = self.log_retriever.get_log_url(instance.instance_id) return PCSContainerInstance.from_container_instance(instance, log_url) def create_instances( self, container_definition: str, cmds: List[str], env_vars: Optional[Dict[str, str]] = None, ) -> List[ContainerInstance]: return [ self.create_instance(container_definition, cmd, env_vars) for cmd in cmds ] def get_instance(self, instance_id: str) -> Optional[ContainerInstance]: instance = self.inner_container_service.get_instance(instance_id) if instance is not None: log_url = None if self.log_retriever: log_url = self.log_retriever.get_log_url(instance_id) return PCSContainerInstance.from_container_instance(instance, log_url) def get_instances( self, instance_ids: List[str] ) -> List[Optional[ContainerInstance]]: return [self.get_instance(instance_id) for instance_id in instance_ids] def cancel_instance(self, instance_id: str) -> None: return self.inner_container_service.cancel_instance(instance_id) def cancel_instances(self, instance_ids: List[str]) -> List[Optional[PcpError]]: return self.inner_container_service.cancel_instances(instance_ids) def get_current_instances_count(self) -> int: return self.inner_container_service.get_current_instances_count() ``` #### File: experimental/cloud_logs/log_retriever.py ```python import re from fbpcs.private_computation.entity.cloud_provider import CloudProvider class LogRetriever: """Retrieves logs for containers under a specific cloud provider. Private attributes: _cloud_provider: Cloud Provider for which this log retriever was initialized """ def __init__(self, cloud_provider: CloudProvider) -> None: self._cloud_provider = cloud_provider def get_log_url(self, container_id: str) -> str: """Get the log url for a container Args: container_id: identifier for container for which the log URL should be retrieved Returns: return: The log URL for said container Raises: IndexError: can be raised when using CloudProvider.AWS NotImplementedError: if anything other than CloudProvider.AWS is used """ if self._cloud_provider is CloudProvider.AWS: return self._get_aws_cloudwatch_log_url(container_id) else: raise NotImplementedError( f"Retrieving log URLs for {self._cloud_provider} is not yet supported." ) def _get_aws_cloudwatch_log_url(self, container_id: str) -> str: """Return a CloudWatch URL given a container id. Args: container_id: AWS arn of a container run in ECS Returns: return: The Cloudwatch URL for said container Raises: IndexError: if container_id is not well-formed """ container_id_info = container_id.split(":") log_region = container_id_info[3] task_id_info = container_id_info[-1].split("/") cluster_name = task_id_info[1] container_name = self._get_container_name(cluster_name, log_region) task_id = task_id_info[-1] log_group_name = f"$252Fecs$252F{container_name}" log_stream_name = f"ecs$252F{container_name}$252F{task_id}" return ( f"https://{log_region}.console.aws.amazon.com/cloudwatch/home?" f"region={log_region}#logsV2:log-groups/" f"log-group/{log_group_name}/" f"log-events/{log_stream_name}" ) def _get_container_name(self, cluster_name: str, log_region: str) -> str: """Get the container_name. For publisher side log group, if it's created by PCE service, it will be changed to format "onedocker-container-shared-<region>" Args: cluster_name: the name of cluster in format "onedocker-cluster-<tag>" log_region: the AWS region Returns: return: The container_name Raises: IndexError: if container_name is not well-formed """ container_name = cluster_name.replace("-cluster", "-container") container_name_parts = container_name.split("-") # If the name does not have a 32 bit random string inside, return directly # Otherwise, it means it's a container created by the PCE service, # and it should be replaced with "-shared-<region>" if not re.search(r"[0-9a-f]{32}", container_name_parts[-1]): return container_name return f"{container_name.rsplit('-', 1)[0]}-shared-{log_region}" ``` #### File: cloud_bridge/data_ingestion/data_transformation_lambda.py ```python from __future__ import print_function import base64 import json import os import re from typing import Dict, List, Tuple # initiate print("Loading lambda function...") BROWSER_NAME_REGEXES: List[Tuple[re.Pattern, str]] = [ (re.compile(r".*Chrome.*Mobile Safari/[0-9.]+$"), "Chrome Mobile"), (re.compile(r".*Chrome.*Safari/[0-9.]+$"), "Chrome Desktop"), (re.compile(r".*Mobile.*Safari/[0-9.]+$"), "Mobile Safari"), (re.compile(r".*FBIOS;.*"), "Facebook for iOS"), ( re.compile(r".*(CPU OS|iPhone OS|CPU iPhone).*Instagram.*"), "Instagram IAB for iOS", ), (re.compile(r".*Instagram.*Android.*"), "Instagram IAB for Android"), (re.compile(r".*FB4A.*"), "Facebook for Android"), ] DEVICE_OS_REGEXES: List[Tuple[re.Pattern, str]] = [ (re.compile(r".*(CPU OS|iPhone OS|CPU iPhone).*"), "iOS"), (re.compile(r".*Android.*"), "Android"), (re.compile(r".*Windows NT.*"), "Windows NT"), (re.compile(r".*Mac OS X.*"), "Mac OS X"), ] OS_VERSION_REGEXES: List[re.Pattern] = [ re.compile(r".*(CPU OS|iPhone OS|CPU iPhone) +(\d+)[_\.](\d+)(?:[_\.](\d+))?.*"), re.compile(r".*(Intel Mac OS X) +(\d+)[_\.](\d+)(?:[_\.](\d+))?.*"), re.compile(r".*(Android) +(\d+)[_\.](\d+)(?:[_\.](\d+))?.*"), ] BROWSER_NAME = "browser_name" DEVICE_OS = "device_os" DEVICE_OS_VERSION = "device_os_version" def lambda_handler( event: Dict[str, List[Dict[str, str]]], context: Dict[str, str] ) -> Dict[str, List[Dict[str, str]]]: output = [] ##### NOTE: this script assume the schema is correct, no missing items for record in event["records"]: row = {} recordId = record["recordId"] row["recordId"] = recordId row["result"] = "Ok" decoded_data = json.loads(base64.b64decode(record["data"])) dic = dict(os.environ.items()) debug = "DEBUG" in dic.keys() and dic["DEBUG"] == "true" if debug: print(f"Processing record for recordId: {recordId}") # if loaded as str, load again if type(decoded_data) is str: decoded_data = json.loads(decoded_data) if "serverSideEvent" not in decoded_data.keys(): msg = f"Error: serverSideEvent does not exist for recordId: {recordId}" print(msg) continue row_data = decoded_data["serverSideEvent"] data_source_id = decoded_data.get("pixelId") # as of H2 2021, it should only be "website". action_source = row_data.get("action_source") timestamp = row_data.get("event_time") event_type = row_data.get("event_name") dummy_dict = {} currency_type = row_data.get("custom_data", dummy_dict).get("currency") conversion_value = row_data.get("custom_data", dummy_dict).get("value") email = row_data.get("user_data", dummy_dict).get("em") device_id = row_data.get("user_data", dummy_dict).get("madid") phone = row_data.get("user_data", dummy_dict).get("ph") client_ip_address = row_data.get("user_data", dummy_dict).get( "client_ip_address" ) client_user_agent = row_data.get("user_data", dummy_dict).get( "client_user_agent" ) click_id = row_data.get("user_data", dummy_dict).get("fbc") login_id = row_data.get("user_data", dummy_dict).get("fbp") parsed_user_agent_fields = ( _parse_client_user_agent(client_user_agent) if client_user_agent else {} ) # app data fields app_data_fields = [ "advertiser_tracking_enabled", "application_tracking_enabled", "consider_views", "device_token", "include_dwell_data", "include_video_data", "install_referrer", "installer_package", "receipt_data", "url_schemes", "extinfo", ] app_data = row_data.get("app_data", dummy_dict) parsed_app_data = {} for field in app_data_fields: if field in app_data: parsed_app_data[field] = app_data[field] # make sure not all values are None if all( value is None for value in [ timestamp, currency_type, conversion_value, event_type, email, device_id, phone, click_id, login_id, ] ): msg = f"All essential columns are None/Null. Skip recordId: f{recordId}" print(msg) continue data = {} user_data = {} data["data_source_id"] = data_source_id data["timestamp"] = timestamp data["currency_type"] = currency_type data["conversion_value"] = conversion_value data["event_type"] = event_type data["action_source"] = action_source if email: user_data["email"] = email if device_id: user_data["device_id"] = device_id if phone: user_data["phone"] = phone if client_ip_address: user_data["client_ip_address"] = client_ip_address if client_user_agent: user_data["client_user_agent"] = client_user_agent if click_id: user_data["click_id"] = click_id if login_id: user_data["login_id"] = login_id if BROWSER_NAME in parsed_user_agent_fields: user_data[BROWSER_NAME] = parsed_user_agent_fields[BROWSER_NAME] if DEVICE_OS in parsed_user_agent_fields: user_data[DEVICE_OS] = parsed_user_agent_fields[DEVICE_OS] if DEVICE_OS_VERSION in parsed_user_agent_fields: user_data[DEVICE_OS_VERSION] = parsed_user_agent_fields[DEVICE_OS_VERSION] data["user_data"] = user_data data["app_data"] = parsed_app_data # firehose need data to be b64-encoded data = json.dumps(data) + "\n" data = data.encode("utf-8") row["data"] = base64.b64encode(data) output.append(row) print("finished data transformation.") return {"records": output} def _parse_client_user_agent(client_user_agent: str) -> Dict[str, str]: parsed_fields = {} for (regex, browserName) in BROWSER_NAME_REGEXES: if regex.match(client_user_agent): parsed_fields[BROWSER_NAME] = browserName break for (regex, deviceOs) in DEVICE_OS_REGEXES: if regex.match(client_user_agent): parsed_fields[DEVICE_OS] = deviceOs break for regex in OS_VERSION_REGEXES: matches = regex.match(client_user_agent) if matches: groups = list(filter(lambda item: type(item) == str, matches.groups())) if len(groups) > 1: parsed_fields[DEVICE_OS_VERSION] = ".".join(groups[1:]) break return parsed_fields ``` #### File: kodiak/ffi_codegen/codegen.py ```python import subprocess import sys from dataclasses import dataclass from typing import Optional @dataclass class TypeInfo: arg_name: str cpp_name: str rust_name: str cpp_clear_type: str mpc_engine_type: str @dataclass class OperatorInfo: name: str symbol: str ret: Optional[str] = None # TODO: Changing all these `false` to `true` makes it a batch game BOOLEAN_TYPE = TypeInfo( arg_name="mpc_bool", cpp_name="CppMPCBool", rust_name="bool", cpp_clear_type="bool", mpc_engine_type="SecBit<false>", ) ARITHMETIC_TYPES = [ TypeInfo( arg_name="mpc_int32", cpp_name="CppMPCInt32", rust_name="i32", cpp_clear_type="int32_t", mpc_engine_type="SecSignedInt<32, false>", ), TypeInfo( arg_name="mpc_int64", cpp_name="CppMPCInt64", rust_name="i64", cpp_clear_type="int64_t", mpc_engine_type="SecSignedInt<64, false>", ), TypeInfo( arg_name="mpc_uint32", cpp_name="CppMPCUInt32", rust_name="u32", cpp_clear_type="uint32_t", mpc_engine_type="SecUnsignedInt<32, false>", ), TypeInfo( arg_name="mpc_uint64", cpp_name="CppMPCUInt64", rust_name="u64", cpp_clear_type="uint64_t", mpc_engine_type="SecUnsignedInt<64, false>", ), ] BOOLEAN_OPS = [ OperatorInfo(name="and", symbol="&"), OperatorInfo(name="or", symbol="||"), OperatorInfo(name="xor", symbol="^"), ] ARITHMETIC_OPS = [ OperatorInfo(name="add", symbol="+"), OperatorInfo(name="sub", symbol="-"), # OperatorInfo(name="mul", symbol="*"), # OperatorInfo(name="div", symbol="/"), ] COMPARISON_OPS = [ # OperatorInfo(name="neq", symbol="!="), OperatorInfo(name="eq", symbol="==", ret=BOOLEAN_TYPE), OperatorInfo(name="lt", symbol="<", ret=BOOLEAN_TYPE), OperatorInfo(name="gt", symbol=">", ret=BOOLEAN_TYPE), OperatorInfo(name="lte", symbol="<=", ret=BOOLEAN_TYPE), OperatorInfo(name="gte", symbol=">=", ret=BOOLEAN_TYPE), ] def get_license_and_generated_header() -> str: return ( "/*\n" " * Copyright (c) Meta Platforms, Inc. and affiliates.\n" " *\n" " * This source code is licensed under the MIT license found in the\n" " * LICENSE file in the root directory of this source tree.\n" # Note: we split this @gen over two lines because otherwise Phabricator # will think *this* file is generated :) " */\n\n/* @gen" "erated file - do not modify directly! */\n\n" ) def get_h_pragma_and_includes() -> str: return ( "#pragma once\n\n" "#include <map>\n" "#include <memory>\n" "#include <string>\n\n" "#include <fbpcf/engine/communication/SocketPartyCommunicationAgentFactory.h>\n" "#include <fbpcf/frontend/mpcGame.h>\n" "#include <fbpcf/mpc_std_lib/oram/IWriteOnlyOram.h>\n" "#include <fbpcf/mpc_std_lib/oram/LinearOramFactory.h>\n" "#include <fbpcf/scheduler/IScheduler.h>\n" "#include <fbpcf/scheduler/SchedulerHelper.h>\n" ) def get_using_declaration(type_info: TypeInfo) -> str: return ( f"using {type_info.cpp_name} = typename fbpcf::frontend::" # TODO: Only handles schedulerId=0 f"MpcGame<0>::template {type_info.mpc_engine_type};" ) def get_kodiak_game_classes() -> str: return ( "constexpr int32_t PUBLISHER_ROLE = 0;\n" "constexpr int32_t PARTNER_ROLE = 1;\n\n" "template <int schedulerId, bool batched = false>\n" "class KodiakGameDetail : public fbpcf::frontend::MpcGame<schedulerId> {\n" " public:\n" " explicit KodiakGameDetail(std::unique_ptr<fbpcf::scheduler::IScheduler> scheduler)\n" " : fbpcf::frontend::MpcGame<schedulerId>(std::move(scheduler)) {}\n" "};\n" # TODO: Adding ', true' as a second template argument makes this a batch game "class KodiakGame : public KodiakGameDetail<0> {\n" " public:\n" " explicit KodiakGame(std::unique_ptr<fbpcf::scheduler::IScheduler> scheduler)\n" " : KodiakGameDetail<0>(std::move(scheduler)) {}\n" "};\n" "std::unique_ptr<KodiakGame> new_kodiak_game(int32_t role, const std::string& host, int16_t port) {\n" " std::map<int, fbpcf::engine::communication::SocketPartyCommunicationAgentFactory::PartyInfo> partyInfos{" " {{PUBLISHER_ROLE, {host, port}}, {PARTNER_ROLE, {host, port}}}};\n" " auto commAgentFactory = std::make_unique<fbpcf::engine::communication::SocketPartyCommunicationAgentFactory>(role, std::move(partyInfos));\n" " auto scheduler = fbpcf::scheduler::createLazySchedulerWithRealEngine(role, *commAgentFactory);\n" " return std::make_unique<KodiakGame>(std::move(scheduler));\n" "}\n" ) def func_to_header_declaration(f: str) -> str: return f[: f.index("{") - 1] + ";" def make_new_func(type_info: TypeInfo) -> str: cpp_typename = type_info.cpp_name arg_name = type_info.arg_name clear_type = type_info.cpp_clear_type return ( # Signature and funcname f"std::unique_ptr<{cpp_typename}> new_{arg_name}" # parameters f"({clear_type} a, int32_t partyId) {{\n" # statements f" return std::make_unique<{cpp_typename}>(a, partyId);\n" # end of func "}" ) def make_reveal_func(type_info: TypeInfo) -> str: ret_type = type_info.cpp_clear_type arg_name = type_info.arg_name cpp_typename = type_info.cpp_name return ( # Signature and funcname f"{ret_type} reveal_{arg_name}" # parameters f"(const {cpp_typename}& a) {{\n" # statements # TODO: Open to *both* parties f" auto res = a.openToParty(0);\n" f" return res.getValue();\n" # end of func "}" ) def make_mux_func(type_info: TypeInfo) -> str: cpp_type = type_info.cpp_name arg_name = type_info.arg_name return ( # Signature and funcname f"std::unique_ptr<{cpp_type}> {arg_name}_mux" # parameters f"(const CppMPCBool& choiceBit, const {cpp_type}& trueCase, const {cpp_type}& falseCase) {{\n" # statements f" return std::make_unique<{cpp_type}>(trueCase.mux(choiceBit, falseCase));" # end of func "}" ) def make_binop_func(type_info: TypeInfo, op_info: OperatorInfo) -> str: # If the operator explicitly defines a return type, use that # otherwise fall back to assuming A <op> A -> A param_typename = type_info.cpp_name if op_info.ret is not None: ret_typename = op_info.ret.cpp_name else: ret_typename = param_typename funcname = f"{type_info.arg_name}_{op_info.name}" op = op_info.symbol return ( # Signature and funcname f"std::unique_ptr<{ret_typename}> {funcname}" # parameters f"(const {param_typename}& a, const {param_typename}& b) {{\n" # statements f" return std::make_unique<{ret_typename}>(a {op} b);\n" # end of func "}" ) def main() -> None: if len(sys.argv) != 2: sys.exit(f"Usage: python3 {sys.argv[0]} outfile") header_filename = sys.argv[1] + ".h" output_filename = sys.argv[1] + ".cpp" with open(header_filename, "w") as f_h, open(output_filename, "w") as f_cpp: # First write the license, include header, and namespace declarations # This is the "set up" for the h file print(get_license_and_generated_header(), file=f_h) print(get_h_pragma_and_includes(), file=f_h) print("namespace kodiak_cpp {\n", file=f_h) for type_info in [BOOLEAN_TYPE] + ARITHMETIC_TYPES: print(get_using_declaration(type_info), file=f_h) print(get_kodiak_game_classes(), file=f_h) # First write the license, include header, and namespace declarations # This is the "set up" for the cpp file print(get_license_and_generated_header(), file=f_cpp) print('#include "fbpcs/kodiak/include/ffi.h"\n', file=f_cpp) print("#include <memory>\n", file=f_cpp) print("using namespace kodiak_cpp;\n", file=f_cpp) # Write all the functions for the boolean type type_info = BOOLEAN_TYPE print(f"Gen functions for {type_info.arg_name}") new_f = make_new_func(type_info) print(func_to_header_declaration(new_f), file=f_h) print(new_f, file=f_cpp) reveal_f = make_reveal_func(type_info) print(func_to_header_declaration(reveal_f), file=f_h) print(reveal_f, file=f_cpp) for operator_info in BOOLEAN_OPS: binop_f = make_binop_func(type_info, operator_info) print(func_to_header_declaration(binop_f), file=f_h) print(binop_f, file=f_cpp) # Write all the functions for the arithmetic types for type_info in ARITHMETIC_TYPES: print(f"Gen functions for {type_info.arg_name}") new_f = make_new_func(type_info) print(func_to_header_declaration(new_f), file=f_h) print(new_f, file=f_cpp) reveal_f = make_reveal_func(type_info) print(func_to_header_declaration(reveal_f), file=f_h) print(reveal_f, file=f_cpp) mux_f = make_mux_func(type_info) print(func_to_header_declaration(mux_f), file=f_h) print(mux_f, file=f_cpp) for operator_info in ARITHMETIC_OPS: binop_f = make_binop_func(type_info, operator_info) print(func_to_header_declaration(binop_f), file=f_h) print(binop_f, file=f_cpp) for operator_info in COMPARISON_OPS: binop_f = make_binop_func(type_info, operator_info) print(func_to_header_declaration(binop_f), file=f_h) print(binop_f, file=f_cpp) print("} // namespace kodiak_cpp", file=f_h) # Finally, run the auto-formatters on the code subprocess.run(["clang-format", "-i", header_filename]) subprocess.run(["clang-format", "-i", output_filename]) if __name__ == "__main__": main() ``` #### File: pc_pre_validation/tests/validation_report_test.py ```python from unittest import TestCase from fbpcs.pc_pre_validation.enums import ValidationResult from fbpcs.pc_pre_validation.validation_report import ValidationReport class TestValidationReport(TestCase): def test_get_str_for_report_with_details(self) -> None: expected_report_str = """Validation Report: test_validator_name Result: success Message: test_message Details: { "test_key_1": 5, "test_key_2": { "test_key_3": { "test_key_4": 1 }, "test_key_5": { "test_key_6": 1, "test_key_7": 2 } } }""" report = ValidationReport( validation_result=ValidationResult.SUCCESS, validator_name="test_validator_name", message="test_message", details={ "test_key_1": 5, "test_key_2": { "test_key_3": { "test_key_4": 1, }, "test_key_5": { "test_key_6": 1, "test_key_7": 2, }, }, }, ) self.assertEqual(expected_report_str, str(report)) def test_get_str_for_report_without_details(self) -> None: expected_report_str = """Validation Report: test_validator_name Result: failed Message: test_message""" report = ValidationReport( validation_result=ValidationResult.FAILED, validator_name="test_validator_name", message="test_message", ) self.assertEqual(expected_report_str, str(report)) ``` #### File: pid/repository/pid_instance.py ```python import abc import threading from fbpcs.pid.entity.pid_instance import PIDInstance class PIDInstanceRepository(abc.ABC): def __init__(self) -> None: """ IMPORTANT: after acquiring this lock, and before releasing it, there cannot be async calls, otherwise it will end up with deadlock. """ self.lock = threading.Lock() @abc.abstractmethod def create(self, instance: PIDInstance) -> None: pass @abc.abstractmethod def read(self, instance_id: str) -> PIDInstance: pass @abc.abstractmethod def update(self, instance: PIDInstance) -> None: pass @abc.abstractmethod def delete(self, instance_id: str) -> None: pass ``` #### File: pid_service/tests/test_pid_prepare_stage.py ```python import unittest from typing import Tuple, Dict from unittest.mock import MagicMock, patch, AsyncMock from fbpcp.entity.container_instance import ContainerInstance, ContainerInstanceStatus from fbpcs.data_processing.pid_preparer.union_pid_preparer_cpp import ( CppUnionPIDDataPreparerService, ) from fbpcs.pcf.tests.async_utils import to_sync