metadata
dict
text
stringlengths
60
3.49M
{ "source": "joesider9/forecasting_library", "score": 2 }
#### File: version2/cluster_predict_manager/rbf_cnn_model.py ```python import os import numpy as np from Fuzzy_clustering.version2.cluster_predict_manager.deep_models import model3d from Fuzzy_clustering.version2.rbf_ols_manager.rbf_ols import rbf_ols_module class RBF_CNN_model(object): def __init__(self, static_data, cluster, cnn=False): self.static_data = static_data self.cluster_dir = cluster.cluster_dir self.cnn = cnn self.model_dir_rbfols = os.path.join(self.cluster_dir, 'RBF_OLS') self.model_rbf_ols = rbf_ols_module(self.static_data, self.model_dir_rbfols, self.static_data['rated'], self.static_data['sklearn']['njobs'], GA=False) self.model_rbf_ga = rbf_ols_module(self.static_data, self.model_dir_rbfols, self.static_data['rated'], self.static_data['sklearn']['njobs'], GA=True) self.model_rbf_nn = model3d(self.static_data, cluster, 'RBFNN') if self.model_rbf_nn.istrained == False: raise ImportError('Cannot found RBFNN model for cluster %s of project %s', cluster.cluster_name, static_data['_id']) if self.model_rbf_ols.istrained == False: raise ImportError('Cannot found RBF_OLS model for cluster %s of project %s', cluster.cluster_name, static_data['_id']) if self.model_rbf_ga.istrained == False: raise ImportError('Cannot found RBF_GA_OLS model for cluster %s of project %s', cluster.cluster_name, static_data['_id']) if cnn: self.model_cnn = model3d(self.static_data, cluster, 'RBF-CNN') if self.model_cnn.istrained == False: raise ImportError('Cannot found RBF_CNN model for cluster %s of project %s', cluster.cluster_name, static_data['_id']) def predict(self, X): if self.model_rbf_ols.istrained == True: pred1 = self.model_rbf_ols.predict(X) if self.model_rbf_ga.istrained == True: pred2 = self.model_rbf_ga.predict(X) if self.model_rbf_nn.istrained == True: pred3 = self.model_rbf_nn.predict(X) pred1[np.where(pred1 < 0)] = 0 pred2[np.where(pred2 < 0)] = 0 pred3[np.where(pred3 < 0)] = 0 pred1[np.where(pred1 > 1)] = 1 pred2[np.where(pred2 > 1)] = 1 pred3[np.where(pred3 > 1)] = 1 rbf_models = [self.model_rbf_ols.models, self.model_rbf_ga.models, self.model_rbf_nn.model] if self.cnn: if self.model_cnn.istrained == True: pred4 = self.model_cnn.predict(X, rbf_models=rbf_models) pred4[np.where(pred4 < 0)] = 0 pred4[np.where(pred4 > 1)] = 1 return np.hstack([pred1, pred2, pred3, pred4]) else: return np.hstack([pred1, pred2, pred3]) ``` #### File: version2/dataset_manager/create_dataset_for_load.py ```python import logging import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from scipy.interpolate import interp2d from workalendar.europe import Portugal, Greece def rescale(arr, nrows, ncol): W, H = arr.shape new_W, new_H = (nrows, ncol) xrange = lambda x: np.linspace(0, 1, x) f = interp2d(xrange(H), xrange(W), arr, kind="linear") new_arr = f(xrange(new_H), xrange(new_W)) return new_arr def stack_2d(X, sample, compress): if compress: sample = rescale(sample, 8, 8) if len(sample.shape) == 3: if X.shape[0] == 0: X = sample elif len(X.shape) == 3: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :, :])) elif len(sample.shape) == 2: if X.shape[0] == 0: X = sample elif len(X.shape) == 2: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :])) return X def stack_3d(X, sample): if X.shape[0] == 0: X = sample elif len(sample.shape) != len(X.shape): X = np.vstack((X, sample[np.newaxis])) else: X = np.vstack((X, sample)) return X class st_miguel(Portugal): FIXED_HOLIDAYS = Portugal.FIXED_HOLIDAYS + ( (4, 11, "<NAME>"), (7, 18, "Dia de Portugal"), (6, 29, " <NAME>"), ) def get_fixed_holidays(self, year): days = super().get_fixed_holidays(year) return days def get_variable_days(self, year): days = super().get_variable_days(year) if year > 2015 or year < 2013: days.append((self.get_easter_sunday(year) + pd.DateOffset(days=36), "Santo Cristo")) days.append((self.get_easter_sunday(year) + pd.DateOffset(days=50), "Pombinha")) days.append((self.get_easter_sunday(year) + pd.DateOffset(days=64), "Dia do Corpo de Deus")) return days def get_extras(self, year): days = [] days.append(self.get_easter_sunday(year) + pd.DateOffset(days=36)) days.append(self.get_easter_sunday(year) + pd.DateOffset(days=50)) days.append(self.get_easter_sunday(year) + pd.DateOffset(days=64)) return days class dataset_creator_load(): def __init__(self, projects_group, projects, data, path_nwp, nwp_model, nwp_resolution, data_variables, njobs=1, test=False): self.projects = projects self.isfortest = test self.projects_group = projects_group self.data = data self.path_nwp = path_nwp self.create_logger() self.check_dates() self.nwp_model = nwp_model self.nwp_resolution = nwp_resolution if self.nwp_resolution == 0.05: self.compress = True else: self.compress = False self.njobs = njobs self.variables = data_variables def create_logger(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.INFO) handler = logging.FileHandler( os.path.join(os.path.dirname(self.path_nwp), 'log_' + self.projects_group + '.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger self.logger.addHandler(handler) def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates is checked. Number of time samples %s', str(len(dates))) self.dates = pd.DatetimeIndex(dates) def check_empty_nwp(self, nwp, variables): flag = True for var in variables: if nwp[var].shape[0] == 0: flag = False break return flag def stack_daily_nwps(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables, compress): X = dict() fname = os.path.join(path_nwp, nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H').strftime( '%d%m%y%H%M') for project in projects: X[project['_id']] = pd.DataFrame() areas = project['static_data']['areas'] x = pd.DataFrame() for date in pdates: try: nwp = nwps[date] if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] date = pd.to_datetime(date, format='%d%m%y%H%M') if self.check_empty_nwp(nwp, variables): inp = self.create_sample_nwp(date, nwp, lats[project['_id']], longs[project['_id']]) x = pd.concat([x, inp]) except: continue if x.shape[0] > 0: X[project['_id']] = x cols = ['Temp' + '_' + area for area in lats[project['_id']].keys()] X[project['_id']]['Temp_max'] = x[cols].mean(axis=1).max() X[project['_id']]['Temp_min'] = x[cols].mean(axis=1).min() print(t.strftime('%d%m%y%H%M'), ' extracted') return (X, t.strftime('%d%m%y%H%M')) def lats_longs(self): lats = dict() longs = dict() flag = False for t in self.dates: fname = os.path.join(self.path_nwp, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=48), freq='H').strftime( '%d%m%y%H%M') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] flag = True break except: continue if flag: break if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for project in self.projects: areas = project['static_data']['areas'] if isinstance(areas, list): lats[project['_id']] = \ (np.where((nwp['lat'][:, 0] >= areas[0][0]) & (nwp['lat'][:, 0] <= areas[1][0])))[0] longs[project['_id']] = \ (np.where((nwp['long'][0, :] >= areas[0][1]) & (nwp['long'][0, :] <= areas[1][1])))[ 0] else: lats[project['_id']] = dict() longs[project['_id']] = dict() for area in sorted(areas.keys()): lats[project['_id']][area] = \ (np.where((nwp['lat'][:, 0] >= areas[area][0][0]) & (nwp['lat'][:, 0] <= areas[area][1][0])))[0] longs[project['_id']][area] = \ (np.where((nwp['long'][0, :] >= areas[area][0][1]) & (nwp['long'][0, :] <= areas[area][1][1])))[ 0] return lats, longs def make_dataset_load_short_term(self): X = dict() project = self.projects[0] X[project['_id']] = pd.DataFrame() file_nwp = 'weather_data_test.csv' X[project['_id']] = pd.read_csv(os.path.join(project['static_data']['path_data'], file_nwp), header=0, index_col=0, parse_dates=True, dayfirst=True) data_path = project['static_data']['path_data'] predictions = dict() predictions[project['_id']] = joblib.load(os.path.join(project['static_data']['path_data'] , 'predictions_short_term.pickle')) dataset_X, dataset_y, X_3d = self.create_dataset_short_term_eval(X[project['_id']], predictions[project['_id']] , data_path, start_index=9001, test=self.isfortest) if dataset_y.isna().any().values[0]: dataset_X = dataset_X.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) if len(X_3d.shape) > 1: X_3d = np.delete(X_3d, np.where(dataset_y.isna())[0], axis=0) dataset_y = dataset_y.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) if dataset_X.isna().any().values[0]: dataset_y = dataset_y.drop(dataset_X.index[np.where(dataset_X.isna())[0]]) if len(X_3d.shape) > 1: X_3d = np.delete(X_3d, np.where(dataset_X.isna())[0], axis=0) dataset_X = dataset_X.drop(dataset_X.index[np.where(dataset_X.isna())[0]]) dataset_X.to_csv(os.path.join(project['static_data']['path_data'], 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(project['static_data']['path_data'], 'dataset_y_test.csv')) joblib.dump(X_3d, os.path.join(project['static_data']['path_data'], 'dataset_lstm_test.pickle')) def make_dataset_load(self): X = dict() for project in self.projects: X[project['_id']] = pd.DataFrame() if self.isfortest: file_nwp = 'weather_data_test.csv' else: file_nwp = 'weather_data.csv' if not os.path.exists(os.path.join(self.projects[0]['static_data']['path_data'], file_nwp)): lats, longs = self.lats_longs() nwp = self.stack_daily_nwps(self.dates[-1], self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables, self.compress) nwp_daily = Parallel(n_jobs=self.njobs)( delayed(self.stack_daily_nwps)(t, self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables, self.compress) for t in self.dates) for nwp in nwp_daily: for project in self.projects: if nwp[0][project['_id']].shape[0] != 0: X[project['_id']] = pd.concat([X[project['_id']], nwp[0][project['_id']]]) self.logger.info('All Inputs stacked for date %s', nwp[1]) for project in self.projects: X[project['_id']].to_csv(os.path.join(project['static_data']['path_data'], file_nwp)) else: for project in self.projects: X[project['_id']] = pd.read_csv(os.path.join(project['static_data']['path_data'], file_nwp), header=0, index_col=0, parse_dates=True, dayfirst=True) for project in self.projects: data_path = project['static_data']['path_data'] if self.isfortest: if project['static_data']['horizon'] == 'day_ahead': dataset_X, dataset_y, X_3d = self.create_dataset(X[project['_id']], data_path, start_index = 9001, test=self.isfortest) elif project['static_data']['horizon'] == 'short-term': dataset_X, dataset_y, X_3d = self.create_dataset_short_term(X[project['_id']], data_path, start_index = 200, test=self.isfortest) if dataset_y.isna().any().values[0]: dataset_X = dataset_X.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) if len(X_3d.shape) > 1: X_3d = np.delete(X_3d, np.where(dataset_y.isna())[0], axis=0) dataset_y = dataset_y.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) dataset_X.to_csv(os.path.join(project['static_data']['path_data'], 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(project['static_data']['path_data'], 'dataset_y_test.csv')) joblib.dump(X_3d, os.path.join(project['static_data']['path_data'], 'dataset_lstm_test.pickle')) self.logger.info('Datasets saved for project %s', project['_id']) else: if project['static_data']['horizon'] == 'day_ahead': dataset_X, dataset_y, X_3d = self.create_dataset(X[project['_id']], data_path, start_index=9001, test=self.isfortest) elif project['static_data']['horizon'] == 'short-term': dataset_X, dataset_y, X_3d = self.create_dataset_short_term(X[project['_id']], data_path, start_index = 200, test=self.isfortest) if dataset_y.isna().any().values[0]: dataset_X = dataset_X.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) if len(X_3d.shape) > 1: X_3d = np.delete(X_3d, np.where(dataset_y.isna())[0], axis=0) dataset_y = dataset_y.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) dataset_X.to_csv(os.path.join(project['static_data']['path_data'], 'dataset_X.csv')) dataset_y.to_csv(os.path.join(project['static_data']['path_data'], 'dataset_y.csv')) joblib.dump(X_3d, os.path.join(project['static_data']['path_data'], 'dataset_lstm.pickle')) self.logger.info('Datasets saved for project %s', project['_id']) def sp_index(self, r): ### Is modified if self.projects[0]['_id'] == 'St_Miguel': cal = st_miguel() extra = cal.get_extras(r.year) if cal.is_holiday(r, extra): sp = 100 else: if r.dayofweek == 6: sp = 50 else: sp = 0 else: cal = Greece() # {'New year','Epiphany','Clean Monday','Independence Day','Good Friday','Easter Saturday','Easter Sunday', # 'Easter Monday','Labour Day','Pentecost','Whit Monday','Assumption of Mary to Heaven','Ohi Day', # 'Christmas Eve','Christmas Day','Glorifying Mother of God','Last day of year'} if cal.is_holiday(r): sp = 100 else: if r.dayofweek == 6: sp = 50 else: sp = 0 return sp def create_dataset(self, nwps, data_path, start_index=9001, test=False): self.data['dayweek'] = self.data.index.dayofweek self.data['month'] = self.data.index.month self.data['hour'] = self.data.index.hour self.data['sp_index'] = [self.sp_index(d) for d in self.data.index] col = ['Temp', 'hour', 'month', 'sp_index', 'dayweek'] + nwps.drop(columns=['Temp_max']).columns.tolist() + [ 'Temp_month', 'Temp_sp_days'] col += ['load_' + str(i) for i in range(43)] col += ['load_' + str(i) for i in range(43, 51)] col += ['Temp_max_' + str(i) for i in range(7)] col += ['Temp_min_' + str(i) for i in range(7)] col += ['sp_index_' + str(i) for i in range(7)] dataset = pd.DataFrame(columns=col) target = pd.DataFrame(columns=['target']) dataset_3d = np.array([]) nwps_lstm = nwps.copy(deep=True) for var in self.variables: if var == 'WS': var = 'wind' elif var == 'WD': var = 'direction' elif var == 'Temperature': var = 'Temp' cols = [col for col in nwps.columns if str.lower(var) in str.lower(col)] nwps_lstm[str.lower(var)] = nwps_lstm[cols].mean(axis=1).values lags1 = np.hstack( [np.arange(48, 75), np.arange(95, 98), 96, 120, 144, np.arange(166, 175), 192, ]) lags2 = np.hstack( [np.arange(8735, 8741), 8760, 8736 + 168]) lags_days = np.arange(1, 8) for date in self.data.index[start_index:]: print('Input for ', date) date_inp1 = [date - pd.DateOffset(hours=int(l)) for l in lags1] date_inp2 = [date - pd.DateOffset(hours=int(l)) for l in lags2] date_days = [date - pd.DateOffset(days=int(l)) for l in lags_days] try: temp_max = nwps[['Temp_max']].loc[date].values var_imp = np.hstack((temp_max, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[date].values, nwps.drop(columns=['Temp_max']).loc[date].values, np.power(self.data['month'].loc[date] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[date] * temp_max / 100, 3))) col = ['Temp', 'hour', 'month', 'sp_index', 'dayweek'] + nwps.drop( columns=['Temp_max']).columns.tolist() + ['Temp_month', 'Temp_sp_days'] var_unimp = np.hstack(( self.data.loc[date_inp1, self.projects[0]['_id']].values, self.data.loc[date_inp2, self.projects[0]['_id']].values, nwps.loc[date_days, 'Temp_max'].values, nwps.loc[date_days, 'Temp_min'].values, [self.sp_index(d) for d in date_days] )) col += ['load_' + str(i) for i in range(43)] col += ['load_' + str(i) for i in range(43, 51)] col += ['Temp_max_' + str(i) for i in range(7)] col += ['Temp_min_' + str(i) for i in range(7)] col += ['sp_index_' + str(i) for i in range(7)] temp_max = nwps[['Temp_max']].loc[date].values var_3d = np.hstack((np.array([0]), nwps_lstm[['cloud', 'wind', 'direction', 'Temp_max', 'Temp_min', 'Temp_' + self.projects[0]['_id']]].loc[ date].values, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[date].values, np.power(self.data['month'].loc[date] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[date] * temp_max / 100, 3))) for d in date_inp1: temp_max = nwps[['Temp_max']].loc[d].values v = np.hstack( (self.data.loc[d, self.projects[0]['_id']], nwps_lstm[ ['cloud', 'wind', 'direction', 'Temp_max', 'Temp_min', 'Temp_' + self.projects[0]['_id']]].loc[d].values, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[d].values, np.power(self.data['month'].loc[d] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[d] * temp_max / 100, 3))) var_3d = np.vstack((var_3d, v)) except: continue inp = np.hstack((var_imp, var_unimp)) inp1 = pd.DataFrame(inp.reshape(-1, 1).T, index=[date], columns=col) targ1 = pd.DataFrame(self.data[self.projects[0]['_id']].loc[date], index=[date], columns=['target']) if not inp1.isnull().any(axis=1).values and not targ1.isnull().any().values: dataset = pd.concat([dataset, inp1]) target = pd.concat([target, targ1]) if dataset_3d.shape[0] == 0: dataset_3d = var_3d elif len(dataset_3d.shape) == 2: dataset_3d = np.stack((dataset_3d, var_3d)) else: dataset_3d = np.vstack((dataset_3d, var_3d[np.newaxis, :, :])) if not test: corr = [] for f in range(dataset.shape[1]): corr.append(np.abs(np.corrcoef(dataset.values[:, f], target.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset.columns[ind] dataset = dataset[columns] joblib.dump(ind, os.path.join(data_path, 'dataset_columns_order.pickle')) else: ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset.columns[ind] dataset = dataset[columns] return dataset, target, dataset_3d def smooth(self, x, window_len=11, window='hanning'): s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]] # print(len(s)) if window == 'flat': # moving average w = np.ones(window_len, 'd') else: w = eval('np.' + window + '(window_len)') y = np.convolve(w / w.sum(), s, mode='valid') return y def create_dataset_short_term(self, nwps, data_path, start_index=9001, test=False): self.data['dayweek'] = self.data.index.dayofweek self.data['month'] = self.data.index.month self.data['hour'] = self.data.index.hour self.data['sp_index'] = [self.sp_index(d) for d in self.data.index] col = ['Temp', 'hour', 'month', 'sp_index', 'dayweek'] + nwps.drop(columns=['Temp_max']).columns.tolist() + [ 'Temp_month', 'Temp_sp_days'] col += ['load_' + str(i) for i in range(30)] col += ['Temp_max_' + str(i) for i in range(7)] col += ['Temp_min_' + str(i) for i in range(7)] col += ['sp_index_' + str(i) for i in range(7)] dataset = pd.DataFrame(columns=col) target = pd.DataFrame(columns=['target']) dataset_3d = np.array([]) nwps_lstm = nwps.copy(deep=True) for var in self.variables: if var == 'WS': var = 'wind' elif var == 'WD': var = 'direction' elif var == 'Temperature': var = 'Temp' cols = [col for col in nwps.columns if str.lower(var) in str.lower(col)] nwps_lstm[str.lower(var)] = nwps_lstm[cols].mean(axis=1).values res = self.create_inp(self.data.index[start_index], nwps, nwps_lstm) results=Parallel(n_jobs=self.njobs)( delayed(self.create_inp)(t, nwps, nwps_lstm) for t in self.data.index[start_index:]) for res in results: if len(res[0].shape) > 1: inp1 = res[0] targ1 = res[1] var_3d = res[2] if not inp1.isnull().any(axis=1).values and not targ1.isnull().any().values: dataset = pd.concat([dataset, inp1]) target = pd.concat([target, targ1]) if dataset_3d.shape[0] == 0: dataset_3d = var_3d elif len(dataset_3d.shape) == 2: dataset_3d = np.stack((dataset_3d, var_3d)) else: dataset_3d = np.vstack((dataset_3d, var_3d[np.newaxis, :, :])) if not test: corr = [] for f in range(dataset.shape[1]): corr.append(np.abs(np.corrcoef(dataset.values[:, f], target.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset.columns[ind] dataset = dataset[columns] joblib.dump(ind, os.path.join(data_path, 'dataset_columns_order.pickle')) else: ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset.columns[ind] dataset = dataset[columns] return dataset, target, dataset_3d def create_inp(self, date, nwps, nwps_lstm): print('Input for ', date) lags1 = np.hstack( [np.arange(1, 4), np.arange(4, 12), np.arange(22, 26), np.arange(47, 52), np.arange(166, 175), 192, ]) lags_days = np.arange(1, 8) date_inp1 = [date - pd.DateOffset(hours=int(l)) for l in lags1] date_days = [date.round('H') - pd.DateOffset(days=int(l)) for l in lags_days] try: temp_max = nwps[['Temp_max']].loc[date.round('H')].values var_imp = np.hstack((temp_max, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[date].values, nwps.drop(columns=['Temp_max']).loc[date.round('H')].values, np.power(self.data['month'].loc[date] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[date] * temp_max / 100, 3))) col = ['Temp', 'hour', 'month', 'sp_index', 'dayweek'] + nwps.drop( columns=['Temp_max']).columns.tolist() + ['Temp_month', 'Temp_sp_days'] var_unimp = np.hstack(( self.data.loc[date_inp1, self.projects[0]['_id']].values, nwps.loc[date_days, 'Temp_max'].values, nwps.loc[date_days, 'Temp_min'].values, [self.sp_index(d) for d in date_days] )) col += ['load_' + str(i) for i in range(30)] col += ['Temp_max_' + str(i) for i in range(7)] col += ['Temp_min_' + str(i) for i in range(7)] col += ['sp_index_' + str(i) for i in range(7)] temp_max = nwps[['Temp_max']].loc[date.round('H')].values var_3d = np.hstack((np.array([0]), nwps_lstm[['cloud', 'wind', 'direction', 'Temp_max', 'Temp_min', 'Temp_' + self.projects[0]['_id']]].loc[ date.round('H')].values, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[date].values, np.power(self.data['month'].loc[date] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[date] * temp_max / 100, 3))) for d in date_inp1: temp_max = nwps[['Temp_max']].loc[d.round('H')].values v = np.hstack( (self.data.loc[d, self.projects[0]['_id']], nwps_lstm[ ['cloud', 'wind', 'direction', 'Temp_max', 'Temp_min', 'Temp_' + self.projects[0]['_id']]].loc[ d.round('H')].values, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[d].values, np.power(self.data['month'].loc[d] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[d] * temp_max / 100, 3))) var_3d = np.vstack((var_3d, v)) except: return np.array([]), np.array([]), np.array([]) inp = np.hstack((var_imp, var_unimp)) inp1 = pd.DataFrame(inp.reshape(-1, 1).T, index=[date], columns=col) targ1 = pd.DataFrame(self.data[self.projects[0]['_id']].loc[date], index=[date], columns=['target']) return inp1, targ1, var_3d def create_sample_nwp(self, date, nwp, lats, longs): inp = pd.DataFrame() for var in sorted(self.variables): if var in {'WS', 'Flux', 'WD', 'Cloud', 'Temperature'}: if isinstance(lats, dict) and isinstance(longs, dict): for area in lats.keys(): X0 = nwp[var][np.ix_(lats[area], longs[area])] X = np.mean(X0) if var == 'Flux': var_name = 'flux' elif var == 'WS': var_name = 'wind' elif var == 'Cloud': var_name = 'cloud' elif var == 'Temperature': var_name = 'Temp' else: var_name = 'direction' col = [var_name + '_' + area] inp = pd.concat([inp, pd.DataFrame(X.reshape(-1, 1).T, index=[date], columns=col)], axis=1) else: X0 = nwp[var][np.ix_(lats, longs)] X = np.mean(X0) if var == 'Flux': var_name = 'flux' elif var == 'WS': var_name = 'wind' elif var == 'Cloud': var_name = 'cloud' elif var == 'Temperature': var_name = 'Temp' else: var_name = 'direction' col = [var_name] inp = pd.concat([inp, pd.DataFrame(X.reshape(-1, 1).T, index=[date], columns=col)], axis=1) else: continue return inp def create_dataset_short_term_eval(self, nwps, predictions, data_path, start_index=9001, test=False): self.data['dayweek'] = self.data.index.dayofweek self.data['month'] = self.data.index.month self.data['hour'] = self.data.index.hour self.data['sp_index'] = [self.sp_index(d) for d in self.data.index] col = ['Temp', 'hour', 'month', 'sp_index', 'dayweek'] + nwps.drop(columns=['Temp_max']).columns.tolist() + [ 'Temp_month', 'Temp_sp_days'] col += ['load_' + str(i) for i in range(30)] col += ['Temp_max_' + str(i) for i in range(7)] col += ['Temp_min_' + str(i) for i in range(7)] col += ['sp_index_' + str(i) for i in range(7)] dataset = pd.DataFrame(columns=col) target = pd.DataFrame(columns=['target']) dataset_3d = np.array([]) nwps_lstm = nwps.copy(deep=True) for var in self.variables: if var == 'WS': var = 'wind' elif var == 'WD': var = 'direction' elif var == 'Temperature': var = 'Temp' cols = [col for col in nwps.columns if str.lower(var) in str.lower(col)] nwps_lstm[str.lower(var)] = nwps_lstm[cols].mean(axis=1).values res = self.create_inp_eval(self.data.index[start_index], nwps, nwps_lstm, predictions) results=Parallel(n_jobs=self.njobs)( delayed(self.create_inp_eval)(t, nwps, nwps_lstm, predictions) for t in self.data.index[start_index:]) for res in results: if len(res[0].shape) > 1: inp1 = res[0] targ1 = res[1] var_3d = res[2] if not inp1.isnull().any(axis=1).values and not targ1.isnull().any().values: dataset = pd.concat([dataset, inp1]) target = pd.concat([target, targ1]) if dataset_3d.shape[0] == 0: dataset_3d = var_3d elif len(dataset_3d.shape) == 2: dataset_3d = np.stack((dataset_3d, var_3d)) else: dataset_3d = np.vstack((dataset_3d, var_3d[np.newaxis, :, :])) ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset.columns[ind] dataset = dataset[columns] return dataset, target, dataset_3d def create_inp_eval(self, date, nwps, nwps_lstm, predictions): lags1 = np.hstack( [np.arange(1, 4), np.arange(4, 12), np.arange(22, 26), np.arange(47, 52), np.arange(166, 175), 192, ]) lags_days = np.arange(1, 8) timestep = 60 preds = predictions hor = preds.columns[-1] + timestep t = date - pd.DateOffset(minutes=hor) preds = preds.loc[t].to_frame().T dates_pred = [t + pd.DateOffset(minutes=h) for h in preds.columns] pred = pd.DataFrame(preds.values.ravel(), index=dates_pred, columns=[self.projects[0]['_id']]) data_temp = pd.concat([self.data[self.projects[0]['_id']].iloc[np.where(self.data.index < t)].to_frame(), pred]) print('Input for ', date) date_inp1 = [date - pd.DateOffset(hours=int(l)) for l in lags1] date_days = [date.round('H') - pd.DateOffset(days=int(l)) for l in lags_days] try: temp_max = nwps[['Temp_max']].loc[date.round('H')].values var_imp = np.hstack((temp_max, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[date].values, nwps.drop(columns=['Temp_max']).loc[date.round('H')].values, np.power(self.data['month'].loc[date] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[date] * temp_max / 100, 3))) col = ['Temp', 'hour', 'month', 'sp_index', 'dayweek'] + nwps.drop( columns=['Temp_max']).columns.tolist() + ['Temp_month', 'Temp_sp_days'] var_unimp = np.hstack(( data_temp.loc[date_inp1, self.projects[0]['_id']].values, nwps.loc[date_days, 'Temp_max'].values, nwps.loc[date_days, 'Temp_min'].values, [self.sp_index(d) for d in date_days] )) col += ['load_' + str(i) for i in range(30)] col += ['Temp_max_' + str(i) for i in range(7)] col += ['Temp_min_' + str(i) for i in range(7)] col += ['sp_index_' + str(i) for i in range(7)] temp_max = nwps[['Temp_max']].loc[date.round('H')].values var_3d = np.hstack((np.array([0]), nwps_lstm[['cloud', 'wind', 'direction', 'Temp_max', 'Temp_min', 'Temp_' + self.projects[0]['_id']]].loc[ date.round('H')].values, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[date].values, np.power(self.data['month'].loc[date] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[date] * temp_max / 100, 3))) for d in date_inp1: temp_max = nwps[['Temp_max']].loc[d.round('H')].values v = np.hstack( (data_temp.loc[d, self.projects[0]['_id']], nwps_lstm[ ['cloud', 'wind', 'direction', 'Temp_max', 'Temp_min', 'Temp_' + self.projects[0]['_id']]].loc[d.round('H')].values, self.data[['hour', 'month', 'sp_index', 'dayweek']].loc[d].values, np.power(self.data['month'].loc[d] * temp_max / 12, 3), np.power(self.data['sp_index'].loc[d] * temp_max / 100, 3))) var_3d = np.vstack((var_3d, v)) except: return np.array([]), np.array([]), np.array([]) inp = np.hstack((var_imp, var_unimp)) inp1 = pd.DataFrame(inp.reshape(-1, 1).T, index=[date], columns=col) targ1 = pd.DataFrame(self.data[self.projects[0]['_id']].loc[date], index=[date], columns=['target']) return inp1, targ1, var_3d ``` #### File: version2/dataset_manager/create_datasets_pca.py ```python import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from pytz import timezone from sklearn.decomposition import KernelPCA from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import MinMaxScaler from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import my_scorer from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_daily_nwps class DatasetCreatorPCA: def __init__(self, project, data=None, n_jobs=1, test=False, dates=None): if test is None: raise NotImplemented('test is none for short-term, not implemented for PCA') self.data = data self.is_for_test = test self.project_name = project['_id'] self.static_data = project['static_data'] self.path_nwp_project = self.static_data['pathnwp'] self.path_data = self.static_data['path_data'] self.areas = self.static_data['areas'] self.area_group = self.static_data['area_group'] self.nwp_model = self.static_data['NWP_model'] self.nwp_resolution = self.static_data['NWP_resolution'] self.location = self.static_data['location'] self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = n_jobs self.variables = self.static_data['data_variables'] self.logger = create_logger(logger_name=f"log_{self.static_data['project_group']}", abs_path=self.path_nwp_project, logger_path=f"log_{self.static_data['project_group']}.log", write_type='a') if self.data is not None: self.dates = self.check_dates() elif dates is not None: self.dates = dates def check_dates(self): # Extract dates of power measurements. start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates is checked. Number of time samples %s', str(len(dates))) return pd.DatetimeIndex(dates) def make_dataset_res(self): nwp_3d_pickle = 'nwps_3d_test.pickle' if self.is_for_test else 'nwps_3d.pickle' dataset_cnn_pickle = 'dataset_cnn_test.pickle' if self.is_for_test else 'dataset_cnn.pickle' nwp_3d_pickle = os.path.join(self.path_data, nwp_3d_pickle) dataset_cnn_pickle = os.path.join(self.path_data, dataset_cnn_pickle) if not (os.path.exists(nwp_3d_pickle) and os.path.exists(dataset_cnn_pickle)): data, x_3d = self.get_3d_dataset() else: data = joblib.load(nwp_3d_pickle) x_3d = joblib.load(dataset_cnn_pickle) # FIXME: unused variable data_path = self.path_data if not isinstance(self.areas, dict): self.dataset_for_single_farm(data, data_path) else: dates_stack = [] for t in self.dates: p_dates = pd.date_range(t + pd.DateOffset(hours=25), t + pd.DateOffset(hours=48), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in p_dates if dt in self.data.index] dates_stack.append(dates) flag = False for i, p_dates in enumerate(dates_stack): t = self.dates[i] file_name = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(file_name): nwps = joblib.load(file_name) for date in p_dates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & ( nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & ( nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except Exception: continue if flag: break self.dataset_for_multiple_farms(data, self.areas, lats_group, longs_group) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def get_3d_dataset(self): dates_stack = [] for t in self.dates: p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') # 47 hours: 00:00 -> 23:00 dates = [dt.strftime('%d%m%y%H%M') for dt in p_dates if dt in self.data.index] dates_stack.append(dates) # For each date we have prediction append the next 47 hours area = self.area_group if isinstance(self.areas, dict) else self.areas nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, area, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], p_dates, self.path_nwp_project, self.nwp_model, area, self.variables, self.compress, self.static_data['type']) for i, p_dates in enumerate(dates_stack)) x = np.array([]) data_var = dict() for var in self.variables: if (var == 'WS' and self.static_data['type'] == 'wind') or \ (var == 'Flux' and self.static_data['type'] == 'pv'): data_var[var + '_prev'] = x data_var[var] = x data_var[var + '_next'] = x else: data_var[var] = x data_var['dates'] = x x_3d = np.array([]) for arrays in nwp_daily: nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) x_3d = stack_3d(x_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) if self.is_for_test: joblib.dump(data_var, os.path.join(self.path_data, 'nwps_3d_test.pickle')) joblib.dump(x_3d, os.path.join(self.path_data, 'dataset_cnn_test.pickle')) else: joblib.dump(data_var, os.path.join(self.path_data, 'nwps_3d.pickle')) joblib.dump(x_3d, os.path.join(self.path_data, 'dataset_cnn.pickle')) self.logger.info('NWP stacked data saved') return data_var, x_3d def train_pca(self, data, components, level): scaler = MinMaxScaler() data_scaled = scaler.fit_transform(data) param_grid = [{ "gamma": np.logspace(-3, 0, 20), }] kpca = KernelPCA(n_components=components, fit_inverse_transform=True, n_jobs=self.n_jobs) grid_search = GridSearchCV(kpca, param_grid, cv=3, scoring=my_scorer, n_jobs=self.n_jobs) grid_search.fit(data_scaled) kpca = grid_search.best_estimator_ fname = os.path.join(self.path_data, 'kpca_' + level + '.pickle') joblib.dump({'scaler': scaler, 'kpca': kpca}, fname) def pca_transform(self, data, components, level): fname = os.path.join(self.path_data, 'kpca_' + level + '.pickle') if not os.path.exists(fname): self.train_pca(data, components, level) models = joblib.load(fname) data_scaled = models['scaler'].transform(data) data_compress = models['kpca'].transform(data_scaled) return data_compress def dataset_for_single_farm(self, data, data_path): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = np.transpose(data[var + '_prev'], [0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var == 'Flux' else 'wind' var_sort = 'fl' if var == 'Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var == 'Cloud' else 'direction' var_sort = 'cl' if var == 'Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X2 = np.transpose(data[var], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue dataset_X = dataset_X dataset_y = self.data.loc[dataset_X.index].to_frame() dataset_y.columns = ['target'] if self.is_for_test: ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y_test.csv')) self.logger.info('Successfully dataset created for Evaluation for %s', self.project_name) else: corr = [] for f in range(dataset_X.shape[1]): corr.append(np.abs(np.corrcoef(dataset_X.values[:, f], dataset_y.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] joblib.dump(ind, os.path.join(data_path, 'dataset_columns_order.pickle')) dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y.csv')) self.logger.info('Successfully dataset created for training for %s', self.project_name) def dataset_for_multiple_farms(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area) > 1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] longs = (np.where((longs_group[0, :] >= area[1]) & (longs_group[0, :] <= area[3])))[0] if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.pca_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.pca_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var == 'Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var == 'Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) dataset_y = self.data.loc[dataset_X.index].to_frame() dataset_y.columns = ['target'] if self.is_for_test: ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y_test.csv')) self.logger.info('Successfully dataset created for Evaluation for %s', self.project_name) else: corr = [] for f in range(dataset_X.shape[1]): corr.append(np.abs(np.corrcoef(dataset_X.values[:, f], dataset_y.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] joblib.dump(ind, os.path.join(self.path_data, 'dataset_columns_order.pickle')) dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y.csv')) self.logger.info('Successfully dataset created for training for %s', self.project_name) def make_dataset_res_offline(self, utc=False): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False data, X_3d = self.get_3d_dataset_offline(utc) if not isinstance(self.areas, dict): X = self.dataset_for_single_farm_offline(data) else: dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) flag = False for i, pdates in enumerate(dates_stack): t = self.dates[i] fname = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & ( nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & ( nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except: continue if flag: break X = self.dataset_for_multiple_farms_offline(data, self.areas, lats_group, longs_group) return X, X_3d def get_3d_dataset_offline(self, utc): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False dates_stack = [] for dt in self.dates: if utc: pdates = pd.date_range(dt + pd.DateOffset(hours=25), dt + pd.DateOffset(hours=48), freq='H') dates = [t.strftime('%d%m%y%H%M') for t in pdates] dates_stack.append(dates) else: pdates = pd.date_range(dt + pd.DateOffset(hours=25), dt + pd.DateOffset(hours=48), freq='H') indices = [i for i, t in enumerate(pdates) if datetime_exists_in_tz(t, tz=timezone('Europe/Athens'))] pdates = pdates[indices] pdates = pdates.tz_localize(timezone('Europe/Athens')) pdates = pdates.tz_convert(timezone('UTC')) dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) if not isinstance(self.areas, dict): nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) else: nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) X = np.array([]) data_var = dict() for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): data_var[var + '_prev'] = X data_var[var] = X data_var[var + '_next'] = X else: data_var[var] = X data_var['dates'] = X X_3d = np.array([]) for arrays in nwp_daily: nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) X_3d = stack_3d(X_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) return data_var, X_3d def dataset_for_single_farm_offline(self, data): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = np.transpose(data[var + '_prev'], [0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var == 'Flux' else 'wind' var_sort = 'fl' if var == 'Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var == 'Cloud' else 'direction' var_sort = 'cl' if var == 'Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X2 = np.transpose(data[var], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] return dataset_X def dataset_for_multiple_farms_offline(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area) > 1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] longs = (np.where((longs_group[0, :] >= area[1]) & (longs_group[0, :] <= area[3])))[0] if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.pca_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.pca_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var == 'Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var == 'Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] return dataset_X def make_dataset_res_online(self, utc=False): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False data, X_3d = self.get_3d_dataset_online(utc) if not isinstance(self.areas, dict): X = self.dataset_for_single_farm_online(data) else: dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) flag = False for i, pdates in enumerate(dates_stack): t = self.dates[i] fname = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & ( nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & ( nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except: continue if flag: break X = self.dataset_for_multiple_farms_online(data, self.areas, lats_group, longs_group) return X, X_3d def get_3d_dataset_online(self, utc): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False dates_stack = [] if utc: pdates = pd.date_range(self.dates[-1] + pd.DateOffset(hours=25), self.dates[-1] + pd.DateOffset(hours=48), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates if dt in self.data.index] dates_stack.append(dates) else: pdates = pd.date_range(self.dates[-1] + pd.DateOffset(hours=25), self.dates[-1] + pd.DateOffset(hours=48), freq='H') indices = [i for i, t in enumerate(pdates) if datetime_exists_in_tz(t, tz=timezone('Europe/Athens'))] pdates = pdates[indices] pdates = pdates.tz_localize(timezone('Europe/Athens')) pdates = pdates.tz_convert(timezone('UTC')) dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) if not isinstance(self.areas, dict): arrays = stack_daily_nwps(self.dates[-1], dates_stack[0], self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) else: arrays = stack_daily_nwps(self.dates[-1], dates_stack[0], self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) X = np.array([]) data_var = dict() for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): data_var[var + '_prev'] = X data_var[var] = X data_var[var + '_next'] = X else: data_var[var] = X data_var['dates'] = X X_3d = np.array([]) nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) X_3d = stack_3d(X_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) return data_var, X_3d def dataset_for_single_farm_online(self, data): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = np.transpose(data[var + '_prev'], [0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var == 'Flux' else 'wind' var_sort = 'fl' if var == 'Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var == 'Cloud' else 'direction' var_sort = 'cl' if var == 'Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X2 = np.transpose(data[var], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue dataset_X = dataset_X ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] self.logger.info('Successfully dataset created for training for %s', self.project_name) return dataset_X def dataset_for_multiple_farms_online(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area) > 1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.pca_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.pca_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var == 'Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var == 'Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] self.logger.info('Successfully dataset created for training for %s', self.project_name) return dataset_X ``` #### File: version2/feature_selection_manager/fs_manager.py ```python import os import pickle import joblib class FeatSelManager(object): def __init__(self, cluster): self.istrained = False self.static_data = cluster.static_data self.cluster_name = cluster.cluster_name self.method = cluster.static_data['sklearn']['fs_method'] self.njobs = cluster.static_data['njobs_feat_sel'] self.inner_jobs = cluster.static_data['inner_jobs_feat_sel'] self.data_dir = cluster.data_dir self.cluster_dir = cluster.cluster_dir if self.method == 'boruta': self.model_dir = os.path.join(cluster.cluster_dir, 'FS/boruta') else: self.model_dir = os.path.join(cluster.cluster_dir, 'FS/PERM') try: self.load() except: pass if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) def load_data(self): data_path = self.data_dir if os.path.exists(os.path.join(data_path, 'cvs_full.pickle')): cvs = joblib.load(os.path.join(data_path, 'cvs_full.pickle')) else: raise ImportError('Cannot find data for cluster %s of %s', self.cluster_name, self.static_data['_id']) return cvs def save_data(self, cvs): data_path = self.data_dir for i in range(3): if self.pca is None: cvs[i][0] = cvs[i][0][:, self.features] cvs[i][2] = cvs[i][2][:, self.features] cvs[i][4] = cvs[i][4][:, self.features] else: cvs[i][0] = self.pca.transform(cvs[i][0][:, self.features]) cvs[i][2] = self.pca.transform(cvs[i][2][:, self.features]) cvs[i][4] = self.pca.transform(cvs[i][4][:, self.features]) joblib.dump(cvs, os.path.join(data_path, 'cvs.pickle')) def fit(self): cvs = self.load_data() if self.method == 'boruta': from Fuzzy_clustering.version2.feature_selection_manager.feature_selection_boruta import FS fs = FS(self.static_data, self.cluster_dir, self.njobs, path_group=self.static_data['path_group']) elif self.method == 'linearsearch': from Fuzzy_clustering.version2.feature_selection_manager.feature_selection_linearsearch import FS fs = FS(self.static_data, self.cluster_dir, self.njobs, self.inner_jobs, path_group=self.static_data['path_group']) else: from Fuzzy_clustering.version2.feature_selection_manager.feature_selection_permutation import FS fs = FS(self.static_data, self.cluster_dir, self.njobs, self.inner_jobs, path_group=self.static_data['path_group']) self.features, self.pca = fs.fit(cvs) self.save_data(cvs) self.istrained = True self.save() return 'Done' def fit_TL(self): cvs = self.load_data() static_data_tl = self.static_data['tl_project']['static_data'] cluster_dir_tl = os.path.join(static_data_tl['path_model'], 'Regressor_layer/' + self.cluster_name) if self.method == 'boruta': from Fuzzy_clustering.version2.feature_selection_manager.feature_selection_boruta import FS fs_trained = FS(static_data_tl, cluster_dir_tl, self.njobs, path_group=self.static_data['path_group']) elif self.method == 'linearsearch': from Fuzzy_clustering.version2.feature_selection_manager.feature_selection_linearsearch import FS fs_trained = FS(static_data_tl, cluster_dir_tl, self.njobs, self.inner_jobs, path_group=self.static_data['path_group']) else: from Fuzzy_clustering.version2.feature_selection_manager.feature_selection_permutation import FS fs_trained = FS(static_data_tl, cluster_dir_tl, self.njobs, self.inner_jobs, path_group=self.static_data['path_group']) self.features = fs_trained.features self.pca = fs_trained.pca self.save_data(cvs) self.istrained = True self.save() return 'Done' def transform(self, X): if self.pca is None: return X[:, self.features] else: return self.pca.transform(X[:, self.features]) def to_dict(self): dict = {} for k in self.__dict__.keys(): if k not in ['logger', 'data_dir', 'cluster_dir', 'model_dir']: dict[k] = self.__dict__[k] return dict def load(self): if os.path.exists(os.path.join(self.model_dir, 'model_fs.pickle')): try: f = open(os.path.join(self.model_dir, 'model_fs.pickle'), 'rb') tmp_dict = pickle.load(f) f.close() self.__dict__.update(tmp_dict) self.pca = joblib.load(os.path.join(self.model_dir, 'pca.pickle')) except: raise ValueError('Cannot find model for %s', self.model_dir) else: raise ValueError('Cannot find model for %s', self.model_dir) def save(self): joblib.dump(self.pca, os.path.join(self.model_dir, 'pca.pickle')) f = open(os.path.join(self.model_dir, 'model_fs.pickle'), 'wb') dict = {} for k in self.__dict__.keys(): if k not in ['logger', 'data_dir', 'cluster_dir', 'model_dir', 'pca']: dict[k] = self.__dict__[k] pickle.dump(dict, f) f.close() ``` #### File: version2/project_manager/create_tasks_tl.py ```python import numpy as np class TaskCreator_TL(): def __init__(self, static_data): self.static_data = static_data def create_tasks_TL_stage_for_sklearn(self, projects, sklearn_methods): # Train in parallel SKLEARN models tasks_sk_ols = [] for method in sklearn_methods: for project in projects: for cluster_name, cluster in project.clusters.items(): if cluster.istrained == False: task = {'project': project.static_data['_id'], 'static_data': project.static_data, 'cluster': cluster, 'method': method, 'optimize_method': project.static_data['sklearn']['optimizer']} tasks_sk_ols.append(task) return tasks_sk_ols def create_tasks_TL_rbfcnn_stage1(self, projects, njobs_cnn): # Train in parallel RBF-CNN task_rbfcnn_stage1 = dict() gpu = 0 task_count = 0 task_rbfcnn_stage1['task' + str(task_count)] = dict() for n in range(self.static_data['ngpus']): task_rbfcnn_stage1['task' + str(task_count)]['/device:GPU:' + str(n)] = [] def task_check(task_rbfcnn_stage1, task_count, njobs, ngpus): flag = 0 for n in range(ngpus): if len(task_rbfcnn_stage1['task' + str(task_count)]['/device:GPU:' + str(n)]) >= njobs: flag += 1 if flag == ngpus: task_count += 1 task_rbfcnn_stage1['task' + str(task_count)] = dict() for n in range(project.static_data['ngpus']): task_rbfcnn_stage1['task' + str(task_count)]['/device:GPU:' + str(n)] = [] return task_rbfcnn_stage1, task_count for project in projects: for cluster_name, cluster in project.clusters.items(): if cluster.istrained == False: if ('RBF_ALL_CNN' in cluster.methods): task = {'method': 'RBF-CNN', 'project': project.static_data['_id'], 'cluster': cluster, 'static_data': project.static_data, 'params': {'test': 1, 'gpu': gpu}} task_rbfcnn_stage1['task' + str(task_count)]['/device:GPU:' + str(gpu)].append(task) task_rbfcnn_stage1, task_count = task_check(task_rbfcnn_stage1, task_count, njobs_cnn, project.static_data['ngpus']) gpu += 1 if gpu == project.static_data['ngpus']: gpu = 0 return task_rbfcnn_stage1 def create_tasks_TL_stage_for_rbfs(self, projects, njobs_rbf): # Train in parallel deep_models and Feature Selection tasks_rbf_ols = [] for project in projects: for cluster_name, cluster in project.clusters.items(): if cluster.istrained == False: task = {'project': project.static_data['_id'], 'static_data': project.static_data, 'cluster': cluster} tasks_rbf_ols.append(task) task_rbf_stage1 = dict() gpu = 0 task_count = 0 task_rbf_stage1['task' + str(task_count)] = dict() for n in range(self.static_data['ngpus']): task_rbf_stage1['task' + str(task_count)]['/device:GPU:' + str(n)] = [] def task_check(task_rbf_stage1, task_count, njobs, ngpus): flag = 0 for n in range(ngpus): if len(task_rbf_stage1['task' + str(task_count)]['/device:GPU:' + str(n)]) >= njobs: flag += 1 if flag == ngpus: task_count += 1 task_rbf_stage1['task' + str(task_count)] = dict() for n in range(project.static_data['ngpus']): task_rbf_stage1['task' + str(task_count)]['/device:GPU:' + str(n)] = [] return task_rbf_stage1, task_count for project in projects: for cluster_name, cluster in project.clusters.items(): if cluster.istrained == False: if ('RBF_ALL_CNN' in cluster.methods) or ('RBF_ALL' in cluster.methods): task = {'method': 'RBFNN', 'project': project.static_data['_id'], 'cluster': cluster, 'static_data': project.static_data, 'params': {'test': 1, 'gpu': gpu}} task_rbf_stage1['task' + str(task_count)]['/device:GPU:' + str(gpu)].append(task) task_rbf_stage1, task_count = task_check(task_rbf_stage1, task_count, njobs_rbf, project.static_data['ngpus']) gpu += 1 if gpu == project.static_data['ngpus']: gpu = 0 return tasks_rbf_ols, task_rbf_stage1 def create_tasks_TL_3d_fs(self, projects, njobs_cnn, njobs_lstm): # Train in parallel deep_models and Feature Selection tasks_fs = [] for project in projects: for cluster_name, cluster in project.clusters.items(): if cluster.istrained == False: task = {'project': project.static_data['_id'], 'cluster': cluster} tasks_fs.append(task) task_3d_stage1 = dict() gpu = 0 task_count = 0 task_3d_stage1['task' + str(task_count)] = dict() for n in range(self.static_data['ngpus']): task_3d_stage1['task' + str(task_count)]['/device:GPU:' + str(n)] = [] def task_check(task_3d_stage1, task_count, njobs, ngpus): flag = 0 for n in range(ngpus): if len(task_3d_stage1['task' + str(task_count)]['/device:GPU:' + str(n)]) >= njobs: flag += 1 if flag == ngpus: task_count += 1 task_3d_stage1['task' + str(task_count)] = dict() for n in range(project.static_data['ngpus']): task_3d_stage1['task' + str(task_count)]['/device:GPU:' + str(n)] = [] return task_3d_stage1, task_count for project in projects: for cluster_name, cluster in project.clusters.items(): if cluster.istrained == False: if 'LSTM' in cluster.methods: min_units = np.maximum(cluster.D, 64) lr = project.static_data['LSTM']['learning_rate'] task = {'method': 'LSTM', 'project': project.static_data['_id'], 'cluster': cluster, 'static_data': project.static_data, 'params': {'test': 1, 'gpu': gpu}} task_3d_stage1['task' + str(task_count)]['/device:GPU:' + str(gpu)].append(task) task_3d_stage1, task_count = task_check(task_3d_stage1, task_count, njobs_lstm, project.static_data['ngpus']) gpu += 1 if gpu == project.static_data['ngpus']: gpu = 0 gpu = 0 for project in projects: for cluster_name, cluster in project.clusters.items(): if cluster.istrained == False: if 'CNN' in cluster.methods: task = {'method': 'CNN', 'project': project.static_data['_id'], 'cluster': cluster, 'static_data': project.static_data, 'params': {'test': 1, 'gpu': gpu}} task_3d_stage1['task' + str(task_count)]['/device:GPU:' + str(gpu)].append(task) task_3d_stage1, task_count = task_check(task_3d_stage1, task_count, njobs_cnn, project.static_data['ngpus']) gpu += 1 if gpu == project.static_data['ngpus']: gpu = 0 return tasks_fs, task_3d_stage1 ``` #### File: version2/project_manager/project_eval_manager.py ```python import joblib import os import sys import numpy as np import pandas as pd from Fuzzy_clustering.version2.model_manager.models_predict_manager import ModelPredictManager from Fuzzy_clustering.version2.project_manager.projects_data_manager import ProjectsDataManager class ProjectsEvalManager: def __init__(self, static_data): self.static_data = static_data self.nwp_model = static_data['NWP_model'] self.nwp_resolution = static_data['NWP_resolution'] self.project_owner = static_data['project_owner'] self.projects_group = static_data['projects_group'] self.area_group = static_data['area_group'] self.version_group = static_data['version_group'] self.version_model = static_data['version_model'] self.data_variables = static_data['data_variables'] self.methods = [method for method in static_data['project_methods'].keys() if static_data['project_methods'][method] == True] self.path_group = self.static_data['path_group'] self.group_static_data = joblib.load(os.path.join(self.path_group, 'static_data_projects.pickle')) self.model_type = self.static_data['type'] self.sys_folder = self.static_data['sys_folder'] self.path_nwp = self.static_data['path_nwp'] self.path_nwp_group = self.static_data['path_nwp_group'] def evaluate(self): projects = self.collect_projects() for project in projects: project.evaluate_all() def eval_short_term(self, horizon=4, best_method = 'average'): projects = self.collect_projects() project_data_manager = ProjectsDataManager(self.static_data, is_test = None) if hasattr(project_data_manager, 'data_eval'): nwp_response = project_data_manager.nwp_extractor() data_eval = project_data_manager.data_eval if self.static_data['ts_resolution'] == '15min': window = np.arange(0, 60 * horizon + 0.2, 15) else: window = np.arange(0, 60 * horizon + 0.2, 60) for hor in window: for project in projects: if hor == 0: predictions = pd.DataFrame(data_eval.values, index=data_eval.index, columns=[hor]) observations = pd.DataFrame(data_eval.values, index=data_eval.index, columns=[hor]) joblib.dump(predictions, os.path.join(project.static_data['path_data'], 'predictions_short_term.pickle')) joblib.dump(observations, os.path.join(project.static_data['path_data'], 'observations_short_term.pickle')) else: pred, y = project.evaluate_short_term(best_method) pred.index = pred.index - pd.DateOffset(minutes=hor) y.index = y.index - pd.DateOffset(minutes=hor) predictions[hor] = np.nan predictions[hor].loc[pred.index] = pred.values.ravel() observations[hor] = np.nan observations[hor].loc[y.index] = y.values.ravel() joblib.dump(predictions, os.path.join(project.static_data['path_data'], 'predictions_short_term.pickle')) joblib.dump(observations, os.path.join(project.static_data['path_data'], 'observations_short_term.pickle')) result = pd.DataFrame(index=[project.static_data['_id']], columns=window) if project.static_data['rated'] is None: rated = observations else: rated = project.static_data['rated'] err = np.abs(predictions - observations) / rated mae = np.mean(err, axis=0) print(mae) _ = project_data_manager.create_short_term_datasets(data_eval) for project in projects: predictions = joblib.load(os.path.join(project.static_data['path_data'], 'predictions_short_term.pickle')) observations = joblib.load(os.path.join(project.static_data['path_data'], 'observations_short_term.pickle')) result = pd.DataFrame(index=[project.static_data['_id']], columns=window) if project.static_data['rated'] is None: rated = observations else: rated = project.static_data['rated'] err = np.abs(predictions - observations) / rated mae = np.mean(err, axis=0) result.loc[project.static_data['_id']] = mae result.to_csv(os.path.join(project.static_data['path_data'], 'result_short_term.csv')) def collect_projects(self): projects = [] for project in self.group_static_data: if project['_id'] != project['static_data']['projects_group'] + '_' + project['static_data']['type']: project_model = ModelPredictManager(project['static_data']) if project_model.istrained == True: projects.append(project_model) else: raise ValueError('Project is not trained ', project['_id']) return projects ``` #### File: version2/project_manager/project_group_init.py ```python import os import joblib import numpy as np import pandas as pd from Fuzzy_clustering.version2.common_utils.logging import create_logger def compute_area_grid(lat, long, resolution, round_coord, levels): lat_range = np.arange(np.around(lat, round_coord) - 20, np.around(lat, round_coord) + 20, resolution) lat1 = lat_range[np.abs(lat_range - lat).argmin()] - resolution / 10 lat2 = lat_range[np.abs(lat_range - lat).argmin()] + resolution / 10 long_range = np.arange(np.around(long, round_coord) - 20, np.around(long, round_coord) + 20, resolution) long1 = long_range[np.abs(long_range - long).argmin()] - resolution / 10 long2 = long_range[np.abs(long_range - long).argmin()] + resolution / 10 return [[lat1 - resolution * levels, long1 - resolution * levels], [lat2 + resolution * levels, long2 + resolution * levels]] class ProjectGroupInit: """ Class responsible for managing and loading the power output or load. """ def __init__(self, static_data): """ Parameters ---------- static_data: python dict contains all the information required to load the power measurement for specific project(s). """ self.static_data = static_data # dict containing information about project paths, model structure and training # params, input file, see in util_database_timos.py and config_timos.py self.file_data = static_data['data_file_name'] # input .csv file PROBLEM_TYPE + '_ts.csv' i.e. wind_ts.csv self.project_owner = static_data[ 'project_owner'] # Name of project owner or research program i.e. my_projects or CROSSBOW self.projects_group = static_data['projects_group'] # Name of the country self.area_group = static_data['area_group'] # coordinates of the country self.version_group = static_data['version_group'] self.version_model = static_data['version_model'] self.weather_in_data = static_data[ 'weather_in_data'] # True if input file contains more columns than the power output column self.nwp_model = static_data['NWP_model'] self.nwp_resolution = static_data['NWP_resolution'] self.data_variables = static_data['data_variables'] # Variable names used self.projects = [] # list containing all the parks, we're interested in. Each park is considered as a project. self.use_rated = True self.model_type = self.static_data['type'] self.sys_folder = self.static_data['sys_folder'] self.path_nwp = self.static_data['path_nwp'] self.path_group = self.static_data['path_group'] self.path_nwp_group = self.static_data['path_nwp_group'] self.group_static_data = [] self.logger = create_logger(logger_name=f'ProjectInitManager_{self.model_type}', abs_path=self.path_group, logger_path=f'log_{self.projects_group}.log', write_type='a') def initialize(self): if os.path.exists(os.path.join(os.path.dirname(self.file_data), 'coord_auto_' + self.model_type + '.csv')): self.file_coord = os.path.join(os.path.dirname(self.file_data), 'coord_auto_' + self.model_type + '.csv') else: self.file_coord = os.path.join(os.path.dirname(self.file_data), 'coord_' + self.model_type + '.csv') if not os.path.exists(self.file_coord) and not self.weather_in_data: raise IOError('File with coordinates does not exist') self.file_rated = os.path.join(os.path.dirname(self.file_data), 'rated_' + self.model_type + '.csv') if not os.path.exists(self.file_rated): if self.model_type in {'wind', 'pv'} and self.projects_group not in {'IPTO'}: raise ValueError('Provide rated_power for each project. The type of projects is %s', self.model_type) self.use_rated = False else: self.use_rated = True self.load_power_of_parks() # Loads power output, coordinates and rated power. if len(self.projects) == 0: raise ImportError('No project loaded. check the input file in configuration') if self.check_project_names(): for project_name in self.projects: path_project = self.path_group + '/' + project_name if not os.path.exists(path_project): os.makedirs(path_project) path_model = path_project + '/model_ver' + str(self.version_model) if not os.path.exists(path_model): os.makedirs(path_model) path_backup = self.path_group + '/backup_models/' + project_name + '/model_ver' + str( self.version_model) if not os.path.exists(path_backup): os.makedirs(path_backup) path_data = path_model + '/DATA' if not os.path.exists(path_data): os.makedirs(path_data) path_fuzzy_models = path_model + '/fuzzy_models' if not os.path.exists(path_fuzzy_models): os.makedirs(path_fuzzy_models) if self.use_rated: if project_name == self.projects_group + '_' + self.model_type and project_name not in self.rated.index.to_list(): rated = self.rated.sum().to_list()[0] else: rated = self.rated.loc[project_name].to_list()[0] else: rated = None if hasattr(self, 'coord'): if project_name == 'APE_net' or self.model_type == 'load' or project_name == self.projects_group + '_' + self.model_type: coord = dict() for name, lat_long in self.coord.iterrows(): coord[name] = lat_long.values.tolist() else: coord = self.coord.loc[project_name].to_list() # [lat, long] else: coord = None area = self.create_area(coord) temp = {'_id': project_name, 'owner': self.project_owner, 'project_group': self.projects_group, 'type': self.model_type, 'location': coord, 'areas': area, 'rated': rated, 'path_project': path_project, 'path_model': path_model, 'path_group': self.path_group, 'version_group': self.version_group, 'version_model': self.version_model, 'path_backup': path_backup, 'path_data': path_data, 'pathnwp': self.path_nwp_group, 'path_fuzzy_models': path_fuzzy_models, 'run_on_platform': False, } static_data = dict() for key, value in self.static_data.items(): static_data[key] = value for key, value in temp.items(): static_data[key] = value self.group_static_data.append({'_id': project_name, 'static_data': static_data}) joblib.dump(static_data, os.path.join(path_model, 'static_data.pickle')) with open(os.path.join(path_model, 'static_data.txt'), 'w') as file: for k, v in static_data.items(): if not isinstance(v, dict): file.write(str(k) + ' >>> ' + str(v) + '\n\n') else: file.write(str(k) + ' >>> ' + '\n') for kk, vv in v.items(): file.write('\t' + str(kk) + ' >>> ' + str(vv) + '\n') joblib.dump(self.group_static_data, os.path.join(self.path_group, 'static_data_projects.pickle')) self.logger.info('Static data of all projects created') def check_project_names(self): flag = True if self.model_type in {'wind', 'pv'}: for name in self.projects: if name not in self.coord.index.to_list() and name != self.projects_group + '_' + self.model_type and name != 'APE_net': flag = False self.logger.info('There is inconsistency to files data and coord for the project %s', name) if not flag: raise ValueError('Inconsistency in project names between data and coord') if self.use_rated: for name in self.projects: if name not in self.rated.index.to_list() and name != self.projects_group + '_' + self.model_type: flag = False self.logger.info('There is inconsistency to files data and rated for the project %s', name) if not flag: raise ValueError('Inconsistency in project names between data and rated') return flag def load_power_of_parks(self): try: # Data containing power output or load. Each column refers to a different wind, pv park. self.data = pd.read_csv(self.file_data, header=0, index_col=0, parse_dates=True, dayfirst=True) except Exception: self.logger.info(f'Cannot import timeseries from the file {self.file_data}') raise IOError(f'Cannot import timeseries from the file {self.file_data}') self.logger.info('Timeseries imported successfully from the file %s', self.file_data) if 'total' in self.data.columns: # In some cases, the total output of all parks is included. self.data = self.data.rename( columns={'total': self.projects_group + '_' + self.model_type}) # e.g group = 'Greece' if self.static_data['Evaluation_start']: valid_combination = True time_offset = pd.DateOffset(hours=0) if self.model_type == 'fa': time_offset = pd.DateOffset(days=372) elif self.model_type == 'load': if self.data.columns[0] == 'lv_load': time_offset = pd.DateOffset(days=9001) else: if self.static_data['horizon'] == 'short-term': time_offset = pd.DateOffset(hours = 350) else: if self.static_data['ts_resolution'] == 'hourly': time_offset = pd.DateOffset(hours = 9001) elif self.static_data['ts_resolution'] == '15min': time_offset = pd.DateOffset(minutes = 60 * 9001) if valid_combination: try: eval_date = pd.to_datetime(self.static_data['Evaluation_start'], format='%d%m%Y %H:%M') self.data_eval = self.data.iloc[np.where(self.data.index > eval_date - time_offset)] self.data = self.data.iloc[np.where(self.data.index <= eval_date)] except Exception: raise ValueError('Wrong date format, use %d%m%Y %H:%M. Or the date does not exist in the dataset') if self.model_type == 'load': self.projects.append(self.data.columns[0]) elif self.model_type == 'fa': if self.version_model == 0: self.projects.append('fa_curr_morning') elif self.version_model == 1: self.projects.append('fa_ahead_morning') else: raise ValueError( 'Version model should be 0 for current day and 1 for day ahead otherwise choose another group version') else: for name in self.data.columns: var = f'{self.projects_group}_{self.model_type}' if name == 'total' else name self.projects.append(var) if not self.weather_in_data: try: # For each of the park, load its coordinates. (lat,long) single tuple self.coord = pd.read_csv(self.file_coord, header=None, index_col=0) except Exception: self.logger.info('Cannot import coordinates from the file %s', self.file_coord) raise IOError('Cannot import coordinates from the file %s', self.file_coord) self.logger.info('Coordinates imported successfully from the file %s', self.file_coord) else: self.logger.info('Coordinates in the data') if self.use_rated: try: # For each park, read its rated (maximum) power. self.rated = pd.read_csv(self.file_rated, header=None, index_col=0) except Exception: self.logger.info('Cannot import Rated Power from the file %s', self.file_rated) raise IOError('Cannot import Rated Power from the file %s', self.file_rated) self.logger.info('Rated Power imported successfully from the file %s', self.file_rated) self.logger.info('Data loaded successfully') def create_area(self, coord): levels = 4 if self.nwp_resolution == 0.05 else 2 round_coord = 1 if self.nwp_resolution == 0.05 else 0 if coord is None: area = dict() elif isinstance(coord, list): if len(coord) == 2: lat, long = coord[0], coord[1] area = compute_area_grid(lat, long, self.nwp_resolution, round_coord, levels) elif len(coord) == 4: area = list(np.array(coord).reshape(2, 2)) else: raise ValueError( 'Wrong coordinates. Should be point (lat, long) or area [lat1, long1, lat2, long2]') elif isinstance(coord, dict): area = dict() for key, value in coord.items(): if len(value) == 2: lat, long = value[0], value[1] area[key] = compute_area_grid(lat, long, self.nwp_resolution, round_coord, levels) else: area[key] = np.array(value).reshape(2, 2) else: raise ValueError('Wrong coordinates. Should be dict or list') self.logger.info('Areas created successfully') return area ``` #### File: version2/rbf_ols_manager/rbf_ols_manager.py ```python import os import joblib from Fuzzy_clustering.version2.rbf_ols_manager.rbf_ols import rbf_ols_module class RbfOlsManager(object): def __init__(self, static_data, cluster): self.static_data = static_data self.istrained = False self.njobs = cluster.static_data['sklearn']['njobs'] self.models = dict() self.cluster_name = cluster.cluster_name self.data_dir = cluster.data_dir self.cluster_dir = cluster.cluster_dir self.model_dir = os.path.join(self.cluster_dir, 'RBF_OLS') if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) try: self.load() except: pass def load_data(self): data_path = self.data_dir cvs = joblib.load(os.path.join(data_path, 'cvs.pickle')) return cvs def fit(self): if self.istrained == False: cvs = self.load_data() model_rbf_ols = rbf_ols_module(self.static_data, self.model_dir, self.static_data['rated'], self.static_data['sklearn']['njobs'], GA=False , path_group=self.static_data['path_group']) model_rbf_ga = rbf_ols_module(self.static_data, self.model_dir, self.static_data['rated'], self.static_data['sklearn']['njobs'], GA=True , path_group=self.static_data['path_group']) if model_rbf_ols.istrained == False: max_samples = 1500 print('Train RBFOLS ', self.cluster_name) self.models['RBF_OLS'] = model_rbf_ols.optimize_rbf(cvs, max_samples=max_samples) else: self.models['RBF_OLS'] = model_rbf_ols.to_dict() if model_rbf_ga.istrained == False: max_samples = 1500 print('Train GA-RBF ', self.cluster_name) self.models['GA_RBF_OLS'] = model_rbf_ga.optimize_rbf(cvs, max_samples=max_samples) else: self.models['GA_RBF_OLS'] = model_rbf_ga.to_dict() self.istrained = True self.save() return 'Done' def fit_TL(self): if self.istrained == False: static_data_tl = self.static_data['tl_project']['static_data'] cluster_dir_tl = os.path.join(static_data_tl['path_model'], 'Regressor_layer/' + self.cluster_name) model_rbf_ols_TL = rbf_ols_module(static_data_tl, cluster_dir_tl, static_data_tl['rated'], self.static_data['sklearn']['njobs'], GA=False) model_rbf_ga_TL = rbf_ols_module(static_data_tl, cluster_dir_tl, static_data_tl['rated'], self.static_data['sklearn']['njobs'], GA=True) cvs = self.load_data() model_rbf_ols = rbf_ols_module(self.static_data, self.model_dir, self.static_data['rated'], self.static_data['sklearn']['njobs'], GA=False) model_rbf_ga = rbf_ols_module(self.static_data, self.model_dir, self.static_data['rated'], self.static_data['sklearn']['njobs'], GA=True) if model_rbf_ols.istrained == False: self.models['RBF_OLS'] = model_rbf_ols.optimize_rbf_TL(cvs, model_rbf_ols_TL.models) else: self.models['RBF_OLS'] = model_rbf_ols.to_dict() if model_rbf_ga.istrained == False: self.models['GA_RBF_OLS'] = model_rbf_ga.optimize_rbf_TL(cvs, model_rbf_ga_TL.models) else: self.models['GA_RBF_OLS'] = model_rbf_ga.to_dict() self.istrained = True self.save() return 'Done' def load(self): if os.path.exists(os.path.join(self.model_dir, 'RBFolsManager.pickle')): try: tmp_dict = joblib.load(os.path.join(self.model_dir, 'RBFolsManager.pickle')) self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open CNN model') else: raise ImportError('Cannot find CNN model') def save(self): tmp_dict = {} for k in self.__dict__.keys(): if k not in ['logger', 'static_data', 'model_dir', 'cluster_dir', 'data_dir']: tmp_dict[k] = self.__dict__[k] joblib.dump(tmp_dict, os.path.join(self.model_dir, 'RBFolsManager.pickle')) ``` #### File: version2/sklearn_models/sklearn_predict.py ```python import os import joblib import numpy as np import pickle class sklearn_model_predict(object): def __init__(self, cluster_dir, rated, model_type, njobs): self.njobs = njobs self.rated = rated self.cluster = os.path.basename(cluster_dir) self.model_dir = os.path.join(cluster_dir, str.upper(model_type)) self.istrained = False if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) self.model_type = model_type try: self.load(self.model_dir) except: pass def compute_metrics(self, pred, y, rated): if rated is None: rated = y.ravel() else: rated = 1 err = np.abs(pred.ravel() - y.ravel()) / rated sse = np.sum(np.square(pred.ravel() - y.ravel())) rms = np.sqrt(np.mean(np.square(err))) mae = np.mean(err) mse = sse / y.shape[0] return [sse, rms, mae, mse] def predict(self, X): self.load(self.model_dir) if self.istrained: pred = self.model.predict(X).reshape(-1, 1) else: raise ModuleNotFoundError("Error on prediction of %s cluster. The model %s seems not properly trained", self.cluster, self.model_type) return pred def load(self, model_dir): self.model = joblib.load(os.path.join(model_dir, 'model.pkl')) if os.path.exists(os.path.join(model_dir, 'model_all' + '.pickle')): try: f = open(os.path.join(model_dir, 'model_all' + '.pickle'), 'rb') tmp_dict = pickle.load(f) f.close() del tmp_dict['model_dir'] self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open model_all model') else: raise ImportError('Cannot find model_all model') ``` #### File: version3/ClusterCombineManager/Adasyn_var2d.py ```python import numpy as np from scipy import sparse from sklearn.utils import check_random_state from sklearn.utils import _safe_indexing from imblearn.over_sampling.base import BaseOverSampler from imblearn.utils import check_neighbors_object from imblearn.utils import check_sampling_strategy class ADASYN(): def __init__( self, sampling_strategy="auto", variables=None, variables_3d=None, random_state=None, n_neighbors=5, n_jobs=None, ): self.sampling_strategy=sampling_strategy self.random_state = random_state self.n_neighbors = n_neighbors self.n_jobs = n_jobs self.variables = variables self.variables_3d = variables_3d def _validate_estimator(self): """Create the necessary objects for ADASYN""" self.nn_ = check_neighbors_object( "n_neighbors", self.n_neighbors, additional_neighbor=1 ) self.nn_.set_params(**{"n_jobs": self.n_jobs}) def fit_resample(self, X, X_3d, y, y_org): self.sampling_strategy_ = check_sampling_strategy( self.sampling_strategy, y, 'over-sampling' ) self._validate_estimator() random_state = check_random_state(self.random_state) X_resampled = [X.copy()] X_3d_resampled = [X_3d.copy()] y_resampled = [y.copy()] y_org_resampled = [y_org.copy()] for class_sample, n_samples in self.sampling_strategy_.items(): if n_samples == 0: continue target_class_indices = np.flatnonzero(y == class_sample) X_class = _safe_indexing(X, target_class_indices) X_class_3d = _safe_indexing(X_3d, target_class_indices) y_class_org = _safe_indexing(y_org, target_class_indices) # self.nn_.set_params(**{"n_neighbors": self.n_neighbors}) self.nn_.fit(X[:, self.variables]) nns = self.nn_.kneighbors(X_class[:, self.variables], return_distance=False)[:, 1:] # The ratio is computed using a one-vs-rest manner. Using majority # in multi-class would lead to slightly different results at the # cost of introducing a new parameter. n_neighbors = self.nn_.n_neighbors - 1 ratio_nn = np.sum(y[nns] != class_sample, axis=1) / n_neighbors if not np.sum(ratio_nn): raise RuntimeError( "Not any neigbours belong to the majority" " class. This case will induce a NaN case" " with a division by zero. ADASYN is not" " suited for this specific dataset." " Use SMOTE instead." ) ratio_nn /= np.sum(ratio_nn) n_samples_generate = np.rint(ratio_nn * n_samples).astype(int) # rounding may cause new amount for n_samples n_samples = np.sum(n_samples_generate) if not n_samples: raise ValueError( "No samples will be generated with the" " provided ratio settings." ) # the nearest neighbors need to be fitted only on the current class # to find the class NN to generate new samples # self.nn_.set_params(**{"n_neighbors": np.minimum(int(X_class.shape[0]-1), self.n_neighbors)}) self.nn_.fit(X_class[:, self.variables]) nns = self.nn_.kneighbors(X_class[:, self.variables], return_distance=False)[:, 1:] enumerated_class_indices = np.arange(len(target_class_indices)) rows = np.repeat(enumerated_class_indices, n_samples_generate) cols = random_state.choice(n_neighbors, size=n_samples) diffs = X_class[nns[rows, cols]][:, self.variables] - X_class[rows][:, self.variables] diffs_3d = X_class_3d[nns[rows, cols]][:, self.variables_3d, :] - X_class_3d[rows][:, self.variables_3d, :] steps = random_state.uniform( size=(n_samples, 1)) X_new = X_class[rows] X_new_3d = X_class_3d[rows] y_new_org = y_class_org[rows] if sparse.issparse(X): sparse_func = type(X).__name__ steps = getattr(sparse, sparse_func)(steps) X_new[:, self.variables] = X_class[rows][:, self.variables] + steps.multiply(diffs) X_new_3d[:, self.variables_3d, :] = X_class_3d[rows][:, self.variables_3d, :] + steps[:, :, np.newaxis].multiply(diffs) else: X_new[:, self.variables] = X_class[rows][:, self.variables] + steps * diffs X_new_3d[:, self.variables_3d, :] = X_class_3d[rows][:, self.variables_3d, :] + steps[:, :, np.newaxis] * diffs_3d X_new = X_new.astype(X.dtype) X_new_3d = X_new_3d.astype(X.dtype) y_new = np.full(n_samples, fill_value=class_sample, dtype=y.dtype) X_resampled.append(X_new) X_3d_resampled.append(X_new_3d) y_resampled.append(y_new) y_org_resampled.append(y_new_org) if sparse.issparse(X): X_resampled = sparse.vstack(X_resampled, format=X.format) X_3d_resampled = sparse.vstack(X_3d_resampled, format=X.format) else: X_resampled = np.vstack(X_resampled) X_3d_resampled = np.vstack(X_3d_resampled) y_resampled = np.hstack(y_resampled) y_org_resampled = np.hstack(y_org_resampled) return X_resampled, X_3d_resampled, y_org_resampled ``` #### File: version3/common_utils/logging.py ```python import logging import os def create_logger(logger_name, abs_path, logger_path, write_type='w'): assert write_type in ('w', 'a') logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(abs_path, logger_path), write_type) handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) return logger ``` #### File: version3/DatasetManager/create_datasets_PCA.py ```python import numpy as np import pandas as pd import joblib, os, logging from joblib import Parallel, delayed from scipy.interpolate import interp2d from sklearn.decomposition import KernelPCA from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV from pytz import timezone def my_scorer(estimator, X, y=None): X_reduced = estimator.transform(X) X_preimage = estimator.inverse_transform(X_reduced) return -1 * mean_squared_error(X, X_preimage) def rescale(arr, nrows, ncol): W, H = arr.shape new_W, new_H = (nrows, ncol) xrange = lambda x: np.linspace(0, 1, x) f = interp2d(xrange(H), xrange(W), arr, kind="linear") new_arr = f(xrange(new_H), xrange(new_W)) return new_arr def rescale_mean(arr): arr_new = np.zeros([int(np.ceil(arr.shape[0]/2)), int(np.ceil(arr.shape[1]/2))]) for i in range(0, arr.shape[0], 2): for j in range(0, arr.shape[1], 2): arr_new[int((i+1)/2),int((j+1)/2)] = np.mean(arr[i:i+2, j:j+2]) return arr_new def stack_2d(X, sample, compress): if compress: sample = rescale_mean(sample) if len(sample.shape) == 3: if X.shape[0] == 0: X = sample elif len(X.shape) == 3: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :, :])) elif len(sample.shape) == 2: if X.shape[0] == 0: X = sample elif len(X.shape) == 2: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :])) elif len(sample.shape) == 4: if X.shape[0] == 0: X = sample elif len(X.shape) == 4: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :, :, :])) return X def stack_3d(X, sample): if X.shape[0] == 0: X = sample elif len(sample.shape)!=len(X.shape): X = np.vstack((X, sample[np.newaxis])) else: X = np.vstack((X, sample)) return X def check_empty_nwp(nwp, nwp_next, nwp_prev, variables): flag = True for var in variables: if nwp[var].shape[0]==0 and nwp_next[var].shape[0]==0 and nwp_prev[var].shape[0]==0: flag = False break return flag def stack_daily_nwps(t, pdates, path_nwp_project, nwp_model, areas, variables, compress, model_type): X = np.array([]) X_3d = np.array([]) data_var = dict() for var in variables: if ((var == 'WS') and (model_type=='wind')) or ((var == 'Flux') and (model_type=='pv')): data_var[var + '_prev'] = X data_var[var] = X data_var[var + '_next'] = X else: data_var[var] = X data_var['dates'] = X fname = os.path.join(path_nwp_project, nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:,0]>=areas[0][0]) & (nwp['lat'][:,0]<=areas[1][0])))[0] longs = (np.where((nwp['long'][0,:]>=areas[0][1]) & (nwp['long'][0,:]<=areas[1][1])))[0] break except: continue try: for date in pdates: nwp = nwps[date] date = pd.to_datetime(date, format='%d%m%y%H%M') nwp_prev = nwps[(date - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): data_var['dates'] = np.hstack((data_var['dates'], date)) x_2d = np.array([]) for var in sorted(variables): if ((var == 'WS') and (model_type=='wind')) or ((var == 'Flux') and (model_type=='pv')): data_var[var + '_prev'] = stack_2d(data_var[var + '_prev'], nwp_prev[var][np.ix_(lats, longs)], compress) data_var[var] = stack_2d(data_var[var], nwp[var][np.ix_(lats, longs)], compress) data_var[var + '_next'] = stack_2d(data_var[var + '_next'], nwp_next[var][np.ix_(lats, longs)], compress) x_2d = stack_2d(x_2d, nwp_prev[var][np.ix_(lats, longs)], compress) x_2d = stack_2d(x_2d, nwp[var][np.ix_(lats, longs)], compress) x_2d = stack_2d(x_2d, nwp_next[var][np.ix_(lats, longs)], compress) else: data_var[var] = stack_2d(data_var[var], nwp[var][np.ix_(lats, longs)], compress) x_2d = stack_2d(x_2d, nwp[var][np.ix_(lats, longs)], compress) X_3d = stack_2d(X_3d, x_2d, False) except: pass print(t.strftime('%d%m%y%H%M'), ' extracted') return (data_var, X_3d, t.strftime('%d%m%y%H%M')) class dataset_creator_PCA(): def __init__(self, project, data=None, njobs=1, test=False, dates=None): self.data = data self.isfortest = test self.project_name= project['_id'] self.static_data = project['static_data'] self.path_nwp_project = self.static_data['pathnwp'] self.path_data = self.static_data['path_data'] self.areas = self.static_data['areas'] self.area_group = self.static_data['area_group'] self.nwp_model = self.static_data['NWP_model'] self.nwp_resolution = self.static_data['NWP_resolution'] self.location = self.static_data['location'] if self.nwp_resolution == 0.05: self.compress = True else: self.compress = False self.njobs = njobs self.variables = self.static_data['data_variables'] self.create_logger() if not self.data is None: self.check_dates() elif not dates is None: self.dates = dates def create_logger(self): self.logger = logging.getLogger('log_' + self.static_data['project_group'] + '.log') self.logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(os.path.dirname(self.path_nwp_project), 'log_' + self.static_data['project_group'] + '.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger self.logger.addHandler(handler) def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates is checked. Number of time samples %s', str(len(dates))) self.dates = pd.DatetimeIndex(dates) def get_3d_dataset(self): dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates if dt in self.data.index] dates_stack.append(dates) if not isinstance(self.areas, dict): nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.njobs)(delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) else: nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.njobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) X = np.array([]) data_var = dict() for var in self.variables: if ((var == 'WS') and (self.static_data['type']=='wind')) or ((var == 'Flux') and (self.static_data['type']=='pv')): data_var[var+'_prev'] = X data_var[var] = X data_var[var+'_next'] = X else: data_var[var] = X data_var['dates'] = X X_3d = np.array([]) for arrays in nwp_daily: nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0]!=0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) X_3d = stack_3d(X_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) if self.isfortest: joblib.dump(data_var, os.path.join(self.path_data, 'nwps_3d_test.pickle')) joblib.dump(X_3d, os.path.join(self.path_data, 'dataset_cnn_test.pickle')) else: joblib.dump(data_var, os.path.join(self.path_data, 'nwps_3d.pickle')) joblib.dump(X_3d, os.path.join(self.path_data, 'dataset_cnn.pickle')) self.logger.info('NWP stacked data saved') return data_var, X_3d def create_sample(self): pass def train_PCA(self, data, components, level): scaler = MinMaxScaler() data_scaled = scaler.fit_transform(data) param_grid = [{ "gamma": np.logspace(-3, 0, 20), }] kpca = KernelPCA(n_components=components, fit_inverse_transform=True, n_jobs=self.njobs) grid_search = GridSearchCV(kpca, param_grid, cv=3, scoring=my_scorer, n_jobs=self.njobs) grid_search.fit(data_scaled) kpca = grid_search.best_estimator_ fname = os.path.join(self.path_data, 'kpca_' + level + '.pickle') joblib.dump({'scaler':scaler, 'kpca':kpca}, fname) def PCA_transform(self, data, components, level): fname = os.path.join(self.path_data, 'kpca_' + level + '.pickle') if not os.path.exists(fname): self.train_PCA(data, components, level) models = joblib.load(fname) data_scaled = models['scaler'].transform(data) data_compress = models['kpca'].transform(data_scaled) return data_compress def make_dataset_res(self): if self.isfortest: if not os.path.exists(os.path.join(self.path_data, 'nwps_3d_test.pickle')) or not os.path.exists(os.path.join(self.path_data, 'dataset_cnn_test.pickle')): data, X_3d = self.get_3d_dataset() else: data = joblib.load(os.path.join(self.path_data, 'nwps_3d_test.pickle')) X_3d = joblib.load(os.path.join(self.path_data, 'dataset_cnn_test.pickle')) else: if not os.path.exists(os.path.join(self.path_data, 'nwps_3d.pickle')) or not os.path.exists(os.path.join(self.path_data, 'dataset_cnn.pickle')): data, X_3d = self.get_3d_dataset() else: data = joblib.load(os.path.join(self.path_data, 'nwps_3d.pickle')) X_3d = joblib.load(os.path.join(self.path_data, 'dataset_cnn.pickle')) data_path = self.path_data if not isinstance(self.areas, dict): self.dataset_for_single_farm(data, data_path) else: dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=25), t + pd.DateOffset(hours=48), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates if dt in self.data.index] dates_stack.append(dates) flag = False for i, pdates in enumerate(dates_stack): t= self.dates[i] fname = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & (nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & (nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except: continue if flag: break self.dataset_for_multiple_farms(data, self.areas, lats_group, longs_group) def dataset_for_single_farm(self, data, data_path): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type']=='wind')) or ((var == 'Flux') and (self.static_data['type']=='pv')): X0 = np.transpose(data[var + '_prev'],[0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var],[0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.PCA_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.PCA_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.PCA_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.PCA_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'],[0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var=='Flux' else 'wind' var_sort = 'fl' if var=='Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var],[0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.PCA_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.PCA_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.PCA_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.PCA_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var=='Cloud' else 'direction' var_sort = 'cl' if var=='Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type']=='pv')): X2 = np.transpose(data[var],[0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue dataset_X = dataset_X dataset_y = self.data.loc[dataset_X.index].to_frame() dataset_y.columns = ['target'] if self.isfortest: ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y_test.csv')) self.logger.info('Successfully dataset created for Evaluation for %s', self.project_name) else: corr = [] for f in range(dataset_X.shape[1]): corr.append(np.abs(np.corrcoef(dataset_X.values[:, f], dataset_y.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] joblib.dump(ind, os.path.join(data_path, 'dataset_columns_order.pickle')) dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y.csv')) self.logger.info('Successfully dataset created for training for %s', self.project_name) def dataset_for_multiple_farms(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat([dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour','month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area)>1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] longs = (np.where((longs_group[0, :] >= area[1]) & (longs_group[0, :] <= area[3])))[0] if ((var == 'WS') and (self.static_data['type']=='wind')) or ((var == 'Flux') and (self.static_data['type']=='pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.PCA_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.PCA_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var=='Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var=='Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var=='Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var=='Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type']=='pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) dataset_y = self.data.loc[dataset_X.index].to_frame() dataset_y.columns = ['target'] if self.isfortest: ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y_test.csv')) self.logger.info('Successfully dataset created for Evaluation for %s', self.project_name) else: corr = [] for f in range(dataset_X.shape[1]): corr.append(np.abs(np.corrcoef(dataset_X.values[:, f], dataset_y.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] joblib.dump(ind, os.path.join(self.path_data, 'dataset_columns_order.pickle')) dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y.csv')) self.logger.info('Successfully dataset created for training for %s', self.project_name) def make_dataset_res_offline(self, utc=False): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False data, X_3d = self.get_3d_dataset_offline(utc) if not isinstance(self.areas, dict): X = self.dataset_for_single_farm_offline(data) else: dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) flag = False for i, pdates in enumerate(dates_stack): t= self.dates[i] fname = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & (nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & (nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except: continue if flag: break X = self.dataset_for_multiple_farms_offline(data, self.areas, lats_group, longs_group) return X, X_3d def get_3d_dataset_offline(self, utc): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False dates_stack = [] for dt in self.dates: if utc: pdates = pd.date_range(dt + pd.DateOffset(hours=25), dt + pd.DateOffset(hours=48), freq='H') dates = [t.strftime('%d%m%y%H%M') for t in pdates] dates_stack.append(dates) else: pdates = pd.date_range(dt + pd.DateOffset(hours=25), dt + pd.DateOffset(hours=48), freq='H') indices = [i for i, t in enumerate(pdates) if datetime_exists_in_tz(t, tz=timezone('Europe/Athens'))] pdates = pdates[indices] pdates = pdates.tz_localize(timezone('Europe/Athens')) pdates = pdates.tz_convert(timezone('UTC')) dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) if not isinstance(self.areas, dict): nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.njobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) else: nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.njobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) X = np.array([]) data_var = dict() for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): data_var[var + '_prev'] = X data_var[var] = X data_var[var + '_next'] = X else: data_var[var] = X data_var['dates'] = X X_3d = np.array([]) for arrays in nwp_daily: nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) X_3d = stack_3d(X_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) return data_var, X_3d def dataset_for_single_farm_offline(self, data): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type']=='wind')) or ((var == 'Flux') and (self.static_data['type']=='pv')): X0 = np.transpose(data[var + '_prev'],[0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var],[0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.PCA_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.PCA_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.PCA_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.PCA_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'],[0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var=='Flux' else 'wind' var_sort = 'fl' if var=='Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var],[0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.PCA_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.PCA_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.PCA_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.PCA_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var=='Cloud' else 'direction' var_sort = 'cl' if var=='Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type']=='pv')): X2 = np.transpose(data[var],[0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue return dataset_X def dataset_for_multiple_farms_offline(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat([dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour','month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area) > 1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] longs = (np.where((longs_group[0, :] >= area[1]) & (longs_group[0, :] <= area[3])))[0] if ((var == 'WS') and (self.static_data['type']=='wind')) or ((var == 'Flux') and (self.static_data['type']=='pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.PCA_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.PCA_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var=='Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var=='Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var=='Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var=='Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type']=='pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) return dataset_X def make_dataset_res_online(self, utc=False): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False data, X_3d = self.get_3d_dataset_online(utc) if not isinstance(self.areas, dict): X = self.dataset_for_single_farm_online(data) else: dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) flag = False for i, pdates in enumerate(dates_stack): t= self.dates[i] fname = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & (nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & (nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except: continue if flag: break X = self.dataset_for_multiple_farms_online(data, self.areas, lats_group, longs_group) return X, X_3d def get_3d_dataset_online(self, utc): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False dates_stack = [] if utc: pdates = pd.date_range(self.dates + pd.DateOffset(hours=25), self.dates + pd.DateOffset(hours=48), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates if dt in self.data.index] dates_stack.append(dates) else: pdates = pd.date_range(self.dates + pd.DateOffset(hours=25), self.dates + pd.DateOffset(hours=48), freq='H') indices = [i for i, t in enumerate(pdates) if datetime_exists_in_tz(t, tz=timezone('Europe/Athens'))] pdates = pdates[indices] pdates = pdates.tz_localize(timezone('Europe/Athens')) pdates = pdates.tz_convert(timezone('UTC')) dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) if not isinstance(self.areas, dict): arrays = stack_daily_nwps(self.dates, dates_stack[0], self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) else: arrays = stack_daily_nwps(self.dates, dates_stack[0], self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) X = np.array([]) data_var = dict() for var in self.variables: if ((var == 'WS') and (self.static_data['type']=='wind')) or ((var == 'Flux') and (self.static_data['type']=='pv')): data_var[var+'_prev'] = X data_var[var] = X data_var[var+'_next'] = X else: data_var[var] = X data_var['dates'] = X X_3d = np.array([]) nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0]!=0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) X_3d = stack_3d(X_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) return data_var, X_3d def dataset_for_single_farm_online(self, data): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type']=='wind')) or ((var == 'Flux') and (self.static_data['type']=='pv')): X0 = np.transpose(data[var + '_prev'],[0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var],[0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.PCA_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.PCA_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.PCA_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.PCA_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'],[0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var=='Flux' else 'wind' var_sort = 'fl' if var=='Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var],[0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.PCA_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.PCA_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.PCA_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1,1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.PCA_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var=='Cloud' else 'direction' var_sort = 'cl' if var=='Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type']=='pv')): X2 = np.transpose(data[var],[0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue dataset_X = dataset_X self.logger.info('Successfully dataset created for training for %s', self.project_name) return dataset_X def dataset_for_multiple_farms_online(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat([dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour','month'])]) for var in self.variables: for area_name, area in areas.items(): lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] longs = (np.where((longs_group[0, :] >= area[1]) & (longs_group[0, :] <= area[3])))[0] if ((var == 'WS') and (self.static_data['type']=='wind')) or ((var == 'Flux') and (self.static_data['type']=='pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.PCA_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.PCA_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var=='Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var=='Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var=='Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var=='Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type']=='pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.PCA_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) self.logger.info('Successfully dataset created for training for %s', self.project_name) return dataset_X ``` #### File: version3/MLP_Manager/MLP_manager.py ```python import joblib from Fuzzy_clustering.version3.MLP_Manager.MLP_tf_core import MLP import pika, uuid, time, json, os import numpy as np from rabbitmq_rpc.server import RPCServer from Fuzzy_clustering.version3.MLP_Manager.Cluster_object import cluster_object RABBIT_MQ_HOST = os.getenv('RABBIT_MQ_HOST') RABBIT_MQ_PASS = os.<PASSWORD>('<PASSWORD>BIT_MQ_PASS') RABBIT_MQ_PORT = int(os.getenv('RABBIT_MQ_PORT')) server = RPCServer(queue_name='MLPmanager', host=RABBIT_MQ_HOST, port=RABBIT_MQ_PORT, threaded=False) class mlp_manager(): def __init__(self, static_data, cluster, method, params): self.params = params self.test = params['test'] self.method = str.lower(method) self.cluster = cluster self.istrained = False if self.method == 'mlp_3d': self.model_dir = os.path.join(cluster.cluster_dir, 'MLP_3D') if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) self.test_dir = self.model_dir try: self.load() except: pass if not self.istrained: self.test_dir = os.path.join(self.model_dir, 'test_' + str(self.test)) try: self.load() except: if not os.path.exists(self.test_dir): os.makedirs(self.test_dir) pass self.static_data = static_data self.cluster_name = cluster.cluster_name self.rated = static_data['rated'] self.data_dir = cluster.data_dir self.probabilistic = False def fit(self): if self.istrained == False: return self.optimize_mlp() else: return self.acc def fit_TL(self): if self.istrained == False: return self.optimize_mlp_TL() else: return self.acc def load_data(self): if os.path.exists(os.path.join(self.data_dir, 'dataset_X.csv')): cvs = joblib.load(os.path.join(self.data_dir, 'cvs.pickle')) else: cvs = np.array([]) return cvs def optimize_mlp(self): self.trial = self.params['trial'] self.units = self.params['units'] self.act_func = self.params['act_func'] self.lr = self.params['lr'] mlp_max_iterations = self.static_data['LSTM']['max_iterations'] self.hold_prob = self.static_data['LSTM']['hold_prob'] cvs = self.load_data() mlp = MLP(self.static_data, self.rated, cvs[0], cvs[1], cvs[2], cvs[3], cvs[4], cvs[5], trial=self.trial, probabilistc=self.probabilistic) # try: self.acc, self.model = mlp.train(max_iterations=mlp_max_iterations, learning_rate=self.lr, units=self.units, hold_prob=self.hold_prob, act_func=self.act_func) # except: # acc_old_lstm=np.inf # scale_lstm=None # model_lstm=None # pass self.istrained=True self.save() return self.acc def load(self): if os.path.exists(os.path.join(self.test_dir, self.method + '.pickle')): try: tmp_dict = joblib.load(os.path.join(self.test_dir, self.method + '.pickle')) self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open CNN model') else: raise ImportError('Cannot find CNN model') def save(self): tmp_dict = {} for k in self.__dict__.keys(): if k not in ['logger', 'static_data_all', 'static_data', 'temp_dir', 'cluster_cnn_dir', 'cluster_dir']: tmp_dict[k] = self.__dict__[k] joblib.dump(tmp_dict,os.path.join(self.test_dir, self.method + '.pickle'), compress=9) def optimize_mlp_TL(self): static_data_tl = self.static_data['tl_project']['static_data'] cluster_dir_tl = os.path.join(static_data_tl['path_model'], 'Regressor_layer/' + self.cluster_name) model_TL_dir = os.path.join(cluster_dir_tl, 'LSTM_3d') model_TL = joblib.load(os.path.join(model_TL_dir, self.method + '.pickle')) self.trial = model_TL['trial'] self.units = model_TL['units'] self.act_func = model_TL['act_func'] self.lr = model_TL['lr'] mlp_max_iterations = self.static_data['LSTM']['max_iterations'] self.hold_prob = model_TL['hold_prob'] cvs = self.load_data() mlp = MLP(self.static_data, self.rated, cvs[0], cvs[1], cvs[2], cvs[3], cvs[4], cvs[5], trial=self.trial, probabilistc=self.probabilistic) # try: self.acc, self.model = mlp.train(max_iterations=mlp_max_iterations, learning_rate=self.lr, units=self.units, hold_prob=self.hold_prob) # except: # acc_old_lstm=np.inf # scale_lstm=None # model_lstm=None # pass self.istrained=True self.save() return self.acc class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, np.integer) or isinstance(obj, int): return int(obj) elif isinstance(obj, np.floating) or isinstance(obj, float): return float(obj) elif isinstance(obj, np.str) or isinstance(obj, str): return str(obj) elif isinstance(obj, np.bool) or isinstance(obj, bool): return bool(obj) try: return json.JSONEncoder.default(self, obj) except: print(obj) raise TypeError('Object is not JSON serializable') @server.consumer() def deep_manager(static_data): print(" [.] Receive cluster %s)" % static_data['cluster_name']) cluster = cluster_object(static_data, static_data['cluster_name']) model_method = static_data['method'] params = static_data['params'] model_3d = mlp_manager(static_data, cluster, model_method, params=params) if model_3d.istrained == False: response = {'result': model_3d.fit(), 'cluster_name': cluster.cluster_name, 'project': static_data['_id'], 'test': params['test'], 'method': model_method} else: response = {'result': model_3d.acc, 'cluster_name': cluster.cluster_name, 'project': static_data['_id'], 'test': params['test'], 'method': model_method} return response if __name__=='__main__': server.run() ``` #### File: project_manager/PredictModelManager/ClusterPredictManager.py ```python import numpy as np import pandas as pd from joblib import Parallel, delayed from Fuzzy_clustering.version3.project_manager.PredictModelManager.Model_3d_object import model3d_object from Fuzzy_clustering.version3.project_manager.PredictModelManager.RBF_CNN_model import RBF_CNN_model from Fuzzy_clustering.version3.project_manager.PredictModelManager.SKlearn_object import SKLearn_object from Fuzzy_clustering.version3.project_manager.PredictModelManager.FS_object import FeatSelobject class MultiEvaluator(): def __init__(self, processes: int = 8): self.processes = processes def predict(self, i, x, model): return i, model.predict(x) def evaluate(self, X, model): partitions = 3000 X_list=[] for i in range(0, X.shape[0], partitions): if (i+partitions+1)>X.shape[0]: X_list.append(X[i:]) else: X_list.append(X[i:i+partitions]) pred =Parallel(self.processes)(delayed(self.predict)(i, x, model) for i, x in enumerate(X_list)) indices = np.array([p[0] for p in pred]) predictions = np.array([]) for ind in indices: if len(predictions.shape)==1: predictions = pred[ind][1] else: predictions = np.vstack((predictions, pred[ind][1])) return predictions class ClusterPredict(): def __init__(self, static_data, cluster): self.cluster = cluster self.cluster_dir = cluster.cluster_dir self.cluster_name = cluster.cluster_name self.static_data = static_data self.model_type = static_data['type'] self.methods = cluster.methods self.combine_methods = static_data['combine_methods'] self.rated = static_data['rated'] self.n_jobs = static_data['njobs'] def pred_model(self, X, method, X_cnn=np.array([]), X_lstm=np.array([])): if (method == 'RBF_ALL'): model = RBF_CNN_model(self.static_data, self.cluster) pred = model.predict(X) elif (method == 'RBF_ALL_CNN'): model = RBF_CNN_model(self.static_data, self.cluster, cnn=True) pred = model.predict(X) elif method in {'CNN'}: model = model3d_object(self.static_data, self.cluster, method) pred = model.predict(X_cnn) pred[np.where(pred < 0)] = 0 elif method in {'LSTM'}: model = model3d_object(self.static_data, self.cluster, method) pred = model.predict(X_lstm) pred[np.where(pred < 0)] = 0 elif method in {'SVM', 'NUSVM', 'MLP', 'RF', 'XGB', 'elasticnet'}: model = SKLearn_object(self.static_data, self.cluster, method) pred = model.predict(X) pred[np.where(pred < 0)] = 0 return pred def parallel_pred_model(self, X, method, X_cnn=np.array([]), X_lstm=np.array([])): parallel = MultiEvaluator(self.n_jobs) if (method == 'RBF_ALL'): model = RBF_CNN_model(self.static_data, self.cluster) pred = parallel.evaluate(X, model) elif (method == 'RBF_ALL_CNN'): model = RBF_CNN_model(self.static_data, self.cluster, cnn=True) pred = parallel.evaluate(X, model) elif method in {'CNN'}: model = model3d_object(self.static_data, self.cluster, method) pred = parallel.evaluate(X_cnn, model) elif method in {'LSTM'}: model = model3d_object(self.static_data, self.cluster, method) pred = parallel.evaluate(X_lstm, model) elif method in {'SVM', 'NUSVM', 'MLP', 'RF', 'XGB', 'elasticnet'}: model = SKLearn_object(self.static_data, self.cluster, method) pred = parallel.evaluate(X, model) return pred def compute_metrics(self, pred, y, rated): if rated == None: rated = y.ravel() else: rated = rated err = np.abs(pred.ravel() - y.ravel())/rated sse = np.sum(np.square(pred.ravel() - y.ravel())) rms = np.sqrt(np.mean(np.square(err))) mae = np.mean(err) mse = sse / y.shape[0] return [sse, rms, mae, mse] def evaluate(self, pred_all, y): result = pd.DataFrame(index=[method for method in pred_all.keys()], columns=['sse', 'rms', 'mae', 'mse']) for method, pred in pred_all.items(): if not method in {'metrics'}: result.loc[method] = self.compute_metrics(pred, y, self.rated) return result def spark_predict(self, X, X_cnn=np.array([]), X_lstm=np.array([]), fs_reduced=False): if fs_reduced==False: fs_manager = FeatSelobject(self.cluster) if fs_manager.istrained==True: X = fs_manager.transform(X) predictions=dict() for method in self.methods: if X.shape[0]>0: pred = self.parallel_pred_model(X, method, X_cnn=X_cnn, X_lstm=X_lstm) for j in range(pred.shape[1]): if np.any(np.isnan(pred[:, j])): if np.sum(np.isnan(pred[:, j]))<=X.shape[0]/3: pred[:, j][np.where(np.isnan(pred[:, j]))] = np.nanmean(pred[:, j]) else: raise ValueError('There are nans in dataset of %s clust or model of method %s is not trained well', self.cluster_name, method) if method == 'RBF_ALL_CNN': predictions['RBF_OLS'] = pred[:, 0].reshape(-1, 1) predictions['GA_RBF_OLS'] = pred[:, 1].reshape(-1, 1) predictions['RBFNN'] = pred[:, 2].reshape(-1, 1) predictions['RBF-CNN'] = pred[:, 3].reshape(-1, 1) elif method == 'RBF_ALL': predictions['RBF_OLS'] = pred[:, 0].reshape(-1, 1) predictions['GA_RBF_OLS'] = pred[:, 1].reshape(-1, 1) predictions['RBFNN'] = pred[:, 2].reshape(-1, 1) else: if len(pred.shape)==1: pred = pred.reshape(-1, 1) predictions[method] = pred else: if method == 'RBF_ALL_CNN': predictions['RBF_OLS'] = np.array([]) predictions['GA_RBF_OLS'] = np.array([]) predictions['RBFNN'] = np.array([]) predictions['RBF-CNN'] = np.array([]) elif method == 'RBF_ALL': predictions['RBF_OLS'] = np.array([]) predictions['GA_RBF_OLS'] = np.array([]) predictions['RBFNN'] = np.array([]) else: predictions[method] = np.array([]) return predictions def predict(self, X, X_cnn=np.array([]), X_lstm=np.array([]), fs_reduced=False): if fs_reduced==False: fs_manager = FeatSelobject(self.cluster) if fs_manager.istrained==True: X = fs_manager.transform(X) predictions=dict() for method in self.methods: if X.shape[0]>0: pred = self.pred_model(X, method, X_cnn=X_cnn, X_lstm=X_lstm) for j in range(pred.shape[1]): if np.any(np.isnan(pred[:, j])): if np.sum(np.isnan(pred[:, j]))<=X.shape[0]/3: pred[:, j][np.where(np.isnan(pred[:, j]))] = np.nanmean(pred[:, j]) else: raise ValueError('There are nans in dataset of %s clust or model of method %s is not trained well', self.cluster_name, method) if method == 'RBF_ALL_CNN': predictions['RBF_OLS'] = pred[:, 0].reshape(-1, 1) predictions['GA_RBF_OLS'] = pred[:, 1].reshape(-1, 1) predictions['RBFNN'] = pred[:, 2].reshape(-1, 1) predictions['RBF-CNN'] = pred[:, 3].reshape(-1, 1) elif method == 'RBF_ALL': predictions['RBF_OLS'] = pred[:, 0].reshape(-1, 1) predictions['GA_RBF_OLS'] = pred[:, 1].reshape(-1, 1) predictions['RBFNN'] = pred[:, 2].reshape(-1, 1) else: if len(pred.shape)==1: pred = pred.reshape(-1, 1) predictions[method] = pred else: if method == 'RBF_ALL_CNN': predictions['RBF_OLS'] = np.array([]) predictions['GA_RBF_OLS'] = np.array([]) predictions['RBFNN'] = np.array([]) predictions['RBF-CNN'] = np.array([]) elif method == 'RBF_ALL': predictions['RBF_OLS'] = np.array([]) predictions['GA_RBF_OLS'] = np.array([]) predictions['RBFNN'] = np.array([]) else: predictions[method] = np.array([]) return predictions ``` #### File: project_manager/PredictModelManager/FS_object.py ```python import pickle import os class FeatSelobject(object): def __init__(self, cluster): self.istrained = False self.static_data = cluster.static_data['sklearn'] self.cluster_name = cluster.cluster_name self.method = cluster.static_data['sklearn']['fs_method'] self.njobs = cluster.static_data['njobs_feat_sel'] self.inner_jobs = cluster.static_data['inner_jobs_feat_sel'] self.data_dir = cluster.data_dir self.cluster_dir = cluster.cluster_dir if self.method == 'boruta': self.model_dir = os.path.join(cluster.cluster_dir, 'FS/boruta') else: self.model_dir = os.path.join(cluster.cluster_dir, 'FS/PERM') try: self.load() except: raise ImportError('Cannot find feature selection model for %s', self.cluster_name) if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) def transform(self, X): return X[:, self.features] def load(self): if os.path.exists(os.path.join(self.model_dir, 'model_fs.pickle')): try: f = open(os.path.join(self.model_dir, 'model_fs.pickle'), 'rb') tmp_dict = pickle.load(f) f.close() self.__dict__.update(tmp_dict) except: raise ValueError('Cannot find model for %s', self.model_dir) else: raise ValueError('Cannot find model for %s', self.model_dir) ``` #### File: project_manager/PredictModelManager/FullClusterPredictManager.py ```python import numpy as np import pandas as pd import joblib, os, pickle from Fuzzy_clustering.version3.project_manager.PredictModelManager.Clusterer import clusterer from Fuzzy_clustering.version3.project_manager.PredictModelManager.ClusterPredictManager import ClusterPredict class FullClusterPredictManager(object): def __init__(self, path_model, static_data): self.path_model = path_model self.static_data = static_data self.thres_split = static_data['clustering']['thres_split'] self.thres_act = static_data['clustering']['thres_act'] self.n_clusters = static_data['clustering']['n_clusters'] self.rated = static_data['rated'] self.var_imp = static_data['clustering']['var_imp'] self.var_lin = static_data['clustering']['var_lin'] self.var_nonreg = static_data['clustering']['var_nonreg'] try: self.load() except: pass def load_data(self): data_path = self.static_data['path_data'] X = pd.read_csv(os.path.join(data_path, 'dataset_X.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) y = pd.read_csv(os.path.join(data_path, 'dataset_y.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) if os.path.exists(os.path.join(data_path, 'dataset_cnn.pickle')): X_cnn = joblib.load(os.path.join(data_path, 'dataset_cnn.pickle')) X_cnn = X_cnn.transpose([0, 2, 3, 1]) else: X_cnn = np.array([]) index = X.index index_all = X.index if self.static_data['type'] == 'pv' and self.static_data['NWP_model'] == 'skiron': index = np.where(X['flux'] > 1e-8)[0] X = X.iloc[index] y_reduced = y.iloc[index] if X_cnn.shape[0]>0: X_cnn = X_cnn[index] else: y_reduced = y if os.path.exists(os.path.join(data_path, 'dataset_lstm.pickle')): X_lstm = joblib.load(os.path.join(data_path, 'dataset_lstm.pickle')) else: X_lstm = np.array([]) return X, y, y_reduced, X_cnn, X_lstm, index, index_all def load_test_data(self): X, y, y_reduced, X_cnn, X_lstm, index, index_all = self.load_data() test_ind = np.where(X.index >= self.split_test)[0] test_ind_all = np.where(index_all >= self.split_test)[0] index = index[index >= self.split_test] index_all = index_all[index_all >= self.split_test] indices_test = test_ind X_test = X.iloc[test_ind] y_test = y.iloc[test_ind_all] y_test_reduced = y_reduced.iloc[test_ind] if len(X_cnn.shape) > 1: X_cnn_test = X_cnn[indices_test] else: X_cnn_test = np.array([]) if len(X_lstm.shape) > 1: X_lstm_test = X_lstm[indices_test] else: X_lstm_test = np.array([]) return X_test, y_test, y_test_reduced, X_cnn_test, X_lstm_test, index, index_all def check_if_all_nans(self, activations): if activations.isna().all(axis=1).any() == True: indices = activations.index[activations.isna().all(axis=1).to_numpy().ravel()] if indices.shape[0] > 50: raise RuntimeError('Too many nans. Please check your model') for ind in indices: act = activations.loc[ind] clust = act.idxmax() activations.loc[ind, clust] = 0.1 return activations def predict_clusters(self, X_test = pd.DataFrame([]), y_test = pd.DataFrame([]), X_cnn_test = np.array([]), X_lstm_test = np.array([]), test = True): if X_test.shape[0]==0: offline = True else: offline = False if offline: if test: X_test, y_test_all, y_test, X_cnn_test, X_lstm_test, index, index_all = self.load_test_data() else: X_test, y_test_all, y_test, X_cnn_test, X_lstm_test, index, index_all = self.load_data() else: index = X_test.index index_all = X_test.index y_test_all = y_test sc = joblib.load(os.path.join(self.static_data['path_data'], 'X_scaler.pickle')) scale_y = joblib.load(os.path.join(self.static_data['path_data'], 'Y_scaler.pickle')) pred_cluster = dict() X_test = pd.DataFrame(sc.transform(X_test.values), columns=X_test.columns, index=X_test.index) if y_test.shape[0]>0: y_test = pd.DataFrame(scale_y.transform(y_test.values), columns=y_test.columns, index=y_test.index) if not hasattr(self, 'clusterer'): self.clusterer = clusterer(self.static_data['path_fuzzy_models']) act_test = self.clusterer.compute_activations(X_test) act_test = self.check_if_all_nans(act_test) for clust in self.clusters.keys(): predict_module = ClusterPredict(self.static_data, self.clusters[clust]) if clust == 'global': if len(self.clusters[clust].methods) > 0: pred_cluster[clust] = predict_module.predict(X_test.values, X_cnn=X_cnn_test, X_lstm=X_lstm_test) if y_test.shape[0] > 0: pred_cluster[clust]['metrics'] = predict_module.evaluate(pred_cluster['global'], y_test.values) pred_cluster[clust]['dates'] = X_test.index pred_cluster[clust]['index'] = np.arange(0, X_test.shape[0]) else: dates = X_test.index[act_test[clust] >= self.thres_act] nind = np.where(act_test[clust] >= self.thres_act)[0] nind.sort() x = X_test.loc[dates] if y_test.shape[0] > 0: targ = y_test.loc[dates].values if len(X_cnn_test.shape) > 1: x_cnn = X_cnn_test[nind] else: x_cnn = np.array([]) if len(X_lstm_test.shape) > 1: x_lstm = X_lstm_test[nind] else: x_lstm = np.array([]) pred_cluster[clust] = predict_module.predict(x.values, X_cnn=x_cnn, X_lstm=x_lstm) if y_test.shape[0] > 0: pred_cluster[clust]['metrics'] = predict_module.evaluate(pred_cluster[clust], targ) pred_cluster[clust]['dates'] = dates pred_cluster[clust]['index'] = nind predictions = dict() result_clust = pd.DataFrame() for clust in pred_cluster.keys(): for method in pred_cluster[clust].keys(): if not method in {'dates', 'index', 'metrics'}: if not method in predictions.keys(): predictions[method] = pd.DataFrame(index=X_test.index, columns=[cl for cl in pred_cluster.keys()]) predictions[method].loc[pred_cluster[clust]['dates'], clust] = pred_cluster[clust][method].ravel() elif method in {'metrics'}: result_clust = pd.concat([result_clust, pred_cluster[clust][method]['mae'].rename(clust)], axis=1) result_clust.to_csv(os.path.join(self.static_data['path_data'], 'result_of_clusters.csv')) if y_test.shape[0] > 0: return pred_cluster, predictions, y_test_all, y_test, index, index_all else: return pred_cluster, predictions, index, index_all def load(self): if os.path.exists(os.path.join(self.path_model, 'manager' + '.pickle')): try: f = open(os.path.join(self.path_model, 'manager' + '.pickle'), 'rb') tmp_dict = pickle.load(f) f.close() if 'path_model' in tmp_dict.keys(): del tmp_dict['path_model'] self.__dict__.update(tmp_dict) except: raise ValueError('Cannot find model for %s', self.path_model) else: raise ValueError('Cannot find model for %s', self.path_model) ``` #### File: project_manager/PredictModelManager/LSTM_predict_3d.py ```python import tensorflow as tf class LSTM_3d_predict(): def __init__(self, model, scale_lstm, trial, probabilistic): self.scale_lstm = scale_lstm self.trial = trial self.probabilistic = probabilistic self.model = model def create_inputs(self, X_train): self.N, self.D1, self.D2 = X_train.shape H = X_train H = H.reshape(-1, self.D1 * self.D2) sc = self.scale_lstm H = sc.transform(H.reshape(-1, self.D1 * self.D2)) H = H.reshape(-1, self.D1, self.D2) return H def init_weights(self, init_w): init_random_dist = tf.convert_to_tensor(init_w) return tf.Variable(init_random_dist) def init_bias(self, init_b): init_bias_vals = tf.convert_to_tensor(init_b) return tf.Variable(init_bias_vals) def normal_full_layer(self,input_layer, init_w, init_b): W = self.init_weights(init_w) b = self.init_bias(init_b) return tf.add(tf.matmul(input_layer, W), b, name='prediction'), W, b def build_graph(self, x1, best_weights, units, hold_prob): with tf.name_scope("build_lstm") as scope: if self.trial == 0: lstm_1 = tf.keras.layers.LSTM( units[0], name='lstm1', return_sequences=True, activation=tf.nn.elu) full_out_dropout = tf.nn.dropout(lstm_1(x1), rate=1 - hold_prob) shape = full_out_dropout.get_shape().as_list() full_out_dropout = tf.reshape(full_out_dropout, [-1, shape[1] * shape[2]]) elif self.trial == 1: lstm_1 = tf.keras.layers.LSTM( units[0], name='lstm1', return_sequences=True, activation=tf.nn.elu) full_one_dropout = tf.nn.dropout(lstm_1(x1), rate=1 - hold_prob) shape = full_one_dropout.get_shape().as_list() lstm_1_flat = tf.reshape(full_one_dropout, [-1, shape[1] * shape[2]]) full_layer_one = tf.keras.layers.Dense(units=shape[1] * shape[2], activation=tf.nn.elu, name='dense1') full_out_dropout = tf.nn.dropout(full_layer_one(lstm_1_flat), rate=1 - hold_prob) elif self.trial == 2: lstm_1 = tf.keras.layers.LSTM( units[0], name='lstm1', return_sequences=True, activation=tf.nn.elu) full_one_dropout = tf.nn.dropout(lstm_1(x1), rate=1 - hold_prob) shape = full_one_dropout.get_shape().as_list() lstm_2_flat = tf.reshape(full_one_dropout, [-1, shape[1] * shape[2]]) full_layer_two = tf.keras.layers.Dense(units=shape[1] * shape[2], activation=tf.nn.elu, name='dense1') full_two_dropout = tf.nn.dropout(full_layer_two(lstm_2_flat), rate=1 - hold_prob) full_two_dropout = tf.reshape(full_two_dropout, [-1, shape[1], shape[2]]) lstm_2 = tf.keras.layers.LSTM( units[2], name='lstm2', return_sequences=True, activation=tf.nn.elu) full_out_dropout = tf.nn.dropout(lstm_2(full_two_dropout), rate=1 - hold_prob) shape = full_out_dropout.get_shape().as_list() full_out_dropout = tf.reshape(full_out_dropout, [-1, shape[1] * shape[2]]) elif self.trial == 3: lstm_1 = tf.keras.layers.LSTM( units[0], name='lstm1', return_sequences=True, activation=tf.nn.elu) full_one_dropout = tf.nn.dropout(lstm_1(x1), rate=1 - hold_prob) shape = full_one_dropout.get_shape().as_list() lstm_2_flat = tf.reshape(full_one_dropout, [-1, shape[1] * shape[2]]) full_layer_two = tf.keras.layers.Dense(units=shape[1] * shape[2], activation=tf.nn.elu, name='dense1') full_two_dropout = tf.nn.dropout(full_layer_two(lstm_2_flat), rate=1 - hold_prob) full_two_dropout = tf.reshape(full_two_dropout, [-1, shape[1], shape[2]]) lstm_2 = tf.keras.layers.LSTM( units[2], name='lstm2', return_sequences=True, activation=tf.nn.elu) full_three_dropout = tf.nn.dropout(lstm_2(full_two_dropout), rate=1 - hold_prob) shape = full_three_dropout.get_shape().as_list() lstm_2_flat = tf.reshape(full_three_dropout, [-1, shape[1] * shape[2]]) full_layer_three = tf.keras.layers.Dense(units=shape[1] * shape[2], activation=tf.nn.elu, name='dense2') full_three_dropout = tf.nn.dropout(full_layer_three(lstm_2_flat), rate=1 - hold_prob) full_three_dropout = tf.reshape(full_three_dropout, [-1, shape[1], shape[2]]) lstm_3 = tf.keras.layers.LSTM( units[2], name='lstm3', return_sequences=True, activation=tf.nn.elu) full_out_dropout = tf.nn.dropout(lstm_3(full_three_dropout), rate=1 - hold_prob) shape = full_out_dropout.get_shape().as_list() full_out_dropout = tf.reshape(full_out_dropout, [-1, shape[1] * shape[2]]) if self.probabilistic: prob_layer = tf.keras.layers.Dense(100, activation=tf.nn.softmax, name='dense_prob') y_pred = prob_layer(full_out_dropout) else: y_pred, W, b = self.normal_full_layer(full_out_dropout, best_weights['build_lstm/Variable:0'],best_weights['build_lstm/Variable_1:0'] ) if self.trial == 0: weights = lstm_1.trainable_weights if self.probabilistic: weights += prob_layer.trainable_weights return y_pred, weights, lstm_1, prob_layer else: weights += [W, b] return y_pred, weights, lstm_1 elif self.trial == 1: weights = lstm_1.trainable_weights + full_layer_one.trainable_weights if self.probabilistic: weights += prob_layer.trainable_weights return y_pred, weights, lstm_1, full_layer_one, prob_layer else: weights += [W, b] return y_pred, weights, lstm_1, full_layer_one elif self.trial == 2: weights = lstm_1.trainable_weights + full_layer_two.trainable_weights + lstm_2.trainable_weights if self.probabilistic: weights += prob_layer.trainable_weights return y_pred, weights, lstm_1, full_layer_two, lstm_2, prob_layer else: weights += [W, b] return y_pred, weights, lstm_1, full_layer_two, lstm_2 elif self.trial == 3: weights = lstm_1.trainable_weights + full_layer_two.trainable_weights + lstm_2.trainable_weights + full_layer_three.trainable_weights +lstm_3.trainable_weights if self.probabilistic: weights += prob_layer.trainable_weights return y_pred, weights, lstm_1, full_layer_two, lstm_2, full_layer_three, lstm_3, prob_layer else: weights += [W, b] return y_pred, weights, lstm_1, full_layer_two, lstm_2, full_layer_three, lstm_3 def predict(self, X): units = self.model['units'] best_weights = self.model['best_weights'] H = self.create_inputs(X) tf.compat.v1.reset_default_graph() graph_lstm = tf.Graph() with graph_lstm.as_default(): with tf.device("/cpu:0"): x1 = tf.compat.v1.placeholder('float', shape=[None, self.D1, self.D2], name='input_data') with tf.device("/cpu:0"): if self.trial == 0: if self.probabilistic: y_pred_, weights, lstm_1, prob_layer = self.build_graph(x1, best_weights, units, 1) else: y_pred_, weights, lstm_1 = self.build_graph(x1, best_weights, units, 1) elif self.trial == 1: if self.probabilistic: y_pred_, weights, lstm_1, full_layer_one, prob_layer = self.build_graph(x1, best_weights, units, 1) else: y_pred_, weights, lstm_1, full_layer_one = self.build_graph(x1, best_weights, units, 1) elif self.trial == 2: if self.probabilistic: y_pred_, weights, lstm_1, full_layer_two, lstm_2, prob_layer = self.build_graph(x1, best_weights, units, 1) else: y_pred_, weights, lstm_1, full_layer_two, lstm_2 = self.build_graph(x1, best_weights, units, 1) elif self.trial == 3: if self.probabilistic: y_pred_, weights, lstm_1, full_layer_two, lstm_2, full_layer_three, lstm_3, prob_layer = self.build_graph(x1, best_weights, units, 1) else: y_pred_, weights, lstm_1, full_layer_two, lstm_2, full_layer_three, lstm_3 = self.build_graph(x1, best_weights, units, 1) config_tf = tf.compat.v1.ConfigProto(allow_soft_placement=True) config_tf.gpu_options.allow_growth = True with tf.compat.v1.Session(graph=graph_lstm, config=config_tf) as sess: sess.run(tf.compat.v1.global_variables_initializer()) lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) if self.trial == 0: if self.probabilistic: lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) prob_layer.set_weights( [best_weights['build_lstm/dense_prob/kernel:0'], best_weights['build_lstm/dense_prob/bias:0']]) else: lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) elif self.trial == 1: if self.probabilistic: lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) full_layer_one.set_weights( [best_weights['build_lstm/dense1/kernel:0'], best_weights['build_lstm/dense1/bias:0']]) prob_layer.set_weights( [best_weights['build_lstm/dense_prob/kernel:0'], best_weights['build_lstm/dense_prob/bias:0']]) else: lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) full_layer_one.set_weights( [best_weights['build_lstm/dense1/kernel:0'], best_weights['build_lstm/dense1/bias:0']]) elif self.trial == 2: if self.probabilistic: lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) full_layer_two.set_weights( [best_weights['build_lstm/dense1/kernel:0'], best_weights['build_lstm/dense1/bias:0']]) lstm_2.set_weights([best_weights['build_lstm/lstm2/kernel:0'], best_weights['build_lstm/lstm2/recurrent_kernel:0'], best_weights['build_lstm/lstm2/bias:0']]) prob_layer.set_weights( [best_weights['build_lstm/dense_prob/kernel:0'], best_weights['build_lstm/dense_prob/bias:0']]) else: lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) full_layer_two.set_weights( [best_weights['build_lstm/dense1/kernel:0'], best_weights['build_lstm/dense1/bias:0']]) lstm_2.set_weights([best_weights['build_lstm/lstm2/kernel:0'], best_weights['build_lstm/lstm2/recurrent_kernel:0'], best_weights['build_lstm/lstm2/bias:0']]) elif self.trial == 3: if self.probabilistic: lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) full_layer_two.set_weights( [best_weights['build_lstm/dense1/kernel:0'], best_weights['build_lstm/dense1/bias:0']]) lstm_2.set_weights([best_weights['build_lstm/lstm2/kernel:0'], best_weights['build_lstm/lstm2/recurrent_kernel:0'], best_weights['build_lstm/lstm2/bias:0']]) full_layer_three.set_weights( [best_weights['build_lstm/dense2/kernel:0'], best_weights['build_lstm/dense2/bias:0']]) lstm_3.set_weights([best_weights['build_lstm/lstm3/kernel:0'], best_weights['build_lstm/lstm3/recurrent_kernel:0'], best_weights['build_lstm/lstm3/bias:0']]) prob_layer.set_weights( [best_weights['build_lstm/dense_prob/kernel:0'], best_weights['build_lstm/dense_prob/bias:0']]) else: lstm_1.set_weights([best_weights['build_lstm/lstm1/kernel:0'], best_weights['build_lstm/lstm1/recurrent_kernel:0'], best_weights['build_lstm/lstm1/bias:0']]) full_layer_two.set_weights( [best_weights['build_lstm/dense1/kernel:0'], best_weights['build_lstm/dense1/bias:0']]) lstm_2.set_weights([best_weights['build_lstm/lstm2/kernel:0'], best_weights['build_lstm/lstm2/recurrent_kernel:0'], best_weights['build_lstm/lstm2/bias:0']]) full_layer_three.set_weights( [best_weights['build_lstm/dense2/kernel:0'], best_weights['build_lstm/dense2/bias:0']]) lstm_3.set_weights([best_weights['build_lstm/lstm3/kernel:0'], best_weights['build_lstm/lstm3/recurrent_kernel:0'], best_weights['build_lstm/lstm3/bias:0']]) y_pred, weights_run= sess.run([y_pred_, weights], feed_dict={x1: H}) sess.close() return y_pred ``` #### File: version3/project_manager/Proba_Model_manager.py ```python import os import numpy as np import joblib class proba_model_manager(): def __init__(self, static_data, params={}): if len(params)>0: self.params = params self.test = params['test'] self.test_dir = os.path.join(self.model_dir, 'test_' + str(self.test)) self.istrained = False self.method = 'mlp' self.model_dir = os.path.join(static_data['path_model'], 'Probabilistic') self.data_dir = self.static_data['path_data'] if hasattr(self, 'test'): try: self.load(self.test_dir) except: pass else: try: self.load(self.model_dir) except: pass self.static_data = static_data self.cluster_name = static_data['_id'] self.rated = static_data['rated'] self.probabilistic = True if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) if not os.path.exists(self.test_dir): os.makedirs(self.test_dir) def load(self, path): if os.path.exists(os.path.join(path, self.method + '.pickle')): try: tmp_dict = joblib.load(os.path.join(path, self.method + '.pickle')) self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open CNN model') else: raise ImportError('Cannot find CNN model') ``` #### File: version3/project_manager/project_group_init.py ```python import os, joblib,sys, logging import numpy as np import pandas as pd class ProjectGroupInit(): def __init__(self, static_data): self.static_data = static_data self.file_data = static_data['data_file_name'] self.project_owner = static_data['project_owner'] self.projects_group = static_data['projects_group'] self.area_group = static_data['area_group'] self.version_group = static_data['version_group'] self.version_model = static_data['version_model'] self.weather_in_data = static_data['weather_in_data'] self.nwp_model = static_data['NWP_model'] self.nwp_resolution = static_data['NWP_resolution'] self.data_variables = static_data['data_variables'] data_file_name = os.path.basename(self.file_data) if 'load' in data_file_name: self.model_type = 'load' elif 'pv' in data_file_name: self.model_type = 'pv' elif 'wind' in data_file_name: self.model_type = 'wind' elif 'fa' in data_file_name: self.model_type = 'fa' else: raise IOError('Wrong data file name. Use one of load_ts.csv, wind_ts.csv, pv_ts.csv') if self.static_data['Docker']: if sys.platform == 'linux': self.sys_folder = '/models/' if self.nwp_model == 'skiron' and self.nwp_resolution == 0.05: self.path_nwp = '/nwp_grib/SKIRON' elif self.nwp_model == 'skiron' and self.nwp_resolution == 0.1: self.path_nwp = '/nwp_grib/SKIRON_low' elif self.nwp_model == 'ecmwf': self.path_nwp = '/nwp_grib/ECMWF' else: self.path_nwp = None else: if self.nwp_model == 'ecmwf': self.sys_folder = '/models/' self.path_nwp = '/nwp_grib/ECMWF' else: self.sys_folder = '/models/' self.path_nwp = None else: if sys.platform == 'linux': self.sys_folder = '/media/smartrue/HHD1/George/models/' if self.nwp_model == 'skiron' and self.nwp_resolution == 0.05: self.path_nwp = '/media/smartrue/HHD2/SKIRON' elif self.nwp_model == 'skiron' and self.nwp_resolution == 0.1: self.path_nwp = '/media/smartrue/HHD2/SKIRON_low' elif self.nwp_model == 'ecmwf': self.path_nwp = '/media/smartrue/HHD2/ECMWF' else: self.path_nwp = None else: if self.nwp_model == 'ecmwf': self.sys_folder = 'D:/models/' self.path_nwp = 'D:/Dropbox/ECMWF' else: self.sys_folder = 'D:/models/' self.path_nwp = None self.path_group = self.sys_folder + self.project_owner + '/' + self.projects_group + '_ver' + str( self.version_group) + '/' + self.model_type if not os.path.exists(self.path_group): os.makedirs(self.path_group) self.path_nwp_group = self.sys_folder + self.project_owner + '/' + self.projects_group + '_ver' + str( self.version_group) + '/nwp' if not os.path.exists(self.path_nwp_group): os.makedirs(self.path_nwp_group) self.create_logger() def create_logger(self): self.logger = logging.getLogger('ProjectInitManager_' + self.model_type) self.logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(self.path_group, 'log_' + self.projects_group + '.