metadata
dict
text
stringlengths
60
3.49M
{ "source": "johannbrehmer/rl-6-nimmt", "score": 3 }
#### File: rl_6_nimmt/utils/replay_buffer.py ```python import random import numba import numpy as np import torch from collections import defaultdict import random import logging logger = logging.getLogger(__name__) # Taken and modified from https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/blob/master/contents/5.2_Prioritized_Replay_DQN/RL_brain.py @numba.jit(nopython=True) def _update(tree, tree_index, priority, total_priority): # Change = new priority score - former priority score change = priority - tree[tree_index] tree[tree_index] = priority # then propagate the change through tree # this method is faster than the recursive loop while tree_index != 0: tree_index = (tree_index - 1) // 2 tree[tree_index] += change # assert total_priority > 0 return tree @numba.jit(nopython=True) def _get_leaf_ids(n, tree, priority_segment): idx = np.empty((n,), dtype=np.uint32) for i in range(n): # A value is uniformly sample from each range value = priority_segment * i + random.random() * priority_segment # print("value:", value) # Experience index that correspond to each value is retrieved idx[i] = _get_leaf_index(tree, value) return idx @numba.jit(nopython=True) def _get_leaf_index(tree, v): parent_index = 0 while True: left_child_index = 2 * parent_index + 1 right_child_index = left_child_index + 1 # If we reach bottom, end the search if left_child_index >= len(tree): leaf_index = parent_index break else: # downward search, always search for a higher priority node if v <= tree[left_child_index]: parent_index = left_child_index else: v -= tree[left_child_index] parent_index = right_child_index return leaf_index class SumTree: # Here we initialize the tree with all nodes = 0, and initialize the data with all values = 0 def __init__(self, capacity): self.data_pointer = 0 # Number of leaf nodes (final nodes) that contains experiences self.capacity = capacity self.num_items = 0 # Generate the tree with all nodes values = 0 # To understand this calculation (2 * capacity - 1) look at the schema below # Remember we are in a binary node (each node has max 2 children) so 2x size of leaf (capacity) - 1 (root node) # Parent nodes = capacity - 1 # Leaf nodes = capacity self.tree = np.zeros(2 * capacity - 1) # Contains the experiences (so the size of data is capacity) self.data = np.zeros(capacity, dtype=object) def add(self, priority, data): # Look at what index we want to put the experience tree_index = self.data_pointer + self.capacity - 1 """ tree: 0 / \ 0 0 / \ / \ tree_index 0 0 0 We fill the leaves from left to right """ # Update data frame self.data[self.data_pointer] = data # Update the leaf self.update(tree_index, priority) # Add 1 to data_pointer self.data_pointer += 1 if self.data_pointer >= self.capacity: # If we're above the capacity, we go back to first index (we overwrite) self.data_pointer = 0 else: self.num_items += 1 def update(self, tree_index, priority): self.tree = _update(self.tree, tree_index, priority, self.total_priority) # @numba.jit(nopython=True) def get_leaf(self, v): leaf_index = _get_leaf_index(self.tree, v) data_index = leaf_index - self.capacity + 1 # assert isinstance(self.data[data_index], dict) return leaf_index, self.tree[leaf_index], self.data[data_index] @property def total_priority(self): return self.tree[0] # Returns the root node class PriorityReplayBuffer: """ A lot is going on here, which needs some explaining: 1. We want to use priority replay to draw more often from memories/transitions, which have a higher proportion of information. 2. Memories are weighted according to the temporal difference error. Naively implementing this would be inefficient (e.g. sorting the array by weights for example) -> SumTree helps here 3. Due to the weights introduced, we actually contradict our first reason to introduce a random replay buffer decorrelation of memories. To avoid this, we borrow an idea from importance sampling. 4. When calculating the error between q targets and predicted q values, we assign the memories with a high priority/high temporal difference error a lower weight. The rationale behind this: "Hey you will see this values quite often, so do not overemphasis it too much. """ def __init__(self, max_length=None, dtype=torch.float, device=torch.device("cpu")): # Making the tree self.dtype = dtype self.device = device if max_length is None: raise ValueError("PriorityReplayBuffer needs max length!") self.tree = SumTree(max_length) self.absolute_error_upper = 1.0 # clipped abs error # stored as ( state, action, reward, next_state ) in SumTree self.epsilon = 0.01 # Hyperparameter that we use to avoid some experiences to have 0 probability of being taken self.alpha = 0.6 # Hyperparameter that we use to make a tradeoff between taking only exp with high priority and sampling randomly self.beta = 0.4 # importance-sampling, from initial value increasing to 1 self.beta_increment = 0.001 def store(self, **experience): # Find the max priority max_priority = np.max(self.tree.tree[-self.tree.capacity :]) # If the max priority = 0 we can't put priority = 0 since this experience will never have a chance to be selected # So we use a minimum priority if max_priority == 0: max_priority = self.absolute_error_upper self.tree.add(max_priority, experience) # set the max priority for new priority def sample(self, n): priority_segment = self.tree.total_priority / n # priority segment self.beta = np.min([1.0, self.beta + self.beta_increment]) start_idx = len(self.tree.tree) - self.tree.capacity end_idx = start_idx + self.tree.num_items min_prob = np.min(self.tree.tree[start_idx:end_idx]) / self.tree.total_priority # for later calculate ISweight minibatch, b_idx, importance_smapling_weights = self.get_samples(min_prob, n, priority_segment) # for key, value in minibatch.items(): # convert to arrays # value = self.stackify(value) # minibatch[key] = value return b_idx, importance_smapling_weights, minibatch def get_samples(self, min_prob, n, priority_segment): leaf_idx = _get_leaf_ids(n, self.tree.tree, priority_segment) data_idx = leaf_idx - self.tree.capacity + 1 priorities = self.tree.tree[leaf_idx] data_batch = self.tree.data[data_idx] assert not 0 in data_batch, "Wrong data in sample detected" probs = priorities / self.tree.total_priority importance_smapling_weights = np.power(probs / min_prob, -self.beta) # assert isinstance(self.data[data_index], dict) minibatch = {k: [dic[k] for dic in data_batch] for k in data_batch[0]} # for x in data_batch: # for key, value in x.items(): # minibatch[key].append(value) return minibatch, leaf_idx, importance_smapling_weights def batch_update(self, tree_idx, abs_errors): """' must be called to update priorities """ abs_errors += self.epsilon # convert to abs and avoid 0 if isinstance(abs_errors, torch.Tensor): abs_errors = abs_errors.cpu().numpy() clipped_errors = np.minimum(abs_errors, self.absolute_error_upper) ps = clipped_errors ** self.alpha for ti, p in zip(tree_idx, ps): self.tree.update(ti, p) def __len__(self): return self.tree.num_items class History: """ Generic replay buffer. Can accommodate arbitrary fields. """ def __init__(self, max_length=None, dtype=torch.float, device=torch.device("cpu")): self.memories = None self.max_length = max_length self.data_pointer = 0 self.is_full = False if max_length: self.memories = np.empty((max_length,), dtype=object) else: self.memories = np.empty((128,), dtype=object) # double memory size each time limit is hit self.device = device self.dtype = dtype def store(self, **kwargs): self.memories[self.data_pointer] = kwargs self.is_full = False self.data_pointer += 1 if self.max_length is not None and self.data_pointer >= self.max_length: self.data_pointer = 0 self.is_full = True if self.data_pointer >= self.memories.shape[0] and self.max_length is None: # self.memories.resize(self.memories.shape * 2) # Raises some ValueError self.memories = np.resize(self.memories, self.memories.shape[0] * 2) # @timeit def sample(self, n): idx = random.sample(range(len(self)), k=n) data_batch = self.memories[idx] minibatch = {k: [dic[k] for dic in data_batch] for k in data_batch[0]} return idx, None, minibatch def rollout(self, n=None): """ When n is not None, returns only the last n entries """ data_batch = self.memories[: len(self)] if n is None else self.memories[len(self) - n : len(self)] minibatch = {k: [dic[k] for dic in data_batch] for k in data_batch[0]} return minibatch def __len__(self): if self.max_length is None: return self.data_pointer else: if self.is_full: return self.max_length else: return self.data_pointer def clear(self): if self.max_length: self.memories = np.empty((self.max_length,), dtype=object) else: self.memories = np.empty((128,), dtype=object) # double memory size each time limit is hit self.data_pointer = 0 def __add__(self, other): raise DeprecationWarning("Is not used anymore... I hope?") assert list(self.memories.keys()) == list(other.memories.keys()) history = History(self.max_length) history.memories = dict() for key, val in self.memories.items(): history.memories[key] = val + other.memories[key] return history class SequentialHistory(History): """ Generic replay buffer where each entry represents a sequence of events. Can accommodate arbitrary fields. """ def __init__(self, max_length=None, dtype=torch.float, device=torch.device("cpu")): super().__init__(max_length=max_length, dtype=dtype, device=device) self.current_sequence = dict() def current_sequence_length(self): if len(self.current_sequence) == 0: return 0 else: return len(self.current_sequence[list(self.current_sequence.keys())[0]]) def store(self, **kwargs): # Store in temporary sequence buffer if self.current_sequence_length() == 0: # Nothing saved in current sequence for key, val in kwargs.items(): self.current_sequence[key] = [val] self.current_sequence["first"] = [True] else: for key, val in kwargs.items(): self.current_sequence[key].append(val) self.current_sequence["first"].append(False) def flush(self): """ Push current sequence to ("long-term") memory """ assert self.current_sequence_length() > 0 super().store(**self.current_sequence) self.current_sequence = dict() ```
{ "source": "johannbrehmer/workflow-madminer", "score": 2 }
#### File: bin/internal/shower_card.py ```python import sys import re import os import logging logger = logging.getLogger('madgraph.shower_card') pjoin = os.path.join class ShowerCardError(Exception): pass class ShowerCard(dict): """ """ true = ['.true.', 't', 'true', '1'] false = ['.false.', 'f', 'false', '0'] logical_vars = ['ue_enabled', 'hadronize', 'b_stable', 'pi_stable', 'wp_stable', 'wm_stable', 'z_stable', 'h_stable', 'tap_stable', 'tam_stable', 'mup_stable', 'mum_stable', 'is_4lep', 'is_bbar', 'combine_td'] string_vars = ['extralibs', 'extrapaths', 'includepaths', 'analyse'] for i in range(1,100): string_vars.append('dm_'+str(i)) int_vars = ['nsplit_jobs', 'maxprint', 'nevents', 'pdfcode', 'rnd_seed', 'rnd_seed2', 'njmax'] float_vars = ['maxerrs', 'lambda_5', 'b_mass', 'qcut'] # names_dict has the following structure: # var : {PYTHIA6: varpy6, HERWIG6: varhw6, HERWIGPP: varhwpp, PYTHIA8: varpy8} # where varpy, varhw6 and varhwpp are mc_dependent names # if a mc is not there, that variable is not supposed to be # used / written for thar mc names_dict = {\ 'ue_enabled' : {'HERWIG6':'lhsoft', 'PYTHIA6': 'mstp_81', 'HERWIGPP': 'ue_hwpp', 'PYTHIA8': 'ue_py8'}, 'pdfcode' : {'HERWIG6':'pdfcode', 'PYTHIA6': 'pdfcode', 'HERWIGPP': 'pdfcode', 'PYTHIA8': 'pdfcode'}, 'nevents' : {'HERWIG6':'nevents', 'PYTHIA6': 'nevents', 'HERWIGPP': 'nevents', 'PYTHIA8': 'nevents'}, 'hadronize' : {'PYTHIA6': 'mstp_111', 'HERWIGPP': 'hadronize_hwpp', 'PYTHIA8': 'hadronize_py8'}, 'b_stable' : {'HERWIG6':'b_stable_hw', 'PYTHIA6': 'b_stable_py', 'HERWIGPP': 'b_stable_hwpp', 'PYTHIA8': 'b_stable_py8'}, 'pi_stable' : {'HERWIG6':'pi_stable_hw', 'PYTHIA6': 'pi_stable_py', 'HERWIGPP': 'pi_stable_hwpp', 'PYTHIA8': 'pi_stable_py8'}, 'wp_stable' : {'HERWIG6':'wp_stable_hw', 'PYTHIA6': 'wp_stable_py', 'HERWIGPP': 'wp_stable_hwpp', 'PYTHIA8': 'wp_stable_py8'}, 'wm_stable' : {'HERWIG6':'wm_stable_hw', 'PYTHIA6': 'wm_stable_py', 'HERWIGPP': 'wm_stable_hwpp', 'PYTHIA8': 'wm_stable_py8'}, 'z_stable' : {'HERWIG6':'z_stable_hw', 'PYTHIA6': 'z_stable_py', 'HERWIGPP': 'z_stable_hwpp', 'PYTHIA8': 'z_stable_py8'}, 'h_stable' : {'HERWIG6':'h_stable_hw', 'PYTHIA6': 'h_stable_py', 'HERWIGPP': 'h_stable_hwpp', 'PYTHIA8': 'h_stable_py8'}, 'tap_stable' : {'HERWIG6':'taup_stable_hw', 'PYTHIA6': 'taup_stable_py', 'HERWIGPP': 'taup_stable_hwpp', 'PYTHIA8': 'taup_stable_py8'}, 'tam_stable' : {'HERWIG6':'taum_stable_hw', 'PYTHIA6': 'taum_stable_py', 'HERWIGPP': 'taum_stable_hwpp', 'PYTHIA8': 'taum_stable_py8'}, 'mup_stable' : {'HERWIG6':'mup_stable_hw', 'PYTHIA6': 'mup_stable_py', 'HERWIGPP': 'mup_stable_hwpp', 'PYTHIA8': 'mup_stable_py8'}, 'mum_stable' : {'HERWIG6':'mum_stable_hw', 'PYTHIA6': 'mum_stable_py', 'HERWIGPP': 'mum_stable_hwpp', 'PYTHIA8': 'mum_stable_py8'}, 'is_4lep' : {'PYTHIA6':'is_4l_py'}, 'is_bbar' : {'HERWIG6':'is_bb_hw'}, 'maxprint' : {'HERWIG6':'maxpr_hw', 'PYTHIA6': 'maxpr_py', 'HERWIGPP': 'maxpr_hwpp', 'PYTHIA8': 'maxpr_py8'}, 'rnd_seed' : {'HERWIG6':'rndevseed1_hw', 'PYTHIA6': 'rndevseed_py', 'HERWIGPP': 'rndevseed_hwpp', 'PYTHIA8': 'rndevseed_py8'}, 'rnd_seed2' : {'HERWIG6':'rndevseed2_hw'}, 'maxerrs' : {'HERWIG6':'err_fr_hw', 'PYTHIA6': 'err_fr_py', 'HERWIGPP': 'err_fr_hwpp', 'PYTHIA8': 'err_fr_py8'}, 'lambda_5' : {'HERWIG6':'lambdaherw', 'PYTHIA6': 'lambdapyth', 'HERWIGPP': 'lambdaherw', 'PYTHIA8': 'lambdapyth'}, 'b_mass' : {'HERWIG6':'b_mass', 'PYTHIA6': 'b_mass', 'HERWIGPP': 'b_mass', 'PYTHIA8': 'b_mass'}, 'analyse' : {'HERWIG6':'hwuti', 'PYTHIA6':'pyuti', 'HERWIGPP':'hwpputi', 'PYTHIA8':'py8uti'}, 'qcut' : {'PYTHIA8':'qcut'}, 'njmax' : {'PYTHIA8':'njmax'}} stdhep_dict = {'HERWIG6':'mcatnlo_hwan_stdhep.o', 'PYTHIA6':'mcatnlo_pyan_stdhep.o'} def __init__(self, card=None, testing=False): """ if testing, card is the content""" self.testing = testing dict.__init__(self) self.keylist = self.keys() if card: self.read_card(card) def read_card(self, card_path): """read the shower_card, if testing card_path is the content""" if not self.testing: content = open(card_path).read() else: content = card_path lines = content.split('\n') list_dm = [] for l in lines: if '#' in l: l = l.split('#',1)[0] if '=' not in l: continue args = l.split('=',1) # here the 1 is important in case of string passed key = args[0].strip().lower() value = args[1].strip() self.set_param(key, value) if str(key).upper().startswith('DM'): list_dm.append(int(key.split('_',1)[1])) #special case for DM_* for i in range(1,100): if not i in list_dm: self['dm_'+str(i)] = '' self.text=content def set_param(self, key, value, write_to = ''): """set the param key to value. if write_to is passed then write the new shower_card: if not testing write_to is an input path, if testing the text is returned by the function """ if key in self.logical_vars: if str(value).lower() in self.true: self[key] = True elif str(value).lower() in self.false: self[key] = False else: raise ShowerCardError('%s is not a valid value for %s' % \ (value, key)) elif key in self.string_vars: if value.lower() == 'none': self[key] = '' else: self[key] = value elif key in self.int_vars: try: self[key] = int(value) except ValueError: raise ShowerCardError('%s is not a valid value for %s. An integer number is expected' % \ (value, key)) elif key in self.float_vars: try: self[key] = float(value) except ValueError: raise ShowerCardError('%s is not a valid value for %s. A floating point number is expected' % \ (value, key)) else: raise ShowerCardError('Unknown entry: %s = %s' % (key, value)) self.keylist.append(key) #then update self.text and write the new card if write_to: logger.info('modify parameter %s of the shower_card.dat to %s' % (key, value)) key_re = re.compile('^(\s*)%s\s*=\s*(.+)\s*$' % key , re.IGNORECASE) newlines = [] for line in self.text.split('\n'): key_match = key_re.match(line) if key_match and not ( str(key).upper().startswith('DM') ): try: comment = line.split('#')[1] except: comment = '' if key not in self.logical_vars: newlines.append('%s = %s #%s' % (key, value, comment)) else: if key: newlines.append('%s = %s #%s' % (key, 'T', comment)) else: newlines.append('%s = %s #%s' % (key, 'F', comment)) elif key_match and ( str(key).upper().startswith('DM') ): pass else: newlines.append(line) if str(key).upper().startswith('DM') and not value.lower() in ['','none','default']: newlines.append('%s = %s' % (str(key).upper(), value[0:len(value)])) logger.info('please specify a decay through set DM_1 decay; see shower_card.dat for details') self.text = '\n'.join(newlines) + '\n' if self.testing: return self.text else: open(write_to, 'w').write(self.text) return '' else: return '' def write_card(self, shower, card_path): """write the shower_card for shower in card_path. if self.testing, card_path takes the value of the string""" shower = shower.upper() if shower.startswith('PYTHIA6'): self.shower = 'PYTHIA6' else: self.shower = shower lines = [] bool_dict = {True: '.true.', False: '.false.'} bool_dict_num = {True: '1', False: '0'} for key in self.keylist: value = self[key] if key in self.logical_vars: # deal with special case for pythia: if key in ['ue_enabled', 'hadronize'] and self.shower == 'PYTHIA6': value = bool_dict_num[value] else: value = bool_dict[value] elif key in self.string_vars: # deal in a special way with analyse if key == 'analyse': if value is None or not value: try: value = self.stdhep_dict[self.shower] except KeyError: pass try: line = '%s="%s"' % (self.names_dict[key][self.shower].upper(), value) lines.append(line) continue except KeyError: continue if value is None or not value: value = '' else: value = '"%s"' % value line = '%s=%s' % (key.upper(), value) lines.append(line) continue elif key in self.int_vars: value = '%d' % value elif key in self.float_vars: value = '%4.3f' % value else: raise ShowerCardError('Unknown key: %s = %s' % (key, value)) try: line = '%s=%s' % (self.names_dict[key][self.shower].upper(), value.upper()) lines.append(line) except KeyError: pass if self.testing: return ('\n'.join(lines) + '\n') else: open(card_path, 'w').write(('\n'.join(lines) + '\n')) ```
{ "source": "johannchopin/htw-m1-softwarearchitecture", "score": 2 }