from fbpcs.pid.entity.pid_instance import PIDStageStatus from fbpcs.pid.entity.pid_stages import UnionPIDStage from fbpcs.pid.service.pid_service.pid_prepare_stage import PIDPrepareStage from fbpcs.pid.service.pid_service.pid_stage import PIDStage from fbpcs.pid.service.pid_service.pid_stage_input import PIDStageInput def data_test_run() -> Tuple[ Dict[str, bool], Dict[str, bool], ]: return ({"wait_for_containers": True}, {"wait_for_containers": False}) class TestPIDPrepareStage(unittest.TestCase): @patch("fbpcs.pid.repository.pid_instance.PIDInstanceRepository") @to_sync async def test_prepare( self, mock_instance_repo: unittest.mock.MagicMock, ) -> None: async def _run_sub_test( wait_for_containers: bool, expected_container_status: ContainerInstanceStatus, ) -> None: with patch.object( CppUnionPIDDataPreparerService, "prepare_on_container_async" ) as mock_prepare_on_container_async, patch.object( PIDStage, "update_instance_containers" ): container = ContainerInstance( instance_id="123", ip_address="192.0.2.0", status=expected_container_status, ) mock_prepare_on_container_async.return_value = container stage = PIDPrepareStage( stage=UnionPIDStage.PUBLISHER_PREPARE, instance_repository=mock_instance_repo, storage_svc="STORAGE", # pyre-ignore onedocker_svc="ONEDOCKER", # pyre-ignore onedocker_binary_config=MagicMock( task_definition="offline-task:1#container", tmp_directory="/tmp/", binary_version="latest", ), ) res = await stage.prepare( instance_id="123", input_path="in", output_path="out", num_shards=1, wait_for_containers=wait_for_containers, ) self.assertEqual( PIDStage.get_stage_status_from_containers([container]), res, ) data_tests = ( (True, ContainerInstanceStatus.COMPLETED), (True, ContainerInstanceStatus.FAILED), (False, ContainerInstanceStatus.STARTED), ) for data_test in data_tests: with self.subTest( wait_for_containers=data_test[0], expected_container_status=data_test[1], ): # reset mocks for each subTests mock_instance_repo.reset_mock() await _run_sub_test( data_test[0], data_test[1], ) @to_sync @patch( "fbpcs.private_computation.service.run_binary_base_service.RunBinaryBaseService.wait_for_containers_async" ) @patch("fbpcp.service.storage.StorageService") @patch("fbpcs.pid.repository.pid_instance.PIDInstanceRepository") @patch("fbpcp.service.onedocker.OneDockerService") async def test_run( self, mock_onedocker_svc: unittest.mock.MagicMock, mock_instance_repo: unittest.mock.MagicMock, mock_storage_svc: unittest.mock.MagicMock, mock_wait_for_containers_async: unittest.mock.MagicMock, ) -> None: async def _run_sub_test( wait_for_containers: bool, ) -> None: ip = "192.0.2.0" container = ContainerInstance( instance_id="123", ip_address=ip, status=ContainerInstanceStatus.STARTED ) mock_onedocker_svc.start_containers = MagicMock(return_value=[container]) mock_onedocker_svc.wait_for_pending_containers = AsyncMock( return_value=[container] ) container.status = ( ContainerInstanceStatus.COMPLETED if wait_for_containers else ContainerInstanceStatus.STARTED ) mock_wait_for_containers_async.return_value = [container] stage = PIDPrepareStage( stage=UnionPIDStage.PUBLISHER_PREPARE, instance_repository=mock_instance_repo, storage_svc=mock_storage_svc, onedocker_svc=mock_onedocker_svc, onedocker_binary_config=MagicMock( task_definition="offline-task:1#container", tmp_directory="/tmp/", binary_version="latest", ), ) instance_id = "444" stage_input = PIDStageInput( input_paths=["in"], output_paths=["out"], num_shards=2, instance_id=instance_id, ) # Basic test: All good with patch.object(PIDPrepareStage, "files_exist") as mock_fe: mock_fe.return_value = True stage = PIDPrepareStage( stage=UnionPIDStage.PUBLISHER_PREPARE, instance_repository=mock_instance_repo, storage_svc=mock_storage_svc, onedocker_svc=mock_onedocker_svc, onedocker_binary_config=MagicMock( task_definition="offline-task:1#container", tmp_directory="/tmp/", binary_version="latest", ), ) status = await stage.run( stage_input, wait_for_containers=wait_for_containers ) self.assertEqual( PIDStageStatus.COMPLETED if wait_for_containers else PIDStageStatus.STARTED, status, ) self.assertEqual(mock_onedocker_svc.start_containers.call_count, 2) if wait_for_containers: self.assertEqual(mock_wait_for_containers_async.call_count, 2) else: mock_wait_for_containers_async.assert_not_called() mock_instance_repo.read.assert_called_with(instance_id) self.assertEqual(mock_instance_repo.read.call_count, 4) self.assertEqual(mock_instance_repo.update.call_count, 4) with patch.object(PIDPrepareStage, "files_exist") as mock_fe, patch.object( PIDPrepareStage, "prepare" ) as mock_prepare: mock_fe.return_value = True status = await stage.run( stage_input, wait_for_containers=wait_for_containers ) mock_prepare.assert_called_with( instance_id, "in", "out", 2, wait_for_containers, None ) # Input not ready with patch.object(PIDPrepareStage, "files_exist") as mock_fe: mock_fe.return_value = False status = await stage.run( stage_input, wait_for_containers=wait_for_containers ) self.assertEqual(PIDStageStatus.FAILED, status) # Multiple input paths (invariant exception) with patch.object(PIDPrepareStage, "files_exist") as mock_fe: with self.assertRaises(ValueError): mock_fe.return_value = True stage_input.input_paths = ["in1", "in2"] stage = PIDPrepareStage( stage=UnionPIDStage.PUBLISHER_PREPARE, instance_repository=mock_instance_repo, storage_svc=mock_storage_svc, onedocker_svc=mock_onedocker_svc, onedocker_binary_config=MagicMock( task_definition="offline-task:1#container", tmp_directory="/tmp/", binary_version="latest", ), ) status = await stage.run( stage_input, wait_for_containers=wait_for_containers ) for data_test in data_test_run(): wait_for_containers = data_test["wait_for_containers"] with self.subTest( "Subtest with wait_for_containers: {wait_for_containers}", wait_for_containers=wait_for_containers, ): # reset mocks for each subTests mock_onedocker_svc.reset_mock() mock_instance_repo.reset_mock() mock_storage_svc.reset_mock() mock_wait_for_containers_async.reset_mock() await _run_sub_test(wait_for_containers) ``` #### File: fbpcs/pl_coordinator/pl_instance_runner.py ```python import logging from multiprocessing import Process from time import sleep, time from typing import Any, Dict, List, Optional, Type from fbpcs.pl_coordinator.constants import ( MIN_TRIES, MAX_TRIES, MIN_NUM_INSTANCES, MAX_NUM_INSTANCES, PROCESS_WAIT, INSTANCE_SLA, POLL_INTERVAL, WAIT_VALID_STAGE_TIMEOUT, WAIT_VALID_STATUS_TIMEOUT, RETRY_INTERVAL, CANCEL_STAGE_TIMEOUT, ) from fbpcs.pl_coordinator.exceptions import ( PLInstanceCalculationException, IncompatibleStageError, ) from fbpcs.pl_coordinator.pc_partner_instance import PrivateComputationPartnerInstance from fbpcs.pl_coordinator.pc_publisher_instance import ( PrivateComputationPublisherInstance, ) from fbpcs.pl_coordinator.pl_graphapi_utils import PLGraphAPIClient from fbpcs.private_computation.entity.private_computation_instance import ( AggregationType, AttributionRule, ) from fbpcs.private_computation.entity.private_computation_instance import ( PrivateComputationGameType, ) from fbpcs.private_computation.entity.private_computation_status import ( PrivateComputationInstanceStatus, ) from fbpcs.private_computation.stage_flows.private_computation_base_stage_flow import ( PrivateComputationBaseStageFlow, ) class LoggerAdapter(logging.LoggerAdapter): def __init__(self, logger: logging.Logger, prefix: str) -> None: super(LoggerAdapter, self).__init__(logger, {}) self.prefix = prefix def process(self, msg, kwargs): return "[%s] %s" % (self.prefix, msg), kwargs def run_instance( config: Dict[str, Any], instance_id: str, input_path: str, num_mpc_containers: int, num_pid_containers: int, stage_flow: Type[PrivateComputationBaseStageFlow], logger: logging.Logger, game_type: PrivateComputationGameType, attribution_rule: Optional[AttributionRule] = None, aggregation_type: Optional[AggregationType] = None, concurrency: Optional[int] = None, num_files_per_mpc_container: Optional[int] = None, k_anonymity_threshold: Optional[int] = None, num_tries: Optional[int] = 2, # this is number of tries per stage dry_run: Optional[bool] = False, ) -> None: num_tries = num_tries if num_tries is not None else MAX_TRIES if num_tries < MIN_TRIES or num_tries > MAX_TRIES: raise ValueError(f"num_tries must be between {MIN_TRIES} and {MAX_TRIES}.") client = PLGraphAPIClient(config["graphapi"]["access_token"], logger) instance_runner = PLInstanceRunner( config, instance_id, input_path, num_mpc_containers, num_pid_containers, logger, client, num_tries, game_type, dry_run, stage_flow, attribution_rule, aggregation_type, concurrency, num_files_per_mpc_container, k_anonymity_threshold, ) logger.info(f"Running private lift for instance {instance_id}") instance_runner.run() def run_instances( config: Dict[str, Any], instance_ids: List[str], input_paths: List[str], num_shards_list: List[str], stage_flow: Type[PrivateComputationBaseStageFlow], logger: logging.Logger, num_tries: Optional[int] = 2, # this is number of tries per stage dry_run: Optional[bool] = False, ) -> None: if len(instance_ids) is not len(input_paths): raise ValueError( "Number of instances and number of input paths must be the same" ) if len(input_paths) is not len(num_shards_list): raise ValueError( "Number of input paths and number of num_shards must be the same" ) if not MIN_NUM_INSTANCES <= len(instance_ids) <= MAX_NUM_INSTANCES: raise ValueError( f"Number of instances must be between {MIN_NUM_INSTANCES} and {MAX_NUM_INSTANCES}" ) processes = list( map( lambda instance_id, input_path, num_shards: Process( target=run_instance, kwargs={ "config": config, "instance_id": instance_id, "input_path": input_path, "num_mpc_containers": num_shards, "num_pid_containers": num_shards, "stage_flow": stage_flow, "logger": LoggerAdapter(logger=logger, prefix=instance_id), "game_type": PrivateComputationGameType.LIFT, "num_tries": num_tries, "dry_run": dry_run, }, ), instance_ids, input_paths, num_shards_list, ) ) for process in processes: process.start() sleep(PROCESS_WAIT) for process in processes: process.join(INSTANCE_SLA) class PLInstanceRunner: """ Private Lift Partner-Publisher computation for an instance. """ def __init__( self, config: Dict[str, Any], instance_id: str, input_path: str, num_mpc_containers: int, num_pid_containers: int, logger: logging.Logger, client: PLGraphAPIClient, num_tries: int, game_type: PrivateComputationGameType, dry_run: Optional[bool], stage_flow: Type[PrivateComputationBaseStageFlow], attribution_rule: Optional[AttributionRule] = None, aggregation_type: Optional[AggregationType] = None, concurrency: Optional[int] = None, num_files_per_mpc_container: Optional[int] = None, k_anonymity_threshold: Optional[int] = None, ) -> None: self.logger = logger self.instance_id = instance_id self.publisher = PrivateComputationPublisherInstance( instance_id, logger, client ) self.partner = PrivateComputationPartnerInstance( instance_id=instance_id, config=config, input_path=input_path, game_type=game_type, attribution_rule=attribution_rule, aggregation_type=aggregation_type, concurrency=concurrency, num_files_per_mpc_container=num_files_per_mpc_container, k_anonymity_threshold=k_anonymity_threshold, num_mpc_containers=num_mpc_containers, num_pid_containers=num_pid_containers, logger=logger, ) self.num_tries = num_tries self.dry_run = dry_run self.stage_flow = stage_flow def get_valid_stage(self) -> Optional[PrivateComputationBaseStageFlow]: if not self.is_finished(): publisher_stage = self.publisher.get_valid_stage(self.stage_flow) partner_stage = self.partner.get_valid_stage(self.stage_flow) # expected for all joint stages if publisher_stage is partner_stage: return publisher_stage elif publisher_stage is None: return partner_stage elif partner_stage is None: return publisher_stage elif publisher_stage is partner_stage.previous_stage: # if it's not a joint stage, the statuses don't matter at all since # each party operates independently # Example: publisher is PREPARE_DATA_FAILED, partner is PREPARE_DATA_COMPLETED if not publisher_stage.is_joint_stage or ( # it's fine if one party is completed and the other is started # because the one with the started status just needs to call # update_instance one more time # Example: publisher is COMPUTATION_STARTED, partner is COMPUTATION_COMPLETED self.stage_flow.is_started_status(self.publisher.status) and self.stage_flow.is_completed_status(self.partner.status) ): return publisher_stage elif partner_stage is publisher_stage.previous_stage: # Example: publisher is PREPARE_DATA_COMPLETED, partner is PREPARE_DATA_FAILED if not partner_stage.is_joint_stage or ( # Example: publisher is COMPUTATION_COMPLETED, partner is COMPUTATION_STARTED self.stage_flow.is_started_status(self.partner.status) and self.stage_flow.is_completed_status(self.publisher.status) ): return partner_stage # Example: partner is CREATED, publisher is PID_PREPARE_COMPLETED # Example: publisher is COMPUTATION COMPLETED, partner is PREPARE_COMPLETED # Example: publisher is COMPUTATION_COMPLETED, partner is COMPUTATION_FAILED raise IncompatibleStageError.make_error( publisher_stage.name, partner_stage.name ) return None def wait_valid_stage(self, timeout: int) -> PrivateComputationBaseStageFlow: self.logger.info("Polling instances expecting valid stage.") if timeout <= 0: raise ValueError(f"Timeout must be > 0, not {timeout}") start_time = time() while time() < start_time + timeout: valid_stage = self.get_valid_stage() if valid_stage is None: self.logger.info( f"Valid stage not found. Publisher status: {self.publisher.status}. Partner status: {self.partner.status}" ) sleep(POLL_INTERVAL) else: self.logger.info(f"Valid stage found: {valid_stage}") return valid_stage raise PLInstanceCalculationException( "Timeout error", f"Waiting for valid stage timed out after {timeout}s.", "Try running again", ) def is_finished(self) -> bool: return self.publisher.is_finished() and self.partner.is_finished() def run(self) -> None: tries = 0 while tries < self.num_tries: tries += 1 try: if self.is_finished(): self.logger.info( f"Private Lift run completed for instance {self.instance_id}. View results at {self.partner.output_dir}" ) return # in case the publisher has a status of TIMEOUT self.publisher.wait_valid_status(WAIT_VALID_STATUS_TIMEOUT) valid_stage = self.wait_valid_stage(WAIT_VALID_STAGE_TIMEOUT) if valid_stage is not None: self.run_stage(valid_stage) # run the next stage if not self.dry_run: self.run() break except Exception as e: if tries >= self.num_tries: raise e self.logger.error( f"Error: type: {type(e)}, message: {e}. Retries left: {self.num_tries - tries}." ) sleep(RETRY_INTERVAL) def run_stage(self, stage: PrivateComputationBaseStageFlow) -> None: self.logger.info(f"Running publisher-partner {stage.name}") # call publisher <STAGE> self.logger.info(f"Invoking publisher {stage.name}.") self.publisher.run_stage(stage) server_ips = None # if it's a joint stage, it means partner must wait for publisher to provide server ips. # if it is not a joint stage, publisher and partner can run in parallel if stage.is_joint_stage: # keep polling graphapi until publisher status is <STAGE>_STARTED and server_ips are available self.publisher.wait_stage_start(stage) server_ips = self.publisher.server_ips if server_ips is None: raise ValueError(f"{stage.name} requires server ips but got none.") self.logger.info(f"Starting partner {stage.name}:") self.partner.run_stage(stage, server_ips) self.wait_stage_complete(stage) def wait_stage_complete(self, stage: PrivateComputationBaseStageFlow) -> None: start_status = stage.started_status complete_status = stage.completed_status fail_status = stage.failed_status timeout = stage.timeout start_time = time() cancel_time = 0 while time() < start_time + timeout: self.publisher.update_instance() self.partner.update_instance() self.logger.info( f"Publisher status: {self.publisher.status}. Partner status: {self.partner.status}." ) if ( self.publisher.status is complete_status and self.partner.status is complete_status ): self.logger.info(f"Stage {stage.name} is complete.") return if ( self.publisher.status in [fail_status, PrivateComputationInstanceStatus.TIMEOUT] or self.partner.status is fail_status ): if ( self.publisher.status in [fail_status, PrivateComputationInstanceStatus.TIMEOUT] and self.partner.status is start_status and cancel_time <= CANCEL_STAGE_TIMEOUT ): # wait 5 minutes for partner to become fail status on its own # if not, only perform 'cancel_stage' one time if cancel_time == CANCEL_STAGE_TIMEOUT: self.logger.error(f"Canceling partner stage {stage.name}.") self.partner.cancel_current_stage() else: self.logger.info( f"Waiting to cancel partner stage {stage.name}." ) # only cancel once cancel_time += POLL_INTERVAL else: raise PLInstanceCalculationException( f"Stage {stage.name} failed.", f"Publisher status: {self.publisher.status}. Partner status: {self.partner.status}.", "Try running again", ) sleep(POLL_INTERVAL) raise PLInstanceCalculationException( f"Stage {stage.name} timed out after {timeout}s. Publisher status: {self.publisher.status}. Partner status: {self.partner.status}.", "unknown", "Try running again", ) ``` #### File: fbpcs/private_computation/pc_attribution_runner.py ```python import json import logging from datetime import datetime, timezone from typing import Type, Optional, Dict, Any import dateutil.parser from fbpcs.pl_coordinator.pl_graphapi_utils import ( PLGraphAPIClient, ) from fbpcs.pl_coordinator.pl_instance_runner import ( run_instance, ) from fbpcs.private_computation.entity.private_computation_instance import ( AttributionRule, AggregationType, PrivateComputationGameType, ) from fbpcs.private_computation.entity.private_computation_status import ( PrivateComputationInstanceStatus, ) from fbpcs.private_computation.stage_flows.private_computation_base_stage_flow import ( PrivateComputationBaseStageFlow, ) class LoggerAdapter(logging.LoggerAdapter): def __init__(self, logger: logging.Logger, prefix: str) -> None: super(LoggerAdapter, self).