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger self.logger.addHandler(handler) def check_project_names(self): flag = True if self.model_type in {'wind', 'pv'}: for name in self.projects: if name not in self.coord.index.to_list() and name != self.projects_group + '_' + self.model_type and name != 'APE_net': flag = False self.logger.info('There is inconsistency to files data and coord for the project %s', name) if flag == False: raise ValueError('Inconcistency in project names between data and coord') if self.use_rated: for name in self.projects: if name not in self.rated.index.to_list() and name != self.projects_group + '_' + self.model_type: flag = False self.logger.info('There is inconsistency to files data and rated for the project %s', name) if flag == False: raise ValueError('Inconcistency in project names between data and rated') return flag def load_data(self): try: self.data = pd.read_csv(self.file_data, header=0, index_col=0, parse_dates=True, dayfirst=True) except: self.logger.info('Cannot import timeseries from the file %s', self.file_data) raise IOError('Cannot import timeseries from the file %s', self.file_data) self.logger.info('Timeseries imported successfully from the file %s', self.file_data) if 'total' in self.data.columns: self.data = self.data.rename(columns={'total':self.projects_group + '_' + self.model_type}) if self.static_data['Evaluation_start'] != None: if self.model_type == 'fa': try: eval_date = pd.to_datetime(self.static_data['Evaluation_start'], format='%d%m%Y %H:%M') self.data_eval = self.data.iloc[np.where(self.data.index>eval_date-pd.DateOffset(days=372))] self.data = self.data.iloc[np.where(self.data.index<=eval_date)] except: raise ValueError('Wrong date format, use %d%m%Y %H:%M. Or the date does not exist in the dataset') elif self.model_type == 'load': if self.data.columns[0]=='lv_load': try: eval_date = pd.to_datetime(self.static_data['Evaluation_start'], format='%d%m%Y %H:%M') self.data_eval = self.data.iloc[np.where(self.data.index > eval_date - pd.DateOffset(hours=372))] self.data = self.data.iloc[np.where(self.data.index <= eval_date)] except: raise ValueError( 'Wrong date format, use %d%m%Y %H:%M. Or the date does not exist in the dataset') elif self.data.columns[0]=='SCADA': try: eval_date = pd.to_datetime(self.static_data['Evaluation_start'], format='%d%m%Y %H:%M') self.data_eval = self.data.iloc[np.where(self.data.index > eval_date - pd.DateOffset(hours=9001))] self.data = self.data.iloc[np.where(self.data.index <= eval_date)] except: raise ValueError( 'Wrong date format, use %d%m%Y %H:%M. Or the date does not exist in the dataset') else: try: eval_date = pd.to_datetime(self.static_data['Evaluation_start'], format='%d%m%Y %H:%M') self.data_eval = self.data.iloc[np.where(self.data.index > eval_date)] self.data = self.data.iloc[np.where(self.data.index <= eval_date)] except: raise ValueError( 'Wrong date format, use %d%m%Y %H:%M. Or the date does not exist in the dataset') self.projects = [] if self.model_type == 'load': self.projects.append(self.data.columns[0]) elif self.model_type == 'fa': if self.version_model==0: self.projects.append('fa_curr_morning') elif self.version_model==1: self.projects.append('fa_ahead_morning') else: raise ValueError('Version model should be 0 for current day and 1 for day ahead otherwise choose another group version') else: for name in self.data.columns: if name=='total': name = self.projects_group + '_' + self.model_type self.projects.append(name) if self.weather_in_data == False: try: self.coord = pd.read_csv(self.file_coord, header=None, index_col=0) except: self.logger.info('Cannot import coordinates from the file %s', self.file_coord) raise IOError('Cannot import coordinates from the file %s', self.file_coord) self.logger.info('Coordinates imported successfully from the file %s', self.file_coord) else: self.logger.info('Coordinates in the data') if self.use_rated: try: self.rated = pd.read_csv(self.file_rated, header=None, index_col=0) except: self.logger.info('Cannot import Rated Power from the file %s', self.file_rated) raise IOError('Cannot import Rated Power from the file %s', self.file_rated) self.logger.info('Rated Power imported successfully from the file %s', self.file_rated) self.logger.info('Data loaded successfully') def create_area(self, coord, resolution): if self.nwp_resolution == 0.05: levels = 4 round_coord = 1 else: levels = 2 round_coord = 0 if coord != None: if isinstance(coord, list): if len(coord) == 2: lat = coord[0] long = coord[1] lat_range = np.arange(np.around(lat, round_coord) - 20, np.around(lat, round_coord) + 20, resolution) lat1 = lat_range[np.abs(lat_range - lat).argmin()] - self.nwp_resolution / 10 lat2 = lat_range[np.abs(lat_range - lat).argmin()] + self.nwp_resolution / 10 long_range = np.arange(np.around(long, round_coord) - 20, np.around(long, round_coord) + 20, resolution) long1 = long_range[np.abs(long_range - long).argmin()] - self.nwp_resolution / 10 long2 = long_range[np.abs(long_range - long).argmin()] + self.nwp_resolution / 10 area = [[lat1 - self.nwp_resolution * levels, long1 - self.nwp_resolution * levels], [lat2 + self.nwp_resolution * levels, long2 + self.nwp_resolution * levels]] elif len(coord) == 4: area = list(np.array(coord).reshape(2, 2)) else: raise ValueError('Wrong coordinates. Should be point (lat, long) or area [lat1, long1, lat2, long2]') elif isinstance(coord, dict): area = dict() for key, value in coord.items(): if len(value) == 2: lat = value[0] long = value[1] lat_range = np.arange(np.around(lat, round_coord) - 20, np.around(lat, round_coord) + 20, resolution) lat1 = lat_range[np.abs(lat_range - lat).argmin()] - self.nwp_resolution / 10 lat2 = lat_range[np.abs(lat_range - lat).argmin()] + self.nwp_resolution / 10 long_range = np.arange(np.around(long, round_coord) - 20, np.around(long, round_coord) + 20, resolution) long1 = long_range[np.abs(long_range - long).argmin()] - self.nwp_resolution / 10 long2 = long_range[np.abs(long_range - long).argmin()] + self.nwp_resolution / 10 area[key] = [[lat1 - self.nwp_resolution * levels, long1 - self.nwp_resolution * levels], [lat2 + self.nwp_resolution * levels, long2 + self.nwp_resolution * levels]] else: area[key] = np.array(value).reshape(2, 2) else: raise ValueError('Wrong coordinates. Should be dict or list') else: area = dict() self.logger.info('Areas created succesfully') return area def initialize(self): data_file_name = os.path.basename(self.file_data) if os.path.exists(os.path.join(os.path.dirname(self.file_data), 'coord_auto_' + self.model_type + '.csv')): self.file_coord = os.path.join(os.path.dirname(self.file_data), 'coord_auto_' + self.model_type + '.csv') else: self.file_coord = os.path.join(os.path.dirname(self.file_data), 'coord_' + self.model_type + '.csv') if not os.path.exists(self.file_coord) and self.weather_in_data == False: raise IOError('File with coordinates does not exist') self.file_rated = os.path.join(os.path.dirname(self.file_data), 'rated_' + self.model_type + '.csv') if not os.path.exists(self.file_rated): if self.model_type in {'wind', 'pv'} and self.projects_group not in {'APE_net'}: raise ValueError('Provide rated_power for each project. The type of projects is %s', self.model_type) self.use_rated = False else: self.use_rated = True self.load_data() self.group_static_data = [] if self.check_project_names(): for project_name in self.projects: path_project = self.path_group + '/' + project_name if not os.path.exists(path_project): os.makedirs(path_project) path_model = path_project + '/model_ver' + str(self.version_model) if not os.path.exists(path_model): os.makedirs(path_model) path_backup = self.path_group + '/backup_models/' + project_name + '/model_ver' + str(self.version_model) if not os.path.exists(path_backup): os.makedirs(path_backup) path_data = path_model + '/DATA' if not os.path.exists(path_data): os.makedirs(path_data) path_fuzzy_models = path_model + '/fuzzy_models' if not os.path.exists(path_fuzzy_models): os.makedirs(path_fuzzy_models) if self.use_rated: if project_name == self.projects_group + '_' + self.model_type and project_name not in self.rated.index.to_list(): rated = self.rated.sum().to_list()[0] else: rated = self.rated.loc[project_name].to_list()[0] else: rated = None if hasattr(self, 'coord'): if project_name == 'APE_net' or self.model_type == 'load' or project_name == self.projects_group + '_' + self.model_type: coord = dict() for name, latlong in self.coord.iterrows(): coord[name] = latlong.values.tolist() else: coord = self.coord.loc[project_name].to_list() else: coord = None area = self.create_area(coord, self.nwp_resolution) temp = {'_id': project_name, 'owner': self.project_owner, 'project_group': self.projects_group, 'type': self.model_type, 'location': coord, 'areas': area, 'rated': rated, 'path_project': path_project, 'path_model': path_model, 'path_group': self.path_group, 'version_group': self.version_group, 'version_model': self.version_model, 'path_backup': path_backup, 'path_data': path_data, 'pathnwp': self.path_nwp_group, 'path_fuzzy_models': path_fuzzy_models, 'run_on_platform': False, } static_data = dict() for key, value in self.static_data.items(): static_data[key] = value for key, value in temp.items(): static_data[key] = value self.group_static_data.append({'_id': project_name, 'static_data': static_data}) joblib.dump(static_data, os.path.join(path_model, 'static_data.pickle')) with open(os.path.join(path_model, 'static_data.txt'), 'w') as file: for k, v in static_data.items(): if not isinstance(v, dict): file.write(str(k) + ' >>> ' + str(v) + '\n\n') else: file.write(str(k) + ' >>> ' + '\n') for kk, vv in v.items(): file.write('\t' + str(kk) + ' >>> ' + str(vv) + '\n') joblib.dump(self.group_static_data, os.path.join(self.path_group, 'static_data_projects.pickle')) self.logger.info('Static data of all projects created') ``` #### File: version3/rabbitmq_rpc/queue.py ```python class Queue(object): def __init__(self, name, dispatcher, exclusive=False): self.name = name self.exclusive = exclusive self.dispatcher = dispatcher def add_consumer(self, consumer): return self.dispatcher.register(consumer) ``` #### File: version3/RBF_CNN_Manager/RBF_CNN_manager.py ```python import joblib from Fuzzy_clustering.version3.RBF_CNN_Manager.CNN_tf_core import CNN from Fuzzy_clustering.version3.RBF_CNN_Manager.RBF_CNN_model import RBF_CNN_model import pika, uuid, time, json, os import numpy as np from rabbitmq_rpc.server import RPCServer from Fuzzy_clustering.version3.RBF_CNN_Manager.Cluster_object import cluster_object RABBIT_MQ_HOST = os.getenv('RABBIT_MQ_HOST') RABBIT_MQ_PASS = os.getenv('RABBIT_MQ_PASS') RABBIT_MQ_PORT = int(os.getenv('RABBIT_MQ_PORT')) server = RPCServer(queue_name='RBF_CNN_manager', host=RABBIT_MQ_HOST, port=RABBIT_MQ_PORT, threaded=False) class rbf_cnn_manager(): def __init__(self, static_data, cluster, method, params): self.params = params self.test = params['test'] self.method = str.lower(method) self.cluster = cluster self.istrained = False self.model_dir = os.path.join(cluster.cluster_dir, 'RBF_CNN') if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) self.test_dir = self.model_dir try: self.load() except: pass if not self.istrained: self.test_dir = os.path.join(self.model_dir, 'test_' + str(self.test)) try: self.load() except: if not os.path.exists(self.test_dir): os.makedirs(self.test_dir) pass self.static_data = static_data self.cluster_name = cluster.cluster_name self.rated = static_data['rated'] self.data_dir = cluster.data_dir self.probabilistic = False def fit(self): if self.istrained == False: return self.optimize_rbf_cnn() else: return self.acc def fit_TL(self): if self.istrained == False: return self.optimize_rbf_cnn_TL() else: return self.acc def load_data(self): if os.path.exists(os.path.join(self.data_dir, 'dataset_X.csv')): cvs = joblib.load(os.path.join(self.data_dir, 'cvs.pickle')) else: cvs = np.array([]) return cvs def load_rbf_models(self): model_rbfs = RBF_CNN_model(self.static_data, self.cluster, cnn=False) rbf_models = [model_rbfs.model_rbf_ols.models, model_rbfs.model_rbf_ga.models, model_rbfs.model_rbfnn.model] return rbf_models def optimize_rbf_cnn(self): self.trial = self.params['trial'] self.pool_size = self.params['pool_size'] self.kernels = self.params['kernels'] self.lr = self.params['lr'] self.hsize = self.params['h_size'] cnn_max_iterations = self.static_data['CNN']['max_iterations'] self.filters = self.static_data['CNN']['filters'] cvs = self.load_data() self.N = cvs[0][0].shape[1] self.D = cvs[0][0].shape[0] + cvs[0][2].shape[0] + cvs[0][4].shape[0] self.static_data_cnn = self.static_data['CNN'] self.static_data_rbf = self.static_data['RBF'] X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) self.rbf_models = self.load_rbf_models() cnn = CNN(self.static_data, self.rated, self.rbf_models, X_train, y_train, X_val, y_val, X_test, y_test, self.pool_size, self.trial) flag = False for _ in range(3): try: self.acc, self.scale_cnn, self.model = cnn.train_cnn(max_iterations=cnn_max_iterations, learning_rate=self.lr, kernels=self.kernels, h_size=self.hsize, filters=self.filters) flag = True break except: self.filters = int(self.filters / 2) pass if not flag: self.acc = np.inf self.scale_cnn = None self.model = None self.istrained=True self.save() return self.acc def load(self): if os.path.exists(os.path.join(self.test_dir, self.method + '.pickle')): try: tmp_dict = joblib.load(os.path.join(self.test_dir, self.method + '.pickle')) self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open CNN model') else: raise ImportError('Cannot find CNN model') def save(self): tmp_dict = {} for k in self.__dict__.keys(): if k not in ['logger', 'static_data_all', 'static_data', 'temp_dir', 'cluster_cnn_dir', 'cluster_dir']: tmp_dict[k] = self.__dict__[k] joblib.dump(tmp_dict,os.path.join(self.test_dir, self.method + '.pickle'), compress=9) def optimize_rbf_cnn_TL(self): static_data_tl = self.static_data['tl_project']['static_data'] cluster_dir_tl = os.path.join(static_data_tl['path_model'], 'Regressor_layer/' + self.cluster_name) model_TL_dir = os.path.join(cluster_dir_tl, 'RBF_CNN') model_TL = joblib.load(os.path.join(model_TL_dir, self.method + '.pickle')) self.trial = model_TL['trial'] self.pool_size = model_TL['pool_size'] self.kernels = model_TL['kernels'] self.lr = model_TL['lr'] self.hsize = model_TL['h_size'] cnn_max_iterations = self.static_data['CNN']['max_iterations'] self.filters = model_TL['filters'] cvs = self.load_data() self.N = cvs[0][0].shape[1] self.D = cvs[0][0].shape[0] + cvs[0][2].shape[0] + cvs[0][4].shape[0] self.static_data_cnn = self.static_data['CNN'] self.static_data_rbf = self.static_data['RBF'] X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) self.rbf_models = self.load_rbf_models() cnn = CNN(self.static_data, self.rated, self.rbf_models, X_train, y_train, X_val, y_val, X_test, y_test, self.pool_size, self.trial) flag = False for _ in range(3): try: self.acc, self.scale_cnn, self.model = cnn.train_cnn(max_iterations=cnn_max_iterations, learning_rate=self.lr, kernels=self.kernels, h_size=self.hsize, filters=self.filters) flag = True break except: self.filters = int(self.filters / 2) pass if not flag: self.acc = np.inf self.scale_cnn = None self.model = None self.istrained=True self.save() return self.acc class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, np.integer) or isinstance(obj, int): return int(obj) elif isinstance(obj, np.floating) or isinstance(obj, float): return float(obj) elif isinstance(obj, np.str) or isinstance(obj, str): return str(obj) elif isinstance(obj, np.bool) or isinstance(obj, bool): return bool(obj) try: return json.JSONEncoder.default(self, obj) except: print(obj) raise TypeError('Object is not JSON serializable') @server.consumer() def deep_manager(static_data): print(" [.] Receive cluster %s)" % static_data['cluster_name']) cluster = cluster_object(static_data, static_data['cluster_name']) model_method = static_data['method'] params = static_data['params'] model_3d = rbf_cnn_manager(static_data, cluster, model_method, params=params) if model_3d.istrained == False: response = {'result': model_3d.fit(), 'cluster_name': cluster.cluster_name, 'project': static_data['_id'], 'test': params['test'], 'method': model_method} else: response = {'result': model_3d.acc, 'cluster_name': cluster.cluster_name, 'project': static_data['_id'], 'test': params['test'], 'method': model_method} return response if __name__=='__main__': server.run() ``` #### File: version3/RBFNN_Manager/RBFNN_manager.py ```python import joblib from Fuzzy_clustering.version3.RBFNN_Manager.RBFNN_tf_core import RBFNN import pika, uuid, time, json, os import numpy as np from Fuzzy_clustering.version3.rabbitmq_rpc.server import RPCServer from Fuzzy_clustering.version3.RBFNN_Manager.Cluster_object import cluster_object RABBIT_MQ_HOST = os.getenv('RABBIT_MQ_HOST') RABBIT_MQ_PASS = os.getenv('RABBIT_MQ_PASS') RABBIT_MQ_PORT = int(os.getenv('RABBIT_MQ_PORT')) server = RPCServer(queue_name='RBFNNmanager', host=RABBIT_MQ_HOST, port=RABBIT_MQ_PORT, threaded=False) class rbfnn_manager(): def __init__(self, static_data, cluster, method, params): self.params = params self.test = params['test'] self.method = str.lower(method) self.cluster = cluster self.istrained = False self.model_dir = os.path.join(cluster.cluster_dir, 'RBFNN') if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) self.test_dir = self.model_dir try: self.load() except: pass if not self.istrained: self.test_dir = os.path.join(self.model_dir, 'test_' + str(self.test)) try: self.load() except: if not os.path.exists(self.test_dir): os.makedirs(self.test_dir) pass self.static_data = static_data self.cluster_name = cluster.cluster_name self.rated = static_data['rated'] self.data_dir = cluster.data_dir self.probabilistic = False def fit(self): if self.istrained == False: return self.optimize_rbf() else: return self.acc def fit_TL(self): if self.istrained == False: return self.optimize_rbf_TL() else: return self.acc def load_data(self): if os.path.exists(os.path.join(self.data_dir, 'dataset_X.csv')): cvs = joblib.load(os.path.join(self.data_dir, 'cvs.pickle')) else: cvs = np.array([]) return cvs def optimize_rbf(self): self.num_centr = self.params['num_centr'] self.lr = self.params['lr'] self.mean_var = self.static_data['RBF']['mean_var'] self.std_var = self.static_data['RBF']['std_var'] max_iterations = self.static_data['RBF']['max_iterations'] cvs = self.load_data() self.N = cvs[0][0].shape[1] self.D = cvs[0][0].shape[0] + cvs[0][2].shape[0] + cvs[0][4].shape[0] X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) rbf = RBFNN(self.static_data, max_iterations=max_iterations) self.acc, self.centroids, self.radius, self.w, self.model = rbf.train(X_train, y_train, X_val, y_val, X_test, y_test, self.num_centr, self.lr) self.istrained=True self.save() return self.acc def load(self): if os.path.exists(os.path.join(self.test_dir, self.method + '.pickle')): try: tmp_dict = joblib.load(os.path.join(self.test_dir, self.method + '.pickle')) self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open CNN model') else: raise ImportError('Cannot find CNN model') def save(self): tmp_dict = {} for k in self.__dict__.keys(): if k not in ['logger', 'static_data_all', 'static_data', 'temp_dir', 'cluster_cnn_dir', 'cluster_dir']: tmp_dict[k] = self.__dict__[k] joblib.dump(tmp_dict,os.path.join(self.test_dir, self.method + '.pickle'), compress=9) def optimize_rbf_TL(self): static_data_tl = self.static_data['tl_project']['static_data'] cluster_dir_tl = os.path.join(static_data_tl['path_model'], 'Regressor_layer/' + self.cluster_name) model_TL_dir = os.path.join(cluster_dir_tl, 'RBFNN') model_TL = joblib.load(os.path.join(model_TL_dir, self.method + '.pickle')) self.num_centr = model_TL['num_centr'] self.lr = model_TL['lr'] self.mean_var = model_TL['mean_var'] self.std_var = model_TL['std_var'] max_iterations = self.static_data['RBF']['max_iterations'] cvs = self.load_data() self.N = cvs[0][0].shape[1] self.D = cvs[0][0].shape[0] + cvs[0][2].shape[0] + cvs[0][4].shape[0] X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) rbf = RBFNN(self.static_data, max_iterations=max_iterations) self.acc, self.centroids, self.radius, self.w, self.model = rbf.train(X_train, y_train, X_val, y_val, X_test, y_test, self.num_centr, self.lr) self.istrained=True self.save() return self.acc class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, np.integer) or isinstance(obj, int): return int(obj) elif isinstance(obj, np.floating) or isinstance(obj, float): return float(obj) elif isinstance(obj, np.str) or isinstance(obj, str): return str(obj) elif isinstance(obj, np.bool) or isinstance(obj, bool): return bool(obj) try: return json.JSONEncoder.default(self, obj) except: print(obj) raise TypeError('Object is not JSON serializable') @server.consumer() def deep_manager(static_data): print(" [.] Receive cluster %s)" % static_data['cluster_name']) cluster = cluster_object(static_data, static_data['cluster_name']) model_method = static_data['method'] params = static_data['params'] model_3d = rbfnn_manager(static_data, cluster, model_method, params=params) if model_3d.istrained == False: response = {'result': model_3d.fit(), 'cluster_name': cluster.cluster_name, 'project': static_data['_id'], 'test': params['test'], 'method': model_method} else: response = {'result': model_3d.acc, 'cluster_name': cluster.cluster_name, 'project': static_data['_id'], 'test': params['test'], 'method': model_method} return response if __name__=='__main__': server.run() ``` #### File: Fuzzy_clustering/ver_tf2/Clusterer_optimize_deep.py ```python import numpy as np import pandas as pd import os, copy import joblib import skfuzzy as fuzz import difflib, random from deap import base, creator, tools, algorithms from itertools import repeat from collections import Sequence import re import logging from sklearn.linear_model import LinearRegression from Fuzzy_clustering.ver_tf2.imblearn.over_sampling import BorderlineSMOTE, SVMSMOTE, SMOTE,ADASYN from joblib import Parallel, delayed import warnings warnings.filterwarnings("ignore", category=FutureWarning) MAX_EVALUATIONS = 30000 JOBS = 5 POPULATION_SIZE = 50 class cluster_optimize(): def __init__(self, static_data): self.static_data = static_data self.train_online = static_data['train_online'] self.add_individual_rules = static_data['clustering']['add_rules_indvidual'] self.import_external_rules = static_data['clustering']['import_external_rules'] self.njobs=2*static_data['RBF']['njobs'] self.resampling = static_data['resampling'] self.path_fuzzy = static_data['path_fuzzy_models'] self.file_fuzzy = static_data['clustering']['cluster_file'] self.type = static_data['type'] logger = logging.getLogger('log_fuzzy.log') logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(self.path_fuzzy, 'log_fuzzy.log'), 'w') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) self.logger = logger def create_mfs(self, model_mfs, type_mf, num_mf, var_range, var_name): mfs = [] if type_mf in {'hdd_h2', 'temp_max', 'flux', 'wind', 'temp', 'Temp', 'load', 'power'}: mean = np.linspace(var_range[0], var_range[1], num=num_mf) std = var_range[1] / num_mf for i in range(num_mf): mfs.append({'name': 'mf_' + type_mf + str(i), 'var_name': var_name, 'type': 'gauss', 'param': [mean[i], 1.25 * std], 'universe': np.arange(var_range[0] - std - .01, var_range[1] + std + .01, .001), 'func': fuzz.gaussmf(np.arange(var_range[0] - std - .01, var_range[1] + std + .01, .001), mean[i], std)}) elif type_mf in {'sp_index', 'dayweek', 'cloud', 'hour', 'month', 'direction', 'sp_days'}: mean = np.linspace(var_range[0], var_range[1], num=num_mf) std = var_range[1] / num_mf std1 = var_range[1] / (2 * num_mf) for i in range(num_mf): param = [mean[i] - 1.5 * std, mean[i] - 1.25 * std1, mean[i] + 1.25 * std1, mean[i] + 1.5 * std] mfs.append({'name': 'mf_' + type_mf + str(i), 'var_name': var_name, 'type': 'trap', 'param': param, 'universe': np.arange(var_range[0] - .01 - std, var_range[1] + std + .01, .001), 'func': fuzz.trapmf(np.arange(var_range[0] - .01 - std, var_range[1] + std + .01, .001, ), param)}) else: raise NameError('MF type not recognize') model_mfs[var_name] = mfs return model_mfs def create_rules(self, model_mfs): rules = [] for mf in sorted(model_mfs.keys()): if len(rules) == 0: for f in model_mfs[mf]: rules.append([f]) else: new_rules = [] for rule in rules: for f in model_mfs[mf]: new_rules.append(rule + [f]) rules = new_rules ## Uncomment when you want to create rules without combine variables if self.add_individual_rules: for mf in sorted(model_mfs.keys()): for f in model_mfs[mf]: rules.append([f]) final_rules = dict() for i in range(len(rules)): final_rules['rule.' + str(i)] = rules[i] return final_rules def run(self, X_train, y_train, X_test, y_test, rated, num_samples=200): if rated is None: rated = y_test.values.ravel() else: rated = 20 self.var_names = [v for v in sorted(self.static_data['clustering']['var_imp'].keys())] self.p = len(self.var_names) self.range_mfs = dict() self.num_mfs = dict() for k, v in self.static_data['clustering']['var_imp'].items(): self.range_mfs[k] = v['range'] self.num_mfs[k] = [v['mfs']] self.var_lin = self.static_data['clustering']['var_lin'] if self.train_online: try: fuzzy_model = joblib.load(os.path.join(self.path_fuzzy, self.file_fuzzy)) self.var_names = [var for var in self.var_names if var not in sorted(fuzzy_model['mfs'].keys())] except: fuzzy_model = dict() fuzzy_model['mfs'] = dict() else: fuzzy_model = dict() fuzzy_model['mfs'] = dict() for fuzzy_var_name in self.var_names: for n in self.num_mfs[fuzzy_var_name]: fuzzy_model['mfs'] = self.create_mfs(fuzzy_model['mfs'], fuzzy_var_name, n, self.range_mfs[fuzzy_var_name], fuzzy_var_name) var_del=[] for var in self.var_names: if var not in X_train.columns: var_names = [c for c in X_train.columns if var in c] X_train[var] = X_train[var_names].mean(axis=1) X_test[var] = X_test[var_names].mean(axis=1) var_del.append(var) if var not in self.var_lin: self.var_lin.append(var) lin_models = LinearRegression().fit(X_train[self.var_lin].values, y_train.values.ravel()) preds = lin_models.predict(X_test[self.var_lin].values).ravel() err = (preds - y_test.values.ravel()) / rated rms = np.sum(np.square(err)) mae = np.mean(np.abs(err)) print('rms = %s', rms) print('mae = %s', mae) self.logger.info("Objective before train: %s", mae) problem = cluster_problem(fuzzy_model['mfs'], X_train[self.var_lin], y_train, X_test[self.var_lin], y_test, self.p, rated, self.resampling, self.add_individual_rules, self.logger, self.njobs, num_samples=num_samples) problem.run(50, 50) fuzzy_model = problem.fmodel self.logger.info("Objective after train: %s", str(fuzzy_model['result'])) best_fuzzy_model = copy.deepcopy(fuzzy_model) joblib.dump(best_fuzzy_model, os.path.join(self.path_fuzzy, self.file_fuzzy)) if 'horizon' in self.import_external_rules: self.compact_external_mfs() if len(var_del) > 0: X_train = X_train.drop(columns=var_del) X_test = X_test.drop(columns=var_del) def compact_external_mfs(self): self.fuzzy_file = os.path.join(self.path_fuzzy, self.file_fuzzy) fmodel = joblib.load(self.fuzzy_file) type_mf = 'horizon' var_name = 'horizon' params = [ [0.5, 0.9, 1.1, 1.5], [1.5, 1.9, 2.1, 2.5], [2.5, 2.9, 3.1, 3.5], [3.5, 3.9, 4.1, 4.5], [4.5, 4.9, 5.1, 5.5], [5.5, 5.9, 6.1, 6.5], [6.5, 6.9, 7.1, 7.5], [7.5, 7.9, 8.1, 8.5], [8.5, 8.9, 12.1, 15.5], [12, 13.2, 22.1, 27.5], [22.1, 25.2, 36.1, 42.5], [38.1, 42.2, 48.1, 52.5], ] mfs = [] i = 0 for param in params: mfs.append({'name': 'mf_' + type_mf + str(i), 'var_name': var_name, 'type': 'trap', 'param': param, 'universe': np.arange(0, 49, .01), 'func': fuzz.trapmf(np.arange(0, 49, .01), param)}) i += 1 fmodel['mfs']['horizon'] = mfs i = 0 rules = dict() for mf in mfs: for rule in fmodel['rules']: rules['rule.' + str(i)] = fmodel['rules'][rule] + [mf] i += 1 fmodel['rules'] = rules joblib.dump(fmodel, os.path.join(self.path_fuzzy, self.file_fuzzy)) def cx_fun(ind1,ind2, alpha): if random.random()>0.5: size = min(len(ind1), len(ind2)) cxpoint1 = random.randint(1, size) cxpoint2 = random.randint(1, size - 1) if cxpoint2 >= cxpoint1: cxpoint2 += 1 else: # Swap the two cx points cxpoint1, cxpoint2 = cxpoint2, cxpoint1 ind1[cxpoint1:cxpoint2], ind2[cxpoint1:cxpoint2] \ = ind2[cxpoint1:cxpoint2], ind1[cxpoint1:cxpoint2] else: for i, (x1, x2) in enumerate(zip(ind1, ind2)): gamma = (1. + 2. * alpha) * random.random() - alpha ind1[i] = (1. - gamma) * x1 + gamma * x2 ind2[i] = gamma * x1 + (1. - gamma) * x2 return ind1, ind2 def mut_fun(individual, mu, sigma, eta, low, up, indpb): if random.random() > 0.5: size = len(individual) if not isinstance(mu, Sequence): mu = repeat(mu, size) elif len(mu) < size: raise IndexError("mu must be at least the size of individual: %d < %d" % (len(mu), size)) if not isinstance(sigma, Sequence): sigma = repeat(sigma, size) elif len(sigma) < size: raise IndexError("sigma must be at least the size of individual: %d < %d" % (len(sigma), size)) for i, m, s in zip(range(size), mu, sigma): if random.random() < indpb: individual[i] += random.gauss(m, s) else: size = len(individual) if not isinstance(low, Sequence): low = repeat(low, size) elif len(low) < size: raise IndexError("low must be at least the size of individual: %d < %d" % (len(low), size)) if not isinstance(up, Sequence): up = repeat(up, size) elif len(up) < size: raise IndexError("up must be at least the size of individual: %d < %d" % (len(up), size)) for i, xl, xu in zip(range(size), low, up): if random.random() <= indpb: x = individual[i] delta_1 = (x - xl) / (xu - xl) delta_2 = (xu - x) / (xu - xl) rand = random.random() mut_pow = 1.0 / (eta + 1.) if rand < 0.5: xy = 1.0 - delta_1 if xy<0: xy=1e-6 val = 2.0 * rand + (1.0 - 2.0 * rand) * xy ** (eta + 1) delta_q = val ** mut_pow - 1.0 else: xy = 1.0 - delta_2 if xy<0: xy=1e-6 val = 2.0 * (1.0 - rand) + 2.0 * (rand - 0.5) * xy ** (eta + 1) delta_q = 1.0 - val ** mut_pow x = x + delta_q * (xu - xl) x = min(max(x, xl), xu) individual[i] = x return individual, def checkBounds(mn, mx): def decorator(func): def wrappper(*args, **kargs): offspring = func(*args, **kargs) for child in offspring: for i in range(len(child)): if child[i] > mx[i]: child[i] = mx[i] elif child[i] < mn[i]: child[i] = mn[i] return offspring return wrappper return decorator class cluster_problem(): def __init__(self, mfs, X, y, X_test, y_test, p, rated, resampling, add_individual_rules, logger, njobs, num_samples=500, n_ratio=0.6): self.logger = logger self.njobs=njobs self.resampling = resampling self.add_individual_rules = add_individual_rules self.num_samples = num_samples self.n_ratio = n_ratio self.rules = self.create_rules(mfs) self.mfs = mfs self.X = X self.y = y self.X_test = X_test self.y_test = y_test self.p = p if rated is None: self.rated = self.y_test.values.ravel() else: self.rated = rated x = [] self.lower_bound = [] self.upper_bound = [] self.sigma = [] self.index_constrains = [] self.number_of_constraints = 0 for var in sorted(self.mfs.keys()): for mf in self.mfs[var]: param = mf['param'] xrange = [mf['universe'][0], mf['universe'][-1]] prange = (xrange[1] - xrange[0]) / 5 x = x + param if len(param) == 2: self.index_constrains.append(np.arange(len(x) - 2, len(x))) self.number_of_constraints = self.number_of_constraints + 3 lo = param[0] - prange if (param[0] - prange)<-0.05 else -0.05 up = param[0] + prange if (param[0] + prange)>1.05 else 1.05 self.lower_bound.extend([lo, 0.01]) self.upper_bound.extend([up, prange]) self.sigma.extend([X[var].std() / 3, X[var].std() / 3]) elif len(param) == 4: self.index_constrains.append(np.arange(len(x) - 4, len(x))) self.number_of_constraints = self.number_of_constraints + 7 for i in param: lo = param[0] - prange if (param[0] - prange) < -0.05 else -0.05 up = param[3] + prange if (param[3] + prange) > 1.05 else 1.05 self.lower_bound.append(lo) self.upper_bound.append(up) self.sigma.append(X[var].std() / 3) self.number_of_variables = len(x) self.number_of_objectives = 2 self.x = x creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0)) creator.create("Individual", np.ndarray, fitness=creator.FitnessMin) self.toolbox = base.Toolbox() attributes=[] for i in range(self.number_of_variables): self.toolbox.register("attribute"+str(i), random.gauss, self.lower_bound[i], self.upper_bound[i]) attributes.append(self.toolbox.__getattribute__("attribute"+str(i))) self.toolbox.register("individual1", tools.initCycle, creator.Individual, tuple(attributes), n=1) self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual1, n=100) self.toolbox.register("mate", cx_fun, alpha=0.05) self.toolbox.register("mutate", mut_fun, mu=0, sigma=self.sigma, eta=0.8, low=self.lower_bound, up=self.upper_bound, indpb=0.6) self.toolbox.register("select", tools.selTournament, tournsize=3) self.toolbox.register("evaluate", evaluate) self.hof = tools.ParetoFront(lambda x, y: (x == y).all()) self.stats = tools.Statistics(lambda ind: ind.fitness.values) self.stats.register("Avg", np.mean) self.stats.register("Std", np.std) self.stats.register("Min", np.min) self.stats.register("Max", np.max) self.toolbox.decorate("mate", checkBounds(self.lower_bound, self.upper_bound)) self.toolbox.decorate("mutate", checkBounds(self.lower_bound, self.upper_bound)) def create_rules(self, model_mfs): rules = [] for mf in sorted(model_mfs.keys()): if len(rules) == 0: for f in model_mfs[mf]: rules.append([f]) else: new_rules = [] for rule in rules: for f in model_mfs[mf]: new_rules.append(rule + [f]) rules = new_rules if self.add_individual_rules: for mf in sorted(model_mfs.keys()): for f in model_mfs[mf]: rules.append([f]) final_rules = dict() for i in range(len(rules)): final_rules['rule.' + str(i)] = rules[i] return final_rules def run(self, mu, lambda_, cxpb=0.6, mutpb=0.4, ngen=300): self.population=self.toolbox.population() param_ind = creator.Individual(self.x) self.population.pop() self.population.insert(0, param_ind) assert lambda_ >= mu, "lambda must be greater or equal to mu." # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in self.population if not ind.fitness.valid] fit1 = evaluate(np.array(invalid_ind[0]).ravel(), self.X, self.y, self.X_test, self.y_test, self.rated, self.mfs, self.rules, self.p, self.resampling, self.num_samples, self.n_ratio) fitnesses = Parallel(n_jobs=self.njobs)(delayed(evaluate)(np.array(individual).ravel(), self.X, self.y, self.X_test, self.y_test, self.rated, self.mfs, self.rules, self.p, self.resampling, self.num_samples, self.n_ratio) for individual in invalid_ind) # fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit if self.hof is not None: self.hof.update(self.population) self.logbook = tools.Logbook() # Gather all the fitnesses in one list and compute the stats fits = np.array([ind.fitness.values for ind in self.population]) maximums = np.nanmax(fits, axis=0) minimums = np.nanmin(fits, axis=0) self.logbook.header = ['gen', 'nevals'] + ['Max_sse:', 'Min_sse:', 'Max_mae:', 'Min_mae:'] self.logger.info('Iter: %s, Max_sse: %s, Min_mae: %s', 0, *minimums) record = {'Max_sse:': maximums[0], 'Min_sse:': minimums[0], 'Max_mae:': maximums[1], 'Min_mae:': minimums[1]} print('GA rbf running generation 0') print(record) self.logbook.record(gen=0, nevals=len(invalid_ind), **record) print(self.logbook.stream) # Begin the generational process for gen in range(1, ngen + 1): # Vary the population offspring = algorithms.varOr(self.population, self.toolbox, lambda_, cxpb, mutpb) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = Parallel(n_jobs=self.njobs)(delayed(evaluate)(np.array(individual).ravel(), self.X, self.y, self.X_test, self.y_test, self.rated, self.mfs, self.rules, self.p, self.resampling, self.num_samples) for individual in invalid_ind) # fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit fits = np.array([ind.fitness.values for ind in self.population]) maximums = np.nanmax(fits, axis=0) minimums = np.nanmin(fits, axis=0) # Update the hall of fame with the generated individuals if self.hof is not None: self.hof.update(self.population) # Select the next generation population self.population[:] = self.toolbox.select(offspring, mu) # Update the statistics with the new population record = {'Max_sse:': maximums[0], 'Min_sse:': minimums[0], 'Max_mae:': maximums[1], 'Min_mae:': minimums[1]} print('GA rbf running generation ', str(gen)) print(record) self.logbook.record(gen=gen, nevals=len(invalid_ind), **record) self.logger.info('Iter: %s, Max_sse: %s, Min_mae: %s', str(gen), *minimums) front = self.population perf = np.inf best = 0 for i in range(len(front)): if front[i].fitness.getValues()[0] < perf: best = i perf = front[i].fitness.getValues()[0] self.fmodel = self.evaluate(np.array(front[best]).ravel(), self.X, self.y, self.X_test, self.y_test, self.rated, self.mfs, self.rules, self.p, self.resampling) def evaluate(self, x, X, y, X_test, y_test, rated, mfs, rules, p, resampling): # print(solution.variables) i = 0 for var in sorted(mfs.keys()): for mf in range(len(mfs[var])): if mfs[var][mf]['type'] == 'gauss': mfs[var][mf]['param'] = x[i:i + 2] mfs[var][mf]['func'] = fuzz.gaussmf(mfs[var][mf]['universe'], mfs[var][mf]['param'][0], np.abs(mfs[var][mf]['param'][1])) i += 2 elif mfs[var][mf]['type'] == 'trap': mfs[var][mf]['param'] = sorted(x[i:i + 4]) mfs[var][mf]['func'] = fuzz.trapmf(mfs[var][mf]['universe'], mfs[var][mf]['param']) i += 4 for r in sorted(rules.keys()): for i in range(len(rules[r])): ind = int(re.sub("\D", "", rules[r][i]['name'])) rules[r][i]['param'] = mfs[rules[r][i]['var_name']][ind]['param'] rules[r][i]['func'] = mfs[rules[r][i]['var_name']][ind]['func'] activations = pd.DataFrame(index=X.index, columns=[rule for rule in sorted(rules.keys())]) for rule in sorted(rules.keys()): act = [] for mf in rules[rule]: act.append(fuzz.interp_membership(mf['universe'], mf['func'], X[mf['var_name']])) activations[rule] = np.power(np.prod(np.array(act), axis=0), 1 / p) lin_models = dict() remove_null_rules = [] for rule in sorted(activations.columns): indices = activations[rule].index[activations[rule] >= 0.01].tolist() if len(indices) > self.num_samples and len(indices) < self.n_ratio * X.shape[0] : X1 = X.loc[indices].values y1 = y.loc[indices].values lin_models[rule] = LinearRegression().fit(X1, y1.ravel()) elif len(indices) > 0: lin_models[rule] = 'null' remove_null_rules.append(rule) else: lin_models[rule] = None remove_null_rules.append(rule) total = 0 for rule in sorted(rules.keys()): indices = activations[rule].index[activations[rule] >= 0.01].tolist() act = activations.loc[indices].copy(deep=True) act = act.drop(columns=[rule]) if len(indices) <= self.num_samples and len(indices) < self.n_ratio * X.shape[0] and not act.isnull().all(axis=1).any(): del rules[rule] del lin_models[rule] else: print(len(indices)) self.logger.info("Number of samples of rule %s is %s", rule, len(indices)) total += len(indices) print(total) self.logger.info("Number of samples of dataset with %s is %s", X.shape[0], total) activations_test = pd.DataFrame(index=X_test.index, columns=[rule for rule in sorted(rules.keys())]) for rule in sorted(rules.keys()): act = [] for mf in rules[rule]: act.append(fuzz.interp_membership(mf['universe'], mf['func'], X_test[mf['var_name']])) activations_test[rule] = np.power(np.prod(np.array(act), axis=0), 1 / p) preds = pd.DataFrame(index=X_test.index, columns=sorted(lin_models.keys())) for rule in sorted(rules.keys()): indices = activations_test[rule].index[activations_test[rule] >= 0.01].tolist() if len(indices) != 0: X1 = X_test.loc[indices].values y1 = y_test.loc[indices].values if (lin_models[rule] != 'null' and not lin_models[rule] is None): preds.loc[indices, rule] = lin_models[rule].predict(X1).ravel() elif lin_models[rule] == 'null': preds.loc[indices, rule] = 1e+15 if isinstance(rated, float) or isinstance(rated, int): err = (preds.loc[indices, rule].values.ravel() - y1.ravel()) / rated else: err = (preds.loc[indices, rule].values.ravel() - y1.ravel()) / y1.ravel() self.logger.info("MAE of rule %s is %s", rule, np.mean(np.abs(err))) pred = preds.mean(axis=1) pred[pred.isnull()] = 1e+15 # pred.name='target' # pred=pred.to_frame() err = (pred.values.ravel() - y_test.values.ravel()) / rated self.objectives = [np.sum(np.square(err)),np.mean(np.abs(err))] self.rules = rules self.mfs = mfs fmodel = dict() fmodel['mfs'] = self.mfs fmodel['rules'] = self.rules fmodel['result'] = self.objectives[1] print('Error = ', self.objectives[1]) return fmodel def resampling_fun(X, y, random_state=42): flag = False Std = 0.01 while (flag == False and Std <= 1): try: std = np.maximum(Std * np.std(y), 0.2) yy = np.digitize(y, np.arange(np.min(y), np.max(y), std), right=True) bins = np.arange(np.min(y), np.max(y), std) bins = bins[(np.bincount(yy.ravel()) >= 2)[:-1]] yy = np.digitize(y, bins, right=True) # if Std==0.01 and np.max(yy)!=0: # strategy = {cl:int(100*X.shape[0]/np.max(yy)) for cl in np.unique(yy)} # else: strategy = "auto" if np.unique(yy).shape[0]==1: X2 = X yy2 = y return X2, yy2 if np.any(np.bincount(yy.ravel())<2): for cl in np.where(np.bincount(yy.ravel())<2)[0]: X = X[np.where(yy!=cl)[0]] y = y[np.where(yy!=cl)[0]] yy = yy[np.where(yy!=cl)[0]] sm = ADASYN(sampling_strategy=strategy, random_state=random_state, n_neighbors=np.min(np.bincount(yy.ravel()) - 1)) try: X2, yy2 = sm.fit_resample(X, yy.ravel()) except: pass X2[np.where(X2<0)] = 0 yy2 = bins[yy2 - 1] flag = True except: Std *= 10 if flag == True: return X2, yy2 else: raise RuntimeError('Cannot make resampling ') def evaluate(x, X, y, X_test, y_test, rated, mfs, rules, p, resampling, num_samples=200, n_ratio=0.6): # print(solution.variables) i = 0 for var in sorted(mfs.keys()): for mf in range(len(mfs[var])): if mfs[var][mf]['type'] == 'gauss': mfs[var][mf]['param'] = x[i:i + 2] mfs[var][mf]['func'] = fuzz.gaussmf(mfs[var][mf]['universe'], mfs[var][mf]['param'][0], np.abs(mfs[var][mf]['param'][1])) i += 2 elif mfs[var][mf]['type'] == 'trap': mfs[var][mf]['param'] = sorted(x[i:i + 4]) mfs[var][mf]['func'] = fuzz.trapmf(mfs[var][mf]['universe'], mfs[var][mf]['param']) i += 4 for r in sorted(rules.keys()): for i in range(len(rules[r])): ind = int(re.sub("\D", "", rules[r][i]['name'])) rules[r][i]['param'] = mfs[rules[r][i]['var_name']][ind]['param'] rules[r][i]['func'] = mfs[rules[r][i]['var_name']][ind]['func'] activations = pd.DataFrame(index=X.index, columns=['rule.' + str(i) for i in range(len(rules))]) for rule in sorted(rules.keys()): act = [] for mf in rules[rule]: act.append(fuzz.interp_membership(mf['universe'], mf['func'], X[mf['var_name']])) activations[rule] = np.power(np.prod(np.array(act), axis=0), 1 / p) lin_models = dict() for rule in activations.columns: indices = activations[rule].index[activations[rule] >= 0.01].tolist() if len(indices) > num_samples and len(indices) < n_ratio * X.shape[0] : X1 = X.loc[indices].values y1 = y.loc[indices].values # if resampling: # if X1.shape[0] < 300: # X1, y1 = resampling_fun(X1,y1) lin_models[rule] = LinearRegression().fit(X1, y1.ravel()) elif len(indices) > 0: lin_models[rule] = 'null' else: lin_models[rule] = None for rule in sorted(rules.keys()): indices = activations[rule].index[activations[rule] >= 0.01].tolist() if len(indices) <= num_samples and len(indices) < n_ratio * X.shape[0] and len(indices) < n_ratio * X.shape[0] : del rules[rule] del lin_models[rule] activations_test = pd.DataFrame(index=X_test.index, columns=['rule.' + str(i) for i in sorted(rules.keys())]) for rule in sorted(rules.keys()): act = [] for mf in rules[rule]: act.append(fuzz.interp_membership(mf['universe'], mf['func'], X_test[mf['var_name']])) activations_test[rule] = np.power(np.prod(np.array(act), axis=0), 1 / p) preds = pd.DataFrame(index=X_test.index, columns=sorted(rules.keys())) for rule in sorted(rules.keys()): indices = activations_test[rule].index[activations_test[rule] >= 0.01].tolist() if len(indices) != 0: X1 = X_test.loc[indices].values if (lin_models[rule] != 'null' and not lin_models[rule] is None): preds.loc[indices, rule] = lin_models[rule].predict(X1).ravel() elif lin_models[rule] == 'null': preds.loc[indices, rule] = 1e+15 pred = preds.mean(axis=1) pred[pred.isnull()] = 1e+15 # pred.name='target' # pred=pred.to_frame() err = (pred.values.ravel() - y_test.values.ravel()) / rated objectives = [np.sum(np.square(err)),np.mean(np.abs(err))] return objectives class clusterer(object): def __init__(self, fuzzy_path, fuzzy_file, type): self.fuzzy_file = os.path.join(fuzzy_path, fuzzy_file) fmodel = joblib.load(self.fuzzy_file) self.rules = fmodel['rules'] if type == 'pv': self.p = 4 elif type == 'wind': self.p = 3 elif type == 'load': self.p = 4 elif type == 'fa': self.p = 3 def compute_activations(self, X): activations = pd.DataFrame(index=X.index, columns=[i for i in sorted(self.rules.keys())]) var_del=[] for rule in sorted(self.rules.keys()): act = [] for mf in self.rules[rule]: if mf['var_name'] not in X.columns: var_names = [c for c in X.columns if mf['var_name'] in c] X[mf['var_name']] = X[var_names].mean(axis=1) var_del.append(mf['var_name']) act.append(fuzz.interp_membership(mf['universe'], mf['func'], X[mf['var_name']])) activations[rule] = np.power(np.prod(np.array(act), axis=0), 1 / self.p) if len(var_del)>0: X = X.drop(columns=var_del) return activations # # if __name__ == '__main__': # import sys # warnings.filterwarnings("ignore", category=FutureWarning) # if sys.platform == 'linux': # sys_folder = '/media/smartrue/HHD1/George/models/' # else: # sys_folder = 'D:/models/' # project_name = 'APE_net_ver2' # project_country = 'APE_net_ver2' # project_owner = '4cast_models' # path_project = sys_folder + project_owner + '/' + project_country + '/' + project_name # cluster_dir = path_project +'/Regressor_layer/rule.12' # data_dir = path_project + '/Regressor_layer/rule.12/data' # # logger = logging.getLogger(__name__) # # logger.setLevel(logging.INFO) # # handler = logging.FileHandler(os.path.join(cluster_dir, 'log_rbf_cnn_test.log'), 'a') # # handler.setLevel(logging.INFO) # # # # # create a logging format # # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # # handler.setFormatter(formatter) # # # # # add the handlers to the logger # # logger.addHandler(handler) # # rated = None # # static_data = write_database() # X = pd.read_csv(os.path.join(static_data['path_data'], 'training_inputs.csv'), index_col=0, # parse_dates=True, dayfirst=True) # y = pd.read_csv(os.path.join(static_data['path_data'], 'training_target.csv'), index_col=0, # header=None, # names=['target'], parse_dates=True, dayfirst=True) # X_train = X.loc[X.index <= pd.to_datetime('2019-01-01 00:00')] # X_test = X.loc[X.index > pd.to_datetime('2019-01-01 00:00')] # y_train = y.loc[y.index <= pd.to_datetime('2019-01-01 00:00')] # y_test = y.loc[y.index > pd.to_datetime('2019-01-01 00:00')] # # optimizer = cluster_optimize(static_data) # optimizer.run(X_train, y_train, X_test, y_test, rated) ``` #### File: Fuzzy_clustering/ver_tf2/Cluster_predict_regressors.py ```python import os import pickle import numpy as np import pandas as pd from joblib import Parallel, delayed from Fuzzy_clustering.ver_tf2.RBFNN_predict import rbf_model_predict from Fuzzy_clustering.ver_tf2.RBF_ols_predict import rbf_ols_predict from Fuzzy_clustering.ver_tf2.Sklearn_predict import sklearn_model_predict from Fuzzy_clustering.ver_tf2.CNN_predict import CNN_predict from Fuzzy_clustering.ver_tf2.CNN_predict_3d import CNN_3d_predict from Fuzzy_clustering.ver_tf2.LSTM_predict_3d import LSTM_3d_predict from Fuzzy_clustering.ver_tf2.Combine_module_predict import combine_model_predict from datetime import datetime import time, logging class MultiEvaluator(): def __init__(self, processes: int = 8): self.processes = processes def predict(self, i, x, model): return i, model.predict(x) def evaluate(self, X, model): partitions = 3000 X_list=[] for i in range(0, X.shape[0], partitions): if (i+partitions+1)>X.shape[0]: X_list.append(X[i:]) else: X_list.append(X[i:i+partitions]) pred =Parallel(self.processes)(delayed(self.predict)(i, x, model) for i, x in enumerate(X_list)) indices = np.array([p[0] for p in pred]) predictions = np.array([]) for ind in indices: if len(predictions.shape)==1: predictions = pred[ind][1] else: predictions = np.vstack((predictions, pred[ind][1])) return predictions class cluster_predict(object): def __init__(self, static_data, clust): self.istrained = False self.cluster_dir = os.path.join(static_data['path_model'], 'Regressor_layer/' + clust) self.cluster_name = clust try: self.load(self.cluster_dir) except: pass self.static_data=static_data self.model_type=static_data['type'] self.methods=static_data['project_methods'] self.combine_methods=static_data['combine_methods'] self.rated=static_data['rated'] self.n_jobs=static_data['njobs'] self.data_dir = os.path.join(self.cluster_dir, 'data') def pred_model(self, X, method, static_data, rated, cluster_dir, X_cnn=np.array([]), X_lstm=np.array([])): if method == 'ML_RBF_ALL': model_rbf = rbf_model_predict(static_data['RBF'], rated, cluster_dir) model_rbf_ols = rbf_ols_predict(cluster_dir, rated, static_data['sklearn']['njobs'], GA=False) model_rbf_ga = rbf_ols_predict(cluster_dir, rated, static_data['sklearn']['njobs'], GA=True) if model_rbf_ols.istrained == True: pred1 = model_rbf_ols.predict(X) if model_rbf_ga.istrained == True: pred2 = model_rbf_ga.predict(X) if model_rbf.istrained == True: pred3 = model_rbf.predict(X) pred1[np.where(pred1 < 0)] = 0 pred2[np.where(pred2 < 0)] = 0 pred3[np.where(pred3 < 0)] = 0 return [pred1, pred2, pred3] elif method == 'ML_RBF_ALL_CNN': model_rbf = rbf_model_predict(static_data['RBF'], rated, cluster_dir) model_rbf_ols = rbf_ols_predict(cluster_dir, rated, static_data['sklearn']['njobs'], GA=False) model_rbf_ga = rbf_ols_predict(cluster_dir, rated, static_data['sklearn']['njobs'], GA=True) if model_rbf_ols.istrained == True: pred1 = model_rbf_ols.predict(X) if model_rbf_ga.istrained == True: pred2 = model_rbf_ga.predict(X) if model_rbf.istrained == True: pred3 = model_rbf.predict(X) rbf_dir = [model_rbf_ols.cluster_dir, model_rbf_ga.cluster_dir, model_rbf.cluster_dir] model_cnn = CNN_predict(static_data, rated, cluster_dir, rbf_dir) if model_cnn.istrained == True: pred4 = model_cnn.predict(X) pred1[np.where(pred1 < 0)] = 0 pred2[np.where(pred2 < 0)] = 0 pred3[np.where(pred3 < 0)] = 0 pred4[np.where(pred4 < 0)] = 0 return [pred1, pred2, pred3, pred4] elif method == 'ML_NUSVM': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = model_sklearn.predict(X) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_MLP': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = model_sklearn.predict(X) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_SVM': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = model_sklearn.predict(X) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_RF': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = model_sklearn.predict(X) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_XGB': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = model_sklearn.predict(X) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_CNN_3d': model_cnn3d = CNN_3d_predict(static_data, rated, cluster_dir) if model_cnn3d.istrained == True: pred = model_cnn3d.predict(X_cnn) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_LSTM_3d': model_lstm_3d = LSTM_3d_predict(static_data, rated, cluster_dir) if model_lstm_3d.istrained == True: pred = model_lstm_3d.predict(X_lstm) pred[np.where(pred < 0)] = 0 return [pred] else: return [np.nan] def parallel_pred_model(self, X, method, static_data, rated, cluster_dir, X_cnn=np.array([]), X_lstm=np.array([])): parallel = MultiEvaluator(2*self.n_jobs) if method == 'ML_RBF_ALL': model_rbf = rbf_model_predict(static_data['RBF'], rated, cluster_dir) model_rbf_ols = rbf_ols_predict(cluster_dir, rated, static_data['sklearn']['njobs'], GA=False) model_rbf_ga = rbf_ols_predict(cluster_dir, rated, static_data['sklearn']['njobs'], GA=True) if model_rbf_ols.istrained == True: pred1 = parallel.evaluate(X, model_rbf_ols) if model_rbf_ga.istrained == True: pred2 = parallel.evaluate(X, model_rbf_ga) if model_rbf.istrained == True: pred3 = parallel.evaluate(X, model_rbf) pred1[np.where(pred1 < 0)] = 0 pred2[np.where(pred2 < 0)] = 0 pred3[np.where(pred3 < 0)] = 0 return [pred1, pred2, pred3] elif method == 'ML_RBF_ALL_CNN': model_rbf = rbf_model_predict(static_data['RBF'], rated, cluster_dir) model_rbf_ols = rbf_ols_predict(cluster_dir, rated, static_data['sklearn']['njobs'], GA=False) model_rbf_ga = rbf_ols_predict(cluster_dir, rated, static_data['sklearn']['njobs'], GA=True) if model_rbf_ols.istrained == True: pred1 = parallel.evaluate(X, model_rbf_ols) if model_rbf_ga.istrained == True: pred2 = parallel.evaluate(X, model_rbf_ga) if model_rbf.istrained == True: pred3 = parallel.evaluate(X, model_rbf) rbf_dir = [model_rbf_ols.cluster_dir, model_rbf_ga.cluster_dir, model_rbf.cluster_dir] model_cnn = CNN_predict(static_data, rated, cluster_dir, rbf_dir) if model_cnn.istrained == True: pred4 = parallel.evaluate(X, model_cnn) pred1[np.where(pred1 < 0)] = 0 pred2[np.where(pred2 < 0)] = 0 pred3[np.where(pred3 < 0)] = 0 pred4[np.where(pred4 < 0)] = 0 return [pred1, pred2, pred3, pred4] elif method == 'ML_NUSVM': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = parallel.evaluate(X, model_sklearn) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_MLP': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = parallel.evaluate(X, model_sklearn) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_SVM': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = parallel.evaluate(X, model_sklearn) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_RF': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = parallel.evaluate(X, model_sklearn) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_XGB': method = method.replace('ML_', '') model_sklearn = sklearn_model_predict(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained == True: pred = parallel.evaluate(X, model_sklearn) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_CNN_3d': model_cnn3d = CNN_3d_predict(static_data, rated, cluster_dir) if model_cnn3d.istrained == True: pred = parallel.evaluate(X_cnn, model_cnn3d) pred[np.where(pred < 0)] = 0 return [pred] elif method == 'ML_LSTM_3d': model_lstm_3d = LSTM_3d_predict(static_data, rated, cluster_dir) if model_lstm_3d.istrained == True: pred = parallel.evaluate(X_lstm, model_lstm_3d) pred[np.where(pred < 0)] = 0 return [pred] else: return [np.nan] def compute_metrics(self, pred, y, rated): if rated == None: rated = y.ravel() else: rated = 20 err = np.abs(pred.ravel() - y.ravel()) / rated sse = np.sum(np.square(pred.ravel() - y.ravel())) rms = np.sqrt(np.mean(np.square(err))) mae = np.mean(err) mse = sse / y.shape[0] return [sse, rms, mae, mse] def evaluate(self, pred_all, y, y_cnn=None): result = pd.DataFrame(index=[method for method in pred_all.keys()], columns=['sse', 'rms', 'mae', 'mse']) for method, pred in pred_all.items(): if method == 'ML_CNN_3d' and not y_cnn is None: result.loc[method] = self.compute_metrics(pred, y_cnn, self.rated) else: result.loc[method] = self.compute_metrics(pred, y, self.rated) return result def spark_predict(self, X, X_cnn=np.array([]), X_lstm=np.array([]), fs_reduced=False): if hasattr(self, 'features') and fs_reduced == False: X = X[:, self.features] methods = [] for model in self.static_data['project_methods'].keys(): if self.static_data['project_methods'][model]['status'] == 'train': methods.append(model) predictions = dict() for method in methods: pred = self.parallel_pred_model(X, method, self.static_data, self.rated, self.cluster_dir, X_cnn=X_cnn, X_lstm=X_lstm) for p in pred: if np.any(np.isnan(p)): if np.sum(np.isnan(p)) <= 3: p[np.where(np.isnan(p))] = np.nanmean(p) else: raise ValueError( 'There are nans in dataset of %s clust or model of method %s is not trained well', self.cluster_name, method) if method == 'ML_RBF_ALL_CNN': predictions['RBF_OLS'] = 20 * pred[0] predictions['GA_RBF_OLS'] = 20 * pred[1] predictions['RBFNN'] = 20 * pred[2] predictions['RBF-CNN'] = 20 * pred[3] elif method == 'ML_RBF_ALL': predictions['RBF_OLS'] = 20 * pred[0] predictions['GA_RBF_OLS'] = 20 * pred[1] predictions['RBFNN'] = 20 * pred[2] else: predictions[method] = 20 * pred[0] comb_model = combine_model_predict(self.static_data, self.cluster_dir) if comb_model.istrained==True and len(predictions.keys())>1: pred_combine = comb_model.predict(predictions) predictions.update(pred_combine) return predictions def predict(self, X, X_cnn=np.array([]), X_lstm=np.array([]), fs_reduced=False): if hasattr(self, 'features') and fs_reduced==False: X = X[:, self.features] methods = [] for model in self.static_data['project_methods'].keys(): if self.static_data['project_methods'][model]['status'] == 'train': methods.append(model) predictions=dict() for method in methods: if X.shape[0]>0: pred = self.pred_model(X, method, self.static_data, self.rated, self.cluster_dir, X_cnn=X_cnn, X_lstm=X_lstm) for p in pred: if np.any(np.isnan(p)): if np.sum(np.isnan(p))<=X.shape[0]/3: p[np.where(np.isnan(p))] = np.nanmean(p) else: raise ValueError('There are nans in dataset of %s clust or model of method %s is not trained well', self.cluster_name, method) if method == 'ML_RBF_ALL_CNN': predictions['RBF_OLS'] = 20 * pred[0] predictions['GA_RBF_OLS'] = 20 * pred[1] predictions['RBFNN'] = 20 * pred[2] predictions['RBF-CNN'] = 20 * pred[3] elif method == 'ML_RBF_ALL': predictions['RBF_OLS'] = 20 * pred[0] predictions['GA_RBF_OLS'] = 20 * pred[1] predictions['RBFNN'] = 20 * pred[2] else: predictions[method] = 20 * pred[0] else: if method == 'ML_RBF_ALL_CNN': predictions['RBF_OLS'] = np.array([]) predictions['GA_RBF_OLS'] = np.array([]) predictions['RBFNN'] = np.array([]) predictions['RBF-CNN'] = np.array([]) elif method == 'ML_RBF_ALL': predictions['RBF_OLS'] = np.array([]) predictions['GA_RBF_OLS'] = np.array([]) predictions['RBFNN'] = np.array([]) else: predictions[method] = np.array([]) comb_model = combine_model_predict(self.static_data, self.cluster_dir) if comb_model.istrained == True and len(predictions.keys())>1: pred_combine = comb_model.predict(predictions) predictions.update(pred_combine) elif len(predictions.keys())>1: pred_combine = comb_model.averaged(predictions) predictions.update(pred_combine) return predictions def load(self, cluster_dir): if os.path.exists(os.path.join(cluster_dir, 'model_' + self.cluster_name +'.pickle')): try: f = open(os.path.join(cluster_dir, 'model_' + self.cluster_name +'.pickle'), 'rb') tmp_dict = pickle.load(f) f.close() tdict = {} for k in tmp_dict.keys(): if not k in ['logger', 'static_data', 'data_dir', 'cluster_dir', 'n_jobs']: tdict[k] = tmp_dict[k] self.__dict__.update(tdict) except: raise ImportError('Cannot open rule model %s', self.cluster_name) else: raise ImportError('Cannot find rule model %s', self.cluster_name) if __name__=='__main__': from Fuzzy_clustering.ver_tf2.train_with_docker import ModelTrain from Fuzzy_clustering.ver_tf2.Models_train_manager import ModelTrainManager from Fuzzy_clustering.ver_tf2.Cluster_train_regressors import cluster_train import logging, os project_owner = 'my_projects' projects_group = 'APE_net' project_name = 'SCADA' version = 0 model_type = 'load' njobs = 3 gpus = ['/device:GPU:0'] model = ModelTrain(project_owner, projects_group, project_name, version, model_type, njobs, gpus) project_model = ModelTrainManager(model.project['static_data']['path_model']) # if project_model.istrained == False: data_variables = model.project['static_data']['data_variables'] project_model.init(model.project['static_data'], data_variables) clust_regressor = cluster_train(project_model.static_data, 'rule.101', project_model.sc) clust_regressor.fit() ``` #### File: Fuzzy_clustering/ver_tf2/CNN_module.py ```python import os import numpy as np import pandas as pd import pickle import glob import shutil import logging, joblib import re import multiprocessing as mp from joblib import Parallel, delayed import tensorflow as tf from Fuzzy_clustering.ver_tf2.RBFNN_module import rbf_model from Fuzzy_clustering.ver_tf2.CNN_tf_core import CNN from sklearn.model_selection import train_test_split from scipy.interpolate import interp2d from Fuzzy_clustering.ver_tf2.utils_for_forecast import split_continuous from Fuzzy_clustering.ver_tf2.RBF_ols import rbf_ols_module from Fuzzy_clustering.ver_tf2.CNN_predict import CNN_predict def optimize_cnn(cnn, kernels, hsize, cnn_max_iterations, cnn_learning_rate, gpu, filters): flag = False for _ in range(3): try: acc_old_cnn, scale_cnn, model_cnn = cnn.train_cnn(max_iterations=cnn_max_iterations, learning_rate=cnn_learning_rate, kernels=kernels, h_size=hsize, gpu_id=gpu, filters=filters) flag = True except: filters = int(filters / 2) pass if not flag: acc_old_cnn = np.inf scale_cnn = None model_cnn = None return acc_old_cnn, kernels[1], hsize, cnn_learning_rate, scale_cnn, model_cnn def predict(q, H, model): tf.config.set_soft_device_placement(True) pred = model.predict(H) q.put((pred[0])) class cnn_model(): def __init__(self, static_data, rated, cluster_dir, rbf_dir): self.static_data_all = static_data self.static_data = static_data['CNN'] self.static_data_rbf = static_data['RBF'] self.rated = rated self.cluster = os.path.basename(cluster_dir) self.istrained = False self.rbf_dir = rbf_dir self.cluster_dir = cluster_dir if isinstance(rbf_dir, list): self.rbf_method = 'RBF_ALL' self.cluster_cnn_dir = os.path.join(cluster_dir, 'RBF_ALL/CNN') self.model_dir = os.path.join(self.cluster_cnn_dir, 'model') self.rbf = rbf_model(self.static_data_rbf, self.rated, cluster_dir) self.rbf.models=[] for dir in rbf_dir: rbf_method = os.path.basename(dir) cluster_rbf_dir = os.path.join(dir, 'model') if rbf_method == 'RBFNN': rbf = rbf_model(self.static_data_rbf, self.rated, cluster_dir) try: rbf.load(cluster_rbf_dir) except: raise ImportError('Cannot load RBFNN models') self.rbf.models.append(rbf.models[0]) elif rbf_method == 'RBF_OLS': rbf = rbf_ols_module(cluster_dir, rated, self.static_data_rbf['njobs'], GA=False) try: rbf.load(cluster_rbf_dir) except: raise ImportError('Cannot load RBFNN models') self.rbf.models.append(rbf.models[-1]) elif rbf_method == 'GA_RBF_OLS': rbf = rbf_ols_module(cluster_dir, rated, self.static_data_rbf['njobs'], GA=True) try: rbf.load(cluster_rbf_dir) except: raise ImportError('Cannot load RBFNN models') self.rbf.models.append(rbf.models[0]) else: raise ValueError('Cannot recognize RBF method') else: self.rbf_method = os.path.basename(rbf_dir) cluster_rbf_dir = os.path.join(rbf_dir, 'model') self.cluster_cnn_dir = os.path.join(rbf_dir, 'CNN') self.model_dir = os.path.join(self.cluster_cnn_dir, 'model') if self.rbf_method == 'RBFNN': self.rbf = rbf_model(self.static_data_rbf, self.rated, cluster_dir) elif self.rbf_method == 'RBF_OLS': self.rbf = rbf_ols_module(cluster_dir, rated, self.static_data_rbf['njobs'], GA=False) elif self.rbf_method == 'GA_RBF_OLS': self.rbf = rbf_ols_module(cluster_dir, rated, self.static_data_rbf['njobs'], GA=True) else: raise ValueError('Cannot recognize RBF method') try: self.rbf.load(cluster_rbf_dir) except: raise ImportError('Cannot load RBFNN models') if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) try: self.load(self.model_dir) except: pass def train_cnn(self, cvs): logger = logging.getLogger('log_train_' + self.cluster + '.log') logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(self.model_dir, 'log_train_' + self.cluster + '.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) print('CNN training...begin for %s ', self.cluster) logger.info('CNN training...begin for %s ', self.cluster) logger.info('CNN training...begin for method %s ', self.rbf_method) X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) cnn = CNN(self.static_data, self.rated, self.rbf.models, X_train, y_train, X_val, y_val, X_test, y_test) self.acc_cnn = np.inf gpus = np.tile(self.static_data['gpus'], 4) # k=2 # optimize_cnn(cnn, self.temp_dir + str(k), [2, k], # self.static_data['max_iterations'], self.static_data['learning_rate'], # gpus[int(k / 4)]) # pool = mp.Pool(processes=len(self.static_data['gpus'])) # result = [pool.apply_async(optimize_cnn, args=(cnn, self.temp_dir + str(k), [2, k], self.static_data['h_size'], # self.static_data['max_iterations'], # self.static_data['learning_rate'], # gpus[int(k / 4)])) for k in [2, 12]] # results = [p.get() for p in result] # pool.close() # pool.terminate() # pool.join() results = Parallel(n_jobs=len(self.static_data['gpus']))( delayed(optimize_cnn)(cnn, [2, k], self.static_data['h_size'], self.static_data['max_iterations'], self.static_data['learning_rate'], gpus[i], int(self.static_data['filters'])) for i, k in enumerate([4, 12])) for r in results: logger.info("kernel: %s accuracy cnn: %s", r[1], r[0]) acc_cnn = np.array([r[0] for r in results]) self.acc_cnn, self.best_kernel, hsize, lr, self.scale_cnn, model_cnn = results[acc_cnn.argmin()] self.model = model_cnn train_res = pd.DataFrame.from_dict(model_cnn['error_func'], orient='index') train_res.to_csv(os.path.join(self.model_dir, 'train_result.csv'), header=None) self.save(self.model_dir) try: self.acc_cnn = np.inf gpus = np.tile(self.static_data['gpus'], 4) h_size=[ [1024, 256], [512, 128], ] results1 = Parallel(n_jobs=len(self.static_data['gpus']))( delayed(optimize_cnn)(cnn, [2, self.best_kernel], h_size[k], self.static_data['max_iterations'], self.static_data['learning_rate'], gpus[int(k)], int(self.static_data['filters'])) for k in range(2)) for r in results1: logger.info("num neurons: 1st %s and 2nd %s with accuracy cnn: %s", *r[2], r[0]) results += results1 acc_cnn = np.array([r[0] for r in results]) self.acc_cnn, self.best_kernel, self.best_h_size, self.lr, self.scale_cnn, model_cnn = results[acc_cnn.argmin()] self.model = model_cnn train_res = pd.DataFrame.from_dict(model_cnn['error_func'], orient='index') train_res.to_csv(os.path.join(self.model_dir, 'train_result_hsize.csv'), header=None) logger.info("Best kernel: %s", self.best_kernel) logger.info("accuracy cnn: %s", self.acc_cnn) logger.info("num neurons: 1st %s and 2nd %s", *self.best_h_size) logger.info("with accuracy cnn: %s", self.acc_cnn) logger.info("Best learning rate: %s", self.lr) logger.info("Total accuracy cnn: %s", self.acc_cnn) logger.info('\n') self.istrained = True self.save(self.model_dir) except: pass # self.acc_cnn = np.inf # gpus = np.tile(self.static_data['gpus'], 4) # lrs = [1e-6, 1e-4] # k=2 # optimize_cnn(cnn, self.temp_dir + str(k), [2, k], # self.static_data['max_iterations'], self.static_data['learning_rate'], # gpus[int(k / 4)]) # pool = mp.Pool(processes=len(self.static_data['gpus'])) # result = [pool.apply_async(optimize_cnn, args=(cnn, self.temp_dir + str(k), [2, self.best_kernel], self.best_h_size, # self.static_data['max_iterations'], # lrs[k], # gpus[k])) for k in [0, 1]] # results = [p.get() for p in result] # pool.close() # pool.terminate() # pool.join() # results1 = Parallel(n_jobs=len(self.static_data['gpus']))( # delayed(optimize_cnn)(cnn, [2, self.best_kernel], self.best_h_size, # self.static_data['max_iterations'], # lrs[k], # gpus[k], int(self.static_data['filters'])) for k in [0, 1]) # for r in results1: # lr = r[3] # logger.info("Learning rate: %s accuracy cnn: %s", lr, r[0]) # # results += results1 # acc_cnn = np.array([r[0] for r in results]) # self.acc_cnn, self.best_kernel, self.best_h_size, self.lr, self.scale_cnn, model_cnn = results[acc_cnn.argmin()] # self.model = model_cnn return self.to_dict() def to_dict(self): dict = {} for k in self.__dict__.keys(): if k not in ['logger','static_data_all','model_dir', 'temp_dir', 'cluster_cnn_dir', 'cluster_dir','rbf_dir', 'model']: dict[k] = self.__dict__[k] return dict def train_cnn_TL(self, cvs, model, gpu): print('CNN training...begin for %s ', self.cluster) X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) cnn = CNN(self.static_data, self.rated, self.rbf.models, X_train, y_train, X_val, y_val, X_test, y_test) self.acc_cnn = np.inf gpus = np.tile(gpu, 1) results = Parallel(n_jobs=len(self.static_data['gpus']))( delayed(optimize_cnn)(cnn, [2, model['best_kernel']], model['best_h_size'], self.static_data['max_iterations'], model['lr'], gpus[k], int(self.static_data['filters'])) for k in [0]) acc_cnn = np.array([r[0] for r in results]) self.acc_cnn, best_kernel, best_h_size, lr, self.scale_cnn, model_cnn = results[acc_cnn.argmin()] self.model = model_cnn self.lr = model['lr'] self.best_h_size = model['best_h_size'] self.best_kernel = model['best_kernel'] self.istrained = True self.save(self.model_dir) return self.to_dict() def rbf_map(self,X, num_centr, centroids, radius): hmap_list = [] s = X.shape d1 = np.transpose(np.tile(np.expand_dims(X, axis=0), [num_centr, 1, 1]), [1, 0, 2]) - np.tile( np.expand_dims(centroids, axis=0), [s[0], 1, 1]) d = np.sqrt(np.power(np.multiply(d1, np.tile(np.expand_dims(radius, axis=0), [s[0], 1, 1])), 2)) phi = np.exp((-1) * np.power(d, 2)) return np.transpose(phi,[1, 0, 2]) def rescale(self, arr, nrows, ncol): W, H = arr.shape new_W, new_H = (nrows, ncol) xrange = lambda x: np.linspace(0, 1, x) f = interp2d(xrange(H), xrange(W), arr, kind="linear") new_arr = f(xrange(new_H), xrange(new_W)) return new_arr def predict(self,X): cnn = CNN_predict(self.static_data_all, self.rated, self.cluster_dir, self.rbf_dir) return cnn.predict(X) def move_files(self, path1, path2): for filename in glob.glob(os.path.join(path1, '*.*')): shutil.copy(filename, path2) def compute_metrics(self, pred, y, rated): if rated == None: rated = y.ravel() else: rated = 1 err = np.abs(pred.ravel() - y.ravel()) / rated sse = np.sum(np.square(pred.ravel() - y.ravel())) rms = np.sqrt(np.mean(np.square(err))) mae = np.mean(err) mse = sse / y.shape[0] return [sse, rms, mae, mse] def load(self, pathname): cluster_dir = pathname if os.path.exists(os.path.join(cluster_dir, 'cnn' + '.pickle')): try: tmp_dict = joblib.load(os.path.join(cluster_dir, 'cnn' + '.pickle')) self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open CNN model') else: raise ImportError('Cannot find CNN model') def save(self, pathname): tmp_dict = {} for k in self.__dict__.keys(): if k not in ['logger','static_data_all','model_dir', 'temp_dir', 'cluster_cnn_dir', 'cluster_dir','rbf_dir']: tmp_dict[k] = self.__dict__[k] joblib.dump(tmp_dict,os.path.join(pathname, 'cnn' + '.pickle'), compress=9) ``` #### File: Fuzzy_clustering/ver_tf2/CNN_predict.py ```python import tensorflow as tf import numpy as np from scipy.interpolate import interp2d import os, joblib from Fuzzy_clustering.ver_tf2.RBFNN_predict import rbf_model_predict from Fuzzy_clustering.ver_tf2.RBF_ols_predict import rbf_ols_predict class CNN_predict(): def __init__(self, static_data, rated, cluster_dir, rbf_dir): self.static_data = static_data['CNN'] self.static_data_rbf = static_data['RBF'] self.rated = rated self.cluster = os.path.basename(cluster_dir) self.istrained = False if isinstance(rbf_dir, list): self.rbf_method = 'RBF_ALL' self.cluster_cnn_dir = os.path.join(cluster_dir, 'RBF_ALL/CNN') self.model_dir = os.path.join(self.cluster_cnn_dir, 'model') self.rbf = rbf_model_predict(self.static_data_rbf, self.rated, cluster_dir) self.rbf.models=[] for dir in rbf_dir: rbf_method = os.path.basename(dir) cluster_rbf_dir = os.path.join(dir, 'model') if rbf_method == 'RBFNN': rbf = rbf_model_predict(self.static_data_rbf, self.rated, cluster_dir) try: rbf.load(cluster_rbf_dir) except: raise ImportError('Cannot load RBFNN models') self.rbf.models.append(rbf.models[0]) elif rbf_method == 'RBF_OLS': rbf = rbf_ols_predict(cluster_dir, rated, self.static_data_rbf['njobs'], GA=False) try: rbf.load(cluster_rbf_dir) except: raise ImportError('Cannot load RBFNN models') self.rbf.models.append(rbf.models[-1]) elif rbf_method == 'GA_RBF_OLS': rbf = rbf_ols_predict(cluster_dir, rated, self.static_data_rbf['njobs'], GA=True) try: rbf.load(cluster_rbf_dir) except: raise ImportError('Cannot load RBFNN models') self.rbf.models.append(rbf.models[0]) else: raise ValueError('Cannot recognize RBF method') else: self.rbf_method = os.path.basename(rbf_dir) cluster_rbf_dir = os.path.join(rbf_dir, 'model') self.cluster_cnn_dir = os.path.join(rbf_dir, 'CNN') self.model_dir = os.path.join(self.cluster_cnn_dir, 'model') if self.rbf_method == 'RBFNN': self.rbf = rbf_model_predict(self.static_data_rbf, self.rated, cluster_dir) elif self.rbf_method == 'RBF_OLS': self.rbf = rbf_ols_predict(cluster_dir, rated, self.static_data_rbf['njobs'], GA=False) elif self.rbf_method == 'GA_RBF_OLS': self.rbf = rbf_ols_predict(cluster_dir, rated, self.static_data_rbf['njobs'], GA=True) else: raise ValueError('Cannot recognize RBF method') try: self.rbf.load(cluster_rbf_dir) except: raise ImportError('Cannot load RBFNN models') if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) self.temp_dir = os.path.join(self.static_data['CNN_path_temp'], 'temp') if not os.path.exists(self.temp_dir): os.makedirs(self.temp_dir) try: self.load(self.model_dir) self.istrained = True except: pass def rbf_map(self, X, num_centr, centroids, radius): hmap_list = [] s = X.shape d1 = np.transpose(np.tile(np.expand_dims(X, axis=0), [num_centr, 1, 1]), [1, 0, 2]) - np.tile( np.expand_dims(centroids, axis=0), [s[0], 1, 1]) d = np.sqrt(np.power(np.multiply(d1, np.tile(np.expand_dims(radius, axis=0), [s[0], 1, 1])), 2)) phi = np.exp((-1) * np.power(d, 2)) return np.transpose(phi,[1, 0, 2]) def rescale(self,arr, nrows, ncol): W, H = arr.shape new_W, new_H = (nrows, ncol) xrange = lambda x: np.linspace(0, 1, x) f = interp2d(xrange(H), xrange(W), arr, kind="linear") new_arr = f(xrange(new_H), xrange(new_W)) return new_arr def create_inputs(self, X_train): self.N, self.D = X_train.shape H = [] self.depth = len(self.rbf.models) self.num_centr=0 for i in range(self.depth): if self.rbf.models[i]['centroids'].shape[0]>self.num_centr: self.num_centr = self.rbf.models[i]['centroids'].shape[0] for i in range(self.depth): if len(self.rbf.models[i]['Radius'].shape) == 1: self.rbf.models[i]['Radius'] = np.tile(self.rbf.models[i]['Radius'].reshape(1, -1), [self.num_centr,1]) if self.rbf.models[i]['centroids'].shape[0] < self.num_centr: centroids=self.rescale(self.rbf.models[i]['centroids'], self.num_centr, self.D) else: centroids = self.rbf.models[i]['centroids'] if np.isscalar(self.rbf.models[i]['Radius']): Radius = self.rbf.models[i]['Radius'] elif self.rbf.models[i]['Radius'].shape[0] == self.num_centr: Radius = self.rbf.models[i]['Radius'] elif self.rbf.models[i]['Radius'].shape[0] < self.num_centr: Radius = self.rescale(self.rbf.models[i]['Radius'], self.num_centr, self.D) else: raise ValueError('Unkown shape') H.append(np.transpose(self.rbf_map(X_train, self.num_centr, centroids, Radius), [1, 2, 0])) H[i] = np.array(H[i]) H[i] = H[i].reshape(-1, self.D * self.num_centr) sc=self.scale_cnn[i] H[i] = sc.transform(H[i].reshape(-1, self.D * self.num_centr)) H[i] = np.nan_to_num(H[i].reshape(-1, self.D, self.num_centr)) H = np.transpose(np.stack(H), [1, 2, 3, 0]) return H def init_weights(self, init_w): init_random_dist = tf.convert_to_tensor(init_w) return tf.Variable(init_random_dist) def init_bias(self, init_b): init_bias_vals = tf.convert_to_tensor(init_b) return tf.Variable(init_bias_vals) def normal_full_layer(self,input_layer, init_w, init_b): W = self.init_weights(init_w) b = self.init_bias(init_b) return tf.add(tf.matmul(input_layer, W), b, name='prediction'), W, b def build_graph(self, x1, best_weights, kernels, h_size, hold_prob, filters): with tf.name_scope("build_cnn") as scope: H = tf.reshape(x1, [-1, self.D, self.num_centr, self.depth],name='reshape_1') convo_1= tf.keras.layers.Conv2D(filters=int(filters), kernel_size=kernels, padding="same", name='cnn1', # kernel_initializer=lambda shape, dtype: best_weights['build_cnn/cnn1/kernel:0'], # bias_initializer=lambda shape, dtype: best_weights['build_cnn/cnn1/bias:0'], activation=tf.nn.elu) convo_1_pool = tf.keras.layers.AveragePooling2D(pool_size=self.static_data['pool_size'], strides=1, name='pool1') cnn_output=convo_1_pool(convo_1(H)) full_one_dropout = tf.nn.dropout(cnn_output, keep_prob=hold_prob) shape = full_one_dropout.get_shape().as_list() s = shape[1] * shape[2] * shape[3] convo_2_flat = tf.reshape(full_one_dropout, [-1, s]) full_layer_one = tf.keras.layers.Dense(units=h_size[0],activation=tf.nn.elu, name='dense1') # , kernel_initializer = lambda x: best_weights['build_cnn/dense1/kernel:0'], # bias_initializer = lambda x: best_weights['build_cnn/dense1/bias:0'], full_layer_two = tf.keras.layers.Dense(units=h_size[1], activation=tf.nn.elu, name='dense2') # , kernel_initializer = lambda x: best_weights['build_cnn/dense2/kernel:0'], # bias_initializer = lambda x: best_weights['build_cnn/dense2/bias:0'] full_two_dropout = tf.nn.dropout(full_layer_one(convo_2_flat), keep_prob=hold_prob) dense_output = tf.nn.dropout(full_layer_two(full_two_dropout), keep_prob=hold_prob) convo_1.set_weights([best_weights['build_cnn/cnn1/kernel:0'], best_weights['build_cnn/cnn1/bias:0']]) full_layer_one.set_weights([best_weights['build_cnn/dense1/kernel:0'], best_weights['build_cnn/dense1/bias:0']]) full_layer_two.set_weights([best_weights['build_cnn/dense2/kernel:0'], best_weights['build_cnn/dense2/bias:0']]) y_pred, W, b = self.normal_full_layer(dense_output, best_weights['build_cnn/Variable:0'],best_weights['build_cnn/Variable_1:0'] ) weights = convo_1.trainable_weights + full_layer_one.trainable_weights + full_layer_two.trainable_weights + [W, b] return y_pred, weights, convo_1, full_layer_one, full_layer_two def predict(self, X): if self.istrained: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' if hasattr(self.model, 'filters'): filters = self.model['filters'] else: filters = int(self.static_data['filters']) kernels = self.model['kernels'] h_size = self.model['h_size'] best_weights = self.model['best_weights'] H = self.create_inputs(X) tf.compat.v1.reset_default_graph() graph_cnn = tf.Graph() with graph_cnn.as_default(): with tf.device("/cpu:0"): x1 = tf.compat.v1.placeholder('float', shape=[None, self.D, self.num_centr, self.depth], name='input_data') hold_prob = tf.compat.v1.placeholder(tf.float32, name='drop') with tf.device("/cpu:0"): y_pred_, weights, convo_1, full_layer_one, full_layer_two = self.build_graph(x1, best_weights, kernels, h_size, hold_prob, filters) config_tf = tf.compat.v1.ConfigProto(allow_soft_placement=True) config_tf.gpu_options.allow_growth = True with tf.compat.v1.Session(graph=graph_cnn, config=config_tf) as sess: print('Open an rbf-cnn network with %s' % self.num_centr) sess.run(tf.compat.v1.global_variables_initializer()) convo_1.set_weights([best_weights['build_cnn/cnn1/kernel:0'], best_weights['build_cnn/cnn1/bias:0']]) full_layer_one.set_weights( [best_weights['build_cnn/dense1/kernel:0'], best_weights['build_cnn/dense1/bias:0']]) full_layer_two.set_weights( [best_weights['build_cnn/dense2/kernel:0'], best_weights['build_cnn/dense2/bias:0']]) y_pred, weights_run= sess.run([y_pred_, weights], feed_dict={x1: H, hold_prob:1}) sess.close() else: raise ModuleNotFoundError("Error on prediction of %s cluster. The model CNN seems not properly trained", self.cluster) return y_pred def load(self, pathname): cluster_dir = pathname if os.path.exists(os.path.join(cluster_dir, 'cnn' + '.pickle')): try: tmp_dict = joblib.load(os.path.join(cluster_dir, 'cnn' + '.pickle')) self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open CNN model') else: raise ImportError('Cannot find CNN model') ``` #### File: Fuzzy_clustering/ver_tf2/Combine_module_predict.py ```python import os import numpy as np import joblib from Fuzzy_clustering.ver_tf2.Sklearn_predict import sklearn_model_predict class combine_model_predict(object): def __init__(self, static_data, cluster_dir, is_global=False): self.istrained = False self.combine_methods = static_data['combine_methods'] self.cluster_name = os.path.basename(cluster_dir) self.cluster_dir = cluster_dir self.model_dir = os.path.join(self.cluster_dir, 'Combine') try: self.load(self.model_dir) except: pass self.static_data = static_data self.model_type = static_data['type'] self.methods = [] if is_global: for method in static_data['project_methods'].keys(): if self.static_data['project_methods'][method]['Global'] == True: if method == 'ML_RBF_ALL_CNN': self.methods.extend(['RBF_OLS', 'GA_RBF_OLS', 'RBFNN', 'RBF-CNN']) elif method == 'ML_RBF_ALL': self.methods.extend(['RBF_OLS', 'GA_RBF_OLS', 'RBFNN']) else: self.methods.append(method) else: for method in static_data['project_methods'].keys(): if static_data['project_methods'][method]['status'] == 'train': if method == 'ML_RBF_ALL_CNN': self.methods.extend(['RBF_OLS', 'GA_RBF_OLS', 'RBFNN', 'RBF-CNN']) elif method == 'ML_RBF_ALL': self.methods.extend(['RBF_OLS', 'GA_RBF_OLS', 'RBFNN']) else: self.methods.append(method) self.rated = static_data['rated'] self.n_jobs = 2 * static_data['njobs'] self.data_dir = os.path.join(self.cluster_dir, 'data') def averaged(self,X): pred_combine = dict() X_pred = np.array([]) self.best_methods = X.keys() for method in sorted(self.best_methods): if X_pred.shape[0]==0: X_pred = X[method] else: X_pred = np.hstack((X_pred, X[method])) if X_pred.shape[0]>0: pred = np.mean(X_pred, axis=1).reshape(-1, 1) if len(pred.shape)==1: pred = pred.reshape(-1,1) pred[np.where(pred<0)] = 0 pred_combine['average'] = pred else: pred_combine['average'] = np.array([]) return pred_combine def predict(self, X): pred_combine = dict() if len(self.methods) > 1: X_pred = np.array([]) if not hasattr(self, 'best_methods'): self.best_methods = X.keys() for method in sorted(self.best_methods): if X_pred.shape[0]==0: X_pred = X[method] else: X_pred = np.hstack((X_pred, X[method])) X_pred /= 20 if not hasattr(self, 'model'): raise ValueError('The combine models does not exist') for combine_method in self.combine_methods: if X_pred.shape[0]>0: if combine_method == 'rls': pred = np.matmul(self.model[combine_method]['w'], X_pred.T).T elif combine_method == 'bcp': pred =np.matmul(self.model[combine_method]['w'], X_pred.T).T elif combine_method == 'mlp': self.model[combine_method] = sklearn_model_predict(self.model_dir, self.rated, 'mlp', self.n_jobs) pred = self.model[combine_method].predict(X_pred) elif combine_method == 'bayesian_ridge': pred = self.model[combine_method].predict(X_pred) elif combine_method == 'elastic_net': pred = self.model[combine_method].predict(X_pred) elif combine_method == 'ridge': pred = self.model[combine_method].predict(X_pred) else: pred = np.mean(X_pred, axis=1).reshape(-1, 1) if len(pred.shape)==1: pred = pred.reshape(-1,1) pred[np.where(pred<0)] = 0 pred_combine[combine_method] = 20 * pred else: pred_combine[combine_method] = np.array([]) return pred_combine def load(self, pathname): cluster_dir = pathname if os.path.exists(os.path.join(cluster_dir, 'combine_models.pickle')): try: f = open(os.path.join(cluster_dir, 'combine_models.pickle'), 'rb') tmp_dict = joblib.load(f) f.close() del tmp_dict['model_dir'] self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open RLS model') else: raise ImportError('Cannot find RLS model') ``` #### File: Fuzzy_clustering/ver_tf2/Global_train_regressor.py ```python import os import pickle, glob, shutil import numpy as np import pandas as pd from Fuzzy_clustering.ver_tf2.utils_for_forecast import split_continuous from Fuzzy_clustering.ver_tf2.RBFNN_module import rbf_model from Fuzzy_clustering.ver_tf2.RBF_ols import rbf_ols_module from Fuzzy_clustering.ver_tf2.CNN_module import cnn_model from Fuzzy_clustering.ver_tf2.CNN_module_3d import cnn_3d_model from Fuzzy_clustering.ver_tf2.LSTM_module_3d import lstm_3d_model from Fuzzy_clustering.ver_tf2.Combine_module_train import combine_model from Fuzzy_clustering.ver_tf2.Clusterer import clusterer from Fuzzy_clustering.ver_tf2.Global_predict_regressor import global_predict from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from datetime import datetime from Fuzzy_clustering.ver_tf2.imblearn.over_sampling import BorderlineSMOTE, SVMSMOTE, SMOTE,ADASYN import time, logging, warnings, joblib class global_train(object): def __init__(self, static_data, x_scaler): self.istrained = False self.cluster_dir=os.path.join(static_data['path_model'], 'Global_regressor') try: self.load(self.cluster_dir) except: pass self.static_data=static_data self.model_type=static_data['type'] self.x_scaler = x_scaler self.methods=static_data['project_methods'] self.combine_methods=static_data['combine_methods'] self.rated=static_data['rated'] self.n_jobs=static_data['njobs'] self.var_lin = static_data['clustering']['var_lin'] self.cluster_dir=os.path.join(static_data['path_model'], 'Global_regressor') self.data_dir = os.path.join(self.cluster_dir, 'data') if not os.path.exists(self.data_dir): os.makedirs(self.data_dir) logger = logging.getLogger('Glob_train_procedure' + '_' +self.model_type) logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(self.cluster_dir, 'log_train_procedure.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) self.logger = logger def move_files(self, path1, path2): for filename in glob.glob(os.path.join(path1, '*.*')): shutil.copy(filename, path2) def split_dataset(self, X, y, act, X_cnn=np.array([]), X_lstm=np.array([])): if len(y.shape)>1: y=y.ravel() if len(act.shape)>1: act=act.ravel() self.N_tot, self.D = X.shape X_train, X_test1, y_train, y_test1, mask_test1 = split_continuous(X, y, test_size=0.15, random_state=42, mask=False) cvs = [] for _ in range(3): X_train1 = np.copy(X_train) y_train1 = np.copy(y_train) X_train1, X_val, y_train1, y_val = train_test_split(X_train1, y_train1, test_size=0.15) cvs.append([X_train1, y_train1, X_val, y_val, X_test1, y_test1]) self.N_train = cvs[0][0].shape[0] self.N_val = cvs[0][2].shape[0] + cvs[0][4].shape[0] return cvs, mask_test1, X, y, act, X_cnn, X_lstm def find_features(self, cvs, method, njobs): if method=='boruta': from Fuzzy_clustering.ver_tf2.Feature_selection_boruta import FS else: from Fuzzy_clustering.ver_tf2.Feature_selection_permutation import FS fs=FS(self.cluster_dir, 2*njobs) self.features=fs.fit(cvs) self.save(self.cluster_dir) def split_test_data(self, X, y, act, X_cnn=np.array([]), X_lstm=np.array([]), test_indices =None): self.N_tot, self.D = X.shape if not test_indices is None: X_test = X.loc[test_indices['dates_test']] y_test = y.loc[test_indices['dates_test']] act_test = act.loc[test_indices['dates_test']] X = X.loc[test_indices['dates_train']] y = y.loc[test_indices['dates_train']] act = act.loc[test_indices['dates_train']] if len(X_cnn.shape) > 1: X_cnn_test = X_cnn[test_indices['indices_test']] X_cnn = X_cnn[test_indices['indices_train']] else: X_cnn_test = np.array([]) if len(X_lstm.shape) > 1: X_lstm_test = X_lstm[test_indices['indices_test']] X_lstm = X_lstm[test_indices['indices_train']] else: X_lstm_test = np.array([]) else: X_test = pd.DataFrame([]) y_test = pd.DataFrame([]) act_test = pd.DataFrame([]) X_cnn_test = np.array([]) X_lstm_test = np.array([]) self.N_test = X_test.shape[0] return X, y, act, X_cnn, X_lstm, X_test, y_test, act_test, X_cnn_test, X_lstm_test def load_data(self): data_path = self.data_dir X = pd.read_csv(os.path.join(data_path, 'dataset_X.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) y = pd.read_csv(os.path.join(data_path, 'dataset_y.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) act = pd.read_csv(os.path.join(data_path, 'dataset_act.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) if os.path.exists(os.path.join(data_path, 'dataset_cnn.pickle')): X_cnn = joblib.load(os.path.join(data_path, 'dataset_cnn.pickle')) if X_cnn.shape[1]==6: X_cnn = X_cnn.transpose([0, 2, 3, 1]) else: X_cnn = np.array([]) if os.path.exists(os.path.join(data_path, 'dataset_lstm.pickle')): X_lstm = joblib.load(os.path.join(data_path, 'dataset_lstm.pickle')) else: X_lstm = np.array([]) if os.path.exists(os.path.join(self.data_dir, 'test_indices.pickle')): test_indices = joblib.load(os.path.join(self.data_dir, 'test_indices.pickle')) else: test_indices = None return X, y, act, X_cnn, X_lstm, test_indices def fit(self): self.logger.info('Start training Global models') self.logger.info('/n') X, y, act, X_cnn, X_lstm, test_indices = self.load_data() self.variables = X.columns indices = X.index X, y, act, X_cnn, X_lstm, X_test, y_test, act_test, X_cnn_test, X_lstm_test = self.split_test_data(X, y, act, X_cnn=X_cnn, X_lstm=X_lstm, test_indices=test_indices) if X_test.shape[0]>0: lin_models = LinearRegression().fit(X[self.var_lin].values, y.values.ravel()) preds = lin_models.predict(X_test[self.var_lin].values).ravel() err = (preds - y_test.values.ravel()) / 20 rms = np.sum(np.square(err)) mae = np.mean(np.abs(err)) print('rms = %s', rms) print('mae = %s', mae) self.logger.info("Objective from linear models: %s", mae) X = X.values y = y.values / 20 act = act.values if len(y.shape)==1: y = y[:, np.newaxis] if len(act.shape)==1: act = act[:, np.newaxis] try: self.load(self.cluster_dir) except: pass if hasattr(self, 'features') and self.static_data['train_online'] == False: pass else: if self.static_data['sklearn']['fs_status'] != 'ok': X_train, X_test1, y_train, y_test1 = split_continuous(X, y, test_size=0.15, random_state=42) cvs = [] for _ in range(3): X_train1 = np.copy(X_train) y_train1 = np.copy(y_train) X_train1, X_val, y_train1, y_val = train_test_split(X_train1, y_train1, test_size=0.15) cvs.append([X_train1, y_train1, X_val, y_val, X_test1, y_test1]) self.find_features(cvs, self.static_data['sklearn']['fs_method'], self.static_data['sklearn']['njobs']) cvs, mask_test1, X, y, act, X_cnn, X_lstm = self.split_dataset(X, y, act, X_cnn, X_lstm) self.indices = indices[:X.shape[0]] for i in range(3): cvs[i][0] = cvs[i][0][:, self.features] cvs[i][2] = cvs[i][2][:, self.features] cvs[i][4] = cvs[i][4][:, self.features] self.logger.info('Data info for Global models') self.logger.info('Number of variables %s', str(self.D)) self.logger.info('Number of total samples %s', str(self.N_tot)) self.logger.info('Number of training samples %s', str(self.N_train)) self.logger.info('Number of validation samples %s', str(self.N_val)) self.logger.info('Number of testing samples %s', str(self.N_test)) self.logger.info('/n') self.models = dict() for method in self.static_data['project_methods'].keys(): if self.static_data['project_methods'][method]['Global'] == True: self.logger.info('Training start of method %s', method) self.logger.info('/n') if 'sklearn_method' in self.static_data['project_methods'][method].keys(): optimize_method = self.static_data['project_methods'][method]['sklearn_method'] else: optimize_method = [] self.fit_model(cvs, method, self.static_data, self.cluster_dir, optimize_method, X_cnn=X_cnn, X_lstm=X_lstm, y=y, rated=1) self.logger.info('Training end of method %s', method) comb_model = combine_model(self.static_data, self.cluster_dir, x_scaler=self.x_scaler,is_global=True) if comb_model.istrained == False and X_test.shape[0] > 0: comb_model.train(X_test, y_test, act_test, X_cnn_test, X_lstm_test) predict_module = global_predict(self.static_data) predictions = predict_module.predict(X_test.values, X_cnn=X_cnn_test, X_lstm= X_lstm_test) result = predict_module.evaluate(predictions, y_test.values) result.to_csv(os.path.join(self.data_dir, 'result_test.csv')) self.logger.info('Training end for Global models') self.logger.info('/n') self.istrained = True self.save(self.cluster_dir) return self.to_dict() def to_dict(self): dict = {} for k in self.__dict__.keys(): if k not in ['logger']: dict[k] = self.__dict__[k] return dict def fit_model(self, cvs, method, static_data, cluster_dir, optimize_method, X_cnn=np.array([]), X_lstm=np.array([]), y=np.array([]), rated=1): # deap, optuna, skopt, grid_search if optimize_method=='deap': from Fuzzy_clustering.ver_tf2.Sklearn_models_deap import sklearn_model elif optimize_method=='optuna': from Fuzzy_clustering.ver_tf2.Sklearn_models_optuna import sklearn_model elif optimize_method=='skopt': from Fuzzy_clustering.ver_tf2.Sklearn_models_skopt import sklearn_model else: from Fuzzy_clustering.ver_tf2.SKlearn_models import sklearn_model # if (datetime.now().hour>=8 and datetime.now().hour<10): # time.sleep(2*60*60) if method == 'ML_RBF_ALL': model_rbf = rbf_model(static_data['RBF'], rated, cluster_dir) model_rbf_ols = rbf_ols_module(cluster_dir, rated, static_data['sklearn']['njobs'], GA=False) model_rbf_ga = rbf_ols_module(cluster_dir, rated, static_data['sklearn']['njobs'], GA=True) if model_rbf_ols.istrained == False or static_data['train_online'] == True: self.logger.info('Start of training of model_rbf_ols') self.models['RBF_OLS'] = model_rbf_ols.optimize_rbf(cvs) else: self.models['RBF_OLS'] = model_rbf_ols.to_dict() if model_rbf_ga.istrained == False or static_data['train_online'] == True: self.logger.info('Start of training of model_rbf_ga') self.models['GA_RBF_OLS'] = model_rbf_ga.optimize_rbf(cvs) else: self.models['GA_RBF_OLS'] = model_rbf_ga.to_dict() if model_rbf.istrained == False or static_data['train_online'] == True: self.logger.info('Start of training of model_rbf_adam') self.models['RBFNN'] = model_rbf.rbf_train(cvs) else: self.models['RBFNN'] = model_rbf.to_dict() elif method == 'ML_RBF_ALL_CNN': model_rbf = rbf_model(static_data['RBF'], rated, cluster_dir) model_rbf_ols = rbf_ols_module(cluster_dir, rated, static_data['sklearn']['njobs'], GA=False) model_rbf_ga = rbf_ols_module(cluster_dir, rated, static_data['sklearn']['njobs'], GA=True) if model_rbf_ols.istrained == False or static_data['train_online'] == True: self.logger.info('Start of training of model_rbf_ols') self.models['RBF_OLS'] = model_rbf_ols.optimize_rbf(cvs) else: self.models['RBF_OLS'] = model_rbf_ols.to_dict() if model_rbf_ga.istrained == False or static_data['train_online'] == True: self.logger.info('Start of training of model_rbf_ga') self.models['GA_RBF_OLS'] = model_rbf_ga.optimize_rbf(cvs) else: self.models['GA_RBF_OLS'] = model_rbf_ga.to_dict() if model_rbf.istrained == False or static_data['train_online'] == True: self.logger.info('Start of training of model_rbf_adam') self.models['RBFNN'] = model_rbf.rbf_train(cvs) else: self.models['RBFNN'] = model_rbf.to_dict() rbf_dir = [model_rbf_ols.cluster_dir, model_rbf_ga.cluster_dir, model_rbf.cluster_dir] model_cnn = cnn_model(static_data, rated, cluster_dir, rbf_dir) if model_cnn.istrained==False or static_data['train_online']==True: self.logger.info('Start of training of model_cnn') self.models['RBF-CNN'] = model_cnn.train_cnn(cvs) else: self.models['RBF-CNN'] = model_cnn.to_dict() elif method == 'ML_NUSVM': method =method.replace('ML_','') model_sklearn = sklearn_model(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained==False or static_data['train_online']==True: self.logger.info('Start of training of NUSVM') self.models['NUSVM'] = model_sklearn.train(cvs) else: self.models['NUSVM'] = model_sklearn.to_dict() elif method == 'ML_MLP': method = method.replace('ML_','') model_sklearn = sklearn_model(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained==False or static_data['train_online']==True: self.logger.info('Start of training of MLP') self.models['MLP'] = model_sklearn.train(cvs) else: self.models['MLP'] = model_sklearn.to_dict() elif method == 'ML_SVM': method = method.replace('ML_','') model_sklearn = sklearn_model(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained==False or static_data['train_online']==True: self.logger.info('Start of training of SVM') self.models['SVM'] = model_sklearn.train(cvs) else: self.models['SVM'] = model_sklearn.to_dict() elif method == 'ML_RF': method = method.replace('ML_','') model_sklearn = sklearn_model(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained==False or static_data['train_online']==True: self.logger.info('Start of training of RF') self.models['RF'] = model_sklearn.train(cvs) else: self.models['RF'] = model_sklearn.to_dict() elif method == 'ML_XGB': method = method.replace('ML_','') model_sklearn = sklearn_model(cluster_dir, rated, method, static_data['sklearn']['njobs']) if model_sklearn.istrained==False or static_data['train_online']==True: self.logger.info('Start of training of XGB') self.models['XGB'] = model_sklearn.train(cvs) else: self.models['XGB'] = model_sklearn.to_dict() elif method == 'ML_CNN_3d': cnn_model_3d = cnn_3d_model(static_data, rated, cluster_dir) if cnn_model_3d.istrained == False or static_data['train_online'] == True: self.logger.info('Start of training of CNN_3d') self.models['CNN_3d'] = cnn_model_3d.train_cnn(X_cnn, y) else: self.models['CNN_3d'] = cnn_model_3d.to_dict() elif method == 'ML_LSTM_3d': lstm_model_3d = lstm_3d_model(static_data, rated, cluster_dir) if lstm_model_3d.istrained == False or static_data['train_online'] == True: self.logger.info('Start of training of LSTM_3d') self.models['LSTM_3d'] = lstm_model_3d.train_lstm(X_lstm, y) else: self.models['LSTM_3d'] = lstm_model_3d.to_dict() self.save(self.cluster_dir) def load(self, cluster_dir): if os.path.exists(os.path.join(cluster_dir, 'Global_models.pickle')): try: f = open(os.path.join(cluster_dir, 'Global_models.pickle'), 'rb') tmp_dict = pickle.load(f) f.close() tdict = {} for k in tmp_dict.keys(): if k not in ['logger', 'static_data', 'data_dir', 'cluster_dir']: tdict[k] = tmp_dict[k] self.__dict__.update(tdict) except: raise ImportError('Cannot open Global models') else: raise ImportError('Cannot find Global models') def save(self, pathname): if not os.path.exists(pathname): os.makedirs(pathname) f = open(os.path.join(pathname, 'Global_models.pickle'), 'wb') dict = {} for k in self.__dict__.keys(): if k not in ['logger', 'static_data', 'data_dir', 'cluster_dir']: dict[k] = self.__dict__[k] pickle.dump(dict, f) f.close() ``` #### File: Fuzzy_clustering/ver_tf2/NWP_sampler.py ```python import tensorflow as tf from tqdm import tqdm import numpy as np import os, joblib, logging, sys import pandas as pd from sklearn.preprocessing import MinMaxScaler from Fuzzy_clustering.ver_tf2.utils_for_forecast import split_continuous from sklearn.model_selection import train_test_split class nwp_sampler(): def __init__(self, static_data): self.static_data = static_data self.model_type = self.static_data['type'] self.data_variables = self.static_data['data_variables'] self.model_dir = os.path.join(self.static_data['path_model'], 'NWP_sampler') self.istrained = False if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) try: self.load(self.model_dir) except: pass def train(self, X_inp, X, gpu_id='/cpu:0'): if gpu_id == '/device:GPU:0': os.environ['CUDA_VISIBLE_DEVICES'] = '0' elif gpu_id == '/device:GPU:1': os.environ['CUDA_VISIBLE_DEVICES'] = '1' else: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' self.gpu_id = gpu_id logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(self.static_data['path_model'], 'log_model.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) print('CNN training...begin') logger.info('CNN training...begin') i=0 X1 = [] self.columns = [] self.model_name = [] self.max_val = [] for var in sorted(self.data_variables): if ((var == 'WS') and (self.model_type =='wind')) or ((var == 'Flux') and (self.model_type == 'pv')): var_name = 'flux' if var == 'Flux' else 'wind' self.columns.extend(['p_' + var_name] + [var_name] + ['n_' + var_name]) X1.append(X[:, :, :, i]) model1_name = 'p_' + var_name self.model_name.append(model1_name) self.max_val.append(1000 if var == 'Flux' else 30) X1.append(X[:, :, :, i+1]) model1_name = var_name self.model_name.append(model1_name) self.max_val.append(1000 if var == 'Flux' else 30) X1.append(X[:, :, :, i + 2]) model1_name = 'n_' + var_name self.model_name.append(model1_name) self.max_val.append(1000 if var == 'Flux' else 30) i += 3 elif var in {'WD', 'Cloud'}: X1.append(X[:, :, :, i]) self.columns.append('cloud' if var == 'Cloud' else 'direction') model2_name = 'cloud' if var == 'Cloud' else 'direction' self.model_name.append(model2_name) self.max_val.append(100 if var == 'Cloud' else 360) i += 1 elif (var in {'Temperature'}): X1.append(X[:, :, :, i]) self.columns.append('Temp' if var == 'Temperature' else 'wind') model2_name = 'Temp' if var == 'Temperature' else 'wind' self.model_name.append(model2_name) self.max_val.append(320 if var == 'Temperature' else 30) i+=1 elif ((var == 'WS') and (self.model_type == 'pv')): X1.append(X[:, :, :, i]) self.columns.append('Temp' if var == 'Temperature' else 'wind') model2_name = 'Temp' if var == 'Temperature' else 'wind' self.model_name.append(model2_name) self.max_val.append(320 if var == 'Temperature' else 30) i += 1 else: i += 1 X_inp = X_inp[self.columns].values self.models = dict() for x, var, max_val in zip(X1, self.model_name,self.max_val): self.models[var] = self.train_model(X_inp, (x / max_val)[:, :, :, np.newaxis]) self.istrained = True self.save(self.model_dir) def build_graph(self, inp, nwps, learning_rate): with tf.name_scope("build_cnn") as scope: inp = tf.keras.layers.GaussianNoise(0.05)(inp) full_layer_one = tf.keras.layers.Dense(units=32, activation=tf.nn.elu, name='dense1') full_layer_two = tf.keras.layers.Dense(units=96, activation=tf.nn.elu, name='dense2') full_layer_three = tf.keras.layers.Dense(units=self.D1 * self.D2, activation=tf.nn.elu, name='dense3') full_two_out = full_layer_one(inp) full_three_out = full_layer_two(full_two_out) y_pred = full_layer_three(full_three_out) y_pred = tf.reshape(y_pred, [-1, self.D1, self.D2, self.depth], name='reshape') weights = full_layer_one.trainable_weights + full_layer_two.trainable_weights + full_layer_three.trainable_weights with tf.name_scope("train_cnn") as scope: cost_cnn = tf.reduce_mean(tf.square(y_pred - nwps)) optimizer_cnn = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_cnn = optimizer_cnn.minimize(cost_cnn) accuracy_cnn = tf.reduce_mean(tf.abs(y_pred - nwps)) sse_cnn = tf.reduce_sum(tf.square(y_pred - nwps)) rse_cnn = tf.sqrt(tf.reduce_mean(tf.square(y_pred - nwps))) return train_cnn, cost_cnn, accuracy_cnn, sse_cnn, rse_cnn, weights, full_layer_one, full_layer_two, full_layer_three def build_graph_predict(self, inp): with tf.name_scope("build_cnn") as scope: full_layer_one = tf.keras.layers.Dense(units=32, activation=tf.nn.elu, name='dense1') full_layer_two = tf.keras.layers.Dense(units=96, activation=tf.nn.elu, name='dense2') full_layer_three = tf.keras.layers.Dense(units=self.D1 * self.D2, activation=tf.nn.elu, name='dense3') full_two_out = full_layer_one(inp) full_three_out = full_layer_two(full_two_out) y_pred = full_layer_three(full_three_out) y_pred = tf.reshape(y_pred, [-1, self.D1, self.D2, self.depth], name='reshape') return y_pred, full_layer_one, full_layer_two, full_layer_three def distance(self, obj_new, obj_old, obj_max, obj_min): if np.any(np.isinf(obj_old)): obj_old = obj_new.copy() obj_max = obj_new.copy() return True, obj_old, obj_max, obj_min if np.any(np.isinf(obj_min)) and not np.all(obj_max == obj_new): obj_min = obj_new.copy() d = 0 for i in range(obj_new.shape[0]): if obj_max[i] < obj_new[i]: obj_max[i] = obj_new[i] if obj_min[i] > obj_new[i]: obj_min[i] = obj_new[i] d += (obj_new[i] - obj_old[i]) / (obj_max[i] - obj_min[i]) if d < -0.05: obj_old = obj_new.copy() return True, obj_old, obj_max, obj_min else: return False, obj_old, obj_max, obj_min def train_model(self, X_inp, X): if len(X.shape)==3: X=X[:, :, :, np.newaxis] if X_inp.shape[0] != X.shape[0]: raise ValueError('dataset_X and dataset_cnn has not the same N samples') X_train, X_test, y_train, y_test = split_continuous(X_inp, X, test_size=0.15, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.15, random_state=42) N, self.D1, self.D2, self.depth = y_train.shape batch_size = 100 tf.compat.v1.reset_default_graph() graph_cnn = tf.Graph() with graph_cnn.as_default(): with tf.device("/cpu:0"): x1 = tf.compat.v1.placeholder('float', shape=[None, X_inp.shape[1]], name='input_data') y_pred_ = tf.compat.v1.placeholder(tf.float32, shape=[None, self.D1, self.D2, self.depth], name='target_cnn') with tf.device(self.gpu_id): train_cnn, cost_cnn, accuracy_cnn, sse_cnn, rse_cnn, weights, full_layer_one, full_layer_two, full_layer_three = self.build_graph(x1, y_pred_, self.static_data['CNN']['learning_rate']) obj_old = np.inf * np.ones(4) obj_max = np.inf * np.ones(4) obj_min = np.inf * np.ones(4) batches = [np.random.choice(N, batch_size, replace=False) for _ in range(self.static_data['CNN']['max_iterations'] + 1)] config_tf = tf.compat.v1.ConfigProto(allow_soft_placement=True, log_device_placement=True) config_tf.gpu_options.allow_growth = True res = dict() self.best_weights = dict() best_iteration = 0 best_glob_iterations = 0 ext_iterations = self.static_data['CNN']['max_iterations'] train_flag = True patience = 10000 wait = 0 max_iterations =self.static_data['CNN']['max_iterations'] with tf.compat.v1.Session(graph=graph_cnn, config=config_tf) as sess: sess.run(tf.compat.v1.global_variables_initializer()) while train_flag: for i in tqdm(range(max_iterations)): if i % 1000 == 0: sess.run([train_cnn], feed_dict={x1: X_train[batches[i]], y_pred_: y_train[batches[i]]}) acc_new_v, mse_new_v, sse_new_v, rse_new_v, weights_cnn = sess.run( [accuracy_cnn, cost_cnn, sse_cnn, rse_cnn, weights], feed_dict={x1: X_val, y_pred_: y_val}) acc_new_t, mse_new_t, sse_new_t, rse_new_t = sess.run([accuracy_cnn, cost_cnn, sse_cnn, rse_cnn], feed_dict={x1: X_test, y_pred_: y_test}) acc_new = 0.4 * acc_new_v + 0.6 * acc_new_t + 2 * np.abs(acc_new_v - acc_new_t) mse_new = 0.4 * mse_new_v + 0.6 * mse_new_t + 2 * np.abs(mse_new_v - acc_new_t) sse_new = 0.4 * sse_new_v + 0.6 * sse_new_t + 2 * np.abs(sse_new_t - sse_new_v) rse_new = 0.4 * rse_new_v + 0.6 * rse_new_t + 2 * np.abs(rse_new_t - rse_new_v) obj_new = np.array([acc_new, mse_new, sse_new, rse_new]) flag, obj_old, obj_max, obj_min = self.distance(obj_new, obj_old, obj_max, obj_min) if flag: variables_names = [v.name for v in tf.compat.v1.trainable_variables()] for k, v in zip(variables_names, weights_cnn): self.best_weights[k] = v res[str(i)] = obj_old print(acc_new) best_iteration = i wait = 0 else: wait += 1 if wait > patience: train_flag = False break else: sess.run(train_cnn, feed_dict={x1: X_train[batches[i]], y_pred_: y_train[batches[i]]}) wait += 1 best_glob_iterations = ext_iterations + best_iteration if (max_iterations - best_iteration) <= 5000 and max_iterations > 2000: ext_iterations += 10000 max_iterations = 10000 best_iteration = 0 else: best_glob_iterations = ext_iterations + best_iteration train_flag = False sess.close() model_dict = dict() model_dict['best_weights'] = self.best_weights model_dict['static_data'] = self.static_data model_dict['n_vars'] = self.D1 * self.D2 model_dict['depth'] = self.depth model_dict['best_iteration'] = best_glob_iterations model_dict['metrics'] = obj_old model_dict['error_func'] = res print("Total accuracy cnn-3d: %s" % obj_old[0]) return model_dict def run_models(self, X_inp, model_name): if self.istrained: best_weights = self.models[model_name]['best_weights'] tf.compat.v1.reset_default_graph() graph_cnn = tf.Graph() with graph_cnn.as_default(): with tf.device("/cpu:0"): x1 = tf.compat.v1.placeholder('float', shape=[None, X_inp.shape[1]], name='input_data') with tf.device(self.gpu_id): y_pred_, full_layer_one, full_layer_two, full_layer_three = self.build_graph_predict(x1) config_tf = tf.compat.v1.ConfigProto(allow_soft_placement=True) config_tf.gpu_options.allow_growth = True with tf.compat.v1.Session(graph=graph_cnn, config=config_tf) as sess: sess.run(tf.compat.v1.global_variables_initializer()) full_layer_one.set_weights( [best_weights['build_cnn/dense1/kernel:0'], best_weights['build_cnn/dense1/bias:0']]) full_layer_two.set_weights( [best_weights['build_cnn/dense2/kernel:0'], best_weights['build_cnn/dense2/bias:0']]) full_layer_three.set_weights( [best_weights['build_cnn/dense3/kernel:0'], best_weights['build_cnn/dense3/bias:0']]) y_pred = sess.run(y_pred_, feed_dict={x1: X_inp}) sess.close() else: raise ModuleNotFoundError("Error on prediction of %s cluster. The model nwp_sampler seems not properly trained") return y_pred def load(self, pathname): cluster_dir = pathname if os.path.exists(os.path.join(cluster_dir, 'nwp_sampler' + '.pickle')): try: tmp_dict = joblib.load(os.path.join(cluster_dir, 'nwp_sampler' + '.pickle')) self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open nwp_sampler model') else: raise ImportError('Cannot find nwp_sampler model') def save(self, pathname): tmp_dict = {} for k in self.__dict__.keys(): if k not in ['logger', 'static_data_all', 'static_data', 'model_dir', 'temp_dir', 'cluster_cnn_dir', 'cluster_dir']: tmp_dict[k] = self.__dict__[k] joblib.dump(tmp_dict,os.path.join(pathname, 'nwp_sampler' + '.pickle'), compress=9) if __name__ == '__main__': if sys.platform == 'linux': sys_folder = '/media/smartrue/HHD1/George/models/' else: sys_folder = 'D:/models/' path_project = sys_folder + '/Crossbow/Bulgaria_ver2/pv/Lach/model_ver0' static_data = joblib.load(os.path.join(path_project, 'static_data.pickle')) data_path = static_data['path_data'] X = pd.read_csv(os.path.join(data_path, 'dataset_X.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) if os.path.exists(os.path.join(data_path, 'dataset_cnn.pickle')): X_cnn = joblib.load(os.path.join(data_path, 'dataset_cnn.pickle')) else: X_cnn = np.array([]) sc = MinMaxScaler(feature_range=(0, 1)).fit(X.values) X = pd.DataFrame(sc.transform(X.values),columns=X.columns,index=X.index) create_nwps = nwp_sampler(static_data) create_nwps.train(X, X_cnn, gpu_id=static_data['CNN']['gpus'][0]) wind_samples = create_nwps.run_models(X[create_nwps.columns].values,'flux') dir_samples = create_nwps.run_models(X[create_nwps.columns].values,'cloud') print('End') ``` #### File: Fuzzy_clustering/ver_tf2/pvlib_power_curve.py ```python import pvlib import numpy as np import pandas as pd def sol_pos(times_index,latitude,longitude,tz): times_index=pd.DatetimeIndex([times_index]) altitude = 42 # above the sea level in meters sand_point = pvlib.location.Location(latitude, longitude, tz=tz, altitude=altitude, name=tz) solpos = pvlib.solarposition.get_solarposition(times_index, sand_point.latitude, sand_point.longitude) return solpos['apparent_zenith'].values[0] ``` #### File: Fuzzy_clustering/ver_tf2/RBFNN_module.py ```python import os import gc import tensorflow as tf import numpy as np import pickle import glob import shutil import multiprocessing as mp import pandas as pd from Fuzzy_clustering.ver_tf2.RBFNN_tf_core import RBFNN from Fuzzy_clustering.ver_tf2.utils_for_forecast import split_continuous import logging from joblib import Parallel, delayed # from util_database import write_database # from Fuzzy_clustering.ver_tf2.Forecast_model import forecast_model # from Fuzzy_clustering.ver_tf2.utils_for_forecast import split_continuous def optimize_rbf(rbf, X_train, y_train, X_val, y_val, X_test, y_test, num_centr, lr, gpu): acc_old = np.inf acc_old, centroids, radius, w, model = rbf.train(X_train, y_train, X_val, y_val, X_test, y_test, num_centr, lr, gpu_id=gpu) return num_centr, lr, acc_old, model class rbf_model(object): def __init__(self, static_data, rated, cluster_dir): self.static_data=static_data self.cluster = os.path.basename(cluster_dir) self.rated=rated self.cluster_dir=os.path.join(cluster_dir, 'RBFNN') self.model_dir = os.path.join(self.cluster_dir, 'model') self.istrained = False if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) try: self.load(self.model_dir) except: pass def train_core(self, X_train, y_train, X_val, y_val, X_test, y_test, ncs, lrs): self.gpu = True nproc = self.static_data['njobs'] gpus = np.tile(self.static_data['gpus'], ncs.shape[0]*lrs.shape[0]) RBFnn = RBFNN(self.model_dir, rated=self.rated, max_iterations=self.static_data['max_iterations']) # n=0 # optimize_rbf(RBFnn, cvs[n][0], cvs[n][1], cvs[n][2], cvs[n][3], X_test, y_test, nc[n], gpus[n]) # pool = mp.Pool(processes=nproc) # # result = [] # k=0 # for n in range(ncs.shape[0]): # for lr in range(lrs.shape[0]): # optimize_rbf(RBFnn, X_train, y_train, X_val, y_val, X_test, y_test, ncs[n], lrs[lr], gpus[k]) # result.append(pool.apply_async(optimize_rbf, # args=(RBFnn, X_train, y_train, X_val, y_val, X_test, y_test, ncs[n], lrs[lr], gpus[k]))) k = np.arange(ncs.shape[0]*lrs.shape[0]) # optimize_rbf(RBFnn, X_train, y_train, X_val, y_val, X_test, y_test, ncs[0], lrs[0], gpus[0]) results = Parallel(n_jobs=nproc)( delayed(optimize_rbf)(RBFnn, X_train, y_train, X_val, y_val, X_test, y_test, ncs[n], lrs[lr], gpus[i+j]) for i, n in enumerate(range(ncs.shape[0])) for j, lr in enumerate(range(lrs.shape[0]))) # k+=1 # results = [p.get() for p in result] # pool.close() # pool.terminate() # pool.join() r = pd.DataFrame(results, columns=['num_centr', 'lr', 'acc', 'model']) self.num_centr = r.loc[r['acc'].idxmin()]['num_centr'] self.lr = r.loc[r['acc'].idxmin()]['lr'] self.rbf_performance = r['acc'].min() self.save(self.model_dir) gc.collect() models = [r2[3] for r2 in results] return models def rbf_train(self, cvs): logger = logging.getLogger('RBFNN ADAM_train_' + self.cluster) logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(self.model_dir, 'log_train_' + self.cluster + '.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) print('RBFNN ADAM training...begin') logger.info('RBFNN ADAM training...begin for %s', self.cluster) nc = [8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 52] # nc = [12] self.N = cvs[0][0].shape[1] self.D = cvs[0][0].shape[0] + cvs[0][2].shape[0] + cvs[0][4].shape[0] X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) ncs = np.array(nc) lrs=np.array([self.static_data['learning_rate']]) models = self.train_core(X_train, y_train, X_val, y_val, X_test, y_test, ncs, lrs) same = 1 for model in models: logger.info('Best number of centers training ') logger.info('Model with num centers %s ', str(model['num_centr'])) logger.info('val_mae %s, val_mse %s, val_sse %s, val_rms %s ', *model['metrics']) logger.info('Model trained with max iterations %s ', str(model['best_iteration'])) train_res = pd.DataFrame.from_dict(model['error_func'], orient='index') if not os.path.exists( os.path.join(self.model_dir, 'train_centers_result_' + str(model['num_centr']) + '.csv')): train_res.to_csv( os.path.join(self.model_dir, 'train_centers_result_' + str(model['num_centr']) + '.csv'), header=None) else: train_res.to_csv(os.path.join(self.model_dir, 'train_centers_result_' + str(model['num_centr']) + '_' + str( same) + '.csv'), header=None) same += 1 logger.info('temporary performance %s ', str(self.rbf_performance)) logger.info('temporary RBF number %s ', str(self.num_centr)) logger.info('\n') logger.info('\n') if self.num_centr >= 5 and self.static_data['Fine_tuning']: logger.info('Begin fine tuning....') print('Begin fine tuning....') ncs = np.hstack( [np.arange(self.num_centr - 2, self.num_centr - 1), np.arange(self.num_centr + 1, self.num_centr + 3)]) models = self.train_core(X_train, y_train, X_val, y_val, X_test, y_test, ncs, lrs) same = 1 for model in models: logger.info('fine tunninig training ') logger.info('Model with num centers %s ', str(model['num_centr'])) logger.info('val_mae %s, val_mse %s, val_sse %s, val_rms %s ', *model['metrics']) logger.info('Model trained with max iterations %s ', str(model['best_iteration'])) train_res = pd.DataFrame.from_dict(model['error_func'], orient='index') if not os.path.exists( os.path.join(self.model_dir, 'train_fine_tune_result_' + str(model['num_centr']) + '.csv')): train_res.to_csv( os.path.join(self.model_dir, 'train_fine_tune_result_' + str(model['num_centr']) + '.csv'), header=None) else: train_res.to_csv(os.path.join(self.model_dir, 'train_fine_tune_result_' + str(model['num_centr']) + '_' + str( same) + '.csv'), header=None) same += 1 logger.info('After fine tuning performance %s ', str(self.rbf_performance)) logger.info('After fine tuning RBF number %s ', str(self.num_centr)) logger.info('\n') ncs = np.array([self.num_centr]) lrs=np.array([1e-3, 5e-4, 1e-4, 5e-5]) models = self.train_core(X_train, y_train, X_val, y_val, X_test, y_test, ncs, lrs) same=1 for model in models: logger.info('Best Learning rate training ') logger.info('Model with num centers %s ', str(model['num_centr'])) logger.info('val_mae %s, val_mse %s, val_sse %s, val_rms %s ', *model['metrics']) logger.info('Model trained with max iterations %s ', str(model['best_iteration'])) train_res = pd.DataFrame.from_dict(model['error_func'], orient='index') if not os.path.exists(os.path.join(self.model_dir,'train_lr_result_' + str(model['num_centr']) + '.csv')): train_res.to_csv(os.path.join(self.model_dir,'train_lr_result_' + str(model['num_centr']) + '.csv'), header=None) else: train_res.to_csv(os.path.join(self.model_dir, 'train_lr_result_' + str(model['num_centr']) + '_'+ str(same) + '.csv'), header=None) same+=1 logger.info('Tuning lr performance %s ', str(self.rbf_performance)) logger.info('Tuning lr is %s ', str(self.lr)) logger.info('\n') ncs = np.array([self.num_centr]) ncs = np.repeat(ncs, 3) gpus = np.tile(self.static_data['gpus'], ncs.shape[0]) RBFnn = RBFNN(self.model_dir, rated=self.rated, max_iterations=self.static_data['max_iterations']) nproc = self.static_data['njobs'] # pool = mp.Pool(processes=nproc) # # result = [pool.apply_async(optimize_rbf, args=( # RBFnn, cvs[n][0], cvs[n][1].reshape(-1, 1), cvs[n][2], cvs[n][3].reshape(-1, 1), X_test, y_test, ncs[n], self.lr, gpus[n])) for n in # range(ncs.shape[0])] # # results = [p.get() for p in result] # pool.close() # pool.terminate() # pool.join() # results = Parallel(n_jobs=nproc)( delayed(optimize_rbf)(RBFnn, cvs[n][0], cvs[n][1].reshape(-1, 1), cvs[n][2], cvs[n][3].reshape(-1, 1), X_test, y_test, ncs[n], self.lr, gpus[n]) for n in range(ncs.shape[0])) r = pd.DataFrame(results, columns=['num_centr','lr', 'acc', 'model']) r2 = r.groupby(['num_centr'])['model'].apply(lambda x: np.squeeze([x])) r1 = r.groupby(['num_centr']).mean() self.acc_old = r1['acc'].values[0] r2 = r2[self.num_centr] self.models = [r2[i] for i in range(3)] self.rbf_performance = self.acc_old self.istrained = True self.save(self.model_dir) gc.collect() same=1 for model in self.models: logger.info('Final training ') logger.info('Model with num centers %s ', str(model['num_centr'])) logger.info('val_mae %s, val_mse %s, val_sse %s, val_rms %s ', *model['metrics']) logger.info('Model trained with max iterations %s ', str(model['best_iteration'])) train_res = pd.DataFrame.from_dict(model['error_func'], orient='index') if not os.path.exists(os.path.join(self.model_dir,'train_fin_result_' + str(model['num_centr']) + '.csv')): train_res.to_csv(os.path.join(self.model_dir,'train_fin_result_' + str(model['num_centr']) + '.csv'), header=None) else: train_res.to_csv(os.path.join(self.model_dir, 'train_fin_result_' + str(model['num_centr']) + '_'+ str(same) + '.csv'), header=None) same+=1 logger.info('final performance %s ', str(self.rbf_performance)) logger.info('final RBF number %s ', str(self.num_centr)) logger.info('RBFNN training...end for %s', self.cluster) logger.info('\n') return self.to_dict() def to_dict(self): dict = {} for k in self.__dict__.keys(): if k not in ['static_data', 'logger', 'cluster_dir','model_dir', 'model']: dict[k] = self.