#### File: src/batch/BatchProcessing.py ```python import os import sys from time import time from typing import Set from datetime import datetime from ..EmailChecker import EmailChecker from ..serving.CassandraViews import CassandraViewsInstance from .CassandraWrapper import CassandraWrapper EMAIL_CHUNKS_LENGTH = 200 EMAIL_SENT_TIMESTAMP_LIMIT = 30 PERCENTAGE_OF_SPAMS_TO_BLACKLIST = 0.2 if '-q' in sys.argv: sys.stdout = open(os.devnull, 'w') class BatchProcessing: def __init__(self, masterDatasetCassandraInstance): self.emailChecker = EmailChecker() self.cassandraMasterDataset = masterDatasetCassandraInstance self.cassandraViews = CassandraViewsInstance self.spamSenderCount = 0 self.spamEmailsCount = 0 def getSendersEmailAdress(self) -> Set[str]: sendersResponse = self.cassandraMasterDataset.execute( "SELECT sender FROM emails;") return {response.sender for response in sendersResponse} def process(self): while True: self.cassandraViews.init_next_table() senderEmailAdresses = self.getSendersEmailAdress() for emailAdress in senderEmailAdresses: self.processEmail(emailAdress) timestamp = int(time() * 10**6) self.cassandraViews.addSpamLog(timestamp, self.spamSenderCount) self.cassandraViews.addSpamAmountDetectedByBatch( self.spamEmailsCount) self.spamSenderCount = 0 # reset counter self.spamEmailsCount = 0 # reset counter self.cassandraViews.use_next_table() print("Batch process finished") def areEmailsFromFlood(self, emails, emailsCount): # TODO: refactor to for loop counter = 0 while (counter + EMAIL_CHUNKS_LENGTH) < emailsCount: timestamp1 = emails._current_rows[counter].timestamp.timestamp() timestamp2 = emails._current_rows[counter + EMAIL_CHUNKS_LENGTH].timestamp.timestamp() if self._timestamp_diff(timestamp1, timestamp2) <= EMAIL_SENT_TIMESTAMP_LIMIT: return True counter += 1 return False def emailsContainsSpamWords(self, emails, emailsCount): emailContainingSpamWordsCounter = 0 for i in range(emailsCount): emailBody = emails._current_rows[i].body email = {'body': emailBody} isSpam = self.emailChecker.isSpam(email) if isSpam: emailContainingSpamWordsCounter += 1 # Blacklist if 20% of emails are a spam return (emailContainingSpamWordsCounter / emailsCount) > PERCENTAGE_OF_SPAMS_TO_BLACKLIST def processEmail(self, emailAddress): emailsResponse = self.cassandraMasterDataset.execute( f"select * from emails where sender='{emailAddress}' ALLOW FILTERING;") emailsCount = len(emailsResponse._current_rows) if self.areEmailsFromFlood(emailsResponse, emailsCount): self.insert_email_into_spam_view(emailAddress) self.spamSenderCount += 1 # An email has been detected as spam self.spamEmailsCount += emailsCount else: oneSpamHasBeenDetected = False for email in emailsResponse: if self.emailChecker.isSpam({'body': email.body}): oneSpamHasBeenDetected = True self.spamEmailsCount += 1 if oneSpamHasBeenDetected: self.insert_email_into_spam_view(emailAddress) self.spamSenderCount += 1 # An email has been detected as spam def insert_email_into_spam_view(self, emailAddress): self.cassandraViews.execute( f"INSERT INTO {self.cassandraViews.getNextSpamsTableName()}(email) VALUES('{emailAddress}')") def _timestamp_diff(self, timestamp1: float, timestamp2: float) -> int: return int(abs(timestamp1 - timestamp2) * 10**3) if __name__ == "__main__": batchProcessing = BatchProcessing(CassandraWrapper()) batchProcessing.process() ```
{ "source": "JohanneBW/cds_language_assignments", "score": 3 }
#### File: Assignment_5/src/GameStop_LDA.py ```python import sys,os sys.path.append(os.path.join("..")) from pprint import pprint # data and nlp import pandas as pd import spacy nlp = spacy.load("en_core_web_sm", disable=["ner"]) # visualisation import matplotlib.pyplot as plt import pyLDAvis.gensim import seaborn as sns from matplotlib import rcParams # figure size in inches rcParams['figure.figsize'] = 20,10 # LDA tools import nltk import gensim import gensim.corpora as corpora from gensim.models import CoherenceModel from utils import lda_utils """ ---------- Main function ---------- """ def main(): ''' ------------------ Read data -------------------- ''' #Read in the data as a csv file filename = os.path.join("..", "data", "r_wallstreetbets_posts.csv") DATA = pd.read_csv(filename) ''' The data set contains a lot of information which we do not need for our model. This is information about username, individual links etc. We are primarily going to use the title column in the data set. This column contains the actual text. ''' #Only use tree columns from the csv and a sample of 10000. DATA = DATA[["title","created_utc", "score"]].sample(10000) #Split the text into individual senteces #Create empty list where the scenteces will be stored output=[] #For every title in the column "title" print("Creating Doc object...") for title in DATA["title"]: #Create a doc object by using the spaCy NLP function doc = nlp(title) #Append to the list output.append(str(doc)) ''' ----------- Process using gensim and spaCy ---------------- ''' ''' The next thing we do is using gensim to efficiently procude a model of bigrams and trigrams in the data. We first create bigrams based on words appearing one after another frequently. These bigrams are then fed into a trigram generator, which takes the bigram as the second part of a bigram. ''' # Build the bigram and trigram models print("Building bi- and trigrams...") bigram = gensim.models.Phrases(output, min_count=20, threshold=100) # a higher threshold gives fewer phrases. trigram = gensim.models.Phrases(bigram[output], threshold=100) bigram_mod = gensim.models.phrases.Phraser(bigram) trigram_mod = gensim.models.phrases.Phraser(trigram) ''' We use the process_words function from our utils folder. This function takes a text, nlp, bigram_mod, trigram_mod, stop_words and allowed_postags as arguments. It uses gensim to preprocess the words and uses spaCy to lemmatize and POS tag. ''' #Run the function with our arguments and set the allowed_postags to nouns and proper nouns print("Processing the data...") data_processed = lda_utils.process_words(output, nlp, bigram_mod, trigram_mod, allowed_postags=["NOUN", "PROPN"]) #Create Dictionary #The dictionary converts each word into an integer value print("Creating Dictionary...") id2word = corpora.Dictionary(data_processed) # Create Corpus: Term Document Frequency. The corpus creates a 'bag of words' model for all of the data print("Creating Corpus...") corpus = [id2word.doc2bow(text) for text in data_processed] ''' --------------- Build LDA model ------------------------ ''' # Build LDA model using gensim print("Building LDA model...") lda_model = gensim.models.LdaMulticore(corpus=corpus, # vectorised corpus - list of list of tuples id2word=id2word, # gensim dictionary - mapping words to IDS num_topics=3, # topics. This will be explained later in the script random_state=100, # set for reproducability chunksize=10, # batch data for effeciency passes=10, # number of full passes over data iterations=100, # related to document rather than corpus per_word_topics=True, # define word distibutions minimum_probability=0.0) # minimum value ''' -------------- Calculate model perplaxity ans coherence ------------------------- ''' # Compute Perplexity print('\nPerplexity: ', lda_model.log_perplexity(corpus)) #A measure of how good the model is. #Calculate and return per-word likelihood bound, using a chunk of documents as evaluation corpus. #It returns the variational bound score calculated for each word. # Compute Coherence Score coherence_model_lda = CoherenceModel(model=lda_model, texts=data_processed, dictionary=id2word, coherence='c_v') #We use c_v as our choerence coherence_lda = coherence_model_lda.get_coherence() print('\nCoherence Score: ', coherence_lda) ''' -------------- Find the most optimal number of topics ------------------------- ''' ''' We want to find the most optimal number of topics for our model. Although the coherence value may be high at the high number of topics, it is not significant that it is the most optimal. One of the reasons for this is that there will be more repetitions of words the more topics there are. So if one wants to avoid this, it may be an advantage with fewer topics. ''' print("Finding optimal topic number...") model_list, coherence_values = lda_utils.compute_coherence_values(texts=data_processed, corpus=corpus, dictionary=id2word, start=1, #The number of topics to start from limit=40, #The maximum number of topics step=2) #The steps between the number of topics ''' When we first ran the part to find the most optimal topic number, we got the number of 7 topics to be the most optimal. But when we later in the script saw the visualization of how the topics are distributed, it became clear that they formed three main clusters, where the topics overlapped. For this reason, we have chosen to include three topics in the model. ''' ''' --------------------- Find most dominant topic per chunk --------------------- ''' df_topic_keywords = lda_utils.format_topics_sentences(ldamodel=lda_model, corpus=corpus, texts=data_processed) #Reset the index df_dominant_topic = df_topic_keywords.reset_index() #Chose the columns for the dataframe df_dominant_topic.columns = ['Document_No', 'Dominant_Topic', 'Topic_Perc_Contrib', 'Keywords', 'Text'] df_dominant_topic.sample(10) #Display setting to show more characters in column pd.options.display.max_colwidth = 100 #Create dataframe sent_topics_sorted_df = pd.DataFrame() #Use groupby on the column containing the dominant topic sent_topics_out_df_grpd = df_topic_keywords.groupby('Dominant_Topic') for i, grp in sent_topics_out_df_grpd: #Concatenate the sent_topics_sorted_df with the column Perc_Contribution sent_topics_sorted_df = pd.concat([sent_topics_sorted_df, grp.sort_values(['Perc_Contribution'], ascending=False).head(1)], axis=0) # Reset the index sent_topics_sorted_df.reset_index(drop=True, inplace=True) #Choe the columns for the dataframe sent_topics_sorted_df.columns = ['Topic_Num', "Topic_Perc_Contrib", "Keywords", "Representative Text"] ''' --------------------- Create dataframe for the values --------------------- ''' values = list(lda_model.get_document_topics(corpus)) #Split tuples and keep only values per topic split = [] for entry in values: topic_prevelance = [] for topic in entry: topic_prevelance.append(topic[1]) split.append(topic_prevelance) #Create document-topic matrix value_df = pd.DataFrame(map(list,zip(*split))) print("Saving output...") #Outpath for the dataframe df_outpath = os.path.join("..", "output", "value_df.csv") #Save datafram to a csv file value_df.to_csv(df_outpath) #Save vizualization to a png file sns.lineplot(data=value_df.T.rolling(50).mean()) outpath_viz = os.path.join("..", "output", "topic_matrix_viz.png") plt.savefig(outpath_viz) print("Output saved") #Define behaviour when called from command line if __name__ == "__main__": main() ```
{ "source": "JohanneBW/cds_visual_assignments", "score": 3 }
#### File: Assignment_4/src/nn-mnist.py ```python import os import sys sys.path.append(os.path.join("..")) import argparse # Import teaching utils import numpy as np import utils.classifier_utils as clf_util from utils.neuralnetwork import NeuralNetwork # Import sklearn metrics from sklearn import metrics from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import classification_report from sklearn import datasets """ ---------- Main function ---------- """ def main(): """ ---------- Parameters ---------- """ # Create an argument parser from argparse ap = argparse.ArgumentParser() # add argument about size of training data with 80% as default ap.add_argument("-trs", "--train_size", required=False, default = 0.8, type = float, help="The size of the train data as percent, the default is 0.8") # add argument about size of test data with 20 % as default ap.add_argument("-tes", "--test_size", required=False, default = 0.2, type = float, help="The size of the test data as percent, the default is 0.2") # add argument about number of epochs with 20 epochs as default ap.add_argument("-epo", "--epochs_number", required=False, default = 20, type = int, help="The number of epochs, the default is 20") args = vars(ap.parse_args()) trs_size = args["train_size"] tes_size = args["test_size"] epochs_number = args["epochs_number"] """ ---------- Neural network model ---------- """ print("[nfo] Neural network model...") # Fetch data. When fetching the data like this, the X and y is already defined as the data and the labels. X, y = fetch_openml('mnist_784', version=1, return_X_y=True) # Convert to numpy arrays X = np.array(X) y = np.array(y) # MinMax regularization X = ( X - X.min())/(X.max() - X.min()) ("[nfo] Splitting into train and test...") # Split data. X contains the data and will be split into training and test data. y contains the labels and will split into train and test as well. X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = trs_size, test_size=tes_size) # Convert labels from integers to vectors y_train = LabelBinarizer().fit_transform(y_train) y_test = LabelBinarizer().fit_transform(y_test) # Train the network print("[INFO] training network...") # The layers are 32 and 16 and the output is 10 nn = NeuralNetwork([X_train.shape[1], 32, 16, 10]) print("[INFO] {}".format(nn)) nn.fit(X_train, y_train, epochs=epochs_number) # Evaluate network print(["[INFO] Evaluating network..."]) predictions = nn.predict(X_test) predictions = predictions.argmax(axis=1) print(classification_report(y_test.argmax(axis=1), predictions)) #Define behaviour when called from command line if __name__ == "__main__": main() ```
{ "source": "johannemitzcisco/pnp-manager", "score": 2 }
#### File: python/pnp_manager/main.py ```python import _ncs import ncs import ncs.maapi as maapi from ncs.application import Service class PnPDevice(Service): @Service.create def cb_create(self, tctx, root, service, proplist): self.log.info('Service create(service=', service._path, ')') vars = ncs.template.Variables() template = ncs.template.Template(service) for servicerole in service.role: # This will use the last role with PnP info in the devices roles. # Need to modify the service model to restrict to only one role # with PnP info role = root.device_role[servicerole.name] if role.pnp.authgroup and role.pnp.day0_file: self.log.info("Processing role: "+servicerole.name) if role.pnp.authgroup is not None: vars.add('AUTHGROUP', role.pnp.authgroup) if root.devices.authgroups.group[role.pnp.authgroup].default_map.remote_name: vars.add('USERNAME', root.devices.authgroups.group[role.pnp.authgroup].default_map.remote_name) if root.devices.authgroups.group[role.pnp.authgroup].default_map.remote_password: vars.add('PASSWORD', decrypt(root.devices.authgroups.group[role.pnp.authgroup].default_map.remote_password)) if role.pnp.username is not None: vars.add('USERNAME', role.pnp.username) if role.pnp.password is not None: vars.add('PASSWORD', role.pnp.password) if role.pnp.port is not None: vars.add('PORT', role.pnp.port) if role.pnp.day0_file is not None: vars.add('DAY0-FILE', role.pnp.day0_file) # if service.authgroup is not None: # vars.add('AUTHGROUP', service.authgroup) # if root.devices.authgroups.group[service.authgroup].default_map.remote_name: # vars.add('USERNAME', root.devices.authgroups.group[service.authgroup].default_map.remote_name) # if root.devices.authgroups.group[service.authgroup].default_map.remote_password: # vars.add('PASSWORD', decrypt(root.devices.authgroups.group[service.authgroup].default_map.remote_password)) # if service.username is not None: # vars.add('USERNAME', service.username) # if service.password is not None: # vars.add('PASSWORD', service.password) # if service.port is not None: # vars.add('PORT', service.port) # if service.day0_file is not None: # vars.add('DAY0-FILE', service.day0_file) template.apply('pnp-manager-device-pnp-map', vars) class Main(ncs.application.Application): def setup(self): self.log.info('Main RUNNING') self.register_service('pnp-device-servicepoint', PnPDevice) def teardown(self): self.log.info('Main FINISHED') def decrypt(value): with maapi.Maapi() as m: m.install_crypto_keys() return _ncs.decrypt(value) ```
{ "source": "Johannes0Horn/ESRGAN_for_colab", "score": 2 }