__init__(logger, {}) self.prefix = prefix def process(self, msg, kwargs): return "[%s] %s" % (self.prefix, msg), kwargs # dataset information fields AD_OBJECT_ID = "ad_object_id" TARGET_OBJECT_TYPE = "target_object_type" DATASETS_INFORMATION = "datasets_information" INSTANCES = "instances" NUM_SHARDS = "num_shards" NUM_CONTAINERS = "num_containers" # instance fields TIMESTAMP = "timestamp" ATTRIBUTION_RULE = "attribution_rule" STATUS = "status" """ The input to this function will be the input path, the dataset_id as well as the following params to choose a specific dataset range to create and run a PA instance on 1) start_date - start date of the FB Opportunity data 2) end_date - end date of the FB Opportunity data 3) attribution_rule - attribution rule for the selected data 4) result_type - result type for the selected data """ def run_attribution( config: Dict[str, Any], dataset_id: str, input_path: str, timestamp: str, attribution_rule: AttributionRule, aggregation_type: AggregationType, concurrency: int, num_files_per_mpc_container: int, k_anonymity_threshold: int, stage_flow: Type[PrivateComputationBaseStageFlow], logger: logging.Logger, num_tries: Optional[int] = 2, # this is number of tries per stage ) -> None: ## Step 1: Validation. Function arguments and for private attribution run. # obtain the values in the dataset info vector. client = PLGraphAPIClient(config["graphapi"]["access_token"], logger) datasets_info = _get_attribution_dataset_info(client, dataset_id, logger) datasets = datasets_info[DATASETS_INFORMATION] matched_data = {} attribution_rule_str = attribution_rule.name attribution_rule_val = attribution_rule.value instance_id = None # Validate if input is datetime or timestamp is_date_format = _iso_date_validator(timestamp) if is_date_format: dt = datetime.fromisoformat(timestamp) else: dt = datetime.fromtimestamp(int(timestamp), tz=timezone.utc) print(dt) return dt = datetime.fromtimestamp(int(timestamp), tz=timezone.utc) # Verify that input has matching dataset info: # a. attribution rule # b. timestamp if len(datasets) == 0: raise ValueError("Dataset for given parameters and dataset invalid") for data in datasets: if data["key"] == attribution_rule_str: matched_attr = data["value"] for m_data in matched_attr: m_time = dateutil.parser.parse(m_data[TIMESTAMP]) if m_time == dt: matched_data = m_data break if len(matched_data) == 0: raise ValueError("No dataset matching to the information provided") # Step 2: Validate what instances need to be created vs what already exist dataset_instance_data = _get_existing_pa_instances(client, dataset_id) existing_instances = dataset_instance_data["data"] for inst in existing_instances: inst_time = dateutil.parser.parse(inst[TIMESTAMP]) print(inst[STATUS]) if ( inst[ATTRIBUTION_RULE] == attribution_rule_val and inst_time == dt and inst[STATUS] != PrivateComputationInstanceStatus.POST_PROCESSING_HANDLERS_COMPLETED ): instance_id = inst["id"] break if instance_id is None: instance_id = _create_new_instance( dataset_id, int(timestamp), attribution_rule_val, client, logger, ) instance_data = _get_pa_instance_info(client, instance_id, logger) num_pid_containers = instance_data[NUM_CONTAINERS] num_mpc_containers = instance_data[NUM_SHARDS] ## Step 3. Run Instances. Run maximum number of instances in parallel logger.info(f"Start running instance {instance_id}.") run_instance( config, instance_id, input_path, num_pid_containers, num_mpc_containers, stage_flow, logger, PrivateComputationGameType.ATTRIBUTION, attribution_rule, AggregationType.MEASUREMENT, concurrency, num_files_per_mpc_container, k_anonymity_threshold, num_tries, ) logger.info(f"Finished running instances {instance_id}.") def _create_new_instance( dataset_id: str, timestamp: int, attribution_rule: str, client: PLGraphAPIClient, logger: logging.Logger, ) -> str: instance_id = json.loads( client.create_pa_instance( dataset_id, timestamp, attribution_rule, 2, ).text )["id"] logger.info( f"Created instance {instance_id} for dataset {dataset_id} and attribution rule {attribution_rule}" ) return instance_id def get_attribution_dataset_info( config: Dict[str, Any], dataset_id: str, logger: logging.Logger ) -> str: client = PLGraphAPIClient(config["graphapi"]["access_token"], logger) return json.loads( client.get_attribution_dataset_info( dataset_id, [AD_OBJECT_ID, TARGET_OBJECT_TYPE, DATASETS_INFORMATION], ).text ) def _get_pa_instance_info( client: PLGraphAPIClient, instance_id: str, logger: logging.Logger ) -> Any: return json.loads(client.get_instance(instance_id).text) def _iso_date_validator(timestamp: str) -> Any: try: datetime.strptime(timestamp, "%Y-%m-%d") return True except Exception: pass else: return False def _get_attribution_dataset_info( client: PLGraphAPIClient, dataset_id: str, logger: logging.Logger ) -> Any: return json.loads( client.get_attribution_dataset_info( dataset_id, [AD_OBJECT_ID, TARGET_OBJECT_TYPE, DATASETS_INFORMATION], ).text ) def _get_existing_pa_instances(client: PLGraphAPIClient, dataset_id: str) -> Any: return json.loads(client.get_existing_pa_instances(dataset_id).text) ``` #### File: scripts/tests/test_gen_config.py ```python import unittest from unittest.mock import patch from fbpcs.scripts import gen_config class TestGenConfig(unittest.TestCase): def test_prompt(self) -> None: # Test if Valid replacement exists and --accept_all passed - we use existing res = gen_config.prompt("key", replacements={"key": "baz"}, accept_all=True) self.assertEqual(res, "baz") # Test with an actual value provided with patch("builtins.input", return_value="foo"): # 1. No valid replacement res = gen_config.prompt("key", replacements={"bar": "baz"}) self.assertEqual(res, "foo") # 2. Valid replacement exists and we override res = gen_config.prompt("key", replacements={"key": "baz"}) self.assertEqual(res, "foo") # Test with hitting enter without typing with patch("builtins.input", return_value=""): # 1. No valid replacement res = gen_config.prompt("key", replacements={"bar": "baz"}) self.assertEqual(res, "") # 2. Valid replacement exists and we keep res = gen_config.prompt("key", replacements={"key": "baz"}) self.assertEqual(res, "baz") def test_build_replacements_from_config(self) -> None: config = {"a": "123", "b": ["1", "2", "3"], "c": {"d": "e"}} # This will look weird, but basically we expect to keep all "leaf" # nodes as replacement values, but also including basic lists expected = { "a": "123", "b": ["1", "2", "3"], "d": "e", } res = gen_config.build_replacements_from_config(config) self.assertEqual(res, expected) @patch("builtins.input", return_value="new") def test_update_dict(self, mock_input) -> None: # Simple replacement (call prompt 1 time) d = {"key": "REPLACE"} expected = {"key": "new"} gen_config.update_dict(d, replace_key="REPLACE") self.assertEqual(d, expected) self.assertEqual(mock_input.call_count, 1) # Replace within a nested dict (call prompt 2 times) d = {"key": "REPLACE", "key2": {"key3": "REPLACE"}} expected = {"key": "new", "key2": {"key3": "new"}} gen_config.update_dict(d, replace_key="REPLACE") self.assertEqual(d, expected) self.assertEqual(mock_input.call_count, 3) # Replace within existing replaement (no input called so mock_input.call_count does not change) d = {"key": "REPLACE"} replacements = {"key": "new"} expected = {"key": "new"} gen_config.update_dict( d, replace_key="REPLACE", replacements=replacements, accept_all=True ) self.assertEqual(d, expected) self.assertEqual(mock_input.call_count, 3) @patch("fbpcp.util.yaml.load", return_value="LOAD") @patch("fbpcp.util.yaml.dump") @patch("fbpcs.scripts.gen_config.update_dict") def test_gen_config(self, mock_update, mock_dump, mock_load) -> None: args = { "<input_path>": "foo", "<new_output_path>": "bar", "--replace": "REPLACE", "--accept_all": True, } gen_config.gen_config(args) mock_load.assert_called_once_with("foo") mock_update.assert_called_once_with("LOAD", "REPLACE", {}, True) mock_dump.assert_called_once_with("LOAD", "bar") ``` #### File: utils/config_yaml/config_yaml_dict.py ```python from pathlib import Path from typing import Any, Dict from fbpcp.util import yaml from fbpcs.utils.config_yaml.exceptions import ( ConfigYamlFieldNotFoundError, ConfigYamlValidationError, ConfigYamlFileParsingError, ) from yaml import YAMLError class ConfigYamlDict(Dict[str, Any]): """Wrapper around dict that throws a custom KeyError exception to inform the user that there is something wrong with their config.yml file.""" def __getitem__(self, key: str) -> Any: """Override of dict key access, e.g. x = my_dict[key]""" try: val = super().__getitem__(key) except KeyError: raise ConfigYamlFieldNotFoundError(key) from None if val == "TODO": raise ConfigYamlValidationError( key, "TODOs found in config", "Fill in remaining TODO entries in config.yml", ) return val def __setitem__(self, key: str, value: Any) -> None: """Override of dict item setting, e.g. my_dict[key] = x. Specifically, if value is a dict, it converts the dict to ConfigYamlDict """ value = self.from_dict(value) if isinstance(value, dict) else value super().__setitem__(key, value) @classmethod def from_dict(cls, d: Dict[str, Any]) -> "ConfigYamlDict": """Converts a normal dictionary to a ConfigYamlDict""" my_dict = cls() for k, v in d.items(): my_dict[k] = v return my_dict @classmethod def from_file(cls, config_file_path: str) -> "ConfigYamlDict": """Read a yaml file to a ConfigYamlDict""" try: config_dict = yaml.load(Path(config_file_path)) except YAMLError as e: raise ConfigYamlFileParsingError(config_file_path, str(e)) return ConfigYamlDict.from_dict(config_dict) ```
{ "source": "Joe12827/stocksite", "score": 3 }
#### File: server/api/example_api.py ```python from flask_restful import Resource from flask_restful import request from flask_restful import reqparse import json from .swen_344_db_utils import * class ExampleApi(Resource): def get(self): # NOTE: No need to replicate code; use the util function! result = exec_get_one("SELECT COUNT(*) FROM courses"); return result class TestMessage(Resource): def get(self): return "Modal components can use onOpened to fetch data dynamically!" ```
{ "source": "Joe1sn/CryotoWork", "score": 3 }
#### File: CryotoWork/RSA/RSA.py ```python import binascii import struct import sys from random import randint class RSA(object): """ docstring for RSA """ def __init__(self, KeyLen=1024): self.ChineseMod = False self.Debug = True self.n = 0 self.e = 65537 self.p = 0 self.q = 0 self.phi_n = 0 # RSA.test() #1.初始化生成p,q #pq不相等,二进制共模数长度和KeyLen一致 while (self.p==self.q and bin(self.p*self.q) != KeyLen+2): self.p = RSA.PrimerGen(KeyLen//2) self.q = RSA.PrimerGen(KeyLen//2) #2.得到n和phi(n),求逆得到u self.n = self.p*self.q self.phi_n = (self.p-1)*(self.q-1) #3.利用欧几里得拓展求私钥d # self.d = RSA.ExtendEuclid(self.e,self.phi_n) ed = 1 while 1: #虽然我知道这里利用拓展欧几里得算法可以求逆 #但是结果可能为负数,而且速度跟不上 #而且公钥e就是一个素数,通过便利很快就能找到 if (ed*self.phi_n+1)%self.e==0: self.d = (ed*self.phi_n+1)//self.e break ed+=1 if self.Debug: print("p>",self.p) print("q>",self.q) print("n>",self.n) print("phi_n>",self.phi_n) print("e>",self.e) print("d>",self.d) #bytes 转 hex #str->byte->number def Byte2Hex(Msg): return int.from_bytes((bytes(Msg,encoding='utf8')),byteorder='big',signed=False) #number->byte->str def Hex2Byte(num): num = hex(num)[2:]#去掉十六进制的0x开头 result = "" i = 0 while(i<len(num)):#两两一组解析为十六进制数 result+=chr(int(num[i]+num[i+1],16)) i+=2 return result #报错输出 def ErrorCather(self,ErrorMsg_zhCN, ErrorMsg_en): if self.ChineseMod: print(ErrorMsg_zhCN)#输出中文 else: print(ErrorMsg_en)#输出英文 #模重复平方 def ReModule(b,n,m): #b^n(mod m) #参数为数字 if str(b).isdigit() and str(n).isdigit() and str(m).isdigit(): #参数必须大于0 if b > 0 and n>0 and m>0: #二进制转换n result=1 #返回值 n1=bin(n) #幂数转为二进制 BinList = list(str(n1)[2:][::-1]) #二进制反序 #开始遍历 for i in BinList: #模重复平方 # print(result) if int(i) == 1: result = (result*b)%m b = (b*b)%m else: b = (b*b)%m return result else: ErrorCather("参数必须大于0","arguments must lager than 0") return else: ErrorCather("参数必须全为整数","arguments must be integers") return #大素数生成 def PrimerGen(size): #生成size位的素数 if str(size).isdigit(): #如果size是素数 while True: n = randint(1<<(size-1), 1 << (size+1)) #求2^size之间的大数 #利用二进制右移得到大数 if n % 2 != 0: #排除偶数 found = True #设置返回结果 # 随机性测试 for i in range(0, 2): #进行 2*3 轮素性检测 #这里 2轮,检测函数 3轮 #如果检测失败 if RSA.PrimerCheck(n) == False: found = False break#退出 #通过检测 if found == True: return n else: #size非素数,报错+返回None ErrorCather("参数为素数的位数","argument is digits of a primer number") return #<NAME>素性检测 #费马小定理+二次探测 def PrimerCheck(num,times=3): #对num检测times次 if str(num).isdigit(): if num < 3: return num==2 u = num-1 t = 0 while u%2 ==0:#若为偶数 u//=2 t+=1 for i in range(1,times+1): #费马小定理检测 x = randint(2,num-1) #生成size位的随机数 v = RSA.ReModule(x,u,num) if v==1 or v==num-1: #余数为1,则该数可能为素数 continue for j in range(t+1): v = v*v%num if v==num-1: break else: return False return True else: ErrorCather("参数必须全为整数","arguments must be integers") #欧几里得算法 def Ecuild(a,b): #判断ab是否为数字 if a.isdigit() and b.isdigit(): if a>0 and b>0: #ab均大于0 try: #是的话开始计算 # 算法简介: # 一般欧几里得算法要求 a<b 否则交换 # 这里利用python的语法糖, # 若a>b,那么第一个循环的过程是交换a,b # 而且利用循环避免重复递归导致递归深度过大超过语言规定最大深度 while a != 0: a, b = b % a, a return b #循环报错 except (TypeError, ValueError): ErrorCather("循环失败","loop error") else: ErrorCather("两参数必须为大于零整数","two arguments must be unsigned integers") else: ErrorCather("两参数必须为大于零整数,而不是其他","two arguments must be unsigned integers,arguments type error") #拓展欧几里得实现 def ExtendEuclid(a,b): #检查参数 if (not str(a).isdigit()) or (not str(b).isdigit()): ErrorCather("参数为大于0的整数","argument must be integers greater than 0") return a,b = int(a),int(b) if a <=0 or b <=0: ErrorCather("参数为大于0的整数","argument must be integers greater than 0") return else: #如果 a< b,交换ab的值 if a < b: a,b = b,a try: #进行循环的计算 # 1赋初始值 R,S,T = a,1,0 _R,_S,_T = b,0,1 # 2开始循环 while _R != 0: q = R // _R #2-1 得到整商 #2-2 获得暂时的R' S' T' tempR = R-q*_R tempS = S-q*_S tempT = T-q*_T #2-3 更新R S T和R' S' T' R, _R = _R, tempR S, _S = _S, tempS T, _T = _T, tempT #3.循环完毕,返回 return T #中途出错 except TypeError as e: ErrorCather("类型错误",e) #欧拉定理求公钥 def Euler(a,n): #a^phi(n)−1 if a%n==0: print(str(a)+"%"+str(n)+"==0") return False phi_n = 0 #使用该变量来遍历 for i in range(1,n): if RSA.gcd(i,n)!=0: phi_n+=1 return pow(a,phi_n)-1 #0x50字节对齐 def ByteAlign(self,Msg): # 如果不满0x100对齐,就补上\x00 if (0x50-len(Msg)%0x50) != 0: rest = (0x50-len(Msg)%0x50) Msg += "\x00"*rest return Msg #对齐检查 def AlignCheck(Msg): if len(Msg)%0x50 != 0: ErrorCather("参数未对齐","arguments must aligned to 0x100") return 0 else: return 1 #RSA加密模块 def Encrypt(self,Msg): #检查对齐 if len(Msg) != 0x50: ErrorCather("消息长度必须为0x50","Message length must be 0x50") return else: cipher = RSA.ReModule(RSA.Byte2Hex(Msg),self.e,self.n) return cipher #RSA解密模块 def Decrypt(self,Cipher): return RSA.Hex2Byte((RSA.ReModule(Cipher,self.d,self.n))) ```
{ "source": "joe2018/AsiaDataPlatform", "score": 2 }
#### File: AsiaDataPlatform/platformproject/form.py ```python from django import forms from django.forms import fields,widgets from platformproject.models import * from django.core.exceptions import ValidationError import re class UserInfo(forms.ModelForm): user_name = fields.CharField( min_length=6, max_length=12, strip=True, required=True, widget=widgets.TextInput(attrs={'placeholder': '用户名为8-12个字符'}), error_messages={ 'required': '用户名不能为空', 'min_length': '用户名最少为6个字符', 'max_length': '用户名最不超过为20个字符' } ) user_hashpas = fields.CharField( required=True, widget=widgets.PasswordInput(attrs={'placeholder': '请输入密码,必须包含数字,字母,特殊字符'}), min_length=6, max_length=12, error_messages={ 'required': '密码不能为空', 'min_length': '密码最少6个字符', 'max_length': '密码不超过12个字符' } ) pwd_again = fields.CharField( widget=widgets.PasswordInput(attrs={ 'placeholder': '请再次输入密码!'}), required=True, error_messages={'required': '请再次输入密码!!!!'} ) #user_key = fields.CharField('识别码', max_length=32) user_email = fields.EmailField( widget=widgets.TextInput(attrs={'placeholder': '请输入邮箱'}), required = True, error_messages = {'required': '邮箱不能为空', 'invalid': '请输入正确的邮箱格式'} ) def clean_user_name(self): username = self.cleaned_data.get('user_name') users = user.objects.filter(user_name=username).count() print(users) if users: raise ValidationError('用户名重复') return username def clean_user_email(self): email = self.cleaned_data.get('user_email') mobile_re = re.compile(r'^[a-zA-Z0-9_-]+(\.[a-zA-Z0-9_-]+){0,4}@[a-zA-Z0-9_-]+(\.[a-zA-Z0-9_-]+){0,4}$') if not mobile_re.match(str(email)): raise ValidationError('邮箱格式错误') return email def clean(self): password1 = self.cleaned_data.get('user_hashpas') password2 = self.cleaned_data.get('pwd_again') if password1 and password2 and password1 != password2: self.add_error('pwd_again','两次输入密码不一致') return None else: return self.cleaned_data ```
{ "source": "Joe2357/G-Meet", "score": 3 }
#### File: G-Meet/opencv/model.py ```python import cv2 as cv import argparse import sys import numpy as np import os.path import time print("PYTHON RUNNING") # Initialize the parameters confThreshold = 0.5 # Confidence threshold nmsThreshold = 0.4 # Non-maximum suppression threshold inpWidth = 416 # Width of network's input image inpHeight = 416 # Height of network's input image parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV') parser.add_argument('--device', default='cpu', help="Device to perform inference on 'cpu' or 'gpu'.") parser.add_argument('--image', help='Path to image file.') parser.add_argument('--video', help='Path to video file.') args = parser.parse_args() # Load names of classes classesFile = "./opencv/obj.names" classes = None with open(classesFile, 'rt') as f: classes = f.read().rstrip('\n').split('\n') # Give the configuration and weight files for the model and load the network using them. modelConfiguration = "./opencv/yolo_n.cfg" modelWeights = "./opencv/yolo_n_10000.weights" net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights) count = 0 exCount = 0 recoredFrame = 0 detectedFrame = False detectedTime = 0 inferenceTime = 0 totalDetectionTime = 0 from matplotlib import pyplot as plt x_values = [] y_values = [] picNum = 0 if (args.device == 'cpu'): net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) print('Using CPU device.') elif (args.device == 'gpu'): net.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA) net.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA) print('Using GPU device.') # Get the names of the output layers def getOutputsNames(net): # Get the names of all the layers in the network layersNames = net.getLayerNames() # Get the names of the output layers, i.e. the layers with unconnected outputs return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()] #return [layersNames[i - 1] for i in net.getUnconnectedOutLayers()] # Draw the predicted bounding box def drawPred(classId, conf, left, top, right, bottom): # Draw a bounding box. cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3) label = '%.2f' % conf # Get the label for the class name and its confidence if classes: assert (classId < len(classes)) label = '%s:%s' % (classes[classId], label) # Display the label at the top of the bounding box labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED) cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1) # Remove the bounding boxes with low confidence using non-maxima suppression def postprocess(frame, outs): global x_values global y_values frameHeight = frame.shape[0] frameWidth = frame.shape[1] # Scan through all the bounding boxes output from the network and keep only the # ones with high confidence scores. Assign the box's class label as the class with the highest score. classIds = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] classId = np.argmax(scores) confidence = scores[classId] if confidence > confThreshold: center_x = int(detection[0] * frameWidth) center_y = int(detection[1] * frameHeight) width = int(detection[2] * frameWidth) height = int(detection[3] * frameHeight) left = int(center_x - width / 2) top = int(center_y - height / 2) classIds.append(classId) confidences.append(float(confidence)) boxes.append([left, top, width, height]) global count global recoredFrame global detectedFrame global detectedTime global inferenceTime global totalDetectionTime global picNum recoredFrame += 1 if len(classIds) < 3: y_values.append(1) totalDetectionTime += inferenceTime else: y_values.append(0) x_values.append(recoredFrame / 10) # Perform non maximum suppression to eliminate redundant overlapping boxes with # lower confidences. indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold) for i in indices: i = i[0] box = boxes[i] left = box[0] top = box[1] width = box[2] height = box[3] drawPred(classIds[i], confidences[i], left, top, left + width, top + height) if recoredFrame % 10 == 0: if len(x_values) >= 50: x_values = x_values[len(x_values)-50:] y_values = y_values[len(y_values)-50:] plt.clf() plt.plot(x_values, y_values, 'b') plt.title("Detecting Graph") plt.xlabel("Total detected time : %.2f sec" % (totalDetectionTime / 1000)) plt.ylabel("Detect or not") plt.ylim([-0.1, 1.1]) picNum += 1 newPath = './public/plotImage/room1-graph.png' plt.savefig(newPath) print("Total Time : %.2f second" % (totalDetectionTime / 1000)) # print("Postprocess ends") # Process inputs winName = 'Deep learning object detection in OpenCV' cv.namedWindow(winName, cv.WINDOW_NORMAL) outputFile = "./opencv/yolo_out_py.avi" if (args.image): # Open the image file if not os.path.isfile(args.image): print("Input image file ", args.image, " doesn't exist") sys.exit(1) cap = cv.VideoCapture(args.image) outputFile = args.image[:-4] + '_yolo_out_py.jpg' elif (args.video): # Open the video file if not os.path.isfile(args.video): print("Input video file ", args.video, " doesn't exist") sys.exit(1) cap = cv.VideoCapture(args.video) outputFile = args.video[:-4] + '_yolo_out_py.avi' else: # Webcam input cap = cv.VideoCapture(0) # camera index # Get the video writer initialized to save the output video if (not args.image): vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)), round(cap.get(cv.CAP_PROP_FRAME_HEIGHT)))) while cv.waitKey(10) < 0: # print("tempTick: ", tempTick) # get frame from the video hasFrame, frame = cap.read() # Stop the program if reached end of video if not hasFrame: print("Done processing !!!") print("Output file is stored as ", outputFile) cv.waitKey(3000) # Release device cap.release() break # Create a 4D blob from a frame. blob = cv.dnn.blobFromImage(frame, 1 / 255, (inpWidth, inpHeight), [0, 0, 0], 1, crop=False) # Sets the input to the network net.setInput(blob) # Runs the forward pass to get output of the output layers outs = net.forward(getOutputsNames(net)) # Remove the bounding boxes with low confidence postprocess(frame, outs) # Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes) t, _ = net.getPerfProfile() inferenceTime = (t * 1000.0 / cv.getTickFrequency()) label = 'Inference time: %.2f ms' % inferenceTime cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) # Write the frame with the detection boxes vid_writer.write(frame.astype(np.uint8)) cv.imshow(winName, frame) ```
{ "source": "joe-23/BOSS-V-algorithm", "score": 3 }