__dict__[k] return dict def predict(self,X): p=[] self.load(self.model_dir) for i in range(len(self.models)): centroids=self.models[i]['centroids'] radius=self.models[i]['Radius'] w=self.models[i]['W'] s = X.shape d1 = np.transpose(np.tile(np.expand_dims(X, axis=0), [self.num_centr, 1, 1]), [1, 0, 2]) - np.tile( np.expand_dims(centroids, axis=0), [s[0], 1, 1]) d = np.sqrt(np.sum(np.power(np.multiply(d1, np.tile(np.expand_dims(radius, axis=0), [s[0], 1, 1])),2), axis=2)) phi = np.exp((-1) * np.power(d,2)) p.append(np.matmul(phi, w)) p=np.mean(np.array(p),axis=0) return p def rbf_train_TL(self, cvs, model, gpu): print('RBFNN ADAM training...begin') self.N = cvs[0][0].shape[1] self.D = cvs[0][0].shape[0] + cvs[0][2].shape[0] + cvs[0][4].shape[0] X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) ncs = np.array([model['num_centr']]) ncs = np.repeat(ncs, 3) gpus = np.tile(gpu, ncs.shape[0]) RBFnn = RBFNN(self.model_dir, rated=self.rated, max_iterations=self.static_data['max_iterations']) nproc = self.static_data['njobs'] results = Parallel(n_jobs=nproc)( delayed(optimize_rbf)(RBFnn, cvs[n][0], cvs[n][1].reshape(-1, 1), cvs[n][2], cvs[n][3].reshape(-1, 1), X_test, y_test, ncs[n], model['lr'], gpus[n]) for n in range(ncs.shape[0])) r = pd.DataFrame(results, columns=['num_centr', 'lr', 'acc', 'model']) r2 = r.groupby(['num_centr'])['model'].apply(lambda x: np.squeeze([x])) r1 = r.groupby(['num_centr']).mean() self.num_centr = model['num_centr'] self.lr = model['lr'] self.acc_old = r1['acc'].values[0] r2 = r2[self.num_centr] self.models = [r2[i] for i in range(3)] self.rbf_performance = self.acc_old self.istrained = True self.save(self.model_dir) gc.collect() return self.to_dict() def move_files(self, path1, path2): for filename in glob.glob(os.path.join(path1, '*.*')): shutil.copy(filename, path2) def compute_metrics(self, pred, y, rated): if rated == None: rated = y.ravel() else: rated = 1 err = np.abs(pred.ravel() - y.ravel()) / rated sse=np.sum(np.square(pred.ravel()-y.ravel())) rms=np.sqrt(np.mean(np.square(err))) mae=np.mean(err) mse = sse/y.shape[0] return [sse, rms, mae, mse] def load(self, pathname): cluster_dir = pathname if os.path.exists(os.path.join(cluster_dir, 'rbfnn' + '.pickle')): try: f = open(os.path.join(cluster_dir, 'rbfnn' + '.pickle'), 'rb') tmp_dict = pickle.load(f) f.close() self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open RBFNN model') else: raise ImportError('Cannot find RBFNN model') def save(self, pathname): f = open(os.path.join(pathname, 'rbfnn' + '.pickle'), 'wb') dict = {} for k in self.__dict__.keys(): if k not in ['static_data', 'logger', 'cluster_dir','model_dir']: dict[k] = self.__dict__[k] pickle.dump(dict, f) f.close() # if __name__=='__main__': # cluster_dir='D:/APE_net_ver2/Regressor_layer/rule.2' # data_dir='D:/APE_net_ver2/Regressor_layer/rule.2/data' # # rated = None # # static_data = write_database() # X=np.load(os.path.join(data_dir, 'X_train.npy')) # y=np.load(os.path.join(data_dir, 'y_train.npy')) # forecast = forecast_model(static_data, use_db=False) # forecast.load() # X=X[:,0:-1] # X = forecast.sc.transform(X) # y= forecast.scale_y.transform(y) # # scy = MinMaxScaler(feature_range=(0, 1)).fit(y.reshape(-1,1)) # # # # y = scy.transform(y.reshape(-1,1)).ravel() # N, D = X.shape # n_split = int(np.round(N * 0.85)) # X_test1 = X[n_split + 1:, :] # y_test1 = y[n_split + 1:] # X = X[:n_split, :] # y = y[:n_split] # # # X_train, X_val, y_train, y_val=split_continuous(X, y, test_size=0.15, random_state=42) # X_train, X_test, y_train, y_test=split_continuous(X, y, test_size=0.15, random_state=42) # # model_rbf = rbf_model(static_data['RBF'], static_data['type'], static_data['rated'], cluster_dir) # model_rbf.rbf_train(X, y, X_test, y_test) # pred = model_rbf.predict(X_test1) # metrics_single = model_rbf.compute_metrics(pred, y_test1, 0) # # print('Single width') # print('sse, rms, mae, mse') # print(metrics_single) ``` #### File: Fuzzy_clustering/ver_tf2/RBF_ols_predict.py ```python import numpy as np import joblib, os, pickle from deap import base, creator, tools, algorithms from itertools import repeat from collections import Sequence import warnings warnings.filterwarnings("ignore", category=RuntimeWarning) class rbf_ols_predict(object): def __init__(self, cluster_dir, rated, njobs, GA=False): self.cluster = os.path.basename(cluster_dir) self.njobs = 2 * njobs self.rated = rated self.GA=GA self.istrained = False if GA==False: self.cluster_dir = os.path.join(cluster_dir, 'RBF_OLS') self.model_dir = os.path.join(self.cluster_dir, 'model') else: self.cluster_dir = os.path.join(cluster_dir, 'GA_RBF_OLS') self.model_dir = os.path.join(self.cluster_dir, 'model') if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) try: self.load(self.model_dir) except: pass def compute_metrics(self, pred, y, rated): if rated== None: rated=y.ravel() else: rated=20 err=np.abs(pred.ravel()-y.ravel())/rated sse=np.sum(np.square(pred.ravel()-y.ravel())) rms=np.sqrt(np.mean(np.square(err))) mae=np.mean(err) mse = sse/y.shape[0] return [sse, rms, mae, mse] def predict(self, x): if len(x.shape)==1: x=x.reshape(1,-1) self.load(self.model_dir) pred=[] for model in self.models: v = (np.atleast_2d(x)[:, np.newaxis] - model['centroids'][np.newaxis, :]) * model['Radius'] v = np.sqrt((v ** 2.).sum(-1)) v = np.exp(-(v ** 2.)) v = np.matmul(v,model['W'][:-1])+model['W'][-1] pred.append(v) return np.mean(np.array(pred), axis=0) def load(self, pathname): # creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0, -1.0, -1.0)) # creator.create("Individual", np.ndarray, fitness=creator.FitnessMin) # toolbox = base.Toolbox() cluster_dir = pathname if os.path.exists(os.path.join(cluster_dir, 'rbf_ols' + '.pickle')): try: f = open(os.path.join(cluster_dir, 'rbf_ols' + '.pickle'), 'rb') tmp_dict = pickle.load(f) f.close() del tmp_dict['cluster_dir'], tmp_dict[ 'model_dir'] self.__dict__.update(tmp_dict) except: raise ImportError('Cannot open RBFNN model') else: raise ImportError('Cannot find RBFNN model') ``` #### File: ver_tf2/scripts_for_tf2/RBFNN_model.py ```python import tensorflow as tf from tensorflow.python.ops import math_ops from tensorflow.python.keras import backend as K from tensorflow.python.framework import ops from sklearn.cluster import KMeans from sklearn.model_selection import train_test_split from clustering.algorithms import FCV from tqdm import tqdm import numpy as np import os import pandas as pd from Fuzzy_clustering.ver_0.utils_for_forecast import split_continuous from util_database import write_database from Fuzzy_clustering.ver_tf2.Forecast_model import forecast_model class RBF_model(tf.keras.Model): def __init__(self, num_centr): super(RBF_model, self).__init__() self.num_centr = num_centr def find_centers(self,X_train): self.N, self.D = X_train.shape self.batch_size = self.N try: centers = FCV(X_train, n_clusters=self.num_centr, r=4).optimize() c = centers.C except: c = KMeans(n_clusters=self.num_centr, random_state=0).fit(X_train) c = c.cluster_centers_ centroids = c.astype(np.float32) return centroids def initialize(self,inputs): centroids = self.find_centers(inputs) cnt = pd.DataFrame(centroids, index=['c' + str(i) for i in range(centroids.shape[0])], columns=['v' + str(i) for i in range(centroids.shape[1])]) var_init = pd.DataFrame(columns=['v' + str(i) for i in range(centroids.shape[1])]) for r in cnt.index: v = (cnt.loc[r] - cnt.drop(r)).min() v[v == 0] = 0.0001 v.name = r var_init = var_init.append(v) var_init = tf.convert_to_tensor(var_init.values, dtype=tf.float32, name='var_init') self.var = tf.Variable(var_init, dtype=tf.float32, name='RBF_variance') self.centroids = tf.convert_to_tensor(centroids, dtype=tf.float32, name='centroids') @tf.function def lin_out(self, x, y): return tf.linalg.lstsq(x, y, l2_regularizer=0) @tf.function def rbf_map(self, x): s = tf.shape(x) d1 = tf.transpose(tf.tile(tf.expand_dims(x, 0), [self.num_centr, 1, 1]), perm=[1, 0, 2]) - tf.tile( tf.expand_dims(self.centroids, 0), [s[0], 1, 1]) d = tf.sqrt( tf.reduce_sum(tf.pow(tf.multiply(d1, tf.tile(tf.expand_dims(self.var, 0), [s[0], 1, 1])), 2), axis=2)) return tf.cast(tf.exp(tf.multiply(tf.constant(-1, dtype=tf.float32), tf.square(d))), tf.float32) def call(self, inputs, training=None, mask=None): if training: x = inputs[:, :-1] y = tf.expand_dims(inputs[:, -1], 1) else: x=inputs phi = self.rbf_map(x) if training: self.w = self.lin_out(phi, y) h = tf.matmul(phi, self.w) else: h = tf.matmul(phi, self.w) return h class sum_square_loss(tf.keras.losses.Loss): def __init__(self, name='SSE', **kwargs): super(sum_square_loss, self).__init__(name=name, **kwargs) def call(self, y_true, y_pred, sample_weight=None): return math_ops.reduce_sum(math_ops.square(y_true - y_pred)) class RBF_train(): def __init__(self, path_model, rated=None, max_iterations=10000,): self.path_model = path_model self.rated = rated self.max_iterations = max_iterations def distance(self, obj_new, obj_old, obj_max, obj_min): if np.any(np.isinf(obj_old)): obj_old = obj_new.copy() obj_max = obj_new.copy() return True, obj_old, obj_max, obj_min if np.any(np.isinf(obj_min)) and not np.all(obj_max == obj_new): obj_min = obj_new.copy() d = 0 for i in range(obj_new.shape[0]): if obj_max[i] < obj_new[i]: obj_max[i] = obj_new[i] if obj_min[i] > obj_new[i]: obj_min[i] = obj_new[i] d += (obj_new[i] - obj_old[i]) / (obj_max[i] - obj_min[i]) if d < 0: obj_old = obj_new.copy() return True, obj_old, obj_max, obj_min else: return False, obj_old, obj_max, obj_min def train(self, X_train, y_train, X_val, y_val, X_test, y_test, num_centr, lr, gpu_id=[-1]): tf.config.experimental.set_visible_devices(gpu_id[0], 'GPU') tf.config.experimental.set_memory_growth(gpu_id[0], True) tf.config.set_soft_device_placement(True) tf.debugging.set_log_device_placement(True) self.N, self.D = X_train.shape X_val = np.vstack((X_val, X_test)) y_val = np.vstack((y_val, y_test)) X_train = X_train.astype('float32',casting='same_kind') X_val = X_val.astype('float32',casting='same_kind') y_train = y_train.astype('float32',casting='same_kind') y_val = y_val.astype('float32',casting='same_kind') batch_size = self.N model = RBF_model(num_centr) model.initialize(X_train) optimizer = tf.keras.optimizers.Adam(lr) batches = [np.random.choice(self.N, batch_size, replace=False) for _ in range(self.max_iterations)] obj_old = np.inf * np.ones(4) obj_max = np.inf * np.ones(4) obj_min = np.inf * np.ones(4) if self.rated is None: loss_fn = sum_square_loss() mae = tf.keras.metrics.MeanAbsolutePercentageError(name='mae') mse = tf.keras.metrics.MeanSquaredLogarithmicError(name='mse') rms = tf.keras.metrics.RootMeanSquaredError(name='rms') else: loss_fn = sum_square_loss() mae = tf.keras.metrics.MeanAbsolutePercentageError(name='mae') mse = tf.keras.metrics.MeanSquaredLogarithmicError(name='mse') rms = tf.keras.metrics.RootMeanSquaredError(name='rms') res = dict() self.best_weights = None best_iteration = 0 best_glob_iterations = 0 max_iterations = self.max_iterations ext_iterations = self.max_iterations train_flag = True patience = 20000 wait = 0 while train_flag: for i in tqdm(range(max_iterations)): if i % 500 == 0: with tf.GradientTape() as tape: predictions = model(np.hstack((X_train,y_train)), training=True) loss = loss_fn(y_train, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) pred_val = model(X_val, training=False) val_mae = mae(y_val, pred_val) val_mse = mse(y_val, pred_val) val_rms = rms(y_val, pred_val) val_sse = loss_fn(y_val, pred_val) obj_new = np.array([val_mae, val_mse, val_sse, val_rms]) flag, obj_old, obj_max, obj_min = self.distance(obj_new, obj_old, obj_max, obj_min) if flag: res[str(i)] = obj_old print(val_mae.numpy()) self.best_weights = model.get_weights() best_iteration = i wait = 0 else: wait += 1 if wait > patience: train_flag = False break else: with tf.GradientTape() as tape: predictions = model(np.hstack((X_train,y_train)), training=True) loss = loss_fn(y_train, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) wait += 1 best_glob_iterations = ext_iterations + best_iteration if (max_iterations - best_iteration) <= 10000: ext_iterations += 20000 max_iterations = 20000 else: best_glob_iterations = ext_iterations + best_iteration train_flag = False model.set_weights(self.best_weights) model.save_weights(self.path_model + '/rbf_model.h5') model_dict = dict() model_dict['centroids'] = model.centroids.numpy() model_dict['Radius'] = model.var.numpy() model_dict['n_vars'] = self.D model_dict['num_centr'] = num_centr model_dict['W'] = model.w.numpy() model_dict['best_iteration'] = best_glob_iterations model_dict['metrics'] = obj_old model_dict['error_func'] = res print("Total accuracy cnn: %s" % obj_old[0]) return obj_old[3], model.centroids.numpy(), model.var.numpy(), model.w.numpy(), model_dict if __name__ == '__main__': cluster_dir = 'D:/APE_net_ver2/Regressor_layer/rule.2' data_dir = 'D:/APE_net_ver2/Regressor_layer/rule.2/data' rated = None X = np.load(os.path.join(data_dir, 'X_train.npy')) y = np.load(os.path.join(data_dir, 'y_train.npy')) static_data = write_database() forecast = forecast_model(static_data, use_db=False) forecast.load() X = X[:, 0:-1] X = forecast.sc.transform(X) y = forecast.scale_y.transform(y) X_train, X_test, y_train, y_test = split_continuous(X, y, test_size=0.15, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.15, random_state=42) rbf=RBF_train(cluster_dir+'/RBFNN',rated=rated, max_iterations=1000) rbf.train(X_train, y_train, X_val, y_val, X_test, y_test, 12, 0.0001, gpu_id=tf.config.experimental.list_physical_devices('GPU')) ``` #### File: Fuzzy_clustering/ver_tf2/skiron_extractor.py ```python import os import ftplib import pandas as pd import pygrib, joblib, logging import numpy as np from joblib import Parallel, delayed class skiron_Extractor(): def __init__(self, projects_group, pathnwp, nwp_resolution, path_nwp_group, dates_ts, area_group, njobs=1): self.pathnwp = pathnwp self.pathnwp_group = path_nwp_group self.nwp_resolution = nwp_resolution self.area = area_group self.projects_group = projects_group self.njobs = njobs self.create_logger() self.dates_ts = self.check_dates(dates_ts) def create_logger(self): self.logger = logging.getLogger('log_' + self.projects_group + '.log') self.logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(os.path.dirname(self.pathnwp_group), 'log_' + self.projects_group + '.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger self.logger.addHandler(handler) def check_dates(self, dates_ts): start_date = pd.to_datetime(dates_ts[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(dates_ts[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(dates_ts.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates is checked. Number of time samples %s', str(len(dates))) return pd.DatetimeIndex(dates) def skiron_download(self, dt): with ftplib.FTP('ftp.mg.uoa.gr') as ftp: try: ftp.login('mfstep', '!lam') ftp.set_pasv(True) except: print('Error in connection to FTP') local_dir=self.pathnwp +dt.strftime('%Y')+'/'+ dt.strftime('%d%m%y') if not os.path.exists(local_dir): os.makedirs(local_dir) try: for hor in range(76): target_filename='/forecasts/Skiron/daily/005X005/'+dt.strftime('%d%m%y')+'/MFSTEP005_00'+ dt.strftime('%d%m%y')+'_'+str(hor).zfill(3)+'.grb' self.logger.info('Trying to download nwp file %s', '/MFSTEP005_00'+ dt.strftime('%d%m%y')+'_'+str(hor).zfill(3)+'.grb') local_filename = local_dir + '/MFSTEP005_00' + dt.strftime('%d%m%y') + '_' + str(hor).zfill(3) + '.grb' if not os.path.exists(local_filename): with open(local_filename, 'w+b') as f: res = ftp.retrbinary('RETR %s' % target_filename, f.write) count=0 while not res.startswith('226 Transfer complete') and count<=4: print('Downloaded of file {0} is not compile.'.format(target_filename)) os.remove(local_filename) with open(local_filename, 'w+b') as f: res = ftp.retrbinary('RETR %s' % target_filename, f.write) self.logger.info('Success to download nwp file %s', '/MFSTEP005_00' + dt.strftime('%d%m%y') + '_' + str(hor).zfill( 3) + '.grb') count+=1 self.logger.info('Failed to download nwp file %s', '/MFSTEP005_00' + dt.strftime('%d%m%y') + '_' + str(hor).zfill( 3) + '.grb') except: print('Error downloading {0} '.format(local_filename)) ftp.quit() def extract(self, grb, la1,la2,lo1,lo2): nwps=dict() if self.nwp_resolution == 0.05: g = grb.message(21) Uwind, lat, long = g.data(lat1=la1, lat2=la2, lon1=lo1, lon2=lo2) g = grb.message(22) Vwind = g.data(lat1=la1, lat2=la2, lon1=lo1, lon2=lo2)[0] else: g = grb.message(1) Uwind, lat, long = g.data(lat1=la1, lat2=la2, lon1=lo1, lon2=lo2) g = grb.message(2) Vwind = g.data(lat1=la1, lat2=la2, lon1=lo1, lon2=lo2)[0] r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(Uwind) + np.square(Vwind)) wdir = np.arctan2(Uwind, Vwind) * r2d + 180 nwps['lat'] = lat nwps['long'] = long nwps['Uwind'] = Uwind nwps['Vwind'] = Vwind nwps['WS'] = wspeed nwps['WD'] = wdir g = grb.message(3) x = g.data(lat1=la1, lat2=la2, lon1=lo1, lon2=lo2) nwps['Temperature'] = x[0] g = grb.message(7) x = g.data(lat1=la1, lat2=la2, lon1=lo1, lon2=lo2) nwps['Precipitation'] = x[0] g = grb.message(5) x = g.data(lat1=la1, lat2=la2, lon1=lo1, lon2=lo2) nwps['Cloud'] = x[0] g = grb.message(8) x = g.data(lat1=la1, lat2=la2, lon1=lo1, lon2=lo2) nwps['Flux'] = x[0] del x return nwps def nwps_extract_for_train(self, t): nwps = dict() dates = pd.date_range(start=t + pd.DateOffset(hours=19), end=t + pd.DateOffset(hours=53), freq='H') hors = [int(hor) for hor in range(20, 49)] for hor, dt in zip(hors, dates): if self.nwp_resolution == 0.05: fname = os.path.join(self.pathnwp, t.strftime('%Y') + '/' + t.strftime('%d%m%y') + '/MFSTEP005_00' + t.strftime( '%d%m%y') + '_' + str(hor).zfill(3) + '.grb') else: fname = os.path.join(self.pathnwp, t.strftime('%Y') + '/MFSTEP_IASA_00' + t.strftime( '%d%m%y') + '_' + str(hor).zfill(3) + '.grb') #MFSTEP_IASA_00010117_000 if os.path.exists(fname): try: grb = pygrib.open(fname) la1 = self.area[0][0] la2 = self.area[1][0] lo1 = self.area[0][1] lo2 = self.area[1][1] nwps[dt.strftime('%d%m%y%H%M')] = self.extract(grb, la1,la2,lo1,lo2) grb.close() del grb print('nwps exrtacted from ', fname) except: pass return (t.strftime('%d%m%y'), nwps) def grib2dict_for_train(self): res = self.nwps_extract_for_train(self.dates_ts[0]) results = Parallel(n_jobs=self.njobs)(delayed(self.nwps_extract_for_train)(t) for t in self.dates_ts) for res in results: joblib.dump(res[1], os.path.join(self.pathnwp_group, 'skiron_' +res[0] + '.pickle')) print('NWPs extracted for', res[0]) self.logger.info('Nwp pickle file created for date %s', res[0]) def grib2dict_for_train_online(self): res = self.nwps_extract_for_train(self.dates_ts) joblib.dump(res[1], os.path.join(self.pathnwp_group, 'skiron_' +res[0] + '.pickle')) print('NWPs extracted for', res[0]) self.logger.info('Nwp pickle file created for date %s', res[0]) def extract_nwps(self,train=True): if train: dates = [] for dt in self.dates_ts: if not os.path.exists(os.path.join(self.pathnwp_group, 'skiron_' +dt.strftime('%d%m%y') + '.pickle')): dates.append(dt) self.dates_ts = pd.DatetimeIndex(dates) self.grib2dict_for_train() else: self.grib2dict_for_train_online() ``` #### File: Fuzzy_clustering/ver_tf2/test_modules.py ```python import joblib, os import pandas as pd import numpy as np from Fuzzy_clustering.ver_tf2.Models_train_manager import ModelTrainManager model_path = 'D:/models/my_projects/APE_net_ver1/pv/APE_net/model_ver0' rule = 'rule.8' cluster_dir = os.path.join(model_path, 'Regressor_layer/' + rule) data_path = os.path.join(cluster_dir, 'data') static_data = joblib.load(os.path.join(model_path, 'static_data.pickle')) model = ModelTrainManager(path_model=model_path) model.load() def split_test_data(X, y, act, X_cnn=np.array([]), X_lstm=np.array([]), test_indices=None): N_tot, D = X.shape if not test_indices is None: X_test = X.loc[test_indices['dates_test']] y_test = y.loc[test_indices['dates_test']] act_test = act.loc[test_indices['dates_test']] X = X.loc[test_indices['dates_train']] y = y.loc[test_indices['dates_train']] act = act.loc[test_indices['dates_train']] if len(X_cnn.shape) > 1: X_cnn_test = X_cnn[test_indices['indices_test']] X_cnn = X_cnn[test_indices['indices_train']] else: X_cnn_test = np.array([]) if len(X_lstm.shape) > 1: X_lstm_test = X_lstm[test_indices['indices_test']] X_lstm = X_lstm[test_indices['indices_train']] else: X_lstm_test = np.array([]) else: X_test = pd.DataFrame([]) y_test = pd.DataFrame([]) act_test = pd.DataFrame([]) X_cnn_test = np.array([]) X_lstm_test = np.array([]) N_test = X_test.shape[0] return X, y, act, X_cnn, X_lstm, X_test, y_test, act_test, X_cnn_test, X_lstm_test def load_data(): X = pd.read_csv(os.path.join(data_path, 'dataset_X.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) y = pd.read_csv(os.path.join(data_path, 'dataset_y.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) act = pd.read_csv(os.path.join(data_path, 'dataset_act.csv'), index_col=0, header=0, parse_dates=True, dayfirst=True) if os.path.exists(os.path.join(data_path, 'dataset_cnn.pickle')): X_cnn = joblib.load(os.path.join(data_path, 'dataset_cnn.pickle')) if X_cnn.shape[1] == 6: X_cnn = X_cnn.transpose([0, 2, 3, 1]) else: X_cnn = np.array([]) if os.path.exists(os.path.join(data_path, 'dataset_lstm.pickle')): X_lstm = joblib.load(os.path.join(data_path, 'dataset_lstm.pickle')) else: X_lstm = np.array([]) if os.path.exists(os.path.join(data_path, 'test_indices.pickle')): test_indices = joblib.load(os.path.join(data_path, 'test_indices.pickle')) else: test_indices = None return X, y, act, X_cnn, X_lstm, test_indices def test_combine_module(): from Fuzzy_clustering.ver_tf2.Combine_module_train import combine_model X, y, act, X_cnn, X_lstm, test_indices = load_data() X, y, act, X_cnn, X_lstm, X_test, y_test, act_test, X_cnn_test, X_lstm_test = split_test_data(X, y, act, X_cnn=X_cnn, X_lstm=X_lstm, test_indices=test_indices) comb_model = combine_model(static_data, cluster_dir, model.sc) comb_model.istrained = False comb_model.train(X_test, y_test, act_test, X_cnn_test, X_lstm_test) def test_cluster_module(): from Fuzzy_clustering.ver_tf2.Cluster_train_regressors import cluster_train cluster_model = cluster_train(static_data, rule, model.sc) cluster_model.istrained=False cluster_model.fit() if __name__ == '__main__': # test_combine_module() test_cluster_module() ```
{ "source": "joesie/io", "score": 2 }
#### File: io/bin/gpio2mqtt.py ```python from MqttClient import MqttClient from Channel import Channel from datetime import datetime import RPi.GPIO as GPIO import logging import getopt import sys # ====================== ## # Mapping Loglevel from loxberry log to python logging ## def map_loglevel(loxlevel): switcher={ 0:logging.NOTSET, 3:logging.ERROR, 4:logging.WARNING, 6:logging.INFO, 7:logging.DEBUG } return switcher.get(int(loxlevel),"unsupported loglevel") # ====================== ## # handle start arguments ## inputs = None outputs = None loglevel=logging.ERROR logfile="" logfileArg = "" lbhomedir = "" configfile = "" opts, args = getopt.getopt(sys.argv[1:], 'f:l:c:h:', ['logfile=', 'loglevel=', 'configfile=', 'lbhomedir=']) for opt, arg in opts: if opt in ('-f', '--logfile'): logfile=arg logfileArg = arg elif opt in ('-l', '--loglevel'): loglevel=map_loglevel(arg) elif opt in ('-c', '--configfile'): configfile=arg elif opt in ('-h', '--lbhomedir'): lbhomedir=arg # ============== ## # Setup logger function ## def setup_logger(name): global loglevel global logfile logging.captureWarnings(1) logger = logging.getLogger(name) handler = logging.StreamHandler() logger.addHandler(handler) logger.setLevel(loglevel) if not logfile: logfile="/tmp/"+datetime.utcnow().strftime('%Y%m%d_%H%M%S_%f')[:-3]+"_gpio2mqtt.log" logging.basicConfig(filename=logfile,level=loglevel,format='%(asctime)s.%(msecs)03d <%(levelname)s> %(message)s',datefmt='%H:%M:%S') return logger _LOGGER = setup_logger("GPIO2MQTT") _LOGGER.debug("logfile: " + logfileArg) _LOGGER.info("loglevel: " + logging.getLevelName(_LOGGER.level)) # ============================ # init MQTT # ============================ client = MqttClient(lbhomedir + '/data/system/plugindatabase.json', _LOGGER) # ============================ ## # setup GPIOS ## Channel.init(configfile, _LOGGER, client) Channel.sendChannelStates() # ============================ ## # start mqtt Client ## try: _LOGGER.info("start MQTT Client") client.loop_forever() except Exception as e: _LOGGER.exception(str(e)) finally: _LOGGER.info("Stop MQTT Client") client.disconnect() # disconnect gracefully GPIO.cleanup() logging.shutdown() # ============================ ``` #### File: io/bin/MqttClient.py ```python import threading from Channel import Channel, OutputChannel import socket import time import json import paho.mqtt.client as mqtt class MqttClient(): MQTT_DEFAULT_PORT = 1883 client = None mqtt_heatbeatThread = None #Configuration MQTT Topics hostname = socket.gethostname() MQTT_TOPIC_OUTPUT = hostname + "/gpio/set/" MQTT_TOPIC_PWM = hostname + "/gpio/pwm/" MQTT_TOPIC_PWM_FREQUENCY = hostname + "/gpio/pwm/freq/" MQTT_TOPIC_PWM_DC = hostname + "/gpio/pwm/dc/" MQTT_RESPONSE_STATE = hostname + "/gpio/" _LOGGER = None #============================= # publish MQTT ## def publish(self, topic, payload=None, qos=0, retain=False, properties=None): # self.client.publish(topic, payload=payload, qos=qos, retain=retain, properties=properties) self.client.publish(topic, payload=payload, qos=qos, retain=retain) # ============================ ## # get configuration from mqtt broker and store config in mqttconf variable ## def createMqttConfig(self, configfile): try: mqttconf = None with open(configfile) as json_plugindatabase_file: plugindatabase = json.load(json_plugindatabase_file) mqttconfigdir = plugindatabase['plugins']['07a6053111afa90479675dbcd29d54b5']['directories']['lbpconfigdir'] mqttPluginconfig = None with open(mqttconfigdir + '/mqtt.json') as json_mqttconfig_file: mqttPluginconfig = json.load(json_mqttconfig_file) mqttcred = None with open(mqttconfigdir + '/cred.json') as json_mqttcred_file: mqttcred = json.load(json_mqttcred_file) mqttuser = mqttcred['Credentials']['brokeruser'] mqttpass = mqttcred['Credentials']['brokerpass'] mqttaddressArray = mqttPluginconfig['Main']['brokeraddress'].split(":") mqttPort = MqttClient.MQTT_DEFAULT_PORT if len(mqttaddressArray) > 1: mqttPort = int(mqttaddressArray[1]) mqttconf = { 'username':mqttuser, 'password':<PASSWORD>, 'address': mqttaddressArray[0], 'port': mqttPort } self._LOGGER.debug("MQTT config" + str(mqttconf)) return mqttconf except Exception as e: self._LOGGER.exception(str(e)) # ============================ ## # MQTT Heartbeat # def mqtt_heatbeat(self, name): while(1): self.client.publish(MqttClient.MQTT_RESPONSE_STATE+'status', "Online", retain = True) time.sleep(10) # ============================ ## # definition of mqtt callbacks ## def on_connectCallback(self, client, userdata, flags, rc): client.subscribe(MqttClient.MQTT_TOPIC_OUTPUT + "#") self._LOGGER.debug("Subscribe topic: " + MqttClient.MQTT_TOPIC_OUTPUT + "#") client.subscribe(MqttClient.MQTT_TOPIC_PWM + "#") self._LOGGER.debug("Subscribe topic: " + MqttClient.MQTT_TOPIC_PWM + "#") def on_messageCallback(self, client, userdata, msg): mymsg = str(msg.payload.decode("utf-8")) mytopic = str(msg.topic) self._LOGGER.debug("Topic: " + mytopic + " with Payload: " + mymsg + "!") if(mytopic.startswith(MqttClient.MQTT_TOPIC_OUTPUT + "json")): if(not mymsg): self.client.publish(MqttClient.MQTT_RESPONSE_STATE + "error" + "/stateText", "Error, can't set GPIO. For more information read the logfile!", retain = True) self._LOGGER.error('If you use json to set outputs, you have to transmit a json like {"5":"off","6":"on"}. For more information read the manual!') return try: msg_json = json.loads(mymsg) self._LOGGER.debug("msg_json: " + str(msg_json)) for key in msg_json: OutputChannel.handle_setOutput(key, msg_json[key]) self._LOGGER.debug("key: " + key + " msg_jsonkey] "+ str(msg_json[key])) return except json.decoder.JSONDecodeError as ex: self._LOGGER.exception("Malformed json given. Cannot parse string: " + mymsg) except Exception as e: self._LOGGER.exception(str(e)) self.client.publish(MqttClient.MQTT_RESPONSE_STATE + "error" + "/stateText", "Error, can't set GPIO. For more information read the logfile!", retain = True) # Handle output Topic if(mytopic.startswith(MqttClient.MQTT_TOPIC_OUTPUT)): switched = False # Search for topic in List of available output pins and set gpio to state LOW or HIGH for channel in Channel.outputChannels: self._LOGGER.debug("mytopic : " + mytopic) self._LOGGER.debug("testtopic: " + MqttClient.MQTT_TOPIC_OUTPUT + str(channel.pin)) if mytopic.strip() == MqttClient.MQTT_TOPIC_OUTPUT + str(channel.pin) : try: channel.setOutput(mymsg) switched = True except Exception as e: self._LOGGER.exception(str(e)) self.client.publish(MqttClient.MQTT_RESPONSE_STATE + str(channel.pin) + "/stateText", "Error, can't set GPIO. For more information read the logfile!", retain = True) if switched == False: self.client.publish(MqttClient.MQTT_RESPONSE_STATE + "error" + "/stateText", "Error, unknown Topic: " + mytopic, retain = True) # Handle PWM Topic if(mytopic.startswith(MqttClient.MQTT_TOPIC_PWM)): for channel in Channel.outputChannels: try: #set frequency if mytopic.strip() == MqttClient.MQTT_TOPIC_PWM_FREQUENCY + str(channel.pin) : channel.setFrequency(mymsg) self._LOGGER.debug("set frequency " + mymsg + " channel " + str(channel.pin)) #set duty cycle if mytopic.strip() == MqttClient.MQTT_TOPIC_PWM_DC + str(channel.pin) : channel.setDutyCycle(mymsg) self._LOGGER.debug("set frequency " + mymsg + " channel " + str(channel.pin)) except Exception as e: self._LOGGER.exception(str(e)) self.client.publish(MqttClient.MQTT_RESPONSE_STATE + str(channel.pin) + "/stateText", "Error, can't set PWM. For more information read the logfile!", retain = True) def loop_forever(self): self.client.loop_forever() def disconnect(self): self.client.disconnect() self.client.loop_stop() self.mqtt_heatbeat._stop() def __init__(self, configfile, _LOGGER): self._LOGGER = _LOGGER self.client = mqtt.Client() mqttconf = self.createMqttConfig(configfile) if mqttconf is None: raise ValueError("No MQTT config found.") _LOGGER.info("start MQTT Client") self.client.on_connect = self.on_connectCallback self.client.on_message = self.on_messageCallback self.client.username_pw_set(mqttconf['username'], mqttconf['password']) self.client.will_set(MqttClient.MQTT_RESPONSE_STATE+'status', 'Offline', qos=0, retain=True) self.client.connect(mqttconf['address'], mqttconf['port'], 60) mqtt_heatbeatThread = threading.Thread(target=self.mqtt_heatbeat, args=(1,)) mqtt_heatbeatThread.start() ```
{ "source": "Joe-Sin7h/web_scraper", "score": 2 }
#### File: Joe-Sin7h/web_scraper/results.py ```python import typing_extensions from selenium import webdriver from selenium import common import selenium from threading import Thread from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC from selenium.common import exceptions from tkinter import * optionschrome = webdriver.ChromeOptions() optionschrome.add_argument("headless") def get_score_block(driver,sport='football'): if sport.lower()!='boxing': try: section = WebDriverWait(driver, 120).until(EC.presence_of_element_located((By.CLASS_NAME ,"event"))) except exceptions.TimeoutException: driver.refresh() section = WebDriverWait(driver, 120).until(EC.presence_of_element_located((By.CLASS_NAME ,"event"))) else: try: section = WebDriverWait(driver, 120).until(EC.presence_of_element_located((By.ID ,"main"))) except exceptions.TimeoutException: driver.refresh() section = WebDriverWait(driver, 120).until(EC.presence_of_element_located((By.ID ,"main"))) return section def get_results(section,sport,driver): try: if sport.lower()=='football': home = section.find_elements_by_class_name('event__participant.event__participant--home') away = section.find_elements_by_class_name('event__participant.event__participant--away') result = section.find_elements_by_class_name('event__scores') return home, away, result elif sport.lower()=='cricket': # finished = WebDriverWait(driver, 5).until(EC.presence_of_element_located((By.XPATH,'/html/body/div[5]/div[1]/div/div[1]/div[2]/div[5]/div/div[1]/div[1]/div[4]/div'))) # finished.click() home = section.find_elements_by_class_name('event__participant.event__participant--home') home_score = section.find_elements_by_class_name('event__score.event__score--home') away = section.find_elements_by_class_name('event__participant.event__participant--away') away_score = section.find_elements_by_class_name('event__score.event__score--away') return home, home_score, away, away_score elif sport.lower()=='basketball' or sport.lower()=='rugby': home = section.find_elements_by_class_name('event__participant.event__participant--home') home_score = section.find_elements_by_class_name('event__score.event__score--home') away = section.find_elements_by_class_name('event__participant.event__participant--away') away_score = section.find_elements_by_class_name('event__score.event__score--away') return home, home_score, away, away_score elif sport.lower()=='boxing': date = section.find_elements_by_tag_name('li') result = section.find_elements_by_tag_name('a') return date, result elif sport.lower()=='golf': rank = section.find_elements_by_class_name('event__rating.rank') name = section.find_elements_by_class_name('event__participantName') par = section.find_elements_by_class_name('event__center.event__result--par') today = section.find_elements_by_class_name('event__center.event__result--today') result = section.find_elements_by_class_name('event__center.event__result--roundAll.event__result--grey') country = section.find_elements_by_class_name('flag') return rank, name, par, today, result, country except Exception as e: print(e) return None, None, None def get_football(link="https://www.flashscore.co.uk"): football_driver = webdriver.Chrome('chromedriver.exe',options=optionschrome) football_driver.get(link) football_section = get_score_block(football_driver,'football') return football_driver, football_section def get_cricket(link="https://www.flashscore.co.uk/cricket/"): cricket_driver = webdriver.Chrome('chromedriver.exe',options=optionschrome) cricket_driver.get(link) section = get_score_block(cricket_driver,'cricket') return cricket_driver, section def get_basketball(link="https://www.flashscore.co.uk/basketball/"): basketball_driver = webdriver.Chrome('chromedriver.exe',options=optionschrome) basketball_driver.get(link) section = get_score_block(basketball_driver,'basketball') return basketball_driver, section def get_rugby(link="https://www.flashscore.co.uk/rugby-union/"): rugby_driver = webdriver.Chrome('chromedriver.exe',options=optionschrome) rugby_driver.get(link) section = get_score_block(rugby_driver,'rugby') return rugby_driver, section def get_golf(link="https://www.flashscore.co.uk/golf/"): golf_driver = webdriver.Chrome('chromedriver.exe',options=optionschrome) golf_driver.get(link) section = get_score_block(golf_driver,'golf') return golf_driver, section def get_boxing(link="https://www.boxing247.com/boxing-results"): boxing_driver = webdriver.Chrome('chromedriver.exe',options=optionschrome) boxing_driver.get(link) section = get_score_block(boxing_driver,'boxing') return boxing_driver, section class Football(object): def __init__(self, frame, home, away, result): self.homedata = home self.awaydata = away self.resultdata = result self.frame = frame def create_widgets(self): self.home = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.home.insert(END,self.homedata) self.home.place(relwidth=0.22,height=40,relx=0.2,y=300) self.result = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.result.insert(END, self.resultdata) self.result.place(height=40,relx=0.43,y=300,relwidth=0.14) self.away = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.away.insert(END, self.awaydata) self.away.place(relwidth=0.22,height=40,relx=0.58,y=300) class BasketballRugby(object): def __init__(self, frame, home, home_score, away, away_score): self.frame = frame self.home_score = home_score self.home = home self.away_score = away_score self.away = away def create_widgets(self): self.homew = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.homew.insert(END,self.home) self.homew.place(relwidth=0.22,height=40,relx=0.2,y=300) self.result = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.result.insert(END, self.home_score+" - "+self.away_score) self.result.place(height=40,relx=0.43,y=300,relwidth=0.14) self.awayw = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.awayw.insert(END, self.away) self.awayw.place(relwidth=0.22,height=40,relx=0.58,y=300) class Cricket(object): def __init__(self, frame, home, home_score, away, away_score): self.frame = frame self.home_score = home_score self.home = home self.away_score = away_score self.away = away def create_widgets(self): self.homew = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.homew.insert(END,self.home) self.homew.place(relwidth=0.22,height=40,relx=0.2,y=300) self.result = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.result.insert(END, self.home_score+" - "+self.away_score) self.result.place(height=40,relx=0.43,y=300,relwidth=0.14) self.awayw = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.awayw.insert(END, self.away) self.awayw.place(relwidth=0.22,height=40,relx=0.58,y=300) class Boxing(object): def __init__(self, frame, date, result): self.frame = frame self.datevalue = date self.news = result def create_widgets(self): self.newsw = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.newsw.insert(END, self.news) self.newsw.place(height=100,relx=0.2,relwidth=0.6, y=300) class Golf(object): def __init__(self,frame, rank, name, par, today, result, country): self.frame = frame self.rank = rank self.name = name self.par = par self.today = today self.result = result self.country = country def create_widgets(self): self.rankw = Text(self.frame, wrap=WORD,exportselection=False) self.rankw.insert(END, self.rank) # self.rankw.place(relx=0.02,width=5,height=70) self.countryw = Text(self.frame,wrap=WORD,exportselection=False) self.countryw.insert(END,self.country) # self.countryw.place(relx=0.1,width=70,height=70) self.namew = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.namew.insert(END,self.name) self.namew.place(relx=0.2,relwidth=0.2,height=70,y=320) self.parw = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.parw.insert(END,self.par) self.parw.place(relx=0.42,relwidth=0.1,height=70,y=320) self.todayw = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.todayw.insert(END,self.today) self.todayw.place(relx=0.54,relwidth=0.1,height=70,y=320) self.resultw = Text(self.frame,wrap=WORD,exportselection=False,relief='flat') self.resultw.insert(END,self.result) self.resultw.place(relx=0.66,relwidth=0.1,height=70,y=320) if __name__=='__main__': driver = webdriver.Chrome('chromedriver.exe') driver.get('https://www.flashscore.co.uk/golf/') section = get_score_block(driver,'golf') # print(section) # home, home_score, away= get_results(section,'golf',driver) # home, home_score = get_results(section,'basketball',driver) # print(len(home),len(result) # print(home) # print(away) # print(result) # for i in range(len(home)): # print(home[i].text,home_score[i].text) rank, name, par, today, result, country = get_results(section,'golf',driver) print(len(result),len(rank),len(name),len(par),len(today),len(country)) # print(len(rank),print(len(par))) # print(today,result) # print(len(country)) for i in range(len(rank)): print(par[i].text,country[i].get_attribute('title')) driver.quit() ```
{ "source": "joesinghh/AlgoApp", "score": 3 }
#### File: joesinghh/AlgoApp/handlefile.py ```python import pandas as pd import numpy as np from openpyxl import load_workbook from threading import Thread def insert_data_main(data,cols,filename=".\\OrderData\\order_data.xlsx"): # dataframe = pd.read_excel(filename) df = pd.DataFrame([data],columns=cols) writer = pd.ExcelWriter(filename,engine='openpyxl') writer.book = load_workbook(filename) writer.sheets = {ws.title: ws for ws in writer.book.worksheets} last_row = writer.sheets['Sheet1'].max_row df.to_excel(writer,index=False,header=False,startrow=last_row,) writer.save() print("Done",filename) def insert_data(data,cols,filename): t = Thread(target=insert_data_main,args=(data,cols,filename)) t.start() def fetch_data(filename): df = pd.read_excel(filename) return df.to_numpy().tolist() def delete_data(row_index): book = load_workbook('.\\OrderData\\notcompleted.xlsx') sheet = book['Sheet1'] sheet.delete_rows(row_index) book.save('.\\OrderData\\notcompleted.xlsx') def change_data(data, new_sl, new_target): workbook = load_workbook('.\\OrderData\\notcompleted.xlsx') sheet = workbook['Sheet1'] sheet.cell(data.index[0]+2,15).value = new_sl sheet.cell(data.index[0]+2,16).value = new_target workbook.save('.\\OrderData\\notcompleted.xlsx') if __name__=="__main__": # dataframe = pd.read_excel(".\\OrderData\\order_data.xlsx") # last_num = dataframe.values # print(last_num) delete_data(2) ``` #### File: joesinghh/AlgoApp/kite_api.py ```python from kiteconnect import KiteConnect import re import requests import pandas as pd import json requests.packages.urllib3.disable_warnings(requests.packages.urllib3.exceptions.InsecureRequestWarning) class Kite(): instruments = None def __init__(self): f = open('.\\Config\\kite.json') data = json.load(f) self.key = data["kitekey"] self.secretkey = data["secretkey"] self.cls = KiteConnect(api_key=self.key) self.r_key = None self.session = None self.set_token() def set_token(self): with open("kite_access.txt","r") as f: self.r_key = f.read() with open("kite_session.txt","r") as f: self.session = f.read() self.cls.set_access_token(self.session) def login(self): with open("kite.txt" ,"w") as f: self.r_key = int(re.findall(r"[0-9]+",self.cls.login_url())[0]) f.write(self.r_key) with open("kite_session.txt","w") as f: self.session = self.cls.generate_session(self.r_key,self.secretkey)['access_token'] f.write(self.session) def get_id(self,symbol): return Kite.instruments['instrument_token'][Kite.instruments.tradingsymbol == symbol] def get_symbol(self,instru_id): return Kite.instruments['tradingsymbol'][Kite.instruments.instrument_token == instru_id] def get_lot(self,symbol): return Kite.instruments['lot_size'][Kite.instruments.tradingsymbol == symbol] def get_expiry(self,symbol): return Kite.instruments['expiry'][Kite.instruments.tradingsymbol == symbol] def get_quote(self,symbol,exchange): ins = symbol+":"+exchange r = self.cls.quote(ins) bids = [r["data"][ins]["depth"]["buy"][0]["price"],r["data"][ins]["depth"]["buy"][1]["price"],r["data"][ins]["depth"]["buy"][2]["price"]] sells = [r["data"][ins]["depth"]["sell"][0]["price"],r["data"][ins]["depth"]["sell"][1]["price"],r["data"][ins]["depth"]["sell"][2]["price"]] return bids, sells def place_order(self, variety='regular', exchange='NFO', symbol='FSL', t_type='BUY', quantity=1, product="MIS", order_type="MARKET"): self.cls.place_order(variety, exchange, symbol, t_type, quantity, product, order_type) def set_instruments(self): Kite.instruments=pd.DataFrame(self.cls.instruments("NSE")) ```
{ "source": "joesinghh/Text-Extractor", "score": 3 }
#### File: joesinghh/Text-Extractor/main.py ```python from tkinter import * from tkinter.messagebox import showwarning,showerror from tkinter.filedialog import askopenfile import cv2 from PIL import Image, ImageTk from threading import Thread from tesseract import ProcessImage def stop_(): camera.destroy() cap.release() #display result def extractimg(img): result = Toplevel(mainframe) result.title('Result') result.geometry('300x300') text = Text(result,wrap=WORD) text.place(relwidth=1,relheight=1) text.insert(END,ProcessImage(img)) #camera Cature display def display(): rep,frame = cap.read() frame = cv2.flip(frame,1) cv2img = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) img = Image.fromarray(cv2img) imgtk = ImageTk.PhotoImage(image=img) screen.imgtk = imgtk screen.configure(image=imgtk) if val==0: camera.destroy() cap.release() img = img.convert('RGB') img = img.save("test.jpg","JPEG",quality=80, optimize=True, progressive=True) extractimg('test.jpg') else: camera.after(10,display) #select image and extract text def open_img(): path = askopenfile(title="Select Image",filetypes=[("Jpg",".jpg"),("Png",".png")]) if path!=None: extractimg(path.name) #stop camera display def snap_(): global val val=0 #open camera window def opencam(): global val ,screen,cap,camera camera = Toplevel(mainframe) camera.title("camera") camera.geometry('500x500') val = 1 snap = Button(camera,text='Snap',command = Thread(target=snap_,args=()).start,bg='#41abf2') snap.place(relheight=0.1,relwidth=0.5,relx=0.5,rely=0.9) stop = Button(camera,text="Stop",command = stop_,bg='#f50c46',activebackground='#f2417f') stop.place(relheight=0.1,relwidth=0.5,relx=0.0,rely=0.9) screen = Label(camera) screen.place(relheight=0.90,relwidth=1) cap = cv2.VideoCapture(0) #Video capture object ( 0 - default camera , 1 - second camera , and so on) display() #main window root = Tk() #size of window root.geometry('600x600'); root.title("Text Extractor"); icon = PhotoImage(file='icon.png') root.iconphoto(True,icon) #Frames startframe = Frame(root,bg='#34cceb') mainframe = Frame(root,bg='#348feb') startframe.place(relheight=1,relwidth=1) mainframe.place(relheight=1,relwidth=1) startframe.tkraise() #Mainframe opencam = Button(mainframe,text='Open Cam',command=opencam,bg='#37e6e6',activebackground='#3777e6',fg='black',activeforeground='#37e6e6') opencam.place(relheight=0.1,relwidth=0.3,relx=0.15,rely=0.3) selectimg = Button(mainframe,text='Select Image',command = open_img,bg='#37e6e6',activebackground='#3777e6',fg='black',activeforeground='#37e6e6'); selectimg.place(relheight=0.1,relwidth=0.3,relx=0.53,rely=0.3) #start Frame Start = Button(startframe,text='Start',command= mainframe.tkraise,bg='#3777e6',fg='#000000',font=('Arial',25,'bold')) Start.place(relheight=0.15,relwidth=0.3,relx=0.35,rely=0.4) root.mainloop() ``` #### File: joesinghh/Text-Extractor/tesseract.py ```python import cv2 import numpy as np import pytesseract as pt pt.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' # get grayscale image def get_grayscale(image): return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # noise removal def remove_noise(image): return cv2.medianBlur(image,5) #Threading def thresholding(image): return cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] def opening(image): kernel = np.ones((5,5),np.uint8) return cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel) def ProcessImage(img): image = cv2.imread(img) rn = remove_noise(image) gray = get_grayscale(rn) openin = opening(gray) thresh = thresholding(openin) # cv2.imwrite('testout2.jpg',thresh) text = pt.image_to_string(thresh,lang='eng') text = text.split(' ') textoutput = '' for i in text: textoutput+=' '+i return textoutput if __name__=='__main__': print(ProcessImage('test.jpg')) ```
{ "source": "joesingo/tom_astrosource", "score": 2 }
#### File: tom_astrosource/tom_astrosource/models.py ```python from io import StringIO import logging import os from pathlib import Path from astrosource import TimeSeries from astrosource.detrend import detrend_data from astrosource.eebls import plot_bls from astrosource.utils import AstrosourceException import numpy as np from tom_dataproducts.models import DataProduct, ReducedDatum from tom_education.models import AsyncError, PipelineProcess, PipelineOutput from django.conf import settings class AstrosourceLogBuffer(StringIO): """ Thin wrapper around StringIO that logs messages against a `AstrosourceProcess` on write """ def __init__(self, process, *args, **kwargs): super().__init__(*args, **kwargs) self.process = process def write(self, s): self.process.log(s, end='') return super().write(s) class AstrosourceProcess(PipelineProcess): short_name = 'astrosource' allowed_suffixes = ['.fz', '.fits.fz', '.psx'] flags = { 'plot': { 'default': False, 'long_name': 'Create plot files' }, 'period': { 'default': False, 'long_name': 'Perform automatic period finding' }, 'eebls': { 'default': False, 'long_name': 'EEBLS - box fitting to search for periodic transits' }, 'detrend': { 'default': False, 'long_name': 'Detrend exoplanet data' }, } class Meta: proxy = True def copy_input_files(self, tmpdir): """ Copy the input files to the given temporary directory """ return [prod.data.file for prod in self.input_files.all()] # for prod in self.input_files.all(): # dest = tmpdir / os.path.basename(prod.data.file.name) # Use basename of original file # dest.write_bytes(prod.data.read()) def do_pipeline(self, tmpdir, **flags): """ Call astrosource to perform the actual analysis """ with self.update_status('Gathering data files'): filelist = self.copy_input_files(tmpdir) buf = AstrosourceLogBuffer(self) logger = logging.getLogger('astrosource') logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler(buf)) targets = np.array([self.target.ra, self.target.dec, 0, 0]) # Get file type from the first input file (this assumes that all input # files are the same type!) filetype = Path(self.input_files.first().data.name).suffix[1:] # remove the leading '.' try: with self.update_status('Initialising'): ts = TimeSeries(indir=tmpdir, filelist=filelist, targets=targets, verbose=True) with self.update_status('Analysing input data files'): ts.analyse(calib=True) with self.update_status('Calculating curves'): ts.find_stable() with self.update_status('Performing photometric calculations'): ts.photometry() if flags['plot']: with self.update_status('Plotting results and finding period'): ts.plot(period=flags['period'], filesave=True) if flags['detrend']: with self.update_status('Detrending'): detrend_data(ts.paths, filterCode=ts.filtercode) if flags['eebls']: with self.update_status('Doing EEBLS'): plot_bls(paths=ts.paths) except AstrosourceException as ex: raise AsyncError(str(ex)) yield from self.gather_outputs(ts, tmpdir) def gather_outputs(self, timeseries, tmpdir): """ Yield PipelineOutput objects for astrosource output files """ timeseries.usedimages.sort() filesused = [timeseries.files[i] for i in timeseries.usedimages] photdata = [x for x in zip(timeseries.data[0][:,6],timeseries.data[0][:,10],timeseries.data[0][:,11],filesused)] outputs = [] for pd in photdata: yield PipelineOutput(path=None, data=pd, output_type=ReducedDatum, data_product_type=settings.DATA_PRODUCT_TYPES['photometry'][0]) # These data products are PLOTS outfiles = [ # (dirname, filename format string, output type, modes) ('outputplots', 'V1_EnsembleVar{}Mag.png', DataProduct, ['Calib', 'Diff']), ('periods', 'V1_StringTestPeriodPlot{}.png', DataProduct, ['_calibrated', '']), ] for dirname, filename, output_type, modes in outfiles: outdir = tmpdir / Path(dirname) if not outdir.is_dir(): self.log(f"Output directory '{dirname}' not found") continue found_file = False for mode in modes: p = outdir / filename.format(mode) if p.is_file(): yield PipelineOutput(path=p, output_type=output_type, data_product_type=settings.DATA_PRODUCT_TYPES['plot'][0], data=None) found_file = True break if not found_file: glob = filename.format('(' + " | ".join(modes) + ')') self.log(f"No files matching '{glob}' found in '{dirname}'") ```
{ "source": "joesingo/tom_education", "score": 4 }
#### File: tom_education/tom_education/utils.py ```python def assert_valid_suffix(filename, allowed_suffixes): """ Check that `filename` has one of the strings in `allowed_suffixes` as a suffix. Raises an AssertionError if not. """ if not any(filename.endswith(suffix) for suffix in allowed_suffixes): err_msg = ( "File '{}' does not end an allowed filename suffix ({})" .format(filename, ', '.join(allowed_suffixes)) ) raise AssertionError(err_msg) ```
{ "source": "joesitton/Ciphey", "score": 3 }
#### File: basemods/Decoders/a1z26.py ```python from typing import Optional, Dict, List from ciphey.iface import Config, ParamSpec, T, U, Decoder, registry from loguru import logger import re @registry.register class A1z26(Decoder[str, str]): def decode(self, ctext: T) -> Optional[U]: """ Performs A1Z26 decoding """ logger.trace("Attempting A1Z26") ctext_converted = [] ctext_split = re.split(r"[ ,;:\-\n]", ctext) delimiters = set(sorted(re.sub(r"[^ ,;:\-\n]", "", ctext))) ctext_num = re.sub(r"[,;:\-\s]", "", ctext) ctext_decoded = "" if ctext_num.isnumeric() is False: logger.trace("Failed to decode A1Z26 due to non numeric character(s)") return None try: for i in ctext_split: val = int(i) if val > 26 or val < 1: logger.trace( f"Failed to decode A1Z26 due to invalid number '{val}'" ) return None val2 = int(i) + 96 ctext_converted.append(chr(val2)) ctext_decoded = "".join(ctext_converted) logger.debug( f"A1Z26 successful, returning '{ctext_decoded}' with delimiter(s) {delimiters}" ) return ctext_decoded except Exception: return None @staticmethod def priority() -> float: return 0.05 def __init__(self, config: Config): super().__init__(config) @staticmethod def getParams() -> Optional[Dict[str, ParamSpec]]: return None @staticmethod def getTarget() -> str: return "a1z26" ``` #### File: basemods/Decoders/hexadecimal.py ```python from typing import Optional, Dict, Any import ciphey from ciphey.iface import registry @registry.register class Hex(ciphey.iface.Decoder[str, bytes]): def decode(self, text: str) -> Optional[bytes]: """ It takes an octal string and return a string :octal_str: octal str like "110 145 154" """ try: str_converted = bytearray.fromhex(text).decode() return str_converted # Catch bad octal chars except ValueError: return None @staticmethod def priority() -> float: return 0.015 def __init__(self, config: ciphey.iface.Config): super().__init__(config) @staticmethod def getParams() -> Optional[Dict[str, Dict[str, Any]]]: pass @staticmethod def getTarget() -> str: return "hex" ``` #### File: basemods/Decoders/leet.py ```python from typing import Optional, Dict, Any import ciphey from ciphey.iface import registry, Translation, ParamSpec @registry.register class Leet(ciphey.iface.Decoder[str, str]): def decode(self, text: str) -> Optional[str]: for src, dst in self.translate.items(): text = text.replace(src, dst) return text @staticmethod def priority() -> float: return 0.05 def __init__(self, config: ciphey.iface.Config): super().__init__(config) self.translate = config.get_resource(self._params()["dict"], Translation) @staticmethod def getParams() -> Optional[Dict[str, ParamSpec]]: return { "dict": ParamSpec( desc="The leetspeak dictionary to use", req=False, default="cipheydists::translate::leet", ) } @staticmethod def getTarget() -> str: return "leet" ```
{ "source": "joesmall37/Algorithms", "score": 4 }
#### File: Algorithms/codingchallenges/first_three_multiples.py ```python def first_three_multiples(num): print(num * 1) print(num * 2) print(num * 3) return (num * 3) print(first_three_multiples(10)) ``` #### File: Algorithms/codingchallenges/squareRoot.py ```python def square_root(num): root = num ** 0.5 return root print(square_root(10)) ``` #### File: Algorithms/codingchallenges/tenthPower.py ```python def tenth_power(num): power_ten = num ** 10 return power_ten print(tenth_power(10)) ``` #### File: Algorithms/codingchallenges/winPerentage.py ```python def win_percentage(wins, losses): total = wins + losses percentage = (wins / total) * 100 return percentage print(win_percentage(5, 5)) ``` #### File: Algorithms/QuickSort/intro.py ```python def quicksort(list, start, end): if start >= end: return print(list[start]) start += 1 quicksort(list, start, end) colors = ["blue", "red", "green", "purple", "orange"] quicksort(colors, 0, len(colors) - 1) ```
{ "source": "joesmall37/E-Commerce-", "score": 2 }
#### File: E-Commerce-/main/views.py ```python from django.shortcuts import render, redirect from main.models import Item from django.contrib.auth import authenticate, login, logout from django.contrib.auth.forms import UserCreationForm from django.contrib import messages # Create your views here. def homepage(request): return render(request, template_name='main/home.html') def itemspage(request): if request.method == 'GET': items = Item.objects.filter(owner=None) return render(request, template_name='main/items.html', context= {'items' : items}) if request.method == 'POST': purchased_item = request.POST.get('purchased-item') if purchased_item: purchased_item_object = Item.objects.get(name=purchased_item) purchased_item_object.owner = request.user purchased_item_object.save() messages.success(request, f'Congratulations. You just bought {purchased_item_object.name} for {purchased_item_object.price}') return redirect('items') def loginpage(request): if request.method == 'GET': return render(request, template_name='main/login.html') if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') user = authenticate(username=username, password=password) if user is not None: login(request, user) messages.success(request, f'You are logged in as {user.username}') return redirect('items') else: messages.error(request, 'The combination of the user name and the password is wrong!') return redirect('login') def registerpage(request): if request.method == 'GET': return render(request, template_name='main/register.html') if request.method == 'POST': form = UserCreationForm(request.POST) if form.is_valid(): form.save() username = form.cleaned_data.get('username') password = form.cleaned_data.get('password1') user = authenticate(username=username, password=password) login(request, user) messages.success(request, f'You have registered your account successfully! Logged in as {user.username}') return redirect('home') else: messages.error(request, form.errors) return redirect('register') def logoutpage(request): logout(request) messages.success(request, f'You have been logged out!') return redirect('home') ```
{ "source": "joe-smith-py/searchPdf", "score": 3 }
#### File: joe-smith-py/searchPdf/searchPdf2.py ```python import PyPDF2 import re import os from multiprocessing import Pool example = '/home/joe/PycharmProjects/PDFsearch' def find_pdfs(directory): pdfs = [] for foldername, subfolder, files in os.walk(directory): for file in files: if '.pdf' in file: pdfs.append(foldername + '/' + file) return pdfs def search_pdf(critera): search_term, path = critera pdf = PyPDF2.PdfFileReader(path) for n in range(0, pdf.getNumPages()): page = pdf.getPage(n) text = page.extractText().lower() search = re.search(search_term, text) if search != None: print(path) break term = input('Enter search word: ') choice = int(input('1. SC\n2. HSC \nSelect a folder: ')) thread_count = int(input('How many threads would you like to devote? ')) if choice == 1: cho = '/media/raja/316E396D3C478D8A/pdrv/computer science/SC/' else: cho = '/media/raja/316E396D3C478D8A/pdrv/computer science/HSC/' pdfs = find_pdfs(cho) search_crit = [] for pdf in pdfs: search_crit.append((term, pdf)) with Pool(thread_count) as p: p.map(search_pdf, search_crit) ```
{ "source": "joesoftheart/Metagenomic", "score": 3 }
#### File: Metagenomic/ScriptQiime2018/extractQiime2Html.py ```python """Import Required Modules""" import argparse, os, subprocess, shutil """Create arguments for parsing parameters""" #Instantiate the parser parser = argparse.ArgumentParser(description='Description: The script for extracting qiime2 artifact') #Add Positional Arguments [required parameters]/No Positional arguments ##Add Optional Arguments [optional parameters] parser.add_argument('--inPath', type=str, default="./", help="Input folder to extract results") ##Get value for each parameters args = parser.parse_args() path = args.inPath """Summary Input and Output Files""" print("="*50) print("SUMMARY INPUT") print("Input Path:",path) print("="*50) ###################################################################################################################### ###[1] Define Function ###################################################################################################################### """function to get the index.html link""" def getLink(initPath): fileList = os.listdir(initPath) folderName = fileList[0] #link = initPath + "/" + folderName + "/data/index.html" link = folderName + "/data/index.html" return link ###################################################################################################################### ###[2] Check Condition and Run Extraction ###################################################################################################################### if os.path.exists(path): print("Input path is exists. ==> OK, starting extract QIIME2 results") ################################################################################################################## """Create HTML output folder""" os.mkdir(path+"/outHTML") os.mkdir(path+"/outHTML/1_sequence") os.mkdir(path+"/outHTML/2_otuTable") os.mkdir(path+"/outHTML/3_alphaBetaDiversity") os.mkdir(path+"/outHTML/4_taxonomy") os.mkdir(path+"/outHTML/5_file") ################################################################################################################## """[1] Extract raw sequence""" cmd = "unzip "+path+"/2_dereplicate_seq.qzv -d "+path+"/outHTML/1_sequence/dereplicate_seq" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link11 = "1_sequence/dereplicate_seq/"+getLink(path+"/outHTML/1_sequence/dereplicate_seq")##dereplicated sequence cmd = "unzip "+path+"/2_dereplicate_table.qzv -d "+path+"/outHTML/1_sequence/dereplicate_table" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link12 = "1_sequence/dereplicate_table/"+getLink(path+"/outHTML/1_sequence/dereplicate_table")##dereplicated table ################################################################################################################## """[2] Extract OTU table""" cmd = "unzip "+path+"/4_table_nonchimeric.qzv -d "+path+"/outHTML/2_otuTable/otu_table" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link21 = "2_otuTable/otu_table/"+getLink(path+"/outHTML/2_otuTable/otu_table")##OTU table cmd = "unzip "+path+"/4_rep_seq_nonchimeric.qzv -d "+path+"/outHTML/2_otuTable/rep_seq" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link22 = "2_otuTable/rep_seq/"+getLink(path+"/outHTML/2_otuTable/rep_seq")##representative sequence cmd = "unzip "+path+"/checkingChimera/stats.qzv -d "+path+"/outHTML/2_otuTable/chimera_stat" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link23 = "2_otuTable/chimera_stat/"+getLink(path+"/outHTML/2_otuTable/chimera_stat")##statistics of chimera checking ################################################################################################################## """[3] Extract Alpha/Beta Diversity""" cmd = "unzip "+path+"/diversityAnalysisResults/alpha-rarefaction.qzv -d "+path+"/outHTML/3_alphaBetaDiversity/alpha_rarefaction" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link31 = "3_alphaBetaDiversity/alpha_rarefaction/"+getLink(path+"/outHTML/3_alphaBetaDiversity/alpha_rarefaction")##alpha rarefaction cmd = "unzip "+path+"/diversityAnalysisResults/shannon_vector.qzv -d "+path+"/outHTML/3_alphaBetaDiversity/shannon_vector" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link32 = "3_alphaBetaDiversity/shannon_vector/"+getLink(path+"/outHTML/3_alphaBetaDiversity/shannon_vector")##shannon diversity index cmd = "unzip "+path+"/diversityAnalysisResults/observed_otus_vector.qzv -d "+path+"/outHTML/3_alphaBetaDiversity/observed_otus" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link33 = "3_alphaBetaDiversity/observed_otus/"+getLink(path+"/outHTML/3_alphaBetaDiversity/observed_otus")##observed OTUs link34 = ""#link for weighted_unifrac_pcoa_results link35 = ""#unweighted_unifrac_pcoa_results link36 = ""#bray_curtis_pcoa_results if os.path.exists(path+"/diversityAnalysisResults/weighted_unifrac_pcoa_results.qzv"): cmd = "unzip "+path+"/diversityAnalysisResults/weighted_unifrac_pcoa_results.qzv -d "+path+"/outHTML/3_alphaBetaDiversity/pcoa_weighted_unifrac" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link34 = "3_alphaBetaDiversity/pcoa_weighted_unifrac/"+getLink(path+"/outHTML/3_alphaBetaDiversity/pcoa_weighted_unifrac")##link for weighted_unifrac_pcoa_results if os.path.exists(path+"/diversityAnalysisResults/unweighted_unifrac_pcoa_results.qzv"): cmd = "unzip "+path+"/diversityAnalysisResults/unweighted_unifrac_pcoa_results.qzv -d "+path+"/outHTML/3_alphaBetaDiversity/pcoa_unweighted_unifrac" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link35 = "3_alphaBetaDiversity/pcoa_unweighted_unifrac/"+getLink(path+"/outHTML/3_alphaBetaDiversity/pcoa_unweighted_unifrac")##link for weighted_unifrac_pcoa_results if os.path.exists(path+"/diversityAnalysisResults/bray_curtis_pcoa_results.qzv"): cmd = "unzip "+path+"/diversityAnalysisResults/bray_curtis_pcoa_results.qzv -d "+path+"/outHTML/3_alphaBetaDiversity/pcoa_bray_curtis" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link36 = "3_alphaBetaDiversity/pcoa_bray_curtis/"+getLink(path+"/outHTML/3_alphaBetaDiversity/pcoa_bray_curtis")##link for weighted_unifrac_pcoa_results ################################################################################################################## """[4] Extract Taxonomy""" cmd = "unzip "+path+"/7_taxonomy.qzv -d "+path+"/outHTML/4_taxonomy/taxonomy" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link41 = "4_taxonomy/taxonomy/"+getLink(path+"/outHTML/4_taxonomy/taxonomy")##taxonomy cmd = "unzip "+path+"/7_taxa_bar_plots.qzv -d "+path+"/outHTML/4_taxonomy/taxonomy_bar_plot" run = subprocess.Popen(cmd,shell="TRUE") run.wait() link42 = "4_taxonomy/taxonomy_bar_plot/"+getLink(path+"/outHTML/4_taxonomy/taxonomy_bar_plot")##barchart taxonomy ################################################################################################################## """Save output path into HTML file""" saveFile = open(path+"/outHTML/index.html","w") """Define header and Footer""" header = """<html><title>Qiime2 Output HTML</title><meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="stylesheet" href="https://www.w3schools.com/w3css/4/w3.css"> <link href='https://fonts.googleapis.com/css?family=RobotoDraft' rel='stylesheet' type='text/css'> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css"> <body><style>p {text-indent:20px;}</style> """ footer = "</body></html>" """Write Data""" saveFile.write(header) saveFile.write("<p><strong>###QIIME2 OUTPUT List###</strong></p>") saveFile.write("<hr/>") saveFile.write("<p><strong>[1] Input Sequence Summary</strong></p>") saveFile.write('<p><a href="'+link11+'">1.1 Dereplicated Sequence</a></p>') saveFile.write('<p><a href="'+link12+'">1.2 Dereplicated Sequence Table</a></p>') saveFile.write("<p><strong>[2] OTU table</strong></p>") saveFile.write('<p><a href="'+link21+'">2.1 OTU table</a></p>') saveFile.write('<p><a href="'+link22+'">2.2 Representative sequence</a></p>') saveFile.write('<p><a href="'+link23+'">2.3 Chimera checking Statistics</a></p>') saveFile.write("<p><strong>[3] Alpha/Beta Diversity</strong></p>") saveFile.write('<p><a href="'+link31+'">3.1 Rarefaction curve</a></p>') saveFile.write('<p><a href="'+link32+'">3.2 Shannon diversity index</a></p>') saveFile.write('<p><a href="'+link33+'">3.3 Observed OTU</a></p>') if link34 != "": saveFile.write('<p><a href="'+link34+'">3.4 PCoA (weighted unifrac)</a></p>') if link35 != "": saveFile.write('<p><a href="'+link35+'">3.5 PCoA (unweighted unifrac)</a></p>') if link36 != "": saveFile.write('<p><a href="'+link36+'">3.6 PCoA (bray curtis)</a></p>') saveFile.write("<p><strong>[4] Taxonomy</strong></p>") saveFile.write('<p><a href="'+link41+'">4.1 Taxonomy</a></p>') saveFile.write('<p><a href="'+link42+'">4.2 Barchart plot</a></p>') saveFile.write("<hr/>") saveFile.write(footer) saveFile.close() ################################################################################################################## """Copy file into folder""" #Dereplicated sequence fileIn = path+"/outHTML/"+link11.replace("index.html","sequences.fasta") fileOut = path+"/outHTML/5_file/dereplicated_sequence.fasta" shutil.copy(fileIn,fileOut) #Representative sequence cmd = "unzip -l "+path+"/4_rep_seq_nonchimeric.qza | grep 'dna-sequences.fasta' | rev | cut -d \" \" -f 1 | rev | xargs -n 1 unzip -c -q "+path+"/4_rep_seq_nonchimeric.qza > "+path+"/outHTML/5_file/representative_sequence.fasta" run = subprocess.Popen(cmd,shell="TRUE") run.wait() #feature-table.biom cmd = "unzip -l "+path+"/4_table_nonchimeric.qza | grep 'feature-table.biom' | rev | cut -d \" \" -f 1 | rev | xargs -n 1 unzip -c -q "+path+"/4_table_nonchimeric.qza > "+path+"/outHTML/5_file/feature-table.biom" run = subprocess.Popen(cmd,shell="TRUE") run.wait() #convert .biom to .tsv cmd = "biom convert -i "+path+"/outHTML/5_file/feature-table.biom -o "+path+"/outHTML/5_file/feature-table.tsv"+" --to-tsv" run = subprocess.Popen(cmd,shell="TRUE") run.wait() #feature-frequency-detail cmd = "unzip -l "+path+"/4_table_nonchimeric.qzv | grep 'feature-frequency-detail.csv' | rev | cut -d \" \" -f 1 | rev | xargs -n 1 unzip -c -q "+path+"/4_table_nonchimeric.qzv > "+path+"/outHTML/5_file/feature-frequency-detail.csv" run = subprocess.Popen(cmd,shell="TRUE") run.wait() #sample-frequency-detail cmd = "unzip -l "+path+"/4_table_nonchimeric.qzv | grep 'sample-frequency-detail.csv' | rev | cut -d \" \" -f 1 | rev | xargs -n 1 unzip -c -q "+path+"/4_table_nonchimeric.qzv > "+path+"/outHTML/5_file/sample-frequency-detail.csv" run = subprocess.Popen(cmd,shell="TRUE") run.wait() #Taxonomy mapping for biom table cmd = "unzip -l "+path+"/7_taxonomy.qza | grep 'taxonomy.tsv' | rev | cut -d \" \" -f 1 | rev | xargs -n 1 unzip -c -q "+path+"/7_taxonomy.qza > "+path+"/outHTML/5_file/taxonomy_mapping_for_OTU.tsv" run = subprocess.Popen(cmd,shell="TRUE") run.wait() #Taxonomy rank = {1:"kingdom",2:"phylum",3:"class",4:"order",5:"family",6:"genus",7:"species"} for i in range(1,8): cmd = "unzip -l "+path+"/7_taxa_bar_plots.qzv | grep 'level-"+str(i)+".csv' | rev | cut -d \" \" -f 1 | rev | xargs -n 1 unzip -c -q "+path+"/7_taxa_bar_plots.qzv > "+path+"/outHTML/5_file/taxonomy_level_"+str(i)+"_"+rank[i]+".csv" run = subprocess.Popen(cmd,shell="TRUE") run.wait() ##End of code ```
{ "source": "joesolly/neopixel_fft", "score": 3 }
#### File: joesolly/neopixel_fft/recorder.py ```python import numpy import pyaudio import threading class SwhRecorder: """Simple, cross-platform class to record from the microphone.""" MAX_FREQUENCY = 5000 # sounds above this are just annoying MIN_FREQUENCY = 16 # can't hear anything less than this def __init__(self, buckets=300, min_freq=16, max_freq=5000): """minimal garb is executed when class is loaded.""" self.buckets = buckets self.MIN_FREQUENCY = min_freq self.MAX_FREQUENCY = max_freq self.p = pyaudio.PyAudio() self.input_device = self.p.get_default_input_device_info() self.secToRecord = 0.08 self.RATE = int(self.input_device['defaultSampleRate']) self.BUFFERSIZE = int(self.secToRecord * self.RATE) # should be a power of 2 and at least double buckets self.threadsDieNow = False self.newData = False self.buckets_within_frequency = (self.MAX_FREQUENCY * self.BUFFERSIZE) / self.RATE self.buckets_per_final_bucket = max(int(self.buckets_within_frequency / buckets), 1) self.buckets_below_frequency = int((self.MIN_FREQUENCY * self.BUFFERSIZE) / self.RATE) self.buffersToRecord = int(self.RATE * self.secToRecord / self.BUFFERSIZE) if self.buffersToRecord == 0: self.buffersToRecord = 1 def setup(self): """initialize sound card.""" self.inStream = self.p.open( format=pyaudio.paInt16, channels=1, rate=self.RATE, input=True, frames_per_buffer=self.BUFFERSIZE, input_device_index=self.input_device['index']) self.audio = numpy.empty((self.buffersToRecord * self.BUFFERSIZE), dtype=numpy.int16) def close(self): """cleanly back out and release sound card.""" self.continuousEnd() self.inStream.stop_stream() self.inStream.close() self.p.terminate() def getAudio(self): """get a single buffer size worth of audio.""" audioString = self.inStream.read(self.BUFFERSIZE) return numpy.fromstring(audioString, dtype=numpy.int16) def record(self, forever=True): """record secToRecord seconds of audio.""" while True: if self.threadsDieNow: break for i in range(self.buffersToRecord): try: audio = self.getAudio() self.audio[i * self.BUFFERSIZE:(i + 1) * self.BUFFERSIZE] = audio except: #OSError input overflowed print('OSError: input overflowed') self.newData = True if forever is False: break def continuousStart(self): """CALL THIS to start running forever.""" self.t = threading.Thread(target=self.record) self.t.start() def continuousEnd(self): """shut down continuous recording.""" self.threadsDieNow = True if hasattr(self, 't') and self.t: self.t.join() def fft(self): if not self.newData: return None data = self.audio.flatten() self.newData = False left, right = numpy.split(numpy.abs(numpy.fft.fft(data)), 2) ys = numpy.add(left, right[::-1]) # don't lose power, add negative to positive ys = ys[self.buckets_below_frequency:] # Shorten to requested number of buckets within MAX_FREQUENCY final = numpy.copy(ys[::self.buckets_per_final_bucket]) final_size = len(final) for i in range(1, self.buckets_per_final_bucket): data_to_combine = numpy.copy(ys[i::self.buckets_per_final_bucket]) data_to_combine.resize(final_size) final = numpy.add(final, data_to_combine) return final[:int(self.buckets_within_frequency)] ```
{ "source": "joesolly/vrs-python", "score": 2 }
#### File: vrs-python/tests/test_vcr.py ```python import pytest @pytest.mark.vcr def test_vcrtest(dataproxy): seq = dataproxy.get_sequence("NC_000013.11",50_000_000,50_000_050) assert len(seq) == 50 assert seq == "TTAGGTGTTTAGATGATTTCTAAGATGCTTTTAAGCCCAGTATTTCTATT" ``` #### File: vrs-python/tests/test_vrs.py ```python from ga4gh.core import sha512t24u, ga4gh_digest, ga4gh_serialize, ga4gh_identify from ga4gh.vrs import models, vr_deref, vr_enref allele_dict = { 'location': {'interval': { 'end': 55181320, 'start': 55181319, 'type': 'SimpleInterval'}, 'sequence_id': 'ga4gh:SQ.F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul', 'type': 'SequenceLocation'}, 'state': {'sequence': 'T', 'type': 'SequenceState'}, 'type': 'Allele'} a = models.Allele(**allele_dict) def test_vr(): assert a.as_dict() == allele_dict assert ga4gh_serialize(a.location.interval) == b'{"end":55181320,"start":55181319,"type":"SimpleInterval"}' assert ga4gh_serialize(a.location) == b'{"interval":{"end":55181320,"start":55181319,"type":"SimpleInterval"},"sequence_id":"F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul","type":"SequenceLocation"}' assert sha512t24u(ga4gh_serialize(a.location)) == '5D9eG-ev4fA7mYIpOpDEe-4Am1lzPZlQ' assert ga4gh_digest(a.location) == '5D9eG-ev4fA7mYIpOpDEe-4Am1lzPZlQ' assert ga4gh_identify(a.location) == 'ga4gh:VSL.5D9eG-ev4fA7mYIpOpDEe-4Am1lzPZlQ' assert ga4gh_serialize(a) == b'{"location":"5D9eG-ev4fA7mYIpOpDEe-4Am1lzPZlQ","state":{"sequence":"T","type":"SequenceState"},"type":"Allele"}' assert ga4gh_digest(a) == 'vU0meY5wGjpyRLCjSxCfb2Jlruyn2adL' assert ga4gh_identify(a) == 'ga4gh:VA.vU0meY5wGjpyRLCjSxCfb2Jlruyn2adL' assert a.as_dict() == {'location': {'interval': {'end': 55181320, 'start': 55181319, 'type': 'SimpleInterval'}, 'sequence_id': 'ga4gh:SQ.F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul', 'type': 'SequenceLocation'}, 'state': {'sequence': 'T', 'type': 'SequenceState'}, 'type': 'Allele'} vros = {} a2 = vr_enref(a, vros) assert ga4gh_identify(a) == ga4gh_identify(a2) assert a2.location == "ga4gh:VSL.5D9eG-ev4fA7mYIpOpDEe-4Am1lzPZlQ" assert a2.location in vros assert ga4gh_identify(a) in vros a3 = vr_deref(a2, vros) assert a == a3 ``` #### File: tests/validation/test_models.py ```python import os import pytest import yaml from ga4gh.core import ga4gh_serialize from ga4gh.vrs import models validation_fn = os.path.join(os.path.dirname(__file__), "data", "models.yaml") validation_tests = yaml.load(open(validation_fn), Loader=yaml.SafeLoader) @pytest.mark.parametrize("test", validation_tests["SimpleInterval"]) def test_SimpleInterval(test): o = models.SimpleInterval(**test["in"]) assert test["out"]["ga4gh_serialize"] == ga4gh_serialize(o).decode() #@pytest.mark.parametrize("test", validation_tests["NestedInterval"]) #def test_NestedInterval(test): # o = models.NestedInterval(**test["in"]) # assert test["out"]["ga4gh_serialize"] == ga4gh_serialize(o).decode() @pytest.mark.parametrize("test", validation_tests["SequenceLocation"]) def test_SequenceLocation(test): o = models.SequenceLocation(**test["in"]) assert test["out"]["ga4gh_serialize"] == ga4gh_serialize(o).decode() @pytest.mark.parametrize("test", validation_tests["Allele"]) def test_Allele(test): o = models.Allele(**test["in"]) assert test["out"]["ga4gh_serialize"] == ga4gh_serialize(o).decode() ```
{ "source": "joesonitaly/JLicence", "score": 3 }
#### File: JLicence/jlicence/client.py ```python import datetime import json from os.path import exists, isfile from django.core.signing import BadSignature, Signer from django.utils.dateparse import parse_datetime from . import setting, licenceFile, timestampFile, client, provider class IncorrectSystemClock(Exception): pass def licenceExists(): """ Checks if the licence file exists and is a regular file. Returns: - Boolean """ updateTimestamp() return exists(licenceFile) and isfile(licenceFile) def licenceIsValid(): """ Checks if the licence validity period has not been exceeded. Returns: - Boolean """ updateTimestamp() if not licenceExists(): return False licence = getLicense() with open(timestampFile, "r") as f: savedTimestamp = parse_datetime(f.read().strip()) return (savedTimestamp >= parse_datetime(licence["CREATED"])) and (savedTimestamp < parse_datetime(licence["EXPIRES"])) and (provider == licence["PROVIDER"]) and (client == licence["CLIENT"]) def updateTimestamp(): """ Must be called after every login or logout attempt and/or periodically. Ensures that the system clock continues to tick forward in time, using a saved timestamp. Returns: - None Exceptions: - IncorrectSystemClock(), if the current system time is less than the saved timestamp. """ now = datetime.datetime.now() try: with open(timestampFile, "r+") as f: savedTimestamp = parse_datetime(f.read().strip()) if savedTimestamp: if now >= savedTimestamp: f.seek(0, 0) f.truncate() f.write(str(now)[:-7]) else: raise IncorrectSystemClock("Please set your system clock to at least %s." % str(savedTimestamp)[:-7]) else: raise IOError except IOError: with open(timestampFile, "w") as f: licence = getLicense() if now >= parse_datetime(licence["CREATED"]): f.write(str(now)[:-7]) else: f.write(str(parse_datetime(licence["CREATED"]))[:-7]) def getLicense(): with open(licenceFile, "r") as f: return json.loads(Signer().unsign(f.read().strip())) ```
{ "source": "joesonw/pulumi-mysql", "score": 2 }
#### File: python/pulumi_mysql/user.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = ['UserArgs', 'User'] @pulumi.input_type class UserArgs: def __init__(__self__, *, user: pulumi.Input[str], auth_plugin: Optional[pulumi.Input[str]] = None, host: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, plaintext_password: Optional[pulumi.Input[str]] = None, tls_option: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a User resource. :param pulumi.Input[str] user: The name of the user. :param pulumi.Input[str] auth_plugin: Use an [authentication plugin][ref-auth-plugins] to authenticate the user instead of using password authentication. Description of the fields allowed in the block below. Conflicts with `password` and `plaintext_password`. :param pulumi.Input[str] host: The source host of the user. Defaults to "localhost". :param pulumi.Input[str] password: Deprecated alias of `plaintext_password`, whose value is *stored as plaintext in state*. Prefer to use `plaintext_password` instead, which stores the password as an unsalted hash. Conflicts with `auth_plugin`. :param pulumi.Input[str] plaintext_password: The password for the user. This must be provided in plain text, so the data source for it must be secured. An _unsalted_ hash of the provided password is stored in state. Conflicts with `auth_plugin`. :param pulumi.Input[str] tls_option: An TLS-Option for the `CREATE USER` or `ALTER USER` statement. The value is suffixed to `REQUIRE`. A value of 'SSL' will generate a `CREATE USER ... REQUIRE SSL` statement. See the [MYSQL `CREATE USER` documentation](https://dev.mysql.com/doc/refman/5.7/en/create-user.html) for more. Ignored if MySQL version is under 5.7.0. """ pulumi.set(__self__, "user", user) if auth_plugin is not None: pulumi.set(__self__, "auth_plugin", auth_plugin) if host is not None: pulumi.set(__self__, "host", host) if password is not None: warnings.warn("""Please use plaintext_password instead""", DeprecationWarning) pulumi.log.warn("""password is deprecated: Please use plaintext_password instead""") if password is not None: pulumi.set(__self__, "password", password) if plaintext_password is not None: pulumi.set(__self__, "plaintext_password", plaintext_password) if tls_option is not None: pulumi.set(__self__, "tls_option", tls_option) @property @pulumi.getter def user(self) -> pulumi.Input[str]: """ The name of the user. """ return pulumi.get(self, "user") @user.setter def user(self, value: pulumi.Input[str]): pulumi.set(self, "user", value) @property @pulumi.getter(name="authPlugin") def auth_plugin(self) -> Optional[pulumi.Input[str]]: """ Use an [authentication plugin][ref-auth-plugins] to authenticate the user instead of using password authentication. Description of the fields allowed in the block below. Conflicts with `password` and `<PASSWORD>`. """ return pulumi.get(self, "auth_plugin") @auth_plugin.setter def auth_plugin(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "auth_plugin", value) @property @pulumi.getter def host(self) -> Optional[pulumi.Input[str]]: """ The source host of the user. Defaults to "localhost". """ return pulumi.get(self, "host") @host.setter def host(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "host", value) @property @pulumi.getter def password(self) -> Optional[pulumi.Input[str]]: """ Deprecated alias of `plaintext_password`, whose value is *stored as plaintext in state*. Prefer to use `plaintext_password` instead, which stores the password as an unsalted hash. Conflicts with `auth_plugin`. """ return pulumi.get(self, "password") @password.setter def password(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "password", value) @property @pulumi.getter(name="plaintextPassword") def plaintext_password(self) -> Optional[pulumi.Input[str]]: """ The password for the user. This must be provided in plain text, so the data source for it must be secured. An _unsalted_ hash of the provided password is stored in state. Conflicts with `auth_plugin`. """ return pulumi.get(self, "plaintext_password") @plaintext_password.setter def plaintext_password(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "plaintext_password", value) @property @pulumi.getter(name="tlsOption") def tls_option(self) -> Optional[pulumi.Input[str]]: """ An TLS-Option for the `CREATE USER` or `ALTER USER` statement. The value is suffixed to `REQUIRE`. A value of 'SSL' will generate a `CREATE USER ... REQUIRE SSL` statement. See the [MYSQL `CREATE USER` documentation](https://dev.mysql.com/doc/refman/5.7/en/create-user.html) for more. Ignored if MySQL version is under 5.7.0. """ return pulumi.get(self, "tls_option") @tls_option.setter def tls_option(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tls_option", value) @pulumi.input_type class _UserState: def __init__(__self__, *, auth_plugin: Optional[pulumi.Input[str]] = None, host: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, plaintext_password: Optional[pulumi.Input[str]] = None, tls_option: Optional[pulumi.Input[str]] = None, user: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering User resources. :param pulumi.Input[str] auth_plugin: Use an [authentication plugin][ref-auth-plugins] to authenticate the user instead of using password authentication. Description of the fields allowed in the block below. Conflicts with `password` and `plaintext_password`. :param pulumi.Input[str] host: The source host of the user. Defaults to "localhost". :param pulumi.Input[str] password: Deprecated alias of `plaintext_password`, whose value is *stored as plaintext in state*. Prefer to use `plaintext_password` instead, which stores the password as an unsalted hash. Conflicts with `auth_plugin`. :param pulumi.Input[str] plaintext_password: <PASSWORD>. This must be provided in plain text, so the data source for it must be secured. An _unsalted_ hash of the provided password is stored in state. Conflicts with `auth_plugin`. :param pulumi.Input[str] tls_option: An TLS-Option for the `CREATE USER` or `ALTER USER` statement. The value is suffixed to `REQUIRE`. A value of 'SSL' will generate a `CREATE USER ... REQUIRE SSL` statement. See the [MYSQL `CREATE USER` documentation](https://dev.mysql.com/doc/refman/5.7/en/create-user.html) for more. Ignored if MySQL version is under 5.7.0. :param pulumi.Input[str] user: The name of the user. """ if auth_plugin is not None: pulumi.set(__self__, "auth_plugin", auth_plugin) if host is not None: pulumi.set(__self__, "host", host) if password is not None: warnings.warn("""Please use plaintext_password instead""", DeprecationWarning) pulumi.log.warn("""password is deprecated: Please use plaintext_password instead""") if password is not None: pulumi.set(__self__, "password", password) if plaintext_password is not None: pulumi.set(__self__, "plaintext_password", plaintext_password) if tls_option is not None: pulumi.set(__self__, "tls_option", tls_option) if user is not None: pulumi.set(__self__, "user", user) @property @pulumi.getter(name="authPlugin") def auth_plugin(self) -> Optional[pulumi.Input[str]]: """ Use an [authentication plugin][ref-auth-plugins] to authenticate the user instead of using password authentication. Description of the fields allowed in the block below. Conflicts with `password` and `plaintext_password`. """ return pulumi.get(self, "auth_plugin") @auth_plugin.setter def auth_plugin(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "auth_plugin", value) @property @pulumi.getter def host(self) -> Optional[pulumi.Input[str]]: """ The source host of the user. Defaults to "localhost". """ return pulumi.get(self, "host") @host.setter def host(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "host", value) @property @pulumi.getter def password(self) -> Optional[pulumi.Input[str]]: """ Deprecated alias of `plaintext_password`, whose value is *stored as plaintext in state*. Prefer to use `plaintext_password` instead, which stores the password as an unsalted hash. Conflicts with `auth_plugin`. """ return pulumi.get(self, "password") @password.setter def password(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "password", value) @property @pulumi.getter(name="plaintextPassword") def plaintext_password(self) -> Optional[pulumi.Input[str]]: """ The password for the user. This must be provided in plain text, so the data source for it must be secured. An _unsalted_ hash of the provided password is stored in state. Conflicts with `auth_plugin`. """ return pulumi.get(self, "plaintext_password") @plaintext_password.setter def plaintext_password(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "plaintext_password", value) @property @pulumi.getter(name="tlsOption") def tls_option(self) -> Optional[pulumi.Input[str]]: """ An TLS-Option for the `CREATE USER` or `ALTER USER` statement. The value is suffixed to `REQUIRE`. A value of 'SSL' will generate a `CREATE USER ... REQUIRE SSL` statement. See the [MYSQL `CREATE USER` documentation](https://dev.mysql.com/doc/refman/5.7/en/create-user.html) for more. Ignored if MySQL version is under 5.7.0. """ return pulumi.get(self, "tls_option") @tls_option.setter def tls_option(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tls_option", value) @property @pulumi.getter def user(self) -> Optional[pulumi.Input[str]]: """ The name of the user. """ return pulumi.get(self, "user") @user.setter def user(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user", value) class User(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, auth_plugin: Optional[pulumi.Input[str]] = None, host: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, plaintext_password: Optional[pulumi.Input[str]] = None, tls_option: Optional[pulumi.Input[str]] = None, user: Optional[pulumi.Input[str]] = None, __props__=None): """ The ``User`` resource creates and manages a user on a MySQL server. ## Examples ### Basic Usage ```python import pulumi import pulumi_mysql as mysql jdoe = mysql.User("jdoe", host="example.com", plaintext_password="password", user="jdoe") ``` ### Example Usage with an Authentication Plugin ```python import pulumi import pulumi_mysql as mysql nologin = mysql.User("nologin", auth_plugin="mysql_no_login", host="example.com", user="nologin") ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] auth_plugin: Use an [authentication plugin][ref-auth-plugins] to authenticate the user instead of using password authentication. Description of the fields allowed in the block below. Conflicts with `password` and `plaintext_password`. :param pulumi.Input[str] host: The source host of the user. Defaults to "localhost". :param pulumi.Input[str] password: Deprecated alias of `plaintext_password`, whose value is *stored as plaintext in state*. Prefer to use `plaintext_password` instead, which stores the password as an unsalted hash. Conflicts with `auth_plugin`. :param pulumi.Input[str] plaintext_password: <PASSWORD>. This must be provided in plain text, so the data source for it must be secured. An _unsalted_ hash of the provided password is stored in state. Conflicts with `auth_plugin`. :param pulumi.Input[str] tls_option: An TLS-Option for the `CREATE USER` or `ALTER USER` statement. The value is suffixed to `REQUIRE`. A value of 'SSL' will generate a `CREATE USER ... REQUIRE SSL` statement. See the [MYSQL `CREATE USER` documentation](https://dev.mysql.com/doc/refman/5.7/en/create-user.html) for more. Ignored if MySQL version is under 5.7.0. :param pulumi.Input[str] user: The name of the user. """ ... @overload def __init__(__self__, resource_name: str, args: UserArgs, opts: Optional[pulumi.ResourceOptions] = None): """ The ``User`` resource creates and manages a user on a MySQL server. ## Examples ### Basic Usage ```python import pulumi import pulumi_mysql as mysql jdoe = mysql.User("jdoe", host="example.com", plaintext_password="password", user="jdoe") ``` ### Example Usage with an Authentication Plugin ```python import pulumi import pulumi_mysql as mysql nologin = mysql.User("nologin", auth_plugin="mysql_no_login", host="<EMAIL>", user="nologin") ``` :param str resource_name: The name of the resource. :param UserArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(UserArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, auth_plugin: Optional[pulumi.Input[str]] = None, host: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, plaintext_password: Optional[pulumi.Input[str]] = None, tls_option: Optional[pulumi.Input[str]] = None, user: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = UserArgs.__new__(UserArgs) __props__.__dict__["auth_plugin"] = auth_plugin __props__.__dict__["host"] = host if password is not None and not opts.urn: warnings.warn("""Please use plaintext_password instead""", DeprecationWarning) pulumi.log.warn("""password is deprecated: Please use plaintext_password instead""") __props__.__dict__["password"] = password __props__.__dict__["plaintext_password"] = <PASSWORD> __props__.__dict__["tls_option"] = tls_option if user is None and not opts.urn: raise TypeError("Missing required property 'user'") __props__.__dict__["user"] = user super(User, __self__).__init__( 'mysql:index/user:User', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, auth_plugin: Optional[pulumi.Input[str]] = None, host: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, plaintext_password: Optional[pulumi.Input[str]] = None, tls_option: Optional[pulumi.Input[str]] = None, user: Optional[pulumi.Input[str]] = None) -> 'User': """ Get an existing User resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] auth_plugin: Use an [authentication plugin][ref-auth-plugins] to authenticate the user instead of using password authentication. Description of the fields allowed in the block below. Conflicts with `password` and `plaintext_password`. :param pulumi.Input[str] host: The source host of the user. Defaults to "localhost". :param pulumi.Input[str] password: Deprecated alias of `plaintext_password`, whose value is *stored as plaintext in state*. Prefer to use `plaintext_password` instead, which stores the password as an unsalted hash. Conflicts with `auth_plugin`. :param pulumi.Input[str] plaintext_password: The <PASSWORD> the user. This must be provided in plain text, so the data source for it must be secured. An _unsalted_ hash of the provided password is stored in state. Conflicts with `auth_plugin`. :param pulumi.Input[str] tls_option: An TLS-Option for the `CREATE USER` or `ALTER USER` statement. The value is suffixed to `REQUIRE`. A value of 'SSL' will generate a `CREATE USER ... REQUIRE SSL` statement. See the [MYSQL `CREATE USER` documentation](https://dev.mysql.com/doc/refman/5.7/en/create-user.html) for more. Ignored if MySQL version is under 5.7.0. :param pulumi.Input[str] user: The name of the user. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _UserState.__new__(_UserState) __props__.__dict__["auth_plugin"] = auth_plugin __props__.__dict__["host"] = host __props__.__dict__["password"] = password __props__.__dict__["plaintext_password"] = <PASSWORD>_password __props__.__dict__["tls_option"] = tls_option __props__.__dict__["user"] = user return User(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="authPlugin") def auth_plugin(self) -> pulumi.Output[Optional[str]]: """ Use an [authentication plugin][ref-auth-plugins] to authenticate the user instead of using password authentication. Description of the fields allowed in the block below. Conflicts with `password` and `plaintext_password`. """ return pulumi.get(self, "auth_plugin") @property @pulumi.getter def host(self) -> pulumi.Output[Optional[str]]: """ The source host of the user. Defaults to "localhost". """ return pulumi.get(self, "host") @property @pulumi.getter def password(self) -> pulumi.Output[Optional[str]]: """ Deprecated alias of `plaintext_password`, whose value is *stored as plaintext in state*. Prefer to use `plaintext_password` instead, which stores the password as an unsalted hash. Conflicts with `auth_plugin`. """ return pulumi.get(self, "password") @property @pulumi.getter(name="plaintextPassword") def plaintext_password(self) -> pulumi.Output[Optional[str]]: """ The password for the user. This must be provided in plain text, so the data source for it must be secured. An _unsalted_ hash of the provided password is stored in state. Conflicts with `auth_plugin`. """ return pulumi.get(self, "plaintext_password") @property @pulumi.getter(name="tlsOption") def tls_option(self) -> pulumi.Output[Optional[str]]: """ An TLS-Option for the `CREATE USER` or `ALTER USER` statement. The value is suffixed to `REQUIRE`. A value of 'SSL' will generate a `CREATE USER ... REQUIRE SSL` statement. See the [MYSQL `CREATE USER` documentation](https://dev.mysql.com/doc/refman/5.7/en/create-user.html) for more. Ignored if MySQL version is under 5.7.0. """ return pulumi.get(self, "tls_option") @property @pulumi.getter def user(self) -> pulumi.Output[str]: """ The name of the user. """ return pulumi.get(self, "user") ```
{ "source": "joesox/raspiAI", "score": 3 }
#### File: raspiAI/raspiAI/demomenu.py ```python import os import sys import time import TXT2SPEECH import TwitterAI import SpeechRecognition import Vision import Jokes import AIMLAI import Pandorabot import aiml __version__ = '0.1.20150502' __author__ = "JPSIII and sjs_20012001" __url__ = 'https://github.com/joesox/raspiAI' __doc__ = 'Demo Menu for raspiAI' __raspiaibotid__ = "f3d034f13e34d592" def printline(length, div, line): """ Print a line of length <length> with a * at each end and <line> in the body <div> determins where the line should be justified 1 right justified 2 centered use any large number for left """ pad = max(0, (length-len(line))/div) print "*%*s%-*s *" %(pad+1, ' ', length-pad, line) def box(length, justify, *lines): """ Disaply <lines> in a box of *'s width <length> Split each line at < > if to long Justify gives the overall text justification c: center r: right default left """ div = {'c':2, 'r':1}.get(justify, 100) print "*"*(length+4) for line in lines: if len(line) <= length or ' ' not in line: printline(length, div, line) else: store = '' for word in line.split(): if len(store)+len(word)+1 > length: printline(length, div, store.strip()) store = '' store = store+' '+word printline(length, div, store.strip()) print "*"*(length+4) def run_menu(width, values, *options): """ Create a menu of width <width> from a tuple of one description, function/method per option Add an exit method at the end of the list Display with each option being given an integer key in order starting from 1 Repeatedly ask for an option and call the linked function untill asked to stop The menu can also be left by entering 'exit' """ while True: tmp = ['%i) %s'%(i+1, s[0]%values) for i, s in enumerate(options)] box(width, 'l', 'Choose one of the below:', *tmp+['%i) exit'%(len(options)+1)]) entered = raw_input("> ") try: choice = int(entered) except: if(str(entered).lower() == "exit"): break else: if choice == len(options)+1: break elif 0 < choice <= len(options): options[choice-1][1]() class demomenu(object): """ """ def __init__(self, bloadaiml, aimlfolder): """ Initialize global class variables Create aiml object with file """ if (bloadaiml == True): #Let the user know we need to pre-load the AIML files for knowledge print "LOADING ALL AIML FILES FROM '" + aimlfolder + "'\r\nTHIS WILL TAKE A FEW MINUTES..." time.sleep(2) self.AIMLFOLDER = aimlfolder self._k = aiml.Kernel() #self._k.bootstrap(learnFiles = aimlfile) #self._k.saveBrain("raspiai.brn") full_file_paths = self.get_filepaths(aimlfolder) self._k.bootstrap(learnFiles = full_file_paths) def get_filepaths(self, directory): """ This function will generate the file names in a directory tree by walking the tree either top-down or bottom-up. For each directory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath, dirnames, filenames). """ file_paths = [] # List which will store all of the full filepaths. # Walk the tree. for root, directories, files in os.walk(directory): for filename in files: # Join the two strings in order to form the full filepath. filepath = os.path.join(root, filename) file_paths.append(filepath) # Add it to the list. return file_paths # Self-explanatory. def _txttospeech(self): """ Demo TXT2SPEECH """ tts = TXT2SPEECH.demo() def _twitterauto(self): """ Demo TwitterAI [PostTweet-auto]""" twitter = TwitterAI.demo() def _twitterprompt(self): """ Demo TwitterAI [PostTweet-prompt]""" twitter = TwitterAI.demoTwo() def _speechrecognition(self): """ Demo speechrecognition""" sr = SpeechRecognition.demo() def _speechmicrecognition(self): """ Demo speechrecognition""" sr = SpeechRecognition.demo3() def _visionphoto(self): """ Demo Vision class """ v = Vision.demo() def _visionvideo(self): """ Demo Vision class """ v = Vision.demo2() def _tellrandomjoke(self): """ Demo Joke class """ j = Jokes.demo() def _tellrandomjokeandtweet(self): """ Demo Joke class """ j = Jokes.demo2() def _realTimeTalk(self): """ Pandorabot Personality System """ p = Pandorabot.Pandorabot(__raspiaibotid__) sr = SpeechRecognition.SpeechRecognition() print "\nEntering interactive mode (Say exit to excape)" while True: print "LISTENING>> " input = sr.Micinput() print " RASPAI HEARD: " + str(input) #"exit" is a command; it is the first command. if(str(input).lower() == "exit"): break else: response = p._botsession.think(input) speech = TXT2SPEECH.txttospeech(120, 0) print "Started!" speech.Say(response, True) #True=print print "Finished Pandorabot Personality System with SpeechRecognition!" def _aimldemo(self): """ Demo Joke class """ print "RUNNING PRE-SET TESTS..." #Tell who you are print "INPUT:My name is Joe.|OUTPUT:" + AIMLAI.Say(self, "My name is Joe.", self._k) #who print "INPUT:What is your name?|OUTPUT:" + AIMLAI.Say(self, "What is your name?", self._k) #what print "INPUT:What is your purpose?|OUTPUT:" + AIMLAI.Say(self, "What is your purpose?", self._k) #when print "INPUT:When where you born?|OUTPUT:" + AIMLAI.Say(self, "When where you born?", self._k) #why print "INPUT:Why are you here?|OUTPUT:" + AIMLAI.Say(self, "Why are you here?", self._k) print "INPUT:What is your favorite hobby?|OUTPUT:" + AIMLAI.Say(self, "What is your favorite hobby?", self._k) print "INPUT:Do you know Ben?|OUTPUT:" + AIMLAI.Say(self, "Do you know Ben?", self._k) print "INPUT:Do you know Joe?|OUTPUT:" + AIMLAI.Say(self, "Do you know Joe?", self._k) print "=====\r\nTESTS COMPLETED." def _aimlpandorabot(self): """ Pandorabot Personality System """ p = Pandorabot.Pandorabot(__raspiaibotid__) print "\nEntering interactive mode (ctrl-c to exit)" while True: input = raw_input("TYPE HERE:>> ") if(str(input).lower() == "exit"): break else: response = p._botsession.think(input) speech = TXT2SPEECH.txttospeech(110, 0) print "Started!" speech.Say(response, True) #True=print print "Finished Pandorabot Personality System!" def menu(self): """Main Menu loop""" box(60, 'c', 'raspiAI', __version__, __url__, '-'*40, __doc__) run_menu(60, self.__dict__, ('Text2Speech demo', self._txttospeech), ('Twitter [PostTweet-auto] demo', self._twitterauto), ('Twitter [PostTweet-prompt] demo', self._twitterprompt), ('SpeechRecognition demo', self._speechrecognition), ('SpeechmicRecognition demo', self._speechmicrecognition), ('Vision demo [photo]', self._visionphoto), ('Vision demo [video]', self._visionvideo), ('Joke demo [random joke]', self._tellrandomjoke), ('Joke demo [random joke and Tweet it]', self._tellrandomjokeandtweet), ('AIML demo [Pre-set questions]', self._aimldemo), ('Activate Pandorabot Personality System [raspiAI bot]', self._aimlpandorabot), ('Activate Pandorabot Personality System with SpeechmicRecognition', self._realTimeTalk)) def start(): i = demomenu(True, "aiml-en-us-foundation-alice") #Load local AIML files for chatbot system #i = demomenu(False, "aiml-en-us-foundation-alice") #Skip local AIML files because going to use Pandorabot for chatbot system #setting False creates some issues for _aimldemo & _aimlpandorabot i.menu() if __name__ == '__main__': start() ```
{ "source": "joesphramkishun/falcon", "score": 2 }
#### File: falcon/falcon/response.py ```python from http import cookies as http_cookies import mimetypes from falcon import DEFAULT_MEDIA_TYPE from falcon.errors import HeaderNotSupported from falcon.media import Handlers from falcon.response_helpers import ( format_content_disposition, format_etag_header, format_header_value_list, format_range, header_property, is_ascii_encodable, ) from falcon.util import dt_to_http, structures, TimezoneGMT from falcon.util.uri import encode as uri_encode from falcon.util.uri import encode_value as uri_encode_value GMT_TIMEZONE = TimezoneGMT() _STREAM_LEN_REMOVED_MSG = ( 'The deprecated stream_len property was removed in Falcon 3.0. ' 'Please use Response.set_stream() or Response.content_length instead.' ) class Response: """Represents an HTTP response to a client request. Note: `Response` is not meant to be instantiated directly by responders. Keyword Arguments: options (dict): Set of global options passed from the API handler. Attributes: status (str): HTTP status line (e.g., '200 OK'). Falcon requires the full status line, not just the code (e.g., 200). This design makes the framework more efficient because it does not have to do any kind of conversion or lookup when composing the WSGI response. If not set explicitly, the status defaults to '200 OK'. Note: Falcon provides a number of constants for common status codes. They all start with the ``HTTP_`` prefix, as in: ``falcon.HTTP_204``. media (object): A serializable object supported by the media handlers configured via :class:`falcon.RequestOptions`. See :ref:`media` for more information regarding media handling. body (str): String representing response content. Note: Falcon will encode the given text as UTF-8 in the response. If the content is already a byte string, use the :attr:`data` attribute instead (it's faster). data (bytes): Byte string representing response content. Use this attribute in lieu of `body` when your content is already a byte string (of type ``bytes``). See also the note below. Warning: Always use the `body` attribute for text, or encode it first to ``bytes`` when using the `data` attribute, to ensure Unicode characters are properly encoded in the HTTP response. stream: Either a file-like object with a `read()` method that takes an optional size argument and returns a block of bytes, or an iterable object, representing response content, and yielding blocks as byte strings. Falcon will use *wsgi.file_wrapper*, if provided by the WSGI server, in order to efficiently serve file-like objects. Note: If the stream is set to an iterable object that requires resource cleanup, it can implement a close() method to do so. The close() method will be called upon completion of the request. context (dict): Dictionary to hold any data about the response which is specific to your app. Falcon itself will not interact with this attribute after it has been initialized. context (object): Empty object to hold any data (in its attributes) about the response which is specific to your app (e.g. session object). Falcon itself will not interact with this attribute after it has been initialized. Note: **New in 2.0:** the default `context_type` (see below) was changed from dict to a bare class, and the preferred way to pass response-specific data is now to set attributes directly on the `context` object, for example:: resp.context.cache_strategy = 'lru' context_type (class): Class variable that determines the factory or type to use for initializing the `context` attribute. By default, the framework will instantiate bare objects (instances of the bare :class:`falcon.Context` class). However, you may override this behavior by creating a custom child class of ``falcon.Response``, and then passing that new class to `falcon.API()` by way of the latter's `response_type` parameter. Note: When overriding `context_type` with a factory function (as opposed to a class), the function is called like a method of the current Response instance. Therefore the first argument is the Response instance itself (self). options (dict): Set of global options passed from the API handler. headers (dict): Copy of all headers set for the response, sans cookies. Note that a new copy is created and returned each time this property is referenced. complete (bool): Set to ``True`` from within a middleware method to signal to the framework that request processing should be short-circuited (see also :ref:`Middleware <middleware>`). """ __slots__ = ( 'body', 'context', 'options', 'status', 'stream', '_cookies', '_data', '_extra_headers', '_headers', '_media', '__dict__', ) complete = False # Child classes may override this context_type = structures.Context def __init__(self, options=None): self.status = '200 OK' self._headers = {} # NOTE(kgriffs): Collection of additional headers as a list of raw # tuples, to use in cases where we need more control over setting # headers and duplicates are allowable or even necessary. # # PERF(kgriffs): Save some CPU cycles and a few bytes of RAM by # only instantiating the list object later on IFF it is needed. self._extra_headers = None self.options = options if options else ResponseOptions() # NOTE(tbug): will be set to a SimpleCookie object # when cookie is set via set_cookie self._cookies = None self.body = None self.stream = None self._data = None self._media = None self.context = self.context_type() @property def data(self): # NOTE(kgriffs): Test explicitly against None since the # app may have set it to an empty binary string. if self._data is not None: return self._data # NOTE(kgriffs): Test explicitly against None since the # app may have set it to an empty string that should still # be serialized. if self._media is None: return None if not self.content_type: self.content_type = self.options.default_media_type handler = self.options.media_handlers.find_by_media_type( self.content_type, self.options.default_media_type ) # NOTE(kgriffs): Set _data to avoid re-serializing if the # data() property is called multiple times. self._data = handler.serialize( self._media, self.content_type ) return self._data @data.setter def data(self, value): self._data = value @property def headers(self): return self._headers.copy() @property def media(self): return self._media @media.setter def media(self, obj): self._media = obj # NOTE(kgriffs): This will be set just-in-time by the data() property, # rather than serializing immediately. That way, if media() is called # multiple times we don't waste time serializing objects that will # just be thrown away. self._data = None @property def stream_len(self): # NOTE(kgriffs): Provide some additional information by raising the # error explicitly. raise AttributeError(_STREAM_LEN_REMOVED_MSG) @stream_len.setter def stream_len(self, value): # NOTE(kgriffs): We explicitly disallow setting the deprecated attribute # so that apps relying on it do not fail silently. raise AttributeError(_STREAM_LEN_REMOVED_MSG) def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.status) def set_stream(self, stream, content_length): """Convenience method for setting both `stream` and `content_length`. Although the `stream` and `content_length` properties may be set directly, using this method ensures `content_length` is not accidentally neglected when the length of the stream is known in advance. Using this method is also slightly more performant as compared to setting the properties individually. Note: If the stream length is unknown, you can set `stream` directly, and ignore `content_length`. In this case, the WSGI server may choose to use chunked encoding or one of the other strategies suggested by PEP-3333. Args: stream: A readable file-like object. content_length (int): Length of the stream, used for the Content-Length header in the response. """ self.stream = stream # PERF(kgriffs): Set directly rather than incur the overhead of # the self.content_length property. self._headers['content-length'] = str(content_length) def set_cookie(self, name, value, expires=None, max_age=None, domain=None, path=None, secure=None, http_only=True): """Set a response cookie. Note: This method can be called multiple times to add one or more cookies to the response. See Also: To learn more about setting cookies, see :ref:`Setting Cookies <setting-cookies>`. The parameters listed below correspond to those defined in `RFC 6265`_. Args: name (str): Cookie name value (str): Cookie value Keyword Args: expires (datetime): Specifies when the cookie should expire. By default, cookies expire when the user agent exits. (See also: RFC 6265, Section 4.1.2.1) max_age (int): Defines the lifetime of the cookie in seconds. By default, cookies expire when the user agent exits. If both `max_age` and `expires` are set, the latter is ignored by the user agent. Note: Coercion to ``int`` is attempted if provided with ``float`` or ``str``. (See also: RFC 6265, Section 4.1.2.2) domain (str): Restricts the cookie to a specific domain and any subdomains of that domain. By default, the user agent will return the cookie only to the origin server. When overriding this default behavior, the specified domain must include the origin server. Otherwise, the user agent will reject the cookie. (See also: RFC 6265, Section 4.1.2.3) path (str): Scopes the cookie to the given path plus any subdirectories under that path (the "/" character is interpreted as a directory separator). If the cookie does not specify a path, the user agent defaults to the path component of the requested URI. Warning: User agent interfaces do not always isolate cookies by path, and so this should not be considered an effective security measure. (See also: RFC 6265, Section 4.1.2.4) secure (bool): Direct the client to only return the cookie in subsequent requests if they are made over HTTPS (default: ``True``). This prevents attackers from reading sensitive cookie data. Note: The default value for this argument is normally ``True``, but can be modified by setting :py:attr:`~.ResponseOptions.secure_cookies_by_default` via :any:`API.resp_options`. Warning: For the `secure` cookie attribute to be effective, your application will need to enforce HTTPS. (See also: RFC 6265, Section 4.1.2.5) http_only (bool): Direct the client to only transfer the cookie with unscripted HTTP requests (default: ``True``). This is intended to mitigate some forms of cross-site scripting. (See also: RFC 6265, Section 4.1.2.6) Raises: KeyError: `name` is not a valid cookie name. ValueError: `value` is not a valid cookie value. .. _RFC 6265: http://tools.ietf.org/html/rfc6265 """ if not is_ascii_encodable(name): raise KeyError('"name" is not ascii encodable') if not is_ascii_encodable(value): raise ValueError('"value" is not ascii encodable') value = str(value) if self._cookies is None: self._cookies = http_cookies.SimpleCookie() try: self._cookies[name] = value except http_cookies.CookieError as e: # pragma: no cover # NOTE(tbug): we raise a KeyError here, to avoid leaking # the CookieError to the user. SimpleCookie (well, BaseCookie) # only throws CookieError on issues with the cookie key raise KeyError(str(e)) if expires: # set Expires on cookie. Format is Wdy, DD Mon YYYY HH:MM:SS GMT # NOTE(tbug): we never actually need to # know that GMT is named GMT when formatting cookies. # It is a function call less to just write "GMT" in the fmt string: fmt = '%a, %d %b %Y %H:%M:%S GMT' if expires.tzinfo is None: # naive self._cookies[name]['expires'] = expires.strftime(fmt) else: # aware gmt_expires = expires.astimezone(GMT_TIMEZONE) self._cookies[name]['expires'] = gmt_expires.strftime(fmt) if max_age: # RFC 6265 section 5.2.2 says about the max-age value: # "If the remainder of attribute-value contains a non-DIGIT # character, ignore the cookie-av." # That is, RFC-compliant response parsers will ignore the max-age # attribute if the value contains a dot, as in floating point # numbers. Therefore, attempt to convert the value to an integer. self._cookies[name]['max-age'] = int(max_age) if domain: self._cookies[name]['domain'] = domain if path: self._cookies[name]['path'] = path if secure is None: is_secure = self.options.secure_cookies_by_default else: is_secure = secure if is_secure: self._cookies[name]['secure'] = True if http_only: self._cookies[name]['httponly'] = http_only def unset_cookie(self, name): """Unset a cookie in the response Clears the contents of the cookie, and instructs the user agent to immediately expire its own copy of the cookie. Warning: In order to successfully remove a cookie, both the path and the domain must match the values that were used when the cookie was created. """ if self._cookies is None: self._cookies = http_cookies.SimpleCookie() self._cookies[name] = '' # NOTE(Freezerburn): SimpleCookie apparently special cases the # expires attribute to automatically use strftime and set the # time as a delta from the current time. We use -1 here to # basically tell the browser to immediately expire the cookie, # thus removing it from future request objects. self._cookies[name]['expires'] = -1 def get_header(self, name, default=None): """Retrieve the raw string value for the given header. Normally, when a header has multiple values, they will be returned as a single, comma-delimited string. However, the Set-Cookie header does not support this format, and so attempting to retrieve it will raise an error. Args: name (str): Header name, case-insensitive. Must be of type ``str`` or ``StringType``, and only character values 0x00 through 0xFF may be used on platforms that use wide characters. Keyword Args: default: Value to return if the header is not found (default ``None``). Raises: ValueError: The value of the 'Set-Cookie' header(s) was requested. Returns: str: The value of the specified header if set, or the default value if not set. """ # NOTE(kgriffs): normalize name by lowercasing it name = name.lower() if name == 'set-cookie': raise HeaderNotSupported('Getting Set-Cookie is not currently supported.') return self._headers.get(name, default) def set_header(self, name, value): """Set a header for this response to a given value. Warning: Calling this method overwrites any values already set for this header. To append an additional value for this header, use :meth:`~.append_header` instead. Warning: This method cannot be used to set cookies; instead, use :meth:`~.append_header` or :meth:`~.set_cookie`. Args: name (str): Header name (case-insensitive). The name may contain only US-ASCII characters. value (str): Value for the header. As with the header's name, the value may contain only US-ASCII characters. Raises: ValueError: `name` cannot be ``'Set-Cookie'``. """ # NOTE(kgriffs): uwsgi fails with a TypeError if any header # is not a str, so do the conversion here. It's actually # faster to not do an isinstance check. str() will encode # to US-ASCII. value = str(value) # NOTE(kgriffs): normalize name by lowercasing it name = name.lower() if name == 'set-cookie': raise HeaderNotSupported('This method cannot be used to set cookies') self._headers[name] = value def delete_header(self, name): """Delete a header that was previously set for this response. If the header was not previously set, nothing is done (no error is raised). Otherwise, all values set for the header will be removed from the response. Note that calling this method is equivalent to setting the corresponding header property (when said property is available) to ``None``. For example:: resp.etag = None Warning: This method cannot be used with the Set-Cookie header. Instead, use :meth:`~.unset_cookie` to remove a cookie and ensure that the user agent expires its own copy of the data as well. Args: name (str): Header name (case-insensitive). The name may contain only US-ASCII characters. Raises: ValueError: `name` cannot be ``'Set-Cookie'``. """ # NOTE(kgriffs): normalize name by lowercasing it name = name.lower() if name == 'set-cookie': raise HeaderNotSupported('This method cannot be used to remove cookies') self._headers.pop(name, None) def append_header(self, name, value): """Set or append a header for this response. If the header already exists, the new value will normally be appended to it, delimited by a comma. The notable exception to this rule is Set-Cookie, in which case a separate header line for each value will be included in the response. Note: While this method can be used to efficiently append raw Set-Cookie headers to the response, you may find :py:meth:`~.set_cookie` to be more convenient. Args: name (str): Header name (case-insensitive). The name may contain only US-ASCII characters. value (str): Value for the header. As with the header's name, the value may contain only US-ASCII characters. """ # NOTE(kgriffs): uwsgi fails with a TypeError if any header # is not a str, so do the conversion here. It's actually # faster to not do an isinstance check. str() will encode # to US-ASCII. value = str(value) # NOTE(kgriffs): normalize name by lowercasing it name = name.lower() if name == 'set-cookie': if not self._extra_headers: self._extra_headers = [(name, value)] else: self._extra_headers.append((name, value)) else: if name in self._headers: value = self._headers[name] + ', ' + value self._headers[name] = value def set_headers(self, headers): """Set several headers at once. This method can be used to set a collection of raw header names and values all at once. Warning: Calling this method overwrites any existing values for the given header. If a list containing multiple instances of the same header is provided, only the last value will be used. To add multiple values to the response for a given header, see :meth:`~.append_header`. Warning: This method cannot be used to set cookies; instead, use :meth:`~.append_header` or :meth:`~.set_cookie`. Args: headers (dict or list): A dictionary of header names and values to set, or a ``list`` of (*name*, *value*) tuples. Both *name* and *value* must be of type ``str`` and contain only US-ASCII characters. Note: Falcon can process a list of tuples slightly faster than a dict. Raises: ValueError: `headers` was not a ``dict`` or ``list`` of ``tuple``. """ if isinstance(headers, dict): headers = headers.items() # NOTE(kgriffs): We can't use dict.update because we have to # normalize the header names. _headers = self._headers for name, value in headers: # NOTE(kgriffs): uwsgi fails with a TypeError if any header # is not a str, so do the conversion here. It's actually # faster to not do an isinstance check. str() will encode # to US-ASCII. value = str(value) name = name.lower() if name == 'set-cookie': raise HeaderNotSupported('This method cannot be used to set cookies') _headers[name] = value def add_link(self, target, rel, title=None, title_star=None, anchor=None, hreflang=None, type_hint=None): """Add a link header to the response. (See also: RFC 5988, Section 1) Note: Calling this method repeatedly will cause each link to be appended to the Link header value, separated by commas. Note: So-called "link-extension" elements, as defined by RFC 5988, are not yet supported. See also Issue #288. Args: target (str): Target IRI for the resource identified by the link. Will be converted to a URI, if necessary, per RFC 3987, Section 3.1. rel (str): Relation type of the link, such as "next" or "bookmark". (See also: http://www.iana.org/assignments/link-relations/link-relations.xhtml) Keyword Args: title (str): Human-readable label for the destination of the link (default ``None``). If the title includes non-ASCII characters, you will need to use `title_star` instead, or provide both a US-ASCII version using `title` and a Unicode version using `title_star`. title_star (tuple of str): Localized title describing the destination of the link (default ``None``). The value must be a two-member tuple in the form of (*language-tag*, *text*), where *language-tag* is a standard language identifier as defined in RFC 5646, Section 2.1, and *text* is a Unicode string. Note: *language-tag* may be an empty string, in which case the client will assume the language from the general context of the current request. Note: *text* will always be encoded as UTF-8. anchor (str): Override the context IRI with a different URI (default None). By default, the context IRI for the link is simply the IRI of the requested resource. The value provided may be a relative URI. hreflang (str or iterable): Either a single *language-tag*, or a ``list`` or ``tuple`` of such tags to provide a hint to the client as to the language of the result of following the link. A list of tags may be given in order to indicate to the client that the target resource is available in multiple languages. type_hint(str): Provides a hint as to the media type of the result of dereferencing the link (default ``None``). As noted in RFC 5988, this is only a hint and does not override the Content-Type header returned when the link is followed. """ # PERF(kgriffs): Heuristic to detect possiblity of an extension # relation type, in which case it will be a URL that may contain # reserved characters. Otherwise, don't waste time running the # string through uri.encode # # Example values for rel: # # "next" # "http://example.com/ext-type" # "https://example.com/ext-type" # "alternate http://example.com/ext-type" # "http://example.com/ext-type alternate" # if '//' in rel: if ' ' in rel: rel = ('"' + ' '.join([uri_encode(r) for r in rel.split()]) + '"') else: rel = '"' + uri_encode(rel) + '"' value = '<' + uri_encode(target) + '>; rel=' + rel if title is not None: value += '; title="' + title + '"' if title_star is not None: value += ("; title*=UTF-8'" + title_star[0] + "'" + uri_encode_value(title_star[1])) if type_hint is not None: value += '; type="' + type_hint + '"' if hreflang is not None: if isinstance(hreflang, str): value += '; hreflang=' + hreflang else: value += '; ' value += '; '.join(['hreflang=' + lang for lang in hreflang]) if anchor is not None: value += '; anchor="' + uri_encode(anchor) + '"' _headers = self._headers if 'link' in _headers: _headers['link'] += ', ' + value else: _headers['link'] = value cache_control = header_property( 'Cache-Control', """Set the Cache-Control header. Used to set a list of cache directives to use as the value of the Cache-Control header. The list will be joined with ", " to produce the value for the header. """, format_header_value_list) content_location = header_property( 'Content-Location', """Set the Content-Location header. This value will be URI encoded per RFC 3986. If the value that is being set is already URI encoded it should be decoded first or the header should be set manually using the set_header method. """, uri_encode) content_length = header_property( 'Content-Length', """Set the Content-Length header. This property can be used for responding to HEAD requests when you aren't actually providing the response body, or when streaming the response. If either the `body` property or the `data` property is set on the response, the framework will force Content-Length to be the length of the given body bytes. Therefore, it is only necessary to manually set the content length when those properties are not used. Note: In cases where the response content is a stream (readable file-like object), Falcon will not supply a Content-Length header to the WSGI server unless `content_length` is explicitly set. Consequently, the server may choose to use chunked encoding or one of the other strategies suggested by PEP-3333. """, ) content_range = header_property( 'Content-Range', """A tuple to use in constructing a value for the Content-Range header. The tuple has the form (*start*, *end*, *length*, [*unit*]), where *start* and *end* designate the range (inclusive), and *length* is the total length, or '\\*' if unknown. You may pass ``int``'s for these numbers (no need to convert to ``str`` beforehand). The optional value *unit* describes the range unit and defaults to 'bytes' Note: You only need to use the alternate form, 'bytes \\*/1234', for responses that use the status '416 Range Not Satisfiable'. In this case, raising ``falcon.HTTPRangeNotSatisfiable`` will do the right thing. (See also: RFC 7233, Section 4.2) """, format_range) content_type = header_property( 'Content-Type', """Sets the Content-Type header. The ``falcon`` module provides a number of constants for common media types, including ``falcon.MEDIA_JSON``, ``falcon.MEDIA_MSGPACK``, ``falcon.MEDIA_YAML``, ``falcon.MEDIA_XML``, ``falcon.MEDIA_HTML``, ``falcon.MEDIA_JS``, ``falcon.MEDIA_TEXT``, ``falcon.MEDIA_JPEG``, ``falcon.MEDIA_PNG``, and ``falcon.MEDIA_GIF``. """) downloadable_as = header_property( 'Content-Disposition', """Set the Content-Disposition header using the given filename. The value will be used for the *filename* directive. For example, given ``'report.pdf'``, the Content-Disposition header would be set to: ``'attachment; filename="report.pdf"'``. """, format_content_disposition) etag = header_property( 'ETag', """Set the ETag header. The ETag header will be wrapped with double quotes ``"value"`` in case the user didn't pass it. """, format_etag_header) expires = header_property( 'Expires', """Set the Expires header. Set to a ``datetime`` (UTC) instance. Note: Falcon will format the ``datetime`` as an HTTP date string. """, dt_to_http) last_modified = header_property( 'Last-Modified', """Set the Last-Modified header. Set to a ``datetime`` (UTC) instance. Note: Falcon will format the ``datetime`` as an HTTP date string. """, dt_to_http) location = header_property( 'Location', """Set the Location header. This value will be URI encoded per RFC 3986. If the value that is being set is already URI encoded it should be decoded first or the header should be set manually using the set_header method. """, uri_encode) retry_after = header_property( 'Retry-After', """Set the Retry-After header. The expected value is an integral number of seconds to use as the value for the header. The HTTP-date syntax is not supported. """, str) vary = header_property( 'Vary', """Value to use for the Vary header. Set this property to an iterable of header names. For a single asterisk or field value, simply pass a single-element ``list`` or ``tuple``. The "Vary" header field in a response describes what parts of a request message, aside from the method, Host header field, and request target, might influence the origin server's process for selecting and representing this response. The value consists of either a single asterisk ("*") or a list of header field names (case-insensitive). (See also: RFC 7231, Section 7.1.4) """, format_header_value_list) accept_ranges = header_property( 'Accept-Ranges', """Set the Accept-Ranges header. The Accept-Ranges header field indicates to the client which range units are supported (e.g. "bytes") for the target resource. If range requests are not supported for the target resource, the header may be set to "none" to advise the client not to attempt any such requests. Note: "none" is the literal string, not Python's built-in ``None`` type. """) def _set_media_type(self, media_type=None): """Wrapper around set_header to set a content-type. Args: media_type: Media type to use for the Content-Type header. """ # PERF(kgriffs): Using "in" like this is faster than dict.setdefault() # in most cases, except on PyPy where it is only a fraction of a # nanosecond slower. Last tested on Python versions 3.5-3.7. if media_type is not None and 'content-type' not in self._headers: self._headers['content-type'] = media_type def _wsgi_headers(self, media_type=None): """Convert headers into the format expected by WSGI servers. Args: media_type: Default media type to use for the Content-Type header if the header was not set explicitly (default ``None``). """ headers = self._headers # PERF(vytas): uglier inline version of Response._set_media_type if media_type is not None and 'content-type' not in headers: headers['content-type'] = media_type items = list(headers.items()) if self._extra_headers: items += self._extra_headers # NOTE(kgriffs): It is important to append these after self._extra_headers # in case the latter contains Set-Cookie headers that should be # overridden by a call to unset_cookie(). if self._cookies is not None: # PERF(tbug): # The below implementation is ~23% faster than # the alternative: # # self._cookies.output().split("\\r\\n") # # Even without the .split("\\r\\n"), the below # is still ~17% faster, so don't use .output() items += [('set-cookie', c.OutputString()) for c in self._cookies.values()] return items class ResponseOptions: """Defines a set of configurable response options. An instance of this class is exposed via :any:`API.resp_options` for configuring certain :py:class:`~.Response` behaviors. Attributes: secure_cookies_by_default (bool): Set to ``False`` in development environments to make the `secure` attribute for all cookies default to ``False``. This can make testing easier by not requiring HTTPS. Note, however, that this setting can be overridden via `set_cookie()`'s `secure` kwarg. default_media_type (str): The default Internet media type (RFC 2046) to use when deserializing a response. This value is normally set to the media type provided when a :class:`falcon.API` is initialized; however, if created independently, this will default to the ``DEFAULT_MEDIA_TYPE`` specified by Falcon. media_handlers (Handlers): A dict-like object that allows you to configure the media-types that you would like to handle. By default, a handler is provided for the ``application/json`` media type. static_media_types (dict): A mapping of dot-prefixed file extensions to Internet media types (RFC 2046). Defaults to ``mimetypes.types_map`` after calling ``mimetypes.init()``. """ __slots__ = ( 'secure_cookies_by_default', 'default_media_type', 'media_handlers', 'static_media_types', ) def __init__(self): self.secure_cookies_by_default = False self.default_media_type = DEFAULT_MEDIA_TYPE self.media_handlers = Handlers() mimetypes.init() self.static_media_types = mimetypes.types_map ``` #### File: falcon/tests/test_response_context.py ```python import pytest from falcon import Response class TestResponseContext: def test_default_response_context(self): resp = Response() resp.context.hello = 'World!' assert resp.context.hello == 'World!' assert resp.context['hello'] == 'World!' resp.context['note'] = 'Default Response.context_type used to be dict.' assert 'note' in resp.context assert hasattr(resp.context, 'note') assert resp.context.get('note') == resp.context['note'] def test_custom_response_context(self): class MyCustomContextType: pass class MyCustomResponse(Response): context_type = MyCustomContextType resp = MyCustomResponse() assert isinstance(resp.context, MyCustomContextType) def test_custom_response_context_failure(self): class MyCustomResponse(Response): context_type = False with pytest.raises(TypeError): MyCustomResponse() def test_custom_response_context_factory(self): def create_context(resp): return {'resp': resp} class MyCustomResponse(Response): context_type = create_context resp = MyCustomResponse() assert isinstance(resp.context, dict) assert resp.context['resp'] is resp ``` #### File: falcon/tests/test_slots.py ```python import pytest from falcon import Request, Response import falcon.testing as testing class TestSlots: def test_slots_request(self): env = testing.create_environ() req = Request(env) try: req.doesnt = 'exist' except AttributeError: pytest.fail('Unable to add additional variables dynamically') def test_slots_response(self): resp = Response() try: resp.doesnt = 'exist' except AttributeError: pytest.fail('Unable to add additional variables dynamically') ```
{ "source": "joesphramkishun/hd-example", "score": 2 }