#### File: codes/scripts/generate_mod_LR_bic.py ```python import os import sys import cv2 import numpy as np try: sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from data.util import imresize_np except ImportError: pass def generate_mod_LR_bic(): # set parameters up_scale = 4 mod_scale = 4 # set data dir sourcedir = '/content/Set14_Set5' savedir = '/content/set14_5preprocessed' saveHRpath = os.path.join(savedir, 'HR', 'x' + str(mod_scale)) saveLRpath = os.path.join(savedir, 'LR', 'x' + str(up_scale)) saveBicpath = os.path.join(savedir, 'Bic', 'x' + str(up_scale)) if not os.path.isdir(sourcedir): print('Error: No source data found') exit(0) if not os.path.isdir(savedir): os.mkdir(savedir) if not os.path.isdir(os.path.join(savedir, 'HR')): os.mkdir(os.path.join(savedir, 'HR')) if not os.path.isdir(os.path.join(savedir, 'LR')): os.mkdir(os.path.join(savedir, 'LR')) if not os.path.isdir(os.path.join(savedir, 'Bic')): os.mkdir(os.path.join(savedir, 'Bic')) if not os.path.isdir(saveHRpath): os.mkdir(saveHRpath) else: print('It will cover ' + str(saveHRpath)) if not os.path.isdir(saveLRpath): os.mkdir(saveLRpath) else: print('It will cover ' + str(saveLRpath)) if not os.path.isdir(saveBicpath): os.mkdir(saveBicpath) else: print('It will cover ' + str(saveBicpath)) filepaths = [f for f in os.listdir(sourcedir) if f.endswith('.png')] num_files = len(filepaths) # prepare data with augementation for i in range(num_files): filename = filepaths[i] print('No.{} -- Processing {}'.format(i, filename)) # read image image = cv2.imread(os.path.join(sourcedir, filename)) width = int(np.floor(image.shape[1] / mod_scale)) height = int(np.floor(image.shape[0] / mod_scale)) # modcrop if len(image.shape) == 3: image_HR = image[0:mod_scale * height, 0:mod_scale * width, :] else: image_HR = image[0:mod_scale * height, 0:mod_scale * width] # LR image_LR = imresize_np(image_HR, 1 / up_scale, True) # bic image_Bic = imresize_np(image_LR, up_scale, True) cv2.imwrite(os.path.join(saveHRpath, filename), image_HR) cv2.imwrite(os.path.join(saveLRpath, filename), image_LR) cv2.imwrite(os.path.join(saveBicpath, filename), image_Bic) if __name__ == "__main__": generate_mod_LR_bic() ```
{ "source": "Johannes0Horn/mtl-dts", "score": 3 }
#### File: Johannes0Horn/mtl-dts/crf.py ```python import itertools import torch import torch.nn as nn class CRFLoss(nn.Module): def __init__(self, L, init): # L = number of label types super(CRFLoss, self).__init__() self.start = nn.Parameter(torch.Tensor(L).uniform_(-init, init)) self.T = nn.Parameter(torch.Tensor(L, L).uniform_(-init, init)) self.end = nn.Parameter(torch.Tensor(L).uniform_(-init, init)) def forward(self, scores, targets): # scores (B x T x L), assumes no padding # targets (B x T), assumes no padding normalizers = self.compute_normalizers(scores) target_scores = self.score_targets(scores, targets) loss = (normalizers - target_scores).mean() return loss def decode(self, scores): # B x T x L B, T, L = scores.size() prev = self.start.unsqueeze(0) + scores[:, 0] # TODO (B x L) back = [] for i in range(1, T): cur = prev.unsqueeze(2) + scores.transpose(0, 1)[i].unsqueeze(1) + self.T.transpose(0, 1) prev, indices = cur.max(dim=1) # TODO (indices: B x L) back.append(indices) prev += self.end max_scores, indices = prev.max(dim=1) # TODO (indices: B) tape = [indices] back = list(reversed(back)) for i in range(T - 1): indices = torch.gather(back[i], 1, indices.unsqueeze(1)).squeeze(1) # TODO tape.append(indices) return max_scores, torch.stack(tape[::-1], dim=1) # def decode_brute(self, scores): # B, T, L = scores.size() # all_targets = [] # yseq_scores = [] # for yseq in itertools.product(list(range(L)), repeat=T): # targets = torch.LongTensor(yseq).expand(B, T) # all_targets.append(torch.LongTensor(yseq)) # yseq_scores.append(self.score_targets(scores, targets)) # max_scores, indices = torch.stack(yseq_scores).max(dim=0) # return max_scores, torch.stack(all_targets)[indices] def compute_normalizers(self, scores): B, T, L = scores.size() prev = self.start + scores.transpose(0, 1)[0] # TODO (B x L) for i in range(1, T): cur = prev.unsqueeze(2) + scores.transpose(0, 1)[i].unsqueeze(1) + self.T.transpose(0, 1) # TODO: implement only using prev (no new definition) prev = torch.logsumexp(cur, dim=1).clone() prev += self.end normalizers = torch.logsumexp(prev, 1) # TODO (B) return normalizers # def compute_normalizers_brute(self, scores): # B, T, L = scores.size() # yseq_scores = [] # for yseq in itertools.product(list(range(L)), repeat=T): # targets = torch.LongTensor(yseq).expand(B, T) # yseq_scores.append(self.score_targets(scores, targets)) # normalizers = torch.stack(yseq_scores).logsumexp(dim=0) # return normalizers def score_targets(self, scores, targets): B, T, L = scores.size() emits = scores.gather(2, targets.unsqueeze(2)).squeeze(2).sum(1) # B trans = torch.stack( [self.start.gather(0, targets[:, 0])] + [self.T[targets[:, i], targets[:, i - 1]] for i in range(1, T)] + [self.end.gather(0, targets[:, -1])]).sum(0) # B return emits + trans # B ``` #### File: Johannes0Horn/mtl-dts/logger.py ```python import os import sys import numpy as np import statistics as stat class Logger(object): def __init__(self, log_path, on=True): self.log_path = log_path self.on = on if self.on: while os.path.isfile(self.log_path): self.log_path += '+' def log(self, string, newline=True): if self.on: with open(self.log_path, 'a') as logf: logf.write(string) if newline: logf.write('\n') sys.stdout.write(string) if newline: sys.stdout.write('\n') sys.stdout.flush() def log_perfs(self, perfs, best_args): valid_perfs = [perf for perf in perfs if not np.isinf(perf)] best_perf = max(valid_perfs) self.log('%d perfs: %s' % (len(perfs), str(perfs))) self.log('best perf: %g' % best_perf) self.log("best args: %s" % str(best_args)) self.log('') self.log('perf max: %g' % best_perf) self.log('perf min: %g' % min(valid_perfs)) self.log('perf avg: %g' % stat.mean(valid_perfs)) self.log('perf std: %g' % (stat.stdev(valid_perfs) if len(valid_perfs) > 1 else 0.0)) self.log('(excluded %d out of %d runs that produced -inf)' % (len(perfs) - len(valid_perfs), len(perfs))) ```
{ "source": "johannes-99/nextcloud-service-python", "score": 3 }
#### File: johannes-99/nextcloud-service-python/api-server.py ```python import nextcloudservice from flask import Flask from flask_restful import Resource, Api app = Flask(__name__) api = Api(app) class FileList(Resource): def get(self): filesinput = nextcloudservice.read_webdav_dir("") filesoutput = [] for file in filesinput: filesoutput.append( { 'name' : file.name, 'dir' : file.directory, #TODO: bugfix dir contains name 'isdir' : file.isdir }) return {'filelist': filesoutput } api.add_resource(FileList, '/filelist') class HelloWorld(Resource): def get(self): return {'hello': "world 1" } api.add_resource(HelloWorld, '/') if __name__ == '__main__': app.run(debug=True,host='0.0.0.0') ``` #### File: johannes-99/nextcloud-service-python/nextcloudservice.py ```python import os from webdav3.client import Client from flask_restful import Resource class FileModel(Resource): def __init__(self, name, directory): self._name = name self._dir = directory self._isdir = self.isdir @property def isdir(self): return self._name.endswith("/") @property def name(self): return self._name @name.setter def name(self,name): self._name = name @property def directory(self): return "fooo" @name.setter def directory(self,directory): self._directory = directory options = { } client = Client(options) client.verify = False def read_webdav_dir(directory): files = [] #"Fotos Save/" webdavfiles = client.list("") for webdavfile in webdavfiles: file = FileModel(webdavfile,directory) print(directory) files.append( file ) return files ```
{ "source": "johannesbrand/pyulog", "score": 3 }
#### File: pyulog/pyulog/px4.py ```python from __future__ import print_function import numpy as np __author__ = "<NAME>" class PX4ULog(object): """ This class contains PX4-specific ULog things (field names, etc.) """ def __init__(self, ulog_object): """ @param ulog_object: ULog instance """ self._ulog = ulog_object def get_mav_type(self): """ return the MAV type as string from initial parameters """ mav_type = self._ulog.initial_parameters.get('MAV_TYPE', None) return {0: 'Generic', 1: 'Fixed Wing', 2: 'Quadrotor', 3: 'Coaxial helicopter', 4: 'Normal helicopter with tail rotor', 5: 'Ground installation', 6: 'Ground Control Station', 7: 'Airship, controlled', 8: 'Free balloon, uncontrolled', 9: 'Rocket', 10: 'Ground Rover', 11: 'Surface Vessel, Boat, Ship', 12: 'Submarine', 13: 'Hexarotor', 14: 'Octorotor', 15: 'Tricopter', 16: 'Flapping wing', 17: 'Kite', 18: 'Onboard Companion Controller', 19: 'Two-rotor VTOL (Tailsitter)', 20: 'Quad-rotor VTOL (Tailsitter)', 21: 'Tiltrotor VTOL', 22: 'VTOL Standard', #VTOL reserved 2 23: 'VTOL reserved 3', 24: 'VTOL reserved 4', 25: 'VTOL reserved 5', 26: 'Onboard Gimbal', 27: 'Onboard ADSB Peripheral'}.get(mav_type, 'unknown type') def get_estimator(self): """return the configured estimator as string from initial parameters""" mav_type = self._ulog.initial_parameters.get('MAV_TYPE', None) if mav_type == 1: # fixed wing always uses EKF2 return 'EKF2' mc_est_group = self._ulog.initial_parameters.get('SYS_MC_EST_GROUP', None) return {0: 'INAV', 1: 'LPE', 2: 'EKF2', 3: 'IEKF'}.get(mc_est_group, 'unknown ({})'.format(mc_est_group)) def add_roll_pitch_yaw(self): """ convenience method to add the fields 'roll', 'pitch', 'yaw' to the loaded data using the quaternion fields (does not update field_data). Messages are: 'vehicle_attitude.q' and 'vehicle_attitude_setpoint.q_d', 'vehicle_attitude_groundtruth.q' and 'vehicle_vision_attitude.q' """ self._add_roll_pitch_yaw_to_message('vehicle_attitude') self._add_roll_pitch_yaw_to_message('vehicle_vision_attitude') self._add_roll_pitch_yaw_to_message('vehicle_attitude_groundtruth') self._add_roll_pitch_yaw_to_message('vehicle_attitude_setpoint', '_d') def _add_roll_pitch_yaw_to_message(self, message_name, field_name_suffix=''): message_data_all = [elem for elem in self._ulog.data_list if elem.name == message_name] for message_data in message_data_all: q = [message_data.data['q'+field_name_suffix+'['+str(i)+']'] for i in range(4)] roll = np.arctan2(2.0 * (q[0] * q[1] + q[2] * q[3]), 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2])) pitch = np.arcsin(2.0 * (q[0] * q[2] - q[3] * q[1])) yaw = np.arctan2(2.0 * (q[0] * q[3] + q[1] * q[2]), 1.0 - 2.0 * (q[2] * q[2] + q[3] * q[3])) message_data.data['roll'+field_name_suffix] = roll message_data.data['pitch'+field_name_suffix] = pitch message_data.data['yaw'+field_name_suffix] = yaw def get_configured_rc_input_names(self, channel): """ find all RC mappings to a given channel and return their names :param channel: input channel (0=first) :return: list of strings or None """ ret_val = [] for key in self._ulog.initial_parameters: param_val = self._ulog.initial_parameters[key] if key.startswith('RC_MAP_') and param_val == channel + 1: ret_val.append(key[7:].capitalize()) if len(ret_val) > 0: return ret_val return None ```
{ "source": "johannesbreyer/HandleLenght", "score": 3 }
#### File: MeasureHandles.roboFontExt/lib/MeasureHandles.py ```python from math import * from mojo.drawingTools import * #----------- # constants #----------- #: Handle length in relation to circle radius, for creating circles with Bezier curves. BEZIER_ARC_CIRCLE = 0.5522847498 #----------- # functions #----------- def vector(xy, angle, distance): """ Calculate a new position based on a given angle and distance. """ x, y = xy _x = x + cos(radians(angle)) * distance _y = y + sin(radians(angle)) * distance return _x, _y def get_vector(pt1, pt2): """ Get the distance and angle between two points. """ (x1, y1), (x2, y2) = pt1, pt2 a = x2 - x1 b = y2 - y1 distance = sqrt(a ** 2 + b ** 2) if a != 0: angle_radians = atan(float(b) / a) angle_degrees = degrees(angle_radians) else: angle_degrees = 0 return distance, angle_degrees #--------- # objects #--------- class MeasureHandles(object): draw_box = True draw_handles = True draw_angles = True draw_in = True draw_out = True radius = 0.3 font_size = 9 font = "Lucida Grande Bold" stroke_width = 1 color_angle = 1, 0, 0 color_box = 1, 0, 0 color_handle = 1, 0, 0 stroke_alpha = 0.65 stroke_dash = 2 def __init__(self, glyph): self.glyph = glyph def _get_positions(self, bPoint): # box origin point x0, y0 = bPoint.anchor # incoming bcp w1, h1 = bPoint.bcpIn x1, y1 = x0 + w1, y0 + h1 # outgoing bcp w2, h2 = bPoint.bcpOut x2, y2 = x0 + w2, y0 + h2 # done return x0, y0, w1, h1, w2, h2, x1, y1, x2, y2 def draw(self, scale=1.0): if self.glyph is not None: # setup drawing save() fontSize(self.font_size * scale) font(self.font) # draw! for contour in self.glyph: for bPoint in contour.bPoints: # draw box info if self.draw_box: self._draw_box(bPoint, scale) # draw handles info if self.draw_handles: self._draw_handles(bPoint, scale) # draw angles info if self.draw_angles: self._draw_angles(bPoint, scale) # done with glyph restore() def _draw_handles(self, bPoint, scale): # get positions x0, y0, w1, h1, w2, h2, x1, y1, x2, y2 = self._get_positions(bPoint) # setup drawing save() strokeWidth(self.stroke_width * scale) sw = self.stroke_width * scale * self.stroke_dash dashLine(sw, sw) # draw incoming bcp if self.draw_in: if w1 != 0 or h1 != 0: # draw line fill(None) c = self.color_handle + (self.stroke_alpha,) stroke(*c) line((x0, y0), (x1, y1)) # draw caption d1 = sqrt(w1 ** 2 + h1 ** 2) d1_caption = '%.2f' % d1 d1_w, d1_h = textSize(d1_caption) d1_x = x0 + (w1 * 0.5) - (d1_w * 0.5) d1_y = y0 + (h1 * 0.5) - (d1_h * 0.4) fill(*self.color_handle) stroke(None) textBox(d1_caption, (d1_x, d1_y, d1_w, d1_h), align='center') # draw outgoing bcp if self.draw_out: if w2 != 0 or h2 != 0: # draw line fill(None) c = self.color_handle + (self.stroke_alpha,) stroke(*c) line((x0, y0), (x2, y2)) # draw caption d2 = sqrt(w2 * w2 + h2 * h2) d2_caption = '%.2f' % d2 d2_w, d2_h = textSize(d2_caption) d2_x = x0 + (w2 * 0.5) - (d2_w * 0.5) d2_y = y0 + (h2 * 0.5) - (d2_h * 0.4) fill(*self.color_handle) stroke(None) textBox(d2_caption, (d2_x, d2_y, d2_w, d2_h), align='center') # done restore() def _draw_box(self, bPoint, scale): # get positions x0, y0, w1, h1, w2, h2, x1, y1, x2, y2 = self._get_positions(bPoint) # setup drawing save() strokeWidth(self.stroke_width * scale) sw = self.stroke_width * scale * self.stroke_dash dashLine(sw, sw) # draw box for incoming bcp if self.draw_in and not int(w1) == 0 and not int(h1) == 0: # draw box fill(None) c = self.color_box + (self.stroke_alpha,) stroke(*c) rect(x0, y0, w1, h1) # draw captions stroke(None) fill(*self.color_box) # draw x caption x1_caption = '%.2f' % abs(w1) x1_w, x1_h = textSize(x1_caption) x1_x = x0 + (w1 * 0.5) - (x1_w * 0.5) x1_y = y1 - x1_h * 0.4 textBox(x1_caption, (x1_x, x1_y, x1_w, x1_h), align='center') # draw y caption y1_caption = '%.2f' % abs(h1) y1_w, y1_h = textSize(y1_caption) y1_x = x1 - (y1_w * 0.5) y1_y = y0 + (h1 * 0.5) - (y1_h * 0.4) textBox(y1_caption, (y1_x, y1_y, y1_w, y1_h), align='center') # draw box for outcoming bcp if self.draw_out and not int(w2) == 0 and not int(h2) == 0: # draw box fill(None) c = self.color_box + (self.stroke_alpha,) stroke(*c) rect(x0, y0, w2, h2) # draw captions stroke(None) fill(*self.color_box) # draw x caption x2_caption = '%.2f' % abs(w2) x2_w, x2_h = textSize(x2_caption) x2_x = x0 + (w2 * 0.5) - (x2_w * 0.5) x2_y = y2 - x2_h * 0.4 textBox(x2_caption, (x2_x, x2_y, x2_w, x2_h), align='center') # draw y caption y2_caption = '%.2f' % abs(h2) y2_w, y2_h = textSize(y2_caption) y2_x = x2 - (y2_w * 0.5) y2_y = y0 + (h2 * 0.5) - (y2_h * 0.4) textBox(y2_caption, (y2_x, y2_y, y2_w, y2_h), align='center') # done restore() def _draw_angles(self, bPoint, scale): f = BEZIER_ARC_CIRCLE # get positions x0, y0, w1, h1, w2, h2, x1, y1, x2, y2 = self._get_positions(bPoint) # setup drawing save() strokeWidth(self.stroke_width * scale) sw = self.stroke_width * scale * self.stroke_dash dashLine(sw, sw) # draw angles for incoming BCP if self.draw_in and not int(w1) == 0 and not int(h1) == 0: handle_length, angle = get_vector((x0, y0), (x1, y1)) r = handle_length * self.radius a1 = angle % 90 a2 = 90 - a1 if w1 > 0 and h1 > 0: x3, y3 = vector((x0, y0), angle - a1 * 0.5, r) x4, y4 = vector((x0, y0), angle + a2 * 0.5, r) p1_x, p1_y = x0 + r, y0 p2_x, p2_y = x0, y0 + r p3_x, p3_y = p1_x, p1_y + r * f p4_x, p4_y = p2_x + r * f, p2_y elif w1 > 0 and h1 < 0: x3, y3 = vector((x0, y0), angle - a1 * 0.5, r) x4, y4 = vector((x0, y0), angle + a2 * 0.5, r) p1_x, p1_y = x0 + r, y0 p2_x, p2_y = x0, y0 - r p3_x, p3_y = p1_x, p1_y - r * f p4_x, p4_y = p2_x + r * f, p2_y elif w1 < 0 and h1 < 0: x3, y3 = vector((x0, y0), 180 + angle - a1 * 0.5, r) x4, y4 = vector((x0, y0), 180 + angle + a2 * 0.5, r) p2_x, p2_y = x0 - r, y0 p1_x, p1_y = x0, y0 - r p3_x, p3_y = p1_x - r * f, p1_y p4_x, p4_y = p2_x, p2_y - r * f else: x3, y3 = vector((x0, y0), 180 + angle - a1 * 0.5, r) x4, y4 = vector((x0, y0), 180 + angle + a2 * 0.5, r) p1_x, p1_y = x0 - r, y0 p2_x, p2_y = x0, y0 + r p3_x, p3_y = p1_x, p1_y + r * f p4_x, p4_y = p2_x - r * f, p2_y # draw angle arch c = self.color_angle + (self.stroke_alpha,) stroke(*c) fill(None) newPath() moveTo((p1_x, p1_y)) curveTo((p3_x, p3_y), (p4_x, p4_y), (p2_x, p2_y)) drawPath() # draw angle captions stroke(None) fill(*self.color_angle) # caption angle 1 caption_a1 = '%.2f' % a1 a1_w, a1_h = textSize(caption_a1) a1_x = x3 - (a1_w * 0.5) a1_y = y3 - (a1_h * 0.4) textBox(caption_a1, (a1_x, a1_y, a1_w, a1_h), align='center') # caption angle 2 caption_a2 = '%.2f' % a2 a2_w, a2_h = textSize(caption_a2) a2_x = x4 - (a2_w * 0.5) a2_y = y4 - (a2_h * 0.5) textBox(caption_a2, (a2_x, a2_y, a2_w, a2_h), align='center') # draw angles for outcoming BCP if self.draw_out and not int(w2) == 0 and not int(h2) == 0: handle_length, angle = get_vector((x0, y0), (x2, y2)) r = handle_length * self.radius a1 = angle % 90 a2 = 90 - a1 if w2 > 0 and h2 > 0: x5, y5 = vector((x0, y0), angle - a1 * 0.5, r) x6, y6 = vector((x0, y0), angle + a2 * 0.5, r) p1_x, p1_y = x0 + r, y0 p2_x, p2_y = x0, y0 + r p3_x, p3_y = p1_x, p1_y + r * f p4_x, p4_y = p2_x + r * f, p2_y elif w2 > 0 and h2 < 0: x5, y5 = vector((x0, y0), angle - a1 * 0.5, r) x6, y6 = vector((x0, y0), angle + a2 * 0.5, r) p1_x, p1_y = x0, y0 - r p2_x, p2_y = x0 + r, y0 p3_x, p3_y = p1_x + r * f, p1_y p4_x, p4_y = p2_x, p2_y - r * f elif w2 < 0 and h2 < 0: x5, y5 = vector((x0, y0), 180 + angle - a1 * 0.5, r) x6, y6 = vector((x0, y0), 180 + angle + a2 * 0.5, r) p1_x, p1_y = x0 - r, y0 p2_x, p2_y = x0, y0 - r p3_x, p3_y = p1_x, p1_y - r * f p4_x, p4_y = p2_x - r * f, p2_y else: x5, y5 = vector((x0, y0), 180 + angle - a1 * 0.5, r) x6, y6 = vector((x0, y0), 180 + angle + a2 * 0.5, r) p1_x, p1_y = x0 - r, y0 p2_x, p2_y = x0, y0 + r p3_x, p3_y = p1_x, p1_y + r * f p4_x, p4_y = p2_x - r * f, p2_y # draw angle arch c = self.color_angle + (self.stroke_alpha,) stroke(*c) fill(None) newPath() moveTo((p1_x, p1_y)) curveTo((p3_x, p3_y), (p4_x, p4_y), (p2_x, p2_y)) drawPath() # draw angle captions stroke(None) fill(*self.color_angle) # caption angle 1 caption_a1 = '%.2f' % a1 a1_w, a1_h = textSize(caption_a1) a1_x = x5 - (a1_w * 0.5) a1_y = y5 - (a1_h * 0.4) textBox(caption_a1, (a1_x, a1_y, a1_w, a1_h), align='center') # caption angle 2 caption_a2 = '%.2f' % a2 a2_w, a2_h = textSize(caption_a2) a2_x = x6 - (a2_w * 0.5) a2_y = y6 - (a2_h * 0.5) textBox(caption_a2, (a2_x, a2_y, a2_w, a2_h), align='center') # done restore() ```
{ "source": "JohannesBruch/web_pipeline", "score": 4 }