#### File: joe-23/BOSS-V-algorithm/structure5_featureoptimization.py ```python import numpy as np import matplotlib.pyplot as plt from scipy.integrate import nquad from itertools import product from diversipy import lhd_matrix, transform_spread_out from structure1_utils import WrongCallToMethod, find_indices, check_duplicate from structure3_bayesianoptimization import CBayesOpt from structure4_featureselection import CFeatureSelector debug = False # Print information at debug level (e.g. model parameters and CV score) # 1. Define Feature optimization class, which uses Bayesian optimization and feature selection to select the best features ##################################################################################################################### class CFeatureOpt(CBayesOpt): """Callable class, based on Bayesian Optimization with a set of sensible defaults, that also performs Sequential Forward Feature Selection (SFS). Exposes a method, refit_regression(), for fitting the internal regression model via Cross-validation.""" def __init__(self,af,GPkernel,floating=True,target_features=None,greater_is_better=True,random_state=None,verbose=True): super().__init__(af,GPkernel,greater_is_better,False,True,True,random_state,verbose) self.sfs = CFeatureSelector(floating=floating,target_features=target_features,random_state=random_state) self.k = 2 # Exponent of the minima MD function def fit(self,X,Y,LR_Y=None,X_add=None,LR_Y_add=None,initial_features=[],mandatory_features=[]): """ Perform feature selection and fit the Bayesian optimization Gaussian process model. Input: X - numpy 2D array matrix of observed data Input: Y - numpy 1D array vector of observed evaluations of the objective function, Y = f(X) Input: LR_Y - numpy 1D array vector of observed evaluations of the constraint function, LR_Y = c(X); LR_Y will be used instead of Y Input: X_add - numpy 2D array matrix of additional observed data to be used in the feature selection procedure Input: LR_Y_add - numpy 1D array vector of additional observed evaluations of the constraint function to be used in the feature selection procedure, either LR_Y_add = c(X_add) or LR_Y_add = f(X_add) Input: initial_features - list list of indexes (representing features) that are to be excluded from the search if initial_features == 'all' then no feature selection is performed Input: mandatory_features - list list of indexes (representing features) that are not to be removed and are automatically included in the initial_features list """ ##- Store the original dimension of the space; done once to avoid overwritings if not hasattr(self,"full_dim"): self.full_dim = X.shape[1] ##- Store mandatory features used by the transformation functions of the EIC acquisition function self.mandatory_features = mandatory_features ##- Perform feature selection if LR_Y is not None: self.selected_features, score, self.fitted_lm = self.sfs(X,LR_Y,X_add,LR_Y_add,initial_features=initial_features,mandatory_features=self.mandatory_features) else: self.selected_features, score, self.fitted_lm = self.sfs(X,Y,X_add,LR_Y_add,initial_features=initial_features,mandatory_features=self.mandatory_features) if debug and self.verbose: print("Features: ", self.selected_features) print("Linear model intercept: ", self.fitted_lm.steps[-1][1].intercept_) print("Linear model betas: ", self.fitted_lm.steps[-1][1].coef_) print("CV score = ", score) ##- Fit the Gaussian process model super().fit(X[:,self.selected_features],Y) return self def refit_regression(self,X_train,Y_train): """ Re-evaluate the internal regression model by performing grid search (GridSearchCV). Input: X_train - numpy 2D array matrix of observed data Input: Y_train - numpy 1D array vector of observed evaluations of the objective, Y_train = f(X_train) Output: score of the best model object - float, best regression model object - sklearn.pipeline.Pipeline, parameters of the best model object - dictionary """ best_score, best_estimator, best_params = self.sfs.compute_CV(X_train,Y_train) return best_score, best_estimator, best_params def acquisition(self,x): """ Compute single-parameter acquisition function ready to be used with minimize() method, or for plotting. Input: x - numpy 1D array Output: acquisition function evaluated at x - float """ x = np.array(x).reshape(1,-1) af = self.AF(x,self)[0] coeff = self.__get_coeff(x) return coeff * af def __get_coeff(self,x): """ Compute multiplicative coefficient for acquisition function at x using minima distribution. See [Luo (2019)] and [Villafan (2020); Chapter 4.2] for details. Input: x - numpy 1D array Output: coefficient for acquisition function evaluated at x - float """ ##- Set coefficient to zero to prevent the optimization method from drawing this configuration ##- This may affect Confidence Bound acquisition in a bad way, because its values may also be negative: ##- e.g., when minimizing a positive function ( f(x)>0 for every x ) such as Performance models if hasattr(self,"threshold"): pred_val = self.fitted_lm.predict(x) if not self.maximize and pred_val > self.threshold: return 0.0 if self.maximize and pred_val < self.threshold: return 0.0 ##- Compute coefficient using minima distribution of the linear regression model if hasattr(self,"mix_af_with_lm"): return self.__tau_k(x) / self.__I else: return 1.0 def __tau_k(self,*x): """ Compute the exponential-type Tau function of the linear regression model function. Input: *x - list list of elements that will be rebuilt into a numpy 1D array Output: Nascent minima distribution (MD) function evaluated at x - float """ x = np.array(x).reshape(1,-1) r = self.fitted_lm.predict(x) r = (r - self.__LR_min) / (self.__LR_max - self.__LR_min) return np.exp(-self.k*r) def __get_LR_range(self,bounds): """ Compute range of the function which is the numerator of the nascent minima distribution function. Since we are computing the minima MD of a linear function, the max and min are at the vertices. Input: bounds - numpy 2D array matrix of [lower_bound,upper_bound] where indices represent the dimension (starting from 0) Output: max, min - [float, float] maximum and minimum value of tau_k() evaluated at the boundaries """ bounds = np.array(bounds).reshape(-1,2) vertices = list(product(*zip(bounds[:,0],bounds[:,1]))) evals = [self.fitted_lm.predict(np.array(vertex).reshape(1,-1)) for vertex in vertices] return max(evals), min(evals) def set_EIC_params(self,lb,ub,compute_mean=None,compute_sigma=None): """ Set bound parameters and tranformations used by constrained EI (EIC) acquisition function. These parameters bound the value of the objective: lb < c(x) < ub. The tranformations compute the constraints mean and std from the objective's mean and std. The mandatory_features will be used for the computation of the transformations. Input: lb - float lower bound for constrained EI (EIC) acquisition function Input: ub - float upper bound for constrained EI (EIC) acquisition function Input: compute_mean - function function with signature f(mu,x_1,x_2,..,x_m) that transforms the objective mean 'mu' into the constraint function mean, where x_1,x_2,..,x_m are the mandatory configuration features; if None the constraint is computed on the objective function, and not on a function derived from it Input: compute_sigma - function function with signature g(sigma,x_1,x_2,..,x_m) that transforms the objective std 'sigma' into the constraint function std, where x_1,x_2,..,x_m are the mandatory configuration features; if None the constraint is computed on the objective function, and not on a function derived from it """ self.EIC_params_given = True self.lb = lb self.ub = ub self.compute_mean = compute_mean self.compute_sigma = compute_sigma def __set_EIC_params(self): """ Set EIC params, if they were given. """ if hasattr(self,"EIC_params_given"): ##- Compute index of mandatory configuration features among the ones selected by the feature selector idx = [] for feature_idx in self.mandatory_features: idx.append(find_indices(self.selected_features,lambda x_idx: x_idx == feature_idx)) if debug: print("**** indices = {}".format(idx)) ##- Redefine functions in order to change their signature def sub_compute_mean(mu,x): return self.compute_mean(mu,*x[:,idx]) def sub_compute_sigma(sigma,x): return self.compute_sigma(sigma,*x[:,idx]) ##- Set parameters to be used at the current iteration super().set_EIC_params(self.lb,self.ub,sub_compute_mean,sub_compute_sigma) def set_threshold(self,threshold): """ Set threshold level coefficient for acquisition function at x to be used by Variants C or D of the algorithm. See [Villafan (2020)] for details. Input: threshold - float """ self.threshold = threshold def draw(self,bounds,n_restarts=None,return_prob_bound=False,fill_result=False,mix_models=False): """ Draw next observation via Bayesian optimization. WARNING: fit() method must be called first. Input: bounds - numpy 2D array matrix of [lower_bound,upper_bound] where indices represent the dimension (starting from 0) Input: x0_list - numpy 1D array OR iterable of numpy 1D arrays optimization starting point Input: n_restarts - int number of points to be generated within provided bounds, i.e. number of times to run the minimizer in minimize() method Input: choose - str choose = ["lhd","random"] if "lhd" n_restarts samples are drawn from a space-filling latin hypercube design if "random" n_restarts samples are drawn from a uniform distribution on the domain Input: use_derivatives - bool use derivatives of conditional mean and variance during optimization when True Input: return_prob_bound - bool if using a constrained acquisition function, the probability that the constraints are met at the result of this method is returned when True Input: fill_result - bool the resulting configuration's irrelevant dimensions are set 0 when True; in this way the configuration can be evaluated by the objective function if available Input: mix_models - bool the linear model is used to modify the prediction from the acquisition maximization when True Output: result - numpy 1D array new observation to query AF_value - float acquisition function evaluated at result """ ##- Set EIC params, if they were given self.__set_EIC_params() ##- Compute tau_k() function normalization constant: its integral; may take long to compute a d-dimensional integral ##- Another way is to normalize the values of tau_k() by normalizing the values of the LR predictive function if mix_models: self.mix_af_with_lm = mix_models ##- To normalize tau_k(), either compute its integral # self.__I = nquad(self.__tau_k,bounds[self.selected_features,:])[0] # self.__LR_max, self.__LR_min = 1.0, 0.0 ##- Or normalize the LR values self.__I = 1.0 self.__LR_max, self.__LR_min = self.__get_LR_range(bounds[self.selected_features,:]) ##- Draw next configuration if return_prob_bound: result, AF_value, prob_bound = super().draw(bounds[self.selected_features,:],n_restarts=n_restarts,choose="lhd",return_prob_bound=True) else: result, AF_value = super().draw(bounds[self.selected_features,:],n_restarts=n_restarts,choose="lhd",return_prob_bound=False) ##- Fill irrelevant dimensions of resulting observation with 0's if fill_result: temp = np.full((1,self.full_dim),0.0) temp[:,self.selected_features] = result result = temp.reshape(1,-1)[0] if return_prob_bound: return result, AF_value, prob_bound else: return result, AF_value def __call__(self,X,Y,bounds,initial_features=[],mandatory_features=[],max_iter_BO=None,mix_models=False, return_prob_bound=False,LR_Y=None,X_add=None,LR_Y_add=None): """ Callable method that performs one iteration of Feature selection and one of Bayesian optimization. Input: X - numpy 2D array matrix of observed data Input: Y - numpy 1D array vector of observed evaluations of the objective, Y = f(X) Input: bounds - numpy 2D array matrix of [lower_bound,upper_bound] where indices represent the dimension (starting from 0) Input: initial_features - list list of indexes (representing features) that are to be excluded from the search if initial_features == 'all' then no feature selection is performed Input: mandatory_features - list list of indexes (representing features) that are not to be removed and are automatically included in the initial_features list Input: max_iter_BO - int maximization of acquisition function stopping criterion based on maximum number of iterations Input: mix_models - bool the linear model is used to modify the prediction from the acquisition maximization when True Input: return_prob_bound - bool if using a constrained acquisition function, the probability that the constraints are met at the result of this method is returned when True Input: LR_Y - numpy 1D array vector of observed evaluations of the constraint function, LR_Y = c(X); LR_Y will be used instead of Y Input: X_add - numpy 2D array matrix of additional observed data to be used in the feature selection procedure Input: LR_Y_add - numpy 1D array vector of additional observed evaluations of the constraint function to be used in the feature selection procedure, either LR_Y_add = c(X_add) or LR_Y_add = f(X_add) Output: result, AF_value, selected_features, fitted_lm - [numpy 1D array, list, sklearn.linear_model] result is the suggested configuration AF_value is the evaluation of the acquisition function at suggested configuration selected_features are the relevant features selected by the provided SFS fitted_lm is the linear model that has been fitted on the subset of X with features selected_features """ ##- Feature selection via fit() method self.fit(X,Y,LR_Y,X_add,LR_Y_add,initial_features,mandatory_features) ##- Bayesian optimization via draw() method result = self.draw(bounds,n_restarts=max_iter_BO,return_prob_bound=return_prob_bound,mix_models=mix_models) if return_prob_bound: return [result[0], result[1], self.selected_features, self.fitted_lm, result[2]] else: return [result[0], result[1], self.selected_features, self.fitted_lm] def optimize(self,OF,bounds,X=None,n_samples=3,max_iter=100,design="lhd", threshold=None,mix_models=True,initial_features=[], max_random_jumps=None,tol=1e-10,plot_acquisition=False): """ Iterative algorithm that performs feature selection and Bayesian optimization. WARNING: Optimization happens on the boundary of the domains: the values of the irrelevant features are set to 0. See [Villafan (2020); Chapter 4.2] for details. Input: OF - function objective function Input: bounds - numpy 2D array bounds must be an array of length d of elements [lower_bound,upper_bound] Input: X - numpy 2D array matrix of known observations Input: n_samples - int number of starting observations in case X is not given Input: max_iter - int stopping criterion based on maximum number of iterations Input: design - str design = ["lhd","random"] if "lhd" n_samples are drawn from a space-filling latin hypercube design if "random" n_samples are drawn from a uniform distribution on the domain Input: threshold - float objective threshold value; this value is enforced on all acquisition functions so that their value is 0 at points where the threshold is not met Input: mix_models - bool the linear model is used to modify the prediction from the acquisition maximization when True Input: initial_features - list list of indexes (representing features) that are to be excluded from the search if initial_features == 'all' then no feature selection is performed Input: max_random_jumps - int maximum number of random jumps the algorithm can make when sampling too close to already sampled points; if None is given, a default value is chosen accordingly based on the dimensionality of OF Input: tol - float tolerance at which to make a random jump Output: result of the optimization procedure: observation and its evaluation - [numpy 1D array, float] """ ##- Define the matrix of starting observations self.x_list, self.y_list = [], [] if X is None: if design == "lhd": grid = transform_spread_out(lhd_matrix(n_samples,bounds.shape[0])) x0_list = bounds[:,0] + (bounds[:,1]-bounds[:,0])*grid elif design == "random": x0_list = np.random.uniform(bounds[:, 0],bounds[:, 1],(n_samples,bounds.shape[0])) else: raise ValueError("Only 'random' and 'lhd' designs are supported as of now.") for x in x0_list: self.x_list.append(x) self.y_list.append(OF(x)) else: for x in X: self.x_list.append(x) self.y_list.append(OF(x)) X = np.array(self.x_list).reshape(-1,bounds.shape[0]) Y = np.array(self.y_list).reshape(-1,1) ##- Set parameters if threshold is not None: self.set_threshold(threshold) ##- Instantiate check_duplicate class is_duplicate = check_duplicate() ##- Define the list of sampled configurations x and observations; used by plot_convergence() method self.x_output_list , self.y_output_list = [], [] ##- Iterative optimization of the objective function self.selected_features = initial_features for i in range(0,max_iter): ##- selected_features is updated everytime fit() method is called self.fit(X,Y,initial_features=self.selected_features) ##- Select the point where to evaluate OF next via maximization of AF new_Obs = self.draw(bounds,fill_result=True,mix_models=mix_models)[0] eval_newObs = OF(new_Obs) self.x_output_list.append(new_Obs) self.y_output_list.append(eval_newObs) ##- Select another point randomly in case of duplicate and print to screen new_Obs, duplicate = is_duplicate(new_Obs,X,bounds,max_random_jumps,tol) if duplicate and self.verbose: print("Iteration {}: configuration chosen ramdomly!".format(i+1)) eval_newObs = OF(new_Obs) ##- Print to screen if self.verbose: print("Iteration {}: x = {}, f(x) = {}".format(i+1,new_Obs,eval_newObs)) ##- Add the newly acquired observation to appropriate lists for plotting self.x_list.append(new_Obs) self.y_list.append(eval_newObs) X = np.array(self.x_list).reshape(-1,bounds.shape[0]) Y = np.array(self.y_list).reshape(-1,1) ##- Plot acquisition function if plot_acquisition: self.plot_acquisition(bounds,OF) best_index = np.argmax(self.y_list) if self.maximize else np.argmin(self.y_list) best_x = self.x_list[best_index] best_y = self.y_list[best_index] return best_x, best_y def plot_acquisition(self,bounds,OF=None,plot_regression=True): """ Plot objective and acquisition functions. WARNING: fit() method must first be called. Input: bounds - numpy 2D array bounds must be an array of length d of elements [lower_bound,upper_bound] Input: OF - function objective function """ ##- Check whether fit() method has been called if not hasattr(self, "X"): raise WrongCallToMethod("The method fit() must first be called.") if self.d == 1: n_points = 1000 xc = np.linspace(bounds[:,0],bounds[:,1],n_points).reshape(n_points,1) mu, sigma = self.gp.predict(xc,return_std=True) mu = mu.reshape(n_points,1) + self.Y_mean sigma = sigma.reshape(n_points,1) plt.figure(figsize=(10,7)) plt.subplot(2, 1, 1) if OF is not None: yc = np.array(list(map(OF,xc))).reshape(n_points,1) plt.plot(xc,yc,'b-',lw=2) if plot_regression: lr_pred = self.fitted_lm.predict(xc) plt.plot(xc,lr_pred,'k-',lw=2) plt.plot(self.X,self.Y + self.Y_mean,'ko',markersize=5,label=u'Observations') plt.plot(xc,mu,'g-',lw=1.5,label=u'Posterior mean') plt.fill(np.concatenate([xc,xc[::-1]]),\ np.concatenate([mu - 1.96 * sigma, (mu + 1.96 * sigma)[::-1]]),\ alpha=0.5,fc='g',ec='None',label='95% P.I.') plt.axvline(x=self.x_list[-1],color='r',lw=2.5) plt.xlim(*bounds) plt.ylabel(r'Objective function', fontsize=16) plt.legend(loc='upper left', fontsize=16) plt.subplot(2, 1, 2) yc = np.array(list(map(lambda x: -x, list(map(self.acquisition,xc))))) yc_normalized = (yc - min(yc))/(max(yc - min(yc))) # normalize acquisition yc_normalized = yc_normalized.reshape(n_points,1) plt.plot(xc,yc_normalized,'r-',lw=1.5) plt.axvline(x=self.x_list[-1],color='r',lw=2.5) plt.xlim(*bounds) plt.xlabel(r'x', fontsize=16) plt.ylabel(r'Acquisition function', fontsize=16) plt.show(block=True) else: print("Plot of acquisition function is {}-dimensional. Thus, it will not be shown.".format(self.d)) # def plot_acquisition(self,bounds,OF=None,plot_regression=True): # """ # Plot objective and acquisition functions. # WARNING: fit() method must first be called. # Input: bounds - numpy 2D array # bounds must be an array of length d of elements [lower_bound,upper_bound] # Input: OF - function # objective function # """ # ##- Check whether fit() method has been called # if not hasattr(self, "X"): # raise WrongCallToMethod("The method fit() must first be called.") # if self.d == 1: # n_points = 1000 # xc = np.linspace(bounds[:,0],bounds[:,1],n_points).reshape(n_points,1) # mu, sigma = self.gp.predict(xc,return_std=True) # mu = mu.reshape(n_points,1) + self.Y_mean # sigma = sigma.reshape(n_points,1) # plt.figure(figsize=(10,7)) # plt.subplot(2, 1, 1) # if OF is not None: # yc = np.array(list(map(OF,xc))).reshape(n_points,1) # plt.plot(xc,yc,'b-',lw=2) # # if plot_regression: # # lr_pred = self.fitted_lm.predict(xc) # # plt.plot(xc,lr_pred,'k-',lw=2) # plt.plot(self.X,self.Y + self.Y_mean,'ko',markersize=5,label=u'Observations') # plt.plot(xc,mu,'g-',lw=1.5,label=u'Posterior mean') # plt.fill(np.concatenate([xc,xc[::-1]]),\ # np.concatenate([mu - 1.96 * sigma, (mu + 1.96 * sigma)[::-1]]),\ # alpha=0.5,fc='g',ec='None',label='95% P.I.') # # plt.axvline(x=self.x_list[-1],color='r',lw=2.5) # plt.xlim(*bounds) # plt.ylabel(r'Objective function', fontsize=16) # plt.legend(loc='upper left', fontsize=16) # plt.subplot(2, 1, 2) # yc = np.array(list(map(lambda x: -x, list(map(self.acquisition,xc))))) # yc_normalized = (yc - min(yc))/(max(yc - min(yc))) # normalize acquisition # yc_normalized = yc_normalized.reshape(n_points,1) # from structure3_bayesianoptimization import CB, SEI # yc2, yc3 = [], [] # for xxx in xc: # yc2.append(-1.0 * CB(xxx,self)[0]) # yc3.append(-1.0 * SEI(xxx,self)[0]) # yc2 = np.array(yc2).reshape(n_points,1) # yc3 = np.array(yc3).reshape(n_points,1) # yc2_normalized = (yc2 - min(yc2))/(max(yc2 - min(yc2))) # normalize acquisition # yc3_normalized = (yc3 - min(yc3))/(max(yc3 - min(yc3))) # normalize acquisition # plt.plot(xc,yc_normalized,'r-',lw=1.5) # # plt.axvline(x=self.x_list[-1],color='r',lw=2.5) # plt.plot(xc,yc2_normalized,'b-',lw=1.5) # plt.plot(xc,yc3_normalized,'g-',lw=1.5) # plt.xlim(*bounds) # plt.xlabel(r'x', fontsize=16) # plt.ylabel(r'Acquisition functions', fontsize=16) # plt.show(block=True) # else: # print("Plot of acquisition function is {}-dimensional. Thus, it will not be shown.".format(self.d)) ```
{ "source": "joe247/CSE-LABS", "score": 3 }