#### File: app/components/config.py ```python import os from datetime import datetime import click import sqlalchemy from sqlalchemy import create_engine from sqlalchemy import Column, Sequence, Integer, String, DateTime from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from werkzeug.security import generate_password_hash, check_password_hash class Config(object): def __init__(self): self._site_version = os.getenv('SITE_VERSION') self._ROGUE_SHOPS_USER = os.getenv('ROGUE_SHOPS_USER') self._ROGUE_SHOPS_PASS = os.getenv('ROGUE_SHOPS_PASS') self._store_hash = os.getenv('store_hash') self._X_Auth_Client = os.getenv('X-Auth-Client') self._X_Auth_Token = os.getenv('X-Auth-Token') self._DOMAIN = os.getenv('DOMAIN') self._SEND_GRID_KEY = os.getenv('SEND_GRID_KEY') self._PAYMENT_METHOD = os.getenv('PAYMENT_METHOD') @property def site_version(self): return self._site_version @property def database_user(self): return self._ROGUE_SHOPS_USER @property def database_pass(self): return self._ROGUE_SHOPS_PASS @property def store_hash(self): return self._store_hash @property def auth_client(self): return self._X_Auth_Client @property def auth_token(self): return self._X_Auth_Token @property def domain(self): return self._DOMAIN @property def send_grid_key(self): return self._SEND_GRID_KEY @property def payment_method(self): return self._PAYMENT_METHOD ``` #### File: app/resources/SendGridSDK.py ```python from app.components.config import Config import sendgrid import re def send_sg_email(t, f, subj, msg): sg = sendgrid.SendGridClient(Config().send_grid_key) message = sendgrid.Mail() message.add_to(t) message.set_subject(subj) message.set_text(msg) message.set_from(f) status, msg = sg.send(message) ```
{ "source": "joesponde/ymodem", "score": 3 }
#### File: joesponde/ymodem/ymodem_sender.py ```python import os import sys import time import random import serial from YModem import YModem def main(argv): serial_io = serial.Serial() try: filename = argv[0] serial_io.port = argv[1] serial_io.baudrate = argv[2] except Exception as e: print ('python ymodem_sender.py # <device> <baudrate>') serial_io.parity = "N" serial_io.bytesize = 8 serial_io.stopbits = 1 serial_io.timeout = 2 try: serial_io.open() except Exception as e: raise Exception("Failed to open serial port!") def sender_getc(size): return serial_io.read(size) or None def sender_putc(data, timeout=15): return serial_io.write(data) os.chdir(sys.path[0]) file_path = os.path.abspath(filename) sender = YModem(sender_getc, sender_putc) sent = sender.send_file(file_path) serial_io.close() if __name__ == '__main__': main(sys.argv[1:]) ```
{ "source": "JoesSattes/Thai-Biaffine-Dependency-Parsing", "score": 3 }
#### File: JoesSattes/Thai-Biaffine-Dependency-Parsing/optimizer.py ```python import torch class NoamOpt: """Optim wrapper that implements rate.""" def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): """Update parameters and rate.""" self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def zero_grad(self): """Delegate zero grad to underlying optimizer.""" self.optimizer.zero_grad() def rate(self, step = None): """Implement `lrate` above.""" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))) def get_std_transformer_opt(args, model): return NoamOpt(args.d_model, 2, 4000, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) ``` #### File: JoesSattes/Thai-Biaffine-Dependency-Parsing/predict.py ```python import numpy as np import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt from data import Dictionary, Corpus, PAD_INDEX from mst import mst import os from train import evaluate_predict, arc_accuracy, lab_accuracy import inspect def plot(args, S_arc, heads): fig, ax = plt.subplots() # Make a 0/1 gold adjacency matrix. n = heads.size(1) G = np.zeros((n, n)) heads = heads.squeeze().data.numpy() G[heads, np.arange(n)] = 1. im = ax.imshow(G, vmin=0, vmax=1) fig.colorbar(im) plt.savefig('img'+"/"+args.data+'/gold.pdf') plt.cla() # Plot the predicted adjacency matrix A = F.softmax(S_arc.squeeze(0), dim=0) fig, ax = plt.subplots() im = ax.imshow(A.data.numpy(), vmin=0, vmax=1) fig.colorbar(im) plt.savefig('img'+"/"+args.data+'/a.pdf') plt.cla() plt.clf() def predict(model, words, tags): assert type(words) == type(tags) if type(words) == type(tags) == list: # Convert the lists into input for the PyTorch model. words = Variable(torch.LongTensor([words])) tags = Variable(torch.LongTensor([tags])) # Dissable dropout. model.eval() # Predict arc and label score matrices. S_arc, S_lab = model(words=words, tags=tags) # Predict heads S = S_arc[0].data.numpy() heads = mst(S) # Predict labels S_lab = S_lab[0] select = torch.LongTensor(heads).unsqueeze(0).expand(S_lab.size(0), -1) select = Variable(select) selected = torch.gather(S_lab, 1, select.unsqueeze(1)).squeeze(1) _, labels = selected.max(dim=0) labels = labels.data.numpy() return heads, labels def predict_a(model, words, tags, oriheads, orilabels, arc_acc_ls, lab_acc_ls): assert type(words) == type(tags) if type(words) == type(tags) == list: # Convert the lists into input for the PyTorch model. words = Variable(torch.LongTensor([words])) tags = Variable(torch.LongTensor([tags])) arc_acc, lab_acc = 0, 0 # Dissable dropout. model.eval() # Predict arc and label score matrices. S_arc1, S_lab1 = model(words=words, tags=tags) # Predict heads S = S_arc1[0].data.numpy() heads = mst(S) # Predict labels S_lab = S_lab1[0] select = torch.LongTensor(heads).unsqueeze(0).expand(S_lab.size(0), -1) select = Variable(select) selected = torch.gather(S_lab, 1, select.unsqueeze(1)).squeeze(1) _, labels = selected.max(dim=0) labels = labels.data.numpy() arc_acc += arc_accuracy(S_arc1, oriheads) lab_acc += lab_accuracy(S_lab1, oriheads, orilabels) arc_acc_ls.append(arc_acc) lab_acc_ls.append(lab_acc) return heads, labels, arc_acc_ls, lab_acc_ls def predict_all(args, model, test_batches): # heads_list, labels_list = [], [] print("Start Predict & Evaluate in {} ...".format('Test')) model.eval() # test_batches = batch # test_batches = corpus.test.batches(256, length_ordered=True) arc_acc, lab_acc = [], [] arc_word, arc_pos, arc_pred, arc_ans, lab_pred, lab_ans = [], [], [], [], [], [] # k_out = 0 # print('Test BACTH: '+str(test_batches) # for i in test_batches: # print(i) for k, batch in enumerate(test_batches, 1): words, tags, heads, labels = batch if args.cuda: words, tags, heads, labels = words.cuda(), tags.cuda(), heads.cuda(), labels.cuda() arcpred, labpred, arc_acc, lab_acc = predict_a(model, words, tags, heads, labels, arc_acc, lab_acc) # S_arc, S_lab = model(words=words, tags=tags) # print(words, S_arc) # _, arcpred = S_arc.max(dim=-2) arc_pred.append(arcpred) arc_ans.append(heads) arc_word.append(words) arc_pos.append(tags) lab_ans.append(labels) # select = torch.LongTensor(mst(S_arc[0].data.numpy())).unsqueeze(0).expand(S_lab.size(0), -1) # select = Variable(select) # selected = torch.gather(S_lab, 1, select.unsqueeze(1)).squeeze(1) # _, labpred = selected.max(dim=0) lab_pred.append(labpred) # arc_acc += arc_accuracy(S_arc, heads) # lab_acc += lab_accuracy(S_lab, heads, labels) # k_out += k # print(k_out) print(k) print(arc_pred) print(arc_ans[0].data[0]) print(arc_acc, lab_acc) arc_acc[0] /= k lab_acc[0] /= k # heads, labels = predict(model, words, tags) # heads_list.append(heads) # labels_list.append(labels) return arc_acc, lab_acc, arc_pred, lab_pred, arc_ans, lab_ans def predict_batch(S_arc, S_lab, tags): # Predict heads S = S_arc.data.numpy() heads = mst(S) # Predict labels select = torch.LongTensor(heads).unsqueeze(0).expand(S_lab.size(0), -1) select = Variable(select) selected = torch.gather(S_lab, 1, select.unsqueeze(1)).squeeze(1) _, labels = selected.max(dim=0) labels = labels.data.numpy() return heads, labels def predict_define(args): # print(args) data_path = args.data vocab_path = args.vocab model_path = args.checkpoints # data_path = 'data/ud/UD_English-EWT' # vocab_path = 'vocab/train' # model_path = 'checkpoints/enmodel.pt' corpus = Corpus(data_path=data_path, vocab_path=vocab_path) index2word = corpus.dictionary.i2w index2pos = corpus.dictionary.i2t index2label = corpus.dictionary.i2l model = torch.load(model_path) print(model) batches = corpus.test.batches(1, shuffle=False) # print(index2word[0]) # print([(step, batch) for step, batch in enumerate(batches, 1)]) word_all, pos_all, head_all, label_all, label_predall = [], [], [], [], [] for i in batches: # print(i) # words, tags, heads, labels = next(batches) words, tags, heads, labels = i # print(words, tags, heads, labels) S_arc, S_lab = model(words=words, tags=tags) args.cuda = torch.cuda.is_available() # arc_acc, lab_acc, _, _, _, _ = evaluate_predict(args, model, corpus) plot(args, S_arc, heads) heads_pred, labels_pred = predict(model, words, tags) word_data, pos_data, label_data, label_pred = [], [], [], [] for i in words[0].data.numpy(): word_data.append(index2word[i]) for j in tags[0].data.numpy(): pos_data.append(index2pos[j]) for k in labels[0].data.numpy(): label_data.append(index2label[k]) for l in labels_pred: label_pred.append(index2label[l]) print("Word: ", word_data, '\n', 'POS :', pos_data) print("Head Pred: ", heads_pred, '\n', 'Head Data :', heads[0].data.numpy()) print("Label Pred: ", label_pred, '\n', 'Label Data :', label_data) word_all.append(word_data) pos_all.append(pos_data) head_all.append(heads_pred) label_all.append(label_data) label_predall.append(label_pred) # break arc_acc, lab_acc, _, _, _, _ = evaluate_predict(args, model, corpus) print('Arc Accuracy: {} , Label Accuracy: {}'.format(arc_acc, lab_acc)) to_conllu(word_all, pos_all, head_all, label_predall) def to_conllu(word_sen, pos_sen, head_sen, label_predsen): for i in range(len(word_sen)): for idx, word in enumerate(word_sen[i]): # print(idx) print('{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}'.format(idx, word, '_', pos_sen[i][idx], '_', '_', head_sen[i][idx], label_predsen[i][idx], '_', '_')) print('\n') print('\n') # if __name__ == '__main__': # # parser = argparse.ArgumentParser() # # parser.add_argument('--data', default='~/data/ptb-stanford') # # parser.add_argument('--out', default='vocab') # # args = parser.parse_args() # # main(args) # data_path = 'data/ud/UD_English-EWT' # vocab_path = 'vocab/train' # model_path = 'checkpoints/enmodel.pt' # main(args) ``` #### File: JoesSattes/Thai-Biaffine-Dependency-Parsing/train.py ```python import os import time import torch from torch import nn from torch.autograd import Variable import numpy as np import matplotlib.pyplot as plt from model import PAD_INDEX from data import Corpus from model import make_model from optimizer import get_std_transformer_opt from util import Timer, write_losses from earlystop import EarlyStopping ### New version tensor.data[index] is not avaliable, but can use tenser.data.item() LOSSES = dict(train_loss=[], train_acc=[], val_acc=[], test_acc=[]) def arc_accuracy(S_arc, heads, eps=1e-10): """Accuracy of the arc predictions based on gready head prediction.""" _, pred = S_arc.max(dim=-2) mask = (heads != PAD_INDEX).float() accuracy = torch.sum((pred == heads).float() * mask, dim=-1) / (torch.sum(mask, dim=-1) + eps) return torch.mean(accuracy).data.item() def lab_accuracy(S_lab, heads, labels, eps=1e-10): """Accuracy of label predictions on the gold arcs.""" _, pred = S_lab.max(dim=1) pred = torch.gather(pred, 1, heads.unsqueeze(1)).squeeze(1) mask = (heads != PAD_INDEX).float() accuracy = torch.sum((pred == labels).float() * mask, dim=-1) / (torch.sum(mask, dim=-1) + eps) return torch.mean(accuracy).data.item() def evaluate(args, model, corpus): """Evaluate the arc and label accuracy of the model on the development corpus.""" # Turn on evaluation mode to disable dropout. print("Start Evaluate in {} ...".format('Dev')) model.eval() dev_batches = corpus.dev.batches(256, length_ordered=True) arc_acc, lab_acc = 0, 0 for k, batch in enumerate(dev_batches, 1): words, tags, heads, labels = batch if args.cuda: words, tags, heads, labels = words.cuda(), tags.cuda(), heads.cuda(), labels.cuda() S_arc, S_lab = model(words=words, tags=tags) arc_acc += arc_accuracy(S_arc, heads) lab_acc += lab_accuracy(S_lab, heads, labels) arc_acc /= k lab_acc /= k return arc_acc, lab_acc def evaluate_predict(args, model, corpus): """Evaluate the arc and label accuracy of the model on the test corpus.""" # Turn on evaluation mode to disable dropout. print("Start Evaluate in {} ...".format('Test')) model.eval() test_batches = corpus.test.batches(256, length_ordered=True) arc_acc, lab_acc = 0, 0 arc_word, arc_pos, arc_pred, arc_ans = [], [], [], [] # k_out = 0 for k, batch in enumerate(test_batches, 1): words, tags, heads, labels = batch if args.cuda: words, tags, heads, labels = words.cuda(), tags.cuda(), heads.cuda(), labels.cuda() S_arc, S_lab = model(words=words, tags=tags) # print(words, S_arc) _, pred = S_arc.max(dim=-2) arc_pred.append(pred) arc_ans.append(heads) arc_word.append(words) arc_pos.append(tags) arc_acc += arc_accuracy(S_arc, heads) lab_acc += lab_accuracy(S_lab, heads, labels) # k_out += k # print(k_out) # print(arc_pred) # print(arc_ans) arc_acc /= k lab_acc /= k return arc_acc, lab_acc, arc_word, arc_pos, arc_pred, arc_ans class SimpleLossCompute: """A simple loss compute and train function on one device.""" def __init__(self, model, optimizer): self.model = model self.optimizer = optimizer def __call__(self, words, tags, heads, labels): # Forward pass. S_arc, S_lab = self.model(words=words, tags=tags) # Compute loss. arc_loss = self.model.arc_loss(S_arc, heads) lab_loss = self.model.lab_loss(S_lab, heads, labels) loss = arc_loss + lab_loss # print("Tensor : "+str(arc_loss.data.item()), lab_loss, loss) # Update parameters. self.optimizer.zero_grad() loss.backward() self.optimizer.step() loss_dict = dict(loss=loss.data.item(), arc_loss=arc_loss.data.item(), lab_loss=lab_loss.data.item()) return S_arc, S_lab, loss_dict class MultiGPULossCompute: """A multi-gpu loss compute and train function. Only difference with SimpleLossCompute is we need to access loss through model.module. """ def __init__(self, model, optimizer, devices, output_device=None): self.model = model self.optimizer = optimizer self.devices = devices self.output_device = output_device if output_device is not None else devices[0] def __call__(self, words, tags, heads, labels): # Forward pass. S_arc, S_lab = self.model(words=words, tags=tags) # Compute loss. arc_loss = self.model.module.arc_loss(S_arc, heads) lab_loss = self.model.module.lab_loss(S_lab, heads, labels) loss = arc_loss + lab_loss # Update parameters. self.optimizer.zero_grad() loss.backward() self.optimizer.step() loss_dict = dict(loss=loss.data.item(), arc_loss=arc_loss.data.item(), lab_loss=lab_loss.data.item()) return S_arc, S_lab, loss_dict def run_epoch(args, model, corpus, train_step): model.train() nbatches = len(corpus.train.words) // args.batch_size start_time = time.time() # Get a new set of shuffled training batches. # print(args.batch_size, length_ordered=args.disable_length_ordered) # print('joe'+str(args.batch_size),corpus.train.words) train_batches = corpus.train.batches(args.batch_size, length_ordered=args.disable_length_ordered) ntokens = 0 for step, batch in enumerate(train_batches, 1): words, tags, heads, labels = batch if args.cuda: words, tags, heads, labels = words.cuda(), tags.cuda(), heads.cuda(), labels.cuda() S_arc, S_lab, loss_dict = train_step(words, tags, heads, labels) # es = EarlyStopping(patience=2) # if es.step(loss_dict['loss']): # print('Es Stop!!!!') # break ntokens += words.size(0) * words.size(1) LOSSES['train_loss'].append(loss_dict['loss']) print("Epoch (Step, Print): "+str(step)+", "+str(args.print_every)) if step % args.print_every == 0: arc_train_acc = arc_accuracy(S_arc, heads) lab_train_acc = lab_accuracy(S_lab, heads, labels) LOSSES['train_acc'].append([arc_train_acc, lab_train_acc]) print( '| Step {:5d}/{:5d} ({:.0f}%)| Avg loss {:3.4f} | Arc acc {:4.2f}% ' '| Label acc {:4.2f}% | {:4.0f} tokens/sec |'.format( step, nbatches, 100*step/nbatches, np.mean(LOSSES['train_loss'][-args.print_every:]), 100*arc_train_acc, 100*lab_train_acc, ntokens/(time.time() - start_time)), ) def train(args): np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) args.cuda = torch.cuda.is_available() print('Using cuda: {}'.format(args.cuda)) # Initialize the data, model, and optimizer. corpus = Corpus(data_path=args.data, vocab_path=args.vocab, char=args.use_chars) model = make_model( args, word_vocab_size=len(corpus.dictionary.w2i), tag_vocab_size=len(corpus.dictionary.t2i), num_labels=len(corpus.dictionary.l2i) ) print('Embedding parameters: {:,}'.format(model.embedding.num_parameters)) print('Encoder parameters: {:,}'.format(model.encoder.num_parameters)) print('Total model parameters: {:,}'.format(model.num_parameters)) if args.cuda: model.cuda() if args.encoder == 'transformer': optimizer = get_std_transformer_opt(args, model) else: optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) if args.cuda: device_count = torch.cuda.device_count() if args.multi_gpu: devices = list(range(device_count)) model = nn.DataParallel(model, device_ids=devices) train_step = MultiGPULossCompute(model, optimizer, devices) print('Training on {} GPUs: {}.'.format(device_count, devices)) else: train_step = SimpleLossCompute(model, optimizer) print('Training on 1 device out of {} availlable.'.format(device_count)) else: train_step = SimpleLossCompute(model, optimizer) timer = Timer() best_val_acc = 0. best_epoch = 0 print('Start of training..') try: for epoch in range(1, args.epochs+1): run_epoch(args, model, corpus, train_step) # Evaluate model on validation set. # TODO: replace this with a UAS and LAS eval instead of this proxy arc_val_acc, lab_val_acc = evaluate(args, model, corpus) LOSSES['val_acc'].append([arc_val_acc, lab_val_acc]) # Save model if it is the best so far. if arc_val_acc > best_val_acc: torch.save(model, args.checkpoints) best_val_acc = arc_val_acc best_epoch = epoch print("Train Acc : "+str(LOSSES['train_acc'])) write_losses(LOSSES['train_loss'], LOSSES['train_acc'], LOSSES['val_acc'], args.logdir) # End epoch with some useful info in the terminal. print('-' * 89) print( '| End of epoch {:3d}/{} | Time {:5.2f}s | Valid accuracy {:3.2f}% |' ' Best accuracy {:3.2f}% (epoch {:3d}) |'.format( epoch, args.epochs, timer.elapsed(), 100*arc_val_acc, 100*best_val_acc, best_epoch) ) print('-' * 89) except KeyboardInterrupt: print() print('-' * 89) print('Exiting from training early') write_losses(LOSSES['train_loss'], LOSSES['train_acc'], LOSSES['val_acc'], args.logdir) arc_val_acc, lab_val_acc = evaluate(args, model, corpus) if arc_val_acc > best_val_acc: torch.save(model, args.checkpoints) best_val_acc = arc_val_acc best_epoch = epoch print('=' * 89) print('| End of training | Best validation accuracy {:3.2f} (epoch {}) |'.format( 100*best_val_acc, best_epoch)) print('=' * 89) ``` #### File: JoesSattes/Thai-Biaffine-Dependency-Parsing/transformer.py ```python import math, copy, time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable def clones(module, N): """Produce N identical layers.""" return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) def attention(query, key, value, mask=None, dropout=None): """Compute 'Scaled Dot Product Attention'""" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class Encoder(nn.Module): """Core encoder is a stack of N layers""" def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask): """Pass the input (and mask) through each layer in turn.""" for layer in self.layers: x = layer(x, mask) return self.norm(x) class LayerNorm(nn.Module): """Construct a layernorm module (See citation for details).""" def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) class EncoderLayer(nn.Module): """Encoder is made up of self-attn and feed forward (defined below)""" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): """Follow Figure 1 (left) for connections.""" x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): """Take in model size and number of heads.""" super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): """Implements Figure 2.""" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): """Implements FFN equation.""" def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class PositionalEncoding(nn.Module): """Implement the PE function.""" def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x) class TransformerEncoder(nn.Module): """A Transformer encoder.""" def __init__(self, input_size, N, d_model, d_ff, h, dropout): super(TransformerEncoder, self).__init__() attn = MultiHeadedAttention(h, d_model) ff = PositionwiseFeedForward(d_model, d_ff, dropout) self.d_model = d_model self.encoder = Encoder(EncoderLayer(d_model, attn, ff, dropout), N) self.projection = nn.Linear(input_size, d_model) # to get to the proper input size self.positional = PositionalEncoding(d_model, dropout) self.initialize_parameters() def initialize_parameters(self): """Initialize parameters with Glorot.""" for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform(p) def forward(self, x, mask): """Take in and process masked src and target sequences.""" return self.encode(x, mask) def embed(self, x): x = self.projection(x) * math.sqrt(self.d_model) return self.positional(x) def encode(self, x, mask): return self.encoder(self.embed(x), mask) @property def num_parameters(self): """Returns the number of trainable parameters of the model.""" return sum(np.prod(p.shape) for p in self.parameters() if p.requires_grad) if __name__ == '__main__': encoder = TransformerEncoder(d_model=512) embedding = nn.Embedding(100, 512) x = Variable(torch.arange(1, 16).long().view(3, 5)) mask = (x != 0).unsqueeze(-2) # Why unsqueeze? print(x) print(mask) out = encoder(embedding(x), mask) print(out) ``` #### File: JoesSattes/Thai-Biaffine-Dependency-Parsing/util.py ```python import os import time import csv import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt import numpy as np class Timer: """A simple timer to use during training.""" def __init__(self): self.time0 = time.time() def elapsed(self): time1 = time.time() elapsed = time1 - self.time0 self.time0 = time1 return elapsed def write_losses(train_loss, train_acc, val_acc, outdir): """Write out the loss and accuracy to CSV files.""" with open(os.path.join(outdir, 'loss.train.csv'), 'w') as f: writer = csv.writer(f) names = [['loss']] losses = [[l] for l in train_loss] writer.writerows(names + losses) with open(os.path.join(outdir, 'acc.train.csv'), 'w') as f: writer = csv.writer(f) names = [["train_arc_acc", "train_lab_acc"]] writer.writerows(names + train_acc) with open(os.path.join(outdir, 'acc.val.csv'), 'w') as f: writer = csv.writer(f) names = [["val_arc_acc", "val_lab_acc"]] writer.writerows(names + val_acc) # def plot(corpus, model, fig, ax, step, sent=2): # words = Variable(torch.LongTensor([corpus.train.words[sent]])) # tags = Variable(torch.LongTensor([corpus.train.tags[sent]])) # heads = Variable(torch.LongTensor([corpus.train.heads[sent]])) # labels = Variable(torch.LongTensor([corpus.train.labels[sent]])) # # Disable dropout. # model.eval() # S_arc, S_lab = model(words, tags) # # Turn dropout back on. # model.train() # # Plot the gold adjacency matrix, if does not yet exist. # if not os.path.exists('img/gold.pdf'): # # Make a 0/1 gold adjacency matrix. # n = words.size(1) # G = np.zeros((n, n)) # heads = heads.squeeze().data.numpy() # G[heads, np.arange(n)] = 1. # im = ax.imshow(G, vmin=0, vmax=1) # fig.colorbar(im) # plt.savefig('img/gold.pdf'.format(step)) # plt.cla() # plt.clf() # # Plot the predicted adjacency matrix # A = F.softmax(S_arc.squeeze(0), dim=0) # fig, ax = plt.subplots() # im = ax.imshow(A.data.numpy(), vmin=0, vmax=1) # fig.colorbar(im) # plt.savefig('img/a.{}.pdf'.format(step)) # plt.cla() # plt.clf() ```
{ "source": "joest67/my-beancount-scripts", "score": 3 }
#### File: modules/imports/yuebao.py ```python import calendar import csv import datetime from datetime import date from io import StringIO import xlrd from beancount.core import data from beancount.core.data import Note, Transaction from . import (DictReaderStrip, get_account_by_guess, get_income_account_by_guess) from .base import Base from .deduplicate import Deduplicate Account余额宝 = 'Assets:Company:Alipay:MonetaryFund' incomes = ['余额自动转入', '收益', '单次转入'] class YuEBao(Base): def __init__(self, filename, byte_content, entries, option_map): if not filename.endswith('xls'): raise 'Not YuEBao!' data = xlrd.open_workbook(filename) table = data.sheets()[0] rows_value = table.row_values(0) if rows_value[0] != '余额宝收支明细查询': raise 'Not YuEBao!' self.book = data self.table = table self.deduplicate = Deduplicate(entries, option_map) def parse(self): table = self.table rows = table.nrows for i in range(5, rows - 4): row = table.row_values(i) time = datetime.datetime( *xlrd.xldate_as_tuple(table.cell_value(rowx=i, colx=0), self.book.datemode)) print("Importing {} price = {} balance = {}".format( time, row[2], row[3])) meta = {} amount = float(row[1]) entry = Transaction( meta, date(time.year, time.month, time.day), '*', '余额宝', '余额宝', data.EMPTY_SET, data.EMPTY_SET, [] ) if not row[2] in incomes: amount = -amount if self.deduplicate.find_duplicate(entry, amount, None, Account余额宝): print( "Unknown transaction for {}, check if Alipay transaction exists.".format(time)) self.deduplicate.apply_beans() return [] ```
{ "source": "joest67/qsProj", "score": 3 }
#### File: qsBack/app/functions.py ```python from qs.models import Person, Answer from django.forms.models import model_to_dict def newPerson(dicts): default = '' imei = dicts.get('imei',default) name = dicts.get('name', default) mobile = dicts.get('mobile', default) qq = dicts.get('qq', default) email = dicts.get('email', default) a = Answer.objects.get(imei=imei) try: p = Person.objects.get(imei = a) updatePerson(dicts, p) except Person.DoesNotExist: p = Person(name=name,mobile=mobile,qq=qq,email=email) p.imei = a p.save() def newAnswer(imei="", sex="", age="", address="", edu="", position="", payment="",useMobileTime="",webTime="",webMoment="",webUsage=""): a = Answer(imei=imei,sex=sex,age=age,address=address,edu=edu, position=position,payment=payment) a.save() def udpatePerson(dicts, person): try: person.name = dicts.get("name", person.name) person.mobile = dicts.get("mobile", person.mobile) person.qq = dicts.get("qq", person.qq) person.email = dicts.get("email", person.email) person.save() except: print "update person error." def updateAnswer(dicts, answer): try: answer.sex = dicts.get("sex", answer.sex) answer.sex = dicts.get("age", answer.age) answer.address = dicts.get("address", answer.address) answer.edu = dicts.get("edu",answer.edu) answer.position = dicts.get("position",answer.position) answer.payment = dicts.get("payment", answer.payment) answer.useMobileTime = dicts.get("useMobileTime", answer.useMobileTime) answer.webTime = dicts.get("webTime", answer.webTime) answer.webMoment = dicts.get("webMoment", answer.webMoment) answer.webUsage = dicts.get("webUsage", answer.webUsage ) answer.save() except: print "update answer error." def update(imei, dicts): try: a = Answer.objects.get(imei=imei) if checkForm(dicts) == 2: updateAnswer(dicts, a) newPerson(dicts) else: updateAnswer(dicts, a) except Answer.DoesNotExist: newAnswer(**dicts) def store(dicts): try: imei = dicts['imei'] flag = isAnswered(imei) if flag == 2: print "you have answered this questionnaire." elif flag == 1: update(imei, dicts) else: newAnswer(**dicts) except KeyError: print "This dict donot have a imei value." # check which form is posted # 1 => form1 # 2 => form2 def checkForm(dicts): if dicts.get('sex') != None: return 1 return 2 # check if the user have answered this questionnaire # 0 => donot answered # 1 => have answered q1 # 2 => have answered all def isAnswered(imei): try: a = Answer.objects.get(imei=imei) if a.webTime != '' and a.sex != '': return 2 return 1 except Answer.DoesNotExist: return 0 def getObject(): answers = {} persons = {} for e in Answer.objects.all(): answers[e.imei] = model_to_dict(e) persons[e.imei] = getPerson(e.imei) result = {"answers":answers,"persons":persons} return result def getPerson(imei): try: p = Person.objects.get(imei_id=imei) return p.getDic() except Person.DoesNotExist: return {} ``` #### File: qsBack/app/views.py ```python from django.http import HttpResponse from qs.functions import store, getObject from qs.models import Person, Answer from django.template import loader,Context def index(request): return HttpResponse("Hello,World!") def sendqs(request): if(request.POST['dic']): dicts = request.POST.get('dic') store(eval(dicts)) return HttpResponse("hehe") def showall(request): t = loader.get_template('show.html') c = Context(getObject()) return HttpResponse(t.render(c)) ```
{ "source": "joestarhu/jhml", "score": 3 }
#### File: jhml/src/knn.py ```python import numpy as np import pandas as pd class KNN: @staticmethod def predict(X,y,T,k=3,p=2,normalize=False) -> pd.DataFrame: """ KNN, 采用Brute方式(计算目标和样本的每个距离) Paramters: ---------------- X: np.ndarray 训练数据集(Training Datasets) y: np.ndarray 训练数据集标签(Training Datasets Label) T: np.ndarray 测试数据集(Testing Datasets) k: int K值,Default:3 p: int P值,Default:2 P值为1就是曼哈顿距离(Mahattan Distance) P值为2就是欧式距离(Euclidean Distance) normalize: bool 正规化(归一化)标签,Default:False True: 实施归一化 False: 对输入数据不做处理 Returns: --------- pd.DataFrame 示列: 动作 爱情 CLS 0 0.333333 0.666667 爱情 1 1.000000 0.000000 动作 """ if normalize: ds = np.r_[X,T] ds_min,ds_max = ds.min(axis=0),ds.max(axis=0) ds = (ds - ds_min)/(ds_max-ds_min) X = ds[:X.shape[0]] T = ds[X.shape[0]:] lbl = np.unique(y) n_lp = [np.sum(np.abs(t-X)**p,axis=1)**(1/p) for t in T] n_idx = np.argsort(n_lp,axis=1)[:,:k] proba = [[n[n==v].size / n.size for v in lbl] for n in y[n_idx]] df = pd.DataFrame(proba,columns=lbl) df['CLS'] = lbl[np.argmax(proba,axis=1)] return df if __name__ == '__main__': from sklearn.datasets import load_iris import matplotlib.pyplot as plt iris = load_iris() X = np.r_[iris.data[:30],iris.data[50:80],iris.data[100:130]] y = np.r_[iris.target[:30],iris.target[50:80],iris.target[100:130]] tX = np.r_[iris.data[30:50],iris.data[80:100],iris.data[130:]] ty = np.r_[iris.target[30:50],iris.target[80:100],iris.target[130:]] for k in range(3,20,2): error_size = ty.size - ty[KNN.predict(X,y,tX,k=k)['CLS'] == ty].size print(1 - error_size/ty.size) ```
{ "source": "joestasks/gainterc-ardvis", "score": 2 }
#### File: gainterc-ardvis/data_comparison/nbar_lam_ratio_plot.py ```python import os import pandas as pd import numpy as np import matplotlib.pyplot as plt def plot_nbar_lam_ratio(nbar_ratio_dfs, lam_ratio_dfs, plot_plan, **ack): plt.close('all') plt.style.use(ack.get('plot_style')) temp_a_df = None temp_b_df = None oa_temp_a_df = None oa_temp_b_df = None for site in [*nbar_ratio_dfs]: for ga_band in [*nbar_ratio_dfs[site]]: temp_a_df = nbar_ratio_dfs[site][ga_band][1] oa_temp_a_df = nbar_ratio_dfs[site][ga_band][4] if site in [*lam_ratio_dfs]: lam_ga_band = ga_band.replace('nbar', 'lambertian') temp_b_df = lam_ratio_dfs[site][lam_ga_band][1] oa_temp_b_df = lam_ratio_dfs[site][lam_ga_band][6] res = pd.merge( temp_a_df.assign( grouper=pd.to_datetime( temp_a_df[ack.get('date_col')] ).dt.to_period('D')), temp_b_df.assign( grouper=pd.to_datetime( temp_b_df[ack.get('date_col')] ).dt.to_period('D')), how='inner', on='grouper', suffixes=('_nbar', '_lam')) res['ratio'] = res['Mean_sr_nbar'] / res['Mean_sr_lam'] m_fig, m_axs = plt.subplots(2, 1, figsize=(12, 10), squeeze=False) # Do plotting. m_axs[0][0].set( xlabel=ack.get('date_col'), ylabel='NBAR/LAM', title='NBAR / LAM Ratio for ' + ((ack.get('in_a_source_name') == 'GA' and ga_band.split('_nbar_')[1]) or ga_band) + ' at ' + site.replace('NBAR_', ''), xlim=[np.datetime64(ack.get('plot_start_date')), np.datetime64(ack.get('plot_end_date'))] ) if temp_a_df is not None: ax = res.plot( kind=ack.get( 'measurements_plot_type' ), x='Date_nbar', y='ratio', label=((ack.get('in_a_source_name') == 'GA' and ga_band.split('_nbar_')[1]) or ga_band), #marker='o', ax=m_axs[0][0], # sharex=m_axs[1][0] ) #if temp_b_df is not None: # ax = temp_b_df.plot( # kind=ack.get( # 'measurements_plot_type' # ), x=ack.get( # 'date_col' # ), y='Mean_sr', label='B', # #marker='o', # ax=m_axs[0][0], # # sharex=m_axs[1][0] # ) m_axs[1][0].set( xlabel=ack.get('date_col'), ylabel=ack.get('oa_plot_y_label'), title='GA Additional Attribute(s)', xlim=[np.datetime64(ack.get('plot_start_date')), np.datetime64(ack.get('plot_end_date'))] ) if oa_temp_a_df is not None: ax = oa_temp_a_df.plot( kind=ack.get( 'measurements_plot_type' ), x=ack.get('date_col'), y='Mean_sr', label=nbar_ratio_dfs[site][ga_band][3][7:], ax=m_axs[1][0], # sharex=m_axs[0][0] ) if oa_temp_b_df is not None: ax = oa_temp_b_df.plot( kind=ack.get( 'measurements_plot_type' ), x=ack.get('date_col'), y='Mean_sr', label=nbar_ratio_dfs[site][ga_band][5][7:], ax=m_axs[1][0], # sharex=m_axs[0][0] ) plot_target = plot_plan.get_plot_target('NBAR', site.replace('NBAR_', ''), **ack) plot_path = plot_target + ga_band + '_nbar_lam_ratio.png' print('Writing plot image: ' + plot_path) m_fig.autofmt_xdate() #plt.show() plt.savefig(plot_path) plt.close(m_fig) return True ``` #### File: gainterc-ardvis/data_comparison/plot_plan.py ```python import os from pathlib import Path import numpy as np def get_plans(app_configuration, subproject_name): """Return a flattened list of standardised plans.""" ack = _make_app_config_kwargs(app_configuration, subproject_name) plans = [] products = get_products(**ack) print('Using these products:-') print(products) for product in products: sites = _get_sites(product, **ack) print('Processing these sites:-') print(sites) for site in sites: m_title, oa_title, i_title, esa_oa_title = _get_plot_titles(product, site, **ack) plan_properties = { "product": product, "site": site, "in_a_source_name": ack.get('in_a_source_name'), "in_b_source_name": ack.get('in_b_source_name'), "in_c_source_name": ack.get('in_c_source_name'), "in_a_satellite_name": ack.get('in_a_satellite_name'), "in_b_satellite_name": ack.get('in_b_satellite_name'), "in_c_satellite_name": ack.get('in_c_satellite_name'), "in_a_site_path": get_in_site_path('a', product, **ack), "in_b_site_path": get_in_site_path('b', product, **ack), "in_c_site_path": get_in_site_path('c', product, **ack), "in_a_sr_measurements_file": ack.get('in_a_measurements_file'), "in_b_sr_measurements_file": ack.get('in_b_measurements_file'), "in_a_indices_file": ack.get('in_a_indices_file'), "in_b_indices_file": ack.get('in_b_indices_file'), "in_c_indices_file": ack.get('in_c_indices_file'), "plot_target": get_plot_target(product, site, **ack), "all_sites_plot_target": get_all_sites_plot_target(product, **ack), "srm_title": m_title, "srm_oa_title": oa_title, "srm_esa_oa_title": esa_oa_title, "indices_title": i_title, "rec_max": ack.get('rec_max'), "plot_sr_measurements": ack.get('plot_sr_measurements'), "plot_indices": ack.get('plot_indices'), "ga_bands": ack.get('ga_bands'), "ga_band_mappings": ack.get('ga_band_mappings'), "ga_oas": ack.get('ga_oas'), "ga_oa_mappings": ack.get('ga_oa_mappings'), "ga_band_lam_name": ack.get('ga_band_lam_name'), "ga_band_oa_name": ack.get('ga_band_oa_name'), "plot_start_date": np.datetime64(ack.get('plot_start_date')), "plot_end_date": np.datetime64(ack.get('plot_end_date')), "in_a_measurements_min_valid_pixel_percentage": ack.get('in_a_measurements_min_valid_pixel_percentage'), "in_b_measurements_min_valid_pixel_percentage": ack.get('in_b_measurements_min_valid_pixel_percentage'), "in_c_measurements_min_valid_pixel_percentage": ack.get('in_c_measurements_min_valid_pixel_percentage'), "in_a_indices_min_valid_pixel_percentage": ack.get('in_a_indices_min_valid_pixel_percentage'), "in_b_indices_min_valid_pixel_percentage": ack.get('in_b_indices_min_valid_pixel_percentage'), "in_c_indices_min_valid_pixel_percentage": ack.get('in_c_indices_min_valid_pixel_percentage'), "sr_measurements_date_filtering": ack.get('sr_measurements_date_filtering'), "date_col": ack.get('date_col'), "band_col": ack.get('band_col'), "standardised_date_format": ack.get('standardised_date_format'), "esa_oa_mappings": ack.get('esa_oa_mappings'), "plot_style": ack.get('plot_style'), "measurements_plot_y_label": ack.get('measurements_plot_y_label'), "measurements_plot_type": ack.get('measurements_plot_type'), "oa_plot_y_label": ack.get('oa_plot_y_label'), "acd": ack.get('acd'), "indices_col": ack.get('indices_col'), "indices_plot_type": ack.get('indices_plot_type'), "in_a_data_path": ack.get('in_a_data_path'), "in_a_prefix": ack.get('in_a_prefix'), "in_a_same_sensor_date_filter_source": ack.get('in_a_same_sensor_date_filter_source'), "in_b_data_path": ack.get('in_b_data_path'), "in_b_prefix": ack.get('in_b_prefix'), "in_b_same_sensor_date_filter_source": ack.get('in_b_same_sensor_date_filter_source'), "in_c_data_path": ack.get('in_c_data_path'), "in_c_prefix": ack.get('in_c_prefix'), "in_c_same_sensor_date_filter_source": ack.get('in_c_same_sensor_date_filter_source'), "product_label": get_product_label(product, **ack), "spectral_indices": ack.get('spectral_indices'), "test_ref_base": ack.get('test_ref_base'), "test_ref_path": get_test_ref_path(product, site, **ack), "indices_same_sensor_date_filtering": ack.get('indices_same_sensor_date_filtering'), "in_a_same_sensor_date_filter_source": ack.get('in_a_same_sensor_date_filter_source'), "in_b_same_sensor_date_filter_source": ack.get('in_b_same_sensor_date_filter_source'), "in_c_same_sensor_date_filter_source": ack.get('in_c_same_sensor_date_filter_source'), } plans.append(plan_properties) return (plans, ack) def _make_app_config_kwargs(app_c, subp_name): acd = app_c['APP_SOURCE']['SUBPROJECTS'][subp_name]['DATA'] ack = { "acd": acd, "in_a_measurements_min_valid_pixel_percentage": acd['COMPARISON_SOURCES']['A']['MEASUREMENTS_MIN_VALID_PIXEL_PERCENTAGE'], "in_b_measurements_min_valid_pixel_percentage": acd['COMPARISON_SOURCES']['B']['MEASUREMENTS_MIN_VALID_PIXEL_PERCENTAGE'], "in_c_measurements_min_valid_pixel_percentage": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['MEASUREMENTS_MIN_VALID_PIXEL_PERCENTAGE']) or None, "in_a_indices_min_valid_pixel_percentage": acd['COMPARISON_SOURCES']['A']['INDICES_MIN_VALID_PIXEL_PERCENTAGE'], "in_b_indices_min_valid_pixel_percentage": acd['COMPARISON_SOURCES']['B']['INDICES_MIN_VALID_PIXEL_PERCENTAGE'], "in_c_indices_min_valid_pixel_percentage": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['INDICES_MIN_VALID_PIXEL_PERCENTAGE']) or None, "plot_sr_measurements": acd['PLOT_SR_MEASUREMENTS'], "plot_indices": acd['PLOT_INDICES'], "sr_measurements_date_filtering": acd['SR_MEASUREMENTS_DATE_FILTERING'], "indices_same_sensor_date_filtering": acd['INDICES_SAME_SENSOR_DATE_FILTERING'], "standardised_date_format": acd['STANDARDISED_DATE_FORMAT'], "plot_start_date": acd['PLOT_START_DATE'], "plot_end_date": acd['PLOT_END_DATE'], "plot_style": acd['PLOT_STYLE'], "measurements_plot_type": acd['MEASUREMENTS_PLOT_TYPE'], "indices_plot_type": acd['INDICES_PLOT_TYPE'], "measurements_plot_y_label": acd['MEASUREMENTS_PLOT_Y_LABEL'], "oa_plot_y_label": acd['OA_PLOT_Y_LABEL'], "ga_algorithms": [*acd['GA_ALGORITHMS']], "ga_band_lam_name": acd['GA_BAND_LAM_NAME'], "ga_band_oa_name": acd['GA_BAND_OA_NAME'], "spectral_indices": [*acd['SPECTRAL_INDICES']], "date_col": acd['DATE_COL'], "band_col": acd['BAND_COL'], "indices_col": acd['INDICES_COL'], "ga_oa_mappings": acd['GA_OA_MAPPINGS'], "ga_oas": [*acd['GA_OA_MAPPINGS']], "esa_oa_mappings": ('ESA_OA_MAPPINGS' in [*acd] and acd['ESA_OA_MAPPINGS']) or {}, "ga_band_mappings": acd['GA_BAND_MAPPINGS'], "ga_bands": [*acd['GA_BAND_MAPPINGS']], "in_a_data_path": acd['IN_BASE'], "in_a_prefix": acd['COMPARISON_SOURCES']['A']['PREFIX'], "in_a_source_name": acd['COMPARISON_SOURCES']['A']['SOURCE_NAME'], "in_a_satellite_name": acd['COMPARISON_SOURCES']['A']['SATELLITE_NAME'], "in_a_product": acd['COMPARISON_SOURCES']['A']['PRODUCT'], "in_a_site": acd['COMPARISON_SOURCES']['A']['SITE'], "in_a_measurements_file": acd['COMPARISON_SOURCES']['A']['MEASUREMENTS_FILE'], "in_a_indices_file": acd['COMPARISON_SOURCES']['A']['INDICES_FILE'], "in_a_same_sensor_date_filter_source": ('SAME_SENSOR_DATE_FILTER_SOURCE' in [*acd['COMPARISON_SOURCES']['A']] and acd['COMPARISON_SOURCES']['A']['SAME_SENSOR_DATE_FILTER_SOURCE']) or '', "in_b_data_path": acd['IN_BASE'], "in_b_prefix": acd['COMPARISON_SOURCES']['B']['PREFIX'], "in_b_source_name": acd['COMPARISON_SOURCES']['B']['SOURCE_NAME'], "in_b_satellite_name": acd['COMPARISON_SOURCES']['B']['SATELLITE_NAME'], "in_b_product": acd['COMPARISON_SOURCES']['B']['PRODUCT'], "in_b_site": acd['COMPARISON_SOURCES']['B']['SITE'], "in_b_measurements_file": acd['COMPARISON_SOURCES']['B']['MEASUREMENTS_FILE'], "in_b_indices_file": acd['COMPARISON_SOURCES']['B']['INDICES_FILE'], "in_b_same_sensor_date_filter_source": ('SAME_SENSOR_DATE_FILTER_SOURCE' in [*acd['COMPARISON_SOURCES']['B']] and acd['COMPARISON_SOURCES']['B']['SAME_SENSOR_DATE_FILTER_SOURCE']) or '', "in_c_data_path": acd['IN_BASE'], "in_c_prefix": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['PREFIX']) or '', "in_c_source_name": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['SOURCE_NAME']) or '', "in_c_satellite_name": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['SATELLITE_NAME']) or '', "in_c_product": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['PRODUCT']) or '', "in_c_site": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['SITE']) or '', "in_c_measurements_file": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['MEASUREMENTS_FILE']) or '', "in_c_indices_file": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['INDICES_FILE']) or '', "in_c_same_sensor_date_filter_source": ('C' in [*acd['COMPARISON_SOURCES']] and acd['COMPARISON_SOURCES']['C']['SAME_SENSOR_DATE_FILTER_SOURCE']) or '', "out_path": acd['OUT_BASE'], "rec_max": app_c['APP_SOURCE']['DATA_RECORD_MAX_LIMIT'], "test_ref_base": acd['TEST_REF_BASE'], } ack['in_a_site_path'] = ack.get( 'in_a_data_path' ) + '/' + ack.get( 'in_a_prefix' ) + '_' + ack.get( 'in_a_source_name' ) + '_' + ack.get( 'in_a_satellite_name' ) + '/' ack['in_b_site_path'] = ack.get( 'in_b_data_path' ) + '/' + ack.get( 'in_b_prefix' ) + '_' + ack.get( 'in_b_source_name' ) + '_' + ack.get( 'in_b_satellite_name' ) + ( lambda x: (x is not None and '_' + x) or ('') )(ack.get('in_b_product')) + '/' if ack.get('in_c_source_name'): ack['in_c_site_path'] = ack.get( 'in_c_data_path' ) + '/' + ack.get( 'in_c_prefix' ) + '_' + ack.get( 'in_c_source_name' ) + '_' + ack.get( 'in_c_satellite_name' ) + ( lambda x: (len(x) > 0 and '_' + x) or ('') )(ack.get('in_c_product')) + '/' else: ack['in_c_site_path'] = '' return ack def get_products(**ack): products = None if ack.get('in_a_product') is None: products = ack.get('ga_algorithms') else: products = list((ack.get('in_a_product'),)) return products def _get_sites(s_product, **ack): site_paths = None if ack.get('in_a_site') is None: site_paths = list(Path(get_in_site_path('a', s_product, **ack)).glob('**')) site_paths.pop(0) else: site_paths = list((get_in_site_path('a', s_product, **ack) + ack.get('in_a_site'),)) print('Found these site paths:-') print(site_paths) sites = list(map(lambda x: os.path.basename(os.path.normpath(x)), site_paths)) return sites def get_product_label(s_product, **ack): product_label = '' if s_product: product_label = ' for ' + ack.get('acd')['GA_ALGORITHMS'][s_product] return product_label def get_in_site_path(inn, s_product, **ack): site_path = ack.get(f"in_{inn}_site_path") if ack.get(f"in_{inn}_source_name").upper() == 'GA': site_path = ack.get( f"in_{inn}_data_path" ) + '/' + ack.get( f"in_{inn}_prefix" ) + '_' + ack.get( f"in_{inn}_source_name" ) + '_' + ack.get( f"in_{inn}_satellite_name" ) + '_' + s_product + '/' return site_path def _get_plot_titles(t_product, t_site, **ack): """Make plot titles.""" m_title = ack.get( 'in_a_source_name' ) + ' ' + ack.get( 'in_a_satellite_name' ) + ' VS ' + ack.get( 'in_b_source_name' ) + ' ' + ack.get( 'in_b_satellite_name' ) + get_product_label( t_product, **ack ) + ' at ' + t_site oa_title = ack.get( 'in_a_source_name' ) + ' ' + ack.get( 'in_a_satellite_name' ) + get_product_label( t_product, **ack ) + ' at ' + t_site i_title = m_title if len(ack.get( 'in_c_source_name' )) > 0 and len(ack.get( 'in_c_satellite_name' )) > 0: i_title = ack.get( 'in_a_source_name' ) + ' ' + ack.get( 'in_a_satellite_name' ) + ' VS ' + ack.get( 'in_b_source_name' ) + ' ' + ack.get( 'in_b_satellite_name' ) + ' VS ' + ack.get( 'in_c_source_name' ) + ' ' + ack.get( 'in_c_satellite_name' ) + ' at ' + t_site esa_oa_title = ack.get( 'in_b_source_name' ) + ' ' + ack.get( 'in_b_satellite_name' ) + ' at ' + t_site return (m_title, oa_title, i_title, esa_oa_title) def get_plot_target(t_product, t_site, **ack): plot_target = ack.get( 'out_path' ) + '/' + ack.get( 'in_a_source_name' ).lower() + '_' + ack.get( 'in_a_satellite_name' ).lower() + '_vs_' + ack.get( 'in_b_source_name' ).lower() + '_' + ack.get( 'in_b_satellite_name' ).lower() + '/' + t_product.lower() + '/' + t_site.lower() + '/' return plot_target def get_test_ref_path(t_product, t_site, **ack): plot_target = ack.get( 'test_ref_base' ) + '/' + ack.get( 'in_a_source_name' ).lower() + '_' + ack.get( 'in_a_satellite_name' ).lower() + '_vs_' + ack.get( 'in_b_source_name' ).lower() + '_' + ack.get( 'in_b_satellite_name' ).lower() + '/' + t_product.lower() + '/' + ( (t_site is not None and t_site.lower() + '/') or '' ) return plot_target def get_all_sites_plot_target(t_product, **ack): all_sites_plot_target = ack.get( 'out_path' ) + '/' + ack.get( 'in_a_source_name' ).lower() + '_' + ack.get( 'in_a_satellite_name' ).lower() + '_vs_' + ack.get( 'in_b_source_name' ).lower() + '_' + ack.get( 'in_b_satellite_name' ).lower() + '/' + t_product.lower() + '/' return all_sites_plot_target ```
{ "source": "JoeStratton/home-assistant-config", "score": 2 }
#### File: custom_components/modernforms/__init__.py ```python import json import requests from datetime import timedelta from homeassistant.const import (CONF_NAME, CONF_HOST, CONF_SCAN_INTERVAL) from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import (async_call_later, async_track_time_interval) from homeassistant.helpers import discovery import logging _LOGGER = logging.getLogger(__name__) DOMAIN = "modernforms" DEVICES = "devices" CONF_LIGHT = "light" SCAN_INTERVAL = timedelta(seconds=10) def setup(hass, config): hass.data[DOMAIN] = {} hass.data[DOMAIN][DEVICES] = [] fans = config[DOMAIN] for fan in fans: scan_interval = fan.get(CONF_SCAN_INTERVAL, SCAN_INTERVAL) name = fan.get(CONF_NAME) host = fan.get(CONF_HOST) has_light = fan.get(CONF_LIGHT, False) hass.data[DOMAIN][DEVICES].append(ModernFormsDevice(hass, name, host, has_light, scan_interval)) discovery.load_platform(hass, 'fan', DOMAIN, None, config) discovery.load_platform(hass, 'light', DOMAIN, None, config) return True class ModernFormsBaseEntity(Entity): def __init__(self, hass, device): self.hass = hass self.device = device self.device._attach(self) def _device_updated(self): self.schedule_update_ha_state() @property def should_poll(self): return False @property def device_state_attributes(self): return self.device.data class ModernFormsDevice: def __init__(self, hass, name, host, has_light, interval): self.url = "http://{}/mf".format(host) self.name = name self.data = {} self.has_light = has_light self.subscribers = [] def update_action(time): self.update_status() async_call_later(hass, 0, update_action) self.poll = async_track_time_interval(hass, update_action, interval) def _attach(self, sub): self.subscribers.append(sub) def _notify(self): for sub in self.subscribers: sub._device_updated() def clientId(self): return self.data.get("clientId", None) def fanOn(self): return self.data.get("fanOn", False) def fanSpeed(self): return self.data.get("fanSpeed", None) def fanDirection(self): return self.data.get("fanDirection", None) def lightOn(self): return self.data.get("lightOn", False) def lightBrightness(self): return self.data.get("lightBrightness", 0); def set_fan_on(self): self._send_request({"fanOn": 1}) def set_fan_off(self): self._send_request({"fanOn": 0}) def set_fan_speed(self, speed): if speed < 1: speed = 1 elif speed > 6: speed = 6 self._send_request({"fanOn": 1, "fanSpeed": speed}) def set_fan_direction(self, direction): self._send_request({"fanDirection": direction}) def set_light_on(self): self._send_request({"lightOn": 1}) def set_light_off(self): self._send_request({"lightOn": 0}) def set_light_brightness(self, level): if level < 1: level = 1 elif level > 100: level = 100 self._send_request({"lightOn": 1, "lightBrightness": level}) def update_status(self): self._send_request({"queryDynamicShadowData":1}) def _send_request(self, data): r = requests.post(self.url, json=data) r.raise_for_status() self.data = r.json(); self._notify() ``` #### File: custom_components/unifiprotect/camera.py ```python import logging from homeassistant.components.camera import SUPPORT_STREAM, Camera from homeassistant.config_entries import ConfigEntry from homeassistant.const import ATTR_ATTRIBUTION, ATTR_LAST_TRIP_TIME from homeassistant.helpers import entity_platform from homeassistant.helpers.typing import HomeAssistantType from .const import ( ATTR_CAMERA_ID, ATTR_ONLINE, ATTR_UP_SINCE, DEFAULT_ATTRIBUTION, DEFAULT_BRAND, DEVICE_TYPE_DOORBELL, DOMAIN, SAVE_THUMBNAIL_SCHEMA, SERVICE_SAVE_THUMBNAIL, SERVICE_SET_DOORBELL_LCD_MESSAGE, SERVICE_SET_HDR_MODE, SERVICE_SET_HIGHFPS_VIDEO_MODE, SERVICE_SET_IR_MODE, SERVICE_SET_RECORDING_MODE, SERVICE_SET_STATUS_LIGHT, SET_DOORBELL_LCD_MESSAGE_SCHEMA, SET_HDR_MODE_SCHEMA, SET_HIGHFPS_VIDEO_MODE_SCHEMA, SET_IR_MODE_SCHEMA, SET_RECORDING_MODE_SCHEMA, SET_STATUS_LIGHT_SCHEMA, ) from .entity import UnifiProtectEntity _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: HomeAssistantType, entry: ConfigEntry, async_add_entities ) -> None: """Discover cameras on a Unifi Protect NVR.""" entry_data = hass.data[DOMAIN][entry.entry_id] upv_object = entry_data["upv"] protect_data = entry_data["protect_data"] snapshot_direct = entry_data["snapshot_direct"] if not protect_data.data: return async_add_entities( [ UnifiProtectCamera(upv_object, protect_data, camera_id, snapshot_direct) for camera_id in protect_data.data ] ) platform = entity_platform.current_platform.get() platform.async_register_entity_service( SERVICE_SET_RECORDING_MODE, SET_RECORDING_MODE_SCHEMA, "async_set_recording_mode", ) platform.async_register_entity_service( SERVICE_SET_IR_MODE, SET_IR_MODE_SCHEMA, "async_set_ir_mode" ) platform.async_register_entity_service( SERVICE_SET_STATUS_LIGHT, SET_STATUS_LIGHT_SCHEMA, "async_set_status_light" ) platform.async_register_entity_service( SERVICE_SET_HDR_MODE, SET_HDR_MODE_SCHEMA, "async_set_hdr_mode" ) platform.async_register_entity_service( SERVICE_SET_HIGHFPS_VIDEO_MODE, SET_HIGHFPS_VIDEO_MODE_SCHEMA, "async_set_highfps_video_mode", ) platform.async_register_entity_service( SERVICE_SET_DOORBELL_LCD_MESSAGE, SET_DOORBELL_LCD_MESSAGE_SCHEMA, "async_set_doorbell_lcd_message", ) platform.async_register_entity_service( SERVICE_SAVE_THUMBNAIL, SAVE_THUMBNAIL_SCHEMA, "async_save_thumbnail" ) return True class UnifiProtectCamera(UnifiProtectEntity, Camera): """A Ubiquiti Unifi Protect Camera.""" def __init__(self, upv_object, protect_data, camera_id, snapshot_direct): """Initialize an Unifi camera.""" super().__init__(upv_object, protect_data, camera_id, None) self._snapshot_direct = snapshot_direct self._name = self._camera_data["name"] self._stream_source = self._camera_data["rtsp"] self._last_image = None self._supported_features = SUPPORT_STREAM if self._stream_source else 0 @property def name(self): """Return the name of this camera.""" return self._name @property def supported_features(self): """Return supported features for this camera.""" return self._supported_features @property def motion_detection_enabled(self): """Camera Motion Detection Status.""" return self._camera_data["recording_mode"] @property def brand(self): """Return the Cameras Brand.""" return DEFAULT_BRAND @property def model(self): """Return the camera model.""" return self._model @property def is_recording(self): """Return true if the device is recording.""" return ( True if self._camera_data["recording_mode"] != "never" and self._camera_data["online"] else False ) @property def device_state_attributes(self): """Add additional Attributes to Camera.""" if self._device_type == DEVICE_TYPE_DOORBELL: last_trip_time = self._camera_data["last_ring"] else: last_trip_time = self._camera_data["last_motion"] return { ATTR_ATTRIBUTION: DEFAULT_ATTRIBUTION, ATTR_UP_SINCE: self._camera_data["up_since"], ATTR_ONLINE: self._camera_data["online"], ATTR_CAMERA_ID: self._camera_id, ATTR_LAST_TRIP_TIME: last_trip_time, } async def async_set_recording_mode(self, recording_mode): """Set Camera Recording Mode.""" await self.upv_object.set_camera_recording(self._camera_id, recording_mode) async def async_save_thumbnail(self, filename, image_width): """Save Thumbnail Image.""" if not self.hass.config.is_allowed_path(filename): _LOGGER.error("Can't write %s, no access to path!", filename) return image = await self.upv_object.get_thumbnail(self._camera_id, image_width) if image is None: _LOGGER.error("Last recording not found for Camera %s", self.name) return try: await self.hass.async_add_executor_job(_write_image, filename, image) except OSError as err: _LOGGER.error("Can't write image to file: %s", err) async def async_set_ir_mode(self, ir_mode): """Set camera ir mode.""" await self.upv_object.set_camera_ir(self._camera_id, ir_mode) async def async_set_status_light(self, light_on): """Set camera Status Light.""" await self.upv_object.set_camera_status_light(self._camera_id, light_on) async def async_set_hdr_mode(self, hdr_on): """Set camera HDR mode.""" await self.upv_object.set_camera_hdr_mode(self._camera_id, hdr_on) async def async_set_highfps_video_mode(self, high_fps_on): """Set camera High FPS video mode.""" await self.upv_object.set_camera_video_mode_highfps( self._camera_id, high_fps_on ) async def async_set_doorbell_lcd_message(self, message, duration): """Set LCD Message on Doorbell display.""" if not duration.isnumeric(): duration = None await self.upv_object.set_doorbell_custom_text( self._camera_id, message, duration ) async def async_enable_motion_detection(self): """Enable motion detection in camera.""" if not await self.upv_object.set_camera_recording(self._camera_id, "motion"): return _LOGGER.debug("Motion Detection Enabled for Camera: %s", self._name) async def async_disable_motion_detection(self): """Disable motion detection in camera.""" if not await self.upv_object.set_camera_recording(self._camera_id, "never"): return _LOGGER.debug("Motion Detection Disabled for Camera: %s", self._name) async def async_camera_image(self): """Return the Camera Image.""" if self._snapshot_direct: last_image = await self.upv_object.get_snapshot_image_direct( self._camera_id ) else: last_image = await self.upv_object.get_snapshot_image(self._camera_id) self._last_image = last_image return self._last_image async def stream_source(self): """Return the Stream Source.""" return self._stream_source def _write_image(to_file, image_data): """Executor helper to write image.""" with open(to_file, "wb") as img_file: img_file.write(image_data) _LOGGER.debug("Thumbnail Image written to %s", to_file) ```
{ "source": "joestrouth1/tinkerpop", "score": 2 }
#### File: gremlin_python/process/anonymous_traversal.py ```python __author__ = '<NAME> (http://stephen.genoprime.com)' from gremlin_python.structure.graph import Graph from gremlin_python.process.graph_traversal import GraphTraversalSource from gremlin_python.process.traversal import TraversalStrategies from .. import statics class AnonymousTraversalSource(object): def __init__(self, traversal_source_class=GraphTraversalSource): self.traversal_source_class = traversal_source_class @classmethod def traversal(cls, traversal_source_class=GraphTraversalSource): return AnonymousTraversalSource(traversal_source_class) def withGraph(self, graph): return self.traversal_source_class(graph, TraversalStrategies.global_cache[graph.__class__]) def withRemote(self, remote_connection): return self.withGraph(Graph()).withRemote(remote_connection) def traversal(traversal_source_class=GraphTraversalSource): return AnonymousTraversalSource.traversal(traversal_source_class) statics.add_static('traversal', traversal) ```
{ "source": "joestump/django-ajax", "score": 2 }
#### File: django-ajax/ajax/decorators.py ```python from __future__ import absolute_import from django.utils.translation import ugettext as _ from ajax.compat import getLogger from django.http import Http404 from django.conf import settings from decorator import decorator from ajax.exceptions import AJAXError, PrimaryKeyMissing from functools import wraps from django.utils.decorators import available_attrs logger = getLogger('django.request') @decorator def login_required(f, *args, **kwargs): if not args[0].user.is_authenticated(): raise AJAXError(403, _('User must be authenticated.')) return f(*args, **kwargs) @decorator def require_pk(func, *args, **kwargs): if not hasattr(args[0], 'pk') or args[0].pk is None: raise PrimaryKeyMissing() return func(*args, **kwargs) def allowed_methods(*args,**kwargs): request_method_list = args def decorator(func): @wraps(func, assigned=available_attrs(func)) def inner(request, *args, **kwargs): if request.method not in request_method_list: raise AJAXError(403, _('Access denied.')) return func(request, *args, **kwargs) return inner return decorator @decorator def json_response(f, *args, **kwargs): """Wrap a view in JSON. This decorator runs the given function and looks out for ajax.AJAXError's, which it encodes into a proper HttpResponse object. If an unknown error is thrown it's encoded as a 500. All errors are then packaged up with an appropriate Content-Type and a JSON body that you can inspect in JavaScript on the client. They look like: { "message": "Error message here.", "code": 500 } Please keep in mind that raw exception messages could very well be exposed to the client if a non-AJAXError is thrown. """ try: result = f(*args, **kwargs) if isinstance(result, AJAXError): raise result except AJAXError as e: result = e.get_response() request = args[0] logger.warn('AJAXError: %d %s - %s', e.code, request.path, e.msg, exc_info=True, extra={ 'status_code': e.code, 'request': request } ) except Http404 as e: result = AJAXError(404, e.__str__()).get_response() except Exception as e: import sys exc_info = sys.exc_info() type, message, trace = exc_info if settings.DEBUG: import traceback tb = [{'file': l[0], 'line': l[1], 'in': l[2], 'code': l[3]} for l in traceback.extract_tb(trace)] result = AJAXError(500, message, traceback=tb).get_response() else: result = AJAXError(500, "Internal server error.").get_response() request = args[0] logger.error('Internal Server Error: %s' % request.path, exc_info=exc_info, extra={ 'status_code': 500, 'request': request } ) result['Content-Type'] = 'application/json' return result ``` #### File: django-ajax/ajax/encoders.py ```python from __future__ import absolute_import from django.core import serializers from ajax.exceptions import AlreadyRegistered, NotRegistered from django.db.models.fields import FieldDoesNotExist from django.db import models from django.conf import settings from django.utils.html import escape from django.db.models.query import QuerySet from django.utils.encoding import smart_str import collections import six # Used to change the field name for the Model's pk. AJAX_PK_ATTR_NAME = getattr(settings, 'AJAX_PK_ATTR_NAME', 'pk') def _fields_from_model(model): return [field.name for field in model.__class__._meta.fields] class DefaultEncoder(object): _mapping = { 'IntegerField': int, 'PositiveIntegerField': int, 'AutoField': int, 'FloatField': float, } def to_dict(self, record, expand=False, html_escape=False, fields=None): self.html_escape = html_escape if hasattr(record, '__exclude__') and callable(record.__exclude__): try: exclude = record.__exclude__() if fields is None: fields = _fields_from_model(record) fields = set(fields) - set(exclude) except TypeError: pass data = serializers.serialize('python', [record], fields=fields)[0] if hasattr(record, 'extra_fields'): ret = record.extra_fields else: ret = {} ret.update(data['fields']) ret[AJAX_PK_ATTR_NAME] = data['pk'] for field, val in six.iteritems(ret): try: f = record.__class__._meta.get_field(field) if expand and isinstance(f, models.ForeignKey): try: row = f.rel.to.objects.get(pk=val) new_value = self.to_dict(row, False) except f.rel.to.DoesNotExist: new_value = None # Changed this to None from {} -G else: new_value = self._encode_value(f, val) ret[smart_str(field)] = new_value except FieldDoesNotExist as e: pass # Assume extra fields are already safe. if expand and hasattr(record, 'tags') and \ record.tags.__class__.__name__.endswith('TaggableManager'): # Looks like this model is using taggit. ret['tags'] = [{'name': self._escape(t.name), 'slug': self._escape(t.slug)} for t in record.tags.all()] return ret __call__ = to_dict def _encode_value(self, field, value): if value is None: return value # Leave all None's as-is as they encode fine. try: return self._mapping[field.__class__.__name__](value) except KeyError: if isinstance(field, models.ForeignKey): f = field.rel.to._meta.get_field(field.rel.field_name) return self._encode_value(f, value) elif isinstance(field, models.BooleanField): # If someone could explain to me why the fuck the Python # serializer appears to serialize BooleanField to a string # with "True" or "False" in it, please let me know. return (value == "True" or (type(value) == bool and value)) return self._escape(value) def _escape(self, value): if self.html_escape: return escape(value) return value class HTMLEscapeEncoder(DefaultEncoder): """Encodes all values using Django's HTML escape function.""" def _escape(self, value): return escape(value) class ExcludeEncoder(DefaultEncoder): def __init__(self, exclude): self.exclude = exclude def __call__(self, record, html_escape=False): fields = set(_fields_from_model(record)) - set(self.exclude) return self.to_dict(record, html_escape=html_escape, fields=fields) class IncludeEncoder(DefaultEncoder): def __init__(self, include): self.include = include def __call__(self, record, html_escape=False): return self.to_dict(record, html_escape=html_escape, fields=self.include) class Encoders(object): def __init__(self): self._registry = {} def register(self, model, encoder): if model in self._registry: raise AlreadyRegistered() self._registry[model] = encoder def unregister(self, model): if model not in self._registry: raise NotRegistered() del self._registry[model] def get_encoder_from_record(self, record): if isinstance(record, models.Model) and \ record.__class__ in self._registry: encoder = self._registry[record.__class__] else: encoder = DefaultEncoder() return encoder def encode(self, record, encoder=None, html_escape=False): if isinstance(record, collections.Iterable): ret = [] for i in record: if not encoder: encoder = self.get_encoder_from_record(i) ret.append(self.encode(i, html_escape=html_escape)) else: if not encoder: encoder = self.get_encoder_from_record(record) ret = encoder(record, html_escape=html_escape) return ret encoder = Encoders() ```
{ "source": "joestump/lazyboy", "score": 2 }
#### File: lazyboy/lazyboy/connection.py ```python from __future__ import with_statement import random import os import threading import socket import time from cassandra import Cassandra from thrift import Thrift from thrift.transport import TTransport, TSocket from thrift.protocol import TBinaryProtocol import thrift import lazyboy.exceptions as exc from contextlib import contextmanager _SERVERS = {} _CLIENTS = {} def _retry_default_callback(attempt, exc): """Retry an attempt five times, then give up.""" return attempt < 5 def retry(callback=None): """Retry an operation.""" callback = callback or _retry_default_callback assert callable(callback) def __closure__(func): def __inner__(*args, **kwargs): attempt = 0 while True: try: return func(*args, **kwargs) except Exception, exc: if not callback(attempt, exc): raise exc attempt += 1 return __inner__ return __closure__ def add_pool(name, servers, timeout=None, recycle=None): """Add a connection.""" _SERVERS[name] = dict(servers=servers, timeout=timeout, recycle=recycle) def get_pool(name): """Return a client for the given pool name.""" key = str(os.getpid()) + threading.currentThread().getName() + name if key in _CLIENTS: return _CLIENTS[key] try: _CLIENTS[key] = Client(**_SERVERS[name]) return _CLIENTS[key] except Exception, e: raise exc.ErrorCassandraClientNotFound( "Pool `%s' is not defined." % name) class Client(object): """A wrapper around the Cassandra client which load-balances.""" def __init__(self, servers, timeout=None, recycle=None): """Initialize the client.""" self._servers = servers self._recycle = recycle self._timeout = timeout self._clients = [s for s in [self._build_server(*server.split(":")) \ for server in servers] if s] self._current_server = random.randint(0, len(self._clients)) @retry() def get(self, *args, **kwargs): """ Parameters: - keyspace - key - column_path - consistency_level """ with self.get_client() as client: return client.get(*args, **kwargs) @retry() def get_slice(self, *args, **kwargs): """ Parameters: - keyspace - key - column_parent - predicate - consistency_level """ with self.get_client() as client: return client.get_slice(*args, **kwargs) @retry() def multiget(self, *args, **kwargs): """ Parameters: - keyspace - keys - column_path - consistency_level """ with self.get_client() as client: return client.multiget(*args, **kwargs) @retry() def multiget_slice(self, *args, **kwargs): """ Parameters: - keyspace - keys - column_parent - predicate - consistency_level """ with self.get_client() as client: return client.multiget_slice(*args, **kwargs) @retry() def get_count(self, *args, **kwargs): """ Parameters: - keyspace - key - column_parent - consistency_level """ with self.get_client() as client: return client.get_count(*args, **kwargs) @retry() def get_key_range(self, *args, **kwargs): """ Parameters: - keyspace - column_family - start - finish - count - consistency_level """ with self.get_client() as client: return client.get_key_range(*args, **kwargs) @retry() def remove(self, *args, **kwargs): """ Parameters: - keyspace - key - column_path - timestamp - consistency_level """ with self.get_client() as client: return client.remove(*args, **kwargs) @retry() def get_string_property(self, *args, **kwargs): """ Parameters: - property """ with self.get_client() as client: return client.get_string_property(*args, **kwargs) @retry() def get_string_list_property(self, *args, **kwargs): """ Parameters: - property """ with self.get_client() as client: return client.get_string_list_property(*args, **kwargs) @retry() def describe_keyspace(self, *args, **kwargs): """ Parameters: - keyspace """ with self.get_client() as client: return client.describe_keyspace(*args, **kwargs) @retry() def batch_insert(self, *args, **kwargs): """ Parameters: - keyspace - key - cfmap - consistency_level """ with self.get_client() as client: return client.batch_insert(*args, **kwargs) @retry() def insert(self, *args, **kwargs): """ Parameters: - keyspace - key - column_path - value - timestamp - consistency_level """ with self.get_client() as client: return client.insert(*args, **kwargs) def _build_server(self, host, port): """Return a client for the given host and port.""" try: socket = TSocket.TSocket(host, int(port)) if self._timeout: socket.setTimeout(self._timeout) transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocolAccelerated(transport) client = Cassandra.Client(protocol) client.transport = transport return client except Exception: return None def _get_server(self): """Return the next server (round-robin) from the list.""" if self._clients is None or len(self._clients) == 0: raise exc.ErrorCassandraNoServersConfigured next_server = self._current_server % len(self._clients) self._current_server += 1 return self._clients[next_server] def list_servers(self): """Return all servers we know about.""" return self._clients def _connect(self): """Connect to Cassandra if not connected.""" client = self._get_server() if client.transport.isOpen() and self._recycle: if (client.connect_time + self._recycle) > time.time(): return client else: client.transport.close() elif client.transport.isOpen(): return client try: client.transport.open() client.connect_time = time.time() except thrift.transport.TTransport.TTransportException, e: client.transport.close() raise exc.ErrorThriftMessage(e.message) return client @contextmanager def get_client(self): """Yield a Cassandra client connection.""" client = None try: client = self._connect() yield client except (socket.error, Thrift.TException), e: message = e.message or "Transport error, reconnect" if client: client.transport.close() raise exc.ErrorThriftMessage(message) ``` #### File: lazyboy/lazyboy/iterators.py ```python from itertools import groupby from operator import attrgetter from collections import defaultdict from lazyboy.connection import get_pool import lazyboy.exceptions as exc from cassandra.ttypes import SlicePredicate, SliceRange, ConsistencyLevel, \ ColumnOrSuperColumn, Column, ColumnParent GET_KEYSPACE = attrgetter("keyspace") GET_COLFAM = attrgetter("column_family") GET_KEY = attrgetter("key") GET_SUPERCOL = attrgetter("super_column") def groupsort(iterable, keyfunc): """Return a generator which sort and groups a list.""" return groupby(sorted(iterable, key=keyfunc), keyfunc) def slice_iterator(key, consistency, **range_args): """Return an iterator over a row.""" kwargs = {'start': "", 'finish': "", 'count': 100000, 'reversed': 0} kwargs.update(range_args) consistency = consistency or ConsistencyLevel.ONE client = get_pool(key.keyspace) res = client.get_slice( key.keyspace, key.key, key, SlicePredicate(slice_range=SliceRange(**kwargs)), consistency) if not res: raise exc.ErrorNoSuchRecord("No record matching key %s" % key) return unpack(res) def multigetterator(keys, consistency, **range_args): """Return a dictionary of data from Cassandra. This fetches data with the minumum number of network requests. It DOES NOT preserve order. If you depend on ordering, use list_multigetterator. This may require more requests. """ kwargs = {'start': "", 'finish': "", 'count': 100000, 'reversed': 0} kwargs.update(range_args) predicate = SlicePredicate(slice_range=SliceRange(**kwargs)) consistency = consistency or ConsistencyLevel.ONE out = {} for (keyspace, ks_keys) in groupsort(keys, GET_KEYSPACE): client = get_pool(keyspace) out[keyspace] = {} for (colfam, cf_keys) in groupsort(ks_keys, GET_COLFAM): if colfam not in keyspace: out[keyspace][colfam] = defaultdict(lambda: dict()) for (supercol, sc_keys) in groupsort(cf_keys, GET_SUPERCOL): records = client.multiget_slice( keyspace, map(GET_KEY, sc_keys), ColumnParent(colfam, supercol), predicate, consistency) for (row_key, cols) in records.iteritems(): cols = unpack(cols) if supercol is None: out[keyspace][colfam][row_key] = cols else: out[keyspace][colfam][row_key][supercol] = cols return out def sparse_get(key, columns): """Return an iterator over a specific set of columns.""" client = get_pool(key.keyspace) res = client.get_slice( key.keyspace, key.key, key, SlicePredicate(column_names=columns), ConsistencyLevel.ONE) return unpack(res) def sparse_multiget(keys, columns): """Return an iterator over a specific set of columns.""" first_key = iter(keys).next() client = get_pool(first_key.keyspace) row_keys = [key.key for key in keys] res = client.multiget_slice( first_key.keyspace, row_keys, first_key, SlicePredicate(column_names=columns), ConsistencyLevel.ONE) out = {} for (row_key, cols) in res.iteritems(): out[row_key] = [corsc.column or corsc.super_column for corsc in cols] return out def key_range(key, start="", finish="", count=100): """Return an iterator over a range of keys.""" cas = get_pool(key.keyspace) return cas.get_key_range(key.keyspace, key.column_family, start, finish, count, ConsistencyLevel.ONE) def key_range_iterator(key, start="", finish="", count=100): """Return an iterator which produces Key instances for a key range.""" return (key.clone(key=k) for k in key_range(key, start, finish, count)) def pack(objects): """Return a generator which packs objects into ColumnOrSuperColumns.""" for object_ in objects: key = 'column' if isinstance(object_, Column) else 'super_column' yield ColumnOrSuperColumn(**{key: object_}) def unpack(records): """Return a generator which unpacks objects from ColumnOrSuperColumns.""" return (corsc.column or corsc.super_column for corsc in records) ``` #### File: lazyboy/lazyboy/record.py ```python import time import copy from itertools import ifilterfalse as filternot from cassandra.ttypes import Column, SuperColumn from lazyboy.base import CassandraBase from lazyboy.key import Key import lazyboy.iterators as iterators import lazyboy.exceptions as exc class Record(CassandraBase, dict): """An object backed by a record in Cassandra.""" # A tuple of items which must be present for the object to be valid _required = () # The keyspace this record should be saved in _keyspace = None # The column family this record should be saved in _column_family = None # Indexes which this record should be added to on save _indexes = [] # Denormalized copies of this record _mirrors = [] def __init__(self, *args, **kwargs): dict.__init__(self) CassandraBase.__init__(self) self._clean() if args or kwargs: self.update(*args, **kwargs) def make_key(self, key=None, super_column=None, **kwargs): """Return a new key.""" args = {'keyspace': self._keyspace, 'column_family': self._column_family, 'key': key, 'super_column': super_column} args.update(**kwargs) return Key(**args) def default_key(self): """Return a default key for this record.""" raise exc.ErrorMissingKey("There is no key set for this record.") def set_key(self, key, super_column=None): """Set the key for this record.""" self.key = self.make_key(key=key, super_column=super_column) return self def get_indexes(self): """Return indexes this record should be stored in.""" return [index() if isinstance(index, type) else index for index in self._indexes] def get_mirrors(self): """Return mirrors this record should be stored in.""" return [mirror if isinstance(mirror, type) else mirror for mirror in self._mirrors] def valid(self): """Return a boolean indicating whether the record is valid.""" return len(self.missing()) == 0 def missing(self): """Return a tuple of required items which are missing.""" return tuple(filternot(self.get, self._required)) def is_modified(self): """Return True if the record has been modified since it was loaded.""" return bool(len(self._modified) + len(self._deleted)) def _clean(self): """Remove every item from the object""" map(self.__delitem__, self.keys()) self._original, self._columns = {}, {} self._modified, self._deleted = {}, {} self.key = None def update(self, arg=None, **kwargs): """Update the object as with dict.update. Returns None.""" if arg: if hasattr(arg, 'keys'): for key in arg: self[key] = arg[key] else: for (key, val) in arg: self[key] = val if kwargs: for key in kwargs: self[key] = kwargs[key] return self def sanitize(self, value): """Return a value appropriate for sending to Cassandra.""" if value.__class__ is unicode: value = value.encode('utf-8') return str(value) def __repr__(self): """Return a printable representation of this record.""" return "%s: %s" % (self.__class__.__name__, dict.__repr__(self)) def timestamp(self): """Return a GMT UNIX timestamp.""" return int(time.time()*10e6) def __setitem__(self, item, value): """Set an item, storing it into the _columns backing store.""" if value is None: raise exc.ErrorInvalidValue("You may not set an item to None.") value = self.sanitize(value) # If this doesn't change anything, don't record it _orig = self._original.get(item) if _orig and _orig.value == value: return dict.__setitem__(self, item, value) if item not in self._columns: self._columns[item] = Column(name=item) col = self._columns[item] if item in self._deleted: del self._deleted[item] self._modified[item] = True col.value, col.timestamp = value, self.timestamp() def __delitem__(self, item): dict.__delitem__(self, item) # Don't record this as a deletion if it wouldn't require a remove() self._deleted[item] = item in self._original if item in self._modified: del self._modified[item] del self._columns[item] def _inject(self, key, columns): """Inject columns into the record after they have been fetched..""" self.key = key if not isinstance(columns, dict): columns = dict((col.name, col) for col in iter(columns)) self._original = columns self.revert() return self def _marshal(self): """Marshal deleted and changed columns.""" return {'deleted': tuple(self.key.get_path(column=col) for col in self._deleted.keys()), 'changed': tuple(self._columns[key] for key in self._modified.keys())} def load(self, key, consistency=None): """Load this record from primary key""" if not isinstance(key, Key): key = self.make_key(key) self._clean() consistency = consistency or self.consistency columns = iterators.slice_iterator(key, consistency) self._inject(key, dict([(column.name, column) for column in columns])) return self def save(self, consistency=None): """Save the record, returns self.""" if not self.valid(): raise exc.ErrorMissingField("Missing required field(s):", self.missing()) if not hasattr(self, 'key') or not self.key: self.key = self.default_key() assert isinstance(self.key, Key), "Bad record key in save()" # Marshal and save changes changes = self._marshal() self._save_internal(self.key, changes, consistency) try: try: # Save mirrors for mirror in self.get_mirrors(): self._save_internal(mirror.mirror_key(self), changes, consistency) finally: # Update indexes for index in self.get_indexes(): index.append(self) finally: # Clean up internal state if changes['changed']: self._modified.clear() self._original = copy.deepcopy(self._columns) return self def _save_internal(self, key, changes, consistency=None): """Internal save method.""" consistency = consistency or self.consistency client = self._get_cas(key.keyspace) # Delete items for path in changes['deleted']: client.remove(key.keyspace, key.key, path, self.timestamp(), consistency) self._deleted.clear() # Update items if changes['changed']: client.batch_insert(*self._get_batch_args( key, changes['changed'], consistency)) def _get_batch_args(self, key, columns, consistency=None): """Return a BatchMutation for the given key and columns.""" consistency = consistency or self.consistency if key.is_super(): columns = [SuperColumn(name=key.super_column, columns=columns)] return (key.keyspace, key.key, {key.column_family: tuple(iterators.pack(columns))}, consistency) def remove(self, consistency=None): """Remove this record from Cassandra.""" consistency = consistency or self.consistency self._get_cas().remove(self.key.keyspace, self.key.key, self.key.get_path(), self.timestamp(), consistency) self._clean() return self def revert(self): """Revert changes, restoring to the state we were in when loaded.""" for col in self._original.values(): dict.__setitem__(self, col.name, col.value) self._columns[col.name] = col self._modified, self._deleted = {}, {} class MirroredRecord(Record): """A mirrored (denormalized) record.""" def mirror_key(self, parent_record): """Return the key this mirror should be saved into.""" assert isinstance(parent_record, Record) raise exc.ErrorMissingKey("Please implement a mirror_key method.") def save(self): """Refuse to save this record.""" raise exc.ErrorImmutable("Mirrored records are immutable.") ```
{ "source": "joestump/python-antminer", "score": 3 }
#### File: python-antminer/antminer/base.py ```python import socket import json import sys from antminer.exceptions import ( WarningResponse, ErrorResponse, FatalResponse, UnknownError, raise_exception ) from antminer.constants import ( STATUS_INFO, STATUS_SUCCESS, DEFAULT_PORT, MINER_CGMINER, MINER_BMMINER ) from antminer.utils import parse_version_number class Core(object): def __init__(self, host, port=DEFAULT_PORT): self.host = host self.port = int(port) self.conn = None def connect(self): self.conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.conn.connect((self.host, self.port)) def close(self): self.conn.close() self.conn = None def send_command(self, command): if self.conn is None: self.connect() cmd = command.split('|') if len(cmd) > 2 or len(cmd) == 0: raise ValueError("Commands must be one or two parts") payload = { 'command': cmd[0] } if len(cmd) == 2: payload['parameter'] = cmd[1] self.conn.send(json.dumps(payload)) payload = self.read_response() try: response = json.loads(payload) except ValueError: response = payload# Assume downstream code knows what to do. self.close() return response def read_response(self): done = False buf = self.conn.recv(4096) while done is False: more = self.conn.recv(4096) if not more: done = True else: buf += more return buf.replace('\x00','') def command(self, *args): """ Send a raw command to the API. This is a lower level method that assumes the command is the first argument and that the rest of the arguments are parameters that should be comma separated. The basic format of API commands is 'command|param1,param2,etc'. The meaning of parameters depends greatly on the command provided. This method will return odd results if poorly constructed commands are passed. """ return self._send('{command}|{parameters}'.format(command=args[0], parameters=','.join(args[1:]))) def _raise(self, response, message=None): raise_exception(response, message) def _send(self, command): response = self.send_command(command) try: success = (response['STATUS'][0]['STATUS'] in [STATUS_INFO, STATUS_SUCCESS]) except: raise UnknownError(response) if not success: self._raise(response) return response class BaseClient(Core): def stats(self): """ Get stats for the miner. Unfortunately, the API doesn't return valid JSON for this API response, which requires us to do some light JSON correction before we load the response. """ response = self.send_command('stats') return json.loads(response.replace('"}{"', '"},{"')) def version(self): """ Get basic hardware and software version information for a miner. This returns a number of important version numbers for the miner. Each of the version numbers is an instance of Version from the SemVer Python package. """ fields = [ ('Type', 'model', str), ('API', 'api', parse_version_number), ('Miner', 'version', parse_version_number), ] resp = self.command('version') version = {} for from_name, to_name, formatter in fields: try: version[to_name] = formatter(str(resp['VERSION'][0][from_name])) except KeyError: pass version['miner'] = {} if MINER_CGMINER in resp['VERSION'][0]: version['miner']['vendor'] = MINER_CGMINER version['miner']['version'] = parse_version_number(resp['VERSION'][0][MINER_CGMINER]) elif MINER_BMMINER in resp['VERSION'][0]: version['miner']['vendor'] = MINER_BMMINER version['miner']['version'] = parse_version_number(resp['VERSION'][0][MINER_BMMINER]) else: version['miner']['vendor'] = MINER_UNKNWON version['miner']['version'] = None return version def __getattr__(self, name, *args): return lambda *x: self.command(name, *x) ```
{ "source": "JoeSuber/dialtones", "score": 3 }
#### File: JoeSuber/dialtones/psycon.py ```python import numpy as np import cv2 import os """ Use template matching to find icon location. numpy and install help: (basically just make sure to use all 32 or 64 bit versions for everything. On windows the default python version is likely 32 bit) https://www.solarianprogrammer.com/2016/09/17/install-opencv-3-with-python-3-on-windows/ http://www.lfd.uci.edu/~gohlke/pythonlibs/ """ resolutions = [(320, 480), (480,800), (540,960), (600,1024), (640, 1136), (720,1280), (768,1280), (800,1280), (1080, 1920), (1440, 2560), (1440, 2880)] def iconograph(screen_path, icon_path, icon_source_size=(720, 1280), DEBUG=False): """ returns coordinates in an image that best match the given icon """ image = cv2.imread(screen_path, cv2.IMREAD_GRAYSCALE) if image is None: print("INVALID SCREEN PATH: {}".format(screen_path)) if DEBUG: print("screen size: {}".format(image.shape)) raw_icon = cv2.imread(icon_path, cv2.IMREAD_GRAYSCALE) best_match = None for res in resolutions: if res[0] < icon_source_size[0]: interpol_method = cv2.INTER_AREA else: interpol_method = cv2.INTER_CUBIC icon = cv2.resize(raw_icon, None, fx=res[0] / float(icon_source_size[0]), fy=res[1] / float(icon_source_size[1]), interpolation=interpol_method) if (image.shape[0] < icon.shape[0]) or (image.shape[1] < icon.shape[1]): continue _, max_val, _, max_loc = cv2.minMaxLoc(cv2.matchTemplate(image, icon, 5)) if DEBUG: print(max_val, max_loc) max_loc = (max_loc[0] + int(icon.shape[1]/2), max_loc[1] + int(icon.shape[0]/2)) if best_match is None or best_match[0] < max_val: best_match = (max_val, max_loc, res) if DEBUG: cv2.circle(image, best_match[1], 25,(255,255,255), thickness=3) cv2.imshow(str(best_match[2]), cv2.resize(image, (640,1080))) cv2.waitKey(0) cv2.destroyAllWindows() return best_match if DEBUG else best_match[1] def colors(im=None): """ not really related. Just helps with finding details in gray scale images """ if im is None: path = "C:\\Users\\2053_HSUF\\PycharmProjects\\dialtones\\pics\\76aa16c9_playstore.png" im = cv2.imread(path, cv2.IMREAD_GRAYSCALE) for shade in range(13): colorized = cv2.applyColorMap(im, shade) cv2.imshow("yo", colorized) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == "__main__": """ for testing one icon against a bunch of screens """ print(cv2.__version__) print(np.__version__) iconpaths = [os.path.join(os.getcwd(), "icons", icp) for icp in os.listdir(os.path.join(os.getcwd(), "icons")) if icp.endswith(".png")] images = [os.path.join(os.getcwd(), "pics", ip) for ip in os.listdir(os.path.join(os.getcwd(), "pics")) if ip.endswith(".png")] for icp in iconpaths: cv2.imshow("Finding:", cv2.imread(icp)) for impath in images: # colors(im=cv2.imread(impath, cv2.IMREAD_GRAYSCALE)) print(iconograph(impath, icp, DEBUG=True)) ```
{ "source": "JoeSuber/phones", "score": 2 }
#### File: JoeSuber/phones/app.py ```python from flask import Flask, render_template, redirect, url_for, flash, session, request from flask_bootstrap import Bootstrap from flask_wtf import FlaskForm from flask_mail import Mail, Message from wtforms import StringField, PasswordField, BooleanField, IntegerField, ValidationError from wtforms.validators import InputRequired, Email, Length from flask_sqlalchemy import SQLAlchemy from werkzeug.security import generate_password_hash, check_password_hash from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user from flask_table import Table, Col # from flask_sslify import SSLify import pickle, os, csv from datetime import datetime, timedelta, timezone from random import randint from collections import Counter try: from papers import stamp, basedir, use_local_mail except: print("WARNING! You have no papers.") stamp = '' basedir = '' use_local_mail = True """ ** setup on remote host ** $ git clone https://github.com/JoeSuber/phones.git $ virtualenv --python=$python3 phones/ $ cd phones/ $ source bin/activate $ pip install requirements.txt $ sudoedit /etc/apache2/sites-available/app.conf ## /etc/apache2/sites-available/app.conf <--ubuntu, etc. ## /etc/httpd/sites-available/app.conf <---redhat etc. <VirtualHost *:80> ServerName www.dvtandc.com/inventory WSGIDaemonProcess app user=joe.suber group=joe.suber threads=5 home=/user/joe.suber/phones WSGIScriptAlias /inventory /home/joe.suber/phones/app.wsgi <Directory /home/joe.suber/phones/> WSGIProcessGroup app WSGIApplicationGroup %{GLOBAL} WSGIScriptReloading On WSGIRestrictStdout Off Require all granted </Directory> </VirtualHost> ## end app.conf ## ### How to set the backup ### tar -cvpzf ~/backup/phones.tar.gz ~/phones/ """ ################################################################################### # DONT FORGET! to uncomment the '@login_required' for newperson() upon deployment ################################################################################### app = Flask(__name__) app.config['SECRET_KEY'] = os.urandom(24) #sslify = SSLify(app, subdomains=True) __dbfn__ = "DVTCinventory" __sqlext__ = '.sqlite' __sql_inventory_fn__ = os.path.join(os.getcwd(), (__dbfn__ + __sqlext__)) print("Database file located at: {}".format(__sql_inventory_fn__)) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + __sql_inventory_fn__ app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['WERKZEUG_DEBUG_PIN'] = False app.config['MAIL_SERVER'] = 'localhost' if use_local_mail else 'smtp.gmail.com' app.config['MAIL_PORT'] = 25 if use_local_mail else 465 app.config['MAIL_USE_SSL'] = False if use_local_mail else True app.config['MAIL_USE_TLS'] = False app.config['MAIL_USERNAME'] = '<EMAIL>' app.config['MAIL_PASSWORD'] = stamp print("mail server, port, SSL = '{}', '{}', '{}'".format(app.config['MAIL_SERVER'], app.config['MAIL_PORT'], app.config['MAIL_USE_SSL'])) Bootstrap(app) mail = Mail(app) db = SQLAlchemy(app) login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'login' ########################### #### Database Tables ###### ########################### class User(UserMixin, db.Model): __tablename__ = "people" id = db.Column(db.Integer, primary_key=True) badge = db.Column(db.String(40), unique=True) username = db.Column(db.String(40), unique=True) email = db.Column(db.String(50)) password = db.Column(db.String(94)) phone_number = db.Column(db.String(12)) admin = db.Column(db.Boolean) class Phone(db.Model): """ will add relations to User ...http://flask-sqlalchemy.pocoo.org/2.1/quickstart/""" __tablename__ = "devices" id = db.Column(db.Integer, primary_key=True) MEID = db.Column(db.String(28), unique=True) SKU = db.Column(db.String(50)) MODEL = db.Column(db.String(50)) OEM = db.Column(db.String(16)) Serial_Number = db.Column(db.String(50)) Hardware_Version = db.Column(db.String(50)) In_Date = db.Column(db.DateTime) Archived = db.Column(db.Boolean) TesterId = db.Column(db.Integer) DVT_Admin = db.Column(db.String(80)) MSL = db.Column(db.String(50)) History = db.Column(db.LargeBinary) Comment = db.Column(db.String(255)) db.create_all() @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) ########################## ### Tables ### ########################## class People(Table): username = Col('username') badge = Col('badge') class Devices(Table): MEID = Col('MEID') TesterID = Col('Tester') SKU = Col('SKU') OEM = Col('OEM') MODEL = Col('Model') DVT_Admin = Col('Manager') class Historical(Table): User = Col('Responsible: ') Date = Col(' taken date: ') class Checked_Out(Table): MEID = Col('MEID___________:') SKU = Col('SKU____:') OEM = Col('OEM_____:') Serial_Number = Col('Serial Number__:') Hardware_Version = Col('Hardware Version__:') MODEL = Col('Model___:') MSL = Col('MSL____:') Comment = Col('Comment___:') ########################## ##### Validators ######### ########################## class Unique(object): """ validator for FlaskForm that demands field uniqueness against the current database entries """ def __init__(self, model, field, message=None): self.model = model self.field = field if not message: message = u'not validated' self.message = message def __call__(self, form, field): check = self.model.query.filter(self.field == field.data).first() if check: raise ValidationError(self.message) class Exists(Unique): """ validator for FlaskForm that demands that an item exists """ def __call__(self, form, field): check = self.model.query.filter(self.field == field.data).first() if not check: raise ValidationError(self.message) class Exists_Or_Blank(Unique): def __call__(self, form, field): if field.data: check = self.model.query.filter(self.field == field.data).first() if not check: raise ValidationError(self.message) ########################## ######## Forms ########### ########################## class BadgeEntryForm(FlaskForm): badge = StringField('badge', validators=[InputRequired(), Length(min=4, max=40), Exists(User, User.badge, message="Badge does not belong to a registered user")]) class MeidForm(FlaskForm): meid = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid2 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid3 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid4 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid5 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid6 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid7 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid8 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid9 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) meid10 = StringField('MEID', validators=[Exists_Or_Blank(Phone, Phone.MEID, message="MEID does not match any devices in database")]) class LoginForm(FlaskForm): username = StringField('username', validators=[InputRequired(), Exists(User, User.username, message="Not a registered username")]) password = PasswordField('password', validators=[InputRequired(), Length(min=8, max=80)]) class RegisterForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message='Invalid email'), Length(min=4, max=50), Unique(User, User.email, message="Email address already in use")]) badge = StringField('badge', validators=[InputRequired(), Length(min=10, max=80), Unique(User, User.badge, message="Badge number already assigned!")]) username = StringField('username', validators=[InputRequired(), Length(min=4, max=15), Unique(User, User.username, message="Please choose another name")]) password = PasswordField('password', validators=[InputRequired(), Length(min=8, max=80, message="Passwords are 8-80 characters")]) phone_number = StringField('phone xxx-xxx-xxxx', validators=[InputRequired(), Length(min=4, max=12)]) admin = BooleanField('admin ') class NewDevice(FlaskForm): OEM = StringField('OEM', validators=[InputRequired()]) MEID = StringField('MEID', validators=[InputRequired(), Length(min=10, max=24), Unique(Phone, Phone.MEID, message="This MEID is already in the database")]) SKU = StringField('SKU', validators=[InputRequired(), Length(min=2, max=80)]) MODEL = StringField('MODEL', validators=[InputRequired(), Length(min=2, max=80)]) Hardware_Version = StringField('Hardware Version', validators=[InputRequired(), Length(min=1, max=40)]) Serial_Number = StringField('Serial Number', validators=[InputRequired(), Length(min=6, max=16)]) Archived = BooleanField('Archived ') MSL = StringField('MSL', validators=[InputRequired()]) Comment = StringField('Comment') class ChangePassword(FlaskForm): account = StringField('user name for which we will change the password: ', validators=[InputRequired(), Exists(User, User.username, message="Not a registered username")]) password = PasswordField('new password:', validators=[InputRequired(), Length(min=8, max=80)]) retype = PasswordField('re-type :', validators=[InputRequired(), Length(min=8, max=80)]) class OemForm(FlaskForm): OEM = StringField('OEM name', validators=[InputRequired(), Exists(Phone, Phone.OEM, message="No OEM by that name!")]) class OverdueForm(FlaskForm): timeframe = IntegerField('Number of Days', validators=[InputRequired()]) ########################### ####### Routes ############ ########################### sub = basedir print("sub = {}".format(sub)) @app.route(sub + '/', methods=['GET', 'POST']) def index(): # step 1, get the badge to get the user session['userid'] = None form = BadgeEntryForm() if form.validate_on_submit(): user = User.query.filter_by(badge=form.badge.data).first() session['userid'] = user.id return redirect(url_for('meid')) message = None if 'message' in session: message = session.pop('message') return render_template('index.html', form=form, message=message) @app.route(sub + '/meid', methods=['GET', 'POST']) def meid(): # step 2, get the device, change owner form = MeidForm() if form.validate_on_submit(): device1 = Phone.query.filter_by(MEID=form.meid.data).first() device2 = Phone.query.filter_by(MEID=form.meid2.data).first() device3 = Phone.query.filter_by(MEID=form.meid3.data).first() device4 = Phone.query.filter_by(MEID=form.meid4.data).first() device5 = Phone.query.filter_by(MEID=form.meid5.data).first() device6 = Phone.query.filter_by(MEID=form.meid6.data).first() device7 = Phone.query.filter_by(MEID=form.meid7.data).first() device8 = Phone.query.filter_by(MEID=form.meid8.data).first() device9 = Phone.query.filter_by(MEID=form.meid9.data).first() device10 = Phone.query.filter_by(MEID=form.meid10.data).first() devices = [device1, device2, device3, device4, device5, device6, device7, device8, device9, device10] messages = [] for device in devices: if device and session['userid']: # change owner of device and append new owner to history blob #### device.TesterId = session['userid'] device.In_Date = datetime.utcnow() history = pickle.loads(device.History) history.append((session['userid'], datetime.utcnow())) device.History = pickle.dumps(history) db.session.commit() phrase = "{} - {} {} meid: {}".format(device.OEM, device.SKU, device.MODEL, device.MEID) messages.append(phrase) session['message'] = load_user(session['userid']).username + " took: " + ", ".join(messages) session['userid'], devices = None, None return redirect(url_for('index')) # success! if ('userid' in session) and session['userid']: username = load_user(session['userid']).username else: session['message'] = "Enter destination badge first:" return redirect(url_for('index')) # fail! probably tried to access page directly return render_template('meid.html', form=form, name=username) @app.route(sub + '/newperson', methods=['GET', 'POST']) @login_required ### <-- uncomment after adding first admin user to database def newperson(): form = RegisterForm() if request.method == 'GET': form.badge.data = unique_badge() if form.validate_on_submit(): hashed_password = generate_password_hash(form.password.data) logged = User(badge=form.badge.data, email=form.email.data, username=form.username.data, password=<PASSWORD>, phone_number=form.phone_number.data, admin=form.admin.data) db.session.add(logged) db.session.commit() print("NEW USER! {}".format(logged.username)) flash("created new user: {}".format(logged.username)) return redirect(url_for('admin')) return render_template('signup.html', form=form) @app.route(sub + '/newdevice', methods=['GET', 'POST']) @login_required def newdevice(): form = NewDevice() if form.validate_on_submit(): new_device = Phone(OEM=form.OEM.data, MEID=form.MEID.data, SKU=form.SKU.data, MODEL=form.MODEL.data, Serial_Number=form.Serial_Number.data, Hardware_Version=form.Hardware_Version.data, MSL=form.MSL.data, History=pickle.dumps([(session['userid'], datetime.utcnow())]), Comment=form.Comment.data, Archived=form.Archived.data, In_Date=datetime.utcnow(), DVT_Admin=current_user.id) db.session.add(new_device) db.session.commit() return redirect(url_for('newdevice')) return render_template('newdevice.html', form=form) @app.route(sub + '/admin') @login_required def admin(): user = User.query.get(int(current_user.id)) if user.admin: peeps = User.query.order_by(User.username).all() table = People(peeps, border=True) return render_template('admin.html', name=user.username, table=table) return redirect(url_for('login')) @app.route(sub + '/newpass', methods=['GET', 'POST']) @login_required def newpass(): message = None user = User.query.get(int(current_user.id)) form = ChangePassword() if form.validate_on_submit() and user.admin: changer = User.query.filter_by(username=form.account.data).first() if user.admin or (user.username == changer.username): if form.password.data == form.retype.data: changer.password = generate_password_hash(form.password.data) db.session.commit() print("Changed password for: {}".format(changer.username)) return redirect(url_for('admin')) message = "Password fields don't match!" return render_template('newpass.html', form=form, name=user.username, message=message) @app.route(sub + '/meidedit', methods=['GET', 'POST']) @login_required def meidedit(): form = MeidForm() user = User.query.get(int(current_user.id)) print("user.admin = {}".format(user.admin)) if form.validate_on_submit() and user.admin: print("checking MEID {}".format(form.meid.data)) session['editingMEID'] = form.meid.data return redirect(url_for('editdevice')) return render_template('meidedit.html', form=form) @app.route(sub + '/editdevice', methods=['GET', 'POST']) @login_required def editdevice(): try: device = Phone.query.filter_by(MEID=session['editingMEID']).first() except KeyError: # protect against false access attempt return redirect(url_for('meidedit')) # fill is some form blanks for user: tester = load_user(int(device.TesterId or 0)) manager = load_user(int(device.DVT_Admin or 0)) newform = NewDevice(MEID=device.MEID, SKU=device.SKU, OEM=device.OEM, MODEL=device.MODEL, Serial_Number=device.Serial_Number, Hardware_Version=device.Hardware_Version, MSL=device.MSL, Archived=device.Archived, Comment=device.Comment) if tester: testerstring = " Tester: {:20} {}".format(tester.username, tester.badge) else: testerstring = "No current tester" if manager: managerstring = "Manager: {:20} {}".format(manager.username, manager.badge) else: managerstring = "No current manager" if request.method == "POST": history = pickle.loads(device.History) history.append((current_user.id, datetime.utcnow())) device.MEID = newform.MEID.data device.SKU = newform.SKU.data device.OEM = newform.OEM.data device.MODEL = newform.MODEL.data device.Serial_Number = newform.Serial_Number.data device.Hardware_Version = newform.Hardware_Version.data device.MSL = newform.MSL.data device.Archived = newform.Archived.data device.Comment = newform.Comment.data device.History = pickle.dumps(history) db.session.commit() used = session.pop('editingMEID') print(" {} MEID = {} was updated".format(device.SKU, used)) return render_template('admin.html') return render_template('editdevice.html', form=newform, tester=testerstring, manager=managerstring) @app.route(sub + '/editperson/<badge>', methods=['GET', 'POST']) @login_required def editperson(badge): print("badge = {}".format(badge)) try: person = User.query.filter_by(badge=badge).first() except KeyError: # protect against false access attempt print("something amiss") return redirect(url_for('meidedit')) # fill is some form blanks for user: newform = RegisterForm(email=person.email, badge=person.badge, username=person.username, phone_number=person.phone_number, admin=person.admin) print("person = {}".format(person.username)) if request.method == "POST": person.email = newform.email.data person.badge = newform.badge.data person.username = newform.username.data person.phone_number = newform.phone_number.data person.admin = newform.admin.data db.session.commit() print(" {} id = {} was updated".format(person.username, person.id)) return render_template('admin.html') return render_template('editperson.html', form=newform) @app.route(sub + '/login', methods=['GET', 'POST']) def login(): form = LoginForm() message = None if request.method == 'GET': session['sent_from'] = request.args.get('next') print("session.sent_from = {}".format(session['sent_from'])) if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if (not user.password) or (not form.password.data): session['message'] = "Must supply valid user data." return redirect(url_for('logout')) if check_password_hash(user.password, form.password.data): login_user(user, remember=True) session['userid'] = user.id sent_from = session['sent_from'] session['sent_from'] = None return redirect(sent_from or url_for('index')) message = "Incorrect Password" return render_template('login.html', form=form, message=message) @app.route(sub + '/oemreport', methods=['GET', 'POST']) @login_required def oemreport(): user = load_user(current_user.id) form = OemForm() if form.validate_on_submit(): email, fn = oem_report(current_user.id, form.OEM.data, os.path.join(os.getcwd(), '{}_{}.csv'.format(user.username, form.OEM.data))) send_report(email, fn, subject='OEM-{} report'.format(form.OEM.data)) return render_template('oemreport.html', form=form, message='report on {} sent!'.format(form.OEM.data)) return render_template('oemreport.html', form=form, message="send report to: " + user.email) @app.route(sub + '/overdue', methods=['GET', 'POST']) @login_required def overdue(): user = load_user(current_user.id) form = OverdueForm() if form.validate_on_submit(): email, fn = overdue_report(current_user.id, days=form.timeframe.data, outfile=os.path.join(os.getcwd(), '{}_overdue.csv'.format(user.username))) send_report(email, fn, subject="Overdue devices report") return render_template('overdue.html', form=form, message="overdue devices report sent") return render_template('overdue.html', form=form, message="Please enter the number of days 'out' you are interested in") @app.route(sub + '/mailtest') @login_required def mailtest(): user = load_user(current_user.id) print(user.email) send_test(user.email) user = User.query.get(int(current_user.id)) if not user.admin: return redirect(url_for('login')) return render_template('admin.html', name='mail sent whooha') @app.route(sub + '/logout') @login_required def logout(): logout_user() session['userid'] = None return redirect(url_for('index')) @app.route(sub + '/people') @login_required def people(): items = User.query.all() table = People(items) return render_template('people.html', table=table) @app.route(sub + '/checkouts', methods=['GET', 'POST']) @login_required def checkouts(): """ Show all devices possessed by a particular user """ form = BadgeEntryForm() records = Checked_Out([]) user = "" if form.validate_on_submit(): records = users_devices(form.badge.data) records = Checked_Out(records, border=True) user = User.query.filter_by(badge=form.badge.data).first() user = user.username return render_template('checkouts.html', form=form, records=records, user=user) return render_template('checkouts.html', form=form, records=records, user=user) @app.route(sub + '/history', methods=['GET', 'POST']) @login_required def history(): """ show history of who has had a particular device and when """ form = MeidForm() records = Historical([]) if form.validate_on_submit(): records = retrieve_history(form.meid.data) records = Historical(records, border=True) return render_template('history.html', form=form, records=records) return render_template('history.html', form=form, records=records) ################################ ###### Import/Export Data ###### ################################ """ _columns must be the same at time of import and export to assure the proper labels """ _columns = ['MEID', 'OEM', 'MODEL', 'SKU', 'Serial_Number', 'Hardware_Version', 'In_Date', 'Archived', 'TesterId', 'DVT_Admin', 'MSL', 'Comment'] def csv_template(outfile=None): """ create a spreadsheet template for project managers to fill using the _column list """ if not outfile: outfile = os.path.join(os.getcwd(), "your_own_devices.csv") with open(outfile, 'w', newline='') as output: spamwriter = csv.writer(output, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(_columns) print("spreadsheet columns exported to: {}".format(outfile)) def csv_dump(phones_fn=None): """ Call from console to get a dump file that can be re-imported or examined as a csv. WARNING: does not preserve passwords or device history """ from collections import Counter if not phones_fn: phones_fn = os.path.join(os.getcwd(), "all_devices.csv") existing_items = Phone.query.all() if report_spamer(existing_items, phones_fn): print("dumped {} lines of device data".format(len(existing_items))) existing_people = User.query.all() people_columns = [] for k in User.__dict__.keys(): dunders = Counter(k) if dunders['_'] > 1: continue people_columns.append(k) for peep in existing_people: print("****") for stat in people_columns: if 'password' not in stat: print("{}: {}".format(stat, peep.__dict__[stat])) def datefix(datestr): """ transform string into a python datetime object handle mm/dd/yy or mm/dd/yyyy or dashes instead of slashes """ fix = datestr.replace('-','/') if len(fix) > 4: try: return datetime.strptime(fix, "%m/%d/%y") except ValueError: return datetime.strptime(fix, "%m/%d/%Y") return datetime.utcnow() def csv_import(filename=None): """ For importing devices into database from existing spreadsheet. Assumes users have kept columns in the _column list-order. (to use, save the inventory sheets as local .csv files with those particular columns, in the same column order, run from console and/or use 'app.import_all_sheets()') """ if not filename: filename = os.path.join(os.getcwd(), "scotts.csv") columns = _columns column_checksum = len(columns) if column_checksum != len(set(columns)): print("Your expected column headers contain repeats. Not gonna work!") return False new_item_count, existing_item_count = 0, 0 with open(filename, "rU") as csvfile: spamreader = csv.reader(csvfile, delimiter=',', quotechar='"') for num, line in enumerate(spamreader): if not new_item_count: # first line should be the column labels ## check the column labels to head off import errors ## for present, reference in zip(line, columns): if present.strip() != reference.strip(): print("for: {}".format(filename)) print("the column headers are not correct: {} != {}".format(present, reference)) return False # abort! new_item_count = 1 continue row = {label: item.strip() for label, item in zip(columns, line)} if len(row) != column_checksum: print("ABORT! on bad row: {}".format(row)) print("Import not finished! Fix data") exit(1) # check that item is not already in database existing_item = Phone.query.filter_by(MEID=row['MEID']).first() if existing_item: existing_item_count += 1 print("!{:5} Item exists {}".format(num, row['MEID'])) continue try: admin = User.query.filter_by(id=int(row['DVT_Admin'].strip())).first() except Exception as e: print("{} ERROR:".format(e)) admin = None if not admin: print(type(row['DVT_Admin']), len(row['DVT_Admin'])) print("!{:5} skipped due to non-existant DVT_admin: '{}'".format(num, row['DVT_Admin'])) continue print("#{:5}: {}".format(num, row)) new_device = Phone(OEM=row['OEM'], MEID=row['MEID'], SKU=row['SKU'], MODEL=row['MODEL'], Serial_Number=row['Serial_Number'], Hardware_Version=row['Hardware_Version'], MSL=row['MSL'].strip('"'), History=pickle.dumps([(row['DVT_Admin'], datetime.utcnow())]), Comment=row['Comment'].replace(os.linesep, ' '), In_Date=datefix(row['In_Date']), Archived=bool(row['Archived']), TesterId=row['TesterId'], DVT_Admin=row['DVT_Admin']) try: db.session.add(new_device) new_item_count += 1 except Exception as e: print("ER: {}, {}".format(e, new_device)) db.session.commit() print("imported {} items".format(new_item_count - 1)) print("ignored {} existing items".format(existing_item_count)) return True def import_all_sheets(fns=None): """ gather up the .csv files with 'newsheet' in the title and import them all at once """ base = os.getcwd() if not fns: fns = [os.path.join(base, fn) for fn in os.listdir(base) if fn.endswith(".csv") and ('newsheet' in fn)] for fn in fns: result = csv_import(filename=fn) print("processed {}: {}".format(fn, result)) return 1 def nameid(id_num): """ try to find a human readable string to go with the id number """ person = None if id_num: person = User.query.get(int(id_num)) if person: return person.username return '' def newpeople(filename=None): """ Import people from the spreadsheet. Save it as a csv. Also can change the info for a user.id""" if not filename: filename = os.path.join(os.getcwd(), "People.csv") print("filename = {}".format(filename)) columns = ["Full_Name", "Badge_ID", "DB_ID", "email", "phone"] new_item_count, existing_item_count = 0, 0 with open(filename, "rU") as csvfile: spamreader = csv.reader(csvfile, delimiter=',', quotechar='"') column_checksum = len(columns) for num, line in enumerate(spamreader): if not new_item_count: # skip the row labels new_item_count = 1 continue row = {label: item.strip() for label, item in zip(columns, line)} if len(row) != column_checksum: print("ABORT! on bad row: {}".format(row)) print("Import not finished! Fix data") exit(1) # check that item is not already in database existing_id = User.query.filter_by(id=int(row['DB_ID'])).first() if existing_id: existing_item_count += 1 print("!{:5} Person exists {}".format(num, row['DB_ID'])) existing_id.badge=row['Badge_ID'] existing_id.username=row['Full_Name'] existing_id.email=row['email'] existing_id.phone_number=row['phone'] db.session.commit() print("details updated for {} (id={})".format(existing_id.username, existing_id.id)) continue existing_badge = User.query.filter_by(badge=row['Badge_ID']).first() if existing_badge: existing_item_count += 1 print("!{:5} Badge number in use: {}".format(num, row['Badge_ID'])) continue existing_email = User.query.filter_by(email=row['email']).first() if existing_email: existing_item_count += 1 print("!{:5} email in use: {}".format(num, row['email'])) continue print("#{:5}: {}".format(num, row)) new_person = User(id=int(row['DB_ID']), badge=row['Badge_ID'], username=row['Full_Name'], email=row['email'], phone_number=row['phone']) try: db.session.add(new_person) new_item_count += 1 except Exception as e: print("ER: {}, {}".format(e, new_person)) db.session.commit() print("imported {} people".format(new_item_count - 1)) print("ignored {} existing people".format(existing_item_count)) return True def report_spamer(spam_list, outfn): """ writes out reports to a csv that can be opened into a spreadsheet""" columns = _columns with open(outfn, 'w', newline='') as output_obj: spamwriter = csv.writer(output_obj, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(columns) # column labels for i in spam_list: line = [i.MEID, i.OEM, i.MODEL, i.SKU, i.Serial_Number, i.Hardware_Version, str(i.In_Date.date()), i.Archived, nameid(i.TesterId), nameid(i.DVT_Admin), i.MSL, i.Comment] spamwriter.writerow(line) print("report file written to = {}".format(outfn)) return True def overdue_report(manager_id, days=14, outfile=None): """ query by manager to find devices that need checking-up on write a report that can be sent as an attachment to managers. return filename. """ if outfile is None: outfile = os.path.join(os.getcwd(), "overdue_report.csv") manager = User.query.get(manager_id) try: assert manager.admin except AssertionError: responce = "User: {} is not an Administrator".format(manager.username) print(responce) return None, responce today = datetime.utcnow() delta = timedelta(days) overdue_stuff = [phone for phone in Phone.query.filter_by(DVT_Admin=manager.id).all() if ((today - phone.In_Date) > delta) and phone.TesterId] report_spamer(overdue_stuff, outfile) return manager.email, outfile def oem_report(manager_id, oem=None, outfile=None): """ prepare a .csv report that lists all devices from a particular OEM or just return all devices from a manager (old and gone: filter by manager and OEM)""" manager = User.query.get(manager_id) if outfile is None: outfile = os.path.join(os.getcwd(), "oem_report.csv") if oem is None: results = Phone.query.filter_by(DVT_Admin=manager_id).all() else: results = Phone.query.filter_by(OEM=oem).all() report_spamer(results, outfile) return manager.email, outfile def send_report(email, attachment_fn, sender=None, subject='Overdue Devices Report'): """ email an attachment """ if sender is None: sender=app.config['MAIL_USERNAME'] human_name = os.path.split(attachment_fn)[-1] message = Message(subject=subject + " " + human_name, sender=sender, recipients=[email]) with app.open_resource(attachment_fn) as attachment: message.attach(human_name, "spreadsheet/csv", attachment.read()) mail.send(message) print("sent mail from {} to {}".format(sender, email)) return True def swapm(oem, new_owner): """ app.swapm('Blu', 7) = change all devices with OEM='Blu' to be owned by DVT_Admin='7' """ try: assert(int(new_owner) < 99) except: print("new owner should be an integer representing the db id.") return False print("looking for devices made by {}, to transfer to {}".format(oem, new_owner)) for device in Phone.query.all(): if device.OEM.lower() == oem.lower(): device.DVT_Admin = str(new_owner) print("device {} has project manager = {}".format(device.MEID, new_owner)) db.session.commit() return True def oems(): """ show the project managers, the oems, and the device counts """ devices = Phone.query.all() oems = Counter([device.OEM for device in devices]) managers = Counter([(device.DVT_Admin, device.OEM) for device in devices]) outlist = [] for m in managers: output = (nameid(m[0]), m[0], m[1], managers[m], oems[m[1]]) print("{} id#{} has {}: {} - of {}".format(output[0], output[1], output[2], output[3], output[4])) outlist.append(output) return outlist def send_test(email): message = Message(subject="testes12..3?", sender=app.config['MAIL_USERNAME'], recipients=[email]) mail.send(message) def utc_to_local(utc_dt): return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=None) def retrieve_history(meid, date_filter=":%b %d, %Y, %I.%M %p"): """ http://strftime.org/ unpickles and formats the history of a device into a list of dict""" device = Phone.query.filter_by(MEID=meid).first() if not device: return [] history = pickle.loads(device.History) herstory = [] for event in history: print("event = {}".format(event)) id, date = event date = utc_to_local(date) if id is not None: person = User.query.filter_by(id=id).first() username = person.username else: username = "Original PM" herstory.append({'User': username, 'Date': date.strftime(date_filter)}) return herstory def users_devices(badge): """ find all devices owned by a person """ user = User.query.filter_by(badge=badge).first() id = str(user.id) return Phone.query.filter_by(TesterId=id).all() def unique_badge(): """ keep trying until a new random badge number has been found to return """ rando = str(randint(1000000000, 9999999999)) badge = User.query.filter_by(badge=rando).first() print("rando badge query = {}".format(badge)) if badge: unique_badge() return rando def check_histories(): """ run from command line to fix the import error caused by leaving the TesterID cells blank Also will verify that that the device checkout histories that exist all have the required info """ devices = Phone.query.all() for device in devices: history = pickle.loads(device.History) newid = None dates = [] for entry in history: id, date = entry dates.append(date) if id == '': print("device: {}, {}, {}, {}".format(device.MEID, device.DVT_Admin, device.TesterId, device.OEM)) newid = device.TesterId if newid: device.History = pickle.dumps([(newid, old_date) for old_date in dates]) db.session.commit() print("fixed") print("DONE!") def meidication(adminid=None): """ fix the MEID where an IMEI (or some other improper thing was entered) by truncating to 14 characters""" if adminid is None: admins = User.query.filter_by(admin=True).all() for perp in admins: print("{:5} - {}".format(perp.id, perp.username)) print(" ---------- ") adminid = int(input("Enter the id to use: ")) devices = Phone.query.filter_by(DVT_Admin='{}'.format(adminid)).all() tally = Counter([len(device.MEID) for device in devices]) print(tally) to_fix = [d for d in devices if len(d.MEID) > 14 and (not Phone.query.filter_by(MEID=d.MEID[:14]).first())] fn = os.getcwd() + "fixed_MEID_for_id_{}".format(adminid) while os.path.exists(fn): fn = fn + "_{}".format(adminid) with open(fn, 'w') as fob: fob.writelines([d.MEID + os.linesep for d in to_fix]) print("{} MEID will be truncated to 14 characters and saved in file '{}'".format(len(to_fix), fn)) for device in to_fix: device.MEID = device.MEID[:14] db.session.commit() print("database updated!") def look_for_blanks(): devices = Phone.query.filter_by(MODEL="", SKU="").all() print(devices) return devices if __name__ == '__main__': if os.name == 'nt': app.run(debug=True) else: app.run(host='0.0.0.0', debug=False) ```
{ "source": "JoeSuber/QuickerPicker", "score": 3 }