#### File: JohannesBruch/web_pipeline/remove_annotated_images.py ```python import yaml, os def main(): # load yaml # deserialise list from yaml # load yaml list of image addresses with open("phone_images.yaml", 'r') as stream: phone_images = yaml.load(stream) # load yaml list of model-name annotations with open("phone_image_annotations.yaml", 'r') as stream: phone_image_annotations = yaml.load(stream) # load yaml list of image source URLs with open("phone_image_URLs.yaml", 'r') as stream: phone_image_URLs = yaml.load(stream) # define string names of lists in a dictionary dictionary = dict(phone_image_URLs=phone_image_URLs, phone_image_annotations=phone_image_annotations, phone_images=phone_images ) # ask for address of DATA to be DELETED print('Which images would you like to delete from the PI dataset?') index_string = input("Lowest address: ") # reading address of first image to be removed addresses_for_correction = [int(s) for s in index_string.split() if s.isdigit()] lowest_address = addresses_for_correction[0] index_string = input("Highest address: ") # reading address of last image to be removed addresses_for_correction = [int(s) for s in index_string.split() if s.isdigit()] highest_address = addresses_for_correction[0] print('If you want to remove all images with addresses between') print(lowest_address) print('and') print(highest_address) print(', please reply "y" . Otherwise, the dataset will not be modified.') correct_string = input("Reply: ") if correct_string == 'y' and highest_address-lowest_address+1 > 10: print('Are you sure you want to DELETE that many images?.') correct_string = input("Reply: ") if correct_string == 'y': for address_for_correction in range(lowest_address, highest_address + 1): image_path = r'' + str(address_for_correction) + '.jpg' # remove image from dataset try: image_index = phone_images.index(image_path) phone_image_URLs.pop(image_index) phone_image_annotations.pop(image_index) phone_images.pop(image_index) print('The address ' + str(address_for_correction) + '.jpg has been removed from the dataset together with its annotation & URL,') except ValueError: print('Address' + str(address_for_correction) + 'was not found,') # If file exists, delete it ## if os.path.isfile(image_path): os.remove(image_path) print('and the .jpg file was deleted.') else: # Show an error ## print("but the .jpg file was not found.") # save yaml for key, value in dictionary.items(): stream = open('' + key + '.yaml', 'w') yaml.dump(value, stream) else: print('The dataset has not been modified.') ```
{ "source": "JohannesBuchner/flight-reservation-emails", "score": 3 }
#### File: JohannesBuchner/flight-reservation-emails/summary.py ```python import notmuch import BeautifulSoup import datetime import dateutil.parser import emailparser import logging from tzlocal import get_localzone import sys import os logging.basicConfig(filename='emailparser.log',level=logging.DEBUG) logFormatter = logging.Formatter("[%(name)s %(levelname)s]: %(message)s") consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logFormatter) consoleHandler.setLevel(logging.WARN) logging.getLogger().addHandler(consoleHandler) if len(sys.argv) < 3: sys.stderr.write("""SYNOPSIS: %(exe)s <query> database: absolute path to notmuch database query: query to use. Has to be in quotes. Example usage: %(exe)s 'schema.org/FlightReservation OR ticket OR flight OR flug OR viaje OR booking OR confirmation OR confirmacion' To speed up date parsing, you can specify the languages to consider with the LANGUAGES environment variable: LANGUAGES="en de es" <cmd> Author: <NAME> (c) 2017 """ % dict(exe=sys.argv[0])) sys.exit(1) db = notmuch.Database() query = sys.argv[1] query = db.create_query(query) #'schema.org/FlightReservation OR ticket OR flight OR flug OR viaje OR booking OR confirmation OR confirmacion') languages = os.environ.get('LANGUAGES', None) if languages is not None: languages = languages.split() #query = db.create_query('schema.org/FlightReservation OR eticket OR flight') #languages = ['en'] #query = db.create_query('schema.org/FlightReservation') all_reservations = emailparser.parse_multiple_email_messages(query.search_messages(), languages=languages) #all_reservations = [] #messages = list(query.search_messages()) #for i, m in enumerate(messages[::-1]): # print('handling %d/%d: "%s" from %s' % (i, len(messages), m.get_header('Subject'), # datetime.datetime.fromtimestamp(m.get_date()).strftime('%Y-%m-%d'))) # reservations = emailparser.parse_email_message(m, languages = languages) # print('got %d reservations' % len(all_reservations)) # all_reservations += reservations print('got %d reservations' % len(all_reservations)) def prepend(info, k, prefix): if info[k] and info[k] != '': info[k] = prefix + info[k] def dateConverter(day): #day = dateutil.parser.parse(dateText) if day.tzinfo is not None: return day print 'Warning: Using local time zone to order %s' % day local_tz = get_localzone() return day.replace(tzinfo=local_tz) # sort by departure time all_reservations.sort(key=lambda info: dateConverter(info['departureTime'])) previous = None fout = open('summary.html', 'w') fout.write("""<!doctype html><html lang="en"> <head> <meta charset=utf-8> <title>Flight summary</title> <link rel="stylesheet" type="text/css" href="theme.css"> </head> <body> <h1>Flights</h1> <table> """) file_id = 1 for info in all_reservations: prepend(info, 'departureGate', 'Gate ') prepend(info, 'arrivalGate', 'Gate ') prepend(info, 'arrivalTerminal', 'Terminal ') prepend(info, 'departureTerminal', 'Terminal ') prepend(info, 'ticketNumber', 'Ticket#') prepend(info, 'operator', ' operated by ') flightday = info['departureTime'].date() prepend(info, 'boardingTimestr', 'Boarding ') filenames = [] msg_id = info['emailId'] for m in db.create_query('id:%s' % msg_id).search_messages(): for mp in m.get_message_parts(): if mp.get_content_type() == 'application/pdf' or (mp.get_content_type() == 'application/octet-stream' and mp.get_filename().lower().endswith('.pdf')): filename = 'file_id%d.pdf' % file_id with open(filename, 'w') as f: f.write(mp.get_payload(decode=True)) filenames.append((mp.get_filename(), filename)) file_id += 1 info['pdffiles'] = ' | '.join(['<a class="pdffile" href="%s">%s</a>' % (filename, origfilename) for (origfilename, filename) in filenames]) if previous is not None and (flightday - previous).days > 14: delta = (flightday - previous).days print '=============', delta, 'days later' fout.write(""" <tr> <td colspan="3" class="gaplater">%d days later </tr> """ % delta) else: fout.write(""" <tr> <td colspan="3" class="gap">&nbsp; </tr> """) previous = flightday info['departureDay'] = flightday.strftime('%Y-%m-%d') info['departureJustTime'] = info['departureTime'].strftime('%H:%M') info['emailday'] = info['emailTime'].date().strftime('%Y-%m-%d') print """ %(departureDay)s Flight %(departure)s --> %(arrival)s Departing %(departureTimestr)s %(boardingTime)s from %(departure)s %(departureTerminal)s %(departureGate)s arriving %(arrivalTimestr)s To %(arrival)s %(arrivalTerminal)s %(arrivalGate)s Flight number %(flightNumber)s with %(airline)s%(operator)s %(ticketNumber)s %(ticketText)s %(ticketDownload)s %(ticketPrint)s Email %(emailday)s "%(emailSubject)s" """ % info fout.write((""" <tr><td class="left"> <h5>From</h5> %(departure)s %(departureTerminal)s %(departureGate)s <td class="middle" rowspan="2" >&#9992; <td class="right"> <h5>Destination</h5> %(arrival)s %(arrivalTerminal)s %(arrivalGate)s </tr> <tr> <td class="left"> <h5>Depart</h5> %(departureJustTime)s <td class="right"> <h5>Date</h5> %(departureDay)s </tr> <tr> <td colspan="3" class="details"> <h5>Arriving</h5> %(arrivalTimestr)s <h5>Flight number</h5> Flight number %(flightNumber)s with %(airline)s%(operator)s <h5>Ticket</h5> %(ticketNumber)s %(ticketText)s %(ticketDownload)s %(ticketPrint)s <div>%(boardingTime)s</div> <div>%(pdffiles)s</div> </td> </tr> <tr> <td colspan="3" class="email"> <h5>Email</h5> %(emailday)s "%(emailSubject)s" </td> """ % info).encode('utf-8')) ```
{ "source": "JohannesBuchner/gammapy", "score": 2 }
#### File: catalog/tests/test_hawc.py ```python import pytest from numpy.testing import assert_allclose import astropy.units as u from astropy.utils.data import get_pkg_data_filename from gammapy.catalog import SourceCatalog2HWC from gammapy.catalog.hawc import SourceCatalog3HWC from gammapy.modeling.models import ( DiskSpatialModel, PointSpatialModel, PowerLawSpectralModel, ) from gammapy.utils.gauss import Gauss2DPDF from gammapy.utils.testing import requires_data @pytest.fixture(scope="session") def cat(): return SourceCatalog2HWC() @requires_data() class TestSourceCatalog2HWC: @staticmethod def test_source_table(cat): assert cat.tag == "2hwc" assert len(cat.table) == 40 @staticmethod def test_positions(cat): assert len(cat.positions) == 40 @requires_data() class TestSourceCatalogObject2HWC: @staticmethod def test_data(cat): assert cat[0].data["source_name"] == "2HWC J0534+220" assert cat[0].n_models == 1 assert cat[1].data["source_name"] == "2HWC J0631+169" assert cat[1].n_models == 2 @staticmethod def test_str(cat): expected = open(get_pkg_data_filename("data/2hwc_j0534+220.txt")).read() assert str(cat[0]) == expected expected = open(get_pkg_data_filename("data/2hwc_j0631+169.txt")).read() assert str(cat[1]) == expected @staticmethod def test_position(cat): position = cat[0].position assert_allclose(position.ra.deg, 83.628, atol=1e-3) assert_allclose(position.dec.deg, 22.024, atol=1e-3) @staticmethod def test_sky_model(cat): model = cat[1].sky_model("extended") assert model.name == "2HWC J0631+169" assert isinstance(model.spectral_model, PowerLawSpectralModel) assert isinstance(model.spatial_model, DiskSpatialModel) with pytest.raises(ValueError): cat[0].sky_model("extended") @staticmethod def test_spectral_model(cat): m = cat[0].spectral_model() dnde, dnde_err = m.evaluate_error(1 * u.TeV) assert dnde.unit == "cm-2 s-1 TeV-1" assert_allclose(dnde.value, 2.802365e-11, rtol=1e-3) assert_allclose(dnde_err.value, 6.537506e-13, rtol=1e-3) @staticmethod def test_spatial_model(cat): m = cat[1].spatial_model() # p = m.parameters assert isinstance(m, PointSpatialModel) assert m.lon_0.unit == "deg" assert_allclose(m.lon_0.value, 195.614, atol=1e-2) # TODO: add assert on position error # assert_allclose(p.error("lon_0"), tbd) assert m.lat_0.unit == "deg" assert_allclose(m.lat_0.value, 3.507, atol=1e-2) assert m.frame == "galactic" m = cat[1].spatial_model("extended") assert isinstance(m, DiskSpatialModel) assert m.lon_0.unit == "deg" assert_allclose(m.lon_0.value, 195.614, atol=1e-10) assert m.lat_0.unit == "deg" assert_allclose(m.lat_0.value, 3.507, atol=1e-10) assert m.frame == "galactic" assert m.r_0.unit == "deg" assert_allclose(m.r_0.value, 2.0, atol=1e-3) model = cat["2HWC J0534+220"].spatial_model() pos_err = model.position_error scale_r95 = Gauss2DPDF().containment_radius(0.95) assert_allclose(pos_err.height.value, 2 * 0.057 * scale_r95, rtol=1e-4) assert_allclose(pos_err.width.value, 2 * 0.057 * scale_r95, rtol=1e-4) assert_allclose(model.position.l.value, pos_err.center.l.value) assert_allclose(model.position.b.value, pos_err.center.b.value) @pytest.fixture(scope="session") def ca_3hwc(): return SourceCatalog3HWC() @requires_data() class TestSourceCatalog3HWC: @staticmethod def test_source_table(ca_3hwc): assert ca_3hwc.tag == "3hwc" assert len(ca_3hwc.table) == 65 @staticmethod def test_positions(ca_3hwc): assert len(ca_3hwc.positions) == 65 @requires_data() class TestSourceCatalogObject3HWC: @staticmethod def test_data(ca_3hwc): assert ca_3hwc[0].data["source_name"] == "3HWC J0534+220" assert ca_3hwc[0].n_models == 1 assert ca_3hwc[1].data["source_name"] == "3HWC J0540+228" assert ca_3hwc[1].n_models == 1 ``` #### File: gammapy/estimators/excess_profile.py ```python import numpy as np from astropy import units as u from regions import CircleAnnulusSkyRegion, RectangleSkyRegion from gammapy.datasets import Datasets, SpectrumDatasetOnOff from gammapy.maps import MapAxis from gammapy.modeling.models import PowerLawSpectralModel, SkyModel from gammapy.stats import CashCountsStatistic, WStatCountsStatistic from gammapy.utils.table import table_from_row_data from .core import Estimator __all__ = ["ExcessProfileEstimator"] class ExcessProfileEstimator(Estimator): """Estimate profile from a DataSet. Parameters ---------- regions : list of `regions` regions to use energy_edges : `~astropy.units.Quantity` Energy edges of the profiles to be computed. n_sigma : float (optional) Number of sigma to compute errors. By default, it is 1. n_sigma_ul : float (optional) Number of sigma to compute upper limit. By default, it is 3. spectrum : `~gammapy.modeling.models.SpectralModel` (optional) Spectral model to compute the fluxes or brightness. Default is power-law with spectral index of 2. selection_optional : list of str Additional quantities to be estimated. Possible options are: * "errn-errp": estimate asymmetric errors. * "ul": estimate upper limits. By default all quantities are estimated. Examples -------- This example shows how to compute a counts profile for the Fermi galactic center region:: import matplotlib.pyplot as plt from astropy import units as u from astropy.coordinates import SkyCoord from gammapy.data import GTI from gammapy.estimators import ExcessProfileEstimator, ImageProfile from gammapy.utils.regions import make_orthogonal_rectangle_sky_regions from gammapy.datasets import Datasets # load example data datasets = Datasets.read("$GAMMAPY_DATA/fermi-3fhl-crab/", "Fermi-LAT-3FHL_datasets.yaml", "Fermi-LAT-3FHL_models.yaml") # configuration datasets[0].gti = GTI.create("0s", "1e7s", "2010-01-01") # creation of the boxes and axis start_line = SkyCoord(182.5, -5.8, unit='deg', frame='galactic') end_line = SkyCoord(186.5, -5.8, unit='deg', frame='galactic') boxes, axis = make_orthogonal_rectangle_sky_regions(start_line, end_line, datasets[0].counts.geom.wcs, 1.