#### File: S6/CS334-NPL/002b_thread (004b).py ```python import threading import time def dummy(): pass def main(): for i in range(5): tid = threading.Thread(target=dummy, args=[]) print (f'Created new thread {tid} {threading.get_ident()}') time.sleep(1) if __name__ == '__main__': main() ``` #### File: S6/CS334-NPL/003c_shared_memory (005c).py ```python (005c).py import multiprocessing def square_list(mylist, result, square_sum): """ function to square a given list """ # append squares of mylist to result array for idx, num in enumerate(mylist): result[idx] = num * num # square_sum value square_sum.value = sum(result) # print result Array print(f'Result (in process p1): {result[:]}') # print square_sum Value print(f'Sum of squares (in process p1): {square_sum.value}') if __name__ == "__main__": # input list mylist = [1,2,3,4] # creating Array of int data type with space for 4 integers result = multiprocessing.Array('i', 4) # creating Value of int data type square_sum = multiprocessing.Value('i') # creating new process p1 = multiprocessing.Process(target=square_list, args=(mylist, result, square_sum)) # starting process p1.start() # wait until process is finished p1.join() # print result array print(f'Result (in main process): {result[:]}') # print square_sum Value print(f'Sum of squares (in main process): {square_sum.value}') ``` #### File: S6/CS334-NPL/005_reader_writer (007).py ```python import threading class RWLock: ''' A simple reader-writer lock Several readers can hold the lock simultaneously, XOR one writer. Write locks may have priority over reads to prevent write starvation. ''' def __init__(self): self.rwlock = 0 self.writers_waiting = 0 self.monitor = threading.Lock() self.readers_ok = threading.Condition(self.monitor) self.writers_ok = threading.Condition(self.monitor) def acquire_read(self): ''' Acquire a read lock. Several threads can hold this typeof lock. It is exclusive with write locks. ''' self.monitor.acquire() while self.rwlock < 0 or self.writers_waiting: self.readers_ok.wait() self.rwlock += 1 self.monitor.release() def acquire_write(self): ''' Acquire a write lock. Only one thread can hold this lock, and only when no read locks are also held. ''' self.monitor.acquire() while self.rwlock != 0: self.writers_waiting += 1 self.writers_ok.wait() self.writers_waiting -= 1 self.rwlock = -1 self.monitor.release() def release(self): # Release a lock, whether read or write. self.monitor.acquire() if self.rwlock < 0: self.rwlock = 0 else: self.rwlock -= 1 wake_writers = self.writers_waiting and self.rwlock == 0 wake_readers = self.writers_waiting == 0 self.monitor.release() if wake_writers: self.writers_ok.acquire() self.writers_ok.notify() self.writers_ok.release() elif wake_readers: self.readers_ok.acquire() self.readers_ok.notifyAll() self.readers_ok.release() if __name__ == '__main__': import time rwl = RWLock() class Reader(threading.Thread): def run(self): print(self, 'start') rwl.acquire_read() print(self, 'acquired') time.sleep(2) print(self, 'stop') rwl.release() print(self, 'released') class Writer(threading.Thread): def run(self): print(self, 'start') rwl.acquire_write() print(self, 'acquired') time.sleep(5) print(self, 'stop') rwl.release() print(self, 'released') Reader().start() # Reader-1 time.sleep(0.5) Reader().start() # Reader-2 time.sleep(0.5) Writer().start() # Writer-1 time.sleep(0.5) ```
{ "source": "joe28965/cuorabot", "score": 2 }
#### File: cuorabot_bringup/launch/bringup_launch.py ```python import os from launch import LaunchDescription from launch.substitutions import LaunchConfiguration, Command from launch.actions import DeclareLaunchArgument, IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource from launch_ros.actions import Node from ament_index_python.packages import get_package_share_directory def generate_launch_description(): xacro_path = os.path.join(get_package_share_directory('cuorabot_description'), 'urdf', 'cuorabot.urdf.xacro') # Launch configuration variables specific to simulation use_sim_time = LaunchConfiguration('use_sim_time') # Declare the launch arguments declare_use_sim_time_cmd = DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use simulation (Gazebo) clock if true') # Specify the actions start_robot_state_publisher_cmd = Node( package='robot_state_publisher', executable='robot_state_publisher', name='robot_state_publisher', output='screen', parameters=[{ 'use_sim_time': use_sim_time, 'robot_description':Command(['xacro',' ', xacro_path]) }] ) control_launch_cmd = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(get_package_share_directory('cuorabot_control'), 'launch', 'control_launch.py')) ) ld = LaunchDescription() # Declare the launch options ld.add_action(declare_use_sim_time_cmd) # Add any conditioned actions ld.add_action(start_robot_state_publisher_cmd) ld.add_action(control_launch_cmd) return ld ```
{ "source": "Joe310/GenomeBuilder", "score": 2 }
#### File: Joe310/GenomeBuilder/chromosome_builder.py ```python import time import mmap import random import sys import re import argparse import pickle import shutil import unittest import os from heapq import merge class chromosome_builder(): def __init__(self, args=None): if not args: args = self.parse_system_args() self._genome_id = args.id self._chromosome_id = args.chr_id self._chromosome_size = args.chr_size if args.scale == 'k': self._chromosome_size *= 1000 elif args.scale == 'm': self._chromosome_size *= 1000000 elif args.scale == 'b': self._chromosome_size *= 1000000000 if args.alu == 'y': self._use_alu = True self._base_alu = args.base_alu else: self._use_alu = False if args.assembly == 'y': self._use_assembly = True else: self._use_assembly = False self._allele_base_list = ["C", "T", "G", "A"] self._working_dir = "TMP_" + str(self._genome_id) + "_chr_" + str(self._chromosome_id) self._ref_genome_file = "ref_" + str(self._genome_id) + "_chr_" + str(self._chromosome_id) + ".txt" self._priv_genome_file = "private_" + str(self._genome_id) + "_chr_" + str(self._chromosome_id) + ".txt" self._reads_file = "reads_" + str(self._genome_id) + "_chr_" + str(self._chromosome_id) + ".txt" self._answer_file = "ans_" + str(self._genome_id) + "_chr_" + str(self._chromosome_id) + ".txt" self._base_alu_file = "alu_" + str(self._genome_id) + ".txt" self._overlap_buffer = 5 self._long_variant_rate = .1 self._snp_rate = 0.003 self._ref_str_rate = 0.000075 self._denovo_str_rate = 0.000025 self._str_min_copies = 5 self._str_max_copies = 50 self._str_min_length = 2 self._str_max_length = 5 self._str_mutation_amount = 2 self._ref_cnv_rate = 0.0001 self._denovo_cnv_rate = 0.00001 self._cnv_min_length = 20 self._cnv_max_length = 500 self._cnv_min_copies = 2 self._cnv_max_copies = 10 self._cnv_mutation_amount = 2 self._inv_rate = 0.00001 self._inv_short_min_length = 20 self._inv_short_max_length = 50 self._inv_long_min_length = 50 self._inv_long_max_length = 500 self._ins_rate = 0.0005 self._ins_short_min_length = 1 self._ins_short_max_length = 5 self._ins_long_min_length = 5 self._ins_long_max_length = 200 self._del_rate = 0.0005 self._del_short_min_length = 1 self._del_short_max_length = 5 self._del_long_min_length = 5 self._del_long_max_length = 200 self._alu_mutation_rate = 0.3 self._alu_min_length = 300 self._alu_max_length = 300 if self._use_alu: self._ref_alu_rate = 0.075 self._denovo_alu_rate = 0.025 else: self._ref_alu_rate = 0 self._denovo_alu_rate = 0 #reduce the max length of mutations for smaller chromosome sizes if self._chromosome_size < 500000: self._nbr_long_inv = 0 self._nbr_long_ins = 0 self._nbr_long_del = 0 self._str_max_copies = 20 #from 50 self._cnv_max_length = 50 #from 500 self._cnv_max_copies = 4 #from 10 else: self._nbr_long_inv = max(4, int(self._inv_rate * self._chromosome_size * self._long_variant_rate)) self._nbr_long_ins = max(10, int(self._ins_rate * self._chromosome_size * self._long_variant_rate)) self._nbr_long_del = max(10, int(self._ins_rate * self._chromosome_size * self._long_variant_rate)) self._nbr_snp = int(self._snp_rate * self._chromosome_size) self._nbr_denovo_str = int(self._denovo_str_rate * self._chromosome_size) self._nbr_denovo_cnv = int(self._denovo_cnv_rate * self._chromosome_size) self._nbr_ref_alu = int(self._ref_alu_rate * self._chromosome_size / self._alu_max_length) self._nbr_denovo_alu = int(self._denovo_alu_rate * self._chromosome_size / self._alu_max_length) self._nbr_ref_str = max(4, int(self._ref_str_rate * self._chromosome_size)) self._nbr_ref_cnv = max(4, int(self._ref_cnv_rate * self._chromosome_size)) self._nbr_short_inv = max(4, int(self._inv_rate * self._chromosome_size * (1 - self._long_variant_rate))) self._nbr_short_ins = max(10, int(self._ins_rate * self._chromosome_size * (1 - self._long_variant_rate))) self._nbr_short_del = max(10, int(self._ins_rate * self._chromosome_size * (1 - self._long_variant_rate))) #mutation_list is used when generating the various mutations for the genomes self._mutation_list = [] self._str_list = [] #used when mutating STRs in donor genome self._cnv_list = [] #used when mutating CNVs in donor genome self._cnv_dict = {} self._sequencer_coverage = 30 self._sequencer_error_rate = 0.01 self._sequencer_garbage_rate = 0.1 self._sequencer_read_length = 50 self._sequencer_gap_min = 90 self._sequencer_gap_max = 110 def insert_newlines(self, sequence, line_size=80): return '\n'.join(sequence[i:i+line_size] for i in range(0, len(sequence), line_size)) + '\n' def write_genome_lines_to_file(self, genome, file_object): genome = self.insert_newlines(genome, 80) file_object.write(genome) def parse_fasta(self, file_name, buffer_size=100000): """Gives buffered access to large fasta files so that the entire file doesn't need to be loaded into memory all at once. Works as a generator, yielding a block of up to buffer_size with each call. For general use, use: for sequence in parse_fasta(file_name, buffer_size) This yield sequences until the end of file or a '>' character is found, at which point it yields None Since None is yielded for '>', this can be used with multiple chromosomes separated by '>chr#' in a single file. To do so, the generator should be initialized before iterating through chromosomes, then as each chromosome is processed you can anticipate None will be yielded one time to mark the end of the current chromoeome :param file_name: the file to read in :param buffer_size: the number of characters to return for each iteration :returns: Sequences of up to size buffer_size, or None if EOF or '>' is encountered """ with open(file_name) as fasta_file: start_of_file = True buffer = "" while True: for line in fasta_file: #skip initial documentation lines if start_of_file and '>' in line: pass #each chromosome is marked by a > line, so need to catch this switch elif not start_of_file and '>' in line: if len(buffer) == 0: yield None else: #first yield the buffer, then yeild None to flag the end of the chromosome yield buffer buffer = '' yield None else: if start_of_file: start_of_file = False buffer += line.strip() if len(buffer) >= buffer_size: yield buffer[:buffer_size] buffer = buffer[buffer_size:] #clear out any remaining buffer when the file is done if len(buffer) > 0: yield buffer buffer = '' else: yield None #this version may give a slight performance boost, but need to work out the bugs before it can be used def parse_fasta_mmap(self, file_name, buffer_size=100000): with open(file_name, encoding='utf-8') as fasta: fasta_map = mmap.mmap(fasta.fileno(), 0, access=mmap.ACCESS_READ) start_of_file = True buffer = "" for line in fasta_map: line = line.decode('utf-8') #skip initial documentation lines if start_of_file and '>' in line: pass #each chromosome is marked by a > line, so need to catch this switch elif not start_of_file and '>' in line: if len(buffer) == 0: yield None else: #first yield the buffer, then yeild None to flag the end of the chromosome yield buffer buffer = '' yield None else: if start_of_file: start_of_file = False buffer += line.strip() if len(buffer) >= buffer_size: yield buffer[:buffer_size] buffer = buffer[buffer_size:] #clear out any remaining buffer when the file is done yield buffer def compare_intervals(self, stt1, end1, stt2, end2, buffer_space=0): """ Compares two intervals represented by their start and end posns to check which precedes the other, or if they overlap. Adds a buffer space around each interval that increases the region in which they are considered to overlap. Returns: -1 If interval 1 (stt1 and end1) precedes interval 2, 0 if they overlap, or 1 if interval 2 precedes interval 1 """ stt1 -= buffer_space end1 += buffer_space stt2 -= buffer_space end2 += buffer_space if end1 < stt2: return -1 elif end2 < stt1: return 1 else: return 0 def find_empty_ranges(self, range_size, nbr_posns, buffer_size): """ Searches for ranges of unused posns in the genome for use when introducing new structural variants. Finds the number of posns given as a parameter and returns them as a list. """ posn_list = [] max_posn = self._chromosome_size - range_size - 1 #Will repeat until enough positions have been found while len(posn_list) < nbr_posns: raw_posn_list = [] for posn in posn_list: raw_posn_list.append(posn) posn_list = [] #1. Generate 150% needed number of random positions for i in range(int(nbr_posns)): raw_posn_list.append(random.randint(0, max_posn)) #2. Sort those positions and then check each to find whether they will overlap a preexisting #structural variant. raw_posn_list.sort() overlap_idx = 0 #first check that there is no overlap among the generated positions last_end = raw_posn_list[0] + range_size + (2 * buffer_size) tmp_posn_list = [] tmp_posn_list.append(raw_posn_list[0]) for i in range(1, len(raw_posn_list)): raw_posn = raw_posn_list[i] if raw_posn > last_end: tmp_posn_list.append(raw_posn) last_end = raw_posn + range_size + (2 * buffer_size) else: new_posn = last_end + 1 new_end = new_posn + range_size + (2 * buffer_size) if new_posn < max_posn: if i == len(raw_posn_list) - 1 or new_end < raw_posn_list[i+1]: tmp_posn_list.append(new_posn) last_end = new_end raw_posn_list = tmp_posn_list tmp_posn_list = None if len(self._mutation_list) == 0: posn_list = raw_posn_list else: #then check that the remaining positions do not overlap existing structural variants for i in range(len(raw_posn_list)): raw_posn = raw_posn_list[i] while overlap_idx < len(self._mutation_list): ovlp_stt = self._mutation_list[overlap_idx][0] ovlp_end = self._mutation_list[overlap_idx][1] compare_result = self.compare_intervals(raw_posn, raw_posn+range_size, ovlp_stt, ovlp_end, buffer_size) #no overlap if compare_result == -1: posn_list.append(raw_posn) break #attempt to shift this interval down, if that doesn't work, then #ignore this position as it overlaps a preexisting position elif compare_result == 0: if overlap_idx > 0: prev_end1 = self._mutation_list[overlap_idx-1][1] prev_end2 = raw_posn_list[i-1]+range_size prev_end = max(prev_end1, prev_end2) new_posn = prev_end + (2*buffer_size) if new_posn + range_size + (2 * buffer_size) < ovlp_stt: posn_list.append(new_posn) break #no overlap was found, move to the next position in the mutation list to check for overlap elif compare_result == 1: if overlap_idx < len(self._mutation_list) - 1: overlap_idx += 1 else: posn_list.append(raw_posn) break #3. If there are too many positions, then randomly removes some to reduce list to proper size while len(posn_list) > nbr_posns: del posn_list[random.randint(0, len(posn_list)-1)] return posn_list def random_sequence(self, seq_len): return "".join(random.choice(self._allele_base_list) for i in range(seq_len)) def delete_block(self, sequence, index, size): """deletes a block of items from a given sequence :param sequence: sequence from which to delete items :param index: the first position to delete :param size: the total number of positions to delete, may extend beyond the end of the sequence :returns: modified sequence with block deleted """ if index < 0 and index + size > -1: return sequence[:index] else: return sequence[:index] + sequence[index + size:] def insert_block(self, sequence, index, new_block): """inserts a block of items into a given sequence :param sequence: sequence into which to insert items :param index: the position before which to begin the insertion, to append to end use index = len(sequence) :param new_block: the items to be inserted :returns: modified sequence with block inserted """ return sequence[:index] + new_block + sequence[index:] def overwrite_block(self, sequence, index, new_block): """overwrites a block of items in a given sequence :param sequence: sequence in which to overwrite items :param index: the position at which to begin overwriting, to append to end use index = len(sequence) :param new_block: the items which will be written, may extend beyond end of original sequence :returns: modified sequence with block overwritten """ if (index < 0 and index + len(new_block) > -1) or (index + len(new_block) > len(sequence) - 1): return sequence[:index] + new_block else: return sequence[:index] + new_block + sequence[index + len(new_block):] def invert_block(self, sequence, index, size): """inverts a block of items in a given sequence :param sequence: sequence in which to invert items :param index: the position at which to begin inversion :param size: the number of items which will be inverted :returns: modified sequence with block overwritten, the original block, and the inverted block """ if index < 0: stt_idx = len(sequence) + index else: stt_idx = index end_idx = min(stt_idx + size, len(sequence)) original_block = sequence[stt_idx:end_idx] inverted_block = original_block[::-1] sequence_with_inversion = self.overwrite_block(sequence, stt_idx, inverted_block) return sequence_with_inversion, original_block, inverted_block def generate_snp_allele(self, orig_allele): allele_list = ["A", "C", "G", "T"] allele_list.remove(orig_allele) return random.choice(allele_list) def generate_str_base(self, seq_len): str_seq = '' while len(str_seq) == 0: str_seq = self.random_sequence(seq_len) invalid = True #ensure the sequence is not all the same allele for idx in range(1, len(str_seq)): if str_seq[idx - 1] != str_seq[idx]: invalid = False #if the first half of the sequence matches the second half, then consider it invalid if not invalid and str_seq[:int(len(str_seq)/2)] == str_seq[int(len(str_seq)/2):]: invalid = True #if the sequence was invalid, then clear it out and try again if invalid: str_seq = '' return str_seq def generate_alu_sequence(self, length): if not self._base_alu or len(self._base_alu) == 0: raise Exception("No base Alu defined") new_alu = self._base_alu len_diff = abs(length - len(new_alu)) for i in range(length - len(new_alu)): new_alu = self.insert_block(new_alu, random.randint(0, len(new_alu)-1), random.choice(self._allele_base_list)) for i in range(len(new_alu) - length): new_alu = self.delete_block(new_alu, random.randint(0, len(new_alu)-1), 1) for k in range(int(len(new_alu)*self._alu_mutation_rate)-len_diff): alu_posn = random.randint(0, len(new_alu)-1) snp = self.generate_snp_allele(new_alu[alu_posn]) new_alu = self.overwrite_block(new_alu, alu_posn, snp) return new_alu def ranged_length_list(self, min_len, max_len, nbr_items): """generates a list of lengths that vary in size between min_len and max_len :param min_len: smallest value to return :param max_len: largest value to return, at least 2 items will have this value, must be >= min_len :param nbr_items: the number of items which will be returned, must be > 0 :returns: a list of lengths with nbr_items items that vary from min_len to max_len """ if nbr_items < 1: raise Exception("Minimum length for the list is 1") if max_len < min_len: raise Exception("max_len must be greater than or equal to min_len") length_list = [] if nbr_items > 1: max_items = max(2, int(nbr_items/10)) else: max_items = 1 for i in range(max_items): length_list.append(max_len) if nbr_items > 2: below_max = nbr_items - max_items length_range = max_len - min_len for i in range(below_max): adj_value = random.randint(0, i) / below_max length_list.append(int(min_len + (length_range * adj_value))) return length_list def mutate_str(self): temp_mut_list = [] for j in range(len(self._str_list)): mutation_amount = random.randint(-self._str_mutation_amount, self._str_mutation_amount) orig_str = self._str_list[j][1] * self._str_list[j][2] new_str = self._str_list[j][1] * (self._str_list[j][2] + mutation_amount) str_stt = self._str_list[j][0] str_end = self._str_list[j][0] + len(orig_str) #self._mutation_list.append([str_stt, str_end, 'MUT_STR', new_str]) #self._mutation_list.sort() temp_mut_list.append([str_stt, str_end, 'MUT_STR', new_str]) temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) def mutate_cnv(self): new_posn_list = self.find_empty_ranges(self._cnv_max_length, self._nbr_ref_cnv * self._cnv_mutation_amount, self._overlap_buffer) temp_mut_list = [] for i in range(self._nbr_ref_cnv): cnv_id = self._cnv_list[i][0] cnv_len = self._cnv_list[i][1] cnv_posn_list = self._cnv_list[i][2] mutation_amount = random.randint(-self._cnv_mutation_amount, self._cnv_mutation_amount) if mutation_amount > 0: for i in range(mutation_amount): cnv_posn = new_posn_list.pop(random.randint(0, len(new_posn_list)-1)) cnv_posn_list.append(cnv_posn) cnv_posn_list.sort() if mutation_amount < 0: for j in range(mutation_amount): next_posn = cnv_posn_list.pop(random.randint(0, len(cnv_posn_list)-1)) cnv_stt = next_posn cnv_end = next_posn + cnv_len self._mutation_list.append([cnv_stt, cnv_end, 'DEL_CNV', cnv_id]) for cnv_posn in cnv_posn_list: #self._mutation_list.append([cnv_posn, cnv_posn + cnv_len, "DONOR_CNV", cnv_id]) #self._mutation_list.sort() temp_mut_list.append([cnv_posn, cnv_posn + cnv_len, "DONOR_CNV", cnv_id]) temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) def allocate_cnv(self, nbr_cnv, variant_tag): if nbr_cnv < 1: return cnv_length_list = self.ranged_length_list(self._cnv_min_length, self._cnv_max_length, nbr_cnv) cnv_posn_list = self.find_empty_ranges(self._cnv_max_length, nbr_cnv * self._cnv_max_copies, self._overlap_buffer) temp_mut_list = [] for i in range(nbr_cnv): posn_list = [] seq_len = cnv_length_list[i] nbr_copies = random.randint(self._cnv_min_copies, self._cnv_max_copies) if 'REF' in variant_tag: cnv_id = i else: cnv_id = i + self._nbr_ref_cnv for j in range(nbr_copies): cnv_posn = cnv_posn_list.pop(random.randint(0, len(cnv_posn_list)-1)) posn_list.append(cnv_posn) #self._mutation_list.append([cnv_posn, cnv_posn+seq_len, variant_tag, cnv_id]) temp_mut_list.append([cnv_posn, cnv_posn+seq_len, variant_tag, cnv_id]) self._cnv_list.append([cnv_id, seq_len, posn_list]) #self._mutation_list.sort() temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) def allocate_alu(self, nbr_alu, variant_tag): if nbr_alu < 1: return alu_length_list = self.ranged_length_list(self._alu_min_length, self._alu_max_length, nbr_alu) alu_posn_list = self.find_empty_ranges(self._alu_max_length, nbr_alu, self._overlap_buffer) temp_mut_list = [] for j in range(nbr_alu): alu_stt = alu_posn_list[j] alu_len = alu_length_list.pop(random.randint(0, len(alu_length_list)-1)) #donor alus are inserted into the genome, so their end_posn in reference to ref genome is their start if variant_tag == 'DONOR_ALU': alu_end = alu_stt else: alu_end = alu_posn_list[j] + alu_len #self._mutation_list.append([alu_stt, alu_end, variant_tag, alu_len]) #self._mutation_list.sort() temp_mut_list.append([alu_stt, alu_end, variant_tag, alu_len]) temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) def allocate_str(self, nbr_str, variant_tag): if nbr_str < 1: return str_posn_list = self.find_empty_ranges(self._str_max_copies * self._str_max_length, nbr_str, self._overlap_buffer) temp_mut_list = [] for i in range(nbr_str): seq_len = random.randint(self._str_min_length, self._str_max_length) nbr_copies = random.randint(self._str_min_copies, self._str_max_copies) str_seq = self.generate_str_base(seq_len) str_posn = str_posn_list.pop(random.randint(0, len(str_posn_list)-1)) #self._mutation_list.append([str_posn, str_posn + (seq_len*nbr_copies), variant_tag, str_seq, nbr_copies]) self._str_list.append([str_posn, str_seq, nbr_copies]) #self._mutation_list.sort() temp_mut_list.append([str_posn, str_posn + (seq_len*nbr_copies), variant_tag, str_seq, nbr_copies]) temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) def allocate_inversions(self, nbr_inv, min_len, max_len): if nbr_inv < 1: return inv_length_list = self.ranged_length_list(min_len, max_len, nbr_inv) inv_posn_list = self.find_empty_ranges(max_len, nbr_inv, self._overlap_buffer) temp_mut_list = [] for i in range(nbr_inv): inv_stt = inv_posn_list[i] inv_len = inv_length_list.pop(random.randint(0, len(inv_length_list)-1)) inv_end = inv_stt + inv_len #self._mutation_list.append([inv_stt, inv_end, 'INV', inv_len]) #self._mutation_list.sort() temp_mut_list.append([inv_stt, inv_end, 'INV', inv_len]) temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) def allocate_insertions(self, nbr_ins, min_len, max_len): if nbr_ins < 1: return ins_length_list = self.ranged_length_list(min_len, max_len, nbr_ins) ins_posn_list = self.find_empty_ranges(max_len, nbr_ins, self._overlap_buffer) temp_mut_list = [] for i in range(nbr_ins): ins_stt = ins_posn_list[i] ins_len = ins_length_list.pop(random.randint(0, len(ins_length_list)-1)) ins_end = ins_stt #self._mutation_list.append([ins_stt, ins_end, 'INS', ins_len]) #self._mutation_list.sort() temp_mut_list.append([ins_stt, ins_end, 'INS', ins_len]) temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) def allocate_deletions(self, nbr_del, min_len, max_len): if nbr_del < 1: return del_length_list = self.ranged_length_list(min_len, max_len, nbr_del) del_posn_list = self.find_empty_ranges(max_len, nbr_del, self._overlap_buffer) temp_mut_list = [] for i in range(nbr_del): del_stt = del_posn_list[i] del_len = del_length_list.pop(random.randint(0, len(del_length_list)-1)) del_end = del_stt + del_len #self._mutation_list.append([del_stt, del_end, 'DEL', del_len]) #self._mutation_list.sort() temp_mut_list.append([del_stt, del_end, 'DEL', del_len]) temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) def allocate_snps(self): if self._nbr_snp < 1: return snp_posn_list = self.find_empty_ranges(1, self._nbr_snp, 0) temp_mut_list = [] for i in range(self._nbr_snp): snp_stt = snp_posn_list[i] snp_end = snp_stt + 1 temp_mut_list.append([snp_stt, snp_end, 'SNP', 1]) #self._mutation_list.append([snp_stt, snp_end, 'SNP', 1]) temp_mut_list.sort() self._mutation_list = list(merge(self._mutation_list, temp_mut_list)) #self._mutation_list.sort() def generate_ref_genome(self): """ Generates a random reference genome with the specified number of chromosomes, each of length length_chromosome """ if self._use_alu: if not self._base_alu or len(self._base_alu) == 0: raise Exception("No base Alu defined") if not os.path.exists(self._base_alu_file): with open(self._base_alu_file, "w") as alu_file: alu_file.write(">" + str(self._genome_id) + "\n") self.write_genome_lines_to_file(self._base_alu, alu_file) with open(self._ref_genome_file, "w") as ref_file: if not os.path.exists(self._working_dir): os.makedirs(self._working_dir) ref_file.write(">" + str(self._genome_id)) ref_file.write("\n>chr" + str(self._chromosome_id) + "\n") self._mutation_list = [] if self._use_alu: print('REF GENOME: Allocating ' + str(self._nbr_ref_alu) + ' Alus') self.allocate_alu(self._nbr_ref_alu, "REF_ALU") print('REF GENOME: Allocating ' + str(self._nbr_ref_cnv) + ' CNVs') self.allocate_cnv(self._nbr_ref_cnv, "REF_CNV") print('REF GENOME: Allocating ' + str(self._nbr_ref_str) + ' STRs') self.allocate_str(self._nbr_ref_str, "REF_STR") buffer_adj = 0 buffer = '' mut_idx = 0 mut_max_idx = len(self._mutation_list) - 1 buffer_size = 80 count = 0 if len(self._mutation_list) == 0: mut_idx = -1 while count < self._chromosome_size: if len(buffer) > buffer_size or mut_idx == -1: if mut_idx == -1: skip_distance = self._chromosome_size - count buffer += self.random_sequence(skip_distance) count += skip_distance buffer_size = len(buffer) self.write_genome_lines_to_file(buffer, ref_file) else: self.write_genome_lines_to_file(buffer[:buffer_size], ref_file) buffer = buffer[buffer_size:] buffer_adj += buffer_size elif len(self._mutation_list) > 0 and count < self._mutation_list[mut_idx][0]: skip_distance = self._mutation_list[mut_idx][0] - count buffer += self.random_sequence(skip_distance) count += skip_distance elif mut_idx != -1: mut_type = self._mutation_list[mut_idx][2] if mut_type == 'REF_STR': str_seq = self._mutation_list[mut_idx][3] nbr_copies = self._mutation_list[mut_idx][4] str_seq = str_seq * nbr_copies #pads either side of str with non matching allele to remove ambiguity if buffer[-1] == str_seq[-1]: buffer = buffer[:-1] + self.generate_snp_allele(buffer[-1]) right_padding = self.generate_snp_allele(str_seq[0]) buffer += str_seq + right_padding count += len(str_seq) + 1 elif mut_type == 'REF_CNV': cnv_stt = self._mutation_list[mut_idx][0] cnv_end = self._mutation_list[mut_idx][1] cnv_len = cnv_end - cnv_stt cnv_id = self._mutation_list[mut_idx][3] if cnv_id in self._cnv_dict: cnv_seq = self._cnv_dict[cnv_id] else: cnv_seq = self.random_sequence(cnv_len) self._cnv_dict[cnv_id] = cnv_seq buffer += cnv_seq count += cnv_len elif mut_type == 'REF_ALU': alu_len = self._mutation_list[mut_idx][3] alu_seq = self.generate_alu_sequence(alu_len) buffer += alu_seq count += alu_len if mut_idx < mut_max_idx: mut_idx += 1 else: mut_idx = -1 #flags when all mutations have been seen def generate_donor_genome(self): with open(self._priv_genome_file, "w") as donor_genome_file: donor_genome_file.write(">" + str(self._genome_id) + "\n") donor_genome_file.write(">chr" + str(self._chromosome_id) + "\n") buffer_size = 100000 fasta_parser = self.parse_fasta(self._ref_genome_file, buffer_size=buffer_size) #plan out all mutation ranges in reference to the ref genome, storing them in the mutation_list print('DONOR GENOME: Mutating existing STRs') self.mutate_str() print('DONOR GENOME: Mutating existing CNVs') self.mutate_cnv() if self._use_alu: print('DONOR GENOME: Allocating ' + str(self._nbr_denovo_alu) + ' Alus') self.allocate_alu(self._nbr_denovo_alu, "DONOR_ALU") print('DONOR GENOME: Allocating ' + str(self._nbr_denovo_cnv) + ' CNVs') self.allocate_cnv(self._nbr_denovo_cnv, "DONOR_CNV") print('DONOR GENOME: Allocating ' + str(self._nbr_denovo_str) + ' STRs') self.allocate_str(self._nbr_denovo_str, "DONOR_STR") print('DONOR GENOME: Allocating ' + str(self._nbr_long_inv) + ' long inversions') self.allocate_inversions(self._nbr_long_inv, self._inv_long_min_length, self._inv_long_max_length) print('DONOR GENOME: Allocating ' + str(self._nbr_long_ins) + ' long insertions') self.allocate_insertions(self._nbr_long_ins, self._ins_long_min_length, self._ins_long_max_length) print('DONOR GENOME: Allocating ' + str(self._nbr_long_del) + ' long deletions') self.allocate_deletions(self._nbr_long_del, self._del_long_min_length, self._del_long_max_length) print('DONOR GENOME: Allocating ' + str(self._nbr_short_inv) + ' short inversions') self.allocate_inversions(self._nbr_short_inv, self._inv_short_min_length, self._inv_short_max_length) print('DONOR GENOME: Allocating ' + str(self._nbr_short_ins) + ' short insertions') self.allocate_insertions(self._nbr_short_ins, self._ins_short_min_length, self._ins_short_max_length) print('DONOR GENOME: Allocating ' + str(self._nbr_short_del) + ' short deletions') self.allocate_deletions(self._nbr_short_del, self._del_short_min_length, self._del_short_max_length) print('DONOR GENOME: Allocating ' + str(self._nbr_snp) + ' SNPs') self.allocate_snps() variant_types = ['STR','CNV','ALU','INV','INS','DEL','SNP'] answer_files = {} for variant in variant_types: answer_files[variant] = open(os.path.join(self._working_dir, variant + '_ANS_FILE'), 'w') #read in the reference genome, writing out the donor genome out to file using #the mutations from the mutation list with open(self._priv_genome_file, "a") as donor_genome_file: ref_genome_idx = 0 buffer_adjust = 0 donor_genome = '' ref_genome = '' if len(self._mutation_list) > 0: mut_idx = 0 else: mut_idx = -1 mut_max_idx = len(self._mutation_list) - 1 while ref_genome_idx + buffer_adjust < self._chromosome_size: ref_genome = ref_genome[ref_genome_idx:] buffer_adjust += ref_genome_idx ref_genome_idx = 0 next_segment = next(fasta_parser) if next_segment: ref_genome += next_segment if mut_idx == -1: donor_genome += ref_genome[ref_genome_idx:] ref_genome_idx += len(ref_genome) - ref_genome_idx elif ref_genome_idx + buffer_adjust != self._mutation_list[mut_idx][0]: donor_genome += ref_genome[ref_genome_idx:self._mutation_list[mut_idx][0] - buffer_adjust] ref_genome_idx = self._mutation_list[mut_idx][0] - buffer_adjust else: if len(donor_genome) > buffer_size: self.write_genome_lines_to_file(donor_genome[:buffer_size], donor_genome_file) donor_genome = donor_genome[buffer_size:] mut_type = self._mutation_list[mut_idx][2] ref_genome_stt = self._mutation_list[mut_idx][0] - buffer_adjust ref_genome_end = self._mutation_list[mut_idx][1] - buffer_adjust ref_genome_idx = ref_genome_end if mut_type == 'SNP': orig_allele = ref_genome[ref_genome_stt] snp_allele = self.generate_snp_allele(orig_allele) donor_genome += snp_allele answer_files['SNP'].write('\n' + str(self._chromosome_id) + ',' + orig_allele + ',' + snp_allele + ',' + str(self._mutation_list[mut_idx][0])) #the mutation list contains both the original str and the mutated str, so when #one is encountered the other needs to be pulled and dealt with at the same #time elif mut_type == 'MUT_STR': new_str = self._mutation_list[mut_idx][3] mut_idx += 1 donor_genome += new_str answer_files['STR'].write('\n' + str(self._chromosome_id) + ',' + new_str + ',' + str(self._mutation_list[mut_idx][0])) elif mut_type == 'DONOR_STR': str_seq = self._mutation_list[mut_idx][3] nbr_copies = self._mutation_list[mut_idx][4] str_seq = str_seq * nbr_copies #pads either side of str with non matching allele to remove ambiguity left_padding = self.generate_snp_allele(str_seq[-1]) right_padding = self.generate_snp_allele(str_seq[0]) padded_str_seq = left_padding + str_seq + right_padding donor_genome += padded_str_seq answer_files['STR'].write('\n' + str(self._chromosome_id) + ',' + str_seq + ',' + str(self._mutation_list[mut_idx][0] + 1)) answer_files['INS'].write('\n' + str(self._chromosome_id) + ',' + padded_str_seq + ',' + str(self._mutation_list[mut_idx][0])) elif mut_type == 'REF_CNV': cnv_id = self._mutation_list[mut_idx][3] cnv_seq = ref_genome[ref_genome_stt:ref_genome_end] donor_genome += cnv_seq answer_files['CNV'].write('\n' + str(self._chromosome_id) + ',' + str(cnv_id) + ',' + str(self._mutation_list[mut_idx][0]) + ',' + cnv_seq) #assumes DEL_CNV is always followed by an entry for the REF_CNV, so the mut_idx is incremented elif mut_type == 'DEL_CNV': mut_idx += 1 del_len = self._mutation_list[mut_idx][1] - self._mutation_list[mut_idx][0] del_seq = ref_genome[ref_genome_stt:ref_genome_end] answer_files['DEL'].write('\n' + str(self._chromosome_id) + ',' + del_seq + ',' + str(self._mutation_list[mut_idx][0])) #every non deleted CNV will have a DONOR_CNV entry (some will only have DONOR_CNV, no REF_CNV) elif mut_type == 'DONOR_CNV': cnv_stt = self._mutation_list[mut_idx][0] cnv_end = self._mutation_list[mut_idx][1] cnv_len = cnv_end - cnv_stt cnv_id = self._mutation_list[mut_idx][3] if cnv_id in self._cnv_dict: cnv_seq = self._cnv_dict[cnv_id] else: cnv_seq = ref_genome[ref_genome_stt:ref_genome_end] self._cnv_dict[cnv_id] = cnv_seq donor_genome += cnv_seq if mut_idx < mut_max_idx and self._mutation_list[mut_idx+1][2] == 'REF_CNV' and \ self._mutation_list[mut_idx][0] == self._mutation_list[mut_idx+1][0]: mut_idx += 1 else: answer_files['INS'].write('\n' + str(self._chromosome_id) + ',' + cnv_seq + ',' + str(self._mutation_list[mut_idx][0])) answer_files['CNV'].write('\n' + str(self._chromosome_id) + ',' + str(cnv_id) + ',' + str(self._mutation_list[mut_idx][0]) + ',' + cnv_seq) elif mut_type == 'REF_ALU': alu_stt = self._mutation_list[mut_idx][0] alu_end = self._mutation_list[mut_idx][1] alu_len = alu_end - alu_stt alu_seq = ref_genome[ref_genome_stt:ref_genome_end] donor_genome += alu_seq answer_files['ALU'].write('\n' + str(self._chromosome_id) + ',' + alu_seq + ',' + str(self._mutation_list[mut_idx][0])) answer_files['INS'].write('\n' + str(self._chromosome_id) + ',' + alu_seq + ',' + str(self._mutation_list[mut_idx][0])) elif mut_type == 'DONOR_ALU': alu_len = self._mutation_list[mut_idx][3] alu_seq = self.generate_alu_sequence(alu_len) donor_genome += alu_seq answer_files['ALU'].write('\n' + str(self._chromosome_id) + ',' + alu_seq + ',' + str(self._mutation_list[mut_idx][0])) elif mut_type == 'INV': orig_block = ref_genome[ref_genome_stt:ref_genome_end] inv_block = orig_block[::-1] donor_genome += inv_block answer_files['INV'].write('\n' + str(self._chromosome_id) + ',' + orig_block + ',' + str(self._mutation_list[mut_idx][0])) elif mut_type == 'INS': ins_len = self._mutation_list[mut_idx][3] ins_seq = self.random_sequence(ins_len) donor_genome += ins_seq answer_files['INS'].write('\n' + str(self._chromosome_id) + ',' + ins_seq + ',' + str(self._mutation_list[mut_idx][0])) elif mut_type == 'DEL': del_seq = ref_genome[ref_genome_stt:ref_genome_end] answer_files['DEL'].write('\n' + str(self._chromosome_id) + ',' + del_seq + ',' + str(self._mutation_list[mut_idx][0])) if mut_idx < mut_max_idx: mut_idx += 1 else: mut_idx = -1 #flags when all mutations have been seen writeable = int(len(donor_genome) / 80) if writeable >= 1: self.write_genome_lines_to_file(donor_genome[:writeable*80], donor_genome_file) donor_genome = donor_genome[writeable*80:] self.write_genome_lines_to_file(donor_genome, donor_genome_file) for key in answer_files: answer_files[key].close() with open(self._answer_file, 'w') as main_ans: main_ans.write(">" + str(self._genome_id) + "\n") main_ans.write(">chr" + str(self._chromosome_id)) for variant in variant_types: with open(os.path.join(self._working_dir, variant + '_ANS_FILE'), 'r') as temp_file: if variant == 'CNV': main_ans.write("\n>CNV") cnv_dict = {} for line in temp_file: line = line.strip() if line: line_array = line.split(',') cnv_id = line_array[1] cnv_posn = line_array[2] cnv_seq = line_array[3] if cnv_id in cnv_dict: cnv_seq, cnv_posn_list = cnv_dict[cnv_id] else: cnv_posn_list = [] cnv_posn_list.append(cnv_posn) cnv_dict[cnv_id] = (cnv_seq, cnv_posn_list) cnv_list = [] for key in cnv_dict: cnv_seq, cnv_posn_list = cnv_dict[key] cnv_posn_list.sort() cnv_list.append([cnv_seq, cnv_posn_list]) cnv_list.sort(key = lambda l: l[:][1][0]) for cnv_seq, cnv_posn_list in cnv_list: main_ans.write('\n' + str(self._chromosome_id) + ',' + cnv_seq) for posn in cnv_posn_list: main_ans.write(',' + str(posn)) else: main_ans.write("\n>" + variant) for line in temp_file: line = line.strip() if line: main_ans.write('\n' + line) os.remove(os.path.join(self._working_dir, variant + '_ANS_FILE')) shutil.rmtree(self._working_dir) def add_sequencer_errors(self, read_sequence): error_list = [] for i in range(len(read_sequence)): if random.random() < self._sequencer_error_rate: error_list.append(i) for i in error_list: orig_allele = read_sequence[i] error_allele = self.generate_snp_allele(orig_allele) read_sequence = self.overwrite_block(read_sequence, i, error_allele) return read_sequence def create_read_pair(self, donor_genome, left_stt, right_stt): left_read = donor_genome[left_stt:left_stt+self._sequencer_read_length] right_read = donor_genome[right_stt:right_stt+self._sequencer_read_length] #only one is flipped so they are always in opposing directions with their #overall direction if random.random() > .5: right_read = right_read[::-1] else: left_read = left_read[::-1] return left_read, right_read def generate_reads(self): with open(self._reads_file, "w") as reads_file: reads_file.write(">" + str(self._genome_id)) with open(self._priv_genome_file, "r") as donor_genome_file: # skip the first two '>' labels in the donor genome file donor_genome_file.readline() donor_genome_file.readline() temp_file_name_list = [] donor_genome = "" for line in donor_genome_file: if ">" in line: break donor_genome += str(line).strip() nbr_reads = int(self._chromosome_size * self._sequencer_coverage / self._sequencer_read_length) nbr_pairs = int(nbr_reads / 2) write_list = [] for i in range(nbr_pairs): if random.random() < self._sequencer_garbage_rate: left_read = self.random_sequence(self._sequencer_read_length) right_read = self.random_sequence(self._sequencer_read_length) else: gap_len = random.randint(self._sequencer_gap_min, self._sequencer_gap_max) total_len = 2 * self._sequencer_read_length + gap_len left_stt = random.randint(0, self._chromosome_size - total_len - 1) right_stt = left_stt + self._sequencer_read_length + gap_len left_read, right_read = self.create_read_pair(donor_genome, left_stt, right_stt) left_read = self.add_sequencer_errors(left_read) right_read = self.add_sequencer_errors(right_read) reads_file.write('\n' + left_read + ',' + right_read) def parse_system_args(self): parser = argparse.ArgumentParser( description="This script generates a reference and donor genome as a set " "of files. The files can be used for various computational " "genetics purposes. The following files are created: 1) " "reference genome \'ref_*.txt\' 2) mutated donor genome " "\'private_*.txt\' 3) paired-end reads \'reads_*.txt\'" "from donor genome 4) mutation answer key \'ans_*.txt\'" ) parser.add_argument( "--id", type=str, default='test', help="The name or ID of this genome for identification purposes. The " "genome id will be reflected in the generated file names." ) parser.add_argument( "--chr_id", type=int, default='1', help="The id number for this chromosome, defaults to 1." ) parser.add_argument( "--chr_size", type=int, default='10', help="The size of each chromosome, multiplied by -s (scaling factor). Change " "scale with -s option" ) parser.add_argument( "-s", "--scale", type=str, choices=["k", "m", "b"], default="k", help="the amount to scale chromosome-size by. k: thousands, m: millions," " b: billions. By default, scale is k (thousands)." ) parser.add_argument( "--alu", type=str, choices=["y", "n"], default="n", help="whether to include Alus in the genome." ) parser.add_argument( "--assembly", type=str, choices=["y", "n"], default="n", help="whether to generate output for assembly (no reference genome)." ) return parser.parse_args() class TestClass(unittest.TestCase): def setUp(self): args = TestSetting() args.id = 'test' args.chr_id = 1 args.chr_size = 10 args.scale = 'k' args.alu = 'y' args.assembly = 'n' args.base_alu = random_sequence(300) self.gen = chromosome_builder(args) def test_compare_intervals(self): self.assertEqual(0, self.gen.compare_intervals(0, 1, 1, 2, buffer_space=0)) self.assertEqual(-1, self.gen.compare_intervals(0, 0, 1, 10, buffer_space=0)) self.assertEqual(1, self.gen.compare_intervals(11, 12, 1, 10, buffer_space=0)) self.assertEqual(0, self.gen.compare_intervals(0, 0, 1, 10, buffer_space=1)) self.assertEqual(0, self.gen.compare_intervals(1, 10, 0, 0, buffer_space=1)) self.assertEqual(0, self.gen.compare_intervals(11, 12, 1, 10, buffer_space=1)) self.assertEqual(0, self.gen.compare_intervals(0, 4, 1, 2, buffer_space=0)) self.assertEqual(0, self.gen.compare_intervals(0, 4, 1, 2, buffer_space=5)) self.assertEqual(0, self.gen.compare_intervals(1, 4, 0, 2, buffer_space=0)) self.assertEqual(0, self.gen.compare_intervals(1, 4, 1, 4, buffer_space=0)) def test_find_empty_ranges(self): self.gen._mutation_list.append([1000, 10000, 'MUT_STR', 9000]) posn_list = self.gen.find_empty_ranges(10, 25, 5) self.assertEqual(len(posn_list), 25) for posn in posn_list: self.assertTrue(posn < 995 and posn >= 0) self.gen._mutation_list = [] self.gen._mutation_list.append([0, 9000, 'MUT_STR', 9000]) posn_list = self.gen.find_empty_ranges(10, 25, 5) self.assertEqual(len(posn_list), 25) for posn in posn_list: self.assertTrue(posn <= 10000 and posn > 9005) self.gen._mutation_list = [] self.gen._mutation_list.append([9000, 10000, 'MUT_STR', 1000]) self.gen._mutation_list.append([0, 1000, 'MUT_STR', 1000]) self.gen._mutation_list.sort() posn_list = self.gen.find_empty_ranges(10, 100, 5) self.assertEqual(len(posn_list), 100) for posn in posn_list: self.assertTrue(posn < 8995 and posn > 1005) self.gen._mutation_list = [] self.gen._mutation_list.append([0, 1000, 'MUT_STR', 1000]) self.gen._mutation_list.append([1100, 2000, 'MUT_STR', 900]) self.gen._mutation_list.append([4000, 5000, 'MUT_STR', 1000]) self.gen._mutation_list.append([7000, 8000, 'MUT_STR', 1000]) self.gen._mutation_list.append([9000, 10000, 'MUT_STR', 1000]) self.gen._mutation_list.sort() posn_list = self.gen.find_empty_ranges(10, 25, 5) self.assertEqual(len(posn_list), 25) for posn in posn_list: self.assertTrue( (posn > 1005 and posn < 1095) or (posn > 2005 and posn < 3995) or (posn > 5005 and posn < 6995) or (posn > 8005 and posn < 8995) ) self.gen._mutation_list = [] posn_list = self.gen.find_empty_ranges(50, 4, 5) for posn in posn_list: self.assertTrue(posn > 0 and posn < 10000) def test_random_sequence(self): rand_seq = self.gen.random_sequence(10) self.assertEqual(len(rand_seq), 10) for allele in rand_seq: self.assertTrue(allele in ['A','C','G','T']) def test_delete_block(self): sequence = 'THIS IS A TEST SEQUENCE' sequence = self.gen.delete_block(sequence, 5, 3) self.assertEqual(sequence, 'THIS A TEST SEQUENCE') sequence = self.gen.delete_block(sequence, 0, 1) self.assertEqual(sequence, 'HIS A TEST SEQUENCE') sequence = self.gen.delete_block(sequence, -1, 1) self.assertEqual(sequence, 'HIS A TEST SEQUENC') sequence = self.gen.delete_block(sequence, -2, 1) self.assertEqual(sequence, 'HIS A TEST SEQUEC') sequence = self.gen.delete_block(sequence, -2, 3) self.assertEqual(sequence, 'HIS A TEST SEQU') def test_insert_block(self): sequence = 'HIS A TEST SEQUE' sequence = self.gen.insert_block(sequence, -1, 'EC') self.assertEqual(sequence, 'HIS A TEST SEQUECE') sequence = self.gen.insert_block(sequence, -2, 'N') self.assertEqual(sequence, 'HIS A TEST SEQUENCE') sequence = self.gen.insert_block(sequence, 0, 'T') self.assertEqual(sequence, 'THIS A TEST SEQUENCE') sequence = self.gen.insert_block(sequence, 5, 'IS ') self.assertEqual(sequence, 'THIS IS A TEST SEQUENCE') sequence = self.gen.insert_block(sequence, len(sequence), '!') self.assertEqual(sequence, 'THIS IS A TEST SEQUENCE!') def test_overwrite_block(self): sequence = 'THIS IS A TEST SEQUENCE!' sequence = self.gen.overwrite_block(sequence, 2, 'AT') self.assertEqual(sequence, 'THAT IS A TEST SEQUENCE!') sequence = self.gen.overwrite_block(sequence, 0, 'W') self.assertEqual(sequence, 'WHAT IS A TEST SEQUENCE!') sequence = self.gen.overwrite_block(sequence, -1, '?') self.assertEqual(sequence, 'WHAT IS A TEST SEQUENCE?') sequence = self.gen.overwrite_block(sequence, -1, '?!?') self.assertEqual(sequence, 'WHAT IS A TEST SEQUENCE?!?') sequence = self.gen.overwrite_block(sequence, len(sequence), '!') self.assertEqual(sequence, 'WHAT IS A TEST SEQUENCE?!?!') def test_invert_block(self): sequence = 'THIS IS A TEST SEQUENCE' sequence, orig_block, inverted_block = self.gen.invert_block(sequence, 0, 1) self.assertEqual(orig_block, 'T') self.assertEqual(inverted_block, 'T') self.assertEqual(sequence, 'THIS IS A TEST SEQUENCE') sequence, orig_block, inverted_block = self.gen.invert_block(sequence, 0, 2) self.assertEqual(orig_block, 'TH') self.assertEqual(inverted_block, 'HT') self.assertEqual(sequence, 'HTIS IS A TEST SEQUENCE') sequence, orig_block, inverted_block = self.gen.invert_block(sequence, -1, 1) self.assertEqual(orig_block, 'E') self.assertEqual(inverted_block, 'E') self.assertEqual(sequence, 'HTIS IS A TEST SEQUENCE') sequence, orig_block, inverted_block = self.gen.invert_block(sequence, -2, 2) self.assertEqual(orig_block, 'CE') self.assertEqual(inverted_block, 'EC') self.assertEqual(sequence, 'HTIS IS A TEST SEQUENEC') sequence, orig_block, inverted_block = self.gen.invert_block(sequence, 5, 4) self.assertEqual(orig_block, 'IS A') self.assertEqual(inverted_block, 'A SI') self.assertEqual(sequence, 'HTIS A SI TEST SEQUENEC') sequence, orig_block, inverted_block = self.gen.invert_block(sequence, len(sequence) - 2, 2) self.assertEqual(orig_block, 'EC') self.assertEqual(inverted_block, 'CE') self.assertEqual(sequence, 'HTIS A SI TEST SEQUENCE') def test_generate_snp_allele(self): snp_allele = self.gen.generate_snp_allele('A') self.assertTrue(snp_allele in ['T','G','C']) snp_allele = self.gen.generate_snp_allele('T') self.assertTrue(snp_allele in ['A','G','C']) snp_allele = self.gen.generate_snp_allele('G') self.assertTrue(snp_allele in ['T','A','C']) snp_allele = self.gen.generate_snp_allele('C') self.assertTrue(snp_allele in ['T','G','A']) def test_generate_str_base(self): str_base = self.gen.generate_str_base(2) self.assertTrue(str_base[0] != str_base[1]) for allele in str_base: self.assertTrue(allele in ['T','A','C','G']) str_base = self.gen.generate_str_base(3) self.assertTrue((str_base[0] != str_base[1]) or (str_base[1] != str_base[2]) or (str_base[0] != str_base[2]) ) for allele in str_base: self.assertTrue(allele in ['T','A','C','G']) str_base = self.gen.generate_str_base(4) self.assertEqual(len(str_base), 4) self.assertTrue(str_base[:2] != str_base[2:]) for allele in str_base: self.assertTrue(allele in ['T','A','C','G']) str_base = self.gen.generate_str_base(5) self.assertEqual(len(str_base), 5) for allele in str_base: self.assertTrue(allele in ['T','A','C','G']) def test_generate_alu_sequence(self): alu_seq = self.gen.generate_alu_sequence(300) self.assertTrue(len(alu_seq) == 300) self.assertTrue(alu_seq != self.gen._base_alu) for allele in alu_seq: self.assertTrue(allele in ['T','A','C','G']) alu_seq = self.gen.generate_alu_sequence(295) self.assertTrue(len(alu_seq) == 295) self.assertTrue(alu_seq != self.gen._base_alu[:295]) self.assertTrue(alu_seq != self.gen._base_alu[4:]) for allele in alu_seq: self.assertTrue(allele in ['T','A','C','G']) alu_seq = self.gen.generate_alu_sequence(305) self.assertTrue(len(alu_seq) == 305) self.assertTrue(alu_seq != self.gen._base_alu) for allele in alu_seq: self.assertTrue(allele in ['T','A','C','G']) def test_ranged_length_list(self): self.assertRaises(Exception, self.gen.ranged_length_list, 10, 10, 0) self.assertRaises(Exception, self.gen.ranged_length_list, 1, 0, 1) length_list = self.gen.ranged_length_list(10, 10, 10) self.assertEqual(10, len(length_list)) for item in length_list: self.assertEqual(item, 10) length_list = self.gen.ranged_length_list(10, 20, 10) self.assertEqual(10, len(length_list)) max_count = 0 for item in length_list: if item == 20: max_count += 1 self.assertTrue(item <= 20 and item >= 10) self.assertEqual(max_count, 2) length_list = self.gen.ranged_length_list(10, 20, 1) self.assertEqual(1, len(length_list)) self.assertTrue(length_list[0] == 20) length_list = self.gen.ranged_length_list(10, 20, 2) self.assertEqual(2, len(length_list)) self.assertTrue(length_list[0] == 20 and length_list[1] == 20) length_list = self.gen.ranged_length_list(10, 20, 3) self.assertEqual(3, len(length_list)) self.assertTrue(length_list[0] == 20 and length_list[1] == 20 and length_list[2] == 10) def test_write_genome_lines_to_file(self): length_list = [0,1,79,80,81] for i in length_list: with open('test_file', 'w') as test_file: self.gen.write_genome_lines_to_file(self.gen._base_alu, test_file) with open('test_file', 'r') as test_file: base_alu = '' for line in test_file: base_alu += str(line).strip() self.assertEqual(base_alu, self.gen._base_alu) os.remove('test_file') def test_parse_fasta(self): nbr_chr_list = [1,2,3] length_list = [1,79,80,81] for nbr_chr in nbr_chr_list: for next_len in length_list: file_name = 'test_file_' + str(nbr_chr) + '_' + str(next_len) with open(file_name, 'w') as test_file: test_file.write('>test') for chr in range(1, nbr_chr + 1): test_file.write('\n>chr' + str(chr) + '\n') self.gen.write_genome_lines_to_file(self.gen._base_alu, test_file) for sequence in self.gen.parse_fasta(file_name): if sequence: base_alu = sequence self.assertEqual(base_alu, self.gen._base_alu) else: break os.remove(file_name) def test_create_read_pair(self): donor_genome = self.gen.random_sequence(200) left_read, right_read = self.gen.create_read_pair(donor_genome, 0, 0) self.assertEqual(left_read, right_read[::-1]) self.assertTrue( (left_read in donor_genome and right_read[::-1] in donor_genome) or (right_read in donor_genome and left_read[::-1] in donor_genome) ) left_stt = random.randint(0, 200 - self.gen._sequencer_read_length - 1) right_stt = random.randint(0, 200 - self.gen._sequencer_read_length - 1) left_read, right_read = self.gen.create_read_pair(donor_genome, left_stt, right_stt) self.assertEqual(len(left_read), len(right_read)) self.assertTrue( (left_read in donor_genome and right_read[::-1] in donor_genome) or (right_read in donor_genome and left_read[::-1] in donor_genome) ) left_stt = 0 right_stt = 200 - self.gen._sequencer_read_length - 1 left_read, right_read = self.gen.create_read_pair(donor_genome, left_stt, right_stt) self.assertEqual(len(left_read), len(right_read)) self.assertTrue( (left_read in donor_genome and right_read[::-1] in donor_genome) or (right_read in donor_genome and left_read[::-1] in donor_genome) ) def test_add_sequencer_errors(self): error_found = False donor_genome = self.gen.random_sequence(200) left_read, right_read = self.gen.create_read_pair(donor_genome, 0, 0) self.assertEqual(left_read, right_read[::-1]) self.assertTrue( (left_read in donor_genome and right_read[::-1] in donor_genome) or (right_read in donor_genome and left_read[::-1] in donor_genome) ) for i in range(25): left_read_w_error = self.gen.add_sequencer_errors(left_read) right_read_w_error = self.gen.add_sequencer_errors(right_read) if left_read != left_read_w_error or right_read != right_read_w_error: error_found = True self.assertTrue(error_found) def test_generate_ref_genome(self): for alu in ['y', 'n']: for test_args in [[10, 'k'], [100, 'k']]: args = TestSetting() args.id = 'test' args.chr_id = 1 args.chr_size = test_args[0] args.scale = test_args[1] args.alu = alu args.assembly = 'n' args.base_alu = random_sequence(300) self.gen = chromosome_builder(args) self.gen._alu_min_length = 300 self.gen._alu_max_length = 300 self.gen._alu_mutation_rate = 0.3 self.gen.generate_ref_genome() ref_genome = next(self.gen.parse_fasta(self.gen._ref_genome_file)) cnv_dict = {} cnv_count = 0 str_count = 0 for mutation in self.gen._mutation_list: if mutation[2] == 'REF_STR': str_count += 1 self.assertTrue(ref_genome[mutation[0]:mutation[1]] == mutation[3]*mutation[4]) elif mutation[2] == 'REF_CNV': if mutation[3] in cnv_dict: self.assertTrue(cnv_dict[mutation[3]] == ref_genome[mutation[0]:mutation[1]]) else: cnv_count += 1 cnv_dict[mutation[3]] = ref_genome[mutation[0]:mutation[1]] elif mutation[2] == 'REF_ALU': base_alu = self.gen._base_alu match_count = 0 for i in range(len(base_alu)): if self.gen._base_alu[i] == ref_genome[mutation[0]+i]: match_count += 1 self.assertTrue((match_count / len(base_alu)) > (.99 - self.gen._alu_mutation_rate)) self.assertEqual(cnv_count, self.gen._nbr_ref_cnv) self.assertEqual(str_count, self.gen._nbr_ref_str) def test_generate_donor_genome(self): args = TestSetting() args.id = 'test' args.chr_id = 1 args.chr_size = 10 args.scale = 'k' args.alu = 'n' args.assembly = 'n' args.base_alu = random_sequence(300) self.gen = chromosome_builder(args) self.gen._nbr_snp = 0 self.gen._nbr_denovo_str = 0 self.gen._nbr_denovo_cnv = 0 self.gen._nbr_long_inv = 0 self.gen._nbr_long_ins = 0 self.gen._nbr_long_del = 0 self.gen._nbr_ref_alu = 0 self.gen._nbr_denovo_alu = 0 self.gen._nbr_ref_str = 0 self.gen._nbr_ref_cnv = 0 self.gen._nbr_short_inv = 0 self.gen._nbr_short_ins = 0 self.gen._nbr_short_del = 0 self.gen._cnv_mutation_amount = 0 self.gen._str_mutation_amount = 0 self.gen.generate_ref_genome() self.gen.generate_donor_genome() ref_genome = '' for sequence in self.gen.parse_fasta(self.gen._ref_genome_file): if sequence: ref_genome += sequence else: break donor_genome = '' for sequence in self.gen.parse_fasta(self.gen._priv_genome_file): if sequence: donor_genome += sequence else: break self.assertEqual(ref_genome, donor_genome) self.assertEqual(len(ref_genome), 10000) for alu in ['y', 'n']: for test_args in [[10, 'k'], [100, 'k'], [150, 'k']]: args = TestSetting() args.id = 'test' args.chr_id = 1 args.chr_size = test_args[0] args.scale = test_args[1] args.alu = alu args.assembly = 'n' args.base_alu = random_sequence(300) if args.scale == 'k': expected_size = test_args[0] * 1000 elif args.scale == 'm': expected_size = test_args[0] * 1000000 self.gen = chromosome_builder(args) self.gen._alu_min_length = 300 self.gen._alu_max_length = 300 self.gen._alu_mutation_rate = 0.3 self.gen.generate_ref_genome() self.gen.generate_donor_genome() ref_genome = '' for sequence in self.gen.parse_fasta(self.gen._ref_genome_file): if sequence: ref_genome += sequence else: break donor_genome = '' for sequence in self.gen.parse_fasta(self.gen._priv_genome_file): if sequence: donor_genome += sequence else: break last_end = 0 self.assertEqual(expected_size, len(ref_genome)) for i in range(len(self.gen._mutation_list)): mutation = self.gen._mutation_list[i] self.assertTrue(ref_genome[last_end:mutation[0]] in donor_genome) last_end = mutation[1] mut_type = mutation[2] range_stt = max(0, mutation[0]-20) range_end = min(len(ref_genome)-1, mutation[0]+20) gapped_range_end = min(len(ref_genome)-1, mutation[1]+20) if mut_type == 'SNP': self.assertTrue(ref_genome[range_stt:range_end] not in donor_genome, msg='SNP ' + str(mutation[0])) elif mut_type == 'MUT_STR': new_str = mutation[3] self.assertTrue(new_str in donor_genome, msg='MUT_STR ' + str(mutation[0])) elif mut_type == 'DONOR_STR': str_seq = mutation[3] nbr_copies = mutation[4] new_str = str_seq * nbr_copies self.assertTrue(new_str in donor_genome, msg='DONOR_STR ' + str(mutation[0])) elif mut_type == 'REF_ALU': self.assertTrue(ref_genome[mutation[0]:mutation[1]] in donor_genome, msg='REF_ALU ' + str(mutation[0])) elif mut_type == 'REF_CNV': self.assertTrue(ref_genome[mutation[0]:mutation[1]] in donor_genome, msg='REF_CNV ' + str(mutation[0])) elif mut_type == 'DONOR_ALU': self.assertTrue(ref_genome[range_stt:gapped_range_end] not in donor_genome, msg='DONOR_ALU ' + str(mutation[0])) elif mut_type == 'INV': inv_seq = ref_genome[mutation[0]:mutation[1]] inv_seq = inv_seq[::-1] self.assertTrue(inv_seq in donor_genome, msg='INV ' + str(mutation[0])) elif mut_type == 'INS': self.assertTrue(ref_genome[range_stt:range_end] not in donor_genome, msg='INS ' + str(mutation[0])) elif mut_type == 'DEL': self.assertTrue(ref_genome[range_stt:gapped_range_end] not in donor_genome, msg='DEL ' + str(mutation[0])) def test_generate_reads(self): pass def test_mutate_str(self): pass def test_mutate_cnv(self): pass def test_allocate_cnv(self): #, nbr_cnv, variant_tag): pass def test_allocate_alu(self): #, nbr_alu, variant_tag): pass def test_allocate_str(self): #, nbr_str, variant_tag): pass def test_allocate_inversions(self): #, nbr_inv, min_len, max_len): pass def test_allocate_insertions(self): #, nbr_ins, min_len, max_len): pass def test_allocate_deletions(self): #, nbr_del, min_len, max_len): pass def test_allocate_snps(self): pass def random_sequence(seq_len): return "".join(random.choice(['A','C','G','T']) for i in range(seq_len)) class TestSetting(): def __init__(self): self.id = None self.num_chr = None self.chr_size = None self.scale = None self.alu = None self.assembly = None self.base_alu = None if __name__ == '__main__': unittest.main() test_results = [] for alu in ['y']:#, 'n']: for test in [[100, 'k']]:#, [1, 'm']]: args = TestSetting() args.id = 'test' args.chr_id = 1 args.chr_size = test[0] args.scale = test[1] args.alu = alu args.assembly = 'n' args.base_alu = random_sequence(300) start = time.clock() gen = chromosome_builder(args) print('generating ref genome length: ' + str(test[0]) + test[1]) gen.generate_ref_genome() print('generating donor genome') gen.generate_donor_genome() print('generating reads') gen.generate_reads() test_results.append('Test: ' + str(test[0]) + test[1] + ' time: ' + str(time.clock() - start)) for res in test_results: print(res) ```
{ "source": "joe3d1998/GraphFlow", "score": 2 }