#### File: JoeSuber/QuickerPicker/wave.py ```python import numpy as np """ output a list of points consumable by openscad polygon function """ def wave(degs, scale=10): pts = [] for i in xrange(degs): rad = i*np.pi/180.0 x = float(i/180.0*scale) y=np.sin(rad) * scale pts.append([x, y]) return pts def pwave(degs, scale=20): # default scale of 20 would give: 0 < x < 40 units print("points = {};".format(wave(degs, scale=scale))) print("*** finito ***") return 0 if __name__ == "__main__": pwave(359, scale=100) ```
{ "source": "Joe-Surrey/slt", "score": 2 }
#### File: Joe-Surrey/slt/extract_gcn.py ```python import lzma import pickle import time import random import os import yaml from signjoey.GCN.processor import load_model from signjoey.augmentations import load_augment import argparse def get_files(video_folder): # Glob directory videos = [ { "file": y, "file_name": y.split(".")[0], "input_file": os.path.join(p, y), } for p, _, x in os.walk(video_folder) for y in x if y.endswith(".pkl") ] return videos def main(params): # Load files = get_files(params.input_folder) model = load_model() print(len(files)) for index, file in enumerate(files): #name = params.input_file.split("/")[-1].split(".")[0] with open(f"{file['input_file']}", "rb") as f: label = pickle.loads(f.read()) # Run try: keypoints = load_augment("holistic", pickle.loads(lzma.decompress(label['sign']))) except TypeError: print(label["name"]) keypoints = load_augment("holistic", pickle.loads(lzma.decompress(label['sgn'])).numpy()) features = model(keypoints.unsqueeze(0).cuda()).squeeze(0).cpu().detach().numpy() label["sign"] = lzma.compress(pickle.dumps(features)) # Make file with open(f"{params.output_folder}/{file['file_name']}.pkl", "wb") as f: f.write(pickle.dumps(label)) if __name__ == '__main__': # Get params parser = argparse.ArgumentParser() parser.add_argument("--input_folder", type=str, default="", help="") parser.add_argument("--output_folder", type=str, default="", help="") params, _ = parser.parse_known_args() _time = time.time() main(params) print(f"Done in {time.time() - _time}s") ``` #### File: GCN/feeders/augmentations.py ```python import random def random_mirror(data_numpy): # TODO random!!! if random.random() < 0.5: data_numpy[0] = - data_numpy[0] return data_numpy def augment(data_numpy): data_numpy = random_mirror(data_numpy) return data_numpy ``` #### File: GCN/model/msg3d.py ```python import sys sys.path.insert(0, '') import torch import torch.nn as nn import torch.nn.functional as F import pickle from .utils import import_class, count_params from .ms_gcn import MultiScale_GraphConv as MS_GCN from .ms_tcn import MultiScale_TemporalConv as MS_TCN from .ms_gtcn import SpatialTemporal_MS_GCN, UnfoldTemporalWindows from .mlp import MLP from einops import rearrange from ..feeders.specs import left_hand_group, right_hand_group, upper_body_group, head_group, holistic_joints, get_indexes class MS_G3D(nn.Module): def __init__(self, in_channels, out_channels, A_binary, num_scales, window_size, window_stride, window_dilation, embed_factor=1, activation='relu'): super().__init__() self.window_size = window_size self.out_channels = out_channels self.embed_channels_in = self.embed_channels_out = out_channels // embed_factor if embed_factor == 1: self.in1x1 = nn.Identity() self.embed_channels_in = self.embed_channels_out = in_channels # The first STGC block changes channels right away; others change at collapse if in_channels == 3: self.embed_channels_out = out_channels else: self.in1x1 = MLP(in_channels, [self.embed_channels_in]) self.gcn3d = nn.Sequential( UnfoldTemporalWindows(window_size, window_stride, window_dilation), SpatialTemporal_MS_GCN( in_channels=self.embed_channels_in, out_channels=self.embed_channels_out, A_binary=A_binary, num_scales=num_scales, window_size=window_size, use_Ares=True ) ) self.out_conv = nn.Conv3d(self.embed_channels_out, out_channels, kernel_size=(1, self.window_size, 1)) self.out_bn = nn.BatchNorm2d(out_channels) def forward(self, x): N, _, T, V = x.shape x = self.in1x1(x) # Construct temporal windows and apply MS-GCN x = self.gcn3d(x) # Collapse the window dimension x = x.view(N, self.embed_channels_out, -1, self.window_size, V) x = self.out_conv(x).squeeze(dim=3) x = self.out_bn(x) # no activation return x class MultiWindow_MS_G3D(nn.Module): def __init__(self, in_channels, out_channels, A_binary, num_scales, window_sizes=[3,5], window_stride=1, window_dilations=[1,1]): super().__init__() self.gcn3d = nn.ModuleList([ MS_G3D( in_channels, out_channels, A_binary, num_scales, window_size, window_stride, window_dilation ) for window_size, window_dilation in zip(window_sizes, window_dilations) ]) def forward(self, x): # Input shape: (N, C, T, V) out_sum = 0 for gcn3d in self.gcn3d: out_sum += gcn3d(x) # no activation return out_sum class Model(nn.Module): def __init__(self, num_class, num_point, num_person, num_gcn_scales, num_g3d_scales, graph, in_channels=3, test=False): super(Model, self).__init__() self.test = test Graph = import_class("GCN." + graph) A_binary = Graph(num_node=num_point).A_binary self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point) # channels c1 = 96 c2 = c1 * 2 # 192 c3 = c2 * 2 # 384 # r=3 STGC blocks self.gcn3d1 = MultiWindow_MS_G3D(3, c1, A_binary, num_g3d_scales, window_stride=1) self.sgcn1 = nn.Sequential( MS_GCN(num_gcn_scales, 3, c1, A_binary, disentangled_agg=True), MS_TCN(c1, c1), MS_TCN(c1, c1)) self.sgcn1[-1].act = nn.Identity() self.tcn1 = MS_TCN(c1, c1) self.gcn3d2 = MultiWindow_MS_G3D(c1, c2, A_binary, num_g3d_scales, window_stride=2) self.sgcn2 = nn.Sequential( MS_GCN(num_gcn_scales, c1, c1, A_binary, disentangled_agg=True), MS_TCN(c1, c2, stride=2), MS_TCN(c2, c2)) self.sgcn2[-1].act = nn.Identity() self.tcn2 = MS_TCN(c2, c2) self.gcn3d3 = MultiWindow_MS_G3D(c2, c3, A_binary, num_g3d_scales, window_stride=2) self.sgcn3 = nn.Sequential( MS_GCN(num_gcn_scales, c2, c2, A_binary, disentangled_agg=True), MS_TCN(c2, c3, stride=2), MS_TCN(c3, c3)) self.sgcn3[-1].act = nn.Identity() self.tcn3 = MS_TCN(c3, c3) self.fc = nn.Linear(c3, num_class) self.upper_body = get_indexes(upper_body_group, holistic_joints) self.head = get_indexes(head_group, holistic_joints) self.left_hand = get_indexes(left_hand_group, holistic_joints) self.right_hand = get_indexes(right_hand_group, holistic_joints) def forward(self, x): N, C, T, V, M = x.size() with open("/vol/research/SignRecognition/x_before.pkl", "wb") as f: f.write(pickle.dumps(x)) x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) x = self.data_bn(x) x = x.view(N * M, V, C, T).permute(0,2,3,1).contiguous() # Apply activation to the sum of the pathways x = F.relu(self.sgcn1(x) + self.gcn3d1(x), inplace=True) x = self.tcn1(x) x = F.relu(self.sgcn2(x) + self.gcn3d2(x), inplace=True) x = self.tcn2(x) x = F.relu(self.sgcn3(x) + self.gcn3d3(x), inplace=True) x = self.tcn3(x) if not self.test: # Combine means of hands, head and body left_hand_features = x[:, :, :, self.left_hand].mean(dim=-1) right_hand_features = x[:, :, :, self.right_hand].mean(dim=-1) head_features = x[:, :, :, self.head].mean(dim=-1) upper_body_features = x[:, :, :, self.upper_body].mean(dim=-1) x = torch.cat([left_hand_features, right_hand_features, head_features, upper_body_features], dim=1) return rearrange(x, "b f t -> b t f") # Just rearrange and return #return rearrange(x, "b f t j -> b t (f j)")[:, :, :512] else: out = x out_channels = out.size(1) out = out.view(N, M, out_channels, -1) out = out.mean(3) # Global Average Pooling (Spatial+Temporal) out = out.mean(1) # Average pool number of bodies in the sequence out = self.fc(out) with open("/vol/research/SignRecognition/x_after.pkl", "wb") as f: f.write(pickle.dumps(out)) return out if __name__ == "__main__": # For debugging purposes import sys sys.path.append('..') model = Model( num_class=60, num_point=25, num_person=2, num_gcn_scales=13, num_g3d_scales=6, graph='graph.ntu_rgb_d.AdjMatrixGraph' ) N, C, T, V, M = 6, 3, 50, 25, 2 x = torch.randn(N,C,T,V,M) model.forward(x) print('Model total # params:', count_params(model)) #N batch size #M = Number of people #V = Number of points #C = Input channels #T = Number of timesteps #num_person * in_channels * num_point #M * V * C #[32, 56, 369]) N T V*C ``` #### File: GCN/model/ms_tcn.py ```python import sys sys.path.insert(0, '') import torch import torch.nn as nn from .activation import activation_factory class TemporalConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1): super(TemporalConv, self).__init__() pad = (kernel_size + (kernel_size-1) * (dilation-1) - 1) // 2 self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0), stride=(stride, 1), dilation=(dilation, 1)) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) x = self.bn(x) return x class MultiScale_TemporalConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilations=[1,2,3,4], residual=True, residual_kernel_size=1, activation='relu'): super().__init__() assert out_channels % (len(dilations) + 2) == 0, '# out channels should be multiples of # branches' # Multiple branches of temporal convolution self.num_branches = len(dilations) + 2 branch_channels = out_channels // self.num_branches # Temporal Convolution branches self.branches = nn.ModuleList([ nn.Sequential( nn.Conv2d( in_channels, branch_channels, kernel_size=1, padding=0), nn.BatchNorm2d(branch_channels), activation_factory(activation), TemporalConv( branch_channels, branch_channels, kernel_size=kernel_size, stride=stride, dilation=dilation), ) for dilation in dilations ]) # Additional Max & 1x1 branch self.branches.append(nn.Sequential( nn.Conv2d(in_channels, branch_channels, kernel_size=1, padding=0), nn.BatchNorm2d(branch_channels), activation_factory(activation), nn.MaxPool2d(kernel_size=(3,1), stride=(stride,1), padding=(1,0)), nn.BatchNorm2d(branch_channels) )) self.branches.append(nn.Sequential( nn.Conv2d(in_channels, branch_channels, kernel_size=1, padding=0, stride=(stride,1)), nn.BatchNorm2d(branch_channels) )) # Residual connection if not residual: self.residual = lambda x: 0 elif (in_channels == out_channels) and (stride == 1): self.residual = lambda x: x else: self.residual = TemporalConv(in_channels, out_channels, kernel_size=residual_kernel_size, stride=stride) self.act = activation_factory(activation) def forward(self, x): # Input dim: (N,C,T,V) res = self.residual(x) branch_outs = [] for tempconv in self.branches: out = tempconv(x) branch_outs.append(out) out = torch.cat(branch_outs, dim=1) out += res out = self.act(out) return out if __name__ == "__main__": mstcn = MultiScale_TemporalConv(288, 288) x = torch.randn(32, 288, 100, 20) mstcn.forward(x) for name, param in mstcn.named_parameters(): print(f'{name}: {param.numel()}') print(sum(p.numel() for p in mstcn.parameters() if p.requires_grad)) ```
{ "source": "joesusecom/salt-tutorial", "score": 2 }
#### File: salt/runners/spacewalk.py ```python from __future__ import absolute_import # Import python libs import atexit import logging # Import third party libs HAS_LIBS = False try: import salt.ext.six as six HAS_LIBS = True except ImportError: # Salt version <= 2014.7.0 try: import six HAS_LIBS = True except ImportError: pass log = logging.getLogger(__name__) def __virtual__(): ''' Check for spacewalk configuration in master config file or directory and load runner only if it is specified ''' if not HAS_LIBS: return False if _get_spacewalk_configuration() is False: return False return True def _get_spacewalk_configuration(spacewalk_url=''): ''' Return the configuration read from the master configuration file or directory ''' spacewalk_config = __opts__['spacewalk'] if 'spacewalk' in __opts__ else None if spacewalk_config: try: for spacewalk_server, service_config in six.iteritems(spacewalk_config): username = service_config.get('username', None) password = service_config.get('password', None) protocol = service_config.get('protocol', 'https') if not username or not password: log.error( "Username or Password has not been specified in the master " "configuration for {0}".format(spacewalk_server) ) return False ret = { 'api_url': "{0}://{1}/rpc/api".format(protocol, spacewalk_server), 'username': username, 'password': password } if (not spacewalk_url) or (spacewalk_url == spacewalk_server): return ret except Exception as exc: log.error( "Exception encountered: {0}".format(exc) ) return False if spacewalk_url: log.error( "Configuration for {0} has not been specified in the master " "configuration".format(spacewalk_url) ) return False return False def _get_client_and_key(url, user, password, verbose=0): ''' Return the client object and session key for the client ''' session = {} session['client'] = six.moves.xmlrpc_client.Server(url, verbose=verbose, use_datetime=True) session['key'] = session['client'].auth.login(user, password) return session def _disconnect_session(session): ''' Disconnect API connection ''' session['client'].auth.logout(session['key']) def _get_session(server_url): ''' ''' config = _get_spacewalk_configuration(server_url) if not config: return False try: session = _get_client_and_key(config['api_url'], config['username'], config['password']) atexit.register(_disconnect_session, session) except Exception as exc: err_msg = "Exception raised when connecting to spacewalk server ({0}): {1}".format(server_url, exc) log.error(err_msg) return {name: err_msg} client = session['client'] key = session['key'] return client, key def systemgroup_listAllGroups(server_url = ''): ''' ''' client, key = _get_session(server_url) groups = client.systemgroup.listAllGroups(key) return groups def systemgroup_create(group_name , description = '', server_url = ''): ''' ''' client, key = _get_session(server_url) group = client.systemgroup.create(key, group_name, description) return group def api(server_url, namespace, method, *args): ''' Example: salt-run spacewalk.api manager.su.se system getCpu 1000010002 ''' client, key = _get_session(server_url) endpoint = getattr(getattr(client, namespace), method) result = endpoint(key, *args) return result def call(server, namespace, method, args): ''' Example: salt-run spacewalk.call manager.su.se systemgroup create "['MyGroup', 'Description of my group']" ''' client, key = _get_session(server) endpoint = getattr(getattr(client, namespace), method) result = endpoint(key, *args) return result ```
{ "source": "joesusecom/spacewalk-explode", "score": 3 }
#### File: joesusecom/spacewalk-explode/setup.py ```python from xmlrpc.client import ServerProxy import json import yaml from random import choice MANAGER_URL = 'http://url.to.your.server/rpc/api' MANAGER_LOGIN = 'login' MANAGER_PASSWORD = 'password' MAX_COUNTRIES = 10 MAX_CITIES = 10 GROUPS_FILE = 'your_groups_definitions.yml' DUMMY_EMAIL = 'name@domain' client = ServerProxy(MANAGER_URL, verbose=0) key = client.auth.login(MANAGER_LOGIN, MANAGER_PASSWORD) males = open('males.csv', 'r').readlines() females = open('females.csv', 'r').readlines() scenario = yaml.load(open(GROUPS_FILE, 'r')) def generateName(): ''' ''' prefix = choice(['Mr.', 'Ms.']) if prefix == 'Mr.': first = choice(males) last = choice(males) else: first = choice(females) last = choice(females) return (prefix, first, last, DUMMY_EMAIL) # Set up an organization for every country and add groups to the orgs countries = json.load(open('countries.json', 'r')) cities = json.load(open('cities.json', 'r')) no_of_countries = 1 for country in countries: if no_of_countries > MAX_COUNTRIES: break login = MANAGER_LOGIN + '@' + country['code'] prefix, first, last, email = generateName() client.org.create( key, country['name'], login, MANAGER_PASSWORD, # FIXME prefix, first, last, email, False ) org_key = client.auth.login(login, MANAGER_PASSWORD) # Set up groups for cities of the world no_of_groups = 1 for city in cities: if no_of_groups > MAX_CITIES: break if country['code'] == city['country']: try: client.systemgroup.create( org_key, city['name'] + ' (LOCATION)', 'City of ' + city['name'] + ' in ' + city['country'] + '(' + 'Location: ' + 'latitude ' + city['lat'] + ', ' + 'longitude ' + city['lng'] + ')' ) print(city['name'], city['country']) no_of_groups+=1 except xmlrpclib.Fault: print('ERROR: ', city['name'], ': Seems to be a duplicate') # Set up staging groups for stage in scenario['Stages']: client.systemgroup.create( org_key, stage + ' (STAGE)', stage + ' Systems' ) # Set up HW type groups for hw in scenario['Server_HW']: client.systemgroup.create( org_key, hw + ' (SERVER HARDWARE TYPE)', hw + ' Server Systems' ) for hw in scenario['Client_HW']: client.systemgroup.create( org_key, hw + ' (CLIENT HARDWARE TYPE)', hw + ' Client (Desktop, POS) Systems' ) # Set up Role groups for role in scenario['Roles']: client.systemgroup.create( org_key, role + ' (ROLE)', role + ' System' ) # Set up OS groups for os in scenario['OS']: client.systemgroup.create( org_key, os + ' (OS)', os ) # Create activation keys, so systems can join the groups right away # Start with (POS) client hardware: for hw in scenario['Client_HW']: for role in ['POS Terminal', 'Branch Server']: groups = client.systemgroup.listAllGroups(org_key) for group in groups: if 'LOCATION' in group['name']: g = group['name'][:-11] short_g = g[:12] try: activationkey = client.activationkey.create( org_key, short_g + '_' + role + '_' + hw, 'Key to activate systems with role ' + role + ' from ' + hw + ' at location ' + g, 'sles12-sp3-pool-x86_64', [], False ) for gg in groups: if gg['name'] == hw + ' (CLIENT HARDWARE TYPE)': hw_group = gg['id'] if gg['name'] == role + ' (ROLE)': role_group = gg['id'] if gg['name'] == g + ' (LOCATION)': location_group = gg['id'] client.activationkey.addServerGroups( org_key, activationkey, [hw_group, role_group, location_group] ) client.activationkey.addChildChannels( org_key, activationkey, ['sle-manager-tools12-pool-x86_64-sp3', 'sle-manager-tools12-updates-x86_64-sp3', 'sles12-sp3-updates-x86_64' ] ) except xmlrpclib.Fault: print("ERROR ERROR ERROR (usually duplicate cities)") client.auth.logout(org_key) no_of_countries+=1 client.auth.logout(key) ```
{ "source": "joetache4/ProjectEuler", "score": 2 }
#### File: joetache4/ProjectEuler/008_LargestProductInASeries.py ```python import math n = "".join([ "73167176531330624919225119674426574742355349194934", "96983520312774506326239578318016984801869478851843", "85861560789112949495459501737958331952853208805511", "12540698747158523863050715693290963295227443043557", "66896648950445244523161731856403098711121722383113", "62229893423380308135336276614282806444486645238749", "30358907296290491560440772390713810515859307960866", "70172427121883998797908792274921901699720888093776", "65727333001053367881220235421809751254540594752243", "52584907711670556013604839586446706324415722155397", "53697817977846174064955149290862569321978468622482", "83972241375657056057490261407972968652414535100474", "82166370484403199890008895243450658541227588666881", "16427171479924442928230863465674813919123162824586", "17866458359124566529476545682848912883142607690042", "24219022671055626321111109370544217506941658960408", "07198403850962455444362981230987879927244284909188", "84580156166097919133875499200524063689912560717606", "05886116467109405077541002256983155200055935729725", "71636269561882670428252483600823257530420752963450" ]) def digit_product(s): return math.prod(int(d) for d in s) def solve(n, L): ans = (0,0) # product, index for i in range(len(n)-L+1): prod = digit_product(n[i:i+L]) ans = max(ans, (prod, i)) return ans[0] assert solve(n, 4) == 5832 print(solve(n, 13)) ``` #### File: joetache4/ProjectEuler/009_SpecialPythagoreanTriplet.py ```python from bisect import bisect def solve(): squares = [x*x for x in range(1000)] for a in range(1, 500): for b in range(a+1, 501): a2 = a*a b2 = b*b c2 = a2 + b2 c = bisect(squares, c2)-1 if squares[c] == c2 and a + b + c == 1000: return a*b*c print(solve()) ```
{ "source": "joetache4/project-euler", "score": 4 }
#### File: joetache4/project-euler/019_CountingSundays.py ```python dow = 2 def no_days(month, year): if month in [0,2,4,6,7,9,11]: return 31 elif month in [3,5,8,10]: return 30 elif year % 400 == 0: return 29 elif year % 100 == 0: return 28 elif year % 4 == 0: return 29 else: return 28 sum = 0 for y in range(1901, 2001): for m in range(0, 12): if dow == 0: sum += 1 dow = (dow + no_days(m, y)) % 7 print(sum) ```
{ "source": "joetache4/ProjectEuler", "score": 4 }
#### File: joetache4/ProjectEuler/020_FactorialDigitSum.py ```python from math import perm def solve(n): num = perm(n) sum = 0 for d in str(num): sum += int(d) return sum assert solve(10) == 27 print(solve(100)) ```
{ "source": "joetache4/project-euler", "score": 3 }
#### File: joetache4/project-euler/031_CoinSums.py ```python def ways(amount, nohigher=200): if amount == 0: return 1 count = 0 coins = [1, 2, 5, 10, 20, 50, 100, 200] for c in coins: if amount >= c and c <= nohigher: count += ways(amount - c, c) return count print(ways(200)) ``` #### File: joetache4/project-euler/032_PandigitalProducts.py ```python from math import prod from lib.num import factor from lib.list import subsets def pandigital(num): if num < 123456789 or num > 987654321: return False arr = [int(x) for x in str(num)] for k in range(1, 10): if k not in arr: return False return True p = set() for n in range(2, 11111): factors = factor(n) for subset in subsets(factors): term1 = subset term2 = factors.copy() for t in term1: term2.remove(t) term1 = prod(term1) term2 = prod(term2) if pandigital(int(f"{term1}{term2}{n}")): print(f"{term1} {term2} {n}") p.add(n) break ans = sum(p) print(f"ans = {ans}") ``` #### File: joetache4/project-euler/033_DigitCancellingFractions.py ```python from lib.num import gcd def test(n, d): if n%10 == 0 and d%10 == 0: return False n = str(n) d = str(d) eq = lambda n1, d1, n2, d2: int(n1)*int(d2) == int(n2)*int(d1) if n[0] == d[0] and eq(n, d, n[1], d[1]): return True if n[0] == d[1] and eq(n, d, n[1], d[0]): return True if n[1] == d[0] and eq(n, d, n[0], d[1]): return True if n[1] == d[1] and eq(n, d, n[0], d[0]): return True return False prod_n = 1 prod_d = 1 for d in range(11, 99): for n in range(10, d): if test(n, d): print((n, d)) prod_n *= n prod_d *= d g = gcd(prod_n, prod_d) print(f"ans = {prod_d // g}") ``` #### File: joetache4/project-euler/035_CircularPrimes.py ```python from lib.num import get_primes primes = get_primes(10**6) primes = [p for p in primes if not any(d in str(p) for d in ["0","2","4","6","8"])] primes.insert(0, 2) def rotations(n): yield n m = n while True: m = str(m) m = int(m[1:] + m[0]) if m == n: break yield m circular = [] for n in primes: is_circ = True for m in rotations(n): if m not in primes: is_circ = False break if is_circ: circular.append(n) assert 2 in circular assert 7 in circular assert 11 in circular assert 97 in circular assert 23 not in circular assert 47 not in circular print(circular) print(f"ans = {len(circular)}") ``` #### File: joetache4/project-euler/040_ChampernownesConstant.py ```python import sys do_test = False if len(sys.argv) > 1 and sys.argv[1] == "test": do_test = True def d(n): # get digit count of number that contains n-th digit len = 10 digit_count = 1 while len <= n: n -= len # set n to an index that ignores shorter numbers digit_count += 1 len = digit_count * 9 * 10**(digit_count-1) # get the number at this index num = n // digit_count if digit_count > 1: num += 10**(digit_count - 1) # get the digit dig = int(str(num)[n % digit_count]) return dig def test(): print("Testing...") concatted = [str(x) for x in range(100000)] concatted = "".join(concatted) for i in range(1,10000): assert d(i) == int(concatted[i]) print("[SUCCESS]") if do_test: test() else: ans = d(1) * d(10) * d(100) * d(1000) * d(10000) * d(100000) * d(1000000) print(ans) ```
{ "source": "joetache4/ProjectEuler", "score": 4 }
#### File: joetache4/ProjectEuler/045_TriangularPentagonalAndHexagonal.py ```python def T(n): return n*(n+1) // 2 def P(n): return n*(3*n-1) // 2 def H(n): return n*(2*n-1) t_index = 286 p_index = 165 h_index = 144 t_val = T(t_index) p_val = P(p_index) h_val = H(h_index) while t_val != p_val or p_val != h_val: if t_val < p_val: t_index += 1 t_val = T(t_index) if p_val < h_val: p_index += 1 p_val = P(p_index) if h_val < t_val: h_index += 1 h_val = H(h_index) print(t_val) ``` #### File: joetache4/ProjectEuler/081_PathSumTwoWays.py ```python from data.p081 import get_data node = get_data() N = len(node) path = [[None]*N for _ in range(N)] path[-1][-1] = node[-1][-1] def get_path(y, x): if path[y][x] is None: if y == N-1: # at bottom path[y][x] = node[y][x] + get_path(y, x+1) elif x == N-1: # at right side path[y][x] = node[y][x] + get_path(y+1, x) else: path[y][x] = node[y][x] + min(get_path(y+1, x), get_path(y, x+1)) return path[y][x] print(get_path(0, 0)) ``` #### File: joetache4/ProjectEuler/088_Product-SumNumbers.py ```python from math import isqrt max_val = 12000 def first_divisor(n): if n % 2 == 0 and n != 2: return 2 for m in range(3, isqrt(n) + 1, 2): if n % m == 0: return m return None # don't return 1 or n # get a list of list of all ways to factor n into (prime or composite) numbers def partitions(n): ans = set() if n == 1: pass else: d = first_divisor(n) if d is None: ans.add( (n,) ) # comma makes a tuple, not parentheses else: for partition in partitions(n//d): for i in range(len(partition)): a = list(partition) a[i] *= d ans.add( tuple(sorted(a)) ) a = list(partition) a.append(d) ans.add(tuple(sorted(a))) return ans min_ps_num = {} for n in range(2, 2*max_val+1): for p in partitions(n): k = n - sum(p) + len(p) if k not in min_ps_num: min_ps_num[k] = n ans = set() for k in range(2, 12001): ans.add(min_ps_num[k]) print(sum(ans)) ``` #### File: joetache4/ProjectEuler/094_AlmostEquilateralTriangles.py ```python P = 10**9 ans = 0 #(k,k,k+1) a = [0,2] while True: k = a[-1]**2 + 1 p = 3*k + 1 if p <= P: ans += p else: break a.append(4*a[-1] - a[-2]) #(k,k,k-1) a = [0,1] while True: k = 16*a[-1] + 1 p = 3*k - 1 if p <= P: ans += p else: break a.append(14*a[-1] - a[-2] + 1) print(ans) # 5:00 ''' from math import isqrt def heronian_perimeter2(a,b,c): p = a+b+c A2 = p*c*c*(a+b-c) A = isqrt(A2) if A2 == A*A:# and (A&3) == 0 : input((a,b,c)) return p return 0 ans = 0 for x in range(3, (10**9)//3 + 1, 2): # 1,1,2 is not Heronian, so skip it for simplicity's sake ans += heronian_perimeter2(x, x, x+1) ans += heronian_perimeter2(x, x, x-1) print(ans) ''' ```
{ "source": "joetache4/project-euler", "score": 4 }
#### File: joetache4/project-euler/095_AmicableChains.py ```python max_val = 10**6 div = [[1] for x in range(max_val+1)] div[0] = [0] div[1] = [0] for a in range(2, max_val//2+1): for b in range(2*a, max_val+1, a): div[b].append(a) assert div[24] == [1,2,3,4,6,8,12] assert div[28] == [1,2,4,7,14] for i in range(len(div)): div[i] = sum(div[i]) assert div[28] == 28 assert div[220] == 284 assert div[284] == 220 chain_len = {} def get_chain_len(start): if start in chain_len: return visited = [] n = start while True: visited.append(n) n = div[n] if n > max_val or n == 0: # faster to not do this # for m in visited: # chain_len[m] = -1 break elif n == start: for m in visited: chain_len[m] = len(visited) break elif n in visited: break for i in range(len(div)): get_chain_len(i) assert 7 not in chain_len assert chain_len[28] == 1 assert chain_len[220] == 2 assert chain_len[284] == 2 assert chain_len[12496] == 5 assert chain_len[14288] == 5 assert chain_len[15472] == 5 assert chain_len[14536] == 5 assert chain_len[14264] == 5 longest = max(( (length,-start) for start,length in chain_len.items() )) print(-longest[1]) ```
{ "source": "joetache4/ProjectEuler", "score": 4 }
#### File: joetache4/ProjectEuler/102_TriangleContainment.py ```python from data.p102 import get_data triangles = get_data() o = (0,0) def area(a, b, c): val = a[0]*(b[1]-c[1]) + b[0]*(c[1]-a[1]) + c[0]*(a[1]-b[1]) return abs(val / 2) def contains_origin(tri): a = (tri[0], tri[1]) b = (tri[2], tri[3]) c = (tri[4], tri[5]) return area(a,b,c) == area(o,b,c) + area(a,o,c) + area(a,b,o) print(sum( 1 for tri in triangles if contains_origin(tri) )) ```
{ "source": "joetache4/project-euler", "score": 4 }
#### File: joetache4/project-euler/103_SpecialSubsetSumsOptimum.py ```python from queue import PriorityQueue from lib.array import subsets from interface import Solution class S103(Solution): def __init__(self): NUM = 103 NAME = "Problem title" ARG = [11,18,19,20,22,25] ANS = 20313839404245 super().__init__(NUM, NAME) self.add_test([1], "12") self.add_test([1,2], "234") self.add_test([2,3,4], "3567") self.add_test([3,5,6,7], "69111213") self.add_test([6,9,11,12,13], "111819202225") self.add_test(ARG, ANS) ################################################################################ def cond1(self, arr): sums = set() for subset in subsets(arr): s = sum(subset) if s in sums: return False sums.add(s) return True def cond2(self, arr): #arr.sort() m = arr[0] # sum of lower terms M = 0 # sum of higher terms a = 1 b = len(arr)-1 while a < b: m += arr[a] M += arr[b] if m <= M: return False a += 1 b -= 1 return True def solve(self, arr): q = PriorityQueue() a = arr[len(arr)//2] arr = [i+a-2 for i in arr] arr.insert(0, a) q.put((sum(arr), arr)) visited = set() visited.add(tuple(arr)) while True: _, arr = q.get() if self.cond2(arr) and self.cond1(arr): return "".join([str(i) for i in arr]) for a in arr: b = a + 1 while b in arr: b += 1 arr2 = arr.copy() arr2.remove(a) arr2.append(b) arr2.sort() tup_arr2 = tuple(arr2) if tup_arr2 not in visited: q.put((sum(arr2), arr2)) visited.add(tup_arr2) ################################################################################ if __name__ == "__main__": S103().run() ```
{ "source": "joetache4/ProjectEuler", "score": 4 }
#### File: joetache4/ProjectEuler/111_PrimesWithRuns.py ```python from itertools import combinations from lib.num import is_prime, get_primes def replacements(n, indices): ''' Replace the digits of n at the given indices. Iterate through all combinations of replacement digits. n is represented as a string list. indicides is an int list. Yields ints. ''' L2 = len(indices) for n2 in range(10**L2): n2 = str(n2).zfill(L2) for i in range(L2): n[indices[i]] = n2[i] if n[0] == "0": # skip replacements that start with 0 continue a = int("".join(n)) yield a def solve(L): primes = get_primes(int(10**((L+1)/2))+1) S = 0 for d in "0123456789": for num_replace in range(1,L+1): Sd = 0 for indices in combinations(range(L), num_replace): for n in replacements([d]*L, indices): if is_prime(n, primes): Sd += n if Sd > 0: S += Sd break return S assert solve(4) == 273700 print(solve(10)) ``` #### File: joetache4/ProjectEuler/115_CountingBlockCombinationsII.py ```python mem = {} def F(m, length): return F_r(True, m, length) + F_r(False, m, length) def F_r(red, m, length): if red: if length == m: return 1 elif length < m: return 0 else: if length == 1: return 1 elif length < 1: return 0 if (red, length) in mem: return mem[(red, length)] count = 1 if red: for i in range(m, length+1): count += F_r(False, m, length-i) else: for i in range(1, length+1): count += F_r(True, m, length-i) mem[(red,length)] = count return count assert F(3,7) == 17 mem = {} assert F(10,57) == 1148904 mem = {} for n in range(100,1000): if F(50, n) > 10**6: print(n) break mem = {} assert F(50, 167) <= 10**6 and F(50, 168) > 10**6 ``` #### File: joetache4/ProjectEuler/118_PandigitalPrimeSets.py ```python import primesieve as ps def index(p): v = 0 while p > 0: d = p%10 if d == 0: return 0 d = 1<<(d-1) if d&v: return 0 v += d p //= 10 return v # get primes & their indices -- this takes the most time by far count_orig = [0]*(2**9) it = ps.Iterator() p = it.next_prime() #while p <= 987654321: # there are no 9-digit pandigital primes, so this could be 98765432 instead while p <= 98765432: if (i := index(p)) > 0: count_orig[i] += 1 p = it.next_prime() # main loop count_prev = count_orig ans = 0 while True: count_new = [0]*len(count_orig) for i in range(len(count_orig)): for j in range(i): if i&j == 0: # no shared digits allowed count_new[i+j] += count_orig[i]*count_prev[j] if sum(count_new) == 0: # no new sets have been made, quit break else: ans += count_new[-1] count_prev = count_new print(ans) # Old. This overcounts, acting as if {a,b}+{c,d} is different from {a,c}+{b,d}. ''' for i in range(1, len(count)): for j in range(i): if i & j == 0: # no shared digits count[i + j] += count[i] * count[j] print(count[-1]) ''' ``` #### File: joetache4/ProjectEuler/121_DiscGamePrizeFund.py ```python from math import floor def perms(numT, numF, start = None): if start is None: start = [] if numT == 0 and numF == 0: yield start.copy() if numT > 0: start.append(True) yield from perms(numT - 1, numF, start) start.pop() if numF > 0: start.append(False) yield from perms(numT, numF - 1, start) start.pop() def solve(turns): prob_win = 0 for b in range(turns//2+1, turns+1): for perm in perms(b, turns-b): prob_perm = 1 for i, draw in enumerate(perm): if draw: prob_perm *= 1/(i+2) else: prob_perm *= (i+1)/(i+2) prob_win += prob_perm return floor(1/prob_win) assert solve(4) == 10 print(solve(15)) ```
{ "source": "joetache4/project-euler", "score": 4 }
#### File: joetache4/project-euler/125_PalindromicSums.py ```python from math import ceil, sqrt def is_pal(n): s = str(n) return s == s[::-1] def main(M): squares = [n*n for n in range(1, ceil(sqrt(M)))] ps = set() for i in range(len(squares)-1): partial = squares[i] for j in range(i+1, len(squares)): partial += squares[j] if partial >= M: break if is_pal(partial): ps.add(partial) return sum(ps) assert main(10**3) == 4164 print(main(10**8)) ```
{ "source": "joetache4/ProjectEuler", "score": 3 }
#### File: joetache4/ProjectEuler/136_SingletonDifference.py ```python from lib.num import get_primes def solve(N): primes = get_primes(N) del primes[0] ans = 0 for p in primes: if p%4 == 3: ans += 1 if 16*p < N: ans += 2 elif 4*p < N: ans += 1 ans += 2 # for n=4,16 return ans assert solve(100) == 25 print(solve(50*10**6)) # shows patterns ''' from math import isqrt from lib.num import get_primes, divisors, factor N = 50*10**6 primes = get_primes(isqrt(N)+1) for n in range(1, N): div = divisors(n, primes) num_sol = 0 for x in div: q, r = divmod(n+x*x, 4*x) if r == 0: if q >= x: continue num_sol += 1 print(f'count({n}) = {num_sol}') #if num_sol == 1: # print(factor(n, primes)) #''' # slightly faster, much less memory used ''' from math import isqrt from itertools import cycle from lib.num import get_primes, divisors, factor N = 50*10**6 T = True F = False primes = get_primes(isqrt(N)+1) gt1 = [None] * N # n with 'greater than one' solutions ans = 0 for n, gt0 in zip(range(1, N), cycle([F,F,T,T,F,F,T,F,F,F,T,T,F,F,T,T])): # zeros come in a pattern if gt0 and not gt1[n]: num_sol = 0 for d in divisors(n, primes): q, r = divmod(n+d*d, 4*d) if q < d and r == 0: num_sol += 1 if num_sol > 1: # all sn have >=1 solution where s is a square k = 2 m = n*k*k while m < N: gt1[m] = True k += 1 m = n*k*k break if num_sol == 1: ans += 1 print(ans) #''' # Original solution - slow and uses a ton of memory ''' N = 50*10**6 def list_divisors(n): div = [[1] for x in range(n+1)] div[0] = [] for d in range(2, n+1): for m in range(d, n+1, d): div[m].append(d) return div ans = 0 for n,div in enumerate(list_divisors(N)): num_sol = 0 for x in div: q, r = divmod(n+x*x, 4*x) if r == 0: if q >= x: continue num_sol += 1 if num_sol > 1: break if num_sol == 1: ans += 1 print(ans) ''' ```
{ "source": "joetache4/project-euler", "score": 3 }
#### File: joetache4/project-euler/136_SingletonDifference__SLOW.py ```python M = 50*10**6 def list_divisors(n): div = [[1] for x in range(n+1)] div[0] = [] for d in range(2, n+1): for q in range(d, n+1, d): div[q].append(d) return div ans = 0 for n,div in enumerate(list_divisors(M)): num_sol = 0 for x in div: if (n + x*x) % (4*x) == 0: if (n + x*x) // (4*x) >= x: continue num_sol += 1 if num_sol > 1: break if num_sol == 1: ans += 1 print(ans) ```
{ "source": "joetache4/ProjectEuler", "score": 4 }
#### File: joetache4/ProjectEuler/149_SearchingForAMaximum-SumSubsequence.py ```python import numpy as np def rand(): s = [] for k in range(1, 56): sk = (100003 - 200003*k + 300007*k**3) % 1000000 - 500000 yield sk s.append(sk) for k in range(56, 4000001): sk = (s[55-24] + s[0] + 1000000) % 1000000 - 500000 yield sk s.append(sk) s.pop(0) def test_rand(): a = [x for x in rand()] assert a[ 10-1] == -393027 assert a[100-1] == 86613 # skews an np.array by appending zeros on the sides def skew(values): new_arr = [] for i in range(len(values)): skewed = [0]*i + values[i].tolist() + [0]*(len(values)-i-1) # append using list + new_arr.append(skewed) return np.array(new_arr) def max_sum(): print("Creating pseudorandom array") values = np.array([x for x in rand()]).reshape((2000, 2000)) print("Finding max vertical sum") max_val = max_vertical_sum(values) print("Finding max horizontal sum") max_val = max(max_val, max_vertical_sum(values.transpose())) print("Finding max diagonal (/) sum") max_val = max(max_val, max_vertical_sum(skew(values))) print("Finding max diagonal (\) sum") max_val = max(max_val, max_vertical_sum(skew(values[::-1]))) print(f"max: {max_val}") # finds the greatest sum of consecutive values in each column of a 2 dimensional np.array def max_vertical_sum(values): top, mid, bot, tot = max_vertical_sum_helper(values) return max(mid) # helps find the greatest sum of consecutive values in each column of a 2 dimensional np.array # recursive binary splitting of rows in values # i.e., {2000 rows} -> {1000, 1000 rows} -> {500,500,500,500 rows} -> ... # method returns what I call top, middle, bottom, total sums # top: greatest sum of a sequence that contains the topmost value in the chunk # mid: greatest sum of a any sequence in the chunk # bot: greatest sum of a sequence that contains the bottommost value in the chunk # tot: the sum of all elements in the chunk # the parent chunk can then easily calculate its own top, mid, bottom, and total # sums from the sums of its two child chunks def max_vertical_sum_helper(values): if len(values) == 0: return (None, None, None, None) if len(values) == 1: return (values[0], values[0], values[0], values[0]) a_top, a_mid, a_bot, a_tot = max_vertical_sum_helper(values[:len(values)//2 ]) # a is "on top" b_top, b_mid, b_bot, b_tot = max_vertical_sum_helper(values[ len(values)//2:]) if a_top is None: return (b_top, b_mid, b_bot, b_tot) if b_top is None: return (a_top, a_mid, a_bot, a_tot) new_top = np.maximum(a_top, a_tot + b_top) new_mid = np.maximum(a_mid, np.maximum(b_mid, a_bot + b_top)) new_bot = np.maximum(b_bot, b_tot + a_bot) new_tot = a_tot + b_tot return (new_top, new_mid, new_bot, new_tot) max_sum() ``` #### File: joetache4/ProjectEuler/173_UsingUpToOneMillionTilesHowManyDifferentHollowSquareLaminaeCanBeFormed.py ```python def solve(M): ans = 0 D = 3 while True: if 4*D - 4 > M: break for d in range(D-2, 0, -2): size = D*D - d*d if size <= M: ans += 1 else: break D += 1 return ans assert solve(100) == 41 print(solve(10**6)) ```
{ "source": "joetache4/project-euler", "score": 4 }
#### File: joetache4/project-euler/179_ConsecutivePositiveDivisors.py ```python n = 10**7 def count_divisors(n): div = [1 for x in range(n+1)] div[0] = 0 for d in range(2, n+1): for q in range(d, n+1, d): div[q] += 1 return div div = count_divisors(n) ans = sum(1 for i in range(n) if div[i] == div[i+1]) print(ans) ```
{ "source": "joetache4/ProjectEuler", "score": 4 }
#### File: joetache4/ProjectEuler/181_InvestigatingInHowManyWaysObjectsOfTwoDifferentColoursCanBeGrouped.py ```python from lib.helpers import memoize # Time can be cut in half by ignoring subproblems where b_min is too big. When b_min is bigger than b/2, then there is only one solution, that with all the black stones (and thus white ones, too) in the last group. That option is also why 1 is added to the total in cases where b_min <= b//2. @memoize def solve(b, w, b_min = 0, w_min = 0): if b < 0 or w < 0: return 0 if b == 0 and w == 0: return 1 if w_min > w: b_min += 1 w_min = 0 if b_min > b: return 0 if b_min > b//2: return 1 # <-------------- total = 0 # same b, same or higher w b2 = b_min if b_min == 0 and w_min == 0: w_min = 1 for w2 in range(w_min, w+1): total += solve(b-b2, w-w2, b2, w2) # higher b, any w for b2 in range(b_min+1, b//2+1): # <-------------- for w2 in range(0, w+1): total += solve(b-b2, w-w2, b2, w2) return total+1 # <-------------- assert solve(3,1) == 7 print(solve(60,40)) # first attempt ''' # b, w = remaining black and white stones to place in groups. # b_min, w_min = minimum such stones to place in each subsequent group. @memoize def first_attempt(b, w, b_min = 0, w_min = 0): if b < 0 or w < 0: return 0 if b == 0 and w == 0: return 1 if w_min > w: b_min += 1 w_min = 0 if b_min > b: return 0 total = 0 # same b, same or higher w b2 = b_min if b_min + w_min == 0: w_min = 1 for w2 in range(w_min, w+1): total += first_attempt(b-b2, w-w2, b2, w2) # higher b, any w for b2 in range(b_min+1, b+1): for w2 in range(0, w+1): total += first_attempt(b-b2, w-w2, b2, w2) return total ''' # not mine ''' def very_fast_solution(b, w): F = [] for i in range(b+1): F.append([]) for j in range(w+1): F[-1].append(0) F[0][0] = 1 for i in range(b+1): for j in range(w+1): if i + j > 0: for k in range(i, b+1): for l in range(j, w+1): F[k][l] += F[k-i][l-j] return F[b][w] ''' ``` #### File: joetache4/ProjectEuler/206_ConcealedSquare.py ```python def check(n): return str(n*n)[0::2] == "1234567890" def solve(): n = 1000000030 while True: if check(n): return n n += 40 if check(n): return n n += 60 print(solve()) ```
{ "source": "joetache4/project-euler", "score": 3 }
#### File: joetache4/project-euler/206_ConcealedSquare.py ```python from math import sqrt def main(): for a in [0,1,2,3,4,5,6,7,8,9]: for b in [0,1,2,3,4,5,6,7,8,9]: for c in [0,1,2,3,4,5,6,7,8,9]: for d in [0,1,2,3,4,5,6,7,8,9]: for e in [0,1,2,3,4,5,6,7,8,9]: for f in [0,1,2,3,4,5,6,7,8,9]: for g in [0,1,2,3,4,5,6,7,8,9]: for h in [0,1,2,3,4,5,6,7,8,9]: for i in [0]: num = 0 for j in [1,a,2,b,3,c,4,d,5,e,6,f,7,g,8,h,9,i]: num = 10*(num + j) sqrt_num = int(sqrt(num)) if num == sqrt_num**2: print(sqrt(num)) return main() ``` #### File: joetache4/project-euler/215_Crack_FreeWalls.py ```python import numpy as np import scipy.sparse m = 32 n = 10 levels = [] # ways to arrange 2- and 3-bricks on a single level def get_levels(m, level = None): last_brick = 0 if level is None: level = [] else: last_brick = level[-1] if last_brick in [m-2, m-3]: levels.append(level.copy()) elif last_brick > m-2: return level.append(last_brick + 2) get_levels(m, level) level[-1] += 1 get_levels(m, level) level.pop() get_levels(m) adj_mat = [] # adjacency matrix for i in range(len(levels)): adj_vec = [] for j in range(len(levels)): if i == j: adj_vec.append(0) elif all((k not in levels[j] for k in levels[i])): adj_vec.append(1) else: adj_vec.append(0) adj_mat.append(adj_vec) adj_mat = np.matrix(adj_mat, np.uint8) adj_mat = scipy.sparse.coo_matrix(adj_mat, dtype = np.uint64) def pow(base, exp): if exp == 1: return base elif exp % 2 == 0: tmp = pow(base, exp//2) return tmp.dot(tmp) else: tmp = pow(base, exp - 1) return tmp.dot(base) adj_mat = pow(adj_mat, n - 1) print(adj_mat.sum(dtype = np.uint64)) ``` #### File: joetache4/project-euler/621_ExpressingAnIntegerAsTheSumOfTriangularNumbers.py ```python import sys import math from lib.log import log target = 17526*10**9 try: target = int(sys.argv[1]) except IndexError: pass def get_tri(target): tri, i, n = [], 0, 0 while n <= target: tri.append(n) i += 1 n += i return tri def max_ab(tri): max_a_index = -1 max_b_index = -1 for i, t in enumerate(tri): if max_a_index == -1 and t > target//3: max_a_index = i-1 if t > target//2: max_b_index = i-1 break return (max_a_index, max_b_index) ######################################################################################################## # for testing def is_tri(n): n = 2*n m = int(math.sqrt(n)) return m*m + m == n def brute_force(n, tri): count = 0 for a in tri: if a > n: break for b in tri: if a + b > n: break if is_tri(n - a - b): count += 1 return count ######################################################################################################## import numpy as np from numba import cuda, int64 def info(): gpu = cuda.get_current_device() print("name = %s" % gpu.name) print("maxThreadsPerBlock = %s" % str(gpu.MAX_THREADS_PER_BLOCK)) print("maxBlockDimX = %s" % str(gpu.MAX_BLOCK_DIM_X)) print("maxBlockDimY = %s" % str(gpu.MAX_BLOCK_DIM_Y)) print("maxBlockDimZ = %s" % str(gpu.MAX_BLOCK_DIM_Z)) print("maxGridDimX = %s" % str(gpu.MAX_GRID_DIM_X)) print("maxGridDimY = %s" % str(gpu.MAX_GRID_DIM_Y)) print("maxGridDimZ = %s" % str(gpu.MAX_GRID_DIM_Z)) print("maxSharedMemoryPerBlock = %s" % str(gpu.MAX_SHARED_MEMORY_PER_BLOCK)) print("asyncEngineCount = %s" % str(gpu.ASYNC_ENGINE_COUNT)) print("canMapHostMemory = %s" % str(gpu.CAN_MAP_HOST_MEMORY)) print("multiProcessorCount = %s" % str(gpu.MULTIPROCESSOR_COUNT)) print("warpSize = %s" % str(gpu.WARP_SIZE)) print("unifiedAddressing = %s" % str(gpu.UNIFIED_ADDRESSING)) print("pciBusID = %s" % str(gpu.PCI_BUS_ID)) print("pciDeviceID = %s" % str(gpu.PCI_DEVICE_ID)) # Count (a,b,c) where target = a + b + c and a <= b <= c # Note: two terms (a,b) must be < target/2 and 1 term (a) must be < target/3 block_count = 512 threads_per_block = 512 # The start and stride params indicate where to start looking for the 1st and 2nd terms # and how far to look. They are used to divide the problem into a series of GPU calls # so it doesn't time out and give an error. @cuda.jit def count(target, tri_arr, count_arr, start_a, start_b, max_a_index, max_b_index, stride_a, stride_b): th_ind = cuda.grid(1) if th_ind >= stride_a: return a_ind = th_ind + start_a if a_ind >= tri_arr.shape[0] or a_ind > max_a_index: return a = tri_arr[a_ind] step = 1 if target % 3 == 0 and a % 3 == 1: # a, b, and c must all be 1 mod 3 step = 3 #for b_ind in range(a_ind, max_b_index+1): for b_ind in range(a_ind + start_b, min(a_ind + start_b + stride_b, max_b_index+1), step): b = tri_arr[b_ind] c = target - a - b if c < b: break tmp = math.floor(math.sqrt(2.0*c)) if tmp*tmp + tmp == 2*c: # is triangular if a == b and b == c: count_arr[a_ind] += 1 elif a == b or b == c: count_arr[a_ind] += 3 else: count_arr[a_ind] += 6 def main(): #info() print("***") tri = get_tri(target) max_a_index, max_b_index = max_ab(tri) print(f"target : {target}") print(f"len(tri): {len(tri)}") print(f"max(tri): {tri[-1]}") print(f"max 1st index: {max_a_index}") print(f"max 2nd index: {max_b_index}") print(f"threads : {block_count*threads_per_block}") print("***") total = 0 tri_arr = np.array(tri, np.int64)[:max(max_a_index, max_b_index)+1] count_arr = np.zeros(tri_arr.shape, np.int64) stride_a = block_count * threads_per_block stride_b = 25002 # must be divisible by 3 to make use of modulo qualities in count() for start_a in range(0, max_a_index+1, stride_a): print(f"a: {start_a}...") for start_b in range(0, max_b_index+1, stride_b): print(f" b: {start_b}...") count[block_count, threads_per_block] \ (target, tri_arr, count_arr, start_a, start_b, max_a_index, max_b_index, stride_a, stride_b) total = sum(( count_arr )) print(total) log(f"G({target}) = {total}") # test if target <= 10000000: print(brute_force(target, tri)) return total #main() ######################################################################################################## # multithreading ''' import threading from lib.log import log def is_tri(n): n = 2*n m = int(math.sqrt(n)) return m*m + m == n terms, terms_lock = set(), threading.Lock() def found_set(new_found): terms_lock.acquire() for f in new_found: terms.add(f) terms_lock.release() def count_two_term_sums(a_index, a, target): found = set() target2 = target - a if target % 3 == 0: if a % 3 == 0: # b must also be 0 mod 3 for b_index in range(a_index, len(tri), 3): b = tri[b_index] if b > target//2: break c = target2 - b if b <= c and is_tri(c): # TODO break if c < b found.add((a, b, c)) a_index += 1 if tri[a_index] % 3 == 1: a_index += 1 for b_index in range(a_index, len(tri), 3): b = tri[b_index] if b > target//2: break c = target2 - b if b <= c and is_tri(c): found.add((a, b, c)) else: # b must also be 1 mod 3 for b_index in range(a_index, len(tri), 3): b = tri[b_index] if b > target//2: break c = target2 - b if b <= c and is_tri(c): found.add((a, b, c)) else: for b_index in range(a_index, len(tri)): b = tri[b_index] if b > target//2: break c = target2 - b if b <= c and is_tri(c): found.add((a, b, c)) found_set(found) # assume a <= b <= c def main(target): print(f"main loop end: {len(tri)//3}") # two terms must be < target/2, 1 term must be < target/3 for a_index, a in enumerate(tri): if a > target//3: break if a_index % 10 == 0: print(a_index) threading.Thread(target=count_two_term_sums, args=(a_index, a, target)).start() # wait for all threads to finish main_thread = threading.currentThread() for t in threading.enumerate(): if t is main_thread: continue t.join() #print(terms) ans = sum(( count_unique_perms(t) for t in terms )) print(ans) log(ans) return ans #main(target) ''' ```
{ "source": "joetache4/ProjectEuler", "score": 4 }
#### File: joetache4/ProjectEuler/700_Eulercoin.py ```python def ecoins(): '''Generate eulercoins naively. Good for recognizing patterns.''' n = 0 d = 1504170715041707 mod = 4503599627370517 min = 9999999999999999 sum = 0 while True: n = (n+d)%mod if n < min: min_diff = min - n min = n sum += n print((sum, min, min_diff, min-min_diff)) #ecoins() def solve(): '''Copy the pattern observed in eulercoins.''' # start with the second eulercoin so min_diff is defined sum = 1513083232796311 min = 8912517754604 min_diff = 1495258197287103 while min > 0: if min_diff > min: min_diff %= min min -= min_diff sum += min #print((sum, min, min_diff)) return sum print(solve()) ''' (1504170715041707, 1504170715041707, 8495829284958292, -6991658569916585) (1513083232796311, 8912517754604, 1495258197287103, -1486345679532499) <--- min_diff = ??? (previous min_diff isn't actually defined) (1515128018282680, 2044785486369, 6867732268235, -4822946781866) <--- min_diff = min_diff - min*167 (obs: >167 & min_diff goes < 0) (1516439427959921, 1311409677241, 733375809128, 578033868113) <--- min_diff = min_diff - min*3 (1517017461828034, 578033868113, 733375809128, -155341941015) (1517440153755132, 422691927098, 155341941015, 267349986083) <---- min_diff = min_diff - min (1517707503741215, 267349986083, 155341941015, 112008045068) (1517819511786283, 112008045068, 155341941015, -43333895947) (1517888185935404, 68674149121, 43333895947, 25340253174) <---- min_diff = min_diff - min (1517913526188578, 25340253174, 43333895947, -17993642773) (1517920872798979, 7346610401, 17993642773, -10647032372) <---- min_diff = min_diff - min (1517924918987409, 4046188430, 3300421971, 745766459) <---- min_diff = min_diff - min*2 (1517925664753868, 745766459, 3300421971, -2554655512) (1517926093164192, 428410324, 317356135, 111054189) (1517926204218381, 111054189, 317356135, -206301946) (1517926220024813, 15806432, 95247757, -79441325) <---- min_diff = min_diff - min*2 (1517926235422080, 15397267, 409165, 14988102) <---- min_diff = min_diff - min*6 (1517926250410182, 14988102, 409165, 14578937) (1517926264989119, 14578937, 409165, 14169772) (1517926279158891, 14169772, 409165, 13760607) (1517926292919498, 13760607, 409165, 13351442) (1517926306270940, 13351442, 409165, 12942277) (1517926319213217, 12942277, 409165, 12533112) (1517926331746329, 12533112, 409165, 12123947) (1517926343870276, 12123947, 409165, 11714782) (1517926355585058, 11714782, 409165, 11305617) (1517926366890675, 11305617, 409165, 10896452) (1517926377787127, 10896452, 409165, 10487287) (1517926388274414, 10487287, 409165, 10078122) (1517926398352536, 10078122, 409165, 9668957) (1517926408021493, 9668957, 409165, 9259792) (1517926417281285, 9259792, 409165, 8850627) (1517926426131912, 8850627, 409165, 8441462) (1517926434573374, 8441462, 409165, 8032297) (1517926442605671, 8032297, 409165, 7623132) (1517926450228803, 7623132, 409165, 7213967) (1517926457442770, 7213967, 409165, 6804802) (1517926464247572, 6804802, 409165, 6395637) (1517926470643209, 6395637, 409165, 5986472) (1517926476629681, 5986472, 409165, 5577307) (1517926482206988, 5577307, 409165, 5168142) (1517926487375130, 5168142, 409165, 4758977) (1517926492134107, 4758977, 409165, 4349812) (1517926496483919, 4349812, 409165, 3940647) (1517926500424566, 3940647, 409165, 3531482) (1517926503956048, 3531482, 409165, 3122317) (1517926507078365, 3122317, 409165, 2713152) (1517926509791517, 2713152, 409165, 2303987) (1517926512095504, 2303987, 409165, 1894822) (1517926513990326, 1894822, 409165, 1485657) (1517926515475983, 1485657, 409165, 1076492) (1517926516552475, 1076492, 409165, 667327) (1517926517219802, 667327, 409165, 258162) (1517926517477964, 258162, 409165, -151003) (1517926517585123, 107159, 151003, -43844) ''' ```
{ "source": "joetache4/project-euler", "score": 3 }
#### File: joetache4/project-euler/743_WindowIntoAMatrix__SLOW.py ```python import time from lib.num import mod_inverse mod = 1000000007 fact = [1] for a in range(1, 10**8+1): fact.append((fact[-1] * a) % mod) fact_inv = [] for a in fact: fact_inv.append(mod_inverse(a, mod)) print(f"pre-processing done ({time.strftime('%I:%M:%S %p')})") def choose(a,b): return (fact[a] * fact_inv[a-b] * fact_inv[b]) % mod def solve(k, L): total = 0 for ones in range(k, -1, -2): twos = (k - ones) // 2 count = choose(k, ones) * choose(k - ones, twos) count *= pow(2, ones * L // k, mod) total += count return total % mod assert solve(3, 9) == 560 assert solve(4, 20) == 1060870 print(solve(10**8, 10**16)) ``` #### File: joetache4/project-euler/751_ConcatenationCoincidence.py ```python from math import floor from decimal import getcontext, Decimal as D P = 24 # precision getcontext().prec = P+1 def concat(theta): a = [floor(theta)] b = [theta] for _ in range(P+1): b.append(floor(b[-1])*(b[-1]-floor(b[-1])+1)) a.append(floor(b[-1])) tau = D(str(a[0]) + "." + "".join(str(i) for i in a[1:])) return tau assert str(concat(D('2.956938891377988'))).startswith('2.3581321345589') theta = D(2) tau = concat(theta) while theta != tau: theta = tau tau = concat(theta) print(str(round(tau, P))) ```
{ "source": "joetache4/ProjectEuler", "score": 3 }
#### File: joetache4/ProjectEuler/788_DominatingNumbers.py ```python import numpy as np def D(N, M = 1000000007): # row = total number of digits # col = number of digits that are equal a = np.zeros((N,N+1), dtype=np.uint64) a[0][:2] = [9,1] for i in range(1,N): a[i] = np.mod( 9*a[i-1] + np.roll(a[i-1],1), # np.roll used to shift right M) for i in range(N): a[i][:(i+1)//2+1] = 0 return 9*int(a.sum()) % M assert D(4) == 603 assert D(10) == 21893256 print(D(2022)) ```
{ "source": "joetache4/project-euler", "score": 2 }
#### File: project-euler/data/p099.py ```python def get_data(): return [ (519432,525806), (632382,518061), (78864,613712), (466580,530130), (780495,510032), (525895,525320), (15991,714883), (960290,502358), (760018,511029), (166800,575487), (210884,564478), (555151,523163), (681146,515199), (563395,522587), (738250,512126), (923525,503780), (595148,520429), (177108,572629), (750923,511482), (440902,532446), (881418,505504), (422489,534197), (979858,501616), (685893,514935), (747477,511661), (167214,575367), (234140,559696), (940238,503122), (728969,512609), (232083,560102), (900971,504694), (688801,514772), (189664,569402), (891022,505104), (445689,531996), (119570,591871), (821453,508118), (371084,539600), (911745,504251), (623655,518600), (144361,582486), (352442,541775), (420726,534367), (295298,549387), (6530,787777), (468397,529976), (672336,515696), (431861,533289), (84228,610150), (805376,508857), (444409,532117), (33833,663511), (381850,538396), (402931,536157), (92901,604930), (304825,548004), (731917,512452), (753734,511344), (51894,637373), (151578,580103), (295075,549421), (303590,548183), (333594,544123), (683952,515042), (60090,628880), (951420,502692), (28335,674991), (714940,513349), (343858,542826), (549279,523586), (804571,508887), (260653,554881), (291399,549966), (402342,536213), (408889,535550), (40328,652524), (375856,539061), (768907,510590), (165993,575715), (976327,501755), (898500,504795), (360404,540830), (478714,529095), (694144,514472), (488726,528258), (841380,507226), (328012,544839), (22389,690868), (604053,519852), (329514,544641), (772965,510390), (492798,527927), (30125,670983), (895603,504906), (450785,531539), (840237,507276), (380711,538522), (63577,625673), (76801,615157), (502694,527123), (597706,520257), (310484,547206), (944468,502959), (121283,591152), (451131,531507), (566499,522367), (425373,533918), (40240,652665), (39130,654392), (714926,513355), (469219,529903), (806929,508783), (287970,550487), (92189,605332), (103841,599094), (671839,515725), (452048,531421), (987837,501323), (935192,503321), (88585,607450), (613883,519216), (144551,582413), (647359,517155), (213902,563816), (184120,570789), (258126,555322), (502546,527130), (407655,535678), (401528,536306), (477490,529193), (841085,507237), (732831,512408), (833000,507595), (904694,504542), (581435,521348), (455545,531110), (873558,505829), (94916,603796), (720176,513068), (545034,523891), (246348,557409), (556452,523079), (832015,507634), (173663,573564), (502634,527125), (250732,556611), (569786,522139), (216919,563178), (521815,525623), (92304,605270), (164446,576167), (753413,511364), (11410,740712), (448845,531712), (925072,503725), (564888,522477), (7062,780812), (641155,517535), (738878,512100), (636204,517828), (372540,539436), (443162,532237), (571192,522042), (655350,516680), (299741,548735), (581914,521307), (965471,502156), (513441,526277), (808682,508700), (237589,559034), (543300,524025), (804712,508889), (247511,557192), (543486,524008), (504383,526992), (326529,545039), (792493,509458), (86033,609017), (126554,589005), (579379,521481), (948026,502823), (404777,535969), (265767,554022), (266876,553840), (46631,643714), (492397,527958), (856106,506581), (795757,509305), (748946,511584), (294694,549480), (409781,535463), (775887,510253), (543747,523991), (210592,564536), (517119,525990), (520253,525751), (247926,557124), (592141,520626), (346580,542492), (544969,523902), (506501,526817), (244520,557738), (144745,582349), (69274,620858), (292620,549784), (926027,503687), (736320,512225), (515528,526113), (407549,535688), (848089,506927), (24141,685711), (9224,757964), (980684,501586), (175259,573121), (489160,528216), (878970,505604), (969546,502002), (525207,525365), (690461,514675), (156510,578551), (659778,516426), (468739,529945), (765252,510770), (76703,615230), (165151,575959), (29779,671736), (928865,503569), (577538,521605), (927555,503618), (185377,570477), (974756,501809), (800130,509093), (217016,563153), (365709,540216), (774508,510320), (588716,520851), (631673,518104), (954076,502590), (777828,510161), (990659,501222), (597799,520254), (786905,509727), (512547,526348), (756449,511212), (869787,505988), (653747,516779), (84623,609900), (839698,507295), (30159,670909), (797275,509234), (678136,515373), (897144,504851), (989554,501263), (413292,535106), (55297,633667), (788650,509637), (486748,528417), (150724,580377), (56434,632490), (77207,614869), (588631,520859), (611619,519367), (100006,601055), (528924,525093), (190225,569257), (851155,506789), (682593,515114), (613043,519275), (514673,526183), (877634,505655), (878905,505602), (1926,914951), (613245,519259), (152481,579816), (841774,507203), (71060,619442), (865335,506175), (90244,606469), (302156,548388), (399059,536557), (478465,529113), (558601,522925), (69132,620966), (267663,553700), (988276,501310), (378354,538787), (529909,525014), (161733,576968), (758541,511109), (823425,508024), (149821,580667), (269258,553438), (481152,528891), (120871,591322), (972322,501901), (981350,501567), (676129,515483), (950860,502717), (119000,592114), (392252,537272), (191618,568919), (946699,502874), (289555,550247), (799322,509139), (703886,513942), (194812,568143), (261823,554685), (203052,566221), (217330,563093), (734748,512313), (391759,537328), (807052,508777), (564467,522510), (59186,629748), (113447,594545), (518063,525916), (905944,504492), (613922,519213), (439093,532607), (445946,531981), (230530,560399), (297887,549007), (459029,530797), (403692,536075), (855118,506616), (963127,502245), (841711,507208), (407411,535699), (924729,503735), (914823,504132), (333725,544101), (176345,572832), (912507,504225), (411273,535308), (259774,555036), (632853,518038), (119723,591801), (163902,576321), (22691,689944), (402427,536212), (175769,572988), (837260,507402), (603432,519893), (313679,546767), (538165,524394), (549026,523608), (61083,627945), (898345,504798), (992556,501153), (369999,539727), (32847,665404), (891292,505088), (152715,579732), (824104,507997), (234057,559711), (730507,512532), (960529,502340), (388395,537687), (958170,502437), (57105,631806), (186025,570311), (993043,501133), (576770,521664), (215319,563513), (927342,503628), (521353,525666), (39563,653705), (752516,511408), (110755,595770), (309749,547305), (374379,539224), (919184,503952), (990652,501226), (647780,517135), (187177,570017), (168938,574877), (649558,517023), (278126,552016), (162039,576868), (658512,516499), (498115,527486), (896583,504868), (561170,522740), (747772,511647), (775093,510294), (652081,516882), (724905,512824), (499707,527365), (47388,642755), (646668,517204), (571700,522007), (180430,571747), (710015,513617), (435522,532941), (98137,602041), (759176,511070), (486124,528467), (526942,525236), (878921,505604), (408313,535602), (926980,503640), (882353,505459), (566887,522345), (3326,853312), (911981,504248), (416309,534800), (392991,537199), (622829,518651), (148647,581055), (496483,527624), (666314,516044), (48562,641293), (672618,515684), (443676,532187), (274065,552661), (265386,554079), (347668,542358), (31816,667448), (181575,571446), (961289,502320), (365689,540214), (987950,501317), (932299,503440), (27388,677243), (746701,511701), (492258,527969), (147823,581323), (57918,630985), (838849,507333), (678038,515375), (27852,676130), (850241,506828), (818403,508253), (131717,587014), (850216,506834), (904848,504529), (189758,569380), (392845,537217), (470876,529761), (925353,503711), (285431,550877), (454098,531234), (823910,508003), (318493,546112), (766067,510730), (261277,554775), (421530,534289), (694130,514478), (120439,591498), (213308,563949), (854063,506662), (365255,540263), (165437,575872), (662240,516281), (289970,550181), (847977,506933), (546083,523816), (413252,535113), (975829,501767), (361540,540701), (235522,559435), (224643,561577), (736350,512229), (328303,544808), (35022,661330), (307838,547578), (474366,529458), (873755,505819), (73978,617220), (827387,507845), (670830,515791), (326511,545034), (309909,547285), (400970,536363), (884827,505352), (718307,513175), (28462,674699), (599384,520150), (253565,556111), (284009,551093), (343403,542876), (446557,531921), (992372,501160), (961601,502308), (696629,514342), (919537,503945), (894709,504944), (892201,505051), (358160,541097), (448503,531745), (832156,507636), (920045,503924), (926137,503675), (416754,534757), (254422,555966), (92498,605151), (826833,507873), (660716,516371), (689335,514746), (160045,577467), (814642,508425), (969939,501993), (242856,558047), (76302,615517), (472083,529653), (587101,520964), (99066,601543), (498005,527503), (709800,513624), (708000,513716), (20171,698134), (285020,550936), (266564,553891), (981563,501557), (846502,506991), (334,1190800), (209268,564829), (9844,752610), (996519,501007), (410059,535426), (432931,533188), (848012,506929), (966803,502110), (983434,501486), (160700,577267), (504374,526989), (832061,507640), (392825,537214), (443842,532165), (440352,532492), (745125,511776), (13718,726392), (661753,516312), (70500,619875), (436952,532814), (424724,533973), (21954,692224), (262490,554567), (716622,513264), (907584,504425), (60086,628882), (837123,507412), (971345,501940), (947162,502855), (139920,584021), (68330,621624), (666452,516038), (731446,512481), (953350,502619), (183157,571042), (845400,507045), (651548,516910), (20399,697344), (861779,506331), (629771,518229), (801706,509026), (189207,569512), (737501,512168), (719272,513115), (479285,529045), (136046,585401), (896746,504860), (891735,505067), (684771,514999), (865309,506184), (379066,538702), (503117,527090), (621780,518717), (209518,564775), (677135,515423), (987500,501340), (197049,567613), (329315,544673), (236756,559196), (357092,541226), (520440,525733), (213471,563911), (956852,502490), (702223,514032), (404943,535955), (178880,572152), (689477,514734), (691351,514630), (866669,506128), (370561,539656), (739805,512051), (71060,619441), (624861,518534), (261660,554714), (366137,540160), (166054,575698), (601878,519990), (153445,579501), (279899,551729), (379166,538691), (423209,534125), (675310,515526), (145641,582050), (691353,514627), (917468,504026), (284778,550976), (81040,612235), (161699,576978), (616394,519057), (767490,510661), (156896,578431), (427408,533714), (254849,555884), (737217,512182), (897133,504851), (203815,566051), (270822,553189), (135854,585475), (778805,510111), (784373,509847), (305426,547921), (733418,512375), (732087,512448), (540668,524215), (702898,513996), (628057,518328), (640280,517587), (422405,534204), (10604,746569), (746038,511733), (839808,507293), (457417,530938), (479030,529064), (341758,543090), (620223,518824), (251661,556451), (561790,522696), (497733,527521), (724201,512863), (489217,528217), (415623,534867), (624610,518548), (847541,506953), (432295,533249), (400391,536421), (961158,502319), (139173,584284), (421225,534315), (579083,521501), (74274,617000), (701142,514087), (374465,539219), (217814,562985), (358972,540995), (88629,607424), (288597,550389), (285819,550812), (538400,524385), (809930,508645), (738326,512126), (955461,502535), (163829,576343), (826475,507891), (376488,538987), (102234,599905), (114650,594002), (52815,636341), (434037,533082), (804744,508880), (98385,601905), (856620,506559), (220057,562517), (844734,507078), (150677,580387), (558697,522917), (621751,518719), (207067,565321), (135297,585677), (932968,503404), (604456,519822), (579728,521462), (244138,557813), (706487,513800), (711627,513523), (853833,506674), (497220,527562), (59428,629511), (564845,522486), (623621,518603), (242689,558077), (125091,589591), (363819,540432), (686453,514901), (656813,516594), (489901,528155), (386380,537905), (542819,524052), (243987,557841), (693412,514514), (488484,528271), (896331,504881), (336730,543721), (728298,512647), (604215,519840), (153729,579413), (595687,520398), (540360,524240), (245779,557511), (924873,503730), (509628,526577), (528523,525122), (3509,847707), (522756,525555), (895447,504922), (44840,646067), (45860,644715), (463487,530404), (398164,536654), (894483,504959), (619415,518874), (966306,502129), (990922,501212), (835756,507474), (548881,523618), (453578,531282), (474993,529410), (80085,612879), (737091,512193), (50789,638638), (979768,501620), (792018,509483), (665001,516122), (86552,608694), (462772,530469), (589233,520821), (891694,505072), (592605,520594), (209645,564741), (42531,649269), (554376,523226), (803814,508929), (334157,544042), (175836,572970), (868379,506051), (658166,516520), (278203,551995), (966198,502126), (627162,518387), (296774,549165), (311803,547027), (843797,507118), (702304,514032), (563875,522553), (33103,664910), (191932,568841), (543514,524006), (506835,526794), (868368,506052), (847025,506971), (678623,515342), (876139,505726), (571997,521984), (598632,520198), (213590,563892), (625404,518497), (726508,512738), (689426,514738), (332495,544264), (411366,535302), (242546,558110), (315209,546555), (797544,509219), (93889,604371), (858879,506454), (124906,589666), (449072,531693), (235960,559345), (642403,517454), (720567,513047), (705534,513858), (603692,519870), (488137,528302), (157370,578285), (63515,625730), (666326,516041), (619226,518883), (443613,532186), (597717,520257), (96225,603069), (86940,608450), (40725,651929), (460976,530625), (268875,553508), (270671,553214), (363254,540500), (384248,538137), (762889,510892), (377941,538833), (278878,551890), (176615,572755), (860008,506412), (944392,502967), (608395,519571), (225283,561450), (45095,645728), (333798,544090), (625733,518476), (995584,501037), (506135,526853), (238050,558952), (557943,522972), (530978,524938), (634244,517949), (177168,572616), (85200,609541), (953043,502630), (523661,525484), (999295,500902), (840803,507246), (961490,502312), (471747,529685), (380705,538523), (911180,504275), (334149,544046), (478992,529065), (325789,545133), (335884,543826), (426976,533760), (749007,511582), (667067,516000), (607586,519623), (674054,515599), (188534,569675), (565185,522464), (172090,573988), (87592,608052), (907432,504424), (8912,760841), (928318,503590), (757917,511138), (718693,513153), (315141,546566), (728326,512645), (353492,541647), (638429,517695), (628892,518280), (877286,505672), (620895,518778), (385878,537959), (423311,534113), (633501,517997), (884833,505360), (883402,505416), (999665,500894), (708395,513697), (548142,523667), (756491,511205), (987352,501340), (766520,510705), (591775,520647), (833758,507563), (843890,507108), (925551,503698), (74816,616598), (646942,517187), (354923,541481), (256291,555638), (634470,517942), (930904,503494), (134221,586071), (282663,551304), (986070,501394), (123636,590176), (123678,590164), (481717,528841), (423076,534137), (866246,506145), (93313,604697), (783632,509880), (317066,546304), (502977,527103), (141272,583545), (71708,618938), (617748,518975), (581190,521362), (193824,568382), (682368,515131), (352956,541712), (351375,541905), (505362,526909), (905165,504518), (128645,588188), (267143,553787), (158409,577965), (482776,528754), (628896,518282), (485233,528547), (563606,522574), (111001,595655), (115920,593445), (365510,540237), (959724,502374), (938763,503184), (930044,503520), (970959,501956), (913658,504176), (68117,621790), (989729,501253), (567697,522288), (820427,508163), (54236,634794), (291557,549938), (124961,589646), (403177,536130), (405421,535899), (410233,535417), (815111,508403), (213176,563974), (83099,610879), (998588,500934), (513640,526263), (129817,587733), (1820,921851), (287584,550539), (299160,548820), (860621,506386), (529258,525059), (586297,521017), (953406,502616), (441234,532410), (986217,501386), (781938,509957), (461247,530595), (735424,512277), (146623,581722), (839838,507288), (510667,526494), (935085,503327), (737523,512167), (303455,548204), (992779,501145), (60240,628739), (939095,503174), (794368,509370), (501825,527189), (459028,530798), (884641,505363), (512287,526364), (835165,507499), (307723,547590), (160587,577304), (735043,512300), (493289,527887), (110717,595785), (306480,547772), (318593,546089), (179810,571911), (200531,566799), (314999,546580), (197020,567622), (301465,548487), (237808,559000), (131944,586923), (882527,505449), (468117,530003), (711319,513541), (156240,578628), (965452,502162), (992756,501148), (437959,532715), (739938,512046), (614249,519196), (391496,537356), (62746,626418), (688215,514806), (75501,616091), (883573,505412), (558824,522910), (759371,511061), (173913,573489), (891351,505089), (727464,512693), (164833,576051), (812317,508529), (540320,524243), (698061,514257), (69149,620952), (471673,529694), (159092,577753), (428134,533653), (89997,606608), (711061,513557), (779403,510081), (203327,566155), (798176,509187), (667688,515963), (636120,517833), (137410,584913), (217615,563034), (556887,523038), (667229,515991), (672276,515708), (325361,545187), (172115,573985), (13846,725685) ] ``` #### File: joetache4/project-euler/_main.py ```python import sys import os import time def get_file(prefix): try: if prefix == "": # get most recently changed file files = [f for f in os.listdir(".") if f[-3:] == ".py" and f != "_main.py"] files = sorted((os.path.getmtime(f),f) for f in files) return files[-1][1] else: # get first file that matches prefix prefix = prefix.zfill(3) for file in os.listdir("."): if file.startswith(prefix): return file except: pass return None def run(args): file = args[0] args = " ".join(args[1:]) print() print(time.strftime("%I:%M:%S %p")) print(file) print("-" * len(file)) print() start = time.monotonic() try: success = False success = os.system(f"python {file} {args}") == 0 except KeyboardInterrupt: pass stop = time.monotonic() elapsed = time.strftime('%H:%M:%S', time.gmtime(stop - start)) print() print("-" * len(file)) print(f"Completion time: {elapsed}") print() return success def main_loop(): while True: # get input args = input("Enter a problem number: ") if args.lower() in ["quit", "exit", "qqq"]: break args = args.split(" ") file = get_file(args[0]) # run if file is None: print("File not found.") else: args[0] = file while not run(args): if input("Retry? [Y/n]").lower() == 'n': break if __name__ == "__main__": try: main_loop() except (EOFError, KeyboardInterrupt): pass ```
{ "source": "joetainment/joecceasy", "score": 3 }
#### File: joecceasy/examples/example__qtui__ExecWidget.py ```python from joecceasy import Easy Easy.Qtui.CreateApp().ExecWidget( Easy.Qtw.QLabel("Widget Made By One Liner") ) Easy.Qtui.CreateApp() widget = Easy.Qtw.QPushButton("Widget Made Directly") widget.setStyleSheet( 'font: 30pt sans') Easy.Qtui.ExecWidget( widget ) def makeWidget(): global widget ## this is just so it can be shared with onExec widget = Easy.Qtw.QPushButton("Widget Made By Function") widget.setStyleSheet( 'font: 40pt mono') return widget def onExec( ): global widget Easy.Qtc.QTimer.singleShot( 1000, lambda: widget.setStyleSheet( 'font: 50pt serif' ) ) Easy.Qtui.CreateApp() Easy.Qtui.ExecWidget( makeWidget, onExec=onExec ) class MyWidgetClass(Easy.Qtw.QPushButton): def __init__(self): super().__init__() self.toggle=True self.setStyleSheet( 'font: 40pt sans') self.setText( "Widget Made By Class" ) self.tickTimer = Easy.Qtc.QTimer( ) self.tickTimer.start( 250 ) self.tickTimer.timeout.connect( self.onTick ) def onExec(self): self.setStyleSheet( "background: white" ) def onTick(self): if self.toggle: self.setStyleSheet('color: red') else: self.setStyleSheet('color: blue') self.toggle = not self.toggle Easy.Qtui.CreateApp() Easy.Qtui.ExecWidget( MyWidgetClass, onExec=True ) ``` #### File: joecceasy/examples/example__walker_01.py ```python from joecceasy import Easy def main(): paths = ['..','.'] absOfEntries = [ i.abs for i in Easy.WalkAnIter(paths) ] for i in absOfEntries: print( i ) if __name__=='__main__': main() """ def main(maxEntries = 99): i = -1 print( "Walker test, Walking current directory:" ) for entry in Easy.WalkAnIter( ['.'] ): i += 1 ## because i start at -1, 1st run of line will be 0 if i > maxEntries: break print(entry.abs) print( ' \n ' ) """ #isFileByPython = os.path.isfile(entry.abs) # print( 'entry: ', entry.name, 'f', entry.isFile, 'd', entry.isDir, # 'fa', entry.isFileAt, 'da', entry.isDirAt, 'pf', isFileByPython, se#p=' ') #end='' ) #print( entry.abs, entry.isFileAt, entry.isDirAt, sep=' ' ) #print( entry.__dict__ ) ``` #### File: joecceasy/examples/gtignore----example__ascui_01-1.py ```python from random import randint import time from joecceasy import Easy #from asciimatics.screen import Screen #Screen = Easy.Ascui.AsciimaticsMod.screen.Screen #Easy.Mods.sys.exit( ) ## Multiples can be used in sequence if you want multiple steps... ## First one, minor customization, no custom class ## note that since this functions as first screen only, ## we show "Next" instead of "Quit" Easy.Ascui(title='Ascui Examples Step 1 of 2', quitLabel="Next").exec_() ## Second one, via, customized subclass class ExampleAscui( Easy.Ascui ): def __init__(self,*args,**kwargs): super().__init__(*args,**kwargs) def initWidgets(self): self.frame.createWidget("Text", "MyText", "My Text" ) # self.frame.createWidget("Divider", "Divider01", None, height=3 ) self.frame.createWidget("Button", "Do Nothing", None, layoutCol=0, inFooter=True ) self.frame.createWidget("Button", "Show Anim Msg", None, layoutCol=2, inFooter=True, callback=lambda: Easy.Ascui.FullscreenMsg( msg="Button was pressed!", timeout=3 ) ) exampleAscui = ExampleAscui(title='Ascui Examples Step 2 of 2') exampleAscui.exec() ``` #### File: joecceasy/joecceasy/FileWatcher.py ```python import os, sys, time from . import Utils class FileWatcher: def __init__(self): self.updateInterval = 1 self.filesDict={} def addFile( self, filePath, action=None, actionArgs=(), actionKwargs={}, useFilePathAsFirstArg=True, easyAction=None ): entry = Utils.Object() self.filesDict[filePath] = entry entry.filePath = filePath entry.lastMtime = os.stat( filePath ).st_mtime entry.actionArgs = actionArgs entry.actionKwargs = actionKwargs entry.useFilePathAsFirstArg=useFilePathAsFirstArg if easyAction==None: entry.action = action elif easyAction=='run': import subprocess, sys entry.action = ( lambda filePath: subprocess.run( [sys.executable, filePath ], capture_output=False ) ) entry.actionArgs=() entry.actionKwargs={} self.updateEntry( entry ) return self def update( self ): for filePath, entry in self.filesDict.items(): newMtime = os.stat( filePath ).st_mtime actionArgs = entry.actionArgs actionKwargs = entry.actionKwargs if newMtime != entry.lastMtime: self.updateEntry( entry ) def updateEntry( self, entry ): entry.lastMtime = os.stat( entry.filePath ).st_mtime action = entry.action actionArgs = entry.actionArgs actionKwargs = entry.actionKwargs if callable( action ): if entry.useFilePathAsFirstArg: action( entry.filePath, *actionArgs, **actionKwargs ) else: action( *actionArgs, **actionKwargs ) return self def loop( self ): while True: #print( 'updating' ) self.update() time.sleep( self.updateInterval ) return self ``` #### File: joecceasy/joecceasy/__main__.py ```python import importlib, os, runpy, sys, traceback,math, random import distutils.sysconfig as sysconfig import os import sys from . import Utils def get_standard_modules(): found=[] std_lib = sysconfig.get_python_lib(standard_lib=True) for top, dirs, files in os.walk(std_lib): for nm in files: prefix = top[len(std_lib)+1:] if prefix[:13] == 'site-packages': continue if nm == '__init__.py': found.append( top[len(std_lib)+1:].replace(os.path.sep,'.') ) elif nm[-3:] == '.py': found.append( os.path.join(prefix, nm)[:-3].replace(os.path.sep,'.') ) elif nm[-3:] == '.so' and top[-11:] == 'lib-dynload': found.append( nm[0:-3] ) for builtin in sys.builtin_module_names: found.append( builtin ) result = [] for m in found: if '.' in m: continue if '_' in m: continue if 'site'==m: continue if 'antigravity'==m: continue if 'this'==m: continue #if 't' in m[:3] if True: ##'t' in m[2:3]: #print(m) if not m in result: result.append(m) return result modNames = get_standard_modules() #print( *modNames, sep="\n") Mods = Utils.Object() ModsDict = {} for n in modNames: ## sys.builtin_module_names not enough try: im=importlib.import_module( n ) setattr(Mods, n, im) ModsDict[n]=im except: ##just skip it, error will instead occur on use attempt 'pass' oldSysArgv = sys.argv.copy() # or list(sys.argv) oldArg0=None ## this will be the joecceasy/__main__.py oldArg1=None ## this will be the dummy command or the launcher path if len(sys.argv)>0: oldArg0 = sys.argv.pop(0) if len(sys.argv)>0: oldArg1 = sys.argv.pop(0) if oldArg0==None or oldArg1==None or len(sys.argv)<1: not_enough_args_msg = ( "\n" "FAILURE" "\n" "joecceasy module cannot run since sufficient arguments " "have not been provided." "\n" "Please provide at least one EasyPython file as " "an argument if using the launcher." "\n" "e.g. joecceasyLauncher yourscript.easy.py" "\n" "If using the module, provide the 'run' command and " "specify a script to run." "\n" "e.g. python -m joecceasy run yourscript.easy.py" ) print( not_enough_args_msg ) #print( f"sys.argv: {sys.argv}" ) #print( f"oldArg0: {oldArg0}" ) #print( f"oldArg1: {oldArg1}" ) exit( ) #print( f"oldSysArgv: {oldSysArgv}" ) ## get Easy joecceasy = sys.modules[__package__] Easy = joecceasy.Easy Easy.Inst newGlobals={ 'joecceasy':joecceasy, 'Easy': Easy, 'Mods':Mods, } for k,v in ModsDict.items(): newGlobals[k]=v #print( f"newGlobals: {newGlobals}" ) #print( f"sys.argv before run is: {sys.argv}" ) runpy.run_path( sys.argv[0], init_globals=newGlobals, run_name="__main__", ) #print( f"sys.argv: {sys.argv}" ) #print( f"package: {__package__}" ) #print( f"name: {__name__}" ) #for mod in sys.modules: # #print( mod ) # 'pass' """ print( sys.argv ) print( sys.argv[0] ) print( sys.argv[0] ) print( sys.argv ) """ """ ## adjust cwd with given script's path # may need to change and work into init call below ## initialize it and get it Easy = joecceasy.Easy #.Init( options ) ## could handle args here and setup sys.argv manually ## runpy will also update it. print(f"Easy.Args: {Easy.Args}" ) #sys.argv[0] #argsForRun=Easy.Args #sys.argv.clear() #sys.argv.extend( Easy.Args ) ## sys.argv[0] get replaced anyway on run #print(f"arg0NoQ: {arg0NoQ}" ) ## do stuff for new sys args #import ..joecceasy # Easy.CallInteractive( "notepad.exe" ) ## __init__.py will have already run #import . #importlib.import_module( ".." + __package__ ) #Easy.Inst #from .. import __package__ #print( joecceasy ) #print( 'main' ) #print( sys.argv ) #print( Easy.Args ) """ ``` #### File: joecceasy/joecceasy/Qtui.py ```python import os, sys import PySide2 import PySide2.QtGui as QtGui import PySide2.QtWidgets as QtWidgets import PySide2.QtCore as QtCore Qtc = QtCore Qtw = QtWidgets Qtg = QtGui ## Get self mod and package __init__ mod (joecceasy modules) ## It is safe to get this without circular import problems ## because Qtui is only ever called 'lazily', after ## joecceasy module is fully loadedimport sys ## just for SelfMod/SelfPak most imports later section SelfPak=__import__(__package__) SelfMod=sys.modules[__name__] joecceasy = SelfPak from . import Utils from .Utils import classproperty from . import EasyMod from . import Easy assert EasyMod.EasyModLoadingIsComplete==True class KbEventFilterer(Qtc.QObject): """ optimize wasted effort when using this class by specifying on=press/release/shortcut and watched keys watched=['k','l'] """ def __init__( self, *args, **kwargs ): on=kwargs.get('on','release') target = kwargs.get('target',None) self.callback = kwargs.get( 'callback',None ) self.watched = kwargs.get('watched', [ ] ) ## uses unmodified keys, e.g. no "+" or ":" self.watchCase = False ## currently disabled due to ctrl bug #kwargs.get('watchCase', False ) ## related code commented out below super().__init__( ) ## not needed #*args,**kwargs onRelease= 'release' in on onPress = 'press' in on onShortcut = 'shortcut' in on self.onlyOnTypes=[] if onRelease: self.onlyOnTypes.append( QtCore.QEvent.Type.KeyRelease ) if onPress: self.onlyOnTypes.append( QtCore.QEvent.Type.KeyPress ) if onShortcut: self.onlyOnTypes.append( QtCore.QEvent.Type.Shortcut ) if target is not None: target.installEventFilter( self ) def eventFilter(self, obj, event): ## possible types: ## ShortcutOverride KeyPress KeyRelease if not isinstance( event, Qtg.QKeyEvent ): return False ## We now know it's a key event so we can get the key key = event.key() modifiers = int( event.modifiers() ) #Qtc.QEvent.Type.KeyRelease if not event.type() in self.onlyOnTypes: return False if key==16777249 or key==16777251 or key==16777248 or key==16777250: return False ## this is just an optmized version of below ## simple early bail if key not watched, ignores letter case ## and modifiers qksNoMods = Qtg.QKeySequence( key ) qsNoMods = qksNoMods.toString() if len(self.watched) > 0: if not qsNoMods.lower() in [ w.lower() for w in self.watched ]: return False ## this won't work due to bug when holding ctrl, text() returns useless info #text = event.text() #print(text) #textLower = text.lower() #print(textLower) #if len(self.watched) > 0: # if not textLower in [ w.lower() for w in self.watched ]: # return False key = event.key() modifiers = event.modifiers() ## had to manually figure these out via testing ## qt seems to get special events for when it's only a modifier intOnlyCtrl = 16777249 intOnlyAlt = 16777251 intOnlyShift = 16777248 intOnlyMeta = 16777250 modOnlyCodes = [intOnlyCtrl,intOnlyAlt,intOnlyShift,intOnlyMeta] if key in modOnlyCodes: return False intCtrl = int(Qtc.Qt.CTRL) #67108864 intAlt = int(Qtc.Qt.ALT) #134217728 intShift = int(Qtc.Qt.SHIFT) #33554432 intMeta = int(Qtc.Qt.META) # ? modCodes = [intCtrl,intAlt,intShift,intMeta] if key in modCodes: return False qks = Qtg.QKeySequence( key | modifiers ) qs = qks.toString() ## More detailed case sensitive letter watching ## disabled for now because it was buggy with ctrl #if len(self.watched) > 0: # if self.watchCase: # if not t in self.watched: # return False intMods=modifiers andedCtrl = intMods & intCtrl andedAlt = intMods & intAlt andedShift = intMods & intShift andedMeta = intMods & intMeta hasCtrl = andedCtrl != 0 hasAlt = andedAlt != 0 hasShift = andedShift != 0 hasMeta = andedMeta != 0 ## ignores different keyboard pluses ## always uses shift= never actual plus ## treat plus as special, won't work with unmodified plus such as other keyboards qsEscaped = qs.replace('++', '+=') if 'shift' in qs.lower() else qs.replace('++','+Shift+=') ## because Num will be in qs if qsEscaped = qsEscaped.replace( "Num+", "" ) qsl = qsEscaped.lower().split('+') qsl=list( sorted(qsl,key=len) ) #print( qsl ) #print( qks, " ", hasCtrl, hasAlt, hasShift ) #print( qksNoMods, " ", hasCtrl, hasAlt, hasShift ) #print( qsNoMods ) #print( qs ) # print( event.text().lower(), " ", event.modifiers ) class EasyQKeyEvent: 'pass' info = EasyQKeyEvent() info.qs = qs info.qks = qks info.keys = qsl info.key = key info.hasCtrl=hasCtrl info.hasAlt=hasAlt info.hasShift=hasShift info.hasMeta=hasMeta info.typ=str( event.type() ).split('.')[-1].lower().replace('key','') info.keys.append( info.typ ) if callable( self.callback): return self.callback( obj, event, info ) else: return False class WidgetRecipe(): def __init__(self, label, connections=None, name=None, kind='button', func=None, layout=None, useFuncNameInsteadOfLabelIfNoName=False, widget=None ): if connections is None: connections = {} self.connections = connections self.label = label self.kind = kind labelr = label.replace(" ", "" ) if name is None: if func is not None: setattr( func, 'label', labelr ) if useFuncNameInsteadOfLabelIfNoName: name = func.__name__ else: ## dont use name = labelr func.__name__ = name else: ##func doesn't exist name = labelr else: ## name exists if not func is None: func.__name__ = name self.name = name self.func = func self.layout = layout class QtuiFuncs( ): @classmethod def GetQapp(cls, argv=None, ignoreArgvError=False ): existingQapp = Qtw.QApplication.instance() if existingQapp: if not ignoreArgvError: assert argv==None ## we can't share qapp if giving custom args return existingQapp else: if argv==None: argv = sys.argv.copy() qapp = Qtw.QApplication( argv ) return qapp @classproperty def Qapp(cls): return cls.GetQapp() @classproperty def KbEventFilterer(cls): return KbEventFilterer @classproperty def Qtc(cls): return Qtc @classproperty def QtCore(cls): return Qtc @classproperty def Qtg(cls): return QtGui @classproperty def QtGui(cls): return QtGui @classproperty def Qtw(cls): return Qtw @classproperty def QtWidgets(cls): return Qtw @classproperty def SelfMod(cls): return SelfMod @classmethod def ExecWidget(cls, widgetOrGetter, onExec=None, autoShow=True ): #args, kwargs=None): """ reeturns an object with info .app .widget .returnCode does a simple exec of qapp using the widget as root. If widget is class or func, call it to make Widget running the widget creation function widget getter should be a function or class that when called returns one widget """ import types #Utils.Object() execInfo = types.SimpleNamespace() execInfo.qapp = Qtw.QApplication.instance() if execInfo.qapp==None: execInfo.qapp = Qtw.QApplication( Easy.Argv ) #cls.GetQapp() ## should use override if available ## assign, get, or create our widget if isinstance( widgetOrGetter, Qtw.QWidget ): execInfo.widget = widgetOrGetter else: execInfo.widget = widgetOrGetter() ## apply onExec function if wanted if onExec is not None: if onExec==True: Qtc.QTimer.singleShot(0, execInfo.widget.onExec) elif isinstance( onExec, str ): def runOnExecByStr(onExec): foundFuncByStr = getattr( execInfo.widget, onExec ) foundFuncByStr() Qtc.QTimer.singleShot(0, runOnExecByStr) else: Qtc.QTimer.singleShot(0, onExec) execInfo.onExec = onExec if autoShow: execInfo.widget.show() execInfo.returnCode = execInfo.qapp.exec_() return execInfo @classproperty def WidgetRecipe(cls): return WidgetRecipe class QtuiBase(QtuiFuncs): __QappSingleton = None @classmethod def CreateApp(cls): cls.GetQapp() return cls @classmethod ##override def GetQapp(cls, argv=None ): ## setup self.qapp and self.argv which are closely related if cls.__QappSingleton!=None: assert argv==None ## we can't share qapp if giving custom args return cls.__QappSingleton else: existingQapp = Qtw.QApplication.instance() if existingQapp: assert argv==None ## we can't share qapp if giving custom args cls.__QappSingleton = existingQapp return existingQapp else: if argv==None: argv = sys.argv.copy() __QappSinglton = Qtw.QApplication( argv ) return __QappSinglton @classproperty ##override def Qapp(cls): return cls.GetQapp() class Qtui( Qtw.QMainWindow, QtuiBase, Easy.AbstractBaseClass ): #metaclass=QtuiMeta ): @classmethod def Exec(cls, *args, **kwargs): qtui = cls( *args, **kwargs ) return qtui.exec_() @classmethod def ExecAndExit(cls,*args,**kwargs ): """ Exec Qapp and then sys.exit w qapp's returned """ qtui = cls( *args, **kwargs ) qtui.execAndExit() return qtui ## this line may never be called def exec_(self): ## an extra name to match qt regular atApp.exec_() return self.qapp.exec_() def execAndExit(self): """ run qapp and automatically call sys.exit with return result """ r = self.qapp.exec_() Easy.Mods.sys.exit( r ) return self ## this line probably never reached def execQapp(self): return self.qapp.exec_() def __init__(self, *args, **kwargs ): argsOrig = args ## like tuple(args) because args is already a tuple kwargsOrig = kwargs.copy() ## initArgsMan = self.argsMan = ArgsMan( # args, # kwargs, # forSelf=, # forLocal=, #) ## add specified entries from kwargs ## or fallback defaults to self. dkwargsForSelf = { ## kwargs default fallbacks 'qapp' : None, 'argv' : None, ## the args to give qapp 'papp' : None, 'title' : 'Application', 'appTitleToBeShownInMenu' : 'App', 'tabTitle' : None, ## title of first default tab 'windowTitle': None, ## later we'll use self.title as fallback 'instructionsText': None, ## later we'll use self.title as fallback 'iconPath': None, 'appUserModelId' : 'mycompany.myproduct.subproduct.version', #taskbarIcon 'callbacks' : {}, ## should be a dictionary like object ######## Callbacks should take 'self' at a minimum ######## They should generally take same args/kwargs as ######## the wrapper functions ## createCentralWidget ## createCentralLayout ## update ## onGoClicked ## initAdditionalWidgetsIntoDefault ## initWidgetsPre ## initWidgetsPost ## be careful of potential confusion with ## setCentralWidget from centralWidget 'updateInterval' : 30, 'autoUpdateViaTimer' : True, 'autoUpdatePapp' : None, ## todo noauto 'autoShow' : True, 'autoCreateLayout' : True, 'autoCreateDefaultWidgetsInLayout' : True, 'showInput' : True, 'useTabs' : True, 'useMenu' : True, 'useOutput' : True, 'autoExpandOutput':False, 'useOutputToggleButton' : True, 'useStatusBar' : True, 'statusBarMsg' : '', 'exitSleepTime' : 0.15, 'minimumWidth': 400, 'minimumHeight': 300, 'widgetRecipes' : {}, 'widgets' : {}, ## Stores widgets 'layouts' : {}, ## Stores layouts } Easy.DictOfDefaultsOntoObj( self, dkwargsForSelf, kwargs ) dkwargsLocal = { ## kwargs default fallbacks 'QMainWindowArgs' : tuple(), #tuple( (None, self.Qtc.Qt.WindowStaysOnTopHint,) ), 'QMainWindowKwargs' : {}, 'KeyboardInterruptFix' : True, } Easy.DictOfDefaultsOntoDict( dkwargsLocal, kwargs ) ## KeyboardInterrupt work, fixes qt bug if kwargs['KeyboardInterruptFix']: print( 'keyboard int fix') import signal signal.signal(signal.SIGINT, signal.SIG_DFL) ## add a couple fallback that are dependent on other fallbacks ## should add a nice Easy function to do selfToSelf fallbacks ## based on attribute names if self.windowTitle==None: self.windowTitle = self.title if self.tabTitle==None: self.tabTitle = self.title #if self.qapp==None: self.initQapp() ## after qapp, set self.argv to something reasonable if it's None if self.argv==None: self.argv = sys.argv.copy() super().__init__( *( kwargs[ 'QMainWindowArgs' ] ), **( kwargs[ 'QMainWindowKwargs' ] ), ) ''' cb = self.callbacks.get( 'createCentralWidget' ) if cb=!None: self.centralWidgetForLayout = cb() ''' self.clipboard = self.Qtg.QGuiApplication.clipboard() self.mainWidget = Qtw.QWidget() self.mainLayout = Qtw.QFormLayout() self.addToWidgets( 'mainLayout', self.mainLayout) self.mainWidget.setLayout( self.mainLayout ) if self.useTabs==True: self.tabView = PySide2.QtWidgets.QTabWidget() self.tabBar = self.tabView.tabBar() ## widget for first tab page self.tabView.addTab( self.mainWidget, self.tabTitle ) self.setCentralWidget( self.tabView ) else: centralWidget = self.mainWidget #Qtw.QWidget() self.setCentralWidget( centralWidget ) #### self.centralWidget should now be valid via superclass #### self.initMenu() """ cb = self.callbacks.get( 'createMainLayout' ) if cb==None: self.centralLayout = Qtw.QFormLayout() else: self.centralLayout = cb() """ self.updateCallback = self.callbacks.get( 'update', None ) import ctypes if os.name=='nt': myappid = self.appUserModelId ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid) if self.iconPath!=None: self.icon = QtGui.QIcon( self.iconPath ) self.setWindowIcon( self.icon ) self.qapp.setWindowIcon( self.icon ) #print( self.icon ) self.setWindowTitle( self.windowTitle ) self.setMinimumWidth( self.minimumWidth ) self.setMinimumHeight( self.minimumHeight ) self.initOutput() ##self.initCentralWidget() ##self.initCentralLayout() self.initWidgetsPreWrapper() self.createWidgetsInCentralLayout() self.initWidgetsPostWrapper() self.initUpdateTimer() statusBar = self.statusBar() ## first call also creates it ## 0 means no timeout statusBar.showMessage( self.statusBarMsg, 0 ) if self.useStatusBar==True: statusBar.show() else: statusBar.hide() self.initWidgetRecipesWrapper() if self.autoShow==True: self.show() ''' def initLayoutThenWidgets(self): self.initSetCentralWidget() ## create central widget self.initSetCentralLayout() ## create central widget self.initCreateDefaultWidgetsInLayout() ''' def initCentralWidget(self): self.setCentralWidget( self.centralWidgetForLayout ) def initCentralLayout(self): self.centralWidgetForLayout.setLayout( self.centralLayout ) def initLayout(self, *args, **kwargs): """ Override this to fill layout with your own widgets """ def initOutput(self): self.outputDockWidget=QtWidgets.QDockWidget( "Output" ) self.outputWidget=QtWidgets.QWidget( #parent=self.outputDockWidget ) self.outputLayout=QtWidgets.QFormLayout() ## alyout has to be added first self.outputWidget.setLayout(self.outputLayout) self.outputDockWidget.setWidget( self.outputWidget ) #if self.autoExpandOutput: # self.outputDockWidget.show() ## show should be called on dock childs """ self.outputDockWidget.setFeatures( QtWidgets.QDockWidget.DockWidgetMovable | QtWidgets.QDockWidget.DockWidgetFloatable | QtWidgets.QDockWidget.DockWidgetClosable ) """ #QDockWidget.DockWidgetClosable #QDockWidget.DockWidgetMovable #QDockWidget.DockWidgetFloatable #QDockWidget.DockWidgetVerticalTitleBar #QDockWidget.NoDockWidgetFeatures if self.useOutput: self.addDockWidget( Qtc.Qt.BottomDockWidgetArea, self.outputDockWidget, ) self.outputTextEdit = Qtw.QTextEdit( ) self.outputTextEdit.setReadOnly( True ) self.outputBlankLabel = QtWidgets.QLabel( "-" ) self.outputLayout.addRow(self.outputTextEdit) self.outputToggleButton = QtWidgets.QPushButton("Output: (Click Here To Hide)") ## left, top, right, bottom self.outputLayout. setContentsMargins(5,0,5,10 )#addRow(self.outputBlankLabel) if self.useOutputToggleButton: self.outputDockWidget.setTitleBarWidget( self.outputToggleButton ) self.outputDockWidget.titleBarWidget().clicked.connect( lambda: self.outputTextEditVisible('toggle')) if not self.autoExpandOutput: self.outputTextEditVisible(False) def initWidgetRecipes(self): pass def initWidgetRecipesWrapper(self): self.initWidgetRecipes() self.makeWidgetsFromRecipes() def initQapp(self): ## setup self.qapp and self.argv which are closely related if self.qapp==None: self.qapp = self.GetQapp( self.argv ) def initWidgetsPostWrapper(self): cb = self.callbacks.get( 'initWidgetsPost', None ) if cb!=None: cb(self) self.initWidgetsPost() def initWidgetsPost(self): 'pass' def initWidgetsPreWrapper(self): cb = self.callbacks.get( 'initWidgetsPre', None ) if cb!=None: cb(self) self.initWidgetsPre() def initWidgetsPre(self): 'pass' def initAdditionalWidgetsIntoDefaultWrapper(self): cb = self.callbacks.get( 'initAdditionalWidgetsIntoDefault', None ) if cb!=None: cb(self) self.initAdditionalWidgetsIntoDefault() def initAdditionalWidgetsIntoDefault(self): 'pass' def initMenu(self): if self.useMenu==True: self.menuEdit = self.menuBar().addMenu("&" + self.appTitleToBeShownInMenu ) self.menuEditExitAction = self.menuEdit.addAction("E&xit" ) self.menuEditExitAction.setShortcut( PySide2.QtGui.QKeySequence("Ctrl+Q") #PySide2.QtGui.QKeySequence.Quit doesn't work by default on windows, #and since other platforms all seem to use ctrl-q, we'll just use it' ) self.menuEditExitAction.triggered.connect( self.exitWrapper ) def initUpdateTimer(self): if self.autoUpdateViaTimer==True: ## Create tmer based update loop self.updateTimer = Qtc.QTimer() self.updateTimer.timeout.connect( self.updateWrapper ) self.setNextTimerUpdate() def addToWidgets( self, name, widget): self.widgets[name]=widget return widget def addToLayouts( self, name, layout): self.layouts[name]=layout return layout def appendToTextHeard(self, txt ): self.textHeard.append(txt) def createWidgetsInCentralLayout(self): """ Override this to fill self.layout with your own widgets """ if self.autoCreateDefaultWidgetsInLayout==True: self._createDefaultWidgetsInLayout() def _createDefaultWidgetsInLayout(self): if self.instructionsText!=None: self.instructionsLabel = \ Qtw.QLabel(self.instructionsText) self.instructionsLabel.setWordWrap(True) self.mainLayout.addRow(self.instructionsLabel) self.inputLabel = Qtw.QLabel("Input:") self.inputLabel.setWordWrap(True) self.inputTextEdit = Qtw.QTextEdit( ) if self.showInput==True: self.mainLayout.addRow(self.inputLabel) self.mainLayout.addRow(self.inputTextEdit) ## Prep text edit area for testing self.inputTextEdit.selectAll() self.inputTextEdit.setFocus() self.initAdditionalWidgetsIntoDefaultWrapper() """ self.goButton = QtWidgets.QPushButton("Go") self.goButton.clicked.connect( self.onGoButtonClickedWrapper ) self.goButton.setFocus() self.mainLayout.addRow(self.goButton) """ """ self.outputLabel = Qtw.QLabel("Output:") self.outputLabel.setWordWrap(True) self.outputLayout.addRow(self.outputLabel) """ """ self.exitButton = Qtw.QPushButton("Exit") self.exitButton.clicked.connect( self.exitWrapper ) self.mainLayout.addRow(self.exitButton) """ #self.button.setFocus() ''' def onExitButtonClickedWrapper(self): cb = self.callbacks.get( 'onExitButtonClicked', None ) if cb!=None: cb() self.onExitButtonClick() 'pass' self.exit() def onExitButtonClick(self): 'pass' ''' def decorateFuncByAddingToWidgetRecipes( self, label, connections={}, name=None, kind='button', layout=None, useFuncNameInsteadOfLabelIfNoName=False, ): #self = selfRef ## not needed if this is a method with self def inner(func): nonlocal self nonlocal kind nonlocal name nonlocal connections nonlocal layout nonlocal useFuncNameInsteadOfLabelIfNoName import types recipe = WidgetRecipe( label, kind=kind, name=name, connections=connections, func=func, layout=layout, useFuncNameInsteadOfLabelIfNoName=useFuncNameInsteadOfLabelIfNoName, ) method = recipe.func setattr( self.__class__, recipe.name, method, ) #func, methodBack = getattr( self.__class__, recipe.name ) recipe.func = methodBack self.widgetRecipes[recipe.name] = recipe #print( self.widgetRecipes ) #print( self.widgetRecipes ) return func return inner def exit(self): """ actual exit is disabled by default for safety override this to control exit behaviour, will be called after onExitWrapper and onExit callback to actually quit instead, you should call use self.qapp.quit() for full uncoditional """ 'pass' def exitWrapper(self): cb = self.callbacks.get( 'onExit', None ) if cb!=None: cb() self.exit() try: ## *** todo we could change app and win titles to say exit self.statusBar().showMessage( "Exiting...", 0) self.exitButton.setText('Exiting...') self.exitButton.repaint() except: ## it *really* doesn't matter if ## the above gives errors 'pass' Easy.Sleep( self.exitSleepTime ) self.qapp.quit() ## the parent app will probably quit at this point if it has ## nothing else to do def outputTextEditVisible( self, newState=None ): if newState==True: self.outputToggleButton.setText("Output: (Click Here To Hide)") self.outputTextEdit.show() elif newState==False: self.outputToggleButton.setText("Show Output") self.outputTextEdit.hide() elif newState=='toggle': self.outputTextEditVisible( not self.outputTextEditVisible() ) elif newState is None: return self.outputTextEdit.isVisible() def makeWidgetFromRecipe( self, recipe ): #print('making button') #print( f"recipe.name: {recipe.name}") layout = recipe.layout if layout is None: layout = self.mainLayout elif isinstance(layout,str): layout=self.layouts[layout] else: "" #print( "layout will be used directly" ) if recipe.kind=='button': widget = Qtw.QPushButton( recipe.label ) if recipe.kind=='label': widget = Qtw.QLabel( recipe.label ) self.widgets[recipe.name]=widget if hasattr( recipe, 'connections' ): for signalName, slotRef in recipe.connections.items(): sig = getattr( widget, signalName) if slotRef==True: slot=( lambda: getattr(self, recipe.name)() ) else: if isinstance( slotRef, str): slot=( lambda: getattr(self, slotRef)() ) else: slot=slotRef sig.connect( slot ) layout.addRow( widget ) def makeWidgetsFromRecipes(self): for recipeName, recipe in self.widgetRecipes.items(): self.makeWidgetFromRecipe( recipe ) def onGoButtonClicked(self): #self.outputTextArea.insertPlainText("Go Button Clicked.\n") #self.outputTextArea.ensureCursorVisible() 'pass' def onGoButtonClickedWrapper(self): cb = self.callbacks.get( 'onGoButtonClicked', None ) if cb!=None: cb(self) self.onGoButtonClicked() def print(self, *args, doGui=True, doStandard=True, **kwargs): ## *** todo store curpos, move to end for insert, ## then restore the cursor's position if it wasn't at end sep = kwargs.get('sep', ' ') end = kwargs.get('end', '\n') if doGui: for a in args: self.outputTextEdit.insertPlainText( str(a) + str(sep) ) if len(end)>0: self.outputTextEdit.insertPlainText( end ) self.outputTextEdit.ensureCursorVisible() if doStandard: print( *args, **kwargs ) self.qapp.processEvents() def updateWrapper(self): self.update() if self.updateCallback!=None: self.updateCallback(self) self.setNextTimerUpdate() def update(self): 'pass' def setNextTimerUpdate(self): self.updateTimer.start( self.updateInterval ## milliseconds ) @property def statusbar(self): return self.statusBar() """ class QtuiMeta( type ): @property def QappMeta(cls): ## depreciated return cls.GetQapp() """ oldDecoratorInnerCode = r""" #print( f"self is {self}" ) #print("decorating") #print( f" func is {func} - {type(func)}" ) #print( f"self is {self}" ) #print("decorating") #print( f" func is {func} - {type(func)}" ) #print( f"label is {label}" ) #if not hasattr( self, 'buttonsFromDecorations' ): #setattr(self, 'buttonsFromDecorations', {} ) #self.buttonsFromDecorations[label]=connections #print( f"func in decorateAsButton is: {func}" ) #got = obj.__get__(self, self.__class__) #instance.bar #### could add to instance instead of class #import types #method = types.MethodType( obj, self ) #setattr( self, obj.__name__, method, ) #print( getattr(self,funcLike.__name__)) #print( f"label is {label}" ) #if not hasattr( self, 'buttonsFromDecorations' ): #setattr(self, 'buttonsFromDecorations', {} ) #self.buttonsFromDecorations[label]=connections #print( f"func in decorateAsButton is: {func}" ) #got = obj.__get__(self, self.__class__) #instance.bar #### could add to instance instead of class #import types #method = types.MethodType( obj, self ) #setattr( self, obj.__name__, method, ) #print( getattr(self,funcLike.__name__)) #types.MethodType( func, None, self.__class__ ) ## None doesn't work ## add it to the class so it can be access as a bound method #setattr( self.__class__, name, func, ) #self.__class__[] """ oldSlotRefStuff = r""" #slotName = recipe.func #print( slotName ) #print( dir(self) ) #slot = getattr( self, slotName ) #slot() #elif callable(slotRef): # slot=slotRef """ old02=r""" #getattr(self, n.fn) #n.s = getattr( n.w, 'clicked' ) #signal #n.w.clicked.connect( self.spacesToHyphensButton = Qtw.QPushButton('Convert Spaces To Hyphens') n.s.connect( self.onSpacesToHyphensButton ) 'Convert Spaces To Hyphens' fpr k,v in self.widgets.items(): self.mainLayout.addRow(self.spacesToUnderscoresButton) self.mainLayout.addRow(self.spacesToHyphensButton) """ old03=r""" #for i,k in enumerate( self.widgetRecipes ): # print( k, " ", i, ) """ ``` #### File: joecceasy/joecceasy/ReferencesAndExamplesOfCode.py ```python class ExampleClass01Meta(type): ## __setattr__ and __getattr__ can potentially cause issues ## such as recursions (they introduce serious complexity) ''' def __setattr__(cls, key, val ): if key=='P': print( val ) #else: # setattr( cls, key, val) ## recursion issues ''' ``` #### File: submodules/unipath/abstractpath.py ```python import os .from unipath.errors import UnsafePathError __all__ = ["AbstractPath"] # Use unicode strings if possible. _base = str # Python 3 str (=unicode), or Python 2 bytes. if os.path.supports_unicode_filenames: try: _base = unicode # Python 2 unicode. except NameError: pass class AbstractPath(_base): """An object-oriented approach to os.path functions.""" pathlib = os.path auto_norm = False #### Special Python methods. def __new__(class_, *args, **kw): norm = kw.pop("norm", None) if norm is None: norm = class_.auto_norm if kw: kw_str = ", ".join(kw.iterkeys()) raise TypeError("unrecognized keyword args: %s" % kw_str) newpath = class_._new_helper(args) if isinstance(newpath, class_): return newpath if norm: newpath = class_.pathlib.normpath(newpath) # Can't call .norm() because the path isn't instantiated yet. return _base.__new__(class_, newpath) def __add__(self, more): try: resultStr = _base.__add__(self, more) except TypeError: #Python bug resultStr = NotImplemented if resultStr is NotImplemented: return resultStr return self.__class__(resultStr) @classmethod def _new_helper(class_, args): pathlib = class_.pathlib # If no args, return "." or platform equivalent. if not args: return pathlib.curdir # Avoid making duplicate instances of the same immutable path if len(args) == 1 and isinstance(args[0], class_) and \ args[0].pathlib == pathlib: return args[0] try: legal_arg_types = (class_, basestring, list, int, long) except NameError: # Python 3 doesn't have basestring nor long legal_arg_types = (class_, str, list, int) args = list(args) for i, arg in enumerate(args): if not isinstance(arg, legal_arg_types): m = "arguments must be str, unicode, list, int, long, or %s" raise TypeError(m % class_.__name__) try: int_types = (int, long) except NameError: # We are in Python 3 int_types = int if isinstance(arg, int_types): args[i] = str(arg) elif isinstance(arg, class_) and arg.pathlib != pathlib: arg = getattr(arg, components)() # Now a list. if arg[0]: reason = ("must use a relative path when converting " "from '%s' platform to '%s': %s") tup = arg.pathlib.__name__, pathlib.__name__, arg raise ValueError(reason % tup) # Fall through to convert list of components. if isinstance(arg, list): args[i] = pathlib.join(*arg) return pathlib.join(*args) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, _base(self)) def norm(self): return self.__class__(self.pathlib.normpath(self)) def expand_user(self): return self.__class__(self.pathlib.expanduser(self)) def expand_vars(self): return self.__class__(self.pathlib.expandvars(self)) def expand(self): """ Clean up a filename by calling expandvars(), expanduser(), and norm() on it. This is commonly everything needed to clean up a filename read from a configuration file, for example. """ newpath = self.pathlib.expanduser(self) newpath = self.pathlib.expandvars(newpath) newpath = self.pathlib.normpath(newpath) return self.__class__(newpath) #### Properies: parts of the path. @property def parent(self): """The path without the final component; akin to os.path.dirname(). Example: Path('/usr/lib/libpython.so').parent => Path('/usr/lib') """ return self.__class__(self.pathlib.dirname(self)) @property def name(self): """The final component of the path. Example: path('/usr/lib/libpython.so').name => Path('libpython.so') """ return self.__class__(self.pathlib.basename(self)) @property def stem(self): """Same as path.name but with one file extension stripped off. Example: path('/home/guido/python.tar.gz').stem => Path('python.tar') """ return self.__class__(self.pathlib.splitext(self.name)[0]) @property def ext(self): """The file extension, for example '.py'.""" return self.__class__(self.pathlib.splitext(self)[1]) #### Methods to extract and add parts to the path. def split_root(self): """Split a path into root and remainder. The root is always "/" for posixpath, or a backslash-root, drive-root, or UNC-root for ntpath. If the path begins with none of these, the root is returned as "" and the remainder is the entire path. """ P = self.__class__ if hasattr(self.pathlib, "splitunc"): root, rest = self.pathlib.splitunc(self) if root: if rest.startswith(self.pathlib.sep): root += self.pathlib.sep rest = rest[len(self.pathlib.sep):] return P(root), P(rest) # @@MO: Should test altsep too. root, rest = self.pathlib.splitdrive(self) if root: if rest.startswith(self.pathlib.sep): root += self.pathlib.sep rest = rest[len(self.pathlib.sep):] return P(root), P(rest) # @@MO: Should test altsep too. if self.startswith(self.pathlib.sep): return P(self.pathlib.sep), P(rest[len(self.pathlib.sep):]) if self.pathlib.altsep and self.startswith(self.pathlib.altsep): return P(self.pathlib.altsep), P(rest[len(self.pathlib.altsep):]) return P(""), self def components(self): # @@MO: Had to prevent "" components from being appended. I don't # understand why Lindqvist didn't have this problem. # Also, doesn't this fail to get the beginning components if there's # a "." or ".." in the middle of the path? root, loc = self.split_root() components = [] while loc != self.pathlib.curdir and loc != self.pathlib.pardir: prev = loc loc, child = self.pathlib.split(prev) #print "prev=%r, loc=%r, child=%r" % (prev, loc, child) if loc == prev: break if child != "": components.append(child) if loc == "": break if loc != "": components.append(loc) components.reverse() components.insert(0, root) return [self.__class__(x) for x in components] def ancestor(self, n): p = self for i in range(n): p = p.parent return p def child(self, *children): # @@MO: Compare against Glyph's method. for child in children: if self.pathlib.sep in child: msg = "arg '%s' contains path separator '%s'" tup = child, self.pathlib.sep raise UnsafePathError(msg % tup) if self.pathlib.altsep and self.pathlib.altsep in child: msg = "arg '%s' contains alternate path separator '%s'" tup = child, self.pathlib.altsep raise UnsafePathError(msg % tup) if child == self.pathlib.pardir: msg = "arg '%s' is parent directory specifier '%s'" tup = child, self.pathlib.pardir raise UnsafePathError(msg % tup) if child == self.pathlib.curdir: msg = "arg '%s' is current directory specifier '%s'" tup = child, self.pathlib.curdir raise UnsafePathError(msg % tup) newpath = self.pathlib.join(self, *children) return self.__class__(newpath) def norm_case(self): return self.__class__(self.pathlib.normcase(self)) def isabsolute(self): """True if the path is absolute. Note that we consider a Windows drive-relative path ("C:foo") absolute even though ntpath.isabs() considers it relative. """ return bool(self.split_root()[0]) ``` #### File: joecceasy/joecceasy/Tubprocess.py ```python import collections, io, queue, subprocess, sys, time from threading import Thread class Duck(): "pass" class Tubprocess(): OutErrTuple = collections.namedtuple('OutErrTuple',['out','err']) @staticmethod def moveFromQToList( q, l ): while True: try: gotChar = q.get_nowait() l.append( gotChar ) except queue.Empty: break #def __next__(self): # raise StopIteration def __init__(self, cmdAndArgsAsIter=None, sleep=0.01, shell=False, shellCmdJoin=True, errToOut=False, autoPrint=False, ## old extra args: autoRun=False ): self.cmdAndArgsAsIter = cmdAndArgsAsIter self.sleep = sleep self.shell=shell self.shellCmdJoin=shellCmdJoin self.errToOut = errToOut self.autoPrint = autoPrint self.qOut = queue.Queue() self.qErr = queue.Queue() self.outList = [] self.errList = [] self.errStrLast='' self.outStrLast='' self.outListLastLen=0 self.errListLastLen=0 self.threads = Duck() self.reader = self.getReaderFunc() self.iterObj=None self.retVal=None self.isRunInProgress=False self.isIterInProgress=False self.isAlreadyRan=False #if autoRun==True: # assert self.cmdAndArgsAsIter is not None # self.run() @property def outStr(self): outList=self.outList if self.outListLastLen <= len(outList): self.outStrLast = ''.join(outList) return self.outStrLast @property def errStr(self): errList=self.errList if self.errListLastLen <= len(errList): self.errStrLast = ''.join(errList) return self.errStrLast def next(self): if self.iterObj==None: self.iterObj=self.__iterRun() return next( self.iterObj ) def __iter__(self): ## can only iterate once! if self.iterObj==None: self.iterObj=self.__iterRun() for i in self.iterObj: yield i def getReaderFunc(self): if hasattr( self, 'reader' ): return self.reader ## this func should use only local state ## so it can be threaded def reader(f,q): #optTime=0.01 #sleepTime=0.3 #lastTime = time.time_ns() doBreak = False while True: try: gotChar=f.read(1) except ValueError as err: break if gotChar: q.put(gotChar) else: doBreak = True if doBreak: break return reader def makeThread(self): "pass" def joinProcAndThreads(self): self.retVal = self.ps.wait() threads=self.threads threads.outReader.join() threads.errReader.join() self.isRunInProgress=False def __runProcAndThreads(self): assert self.isAlreadyRan==False assert self.isRunInProgress == False self.isAlreadyRan=True self.isRunInProgress=True self.retVal=None #assert self.qOut.empty() #assert self.qErr.empty() if self.shell==False: c = self.cmdAndArgsAsIter else: if self.shellCmdJoin==False: c = self.cmdAndArgsAsIter else: c = " ".join( self.cmdAndArgsAsIter ) if self.errToOut: errBind = subprocess.STDOUT else: errBind = subprocess.PIPE ps = subprocess.Popen( self.cmdAndArgsAsIter, #stdin=subprocess.PIPE, stdout = subprocess.PIPE, stderr = errBind, shell=self.shell, text=True, universal_newlines=True, ) self.ps = ps reader = self.getReaderFunc() tOut = Thread(target=reader, args=(ps.stdout, self.qOut) ) if self.errToOut==False: tErr = Thread(target=reader, args=(ps.stderr, self.qErr) ) else: with io.StringIO() as fakeErr: tErr = Thread(target=reader, args=(fakeErr, self.qErr) ) self.threads.outReader = tOut self.threads.errReader = tErr ## Actually launch them for t in [tOut,tErr]: t.daemon=True t.start() return self def __iterRun(self): self.isIterInProgress = True self.__runProcAndThreads( ) gotOutChars = [] gotErrChars = [] threads = self.threads threadOut = threads.outReader threadErr = threads.outReader qOut = self.qOut qErr = self.qErr doBreak = False while True: outIsAlive = threadOut.is_alive() errIsAlive = threadErr.is_alive() eitherIsAlive = outIsAlive or errIsAlive if not eitherIsAlive: if qOut.empty() and qErr.empty(): doBreak = True self.moveFromQToList( qOut, gotOutChars ) self.moveFromQToList( qErr, gotErrChars ) returnStringOut=None returnStringErr=None doSleep=True if len(gotOutChars) > 0 : returnStringOut = ''.join(gotOutChars) self.outList.append( returnStringOut ) if self.autoPrint: print( returnStringOut, end='' ) gotOutChars.clear() doSleep=False if len(gotErrChars) > 0 : returnStringErr = ''.join(gotErrChars) self.errList.append( returnStringErr ) if self.autoPrint: print( returnStringOut, end='' ) gotErrChars.clear() doSleep=False if doSleep: time.sleep( 0.01 ) if doBreak == True: break else: if returnStringOut is None: returnStringOut='' if returnStringErr is None: returnStringErr='' yield self.OutErrTuple(returnStringOut, returnStringErr) ## now out of while loop, yield final one if either remains if returnStringOut is not None or returnStringErr is not None: if returnStringOut is None: returnStringOut='' if returnStringErr is None: returnStringErr='' yield self.OutErrTuple(returnStringOut, returnStringErr) self.isIterInProgress = False ## Cleanup end of iteration self.joinProcAndThreads() def wait(self): for i in self: "pass" return self.retVal def run(self): return self.wait() ``` #### File: joecceasy/joecceasy/VarWatcher.py ```python import os, sys, time from . import Utils from .Utils import classproperty class VarWatcher: @classproperty def EasyPak(cls): import sys return __import__(__package__) ## *** fix this to be relative @classproperty def EasyMod(cls): from . import Easy return Easy ## *** fix this to be relative @classproperty def Easy(cls): return cls.EasyMod.Easy def __init__(self): self.easyMod = self.EasyMod self.easy = self..Easy self.updateInterval = 1 self.varssDict={} self.lastUpdateTime = time.time() def add( self, var, action=None, actionArgs=(), actionKwargs={}, easyAction=None ): if action==None and easyAction==None: easyAction=print entry = Utils.Object() self.varsDict[var] = entry entry.var = var entry.actionArgs = actionArgs entry.actionKwargs = actionKwargs if easyAction==None: entry.action = action elif easyAction=='print': import subprocess, sys entry.action = ( lambda var: Easy.PrintVar( var ) ) entry.actionArgs=() entry.actionKwargs={} self.updateEntry( entry ) return self def update( self ): for var, entry in self.filesDict.items(): newMtime = os.stat( filePath ).st_mtime if True: actionArgs = entry.actionArgs actionKwargs = entry.actionKwargs entry.action( *actionArgs, **actionKwargs ) #else: # raise Exception( f'action: {action} = Not implemented Yet! ' # # if newMtime != entry.lastMtime: # self.updateEntry( entry ) def updateEntry( self, entry ): entry.lastMtime = os.stat( entry.filePath ).st_mtime action = entry.action actionArgs = entry.actionArgs actionKwargs = entry.actionKwargs if callable( action ): if entry.useFilePathAsFirstArg: action( entry.filePath, *actionArgs, **actionKwargs ) else: action( *actionArgs, **actionKwargs ) return self def loop( self ): while True: #print( 'updating' ) self.update() time.sleep( self.updateInterval ) return self ``` #### File: tests/standalone/aaal-standalone-tests-run.py ```python import os, subprocess, sys, time scriptAbsPath = os.path.abspath(__file__) scriptDir = os.path.dirname(scriptAbsPath) os.chdir(scriptDir) exeAbsPath = sys.executable pyExt='.py' testPrefix='test__' stdout, stderr = None,None outputFh=None #def msg(*args,**kwargs): # print(*args,**kwargs) def msg( argOutputFh, *args, **kwargs): if not argOutputFh is None: print( *args, file=argOutputFh, **kwargs ) argOutputFh.flush() else: print( *args, **kwargs ) if '--output-to-delme-file' in sys.argv: doOutput=True outputFilePath = "gitignore--test-results-deleteme.txt" outputFh = open(outputFilePath, 'w').close() outputFh = open(outputFilePath, 'a' ) stdout = outputFh stderr = outputFh #sys.stdout= for steproot, dirs, files in os.walk('.'): for file in files: isTest = file.lower().startswith(testPrefix) isPy = file.lower().endswith(pyExt) if isPy and isTest: msgAtStart = ( """############################\n""" +"""#### Start test of python file: """ + file + "\n" ) msgAtEnd = ( """#### End test of python file: """ + file + "\n" +"""############################\n""" ) print( file ) msg(outputFh, msgAtStart, end='') subprocess.run( [exeAbsPath, file], stdout=stdout, stderr=stderr ) msg(outputFh, msgAtEnd, end='' ) msg(outputFh, "\n\n\n", end='' ) if not outputFh is None: outputFh.close() ```
{ "source": "joetainment/t33d", "score": 3 }