*u.deg, 11) # set up profile estimator and run prof_maker = ExcessProfileEstimator(boxes, axis) fermi_prof = prof_maker.run(datasets[0]) # smooth and plot the data using the ImageProfile class fermi_prof.peek() plt.show() ax = plt.gca() ax.set_yscale('log') ax = fermi_prof.plot("flux", ax=ax) """ tag = "ExcessProfileEstimator" _available_selection_optional = ["errn-errp", "ul", "scan"] def __init__( self, regions, energy_edges=None, spectrum=None, n_sigma=1.0, n_sigma_ul=3.0, selection_optional="all", ): self.regions = regions self.n_sigma = n_sigma self.n_sigma_ul = n_sigma_ul self.energy_edges = ( u.Quantity(energy_edges) if energy_edges is not None else None ) if spectrum is None: spectrum = PowerLawSpectralModel() self.spectrum = spectrum self.selection_optional = selection_optional def get_spectrum_datasets(self, dataset): """ Utility to make the final `~gammapy.datasts.Datasets` Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.MapDatasetOnOff` the dataset to use for profile extraction Returns -------- sp_datasets : array of `~gammapy.datasets.SpectrumDataset` the list of `~gammapy.datasets.SpectrumDataset` computed in each box """ datasets = Datasets() for reg in self.regions: spectrum_dataset = dataset.to_spectrum_dataset(reg) datasets.append(spectrum_dataset) return datasets def _get_projected_distance(self): distances = [] center = self.regions[0].center for idx, region in enumerate(self.regions): if isinstance(region, CircleAnnulusSkyRegion): distance = (region.inner_radius + region.outer_radius) / 2.0 else: distance = center.separation(region.center) distances.append(distance) return MapAxis.from_nodes( u.Quantity(distances, "deg"), name="projected distance" ) def make_prof(self, sp_datasets): """ Utility to make the profile in each region Parameters ---------- sp_datasets : `~gammapy.datasets.MapDatasets` of `~gammapy.datasets.SpectrumDataset` or \ `~gammapy.datasets.SpectrumDatasetOnOff` the dataset to use for profile extraction Returns -------- results : list of dictionary the list of results (list of keys: x_min, x_ref, x_max, alpha, counts, background, excess, ts, sqrt_ts, \ err, errn, errp, ul, exposure, solid_angle) """ results = [] distance = self._get_projected_distance() for index, spds in enumerate(sp_datasets): old_model = None if spds.models is not None: old_model = spds.models spds.models = SkyModel(spectral_model=self.spectrum) e_reco = spds.counts.geom.axes["energy"].edges # ToDo: When the function to_spectrum_dataset will manage the masks, use the following line # mask = spds.mask if spds.mask is not None else slice(None) mask = slice(None) if isinstance(spds, SpectrumDatasetOnOff): stats = WStatCountsStatistic( spds.counts.data[mask][:, 0, 0], spds.counts_off.data[mask][:, 0, 0], spds.alpha.data[mask][:, 0, 0], ) else: stats = CashCountsStatistic( spds.counts.data[mask][:, 0, 0], spds.npred_background().data[mask][:, 0, 0], ) result = { "x_min": distance.edges[index], "x_max": distance.edges[index + 1], "x_ref": distance.center[index], "energy_edge": e_reco, } if isinstance(spds, SpectrumDatasetOnOff): result["alpha"] = stats.alpha result.update( { "counts": stats.n_on, "background": stats.n_bkg, "excess": stats.n_sig, } ) result["ts"] = stats.ts result["sqrt_ts"] = stats.sqrt_ts result["err"] = stats.error * self.n_sigma if "errn-errp" in self.selection_optional: result["errn"] = stats.compute_errn(self.n_sigma) result["errp"] = stats.compute_errp(self.n_sigma) if "ul" in self.selection_optional: result["ul"] = stats.compute_upper_limit(self.n_sigma_ul) npred = spds.npred().data[mask][:, 0, 0] e_reco_lo = e_reco[:-1] e_reco_hi = e_reco[1:] flux = ( stats.n_sig / npred * spds.models[0].spectral_model.integral(e_reco_lo, e_reco_hi).value ) result["flux"] = flux result["flux_err"] = stats.error / stats.n_sig * flux if "errn-errp" in self.selection_optional: result["flux_errn"] = np.abs(result["errn"]) / stats.n_sig * flux result["flux_errp"] = result["errp"] / stats.n_sig * flux if "ul" in self.selection_optional: result["flux_ul"] = result["ul"] / stats.n_sig * flux solid_angle = spds.counts.geom.solid_angle() result["solid_angle"] = ( np.full(result["counts"].shape, solid_angle.to_value("sr")) * u.sr ) results.append(result) if old_model is not None: spds.models = old_model return results def run(self, dataset): """Make the profiles Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.MapDatasetOnOff` the dataset to use for profile extraction Returns -------- imageprofile : `~gammapy.estimators.ImageProfile` Return an image profile class containing the result """ if self.energy_edges is not None: axis = MapAxis.from_energy_edges(self.energy_edges) dataset = dataset.resample_energy_axis(energy_axis=axis) else: dataset = dataset.to_image() spectrum_datasets = self.get_spectrum_datasets(dataset) results = self.make_prof(spectrum_datasets) table = table_from_row_data(results) if isinstance(self.regions[0], RectangleSkyRegion): table.meta["PROFILE_TYPE"] = "orthogonal_rectangle" table.meta["SPECTRAL_MODEL"] = self.spectrum.to_dict() # return ImageProfile(table) return table ``` #### File: gammapy/estimators/profile.py ```python import numpy as np import scipy.ndimage from astropy import units as u from astropy.convolution import Box1DKernel, Gaussian1DKernel from astropy.coordinates import Angle from astropy.table import Table from .core import Estimator __all__ = ["ImageProfile", "ImageProfileEstimator"] # TODO: implement measuring profile along arbitrary directions # TODO: think better about error handling. e.g. MC based methods class ImageProfileEstimator(Estimator): """Estimate profile from image. Parameters ---------- x_edges : `~astropy.coordinates.Angle` Coordinate edges to define a custom measument grid (optional). method : ['sum', 'mean'] Compute sum or mean within profile bins. axis : ['lon', 'lat', 'radial'] Along which axis to estimate the profile. center : `~astropy.coordinates.SkyCoord` Center coordinate for the radial profile option. Examples -------- This example shows how to compute a counts profile for the Fermi galactic center region:: import matplotlib.pyplot as plt from gammapy.maps import ImageProfileEstimator from gammapy.maps import Map from astropy import units as u # load example data filename = '$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-counts.fits.gz' fermi_cts = Map.read(filename) # set up profile estimator and run p = ImageProfileEstimator(axis='lon', method='sum') profile = p.run(fermi_cts) # smooth profile and plot smoothed = profile.smooth(kernel='gauss') smoothed.peek() plt.show() """ tag = "ImageProfileEstimator" def __init__(self, x_edges=None, method="sum", axis="lon", center=None): self._x_edges = x_edges if method not in ["sum", "mean"]: raise ValueError("Not a valid method, choose either 'sum' or 'mean'") if axis not in ["lon", "lat", "radial"]: raise ValueError("Not a valid axis, choose either 'lon' or 'lat'") if method == "radial" and center is None: raise ValueError("Please provide center coordinate for radial profiles") self.parameters = {"method": method, "axis": axis, "center": center} def _get_x_edges(self, image): if self._x_edges is not None: return self._x_edges p = self.parameters coordinates = image.geom.get_coord(mode="edges").skycoord if p["axis"] == "lat": x_edges = coordinates[:, 0].data.lat elif p["axis"] == "lon": lon = coordinates[0, :].data.lon x_edges = lon.wrap_at("180d") elif p["axis"] == "radial": rad_step = image.geom.pixel_scales.mean() corners = [0, 0, -1, -1], [0, -1, 0, -1] rad_max = coordinates[corners].separation(p["center"]).max() x_edges = Angle(np.arange(0, rad_max.deg, rad_step.deg), unit="deg") return x_edges def _estimate_profile(self, image, image_err, mask): p = self.parameters labels = self._label_image(image, mask) profile_err = None index = np.arange(1, len(self._get_x_edges(image))) if p["method"] == "sum": profile = scipy.ndimage.sum(image.data, labels.data, index) if image.unit.is_equivalent("counts"): profile_err = np.sqrt(profile) elif image_err: # gaussian error propagation err_sum = scipy.ndimage.sum(image_err.data ** 2, labels.data, index) profile_err = np.sqrt(err_sum) elif p["method"] == "mean": # gaussian error propagation profile = scipy.ndimage.mean(image.data, labels.data, index) if image_err: N = scipy.ndimage.sum(~np.isnan(image_err.data), labels.data, index) err_sum = scipy.ndimage.sum(image_err.data ** 2, labels.data, index) profile_err = np.sqrt(err_sum) / N return profile, profile_err def _label_image(self, image, mask=None): p = self.parameters coordinates = image.geom.get_coord().skycoord x_edges = self._get_x_edges(image) if p["axis"] == "lon": lon = coordinates.data.lon.wrap_at("180d") data = np.digitize(lon.degree, x_edges.deg) elif p["axis"] == "lat": lat = coordinates.data.lat data = np.digitize(lat.degree, x_edges.deg) elif p["axis"] == "radial": separation = coordinates.separation(p["center"]) data = np.digitize(separation.degree, x_edges.deg) if mask is not None: # assign masked values to background data[mask.data] = 0 return image.copy(data=data) def run(self, image, image_err=None, mask=None): """Run image profile estimator. Parameters ---------- image : `~gammapy.maps.Map` Input image to run profile estimator on. image_err : `~gammapy.maps.Map` Input error image to run profile estimator on. mask : `~gammapy.maps.Map` Optional mask to exclude regions from the measurement. Returns ------- profile : `ImageProfile` Result image profile object. """ p = self.parameters if image.unit.is_equivalent("count"): image_err = image.copy(data=np.sqrt(image.data)) profile, profile_err = self._estimate_profile(image, image_err, mask) result = Table() x_edges = self._get_x_edges(image) result["x_min"] = x_edges[:-1] result["x_max"] = x_edges[1:] result["x_ref"] = (x_edges[:-1] + x_edges[1:]) / 2 result["profile"] = profile * image.unit if profile_err is not None: result["profile_err"] = profile_err * image.unit result.meta["PROFILE_TYPE"] = p["axis"] return ImageProfile(result) class ImageProfile: """Image profile class. The image profile data is stored in `~astropy.table.Table` object, with the following columns: * `x_ref` Coordinate bin center (required). * `x_min` Coordinate bin minimum (optional). * `x_max` Coordinate bin maximum (optional). * `profile` Image profile data (required). * `profile_err` Image profile data error (optional). Parameters ---------- table : `~astropy.table.Table` Table instance with the columns specified as above. """ def __init__(self, table): self.table = table def smooth(self, kernel="box", radius="0.1 deg", **kwargs): r"""Smooth profile with error propagation. Smoothing is described by a convolution: .. math:: x_j = \sum_i x_{(j - i)} h_i Where :math:`h_i` are the coefficients of the convolution kernel. The corresponding error on :math:`x_j` is then estimated using Gaussian error propagation, neglecting correlations between the individual :math:`x_{(j - i)}`: .. math:: \Delta x_j = \sqrt{\sum_i \Delta x^{2}_{(j - i)} h^{2}_i} Parameters ---------- kernel : {'gauss', 'box'} Kernel shape radius : `~astropy.units.Quantity`, str or float Smoothing width given as quantity or float. If a float is given it is interpreted as smoothing width in pixels. If an (angular) quantity is given it is converted to pixels using `xref[1] - x_ref[0]`. kwargs : dict Keyword arguments passed to `~scipy.ndimage.uniform_filter` ('box') and `~scipy.ndimage.gaussian_filter` ('gauss'). Returns ------- profile : `ImageProfile` Smoothed image profile. """ table = self.table.copy() profile = table["profile"] radius = u.Quantity(radius) radius = np.abs(radius / np.diff(self.x_ref))[0] width = 2 * radius.value + 1 if kernel == "box": smoothed = scipy.ndimage.uniform_filter( profile.astype("float"), width, **kwargs ) # renormalize data if table["profile"].unit.is_equivalent("count"): smoothed *= int(width) smoothed_err = np.sqrt(smoothed) elif "profile_err" in table.colnames: profile_err = table["profile_err"] # use gaussian error propagation box = Box1DKernel(width) err_sum = scipy.ndimage.convolve(profile_err ** 2, box.array ** 2) smoothed_err = np.sqrt(err_sum) elif kernel == "gauss": smoothed = scipy.ndimage.gaussian_filter( profile.astype("float"), width, **kwargs ) # use gaussian error propagation if "profile_err" in table.colnames: profile_err = table["profile_err"] gauss = Gaussian1DKernel(width) err_sum = scipy.ndimage.convolve(profile_err ** 2, gauss.array ** 2) smoothed_err = np.sqrt(err_sum) else: raise ValueError("Not valid kernel choose either 'box' or 'gauss'") table["profile"] = smoothed * self.table["profile"].unit if "profile_err" in table.colnames: table["profile_err"] = smoothed_err * self.table["profile"].unit return self.__class__(table) def plot(self, ax=None, **kwargs): """Plot image profile. Parameters ---------- ax : `~matplotlib.axes.Axes` Axes object **kwargs : dict Keyword arguments passed to `~matplotlib.axes.Axes.plot` Returns ------- ax : `~matplotlib.axes.Axes` Axes object """ import matplotlib.pyplot as plt if ax is None: ax = plt.gca() y = self.table["profile"].data x = self.x_ref.value ax.plot(x, y, **kwargs) ax.set_xlabel("lon") ax.set_ylabel("profile") ax.set_xlim(x.max(), x.min()) return ax def plot_err(self, ax=None, **kwargs): """Plot image profile error as band. Parameters ---------- ax : `~matplotlib.axes.Axes` Axes object **kwargs : dict Keyword arguments passed to plt.fill_between() Returns ------- ax : `~matplotlib.axes.Axes` Axes object """ import matplotlib.pyplot as plt if ax is None: ax = plt.gca() y = self.table["profile"].data ymin = y - self.table["profile_err"].data ymax = y + self.table["profile_err"].data x = self.x_ref.value # plotting defaults kwargs.setdefault("alpha", 0.5) ax.fill_between(x, ymin, ymax, **kwargs) ax.set_xlabel("x (deg)") ax.set_ylabel("profile") return ax @property def x_ref(self): """Reference x coordinates.""" return self.table["x_ref"].quantity @property def x_min(self): """Min. x coordinates.""" return self.table["x_min"].quantity @property def x_max(self): """Max. x coordinates.""" return self.table["x_max"].quantity @property def profile(self): """Image profile quantity.""" return self.table["profile"].quantity @property def profile_err(self): """Image profile error quantity.""" try: return self.table["profile_err"].quantity except KeyError: return None def peek(self, figsize=(8, 4.5), **kwargs): """Show image profile and error. Parameters ---------- **kwargs : dict Keyword arguments passed to `ImageProfile.plot_profile()` Returns ------- ax : `~matplotlib.axes.Axes` Axes object """ import matplotlib.pyplot as plt fig = plt.figure(figsize=figsize) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax = self.plot(ax, **kwargs) if "profile_err" in self.table.colnames: ax = self.plot_err(ax, color=kwargs.get("c")) return ax def normalize(self, mode="peak"): """Normalize profile to peak value or integral. Parameters ---------- mode : ['integral', 'peak'] Normalize image profile so that it integrates to unity ('integral') or the maximum value corresponds to one ('peak'). Returns ------- profile : `ImageProfile` Normalized image profile. """ table = self.table.copy() profile = self.table["profile"] if mode == "peak": norm = np.nanmax(profile) elif mode == "integral": norm = np.nansum(profile) else: raise ValueError(f"Invalid normalization mode: {mode!r}") table["profile"] /= norm if "profile_err" in table.colnames: table["profile_err"] /= norm return self.__class__(table) ``` #### File: estimators/tests/test_sensitivity.py ```python import pytest from numpy.testing import assert_allclose import astropy.units as u from gammapy.datasets import SpectrumDataset, SpectrumDatasetOnOff from gammapy.estimators import SensitivityEstimator from gammapy.irf import EDispKernelMap from gammapy.maps import MapAxis, RegionNDMap @pytest.fixture() def spectrum_dataset(): e_true = MapAxis.from_energy_bounds("1 TeV", "10 TeV", nbin=20, name="energy_true") e_reco = MapAxis.from_energy_bounds("1 TeV", "10 TeV", nbin=4) background = RegionNDMap.create(region="icrs;circle(0, 0, 0.1)", axes=[e_reco]) background.data += 3600 background.data[0] *= 1e3 background.data[-1] *= 1e-3 edisp = EDispKernelMap.from_diagonal_response( energy_axis_true=e_true, energy_axis=e_reco, geom=background.geom ) aeff = RegionNDMap.create(region="icrs;circle(0, 0, 0.1)", axes=[e_true], unit="m2") aeff.data += 1e6 livetime = 1 * u.h exposure = aeff * livetime return SpectrumDataset( name="test", exposure=exposure, edisp=edisp, background=background ) def test_cta_sensitivity_estimator(spectrum_dataset): dataset_on_off = SpectrumDatasetOnOff.from_spectrum_dataset( dataset=spectrum_dataset, acceptance=1, acceptance_off=5 ) sens = SensitivityEstimator(gamma_min=25, bkg_syst_fraction=0.075) table = sens.run(dataset_on_off) assert len(table) == 4 assert table.colnames == ["energy", "e2dnde", "excess", "background", "criterion"] assert table["energy"].unit == "TeV" assert table["e2dnde"].unit == "erg / (cm2 s)" row = table[0] assert_allclose(row["energy"], 1.33352, rtol=1e-3) assert_allclose(row["e2dnde"], 2.74559e-08, rtol=1e-3) assert_allclose(row["excess"], 270000, rtol=1e-3) assert_allclose(row["background"], 3.6e06, rtol=1e-3) assert row["criterion"] == "bkg" row = table[1] assert_allclose(row["energy"], 2.37137, rtol=1e-3) assert_allclose(row["e2dnde"], 6.04795e-11, rtol=1e-3) assert_allclose(row["excess"], 334.454, rtol=1e-3) assert_allclose(row["background"], 3600, rtol=1e-3) assert row["criterion"] == "significance" row = table[3] assert_allclose(row["energy"], 7.49894, rtol=1e-3) assert_allclose(row["e2dnde"], 1.42959e-11, rtol=1e-3) assert_allclose(row["excess"], 25, rtol=1e-3) assert_allclose(row["background"], 3.6, rtol=1e-3) assert row["criterion"] == "gamma" ``` #### File: makers/background/phase.py ```python import numpy as np from gammapy.data import EventList from gammapy.datasets import SpectrumDatasetOnOff from gammapy.maps import RegionNDMap from ..core import Maker __all__ = ["PhaseBackgroundMaker"] class PhaseBackgroundMaker(Maker): """Background estimation with on and off phases. TODO: For a usage example see future notebook. TODO: The phase interval has to be between 0 and 1. Cases like [-0.1, 0.1], for example, are still not supported. Parameters ---------- on_phase : `tuple` or list of tuples on-phase defined by the two edges of each interval (edges are excluded) off_phase : `tuple` or list of tuples off-phase defined by the two edges of each interval (edges are excluded) """ tag = "PhaseBackgroundMaker" def __init__(self, on_phase, off_phase): self.on_phase = self._check_intervals(on_phase) self.off_phase = self._check_intervals(off_phase) def __str__(self): s = self.__class__.