#### File: core/utils/bert_utils.py ```python from collections import defaultdict, namedtuple import torch # When using the sliding window trick for long sequences, # we take the representation of each token with maximal context. # Take average of the BERT embeddings of these BPE sub-tokens # as the embedding for the word. # Take *weighted* average of the word embeddings through all layers. def extract_bert_ques_hidden_states(all_encoder_layers, max_doc_len, features, weighted_avg=False): num_layers, batch_size, turn_size, num_chunk, max_token_len, bert_dim = all_encoder_layers.shape out_features = torch.Tensor(num_layers, batch_size, turn_size, max_doc_len, bert_dim).fill_(0) device = all_encoder_layers.get_device() if all_encoder_layers.is_cuda else None if device is not None: out_features = out_features.to(device) token_count = [] # Map BERT tokens to doc words for i, ex_feature in enumerate(features): # Example ex_token_count = [] for t, para_feature in enumerate(ex_feature): # Turn para_token_count = defaultdict(int) for j, chunk_feature in enumerate(para_feature): # Chunk for k in chunk_feature.token_is_max_context: # Token if chunk_feature.token_is_max_context[k]: doc_word_idx = chunk_feature.token_to_orig_map[k] out_features[:, i, t, doc_word_idx] += all_encoder_layers[:, i, t, j, k] para_token_count[doc_word_idx] += 1 ex_token_count.append(para_token_count) token_count.append(ex_token_count) for i, ex_token_count in enumerate(token_count): for t, para_token_count in enumerate(ex_token_count): for doc_word_idx, count in para_token_count.items(): out_features[:, i, t, doc_word_idx] /= count # Average through all layers if not weighted_avg: out_features = torch.mean(out_features, 0) return out_features def extract_bert_ctx_hidden_states(all_encoder_layers, max_doc_len, features, weighted_avg=False): num_layers, batch_size, num_chunk, max_token_len, bert_dim = all_encoder_layers.shape out_features = torch.Tensor(num_layers, batch_size, max_doc_len, bert_dim).fill_(0) device = all_encoder_layers.get_device() if all_encoder_layers.is_cuda else None if device is not None: out_features = out_features.to(device) token_count = [] # Map BERT tokens to doc words for i, ex_feature in enumerate(features): # Example ex_token_count = defaultdict(int) for j, chunk_feature in enumerate(ex_feature): # Chunk for k in chunk_feature.token_is_max_context: # Token if chunk_feature.token_is_max_context[k]: doc_word_idx = chunk_feature.token_to_orig_map[k] out_features[:, i, doc_word_idx] += all_encoder_layers[:, i, j, k] ex_token_count[doc_word_idx] += 1 token_count.append(ex_token_count) for i, ex_token_count in enumerate(token_count): for doc_word_idx, count in ex_token_count.items(): out_features[:, i, doc_word_idx] /= count # Average through all layers if not weighted_avg: out_features = torch.mean(out_features, 0) return out_features def convert_text_to_bert_features(text, bert_tokenizer, max_seq_length, doc_stride): # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 tok_to_orig_index = [] all_doc_tokens = [] for (i, token) in enumerate(text): sub_tokens = bert_tokenizer.wordpiece_tokenizer.tokenize(token.lower()) for sub_ in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_) # The -2 accounts for [CLS] and [SEP] max_tokens_for_doc = max_seq_length - 2 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) out_features = [] for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) input_ids = bert_tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) feature = BertInputFeatures( doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids) out_features.append(feature) return out_features def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index class BertInputFeatures(object): """A single set of BERT features of data.""" def __init__(self, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids): self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids ``` #### File: core/utils/generic_utils.py ```python import yaml import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None, device=None): ''' Sinusoid position encoding table ''' def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) def get_posi_angle_vec(position): return [cal_angle(position, hid_j) for hid_j in range(d_hid)] sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 if padding_idx is not None: # zero vector for padding dimension sinusoid_table[padding_idx] = 0. sinusoid_table = torch.Tensor(sinusoid_table) return sinusoid_table.to(device) if device else sinusoid_table def get_range_vector(size, device): """ Returns a range vector with the desired size, starting at 0. The CUDA implementation is meant to avoid copy data from CPU to GPU. """ if device.type == 'cuda': return torch.cuda.LongTensor(size, device=device).fill_(1).cumsum(0) - 1 else: return torch.arange(0, size, dtype=torch.long) def to_cuda(x, device=None): if device: x = x.to(device) return x def batched_diag(x, device=None): # Input: a 2D tensor # Output: a 3D tensor x_diag = torch.zeros(x.size(0), x.size(1), x.size(1)) _ = x_diag.as_strided(x.size(), [x_diag.stride(0), x_diag.size(2) + 1]).copy_(x) return to_cuda(x_diag, device) def create_mask(x, N, device=None): x = x.data mask = np.zeros((x.size(0), N)) for i in range(x.size(0)): mask[i, :x[i]] = 1 return to_cuda(torch.Tensor(mask), device) def get_config(config_path="config.yml"): with open(config_path, "r") as setting: config = yaml.load(setting) return config ```
{ "source": "joe42/python-holidays", "score": 3 }
#### File: holidays/countries/brazil.py ```python from datetime import date from dateutil.easter import easter from dateutil.relativedelta import relativedelta as rd, TU from holidays.constants import JAN, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, \ NOV, DEC from holidays.holiday_base import HolidayBase class Brazil(HolidayBase): """ https://pt.wikipedia.org/wiki/Feriados_no_Brasil """ STATES = ['AC', 'AL', 'AP', 'AM', 'BA', 'CE', 'DF', 'ES', 'GO', 'MA', 'MT', 'MS', 'MG', 'PA', 'PB', 'PE', 'PI', 'PR', 'RJ', 'RN', 'RS', 'RO', 'RR', 'SC', 'SP', 'SE', 'TO'] def __init__(self, **kwargs): self.country = 'BR' HolidayBase.__init__(self, **kwargs) def _populate(self, year): # New Year's Day self[date(year, JAN, 1)] = "Ano novo" self[date(year, APR, 21)] = "Tiradentes" self[date(year, MAY, 1)] = "Dia Mundial do Trabalho" self[date(year, SEP, 7)] = "Independência do Brasil" self[date(year, OCT, 12)] = "Nossa Senhora Aparecida" self[date(year, NOV, 2)] = "Finados" self[date(year, NOV, 15)] = "Proclamação da República" # Christmas Day self[date(year, DEC, 25)] = "Natal" self[easter(year) - rd(days=2)] = "Sexta-feira Santa" self[easter(year)] = "Páscoa" self[easter(year) + rd(days=60)] = "Corpus Christi" quaresma = easter(year) - rd(days=46) self[quaresma] = "Quarta-feira de cinzas (Início da Quaresma)" self[quaresma - rd(weekday=TU(-1))] = "Carnaval" if self.state == 'AC': self[date(year, JAN, 23)] = "Dia do evangélico" self[date(year, JUN, 15)] = "Aniversário do Acre" self[date(year, SEP, 5)] = "Dia da Amazônia" self[date(year, NOV, 17)] = "Assinatura do Tratado de" \ " Petrópolis" if self.state == 'AL': self[date(year, JUN, 24)] = "São João" self[date(year, JUN, 29)] = "São Pedro" self[date(year, SEP, 16)] = "Emancipação política de Alagoas" self[date(year, NOV, 20)] = "Consciência Negra" if self.state == 'AP': self[date(year, MAR, 19)] = "Dia de São José" self[date(year, JUL, 25)] = "São Tiago" self[date(year, OCT, 5)] = "Criação do estado" self[date(year, NOV, 20)] = "Consciência Negra" if self.state == 'AM': self[date(year, SEP, 5)] = "Elevação do Amazonas" \ " à categoria de província" self[date(year, NOV, 20)] = "Consciência Negra" self[date(year, DEC, 8)] = "Dia de Nossa Senhora da Conceição" if self.state == 'BA': self[date(year, JUL, 2)] = "Independência da Bahia" if self.state == 'CE': self[date(year, MAR, 19)] = "São José" self[date(year, MAR, 25)] = "Data Magna do Ceará" if self.state == 'DF': self[date(year, APR, 21)] = "Fundação de Brasília" self[date(year, NOV, 30)] = "Dia do Evangélico" if self.state == 'ES': self[date(year, OCT, 28)] = "Dia do Servidor Público" if self.state == 'GO': self[date(year, OCT, 28)] = "Dia do Servidor Público" if self.state == 'MA': self[date(year, JUL, 28)] = "Adesão do Maranhão" \ " à independência do Brasil" self[date(year, DEC, 8)] = "Dia de Nossa Senhora da Conceição" if self.state == 'MT': self[date(year, NOV, 20)] = "Consciência Negra" if self.state == 'MS': self[date(year, OCT, 11)] = "Criação do estado" if self.state == 'MG': self[date(year, APR, 21)] = "Data Magna de MG" if self.state == 'PA': self[date(year, AUG, 15)] = "Adesão do Grão-Pará" \ " à independência do Brasil" if self.state == 'PB': self[date(year, AUG, 5)] = "Fundação do Estado" if self.state == 'PE': self[date(year, MAR, 6)] = "Revolução Pernambucana (Data Magna)" self[date(year, JUN, 24)] = "São João" if self.state == 'PI': self[date(year, MAR, 13)] = "Dia da Batalha do Jenipapo" self[date(year, OCT, 19)] = "Dia do Piauí" if self.state == 'PR': self[date(year, DEC, 19)] = "Emancipação do Paraná" if self.state == 'RJ': self[date(year, APR, 23)] = "Dia de São Jorge" self[date(year, OCT, 28)] = "Dia do Funcionário Público" self[date(year, NOV, 20)] = "Zumbi dos Palmares" if self.state == 'RN': self[date(year, JUN, 29)] = "Dia de São Pedro" self[date(year, OCT, 3)] = "Mártires de Cunhaú e Uruaçuu" if self.state == 'RS': self[date(year, SEP, 20)] = "Revolução Farroupilha" if self.state == 'RO': self[date(year, JAN, 4)] = "Criação do estado" self[date(year, JUN, 18)] = "Dia do Evangélico" if self.state == 'RR': self[date(year, OCT, 5)] = "Criação de Roraima" if self.state == 'SC': self[date(year, AUG, 11)] = "Criação da capitania," \ " separando-se de SP" if self.state == 'SP': self[date(year, JUL, 9)] = "Revolução Constitucionalista de 1932" if self.state == 'SE': self[date(year, JUL, 8)] = "Autonomia política de Sergipe" if self.state == 'TO': self[date(year, JAN, 1)] = "Instalação de Tocantins" self[date(year, SEP, 8)] = "Nossa Senhora da Natividade" self[date(year, OCT, 5)] = "Criação de Tocantins" class BR(Brazil): pass class BRA(Brazil): pass ``` #### File: holidays/countries/italy.py ```python from datetime import date from dateutil.easter import easter from dateutil.relativedelta import relativedelta as rd, MO from holidays.constants import JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, \ OCT, \ NOV, DEC from holidays.holiday_base import HolidayBase class Italy(HolidayBase): PROVINCES = ['AN', 'AO', 'BA', 'BL', 'BO', 'BZ', 'BS', 'CB', 'CT', 'Cesena', 'CH', 'CS', 'KR', 'EN', 'FE', 'FI', 'FC', 'Forli', 'FR', 'GE', 'GO', 'IS', 'SP', 'LT', 'MN', 'MS', 'MI', 'MO', 'MB', 'NA', 'PD', 'PA', 'PR', 'PG', 'PE', 'PC', 'PI', 'PD', 'PT', 'RA', 'RE', 'RI', 'RN', 'RM', 'RO', 'SA', 'SR', 'TE', 'TO', 'TS', 'Pesaro', 'PU', 'Urbino', 'VE', 'VC', 'VI'] def __init__(self, **kwargs): self.country = 'IT' self.prov = kwargs.pop('prov', kwargs.pop('state', '')) HolidayBase.__init__(self, **kwargs) def _populate(self, year): self[date(year, JAN, 1)] = "Capodanno" self[date(year, JAN, 6)] = "Epifania del Signore" self[easter(year)] = "Pasqua di Resurrezione" self[easter(year) + rd(weekday=MO)] = "Lunedì dell'Angelo" if year >= 1946: self[date(year, APR, 25)] = "Festa della Liberazione" self[date(year, MAY, 1)] = "Festa dei Lavoratori" if year >= 1948: self[date(year, JUN, 2)] = "Festa della Repubblica" self[date(year, AUG, 15)] = "Assunzione della Vergine" self[date(year, NOV, 1)] = "Tutti i Santi" self[date(year, DEC, 8)] = "Immacolata Concezione" self[date(year, DEC, 25)] = "Natale" self[date(year, DEC, 26)] = "Santo Stefano" # Provinces holidays if self.prov: if self.prov == 'AN': self[date(year, MAY, 4)] = "San Ciriaco" elif self.prov == 'AO': self[date(year, SEP, 7)] = "San Grato" elif self.prov in ('BA'): self[date(year, DEC, 6)] = "San Nicola" elif self.prov == 'BL': self[date(year, NOV, 11)] = "San Martino" elif self.prov in ('BO'): self[date(year, OCT, 4)] = "San Petronio" elif self.prov == 'BZ': self[date(year, AUG, 15)] = "Maria Santissima Assunta" elif self.prov == 'BS': self[date(year, FEB, 15)] = "Santi Faustino e Giovita" elif self.prov == 'CB': self[date(year, APR, 23)] = "San Giorgio" elif self.prov == 'CT': self[date(year, FEB, 5)] = "Sant'Agata" elif self.prov in ('FC', 'Cesena'): self[date(year, JUN, 24)] = "San Giovanni Battista" if self.prov in ('FC', 'Forlì'): self[date(year, FEB, 4)] = "Madonna del Fuoco" elif self.prov == 'CH': self[date(year, MAY, 11)] = "San Giustino di Chieti" elif self.prov == 'CS': self[date(year, FEB, 12)] = "Madonna del Pilerio" elif self.prov == 'KR': self[date(year, OCT, 9)] = "<NAME>" elif self.prov == 'EN': self[date(year, JUL, 2)] = "Madonna della Visitazione" elif self.prov == 'FE': self[date(year, APR, 23)] = "San Giorgio" elif self.prov == 'FI': self[date(year, JUN, 24)] = "San Giovanni Battista" elif self.prov == 'FR': self[date(year, JUN, 20)] = "San Silverio" elif self.prov == 'GE': self[date(year, JUN, 24)] = "San Giovanni Battista" elif self.prov == 'GO': self[date(year, MAR, 16)] = "Santi Ilario e Taziano" elif self.prov == 'IS': self[date(year, MAY, 19)] = "San Pietro Celestino" elif self.prov == 'SP': self[date(year, MAR, 19)] = "San Giuseppe" elif self.prov == 'LT': self[date(year, APR, 25)] = "San <NAME>" elif self.prov == 'ME': self[date(year, JUN, 3)] = "Madonna della Lettera" elif self.prov == 'MI': self[date(year, DEC, 7)] = "Sant'Ambrogio" elif self.prov == 'MN': self[date(year, MAR, 18)] = "<NAME>" elif self.prov == 'MS': self[date(year, OCT, 4)] = "San Francesco d'Assisi" elif self.prov == 'MO': self[date(year, JAN, 31)] = "San Geminiano" elif self.prov == 'MB': self[date(year, JUN, 24)] = "San Giovanni Battista" elif self.prov == 'NA': self[date(year, SEP, 19)] = "San Gennaro" elif self.prov == 'PD': self[date(year, JUN, 13)] = "<NAME>" elif self.prov == 'PA': self[date(year, JUL, 15)] = "San Giovanni" elif self.prov == 'PR': self[date(year, JAN, 13)] = "<NAME>" elif self.prov == 'PG': self[date(year, JAN, 29)] = "Sant'Ercolano e <NAME>" elif self.prov == 'PC': self[date(year, JUL, 4)] = "<NAME>" elif self.prov == 'RM': self[date(year, JUN, 29)] = "Santi Pietro e Paolo" elif self.prov == 'TO': self[date(year, JUN, 24)] = "San Giovanni Battista" elif self.prov == 'TS': self[date(year, NOV, 3)] = "San Giusto" elif self.prov == 'VI': self[date(year, APR, 25)] = "San Marco" # TODO: add missing provinces' holidays: # 'Pisa', 'Pordenone', 'Potenza', 'Ravenna', # '<NAME>', 'Rieti', 'Rimini', 'Rovigo', # 'Salerno', 'Siracusa', 'Teramo', 'Torino', 'Urbino', # 'Venezia' class IT(Italy): pass class ITA(Italy): pass ```
{ "source": "joe5343281/PyComplex", "score": 4 }
#### File: joe5343281/PyComplex/pycomplex.py ```python import math import re class Complex(): def __init__(self, real=0, imaginary=0): self.r = real self.i = imaginary def __add__(self, other): """It can make operator, +, be used for adding two Complex object""" r = self.r + other.r i = self.i + other.i return Complex(r, i) def __sub__(self, other): """Above""" r = self.r - other.r i = self.i - other.i return Complex(r, i) def __mul__(self, other): """(a+bi)*(c+di) = a*c-b*d + (a*d+b*c)i""" a = self.r b = self.i c = other.r d = other.i r = a * c - b * d i = a * d + b * c return Complex(r, i) def __truediv__(self, other): a = self.r b = self.i c = other.r d = other.i r = (a * c + b * d) / (c * c + d * d) i = (b * c - a * d) / (c * c + d * d) return Complex(r, i) def conj(self): return Complex(self.r, -1 * self.i) def ln(self): a = self.r b = self.i r = a * a + b * b w = (1/2)*math.log(r) x = math.acos(a/math.sqrt(r)) return Complex(w, x) def exp(self): a = self.r b = self.i r = math.exp(a) return Complex(r * math.cos(b), r * math.sin(b)) def rad(self): a = self.r b = self.i sqsum = a * a + b * b r = math.sqrt(sqsum) co = a/r rad = math.acos(co) return rad def parser(self, comp): m = re.match('^([-/+]?\d*)?([-/+]?\d*)(i?)', comp) r = int(m.group(1)) i = int(m.group(2)) return Complex(r, i) def toString(self): return str(self.r) + str(self.i) + 'i' ```
{ "source": "Joe606/movie", "score": 3 }
#### File: douban_movie/spiders/movie.py ```python import scrapy from douban_movie.items import DoubanMovieItem import time class Toscrapemovie(scrapy.Spider): name = 'scrape_movie' def start_requests(self): urls = ['https://movie.douban.com/tag/#/',] for url in urls: yield scrapy.Request(url=url,callback=self.parse,meta={'depth':0}) #用meta标记 def parse(self,response): print(response.text) item = DoubanMovieItem() selector = response.xpath('//div[@class="list-wp"]/a') item['name'] = selector.xpath('p/span[@class="title"]/text()').getall() item['score'] = selector.xpath('p/span[@class="rate"]/text()').getall() item['pic'] = selector.xpath('div/span/img/@src').getall() item['link'] = selector.xpath('@href').getall() yield item print(type(item['link']),len(item['link'])) for link in item['link']: yield response.follow(link,callback=self.next_parse,meta={'depth':1}) ''' for url_next in selector.xpath('@href'): yield response.follow(url_next,callback=self.next_parse) print('next page') ''' def next_parse(self,response): item2 = DoubanMovieItem() print(item2) item2['_name'] = response.xpath('//div[@id="content"]/h1/span[@property="v:itemreviewed"]/text()').getall() item2['_year'] = response.xpath('//div[@id="content"]/h1/span[@class="year"]/text()').getall() item2['_pic'] = response.xpath('//div[@id="mainpic"]/a/img/@src').getall() print(item2) selector_next = response.xpath('//div[@id="info"]') item2['_director'] = selector_next.xpath('//span[@class="attrs"]/a/text()').getall()[:2] item2['_writer'] = selector_next.xpath('//span[@class="attrs"]/a/text()').getall()[2:] item2['_cast'] = selector_next.xpath('//span[@class="actor"]/span[@class="attrs"]/span/a/text()').getall() item2['_type'] = selector_next.xpath('span[@property="v:genre"]/text()').getall() item2['_country'] = selector_next.xpath('text()').getall()[7] item2['_language'] = selector_next.xpath('text()').getall()[9] item2['_premiere'] = selector_next.xpath('span[@property="v:initialReleaseDate"]/text()').getall() item2['_episode'] = selector_next.xpath('text()').getall()[13] item2['_runningtime'] = selector_next.xpath('text()').getall()[15] item2['_plot'] = response.xpath('//span[@property="v:summary"]/text()').getall() return item2 ```
{ "source": "Joe606/scrape_sportshoes", "score": 3 }
#### File: Joe606/scrape_sportshoes/to_mysql.py ```python how# -*- coding: utf-8 -*- import pymysql import time import json import os #create a table callled all_comments def new_table(): sql = ''' create table all_comments (num int(10) auto_increment not null primary key,id text,content text,score text,productColor text,productSize text); ''' cur.execute(sql) db.commit() #load data in a text file into the new table in database def read_to_database(): i = 0 for c in y: i += 1 sql = '''insert into all_comments (id,content,score,productColor,productSize) values ('%s','%s','%s','%s','%s');''' %(c['id'],c['content'],c['score'],c['productColor'],c['productSize']) print(sql) cur.execute(sql) db.commit() print(i) if __name__ == '__main__': db = pymysql.connect(host='localhost',user='root',passwd='<PASSWORD>',database='男运动鞋') cur = db.cursor() print(os.getcwd()) new_table() for j in range(1,100): f = open('shoes{}.txt'.format(j),'r+',encoding='utf-8') x = json.load(f) y = x['comments'] print(type(y)) read_to_database() cur.close() db.closer() ```
{ "source": "joe6302413/APS", "score": 3 }
#### File: joe6302413/APS/gaussianmodule.py ```python import numpy as np # from scipy.optimize import curve_fit, shgo # from scipy import integrate # from os.path import split,join # from scipy.signal import savgol_filter __version__='1.0' class DFT: def __init__(self,basis,): ```