#### File: t33d/maya/t33d__maya_python__example__attribute_setter__level01.py ```python import maya.cmds as cmds #import pymel.all as pm import math, random, traceback ## Short help msg shown at top of window ## It's common (standard) to have "constant" variables, ## that we don't intend to change while running ## all together at the top of the script in ALL CAPS BANNER=""" You can use python expressions. Use "a" for the old attribute value, and i for the object index. So to double the values, you could use: a * 2 To stack you could use: a + i To randomize from 20 to 30 could use: random.uniform( 20.0, 30.0 ) """ ## This simple version will just use a bunch of global variables ## It's actually a bad way to do it, so a better version later ## will avoid so many global vars. ## This simple way with globals is easy to understand ## for beginner students thoug. ## This is the function that will actually ## create and show the UI window def attributeSetterUiCreate(): ## we have to tell python which variables should be global, ## made available outside this function, normally they should ## all be at the top, but to make it easier to follow, ## we'll actually declare them later when we make them #global win #global col #global banner #global attrNameLabel #global attrNameField #global attrValueLabel #global attrValueField #global setAttrButton global win win = 'T33d_AttributeSetterUi' if win in cmds.lsUI(windows=True): cmds.deleteUI( win ) win = cmds.window( win, title='T33d Attribute Setter' ) ## store our win in our dict in case we want it elsewhere print( "Created UI:", win ) ## A ColumnLayout - This will stack UI widgets vertically ## adjustableColumn=True means the widgets can auto adjust ## their width to the window size global col col = cmds.columnLayout( adjustableColumn=True, parent=win ) ## A banner msg we will show with some help ## cmds.text just creates a text label global banner banner = cmds.text(BANNER, align="left") ## Text label that says "Attribute to change:" global attrNameLabel attrNameLabel = cmds.text( 'Attribute to change:', align="left", parent=col ) ## Text entry field, ## a place where the user will type in the attribute to change global attrNameField attrNameField = cmds.textField( parent=col ) ## Text label that says "New value for attribute:" global attrValueLabel attrValueLabel = cmds.text( 'New value for attribute:', align="left", parent=col ) ## Text entry field, ## a place where the user will type the new value ## to set the attribute to global attrValueField attrValueField = cmds.textField( parent=col ) ## Finally, a button the user can click on to actually run the code! ## even tho it's not strictly necessary, ## it's usually a good idea to use lambda as below ## to specify what command to run ## otherwise you can't write parens for the func call ## or put args in the parens... but with lambda you can! global setAttrButton setAttrButton = cmds.button( label="Set Attributes", align="left", parent=col, command=lambda x: setAttributes( ) ) cmds.showWindow( win ) def setAttributes(): print( "run!" ) ## remember to declare our globals from the other function! global attrNameLabel global attrNameField global attrValueLabel global attrValueField ## this function doesn't actually use the next few globals, ## so they don't have to be included #global win #global col #global banner #global btn ## we'll get a list of all selected objects objs = cmds.ls(selection=True,flatten=True) ## Now we'll Loop through the list, and try setting each ## object's attributes as requested for i, obj in enumerate(objs): ## We use a try block so that if one fails, ## we just keep going to the next try: ## Get the attribute based on the attribute name in the UI attrName = cmds.textField( attrNameField, q=True, text=True ) attrValueOld = cmds.getAttr( obj + '.' + attrName ) a = attrValueOld ## Get the value from the UI attrValueNew = cmds.textField( attrValueField, q=True, text=True ) ## eval it to convert convert the value from the UI ## into the target type, e.g. a floating point number attrValueNew = eval( attrValueNew ) cmds.setAttr( obj + '.' + attrName, attrValueNew ) except: print( traceback.format_exc() ) print( 'Failed for object: ' + obj ) if __name__=="__main__": attributeSetterUiCreate() ```
{ "source": "joetannn/cs-321-project", "score": 3 }
#### File: joetannn/cs-321-project/api.py ```python import hug import base64 from SkillsComparer import SkillsComparer @hug.response_middleware() def process_data(request, response, resource): response.set_header('Access-Control-Allow-Origin', '*') @hug.get('/home') def root(): return 'Welcome home!' @hug.get('/add', examples='/add?first_num=6&second_num=8') def do_add(first_num: hug.types.number, second_num: hug.types.number): return {'Final Result:': first_num + second_num} @hug.get('/send') def receive_data(firstName: hug.types.text, lastName: hug.types.text, position: hug.types.text, link: hug.types.text, skills: hug.types.text, resume: hug.types.text): #debug values = {'firstname': firstName, 'lastName': lastName, 'position': position, 'link': link, 'resume': resume, 'skills': base64.b64decode(skills)} skills_class = SkillsComparer() api_firstName = firstName api_lastName = lastName api_position = position api_link = link #list of skills is array api_skills = base64.b64decode(skills).decode('utf-8').split("|") api_skills.pop(0) #Strip duplicates api_skills = list(set(api_skills)) if api_skills[0] == '': api_skills.pop(0) print("SKILLS FROM SKILLS LIST: " + str(api_skills)) # get all the resume stuff, remove duplicates api_resume = resume.strip() api_resume = list(set(api_resume.split())) print("SKILLS FROM RESUME: " + str(api_resume)) api_resume = skills_class.returnTechTerms(api_resume) print("SKILLS FROM RESUME IN SKILLS LIST: " + str(api_resume)) print("Extending resume to skills list") api_skills.extend(api_resume) print("FINAL SKILLS LIST: " + str(api_skills)) scrape_method = skills_class.scrape_link scrape_method(api_link) extra_skill_call = skills_class.getExtraJobSkills extraJobSkills = extra_skill_call(api_skills) print("SKILLS FROM Job NOT IN SKILLS_LIST: " + str(extraJobSkills)) extra_skill_list_call_call = skills_class.getExtraSkillsListSkills extraSkillsListSkills = extra_skill_list_call_call(api_skills) print("SKILLS FROM SKILLS_LIST NOT IN JOB: " + str(extraSkillsListSkills)) notInSkillsInJob = "|".join(list(set(extraJobSkills))) if notInSkillsInJob != "" and "|" in notInSkillsInJob: notInSkillsInJob = notInSkillsInJob[1:] notInJobInSkills = "|".join(extraSkillsListSkills) if notInJobInSkills != "" and "|" in notInJobInSkills: notInJobInSkills = notInJobInSkills[1:] inSkillsinJob = skills_class.getSimilarSkills(api_skills) inSkillsinJob = "|".join(list(set(inSkillsinJob))) if inSkillsinJob != "" and "|" in inSkillsinJob: inSkillsinJob = inSkillsinJob[1:] print("SKILLS IN JOB AND LIST:" + inSkillsinJob) return {'1':inSkillsinJob,'2': notInSkillsInJob, '3': notInJobInSkills} #return {'1':'abc|def','2':'yuuu2','3':'skillsboi|a|b'} def buildCoverLetter(): pass def getExtraSkills(): pass print("Running API!") ``` #### File: joetannn/cs-321-project/scrape.py ```python import requests from bs4 import BeautifulSoup class JobScraper: def __init__(self, url): self.url = url # Scrapes this JobScraper's url and returns a list of all words # that are not part of html tags def scrape(self): r = requests.get(self.url) if(r.status_code != 200): print('Unable to access site') #soup = BeautifulSoup(r.text, 'html.parser') soup = BeautifulSoup(r.text, 'html.parser') plaintext = soup.encode("utf-8"); allWords = [] curWord = "" curTag = "" inWord = False inTag = False inScript = False for s in plaintext: char = chr(s) if(char == '<'): inTag = True #print('Tag'+ str(curTag)) curTag = "" elif(char == '>'): if(inTag): #if(curTag == "script"): # inScript = True #elif(curTag == "/script"): # inScript = False #print("Tag"+ str(curTag)) curTag = "" inTag = False elif(char == ' ' or char == '\n' or char == '\r' or char == '\t'): if(inTag): #if(curTag == "script"): # inScript = True #elif(curTag == "/script"): # inScript = False #print("Tag"+ str(curTag)) curTag = "" if(inWord and (not inScript)): exclude = set('!,.()?~|') curWord = ''.join(char for char in curWord if char not in exclude) #print("Word"+ str(curWord)) allWords.append(curWord) curWord = "" inWord = False else: if(not inTag and not inScript): inWord = True curWord = curWord + str(char) else: curTag = curTag + str(char) #should remove duplicates return allWords #Arbitrary job posting for testing #url = 'https://www.alarm.com/about/open-positions.aspx?gh_jid=4267530002' #scraper = JobScraper(url) #allWords = scraper.scrape() #strip extras #for word in allWords: # if word == '/r' or word == '/n' or word == '': # allWords.remove(word) # #for word in allWords: # print("RAYTHEON POST:" + str(word)) # pass ```
{ "source": "JoeTao-097/Multi-REZ-Evalution-for-Breast-Ultrasound-Images", "score": 2 }
#### File: JoeTao-097/Multi-REZ-Evalution-for-Breast-Ultrasound-Images/Tools.py ```python import pandas as pd import numpy as np from PIL import Image import matplotlib.pyplot as plt from skimage.transform import resize import itertools from sklearn.metrics import confusion_matrix,roc_auc_score, roc_curve, auc, precision_recall_curve, average_precision_score, f1_score import seaborn as sns import scipy from scipy import stats from sklearn.utils import resample def zero_pad(img, size=448): ''' pad zeros to make a square img for resize ''' h, w, c = img.shape if h > w: zeros = np.zeros([h, h - w, c]).astype(np.uint8) img_padded = np.hstack((img, zeros)) elif h < w: zeros = np.zeros([w - h, w, c]).astype(np.uint8) img_padded = np.vstack((img, zeros)) else: img_padded = img img_resized = (255 * resize(img_padded, (size, size), anti_aliasing=True)).astype(np.uint8) return img_resized def get_precision_recall(ax, y_true, y_pred, title, boostrap=5, plot=True): def delta_confidence_interval(data, confidence=0.95): a = 1.0 * np.array(data) n = len(a) m, se = np.mean(a), scipy.stats.sem(a) h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1) return h ap_score = [] for i in range(boostrap): pred_bt, y_bt = resample(y_pred, y_true) ap_score.append(average_precision_score(y_bt, pred_bt)) AP = average_precision_score(y_true, y_pred) precision, recall, thresholds = precision_recall_curve(y_true, y_pred) if plot: delta = delta_confidence_interval(ap_score) sns.set_style('ticks') # plt.figure() ax.plot(recall, precision, color='red', lw=2, label='AUC = {:.3f}, \n95% C.I. = [{:.3f}, {:.3f}]'.format(AP, AP - delta, AP + delta), alpha=.8) ax.set_xlabel('Recall', fontsize=16, fontweight='bold') ax.set_ylabel('Precision', fontsize=16, fontweight='bold') ax.xaxis.set_tick_params(labelsize=16) ax.yaxis.set_tick_params(labelsize=16) ax.set_ylim(0, 1) ax.set_xlim(0, 1) ax.set_title(title, fontsize=16, fontweight='bold') ax.legend(fontsize=12, loc='lower right') ax.grid() return thresholds def get_auc(ax, y_true, y_score, title, plot=True): fpr_keras, tpr_keras, thresholds_keras = roc_curve(y_true, y_score) auc_keras = auc(fpr_keras, tpr_keras) optimal_idx = np.argmax(tpr_keras - fpr_keras) optimal_threshold = thresholds_keras[optimal_idx] if plot: ci = get_CI(y_true, y_score) sns.set_style('ticks') # plt.figure() ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='orange', label='Chance', alpha=.8) ax.plot(fpr_keras, tpr_keras, color='red', lw=2, label='AUC = {:.3f}, \n95% C.I. = [{:.3f}, {:.3f}]'.format(auc_keras, ci[0], ci[1]), alpha=.8) ax.set_xlabel('Specificity', fontsize=16, fontweight='bold') ax.set_ylabel('Sensitivity', fontsize=16, fontweight='bold') ax.xaxis.set_tick_params(labelsize=16) ax.yaxis.set_tick_params(labelsize=16) ax.set_ylim(0, 1) ax.set_xlim(0, 1) ax.set_title(title, fontsize=16, fontweight='bold') ax.legend(fontsize=12, loc='lower right') ax.grid() return optimal_threshold def get_CI(y_true, y_score, alpha=0.95): auc, auc_cov = delong_roc_variance(y_true, y_score) auc_std = np.sqrt(auc_cov) lower_upper_q = np.abs(np.array([0, 1]) - (1 - alpha) / 2) ci = stats.norm.ppf(lower_upper_q, loc=auc, scale=auc_std) ci[ci > 1] = 1 print('AUC:', auc) print('AUC COV:', auc_cov) print('95% AUC CI:', ci) return ci def delong_roc_variance(ground_truth, predictions, sample_weight=None): """ Computes ROC AUC variance for a single set of predictions Args: ground_truth: np.array of 0 and 1 predictions: np.array of floats of the probability of being class 1 """ order, label_1_count, ordered_sample_weight = compute_ground_truth_statistics( ground_truth, sample_weight) predictions_sorted_transposed = predictions[np.newaxis, order] aucs, delongcov = fastDeLong(predictions_sorted_transposed, label_1_count, ordered_sample_weight) assert len(aucs) == 1, "There is a bug in the code, please forward this to the developers" return aucs[0], delongcov def compute_ground_truth_statistics(ground_truth, sample_weight): assert np.array_equal(np.unique(ground_truth), [0, 1]) order = (-ground_truth).argsort() label_1_count = int(ground_truth.sum()) if sample_weight is None: ordered_sample_weight = None else: ordered_sample_weight = sample_weight[order] return order, label_1_count, ordered_sample_weight def fastDeLong(predictions_sorted_transposed, label_1_count, sample_weight): if sample_weight is None: return fastDeLong_no_weights(predictions_sorted_transposed, label_1_count) else: return fastDeLong_weights(predictions_sorted_transposed, label_1_count, sample_weight) def fastDeLong_weights(predictions_sorted_transposed, label_1_count, sample_weight): """ The fast version of DeLong's method for computing the covariance of unadjusted AUC. Args: predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples] sorted such as the examples with label "1" are first Returns: (AUC value, DeLong covariance) Reference: @article{sun2014fast, title={Fast Implementation of DeLong's Algorithm for Comparing the Areas Under Correlated Receiver Oerating Characteristic Curves}, author={<NAME> and <NAME>}, journal={IEEE Signal Processing Letters}, volume={21}, number={11}, pages={1389--1393}, year={2014}, publisher={IEEE} } """ # Short variables are named as they are in the paper m = label_1_count n = predictions_sorted_transposed.shape[1] - m positive_examples = predictions_sorted_transposed[:, :m] negative_examples = predictions_sorted_transposed[:, m:] k = predictions_sorted_transposed.shape[0] tx = np.empty([k, m], dtype=np.float) ty = np.empty([k, n], dtype=np.float) tz = np.empty([k, m + n], dtype=np.float) for r in range(k): tx[r, :] = compute_midrank_weight(positive_examples[r, :], sample_weight[:m]) ty[r, :] = compute_midrank_weight(negative_examples[r, :], sample_weight[m:]) tz[r, :] = compute_midrank_weight(predictions_sorted_transposed[r, :], sample_weight) total_positive_weights = sample_weight[:m].sum() total_negative_weights = sample_weight[m:].sum() pair_weights = np.dot(sample_weight[:m, np.newaxis], sample_weight[np.newaxis, m:]) total_pair_weights = pair_weights.sum() aucs = (sample_weight[:m] * (tz[:, :m] - tx)).sum(axis=1) / total_pair_weights v01 = (tz[:, :m] - tx[:, :]) / total_negative_weights v10 = 1. - (tz[:, m:] - ty[:, :]) / total_positive_weights sx = np.cov(v01) sy = np.cov(v10) delongcov = sx / m + sy / n return aucs, delongcov def fastDeLong_no_weights(predictions_sorted_transposed, label_1_count): """ The fast version of DeLong's method for computing the covariance of unadjusted AUC. Args: predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples] sorted such as the examples with label "1" are first Returns: (AUC value, DeLong covariance) Reference: @article{sun2014fast, title={Fast Implementation of DeLong's Algorithm for Comparing the Areas Under Correlated Receiver Oerating Characteristic Curves}, author={<NAME> and <NAME>}, journal={IEEE Signal Processing Letters}, volume={21}, number={11}, pages={1389--1393}, year={2014}, publisher={IEEE} } """ # Short variables are named as they are in the paper m = label_1_count n = predictions_sorted_transposed.shape[1] - m positive_examples = predictions_sorted_transposed[:, :m] negative_examples = predictions_sorted_transposed[:, m:] k = predictions_sorted_transposed.shape[0] tx = np.empty([k, m], dtype=np.float) ty = np.empty([k, n], dtype=np.float) tz = np.empty([k, m + n], dtype=np.float) for r in range(k): tx[r, :] = compute_midrank(positive_examples[r, :]) ty[r, :] = compute_midrank(negative_examples[r, :]) tz[r, :] = compute_midrank(predictions_sorted_transposed[r, :]) aucs = tz[:, :m].sum(axis=1) / m / n - float(m + 1.0) / 2.0 / n v01 = (tz[:, :m] - tx[:, :]) / n v10 = 1.0 - (tz[:, m:] - ty[:, :]) / m sx = np.cov(v01) sy = np.cov(v10) delongcov = sx / m + sy / n return aucs, delongcov def calc_pvalue(aucs, sigma): """Computes log(10) of p-values. Args: aucs: 1D array of AUCs sigma: AUC DeLong covariances Returns: log10(pvalue) """ l = np.array([[1, -1]]) z = np.abs(np.diff(aucs)) / np.sqrt(np.dot(np.dot(l, sigma), l.T)) return np.log10(2) + scipy.stats.norm.logsf(z, loc=0, scale=1) / np.log(10) def compute_midrank(x): """Computes midranks. Args: x - a 1D numpy array Returns: array of midranks """ J = np.argsort(x) Z = x[J] N = len(x) T = np.zeros(N, dtype=np.float) i = 0 while i < N: j = i while j < N and Z[j] == Z[i]: j += 1 T[i:j] = 0.5 * (i + j - 1) i = j T2 = np.empty(N, dtype=np.float) # Note(kazeevn) +1 is due to Python using 0-based indexing # instead of 1-based in the AUC formula in the paper T2[J] = T + 1 return T2 def compute_midrank_weight(x, sample_weight): """Computes midranks. Args: x - a 1D numpy array Returns: array of midranks """ J = np.argsort(x) Z = x[J] cumulative_weight = np.cumsum(sample_weight[J]) N = len(x) T = np.zeros(N, dtype=np.float) i = 0 while i < N: j = i while j < N and Z[j] == Z[i]: j += 1 T[i:j] = cumulative_weight[i:j].mean() i = j T2 = np.empty(N, dtype=np.float) T2[J] = T return T2 def plot_confusion_matrix(ax, cm, target_names, title='Confusion matrix', cmap=None, normalize=True, fontsize=16): """ given a sklearn confusion matrix (cm), make a nice plot Arguments --------- cm: confusion matrix from sklearn.metrics.confusion_matrix target_names: given classification classes such as [0, 1, 2] the class names, for example: ['high', 'medium', 'low'] title: the text to display at the top of the matrix cmap: the gradient of the values displayed from matplotlib.pyplot.cm see http://matplotlib.org/examples/color/colormaps_reference.html plt.get_cmap('jet') or plt.cm.Blues normalize: If False, plot the raw numbers If True, plot the proportions Citiation --------- http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html """ accuracy = np.trace(cm) / float(np.sum(cm)) misclass = 1 - accuracy if cmap is None: cmap = plt.get_cmap('Blues') if target_names is not None: tick_marks = np.arange(len(target_names)) ax.set_xticks(tick_marks) ax.set_yticks(tick_marks) ax.set_xticklabels(target_names) ax.set_yticklabels(target_names, rotation=90) ax.xaxis.set_tick_params(labelsize=fontsize) ax.yaxis.set_tick_params(labelsize=fontsize) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.set_title(title, fontsize=fontsize, fontweight='bold') ax.tick_params(labelsize=fontsize - 3) thresh = cm.max() / 1.5 if normalize else cm.max() / 2 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): if normalize: ax.text(j, i, "{:0.2f}".format(cm[i, j]), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black", fontsize=fontsize) else: ax.text(j, i, "{:,}".format(cm[i, j]), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black", fontsize=fontsize) ax.set_ylabel('True label', fontsize=fontsize, fontweight='bold') ax.set_xlabel('Predicted label\naccuracy={:0.2f}; misclass={:0.2f}'.format(accuracy, misclass), fontsize=fontsize, fontweight='bold') ```
{ "source": "joe-taylor/bcgov-python-presentations", "score": 3 }
#### File: bcgov-python-presentations/20200318_richardson_unsupervised_classification/kgc.py ```python from util import * '''variables for clustering''' data = None # 1. Input data a) points idx = None # b) range(0, len(data)) knn_k = None # 2. Intermediate data: a) number of k-nearest neighbours dmat = None # b) list of rows of sorted dist. matrix rho = None # 3. Model data a) density estimate label = None # 4. Class data a) class label next_label = None # b) next avail. class label class_label = None # c) truth data label if available! # command line parameters input_file = None print("len(args)", len(args), "args", str(args)) if len(args) > 1: input_file = args[1] print("input_file", input_file) else: err("Error:\n\tusage: python3 kgc.py [input file name] [knn-k (optional)]") if len(args) > 2: knn_k = int(args[2]) print("knn_k", knn_k) # other parameters scale_data = len(args) > 3 # add an optional parameter to turn on [0, 1] scaling # calculate one sorted row of the distance matrix def dmat_row(i): global data, idx row, pi, n_d = [], data[i], len(data[i]) for j in idx: d, pj = 0., data[j] # d(data[i], data[j]), data[j] for k in range(0, n_d): d += math.pow(pi[k] - pj[k], 2) row.append([d, j]) # print(row) row.sort(key=lambda x: x[0]) # sort on dist: increasing # print(row) return row # output: sorted dmat row for data[i] def rho(): # density estimation global data, idx, knn_k, dmat, rho rho = [] for i in idx: # for each point row, r = dmat[i], 0. # distance matrix row, dens. est. for a point for j in range(0, knn_k): r += row[j][0] # add dist. to j-th nearest neighbour try: rho.append(1. / r) except Exception: pass def climb(i, climb_from = None): print("climb i=", i, "from", climb_from) global rho, knn_k, dmat, label, next_label if label[i] >= 0: return label[i] # base case: data[i] already done else: dmat_row = dmat[i] rho_knn = [[rho[j], j] # [density estimate, data idx j] for j in [dmat_row[k][1] # for j'th k-nearest neighbour for k in range(1, knn_k)]] # over k-nearest neighbours rho_knn.sort(key=lambda x: -x[0]) # sort by density if rho[i] > rho_knn[0][0]: # at hilltop? return new label print(" new label", next_label) label[i] = next_label next_label += 1 # create new label else: # not at hilltop? climb up label[i] = climb(rho_knn[0][1], i) return label[i] # return label def cluster(input_file): global data, idx, knn_k, dmat, rho, label, next_label idx = range(0, len(data)) # data indices label, next_label = [-1 for i in idx], 0 # first label will be 0 dmat, pkl_f = None, input_file + '_dmat.p' if os.path.exists(pkl_f): print("restoring dmat from pickle file..") dmat = pickle.load(open(pkl_f, 'rb')) else: print("1. sorted distance matrix..") # memoize? dmat = parfor(dmat_row, idx) pickle.dump(dmat, open(pkl_f, 'wb')) print("2. density estimation..") rho() # density estimation print("rho", rho) print("3. recursive hillclimbing..") for i in idx: climb(i) from read_csv import read_csv, write_output data, class_label = read_csv(input_file) if scale_data: # scale data to [0, 1] min_x, max_x = copy.deepcopy(data[0]), copy.deepcopy(data[0]) for p in data: for k in range(0, len(data[0])): min_x[k] = p[k] if p[k] < min_x[k] else min_x[k] max_x[k] = p[k] if p[k] > max_x[k] else max_x[k] for i in range(0, len(data)): for k in range(0, len(data[0])): data[i][k] -= min_x[k] denom = (max_x[k] - min_x[k]) if denom != 0.: data[i][k] /= denom print("points", data) # print out points just in case # if not specified, set knn_k to be equal to if knn_k is None: knn_k = math.ceil(math.sqrt(len(data))) print("knn_k", knn_k) cluster(input_file) print('label', label) print('class_label', class_label) print('n_labels', next_label) from evaluate import class_match, accuracy, consistency mapping = None if class_label is not None: mapping, count = class_match(label, class_label) print(mapping) print(accuracy(label, class_label, mapping)) c = consistency(label, class_label, mapping, count) table_filename = input_file + '_table.html' open(table_filename, "wb").write(c.encode()) a = os.system('firefox ' + table_filename) # can still write output labels, even if no "reference" class data output_file = input_file + '_output.csv' print(rho) write_output(input_file, output_file, label, mapping, rho) # maybe do later? # put field names on the three axes (in the 3d plot) # convert binary class maps (colored with values) to PNG ```
{ "source": "JoeTester1965/AsteriskTheTelemarketers", "score": 3 }
#### File: JoeTester1965/AsteriskTheTelemarketers/AsteriskTheSpammers.py ```python from google.cloud import texttospeech from google.cloud import speech from google.oauth2 import service_account import grpc import io import sys import numpy import platform import os import time from datetime import datetime import re from random import randint import socket import configparser import subprocess import logging file_sequence=1 if len(sys.argv) != 2: print("I need config file location as first paramater in command line") sys.exit(1) test = platform.system() on_debug_platform = platform.system().startswith('Windows') if on_debug_platform: import pyaudio audio = pyaudio.PyAudio() my_config_label = "AsteriskTheSpammers" config = configparser.ConfigParser() config.read(sys.argv[1]) my_incoming_audio_match = config[my_config_label]["my_incoming_audio_match"] my_credentials_file_path = config[my_config_label]["my_credentials_file_path"] my_logfile = config[my_config_label]["my_logfile"] my_outgoing_audio_transcription_file = config[my_config_label]["my_outgoing_audio_transcription_file"] my_audio_out_directory = config[my_config_label]["my_audio_out_directory"] hello_file = config[my_config_label]["hello_file"] areyoustillthere_file = config[my_config_label]["areyoustillthere_file"] audio_average_absolute_power_threshold_int16 = int(config[my_config_label]["audio_average_absolute_power_threshold_int16"]) waittheyspeak_timeout_bytes = int(config[my_config_label]["waittheyspeak_timeout_bytes"]) files_in_file_sequence = int(config[my_config_label]["files_in_file_sequence"]) theystopppedspeaking_timeout_bytes = int(config[my_config_label]["theystopppedspeaking_timeout_bytes"]) audio_read_granularity = int(config[my_config_label]["audio_read_granularity"]) context_leeway_bytes = int(config[my_config_label]["context_leeway_bytes"]) timeout_seconds_no_data_read_from_file = float(config[my_config_label]["timeout_seconds_no_data_read_from_file"]) cloud_processing_audio_file_size_limit = int(config[my_config_label]["cloud_processing_audio_file_size_limit"]) host_address = config[my_config_label]["host_address"] port_number = int(config[my_config_label]["port_number"]) min_valid_buffer_size = int(config[my_config_label]["min_valid_buffer_size"]) logging.basicConfig( handlers=[ logging.FileHandler(my_logfile), logging.StreamHandler()], format='%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d:%H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def lock_onto_incoming_audio_file(): if on_debug_platform: lockon_filename = my_incoming_audio_match else: command_line = "ls -t " + my_incoming_audio_match + " | head -1 > tmp" os.system(command_line) lockon_filename = open('tmp', 'r').read().strip() return lockon_filename def transcribe_audio(speech_file): retval = "" try: transcription_client = speech.SpeechClient.from_service_account_file(my_credentials_file_path) except: logger.info("Not using Google speech to text as credz file not at : " + my_credentials_file_path) return "" with io.open(speech_file, "rb") as audio_file: content = audio_file.read() audio = speech.RecognitionAudio(content=content) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=8000, language_code="en-GB", ) response = transcription_client.recognize(config=config, audio=audio) for result in response.results: retval = result.alternatives[0].transcript return retval def test_is_audio_activity(buffer, threshold): retval = False if len(buffer) > min_valid_buffer_size: audio_bytes = numpy.frombuffer(buffer, dtype=numpy.int16) average_absolute_power = numpy.sum(numpy.absolute(audio_bytes)) / audio_bytes.size logger.debug("average_absolute_power : " + str(average_absolute_power)) if (average_absolute_power > threshold): retval = True return retval def process_WaitTheySpeak(): global audio_average_absolute_power_threshold_int16 global waittheyspeak_timeout_bytes global file_sequence global files_in_file_sequence global theystopppedspeaking_timeout_bytes global audio_read_granularity global context_leeway_bytes incoming_audio_file = lock_onto_incoming_audio_file() total_bytes_processed = 0 if incoming_audio_file == "microphone": mic_stream = audio.open( format = pyaudio.paInt16, rate = 8000, channels = 1, input_device_index = 1, input = True, frames_per_buffer=audio_read_granularity) microphone_file_handle = open("microphone", 'wb') else: audio_source = open(incoming_audio_file, 'rb') audio_source.seek(0, os.SEEK_END) activity_heard = False audio_first_noisy_marker = -1 total_bytes_processed = 0; timer_start = time.time() logger.debug("timer_start set to %s", repr(timer_start)) while activity_heard == False: while True: try: if incoming_audio_file == "microphone": buffer = mic_stream.read(audio_read_granularity) microphone_file_handle.write(buffer) microphone_file_handle.flush() else: buffer = audio_source.read(audio_read_granularity) if buffer: timer_start = time.time() logger.debug("%d bytes returned from file read at %s", len(buffer), repr(timer_start)) break else: timer_end = time.time() timer_delta = timer_end - timer_start if timer_delta > timeout_seconds_no_data_read_from_file: logger.info("Call state transitioned to NewCall : No bytes returned from read within timeout - assume handle dead") return("ENDCALL") except OSError as error: logger.error("Call state transitioned to NewCall : os.read error %d", error) return("ENDCALL") total_bytes_processed = total_bytes_processed + len(buffer) activity_heard = test_is_audio_activity(buffer, audio_average_absolute_power_threshold_int16) if total_bytes_processed > waittheyspeak_timeout_bytes: retval="FILE:" + areyoustillthere_file total_bytes_processed = 0 return(retval) if activity_heard: if audio_first_noisy_marker == -1: audio_first_noisy_marker = os.stat(incoming_audio_file).st_size logger.info("*** You started speaking ***") audio_last_noisy_marker = audio_first_noisy_marker total_bytes_processed = 0 bytes_activity_heard = 0 bytes_activity_not_heard = 0 timer_start = time.time() logger.debug("timer_start set to %s", repr(timer_start)) while activity_heard == True: while True: try: if incoming_audio_file == "microphone": buffer = mic_stream.read(audio_read_granularity) microphone_file_handle.write(buffer) microphone_file_handle.flush() else: buffer = audio_source.read(audio_read_granularity) if buffer: timer_start = time.time() logger.debug("%d bytes returned from file read at %s", len(buffer), repr(timer_start)) break else: timer_end = time.time() timer_delta = timer_end - timer_start if timer_delta > timeout_seconds_no_data_read_from_file: logger.info("Call state transitioned to NewCall : No bytes returned from read within timeout- assume handle dead") return("ENDCALL") except OSError as error: logger.error("Call state transitioned to NewCall : os.read error %d", error) return("ENDCALL") total_bytes_processed = total_bytes_processed + len(buffer) activity_heard = test_is_audio_activity(buffer, audio_average_absolute_power_threshold_int16) if activity_heard: bytes_activity_heard = total_bytes_processed else: bytes_activity_not_heard = total_bytes_processed if (bytes_activity_not_heard - bytes_activity_heard) < theystopppedspeaking_timeout_bytes: activity_heard = True else: audio_last_noisy_marker = os.stat(incoming_audio_file).st_size logger.info("*** You stopped speaking ***") activity_heard = False speaking_bytes_to_process = audio_last_noisy_marker - audio_first_noisy_marker # Put in sensible limits for cloud processing if speaking_bytes_to_process > cloud_processing_audio_file_size_limit: speaking_bytes_to_process = cloud_processing_audio_file_size_limit bytes_in_file = os.stat(incoming_audio_file).st_size available_context_leeway = bytes_in_file - speaking_bytes_to_process; if available_context_leeway > context_leeway_bytes: available_context_leeway = context_leeway_bytes rewind_bytes = bytes_in_file - audio_first_noisy_marker + available_context_leeway; speaking_bytes_to_process = speaking_bytes_to_process + available_context_leeway; if incoming_audio_file == "microphone": microphone_file_handle.close() temp_file = create_temp_audio_file(incoming_audio_file, rewind_bytes, speaking_bytes_to_process + audio_read_granularity) transcription_text = transcribe_audio(temp_file) retval = "" logger.info("*** Transcription text is : " + transcription_text + " ***") if transcription_text: retval = do_stuff_based_on_transcription(transcription_text) if not retval: retval="FILE:" + str(file_sequence) file_sequence = file_sequence + 1 if file_sequence > files_in_file_sequence: file_sequence = 1 return(retval) def create_temp_audio_file(incoming_audio_file, offset_from_eof, bytes_to_process): if (bytes_to_process % 2) != 0: bytes_to_process = bytes_to_process + 1 start_of_header =b"\x52\x49\x46\x46\x00\x00\x00\x00\x57\x41\x56\x45\x66\x6D\x74\x20\x10\x00\x00\x00\x01\x00\x01\x00\x40\x1F\x00\x00\x80\x3E\x00\x00\x02\x00\x10\x00\x64\x61\x74\x61" end_of_header = (bytes_to_process).to_bytes(4,'little') wav_header = start_of_header + end_of_header global my_outgoing_audio_transcription_file f1 = open(incoming_audio_file,'rb') f2 = open(my_outgoing_audio_transcription_file,'wb') f1.seek(-1 * offset_from_eof, os.SEEK_END) f2.write(wav_header) buf=f1.read(bytes_to_process) f2.write(buf) f1.close() f2.flush() f2.close() return my_outgoing_audio_transcription_file def do_stuff_based_on_transcription(transcription_text): DTMFFiles = { "zero" : "FILE:DTMF/0", "one" : "FILE:DTMF/1", "two" : "FILE:DTMF/2", "three" : "FILE:DTMF/3", "four" : "FILE:DTMF/4", "five" : "FILE:DTMF/5", "six" : "FILE:DTMF/6", "seven" : "FILE:DTMF/7", "eight" : "FILE:DTMF/8", "nine" : "FILE:DTMF/9", "0" : "FILE:DTMF/0", "1" : "FILE:DTMF/1", "2" : "FILE:DTMF/2", "3" : "FILE:DTMF/3", "4" : "FILE:DTMF/4", "5" : "FILE:DTMF/5", "6" : "FILE:DTMF/6", "7" : "FILE:DTMF/7", "8" : "FILE:DTMF/8", "9" : "FILE:DTMF/9", "star" : "FILE:DTMF/10", "hash" : "FILE:DTMF/11", "pound" : "FILE:DTMF/11" } if transcription_text.find("press") > -1: for key, value in DTMFFiles.items(): if transcription_text.find(key) > -1: retval = value return(retval) elif any(re.findall(r'stupid|whatever', transcription_text, re.IGNORECASE)): audo_out_file = "echo" if transcription_text: write_transcription_audioFile("Did you really say " + transcription_text + "?", audo_out_file) retval = "FILE:echo" return(retval) elif randint(1,6) == 1: # roll a dice audo_out_file = "echo" if transcription_text: write_transcription_audioFile("Did you say " + transcription_text + "?", audo_out_file) retval = "FILE:echo" return(retval) return def write_transcription_audioFile(text, filename): filename = my_audio_out_directory + filename client = texttospeech.TextToSpeechClient.from_service_account_file(my_credentials_file_path) synthesis_input = texttospeech.SynthesisInput(text=text) voice = texttospeech.VoiceSelectionParams(language_code="en-GB", name="en-GB-Wavenet-B", ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL) audio_config = texttospeech.AudioConfig(audio_encoding=texttospeech.AudioEncoding.LINEAR16, speaking_rate=0.89, pitch=2.4, sample_rate_hertz=8000) response = client.synthesize_speech(input=synthesis_input, voice=voice, audio_config=audio_config) wav_filename=filename+".wav" with open(wav_filename, "wb") as out: out.write(response.audio_content) sln_filename=filename+".sln" with open(sln_filename, "wb") as out: audio = bytearray(response.audio_content) audio_without_wav_header = audio[44:] out.write(audio_without_wav_header) def create_static_conversation_files(): write_transcription_audioFile("Hello, this is Kenny speaking!","hello") write_transcription_audioFile("Sorry. I cannot hear you. Are you still there?" ,"areyoustillthere") write_transcription_audioFile("My, that sounds most interesting.","1") write_transcription_audioFile("Someone did call about the same thing last week, was that you?","2") write_transcription_audioFile("Excuse me but what did you say your name was again?","3") write_transcription_audioFile("It's funny that you should call about this, my neighbour mentioned that yesterday.","4") write_transcription_audioFile("Oh boy! I never knew that was possible." ,"5") write_transcription_audioFile("That does need some consideration." ,"6") write_transcription_audioFile("Could you say that again, please?" ,"7") write_transcription_audioFile("Oh! I see! That sounds fine.","8") write_transcription_audioFile("Sorry which company did you say that you were calling from?","9") write_transcription_audioFile("The last time someone called up and spoke to me about that, something came on the telly and I had to hang up.","10") write_transcription_audioFile("Since you put it that way, please do carry on.", "11") write_transcription_audioFile("Well, what with coronavirus and all that, we all need more patience and understanding.", "12") write_transcription_audioFile("That does sound great, what needs to happen next?" ,"13") write_transcription_audioFile("Sorry I am a bit confused can you say that again?","14") #create_static_conversation_files() # remake static files if neccecary logger.info("AsteriskTheSpammers started") HOST = host_address PORT = port_number if on_debug_platform: subprocess.Popen('"C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_86\python.exe" stub-client.py') while True: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind((HOST, PORT)) s.listen() conn, addr = s.accept() with conn: while True: data = conn.recv(1024) if not data: break agi_message = data.decode('ascii') if agi_message: logger.info("AsteriskTheSpammers called with : " + agi_message) if agi_message.find("NewCall") > -1: file_sequence=1 retval = "FILE:" + hello_file logger.info("Message for AGI is: " + retval) conn.sendall(retval.encode('ascii')) if agi_message.find("MeStopSpeak") > -1: retval = process_WaitTheySpeak() logger.info("Message for AGI is: " + retval) conn.sendall(retval.encode('ascii')) ```
{ "source": "JoeTheVoices/xarray-sentinel", "score": 2 }
#### File: xarray-sentinel/tests/test_20_sentinel1.py ```python import pathlib import numpy as np import pytest import xarray as xr from xarray_sentinel import esa_safe, sentinel1 DATA_FOLDER = pathlib.Path(__file__).parent / "data" SLC_IW = ( DATA_FOLDER / "S1B_IW_SLC__1SDV_20210401T052622_20210401T052650_026269_032297_EFA4.SAFE" ) SLC_IW1_VV_annotation = ( SLC_IW / "annotation" / "s1b-iw1-slc-vv-20210401t052624-20210401t052649-026269-032297-004.xml" ) SLC_IW1_VV_calibration = ( SLC_IW / "annotation" / "calibration" / "calibration-s1b-iw1-slc-vv-20210401t052624-20210401t052649-026269-032297-004.xml" ) SLC_IW1_VV_noise = ( SLC_IW / "annotation" / "calibration" / "noise-s1b-iw1-slc-vv-20210401t052624-20210401t052649-026269-032297-004.xml" ) SLC_IW1_VV_measurement = ( SLC_IW / "measurement" / "s1b-iw1-slc-vv-20210401t052624-20210401t052649-026269-032297-004.tiff" ) SLC_S3 = ( DATA_FOLDER / "S1A_S3_SLC__1SDV_20210401T152855_20210401T152914_037258_04638E_6001.SAFE" ) SLC_S3_VV_annotation = ( SLC_S3 / "annotation" / "s1a-s3-slc-vv-20210401t152855-20210401t152914-037258-04638e-002.xml" ) SLC_S3_VV_measurement = ( SLC_S3 / "measurement" / "s1a-s3-slc-vv-20210401t152855-20210401t152914-037258-04638e-002.tiff" ) GRD_IW_VV_annotation = ( DATA_FOLDER / "S1B_IW_GRDH_1SDV_20210401T052623_20210401T052648_026269_032297_ECC8.SAFE" / "annotation" / "s1b-iw-grd-vv-20210401t052623-20210401t052648-026269-032297-001.xml" ) def test_get_fs_path() -> None: fs, path = sentinel1.get_fs_path(str(SLC_IW)) assert path == str(SLC_IW.absolute()) fs, path = sentinel1.get_fs_path(SLC_IW, fs) assert path == str(SLC_IW) with pytest.raises(ValueError): sentinel1.get_fs_path("non-existent-path/*") with pytest.raises(ValueError): sentinel1.get_fs_path(DATA_FOLDER / "*") def test_normalise_group() -> None: assert sentinel1.normalise_group(None) == ("", None) assert sentinel1.normalise_group("/") == ("", None) assert sentinel1.normalise_group("IW1") == ("IW1", None) assert sentinel1.normalise_group("/IW1") == ("IW1", None) assert sentinel1.normalise_group("/IW1/VH/0") == ("IW1/VH", 0) assert sentinel1.normalise_group("/IW1/VH/orbit") == ("IW1/VH/orbit", None) def test_open_calibration_dataset() -> None: res = sentinel1.open_calibration_dataset(SLC_IW1_VV_calibration) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"line", "pixel"} def test_open_noise_range_dataset() -> None: res = sentinel1.open_noise_range_dataset(SLC_IW1_VV_noise) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"line", "pixel"} def test_open_noise_azimuth_dataset() -> None: res = sentinel1.open_noise_azimuth_dataset(SLC_IW1_VV_noise) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"line"} def test_open_coordinate_conversion_dataset() -> None: res = sentinel1.open_coordinate_conversion_dataset(GRD_IW_VV_annotation) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"azimuth_time", "degree"} def test_open_gcp_dataset() -> None: res = sentinel1.open_gcp_dataset(SLC_IW1_VV_annotation) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"line", "pixel", "azimuth_time", "slant_range_time"} def test_open_attitude_dataset() -> None: res = sentinel1.open_attitude_dataset(SLC_IW1_VV_annotation) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"azimuth_time"} def test_open_orbit_dataset() -> None: res = sentinel1.open_orbit_dataset(SLC_IW1_VV_annotation) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"axis", "azimuth_time"} def test_open_dc_estimate_dataset() -> None: res = sentinel1.open_dc_estimate_dataset(SLC_IW1_VV_annotation) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"degree", "azimuth_time"} def test_open_azimuth_fm_rate_dataset() -> None: res = sentinel1.open_azimuth_fm_rate_dataset(SLC_IW1_VV_annotation) assert isinstance(res, xr.Dataset) assert set(res.coords) == {"degree", "azimuth_time"} def test_open_pol_dataset_iw() -> None: res = sentinel1.open_pol_dataset(SLC_IW1_VV_measurement, SLC_IW1_VV_annotation) assert isinstance(res, xr.Dataset) assert set(res.dims) == {"line", "pixel"} assert set(res.coords) == {"slant_range_time", "azimuth_time", "line", "pixel"} @pytest.mark.xfail def test_open_pol_dataset_sm() -> None: res = sentinel1.open_pol_dataset(SLC_S3_VV_measurement, SLC_S3_VV_annotation) assert isinstance(res, xr.Dataset) assert set(res.dims) == {"slant_range_time", "azimuth_time"} assert set(res.coords) == {"slant_range_time", "azimuth_time", "line", "pixel"} def test_build_burst_id() -> None: lat = 11.8475875 lon = 47.16626783 relative_orbit = 168 burst_id = sentinel1.build_burst_id(lat=lat, lon=lon, relative_orbit=relative_orbit) assert burst_id == "R168-N118-E0472" def test_find_avalable_groups() -> None: _, product_files = esa_safe.parse_manifest_sentinel1(SLC_S3 / "manifest.safe") expected_groups = { "S3", "S3/VV", "S3/VV/attitude", "S3/VV/gcp", "S3/VV/orbit", "S3/VV/dc_estimate", "S3/VV/azimuth_fm_rate", "S3/VV/coordinate_conversion", "S3/VV/calibration", "S3/VV/noise_range", "S3/VV/noise_azimuth", "S3", "S3/VH", "S3/VH/attitude", "S3/VH/gcp", "S3/VH/orbit", "S3/VH/dc_estimate", "S3/VH/azimuth_fm_rate", "S3/VH/coordinate_conversion", "S3/VH/calibration", "S3/VH/noise_range", "S3/VH/noise_azimuth", } res = sentinel1.find_available_groups(product_files, str(SLC_IW)) assert set(res) == expected_groups res = sentinel1.find_available_groups( product_files, str(SLC_IW), check_files_exist=True ) assert res == {} def test_compute_burst_centres() -> None: gcp = xr.Dataset( { "latitude": xr.DataArray( np.arange(5).reshape(5, 1), dims=("azimuth_time", "slant_range_time") ), "longitude": xr.DataArray( np.arange(5).reshape(5, 1) * 10, dims=("azimuth_time", "slant_range_time"), ), }, attrs={"burst_count": 4}, ) lat, lon = sentinel1.compute_burst_centres(gcp) assert np.allclose(lat, [0.5, 1.5, 2.5, 3.5]) assert np.allclose(lon, [5, 15, 25, 35]) def test_open_dataset() -> None: expected_groups = { "IW1", "IW1/VV", "IW1/VV/gcp", "IW1/VV/attitude", "IW1/VV/orbit", "IW1/VV/calibration", "IW1/VV/noise_range", "IW1/VV/noise_azimuth", } res = sentinel1.open_sentinel1_dataset(SLC_IW) assert isinstance(res, xr.Dataset) assert len(res.data_vars) == 0 assert set(res.attrs["subgroups"]) >= expected_groups res = sentinel1.open_sentinel1_dataset(SLC_IW, group="IW1") assert isinstance(res, xr.Dataset) assert len(res.data_vars) == 0 res = sentinel1.open_sentinel1_dataset(SLC_IW, group="IW1/VV/orbit") assert isinstance(res, xr.Dataset) assert res.dims == {"axis": 3, "azimuth_time": 17} with pytest.raises(ValueError): sentinel1.open_sentinel1_dataset(SLC_IW, group="IW1/VV/non-existent") def test_open_dataset_virtual_groups() -> None: res = sentinel1.open_sentinel1_dataset(SLC_IW, group="IW1/VV/0") assert isinstance(res, xr.Dataset) assert len(res.data_vars) == 1 assert res.attrs["burst_index"] == 0 def test_open_dataset_chunks() -> None: res = sentinel1.open_sentinel1_dataset(SLC_IW, group="IW1/VV") assert isinstance(res, xr.Dataset) assert len(res.dims) == 2 assert res.measurement.chunks[0][0] == res.attrs["lines_per_burst"] assert not np.all(np.isnan(res.measurement)) def test_crop_burst_dataset() -> None: swath_ds = sentinel1.open_sentinel1_dataset(SLC_IW, group="IW1/VH") res1 = sentinel1.crop_burst_dataset(swath_ds, 8) assert set(res1.dims) == {"azimuth_time", "slant_range_time"} assert res1.dims["azimuth_time"] == swath_ds.attrs["lines_per_burst"] res2 = sentinel1.crop_burst_dataset(swath_ds, azimuth_anx_time=2210) assert res2.equals(res1) res3 = sentinel1.crop_burst_dataset( swath_ds, azimuth_anx_time=2213, use_center=True ) assert res3.equals(res1) with pytest.raises(TypeError): sentinel1.crop_burst_dataset(swath_ds) with pytest.raises(TypeError): sentinel1.crop_burst_dataset(swath_ds, burst_index=8, azimuth_anx_time=2213) with pytest.raises(IndexError): sentinel1.crop_burst_dataset(swath_ds, burst_index=-1) def test_calibrate_amplitude() -> None: swath_ds = sentinel1.open_sentinel1_dataset(SLC_IW, group="IW1/VH") burst_ds = sentinel1.crop_burst_dataset(swath_ds, burst_index=8) calibration_ds = sentinel1.open_calibration_dataset(SLC_IW1_VV_calibration) res = sentinel1.calibrate_amplitude( burst_ds.measurement, calibration_ds["betaNought"] ) assert set(res.dims) == {"azimuth_time", "slant_range_time"} assert np.issubdtype(res.dtype, np.complex64) def test_calibrate_intensity() -> None: swath_ds = sentinel1.open_sentinel1_dataset(SLC_IW, group="IW1/VH") burst_ds = sentinel1.crop_burst_dataset(swath_ds, burst_index=8) calibration_ds = sentinel1.open_calibration_dataset(SLC_IW1_VV_calibration) res = sentinel1.calibrate_intensity( burst_ds.measurement, calibration_ds["betaNought"] ) assert set(res.dims) == {"azimuth_time", "slant_range_time"} assert np.issubdtype(res.dtype, np.float32) ```
{ "source": "Joetib/bases", "score": 4 }
#### File: bases/bases/stack.py ```python from typing import List, Union class Stack: """ Stack Implementation based of python list (array) values are kept in as string to suite the implementation needs methods: pop: pops out the last element of the stack and returns it push: pushes an element to the top of the stack to_base_string: Helper function to convert the stack to a string representing the results after computation of bases """ def __init__(self, content: List = None) -> None: self._stack = content or [] def pop(self) -> Union[str, int]: """ pop: pops out the last element of the stack and returns it """ return self._stack.pop() def push(self, value: Union[str, int]) -> bool: """ push: pushes an element to the top of the stack """ self._stack.append(str(value)) return True def to_base_string(self): """ to_base_string: Helper function to convert the stack to a string representing the results after computation of bases """ stack = self._stack[::-1] return ''.join(stack) ```
{ "source": "Joetib/django-unicorn", "score": 2 }
#### File: management/commands/startunicorn.py ```python from pathlib import Path from django.core.management.base import BaseCommand, CommandError from ...components import convert_to_pascal_case, convert_to_snake_case COMPONENT_FILE = """from django_unicorn.components import UnicornView class {pascal_case_component_name}View(UnicornView): pass """ TEMPLATE_FILE = """<div> <!-- put component code here --> </div> """ class Command(BaseCommand): help = "Creates a new component for `django-unicorn`" def add_arguments(self, parser): parser.add_argument("component_names", nargs="+", type=str) def handle(self, *args, **options): if not Path("manage.py").exists(): raise CommandError("Can't find manage.py in current path.") if not Path("unicorn").exists(): Path("unicorn").mkdir() self.stdout.write(self.style.SUCCESS("Create unicorn directory ✨")) for component_name in options["component_names"]: snake_case_component_name = convert_to_snake_case(component_name) pascal_case_component_name = convert_to_pascal_case(component_name) # Create component if not Path("unicorn/components").exists(): Path("unicorn/components").mkdir() component_path = Path(f"unicorn/components/{snake_case_component_name}.py") component_path.write_text( COMPONENT_FILE.format( **{"pascal_case_component_name": pascal_case_component_name} ) ) self.stdout.write(self.style.SUCCESS(f"Created {component_path}.")) # Create template if not Path("unicorn/templates/unicorn").exists(): if not Path("unicorn/templates").exists(): Path("unicorn/templates").mkdir() Path("unicorn/templates/unicorn").mkdir() template_path = Path(f"unicorn/templates/unicorn/{component_name}.html") template_path.write_text(TEMPLATE_FILE) self.stdout.write(self.style.SUCCESS(f"Created {template_path}.")) self.stdout.write( self.style.SUCCESS( f"\nMake sure to add '\"unicorn\",' to your INSTALLED_APPS array in your settings file if necessary." ) ) ```
{ "source": "Joetib/eggstore", "score": 3 }
#### File: eggstore/pages/cart.py ```python from decimal import Decimal from django.conf import settings from .models import Size, Color, SingleOrder class Cart: def __init__(self, request): self.session = request.session cart = self.session.get(settings.CART_SESSION_ID) if not cart: cart = self.session[settings.CART_SESSION_ID] = {} self.cart = cart def add(self, size, color, quantity=1, update_quantity=False): product_group = f'{size}:{color}' if product_group not in self.cart: self.cart[product_group] = {'size': size.size, 'color': color.color,'quantity': 0, 'price': Size.objects.get(size=size).price} if update_quantity: self.cart[product_group]['quantity'] = int(quantity) else: self.cart[product_group]['quantity'] += int(quantity) self.save() def save(self): self.session.modified = True def remove(self, size, color, quantity=None): product_group = f'{size}:{color}' if product_group in self.cart: if quantity: if quantity < self.cart[product_group]['quantity']: self.cart[product_group]['quantity'] = self.cart[product_group]['quantity'] -quantity self.save() return del self.cart[product_group] self.save() def total_amount(self): price = 0 for key, value in self.cart.items(): price += int(value['quantity']) * float(value['price']) return price def total_items(self): count = 0 for _, _ in self.cart.items(): count += 1 return count def total_items_quantity(self): count = 0 for key, value in self.cart.items(): count += int(value['quantity']) return count def as_object(self): objects = [] for key, value in self.cart.items(): try: objects.append( SingleOrder( size = Size.objects.get(size=value.get('size')), color = Color.objects.get(color=value.get('color')), quantity = value.get('quantity', 0) ) ) except Exception as e: print(e) return objects ``` #### File: eggstore/users/models.py ```python from django.contrib.auth.models import AbstractUser from django.db import models class CustomUser(AbstractUser): photo = models.ImageField(null=True, blank=True) def __str__(self): return self.username or self.email ```
{ "source": "Joetib/gmsa", "score": 2 }
#### File: gmsa/pages/models.py ```python from django.db import models from django.contrib.auth import get_user_model from django.urls import reverse from django.contrib.contenttypes.fields import GenericForeignKey, GenericRelation from django.contrib.contenttypes.models import ContentType from django.utils.text import slugify from django.utils import timezone User = get_user_model() # Create your models here. class Configuration(models.Model): location = models.CharField(max_length=500) main_phone_number = models.CharField(max_length=13) office_phone_number = models.CharField(max_length=13) email_address = models.EmailField() about = models.TextField() history = models.TextField() # social links whatsapp_link = models.URLField(blank=True) facebook_link = models.URLField(blank=True) twitter_link = models.URLField(blank=True) youtube_link = models.URLField(blank=True) def __str__(self): return "Site Configuration" @classmethod def object(cls): return cls.objects.first() def save(self, *args, **kwargs): self.pk = 1 self.id = 1 super().save(*args, **kwargs) class Slider(models.Model): banner = models.ImageField(upload_to="slider/%Y/%m/") title = models.CharField(max_length=60) sub_title = models.CharField(max_length=50) date_created = models.DateTimeField(auto_now=True) class Meta: ordering = ("-date_created",) def __str__(self): return self.title class Image(models.Model): image = models.ImageField(upload_to="gallery/images/%Y/%m/") description = models.TextField(blank=True) content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE) object_id = models.PositiveIntegerField() content_object = GenericForeignKey('content_type', 'object_id') date_created = models.DateTimeField(auto_now=True) class Meta: ordering = ("-date_created",) @classmethod def for_model(cls,*,image, description, content_object: models.Model): _image = cls(image=image, description=description, content_object=content_object) _image.save() return _image class ExecutiveRole(models.Model): name = models.CharField(max_length=100) core = models.BooleanField(default=True) duty = models.TextField() class Meta: ordering = ("core", 'name') def __str__(self) -> str: return self.name class Executive(models.Model): executive_role = models.ForeignKey(ExecutiveRole, related_name="executives", on_delete=models.CASCADE) user = models.ForeignKey(User, on_delete=models.SET_NULL, null=True, blank=True) name = models.CharField(max_length=150) about = models.TextField() picture = models.ImageField(upload_to='executives/images/%Y/') is_active = models.BooleanField(True) date_started = models.DateField() end_date = models.DateField(null=True, blank=True) date_created = models.DateTimeField(auto_now_add=True) class Meta: ordering = ("-is_active", "executive_role", "date_created") def __str__(self) -> str: return self.name def get_absolute_url(self) -> str: return reverse('executive-detail', kwargs={'pk': self.pk}) class Event(models.Model): name = models.CharField(max_length=250) picture = models.ImageField(upload_to="events/%Y/%m/") description = models.TextField() date = models.DateTimeField() venue = models.CharField(max_length=500) images = GenericRelation(Image, related_query_name="event") event_link = models.URLField(blank=True) event_link_text = models.CharField(max_length=30, blank=True) is_upcoming = models.BooleanField(default=True) date_created = models.DateTimeField(auto_now_add=True) class Meta: ordering = ("date", "date_created", "name") def __str__(self) -> str: return self.name def get_absolute_url(self) -> str: return reverse("event-detail",kwargs={"pk": self.pk} ) class Programme(models.Model): title = models.CharField(max_length=200) class Meta: ordering = ("title",) def __str__(self): return self.title def get_absolute_url(self): return reverse("programme-detail", kwargs={"pk": self.pk}) def get_courses(self): course_for_level = [ { "level": "Level 100", "courses": self.get_level_100_courses() }, { "level": "Level 200", "courses": self.get_level_200_courses() }, { "level": "Level 300", "courses": self.get_level_300_courses() }, { "level": "Level 400", "courses": self.get_level_400_courses() }, ] courses = self.get_level_500_courses() if courses.exists: course_for_level.append({"level": "Level 500", "courses": courses}) courses = self.get_level_600_courses() if courses.exists: course_for_level.append({"level": "Level 600", "courses": courses}) return course_for_level def get_level_100_courses(self): return self.courses.filter(year=1) def get_level_200_courses(self): return self.courses.filter(year=2) def get_level_300_courses(self): return self.courses.filter(year=3) def get_level_400_courses(self): return self.courses.filter(year=4) def get_level_500_courses(self): return self.courses.filter(year=5) def get_level_600_courses(self): return self.courses.filter(year=6) class Course(models.Model): YEAR_CHOICES = ( (1, "Level 100"), (2, "Level 200"), (3, "Level 300"), (4, "Level 400"), (5, "Level 500"), (6, "Level 600"), ) programme = models.ForeignKey(Programme, related_name="courses", on_delete=models.CASCADE) year = models.PositiveIntegerField(choices=YEAR_CHOICES) title = models.CharField(max_length=200) description = models.TextField(blank=True) class Meta: ordering = ("year", "title") def __str__(self): return self.title class Book(models.Model): course = models.ForeignKey(Course, related_name="books", on_delete=models.CASCADE) title = models.CharField(max_length=300) description = models.TextField(blank=True) book = models.FileField(upload_to="books/%Y/") class Meta: ordering = ("course", "title") def __str__(self): return self.title class ContactMessage(models.Model): name = models.CharField(max_length=100) email = models.EmailField() message = models.TextField() def __str__(self): return self.name + self.message[:20] class MadarasahCategory(models.Model): name = models.CharField(max_length=60) class Meta: ordering = ("name",) def __str__(self) -> str: return self.name def get_absolute_url(self) -> str: return f'{reverse("madarasah-list")}?category={self.pk}' class Madarasah(models.Model): category = models.ForeignKey(MadarasahCategory, related_name="madarasah_set", on_delete=models.CASCADE) title = models.CharField(max_length=150) description = models.TextField(blank=True) file = models.FileField(upload_to="madarasah/%Y/%m/") date = models.DateTimeField(auto_now=True) class Meta: ordering = ("date",) def __str__(self) -> str: return self.title class Business(models.Model): title = models.CharField(max_length=150) description = models.TextField() phone_number = models.CharField(max_length=13) banner = models.ImageField(upload_to="business/banner/%Y/%m/") slug = models.SlugField(blank=True) date = models.DateTimeField(auto_now=True) class Meta: ordering = ("title", "date") def __str__(self): return self.title def save(self, *args, **kwargs): super().save(*args, **kwargs) if not self.slug: self.slug = slugify(f"{self.title} {self.pk}") super().save(*args, **kwargs) def get_absolute_url(self): return reverse("business-detail", kwargs={"slug": self.slug}) class Product(models.Model): business = models.ForeignKey(Business, related_name="products", on_delete=models.CASCADE) title = models.CharField(max_length=150) description = models.TextField(max_length=30) slug = models.SlugField(blank=True) price = models.DecimalField(decimal_places=2, max_digits=10) picture = models.ImageField(upload_to="products/%Y/%m/") date = models.DateTimeField(auto_now=True) class Meta: ordering = ("title", "date") def __str__(self): return self.title def save(self, *args, **kwargs): super().save(*args, **kwargs) if not self.slug: self.slug = slugify(f"{self.title} {self.pk}") super().save(*args, **kwargs) class Project(models.Model): title = models.CharField(max_length=150) description = models.TextField() picture = models.ImageField(upload_to="projects/%Y/%m/") slug = models.SlugField(blank=True) date_started = models.DateTimeField() date_ended = models.DateTimeField(blank=True) completed = models.BooleanField(default=False) images = GenericRelation(Image, related_query_name="project") date_created = models.DateTimeField(auto_now_add=True) last_modified = models.DateTimeField(auto_now=True) class Meta: ordering = ("-date_created", "title") def __str__(self): return self.title def save(self, *args, **kwargs): super().save(*args, **kwargs) if not self.slug: self.slug = slugify(f"{self.title} {self.pk}") super().save(*args, **kwargs) def get_absolute_url(self): return reverse("project-detail", kwargs={"slug": self.slug}) class Scholarship(models.Model): title = models.CharField(max_length=200) description = models.TextField() application_link = models.URLField(blank=True) end_date = models.DateField(blank=True) date = models.DateTimeField(auto_now=True) class Meta: ordering = ("date", "title") def __str__(self): return self.title @property def is_active(self): if not self.end_date: return True return timezone.now() >= self.end_date def get_absolute_url(self): return reverse("scholarship-detail", kwargs={"pk": self.pk}) ```
{ "source": "Joetib/joebase", "score": 2 }
#### File: joebase/project/forms.py ```python from django import forms from .models import Project, Table, Field, FieldEntry, File, Text class ProjectCreateForm(forms.ModelForm): class Meta: model = Project fields = ('name', 'authentication', 'description',) class ProjectEditForm(forms.ModelForm): class Meta: model = Project fields = ('authentication', 'description') class TableCreateForm(forms.ModelForm): class Meta: model = Table fields = ('name', 'authentication_option') class FieldForm(forms.ModelForm): class Meta: model = Field fields = ('name', 'field_type', 'required') class FileForm(forms.ModelForm): class Meta: model = File fields = ('file',) class TextForm(forms.ModelForm): class Meta: model = Text fields = ('text',) class EntryForm(forms.Form): def __init__(self, entry, *args, **kwargs): super(EntryForm, self).__init__(*args, **kwargs) print(entry.fields.all()) for field in entry.fields.all(): if field.field_type == 'T': print('got here') self.fields[field.name]= forms.CharField(required=field.required) elif field.field_type == 'F': self.fields[field.name] = forms.FileField(required=field.required) elif field.field_type == 'I': self.fields[field.name] = forms.ImageField(required=field.required) ```
{ "source": "Joetib/jshop", "score": 3 }
#### File: apps/store/utils.py ```python import secrets RANDOM_STRING_CHARS = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' def get_random_string(length=15, allowed_chars=RANDOM_STRING_CHARS): """ Return a securely generated random string. The bit length of the returned value can be calculated with the formula: log_2(len(allowed_chars)^length) For example, with default `allowed_chars` (26+26+10), this gives: * length: 12, bit length =~ 71 bits * length: 22, bit length =~ 131 bits """ return "JSHOP-" + ''.join([secrets.choice(allowed_chars) for i in range(length)]) ``` #### File: apps/store/views.py ```python from django.shortcuts import get_object_or_404, render, redirect from django.http.request import HttpRequest from django.http.response import HttpResponse from django.contrib import messages from django.views.generic import ListView, DetailView from . import models from . import forms # Create your views here. def create_update_product(request: HttpRequest, pk:int=None): product = None if pk: product = get_object_or_404(models.Product, pk=pk) if request.method == "POST": product_form = forms.ProductForm(request.POST, files=request.FILES, instance=product ) if product_form.is_valid(): product: models.Product = product_form.save() messages.success(request, "Product {product.name} saved successfully") return redirect(product.get_update_url()) else: messages.error(request, "Please fix the problems in the form.") else: product_form = forms.ProductForm(instance=product) return render(request, 'store/create_update_product.html', {'product_form': product_form }) def create_update_stock(request: HttpRequest, supply_pk: int, pk:int=None): stock: models.Stock =None supply: models.Supply = get_object_or_404(models.Supply, pk=supply_pk) if pk: stock = get_object_or_404(models.Stock, pk=pk) if request.method == "POST": stock_form = forms.StockForm(request.POST, files=request.FILES, instance=stock ) if stock_form.is_valid(): stock: models.Stock = stock_form.save(commit=False) stock.supply = supply stock.save() messages.success(request, f"Stock for {stock.product.name} saved successfully") messages.success(request, f"Redirecting to {supply.get_absolute_url()}") redirect(supply.get_absolute_url()) else: messages.error(request, "Please fix the problems in the form.") else: stock_form = forms.StockForm(instance=stock) return render(request, 'store/create_update_stock.html', {'stock_form': stock_form }) class ProductListView(ListView): model = models.Product context_object_name = "products" template_name = "store/products_list.html" class SupplyDetail(DetailView): model = models.Supply context_object_name = "supply" template_name = "store/supply_detail.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['stock_form'] = forms.StockForm() return context class SupplyListView(ListView): model = models.Supply context_object_name = "supplies" template_name = "store/supply_list.html" def create_supply(request: HttpRequest): supply = models.Supply.objects.create() return redirect(supply.get_absolute_url()) def add_product_to_order(request: HttpRequest, pk:int) -> HttpResponse: order = models.Order.objects.get_or_create(completed=False)[0] product = get_object_or_404(models.Product, pk=pk) OrderItem = models.OrderItem.objects.get_or_create(order=order, product=product) ```
{ "source": "Joetib/Komlearn", "score": 2 }
#### File: accounts/templatetags/widget_tweaks.py ```python from django import template from django.utils.safestring import mark_safe import markdown register = template.Library() @register.filter def add_class(form_widget, css_class): """ Adds a css class to a django form widget """ return form_widget.as_widget(attrs={'class': css_class}) @register.filter(name='markdown') def markdown_format(text): return mark_safe(markdown.markdown(text)) ``` #### File: Komlearn/group/models.py ```python from django.db import models from django.conf import settings class Group(models.Model): name = models.CharField(max_length=200) members = models.ManyToManyField(settings.AUTH_USER_MODEL, blank=True) created_by = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.SET_NULL, related_name='groups_created', null=True, blank=True) about = models.TextField(max_length=5120, blank=True) picture = models.ImageField(upload_to='group_profiles', blank=True, null=True) def latest_questions(self): return self.questions.all()[:3] class Question(models.Model): """ The Question Models """ group = models.ForeignKey(Group, on_delete=models.CASCADE, related_name='questions') user = models.ForeignKey(settings.AUTH_USER_MODEL, related_name='questions', on_delete=models.CASCADE) text = models.TextField() posted_date = models.DateTimeField(auto_now_add=True) class Meta: ordering = ('-posted_date',) def __str__(self): return f"{self.user.username}'s question" def get_absolute_url(self): pass class Comment(models.Model): """ The comments Models """ user = models.ForeignKey(settings.AUTH_USER_MODEL, related_name='comments', on_delete=models.CASCADE) question = models.ForeignKey(Question, related_name='comments', on_delete=models.CASCADE) text = models.TextField(blank=True) comment_date = models.DateTimeField(auto_now_add=True) class Meta: ordering = ('-comment_date',) ```
{ "source": "Joetib/radio", "score": 2 }
#### File: radio/pages/context.py ```python from .models import SocialLink def get_social_context(*args, **kwargs): facebook = SocialLink.objects.filter(site="F") Twitter = SocialLink.objects.filter(site="T") Whatsapp = SocialLink.objects.filter(site="W") Youtube = SocialLink.objects.filter(site="Y") LinkedIn = SocialLink.objects.filter(site="L") Instagram = SocialLink.objects.filter(site="I") return { 'facebook': facebook.first() if facebook.exists() else None, 'Whatsapp': Whatsapp.first() if Whatsapp.exists() else None, 'Twitter': Twitter.first() if Twitter.exists() else None, 'Instagram': Instagram.first() if Instagram.exists() else None, 'LinkedIn': LinkedIn.first() if LinkedIn.exists() else None, 'Youtube': Youtube.first() if Youtube.exists() else None, } ```
{ "source": "Joetib/school", "score": 2 }
#### File: school/administrator/views.py ```python from accounts.models import AcademicYear, Klass from django.shortcuts import render, redirect, get_object_or_404 from django.contrib.auth.decorators import login_required from django.contrib import messages from .utils import administrator_required from django.http.request import HttpRequest from django.http.response import HttpResponse from . import forms from django.views.generic import ListView, TemplateView, CreateView, DetailView from django.contrib.auth import get_user_model from accounts.models import Student, Teacher, Course, NoticeBoard from datetime import datetime # Create your views here. User = get_user_model() @login_required @administrator_required def dashboard(request): return render(request, 'administrator/dashboard.html', { 'teachers': User.objects.filter(is_teacher=True), 'students': User.objects.filter(is_student=True), 'notices': NoticeBoard.objects.all(), }) class StudentListView(TemplateView): template_name = "administrator/student_list.html" class TeacherListView(TemplateView): template_name = "administrator/teacher_list.html" @login_required @administrator_required def create_student(request): if request.method == "POST": student_form = forms.StudentCreateForm(request.POST, files=request.FILES) if student_form.is_valid(): student = student_form.save() messages.success(request, f'Student: {student.username} created successfully') return redirect("administrator:dashboard") messages.error(request, "Unable to create student, please try again") else: student_form = forms.StudentCreateForm() return render(request, 'administrator/create_student.html', {'student_form': student_form}) @login_required @administrator_required def create_teacher(request): if request.method == "POST": teacher_form = forms.TeacherCreateForm(request.POST, files=request.FILES) if teacher_form.is_valid(): teacher = teacher_form.save() messages.success(request, f'Student: {teacher.username} created successfully') return redirect("administrator:dashboard") messages.error(request, "Unable to create teacher, please try again") else: teacher_form = forms.TeacherCreateForm() return render(request, 'administrator/create_teacher.html', {'teacher_form': teacher_form}) @login_required @administrator_required def student_profile(request, id): student = get_object_or_404(Student, user__id=id) age = int((datetime.now().date() - student.user.date_of_birth).days / 365 ) return render(request, 'administrator/student_profile.html', {'student':student,'age':age,}) @login_required @administrator_required def teacher_profile(request, id): teacher = get_object_or_404(Teacher, user__id=id) age = int((datetime.now().date() - teacher.user.date_of_birth).days / 365 ) return render(request, 'administrator/teacher_profile.html', {'teacher':teacher,'age':age}) def create_academic_year(request: HttpRequest): if request.method == "POST": academic_year_form = forms.AcademicYearForm(request.POST) if academic_year_form.is_valid(): academic_year = academic_year_form.save() return redirect(academic_year.get_admin_absolute_url()) else: academic_year_form = forms.AcademicYearForm() return render(request, "administrator/create_academic_year.html", {'form': academic_year_form}) """ class SubjectList(ListView): model = Course template_name = 'administration/subject_list.html' context_object_name = 'subjects' """ class AcademicYearListView(ListView): model = AcademicYear context_object_name = "academic_years" template_name = "administrator/academic_year_list.html" class AcademicYearDetailView(DetailView): model = AcademicYear context_object_name = "academic_year" template_name = "administrator/academic_year_detail.html" def create_klass(request: HttpRequest, *args, **kwargs) -> HttpResponse: if request.method == "POST": form = forms.KlassCreateForm(request.POST, files=request.FILES) if form.is_valid(): klass = form.save() return redirect("administrator:dashboard") else: print("Form is invalid\n\n\n\n") print(form.errors) else: form = forms.KlassCreateForm() return render(request, 'administrator/create_class.html', {'form': form}) class KlassListview(ListView): model = Klass template_name = "administrator/class_list.html" context_object_name = "classes" def qet_queryset(self, *args, **kwargs): return Klass.objects.filter(academic_year__is_active=True) class KlassDetailView(DetailView): model = Klass template_name = "administrator/klass_detail.html" context_object_name = "klass" def add_students_to_class(request: HttpRequest, pk:int): klass = get_object_or_404(Klass, pk=pk, academic_year__is_active=True) if request.method == "POST": students_form = forms.AddStudentToClassForm(request.POST, klass=klass) if students_form.is_valid(): cd = students_form.cleaned_data # TODO: this is too slow O(n) for student in cd['students']: student.klasses.add(klass) # a faster version is # klass.students.add(*cd['students']) # but it keeps raising contraint errors. return redirect(klass.get_admin_absolute_url()) else: students_form = forms.AddStudentToClassForm(klass=klass) return render(request, "administrator/add_student_to_class.html", {'form': students_form, 'klass': klass}) @administrator_required def add_teachers_to_class(request: HttpRequest, pk:int): klass = get_object_or_404(Klass, pk=pk, academic_year__is_active=True) if request.method == "POST": teacher_form = forms.AddTeacherToClassForm(request.POST, instance=klass) if teacher_form.is_valid(): teacher_form.save() return redirect(klass.get_admin_absolute_url()) else: teacher_form = forms.AddTeacherToClassForm(instance=klass) return render(request, "administrator/add_teacher_to_class.html", {'form': teacher_form, 'klass': klass}) def create_course(request): if request.method == "POST": form = forms.CourseCreateForm(request.POST, files=request.FILES) if form.is_valid(): form.save() return redirect("administrator:dashboard") else: form = forms.CourseCreateForm() return render(request, 'administrator/create_course.html', {'form': form}) class CoursetListView(ListView): model = Course template_name = 'administrator/course_list.html' context_object_name = 'courses' def get_queryset(self, *args, **kwargs): return Course.objects.all() def create_notice(request): if request.method == "POST": form = forms.CreateNoticeForm(request.POST, files=request.FILES) if form.is_valid(): form.save() return redirect("administrator:dashboard") else: form = forms.CreateNoticeForm() return render(request, 'administrator/create_notice.html', {'form':form}) def delete_notice_item(request, id): notice = get_object_or_404(NoticeBoard, id=id) notice.delete() return redirect("administrator:dashboard") ```
{ "source": "joetimmerman/GpxTrackPoster", "score": 3 }
#### File: GpxTrackPoster/gpxtrackposter/heatmap_drawer.py ```python import argparse import logging import math from typing import Dict, List, Optional, Tuple import s2sphere # type: ignore import svgwrite # type: ignore from geopy.distance import distance # type: ignore from gpxtrackposter import utils from gpxtrackposter.exceptions import ParameterError from gpxtrackposter.poster import Poster from gpxtrackposter.tracks_drawer import TracksDrawer from gpxtrackposter.xy import XY log = logging.getLogger(__name__) class HeatmapDrawer(TracksDrawer): """Draw a heatmap Poster based on the tracks. Attributes: _center: Center of the heatmap. _radius: Scale the heatmap so that a circle with radius (in KM) is visible. Methods: create_args: Create arguments for heatmap. fetch_args: Get arguments passed. draw: Draw the heatmap based on the Poster's tracks. """ def __init__(self, the_poster: Poster): super().__init__(the_poster) self._center = None self._radius = None self._heatmap_line_width_low: float = 10.0 self._heatmap_line_width_upp: float = 1000.0 self._heatmap_line_width_lower: List[Tuple[float, float]] = [(0.10, 5.0), (0.20, 2.0), (1.0, 0.30)] self._heatmap_line_width_upper: List[Tuple[float, float]] = [(0.02, 0.5), (0.05, 0.2), (1.0, 0.05)] self._heatmap_line_width: Optional[List[Tuple[float, float]]] = self._heatmap_line_width_lower def create_args(self, args_parser: argparse.ArgumentParser) -> None: group = args_parser.add_argument_group("Heatmap Type Options") group.add_argument( "--heatmap-center", dest="heatmap_center", metavar="LAT,LNG", type=str, help="Center of the heatmap (default: automatic).", ) group.add_argument( "--heatmap-radius", dest="heatmap_radius", metavar="RADIUS_KM", type=float, help="Scale the heatmap such that at least a circle with radius=RADIUS_KM is visible " "(default: automatic).", ) group.add_argument( "--heatmap-line-transparency-width", dest="heatmap_line_width", metavar="TRANSP_1,WIDTH_1, TRANSP_2,WIDTH_2, TRANSP_3,WIDTH_3", type=str, help="Define three transparency and width tuples for the heatmap lines or set it to " "`automatic` for automatic calculation (default: 0.1,5.0, 0.2,2.0, 1.0,0.3).", ) # pylint: disable=too-many-branches def fetch_args(self, args: argparse.Namespace) -> None: """Get arguments that were passed, and also perform basic validation on them. For example, make sure the center is an actual lat, lng , and make sure the radius is a positive number. Also, if radius is passed, then center must also be passed. Raises: ParameterError: Center was not a valid lat, lng coordinate, or radius was not positive. ParameterError: Line transparency and width values are not valid """ self._center = None if args.heatmap_center: latlng_str = args.heatmap_center.split(",") if len(latlng_str) != 2: raise ParameterError(f"Not a valid LAT,LNG pair: {args.heatmap_center}") try: lat = float(latlng_str[0].strip()) lng = float(latlng_str[1].strip()) except ValueError as e: raise ParameterError(f"Not a valid LAT,LNG pair: {args.heatmap_center}") from e if not -90 <= lat <= 90 or not -180 <= lng <= 180: raise ParameterError(f"Not a valid LAT,LNG pair: {args.heatmap_center}") self._center = s2sphere.LatLng.from_degrees(lat, lng) if args.heatmap_radius: if args.heatmap_radius <= 0: raise ParameterError(f"Not a valid radius: {args.heatmap_radius} (must be > 0)") if not args.heatmap_center: raise ParameterError("--heatmap-radius needs --heatmap-center") self._radius = args.heatmap_radius if args.heatmap_line_width: if args.heatmap_line_width.lower() == "automatic": self._heatmap_line_width = None else: trans_width_str = args.heatmap_line_width.split(",") if len(trans_width_str) != 6: raise ParameterError(f"Not three valid TRANSPARENCY,WIDTH pairs: {args.heatmap_line_width}") try: self._heatmap_line_width = [] for value in range(0, 5, 2): transparency = float(trans_width_str[value].strip()) width = float(trans_width_str[value + 1].strip()) if transparency < 0 or transparency > 1: raise ParameterError( f"Not a valid TRANSPARENCY value (0 < value < 1): {transparency} in " f"{args.heatmap_line_width}" ) self._heatmap_line_width.append((transparency, width)) except ValueError as e: raise ParameterError(f"Not three valid TRANSPARENCY,WIDTH pairs: {args.heatmap_line_width}") from e def _get_line_transparencies_and_widths(self, bbox: s2sphere.sphere.LatLngRect) -> List[Tuple[float, float]]: if self._heatmap_line_width: return self._heatmap_line_width # automatic calculation of line transparencies and widths low = self._heatmap_line_width_low upp = self._heatmap_line_width_upp lower = self._heatmap_line_width_lower upper = self._heatmap_line_width_upper d = distance( (bbox.lo().lat().degrees, bbox.lo().lng().degrees), (bbox.hi().lat().degrees, bbox.hi().lng().degrees) ).km log.info("Length of diagonal of boundary box %s", str(d)) if d > upp: return upper if d < low: return lower return [ ( lower[0][0] + d / (upp - low) * (upper[0][0] - lower[0][0]), (lower[0][1] + d / (upp - low) * (upper[0][1] - lower[0][1])), ), ( lower[1][0] + d / (upp - low) * (upper[1][0] - lower[1][0]), (lower[1][1] + d / (upp - low) * (upper[1][1] - lower[1][1])), ), ( lower[2][0] + d / (upp - low) * (upper[2][0] - lower[2][0]), (lower[2][1] + d / (upp - low) * (upper[2][1] - lower[2][1])), ), ] def _determine_bbox(self) -> s2sphere.LatLngRect: if self._center: log.info("Forcing heatmap center to %s", str(self._center)) dlat, dlng = 0, 0 if self._radius: er = 6378.1 quarter = er * math.pi / 2 dlat = 90 * self._radius / quarter scale = 1 / math.cos(self._center.lat().radians) dlng = scale * 90 * self._radius / quarter else: for tr in self.poster.tracks: for line in tr.polylines: for latlng in line: d = abs(self._center.lat().degrees - latlng.lat().degrees) dlat = max(dlat, d) d = abs(self._center.lng().degrees - latlng.lng().degrees) while d > 360: d -= 360 if d > 180: d = 360 - d dlng = max(dlng, d) return s2sphere.LatLngRect.from_center_size(self._center, s2sphere.LatLng.from_degrees(2 * dlat, 2 * dlng)) tracks_bbox = s2sphere.LatLngRect() for tr in self.poster.tracks: tracks_bbox = tracks_bbox.union(tr.bbox()) return tracks_bbox def draw(self, dr: svgwrite.Drawing, g: svgwrite.container.Group, size: XY, offset: XY) -> None: """Draw the heatmap based on tracks.""" bbox = self._determine_bbox() line_transparencies_and_widths = self._get_line_transparencies_and_widths(bbox) year_groups: Dict[int, svgwrite.container.Group] = {} for tr in self.poster.tracks: year = tr.start_time().year if year not in year_groups: g_year = dr.g(id=f"year{year}") g.add(g_year) year_groups[year] = g_year else: g_year = year_groups[year] color = self.color(self.poster.length_range, tr.length(), tr.special) for line in utils.project(bbox, size, offset, tr.polylines): for opacity, width in line_transparencies_and_widths: g_year.add( dr.polyline( points=line, stroke=color, stroke_opacity=opacity, fill="none", stroke_width=width, stroke_linejoin="round", stroke_linecap="round", ) ) ```
{ "source": "joetjo/jopLauncher", "score": 3 }
#### File: examples/external/psutil_example.py ```python import psutil from base.jsonstore import GhStorage def getListOfProcessSortedByMemory(): ''' Get list of running process sorted by Memory Usage ''' listOfProcObjects = [] # Iterate over the list for proc in psutil.process_iter(): try: # Fetch process details as dict pinfo = proc.as_dict(attrs=['pid', 'name', 'username', 'exe']) pinfo['vms'] = proc.memory_info().vms / (1024 * 1024) # Append dict to list listOfProcObjects.append(pinfo); except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess): pass # Sort list of dict by key vms i.e. memory usage listOfProcObjects = sorted(listOfProcObjects, key=lambda procObj: procObj['vms'], reverse=True) return listOfProcObjects def main(): print("*** Iterate over all running process and print process ID & Name ***") # Iterate over all running process for proc in psutil.process_iter(): try: # Get process name & pid from process object. processName = proc.name() processID = proc.pid print(processName, ' ::: ', processID) except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess): pass print('*** Create a list of all running processes ***') listOfProcessNames = list() # Iterate over all running processes for proc in psutil.process_iter(): # Get process detail as dictionary pInfoDict = proc.as_dict(attrs=['pid', 'name', 'cpu_percent', 'cpu_times']) # Append dict of process detail in list listOfProcessNames.append(pInfoDict) # Iterate over the list of dictionary and print each elem for elem in listOfProcessNames: print(elem) print('*** Top 10 process with highest memory usage ***') listOfRunningProcess = getListOfProcessSortedByMemory() for elem in listOfRunningProcess[:10]: print(elem) if __name__ == '__main__': main() ``` #### File: jopLauncher/gridgui/application.py ```python from tkinter import Tk, Frame, Label, StringVar, Button, Entry, Checkbutton, Radiobutton, IntVar from tkinter.ttk import Combobox from gridgui.apphandle import GhAppHandle from gridgui.gridbehaviour import GhGridBehaviour class GhAppSetup: bg_header = 'light blue' bg_content = 'light grey' height = 550 min_height = 250 width = 550 min_width = 400 # center top bottom vertical = 'center' # position (digit) or center left right horizontal = 'center' icon = None image_button = True # Must not be false if image_button is false image_text_button = True ''' Generic Application based on grid layout with header / content / footer mandatory : title ( application window title ) With static method to create widget ( and make of common look and feel application ) ''' class GhApp(GhGridBehaviour): def __init__(self, title, exit_command): super().__init__(0, 0) self.title = title self.window = Tk() # Set initial position from setup screen_width = self.window.winfo_screenwidth() screen_height = self.window.winfo_screenheight() if GhAppSetup.horizontal == 'right': x = screen_width - GhAppSetup.width - 10 elif GhAppSetup.horizontal == 'center': x = int((screen_width - GhAppSetup.width) / 2) elif GhAppSetup.horizontal == 'left': x = 0 else: x = int(GhAppSetup.horizontal) if GhAppSetup.vertical == 'bottom': y = screen_height - GhAppSetup.height - 10 elif GhAppSetup.vertical == 'center': y = int((screen_height - GhAppSetup.height) / 2) elif GhAppSetup.vertical == 'top': y = 0 else: y = int(GhAppSetup.vertical) self.window.title(title) self.window.iconbitmap(GhAppSetup.icon) self.window.geometry('{}x{}+{}+{}'.format(GhAppSetup.width, GhAppSetup.height, x, y)) self.window.minsize(GhAppSetup.min_width, GhAppSetup.min_height) if exit_command is not None: self.window.protocol("WM_DELETE_WINDOW", exit_command) # Build app skeleton ( header / content / footer ) self.header = Frame(self.window, bg=GhAppSetup.bg_header, pady=5, padx=5) self.content = Frame(self.window, bg=GhAppSetup.bg_content, padx=0, pady=0) self.footer = Frame(self.window, bg=GhAppSetup.bg_header, pady=3, padx=5) self.window.grid_rowconfigure(1, weight=1) self.window.grid_columnconfigure(0, weight=1) self.header.grid(sticky="ew") self.content.grid(row=1, sticky="nsew") self.footer.grid(row=2, sticky="ew") def getMouseX(self): return self.window.winfo_pointerx() # - self.window.winfo_rootx() def getMouseY(self): return self.window.winfo_pointery() # - self.window.winfo_rooty() def start(self): self.window.mainloop() print("{} closed".format(self.title)) def close(self): self.window.quit() @staticmethod def setupImage(widget, image, align): widget.config(image=image, compound=align) @staticmethod # if text is None, create a StringVar and return it def createLabel(parent, row, col, text=None, anchor='w', justify='left', image=None, colspan=1, width=None, bg=None, debug_name=None): text_variable = None if bg is None: bg = parent.cget('bg') if text is None: text_variable = StringVar() label = Label(parent, text=text, textvariable=text_variable, bg=bg, width=width, image=image, anchor=anchor, justify=justify) if anchor == 'center': anchor = 'w' label.grid(row=row, column=col, sticky=anchor, columnspan=colspan) return GhAppHandle(text_variable, label, debug_name=debug_name) @staticmethod def createButton(parent, row, col, command, text, anchor='w', padx=0, pady=0, width=None, image=None, text_visible=None, debug_name=None): text_variable = StringVar() button = Button(parent, command=command, textvariable=text_variable, anchor=anchor, padx=padx, pady=pady, width=width) button.grid(row=row, column=col, sticky=anchor) if text_visible or \ not GhAppSetup.image_button \ or GhAppSetup.image_text_button \ or image is None: text_variable.set(text) if GhAppSetup.image_button: GhApp.setupImage(button, image, "left") return GhAppHandle(text_variable, button, debug_name=debug_name) @staticmethod def createRadio(parent, row, col, command, text=None, anchor='w', padx=5, debug_name=None): radiovar = IntVar() radio = Radiobutton(parent, bg=parent.cget('bg'), text=text, command=command, variable=radiovar, onvalue=1, anchor=anchor, padx=padx) radio.grid(row=row, column=col, sticky=anchor) return GhAppHandle(radiovar, radio, debug_name=debug_name) @staticmethod def createCheckbox(parent, row, col, command, text=None, anchor='w', padx=5, debug_name=None): check_var = IntVar() check = Checkbutton(parent, bg=parent.cget('bg'), text=text, command=command, variable=check_var, onvalue=1, anchor=anchor, padx=padx) check.grid(row=row, column=col, sticky=anchor) return GhAppHandle(check_var, check, debug_name=debug_name) @staticmethod def createCombobox(parent, row, col, command, values, anchor='w', width=None, colspan=1, read_only=True, debug_name=None): combo_var = StringVar() combo = Combobox(parent, width=width, textvariable=combo_var) combo.grid(row=row, column=col, columnspan=colspan, sticky=anchor) combo['values'] = values combo.bind('<<ComboboxSelected>>', command) if read_only: combo['state'] = 'readonly' return GhAppHandle(combo_var, combo, debug_name=debug_name) @staticmethod def createEntry(parent, row, col, width, defaultvalue, padx=5, command=None, colspan=1, sticky="w", debug_name=None): entry_var = StringVar() entry_var.set(defaultvalue) entry = Entry(parent, textvariable=entry_var, width=width, validatecommand=command) entry.grid(row=row, column=col, columnspan=colspan, padx=padx, sticky=sticky) return GhAppHandle(entry_var, entry, debug_name=debug_name) ``` #### File: jopLauncher/gridgui/gridbehaviour.py ```python class GhGridBehaviour: def __init__(self, row, col): self.current_row = row self.current_col = col def row_col_reset(self, row = 0, col = 0): self.current_row = row self.current_col = col # return current and reset value to row def row_reset(self, row = 0): current = self.current_row self.current_row = row return current # return current and reset value to col def col_reset(self, col = 0): current = self.current_col self.current_col = col return current def row(self): return self.current_row # Return current col def col(self): return self.current_col # Return next row to use and increment row def row_next(self): self.current_row += 1 return self.current_row - 1 # Return next col to use and increment col def col_next(self): self.current_col += 1 return self.current_col - 1 def debug(self, ctx): print("{} : {}, {}".format(ctx, self.row(), self.col())) ``` #### File: core/migrations/migrate.py ```python from JopLauncherConstant import JopLauncher from launcher.log import Log def nop(storage, version): Log.debug("| no data migration needed to upgrade to version {}".format(version)) def toV2(storage, version): last_session = storage.data()['last_sessions'] for s in last_session: s.append("") # Launcher s.append("") # platform s.append("") # custom command s.append("") # custom parameters def toV3(storage, version): games = storage.data()['Games'] for key, value in games.items(): value["type"] = "" def toV4(storage, version): games = storage.data()['Games'] for key, value in games.items(): value["status"] = "" try: value["sheet"] = value["note"] except KeyError: value["sheet"] = "" value["note"] = "" class StorageVersion: VERSION_LIST = [0, 1, 2, 4, JopLauncher.DB_VERSION] MIGRATIONS_STEP = [nop, nop, toV2, toV3, toV4] @staticmethod def check_migration(storage, to): if storage.getVersion() != to: current = storage.getVersion() Log.info("Storage migration from {} to {}".format(current, to)) for idx in range(0, len(StorageVersion.VERSION_LIST)): v = StorageVersion.VERSION_LIST[idx] if current < v: StorageVersion.MIGRATIONS_STEP[v](storage, v) storage.setVersion(to) storage.save() ``` #### File: core/private/process.py ```python import os import re from datetime import datetime from JopLauncherConstant import JopLauncher, JopSETUP from launcher.log import Log class ProcessInfo: game_extension = JopSETUP.get(JopSETUP.GAME_EXTENSION) def __init__(self, pinfo): self.game_pattern = JopSETUP.get(JopSETUP.GAME_PATTERN) self.pinfo = pinfo self.pid = pinfo['pid'] self.name = pinfo['name'] self.path = pinfo['exe'] self.originName = self.name self.game = self.gameDetector(self.path) self.game_platform = self.platformDetector(self.path) self.other = self.otherDetector(self.path) self.storeEntry = None self.started = None self.duration = None def getPid(self): return self.pid def getName(self): return self.name def getOriginName(self): return self.originName def forceName(self, map_name): self.name = ProcessInfo.getMapName(self.path, map_name) @staticmethod def getMapName(path, map_name): if map_name == 'PARENT': parent = os.path.dirname(path).split(os.path.sep) return parent[len(parent) - 1] else: return map_name def removeExtension(self): self.name = ProcessInfo.removeGameExtension(self.name) @staticmethod def removeGameExtension(name): if ProcessInfo.game_extension in name: return name[0:name.rfind(ProcessInfo.game_extension)] else: return name def getPath(self): return self.path def isGame(self): return self.game def gameDetector(self, path): return (self.path is not None) and re.search(self.game_pattern, path, re.IGNORECASE) def platformDetector(self, path): if self.path is None: return None for key in JopLauncher.GAME_PLATFORMS: if re.search(key, path, re.IGNORECASE): return JopLauncher.GAME_PLATFORMS[key] def otherDetector(self, path): if self.path is None: return None for key in JopLauncher.COM_APP: if re.search(key, path, re.IGNORECASE): return JopLauncher.COM_APP[key] def setStarted(self): if self.started is None: self.started = datetime.now() else: Log.info("/!\\ Start/Stop error: {} was already known to be started".format(self.name)) def setStopped(self): if self.started is None: Log.info("/!\\ Start/Stop error: {} was not known to be started".format(self.name)) else: self.duration = datetime.now() - self.started self.started = None Log.info("{} has run for {}".format(self.name, self.duration)) return self.duration def getPlayedTime(self): return self.duration def hasData(self): return self.storeEntry is not None def setStoreEntry(self, entry): self.storeEntry = entry def getStoreEntry(self): return self.storeEntry ``` #### File: launcher/core/procevent.py ```python from abc import ABC, abstractmethod from launcher.log import Log class EventListener(ABC): pass @abstractmethod def newGame(self, game): Log.debug("[ABC Impl] New game detected {} ({})".format(game.getName(), game.process.getPath())) @abstractmethod def refreshDone(self, current_game, platform_list_updated, others): pass @abstractmethod def endGame(self, proc): Log.debug("[ABC Impl] End game detected {} ({})".format(proc.getName(), proc.getPath())) ``` #### File: launcher/gui/menu.py ```python from JopLauncherConstant import JopLauncher, JopSETUP from base.fileutil import GhFileUtil from gridgui.appmenu import GhAppMenu from launcher.gui.strings import Strings class PlatformLauncher: def __init__(self, menu, gui, entry, command): self.gui = gui self.entry = entry self.command = command menu.add("{} {}".format(Strings.LAUNCH_PLATFORM_MENU, entry), self.apply) def apply(self): self.gui.applyLaunchPlatform(self.entry, self.command) class MainMenu(GhAppMenu): def __init__(self, parent, app, gui): super().__init__(parent, app) self.add(Strings.MENU_EXCLUDED, gui.applyShowExcluded) self.add(Strings.MENU_LAUNCHER, gui.applyShowLauncher) self.addSep() for key in JopLauncher.GAME_PLATFORMS: entry = JopLauncher.GAME_PLATFORMS[key] cmd = JopSETUP.get(entry) if GhFileUtil.fileExist(cmd[0]): PlatformLauncher(self, gui, entry, cmd) self.addSep() self.add(Strings.MENU_COMP_APP, gui.applyLaunchCompApp) self.add(Strings.MENU_MARKDOWN_REPORT, gui.updateMarkdownReport) self.add(Strings.MENU_ICONFX_APP, gui.applyLaunchIconExtract) self.addSep() self.add(Strings.EXIT, gui.applyExit) ```
{ "source": "joetjo/MarkdownHelper", "score": 2 }
#### File: MarkdownHelper/markdown/markdown.py ```python from base.setup import GhSetup from pathlib import Path from markdown.markdownfile import MhMarkdownFile from markdown.report import MhReport # # Setup from $home/.markdownHelper # ( Sample provided in example.markdownHelper.json ) # class MarkdownHelper: def __init__(self): self.SETUP = GhSetup('markdownHelper') self.VAULT = self.SETUP.getBloc("global")["base_folder"] self.IGNORE = self.SETUP.getBloc("global")["ignore"] self.REPORTS = self.SETUP.getBloc("global")["reports"] self.SUBCONTENT = self.SETUP.getBloc("global")["shared_contents"] self.FILES = dict() self.SORTED_FILES = dict() self.TAGS = dict() # folder: Path # shift: String ( String length provide the indentation level ) def processFolder(self, folder, shift): print("{}{}".format(folder, shift)) entryCount = 0 # Loop on file in current folder for entry in folder.iterdir(): if entry.is_file() and entry.name.endswith(".md") and entry.name not in self.IGNORE: key = entry.name[0:len(entry.name) - 3] entryCount = entryCount + 1 mdfile = MhMarkdownFile(key, entry) self.FILES[key] = mdfile print("{}>{} {}".format(shift, key, mdfile.tags)) if len(mdfile.tagsComment) > 0: print("{}>>>> comments {}".format(shift, mdfile.tagsComment)) for tag in mdfile.tags: self.TAGS[tag] = tag # Loop on sub folder for entry in folder.iterdir(): if not entry.is_file() and entry.name not in self.IGNORE: entryCount = entryCount + self.processFolder(entry, "{}{}".format(shift, " ")) return entryCount def markdown(self): print(" | Markdown vault: {}\n====".format(self.VAULT)) count = self.processFolder(Path(self.VAULT), "") print("\n=================") print("> {} md files detected".format(count)) print("> {} tags detected".format(len(self.TAGS))) for key in sorted(self.FILES): self.SORTED_FILES[key] = self.FILES[key] try: for report in self.REPORTS: print("\n=================\nProcessing report \"{}\"\n=================\n".format(report["title"])) MhReport(report, self.VAULT, self.SORTED_FILES, self.TAGS, self.SUBCONTENT).generate() except Exception as e: raise ```
{ "source": "joetoth/metacademy-fortune", "score": 3 }
#### File: joetoth/metacademy-fortune/generate.py ```python import os import sys from os import listdir from os.path import isfile, join from subprocess import call def generate(): fortune = '' dir = 'metacademy-content/concepts' for f in listdir('metacademy-content/concepts'): tfile = os.path.join(dir, f, 'title.txt') sfile = os.path.join(dir, f, 'summary.txt') if os.path.exists(tfile): with open(tfile, 'r') as t: title = t.read().strip().upper() if os.path.exists(sfile): with open(sfile, 'r') as s: summary = s.read().strip() fortune += '{}: {}\nhttps://metacademy.org/graphs/concepts/{}\n%\n'.format(title, summary, f) with open('metacademy-fortune', 'w') as f: f.write(fortune) call(['strfile', 'metacademy-fortune', 'metacademy-fortune.dat']) if __name__ == "__main__": generate() ```
{ "source": "joetric/python-omgeo", "score": 3 }
#### File: python-omgeo/omgeo/postprocessors.py ```python from omgeo.processor import _Processor import math from operator import attrgetter # Python 2/3 compatibility: set up 'unicode' for use in string type checking try: unicode except NameError: unicode = str class _PostProcessor(_Processor): """Takes, processes, and returns list of geocoding.places.Candidate objects.""" def process(self, candidates): raise NotImplementedError( 'PostProcessor subclasses must implement process().') def is_case_sensitive(self): try: return 'CS' if self.case_sensitive else 'CI' except ValueError: return 'NA' def is_exact(self): try: return 'EXACT_MATCH' if self.exact_match else 'INEXACT_MATCH' except ValueError: return 'NA' class LocatorFilter(_PostProcessor): """ PostProcessor used to ditch results with lousy locators. :arg list good_locators: A list of locators to accept results from (default []) """ def __init__(self, good_locators): """ :arg list good_locators: A list of locators to accept results from (default None) """ self.good_locators = good_locators def process(self, candidates): """ :arg list candidates: list of Candidate instances """ for c in candidates[:]: if c.locator not in self.good_locators: # TODO: search string, i.e. find "EU_Street_Name" in "EU_Street_Name.GBR_StreetName" candidates.remove(c) return candidates def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.good_locators) class LocatorSorter(_PostProcessor): """ PostProcessor used to sort by locators """ def __init__(self, ordered_locators): """ :arg list ordered_locators: a list of :py:attr:`Candidate.locator` values placed in the desired order, such as ``rooftop``, ``interpolation``, or ``postal``. """ self.ordered_locators = ordered_locators def process(self, unordered_candidates): """ :arg list candidates: list of Candidate instances """ ordered_candidates = [] # make a new list of candidates in order of ordered_locators for locator in self.ordered_locators: for uc in unordered_candidates[:]: if uc.locator == locator: ordered_candidates.append(uc) unordered_candidates.remove(uc) # add all the candidates that are still left # (whose locator values are not in ordered_locators) # and return the new list return ordered_candidates + unordered_candidates def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.ordered_locators) class AttrRename(_PostProcessor): """ PostProcessor used to rename the given attribute, with unspecified attributes appearing at the end of the list. """ def __init__(self, attr, attr_map=None, exact_match=False, case_sensitive=False): """ :arg str attr: Name of the attribute :arg dict attr_map: Map of old names : new names. :arg bool exact_match: :arg bool case_sensitive: """ self.attr = attr self.attr_map = attr_map if attr_map is not None else {} self.exact_match = exact_match self.case_sensitive = case_sensitive def process(self, candidates): """ :arg list candidates: list of Candidate instances :returns: list of Candidate instances with modified values for the given attribute """ def _cc(str_): # change case return str_ if self.case_sensitive else str_.lower() new_candidates = [] for c in candidates[:]: attr_val = getattr(c, self.attr) if self.exact_match is False and any(_cc(k) in _cc(attr_val) for k in self.attr_map): map_key = [k for k in self.attr_map if _cc(k) in _cc(attr_val)][0] map_val = self.attr_map[map_key] setattr(c, self.attr, map_val) elif _cc(attr_val) in [_cc(a) for a in self.attr_map]: map_key = [k for k in self.attr_map if _cc(k) == _cc(attr_val)][0] setattr(c, self.attr, self.attr_map[map_key]) new_candidates.append(c) return new_candidates def __repr__(self): return '<%s: %s %s Map of %s (old:new): %s>' \ % (self.__class__.__name__, self.is_exact(), self.is_case_sensitive(), self.attr, self.attr_map) class UseHighScoreIfAtLeast(_PostProcessor): """ Limit results to results with at least the given score, if and only if one or more results has, at least, the given score. If no results have at least this score, all of the original results are returned intact. """ def __init__(self, min_score): self.min_score = min_score def process(self, candidates): """ :arg list candidates: list of Candidates :returns: list of Candidates where score is at least min_score, if and only if one or more Candidates have at least min_score. Otherwise, returns original list of Candidates. """ high_score_candidates = [c for c in candidates if c.score >= self.min_score] if high_score_candidates != []: return high_score_candidates return candidates def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.min_score) class ScoreSorter(_PostProcessor): """PostProcessor class to sort :py:class:`Candidate` scores.""" def __init__(self, reverse=True): """ :arg bool reverse: indicates if the scores should be sorted in descending order (e.g. 100, 90, 80, ...) (default ``True``) """ self.reverse = reverse def process(self, candidates): """ :arg list candidates: list of Candidates :returns: score-sorted list of Candidates """ return sorted(candidates, key=attrgetter('score'), reverse=self.reverse) def __repr__(self): order = 'high to low' if self.reverse else 'low to high' return '<%s: %s>' % (self.__class__.__name__, order) class AttrSorter(_PostProcessor): """ PostProcessor used to sort by a the given attribute, with unspecified attributes appearing at the end of the list. :arg list ordered_values: A list of values placed in the desired order. :arg str attr: The attribute on which to sort. """ def __init__(self, ordered_values=None, attr='locator'): self.ordered_values = [] if ordered_values is None else ordered_values self.attr = attr def process(self, unordered_candidates): ordered_candidates = [] # make a new list of candidates in order of ordered_values for value in self.ordered_values: for uc in unordered_candidates[:]: if getattr(uc, self.attr) == value: ordered_candidates.append(uc) unordered_candidates.remove(uc) # add all the candidates that are still left # and return the new list return ordered_candidates + unordered_candidates def __repr__(self): return '<%s: %s sorted by %s>' % \ (self.__class__.__name__, self.attr, self.ordered_values) class AttrReverseSorter(_PostProcessor): """ PostProcessor used to sort by the given attributes in reverse order, with unspecified attributes appearing at the end of the list. This is good to use when a list has already been defined in a script and you are too lazy to use the reverse() function, or don't want to in order to maintain more readable code. """ def __init__(self, ordered_values=None, attr='locator'): """ :arg list ordered_values: A list of values placed in the reverse of the desired order. :arg str attribute: The attribute on which to sort """ self.ordered_values = [] if ordered_values is None else ordered_values self.attr = attr def process(self, unordered_candidates): ordered_values = self.ordered_values ordered_values.reverse() sorter = AttrSorter(ordered_values, self.attr) return sorter.process(unordered_candidates) def __repr__(self): return '<%s: %s reverse sorted by %s>' % \ (self.__class__.__name__, self.attr, self.ordered_values) class AttrMigrator(_PostProcessor): """ PostProcessor used to migrate the given attribute to another attribute. """ def __init__(self, attr_from, attr_to, attr_map=None, exact_match=False, case_sensitive=False): self.attr_from = attr_from self.attr_to = attr_to self.attr_map = {} if attr_map is None else attr_map self.exact_match = exact_match self.case_sensitive = case_sensitive def process(self, candidates): def _cc(str_): # change case if self.case_sensitive is False: return str_.lower() return str_ new_candidates = [] for c in candidates[:]: from_val = getattr(c, self.attr_from) if self.exact_match is False and any(_cc(k) in _cc(from_val) for k in self.attr_map): map_key = [k for k in self.attr_map if _cc(k) in _cc(from_val)][0] map_val = self.attr_map[map_key] setattr(c, self.attr_to, map_val) elif _cc(from_val) in [_cc(a) for a in self.attr_map]: map_key = [k for k in self.attr_map if _cc(k) == _cc(from_val)][0] setattr(c, self.attr_to, self.attr_map[map_key]) new_candidates.append(c) return new_candidates def __repr__(self): return '<%s: %s -> %s %s %s>' % \ (self.__class__.__name__, self.attr_from, self.attr_to, self.is_exact(), self.is_case_sensitive()) class AttrFilter(_PostProcessor): """ PostProcessor used to filter out results without desired attribute values. """ def __init__(self, good_values=[], attr='locator', exact_match=True): """ :arg list good_values: A list of values whose candidates we will accept results from (default []) :arg string attr: The attribute type on which to filter :arg bool exact_match: True if attribute must match a good value exactly. False if the attribute can be a substring in a good value. In other words, if our Candidate attribute is 'US_Rooftop' and one of the good_values is 'Rooftop', we will keep this candidate. """ self._init_helper(vars()) def process(self, candidates): if self.exact_match is True: return [c for c in candidates if getattr(c, self.attr) in self.good_values] else: return [c for c in candidates if any(gv in getattr(c, self.attr) for gv in self.good_values)] def __repr__(self): return '<%s: %s %s in %s>' % \ (self.__class__.__name__, self.is_exact(), self.attr, self.good_values) class AttrExclude(_PostProcessor): """ PostProcessor used to filter out results with unwanted attribute values. """ def __init__(self, bad_values=[], attr='locator', exact_match=True): """ :arg list bad_values: A list of values whose candidates we will not accept results from (default []) :arg string attr: The attribute type on which to filter :arg bool exact_match: True if attribute must match a bad value exactly. False if the bad value can be a substring of the attribute value. In other words, if our Candidate attribute is 'Postcode3' and one of the bad values is 'Postcode' because we want something more precise, like 'Address', we will not keep this candidate. """ self._init_helper(vars()) def process(self, candidates): if self.exact_match is True: return [c for c in candidates if getattr(c, self.attr) not in self.bad_values] else: return [c for c in candidates if not any(bv in getattr(c, self.attr) for bv in self.bad_values)] def __repr__(self): return '<%s: %s %s in %s>' % \ (self.__class__.__name__, self.is_exact(), self.attr, self.bad_values) class AttrListIncludes(_PostProcessor): """ PostProcessor used to filter out results without desired attribute list items. Similar to `AttrFilter` but operates on attributes containing lists instead of scalar values. """ def __init__(self, good_values=[], attr='entity_types'): """ :arg list good_values: A list of values, one of which must be in the attribute being filtered on (default []) :arg string attr: The attribute on which to filter """ self._init_helper(vars()) def process(self, candidates): return [c for c in candidates if any(gv in getattr(c, self.attr) for gv in self.good_values)] def __repr__(self): return '<%s: %s in %s>' % \ (self.__class__.__name__, self.attr, self.good_values) class AttrListExcludes(_PostProcessor): """ PostProcessor used to ditch results with unwanted attribute list items. Similar to `AttrExclude` but operates on attributes containing lists instead of scalar values. """ def __init__(self, bad_values=[], attr='entity_types'): """ :arg list bad_values: A list of values, which cannot be in the attribute being filtered on (default []) :arg string attr: The attribute on which to filter """ self._init_helper(vars()) def process(self, candidates): return [c for c in candidates if not any(bv in getattr(c, self.attr) for bv in self.bad_values)] def __repr__(self): return '<%s: %s in %s>' % \ (self.__class__.__name__, self.attr, self.bad_values) class DupePicker(_PostProcessor): """ PostProcessor used to choose the best candidate(s) where there are duplicates (or more than one result that is very similar*) among high-scoring candidates, such as an address. * When comparing attribute values, case and commas do not count. Usage Example: ================ ===== ======= match_addr score locator ================ ===== ======= 123 N Wood St 90 roof 123 S Wood St 90 address 123 N WOOD ST 77 address 123, S Wood ST 85 roof ================ ===== ======= Above, the first two results have the highest scores. We could just use those, because one of the two likely has the correct address. However, the second result does not have the most precise location for 123 S. Wood Street. While the fourth result does not score as high as the first two, its locator method is more desirable. Since the addresses are the same, we can assume that the fourth result will provide better data than the second. We can get a narrowed list as described above by running the process() method in the DupePicker() PostProcessor class as follows, assuming that the "candidates" is our list of candidates:: dp = DupePicker( attr_dupes='match_addr', attr_sort='locator', ordered_list=['rooftop', 'address_point', 'address_range']) return dp.process(candidates) Output: ================ ===== ======= match_addr score locator ---------------- ----- ------- 123 N Wood St 90 roof 123, S Wood ST 85 roof ================ ===== ======= Output with return_clean=True: ================ ===== ======= match_addr score locator ---------------- ----- ------- 123 N WOOD ST 90 roof 123 S WOOD ST 85 roof ================ ===== ======= """ def __init__(self, attr_dupes, attr_sort, ordered_list, return_clean=False): """ :arg str attr_dupes: Property on which to look for duplicates. :arg str attr_sort: Property on which to sort using ordered_list :arg list ordered_list: A list of property values, from most desirable to least desirable. :arg bool return_clean: Boolean indicating whether or not to homogenize string values into uppercase without commas. """ self._init_helper(vars()) def process(self, candidates): def cleanup(str_): """Returns string in uppercase and free of commas.""" if type(str_) in (str, unicode): return str_.replace(',', '').upper() return str_ # if there are no candidates, then there is nothing to do here if candidates == []: return [] hi_score = ScoreSorter().process(candidates)[0].score hi_score_candidates = AttrFilter([hi_score], 'score').process(candidates) new_candidates = [] for hsc in hi_score_candidates: # get candidates with same address, including the current one: attr_match = self.attr_dupes attr_match_test_val = cleanup(getattr(hsc, attr_match)) # make a list of candidates that have essentially the same value for attr_match (like 123 Main & 123 MAIN) matching_candidates = [mc for mc in candidates if cleanup(getattr(mc, attr_match)) == attr_match_test_val] # sort them in the desired order so the first one has the best attribute value matching_candidates = AttrSorter(self.ordered_list, self.attr_sort).process(matching_candidates) # the best value available can be grabbed from the top result: best_attr_value = getattr(matching_candidates[0], attr_match) # now we can filter results that have best_attr_value: new_candidates_queue = AttrFilter([best_attr_value], attr_match).process(matching_candidates) # and append each one to our list of new candidates, if it's not there already: for nc in [nc for nc in new_candidates_queue if nc not in new_candidates]: if self.return_clean: new_candidates.append(cleanup(nc)) else: new_candidates.append(nc) return new_candidates def __repr__(self): repr_ = '%s: SORT BY %s %s -> GROUP BY %s' % \ (self.__class__.__name__, self.attr_sort, self.ordered_list, self.attr_dupes) if self.return_clean: repr_ += ' -> CLEAN' return '<%s>' % repr_ class GroupBy(_PostProcessor): """ Groups results by a certain attribute by choosing the first occurrence in the list (this means you will want to sort ahead of time). attr -- The attribute on which to combine results or a list or tuple of attributes where all attributes must match between candidates. """ def __init__(self, attr='match_addr'): self._init_helper(vars()) def process(self, candidates): if type(self.attr) in (tuple, list): return GroupByMultiple(attrs=self.attr).process(candidates) keepers = [] for c_from_all in candidates[:]: matches = [c for c in candidates if getattr(c, self.attr) == getattr(c_from_all, self.attr)] if matches != []: keepers.append(matches[0]) for m in matches: candidates.remove(m) return keepers def __repr__(self): return '<%s: %s>' % \ (self.__class__.__name__, self.attr) class GroupByMultiple(_PostProcessor): """ Groups results by a certain attribute by choosing the first occurrence in the list of candidates (this means you will want to sort ahead of time). attrs -- A list or tuple of attributes on which to combine results """ def __init__(self, attrs): self._init_helper(vars()) def process(self, candidates): keepers = [] for c_from_all in candidates[:]: matches = [c for c in candidates if all([getattr(c, attr) == getattr(c_from_all, attr) for attr in self.attrs])] if matches != []: keepers.append(matches[0]) for m in matches: candidates.remove(m) return keepers def __repr__(self): return '<%s: %s>' % \ (self.__class__.__name__, self.attrs) class SnapPoints(_PostProcessor): """ Chooses the first of two or more points where they are within the given sphere-based great circle distance. """ def __init__(self, distance=50): """ :arg distance: maximum distance (in metres) between two points in which the the first will be kept and the second thrown out (default 50). """ self.distance = distance def _get_distance(self, pnt1, pnt2): """Get distance in meters between two lat/long points""" lat1, lon1 = pnt1 lat2, lon2 = pnt2 radius = 6356752 # km dlat = math.radians(lat2 - lat1) dlon = math.radians(lon2 - lon1) a = math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos(math.radians(lat1)) \ * math.cos(math.radians(lat2)) * math.sin(dlon / 2) * math.sin(dlon / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) d = radius * c return d def _points_within_distance(self, pnt1, pnt2): """Returns true if lat/lon points are within given distance in metres.""" if self._get_distance(pnt1, pnt2) <= self.distance: return True return False def process(self, candidates): keepers = [] for c_from_all in candidates[:]: matches = [c for c in candidates if self._points_within_distance((c_from_all.x, c_from_all.y), (c.x, c.y))] if matches != []: keepers.append(matches[0]) for m in matches: candidates.remove(m) return keepers def __repr__(self): return '<%s: distance=%sm>' % \ (self.__class__.__name__, self.distance) ```
{ "source": "JoeTrubenstein/peep-show-api", "score": 2 }
#### File: peep-show-api/restapp/views.py ```python from django.contrib.auth.models import User, Group from restapp.models import Character from rest_framework import viewsets from restapp.serializers import UserSerializer, GroupSerializer, CharacterSerializer from rest_framework.permissions import IsAuthenticatedOrReadOnly, IsAuthenticated from django.shortcuts import render from django.utils import timezone from django.views import generic class UserViewSet(viewsets.ModelViewSet): permission_classes = (IsAuthenticated,) """ API endpoint that allows users to be viewed or edited. """ queryset = User.objects.all().order_by('-date_joined') serializer_class = UserSerializer class GroupViewSet(viewsets.ModelViewSet): permission_classes = (IsAuthenticated,) """ API endpoint that allows groups to be viewed or edited. """ queryset = Group.objects.all() serializer_class = GroupSerializer class CharacterViewSet(viewsets.ModelViewSet): permission_classes = (IsAuthenticatedOrReadOnly,) """ API endpoint that allows groups to be viewed or edited. """ queryset = Character.objects.all() serializer_class = CharacterSerializer def home_page(request): # posts = Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date') return render(request, 'restapp/index.html', {'data': " "}) ```
{ "source": "joeugenio/mybinder", "score": 3 }
#### File: lognormal/.ipynb_checkpoints/lognormal_vs_normal-checkpoint.py ```python import numpy as np import matplotlib.pyplot as plt # Lognormal parameters S = 1 MU = 0 log_mean = np.exp(MU+(S**2/2)) log_sd = np.sqrt(np.exp(2*MU+S**2)*(np.exp(S**2)-1)) # Lognormal PDF def p_lognorm(x, sigma=1, mu=0): pdf = np.zeros(x.shape) i = 0 for j in x: if (j > 0): pdf[i] = (1/(j*sigma*np.sqrt(2*np.pi)))*np.exp(-.5*((np.log(j)-mu)/sigma)**2) i += 1 return pdf # Normal PDF def p_norm(x, sd=1, m=0): return (1/(sd*np.sqrt(2*np.pi)))*np.exp(-.5*((x-m)/sd)**2) # Laplace PDF def p_lap(x, sd=1, m=0): a = np.sqrt(2)/sd return (a/2)*np.exp(-a*np.abs(x-m)) n = np.linspace(-10,10,1000) print('Lognormal pdf with mean {:.2f} ({:.2f}) and SD {:.2f}'.format(0,log_mean, log_sd)) p1 = p_lognorm(n+log_mean) print('Gaussian pdf with mean {:.2f} and SD {:.2f}'.format(0, log_sd)) p2 = p_norm(n, sd=log_sd) print('Laplace pdf with mean {:.2f} and SD {:.2f}'.format(0, log_sd)) p3 = p_lap(n, sd=log_sd) plt.plot(n,p1,label='lognormal') plt.plot(n,p2,label='gaussiana') plt.plot(n,p3,label='laplace') plt.axvline(0, 0, 1, ls='--', color='k',linewidth=1) plt.legend() plt.show() ```
{ "source": "joeugenio/noma_simulation", "score": 3 }
#### File: noma_simulation/nomalib/channel.py ```python import numpy as np from logzero import logger import nomalib.constants as const # classes class PropagationModel: ''' Distance dependent propagation model ''' def __init__(self, env=const.ENV, fc=const.FC): self.env = env self.fc = fc def attenuation(self, d): try: d_db = np.log10(d) except ZeroDivisionError: d_db = float('-Inf') if (self.env=='urban' and self.fc==900): l = 120.9 + 36.7*d_db elif (self.env=='urban' and self.fc==2000): l = 128.1 + 36.7*d_db elif (self.env=='rural' and self.fc==900): l = 95.5 + 34.1*d_db else: logger.error('Invalid frequency or environment') l = 'None' return l class Shadowing: ''' Shadowing 2D model ''' pass class Noise: ''' Noise signal ''' class Interference: ''' Interference from others cells ''' ``` #### File: noma_simulation/nomalib/devices.py ```python import numpy as np import constants as const # classes class Coordinate: ''' Coordinate x and y''' def __init__(self,x,y): self.x = x self.y = y class BSAntenna: ''' Base Station Antenna ''' def __init__(self, theta_min, bs_gain = const.BSG): self.theta_min = theta_min self.bs_gain = bs_gain ''' Radiation Pattern ''' def radiation_pattern(self, theta, theta3db=65, att_max=20): a = 12*(theta/np.radians(theta3db))**2 return (-1)*np.min([a,att_max]) class UEAntenna: ''' User Equipment Antenna ''' def __init__(self, ue_gain = const.UEG): self.ue_g = ue_gain ''' Radiation Pattern Omni-directional''' def radiation_pattern(self, theta): return 0 class BaseStation: ''' Base Station - eNodeB ''' def __init__(self, id:str, coord:Coordinate, hight=const.BSH, power=const.BSPW, n_sector=const.): self.id = id self.h = hight self.pwr = power self.n_sec = n_sector self.coord = coord self.ue_id = [] class UserEquipment: ''' Equipment of User ''' def __init__(self, id:str, coord:Coordinate, hight=UEH, power=UEPW): self.id = id self.coord = coord self.h = hight self.pwr = power self.bs_id = None def received_power(self): rx_pwr = tx_pwr-np.max() ```
{ "source": "Jo-Eunsu/auto-funny-subtitle", "score": 2 }