__name__ s += f"\n{self.on_phase}" s += f"\n{self.off_phase}" return s @staticmethod def _make_counts(dataset, observation, phases): event_lists = [] for interval in phases: events = observation.events.select_parameter( parameter="PHASE", band=interval ) event_lists.append(events) events = EventList.from_stack(event_lists) counts = RegionNDMap.from_geom(dataset.counts.geom) counts.fill_events(events) return counts def make_counts_off(self, dataset, observation): """Make off counts. Parameters ---------- dataset : `SpectrumDataset` Input dataset. observation : `DatastoreObservation` Data store observation. Returns ------- counts_off : `RegionNDMap` Off counts. """ return self._make_counts(dataset, observation, self.off_phase) def make_counts(self, dataset, observation): """Make off counts. Parameters ---------- dataset : `SpectrumDataset` Input dataset. observation : `DatastoreObservation` Data store observation. Returns ------- counts_off : `RegionNDMap` Off counts. """ return self._make_counts(dataset, observation, self.on_phase) def run(self, dataset, observation): """Run all steps. Parameters ---------- dataset : `SpectrumDataset` Input dataset. observation : `Observation` Data store observation. Returns ------- dataset_on_off : `SpectrumDatasetOnOff` On off dataset. """ counts_off = self.make_counts_off(dataset, observation) counts = self.make_counts(dataset, observation) acceptance = np.sum([_[1] - _[0] for _ in self.on_phase]) acceptance_off = np.sum([_[1] - _[0] for _ in self.off_phase]) dataset_on_off = SpectrumDatasetOnOff.from_spectrum_dataset( dataset=dataset, counts_off=counts_off, acceptance=acceptance, acceptance_off=acceptance_off, ) dataset_on_off.counts = counts return dataset_on_off @staticmethod def _check_intervals(intervals): """Split phase intervals that go beyond phase 1""" if isinstance(intervals, tuple): intervals = [intervals] for phase_interval in intervals: if phase_interval[0] > phase_interval[1]: intervals.remove(phase_interval) intervals.append([phase_interval[0], 1]) intervals.append([0, phase_interval[1]]) return intervals ``` #### File: tests/data/make.py ```python from pathlib import Path import numpy as np import astropy.units as u from gammapy.data import DataStore from gammapy.datasets import Datasets, MapDataset from gammapy.makers import MapDatasetMaker from gammapy.maps import MapAxis, WcsGeom from gammapy.modeling.models import ( ExpCutoffPowerLawSpectralModel, GaussianSpatialModel, Models, PointSpatialModel, PowerLawSpectralModel, SkyModel, TemplateSpatialModel, ) DATA_PATH = Path("./") def make_example_2(): spatial = GaussianSpatialModel(lon_0="0 deg", lat_0="0 deg", sigma="1 deg") model = SkyModel(PowerLawSpectralModel(), spatial, name="example_2") models = Models([model]) models.write(DATA_PATH / "example2.yaml", overwrite=True, write_covariance=False) def make_datasets_example(): # Define which data to use and print some information energy_axis = MapAxis.from_edges( np.logspace(-1.0, 1.0, 4), unit="TeV", name="energy", interp="log" ) geom0 = WcsGeom.create( skydir=(0, 0), binsz=0.1, width=(2, 2), frame="galactic", proj="CAR", axes=[energy_axis], ) geom1 = WcsGeom.create( skydir=(1, 0), binsz=0.1, width=(2, 2), frame="galactic", proj="CAR", axes=[energy_axis], ) geoms = [geom0, geom1] sources_coords = [(0, 0), (0.9, 0.1)] names = ["gc", "g09"] models = Models() for idx, (lon, lat) in enumerate(sources_coords): spatial_model = PointSpatialModel( lon_0=lon * u.deg, lat_0=lat * u.deg, frame="galactic" ) spectral_model = ExpCutoffPowerLawSpectralModel( index=2 * u.Unit(""), amplitude=3e-12 * u.Unit("cm-2 s-1 TeV-1"), reference=1.0 * u.TeV, lambda_=0.1 / u.TeV, ) model_ecpl = SkyModel( spatial_model=spatial_model, spectral_model=spectral_model, name=names[idx] ) models.append(model_ecpl) models["gc"].spectral_model.reference = models["g09"].spectral_model.reference obs_ids = [110380, 111140, 111159] data_store = DataStore.from_dir("$GAMMAPY_DATA/cta-1dc/index/gps/") diffuse_spatial = TemplateSpatialModel.read( "$GAMMAPY_DATA/fermi-3fhl-gc/gll_iem_v06_gc.fits.gz" ) diffuse_model = SkyModel(PowerLawSpectralModel(), diffuse_spatial) maker = MapDatasetMaker() datasets = Datasets() observations = data_store.get_observations(obs_ids) for idx, geom in enumerate(geoms): stacked = MapDataset.create(geom=geom, name=names[idx]) for obs in observations: dataset = maker.run(stacked, obs) stacked.stack(dataset) bkg = stacked.models.pop(0) stacked.models = [models[idx], diffuse_model, bkg] datasets.append(stacked) datasets.write( "$GAMMAPY_DATA/tests/models", prefix="gc_example", overwrite=True, write_covariance=False, ) if __name__ == "__main__": make_example_2() make_datasets_example() ``` #### File: gammapy/visualization/panel.py ```python import numpy as np from astropy.coordinates import Angle __all__ = ["MapPanelPlotter"] __doctest_requires__ = {("colormap_hess", "colormap_milagro"): ["matplotlib"]} class MapPanelPlotter: """ Map panel plotter class. Given a `~matplotlib.pyplot.Figure` object this class creates axes objects using `~matplotlib.gridspec.GridSpec` and plots a given sky map onto these. Parameters ---------- figure : `~matplotlib.pyplot.figure.` Figure instance. xlim : `~astropy.coordinates.Angle` Angle object specifying the longitude limits. ylim : `~astropy.coordinates.Angle` Angle object specifying the latitude limits. npanels : int Number of panels. **kwargs : dict Keyword arguments passed to `~matplotlib.gridspec.GridSpec`. """ def __init__(self, figure, xlim, ylim, npanels=4, **kwargs): from matplotlib.gridspec import GridSpec self.figure = figure self.parameters = {"xlim": xlim, "ylim": ylim, "npanels": npanels} self.grid_spec = GridSpec(nrows=npanels, ncols=1, **kwargs) def _get_ax_extend(self, ax, panel): """Get width and height of the axis in world coordinates.""" p = self.parameters # compute aspect ratio of the axis aspect = ax.bbox.width / ax.bbox.height # compute width and height in world coordinates height = np.abs(p["ylim"].diff()) width = aspect * height left, bottom = p["xlim"][0].wrap_at("180d"), p["ylim"][0] width_all = np.abs(p["xlim"].wrap_at("180d").diff()) xoverlap = ((p["npanels"] * width) - width_all) / (p["npanels"] - 1.0) if xoverlap < 0: raise ValueError( "No overlap between panels. Please reduce figure " "height or increase vertical space between the panels." ) left = left - panel * (width - xoverlap) return left[0], bottom, width, height def _set_ax_fov(self, ax, panel): left, bottom, width, height = self._get_ax_extend(ax, panel) # set fov xlim = Angle([left, left - width]) ylim = Angle([bottom, bottom + height]) xlim_pix, ylim_pix = ax.wcs.wcs_world2pix(xlim.deg, ylim.deg, 1) ax.set_xlim(*xlim_pix) ax.set_ylim(*ylim_pix) return ax def plot_panel(self, map, panel=1, panel_fov=None, **kwargs): """ Plot sky map on one panel. Parameters ---------- map : `~gammapy.maps.WcsNDMap` Map to plot. panel : int Which panel to plot on (counted from top). """ if panel_fov is None: panel_fov = panel spec = self.grid_spec[panel] ax = self.figure.add_subplot(spec, projection=map.geom.wcs) try: ax = map.plot(ax=ax, **kwargs)[1] except AttributeError: ax = map.plot_rgb(ax=ax, **kwargs) ax = self._set_ax_fov(ax, panel_fov) return ax def plot(self, map, **kwargs): """ Plot sky map on all panels. Parameters ---------- map : `~gammapy.maps.WcsNDMap` Map to plot. """ p = self.parameters axes = [] for panel in range(p["npanels"]): ax = self.plot_panel(map, panel=panel, **kwargs) axes.append(ax) return axes ```
{ "source": "JohannesBuchner/jbopt", "score": 3 }
#### File: jbopt/jbopt/optimize1d.py ```python import scipy.optimize, scipy.interpolate import numpy import matplotlib.pyplot as plt def pause(): import sys print 'please press enter: >> ', sys.stdin.readline() def plot_values(values, points, lastpoint, ymax=numpy.nan, ftol=0.05): #print 'values:', zip(points, values) #print 'last value', points[lastpoint], values[lastpoint] plt.figure() plt.plot(points, values, 'o--', color='blue') plt.plot(points[lastpoint], values[lastpoint], 'o', color='red') if numpy.isnan(ymax): worst = [v for v in values if v < 1e100] ymax = max(worst) plt.ylim(min(values)-ftol, ymax+ftol) plt.savefig('optimize1d.pdf') plt.close() phi = (1 + 5**0.5) / 2 resphi = 2 - phi """ Is this a line within the tolerance --> return False """ def has_curvature(a, b, c, va, vb, vc, ftol, disp): ftol = 10000 * ftol grad = (vc - va) / (c - a) vbpred = grad * (b - a) + va curvcrit = numpy.abs(vbpred - vb) > ftol if disp > 0: print '\tCurvature checking: %f (tol=%f): ' % (vbpred - vb, ftol), curvcrit return curvcrit def escalate_left(function, a, b, va, vb, cons, lstep, ftol, disp, plot): assert va < vb, (va, vb) while va < vb: # we have to go left if disp > 0: print ' <<< fast forwarding to LEFT <<< ' b, c = a, b vb, vc = va, vb lstep += 1 while any([con(b - lstep) < 0 for con in cons]): lstep /= 3 a = b - lstep va = function(a) if disp > 5: if plot: plot_values([va, vb, vc], [a, b, c], lastpoint=0, ftol=ftol) if disp > 0: print ' left %f [%f]' % (a, va) if va > vb or not has_curvature(a, b, c, va, vb, vc, ftol, disp): # finally, we found the border if disp > 0: print ' found left border' return [a, b, c], [va, vb, vc] if lstep < 1e-4 and c - a < 1e-4 and numpy.abs(vb - va) < 1e-4: if disp > 0: print ' WARNING: hit the lower limit of the parameter', lstep, a, b, va, vb return [a, b, c], [va, vb, vc] return [a, b, c], [va, vb, vc] def escalate_right(function, b, c, vb, vc, cons, rstep, ftol, disp, plot): assert vc < vb, (vc, vb) while vc < vb: # we have to go right if disp > 0: print ' >>> fast forwarding to RIGHT >>> ' a, b = b, c va, vb = vb, vc rstep += 1 while any([con(b + rstep) < 0 for con in cons]): rstep /= 3 c = b + rstep vc = function(c) if disp > 5: if plot: plot_values([va, vb, vc], [a, b, c], lastpoint=2, ftol=ftol) if disp > 0: print ' right %f [%f]' % (c, vc) if vc > vb: # finally, we found the border if disp > 0: print ' found right border' return [a, b, c], [va, vb, vc] if rstep < 1e-4 and c - a < 1e-4 and numpy.abs(vc - vb) < 1e-4: if disp > 0: print ' WARNING: hit the upper limit of the parameter', rstep, b, c, vb, vc return [a, b, c], [va, vb, vc] return [a, b, c], [va, vb, vc] def seek_minimum_bracket(function, b, cons, ftol, disp, plot): # we want to bracket the minimum first lstep = 0.7 rstep = 0.7 assert not any([c(b) < 0 for c in cons]), [b] vb = function(b) if disp > 0: print 'starting at %f [%f]' % (b, vb) while any([c(b - lstep) < 0 for c in cons]): lstep /= 3 if disp > 0: print 'reducing lstep for constraint' a = b - lstep va = function(a) if disp > 0: print 'left %f [%f]' % (a, va) #plot([va, vb], [a, b], lastpoint=0, ftol=ftol) if va <= vb: # we have to go left return escalate_left(function, a, b, va, vb, cons, lstep, ftol, disp, plot) while any([c(b + rstep) < 0 for c in cons]): rstep /= 3 if disp > 0: print 'reducing rstep for constraint' c = b + rstep vc = function(c) #plot([va, vb, vc], [a, b, c], lastpoint=2, ftol=ftol) if disp > 0: print 'right %f [%f]' % (c, vc) if vc <= vb: # we have to go right return escalate_right(function, b, c, vb, vc, cons, rstep, ftol, disp, plot) return [a, b, c], [va, vb, vc] def brent(function, a, b, c, va, vb, vc, cons, ftol, disp=0, plot=False): while True: if disp > 0: print ' BRENT', a, b, c, va, vb, vc if vb <= va and vb <= vc: if numpy.abs(vb - va) + numpy.abs(vb - vc) <= ftol: if disp > 0: print ' ===> found minimum at %f, %f' % (b, vb) return b if numpy.abs(vb - va) + numpy.abs(vb - vc) <= ftol: print 'Potentially problematic case. Increasing verbosity!' print ' Narrowing to ftol:', numpy.abs(vb - va) + numpy.abs(vb - vc) disp = 4 x = b - 0.5 * ((b - a)**2 * (vb - vc) - (b - c)**2*(vb - va)) / ((b - a) * (vb - vc) - (b - c) * (vb - va)) if disp > 0: print 'suggested point:', x safety = 10. if x < b and x > a and c - b >= (b - a) * safety: if disp > 0: print 'we want to go left, but right side is getting too mighty' x = (c + (safety - 1) * b) / safety if x < c and x > b and b - a >= (c - b) * safety: if disp > 0: print 'we want to go right, but left side is getting too mighty' x = ((safety - 1) * b + a) / safety safety2 = 10. if x <= b: if x - a <= numpy.abs(b - a) / safety2: if disp > 0: print 'we want to go left, but are too close to left side' x = a + (b - a) / safety2 if b - x <= (b - a) / safety2: if disp > 0: print 'we want to go left, but are too close to the center' if (b - a) * numpy.abs(va - vb) >= (c - b) * numpy.abs(vc - vb) * safety**2: if disp > 0: print 'left side is very mighty' x = (b + a) / 2. else: x = b - (b - a) / safety2 if x >= b: if c - x <= numpy.abs(c - b) / safety2: if disp > 0: print 'we want to go right, but are too close to right side' x = c - (c - b) / safety2 if x - b <= (c - b) / safety2: if disp > 0: print 'we want to go right, but are too close to the center' if (c - b) * numpy.abs(vc - vb) >= (b - a) * numpy.abs(va - vb) * safety**2: if disp > 0: print 'right side is very mighty' x = (b + c) / 2. else: x = b + (c - b) / safety2 if va < vb: # should go left if x > a: if disp > 0: print 'I think we should go further left, to bracket the minimum' (a, b, c), (va, vb, vc) = escalate_left(function, a, b, va, vb, cons=cons, lstep=c - a, ftol=ftol, disp=disp, plot=plot) if numpy.abs(vb - va) + numpy.abs(vb - vc) <= ftol: if disp > 0: print ' ===> found minimum at left border %f, %f' % (b, vb) return b #disp = 4 continue x = a - (c - b) if vc < vb: # should go right if x < c: if disp > 0: print 'I think we should go further right, to bracket the minimum' (a, b, c), (va, vb, vc) = escalate_right(function, b, c, vb, vc, cons=cons, rstep=c - a, ftol=ftol, disp=disp, plot=plot) if numpy.abs(vb - va) + numpy.abs(vb - vc) <= ftol: if disp > 0: print ' ===> found minimum at right border %f, %f' % (b, vb) return b #disp = 4 continue x = c + (b - a) if disp > 0: print 'next point:', x v = function(x) if disp > 0: print 'next value:', v if disp > 3: if plot: plot_values([va, vb, vc, v], [a, b, c, x], lastpoint=3, ftol=ftol) pause() if disp > 0: print ' deciding on next bracket' if v < min(va, vb, vc): # improvement was made. if x < a: # go to very left if disp > 0: print ' <<<< ' a, b, c, va, vb, vc = x, a, b, v, va, vb continue elif x < b: # go to left if disp > 0: print ' << ' a, b, c, va, vb, vc = a, x, b, va, v, vb continue elif x > c: # go to very right if disp > 0: print ' >>>> ' a, b, c, va, vb, vc = b, c, x, vb, vc, v continue else: # go to right if disp > 0: print ' >> ' a, b, c, va, vb, vc = b, x, c, vb, v, vc continue # no improvement if disp > 0: print ' no improvement made' # did we try to move to the outer edges? if va < vb and x < a: # we tried to go very left, but hit the wall if disp > 0: print ' |<< ' a, b, c, va, vb, vc = x, a, b, v, va, vb continue elif vc < vb and x > c: # we tried to go very right, but hit the wall if disp > 0: print ' >>| ' a, b, c, va, vb, vc = b, c, x, vb, vc, v continue if disp > 0: print ' subdividing side' # go to the other side if not (v < va or v < vc): if plot: plot_values([va, vb, vc, v], [a, b, c, x], lastpoint=3, ftol=ftol) if disp > 0: print 'warning: found flat bit!' return b assert False, [v < va, v, va, v < vc, v, vc] if x < b: # on the left, go to right side if v > va and v < vb: if disp > 0: print ' . | x | sequence, going left' a, b, c, va, vb, vc = a, x, b, va, v, vb elif v > va: if plot: plot_values([va, vb, vc, v], [a, b, c, x], lastpoint=3, ftol=ftol) disp = 4 if disp > 0: print 'warning: found flat bit on the right!' return b else: if disp > 0: print ' . | x | going right' a, b, c, va, vb, vc = x, b, c, v, vb, vc continue else: # on the right, go to left side if v > vc and v < vb: if disp > 0: print ' . | x | sequence, going right' a, b, c, va, vb, vc = b, x, c, vb, v, vc elif v > vc: if plot: plot_values([va, vb, vc, v], [a, b, c, x], lastpoint=3, ftol=ftol) disp = 4 if disp > 0: print 'warning: found flat bit on the left!' return b else: if disp > 0: print ' | x | . going left' a, b, c, va, vb, vc = a, b, x, va, vb, v continue assert False, [a, b, c, x, va, vb, vc, v] neval = 0 def optimize(function, x0, cons=[], ftol=0.2, disp=0, plot=False): """ **Optimization method based on Brent's method** First, a bracket (a b c) is sought that contains the minimum (b value is smaller than both a or c). The bracket is then recursively halfed. Here we apply some modifications to ensure our suggested point is not too close to either a or c, because that could be problematic with the local approximation. Also, if the bracket does not seem to include the minimum, it is expanded generously in the right direction until it covers it. Thus, this function is fail safe, and will always find a local minimum. """ if disp > 0: print print ' ===== custom 1d optimization routine ==== ' print print 'initial suggestion on', function, ':', x0 points = [] values = [] def recordfunction(x): v = function(x) points.append(x) values.append(v) return v (a, b, c), (va, vb, vc) = seek_minimum_bracket(recordfunction, x0, cons=cons, ftol=ftol, disp=disp, plot=plot) if disp > 0: print '---------------------------------------------------' print 'found useable minimum bracker after %d evaluations:' % len(points), (a, b, c), (va, vb, vc) if disp > 2: if plot: plot_values(values, points, lastpoint=-1, ftol=ftol) pause() result = brent(recordfunction, a, b, c, va, vb, vc, cons=cons, ftol=ftol, disp=disp, plot=plot) if disp > 0: print '---------------------------------------------------' print 'found minimum after %d evaluations:' % len(points), result if disp > 1 or len(points) > 20: if plot: plot_values(values, points, lastpoint=-1, ftol=ftol) if disp > 2: pause() if disp > 0: print '---------------------------------------------------' print print ' ===== end of custom 1d optimization routine ==== ' print global neval neval += len(points) return result def cache2errors(function, cache, disp=0, ftol=0.05): """ This function will attempt to identify 1 sigma errors, assuming your function is a chi^2. For this, the 1-sigma is bracketed. If you were smart enough to build a cache list of [x,y] into your function, you can pass it here. The values bracketing 1 sigma will be used as starting values. If no such values exist, e.g. because all values were very close to the optimum (good starting values), the bracket is expanded. """ vals = numpy.array(sorted(cache, key=lambda x: x[0])) if disp > 0: print ' --- cache2errors --- ', vals vi = vals[:,1].min() def renormedfunc(x): y = function(x) cache.append([x, y]) if disp > 1: print ' renormed:', x, y, y - (vi + 1) return y - (vi + 1) vals[:,1] -= vi + 1 lowmask = vals[:,1] < 0 highmask = vals[:,1] > 0 indices = numpy.arange(len(vals)) b, vb = vals[indices[lowmask][ 0],:] c, vc = vals[indices[lowmask][-1],:] if any(vals[:,0][highmask] < b): if disp > 0: print 'already have bracket' a, va = vals[indices[highmask][vals[:,0][highmask] < b][-1],:] else: a = b va = vb while b > -50: a = b - max(vals[-1,0] - vals[0,0], 1) va = renormedfunc(a) if disp > 0: print 'going further left: %.1f [%.1f] --> %.1f [%.1f]' % (b, vb, a, va) if va > 0: if disp > 0: print 'found outer part' break else: # need to go further b = a vb = va if disp > 0: print 'left bracket', a, b, va, vb if va > 0 and vb < 0: leftroot = scipy.optimize.brentq(renormedfunc, a, b, rtol=ftol) else: if disp > 0: print 'WARNING: border problem found.' leftroot = a if disp > 0: print 'left root', leftroot if any(vals[:,0][highmask] > c): if disp > 0: print 'already have bracket' d, vd = vals[indices[highmask][vals[:,0][highmask] > c][ 0],:] else: d = c vd = vc while c < 50: d = c + max(vals[-1,0] - vals[0,0], 1) vd = renormedfunc(d) if disp > 0: print 'going further right: %.1f [%.1f] --> %.1f [%.1f]' % (c, vc, d, vd) if vd > 0: if disp > 0: print 'found outer part' break else: # need to go further c = d vc = vd if disp > 0: print 'right bracket', c, d, vc, vd if vd > 0 and vc < 0: rightroot = scipy.optimize.brentq(renormedfunc, c, d, rtol=ftol) else: if disp > 0: print 'WARNING: border problem found.' rightroot = d if disp > 0: print 'right root', rightroot assert leftroot < rightroot if disp > 2: fullvals = numpy.array(sorted(cache, key=lambda x: x[0])) fullvals[:,1] -= vi + 1 plt.figure() plt.plot(fullvals[:,0], fullvals[:,1], 's') plt.plot(vals[:,0], vals[:,1], 'o') plt.xlim(a, d) plt.ylim(min(va, vb, vc, vd), max(va, vb, vc, vd)) ymin, ymax = plt.ylim() plt.vlines([leftroot, rightroot], ymin, ymax, linestyles='dotted') plt.savefig('cache_brent.pdf') return leftroot, rightroot ``` #### File: jbopt/test/test.py ```python import scipy import numpy """ likelihood is multivariate, independent gaussian optimize each param in turn """ centers = numpy.array([0.1, 15, 3.3, 4.1, 0]) sigmas = numpy.array([0.01, 0.1, 3, 10, 10]) eval_cache = [] def like(params): eval_cache.append(params) return (((params - centers) / sigmas)**2).sum() from jbopt.independent import * limits = numpy.array([(0, 1000)]*len(centers)) start = numpy.array([0.1]*len(centers)) def test_normalizations(): print 'TEST normalization step method' print opt_normalizations(start, like, limits, disp=0) #, abandon_threshold=1) print 'TEST normalization step method: neval:', print len(eval_cache) while len(eval_cache) > 0: eval_cache.pop() def test_grid(): print 'TEST grid using BRENT' print opt_grid(start, like, limits, ftol=0.01, disp=0) print 'TEST grid using BRENT: neval:', print len(eval_cache) def test_grid_parallel(): print 'TEST grid using BRENT --- parallel' print opt_grid_parallel(start, like, limits, ftol=0.01, disp=0) print 'TEST grid using BRENT: neval:', print len(eval_cache) if __name__ == '__main__': test_grid() test_grid_parallel() ```
{ "source": "JohannesBuchner/massivedatans", "score": 2 }
#### File: JohannesBuchner/massivedatans/elldrawer.py ```python from __future__ import print_function, division """ Implementation of MultiEllipsoidal sampling via nestle Copyright (c) 2017 <NAME> Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy from numpy import exp, log, log10, pi from nestle import bounding_ellipsoid, bounding_ellipsoids, sample_ellipsoids from collections import defaultdict class MultiEllipsoidalConstrainer(object): def __init__(self, rebuild_every = 1000, verbose = False, enlarge=3.): self.iter = 0 self.ndraws_since_rebuild = 0 self.rebuild_every = int(rebuild_every) self.enlarge = enlarge self.verbose = verbose self.ells = None self.last_cluster_points = None def update(self, points): # volume is larger than standard Ellipsoid computation # because we have a superset of various likelihood contours # increase proportional to number of points pointvol = exp(-self.iter / self.nlive_points) * (len(points) * 1. / self.nlive_points) / self.nlive_points self.ells = bounding_ellipsoids(numpy.asarray(points), pointvol=pointvol) for ell in self.ells: ell.scale_to_vol(ell.vol * self.enlarge) def generate(self, ndim): ntotal = 0 N = 10000 while True: u = sample_ellipsoids(self.ells, rstate=numpy.random) if not (numpy.all(u > 0.) and numpy.all(u < 1.)): continue yield u, ntotal def rebuild(self, u, ndim): if self.last_cluster_points is not None and \ len(self.last_cluster_points) == len(u) and \ numpy.all(self.last_cluster_points == u): # do nothing if everything stayed the same return self.update(points=u) self.last_cluster_points = u self.generator = self.generate(ndim) def _draw_constrained_prepare(self, Lmins, priortransform, loglikelihood, live_pointsu, ndim, **kwargs): rebuild = self.ndraws_since_rebuild > self.rebuild_every or self.ells is None if rebuild: print('rebuild triggered at call') self.rebuild(numpy.asarray(live_pointsu), ndim) self.ndraws_since_rebuild = 0 assert self.generator is not None return rebuild def draw_constrained(self, Lmins, priortransform, loglikelihood, live_pointsu, ndim, iter, nlive_points, **kwargs): ntoaccept = 0 self.iter = iter self.nlive_points = nlive_points #print 'MLFriends trying to replace', Lmins rebuild = self._draw_constrained_prepare(Lmins, priortransform, loglikelihood, live_pointsu, ndim, **kwargs) while True: #print ' starting generator ...' for u, ntotal in self.generator: assert (u >= 0).all() and (u <= 1).all(), u x = priortransform(u) L = loglikelihood(x) ntoaccept += 1 self.ndraws_since_rebuild += 1 if numpy.any(L > Lmins): # yay, we win #print 'accept after %d tries' % ntoaccept return u, x, L, ntoaccept # if running very inefficient, optimize clustering # if we haven't done so at the start if not rebuild and self.ndraws_since_rebuild > self.rebuild_every: rebuild = True print('Ellipsoid rebuild triggered after %d draws' % self.ndraws_since_rebuild) self.rebuild(numpy.asarray(live_pointsu), ndim) self.ndraws_since_rebuild = 0 break ``` #### File: JohannesBuchner/massivedatans/friends.py ```python from __future__ import print_function, division import numpy import scipy.spatial, scipy.cluster import matplotlib.pyplot as plt from nested_sampling.clustering import clusterdetect from nested_sampling.clustering.neighbors import find_maxdistance, find_rdistance, initial_rdistance_guess, nearest_rdistance_guess class FriendsConstrainer(object): """ Rejection sampling pre-filtering method based on neighborhood to live points. "Distant" means in this implementation that the distance to a cluster member is large. The maximum distance to a cluster is computed by considering each cluster member and its k nearest neighbors in turn, and computing the maximum distance. :param rebuild_every: After how many iterations should the clustering distance be re-computed? :param radial: if radial = True, then the normal euclidean distance is used. otherwise, the absolute coordinate difference in each dimension is used. :param metric: metric to use. Use 'chebyshev' for SupFriends, in which case then the supremum norm is used. Use 'euclidean' for RadFriends, via the euclidean norm. :param jackknife: if True, instead of leaving out a group of live points in the distance estimate, only one is left out in turn (jackknife resampling instead of bootstrap resampling). :param force_shrink: if True, the distance can only decrease between sampling steps. """ def __init__(self, rebuild_every = 50, radial = True, metric = 'euclidean', jackknife = False, force_shrink = False, hinter = None, verbose = False, keep_phantom_points=False, optimize_phantom_points=False): self.maxima = [] self.iter = 0 self.region = None self.rebuild_every = rebuild_every self.radial = radial self.metric = metric self.file = None self.jackknife = jackknife self.force_shrink = force_shrink self.hinter = hinter self.verbose = verbose if keep_phantom_points: assert self.force_shrink, 'keep_phantom_points needs force_shrink=True' self.keep_phantom_points = keep_phantom_points self.optimize_phantom_points = optimize_phantom_points self.phantom_points = [] self.phantom_points_Ls = [] self.last_cluster_points = None def cluster(self, u, ndim, keepRadius=False): """ """ if self.verbose: print('building region ...') if len(u) > 10: if keepRadius and self.region is not None and 'maxdistance' in self.region: maxdistance = self.region['maxdistance'] else: if self.radial: if self.jackknife: #maxdistance = initial_rdistance_guess(u, k=1, metric=self.metric) maxdistance = nearest_rdistance_guess(u, metric=self.metric) else: maxdistance = find_rdistance(u, nbootstraps=20, metric=self.metric, verbose=self.verbose) else: maxdistance = find_maxdistance(u) if self.force_shrink and self.region is not None and 'maxdistance' in self.region: maxdistance = min(maxdistance, self.region['maxdistance']) if self.keep_phantom_points and len(self.phantom_points) > 0: # add phantoms to u now print('including phantom points in cluster members', self.phantom_points) u = numpy.vstack((u, self.phantom_points)) ulow = numpy.max([u.min(axis=0) - maxdistance, numpy.zeros(ndim)], axis=0) uhigh = numpy.min([u.max(axis=0) + maxdistance, numpy.ones(ndim)], axis=0) else: maxdistance = None ulow = numpy.zeros(ndim) uhigh = numpy.ones(ndim) if self.verbose: print('setting sampling region:', (ulow, uhigh), maxdistance) self.region = dict(members=u, maxdistance=maxdistance, ulow=ulow, uhigh=uhigh) self.generator = None def is_inside(self, u): """ Check if this new point is near or inside one of our clusters """ ndim = len(u) ulow = self.region['ulow'] uhigh = self.region['uhigh'] if not ((ulow <= u).all() and (uhigh >= u).all()): # does not even lie in our primitive rectangle # do not even need to compute the distances return False members = self.region['members'] maxdistance = self.region['maxdistance'] # if not initialized: no prefiltering if maxdistance is None: return True # compute distance to each member in each dimension if self.radial: dists = scipy.spatial.distance.cdist(members, [u], metric=self.metric) assert dists.shape == (len(members), 1) dist_criterion = dists < maxdistance else: dists = numpy.abs(u - members) assert dists.shape == (len(members), ndim), (dists.shape, ndim, len(members)) # nearer than maxdistance in all dimensions dist_criterion = numpy.all(dists < maxdistance, axis=1) assert dist_criterion.shape == (len(members),), (dist_criterion.shape, len(members)) # is it true for at least one? closeby = dist_criterion.any() if closeby: return True return False def are_inside_rect(self, u): """ Check if the new points are near or inside one of our clusters """ ulow = self.region['ulow'] uhigh = self.region['uhigh'] mask = numpy.logical_and(((ulow <= u).all(axis=1), (uhigh >= u).all(axis=1))) def are_inside_cluster(self, u, ndim): members = self.region['members'] maxdistance = self.region['maxdistance'] # if not initialized: no prefiltering if maxdistance is None: return numpy.ones(len(u), dtype=bool) # compute distance to each member in each dimension if self.radial: dists = scipy.spatial.distance.cdist(members, u, metric=self.metric) assert dists.shape == (len(members), len(u)) dist_criterion = dists < maxdistance else: raise NotImplementedError() # is it true for at least one? closeby = dist_criterion.any(axis=0) return closeby def generate(self, ndim): it = True verbose = False and self.verbose ntotal = 0 # largest maxdistance where generating from full space makes sense full_maxdistance = 0.5 * (0.01)**(1./ndim) while True: maxdistance = self.region['maxdistance'] if maxdistance is None: # do a prefiltering rejection sampling first u = numpy.random.uniform(self.region['ulow'], self.region['uhigh'], size=ndim) yield u, ntotal ntotal = 0 continue members = self.region['members'] it = numpy.random.uniform() < 0.01 # depending on the region size compared to # the total space, one of the two methods will # be more efficient if it or not self.radial or maxdistance > full_maxdistance: it = True # for large regions # do a prefiltering rejection sampling first us = numpy.random.uniform(self.region['ulow'], self.region['uhigh'], size=(100, ndim)) ntotal += 100 mask = self.are_inside_cluster(self.transform_points(us), ndim) if not mask.any(): continue us = us[mask] #indices = numpy.arange(len(mask))[mask] #for i in indices: # u = us[indices[i],:] for u in us: yield u, ntotal ntotal = 0 else: # for small regions # draw from points us = members[numpy.random.randint(0, len(members), 100),:] ntotal += 100 if verbose: print('chosen point', us) if self.metric == 'euclidean': # draw direction around it direction = numpy.random.normal(0, 1, size=(100, ndim)) direction = direction / ((direction**2).sum(axis=1)**0.5).reshape((-1,1)) if verbose: print('chosen direction', direction) # choose radius: volume gets larger towards the outside # so give the correct weight with dimensionality radius = maxdistance * numpy.random.uniform(0, 1, size=(100,1))**(1./ndim) us = us + direction * radius else: assert self.metric == 'chebyshev' us = us + numpy.random.uniform(-maxdistance, maxdistance, size=(100, ndim)) if verbose: print('using point', u) inside = numpy.logical_and((us >= 0).all(axis=1), (us <= 1).all(axis=1)) if not inside.any(): if verbose: print('outside boundaries', us, direction, maxdistance) continue us = us[inside] # count the number of points this is close to dists = scipy.spatial.distance.cdist(members, us, metric=self.metric) assert dists.shape == (len(members), len(us)) nnear = (dists < maxdistance).sum(axis=0) if verbose: print('near', nnear) #ntotal += 1 # accept with probability 1./nnear coin = numpy.random.uniform(size=len(us)) accept = coin < 1. / nnear if not accept.any(): if verbose: print('probabilistic rejection due to overlaps') continue us = us[accept] for u in us: yield u, ntotal ntotal = 0 def transform_new_points(self, us): return us def transform_points(self, us): return us def transform_point(self, u): return u def rebuild(self, u, ndim, keepRadius=False): if self.last_cluster_points is None or \ len(self.last_cluster_points) != len(u) or \ numpy.any(self.last_cluster_points != u): self.cluster(u=self.transform_new_points(u), ndim=ndim, keepRadius=keepRadius) self.last_cluster_points = u # reset generator self.generator = self.generate(ndim=ndim) def debug(self, ndim): if self.file is None: #self.file = open("friends_debug.txt", "a") import tempfile filename = tempfile.mktemp(dir='', prefix='friends%s-%s_' % ( '1' if self.jackknife else '', self.metric)) self.file = open(filename, 'w') self.file.write("{} {} {}\n".format(self.iter, self.region['maxdistance'], len(self.region['members']))) self.file.write("{} {} {} {}\n".format(self.iter, self.region['maxdistance'], len(self.region['members']), ndim)) def debugplot(self, u = None): print('creating plot...') n = len(self.region['members'][0]) / 2 plt.figure(figsize=(6, n/2*4+1)) m = self.region['members'] d = self.region['maxdistance'] for i in range(n): plt.subplot(numpy.ceil(n / 2.), 2, 1+i) j = i * 2 k = i * 2 + 1 plt.plot(m[:,j], m[:,k], 'x', color='b', ms=1) plt.gca().add_artist(plt.Circle((m[0,j], m[0,k]), d, color='g', alpha=0.3)) if u is not None: plt.plot(u[j], u[k], 's', color='r') plt.gca().add_artist(plt.Circle((u[j], u[k]), d, color='r', alpha=0.3)) prefix='friends%s-%s_' % ('1' if self.jackknife else '', self.metric) plt.savefig(prefix + 'cluster.pdf') plt.close() print('creating plot... done') def draw_constrained(self, Lmins, priortransform, loglikelihood, live_pointsu, ndim, max_draws=None, **kwargs): # previous is [[u, x, L], ...] self.iter += 1 rebuild = self.iter % self.rebuild_every == 1 if rebuild or self.region is None: self.rebuild(numpy.asarray(live_pointsu), ndim, keepRadius=False) if self.generator is None: self.generator = self.generate(ndim=ndim) ntoaccept = 0 ntotalsum = 0 while True: for u, ntotal in self.generator: assert (u >= 0).all() and (u <= 1).all(), u ntotalsum += ntotal if self.hinter is not None: hints = self.hinter(u) if len(hints) == 0: # no way continue if len(hints) > 1: # choose a random solution, by size raise NotImplementedError("multiple solutions not implemented") hints = hints[numpy.random.randInt(len(hints))] else: hints = hints[0] for i, lo, hi in hints: u[i] = numpy.random.uniform(lo, hi) if not is_inside(self.transform_point(u)): # not sure if this is a good idea # it means we dont completely trust # the hinting