#### File: Jo-Eunsu/auto-funny-subtitle/FCPX_XML.py ```python from typing import List, NoReturn, Tuple, TypeVar from xml.etree.ElementTree import Element, ElementTree, SubElement, parse from Template_JSON import Template_JSON from AzureAnalytics import AzureAnalytics EMPTY = -1 # FCPX XML 처리에 관한 클래스 class FCPX_XML: # 입력받은 XML 파일을 파싱한 결과를 저장할 ElementTree 객체 __xml_tree = None # 위 객체의 루트 __xml_root = None # 템플릿 JSON 파일 자체를 담는 객체 __funny_title_text_templates = None # 기본 생성자: XML을 불러와 ElementTree 자료형으로 저장, Azure AI API의 클라이언트 정보 불러오기 def __init__(self, input_xml_dest: str) -> None: # input_xml_dest 경로에 있는 xml 파일을 파싱한 데이터를 __xml_tree에 저장 self.__xml_tree = parse(input_xml_dest) # __xml_tree 객체의 루트 노드 찾기 self.__xml_root = self.__xml_tree.getroot() # Azure Text Analytics 서비스의 클라이언트 객체 얻기 self.__api_client = AzureAnalytics().get_client() # 수정된 XML 파일의 이름을 따로 지정 self.__input_xml_dest = input_xml_dest # 템플릿 정보 파일(JSON)을 처리하는 객체 생성 self.__funny_title_text_templates = Template_JSON() # xml이 감정분석으로 바뀌었는지 확인하는 플래그 변수 self.xml_modified = False print("XML 처리 객체", self.__input_xml_dest, "생성됨\n") # 등록한 모든 템플릿에 대해 effect 태그 재작성 self.__effect_xml_modifiction() def __del__(self): print("XML 처리 객체", self.__input_xml_dest, "삭제됨\n") # XML의 모든 자막 태그 엘리먼트(Element)를 불러오는 함수 def loadAllElements(self) -> list: # 모든 자막 태그 엘리먼트를 담는 리스트 title_elements = [] # asset-clip 태그를 찾기 # asset-clip 태그는 파이널컷에서 메인 스토리라인에 들어가는 각 동영상 클립의 정보 for asset_clip in self.__xml_root.iter("asset-clip"): for title in asset_clip.iter("title"): # 일반자막 엘리먼트 (부모 엘리먼트 포함) 추출 nodeDict = {"node": title, "parent": asset_clip} title_elements.append(nodeDict) return title_elements # XML에서 새로 예능자막 템플릿을 적용한 태그를 찾는 함수 def loadAllVideoElements(self) -> list: # 모든 예능자막 태그 엘리먼트를 담는 리스트 video_elements = [] # 모든 자막 템플릿의 ID 정보 저장 templateIDs = [] for template in self.__funny_title_text_templates.get_all_template(): templateIDs.append(template["effect"]["id"]) for asset_clip in self.__xml_root.iter("asset-clip"): for video in asset_clip.iter("video"): # Generator 템플릿이 적용된 클립 중 예능자막 템플릿이 적용된 엘리먼트를 찾아 예능자막 엘리먼트 (부모 엘리먼트 포함) 추출 if video.attrib["ref"] in templateIDs: nodeDict = {"node": video, "parent": asset_clip} video_elements.append(nodeDict) return video_elements # 각 자막 텍스트에 대해 감정분석 def xml_text_analysis(self, title: Element, parent: Element) -> None: # 자막에서 텍스트 추출 title_text = title.find("text").findtext("text-style") # 자막 분석 결과(감정 텍스트)와 각 감정별 템플릿의 번호를 추출 result, template_number = self.__sentiment_analysis(title_text) # 기존 자막 템플릿을 삭제하고 분석 결과를 XML에 반영 (video 태그 추가) parent.remove(title) self.title_xml_modification(parent, title, result, template_number) # Azure AI Text Analytics 서비스(client)를 이용해 텍스트(documents)의 감정(긍정, 중립, 부정) 분석 def __sentiment_analysis(self, document: str): # API를 사용하여 입력받은 텍스트의 감정을 분석하고, 분석 결과를 response에 저장 response = (self.__api_client.analyze_sentiment([document], language="ko")[0]) # 텍스트별 최종 감정을 저장하는 리스트, 감정별 자막 번호를 지정하는 변수 result_emotion: str result_emotion_num: int positive_score = neutral_score = negative_score = 0.0 # 감정을 분석해서 결과값에 감정 문자열과 자막 번호 지정하는 코드 # 1. 특수 함수 - 필터링을 통해 감정 설정 if self.__detect_funny(document) is not EMPTY: result_emotion = 'funny' result_emotion_num = 0 elif self.__detect_abuse(document) is not EMPTY: result_emotion = 'negative' result_emotion_num = 0 elif self.__detect_interjection(document) is not EMPTY: result_emotion = 'positive' result_emotion_num = 0 # 2. 일반 함수 - positive, neutral, negative 함수 중 가장 높은 값을 지정 else: positive_score = response.confidence_scores.positive neutral_score = response.confidence_scores.neutral negative_score = response.confidence_scores.negative if max(positive_score, neutral_score, negative_score) is positive_score: result_emotion = 'positive' result_emotion_num = 0 elif max(positive_score, neutral_score, negative_score) is neutral_score: result_emotion = 'neutral' result_emotion_num = 0 else: result_emotion = 'negative' result_emotion_num = 0 # 테스트용: 각 텍스트에 대해 결과 감정을 출력 print("Input Text:", document) print("Result Emotion:", result_emotion) print("positive score:", positive_score) print("neutral score:", neutral_score) print("negative score:", negative_score) print("") return result_emotion, result_emotion_num # 문장 안에서 욕설을 찾아내는 함수 - 욕설이 없을 경우 -1 리턴, 있을 경우 위치값 리턴 def __detect_abuse(self, sentence: str) -> int: filter = ["시발", "개새끼", "병신", "썅", "좆같네", "좃같네", "좋같네", "아 씨", "아씨", "야발"] for filter_item in filter: if sentence.find(filter_item) is not EMPTY: return sentence.find(filter_item) return EMPTY # 문장 안에서 즐거움을 찾아내는 함수 - 'ㅋㅋㅋ'와 '하하하' def __detect_funny(self, sentence: str) -> int: filter = ["ㅋㅋ", "하하하", "웃겨"] for filter_item in filter: if sentence.find(filter_item) is not EMPTY: return sentence.find(filter_item) return EMPTY # 문장 안에서 감탄사를 찾아내는 함수 - 감탄사가 없을 경우 -1 리턴, 있을 경우 위치값 리턴 def __detect_interjection(self, sentence: str) -> int: filter = ["무야호", "오진다", "오매", "좋은그" ] for filter_item in filter: if sentence.find(filter_item) is not EMPTY: return sentence.find(filter_item) return EMPTY # 자막 텍스트 자체의 정보가 저장된 effect 태그를 새로 쓰는 함수 def __effect_xml_modifiction(self): # json 객체에서 모든 템플릿 정보를 불러들임 all_templates = self.__funny_title_text_templates.get_all_template() # resources 태그 불러오기 (effect 태그의 정보는 resources 태그 안에 있음) resources = self.__xml_root.find("resources") # 모든 템플릿의 effect 태그 정보를 XML에 기록 for template in all_templates: # 중복되는 effect 태그가 있으면 지우기 - 중복된 effect 태그가 있으면 오류가 생길 수 있음 for existing_effect in self.__xml_root.iter("effect"): if existing_effect.attrib["name"] == template["effect"]["name"]: resources.remove(existing_effect) # 템플릿의 effect 태그를 추출해 resources 태그 불러오기 SubElement(resources, "effect", template["effect"]) # 자막 텍스트의 감정에 따라 예능자막을 지정해서 XML의 title 태그를 고쳐쓰는 함수 # (title_element: 기존 자막의 태그 정보가 담겨있는 element 객체, text: 입력 문자열, emotion: 감정, type: 같은 감정의 템플릿이 여러 개면 특정 번호 지정, offset: ) def title_xml_modification(self, asset_clip_element: Element, title_element: Element, emotion: str, template_number: int) -> NoReturn: text = title_element.find("text").findtext("text-style") # 각 title 태그에 들어 있는 텍스트의 감정에 알맞는 템플릿(json) 불러오기 template_json = self.__funny_title_text_templates.get_template_at_number(emotion, template_number)["video"] # 템플릿 json의 id를 ref로 변수 생성해서 자막 텍스트에 연결하도록 지정 ref: str = self.__funny_title_text_templates.get_template_at_number(emotion, template_number)["effect"]["id"] # 해당 템플릿 json의 video 태그 속성 불러오기 video_tag_attrib = title_element.attrib # video 태그의 이름 속성을 템플릿의 video 속성에서 붙여넣기 video_tag_attrib["name"] = template_json["name"] # video 태그의 ref 속성을 템플릿의 ref로 수정 video_tag_attrib["ref"] = ref # XML에 태그를 추가하기 위해 video라는 Element 객체 생성해서 asset-clip 태그에 붙여주기 video_element = SubElement(asset_clip_element, "video", video_tag_attrib) # json 파일에 담겨 있는 여러 param 태그 탐색 for param_attrib in template_json["param"]: # 이름 속성이 Text인 param 태그를 찾아 자막 텍스트 삽입 if param_attrib["name"] == "Text": param_attrib["value"] = text # param 태그를 만들어서 video 태그 안에 달아주기 SubElement(video_element, "param", param_attrib) # 이미 적용된 video 엘리먼트를 다시 한 번 바꾸는 함수 def video_xml_modification(self, video_element: Element, offset_attrib: str, duration_attrib: str, template_name: str, title_text: str) -> NoReturn: # 새로 바뀐 감정에 알맞는 템플릿(json) 불러오기 template_json = self.__funny_title_text_templates.get_template_at_name(template_name)["video"] # 템플릿 json의 id를 ref로 변수 생성해서 자막 텍스트에 연결하도록 지정 ref: str = self.__funny_title_text_templates.get_template_at_name(template_name)["effect"]["id"] # 해당 템플릿 json의 video 태그 속성 불러오기 video_tag_attrib = video_element.attrib # video 태그의 속성 수정 video_tag_attrib["name"] = template_json["name"] video_tag_attrib["ref"] = ref video_tag_attrib["offset"] = offset_attrib video_tag_attrib["duration"] = duration_attrib # 기존의 모든 param 속성 삭제 for param in video_element.iter("param"): video_element.remove(param) # json 파일에 담겨 있는 여러 param 태그 탐색 후 param 태그 추가 for param_attrib in template_json["param"]: # param 태그를 만들어서 video 태그 안에 달아주기 SubElement(video_element, "param", param_attrib) # 자막 텍스트 삽입 for param in video_element.iter("param"): if param.attrib["name"] == "Text": param.attrib["value"] = title_text # Templ def get_all_template(self) -> List: return self.__funny_title_text_templates.get_all_template() # 새로운 XML 파일을 작성하는 메소드 (리턴값은 xml 구조를 가지는 ElementTree) def write_xml(self) -> ElementTree: if self.xml_modified == False: return None else: return self.__xml_tree # self.__xml__tree.write(self.__output_xml_dest, encoding="utf8", xml_declaration=True) ``` #### File: auto-funny-subtitle/ui/preview2.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(900, 400) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") Form.setFont(font) self.verticalLayout_3 = QtWidgets.QVBoxLayout(Form) self.verticalLayout_3.setObjectName("verticalLayout_3") self.scrollArea = QtWidgets.QScrollArea(Form) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName("scrollArea") self.scrollAreaWidgetContents = QtWidgets.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 874, 711)) self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") self.verticalLayout = QtWidgets.QVBoxLayout(self.scrollAreaWidgetContents) self.verticalLayout.setObjectName("verticalLayout") self.horizontalLayout_10 = QtWidgets.QHBoxLayout() self.horizontalLayout_10.setObjectName("horizontalLayout_10") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_10.addItem(spacerItem) self.pushButton = QtWidgets.QPushButton(self.scrollAreaWidgetContents) self.pushButton.setObjectName("pushButton") self.horizontalLayout_10.addWidget(self.pushButton) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_10.addItem(spacerItem1) self.pushButton_2 = QtWidgets.QPushButton(self.scrollAreaWidgetContents) self.pushButton_2.setObjectName("pushButton_2") self.horizontalLayout_10.addWidget(self.pushButton_2) spacerItem2 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_10.addItem(spacerItem2) self.verticalLayout.addLayout(self.horizontalLayout_10) self.horizontalLayout_34 = QtWidgets.QHBoxLayout() self.horizontalLayout_34.setObjectName("horizontalLayout_34") self.gridLayout_8 = QtWidgets.QGridLayout() self.gridLayout_8.setObjectName("gridLayout_8") self.horizontalLayout_35 = QtWidgets.QHBoxLayout() self.horizontalLayout_35.setObjectName("horizontalLayout_35") self.label_34 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_34.setFont(font) self.label_34.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_34.setObjectName("label_34") self.horizontalLayout_35.addWidget(self.label_34) self.gridLayout_8.addLayout(self.horizontalLayout_35, 2, 1, 1, 1) self.horizontalLayout_36 = QtWidgets.QHBoxLayout() self.horizontalLayout_36.setObjectName("horizontalLayout_36") self.titleText_8 = QtWidgets.QPlainTextEdit(self.scrollAreaWidgetContents) self.titleText_8.setObjectName("titleText_8") self.horizontalLayout_36.addWidget(self.titleText_8) self.gridLayout_8.addLayout(self.horizontalLayout_36, 2, 5, 1, 1) self.horizontalLayout_37 = QtWidgets.QHBoxLayout() self.horizontalLayout_37.setObjectName("horizontalLayout_37") self.label_35 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_35.setFont(font) self.label_35.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_35.setObjectName("label_35") self.horizontalLayout_37.addWidget(self.label_35) self.gridLayout_8.addLayout(self.horizontalLayout_37, 1, 1, 1, 1) self.horizontalLayout_38 = QtWidgets.QHBoxLayout() self.horizontalLayout_38.setObjectName("horizontalLayout_38") self.templateSelector_8 = QtWidgets.QComboBox(self.scrollAreaWidgetContents) self.templateSelector_8.setObjectName("templateSelector_8") self.horizontalLayout_38.addWidget(self.templateSelector_8) spacerItem3 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_38.addItem(spacerItem3) self.gridLayout_8.addLayout(self.horizontalLayout_38, 1, 5, 1, 1) self.label_36 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_36.setFont(font) self.label_36.setAlignment(QtCore.Qt.AlignCenter) self.label_36.setObjectName("label_36") self.gridLayout_8.addWidget(self.label_36, 1, 4, 1, 1) self.label_37 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_37.setFont(font) self.label_37.setAlignment(QtCore.Qt.AlignCenter) self.label_37.setObjectName("label_37") self.gridLayout_8.addWidget(self.label_37, 2, 4, 1, 1) self.startTimeText_8 = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.startTimeText_8.setObjectName("startTimeText_8") self.gridLayout_8.addWidget(self.startTimeText_8, 1, 2, 1, 1) self.endTimeText_8 = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.endTimeText_8.setObjectName("endTimeText_8") self.gridLayout_8.addWidget(self.endTimeText_8, 2, 2, 1, 1) spacerItem4 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_8.addItem(spacerItem4, 1, 3, 1, 1) spacerItem5 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_8.addItem(spacerItem5, 2, 3, 1, 1) self.horizontalLayout_34.addLayout(self.gridLayout_8) spacerItem6 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_34.addItem(spacerItem6) self.label_38 = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label_38.setObjectName("label_38") self.horizontalLayout_34.addWidget(self.label_38) self.verticalLayout.addLayout(self.horizontalLayout_34) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.label_3 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_3.setFont(font) self.label_3.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_3.setObjectName("label_3") self.horizontalLayout_2.addWidget(self.label_3) self.gridLayout.addLayout(self.horizontalLayout_2, 2, 1, 1, 1) self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.titleText = QtWidgets.QPlainTextEdit(self.scrollAreaWidgetContents) self.titleText.setObjectName("titleText") self.horizontalLayout_4.addWidget(self.titleText) self.gridLayout.addLayout(self.horizontalLayout_4, 2, 5, 1, 1) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.label_2 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_2.setFont(font) self.label_2.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_2.setObjectName("label_2") self.horizontalLayout_3.addWidget(self.label_2) self.gridLayout.addLayout(self.horizontalLayout_3, 1, 1, 1, 1) self.horizontalLayout_6 = QtWidgets.QHBoxLayout() self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.templateSelector = QtWidgets.QComboBox(self.scrollAreaWidgetContents) self.templateSelector.setObjectName("templateSelector") self.horizontalLayout_6.addWidget(self.templateSelector) spacerItem7 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_6.addItem(spacerItem7) self.gridLayout.addLayout(self.horizontalLayout_6, 1, 5, 1, 1) self.label_5 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_5.setFont(font) self.label_5.setAlignment(QtCore.Qt.AlignCenter) self.label_5.setObjectName("label_5") self.gridLayout.addWidget(self.label_5, 1, 4, 1, 1) self.label_4 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_4.setFont(font) self.label_4.setAlignment(QtCore.Qt.AlignCenter) self.label_4.setObjectName("label_4") self.gridLayout.addWidget(self.label_4, 2, 4, 1, 1) self.startTimeText = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.startTimeText.setObjectName("startTimeText") self.gridLayout.addWidget(self.startTimeText, 1, 2, 1, 1) self.endTimeText = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.endTimeText.setObjectName("endTimeText") self.gridLayout.addWidget(self.endTimeText, 2, 2, 1, 1) spacerItem8 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem8, 1, 3, 1, 1) spacerItem9 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem9, 2, 3, 1, 1) self.horizontalLayout.addLayout(self.gridLayout) spacerItem10 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem10) self.label = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label.setObjectName("label") self.horizontalLayout.addWidget(self.label) self.verticalLayout.addLayout(self.horizontalLayout) self.horizontalLayout_14 = QtWidgets.QHBoxLayout() self.horizontalLayout_14.setObjectName("horizontalLayout_14") self.gridLayout_4 = QtWidgets.QGridLayout() self.gridLayout_4.setObjectName("gridLayout_4") self.horizontalLayout_15 = QtWidgets.QHBoxLayout() self.horizontalLayout_15.setObjectName("horizontalLayout_15") self.label_14 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_14.setFont(font) self.label_14.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_14.setObjectName("label_14") self.horizontalLayout_15.addWidget(self.label_14) self.gridLayout_4.addLayout(self.horizontalLayout_15, 2, 1, 1, 1) self.horizontalLayout_16 = QtWidgets.QHBoxLayout() self.horizontalLayout_16.setObjectName("horizontalLayout_16") self.titleText_4 = QtWidgets.QPlainTextEdit(self.scrollAreaWidgetContents) self.titleText_4.setObjectName("titleText_4") self.horizontalLayout_16.addWidget(self.titleText_4) self.gridLayout_4.addLayout(self.horizontalLayout_16, 2, 5, 1, 1) self.horizontalLayout_17 = QtWidgets.QHBoxLayout() self.horizontalLayout_17.setObjectName("horizontalLayout_17") self.label_15 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_15.setFont(font) self.label_15.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_15.setObjectName("label_15") self.horizontalLayout_17.addWidget(self.label_15) self.gridLayout_4.addLayout(self.horizontalLayout_17, 1, 1, 1, 1) self.horizontalLayout_18 = QtWidgets.QHBoxLayout() self.horizontalLayout_18.setObjectName("horizontalLayout_18") self.templateSelector_4 = QtWidgets.QComboBox(self.scrollAreaWidgetContents) self.templateSelector_4.setObjectName("templateSelector_4") self.horizontalLayout_18.addWidget(self.templateSelector_4) spacerItem11 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_18.addItem(spacerItem11) self.gridLayout_4.addLayout(self.horizontalLayout_18, 1, 5, 1, 1) self.label_16 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_16.setFont(font) self.label_16.setAlignment(QtCore.Qt.AlignCenter) self.label_16.setObjectName("label_16") self.gridLayout_4.addWidget(self.label_16, 1, 4, 1, 1) self.label_17 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_17.setFont(font) self.label_17.setAlignment(QtCore.Qt.AlignCenter) self.label_17.setObjectName("label_17") self.gridLayout_4.addWidget(self.label_17, 2, 4, 1, 1) self.startTimeText_4 = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.startTimeText_4.setObjectName("startTimeText_4") self.gridLayout_4.addWidget(self.startTimeText_4, 1, 2, 1, 1) self.endTimeText_4 = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.endTimeText_4.setObjectName("endTimeText_4") self.gridLayout_4.addWidget(self.endTimeText_4, 2, 2, 1, 1) spacerItem12 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_4.addItem(spacerItem12, 1, 3, 1, 1) spacerItem13 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_4.addItem(spacerItem13, 2, 3, 1, 1) self.horizontalLayout_14.addLayout(self.gridLayout_4) spacerItem14 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_14.addItem(spacerItem14) self.label_18 = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label_18.setObjectName("label_18") self.horizontalLayout_14.addWidget(self.label_18) self.verticalLayout.addLayout(self.horizontalLayout_14) self.horizontalLayout_19 = QtWidgets.QHBoxLayout() self.horizontalLayout_19.setObjectName("horizontalLayout_19") self.gridLayout_5 = QtWidgets.QGridLayout() self.gridLayout_5.setObjectName("gridLayout_5") self.horizontalLayout_20 = QtWidgets.QHBoxLayout() self.horizontalLayout_20.setObjectName("horizontalLayout_20") self.label_19 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_19.setFont(font) self.label_19.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_19.setObjectName("label_19") self.horizontalLayout_20.addWidget(self.label_19) self.gridLayout_5.addLayout(self.horizontalLayout_20, 2, 1, 1, 1) self.horizontalLayout_21 = QtWidgets.QHBoxLayout() self.horizontalLayout_21.setObjectName("horizontalLayout_21") self.titleText_5 = QtWidgets.QPlainTextEdit(self.scrollAreaWidgetContents) self.titleText_5.setObjectName("titleText_5") self.horizontalLayout_21.addWidget(self.titleText_5) self.gridLayout_5.addLayout(self.horizontalLayout_21, 2, 5, 1, 1) self.horizontalLayout_22 = QtWidgets.QHBoxLayout() self.horizontalLayout_22.setObjectName("horizontalLayout_22") self.label_20 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_20.setFont(font) self.label_20.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_20.setObjectName("label_20") self.horizontalLayout_22.addWidget(self.label_20) self.gridLayout_5.addLayout(self.horizontalLayout_22, 1, 1, 1, 1) self.horizontalLayout_23 = QtWidgets.QHBoxLayout() self.horizontalLayout_23.setObjectName("horizontalLayout_23") self.templateSelector_5 = QtWidgets.QComboBox(self.scrollAreaWidgetContents) self.templateSelector_5.setObjectName("templateSelector_5") self.horizontalLayout_23.addWidget(self.templateSelector_5) spacerItem15 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_23.addItem(spacerItem15) self.gridLayout_5.addLayout(self.horizontalLayout_23, 1, 5, 1, 1) self.label_21 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_21.setFont(font) self.label_21.setAlignment(QtCore.Qt.AlignCenter) self.label_21.setObjectName("label_21") self.gridLayout_5.addWidget(self.label_21, 1, 4, 1, 1) self.label_22 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_22.setFont(font) self.label_22.setAlignment(QtCore.Qt.AlignCenter) self.label_22.setObjectName("label_22") self.gridLayout_5.addWidget(self.label_22, 2, 4, 1, 1) self.startTimeText_5 = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.startTimeText_5.setObjectName("startTimeText_5") self.gridLayout_5.addWidget(self.startTimeText_5, 1, 2, 1, 1) self.endTimeText_5 = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.endTimeText_5.setObjectName("endTimeText_5") self.gridLayout_5.addWidget(self.endTimeText_5, 2, 2, 1, 1) spacerItem16 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_5.addItem(spacerItem16, 1, 3, 1, 1) spacerItem17 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_5.addItem(spacerItem17, 2, 3, 1, 1) self.horizontalLayout_19.addLayout(self.gridLayout_5) spacerItem18 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_19.addItem(spacerItem18) self.label_23 = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label_23.setObjectName("label_23") self.horizontalLayout_19.addWidget(self.label_23) self.verticalLayout.addLayout(self.horizontalLayout_19) self.horizontalLayout_24 = QtWidgets.QHBoxLayout() self.horizontalLayout_24.setObjectName("horizontalLayout_24") self.gridLayout_6 = QtWidgets.QGridLayout() self.gridLayout_6.setObjectName("gridLayout_6") self.horizontalLayout_25 = QtWidgets.QHBoxLayout() self.horizontalLayout_25.setObjectName("horizontalLayout_25") self.label_24 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_24.setFont(font) self.label_24.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_24.setObjectName("label_24") self.horizontalLayout_25.addWidget(self.label_24) self.gridLayout_6.addLayout(self.horizontalLayout_25, 2, 1, 1, 1) self.horizontalLayout_26 = QtWidgets.QHBoxLayout() self.horizontalLayout_26.setObjectName("horizontalLayout_26") self.titleText_6 = QtWidgets.QPlainTextEdit(self.scrollAreaWidgetContents) self.titleText_6.setObjectName("titleText_6") self.horizontalLayout_26.addWidget(self.titleText_6) self.gridLayout_6.addLayout(self.horizontalLayout_26, 2, 5, 1, 1) self.horizontalLayout_27 = QtWidgets.QHBoxLayout() self.horizontalLayout_27.setObjectName("horizontalLayout_27") self.label_25 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_25.setFont(font) self.label_25.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_25.setObjectName("label_25") self.horizontalLayout_27.addWidget(self.label_25) self.gridLayout_6.addLayout(self.horizontalLayout_27, 1, 1, 1, 1) self.horizontalLayout_28 = QtWidgets.QHBoxLayout() self.horizontalLayout_28.setObjectName("horizontalLayout_28") self.templateSelector_6 = QtWidgets.QComboBox(self.scrollAreaWidgetContents) self.templateSelector_6.setObjectName("templateSelector_6") self.horizontalLayout_28.addWidget(self.templateSelector_6) spacerItem19 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_28.addItem(spacerItem19) self.gridLayout_6.addLayout(self.horizontalLayout_28, 1, 5, 1, 1) self.label_26 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_26.setFont(font) self.label_26.setAlignment(QtCore.Qt.AlignCenter) self.label_26.setObjectName("label_26") self.gridLayout_6.addWidget(self.label_26, 1, 4, 1, 1) self.label_27 = QtWidgets.QLabel(self.scrollAreaWidgetContents) font = QtGui.QFont() font.setFamily("Apple SD Gothic Neo") self.label_27.setFont(font) self.label_27.setAlignment(QtCore.Qt.AlignCenter) self.label_27.setObjectName("label_27") self.gridLayout_6.addWidget(self.label_27, 2, 4, 1, 1) self.startTimeText_6 = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.startTimeText_6.setObjectName("startTimeText_6") self.gridLayout_6.addWidget(self.startTimeText_6, 1, 2, 1, 1) self.endTimeText_6 = QtWidgets.QLineEdit(self.scrollAreaWidgetContents) self.endTimeText_6.setObjectName("endTimeText_6") self.gridLayout_6.addWidget(self.endTimeText_6, 2, 2, 1, 1) spacerItem20 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_6.addItem(spacerItem20, 1, 3, 1, 1) spacerItem21 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_6.addItem(spacerItem21, 2, 3, 1, 1) self.horizontalLayout_24.addLayout(self.gridLayout_6) spacerItem22 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_24.addItem(spacerItem22) self.label_28 = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label_28.setObjectName("label_28") self.horizontalLayout_24.addWidget(self.label_28) self.verticalLayout.addLayout(self.horizontalLayout_24) self.scrollArea.setWidget(self.scrollAreaWidgetContents) self.verticalLayout_3.addWidget(self.scrollArea) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) self.pushButton.setText(_translate("Form", "PushButton")) self.pushButton_2.setText(_translate("Form", "PushButton")) self.label_34.setText(_translate("Form", "끝")) self.label_35.setText(_translate("Form", "시작")) self.label_36.setText(_translate("Form", "자막 템플릿")) self.label_37.setText(_translate("Form", "자막 텍스트")) self.label_38.setText(_translate("Form", "Preview Image (Alternative Text)")) self.label_3.setText(_translate("Form", "끝")) self.label_2.setText(_translate("Form", "시작")) self.label_5.setText(_translate("Form", "자막 템플릿")) self.label_4.setText(_translate("Form", "자막 텍스트")) self.label.setText(_translate("Form", "Preview Image (Alternative Text)")) self.label_14.setText(_translate("Form", "끝")) self.label_15.setText(_translate("Form", "시작")) self.label_16.setText(_translate("Form", "자막 템플릿")) self.label_17.setText(_translate("Form", "자막 텍스트")) self.label_18.setText(_translate("Form", "Preview Image (Alternative Text)")) self.label_19.setText(_translate("Form", "끝")) self.label_20.setText(_translate("Form", "시작")) self.label_21.setText(_translate("Form", "자막 템플릿")) self.label_22.setText(_translate("Form", "자막 텍스트")) self.label_23.setText(_translate("Form", "Preview Image (Alternative Text)")) self.label_24.setText(_translate("Form", "끝")) self.label_25.setText(_translate("Form", "시작")) self.label_26.setText(_translate("Form", "자막 템플릿")) self.label_27.setText(_translate("Form", "자막 텍스트")) self.label_28.setText(_translate("Form", "Preview Image (Alternative Text)")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_()) ```
{ "source": "joe-uragami/selene_sample", "score": 3 }
#### File: SamplePlayStore/pages/app_top.py ```python from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from test.selenium.pageobject.SamplePlayStore.pages.app_detail import AppDetailPage class AppTopPage: TITLE = "Google Play の Android アプリ" URL = "https://play.google.com/store/apps" APP_1ST_DETAIL_SELECTER = ".id-card-list :nth-child(1) div a" def __init__(self, driver=None): self.driver = driver WebDriverWait(self.driver, 10).until( EC.title_is(self.TITLE) ) def get_url(self): return self.driver.current_url def click_first_appcard(self): element = WebDriverWait(self.driver, 10).until( EC.element_to_be_clickable((By.CSS_SELECTOR, self.APP_1ST_DETAIL_SELECTER)) ) element.click() return AppDetailPage(self.driver) ```
{ "source": "Joevaen/Scikit-image_On_CT", "score": 3 }
#### File: Scikit-image_On_CT/Feature/plot_match.py ```python import cv2 import matplotlib.pyplot as plt from skimage.feature import plot_matches def plotMatches(im1,im2,matches,locs1,locs2): fig, ax = plt.subplots(nrows=1, ncols=1) im1 = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY) im2 = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY) plt.axis('off') plot_matches(ax,im1,im2,locs1,locs2,matches,matches_color='r',only_matches=True) plt.show() return ```
{ "source": "joevandyk/pilbox", "score": 2 }
#### File: pilbox/test/app_test.py ```python from __future__ import absolute_import, division, print_function, \ with_statement import logging import os.path import time import tornado.escape import tornado.gen import tornado.ioloop from tornado.test.util import unittest from tornado.testing import AsyncHTTPTestCase, gen_test import tornado.web from pilbox.app import PilboxApplication from pilbox.errors import SignatureError, ClientError, HostError, \ BackgroundError, DimensionsError, FilterError, FormatError, ModeError, \ PositionError, QualityError, UrlError, ImageFormatError, FetchError from pilbox.signature import sign from pilbox.test import image_test try: from urllib import urlencode except ImportError: from urllib.parse import urlencode try: import cv except ImportError: cv = None logger = logging.getLogger("tornado.application") class _AppAsyncMixin(object): def fetch_error(self, code, *args, **kwargs): response = self.fetch(*args, **kwargs) self.assertEqual(response.code, code) self.assertEqual(response.headers.get("Content-Type", None), "application/json") return tornado.escape.json_decode(response.body) def fetch_success(self, *args, **kwargs): response = self.fetch(*args, **kwargs) self.assertEqual(response.code, 200) return response def get_image_resize_cases(self): cases = image_test.get_image_resize_cases() m = dict(background="bg", filter="filter", format="fmt", position="pos", quality="q") for i, case in enumerate(cases): path = "/test/data/%s" % os.path.basename(case["source_path"]) cases[i]["source_query_params"] = dict( url=self.get_url(path), w=case["width"] or "", h=case["height"] or "", mode=case["mode"]) for k in m.keys(): if k in case: cases[i]["source_query_params"][m.get(k)] = case[k] if case.get("format") in ["jpeg", "jpg"]: cases[i]["content_type"] = "image/jpeg" elif case.get("format") == "png": cases[i]["content_type"] = "image/png" elif case.get("format") == "webp": cases[i]["content_type"] = "image/webp" else: cases[i]["content_type"] = None return cases class _PilboxTestApplication(PilboxApplication): def get_handlers(self): path = os.path.join(os.path.dirname(__file__), "data") handlers = [(r"/test/data/test-delayed.jpg", _DelayedHandler), (r"/test/data/(.*)", tornado.web.StaticFileHandler, {"path": path})] handlers.extend(super(_PilboxTestApplication, self).get_handlers()) return handlers class _DelayedHandler(tornado.web.RequestHandler): @tornado.web.asynchronous @tornado.gen.engine def get(self): delay = time.time() + float(self.get_argument("delay", 0.0)) yield tornado.gen.Task( tornado.ioloop.IOLoop.instance().add_timeout, delay) self.finish() class AppTest(AsyncHTTPTestCase, _AppAsyncMixin): def get_app(self): return _PilboxTestApplication() def test_missing_url(self): qs = urlencode(dict(w=1, h=1)) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), UrlError.get_code()) def test_missing_dimensions(self): qs = urlencode(dict(url="http://foo.co/x.jpg")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), DimensionsError.get_code()) def test_invalid_width(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w="a", h=1)) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), DimensionsError.get_code()) def test_invalid_height(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h="a")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), DimensionsError.get_code()) def test_invalid_mode(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h=1, mode="foo")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), ModeError.get_code()) def test_invalid_hexadecimal_background(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h=1, mode="fill", bg="r")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), BackgroundError.get_code()) def test_invalid_long_background(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h=1, mode="fill", bg="0f0f0f0f0")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), BackgroundError.get_code()) def test_invalid_position(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h=1, pos="foo")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), PositionError.get_code()) def test_invalid_filter(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h=1, filter="bar")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), FilterError.get_code()) def test_invalid_format(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h=1, fmt="foo")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), FormatError.get_code()) def test_invalid_integer_quality(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h=1, q="a")) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), QualityError.get_code()) def test_outofbounds_quality(self): qs = urlencode(dict(url="http://foo.co/x.jpg", w=1, h=1, q=200)) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), QualityError.get_code()) def test_unsupported_image_format(self): path = "/test/data/test-bad-format.gif" qs = urlencode(dict(url=self.get_url(path), w=1, h=1)) resp = self.fetch_error(415, "/?%s" % qs) self.assertEqual(resp.get("error_code"), ImageFormatError.get_code()) def test_not_found(self): path = "/test/data/test-not-found.jpg" qs = urlencode(dict(url=self.get_url(path), w=1, h=1)) resp = self.fetch_error(404, "/?%s" % qs) self.assertEqual(resp.get("error_code"), FetchError.get_code()) def test_not_connect(self): qs = urlencode(dict(url="http://a.com/a.jpg", w=1, h=1)) resp = self.fetch_error(404, "/?%s" % qs) self.assertEqual(resp.get("error_code"), FetchError.get_code()) def test_invalid_protocol(self): path = os.path.join(os.path.dirname(__file__), "data", "test1.jpg") qs = urlencode(dict(url="file://%s" % path, w=1, h=1)) resp = self.fetch_error(400, "/?%s" % qs) self.assertEqual(resp.get("error_code"), UrlError.get_code()) def test_valid(self): cases = self.get_image_resize_cases() for case in cases: if case.get("mode") == "crop" and case.get("position") == "face": continue self._assert_expected_resize(case) @unittest.skipIf(cv is None, "OpenCV is not installed") def test_valid_face(self): cases = self.get_image_resize_cases() for case in cases: if case.get("mode") == "crop" and case.get("position") == "face": self._assert_expected_resize(case) def _assert_expected_resize(self, case): qs = urlencode(case["source_query_params"]) resp = self.fetch_success("/?%s" % qs) msg = "/?%s does not match %s" \ % (qs, case["expected_path"]) if case["content_type"]: self.assertEqual(resp.headers.get("Content-Type", None), case["content_type"]) with open(case["expected_path"], "rb") as expected: self.assertEqual(resp.buffer.read(), expected.read(), msg) class AppRestrictedTest(AsyncHTTPTestCase, _AppAsyncMixin): KEY = "abcdef" NAME = "abc" def get_app(self): return _PilboxTestApplication( client_name=self.NAME, client_key=self.KEY, allowed_hosts=["foo.co", "bar.io", "localhost"]) def test_missing_client_name(self): params = dict(url="http://foo.co/x.jpg", w=1, h=1) qs = sign(self.KEY, urlencode(params)) resp = self.fetch_error(403, "/?%s" % qs) self.assertEqual(resp.get("error_code"), ClientError.get_code()) def test_bad_client_name(self): params = dict(url="http://foo.co/x.jpg", w=1, h=1, client="123") qs = sign(self.KEY, urlencode(params)) resp = self.fetch_error(403, "/?%s" % qs) self.assertEqual(resp.get("error_code"), ClientError.get_code()) def test_missing_signature(self): params = dict(url="http://foo.co/x.jpg", w=1, h=1, client=self.NAME) qs = urlencode(params) resp = self.fetch_error(403, "/?%s" % qs) self.assertEqual(resp.get("error_code"), SignatureError.get_code()) def test_bad_signature(self): params = dict(url="http://foo.co/x.jpg", w=1, h=1, client=self.NAME, sig="abc123") qs = urlencode(params) resp = self.fetch_error(403, "/?%s" % qs) self.assertEqual(resp.get("error_code"), SignatureError.get_code()) def test_bad_host(self): params = dict(url="http://bar.co/x.jpg", w=1, h=1, client=self.NAME) qs = sign(self.KEY, urlencode(params)) resp = self.fetch_error(403, "/?%s" % qs) self.assertEqual(resp.get("error_code"), HostError.get_code()) def test_valid(self): cases = self.get_image_resize_cases() for case in cases: if case.get("mode") == "crop" and case.get("position") == "face": continue params = case["source_query_params"] params["client"] = self.NAME qs = sign(self.KEY, urlencode(params)) resp = self.fetch_success("/?%s" % qs) msg = "/?%s does not match %s" \ % (qs, case["expected_path"]) with open(case["expected_path"], "rb") as expected: self.assertEqual(resp.buffer.read(), expected.read(), msg) class AppSlowTest(AsyncHTTPTestCase, _AppAsyncMixin): def get_app(self): return _PilboxTestApplication(timeout=0.5) def test_timeout(self): url = self.get_url("/test/data/test-delayed.jpg?delay=1.0") qs = urlencode(dict(url=url, w=1, h=1)) resp = self.fetch_error(404, "/?%s" %qs) self.assertEqual(resp.get("error_code"), FetchError.get_code()) ``` #### File: pilbox/test/errors_test.py ```python from __future__ import absolute_import, division, print_function, \ with_statement from tornado.test.util import unittest from pilbox.errors import SignatureError, ClientError, HostError, \ BackgroundError, DimensionsError, FilterError, FormatError, ModeError, \ PositionError, QualityError, UrlError, ImageFormatError, FetchError, \ PilboxError class ErrorsTest(unittest.TestCase): def test_unique_error_codes(self): errors = [SignatureError, ClientError, HostError, BackgroundError, DimensionsError, FilterError, FormatError, ModeError, PositionError, QualityError, UrlError, ImageFormatError, FetchError] codes = [] for error in errors: code = str(error.get_code()) if code in codes: self.fail("The error code, %s, is repeated" % str(code)) codes.append(code) def test_base_not_implemented(self): self.assertRaises(NotImplementedError, PilboxError.get_code) ```
{ "source": "joeVenner/AI-Tinder-BOT", "score": 3 }
#### File: joeVenner/AI-Tinder-BOT/TinderBotAI.py ```python from selenium import webdriver from time import sleep from Checker import checker Fb_user = "" Fb_pass = "" chromedriverpath = "" ################################################### # Goto Line 6 and set your Chrome Driver path # # exemple : C:\\Users\\Joe\\chromedriver.exe # # Goto Line 4 and set your facebook username # # Goto line 5 and set your facebook password # ################################################### class bot(): def __init__(self): if Fb_pass == "" or Fb_user == "" or chromedriverpath == "": print("Set FaceBook user name and password to login ! ") print("! You should have a Tinder account with Facebook if not create one First") else: self.chrome_options = webdriver.ChromeOptions() self.prefs = {"profile.default_content_setting_values.notifications": 2} self.chrome_options.add_experimental_option("prefs", self.prefs) self.driver = webdriver.Chrome(executable_path=chromedriverpath,options=self.chrome_options) def login(self): self.driver.maximize_window() self.driver.get('https://tinder.com') sleep(2) loginbtn = self.driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/span/div[2]/button').text if 'PHONE' in loginbtn: moreoption = self.driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/span/button').click() fblogin = self.driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/span/div[3]/button').click() else: self.driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/span/div[2]/button').click() sleep(2) workspace = self.driver.window_handles[0] popup = self.driver.window_handles[1] self.driver._switch_to.window(popup) sleep(2) email_fb = self.driver.find_element_by_xpath('//*[@id="email"]') email_fb.send_keys(Fb_user) passwd_fb = self.driver.find_element_by_xpath('//*[@id="pass"]') passwd_fb.send_keys(Fb_pass) loing_fb = self.driver.find_element_by_xpath('//*[@id="u_0_0"]').click() sleep(3) self.driver.switch_to.window(workspace) sleep(2) def like(self): sleep(2) like = self.driver.find_element_by_xpath('//*[@id="content"]/div/div[1]/div/main/div[1]/div/div/div[1]/div/div[2]/div[4]/button') like.click() sleep(1) def dislike(self): sleep(2) dislike = self.driver.find_element_by_xpath('//*[@id="content"]/div/div[1]/div/main/div[1]/div/div/div[1]/div/div[2]/div[2]/button') dislike.click() sleep(1) def sendmsg(self): textbox = self.driver.find_element_by_xpath('//*[@id="chat-text-area"]') textbox.send_keys('<PASSWORD>') sleep(2) sendmsg = self.driver.find_element_by_xpath('//*[@id="modal-manager-canvas"]/div/div/div[1]/div/div[3]/div[3]/form/button') sendmsg.click() sleep(2) def getimagelink(self): sleep(1) image = self.driver.find_element_by_xpath('/html/body/div[1]/div/div[1]/div/main/div[1]/div/div/div[1]/div/div[1]/div[3]/div[1]/div/div/div/div/div').get_attribute('style') link = image.split("\"")[1] return link def notintersted(self): sleep(1) self.driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div[2]/button[2]').click() b = bot() b.login() for i in range(50): try: link = b.getimagelink() result = checker(link) sleep(1) print("result ",result) if result == 1: b.like() else: b.dislike() except : try : b.sendmsg() except : b.notintersted() ```
{ "source": "joevgear/test_rail_util", "score": 3 }
#### File: joevgear/test_rail_util/testrail.py ```python import urllib.request, urllib.error import json, base64 class APIClient: def __init__(self, base_url): self.user = '' self.password = '' if not base_url.endswith('/'): base_url += '/' self.__url = base_url + 'index.php?/api/v2/' # # Send Get # # Issues a GET request (read) against the API and returns the result # (as Python dict). # # Arguments: # # uri The API method to call including parameters # (e.g. get_case/1) # def send_get(self, uri): return self.__send_request('GET', uri, None) # # Send POST # # Issues a POST request (write) against the API and returns the result # (as Python dict). # # Arguments: # # uri The API method to call including parameters # (e.g. add_case/1) # data The data to submit as part of the request (as # Python dict, strings must be UTF-8 encoded) # def send_post(self, uri, data): return self.__send_request('POST', uri, data) def __send_request(self, method, uri, data): url = self.__url + uri request = urllib.request.Request(url) if (method == 'POST'): request.data = bytes(json.dumps(data), 'utf-8') auth = str( base64.b64encode( bytes('%s:%s' % (self.user, self.password), 'utf-8') ), 'ascii' ).strip() request.add_header('Authorization', 'Basic %s' % auth) request.add_header('Content-Type', 'application/json') e = None try: response = urllib.request.urlopen(request).read() except urllib.error.HTTPError as ex: response = ex.read() e = ex if response: result = json.loads(response.decode()) else: result = {} if e != None: if result and 'error' in result: error = '"' + result['error'] + '"' else: error = 'No additional error message received' raise APIError('TestRail API returned HTTP %s (%s)' % (e.code, error)) return result class APIError(Exception): pass ``` #### File: joevgear/test_rail_util/testrail_util.py ```python import json import settings import sys from testrail import APIClient DEFAULT_RESULT_PARSER = "JunitXMLParser" class TestRailUtil: def __init__(self, username='', password='', url=''): self.username = username self.password = password self.url = url if not username: self.username = settings.USR if not password: self.password = settings.PWD if not url: self.url = settings.URL client = APIClient(self.url) client.user = self.username client.password = self.password self.client = client self.parser = None def pretty(self, payload): print(json.dumps(payload, sort_keys=True, indent=4, separators=(',', ':'))) def add_case(self, section_id, **kwargs): """Creates a new test case.""" fields = {} for key in kwargs: fields[key] = kwargs[key] req = self.client.send_post('add_case/' + str(section_id), data=fields) return req def import_test_cases(self, result_parser, **kwargs): def spec(parser): imp_path = 'test_result_parser.%s' % parser mod_str, dot, cls_str = imp_path.rpartition('.') __import__(mod_str) try: spec_cls_obj = getattr(sys.modules[mod_str], cls_str) return spec_cls_obj(**kwargs) except AttributeError: raise ImportError('No such class %s' % imp_path) self.parser = spec(result_parser) print(*self.parser.get_test_cases(), sep='\n') if __name__ == "__main__": username = "joe" password = "<PASSWORD>" url = "url" test_file = "test-results/sample-junit.xml" util = TestRailUtil(username, password, url) util.import_test_cases(DEFAULT_RESULT_PARSER, result_file=test_file) # mile_stone = util.create_mile_stone() # plan_id = util.create_test_plan() # util.add_results() ```
{ "source": "JoeVieira/GA-python-bootcamp", "score": 3 }
#### File: JoeVieira/GA-python-bootcamp/classes.py ```python class Table: n_sides = 4 def __init__(self, n_legs): self.n_legs = n_legs self.n_chairs = 4 def set_chairs(self, n_chairs): self.n_chairs = n_chairs class BaseballPlayer: def __init__(self, name, team): self.name = name self.team = team def lookUpStats(self): if self.name == "david": return 1000 elif self.name == "billy": return 10 class CricketPlayer: def __init__(self, name, team): self.name = name self.team = team def lookUpStats(): if name == "david": return 1000 elif name == "billy": return 10 def main(): david = CricketPlayer("david","redsox") david2 = CricketPlayer("david", "redsox") things = dir(david) billy = BaseballPlayer("billy", "rangers") main() ```
{ "source": "joevin-slq/fma", "score": 3 }
#### File: joevin-slq/fma/creation.py ```python import os import sys import shutil import pickle import zipfile import subprocess as sp from datetime import datetime from tqdm import tqdm, trange import pandas as pd import utils TIME = datetime(2017, 4, 1).timestamp() README = """This .zip archive is part of the FMA, a dataset for music analysis. Code & data: https://github.com/mdeff/fma Paper: https://arxiv.org/abs/1612.01840 Each .mp3 is licensed by its artist. The content's integrity can be verified with sha1sum -c checksums. """ def download_metadata(): fma = utils.FreeMusicArchive(os.environ.get('FMA_KEY')) max_tid = int(fma.get_recent_tracks()[0][0]) print('Largest track id: {}'.format(max_tid)) not_found = {} id_range = trange(20, desc='tracks') tracks, not_found['tracks'] = fma.get_all('track', id_range) id_range = tqdm(tracks['album_id'].unique(), desc='albums') albums, not_found['albums'] = fma.get_all('album', id_range) id_range = tqdm(tracks['artist_id'].unique(), desc='artists') artists, not_found['artists'] = fma.get_all('artist', id_range) genres = fma.get_all_genres() for dataset in 'tracks', 'albums', 'artists', 'genres': eval(dataset).sort_index(axis=0, inplace=True) eval(dataset).sort_index(axis=1, inplace=True) eval(dataset).to_csv('raw_' + dataset + '.csv') pickle.dump(not_found, open('not_found.pickle', 'wb')) def _create_subdirs(dst_dir, tracks): # Get write access. if not os.path.exists(dst_dir): os.makedirs(dst_dir) os.chmod(dst_dir, 0o777) # Create writable sub-directories. n_folders = max(tracks.index) // 1000 + 1 for folder in range(n_folders): dst = os.path.join(dst_dir, '{:03d}'.format(folder)) if not os.path.exists(dst): os.makedirs(dst) os.chmod(dst, 0o777) def download_data(dst_dir): dst_dir = os.path.abspath(dst_dir) tracks = pd.read_csv('raw_tracks.csv', index_col=0) _create_subdirs(dst_dir, tracks) fma = utils.FreeMusicArchive(os.environ.get('FMA_KEY')) not_found = pickle.load(open('not_found.pickle', 'rb')) not_found['audio'] = [] # Download missing tracks. for tid in tqdm(tracks.index): dst = utils.get_audio_path(dst_dir, tid) if not os.path.exists(dst): try: fma.download_track(tracks.at[tid, 'track_file'], dst) except: # requests.HTTPError not_found['audio'].append(tid) pickle.dump(not_found, open('not_found.pickle', 'wb')) def convert_duration(x): times = x.split(':') seconds = int(times[-1]) minutes = int(times[-2]) try: minutes += 60 * int(times[-3]) except IndexError: pass return seconds + 60 * minutes def trim_audio(dst_dir): dst_dir = os.path.abspath(dst_dir) fma_full = os.path.join(dst_dir, 'fma_full') fma_large = os.path.join(dst_dir, 'fma_large') tracks = pd.read_csv('raw_tracks.csv', index_col=0) _create_subdirs(fma_large, tracks) not_found = pickle.load(open('not_found.pickle', 'rb')) not_found['clips'] = [] for tid in tqdm(tracks.index): duration = convert_duration(tracks.at[tid, 'track_duration']) src = utils.get_audio_path(fma_full, tid) dst = utils.get_audio_path(fma_large, tid) if tid in not_found['audio']: continue elif os.path.exists(dst): continue elif duration <= 30: shutil.copyfile(src, dst) else: start = duration // 2 - 15 command = ['ffmpeg', '-i', src, '-ss', str(start), '-t', '30', '-acodec', 'copy', dst] try: sp.run(command, check=True, stderr=sp.DEVNULL) except sp.CalledProcessError: not_found['clips'].append(tid) for tid in not_found['clips']: try: os.remove(utils.get_audio_path(fma_large, tid)) except FileNotFoundError: pass pickle.dump(not_found, open('not_found.pickle', 'wb')) def normalize_permissions_times(dst_dir): dst_dir = os.path.abspath(dst_dir) for dirpath, dirnames, filenames in tqdm(os.walk(dst_dir)): for name in filenames: dst = os.path.join(dirpath, name) os.chmod(dst, 0o444) os.utime(dst, (TIME, TIME)) for name in dirnames: dst = os.path.join(dirpath, name) os.chmod(dst, 0o555) os.utime(dst, (TIME, TIME)) def create_zips(dst_dir): def get_filepaths(subset): filepaths = [] tids = tracks.index[tracks['set', 'subset'] <= subset] for tid in tids: filepaths.append(utils.get_audio_path('', tid)) return filepaths def get_checksums(base_dir, filepaths): """Checksums are assumed to be stored in order for efficiency.""" checksums = [] with open(os.path.join(dst_dir, base_dir, 'checksums')) as f: for filepath in filepaths: exist = False for line in f: if filepath == line[42:-1]: exist = True break if not exist: raise ValueError('checksum not found: {}'.format(filepath)) checksums.append(line) return checksums def create_zip(zip_filename, base_dir, filepaths): # Audio: all compressions are the same. # CSV: stored > deflated > BZIP2 > LZMA. # LZMA is close to BZIP2 and too recent to be widely available (unzip). compression = zipfile.ZIP_BZIP2 zip_filepath = os.path.join(dst_dir, zip_filename) with zipfile.ZipFile(zip_filepath, 'x', compression) as zf: def info(name): name = os.path.join(zip_filename[:-4], name) info = zipfile.ZipInfo(name, (2017, 4, 1, 0, 0, 0)) info.external_attr = 0o444 << 16 | 0o2 << 30 return info zf.writestr(info('README.txt'), README, compression) checksums = get_checksums(base_dir, filepaths) zf.writestr(info('checksums'), ''.join(checksums), compression) for filepath in tqdm(filepaths): src = os.path.join(dst_dir, base_dir, filepath) dst = os.path.join(zip_filename[:-4], filepath) zf.write(src, dst) os.chmod(zip_filepath, 0o444) os.utime(zip_filepath, (TIME, TIME)) METADATA = [ 'not_found.pickle', 'raw_genres.csv', 'raw_albums.csv', 'raw_artists.csv', 'raw_tracks.csv', 'tracks.csv', 'genres.csv', 'raw_echonest.csv', 'echonest.csv', 'features.csv', ] create_zip('fma_metadata.zip', 'fma_metadata', METADATA) tracks = utils.load('tracks.csv') create_zip('fma_small.zip', 'fma_large', get_filepaths('small')) create_zip('fma_medium.zip', 'fma_large', get_filepaths('medium')) create_zip('fma_large.zip', 'fma_large', get_filepaths('large')) create_zip('fma_full.zip', 'fma_full', get_filepaths('large')) if __name__ == "__main__": if sys.argv[1] == 'metadata': download_metadata() elif sys.argv[1] == 'data': download_data(sys.argv[2]) elif sys.argv[1] == 'clips': trim_audio(sys.argv[2]) elif sys.argv[1] == 'normalize': normalize_permissions_times(sys.argv[2]) elif sys.argv[1] == 'zips': create_zips(sys.argv[2]) ```
{ "source": "JoeVirtual/KonFoo", "score": 2 }
#### File: src/konfoo/fields.py ```python from .core import ( Decimal, Signed, Unsigned, Bitset, Bool, Enum, Scaled, Bipolar, Unipolar) from .enums import Enumeration class Decimal8(Decimal): """ A `Decimal8` field is a :class:`Decimal` field with a *size* of one byte and is by default unsigned. """ def __init__(self, signed=False, byte_order='auto'): super().__init__(bit_size=8, signed=signed, byte_order=byte_order) class Decimal16(Decimal): """ A `Decimal16` field is a :class:`Decimal` field with a *size* of two bytes and is by default unsigned. """ def __init__(self, signed=False, byte_order='auto'): super().__init__(bit_size=16, signed=signed, byte_order=byte_order) class Decimal24(Decimal): """ A `Decimal24` field is a :class:`Decimal` field with a *size* of three bytes and is by default unsigned. """ def __init__(self, signed=False, byte_order='auto'): super().__init__(bit_size=24, signed=signed, byte_order=byte_order) class Decimal32(Decimal): """ A `Decimal32` field is a :class:`Decimal` field with a *size* of four bytes and is by default unsigned. """ def __init__(self, signed=False, byte_order='auto'): super().__init__(bit_size=32, signed=signed, byte_order=byte_order) class Decimal64(Decimal): """ A `Decimal64` field is a :class:`Decimal` field with a *size* of eight bytes and is by default unsigned. """ def __init__(self, signed=False, byte_order='auto'): super().__init__(bit_size=64, signed=signed, byte_order=byte_order) class Signed8(Signed): """ A `Signed8` field is a :class:`Signed` field with a *size* of one byte. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=8, byte_order=byte_order) class Signed16(Signed): """ A `Signed16` field is a :class:`Signed` field with a *size* of two bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=16, byte_order=byte_order) class Signed24(Signed): """ A `Signed24` field is a :class:`Signed` field with a *size* of three bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=24, byte_order=byte_order) class Signed32(Signed): """ A `Signed32` field is a :class:`Signed` field with a *size* of four bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=32, byte_order=byte_order) class Signed64(Signed): """ A `Signed64` field is a :class:`Signed` field with a *size* of eight bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=64, byte_order=byte_order) class Unsigned8(Unsigned): """ A `Unsigned8` field is an :class:`Unsigned` field with a *size* of one byte. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=8, byte_order=byte_order) class Unsigned16(Unsigned): """ A `Unsigned16` field is an :class:`Unsigned` field with a *size* of two bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=16, byte_order=byte_order) class Unsigned24(Unsigned): """ A `Unsigned24` field is an :class:`Unsigned` field with a *size* of three bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=24, byte_order=byte_order) class Unsigned32(Unsigned): """ A `Unsigned32` field is an :class:`Unsigned` field with a *size* of four bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=32, byte_order=byte_order) class Unsigned64(Unsigned): """ A `Unsigned64` field is an :class:`Unsigned` field with a *size* of eight bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=64, byte_order=byte_order) class Bitset8(Bitset): """ A `Bitset8` field is a :class:`Bitset` field with a *size* of one byte. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=8, byte_order=byte_order) class Bitset16(Bitset): """ A `Bitset16` field is a :class:`Bitset` field with a *size* of two bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=16, byte_order=byte_order) class Bitset24(Bitset): """ A `Bitset24` field is a :class:`Bitset` field with a *size* of three bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=24, byte_order=byte_order) class Bitset32(Bitset): """ A `Bitset32` field is a :class:`Bitset` field with a *size* of four bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=32, byte_order=byte_order) class Bitset64(Bitset): """ A `Bitset64` field is a :class:`Bitset` field with a *size* of eight bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=64, byte_order=byte_order) class Bool8(Bool): """ A `Bool8` field is a :class:`Bool` field with a *size* of one byte. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=8, byte_order=byte_order) class Bool16(Bool): """ A `Bool16` field is a :class:`Bool` field with a *size* of two bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=16, byte_order=byte_order) class Bool24(Bool): """ A `Bool24` field is a :class:`Bool` field with a *size* of three bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=24, byte_order=byte_order) class Bool32(Bool): """ A `Bool32` field is a :class:`Bool` field with a *size* of four bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=32, byte_order=byte_order) class Bool64(Bool): """ A `Bool64` field is a :class:`Bool` field with a *size* of eight bytes. """ def __init__(self, byte_order='auto'): super().__init__(bit_size=64, byte_order=byte_order) class Antivalent(Enum): """ An `Antivalent` field is an :class:`Enum` field with a *size* of two bits and a fix assigned enumeration. """ class Validity(Enumeration): error = 0 correct = 1 forced = 2 undefined = 3 def __init__(self, align_to=None, byte_order='auto'): super().__init__(bit_size=2, align_to=align_to, enumeration=Antivalent.Validity, byte_order=byte_order) class Enum4(Enum): """ An `Enum4` field is an :class:`Enum` field with a *size* of four bits. """ def __init__(self, align_to=None, enumeration=None, byte_order='auto'): super().__init__(bit_size=4, align_to=align_to, enumeration=enumeration, byte_order=byte_order) class Enum8(Enum): """ An `Enum8` field is an :class:`Enum` field with a *size* of one byte. """ def __init__(self, enumeration=None, byte_order='auto'): super().__init__(bit_size=8, enumeration=enumeration, byte_order=byte_order) class Enum16(Enum): """ An `Enum16` field is an :class:`Enum` field with a *size* of two bytes. """ def __init__(self, enumeration=None, byte_order='auto'): super().__init__(bit_size=16, enumeration=enumeration, byte_order=byte_order) class Enum24(Enum): """ An `Enum24` field is an :class:`Enum` field with a *size* of three bytes. """ def __init__(self, enumeration=None, byte_order='auto'): super().__init__(bit_size=24, enumeration=enumeration, byte_order=byte_order) class Enum32(Enum): """ An `Enum32` field is an :class:`Enum` field with a *size* of four bytes. """ def __init__(self, enumeration=None, byte_order='auto'): super().__init__(bit_size=32, enumeration=enumeration, byte_order=byte_order) class Enum64(Enum): """ An `Enum64` field is an :class:`Enum` field with a *size* of eight bytes. """ def __init__(self, enumeration=None, byte_order='auto'): super().__init__(bit_size=64, enumeration=enumeration, byte_order=byte_order) class Scaled8(Scaled): """ A `Scaled8` field is a :class:`Scaled` field with a *size* of one byte. """ def __init__(self, scale, byte_order='auto'): super().__init__(scale=scale, bit_size=8, byte_order=byte_order) class Scaled16(Scaled): """ A `Scaled16` field is a :class:`Scaled` field with a *size* of two bytes. """ def __init__(self, scale, byte_order='auto'): super().__init__(scale=scale, bit_size=16, byte_order=byte_order) class Scaled24(Scaled): """ A `Scaled24` field is a :class:`Scaled` field with a *size* of three bytes. """ def __init__(self, scale, byte_order='auto'): super().__init__(scale=scale, bit_size=24, byte_order=byte_order) class Scaled32(Scaled): """ A `Scaled32` field is a :class:`Scaled` field with a *size* of four bytes. """ def __init__(self, scale, byte_order='auto'): super().__init__(scale=scale, bit_size=32, byte_order=byte_order) class Scaled64(Scaled): """ A `Scaled64` field is a :class:`Scaled` field with a *size* of eight bytes. """ def __init__(self, scale, byte_order='auto'): super().__init__(scale=scale, bit_size=64, byte_order=byte_order) class Bipolar2(Bipolar): """ A `Bipolar2` field is a :class:`Bipolar` field with a *size* of two bytes and an integer part of two bits. """ def __init__(self, byte_order='auto'): super().__init__(bits_integer=2, bit_size=16, byte_order=byte_order) class Bipolar4(Bipolar): """ A `Bipolar4` field is a :class:`Bipolar` field with a *size* of two bytes and an integer part of four bits. """ def __init__(self, byte_order='auto'): super().__init__(bits_integer=4, bit_size=16, byte_order=byte_order) class Unipolar2(Unipolar): """ An `Unipolar2` field is an :class:`Unipolar` field with a *size* of two bytes and an integer part of two bits. """ def __init__(self, byte_order='auto'): super().__init__(bits_integer=2, bit_size=16, byte_order=byte_order) ``` #### File: src/konfoo/globals.py ```python from .enums import Enumeration from .categories import Category class ItemClass(Enumeration): Field = 1 Container = 2 Pointer = 3 Structure = 10 Sequence = 11 Array = 12 Stream = 20 String = 21 Float = 30 Double = 31 Decimal = 40 Bit = 41 Byte = 42 Char = 43 Signed = 44 Unsigned = 45 Bitset = 46 Bool = 47 Enum = 48 Scaled = 49 Fraction = 50 Bipolar = 51 Unipolar = 52 Datetime = 53 IPAddress = 54 class Byteorder(Category): """ Byte order categories.""" auto = 'auto' little = 'little' big = 'big' #: Default Byteorder BYTEORDER = Byteorder.little def clamp(value, minimum, maximum): """ Returns the *value* limited between *minimum* and *maximum* whereby the *maximum* wins over the *minimum*. Example: >>> clamp(64, 0, 255) 64 >>> clamp(-128, 0, 255) 0 >>> clamp(0, 127, -128) -128 """ return min(max(value, minimum), maximum) ``` #### File: src/konfoo/providers.py ```python import abc from pathlib import Path class Provider: """ A `Provider` class provides access for the :class:`Pointer` class to **read** and **write** byte streams from and back to a data *source*. The `Provider` class servers as a meta class. A derived class must implement the two methods :meth:`read` and :meth:`write` for reading and writing byte streams from and back to the data *source*. """ @abc.abstractmethod def read(self, address=0, count=0): """ Returns a *number* of bytes read from a data `source` beginning at the start *address*. :param int address: start address. :param int count: number of bytes to read from a data `source`. .. note:: This abstract method must be implemented by a derived class. """ return bytes() @abc.abstractmethod def write(self, buffer=bytes(), address=0, count=0): """ Writes the content of the *buffer* to a data `source` beginning at the start *address*. :param bytes buffer: content to write. :param int address: start address. :param int count: number of bytes to write to a data `source`. .. note:: This abstract method must be implemented by a derived class. """ pass class FileProvider(Provider): """ A `FileProvider` is a byte stream :class:`Provider` for binary files. The *file* content is internal stored in a :attr:`~Provider.cache`. The :meth:`read` and :meth:`write` methods only operate on the internal :attr:`~Provider.cache`. Call :meth:`flush` to store the updated file content to the same or a new file. :param file: name and location of the file to read. :type file: :class:`~pathlib.Path`, :class:`str` """ def __init__(self, file): #: File path. self.path = Path(file).absolute() # File cache. self._cache = bytearray(self.path.read_bytes()) def __str__(self): return (f"{self.__class__.__name__}" f"({self.path!s}, {len(self._cache)!s})") def __repr__(self): return (f"{self.__class__.__name__}" f"(file={self.path!r}, size={len(self._cache)!r})") @property def cache(self): """ Returns the internal byte stream cache of the `Provider` (read-only).""" return self._cache def read(self, address=0, count=0): """ Returns a *number* of bytes read from the :attr:`cache` beginning at the start *address*. :param int address: start address. :param int count: number of bytes to read from the cache. """ return self._cache[address:] def write(self, buffer=bytes(), address=0, count=0): """ Writes the content of the *buffer* to the :attr:`cache` beginning at the start *address*. :param bytes buffer: content to write. :param int address: start address. :param int count: number of bytes to write to the cache. """ view = memoryview(self._cache) view[address:address + count] = buffer def flush(self, file=str()): """ Flushes the updated file content to the given *file*. .. note:: Overwrites an existing file. :param str file: name and location of the file. Default is the original file. """ if file: Path(file).write_bytes(self._cache) else: self.path.write_bytes(self._cache) ```
{ "source": "joevtap/NotasSIGAA", "score": 3 }
#### File: joevtap/NotasSIGAA/setup.py ```python def setup(): print(10*'=' + ' Notas SIGAA setup ' + 10*'=') username = str(input('SIGAA username: ')) password = str(input('<PASSWORD>: ')) webdriver_path = str(input('Webdriver path (always use / and, if in the same dir, use ./): ')) csv_output = str(input('CSV output path (always use / and, if in the same dir, use ./): ')) g_credentials_path = str(input( 'Google Cloud credentials.json path (always use / and, if in the same dir, use ./): ')) g_sheet = str(input("Google Sheet's sheet name: ")) downloads_path = str(input('Downloads folder path (always use / and, if in the same dir, use ./): ')) with open('./.env', 'w') as file: file.write(f"""MY_USERNAME="{username}" MY_PASSWORD="{password}" DRIVER_PATH="{webdriver_path}" CSV_OUTPUT="{csv_output}" G_CREDENTIALS="{g_credentials_path}" G_SHEET="{g_sheet}" DOWNLOADS_PATH="{downloads_path}" """) if __name__ == '__main__': setup() ```
{ "source": "joewa/enron-ml-project", "score": 2 }
#### File: joewa/enron-ml-project/poi_id.py ```python import os import sys import pickle import numpy as np import pandas as pd from copy import deepcopy import matplotlib.pyplot as plt from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, StandardScaler, RobustScaler, FunctionTransformer from sklearn.decomposition import PCA, KernelPCA from sklearn.feature_selection import SelectPercentile, SelectKBest, chi2, f_classif, SelectFromModel, RFECV, RFE from sklearn.model_selection import train_test_split, StratifiedShuffleSplit, GridSearchCV, ParameterGrid from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier, NearestCentroid from sklearn.svm import LinearSVC, SVC from sklearn.linear_model import LogisticRegression from sklearn.ensemble import VotingClassifier, AdaBoostClassifier, RandomForestClassifier, ExtraTreesClassifier from sklearn.pipeline import Pipeline, FeatureUnion #from sklearn.compose import ColumnTransformer # https://medium.com/dunder-data/from-pandas-to-scikit-learn-a-new-exciting-workflow-e88e2271ef62 # https://scikit-learn.org/stable/auto_examples/compose/plot_column_transformer.html#sphx-glr-auto-examples-compose-plot-column-transformer-py from collections import Counter # DataFrameSelector from: "Hands on machine learning with Scikit-Learn & Tensorflow" # Better approach: https://scikit-learn.org/stable/modules/compose.html from sklearn.base import BaseEstimator, TransformerMixin class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names=['total_payments', 'total_stock_value']): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X): return X[self.attribute_names].values sys.path.append("../tools/") sys.path.append("../choose_your_own/") from feature_format import featureFormat, targetFeatureSplit from tester import dump_classifier_and_data ### Task 1: Select what features you'll use. ### features_list is a list of strings, each of which is a feature name. ### The first feature must be "poi". features_email_stats = ['from_messages','from_this_person_to_poi', 'to_messages','from_poi_to_this_person', 'shared_receipt_with_poi'] features_financial_salary = ['salary', 'bonus', 'long_term_incentive', 'deferred_income', 'deferral_payments', 'loan_advances', 'other', 'expenses', 'director_fees'] features_financial_salary_total = ['total_payments'] features_financial_stock = ['exercised_stock_options', 'restricted_stock', 'restricted_stock_deferred'] features_financial_stock_total = ['total_stock_value'] features_email = ['fraction_from_poi_to_this_person', 'fraction_from_this_person_to_poi'] # This is designed in Task 3 features_list = ['poi'] + ['salary', 'bonus'] # You will need to use more features ### Load the dictionary containing the dataset # was "final_project_dataset.pkl" with open("final_project_dataset.pkl", "rb") as data_file: data_dict = pickle.load(data_file) # Some utility functions do not like mixed types -- for p_id, p_info in data_dict.items(): if p_info['email_address'] == 'NaN': p_info['email_address'] = 'unknown' for info in p_info: if p_info[info] == 'NaN': p_info[info] = np.nan data_dict_raw = deepcopy(data_dict) ### Task 2: Remove outliers # This task has been already done in the Jupyter-Notbook, because the given # pkl-file was corrupt, i.e. did not represent the full data from the insider # payments sheet. Please see the notebook for more information. #with open("final_project_dataset_PROVEN.pkl", "rb") as data_file: # data_dict = pickle.load(data_file) #df = pd.DataFrame.from_dict(data_dict_raw, orient='index').replace('NaN', np.nan) #toomanynan = df.isna().sum(axis=1) > 16 #df_toomanynan = df[toomanynan] #outliers2remove = df_toomanynan.index.values.tolist() + [df['salary'].idxmax()] #for pos in outliers2remove: # data_dict.pop(pos, 0) # remove them from the data_dict data_dict_raw = deepcopy(data_dict) ### Task 3: Create new feature(s) ### Store to my_dataset for easy export below. my_dataset = deepcopy(data_dict) # Relevant and engineered features due to "engineering judgement" # gotten versus deferral payments (sum it up) df = pd.read_pickle("final_project_dataset_PROVEN.pkl") df = df.replace(np.nan, 0.0) f = pd.Series(features_financial_salary) df['total_payments_corr'] = df[f[~f.isin(['deferred_income'])]].sum(axis=1) f = pd.Series(features_financial_stock) df['total_stock_value_corr'] = df[f[~f.isin(['restricted_stock_deferred'])]].sum(axis=1) df['total_cash'] = df['total_payments_corr'] + df['total_stock_value_corr'] df['total_payments_corr'].replace(0.0, 1.0, inplace=True) df['total_stock_value_corr'].replace(0.0, 1.0, inplace=True) df['to_messages'].replace(0.0, 1.0, inplace=True) df['from_messages'].replace(0.0, 1.0, inplace=True) df['salary'].replace(0.0, 1.0, inplace=True) df["bonus_to_salary"] = df["bonus"] / df["salary"] df['fraction_salary'] = df['salary'] / df['total_payments_corr'] df['fraction_bonus'] = df['bonus'] / df['total_payments_corr'] df['fraction_long_term_incentive'] = df['long_term_incentive'] / df['total_payments_corr'] df['fraction_deferral_payments'] = df['deferral_payments'] / df['total_payments_corr'] df['fraction_deferred_income'] = df['deferred_income'] / df['total_payments_corr'] # lost cash df['fraction_exercised_stock_options'] = df['exercised_stock_options'] / df['total_stock_value_corr'] df['fraction_restricted_stock_deferred'] = df['restricted_stock_deferred'] / df['total_stock_value_corr'] # lost stock df['fraction_restricted_stock'] = df['restricted_stock'] / df['total_stock_value_corr'] df['fraction_employer_direct_cash'] = df['fraction_salary'] + df['fraction_bonus'] + df['fraction_long_term_incentive'] df['fraction_employer_stock_cash'] = df['total_stock_value'] / df['total_stock_value_corr'] df['fraction_director_direct_cash'] = df['director_fees'] / df['total_payments_corr'] df['fraction_from_poi_to_this_person'] = df['from_poi_to_this_person'] / df['to_messages'] df['fraction_shared_receipt_with_poi'] = df['shared_receipt_with_poi'] / df['to_messages'] df['fraction_from_this_person_to_poi'] = df['from_this_person_to_poi'] / df['from_messages'] features_fractions_lost = ['fraction_deferred_income', 'fraction_restricted_stock_deferred'] features_fractions_cash = ['fraction_employer_direct_cash', 'fraction_employer_stock_cash'] features_absolute_cash = ['total_payments_corr', 'total_stock_value_corr', 'bonus_to_salary'] features_email = ['to_messages', 'from_messages', 'fraction_from_poi_to_this_person', 'fraction_shared_receipt_with_poi', 'fraction_from_this_person_to_poi'] data_d = df.to_dict(orient='index') # Required for Udacitiy's test_classifier my_dataset = data_d ### Extract features and labels from dataset for local testing data = featureFormat(my_dataset, features_list, sort_keys = True) labels, features = targetFeatureSplit(data) ### Task 4: Try a varity of classifiers ### Please name your classifier clf for easy export below. ### Note that if you want to do PCA or other multi-stage operations, ### you'll need to use Pipelines. For more info: ### http://scikit-learn.org/stable/modules/pipeline.html # Provided to give you a starting point. Try a variety of classifiers. # A variety of classifiers has been investigated and compared in the Jupyter-Notebook. # Only the best classifier is included and optimized here. d_scaler0 = { "scaler0": [StandardScaler(), MaxAbsScaler()] # RobustScaler(), MaxAbsScaler(), MinMaxScaler() } d_logreg = { "classifier": [LogisticRegression(random_state=42)], "classifier__C": [0.02, 0.03, 0.04, 0.05, 0.5, 1, 1e1, 1e2, 1e3, 1e5, 1e10], "classifier__tol":[1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-10], "classifier__class_weight":['balanced'], "classifier__solver": ["liblinear"] } d_dt = { "classifier": [DecisionTreeClassifier(random_state=42)], "classifier__criterion": ["entropy"], "classifier__max_depth": [5,6,7,8,9,10,11, None] #"classifier__min_samples_leaf": [1,2,3,4,5] # Makes it worse } # These is the the best scoring feature selection(s) d_bestsel = { "selector": [DataFrameSelector()], "selector__attribute_names": [ ["total_cash", "fraction_deferred_income", "fraction_restricted_stock_deferred"], ["total_stock_value", "expenses", "from_messages", "total_stock_value_corr", "total_cash", "bonus_to_salary", "fraction_exercised_stock_options", "fraction_restricted_stock_deferred", "fraction_employer_stock_cash", "fraction_from_this_person_to_poi"] ] } pipe_params = [ #("selector0", None), ("selector", None), ("scaler0", None), #("dimreducer", None), ("classifier", None) ] pipe = Pipeline(pipe_params) # Neue Pipeline mit DataFrameSelector am Anfang machen param_grid_all = [ #{**d_scaler0, **d_bestsel, **d_PCA_2, **d_dt }, # Accuracy: 0.87207 Precision: 0.52920 Recall: 0.36700 F1: 0.43342 F2: 0.39097 {**d_scaler0, **d_bestsel, **d_logreg}, # Accuracy: 0.77980 Precision: 0.36862 Recall: 0.91400 F1: 0.52536 F2: 0.70530 #{**d_scaler0, **d_kNearestCentroid}, # Most simple one! #{**d_scaler0, **d_bestsel, **d_kNearestCentroid}, # F1: WORKS #{**d_scaler0, **d_bestsel, **d_rforest} # Remove to make it work! ] sss = StratifiedShuffleSplit(n_splits=100, random_state=42) # Applied for ALL models clf_best_results = [] for param_grid_clf in param_grid_all: pg=[param_grid_clf] print(pg) grid_search = GridSearchCV(pipe, param_grid=pg, cv=sss, scoring="f1", n_jobs=1) f = pd.Series(df.columns) X_cols = f[~f.isin(['poi'])] grid_search.fit(df[X_cols], df['poi'].values) clf_best_results.append( { "score": grid_search.best_score_, "best_estimator": grid_search.best_estimator_, "best_params_": grid_search.best_params_ } ) # Prepare the final pipeline that will work with test_classifier df_best_results = pd.DataFrame.from_dict(clf_best_results) best_estimator = df_best_results.loc[ df_best_results["score"].idxmax(), "best_estimator" ] print("Best F1 score:{}".format(df_best_results["score"].max())) pipe_final_params = [ ("scaler0", best_estimator.named_steps["scaler0"]), #("dimreducer", best_estimator.named_steps["dimreducer"]), ("classifier", best_estimator.named_steps["classifier"]) ] pipe_final = Pipeline(pipe_final_params) features_final = best_estimator.named_steps["selector"].attribute_names ### Task 5: Tune your classifier to achieve better than .3 precision and recall ### using our testing script. Check the tester.py script in the final project ### folder for details on the evaluation method, especially the test_classifier ### function. Because of the small size of the dataset, the script uses ### stratified shuffle split cross validation. For more info: ### http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedShuffleSplit.html # Example starting point. Try investigating other evaluation techniques! # from sklearn.cross_validation import train_test_split from sklearn.model_selection import train_test_split features_train, features_test, labels_train, labels_test = \ train_test_split(features, labels, test_size=0.3, random_state=42) ### Task 6: Dump your classifier, dataset, and features_list so anyone can ### check your results. You do not need to change anything below, but make sure ### that the version of poi_id.py that you submit can be run on its own and ### generates the necessary .pkl files for validating your results. dump_classifier_and_data(pipe_final, my_dataset, features_final) ```
{ "source": "joewalk102/Adafruit_Learning_System_Guides", "score": 3 }
#### File: Adafruit_Learning_System_Guides/Adafruit_IO_Air_Quality/code.py ```python import time import board import busio from digitalio import DigitalInOut import neopixel from adafruit_esp32spi import adafruit_esp32spi, adafruit_esp32spi_wifimanager from adafruit_io.adafruit_io import IO_HTTP from simpleio import map_range from adafruit_pm25.uart import PM25_UART # Uncomment below for PMSA003I Air Quality Breakout # from adafruit_pm25.i2c import PM25_I2C import adafruit_bme280 ### Configure Sensor ### # Return environmental sensor readings in degrees Celsius USE_CELSIUS = False # Interval the sensor publishes to Adafruit IO, in minutes PUBLISH_INTERVAL = 10 ### WiFi ### # Get wifi details and more from a secrets.py file try: from secrets import secrets except ImportError: print("WiFi secrets are kept in secrets.py, please add them there!") raise # AirLift FeatherWing esp32_cs = DigitalInOut(board.D13) esp32_reset = DigitalInOut(board.D12) esp32_ready = DigitalInOut(board.D11) spi = busio.SPI(board.SCK, board.MOSI, board.MISO) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset) status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2) wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light) # Connect to a PM2.5 sensor over UART reset_pin = None uart = busio.UART(board.TX, board.RX, baudrate=9600) pm25 = PM25_UART(uart, reset_pin) # Create i2c object i2c = busio.I2C(board.SCL, board.SDA, frequency=100000) # Connect to a BME280 over I2C bme_sensor = adafruit_bme280.Adafruit_BME280_I2C(i2c) # Uncomment below for PMSA003I Air Quality Breakout # pm25 = PM25_I2C(i2c, reset_pin) # Uncomment below for BME680 # import adafruit_bme680 # bme_sensor = adafruit_bme680.Adafruit_BME680_I2C(i2c) ### Sensor Functions ### def calculate_aqi(pm_sensor_reading): """Returns a calculated air quality index (AQI) and category as a tuple. NOTE: The AQI returned by this function should ideally be measured using the 24-hour concentration average. Calculating a AQI without averaging will result in higher AQI values than expected. :param float pm_sensor_reading: Particulate matter sensor value. """ # Check sensor reading using EPA breakpoint (Clow-Chigh) if 0.0 <= pm_sensor_reading <= 12.0: # AQI calculation using EPA breakpoints (Ilow-IHigh) aqi_val = map_range(int(pm_sensor_reading), 0, 12, 0, 50) aqi_cat = "Good" elif 12.1 <= pm_sensor_reading <= 35.4: aqi_val = map_range(int(pm_sensor_reading), 12, 35, 51, 100) aqi_cat = "Moderate" elif 35.5 <= pm_sensor_reading <= 55.4: aqi_val = map_range(int(pm_sensor_reading), 36, 55, 101, 150) aqi_cat = "Unhealthy for Sensitive Groups" elif 55.5 <= pm_sensor_reading <= 150.4: aqi_val = map_range(int(pm_sensor_reading), 56, 150, 151, 200) aqi_cat = "Unhealthy" elif 150.5 <= pm_sensor_reading <= 250.4: aqi_val = map_range(int(pm_sensor_reading), 151, 250, 201, 300) aqi_cat = "Very Unhealthy" elif 250.5 <= pm_sensor_reading <= 350.4: aqi_val = map_range(int(pm_sensor_reading), 251, 350, 301, 400) aqi_cat = "Hazardous" elif 350.5 <= pm_sensor_reading <= 500.4: aqi_val = map_range(int(pm_sensor_reading), 351, 500, 401, 500) aqi_cat = "Hazardous" else: print("Invalid PM2.5 concentration") aqi_val = -1 aqi_cat = None return aqi_val, aqi_cat def sample_aq_sensor(): """Samples PM2.5 sensor over a 2.3 second sample rate. """ aq_reading = 0 aq_samples = [] # initial timestamp time_start = time.monotonic() # sample pm2.5 sensor over 2.3 sec sample rate while time.monotonic() - time_start <= 2.3: try: aqdata = pm25.read() aq_samples.append(aqdata["pm25 env"]) except RuntimeError: print("Unable to read from sensor, retrying...") continue # pm sensor output rate of 1s time.sleep(1) # average sample reading / # samples for sample in range(len(aq_samples)): aq_reading += aq_samples[sample] aq_reading = aq_reading / len(aq_samples) aq_samples.clear() return aq_reading def read_bme(is_celsius=False): """Returns temperature and humidity from BME280/BME680 environmental sensor, as a tuple. :param bool is_celsius: Returns temperature in degrees celsius if True, otherwise fahrenheit. """ humid = bme_sensor.humidity temp = bme_sensor.temperature if not is_celsius: temp = temp * 1.8 + 32 return temp, humid # Create an instance of the Adafruit IO HTTP client io = IO_HTTP(secrets["aio_user"], secrets["aio_key"], wifi) # Describes feeds used to hold Adafruit IO data feed_aqi = io.get_feed("air-quality-sensor.aqi") feed_aqi_category = io.get_feed("air-quality-sensor.category") feed_humidity = io.get_feed("air-quality-sensor.humidity") feed_temperature = io.get_feed("air-quality-sensor.temperature") # Set up location metadata from secrets.py file location_metadata = (secrets["latitude"], secrets["longitude"], secrets["elevation"]) elapsed_minutes = 0 prv_mins = 0 while True: try: print("Fetching time...") cur_time = io.receive_time() print("Time fetched OK!") # Hourly reset if cur_time.tm_min == 0: prv_mins = 0 except (ValueError, RuntimeError) as e: print("Failed to fetch time, retrying\n", e) wifi.reset() wifi.connect() continue if cur_time.tm_min >= prv_mins: print("%d min elapsed.." % elapsed_minutes) prv_mins = cur_time.tm_min elapsed_minutes += 1 if elapsed_minutes >= PUBLISH_INTERVAL: print("Sampling AQI...") aqi_reading = sample_aq_sensor() aqi, aqi_category = calculate_aqi(aqi_reading) print("AQI: %d" % aqi) print("Category: %s" % aqi_category) # temp and humidity print("Sampling environmental sensor...") temperature, humidity = read_bme(USE_CELSIUS) print("Temperature: %0.1f F" % temperature) print("Humidity: %0.1f %%" % humidity) # Publish all values to Adafruit IO print("Publishing to Adafruit IO...") try: io.send_data(feed_aqi["key"], str(aqi), location_metadata) io.send_data(feed_aqi_category["key"], aqi_category) io.send_data(feed_temperature["key"], str(temperature)) io.send_data(feed_humidity["key"], str(humidity)) print("Published!") except (ValueError, RuntimeError) as e: print("Failed to send data to IO, retrying\n", e) wifi.reset() wifi.connect() continue # Reset timer elapsed_minutes = 0 time.sleep(30) ``` #### File: Adafruit_Learning_System_Guides/Animated_NeoPixel_Glow_Fur_Scarf/Animated_NeoPixel_Glow_Fur_Scarf.py ```python import adafruit_fancyled.adafruit_fancyled as fancy import board import neopixel from digitalio import DigitalInOut, Direction, Pull led_pin = board.D1 # which pin your pixels are connected to num_leds = 78 # how many LEDs you have brightness = 1.0 # 0-1, higher number is brighter saturation = 255 # 0-255, 0 is pure white, 255 is fully saturated color steps = 0.01 # how wide the bands of color are. offset = 0 # cummulative steps fadeup = True # start with fading up - increase steps until offset reaches 1 index = 8 # midway color selection blend = True # color blending between palette indices # initialize list with all pixels off palette = [0] * num_leds # Declare a NeoPixel object on led_pin with num_leds as pixels # No auto-write. # Set brightness to max. # We will be using FancyLED's brightness control. strip = neopixel.NeoPixel(led_pin, num_leds, brightness=1, auto_write=False) # button setup button = DigitalInOut(board.D2) button.direction = Direction.INPUT button.pull = Pull.UP prevkeystate = False ledmode = 0 # button press counter, switch color palettes # FancyLED allows for assigning a color palette using these formats: # * The first (5) palettes here are mixing between 2-elements # * The last (3) palettes use a format identical to the FastLED Arduino Library # see FastLED - colorpalettes.cpp forest = [fancy.CRGB(0, 255, 0), # green fancy.CRGB(255, 255, 0)] # yellow ocean = [fancy.CRGB(0, 0, 255), # blue fancy.CRGB(0, 255, 0)] # green purple = [fancy.CRGB(160, 32, 240), # purple fancy.CRGB(238, 130, 238)] # violet all_colors = [fancy.CRGB(0, 0, 0), # black fancy.CRGB(255, 255, 255)] # white washed_out = [fancy.CRGB(0, 0, 0), # black fancy.CRGB(255, 0, 255)] # purple rainbow = [0xFF0000, 0xD52A00, 0xAB5500, 0xAB7F00, 0xABAB00, 0x56D500, 0x00FF00, 0x00D52A, 0x00AB55, 0x0056AA, 0x0000FF, 0x2A00D5, 0x5500AB, 0x7F0081, 0xAB0055, 0xD5002B] rainbow_stripe = [0xFF0000, 0x000000, 0xAB5500, 0x000000, 0xABAB00, 0x000000, 0x00FF00, 0x000000, 0x00AB55, 0x000000, 0x0000FF, 0x000000, 0x5500AB, 0x000000, 0xAB0055, 0x000000] heat_colors = [0x330000, 0x660000, 0x990000, 0xCC0000, 0xFF0000, 0xFF3300, 0xFF6600, 0xFF9900, 0xFFCC00, 0xFFFF00, 0xFFFF33, 0xFFFF66, 0xFFFF99, 0xFFFFCC] def wheel(pos): # Input a value 0 to 255 to get a color value. # The colours are a transition r - g - b - back to r. if (pos < 0) or (pos > 255): return (0, 0, 0) if pos < 85: return (int(pos * 3), int(255 - (pos * 3)), 0) elif pos < 170: pos -= 85 return (int(255 - pos * 3), 0, int(pos * 3)) else: pos -= 170 return (0, int(pos * 3), int(255 - pos * 3)) def remapRange(value, leftMin, leftMax, rightMin, rightMax): # this remaps a value fromhere original (left) range to new (right) range # Figure out how 'wide' each range is leftSpan = leftMax - leftMin rightSpan = rightMax - rightMin # Convert the left range into a 0-1 range (int) valueScaled = int(value - leftMin) / int(leftSpan) # Convert the 0-1 range into a value in the right range. return int(rightMin + (valueScaled * rightSpan)) def shortkeypress(color_palette): color_palette += 1 if color_palette > 6: color_palette = 1 return color_palette while True: # check for button press currkeystate = button.value # button press, move to next pattern if (prevkeystate is not True) and currkeystate: ledmode = shortkeypress(ledmode) # save button press state prevkeystate = currkeystate # Fire Colors [ HEAT ] if ledmode == 1: palette = heat_colors # Forest elif ledmode == 2: palette = forest # Ocean elif ledmode == 3: palette = ocean # Purple Lovers elif ledmode == 4: palette = purple # All the colors! elif ledmode == 5: palette = rainbow # Rainbow stripes elif ledmode == 6: palette = rainbow_stripe # All the colors except the greens, washed out elif ledmode == 7: palette = washed_out for i in range(num_leds): color = fancy.palette_lookup(palette, offset + i / num_leds) color = fancy.gamma_adjust(color, brightness=brightness) strip[i] = color.pack() strip.show() if fadeup: offset += steps if offset >= 1: fadeup = False else: offset -= steps if offset <= 0: fadeup = True ``` #### File: Adafruit_Learning_System_Guides/CircuitPython_Flying_Toasters/code.py ```python import time from random import seed, randint import board import displayio from adafruit_st7789 import ST7789 import adafruit_imageload # Sprite cell values EMPTY = 0 CELL_1 = EMPTY + 1 CELL_2 = CELL_1 + 1 CELL_3 = CELL_2 + 1 CELL_4 = CELL_3 + 1 TOAST = CELL_4 + 1 NUMBER_OF_SPRITES = TOAST + 1 # Animation support FIRST_CELL = CELL_1 LAST_CELL = CELL_4 NUMBER_OF_CELLS = (LAST_CELL - FIRST_CELL) + 1 # A boolean array corresponding to the sprites, True if it's part of the animation sequence. ANIMATED = [_sprite >= FIRST_CELL and _sprite <= LAST_CELL for _sprite in range(NUMBER_OF_SPRITES)] # The chance (out of 10) that toast will enter CHANCE_OF_NEW_TOAST = 2 # How many sprites to styart with INITIAL_NUMBER_OF_SPRITES = 4 # Global variables display = None tilegrid = None seed(int(time.monotonic())) def make_display(): """Set up the display support. Return the Display object. """ spi = board.SPI() while not spi.try_lock(): pass spi.configure(baudrate=24000000) # Configure SPI for 24MHz spi.unlock() displayio.release_displays() display_bus = displayio.FourWire(spi, command=board.D7, chip_select=board.D10, reset=board.D9) return ST7789(display_bus, width=240, height=240, rowstart=80, auto_refresh=True) def make_tilegrid(): """Construct and return the tilegrid.""" group = displayio.Group(max_size=10) sprite_sheet, palette = adafruit_imageload.load("/spritesheet-2x.bmp", bitmap=displayio.Bitmap, palette=displayio.Palette) grid = displayio.TileGrid(sprite_sheet, pixel_shader=palette, width=5, height=5, tile_height=64, tile_width=64, x=0, y=-64, default_tile=EMPTY) group.append(grid) display.show(group) return grid def random_cell(): return randint(FIRST_CELL, LAST_CELL) def evaluate_position(row, col): """Return whether how long of aa toaster is placable at the given location. :param row: the tile row (0-9) :param col: the tile column (0-9) """ return tilegrid[col, row] == EMPTY def seed_toasters(number_of_toasters): """Create the initial toasters so it doesn't start empty""" for _ in range(number_of_toasters): while True: row = randint(0, 4) col = randint(0, 4) if evaluate_position(row, col): break tilegrid[col, row] = random_cell() def next_sprite(sprite): if ANIMATED[sprite]: return (((sprite - FIRST_CELL) + 1) % NUMBER_OF_CELLS) + FIRST_CELL return sprite def advance_animation(): """Cycle through animation cells each time.""" for tile_number in range(25): tilegrid[tile_number] = next_sprite(tilegrid[tile_number]) def slide_tiles(): """Move the tilegrid one pixel to the bottom-left.""" tilegrid.x -= 1 tilegrid.y += 1 def shift_tiles(): """Move tiles one spot to the left, and reset the tilegrid's position""" for row in range(4, 0, -1): for col in range(4): tilegrid[col, row] = tilegrid[col + 1, row - 1] tilegrid[4, row] = EMPTY for col in range(5): tilegrid[col, 0] = EMPTY tilegrid.x = 0 tilegrid.y = -64 def get_entry_row(): while True: row = randint(0, 4) if tilegrid[4, row] == EMPTY and tilegrid[3, row] == EMPTY: return row def get_entry_column(): while True: col = randint(0, 3) if tilegrid[col, 0] == EMPTY and tilegrid[col, 1] == EMPTY: return col def add_toaster_or_toast(): """Maybe add a new toaster or toast on the right and/or top at a randon open location""" if randint(1, 10) <= CHANCE_OF_NEW_TOAST: tile = TOAST else: tile = random_cell() tilegrid[4, get_entry_row()] = tile if randint(1, 10) <= CHANCE_OF_NEW_TOAST: tile = TOAST else: tile = random_cell() tilegrid[get_entry_column(), 0] = tile display = make_display() tilegrid = make_tilegrid() seed_toasters(INITIAL_NUMBER_OF_SPRITES) display.refresh() while True: for _ in range(64): display.refresh(target_frames_per_second=80) advance_animation() slide_tiles() shift_tiles() add_toaster_or_toast() display.refresh(target_frames_per_second=120) ``` #### File: Adafruit_Learning_System_Guides/CircuitPython_Sip_and_Puff/puff_detector.py ```python import time import os import json import board import terminalio from adafruit_display_text import label from displayio import Group import displayio import adafruit_displayio_ssd1306 import adafruit_lps35hw CONSOLE = False DEBUG = True MIN_PRESSURE = 8 HIGH_PRESSURE = 40 WAITING = 0 STARTED = 1 DETECTED = 2 SOFT_SIP = 0 HARD_SIP = 1 SOFT_PUFF = 2 HARD_PUFF = 3 SOFT = 1 STRONG = 2 COLOR = 0xFFFFFF FONT = terminalio.FONT DISPLAY_WIDTH = 128 DISPLAY_HEIGHT = 64 Y_OFFSET = 3 TEXT_HEIGHT = 8 BOTTOM_ROW = DISPLAY_HEIGHT - TEXT_HEIGHT BANNER_STRING = "ST LPS33HW Sip & Puff" pressure_string = " " input_type_string = " " # pylint:disable=too-many-locals,exec-used,eval-used class PuffDetector: def __init__( self, min_pressure=MIN_PRESSURE, high_pressure=HIGH_PRESSURE, config_filename="settings.json", display_timeout=1, ): # misc detection state self.current_pressure = 0 self.current_polarity = 0 self.current_time = time.monotonic() self.start_polarity = 0 self.peak_level = 0 self.puff_start = 0 self.duration = 0 self.state = WAITING self.prev_state = self.state # settings self.settings_dict = {} self.high_pressure = high_pressure self.min_pressure = min_pressure self._config_filename = config_filename self._load_config() # callbacks self._on_sip_callbacks = [] self._on_puff_callbacks = [] # display and display state self.display = None self.state_display_start = self.current_time self.detection_result_str = " " self.duration_str = " " self.min_press_str = " " self.high_press_str = " " self.state_str = " " self.press_str = " " self.display_timeout = display_timeout self._init_stuff() def _init_stuff(self): # decouple display self.state_display_timeout = 1.0 self.state_display_start = 0 displayio.release_displays() i2c = board.I2C() display_bus = displayio.I2CDisplay(i2c, device_address=0x3D) self.display = adafruit_displayio_ssd1306.SSD1306( display_bus, width=DISPLAY_WIDTH, height=DISPLAY_HEIGHT ) self.min_press_str = "min: %d" % self.min_pressure self.high_press_str = "hi: %d" % self.high_pressure self.pressure_sensor = adafruit_lps35hw.LPS35HW(i2c) self.pressure_sensor.zero_pressure() self.pressure_sensor.data_rate = adafruit_lps35hw.DataRate.RATE_75_HZ self.pressure_sensor.filter_enabled = True self.pressure_sensor.filter_config = True def _load_config(self): if not self._config_filename in os.listdir("/"): return try: with open(self._config_filename, "r") as file: self.settings_dict = json.load(file) except (ValueError, OSError) as error: print("Error loading config file") print(type(error)) if self.settings_dict: if "MIN_PRESSURE" in self.settings_dict.keys(): self.min_pressure = self.settings_dict["MIN_PRESSURE"] if "HIGH_PRESSURE" in self.settings_dict.keys(): self.high_pressure = self.settings_dict["HIGH_PRESSURE"] if "DISPLAY_TIMEOUT" in self.settings_dict.keys(): self.display_timeout = self.settings_dict["DISPLAY_TIMEOUT"] def check_for_events(self): self.current_time = time.monotonic() self.current_pressure = self.pressure_sensor.pressure self._update_state() self._notify_callbacks() self._update_display() def run(self): while True: self.check_for_events() def _categorize_pressure(self, pressure): """determine the strength and polarity of the pressure reading""" level = 0 polarity = 0 abs_pressure = abs(pressure) if abs_pressure > self.min_pressure: level = 1 if abs_pressure > self.high_pressure: level = 2 if level != 0: if pressure > 0: polarity = 1 else: polarity = -1 return (polarity, level) def on_sip(self, func): self.add_on_sip(func) return func def on_puff(self, func): self.add_on_puff(func) return func def add_on_sip(self, new_callback): self._on_sip_callbacks.append(new_callback) def add_on_puff(self, new_callback): self._on_puff_callbacks.append(new_callback) def _update_state(self): """Updates the internal state to detect if a sip/puff has been started or stopped""" self.current_polarity, level = self._categorize_pressure(self.current_pressure) if self.state == DETECTED: self.state = WAITING self.start_polarity = 0 self.peak_level = 0 self.duration = 0 if (self.state == WAITING) and level != 0 and (self.start_polarity == 0): self.state = STARTED self.start_polarity = self.current_polarity self.puff_start = time.monotonic() if self.state == STARTED: if level > self.peak_level: self.peak_level = level if level == 0: self.state = DETECTED self.duration = time.monotonic() - self.puff_start def _notify_callbacks(self): state_changed = self.prev_state != self.state self.prev_state = self.state if not state_changed: return if self.state == DETECTED: # if this is a sip if self.start_polarity == -1: for on_sip_callback in self._on_sip_callbacks: on_sip_callback(self.peak_level, self.duration) # if this is a sip if self.start_polarity == 1: for on_puff_callback in self._on_puff_callbacks: on_puff_callback(self.peak_level, self.duration) def _update_display_strings(self): self.press_str = "Press: %0.3f" % self.current_pressure if self.state == DETECTED: self.duration_str = "Duration: %0.2f" % self.duration self.state_str = "DETECTED:" if self.start_polarity == -1: if self.peak_level == STRONG: self.detection_result_str = "STRONG SIP" if self.peak_level == SOFT: self.detection_result_str = "SOFT SIP" if self.start_polarity == 1: if self.peak_level == STRONG: self.detection_result_str = "STRONG PUFF" if self.peak_level == SOFT: self.detection_result_str = "SOFT PUFF" self.state_display_start = self.current_time elif self.state == WAITING: display_elapsed = self.current_time - self.state_display_start if display_elapsed > self.display_timeout: self.detection_result_str = " " self.duration_str = " " self.detection_result_str = " " self.state_str = "WAITING FOR INPUT" elif self.state == STARTED: if self.start_polarity == -1: self.state_str = "SIP STARTED..." if self.start_polarity == 1: self.state_str = "PUFF STARTED..." def _update_display(self): self._update_display_strings() banner = label.Label(FONT, text=BANNER_STRING, color=COLOR) state = label.Label(FONT, text=self.state_str, color=COLOR) detector_result = label.Label(FONT, text=self.detection_result_str, color=COLOR) duration = label.Label(FONT, text=self.duration_str, color=COLOR) min_pressure_label = label.Label(FONT, text=self.min_press_str, color=COLOR) high_pressure_label = label.Label(FONT, text=self.high_press_str, color=COLOR) pressure_label = label.Label(FONT, text=self.press_str, color=COLOR) banner.x = 0 banner.y = 0 + Y_OFFSET state.x = 10 state.y = 10 + Y_OFFSET detector_result.x = 10 detector_result.y = 20 + Y_OFFSET duration.x = 10 duration.y = 30 + Y_OFFSET min_pressure_label.x = 0 min_pressure_label.y = BOTTOM_ROW - 10 pressure_label.x = DISPLAY_WIDTH - pressure_label.bounding_box[2] pressure_label.y = BOTTOM_ROW high_pressure_label.x = 0 high_pressure_label.y = BOTTOM_ROW splash = Group(max_size=10) splash.append(banner) splash.append(state) splash.append(detector_result) splash.append(duration) splash.append(min_pressure_label) splash.append(high_pressure_label) splash.append(pressure_label) self.display.show(splash) ``` #### File: Adafruit_Learning_System_Guides/CLUE_Light_Painter/richbutton.py ```python from time import monotonic from digitalio import DigitalInOut, Direction, Pull # pylint: disable=too-many-instance-attributes, too-few-public-methods class RichButton: """ A button class handling more than basic taps: adds debounced tap, double-tap, hold and release. """ TAP = 0 DOUBLE_TAP = 1 HOLD = 2 RELEASE = 3 def __init__(self, pin, *, debounce_period=0.05, hold_period=0.75, double_tap_period=0.3): """ Constructor for RichButton class. Arguments: pin (int) : Digital pin connected to button (opposite leg to GND). Pin will be configured as INPUT with pullup. Keyword arguments: debounce_period (float) : interval, in seconds, in which multiple presses are ignored (debounced) (default = 0.05 seconds). hold_period (float) : interval, in seconds, when a held button will return a HOLD value from the action() function (default = 0.75). double_tap_period (float): interval, in seconds, when a double- tap can be sensed (vs returning a second single-tap) (default = 0.3). Longer double-tap periods will make single-taps less responsive. """ self.in_out = DigitalInOut(pin) self.in_out.direction = Direction.INPUT self.in_out.pull = Pull.UP self._debounce_period = debounce_period self._hold_period = hold_period self._double_tap_period = double_tap_period self._holding = False self._tap_time = -self._double_tap_period self._press_time = monotonic() self._prior_state = self.in_out.value def action(self): """ Process pin input. This MUST be called frequently for debounce, etc. to work, since interrupts are not available. Returns: None, TAP, DOUBLE_TAP, HOLD or RELEASE. """ new_state = self.in_out.value if new_state != self._prior_state: # Button state changed since last call self._prior_state = new_state if not new_state: # Button initially pressed (TAP not returned until debounce) self._press_time = monotonic() else: # Button initially released if self._holding: # Button released after hold self._holding = False return self.RELEASE if (monotonic() - self._press_time) >= self._debounce_period: # Button released after valid debounce time if monotonic() - self._tap_time < self._double_tap_period: # Followed another recent tap, reset double timer self._tap_time = 0 return self.DOUBLE_TAP # Else regular debounced release, maybe 1st tap, keep time self._tap_time = monotonic() else: # Button is in same state as last call if self._prior_state: # Is not pressed if (self._tap_time > 0 and (monotonic() - self._tap_time) > self._double_tap_period): # Enough time since last tap that it's not a double self._tap_time = 0 return self.TAP elif (not self._holding and (monotonic() - self._press_time) >= self._hold_period): # Is pressed, and has been for the holding period self._holding = True return self.HOLD return None ``` #### File: CLUE_Rock_Paper_Scissors/tests/test_rps_advertisements.py ```python import sys import os import unittest from unittest.mock import MagicMock verbose = int(os.getenv('TESTVERBOSE', '2')) # PYTHONPATH needs to be set to find adafruit_ble # Mocking library used by adafruit_ble sys.modules['_bleio'] = MagicMock() # Borrowing the dhalbert/tannewt technique from adafruit/Adafruit_CircuitPython_Motor sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) # import what we are testing or will test in future # pylint: disable=unused-import,wrong-import-position from rps_advertisements import JoinGameAdvertisement, \ RpsEncDataAdvertisement, \ RpsKeyDataAdvertisement, \ RpsRoundEndAdvertisement # pylint: disable=line-too-long class Test_RpsEncDataAdvertisement(unittest.TestCase): def test_bytes_order(self): """Testing the order of data inside the manufacturer's field to ensure it follows the fields are set in. This is new behaviour to benefit prefix matching.""" rpsedad1 = RpsEncDataAdvertisement(enc_data=b"FIRST", round_no=33, sequence_number=17) # This checks value is not the old incorrect order self.assertNotEqual(bytes(rpsedad1), b"\x16\xff\x22\x08\x03\x03\x00\x11\nA\xfeFIRST\x00\x00\x00\x03C\xfe\x21", msg="Checking order of serialised data for" " ackless RpsEncDataAdvertisement does" " not follow previous incorrect order") # This check for correct order self.assertEqual(bytes(rpsedad1), b"\x16\xff\x22\x08\x0a\x41\xfeFIRST\x00\x00\x00\x03C\xfe\x21\x03\x03\x00\x11", msg="Checking order of serialised data for" " ackless RpsEncDataAdvertisement") rpsedad1.ack = 29 self.assertEqual(bytes(rpsedad1), b"\x1a\xff\x22\x08\nA\xfeFIRST\x00\x00\x00\x03C\xfe!\x03\x03\x00\x11\x03Q\xfe\x1d", msg="Checking order of serialised data for" " RpsEncDataAdvertisement with ack set post construction") class Test_RpsKeyDataAdvertisement(unittest.TestCase): def test_bytes_order(self): """Testing the order of data inside the manufacturer's field to ensure it follows the fields are set in. This is new behaviour to benefit prefix matching.""" rpskdad1 = RpsKeyDataAdvertisement(key_data=b"FIRST", round_no=33, sequence_number=17) # This checks value is not the old incorrect order self.assertNotEqual(bytes(rpskdad1), b"\x16\xff\x22\x08\x03\x03\x00\x11\nB\xfeFIRST\x00\x00\x00\x03C\xfe\x21", msg="Checking order of serialised data for" " ackless RpsKeyDataAdvertisement does" " not follow previous incorrect order") # This check for correct order self.assertEqual(bytes(rpskdad1), b"\x16\xff\x22\x08\x0a\x42\xfeFIRST\x00\x00\x00\x03C\xfe\x21\x03\x03\x00\x11", msg="Checking order of serialised data for" " ackless RpsKeyDataAdvertisement") rpskdad1.ack = 29 self.assertEqual(bytes(rpskdad1), b"\x1a\xff\x22\x08\nB\xfeFIRST\x00\x00\x00\x03C\xfe!\x03\x03\x00\x11\x03Q\xfe\x1d", msg="Checking order of serialised data for" " RpsKeyDataAdvertisement with ack set post construction") class Test_RpsRoundEndAdvertisement(unittest.TestCase): def test_bytes_order(self): """Testing the order of data inside the manufacturer's field to ensure it follows the fields are set in. This is new behaviour to benefit prefix matching.""" rpsread1 = RpsRoundEndAdvertisement(round_no=133, sequence_number=201) # This checks value is not the old incorrect order self.assertNotEqual(bytes(rpsread1), b"\x0b\xff\x22\x08\x03\x03\x00\xc9\x03C\xfe\x85", msg="Checking order of serialised data for" " ackless RpsRoundEndAdvertisement does" " not follow previous incorrect order") # This check for correct order self.assertEqual(bytes(rpsread1), b"\x0b\xff\x22\x08\x03C\xfe\x85\x03\x03\x00\xc9", msg="Checking order of serialised data for" " ackless RpsRoundEndAdvertisement") rpsread1.ack = 200 self.assertEqual(bytes(rpsread1), b"\x0f" b"\xff\x22\x08\x03C\xfe\x85\x03\x03\x00\xc9" b"\x03Q\xfe\xc8", msg="Checking order of serialised data for" " RpsRoundEndAdvertisement with ack set post construction") if __name__ == '__main__': unittest.main(verbosity=verbose) ``` #### File: Adafruit_Learning_System_Guides/CPX_Sound_Box/code.py ```python import time import board from digitalio import DigitalInOut, Direction, Pull import audioio import neopixel filename = "electrons.wav" # The pad our button is connected to: button = DigitalInOut(board.A4) button.direction = Direction.INPUT button.pull = Pull.UP pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1) # NeoPixel Animation def simpleCircle(wait): PURPLE = (255, 0, 255) BLACK = (0, 0, 0) CYAN = (0, 255, 255) ORANGE = (255, 255, 0) for i in range(len(pixels)): pixels[i] = PURPLE time.sleep(wait) for i in range(len(pixels)): pixels[i] = CYAN time.sleep(wait) for i in range(len(pixels)): pixels[i] = ORANGE time.sleep(wait) for i in range(len(pixels)): pixels[i] = BLACK time.sleep(wait) # Audio Play File def play_file(playname): print("Playing File " + playname) wave_file = open(playname, "rb") with audioio.WaveFile(wave_file) as wave: with audioio.AudioOut(board.A0) as audio: audio.play(wave) while audio.playing: simpleCircle(.02) print("finished") while True: if not button.value: play_file(filename) ``` #### File: Crickits/dannybot/code.py ```python import time import random import audioio from digitalio import DigitalInOut, Pull, Direction from adafruit_seesaw.seesaw import Seesaw from adafruit_seesaw.pwmout import PWMOut from adafruit_motor import servo from busio import I2C import board wavefiles = ["01.wav", "02.wav", "03.wav", "04.wav", "05.wav", "06.wav", "07.wav", "08.wav", "09.wav", "10.wav", "11.wav", "12.wav", "13.wav", "14.wav"] # Create seesaw object i2c = I2C(board.SCL, board.SDA) seesaw = Seesaw(i2c) led = DigitalInOut(board.D13) led.direction = Direction.OUTPUT buttona = DigitalInOut(board.BUTTON_A) buttona.direction = Direction.INPUT buttona.pull = Pull.DOWN buttonb = DigitalInOut(board.BUTTON_B) buttonb.direction = Direction.INPUT buttonb.pull = Pull.DOWN SWITCH = 2 # A switch on signal #0 # Add a pullup on the switch seesaw.pin_mode(SWITCH, seesaw.INPUT_PULLUP) # Servo angles MOUTH_START = 95 MOUTH_END = 90 # 17 is labeled SERVO 1 on CRICKIT pwm = PWMOut(seesaw, 17) # must be 50 cannot change pwm.frequency = 50 # microservo usually is 400/2500 (tower pro sgr2r) my_servo = servo.Servo(pwm, min_pulse=400, max_pulse=2500) # Starting servo locations my_servo.angle = MOUTH_START # Audio playback object and helper to play a full file a = audioio.AudioOut(board.A0) def play_file(wavfile): print("Playing", wavfile) with open(wavfile, "rb") as f: wav = audioio.WaveFile(f) a.play(wav) while a.playing: my_servo.angle = MOUTH_END time.sleep(.15) my_servo.angle = MOUTH_START time.sleep(.15) while True: if seesaw.digital_read(SWITCH) and not buttona.value and not buttonb.value: continue play_file(random.choice(wavefiles)) # wait for buttons to be released while buttona.value or buttonb.value or not seesaw.digital_read(SWITCH): pass ``` #### File: Adafruit_Learning_System_Guides/FruitBox_Sequencer/main.py ```python import time from adafruit_circuitplayground.express import cpx # Change this number to adjust touch sensitivity threshold, 0 is default cpx.adjust_touch_threshold(600) bpm = 60 # quarter note beats per minute, change this to suit your tempo beat = 15 / bpm # 16th note expressed as seconds WHITE = (30, 30, 30) RED = (90, 0, 0) YELLOW = (45, 45, 0) GREEN = (0, 90, 0) AQUA = (0, 45, 45) BLUE = (0, 0, 90) PURPLE = (45, 0, 45) BLACK = (0, 0, 0) cpx.pixels.brightness = 0.1 # set brightness value # The seven files assigned to the touchpads audio_files = ["fB_bd_tek.wav", "fB_elec_hi_snare.wav", "fB_elec_cymbal.wav", "fB_elec_blip2.wav", "fB_bd_zome.wav", "fB_bass_hit_c.wav", "fB_drum_cowbell.wav"] step_advance = 0 # to count steps step = 0 # sixteen steps in a sequence step_note = [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1] # step pixels step_pixel = [9, 8, 7, 6, 5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2] # step colors step_col = [WHITE, RED, YELLOW, GREEN, AQUA, BLUE, PURPLE, BLACK] def prog_mode(index): cpx.play_file(audio_files[index]) step_note[step] = index cpx.pixels[step_pixel[step]] = step_col[step_note[step]] print("playing file " + audio_files[index]) while True: # playback mode if cpx.switch: # switch is slid to the left, play mode cpx.red_led = False if cpx.button_a: cpx.pixels.fill(GREEN) time.sleep(.2) cpx.pixels.fill(BLACK) if cpx.button_b: for i in range(16): step = i # light a pixel cpx.pixels[step_pixel[i]] = step_col[step_note[i]] cpx.pixels[step_pixel[i - 1]] = BLACK # play a file cpx.play_file(audio_files[step_note[i]]) # sleep a beat time.sleep(beat) cpx.pixels.fill(BLACK) # beat programming mode else: # switch is slid to the right, record mode cpx.red_led = True if cpx.button_a: # clear pixels, reset step to first step cpx.pixels.fill(RED) time.sleep(.2) cpx.pixels.fill(BLACK) cpx.pixels[9] = WHITE step = 0 step_advance = 0 # press B button to advance neo pixel steps if cpx.button_b: # button has been pressed step_advance += 1 step = step_advance % 16 cpx.play_file(audio_files[step_note[step]]) cpx.pixels[step_pixel[step]] = step_col[step_note[step]] cpx.pixels[step_pixel[step - 1]] = BLACK if cpx.touch_A1: prog_mode(0) if cpx.touch_A2: prog_mode(1) if cpx.touch_A3: prog_mode(2) if cpx.touch_A4: prog_mode(3) if cpx.touch_A5: prog_mode(4) if cpx.touch_A6: prog_mode(5) if cpx.touch_A7: prog_mode(6) ``` #### File: Adafruit_Learning_System_Guides/Hallowing_Lightsaber/lightsaber_standard.py ```python import time import math import audioio import busio import board import touchio import neopixel import adafruit_lis3dh # CUSTOMIZE YOUR COLOR HERE: # (red, green, blue) -- each 0 (off) to 255 (brightest) COLOR = (0, 100, 255) # jedi #COLOR = (255, 0, 0) # sith # CUSTOMIZE SENSITIVITY HERE: smaller numbers = more sensitive to motion HIT_THRESHOLD = 250 SWING_THRESHOLD = 125 NUM_PIXELS = 30 # NeoPixel strip length (in pixels) NEOPIXEL_PIN = board.EXTERNAL_NEOPIXEL # Pin where NeoPixels are connected STRIP = neopixel.NeoPixel(NEOPIXEL_PIN, NUM_PIXELS, brightness=1, auto_write=False) STRIP.fill(0) # NeoPixels off ASAP on startup STRIP.show() TOUCH = touchio.TouchIn(board.A2) # Rightmost capacitive touch pad AUDIO = audioio.AudioOut(board.A0) # Speaker MODE = 0 # Initial mode = OFF # Set up accelerometer on I2C bus, 4G range: I2C = busio.I2C(board.SCL, board.SDA) try: ACCEL = adafruit_lis3dh.LIS3DH_I2C(I2C, address=0x18) # Production board except: ACCEL = adafruit_lis3dh.LIS3DH_I2C(I2C, address=0x19) # Beta hardware ACCEL.range = adafruit_lis3dh.RANGE_4_G # "Idle" color is 1/4 brightness, "swinging" color is full brightness... COLOR_IDLE = (int(COLOR[0] / 4), int(COLOR[1] / 4), int(COLOR[2] / 4)) COLOR_SWING = COLOR COLOR_HIT = (255, 255, 255) # "hit" color is white def play_wav(name, loop=False): """ Play a WAV file in the 'sounds' directory. @param name: partial file name string, complete name will be built around this, e.g. passing 'foo' will play file 'sounds/foo.wav'. @param loop: if True, sound will repeat indefinitely (until interrupted by another sound). """ try: wave_file = open('sounds/' + name + '.wav', 'rb') wave = audioio.WaveFile(wave_file) AUDIO.play(wave, loop=loop) except: return def power(sound, duration, reverse): """ Animate NeoPixels with accompanying sound effect for power on / off. @param sound: sound name (similar format to play_wav() above) @param duration: estimated duration of sound, in seconds (>0.0) @param reverse: if True, do power-off effect (reverses animation) """ start_time = time.monotonic() # Save function start time play_wav(sound) while True: elapsed = time.monotonic() - start_time # Time spent in function if elapsed > duration: # Past sound duration? break # Stop animating fraction = elapsed / duration # Animation time, 0.0 to 1.0 if reverse: fraction = 1.0 - fraction # 1.0 to 0.0 if reverse fraction = math.pow(fraction, 0.5) # Apply nonlinear curve threshold = int(NUM_PIXELS * fraction + 0.5) for pixel in range(NUM_PIXELS): # Fill NeoPixel strip if pixel <= threshold: STRIP[pixel] = COLOR_IDLE # ON pixels BELOW threshold else: STRIP[pixel] = 0 # OFF pixels ABOVE threshold STRIP.show() if reverse: STRIP.fill(0) # At end, ensure strip is off else: STRIP.fill(COLOR_IDLE) # or all pixels set on STRIP.show() while AUDIO.playing: # Wait until audio done pass def mix(color_1, color_2, weight_2): """ Blend between two colors with a given ratio. @param color_1: first color, as an (r,g,b) tuple @param color_2: second color, as an (r,g,b) tuple @param weight_2: Blend weight (ratio) of second color, 0.0 to 1.0 @return: (r,g,b) tuple, blended color """ if weight_2 < 0.0: weight_2 = 0.0 elif weight_2 > 1.0: weight_2 = 1.0 weight_1 = 1.0 - weight_2 return (int(color_1[0] * weight_1 + color_2[0] * weight_2), int(color_1[1] * weight_1 + color_2[1] * weight_2), int(color_1[2] * weight_1 + color_2[2] * weight_2)) # Main program loop, repeats indefinitely while True: if TOUCH.value: # Capacitive pad touched? if MODE is 0: # If currently off... power('on', 1.7, False) # Power up! play_wav('idle', loop=True) # Play background hum sound MODE = 1 # ON (idle) mode now else: # else is currently on... power('off', 1.15, True) # Power down MODE = 0 # OFF mode now while TOUCH.value: # Wait for button release time.sleep(0.2) # to avoid repeated triggering elif MODE >= 1: # If not OFF mode... ACCEL_X, ACCEL_Y, ACCEL_Z = ACCEL.acceleration # Read accelerometer ACCEL_SQUARED = ACCEL_X * ACCEL_X + ACCEL_Z * ACCEL_Z # (Y axis isn't needed for this, assuming Hallowing is mounted # sideways to stick. Also, square root isn't needed, since we're # just comparing thresholds...use squared values instead, save math.) if ACCEL_SQUARED > HIT_THRESHOLD: # Large acceleration = HIT TRIGGER_TIME = time.monotonic() # Save initial time of hit play_wav('hit') # Start playing 'hit' sound COLOR_ACTIVE = COLOR_HIT # Set color to fade from MODE = 3 # HIT mode elif MODE is 1 and ACCEL_SQUARED > SWING_THRESHOLD: # Mild = SWING TRIGGER_TIME = time.monotonic() # Save initial time of swing play_wav('swing') # Start playing 'swing' sound COLOR_ACTIVE = COLOR_SWING # Set color to fade from MODE = 2 # SWING mode elif MODE > 1: # If in SWING or HIT mode... if AUDIO.playing: # And sound currently playing... BLEND = time.monotonic() - TRIGGER_TIME # Time since triggered if MODE == 2: # If SWING, BLEND = abs(0.5 - BLEND) * 2.0 # ramp up, down STRIP.fill(mix(COLOR_ACTIVE, COLOR_IDLE, BLEND)) STRIP.show() else: # No sound now, but still MODE > 1 play_wav('idle', loop=True) # Resume background hum STRIP.fill(COLOR_IDLE) # Set to idle color STRIP.show() MODE = 1 # IDLE mode now ``` #### File: Adafruit_Learning_System_Guides/Kegomatic/adabot.py ```python import pygame, sys from pygame.locals import * class adabot(): image = '' x = 0 y = 0 ll = 0 # left limit rl = 0 # right limit direction = 'right' def __init__(self, x, y, ll, rl): self.image = pygame.image.load('adabot.png') self.image = self.image.convert_alpha() self.x = x self.y = y self.ll = ll self.rl = rl def update(self): if (self.direction == 'right'): self.x += 5 else: self.x -= 5 if (self.x > self.rl or self.x < self.ll): self.direction = 'right' if self.direction == 'left' else 'left' ``` #### File: Adafruit_Learning_System_Guides/Light_Paintstick_HalloWing/light_paintstick_hallowing.py ```python import gc import time import board import touchio import digitalio from analogio import AnalogIn from neopixel_write import neopixel_write # uncomment one line only here to select bitmap FILENAME = "bats.bmp" # BMP file to load from flash filesystem #FILENAME = "digikey.bmp" #FILENAME = "burger.bmp" #FILENAME = "afbanner.bmp" #FILENAME = "blinka.bmp" #FILENAME = "ghost04.bmp" #FILENAME = "ghost07.bmp" #FILENAME = "ghost02.bmp" #FILENAME = "helix-32x30.bmp" #FILENAME = "wales2-107x30.bmp" #FILENAME = "pumpkin.bmp" #FILENAME = "rainbow.bmp" #FILENAME = "rainbowRoad.bmp" #FILENAME = "rainbowZig.bmp" #FILENAME = "skull.bmp" #FILENAME = "adabot.bmp" #FILENAME = "green_stripes.bmp" #FILENAME = "red_blue.bmp" #FILENAME = "minerva.bmp" TOUCH = touchio.TouchIn(board.A2) # Rightmost capacitive touch pad ANALOG = AnalogIn(board.SENSE) # Potentiometer on SENSE pin BRIGHTNESS = 1.0 # NeoPixel brightness 0.0 (min) to 1.0 (max) GAMMA = 2.7 # Adjusts perceived brighthess linearity NUM_PIXELS = 30 # NeoPixel strip length (in pixels) LOOP = False #set to True for looping # Switch off onboard NeoPixel... NEOPIXEL_PIN = digitalio.DigitalInOut(board.NEOPIXEL) NEOPIXEL_PIN.direction = digitalio.Direction.OUTPUT neopixel_write(NEOPIXEL_PIN, bytearray(3)) # ...then assign NEOPIXEL_PIN to the external NeoPixel connector: NEOPIXEL_PIN = digitalio.DigitalInOut(board.EXTERNAL_NEOPIXEL) NEOPIXEL_PIN.direction = digitalio.Direction.OUTPUT neopixel_write(NEOPIXEL_PIN, bytearray(NUM_PIXELS * 3)) def read_le(value): """Interpret multi-byte value from file as little-endian value""" result = 0 shift = 0 for byte in value: result += byte << shift shift += 8 return result class BMPError(Exception): """Error handler for BMP-loading function""" pass def load_bmp(filename): """Load BMP file, return as list of column buffers""" # pylint: disable=too-many-locals, too-many-branches try: print("Loading", filename) with open("/" + filename, "rb") as bmp: print("File opened") if bmp.read(2) != b'BM': # check signature raise BMPError("Not BitMap file") bmp.read(8) # Read & ignore file size and creator bytes bmp_image_offset = read_le(bmp.read(4)) # Start of image data bmp.read(4) # Read & ignore header size bmp_width = read_le(bmp.read(4)) bmp_height = read_le(bmp.read(4)) # BMPs are traditionally stored bottom-to-top. # If bmp_height is negative, image is in top-down order. # This is not BMP canon but has been observed in the wild! flip = True if bmp_height < 0: bmp_height = -bmp_height flip = False print("WxH: (%d,%d)" % (bmp_width, bmp_height)) if read_le(bmp.read(2)) != 1: raise BMPError("Not single-plane") if read_le(bmp.read(2)) != 24: # bits per pixel raise BMPError("Not 24-bit") if read_le(bmp.read(2)) != 0: raise BMPError("Compressed file") print("Image format OK, reading data...") row_size = (bmp_width * 3 + 3) & ~3 # 32-bit line boundary # Constrain rows loaded to pixel strip length clipped_height = min(bmp_height, NUM_PIXELS) # Allocate per-column pixel buffers, sized for NeoPixel strip: columns = [bytearray(NUM_PIXELS * 3) for _ in range(bmp_width)] # Image is displayed at END (not start) of NeoPixel strip, # this index works incrementally backward in column buffers... idx = (NUM_PIXELS - 1) * 3 for row in range(clipped_height): # For each scanline... if flip: # Bitmap is stored bottom-to-top order (normal BMP) pos = bmp_image_offset + (bmp_height - 1 - row) * row_size else: # Bitmap is stored top-to-bottom pos = bmp_image_offset + row * row_size bmp.seek(pos) # Start of scanline for column in columns: # For each pixel of scanline... # BMP files use BGR color order blue, green, red = bmp.read(3) # Rearrange into NeoPixel strip's color order, # while handling brightness & gamma correction: column[idx] = int(pow(green / 255, GAMMA) * BRIGHTNESS * 255 + 0.5) column[idx+1] = int(pow(red / 255, GAMMA) * BRIGHTNESS * 255 + 0.5) column[idx+2] = int(pow(blue / 255, GAMMA) * BRIGHTNESS * 255 + 0.5) idx -= 3 # Advance (back) one pixel # Add one more column with no color data loaded. This is used # to turn the strip off at the end of the painting operation. if not LOOP: columns.append(bytearray(NUM_PIXELS * 3)) print("Loaded OK!") gc.collect() # Garbage-collect now so playback is smoother return columns except OSError as err: if err.args[0] == 28: raise OSError("OS Error 28 0.25") else: raise OSError("OS Error 0.5") except BMPError as err: print("Failed to parse BMP: " + err.args[0]) # Load BMP image, return 'COLUMNS' array: COLUMNS = load_bmp(FILENAME) print("Mem free:", gc.mem_free()) COLUMN_DELAY = ANALOG.value / 65535.0 / 10.0 # 0.0 to 0.1 seconds while LOOP: for COLUMN in COLUMNS: neopixel_write(NEOPIXEL_PIN, COLUMN) time.sleep(COLUMN_DELAY) while True: # Wait for touch pad input: while not TOUCH.value: continue COLUMN_DELAY = ANALOG.value / 65535.0 / 10.0 # 0.0 to 0.1 seconds # print(COLUMN_DELAY) # Play back color data loaded into each column: for COLUMN in COLUMNS: neopixel_write(NEOPIXEL_PIN, COLUMN) time.sleep(COLUMN_DELAY) # Last column is all 0's, no need to explicitly clear strip # Wait for touch pad release, just in case: while TOUCH.value: continue ``` #### File: Adafruit_Learning_System_Guides/Matrix_Quote_Board/matrix_quote_board.py ```python import time import random import board import terminalio from adafruit_matrixportal.matrixportal import MatrixPortal # --- Display setup --- matrixportal = MatrixPortal(status_neopixel=board.NEOPIXEL, debug=True) # Create a new label with the color and text selected matrixportal.add_text( text_font=terminalio.FONT, text_position=(0, (matrixportal.graphics.display.height // 2) - 1), scrolling=True, ) # Static 'Connecting' Text matrixportal.add_text( text_font=terminalio.FONT, text_position=(2, (matrixportal.graphics.display.height // 2) - 1), ) QUOTES_FEED = "sign-quotes.signtext" COLORS_FEED = "sign-quotes.signcolor" SCROLL_DELAY = 0.02 UPDATE_DELAY = 600 quotes = [] colors = [] last_color = None last_quote = None def update_data(): print("Updating data from Adafruit IO") matrixportal.set_text("Connecting", 1) try: quotes_data = matrixportal.get_io_data(QUOTES_FEED) quotes.clear() for json_data in quotes_data: quotes.append(matrixportal.network.json_traverse(json_data, ["value"])) print(quotes) # pylint: disable=broad-except except Exception as error: print(error) try: color_data = matrixportal.get_io_data(COLORS_FEED) colors.clear() for json_data in color_data: colors.append(matrixportal.network.json_traverse(json_data, ["value"])) print(colors) # pylint: disable=broad-except except Exception as error: print(error) if not quotes or not colors: raise "Please add at least one quote and color to your feeds" matrixportal.set_text(" ", 1) update_data() last_update = time.monotonic() matrixportal.set_text(" ", 1) quote_index = None color_index = None while True: # Choose a random quote from quotes if len(quotes) > 1 and last_quote is not None: while quote_index == last_quote: quote_index = random.randrange(0, len(quotes)) else: quote_index = random.randrange(0, len(quotes)) last_quote = quote_index # Choose a random color from colors if len(colors) > 1 and last_color is not None: while color_index == last_color: color_index = random.randrange(0, len(colors)) else: color_index = random.randrange(0, len(colors)) last_color = color_index # Set the quote text matrixportal.set_text(quotes[quote_index]) # Set the text color matrixportal.set_text_color(colors[color_index]) # Scroll it matrixportal.scroll_text(SCROLL_DELAY) if time.monotonic() > last_update + UPDATE_DELAY: update_data() last_update = time.monotonic() ``` #### File: Adafruit_Learning_System_Guides/MIDI_Melody_Maker/code.py ```python import time from random import randint import board import simpleio import busio import terminalio import neopixel from digitalio import DigitalInOut, Direction, Pull from analogio import AnalogIn import displayio import adafruit_imageload from adafruit_display_text import label import adafruit_displayio_ssd1306 # uncomment if using USB MIDI # import usb_midi from adafruit_display_shapes.rect import Rect import adafruit_midi from adafruit_midi.note_on import NoteOn from adafruit_midi.note_off import NoteOff from adafruit_midi.control_change import ControlChange displayio.release_displays() oled_reset = board.D9 #turn off on-board neopixel pixel = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0) pixel.fill((0, 0, 0)) # Use for I2C for STEMMA OLED i2c = board.I2C() display_bus = displayio.I2CDisplay(i2c, device_address=0x3D, reset=oled_reset) # STEMMA OLED dimensions. can have height of 64, but 32 makes text larger WIDTH = 128 HEIGHT = 32 BORDER = 0 # blinka sprite indexes EMPTY = 0 BLINKA_1 = 1 BLINKA_2 = 2 # setup for STEMMA OLED display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=WIDTH, height=HEIGHT) # create the displayio object splash = displayio.Group(max_size=40) display.show(splash) # text for BPM bpm_text = "BPM: " bpm_text_area = label.Label( terminalio.FONT, text=bpm_text, color=0xFFFFFF, x=4, y=6 ) splash.append(bpm_text_area) bpm_rect = Rect(0, 0, 50, 16, fill=None, outline=0xFFFFFF) splash.append(bpm_rect) # text for key key_text = "Key: " key_text_area = label.Label( terminalio.FONT, text=key_text, color=0xFFFFFF, x=4, y=21 ) splash.append(key_text_area) key_rect = Rect(0, 15, 50, 16, fill=None, outline=0xFFFFFF) splash.append(key_rect) # text for mode mode_text = "Mode: " mode_text_area = label.Label( terminalio.FONT, text=mode_text, color=0xFFFFFF, x=54, y=21 ) splash.append(mode_text_area) mode_rect = Rect(50, 15, 78, 16, fill=None, outline=0xFFFFFF) splash.append(mode_rect) # text for beat division beat_text = "Div: " beat_text_area = label.Label( terminalio.FONT, text=beat_text, color=0xFFFFFF, x=54, y=6 ) splash.append(beat_text_area) beat_rect = Rect(50, 0, 78, 16, fill=None, outline=0xFFFFFF) splash.append(beat_rect) # Blinka sprite setup blinka, blinka_pal = adafruit_imageload.load("/spritesWhite.bmp", bitmap=displayio.Bitmap, palette=displayio.Palette) # creates a transparent background for Blinka blinka_pal.make_transparent(7) blinka_grid = displayio.TileGrid(blinka, pixel_shader=blinka_pal, width=1, height=1, tile_height=16, tile_width=16, default_tile=EMPTY) blinka_grid.x = 112 blinka_grid.y = 0 splash.append(blinka_grid) # imports MIDI # USB MIDI: # midi = adafruit_midi.MIDI(midi_out=usb_midi.ports[1], out_channel=0) # UART MIDI: midi = adafruit_midi.MIDI(midi_out=busio.UART(board.TX, board.RX, baudrate=31250), out_channel=0) # potentiometer pin setup key_pot = AnalogIn(board.A1) mode_pot = AnalogIn(board.A2) beat_pot = AnalogIn(board.A3) bpm_slider = AnalogIn(board.A4) mod_pot = AnalogIn(board.A5) # run switch setup run_switch = DigitalInOut(board.D5) run_switch.direction = Direction.INPUT run_switch.pull = Pull.UP # arrays of notes in each key key_of_C = [60, 62, 64, 65, 67, 69, 71, 72] key_of_Csharp = [61, 63, 65, 66, 68, 70, 72, 73] key_of_D = [62, 64, 66, 67, 69, 71, 73, 74] key_of_Dsharp = [63, 65, 67, 68, 70, 72, 74, 75] key_of_E = [64, 66, 68, 69, 71, 73, 75, 76] key_of_F = [65, 67, 69, 70, 72, 74, 76, 77] key_of_Fsharp = [66, 68, 70, 71, 73, 75, 77, 78] key_of_G = [67, 69, 71, 72, 74, 76, 78, 79] key_of_Gsharp = [68, 70, 72, 73, 75, 77, 79, 80] key_of_A = [69, 71, 73, 74, 76, 78, 80, 81] key_of_Asharp = [70, 72, 74, 75, 77, 79, 81, 82] key_of_B = [71, 73, 75, 76, 78, 80, 82, 83] # array of keys keys = [key_of_C, key_of_Csharp, key_of_D, key_of_Dsharp, key_of_E, key_of_F, key_of_Fsharp, key_of_G, key_of_Gsharp, key_of_A, key_of_Asharp, key_of_B] # array of note indexes for modes fifths = [0, 4, 3, 7, 2, 6, 4, 7] major = [4, 2, 0, 3, 5, 7, 6, 4] minor = [5, 7, 2, 4, 6, 5, 1, 3] pedal = [5, 5, 5, 6, 5, 5, 5, 7] # defining variables for key name strings C_name = "C" Csharp_name = "C#" D_name = "D" Dsharp_name = "D#" E_name = "E" F_name = "F" Fsharp_name = "F#" G_name = "G" Gsharp_name = "G#" A_name = "A" Asharp_name = "A#" B_name = "B" # array of strings for key names for use with the display key_names = [C_name, Csharp_name, D_name, Dsharp_name, E_name, F_name, Fsharp_name, G_name, Gsharp_name, A_name, Asharp_name, B_name] # function for reading analog inputs def val(voltage): return voltage.value # comparitors for pots' values mod_val2 = 0 beat_val2 = 0 bpm_val2 = 120 key_val2 = 0 mode_val2 = 0 # time.monotonic for running the modes run = 0 # state for being on/off run_state = False # indexes for modes r = 0 b = 0 f = 0 p = 0 maj = 0 mi = 0 random = 0 # mode states play_pedal = False play_fifths = False play_maj = False play_min = False play_rando = False play_scale = True # state for random beat division rando = False # comparitors for states last_r = 0 last_f = 0 last_maj = 0 last_min = 0 last_p = 0 last_random = 0 # index for random beat division hit = 0 # default tempo tempo = 60 # beat division sixteenth = 15 / tempo eighth = 30 / tempo quarter = 60 / tempo half = 120 / tempo whole = 240 / tempo # time.monotonic for blinka animation slither = 0 # blinka animation sprite index g = 1 # array for random beat division values rando_div = [240, 120, 60, 30, 15] # array of beat division values beat_division = [whole, half, quarter, eighth, sixteenth] # strings for beat division names beat_division_name = ["1", "1/2", "1/4", "1/8", "1/16", "Random"] while True: # mapping analog pot values to the different parameters # MIDI modulation 0-127 mod_val1 = round(simpleio.map_range(val(mod_pot), 0, 65535, 0, 127)) # BPM range 60-220 bpm_val1 = simpleio.map_range(val(bpm_slider), 0, 65535, 60, 220) # 6 options for beat division beat_val1 = round(simpleio.map_range(val(beat_pot), 0, 65535, 0, 5)) # 12 options for key selection key_val1 = round(simpleio.map_range(val(key_pot), 0, 65535, 0, 11)) # 6 options for mode selection mode_val1 = round(simpleio.map_range(val(mode_pot), 0, 65535, 0, 5)) # sending MIDI modulation if abs(mod_val1 - mod_val2) > 2: # updates previous value to hold current value mod_val2 = mod_val1 # MIDI data has to be sent as an integer # this converts the pot data into an int modulation = int(mod_val2) # int is stored as a CC message modWheel = ControlChange(1, modulation) # CC message is sent midi.send(modWheel) print(modWheel) # delay to settle MIDI data time.sleep(0.001) # sets beat division if abs(beat_val1 - beat_val2) > 0: # updates previous value to hold current value beat_val2 = beat_val1 print("beat div is", beat_val2) # updates display beat_text_area.text = "Div:%s" % beat_division_name[beat_val2] # sets random beat division state if beat_val2 == 5: rando = True else: rando = False time.sleep(0.001) # mode selection if abs(mode_val1 - mode_val2) > 0: # updates previous value to hold current value mode_val2 = mode_val1 # scale mode if mode_val2 == 0: play_scale = True play_maj = False play_min = False play_fifths = False play_pedal = False play_rando = False # updates display mode_text_area.text = "Mode:Scale" print("scale") # major triads mode if mode_val2 == 1: play_scale = False play_maj = True play_min = False play_fifths = False play_pedal = False play_rando = False print("major chords") # updates display mode_text_area.text = "Mode:MajorTriads" # minor triads mode if mode_val2 == 2: play_scale = False play_maj = False play_min = True play_fifths = False play_pedal = False play_rando = False print("minor") # updates display mode_text_area.text = "Mode:MinorTriads" # fifths mode if mode_val2 == 3: play_scale = False play_maj = False play_min = False play_fifths = True play_pedal = False play_rando = False print("fifths") # updates display mode_text_area.text = "Mode:Fifths" # pedal tone mode if mode_val2 == 4: play_scale = False play_maj = False play_min = False play_fifths = False play_pedal = True play_rando = False print("play random") # updates display mode_text_area.text = 'Mode:Pedal' # random mode if mode_val2 == 5: play_scale = False play_maj = False play_min = False play_fifths = False play_pedal = False play_rando = True print("play random") # updates display mode_text_area.text = 'Mode:Random' time.sleep(0.001) # key selection if abs(key_val1 - key_val2) > 0: # updates previous value to hold current value key_val2 = key_val1 # indexes the notes in each key array for k in keys: o = keys.index(k) octave = keys[o] # updates display key_text_area.text = 'Key:%s' % key_names[key_val2] print("o is", o) time.sleep(0.001) # BPM adjustment if abs(bpm_val1 - bpm_val2) > 1: # updates previous value to hold current value bpm_val2 = bpm_val1 # updates tempo tempo = int(bpm_val2) # updates calculations for beat division sixteenth = 15 / tempo eighth = 30 / tempo quarter = 60 / tempo half = 120 / tempo whole = 240 / tempo # updates array of beat divisions beat_division = [whole, half, quarter, eighth, sixteenth] # updates display bpm_text_area.text = "BPM:%d" % tempo print("tempo is", tempo) time.sleep(0.05) # if the run switch is pressed: if run_switch.value: run_state = True # if random beat division, then beat_division index is randomized with index hit if rando: divide = beat_division[hit] # if not random, then beat_division is the value of the pot else: divide = beat_division[beat_val2] # blinka animation in time with BPM and beat division # she will slither every time a note is played if (time.monotonic() - slither) >= divide: blinka_grid[0] = g g += 1 slither = time.monotonic() if g > 2: g = 1 # holds key index octave = keys[key_val2] # fifths mode if play_fifths: # tracks time divided by the beat division if (time.monotonic() - run) >= divide: # note index from mode, r counts index position f = fifths[r] # sends NoteOn midi.send(NoteOn(octave[f])) # turns previous note off midi.send(NoteOff(octave[last_f])) # print(octave[r]) run = time.monotonic() # go to next note r += 1 # updates previous value to hold current value if r > 0: last_r = r last_f = f hit = randint(2, 4) # resets note index position if r > 7: r = 0 last_r = r last_f = f hit = randint(2, 4) # major triad mode if play_maj: # tracks time divided by the beat division if (time.monotonic() - run) >= divide: # note index from mode, r counts index position maj = major[r] # sends NoteOn midi.send(NoteOn(octave[maj])) # turns previous note off midi.send(NoteOff(octave[last_maj])) # print(octave[r]) run = time.monotonic() # go to next note r += 1 # updates previous value to hold current value if r > 0: last_r = r last_maj = maj hit = randint(2, 4) # resets note index position if r > 7: r = 0 last_r = r last_maj = maj hit = randint(2, 4) # minor triad mode if play_min: # tracks time divided by the beat division if (time.monotonic() - run) >= divide: # note index from mode, r counts index position mi = minor[r] # sends NoteOn midi.send(NoteOn(octave[mi])) # turns previous note off midi.send(NoteOff(octave[last_min])) # print(octave[r]) run = time.monotonic() # go to next note r += 1 # updates previous value to hold current value if r > 0: last_r = r last_min = mi hit = randint(2, 4) # resets note index position if r > 7: r = 0 last_r = r last_min = mi hit = randint(2, 4) # pedal tone mode if play_pedal: # tracks time divided by the beat division if (time.monotonic() - run) >= divide: # note index from mode, r counts index position p = pedal[r] # sends NoteOn midi.send(NoteOn(octave[p])) # turns previous note off midi.send(NoteOff(octave[last_p])) # print(octave[r]) run = time.monotonic() # go to next note r += 1 # updates previous value to hold current value if r > 0: last_r = r last_p = p hit = randint(2, 4) # resets note index position if r > 7: r = 0 last_r = r last_p = p hit = randint(2, 4) # random note mode if play_rando: # randomizes note indexes in key r = randint(0, 7) # tracks time divided by the beat division if (time.monotonic() - run) >= divide: # sends NoteOn midi.send(NoteOn(octave[r])) # turns previous note off midi.send(NoteOff(octave[last_r])) # print(octave[r]) run = time.monotonic() # updates previous value to hold current value if r > 0: last_r = r r = randint(0, 7) hit = randint(2, 4) # scale mode if play_scale: # tracks time divided by the beat division if (time.monotonic() - run) >= divide: # sends NoteOn midi.send(NoteOn(octave[r])) # turns previous note off midi.send(NoteOff(octave[last_r])) # print(octave[r]) run = time.monotonic() # go to next note r += 1 # updates previous value to hold current value if r > 0: last_r = r hit = randint(2, 4) # resets note index position if r > 7: r = 0 last_r = r if not run_switch.value: if run_state: all_note_off = ControlChange(123, 0) # CC message is sent midi.send(all_note_off) run_state = False time.sleep(0.001) # delay to settle MIDI data time.sleep(0.005) ``` #### File: Adafruit_Learning_System_Guides/PyPortal_Smart_Switch/code.py ```python import time import gc import board import busio from adafruit_esp32spi import adafruit_esp32spi_socket as socket from adafruit_esp32spi import adafruit_esp32spi, adafruit_esp32spi_wifimanager import adafruit_requests as requests import digitalio import analogio from adafruit_pyportal import PyPortal from adafruit_display_shapes.circle import Circle from adafruit_display_shapes.roundrect import RoundRect from adafruit_bitmap_font import bitmap_font from adafruit_display_text import label import adafruit_touchscreen from adafruit_minimqtt import MQTT DISPLAY_COLOR = 0x006600 SWITCH_COLOR = 0x008800 SWITCH_FILL_COLOR = 0xffffff # Switch location SWITCHX = 260 SWITCHY = 4 FEED_NAME = "pyportal-switch" months = ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"] def get_local_timestamp(location=None): # pylint: disable=line-too-long """Fetch and "set" the local time of this microcontroller to the local time at the location, using an internet time API. :param str location: Your city and country, e.g. ``"New York, US"``. """ # pylint: enable=line-too-long api_url = None try: aio_username = secrets['aio_username'] aio_key = secrets['aio_key'] except KeyError: raise KeyError("\n\nOur time service requires a login/password to rate-limit. Please register for a free adafruit.io account and place the user/key in your secrets file under 'aio_username' and 'aio_key'")# pylint: disable=line-too-long location = secrets.get('timezone', location) if location: print("Getting time for timezone", location) api_url = (TIME_SERVICE + "&tz=%s") % (aio_username, aio_key, location) else: # we'll try to figure it out from the IP address print("Getting time from IP address") api_url = TIME_SERVICE % (aio_username, aio_key) api_url += TIME_SERVICE_TIMESTAMP try: print("api_url:",api_url) response = requests.get(api_url) times = response.text.split(' ') seconds = int(times[0]) tzoffset = times[1] tzhours = int(tzoffset[0:3]) tzminutes = int(tzoffset[3:5]) tzseconds = tzhours * 60 * 60 if tzseconds < 0: tzseconds -= tzminutes * 60 else: tzseconds += tzminutes * 60 print(seconds + tzseconds, tzoffset, tzhours, tzminutes) except KeyError: raise KeyError("Was unable to lookup the time, try setting secrets['timezone'] according to http://worldtimeapi.org/timezones") # pylint: disable=line-too-long # now clean up response.close() response = None gc.collect() return int(seconds + tzseconds) def create_text_areas(configs): """Given a list of area specifications, create and return text areas.""" text_areas = [] for cfg in configs: textarea = label.Label(cfg['font'], text=' '*cfg['size']) textarea.x = cfg['x'] textarea.y = cfg['y'] textarea.color = cfg['color'] text_areas.append(textarea) return text_areas class Switch(object): def __init__(self, pin, my_pyportal): self.switch = digitalio.DigitalInOut(pin) self.switch.direction = digitalio.Direction.OUTPUT rect = RoundRect(SWITCHX, SWITCHY, 31, 60, 16, outline=SWITCH_COLOR, fill=SWITCH_FILL_COLOR, stroke=3) my_pyportal.splash.append(rect) self.circle_on = Circle(SWITCHX + 15, SWITCHY + 16, 10, fill=SWITCH_FILL_COLOR) my_pyportal.splash.append(self.circle_on) self.circle_off = Circle(SWITCHX + 15, SWITCHY + 42, 10, fill=DISPLAY_COLOR) my_pyportal.splash.append(self.circle_off) # turn switch on or off def enable(self, enable): print("turning switch to ", enable) self.switch.value = enable if enable: self.circle_off.fill = SWITCH_FILL_COLOR self.circle_on.fill = DISPLAY_COLOR else: self.circle_on.fill = SWITCH_FILL_COLOR self.circle_off.fill = DISPLAY_COLOR def toggle(self): if self.switch.value: self.enable(False) else: self.enable(True) def status(self): return self.switch.value # you'll need to pass in an io username and key TIME_SERVICE = "http://io.adafruit.com/api/v2/%s/integrations/time/strftime?x-aio-key=%s" # See https://apidock.com/ruby/DateTime/strftime for full options TIME_SERVICE_TIMESTAMP = '&fmt=%25s+%25z' class Clock(object): def __init__(self, my_pyportal): self.low_light = False self.update_time = None self.snapshot_time = None self.pyportal = my_pyportal self.current_time = 0 self.light = analogio.AnalogIn(board.LIGHT) text_area_configs = [dict(x=0, y=105, size=10, color=DISPLAY_COLOR, font=time_font), dict(x=260, y=153, size=3, color=DISPLAY_COLOR, font=ampm_font), dict(x=110, y=40, size=20, color=DISPLAY_COLOR, font=date_font)] self.text_areas = create_text_areas(text_area_configs) self.text_areas[2].text = "starting..." for ta in self.text_areas: self.pyportal.splash.append(ta) def adjust_backlight(self, force=False): """Check light level. Adjust the backlight and background image if it's dark.""" if force or (self.light.value >= 1500 and self.low_light): self.pyportal.set_backlight(1.00) self.low_light = False elif self.light.value <= 1000 and not self.low_light: self.pyportal.set_backlight(0.1) self.low_light = True def tick(self, now): self.adjust_backlight() if (not self.update_time) or ((now - self.update_time) >= 300): # Update the time print("update the time") self.update_time = int(now) self.snapshot_time = get_local_timestamp(secrets['timezone']) self.current_time = time.localtime(self.snapshot_time) else: self.current_time = time.localtime(int(now) - self.update_time + self.snapshot_time) hour = self.current_time.tm_hour if hour > 12: hour = hour % 12 if hour == 0: hour = 12 time_string = '%2d:%02d' % (hour,self.current_time.tm_min) self.text_areas[0].text = time_string ampm_string = "AM" if self.current_time.tm_hour >= 12: ampm_string = "PM" self.text_areas[1].text = ampm_string self.text_areas[2].text = (months[int(self.current_time.tm_mon - 1)] + " " + str(self.current_time.tm_mday)) try: board.DISPLAY.refresh(target_frames_per_second=60) except AttributeError: board.DISPLAY.refresh_soon() board.DISPLAY.wait_for_frame() # Define callback methods which are called when events occur # pylint: disable=unused-argument, redefined-outer-name def connected(client, userdata, flags, rc): # This function will be called when the client is connected # successfully to the broker. onoff_feed = secrets['aio_username'] + '/feeds/' + FEED_NAME print('Connected to Adafruit IO! Listening for topic changes on %s' % onoff_feed) # Subscribe to all changes on the onoff_feed. client.subscribe(onoff_feed) def disconnected(client, userdata, rc): # This method is called when the client is disconnected print('Disconnected from Adafruit IO!') def message(client, topic, message): # This method is called when a topic the client is subscribed to # has a new message. print('New message on topic {0}: {1}'.format(topic, message)) if message in ("ON","TRUE","1"): switch.enable(True) else: switch.enable(False) ############################################ try: from secrets import secrets except ImportError: print("""WiFi settings are kept in secrets.py, please add them there! the secrets dictionary must contain 'ssid' and 'password' at a minimum""") raise esp32_cs = digitalio.DigitalInOut(board.ESP_CS) esp32_ready = digitalio.DigitalInOut(board.ESP_BUSY) esp32_reset = digitalio.DigitalInOut(board.ESP_RESET) WIDTH = board.DISPLAY.width HEIGHT = board.DISPLAY.height ts = adafruit_touchscreen.Touchscreen(board.TOUCH_XL, board.TOUCH_XR, board.TOUCH_YD, board.TOUCH_YU, calibration=( (5200, 59000), (5800, 57000) ), size=(WIDTH, HEIGHT)) spi = busio.SPI(board.SCK, board.MOSI, board.MISO) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset, debug=False) requests.set_socket(socket, esp) if esp.status == adafruit_esp32spi.WL_IDLE_STATUS: print("ESP32 found and in idle mode") print("Firmware vers.", esp.firmware_version) print("MAC addr:", [hex(i) for i in esp.MAC_address]) pyportal = PyPortal(esp=esp, external_spi=spi, default_bg="/background.bmp") ampm_font = bitmap_font.load_font("/fonts/RobotoMono-18.bdf") ampm_font.load_glyphs(b'ampAMP') date_font = bitmap_font.load_font("/fonts/RobotoMono-18.bdf") date_font.load_glyphs(b'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789') time_font = bitmap_font.load_font("/fonts/RobotoMono-72.bdf") time_font.load_glyphs(b'0123456789:') clock = Clock(pyportal) for ap in esp.scan_networks(): print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi'])) print("Connecting to AP...") while not esp.is_connected: try: esp.connect_AP(secrets['ssid'], secrets['password']) except RuntimeError as e: print("could not connect to AP, retrying: ",e) continue print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi) print("My IP address is", esp.pretty_ip(esp.ip_address)) wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager( esp, secrets, debug = True) # Set up a MiniMQTT Client mqtt_client = MQTT(socket, broker='io.adafruit.com', username=secrets['aio_username'], password=secrets['aio_key'], network_manager=wifi) mqtt_client.on_connect = connected mqtt_client.on_disconnect = disconnected mqtt_client.on_message = message mqtt_client.connect() switch = Switch(board.D4, pyportal) second_timer = time.monotonic() while True: #time.sleep(1) p = ts.touch_point if p: #if p[0] >= 140 and p[0] <= 170 and p[1] >= 160 and p[1] <= 220: # touch anywhere on the screen print("touch!") clock.adjust_backlight(True) switch.toggle() time.sleep(1) # poll once per second if time.monotonic() - second_timer >= 1.0: second_timer = time.monotonic() # Poll the message queue try: mqtt_client.loop() except RuntimeError: print("reconnecting wifi") mqtt_client.reconnect_wifi() # Update the PyPortal display clock.tick(time.monotonic()) ``` #### File: Adafruit_Learning_System_Guides/PyPortal_Smart_Thermometer/thermometer.py ```python import time import board import neopixel import busio from digitalio import DigitalInOut from analogio import AnalogIn import adafruit_adt7410 from adafruit_esp32spi import adafruit_esp32spi, adafruit_esp32spi_wifimanager from adafruit_io.adafruit_io import IO_HTTP, AdafruitIO_RequestError # thermometer graphics helper import thermometer_helper # rate at which to refresh the pyportal screen, in seconds PYPORTAL_REFRESH = 2 # Get wifi details and more from a secrets.py file try: from secrets import secrets except ImportError: print("WiFi secrets are kept in secrets.py, please add them there!") raise # PyPortal ESP32 Setup esp32_cs = DigitalInOut(board.ESP_CS) esp32_ready = DigitalInOut(board.ESP_BUSY) esp32_reset = DigitalInOut(board.ESP_RESET) spi = busio.SPI(board.SCK, board.MOSI, board.MISO) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset) status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2) wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light) # Set your Adafruit IO Username and Key in secrets.py # (visit io.adafruit.com if you need to create an account, # or if you need your Adafruit IO key.) try: ADAFRUIT_IO_USER = secrets['aio_username'] ADAFRUIT_IO_KEY = secrets['aio_key'] except KeyError: raise KeyError('To use this code, you need to include your Adafruit IO username \ and password in a secrets.py file on the CIRCUITPY drive.') # Create an instance of the IO_HTTP client io = IO_HTTP(ADAFRUIT_IO_USER, ADAFRUIT_IO_KEY, wifi) # Get the temperature feed from Adafruit IO temperature_feed = io.get_feed('temperature') # init. graphics helper gfx = thermometer_helper.Thermometer_GFX(celsius=False) # init. adt7410 i2c_bus = busio.I2C(board.SCL, board.SDA) adt = adafruit_adt7410.ADT7410(i2c_bus, address=0x48) adt.high_resolution = True # init. the light sensor light_sensor = AnalogIn(board.LIGHT) def set_backlight(val): """Adjust the TFT backlight. :param val: The backlight brightness. Use a value between ``0`` and ``1``, where ``0`` is off, and ``1`` is 100% brightness. """ val = max(0, min(1.0, val)) board.DISPLAY.auto_brightness = False board.DISPLAY.brightness = val while True: # read the light sensor light_value = light_sensor.value print('Light Value: ', light_value) # read the temperature sensor temperature = adt.temperature try: # WiFi Connection if light_value < 1000: # turn on the backlight set_backlight(1) print('displaying temperature...') gfx.display_temp(temperature) # Get and display date and time form Adafruit IO print('Getting time from Adafruit IO...') datetime = io.receive_time() print('displaying time...') gfx.display_date_time(datetime) else: # turn off the backlight set_backlight(0) try: # send temperature data to IO gfx.display_io_status('Sending data...') print('Sending data to Adafruit IO...') io.send_data(temperature_feed['key'], temperature) print('Data sent!') gfx.display_io_status('Data sent!') except AdafruitIO_RequestError as e: raise AdafruitIO_RequestError('IO Error: ', e) except (ValueError, RuntimeError) as e: # WiFi Connection Failure print("Failed to get data, retrying\n", e) wifi.reset() continue time.sleep(PYPORTAL_REFRESH) ``` #### File: Adafruit_Learning_System_Guides/Sensor_Plotting_With_Mu_CircuitPython/potentiometer.py ```python import time import analogio import board potentiometer = analogio.AnalogIn(board.A1) def get_voltage(pin): return (pin.value * 3.3) / 65536 while True: print((get_voltage(potentiometer),)) time.sleep(0.1) ``` #### File: Adafruit_Learning_System_Guides/Servo_Tester/main.py ```python import time import board import busio import digitalio import rotaryio import pulseio import adafruit_ssd1306 from adafruit_motor import servo from adafruit_debouncer import Debouncer #-------------------------------------------------------------------------------- # Initialize Rotary encoder button_io = digitalio.DigitalInOut(board.D12) button_io.direction = digitalio.Direction.INPUT button_io.pull = digitalio.Pull.UP button = Debouncer(button_io) rotary_encoder = rotaryio.IncrementalEncoder(board.D10, board.D11) #-------------------------------------------------------------------------------- # Initialize I2C and OLED i2c = busio.I2C(board.SCL, board.SDA) oled = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c) oled.fill(0) oled.show() min_pulses = [ 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000] max_pulses = [2000, 2050, 2100, 2150, 2200, 2250, 2300, 2350, 2400, 2450, 2500] min_pulse_index = 10 max_pulse_index = 0 #------------------------------------------------------------------------------- # Initialize servo pwm = pulseio.PWMOut(board.D5, frequency=50) test_servo = servo.Servo(pwm, min_pulse=1000, max_pulse=2000) test_servo.angle = 0 current_position = None # current encoder position change = 0 # the change in encoder position angle = 0 mode = 0 sweep_time = 1.0 last_movement_at = 0.0 delta = 5 def get_encoder_change(encoder, pos): new_position = encoder.position if pos is None: return (new_position, 0) else: return (new_position, new_position - pos) #-------------------------------------------------------------------------------- # Main loop while True: now = time.monotonic() button.update() if mode == 1: if now >= (last_movement_at + sweep_time / 36): last_movement_at = now angle += delta if (angle > 180) or (angle < 0): delta *= -1 angle += delta if button.fell: servo.angle = 0 if mode == 0: mode = 1 sweep_time = 1.0 last_movement_at = now elif mode == 1: mode = 2 angle = 0 elif mode == 2: mode = 3 angle = 180 elif mode == 3: mode = 0 angle = 0 else: current_position, change = get_encoder_change(rotary_encoder, current_position) if change != 0: if mode == 0: angle = min(180, max(0, angle + change * 5)) elif mode == 1: sweep_time = min(5.0, max(1.0, sweep_time + change * 0.1)) elif mode == 2: min_pulse_index = min(10, max(min_pulse_index + change, 0)) test_servo = servo.Servo(pwm, min_pulse=min_pulses[min_pulse_index], max_pulse=max_pulses[max_pulse_index]) angle = 0 elif mode == 3: max_pulse_index = min(10, max(max_pulse_index + change, 0)) test_servo = servo.Servo(pwm, min_pulse=min_pulses[min_pulse_index], max_pulse=max_pulses[max_pulse_index]) angle = 180 oled.fill(0) if mode == 0: oled.text("Angle: {0}".format(angle), 0, 0) elif mode == 1: oled.text("Sweep time: {0}".format(sweep_time), 0, 0) elif mode == 2: oled.text("Min width: {0}".format(min_pulses[min_pulse_index]), 0, 0) elif mode == 3: oled.text("Max width: {0}".format(max_pulses[max_pulse_index]), 0, 0) oled.show() test_servo.angle = angle ``` #### File: Adafruit_Learning_System_Guides/Snow_Globe_BLE_CPB/ble_snowglobe.py ```python import time import random import board import busio import neopixel import adafruit_lis3dh from adafruit_bluefruit_connect.packet import Packet from adafruit_bluefruit_connect.color_packet import ColorPacket from adafruit_bluefruit_connect.button_packet import ButtonPacket from adafruit_ble import BLERadio from adafruit_ble.advertising.standard import ProvideServicesAdvertisement from adafruit_ble.services.nordic import UARTService #===| User Config |================================================== SNOWGLOBE_NAME = "SNOWGLOBE" # name that will show up on smart device DEFAULT_ANIMATION = 0 # 0-3, index in ANIMATIONS list DEFAULT_DURATION = 5 # total seconds to play animation DEFAULT_SPEED = 0.1 # delay in seconds between updates DEFAULT_COLOR = 0xFF0000 # hex color value DEFAULT_SHAKE = 20 # lower number is more sensitive # you can define more animation functions below # here, specify the four to be used ANIMATIONS = ('spin', 'pulse', 'strobe', 'sparkle') #===| User Config |================================================== # Configuration settings snow_config = { 'animation' : DEFAULT_ANIMATION, 'duration' : DEFAULT_DURATION, 'speed' : DEFAULT_SPEED, 'color' : DEFAULT_COLOR, 'shake' : DEFAULT_SHAKE, } # Setup NeoPixels pixels = neopixel.NeoPixel(board.NEOPIXEL, 10) # Setup accelo accelo_i2c = busio.I2C(board.ACCELEROMETER_SCL, board.ACCELEROMETER_SDA) accelo = adafruit_lis3dh.LIS3DH_I2C(accelo_i2c, address=0x19) # Setup BLE ble = BLERadio() uart = UARTService() advertisement = ProvideServicesAdvertisement(uart) ble._adapter.name = SNOWGLOBE_NAME #pylint: disable=protected-access #--| ANIMATIONS |---------------------------------------------------- def spin(config): start_time = time.monotonic() last_update = start_time p = -1 while time.monotonic() - start_time < config['duration']: if time.monotonic() - last_update > config['speed']: pixels.fill(0) pixels[p % 10] = config['color'] p -= 1 last_update = time.monotonic() def pulse(config): start_time = time.monotonic() last_update = start_time brightness = 0 delta = 0.05 pixels.brightness = 0 pixels.fill(config['color']) while time.monotonic() - start_time < config['duration']: if time.monotonic() - last_update > config['speed']: brightness += delta if brightness > 1: brightness = 1 delta *= -1 if brightness < 0: brightness = 0 delta *= -1 pixels.brightness = brightness last_update = time.monotonic() def strobe(config): start_time = time.monotonic() last_update = start_time turn_on = True while time.monotonic() - start_time < config['duration']: if time.monotonic() - last_update > config['speed']: if turn_on: pixels.fill(config['color']) else: pixels.fill(0) turn_on = not turn_on last_update = time.monotonic() def sparkle(config): start_time = time.monotonic() last_update = start_time while time.monotonic() - start_time < config['duration']: if time.monotonic() - last_update > config['speed']: pixels.fill(0) pixels[random.randint(0, 9)] = config['color'] last_update = time.monotonic() #--| ANIMATIONS |---------------------------------------------------- def play_animation(config): #pylint: disable=eval-used eval(ANIMATIONS[config['animation']])(config) pixels.fill(0) def indicate(event=None): if not isinstance(event, str): return event = event.strip().upper() if event == 'START': for _ in range(2): for i in range(10): pixels[i] = DEFAULT_COLOR time.sleep(0.05) pixels.fill(0) if event == 'CONNECTED': for _ in range(5): pixels.fill(0x0000FF) time.sleep(0.1) pixels.fill(0) time.sleep(0.1) if event == 'DISCONNECTED': for _ in range(5): pixels.fill(0x00FF00) time.sleep(0.1) pixels.fill(0) time.sleep(0.1) indicate('START') # Are we already advertising? advertising = False while True: # While BLE is *not* connected while not ble.connected: if accelo.shake(snow_config['shake'], 5, 0): play_animation(snow_config) if not advertising: ble.start_advertising(advertisement) advertising = True # connected indicate('CONNECTED') while ble.connected: # Once we're connected, we're not advertising any more. advertising = False if accelo.shake(snow_config['shake'], 5, 0): play_animation(snow_config) if uart.in_waiting: try: packet = Packet.from_stream(uart) except ValueError: continue if isinstance(packet, ColorPacket): # # COLOR # snow_config['color'] = packet.color pixels.fill(snow_config['color']) time.sleep(0.5) pixels.fill(0) if isinstance(packet, ButtonPacket) and packet.pressed: # # SPEED # if packet.button == ButtonPacket.UP: speed = snow_config['speed'] - 0.05 speed = 0.05 if speed < 0.05 else speed snow_config['speed'] = speed play_animation(snow_config) if packet.button == ButtonPacket.DOWN: speed = snow_config['speed'] + 0.05 snow_config['speed'] = speed play_animation(snow_config) # # DURATION # if packet.button == ButtonPacket.LEFT: duration = snow_config['duration'] - 1 duration = 1 if duration < 1 else duration snow_config['duration'] = duration play_animation(snow_config) if packet.button == ButtonPacket.RIGHT: duration = snow_config['duration'] + 1 snow_config['duration'] = duration play_animation(snow_config) # # ANIMATION # if packet.button == ButtonPacket.BUTTON_1: snow_config['animation'] = 0 play_animation(snow_config) if packet.button == ButtonPacket.BUTTON_2: snow_config['animation'] = 1 play_animation(snow_config) if packet.button == ButtonPacket.BUTTON_3: snow_config['animation'] = 2 play_animation(snow_config) if packet.button == ButtonPacket.BUTTON_4: snow_config['animation'] = 3 play_animation(snow_config) # disconnected indicate('DISCONNECTED') ``` #### File: Adafruit_Learning_System_Guides/Techno_Tiki_RGB_LED_Torch/Techno_Tiki_Circuit_Playground_Express.py ```python import time import adafruit_irremote import board import neopixel import pulseio # pylint: disable=global-statement brightness = 1 # 0-1, higher number is brighter # Adafruit IR Remote Codes: # Button Code Button Code # ----------- ------ ------ ----- # VOL-: 255 0/10+: 207 # Play/Pause: 127 1: 247 # VOL+: 191 2: 119 # SETUP: 223 3: 183 # STOP/MODE: 159 4: 215 # UP: 95 5: 87 # DOWN: 79 6: 151 # LEFT: 239 7: 231 # RIGHT: 175 8: 103 # ENTER/SAVE: 111 9: 167 # Back: 143 # Adafruit IR Remote Codes: volume_down = 255 play_pause = 127 volume_up = 191 setup = 223 up_arrow = 95 stop_mode = 159 left_arrow = 239 enter_save = 111 right_arrow = 175 down_arrow = 79 num_1 = 247 num_2 = 119 num_3 = 183 num_4 = 215 num_5 = 87 num_6 = 151 num_7 = 231 num_8 = 103 num_9 = 167 # Define which remote buttons are associated with sketch actions. color_change = right_arrow # Button that cycles through color animations. animation_change = left_arrow # Button that cycles through animation types (only two supported). speed_change = up_arrow # Button that cycles through speed choices. power_off = volume_down # Button that turns off the pixels. power_on = volume_up # Button that turns on the pixels. Must be pressed twice. # The colorPalette two-dimensional array below has a row for each color animation and a column # for each step within the animation. Each value is a 24-bit RGB color. By looping through # the columns of a row the colors of pixels will animate. color_steps = 8 # Number of steps in the animation. color_count = 8 # number of columns/steps # Build lookup table/palette for the color animations so they aren't computed at runtime. color_palette = [ # Complimentary colors ([255, 0, 0], [218, 36, 36], [182, 72, 72], [145, 109, 109], [109, 145, 145], [72, 182, 182], [36, 218, 218], [0, 255, 255]), # red cyan ([255, 255, 0], [218, 218, 36], [182, 182, 72], [145, 145, 109], [109, 109, 145], [72, 72, 182], [36, 36, 218], [0, 0, 255]), # yellow blue ([0, 255, 0], [36, 218, 36], [72, 182, 72], [109, 145, 109], [145, 109, 145], [182, 72, 182], [218, 36, 218], [255, 0, 255]), # green magenta # Adjacent colors (on color wheel). ([255, 255, 0], [218, 255, 0], [182, 255, 0], [145, 255, 0], [109, 255, 0], [72, 255, 0], [36, 255, 0], [0, 255, 0]), # yello green ([0, 255, 0], [0, 255, 36], [0, 255, 72], [0, 255, 109], [0, 255, 145], [0, 255, 182], [0, 255, 218], [0, 255, 255]), # green cyan ([0, 255, 255], [0, 218, 255], [0, 182, 255], [0, 145, 255], [0, 109, 255], [0, 72, 255], [0, 36, 255], [0, 0, 255]), # cyan blue ([0, 0, 255], [36, 0, 255], [72, 0, 255], [109, 0, 255], [145, 0, 255], [182, 0, 255], [218, 0, 255], [255, 0, 255]), # blue magenta ([255, 0, 255], [255, 0, 218], [255, 0, 182], [255, 0, 145], [255, 0, 109], [255, 0, 72], [255, 0, 36], [255, 0, 0]) # magenta red ] # Other combos #([255, 0, 0], [218, 36, 0], [182, 72, 0], [145, 109, 0], #[109, 145, 0], [72, 182, 0], [36, 218, 0], [0, 255, 0]), # red green #([255, 255, 0], [218, 255, 36], [182, 255, 72], [145, 255, 109], #[109, 255, 145], [72, 255, 182], [36, 255, 218], [0, 255, 255]), # yellow cyan #([0, 255, 0], [0, 218, 36], [0, 182, 72], [0, 145, 109], #[0, 109, 145], [0, 72, 182], [0, 36, 218], [0, 0, 255]), # green blue #([0, 255, 255], [36, 218, 255], [72, 182, 255], [109, 145, 255], #[145, 109, 255], [182, 72, 255], [218, 36, 255], [255, 0, 255]), # cyan magenta #([0, 0, 255], [36, 0, 218], [72, 0, 182], [109, 0, 145], #[145, 0, 109], [182, 0, 72], [218, 0, 36], [255, 0, 0]), # blue red #([255, 0, 255], [255, 36, 218], [255, 72, 182], [255, 109, 145], #[255, 145, 109], [255, 182, 72], [255, 218, 36], [255, 255, 0]), # magenta yellow # Solid colors fading to dark. #([255, 0, 0], [223, 0, 0], [191, 0, 0], [159, 0, 0], #[127, 0, 0], [95, 0, 0], [63, 0, 0], [31, 0, 0]), # red #([255, 153, 0], [223, 133, 0], [191, 114, 0], [159, 95, 0], #[127, 76, 0], [95, 57, 0], [63, 38, 0], [31, 19, 0]), # orange #([255, 255, 0], [223, 223, 0], [191, 191, 0], [159, 159, 0], #[127, 127, 0], [95, 95, 0], [63, 63, 0], [31, 31, 0]), # yellow #([0, 255, 0], [0, 223, 0], [0, 191, 0], [0, 159, 0], #[0, 127, 0], [0, 95, 0], [0, 63, 0], [0, 31, 0]), # green #([0, 0, 255], [0, 0, 223], [0, 0, 191], [0, 0, 159], #[0, 0, 127], [0, 0, 95], [0, 0, 63], [0, 0, 31]), # blue #([75, 0, 130], [65, 0, 113], [56, 0, 97], [46, 0, 81], #[37, 0, 65], [28, 0, 48], [18, 0, 32], [9, 0, 16]), # indigo #([139, 0, 255], [121, 0, 223], [104, 0, 191], [86, 0, 159], #[69, 0, 127], [52, 0, 95], [34, 0, 63], [17, 0, 31]), # violet #([255, 255, 255], [223, 223, 223], [191, 191, 191], [159, 159, 159], #[127, 127, 127], [95, 95, 95], [63, 63, 63], [31, 31, 31]), # white #([255, 0, 0], [255, 153, 0], [255, 255, 0], [0, 255, 0], #[0, 0, 255], [75, 0, 130], [139, 0, 255], [255, 255, 255]), # rainbow colors # List of animations speeds (in seconds). This is how long an animation spends before # changing to the next step. Higher values are slower. speeds = [.4, .2, .1, .05, .025] # Global state used by the sketch color_index = 0 animation_index = 0 speed_index = 2 pixel_pin = board.D1 # Pin where NeoPixels are connected pixel_count = 10 # Number of NeoPixels speed = .1 # Animation speed (in seconds). # This is how long to spend in a single animation frame. # Higher values are slower. animation = 1 # Type of animation, can be one of these values: # 0 - Solid color pulse # 1 - Moving color pulse # initialize LEDS strip = neopixel.NeoPixel(board.NEOPIXEL, pixel_count, brightness=brightness, auto_write=False) # initialize Remote Control ir_code_min = 60 ir_code_max = 70 pulsein = pulseio.PulseIn(board.REMOTEIN, maxlen=100, idle_state=True) decoder = adafruit_irremote.GenericDecode() def read_nec(): # Check if a NEC IR remote command is the correct length. # Save the third decoded value as our unique identifier. pulses = decoder.read_pulses(pulsein, max_pulse=5000) command = None try: if len(pulses) >= ir_code_min and len(pulses) <= ir_code_max: code = decoder.decode_bits(pulses) if len(code) > 3: command = code[2] except adafruit_irremote.IRNECRepeatException: # Catches the repeat signal pass except adafruit_irremote.IRDecodeException: # Failed to decode pass return command def handle_remote(): global color_index, animation_index, speed_index ir_code = read_nec() if ir_code is None: time.sleep(.1) return if ir_code == color_change: color_index = (color_index + 1) % color_count elif ir_code == animation_change: animation_index = (animation_index + 1) % 2 elif ir_code == speed_change: speed_index = (speed_index + 1) % 5 elif ir_code == power_off: strip.fill([0, 0, 0]) strip.show() while True: # Loop forever... # Main loop will update all the pixels based on the animation. for i in range(pixel_count): # Animation 0, solid color pulse of all pixels. if animation_index == 0: current_step = (time.monotonic() / speeds[speed_index]) % (color_steps * 2 - 2) if current_step >= color_steps: current_step = color_steps - (current_step - (color_steps - 2)) # Animation 1, moving color pulse. Use position to change brightness. elif animation == 1: current_step = (time.monotonic() / speeds[speed_index] + i) % (color_steps * 2 - 2) if current_step >= color_steps: current_step = color_steps - (current_step - (color_steps - 2)) strip[i] = color_palette[int(color_index)][int(current_step)] # Next check for any IR remote commands. handle_remote() # Show the updated pixels. strip.show() ``` #### File: Adafruit_Learning_System_Guides/TrelliBird/game.py ```python import time import random import math from bird import Bird from post import Post from color_names import * BLACK = 0x000000 class Game(object): """Overall game control.""" def __init__(self, trellis, accel, ramp=20, challenge_ramp=30): """initialize a Game instance. trellis -- the TrellisM4Express instance to use as input and screen. accel -- the accelerometer interface object to use as input ramp -- how often (in steps) to increase the speed (default 20) challenge_ramp -- how often (in steps) to increase the challenge of the posts """ self._trellis = trellis self._accel = accel self._delay_ramp = ramp self._challenge_ramp = challenge_ramp self._bird = Bird() self._posts = [] self._interstitial_delay = 1.0 self._challenge = 10 self._currently_pressed = set([]) self._previous_accel_reading = (None, None, None) self._previous_shake_result = False def _restart(self): """Restart the game.""" self._bird = Bird() self._posts = [] self._interstitial_delay = 0.5 self._challenge = 10 def _update(self): """Perform a periodic update: move the posts and remove any that go off the screen.""" for post in self._posts: post.update() if self._posts and self._posts[0].off_screen: self._posts.pop(0) def _shaken(self): """Return whether the Trellis is shaken.""" last_result = self._previous_shake_result result = False x, y, z = self._accel.acceleration if self._previous_accel_reading[0] is not None: result = math.fabs(self._previous_accel_reading[2] - z) > 4.0 self._previous_accel_reading = (x, y, z) self._previous_shake_result = result return result and not last_result def _key_pressed(self): """Return whether a key was pressed since last time.""" pressed = set(self._trellis.pressed_keys) key_just_pressed = len(pressed - self._currently_pressed) > 0 self._currently_pressed = pressed return key_just_pressed def _should_flap(self, mode): """Return whether the user wants the bird to flap. mode -- input mode: False is key, True is accel """ if mode: return self._shaken() return self._key_pressed() def _update_bird(self, mode): """Update the vertical position of the bird based on user activity and gravity. mode -- input mode: False is key, True is accel """ self._bird.draw_on(self._trellis, BLACK) if self._should_flap(mode): self._bird.flap() else: self._bird.update() self._bird.draw_on(self._trellis) self._trellis.pixels.show() def _check_for_collision(self): """Return whether this bird has collided with a post.""" collided = self._bird.did_hit_ground() for post in self._posts: collided |= self._bird.is_colliding_with(post) return collided def _update_display(self): """Update the screen.""" self._trellis.pixels.fill(BLACK) for post in self._posts: post.draw_on(self._trellis) self._bird.draw_on(self._trellis) self._trellis.pixels.show() def _new_post(self): """Return a new post based on the current challenge level""" bottom_blocks = random.randint(1, 3) top_blocks = random.randint(1, 2) # bottom post if self._challenge > 6: return Post(from_bottom=bottom_blocks) # top possible as well if self._challenge > 3: if random.randint(1, 2) == 1: return Post(from_bottom=bottom_blocks) return Post(from_top=top_blocks) # top, bottom, and both possible r = random.randint(1, 3) if r == 1: return Post(from_bottom=bottom_blocks) if r == 2: return Post(from_top=top_blocks) return Post(from_bottom=bottom_blocks, from_top=random.randint(1, 4 - bottom_blocks)) def _add_post(self): """Add a post.""" self._posts.append(self._new_post()) def play(self, mode=False): """Play the game. mode -- input mode: False is key, True is accel """ self._restart() collided = False count = 0 last_tick = 0 while not collided: now = time.monotonic() self._update_bird(mode) if now >= last_tick + self._interstitial_delay: last_tick = now count += 1 self._update() collided = self._check_for_collision() if count % max(1, (self._challenge - random.randint(0, 4))) == 0: self._add_post() self._update_display() # handle collision or wait and repeat if collided: self._bird.flash(self._trellis) else: # time to speed up? if count % self._delay_ramp == 0: self._interstitial_delay -= 0.01 # time to increase challenge of the posts? if self._challenge > 0 and count % self._challenge_ramp == 0: self._challenge -= 1 time.sleep(0.05) ``` #### File: Adafruit_Learning_System_Guides/TrelliBird/post.py ```python from color_names import * class Post(object): """Obstacles the user must avoice colliding with.""" def __init__(self, from_bottom=0, from_top=0): """Initialize a Post instance. from_bottom -- how far the post extends from the bottom of the screen (default 0) from_top -- how far the post extends from the top of the screen (default 0) """ self._x = 7 self._top = from_top self._bottom = from_bottom def update(self): """Periodic update: move one step to the left.""" self._x -= 1 def _on_post(self, x, y): """Determine whether the supplied coordinate is occupied by part of this post. x -- the horizontal pixel coordinate y -- the vertical pixel coordinate """ return x == self._x and (y < self._top or y > (3 - self._bottom)) def draw_on(self, trellis): """Draw this post on the screen. trellis -- the TrellisM4Express instance to use as a screen """ for i in range(4): if self._on_post(self._x, i): trellis.pixels[self._x, i] = GREEN def is_collision_at(self, x, y): """Determine whether something at the supplied coordinate is colliding with this post. x -- the horizontal pixel coordinate y -- the vertical pixel coordinate """ return self._on_post(x, y) @property def off_screen(self): """Return whether this post has moved off the left edge of the screen.""" return self._x < 0 ``` #### File: Adafruit_Learning_System_Guides/Trinket_Ultrasonic_Rangefinder/Trinket_Ultrasonic_Rangefinder.py ```python import time import adafruit_character_lcd import board import busio import pulseio ez1pin = board.D1 # Trinket GPIO #1 # i2c LCD initialize bus and class i2c = busio.I2C(board.SCL, board.SDA) cols = 16 rows = 2 lcd = adafruit_character_lcd.Character_LCD_I2C(i2c, cols, rows) # calculated mode or median distance mode_result = 0 # pulseio can store multiple pulses # read in time for pin to transition samples = 18 pulses = pulseio.PulseIn(board.D1, maxlen=samples) # sensor reads which are in range will be stored here rangevalue = [0, 0, 0, 0, 0, 0, 0, 0, 0] # 25ms sensor power up pause time.sleep(.25) def tof_cm(time_of_flight): """ EZ1 ultrasonic sensor is measuring "time of flight" Converts time of flight into distance in centimeters """ convert_to_cm = 58 cm = time_of_flight / convert_to_cm return cm def tof_inches(time_of_flight): """ EZ1 ultrasonic sensor is measuring "time of flight" Converts time of flight into distance in inches """ convert_to_inches = 147 inches = time_of_flight / convert_to_inches return inches def find_mode(x): """ find the mode (most common value reported) will return median (center of sorted list) should mode not be found """ n = len(x) max_count = 0 mode = 0 bimodal = 0 counter = 0 index = 0 while index < (n - 1): prev_count = counter counter = 0 while (x[index]) == (x[index + 1]): counter += 1 index += 1 if (counter > prev_count) and (counter > max_count): mode = x[index] max_count = counter bimodal = 0 if counter == 0: index += 1 # If the dataset has 2 or more modes. if counter == max_count: bimodal = 1 # Return the median if there is no mode. if (mode == 0) or (bimodal == 1): mode = x[int(n / 2)] return mode while True: # wait between samples time.sleep(.5) if len(pulses) == samples: j = 0 # rangevalue array counter # only save the values within range # range readings take 49mS # pulse width is .88mS to 37.5mS for i in range(0, samples): tof = pulses[i] # time of flight - PWM HIGH if 880 < tof < 37500: if j < len(rangevalue): rangevalue[j] = tof_cm(tof) j += 1 # clear pulse samples pulses.clear() # clear all values in pulses[] # sort samples rangevalue = sorted(rangevalue) # returns mode or median mode_result = int(find_mode(rangevalue)) # python console prints both centimeter and inches distance cm2in = .393701 mode_result_in = mode_result * cm2in print(mode_result, "cm", "\t\t", int(mode_result_in), "in") # result must be in char/string format for LCD printing digit_string = str(mode_result) lcd.clear() lcd.message("Range: ") # write to LCD lcd.message(" ") lcd.message(digit_string) lcd.message("cm") time.sleep(2) ``` #### File: Adafruit_Learning_System_Guides/ulab_Crunch_Numbers_Fast/benchmark.py ```python import time import math import ulab import ulab.numerical def mean(values): return sum(values) / len(values) def normalized_rms(values): minbuf = int(mean(values)) samples_sum = sum( float(sample - minbuf) * (sample - minbuf) for sample in values ) return math.sqrt(samples_sum / len(values)) def normalized_rms_ulab(values): # this function works with ndarrays only minbuf = ulab.numerical.mean(values) values = values - minbuf samples_sum = ulab.numerical.sum(values * values) return math.sqrt(samples_sum / len(values)) # Instead of using sensor data, we generate some data # The amplitude is 5000 so the rms should be around 5000/1.414 = 3536 nums_list = [int(8000 + math.sin(i) * 5000) for i in range(100)] nums_array = ulab.array(nums_list) def timeit(s, f, n=100): t0 = time.monotonic_ns() for _ in range(n): x = f() t1 = time.monotonic_ns() r = (t1 - t0) * 1e-6 / n print("%-30s : %8.3fms [result=%f]" % (s, r, x)) print("Computing the RMS value of 100 numbers") timeit("traditional", lambda: normalized_rms(nums_list)) timeit("ulab, with ndarray, some implementation in python", lambda: normalized_rms_ulab(nums_array)) timeit("ulab only, with list", lambda: ulab.numerical.std(nums_list)) timeit("ulab only, with ndarray", lambda: ulab.numerical.std(nums_array)) ``` #### File: Adafruit_Learning_System_Guides/ulab_Crunch_Numbers_Fast/waterfall.py ```python import array import board import audiobusio import displayio import ulab import ulab.extras import ulab.vector display = board.DISPLAY # Create a heatmap color palette palette = displayio.Palette(52) for i, pi in enumerate((0xff0000, 0xff0a00, 0xff1400, 0xff1e00, 0xff2800, 0xff3200, 0xff3c00, 0xff4600, 0xff5000, 0xff5a00, 0xff6400, 0xff6e00, 0xff7800, 0xff8200, 0xff8c00, 0xff9600, 0xffa000, 0xffaa00, 0xffb400, 0xffbe00, 0xffc800, 0xffd200, 0xffdc00, 0xffe600, 0xfff000, 0xfffa00, 0xfdff00, 0xd7ff00, 0xb0ff00, 0x8aff00, 0x65ff00, 0x3eff00, 0x17ff00, 0x00ff10, 0x00ff36, 0x00ff5c, 0x00ff83, 0x00ffa8, 0x00ffd0, 0x00fff4, 0x00a4ff, 0x0094ff, 0x0084ff, 0x0074ff, 0x0064ff, 0x0054ff, 0x0044ff, 0x0032ff, 0x0022ff, 0x0012ff, 0x0002ff, 0x0000ff)): palette[51-i] = pi class RollingGraph(displayio.TileGrid): def __init__(self, scale=2): # Create a bitmap with heatmap colors self.bitmap = displayio.Bitmap(display.width//scale, display.height//scale, len(palette)) super().__init__(self.bitmap, pixel_shader=palette) self.scroll_offset = 0 def show(self, data): y = self.scroll_offset bitmap = self.bitmap board.DISPLAY.auto_refresh = False offset = max(0, (bitmap.width-len(data))//2) for x in range(min(bitmap.width, len(data))): bitmap[x+offset, y] = int(data[x]) board.DISPLAY.auto_refresh = True self.scroll_offset = (y + 1) % self.bitmap.height group = displayio.Group(scale=3) graph = RollingGraph(3) fft_size = 256 # Add the TileGrid to the Group group.append(graph) # Add the Group to the Display display.show(group) # instantiate board mic mic = audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA, sample_rate=16000, bit_depth=16) #use some extra sample to account for the mic startup samples_bit = array.array('H', [0] * (fft_size+3)) # Main Loop def main(): max_all = 10 while True: mic.record(samples_bit, len(samples_bit)) samples = ulab.array(samples_bit[3:]) spectrogram1 = ulab.extras.spectrogram(samples) # spectrum() is always nonnegative, but add a tiny value # to change any zeros to nonzero numbers spectrogram1 = ulab.vector.log(spectrogram1 + 1e-7) spectrogram1 = spectrogram1[1:(fft_size//2)-1] min_curr = ulab.numerical.min(spectrogram1) max_curr = ulab.numerical.max(spectrogram1) if max_curr > max_all: max_all = max_curr else: max_curr = max_curr-1 print(min_curr, max_all) min_curr = max(min_curr, 3) # Plot FFT data = (spectrogram1 - min_curr) * (51. / (max_all - min_curr)) # This clamps any negative numbers to zero data = data * ulab.array((data > 0)) graph.show(data) main() ```
{ "source": "joewalnes/dotfiles-1", "score": 2 }
#### File: sublime2/User/syntax_highlighting.py ```python import os from fnmatch import fnmatch import sublime import sublime_plugin class DetectFileTypeCommand(sublime_plugin.EventListener): """ Detects current file type if the file's extension isn't Modified for Ruby on Rails and Sublime Text 2 Original pastie here: http://pastie.org/private/kz8gtts0cjcvkec0d4quqa Place in your Packages/User directory. """ def on_load(self, view): filename = view.file_name() if not filename: # buffer has never been saved return try: name = os.path.basename(filename.lower()) if fnmatch(name, "*_spec.rb"): set_syntax(view, "RSpec", "rspec/Syntaxes") elif name == "factories.rb": set_syntax(view, "RSpec", "rspec/Syntaxes") elif name == "gemfile": set_syntax(view, "Ruby on Rails", "Rails") elif name == "guardfile": set_syntax(view, "Ruby on Rails", "Rails") elif name == "config.ru": set_syntax(view, "Ruby on Rails", "Rails") elif fnmatch(name, "*.rb"): set_syntax(view, "Ruby on Rails", "Rails") elif fnmatch(name, "*.jbuilder"): set_syntax(view, "Ruby on Rails", "Rails") elif fnmatch(name, "*.rabl"): set_syntax(view, "Ruby on Rails", "Rails") elif fnmatch(name, "*.kitsch"): set_syntax(view, "Ruby on Rails", "Rails") elif fnmatch(name, "*_spec.js"): set_syntax(view, "Jasmine", "Jasmine/Syntaxes") elif fnmatch(name, "jakefile"): set_syntax(view, "JavaScript", "JavaScript") except: print "There was an error changing syntax." def set_syntax(view, syntax, path=None): if path is None: path = syntax view.settings().set('syntax', 'Packages/' + path + '/' + syntax + '.tmLanguage') print "Switched syntax to: " + syntax ```
{ "source": "joewalter/mne-python", "score": 2 }
#### File: viz/tests/test_decoding.py ```python import os.path as op import warnings from nose.tools import assert_raises, assert_equals import numpy as np from mne.epochs import equalize_epoch_counts, concatenate_epochs from mne.decoding import GeneralizationAcrossTime from mne import Epochs, read_events, pick_types from mne.io import read_raw_fif from mne.utils import requires_sklearn, run_tests_if_main import matplotlib matplotlib.use('Agg') # for testing don't use X server data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') warnings.simplefilter('always') # enable b/c these tests throw warnings def _get_data(tmin=-0.2, tmax=0.5, event_id=dict(aud_l=1, vis_l=3), event_id_gen=dict(aud_l=2, vis_l=4), test_times=None): """Aux function for testing GAT viz""" gat = GeneralizationAcrossTime() raw = read_raw_fif(raw_fname, preload=False, add_eeg_ref=False) raw.add_proj([], remove_existing=True) events = read_events(event_name) picks = pick_types(raw.info, meg='mag', stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] decim = 30 # Test on time generalization within one condition with warnings.catch_warnings(record=True): epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, decim=decim, add_eeg_ref=False) epochs_list = [epochs[k] for k in event_id] equalize_epoch_counts(epochs_list) epochs = concatenate_epochs(epochs_list) # Test default running gat = GeneralizationAcrossTime(test_times=test_times) gat.fit(epochs) gat.score(epochs) return gat @requires_sklearn def test_gat_plot_matrix(): """Test GAT matrix plot""" gat = _get_data() gat.plot() del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_diagonal(): """Test GAT diagonal plot""" gat = _get_data() gat.plot_diagonal() del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_times(): """Test GAT times plot""" gat = _get_data() # test one line gat.plot_times(gat.train_times_['times'][0]) # test multiple lines gat.plot_times(gat.train_times_['times']) # test multiple colors n_times = len(gat.train_times_['times']) colors = np.tile(['r', 'g', 'b'], int(np.ceil(n_times / 3)))[:n_times] gat.plot_times(gat.train_times_['times'], color=colors) # test invalid time point assert_raises(ValueError, gat.plot_times, -1.) # test float type assert_raises(ValueError, gat.plot_times, 1) assert_raises(ValueError, gat.plot_times, 'diagonal') del gat.scores_ assert_raises(RuntimeError, gat.plot) def chance(ax): return ax.get_children()[1].get_lines()[0].get_ydata()[0] @requires_sklearn def test_gat_chance_level(): """Test GAT plot_times chance level""" gat = _get_data() ax = gat.plot_diagonal(chance=False) ax = gat.plot_diagonal() assert_equals(chance(ax), .5) gat = _get_data(event_id=dict(aud_l=1, vis_l=3, aud_r=2, vis_r=4)) ax = gat.plot_diagonal() assert_equals(chance(ax), .25) ax = gat.plot_diagonal(chance=1.234) assert_equals(chance(ax), 1.234) assert_raises(ValueError, gat.plot_diagonal, chance='foo') del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_nonsquared(): """Test GAT diagonal plot""" gat = _get_data(test_times=dict(start=0.)) gat.plot() ax = gat.plot_diagonal() scores = ax.get_children()[1].get_lines()[2].get_ydata() assert_equals(len(scores), len(gat.estimators_)) run_tests_if_main() ``` #### File: viz/tests/test_raw.py ```python import numpy as np import os.path as op import warnings from numpy.testing import assert_raises, assert_equal from mne import read_events, pick_types, Annotations from mne.io import read_raw_fif from mne.utils import requires_version, run_tests_if_main from mne.viz.utils import _fake_click from mne.viz import plot_raw, plot_sensors # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(base_dir, 'test_raw.fif') event_name = op.join(base_dir, 'test-eve.fif') def _get_raw(): """Get raw data.""" raw = read_raw_fif(raw_fname, preload=True, add_eeg_ref=False) # Throws a warning about a changed unit. with warnings.catch_warnings(record=True): raw.set_channel_types({raw.ch_names[0]: 'ias'}) raw.pick_channels(raw.ch_names[:9]) raw.info.normalize_proj() # Fix projectors after subselection return raw def _get_events(): """Get events.""" return read_events(event_name) @requires_version('matplotlib', '1.2') def test_plot_raw(): """Test plotting of raw data.""" import matplotlib.pyplot as plt raw = _get_raw() events = _get_events() plt.close('all') # ensure all are closed with warnings.catch_warnings(record=True): fig = raw.plot(events=events, show_options=True) # test mouse clicks x = fig.get_axes()[0].lines[1].get_xdata().mean() y = fig.get_axes()[0].lines[1].get_ydata().mean() data_ax = fig.get_axes()[0] _fake_click(fig, data_ax, [x, y], xform='data') # mark a bad channel _fake_click(fig, data_ax, [x, y], xform='data') # unmark a bad channel _fake_click(fig, data_ax, [0.5, 0.999]) # click elsewhere in 1st axes _fake_click(fig, data_ax, [-0.1, 0.9]) # click on y-label _fake_click(fig, fig.get_axes()[1], [0.5, 0.5]) # change time _fake_click(fig, fig.get_axes()[2], [0.5, 0.5]) # change channels _fake_click(fig, fig.get_axes()[3], [0.5, 0.5]) # open SSP window fig.canvas.button_press_event(1, 1, 1) # outside any axes fig.canvas.scroll_event(0.5, 0.5, -0.5) # scroll down fig.canvas.scroll_event(0.5, 0.5, 0.5) # scroll up # sadly these fail when no renderer is used (i.e., when using Agg): # ssp_fig = set(plt.get_fignums()) - set([fig.number]) # assert_equal(len(ssp_fig), 1) # ssp_fig = plt.figure(list(ssp_fig)[0]) # ax = ssp_fig.get_axes()[0] # only one axis is used # t = [c for c in ax.get_children() if isinstance(c, # matplotlib.text.Text)] # pos = np.array(t[0].get_position()) + 0.01 # _fake_click(ssp_fig, ssp_fig.get_axes()[0], pos, xform='data') # off # _fake_click(ssp_fig, ssp_fig.get_axes()[0], pos, xform='data') # on # test keypresses fig.canvas.key_press_event('escape') fig.canvas.key_press_event('down') fig.canvas.key_press_event('up') fig.canvas.key_press_event('right') fig.canvas.key_press_event('left') fig.canvas.key_press_event('o') fig.canvas.key_press_event('-') fig.canvas.key_press_event('+') fig.canvas.key_press_event('=') fig.canvas.key_press_event('pageup') fig.canvas.key_press_event('pagedown') fig.canvas.key_press_event('home') fig.canvas.key_press_event('end') fig.canvas.key_press_event('?') fig.canvas.key_press_event('f11') fig.canvas.key_press_event('escape') # Color setting assert_raises(KeyError, raw.plot, event_color={0: 'r'}) assert_raises(TypeError, raw.plot, event_color={'foo': 'r'}) annot = Annotations([10, 10 + raw.first_samp / raw.info['sfreq']], [10, 10], ['test', 'test'], raw.info['meas_date']) raw.annotations = annot fig = plot_raw(raw, events=events, event_color={-1: 'r', 998: 'b'}) plt.close('all') for order in ['position', 'selection', range(len(raw.ch_names))[::-4], [1, 2, 4, 6]]: fig = raw.plot(order=order) x = fig.get_axes()[0].lines[1].get_xdata()[10] y = fig.get_axes()[0].lines[1].get_ydata()[10] _fake_click(fig, data_ax, [x, y], xform='data') # mark bad fig.canvas.key_press_event('down') # change selection _fake_click(fig, fig.get_axes()[2], [0.5, 0.5]) # change channels if order in ('position', 'selection'): sel_fig = plt.figure(1) topo_ax = sel_fig.axes[1] _fake_click(sel_fig, topo_ax, [-0.425, 0.20223853], xform='data') fig.canvas.key_press_event('down') fig.canvas.key_press_event('up') fig.canvas.scroll_event(0.5, 0.5, -1) # scroll down fig.canvas.scroll_event(0.5, 0.5, 1) # scroll up _fake_click(sel_fig, topo_ax, [-0.5, 0.], xform='data') _fake_click(sel_fig, topo_ax, [0.5, 0.], xform='data', kind='motion') _fake_click(sel_fig, topo_ax, [0.5, 0.5], xform='data', kind='motion') _fake_click(sel_fig, topo_ax, [-0.5, 0.5], xform='data', kind='release') plt.close('all') # test if meas_date has only one element raw.info['meas_date'] = np.array([raw.info['meas_date'][0]], dtype=np.int32) raw.annotations = Annotations([1 + raw.first_samp / raw.info['sfreq']], [5], ['bad']) raw.plot() plt.close('all') @requires_version('scipy', '0.10') def test_plot_raw_filtered(): """Test filtering of raw plots.""" raw = _get_raw() assert_raises(ValueError, raw.plot, lowpass=raw.info['sfreq'] / 2.) assert_raises(ValueError, raw.plot, highpass=0) assert_raises(ValueError, raw.plot, lowpass=1, highpass=1) assert_raises(ValueError, raw.plot, lowpass=1, filtorder=0) assert_raises(ValueError, raw.plot, clipping='foo') raw.plot(lowpass=1, clipping='transparent') raw.plot(highpass=1, clipping='clamp') raw.plot(highpass=1, lowpass=2) @requires_version('scipy', '0.12') def test_plot_raw_psd(): """Test plotting of raw psds.""" import matplotlib.pyplot as plt raw = _get_raw() # normal mode raw.plot_psd(tmax=2.0) # specific mode picks = pick_types(raw.info, meg='mag', eeg=False)[:4] raw.plot_psd(picks=picks, area_mode='range') ax = plt.axes() # if ax is supplied: assert_raises(ValueError, raw.plot_psd, ax=ax) raw.plot_psd(picks=picks, ax=ax) plt.close('all') ax = plt.axes() assert_raises(ValueError, raw.plot_psd, ax=ax) ax = [ax, plt.axes()] raw.plot_psd(ax=ax) plt.close('all') # topo psd raw.plot_psd_topo() plt.close('all') # with a flat channel raw[5, :] = 0 assert_raises(ValueError, raw.plot_psd) @requires_version('matplotlib', '1.2') def test_plot_sensors(): """Test plotting of sensor array.""" import matplotlib.pyplot as plt raw = _get_raw() fig = raw.plot_sensors('3d') _fake_click(fig, fig.gca(), (-0.08, 0.67)) raw.plot_sensors('topomap', ch_type='mag') ax = plt.subplot(111) raw.plot_sensors(ch_groups='position', axes=ax) raw.plot_sensors(ch_groups='selection') raw.plot_sensors(ch_groups=[[0, 1, 2], [3, 4]]) assert_raises(ValueError, raw.plot_sensors, ch_groups='asd') assert_raises(TypeError, plot_sensors, raw) # needs to be info assert_raises(ValueError, plot_sensors, raw.info, kind='sasaasd') plt.close('all') fig, sels = raw.plot_sensors('select', show_names=True) ax = fig.axes[0] # Click with no sensors _fake_click(fig, ax, (0., 0.), xform='data') _fake_click(fig, ax, (0, 0.), xform='data', kind='release') assert_equal(len(fig.lasso.selection), 0) # Lasso with 1 sensor _fake_click(fig, ax, (-0.5, 0.5), xform='data') plt.draw() _fake_click(fig, ax, (0., 0.5), xform='data', kind='motion') _fake_click(fig, ax, (0., 0.), xform='data', kind='motion') fig.canvas.key_press_event('control') _fake_click(fig, ax, (-0.5, 0.), xform='data', kind='release') assert_equal(len(fig.lasso.selection), 1) _fake_click(fig, ax, (-0.09, -0.43), xform='data') # single selection assert_equal(len(fig.lasso.selection), 2) _fake_click(fig, ax, (-0.09, -0.43), xform='data') # deselect assert_equal(len(fig.lasso.selection), 1) plt.close('all') run_tests_if_main() ```
{ "source": "joewandy/omics_integration", "score": 3 }
#### File: graphomics/linker/gene_ontologies_utils.py ```python import pandas as pd from goatools.associations import read_gaf from goatools.base import dnld_gaf from goatools.base import download_go_basic_obo from goatools.obo_parser import GODag from tqdm import tqdm from linker.constants import * def download_ontologies(): """ Download ontologies, a dictionary that maps GO IDs to GO terms. In most cases, we should use the basic OBO file. :return: a dictionary where key is the gene ontology id ('GO:0000001') and value is the GOTerm class """ obo_fname = download_go_basic_obo(prt=None, loading_bar=False) ontologies = GODag(obo_fname) return ontologies def gaf_names_to_id(gaf_filename): df = pd.read_csv(gaf_filename, comment='!', sep='\t', header=None, dtype=str) # temp has 2 columns. First is the gene id, next is the gene symbol # example: # 'ZDB-MIRNAG-081210-6', 'mir26b' temp = df.iloc[:, 1:3].values names_to_id = {symbol: my_id for my_id, symbol in temp} return names_to_id def to_id(names, names_to_id_dict): ids = [] for x in names: try: my_id = names_to_id_dict[x.lower()] ids.append(my_id) except KeyError as e: # logger.debug(e) pass return ids def download_associations(): species_associations = {} gaf_name_to_id = {} for species, gaf_prefix in tqdm(SPECIES_TO_GAF_PREFIX.items()): gaf_filename = dnld_gaf(gaf_prefix, prt=None, loading_bar=False) gaf_name_to_id[species] = gaf_names_to_id(gaf_filename) assocs = {} for namespace in GO_NAMESPACES: associations = read_gaf(gaf_filename, namespace=namespace, go2geneids=False, prt=None) assocs[namespace] = associations species_associations[species] = assocs return species_associations, gaf_name_to_id ``` #### File: graphomics/linker/models.py ```python import os from django.conf import settings from django.contrib.auth import get_user_model from django.db import models from django.utils import timezone from jsonfield import JSONField from django.core.files import File User = get_user_model() from linker.constants import DataType, DataRelationType, InferenceTypeChoices class Analysis(models.Model): name = models.CharField(max_length=100, null=True) description = models.CharField(max_length=1000, null=True) publication = models.CharField(max_length=1000, null=True) publication_link = models.CharField(max_length=1000, null=True) timestamp = models.DateTimeField(default=timezone.localtime, null=False) public = models.BooleanField(default=False) metadata = JSONField() users = models.ManyToManyField(User, through='Share') class Meta: verbose_name_plural = "Analyses" def get_species_str(self): if 'species_list' in self.metadata: return ', '.join(self.metadata['species_list']) else: return '' def get_species_list(self): if 'species_list' in self.metadata: return self.metadata['species_list'] else: return [] def get_owner(self): for share in self.share_set.all(): if share.owner: return share.user def get_read_only_status(self, user): for share in self.share_set.all(): # search shares for this user if share.user == user: if share.owner: # owner can always edit return False return share.read_only # otherwise check the read-only field return False def get_read_only_str(self, user): read_only = self.get_read_only_status(user) msg = 'Read Only' if read_only else 'Edit' return msg def get_shared(self, user): for share in self.share_set.all(): # search shares for this user if share.user == user: return True return False def has_mofa_data(self): file = self.analysisupload.mofa_data if file and file.storage.exists(file.name): return file and file.storage.exists(file.name) else: return False def has_gene_data(self): file = self.analysisupload.gene_data if file and file.storage.exists(file.name): return file and file.storage.exists(file.name) else: return False def has_protein_data(self): file = self.analysisupload.protein_data if file and file.storage.exists(file.name): return file and file.storage.exists(file.name) else: return False def has_compound_data(self): file = self.analysisupload.compound_data if file and file.storage.exists(file.name): return file and file.storage.exists(file.name) else: return False def has_metadata(self): file = self.analysisupload.metadata if file and file.storage.exists(file.name): return file and file.storage.exists(file.name) else: return False def get_mofa_hdf5_path(self): if self.has_mofa_data(): return self.analysisupload.mofa_data.path else: return None def get_gene_data_path(self): if self.has_gene_data(): return self.analysisupload.gene_data.path else: return None def get_protein_data_path(self): if self.has_protein_data(): return self.analysisupload.protein_data.path else: return None def get_compound_data_path(self): if self.has_compound_data(): return self.analysisupload.compound_data.path else: return None def get_gene_design_path(self): if self.has_gene_data(): return self.analysisupload.gene_design.path else: return None def get_protein_design_path(self): if self.has_protein_data(): return self.analysisupload.protein_design.path else: return None def get_compound_design_path(self): if self.has_compound_data(): return self.analysisupload.compound_design.path else: return None def get_metadata_path(self): if self.has_metadata(): return self.analysisupload.metadata.path else: return None def set_mofa_hdf5_path(self, filePath): with open(filePath, 'rb') as f: fileName = self.name + '_mofa_data.hdf5' self.analysisupload.mofa_data.save(fileName, File(f)) os.remove(filePath) def __str__(self): return self.name class Share(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) analysis = models.ForeignKey(Analysis, on_delete=models.CASCADE) read_only = models.BooleanField() owner = models.BooleanField() def __str__(self): return 'User=%s, Analysis=%s, read_only=%s, owner=%s' % (self.user, self.analysis, self.read_only, self.owner) def get_read_only_str(self): msg = 'Read Only' if self.read_only else 'Edit' return msg def get_upload_folder(instance, filename): upload_folder = "analysis_upload_%s" % instance.pk return os.path.abspath(os.path.join(settings.MEDIA_ROOT, upload_folder, filename)) class AnalysisUpload(models.Model): analysis = models.OneToOneField( Analysis, on_delete=models.CASCADE, primary_key=True, ) gene_data = models.FileField(blank=True, null=True, upload_to=get_upload_folder) gene_design = models.FileField(blank=True, null=True, upload_to=get_upload_folder) protein_data = models.FileField(blank=True, null=True, upload_to=get_upload_folder) protein_design = models.FileField(blank=True, null=True, upload_to=get_upload_folder) compound_data = models.FileField(blank=True, null=True, upload_to=get_upload_folder) compound_design = models.FileField(blank=True, null=True, upload_to=get_upload_folder) mofa_data = models.FileField(blank=True, null=True, upload_to=get_upload_folder) metadata = models.FileField(blank=True, null=True, upload_to=get_upload_folder) class AnalysisData(models.Model): analysis = models.ForeignKey(Analysis, on_delete=models.CASCADE) data_type = models.IntegerField(choices=DataRelationType) json_data = JSONField() json_design = JSONField() metadata = JSONField(blank=True, null=True) timestamp = models.DateTimeField(default=timezone.localtime, null=False) class Meta: verbose_name_plural = "Analysis Data" def get_data_type_str(self): try: return dict(DataRelationType)[self.data_type] except KeyError: return '' def __str__(self): return '%s data for analysis %d' % (self.get_data_type_str(), self.analysis.pk) class AnalysisHistory(models.Model): analysis = models.ForeignKey(Analysis, on_delete=models.CASCADE) display_name = models.CharField(max_length=1000, blank=True, null=True) analysis_data = models.ForeignKey(AnalysisData, on_delete=models.CASCADE) inference_type = models.IntegerField(choices=InferenceTypeChoices, blank=True, null=True) inference_data = JSONField() timestamp = models.DateTimeField(default=timezone.localtime, null=False) class Meta: verbose_name_plural = "Analysis Histories" def get_data_type_str(self): return self.analysis_data.get_data_type_str() def get_inference_type_str(self): try: return dict(InferenceTypeChoices)[self.inference_type] except KeyError: return '' def __str__(self): return '%s (%s) timestamp=%s' % (self.display_name, self.analysis_data, self.timestamp.strftime("%Y-%m-%d %H:%M:%S")) class AnalysisAnnotation(models.Model): analysis = models.ForeignKey(Analysis, on_delete=models.CASCADE) data_type = models.IntegerField(choices=DataType) database_id = models.CharField(max_length=100) display_name = models.CharField(max_length=1000) annotation = models.CharField(max_length=1000) timestamp = models.DateTimeField(default=timezone.localtime, null=False) class Meta: verbose_name_plural = "Analysis Annotations" def __str__(self): return '%s data_type=%d %s' % (self.analysis.name, self.data_type, self.display_name) class AnalysisGroup(models.Model): analysis = models.ForeignKey(Analysis, on_delete=models.CASCADE) linker_state = JSONField() display_name = models.CharField(max_length=1000) description = models.CharField(max_length=1000) timestamp = models.DateTimeField(default=timezone.localtime, null=False) class Meta: verbose_name_plural = "Analysis Groups" def __str__(self): return '%s data_type=%d %s' % (self.analysis.name, self.data_type, self.display_name) ``` #### File: linker/views/inference_view.py ```python from io import StringIO import mofax as mfx import json import jsonpickle import numpy as np from django import forms from django.contrib import messages from django.core.exceptions import PermissionDenied from django.forms import TextInput, DecimalField from django.shortcuts import render, get_object_or_404 from django.urls import reverse, reverse_lazy from django.views.generic import TemplateView, DeleteView from django_select2.forms import Select2Widget from loguru import logger from sklearn.decomposition import PCA as skPCA from linker.common import access_allowed from linker.constants import * from linker.forms import BaseInferenceForm from linker.models import Analysis, AnalysisData, AnalysisHistory from linker.views.functions import get_last_analysis_data, get_groups, get_dataframes, get_standardized_df, \ get_group_members, fig_to_div, get_inference_data, save_analysis_history from linker.views.pathway_analysis import get_pals_data_source, run_pals, run_ora, \ run_gsea from linker.views.pipelines import GraphOmicsInference, MofaInference from linker.views.reactome_analysis import get_omics_data, populate_reactome_choices, get_used_dtypes, get_data, \ to_expression_tsv, get_analysis_first_species, parse_reactome_json, send_to_reactome, get_first_analysis_history_id, \ to_ora_tsv def inference(request, analysis_id): analysis = get_object_or_404(Analysis, pk=analysis_id) if not access_allowed(analysis, request): raise PermissionDenied() analysis_history_list = AnalysisHistory.objects.filter(analysis=analysis).order_by( 'timestamp') list_data = get_list_data(analysis_id, analysis_history_list) if request.method == 'POST': form = BaseInferenceForm(request.POST) if form.is_valid(): data_type = int(form.cleaned_data['data_type']) inference_type = int(form.cleaned_data['inference_type']) # run t-test analysis if inference_type == INFERENCE_T_TEST: analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) action_url = reverse('inference_t_test', kwargs={ 'analysis_id': analysis_id, }) selected_form = get_case_control_form(data_type, groups, inference_type) elif inference_type == INFERENCE_DESEQ: analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) action_url = reverse('inference_deseq', kwargs={ 'analysis_id': analysis_id, }) selected_form = get_case_control_form(data_type, groups, inference_type) elif inference_type == INFERENCE_LIMMA: analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) action_url = reverse('inference_limma', kwargs={ 'analysis_id': analysis_id, }) selected_form = get_case_control_form(data_type, groups, inference_type) # do PCA elif inference_type == INFERENCE_PCA: analysis_data = get_last_analysis_data(analysis, data_type) action_url = reverse('inference_pca', kwargs={ 'analysis_id': analysis_id, }) selected_form = BaseInferenceForm() selected_form.fields['data_type'].initial = data_type selected_form.fields['inference_type'].initial = inference_type choices = zip(range(2, 11), range(2, 11)) selected_form.fields['pca_n_components'] = forms.ChoiceField(choices=choices, widget=Select2Widget(SELECT_WIDGET_ATTRS), label='PCA components') # do PALS elif inference_type == INFERENCE_PALS: analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) action_url = reverse('inference_pals', kwargs={ 'analysis_id': analysis_id, }) selected_form = get_case_control_form(data_type, groups, inference_type) selected_form.fields['min_hits'] = forms.IntegerField(min_value=0, initial=PLAGE_MIN_HITS, label='Minimum hits') # do ORA elif inference_type == INFERENCE_ORA: analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) action_url = reverse('inference_ora', kwargs={ 'analysis_id': analysis_id, }) selected_form = get_case_control_form(data_type, groups, inference_type) # do GSEA elif inference_type == INFERENCE_GSEA: analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) action_url = reverse('inference_gsea', kwargs={ 'analysis_id': analysis_id, }) selected_form = get_case_control_form(data_type, groups, inference_type) # do Reactome Analysis Service elif inference_type == INFERENCE_REACTOME: selected_form = BaseInferenceForm() selected_form.fields['data_type'].initial = data_type selected_form.fields['inference_type'].initial = inference_type if data_type == MULTI_OMICS: for dtype in [GENOMICS, PROTEOMICS, METABOLOMICS]: analysis_data = get_last_analysis_data(analysis, dtype) populate_reactome_choices(analysis_data, dtype, selected_form) else: analysis_data = get_last_analysis_data(analysis, data_type) populate_reactome_choices(analysis_data, data_type, selected_form) selected_form.fields['threshold'] = DecimalField(required=True, widget=TextInput( attrs={'autocomplete': 'off', 'type': 'number', 'min': '0', 'max': '1', 'step': '0.05', 'size': '10'})) selected_form.fields['threshold'].initial = 0.05 action_url = reverse('inference_reactome', kwargs={ 'analysis_id': analysis_id, }) elif inference_type == INFERENCE_MOFA: action_url = reverse('inference_mofa', kwargs={ 'analysis_id': analysis_id, }) if data_type == MULTI_OMICS: for dtype in [GENOMICS, PROTEOMICS, METABOLOMICS]: analysis_data = get_last_analysis_data(analysis, dtype) else: analysis_data = get_last_analysis_data(analysis, data_type) selected_form = BaseInferenceForm() selected_form.fields['data_type'].initial = data_type selected_form.fields['inference_type'].initial = inference_type selected_form.fields['Use uploaded .hdf5 file'] = forms.ChoiceField(choices=zip(['Yes', 'No'], ['Yes', 'No']), widget=Select2Widget()) selected_form.fields['Number of Factor'] = forms.IntegerField(required=True, widget=forms.TextInput(attrs={'size': 100})) selected_form.fields['Scale View'] = forms.ChoiceField(required=False, choices=zip([True, False], ['Yes', 'No']), widget=Select2Widget()) selected_form.fields['Scale Group'] = forms.ChoiceField(required=False, choices=zip([True, False], ['Yes', 'No']), widget=Select2Widget()) else: # default action_url = reverse('inference', kwargs={ 'analysis_id': analysis_id, }) selected_form = BaseInferenceForm(request.POST) context = { 'analysis_id': analysis.pk, 'list_data': list_data, 'form': selected_form, 'action_url': action_url } return render(request, 'linker/inference.html', context) else: action_url = reverse('inference', kwargs={ 'analysis_id': analysis_id, }) base_form = BaseInferenceForm() context = { 'analysis_id': analysis.pk, 'list_data': list_data, 'form': base_form, 'action_url': action_url } return render(request, 'linker/inference.html', context) def get_case_control_form(data_type, groups, inference_type): selected_form = BaseInferenceForm() selected_form.fields['data_type'].initial = data_type selected_form.fields['inference_type'].initial = inference_type selected_form.fields['case'] = forms.ChoiceField(choices=groups, widget=Select2Widget(SELECT_WIDGET_ATTRS)) selected_form.fields['control'] = forms.ChoiceField(choices=groups, widget=Select2Widget(SELECT_WIDGET_ATTRS)) return selected_form def get_list_data(analysis_id, analysis_history_list): list_data = [] for analysis_history in analysis_history_list: inference_type = analysis_history.inference_type click_url_1 = None click_url_2 = None # when clicked, go to the Explore Data page if inference_type == INFERENCE_T_TEST or \ inference_type == INFERENCE_DESEQ or \ inference_type == INFERENCE_LIMMA or \ inference_type == INFERENCE_PALS or \ inference_type == INFERENCE_ORA or \ inference_type == INFERENCE_GSEA: click_url_1 = reverse('explore_data', kwargs={ 'analysis_id': analysis_id, }) # when clicked, show the Explore Analysis Data page elif inference_type == INFERENCE_PCA: click_url_1 = reverse('pca_result', kwargs={ 'analysis_id': analysis_id, 'analysis_data_id': analysis_history.analysis_data.id, 'analysis_history_id': analysis_history.id }) # when clicked, go to Reactome elif inference_type == INFERENCE_REACTOME: if REACTOME_ORA_URL in analysis_history.inference_data and REACTOME_EXPR_URL in analysis_history.inference_data: click_url_1 = analysis_history.inference_data[REACTOME_ORA_URL] click_url_2 = analysis_history.inference_data[REACTOME_EXPR_URL] elif inference_type == INFERENCE_MOFA: history_id = analysis_history.id click_url_1 = reverse('mofa_result_page', kwargs={ 'analysis_id': analysis_id, 'analysis_history_id': history_id }) item = [analysis_history, click_url_1, click_url_2] list_data.append(item) return list_data def inference_t_test(request, analysis_id): if request.method == 'POST': analysis = get_object_or_404(Analysis, pk=analysis_id) form = BaseInferenceForm(request.POST) data_type = int(request.POST['data_type']) analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) form.fields['case'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) form.fields['control'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) if form.is_valid(): case = form.cleaned_data['case'] control = form.cleaned_data['control'] data_df, design_df = get_dataframes(analysis_data, PKS) if data_type == GENOMICS: min_replace = MIN_REPLACE_GENOMICS elif data_type == PROTEOMICS or data_type == METABOLOMICS: min_replace = MIN_REPLACE_PROTEOMICS_METABOLOMICS wi = GraphOmicsInference(data_df, design_df, data_type, min_value=min_replace) result_df = wi.run_ttest(case, control) # create a new analysis data display_name = 't-test: %s_vs_%s' % (case, control) inference_data = get_inference_data(data_type, case, control, result_df) save_analysis_history(analysis_data, inference_data, display_name, INFERENCE_T_TEST) messages.success(request, 'Add new inference successful.', extra_tags='primary') return inference(request, analysis_id) else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) def inference_deseq(request, analysis_id): if request.method == 'POST': data_type = int(request.POST['data_type']) if data_type == PROTEOMICS or data_type == METABOLOMICS: messages.warning(request, 'Add new inference failed. DESeq2 only works for discrete count data.') return inference(request, analysis_id) analysis = get_object_or_404(Analysis, pk=analysis_id) form = BaseInferenceForm(request.POST) analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) form.fields['case'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) form.fields['control'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) if form.is_valid(): case = form.cleaned_data['case'] control = form.cleaned_data['control'] data_df, design_df = get_dataframes(analysis_data, PKS) # run deseq2 here wi = GraphOmicsInference(data_df, design_df, data_type) try: pd_df, rld_df, res_ordered = wi.run_deseq(MIN_REPLACE_GENOMICS, case, control) except Exception as e: logger.warning('Failed to run DESeq2: %s' % str(e)) messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) result_df = pd_df[['padj', 'log2FoldChange']] # create a new analysis data display_name = 'DESeq2: %s_vs_%s' % (case, control) metadata = { 'rld_df': rld_df.to_json(), 'res_ordered': jsonpickle.encode(res_ordered) } inference_data = get_inference_data(data_type, case, control, result_df, metadata=metadata) save_analysis_history(analysis_data, inference_data, display_name, INFERENCE_DESEQ) messages.success(request, 'Add new inference successful.', extra_tags='primary') return inference(request, analysis_id) else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) def inference_limma(request, analysis_id): if request.method == 'POST': analysis = get_object_or_404(Analysis, pk=analysis_id) form = BaseInferenceForm(request.POST) data_type = int(request.POST['data_type']) analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) form.fields['case'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) form.fields['control'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) if form.is_valid(): case = form.cleaned_data['case'] control = form.cleaned_data['control'] data_df, design_df = get_dataframes(analysis_data, PKS) if data_type == GENOMICS: min_replace = MIN_REPLACE_GENOMICS elif data_type == PROTEOMICS or data_type == METABOLOMICS: min_replace = MIN_REPLACE_PROTEOMICS_METABOLOMICS wi = GraphOmicsInference(data_df, design_df, data_type, min_value=min_replace) result_df = wi.run_limma(case, control) # create a new analysis data display_name = 'limma: %s_vs_%s' % (case, control) inference_data = get_inference_data(data_type, case, control, result_df) save_analysis_history(analysis_data, inference_data, display_name, INFERENCE_LIMMA) messages.success(request, 'Add new inference successful.', extra_tags='primary') return inference(request, analysis_id) else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) def inference_pca(request, analysis_id): if request.method == 'POST': analysis = get_object_or_404(Analysis, pk=analysis_id) form = BaseInferenceForm(request.POST) data_type = int(request.POST['data_type']) analysis_data = get_last_analysis_data(analysis, data_type) choices = zip(range(2, 11), range(2, 11)) form.fields['pca_n_components'] = forms.ChoiceField(choices=choices, widget=Select2Widget(SELECT_WIDGET_ATTRS), label='PCA Components') if form.is_valid(): n_components = int(form.cleaned_data['pca_n_components']) # do pca on the samples X_proj, X_std, pca = get_pca_proj(analysis_data, n_components) if pca is not None: var_exp = pca.explained_variance_ratio_ # store pca results to the metadata field of this AnalysisData metadata = { 'pca_n_components': jsonpickle.dumps(n_components), 'pca_X_std_index': jsonpickle.dumps(X_std.index.values), 'pca_X_proj': jsonpickle.dumps(X_proj), 'pca_var_exp': jsonpickle.dumps(var_exp) } display_name = 'PCA: %s components' % n_components inference_data = get_inference_data(data_type, None, None, None, metadata) save_analysis_history(analysis_data, inference_data, display_name, INFERENCE_PCA) messages.success(request, 'Add new inference successful.', extra_tags='primary') else: messages.warning(request, 'Add new inference failed. No data found.') return inference(request, analysis_id) else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) def get_pca_proj(analysis_data, n_components): axis = 0 X_std, data_df, design_df = get_standardized_df(analysis_data, axis, pk_cols=PKS) if design_df is not None: X_std = X_std.transpose() pca = skPCA(n_components) X_proj = pca.fit_transform(X_std) else: X_std = None X_proj = None pca = None return X_proj, X_std, pca class PCAResult(TemplateView): template_name = 'linker/inference_pca.html' def get_context_data(self, **kwargs): analysis_id = self.kwargs['analysis_id'] analysis_data_id = self.kwargs['analysis_data_id'] analysis_history_id = self.kwargs['analysis_history_id'] analysis_data = AnalysisData.objects.get(pk=analysis_data_id) analysis_history = AnalysisHistory.objects.get(pk=analysis_history_id) inference_data = analysis_history.inference_data n_components = jsonpickle.loads(inference_data['pca_n_components']) X_std_index = jsonpickle.loads(inference_data['pca_X_std_index']) X_proj = jsonpickle.loads(inference_data['pca_X_proj']) var_exp = jsonpickle.loads(inference_data['pca_var_exp']) # make pca plot fig = self.get_pca_plot(analysis_data, X_std_index, X_proj) pca_plot = fig_to_div(fig) # make explained variance plot fig = self.get_variance_plot(var_exp) variance_plot = fig_to_div(fig) # set the div to context context = super(PCAResult, self).get_context_data(**kwargs) context.update({ 'pca_plot': pca_plot, 'variance_plot': variance_plot, 'analysis_id': analysis_id, 'n_components': n_components, }) return context def get_variance_plot(self, var_exp): cum_var_exp = np.cumsum(var_exp) trace1 = dict( type='bar', x=['PC %s' % (i + 1) for i in range(len(var_exp))], y=var_exp, name='Individual' ) trace2 = dict( type='scatter', x=['PC %s' % (i + 1) for i in range(len(var_exp))], y=cum_var_exp, name='Cumulative' ) data = [trace1, trace2] layout = dict( title='Explained variance by different principal components', yaxis=dict( title='Explained variance' ), width=800, annotations=list([ dict( x=1.20, y=1.05, xref='paper', yref='paper', text='Explained Variance', showarrow=False, ) ]) ) fig = dict(data=data, layout=layout) return fig def get_pca_plot(self, analysis_data, X_std_index, X_proj): data = [] group_members = get_group_members(analysis_data) for group in group_members: members = group_members[group] pos = np.in1d(X_std_index, members).nonzero()[0] # find position of group members in sample indices of X labels = X_std_index[pos] trace = dict( type='scatter', x=X_proj[pos, 0], y=X_proj[pos, 1], mode='markers', name=group, text=labels, marker=dict( size=12, line=dict( color='rgba(217, 217, 217, 0.14)', width=0.5), opacity=0.8) ) data.append(trace) layout = dict( width=800, title='PCA Projection', xaxis=dict(title='PC1', showline=False), yaxis=dict(title='PC2', showline=False) ) fig = dict(data=data, layout=layout) return fig def inference_pals(request, analysis_id): if request.method == 'POST': analysis = get_object_or_404(Analysis, pk=analysis_id) form = BaseInferenceForm(request.POST) data_type = int(request.POST['data_type']) analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) form.fields['case'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) form.fields['control'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) form.fields['min_hits'] = forms.IntegerField(min_value=0, initial=PLAGE_MIN_HITS, label='Minimum hits') if form.is_valid(): case = form.cleaned_data['case'] control = form.cleaned_data['control'] min_hits = form.cleaned_data['min_hits'] # get pals data source from the current analysis_data pals_data_source = get_pals_data_source(analysis, analysis_data, case, control, min_hits) if pals_data_source is None: messages.warning(request, 'Add new inference failed. No data found.') return inference(request, analysis_id) # run pals pals_df = run_pals(pals_data_source) # check for NaN in the results. It shouldn't happen. if pals_df.isnull().values.any(): logger.warning('PALS result contains NaN! These rows will be deleted.') logger.warning(pals_df[pals_df.isnull().any(axis=1)]) pals_df = pals_df.dropna() # update PALS results to database pathway_analysis_data = get_last_analysis_data(analysis, PATHWAYS) inference_data = get_inference_data(data_type, case, control, pals_df) display_name = 'PLAGE %s: %s_vs_%s' % (pals_data_source.database_name, case, control) save_analysis_history(pathway_analysis_data, inference_data, display_name, INFERENCE_PALS) messages.success(request, 'Add new inference successful.', extra_tags='primary') return inference(request, analysis_id) else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) def inference_ora(request, analysis_id): if request.method == 'POST': analysis = get_object_or_404(Analysis, pk=analysis_id) form = BaseInferenceForm(request.POST) data_type = int(request.POST['data_type']) analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) form.fields['case'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) form.fields['control'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) if form.is_valid(): case = form.cleaned_data['case'] control = form.cleaned_data['control'] # get pals data source from the current analysis_data pals_data_source = get_pals_data_source(analysis, analysis_data, case, control, 0) if pals_data_source is None: messages.warning(request, 'Add new inference failed. No data found.') return inference(request, analysis_id) # run ora pals_df = run_ora(pals_data_source) # update ORA results to database pathway_analysis_data = get_last_analysis_data(analysis, PATHWAYS) inference_data = get_inference_data(data_type, case, control, pals_df) display_name = 'ORA %s: %s_vs_%s' % (pals_data_source.database_name, case, control) save_analysis_history(pathway_analysis_data, inference_data, display_name, INFERENCE_ORA) messages.success(request, 'Add new inference successful.', extra_tags='primary') return inference(request, analysis_id) else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) def inference_gsea(request, analysis_id): if request.method == 'POST': analysis = get_object_or_404(Analysis, pk=analysis_id) form = BaseInferenceForm(request.POST) data_type = int(request.POST['data_type']) analysis_data = get_last_analysis_data(analysis, data_type) groups = get_groups(analysis_data) form.fields['case'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) form.fields['control'] = forms.ChoiceField(choices=groups, widget=Select2Widget()) if form.is_valid(): case = form.cleaned_data['case'] control = form.cleaned_data['control'] # get pals data source from the current analysis_data pals_data_source = get_pals_data_source(analysis, analysis_data, case, control, 0) if pals_data_source is None: messages.warning(request, 'Add new inference failed. No data found.') return inference(request, analysis_id) # run gse pals_df = run_gsea(pals_data_source) # update GSEA results to database pathway_analysis_data = get_last_analysis_data(analysis, PATHWAYS) inference_data = get_inference_data(data_type, case, control, pals_df) display_name = 'GSEA %s: %s_vs_%s' % (pals_data_source.database_name, case, control) save_analysis_history(pathway_analysis_data, inference_data, display_name, INFERENCE_GSEA) messages.success(request, 'Add new inference successful.', extra_tags='primary') return inference(request, analysis_id) else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) def inference_reactome(request, analysis_id): if request.method == 'POST': analysis = get_object_or_404(Analysis, pk=analysis_id) form = BaseInferenceForm(request.POST) # if data type is MULTI_OMICS, then turn it into GENOMICS, PROTEOMICS and METABOLOMICS data_type = int(request.POST['data_type']) data_types = [data_type] if data_type == MULTI_OMICS: data_types = [GENOMICS, PROTEOMICS, METABOLOMICS] # make sure actually we have some data analysis_data, omics_data = get_omics_data(analysis, data_types, form) if len(omics_data) == 0: messages.warning(request, 'Add new inference failed. No data found.') return inference(request, analysis_id) # reinitialise the threshold field form.fields['threshold'] = DecimalField(required=True, widget=TextInput( attrs={'autocomplete': 'off', 'type': 'number', 'min': '0', 'max': '1', 'step': '0.05', 'size': '10'})) form.fields['threshold'].initial = 0.05 if form.is_valid(): form_data = form.cleaned_data threshold = float(form_data['threshold']) used_dtypes = get_used_dtypes(form_data, omics_data) encoded_species = get_analysis_first_species(analysis) # get ORA and expression data to send to reactome logger.debug('Preparing ORA data') ora_df = get_data(form_data, omics_data, used_dtypes, threshold) ora_data = to_ora_tsv(ora_df.index.values) logger.debug(ora_df.index.values) logger.debug(ora_df.index.values.shape) logger.debug('Preparing expression data') expression_df = get_data(form_data, omics_data, used_dtypes, 1.0) # use large threshold to show all entities expression_data = to_expression_tsv(expression_df) logger.debug(expression_df) logger.debug(expression_df.shape) # POST the data to Reactome Analysis Service logger.debug('POSTing ORA data') ora_status_code, ora_json_response = send_to_reactome(ora_data, encoded_species) logger.debug('POSTing expression data') expr_status_code, expr_json_response = send_to_reactome(expression_data, encoded_species) # ensure that both POST requests are successful if ora_status_code != 200 or expr_status_code != 200: messages.warning(request, 'Add new inference failed. Reactome Analysis Service returned status ' 'code %d and %d' % (ora_status_code, expr_status_code)) else: # success 200 for both assert ora_json_response is not None assert expr_json_response is not None # parse FDR values for pathways from ORA results logger.debug('Parsing ORA results') pathways_df, ora_reactome_url, ora_token = parse_reactome_json(ora_json_response) logger.debug(pathways_df.columns.values) logger.debug(pathways_df) logger.debug('Parsing expression results') _, expr_reactome_url, expr_token = parse_reactome_json(expr_json_response) if not pathways_df.empty: first_analysis_history_id = get_first_analysis_history_id(form_data, omics_data, used_dtypes) first_analysis_history = AnalysisHistory.objects.get(pk=first_analysis_history_id) case = first_analysis_history.inference_data['case'] control = first_analysis_history.inference_data['control'] comparison_name = '%s_vs_%s' % (case, control) # as a quick hack, we put pathways df in the same format as PALS output # this will let us use the update_pathway_analysis_data() method below pathways_df = pathways_df[['stId', 'name', 'entities_fdr']].set_index('stId').rename(columns={ 'name': 'pw_name', 'entities_fdr': 'REACTOME %s comb_p' % (comparison_name) }) pathway_analysis_data = get_last_analysis_data(analysis, PATHWAYS) # save the updated analysis data to database display_data_type = ','.join([AddNewDataDict[dt] for dt in used_dtypes]) display_name = 'Reactome Analysis Service (%s): %s' % (display_data_type, comparison_name) metadata = { REACTOME_ORA_TOKEN: ora_token, REACTOME_ORA_URL: ora_reactome_url, REACTOME_EXPR_TOKEN: expr_token, REACTOME_EXPR_URL: expr_reactome_url } inference_data = get_inference_data(data_type, None, None, pathways_df, metadata=metadata) save_analysis_history(pathway_analysis_data, inference_data, display_name, INFERENCE_REACTOME) messages.success(request, 'Add new inference successful.', extra_tags='primary') return inference(request, analysis_id) else: messages.warning(request, 'Add new inference failed. No pathways returned by Reactome Analysis ' 'Service. Please check the logs.') else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) def inference_mofa(request, analysis_id): if request.method == 'POST': analysis = get_object_or_404(Analysis, pk=analysis_id) analysis_history_list = AnalysisHistory.objects.filter(analysis=analysis).order_by( 'timestamp') history_id = 0 for history in analysis_history_list: history_id = history.id form = BaseInferenceForm(request.POST) data_type = int(request.POST['data_type']) data_types = [data_type] if data_type == MULTI_OMICS: data_types = [GENOMICS, PROTEOMICS, METABOLOMICS] analysis_data, omics_data = get_omics_data(analysis, data_types, form) form.fields['Use uploaded .hdf5 file'] = forms.ChoiceField(choices=zip(['Yes', 'No'], ['Yes', 'No']), widget=Select2Widget()) form.fields['Number of Factor'] = forms.IntegerField(required=True, widget=forms.TextInput(attrs={'size': 100})) form.fields['Scale View'] = forms.ChoiceField(required=False, choices=zip([True, False], ['Yes', 'No']), widget=Select2Widget()) form.fields['Scale Group'] = forms.ChoiceField(required=False, choices=zip([True, False], ['Yes', 'No']), widget=Select2Widget()) if form.is_valid(): up_data = form.cleaned_data['Use uploaded .hdf5 file'] mofa_info = {} filePath = '' if up_data == 'Yes': if analysis.has_mofa_data(): filePath = analysis.analysisupload.mofa_data.path display_name = 'MOFA: uploaded hdf5 file' numFactor = form.cleaned_data['Number of Factor'] mofa_info['nFactor'] = numFactor else: messages.warning(request, 'No .hdf5 file found.') else: numFactor = form.cleaned_data['Number of Factor'] scale_view = form.cleaned_data['Scale View'] in ['True'] scale_group = form.cleaned_data['Scale Group'] in ['True'] mofa = MofaInference(analysis, data_type, numFactor, scale_view, scale_group) filePath, trained_views = mofa.run_mofa() display_name = 'MOFA: %s Factors' % numFactor mofa_info['nFactor'] = numFactor mofa_info['views'] = trained_views mofa_info['path'] = filePath history_id += 1 mofa_info['history_id'] = history_id #analysis.set_mofa_hdf5_path(filePath) inference_data = get_inference_data(data_type, None, None, None, metadata = mofa_info) save_analysis_history(analysis_data, inference_data, display_name, INFERENCE_MOFA) messages.success(request, 'Add new inference successful.', extra_tags='primary') else: messages.warning(request, 'Add new inference failed.') return inference(request, analysis_id) class DeleteAnalysisHistoryView(DeleteView): model = AnalysisHistory success_url = reverse_lazy('inference') template_name = 'linker/confirm_delete_analysis_history.html' success_message = "Analysis history was successfully deleted." # https://stackoverflow.com/questions/24822509/success-message-in-deleteview-not-shown/42656041#42656041 def delete(self, request, *args, **kwargs): messages.success(self.request, self.success_message) return super(DeleteAnalysisHistoryView, self).delete(request, *args, **kwargs) def get_success_url(self): return reverse_lazy('inference', kwargs={'analysis_id': self.object.analysis_data.analysis.pk}) ```
{ "source": "JoeWard7/settler", "score": 3 }
#### File: settler/programs/function.py ```python import setup as set def player_statcalc(player): """Print this.""" player_prop = [] player_res = [] player_num = [] for letter in player: prob = set.letter_probs[letter] resIndex = set.resource_position[letter] res = set.resource_index[resIndex] num = set.letter_num[letter] player_prop.append(prob) player_res.append(res) player_num.append(num) print(player_prop) print(player_res) print(player_num) def player_odds(player): """Print this.""" total = 0.0 if "B" in player: total += 1 if "D" in player or "Q" in player: total += 2 if "J" in player or "N" in player: total += 3 if "A" in player or "O" in player: total += 4 if "C" in player or "P" in player: total += 5 if "E" in player or "K" in player: total += 5 if "G" in player or "M" in player: total += 4 if "F" in player or "L" in player: total += 3 if "I" in player or "R" in player: total += 2 if "H" in player: total += 1 return total / 36 def player_resOdds(player, resNum): """Print this.""" resource_list = [] for letter in player: if set.resource_position[letter] == resNum: resource_list.append(letter) return str(player_odds(resource_list)) def add_settle(player, settles): """Print me.""" print(settles) for letter in settles: player.append(letter) def dice_roll(roll): """Print me.""" for letter in set.letter_num: if set.letter_num[letter] == roll: for ownership in set.red_settle: if ownership == letter: set.red_hand.append(set.resource_position[letter]) for ownership in set.blue_settle: if ownership == letter: set.blue_hand.append(set.resource_position[letter]) for ownership in set.orange_settle: if ownership == letter: set.orange_hand.append(set.resource_position[letter]) for ownership in set.white_settle: if ownership == letter: set.white_hand.append(set.resource_position[letter]) def card_remove(player, cards): """Print me.""" print(cards) for card in cards: player.remove(card) def game_odds(resNum): """Print me.""" resource_list = [] for letter in set.resource_position: if set.resource_position[letter] == resNum: resource_list.append(letter) print(resource_list) return str(player_odds(resource_list)) ```
{ "source": "joe-warren/inky", "score": 4 }
#### File: examples/phat/calendar-phat.py ```python import calendar import datetime import os from inky.auto import auto from PIL import Image, ImageDraw print("""Inky pHAT: Calendar Draws a calendar for the current month to your Inky pHAT. This example uses a sprite sheet of numbers and month names which are composited over the background in a couple of different ways. """) # Get the current path PATH = os.path.dirname(__file__) # Set up the display try: inky_display = auto(ask_user=True, verbose=True) except TypeError: raise TypeError("You need to update the Inky library to >= v1.1.0") if inky_display.resolution not in ((212, 104), (250, 122)): w, h = inky_display.resolution raise RuntimeError("This example does not support {}x{}".format(w, h)) inky_display.set_border(inky_display.BLACK) # Uncomment the following if you want to rotate the display 180 degrees # inky_display.h_flip = True # inky_display.v_flip = True def create_mask(source, mask=(inky_display.WHITE, inky_display.BLACK, inky_display.RED)): """Create a transparency mask. Takes a paletized source image and converts it into a mask permitting all the colours supported by Inky pHAT (0, 1, 2) or an optional list of allowed colours. :param mask: Optional list of Inky pHAT colours to allow. """ mask_image = Image.new("1", source.size) w, h = source.size for x in range(w): for y in range(h): p = source.getpixel((x, y)) if p in mask: mask_image.putpixel((x, y), 255) return mask_image def print_digit(position, digit, colour): """Print a single digit using the sprite sheet. Each number is grabbed from the masked sprite sheet, and then used as a mask to paste the desired colour onto Inky pHATs image buffer. """ o_x, o_y = position num_margin = 2 num_width = 6 num_height = 7 s_y = 11 s_x = num_margin + (digit * (num_width + num_margin)) sprite = text_mask.crop((s_x, s_y, s_x + num_width, s_y + num_height)) img.paste(colour, (o_x, o_y), sprite) def print_number(position, number, colour): """Print a number using the sprite sheet.""" for digit in str(number): print_digit(position, int(digit), colour) position = (position[0] + 8, position[1]) # Load our sprite sheet and prepare a mask text = Image.open(os.path.join(PATH, "resources/calendar.png")) text_mask = create_mask(text, [inky_display.WHITE]) # Note: The mask determines which pixels from our sprite sheet we want # to actually use when calling img.paste(). # See: http://pillow.readthedocs.io/en/3.1.x/reference/Image.html?highlight=paste#PIL.Image.Image.paste # Load our backdrop image img = Image.open(os.path.join(PATH, "resources/empty-backdrop.png")).resize(inky_display.resolution) draw = ImageDraw.Draw(img) # Grab the current date, and prepare our calendar cal = calendar.Calendar() now = datetime.datetime.now() dates = cal.monthdatescalendar(now.year, now.month) col_w = 20 col_h = 13 cols = 7 rows = len(dates) + 1 cal_w = 1 + ((col_w + 1) * cols) cal_h = 1 + ((col_h + 1) * rows) cal_x = inky_display.WIDTH - cal_w - 2 cal_y = 2 # Paint out a black rectangle onto which we'll draw our canvas draw.rectangle((cal_x, cal_y, cal_x + cal_w - 1, cal_y + cal_h - 1), fill=inky_display.BLACK, outline=inky_display.WHITE) # The starting position of the months in our spritesheet months_x = 2 months_y = 20 # Number of months per row months_cols = 3 # The width/height of each month in our spritesheet month_w = 23 month_h = 9 # Figure out where the month is in the spritesheet month_col = (now.month - 1) % months_cols month_row = (now.month - 1) // months_cols # Convert that location to usable X/Y coordinates month_x = months_x + (month_col * month_w) month_y = months_y + (month_row * month_h) crop_region = (month_x, month_y, month_x + month_w, month_y + month_h) month = text.crop(crop_region) month_mask = text_mask.crop(crop_region) monthyear_x = 28 # Paste in the month name we grabbed from our sprite sheet img.paste(inky_display.WHITE, (monthyear_x, cal_y + 4), month_mask) # Print the year right below the month print_number((monthyear_x, cal_y + 5 + col_h), now.year, inky_display.WHITE) # Draw the vertical lines which separate the columns # and also draw the day names into the table header for x in range(cols): # Figure out the left edge of the column o_x = (col_w + 1) * x o_x += cal_x crop_x = 2 + (16 * x) # Crop the relevant day name from our text image crop_region = ((crop_x, 0, crop_x + 16, 9)) day_mask = text_mask.crop(crop_region) img.paste(inky_display.WHITE, (o_x + 4, cal_y + 2), day_mask) # Offset to the right side of the column and draw the vertical line o_x += col_w + 1 draw.line((o_x, cal_y, o_x, cal_h)) # Draw the horizontal lines which separate the rows for y in range(rows): o_y = (col_h + 1) * y o_y += cal_y + col_h + 1 draw.line((cal_x, o_y, cal_w + cal_x - 1, o_y)) # Step through each week for row, week in enumerate(dates): y = (col_h + 1) * (row + 1) y += cal_y + 1 # And each day in the week for col, day in enumerate(week): x = (col_w + 1) * col x += cal_x + 1 # Draw in the day name. # If it's the current day, invert the calendar background and text if (day.day, day.month) == (now.day, now.month): draw.rectangle((x, y, x + col_w - 1, y + col_h - 1), fill=inky_display.WHITE) print_number((x + 3, y + 3), day.day, inky_display.BLACK) # If it's any other day, paint in as white if it's in the current month # and red if it's in the previous or next month else: print_number((x + 3, y + 3), day.day, inky_display.WHITE if day.month == now.month else inky_display.RED) # Display the completed calendar on Inky pHAT inky_display.set_image(img) inky_display.show() ```
{ "source": "joewashear007/jazzy", "score": 3 }
#### File: jazzy/functions/RelationalFunc.py ```python __all__ = ['jazGT', 'jazET', 'jazGTET', 'jazLT', 'jazLTET', 'jazGL'] class jazGT: def __init__(self): self.command = ">"; def call(self, interpreter, arg): topValue1 = interpreter.GetScope().stack.pop() topValue2 = interpreter.GetScope().stack.pop() if (topValue2 > topValue1): interpreter.GetScope().stack.append(1) else: interpreter.GetScope().stack.append(0) return None class jazET: def __init__(self): self.command = "="; def call(self, interpreter, arg): topValue1 = interpreter.GetScope().stack.pop() topValue2 = interpreter.GetScope().stack.pop() if (topValue2 == topValue1): interpreter.GetScope().stack.append(1) else: interpreter.GetScope().stack.append(0) return None class jazGTET: def __init__(self): self.command = ">="; def call(self, interpreter, arg): topValue1 = interpreter.GetScope().stack.pop() topValue2 = interpreter.GetScope().stack.pop() if (topValue2 >= topValue1): interpreter.GetScope().stack.append(1) else: interpreter.GetScope().stack.append(0) return None class jazLT: def __init__(self): self.command = "<"; def call(self, interpreter, arg): topValue1 = interpreter.GetScope().stack.pop() topValue2 = interpreter.GetScope().stack.pop() if (topValue2 < topValue1): interpreter.GetScope().stack.append(1) else: interpreter.GetScope().stack.append(0) return None class jazLTET: def __init__(self): self.command = "<="; def call(self, interpreter, arg): topValue1 = interpreter.GetScope().stack.pop() topValue2 = interpreter.GetScope().stack.pop() if (topValue2 <= topValue1): interpreter.GetScope().stack.append(0) else: interpreter.GetScope().stack.append(1) return None class jazGL: def __init__(self): self.command = "<>"; def call(self, interpreter, arg): topValue1 = interpreter.GetScope().stack.pop() topValue2 = interpreter.GetScope().stack.pop() if (topValue2 != topValue1): interpreter.GetScope().stack.append(1) else: interpreter.GetScope().stack.append(0) return None Functions = {'jazGT': jazGT, 'jazET': jazET, 'jazGTET': jazGTET, 'jazLT':jazLT, 'jazLTET':jazLTET, 'jazGL':jazGL} ``` #### File: jazzy/functions/SubprgrmCtrlFunc.py ```python __all__ = ['jazBegin', 'jazEnd', 'jazReturn', 'jazCall', 'jazStackInfo'] class jazBegin: def __init__(self): self.command = "begin"; def call(self, interpreter, arg): interpreter.BeginSubroutine() return None class jazEnd: def __init__(self): self.command = "end"; def call(self, interpreter, arg): interpreter.EndSubroutine() return None class jazReturn: def __init__(self): self.command = "return"; def call(self, interpreter, arg): interpreter.ReturnSubroutine() return None class jazCall: def __init__(self): self.command = "call"; def call(self, interpreter, arg): interpreter.CallSubroutine(arg) return None class jazStackInfo: def __init__(self): self.command = "stackinfo" def call(self, interpreter, arg): if arg is not None and len(arg) > 0: try: scope = interpreter.scopes[int(arg)] info = "Scope: "+str(scope.name)+"\n" info += "* PC : " + str(scope.pc) + "\n" info += "* Labels : " + str(interpreter.labels) + "\n" info += "* Vars : " + str(scope.variables) + "\n" info += "* Stack: " + str(scope.stack) + "\n" if scope.name == scope.lvalue.name: info += "* LScope : self\n" else: info += "* LScope : " + str(scope.lvalue.name) + "\n" if scope.name == scope.rvalue.name: info += "* RScope : self\n" else: info += "* RScope : " + str(scope.rvalue.name) + "\n" except Exception as e: print(e) return "Index is not valid" else: info = "Scopes: ("+str(len(interpreter.scopes))+")\n" i = 0 for s in interpreter.scopes: info = info + "["+str(i)+"] : "+ str(s.name)+"\n" i = i+1; return info # A dictionary of the classes in this file # used to autoload the functions Functions = {'jazBegin': jazBegin,'jazEnd': jazEnd, 'jazReturn': jazReturn, 'jazCall':jazCall,'jazStackInfo': jazStackInfo} ``` #### File: jazzy/jazzy/__main__.py ```python import sys import os import argparse import functions import interpreter import preprocessor from errors import *; def main(args): parser = argparse.ArgumentParser(description='Jaz Interpreter') parser = argparse.ArgumentParser() parser.add_argument('infile', nargs='?', type=argparse.FileType('r'), default=sys.stdin) parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'),default=sys.stdout) parser.parse_args(); args = parser.parse_args() intrp = interpreter.Interpreter() RegisterFunctions(intrp) if(args.infile is not sys.stdin): #run the file RunFile(intrp, args.infile, args.outfile) else: #read from std in RunSdtIn(intrp) def RegisterFunctions(intrp): #Register the Funcitons for mod in functions.__all__: __import__("functions."+mod) mofFunc = getattr(functions, mod) for func in mofFunc.Functions: try: funcClass = getattr(mofFunc, func) jazFunc = funcClass() intrp.RegisterFunction(jazFunc.command, jazFunc) except Exception as err: print(err.message) def RunSdtIn(intrp): while not intrp.isFinished(): print("") action = input(">>") try: output = intrp.Exec(action) if output is not None: print(output) except JazError as error: print("Error! -- " + error.message) except Exception as err: print("Error! -- " + str(err)) def RunFile(intrp, infile, outfile): # output = [] try: processor = preprocessor.Preprocessor() code = processor.parseFile(infile) labels = processor.GetLabels() intrp.labels = labels intrp.program = code while not intrp.isFinished(): output = intrp.ExecNext() if output is not None: outfile.write(str(output)) outfile.write("\n") except JazError as error: print("Error! -- " + error.message) if __name__ == "__main__": # execute only if run as a script main(sys.argv[1:]) ```
{ "source": "joewashear007/ScrappyDoo", "score": 3 }
#### File: ScrappyDoo/scrappydoo/kitutil.py ```python import os import misc import shutil import subprocess from kit import Kit def ProcessKits(kitFiles, dir): kitsZips = {} for x, file in enumerate(kitFiles): misc.SetHeader("Get Kit Information ("+ str(x + 1) + " of " + str(len(kitFiles)) + ")") print("To skip a file, please enter '#skip' for the name") print() print() print("Current File: ", file) kitNameInfo = GetKitName(file, kitsZips) if kitNameInfo is None: #user skipped the kit continue # Kit Name & the filename string of the kit name, fileKitStr = kitNameInfo if not fileKitStr in kitsZips: kitsZips[fileKitStr] = Kit(name, dir) kitType = GetKitType(file, name) kitsZips[fileKitStr].addFile(kitType, file) kits = {} # Conbine kits by Name for z in kitsZips: if kitsZips[z].name in kits: for type in kitsZips[z].files: if type not in kits[kitsZips[z].name].files: kits[kitsZips[z].name].files[type] = [] kits[kitsZips[z].name].files[type] += kitsZips[z].files[type] else: kits[kitsZips[z].name] = kitsZips[z] return kits; def GetKitName(kit, kitsZips): #remove the end '-pp' kitStr = kit if "-" in kit: kitStr = kit.rsplit("-", 1)[0] if "_" in kit: kitStr = kit.rsplit("_", 1)[0] name = None goodInput = False prevNames = {} # search the lower case names if the filename chaged for x in kitsZips: prevNames[kitsZips[x].name.replace(" ", "").lower()] = kitsZips[x].name prevNames[kitsZips[x].name.replace(" ", "_").lower()] = kitsZips[x].name prevNames[kitsZips[x].name.replace(" ", "-").lower()] = kitsZips[x].name while not goodInput: sug_name = "" if kitStr in kitsZips: sug_name = kitsZips[kitStr].name if sug_name == "": lowerName = kitStr.lower(); for n in prevNames.keys(): if n in lowerName: sug_name = prevNames[n] break if sug_name != "": name = input("Please Enter Kit Name (default = " + sug_name + "): ") name = name or sug_name goodInput = True if name == "#skip": return None else: name = input("Please Enter Kit Name: ") if name == "#skip": return None if name is not "" : print() goodInput = misc.ConfirmInput("Is '" + name + "' right?", True) return (name, kitStr) def GetKitType(kit, kitName): #Remove file ext and get the ending -ep kitType = os.path.splitext(kit)[0] if "-" in kitType: kitType = kitType.rsplit("-", 1)[1] if "_" in kitType: kitType = kitType.rsplit("_", 1)[1] types = {1: "embellishment", 2: "alpha", 3: "paper", 4:"other"} defaultTypes = {"ep":1, "ap":2, "pp":3, "alpha": 2, "alphas": 2 } default = 1 if kitType in defaultTypes: default = defaultTypes[kitType] while True: print() print("Please choose the type of this kit:") print(" 1) Embellishment", " (Default) " if default == 1 else "") print(" 2) Alpha", " (Default) " if default == 2 else "") print(" 3) Paper", " (Default) " if default == 3 else "") print(" 4) Other", " (Default) " if default == 4 else "") print() action = input("Please Select Number Above:") if action is "": return types[default]; if action.isdigit(): actionNum = int(action) if actionNum > 0 and actionNum < len(types)+1: return types[actionNum] def ExtractKits(kits): """ Takes a dictionary of kit objects and extracts them""" misc.SetHeader("Extracting Kits, Please Wait ...") errors = [] for kitName in kits: try: kits[kitName].extract() if kits[kitName].hasError: errors.append(kits[kitName].error) except Exception as e: print(e) print() print() print("We had issues extracting ", kitName) print("So we are going to kip it and move on...") print() print() errors.append(kitName) if len(errors) > 0: print() print() print("The Following Kits Had Errors:") for e in errors: print(e) print("") print("") print("") input("press Enter to Continue ...") def MoveKitFolders(kits, current): misc.SetHeader("Moving Kits") dest = "" goodInput = False while not goodInput: print("Where should we move the kits?") print(" 1) Into the Personal Art Kits folder (Default)") print(" 2) I want to enter a custom folder") print(" 3) Skip this step") action = input("Please Select Number Above:") if action is "": homedir = os.path.expanduser("~") dest = os.path.join(homedir, "Documents", "Personal Art Kits") goodInput = True if action.isdigit(): actionNum = int(action) if actionNum == 1: homedir = os.path.expanduser("~") dest = os.path.join(homedir, "Documents", "Personal Art Kits") goodInput = True if actionNum == 2: dest = misc.GetDir("Please enter the destination folder") goodInput = True if actionNum == 3: return if not goodInput: print() print("Hmm, that input seems wrong. Try again!") print() if not os.path.isdir(dest): dest = misc.GetDir(dest + " does not exist! Please enter a new destination folder") errors = [] for name in kits: print("Moving ", name) try: shutil.move(os.path.join(current, name), dest) except Exception as e: errors.append(name) print() print("Error! Could Not move kit", name) print("Skipping the move for this kit") print() print("Done Moving Kits!") print("It is best to open Creative Memories to make sure all of the kits were installed properly") if len(errors) > 0: print() print("===========================================================================") print("ERROR!!! There were errors, not all files mght have been copied") print("The following folders had errors") for name in errors: print(" * ", name) print("===========================================================================") print() print() misc.Pause() def DeleteKitFiles(kits, folder): misc.SetHeader("Deleting Kits") print() for name in kits: for type in kits[name].files: for file in kits[name].files[type]: print("Deleting ", file) try: os.remove(os.path.join(current, file)) except Exception as e: print("Error! Could not delete ", file) print("Skipping... ") misc.Pause() ``` #### File: ScrappyDoo/scrappydoo/__main__.py ```python import sys import os import argparse import misc import folderParser import kitutil import pprint def main(args): parser = argparse.ArgumentParser(description='ScrappyDoo') # parser.add_argument('path', nargs='?', type="string") # parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'),default=sys.stdout) parser.parse_args(); args = parser.parse_args() misc.Welcome() folder = folderParser.SelectFolder() kitFiles = folderParser.FindAllKits(folder) #pre kit processing screen misc.SetHeader("Quick Message") print("We are going all of the Art Kits in: ", folder ) print("For each zile file we find:") print(" * You can enter the name of the Art Kit it is part of") print(" * What type of elements it holds") print(" * Skip any file that is not part of an Art Kit") print(" * If an option has '(Default)', it can be choosen with just pressing 'Enter'") print() print("Lets Get Started! ") misc.Pause() kits = kitutil.ProcessKits(kitFiles, folder) kitutil.ExtractKits(kits) misc.Pause() # Post processing - Move Files kitutil.MoveKitFolders(kits, folder) # Post processing - Delete zips misc.SetHeader("Kit Post Processing") print("Would you like me to delete the zip files that were turn into kits?") print("They shouldn't be needed any more if everything install correctly into Creative Memories") print() print("WARNING: This can NOT be undone!") print() shouldDelete = misc.ConfirmInput("Should I delete the zip files that you ?") if shouldDelete: kitutil.DeleteKitFiles(kits, folder) # Closing msg misc.SetHeader("Good Bye!") print("Everything is complete!") print("Thanks for using ScrappyDoo and have a nice day!") print() misc.Pause() if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "joeweaver/tidysol", "score": 3 }
#### File: tidysol/tests/test_ComsolExportFile.py ```python from unittest import TestCase import sys sys.path.append('..') from tidysol import ComsolExportFile from tidysol.Exceptions import TidysolException class TestComsolExportFile(TestCase): ########################################################################### #Do better than standard file not found error ########################################################################### def test_error_file_does_not_exist(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\dne.txt') assert('Could not find file: tests\\commands\\data\\dne.txt'==str(context.exception)) ########################################################################### #potential parser issues (file does not appear to be COMSOL file or potential regex bugs ########################################################################### def test_error_multiple_vars_lines(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-two-varsline.txt') assert('Found more than one line naming variables: 9 & 10' == str(context.exception)) def test_error_no_vars_lines(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-no-varsline.txt') assert('Could not find a line defining variables' == str(context.exception)) #these are a bit strict, but probably a good idea. Testing the file #for internal consistency #the number of variables found '% Expressions'' should be the same as #'% Dimension :' + the number of matches on the varsline def test_error_wrong_number_of_vars(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-wrong-num-vars.txt') assert('Expected 21 variables (3 dimensions and 18 expressions) but found 22 (3 dimensions and 19 expressions)' == str(context.exception)) #sub case of test_error_wrong_number_of_vars if %Expressions is not given def test_error_no_expressions_meta(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-no-expressionsmeta.txt') assert('Could not find a \"% Expressions:\" line' == str(context.exception)) #sub case of test_error_wrong_number_of_vars if %Dimensions is not given def test_error_no_dimensions_meta(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-no-dimensionsmeta.txt') assert('Could not find a \"% Dimension:\" line' == str(context.exception)) #the number of lines which do not begin with % should be the same as the #% nodes value in the metadata def test_error_wrong_num_nodes(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-wrong-num-nodes.txt') assert('Expected 5 nodes but read 6' == str(context.exception)) #sub case of test_error_wrong_number_of_nodes if % nodes is not given def test_error_no_nodes_meta(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-no-nodesmeta.txt') assert('Could not find a \"% Nodes:\" line' == str(context.exception)) #The number of descriptions is the same as number listed in % Expressions #descriptions are allowed to be a blank string #unfortunately, descriptions can also contain unescaped commas - such as: Velocity field, z component def test_error_wrong_num_descriptions(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-wrong-num-descriptions.txt') assert('Expected 19 descriptions of variables but read 21' == str(context.exception)) #it gets even worse when you go to multiphase, added this case to handle things like ' Velocity field, liquid phase, x component,' and 'Velocity magnitude, liquid phase,' def test_multiple_uncescaped_commas_descriptions(self): cef=ComsolExportFile('tests\\commands\\data\\good-mulitple-unesecaped-commas.txt') assert(28 == len(cef.columnVars)) #sub case of test_error_wrong_num_descriptions if % descriptions not given def test_error_no_description_meta(self): with self.assertRaises(TidysolException) as context: ComsolExportFile('tests\\commands\\data\\bad-no-descriptionsmeta.txt') assert('Could not find a \"% Description:\" line' == str(context.exception)) ``` #### File: tidysol/tidysol/cli.py ```python from inspect import getmembers, isclass from docopt import docopt import re def main(): """Main CLI entrypoint.""" import tidysol.commands # Here we'll try to dynamically match the command the user is trying to run # with a pre-defined command class we've already created. for (k, v) in options.items(): if hasattr(tidysol.commands, k) and v: module = getattr(tidysol.commands, k) tidysol.commands = getmembers(module, isclass) for command in tidysol.commands: if command[0] != 'Base': if re.search('^\<class \'tidysol\.commands\.',str(command[1])): command=command[1] command=command(options) command.run() if __name__ == "__main__": options = docopt(__doc__) main() else: from . import __version__ as VERSION options = docopt(__doc__, version=VERSION) ``` #### File: tidysol/commands/tidy.py ```python from .base import Base from .. import ComsolExportFile from ..Exceptions import TidysolException import re import os from decimal import Decimal class Tidy(Base): """Create a tidy version of the data in the Comsol export""" def run(self): try: c=ComsolExportFile(self.options["<name>"]) writeTimes=[] writeCols=[] if(self.options["--times"]): writeTimes = re.split(",",self.options["--times"][0]) for t in writeTimes: if t.casefold()!="last".casefold(): if (not re.match('^\d*\.?\d$',t)): raise (TidysolException("{0} is not a valid timestep".format(t))) if Decimal(t) not in [Decimal(ts) for ts in c.timesteps]: raise TidysolException("Could not find data for time {0}".format(t)) if(self.options["--cols"]): writeCols=re.split(",",re.sub('\"','',self.options["--cols"][0])) for col in writeCols: col=col.strip() if c.columnVars.get(col) == None and c.metaData.get(col)==None: if not col in c.vars_w_descs(): #print(c.vars_w_descs()) raise TidysolException("Could not find data for variable {0}".format(col)) #ensure unique cols writeCols=list(set(writeCols)) base = os.path.basename(self.options["<name>"]) fname = os.path.splitext(base)[0] o=None if not(self.options["--output"]): o = open("{0}.csv".format(fname),"w") else: outfilename=self.options["--output"] if os.path.dirname(outfilename) : os.makedirs(os.path.dirname(outfilename), exist_ok=True) o=open(outfilename,"w") try: #o.write(c.to_csv(writeTimes,writeCols)) c.to_csv(writeTimes,writeCols,o) finally: o.close() #not much to do with unexpected exceptions other than print them out except Exception as e: print(e) except TidysolException as e: print(e) ``` #### File: tidysol/commands/vars.py ```python from .base import Base from .. import ComsolExportFile from ..Exceptions import TidysolException class Vars(Base): """List the variables (with descriptions) for which data are recorded""" def run(self): try: c=ComsolExportFile(self.options["<name>"]) print(", ".join(str(vd) for vd in c.vars_w_descs())) #not much to do with unexpected exceptions other than print them out except Exception as e: print(e) except TidysolException as e: print(e) ```