function continue x = priortransform(u) L = loglikelihood(x) ntoaccept += 1 if numpy.any(L > Lmins) or (max_draws is not None and ntotalsum > max_draws): # yay, we win if ntotalsum > 10000: if self.verbose: print('sampled %d points, evaluated %d ' % (ntotalsum, ntoaccept)) #self.debugplot(u) return u, x, L, ntoaccept # if running very inefficient, optimize clustering # if we haven't done so at the start if not rebuild and ntoaccept > 1000: #self.debugplot(u) break rebuild = True self.rebuild(numpy.asarray(live_pointsu), ndim, keepRadius=False) if __name__ == '__main__': friends = FriendsConstrainer(radial = True) u = numpy.random.uniform(0.45, 0.55, size=1000).reshape((-1, 2)) ndim = 2 friends.cluster(u, ndim=ndim) Lmin = -1 rv = scipy.stats.norm(0.515, 0.03) def priortransform(x): return x def loglikelihood(x): return rv.logpdf(x).sum() previous = [] colors = ['r', 'g', 'orange'] plt.figure("dists", figsize=(7,4)) plt.figure("plane", figsize=(5,5)) plt.plot(u[:,0], u[:,1], 'x') Lmins = [-5, 2, 2.5] #, 2.58] for j, (Lmin, color) in enumerate(zip(numpy.array(Lmins)*ndim, colors)): values = [] for i in range(200): friends.iter = 4 # avoid rebuild u, x, L, ntoaccept = friends.draw_constrained(Lmin, priortransform, loglikelihood, previous, ndim) plt.figure("plane") plt.plot(u[0], u[1], '+', color=color) values.append(u) values = numpy.array(values) plt.figure("dists") for k in range(ndim): plt.subplot(1, ndim, k + 1) plt.title('Lmin={}, dim={}'.format(Lmin, k)) plt.hist(values[:,k], cumulative=True, normed=True, color=color, bins=1000, histtype='step') plt.figure("plane") plt.savefig('friends_sampling_test.pdf', bbox_inches='tight') plt.close() plt.figure("dists") plt.savefig('friends_sampling_test_dists.pdf', bbox_inches='tight') plt.close() # another test: given a group of samples, assert that only neighbors are evaluated r = numpy.random.uniform(0.2, 0.25, size=400) phi = numpy.random.uniform(0, 1, size=400)**10 * 2*numpy.pi u = numpy.transpose([0.5 + r*numpy.cos(phi), 0.5 + r*numpy.sin(phi)]) friends.cluster(u, ndim=2) plt.figure(figsize=(10,5)) plt.subplot(1, 2, 1) plt.plot(u[:,0], u[:,1], 'x') suggested = [] def loglikelihood(x): r = ((x[0] - 0.5)**2 + (x[1] - 0.5)**2)**0.5 #assert r < 0.5 #assert r > 0.1 suggested.append(r) if r > 0.2 and r < 0.25: plt.plot(x[0], x[1], 'o', color='green') return 100 plt.plot(x[0], x[1], 'o', color='red') return -100 ndim = 2 taken = [] for i in range(100): friends.iter = 4 # avoid rebuild u, x, L, ntoaccept = friends.draw_constrained(Lmin, priortransform, loglikelihood, previous, ndim) r = ((x[0] - 0.5)**2 + (x[1] - 0.5)**2)**0.5 taken.append(r) print('suggested:', u) plt.subplot(1, 2, 2) plt.hist(taken, cumulative=True, normed=True, color='g', bins=1000, histtype='step') plt.hist(suggested, cumulative=True, normed=True, color='r', bins=1000, histtype='step') #x = numpy.linspace(0, 1, 400) #y = x**ndim - (x - min(suggested) / max(suggested))**ndim #y /= max(y) #plt.plot(x * (max(suggested) - min(suggested)) + min(suggested), y, '--', color='grey') plt.savefig('friends_sampling_test_sampling.pdf', bbox_inches='tight') plt.close() ``` #### File: JohannesBuchner/massivedatans/gensimple_bright.py ```python from __future__ import print_function, division import numpy import matplotlib.pyplot as plt import h5py from numpy import exp import sys def gauss(x, z, A, mu, sig): xT = x.reshape((1,-1)) zT = z.reshape((-1,1)) AT = A.reshape((-1,1)) muT = mu.reshape((-1,1)) sigT = sig.reshape((-1,1)) return AT * exp(-0.5 * ((muT - xT / (1. + zT))/sigT)**2) x = numpy.linspace(400, 800, 200) N = 40 N = int(sys.argv[1]) numpy.random.seed(N) z = numpy.zeros(N) + 0.01 rest_wave = 440 print('generating parameters ...') # in km/s width_broad = 4000 * rest_wave / 300000 * numpy.ones(N) width_narrow = 400 * rest_wave / 300000 * numpy.ones(N) # convert to nm mean_broad = rest_wave * numpy.ones(N) mean_narrow = rest_wave * numpy.ones(N) width_broad = width_broad width_narrow = width_narrow noise_level = 0.01 #signal_level = numpy.random.exponential(size=N) * 0.4 signal_level = numpy.ones(N) * 0.2 #signal_level = numpy.random.uniform(size=N) * 0.5 #is_type1 = numpy.random.uniform(size=N) < 0.5 height_broad = 10**-1 * signal_level height_narrow = signal_level #X = numpy.array([x]) print('generating signal ...') ym = gauss(A=height_broad, mu=mean_broad, x=x, z=z, sig=width_broad) ym += gauss(A=height_narrow, mu=mean_narrow, x=x, z=z, sig=width_narrow) ym = numpy.transpose(ym) print(ym.shape) # add noise print('adding noise...') y = ym.copy() for i in range(N): y[:,i] += numpy.random.normal(0, noise_level, size=len(x)) print('plotting ...') for i in range(min(N, 20)): #plt.plot(x, y[:,i], '.-') plt.plot(x, y[:,i], '-') plt.savefig('gen_bright.pdf', bbox_inches='tight') plt.close() #print x.shape, y.shape, z.shape with h5py.File('data_bright_%s.hdf5' % sys.argv[1], 'w') as f: f.create_dataset('x', data=x, compression='gzip', shuffle=True) f.create_dataset('y', data=y, compression='gzip', shuffle=True) f.create_dataset('z', data=z, compression='gzip', shuffle=True) f.create_dataset('mean_broad', data=mean_broad, compression='gzip', shuffle=True) f.create_dataset('width_broad', data=width_broad, compression='gzip', shuffle=True) f.create_dataset('height_broad', data=height_broad, compression='gzip', shuffle=True) f.create_dataset('mean_narrow', data=mean_narrow, compression='gzip', shuffle=True) f.create_dataset('width_narrow', data=width_narrow, compression='gzip', shuffle=True) f.create_dataset('height_narrow', data=height_narrow, compression='gzip', shuffle=True) ``` #### File: JohannesBuchner/massivedatans/multi_nested_integrator.py ```python from __future__ import print_function, division """ Integrator ---------- Copyright (c) 2017 <NAME> Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy from numpy import exp, log, log10, pi import progressbar from adaptive_progress import AdaptiveETA from numpy import logaddexp import sys def integrate_remainder(sampler, logwidth, logVolremaining, logZ, H, globalLmax): # logwidth remains the same now for each sample remainder = list(sampler.remainder()) logV = logwidth L0 = remainder[-1][2] L0 = globalLmax logLs = [Li - L0 for ui, xi, Li in remainder] Ls = numpy.exp(logLs) LsMax = Ls.copy() LsMax[-1] = numpy.exp(globalLmax - L0) Lmax = LsMax[1:].sum(axis=0) + LsMax[-1] #Lmax = Ls[1:].sum(axis=0) + Ls[-1] Lmin = Ls[:-1].sum(axis=0) + Ls[0] logLmid = log(Ls.sum(axis=0)) + L0 logZmid = logaddexp(logZ, logV + logLmid) logZup = logaddexp(logZ, logV + log(Lmax) + L0) logZlo = logaddexp(logZ, logV + log(Lmin) + L0) logZerr = logZup - logZlo assert numpy.isfinite(H).all() assert numpy.isfinite(logZerr).all(), logZerr for i in range(len(remainder)): ui, xi, Li = remainder[i] wi = logwidth + Li logZnew = logaddexp(logZ, wi) #Hprev = H H = exp(wi - logZnew) * Li + exp(logZ - logZnew) * (H + logZ) - logZnew H[H < 0] = 0 #assert (H>0).all(), (H, Hprev, wi, Li, logZ, logZnew) logZ = logZnew #assert numpy.isfinite(logZerr + (H / sampler.nlive_points)**0.5), (H, sampler.nlive_points, logZerr) return logV + logLmid, logZerr, logZmid, logZerr + (H / sampler.nlive_points)**0.5, logZerr + (H / sampler.nlive_points)**0.5 """ Performs the Nested Sampling integration by calling the *sampler* multiple times until the *tolerance* is reached, or the maximum number of likelihood evaluations is exceeded. :param sampler: Sampler :param tolerance: uncertainty in log Z to compute to :param max_samples: maximum number of likelihood evaluations (None for no limit) @return dictionary containing the keys logZ, logZerr: log evidence and uncertainty, samples: all obtained samples, weights: posterior samples: list of prior coordinates, transformed coordinates, likelihood value and weight information: information H niterations: number of nested sampling iterations """ def multi_nested_integrator(multi_sampler, tolerance = 0.01, max_samples=None, min_samples = 0, need_robust_remainder_error=True): sampler = multi_sampler logVolremaining = 0 logwidth = log(1 - exp(-1. / sampler.nlive_points)) weights = [] #[-1e300, 1]] widgets = ["|...|", progressbar.Bar(), progressbar.Percentage(), AdaptiveETA()] pbar = progressbar.ProgressBar(widgets = widgets, maxval=sampler.nlive_points) i = 0 ndata = multi_sampler.ndata running = numpy.ones(ndata, dtype=bool) last_logwidth = numpy.zeros(ndata) last_logVolremaining = numpy.zeros(ndata) last_remainderZ = numpy.zeros(ndata) last_remainderZerr = numpy.zeros(ndata) logZerr = numpy.zeros(ndata) ui, xi, Li = next(sampler) wi = logwidth + Li logZ = wi H = Li - logZ remainder_tails = [[]] * ndata pbar.currval = i pbar.start() while True: i = i + 1 logwidth = log(1 - exp(-1. / sampler.nlive_points)) + logVolremaining last_logwidth[running] = logwidth last_logVolremaining[running] = logwidth logVolremaining -= 1. / sampler.nlive_points # fill up, otherwise set weight to zero Lifull = numpy.zeros(ndata) Lifull[:] = -numpy.inf Lifull[running] = Li uifull = numpy.zeros((ndata, ui.shape[1])) uifull[running,:] = ui xifull = numpy.zeros((ndata, ui.shape[1])) xifull[running,:] = xi weights.append([uifull, xifull, Lifull, numpy.where(running, logwidth, -numpy.inf), running]) logZerr[running] = (H[running] / sampler.nlive_points)**0.5 sys.stdout.flush() pbar.update(i) # expected number of iterations: i_final = -sampler.nlive_points * (-sampler.Lmax + log(exp(numpy.max([tolerance - logZerr[running], logZerr[running] / 100.], axis=0) + logZ[running]) - exp(logZ[running]))) i_final = numpy.where(i_final < i+1, i+1, numpy.where(i_final > i+100000, i+100000, i_final)) max_value = max(i+1, i_final.max()) if hasattr(pbar, 'max_value'): pbar.max_value = max_value elif hasattr(pbar, 'maxval'): pbar.maxval = max_value if i > min_samples and i % 50 == 1 or (max_samples and i > max_samples): remainderZ, remainderZerr, totalZ, totalZerr, totalZerr_bootstrapped = integrate_remainder(sampler, logwidth, logVolremaining, logZ[running], H[running], sampler.Lmax) print('checking for termination:', remainderZ, remainderZerr, totalZ, totalZerr) # tolerance last_remainderZ[running] = remainderZ last_remainderZerr[running] = remainderZerr terminating = totalZerr < tolerance if max_samples and i > max_samples: terminating[:] = True widgets[0] = '|%d/%d samples+%d/%d|lnZ = %.2f +- %.3f + %.3f|L=%.2f^%.2f ' % ( i + 1, max_value, sampler.nlive_points, sampler.ndraws, logaddexp(logZ[running][0], remainderZ[0]), max(logZerr[running]), max(remainderZerr), Li[0], sampler.Lmax[0]) if terminating.any(): print('terminating %d, namely:' % terminating.sum(), list(numpy.where(terminating)[0])) for j, k in enumerate(numpy.where(running)[0]): if terminating[j]: remainder_tails[k] = [[ui, xi, Li, logwidth] for ui, xi, Li in sampler.remainder(j)] sampler.cut_down(~terminating) running[running] = ~terminating if not running.any(): break print(widgets[0]) ui, xi, Li = next(sampler) wi = logwidth + Li logZnew = logaddexp(logZ[running], wi) H[running] = exp(wi - logZnew) * Li + exp(logZ[running] - logZnew) * (H[running] + logZ[running]) - logZnew logZ[running] = logZnew # add tail # not needed for integral, but for posterior samples, otherwise there # is a hole in the most likely parameter ranges. all_tails = numpy.ones(ndata, dtype=bool) for i in range(sampler.nlive_points): u, x, L, logwidth = list(zip(*[tail[i] for tail in remainder_tails])) weights.append([u, x, L, logwidth, all_tails]) logZerr = logZerr + last_remainderZerr logZ = logaddexp(logZ, last_remainderZ) return dict(logZ=logZ, logZerr=logZerr, weights=weights, information=H, niterations=i) __all__ = [multi_nested_integrator] ``` #### File: massivedatans/pres/plotcontour.py ```python from __future__ import print_function, division import numpy import matplotlib.pyplot as plt #from nested_sampling.clustering.neighbors import find_rdistance, is_within_distance_of, count_within_distance_of, any_within_distance_of from nested_sampling.samplers.hiermetriclearn import ClusterResult, RadFriendsRegion CX = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] CS = [0.2, 0.2, 0.2, 0.2, 0.15, 0.2, 0.15, 0.2, 0.2] CY = [0.2, 0, 0, 0, 0.1, 0.3, 1, 1.4, 2] CW = [1, 2, 2, 2, 2, 2, 20, 2, 2] CX = numpy.linspace(0, 4, 20) CY = CX*-0.2 + CX**2*0.3 #plt.plot(x, x*-0.2 + x**2*0.2) CW = CX * 0 + 2 + 10*CY**2 CW = 1./CW CW[0] = 0.5 CW[1] = 1 #CW[-5] = 20 CS = CX * 0 + 0.2 #CS[-5] = 0.12 def likelihood(x, y): l = 0 for cx, cy, cw, cs in zip(CX, CY, CW, CS): l += cw * numpy.exp(-0.5 * (((cx - x)/cs)**2 + ((cy - y)/cs)**2)) return numpy.log(l) x = numpy.linspace(-2.5, 6.5, 100) y = numpy.linspace(-2.5, 6.5, 100) X, Y = numpy.meshgrid(x, y) XY = numpy.array(numpy.transpose([X.flatten(), Y.flatten()]), order='C') print(XY.dtype) L = likelihood(X, Y) Lsorted = L[30:-30,30:-30].flatten() Lsorted.sort() levels = Lsorted[::Lsorted.size/7-1].tolist() # + [L.max()] levels = levels[2:] #levels = L.max() - numpy.arange(5) * 4 - 2 plt.figure(figsize=(6, 3), frameon=False) plt.axis('off') plt.contour(X, Y, L, levels) plt.savefig('plotcontour.png', bbox_inches='tight') plt.savefig('plotcontour.pdf', bbox_inches='tight') plt.close() numpy.random.seed(1) N = 10000 x = numpy.random.uniform(-2, 6, size=N) y = numpy.random.uniform(-2, 6, size=N) l = likelihood(x, y) Nlive = 100 for i in range(len(levels)): plt.figure(figsize=(6, 2.2), frameon=False) plt.axis('off') plt.text(-2, 4, 'Iteration %d' % (i*100)) #plt.text(-2, 4, '(%d)' % (i+1)) mask = l > levels[i] xlevel = x[mask][:Nlive] ylevel = y[mask][:Nlive] live_points = numpy.array(numpy.transpose([xlevel, ylevel]), order='C') plt.contour(X, Y, L, levels[i:i+1], colors=['k'], linestyles=[':']) plt.plot(xlevel, ylevel, '.', color='k') # do radfriends with these points region = RadFriendsRegion(live_points) mask = region.are_inside(XY) maskregion = mask.reshape(X.shape) plt.contour(X, Y, maskregion*1., [0.5], colors=['orange'], linestyles=['-']) plt.ylim(-2.5, 6.2) plt.xlim(-3, 7) plt.savefig('plotcontour_%d.png' % (i+1), bbox_inches='tight') plt.savefig('plotcontour_%d.pdf' % (i+1), bbox_inches='tight') plt.close() ```
{ "source": "JohannesBuchner/matplotlib-subsets", "score": 2 }
#### File: matplotlib-subsets/tests/nestedsetrect_test.py ```python from matplotlib_subsets import * def test_nested_example1(): sets = [ set(list('ABCDEFGH')), set(list('DEFG')), set(list('E')), ] setsizes = [len(s) for s in sets] nestedsets_rectangles(setsizes, labels = [ r'$\mathbf{%s}$ ($%d$)' % (string.ascii_uppercase[i], len(s)) for i, s in enumerate(sets)]) plt.savefig('example_nested.pdf', bbox_inches='tight') plt.close() def test_tree_example1(): tree = ((120, '100', None), [ ((50, 'A50', None), []), ((50, 'B50', None), []) ]) treesets_rectangles(tree) plt.savefig('example_tree.pdf', bbox_inches='tight') plt.close() def test_tree_example2(): tree = ((120, '100', None), [((50, 'A50', None), [((20, 'AX20', None), [((8, 'AXM8', None), [((4, 'AXM4', None), [((2, 'AXM2', None), [])])]), ((8, 'AXN8', None), [])]), ((20, 'AY20', None), [])]), ((50, 'B50', None), [((5, 'Bt', None), [])]*5) ]) plt.figure(figsize=(7,7)) treesets_rectangles(tree) plt.savefig('example_tree2.pdf', bbox_inches='tight') plt.close() if __name__ == '__main__': test_nested_example1() test_tree_example1() test_tree_example2() ```
{ "source": "JohannesBuchner/nnest", "score": 3 }
#### File: nnest/nnest/networks.py ```python import math import torch import torch.nn as nn class BatchNormFlow(nn.Module): """ An implementation of a batch normalization layer from Density estimation using Real NVP (https://arxiv.org/abs/1605.08803). """ def __init__(self, num_inputs, momentum=0.0, eps=1e-5): super(BatchNormFlow, self).__init__() self.log_gamma = nn.Parameter(torch.zeros(num_inputs)) self.beta = nn.Parameter(torch.zeros(num_inputs)) self.momentum = momentum self.eps = eps self.register_buffer('running_mean', torch.zeros(num_inputs)) self.register_buffer('running_var', torch.ones(num_inputs)) def forward(self, inputs, cond_inputs=None, mode='direct'): if mode == 'direct': if self.training: self.batch_mean = inputs.mean(0) self.batch_var = ( inputs - self.batch_mean).pow(2).mean(0) + self.eps self.running_mean.mul_(self.momentum) self.running_var.mul_(self.momentum) self.running_mean.add_(self.batch_mean.data * (1 - self.momentum)) self.running_var.add_(self.batch_var.data * (1 - self.momentum)) mean = self.batch_mean var = self.batch_var else: mean = self.running_mean var = self.running_var x_hat = (inputs - mean) / var.sqrt() y = torch.exp(self.log_gamma) * x_hat + self.beta return y, (self.log_gamma - 0.5 * torch.log(var)).sum( -1, keepdim=True) else: if self.training: mean = self.batch_mean var = self.batch_var else: mean = self.running_mean var = self.running_var x_hat = (inputs - self.beta) / torch.exp(self.log_gamma) y = x_hat * var.sqrt() + mean return y, (-self.log_gamma + 0.5 * torch.log(var)).sum( -1, keepdim=True) class CouplingLayer(nn.Module): """ An implementation of a coupling layer from RealNVP (https://arxiv.org/abs/1605.08803). """ def __init__(self, num_inputs, num_hidden, mask, num_cond_inputs=None, s_act='tanh', t_act='relu', num_layers=2): super(CouplingLayer, self).__init__() self.num_inputs = num_inputs self.mask = mask activations = {'relu': nn.ReLU, 'sigmoid': nn.Sigmoid, 'tanh': nn.Tanh} s_act_func = activations[s_act] t_act_func = activations[t_act] if num_cond_inputs is not None: total_inputs = num_inputs + num_cond_inputs else: total_inputs = num_inputs scale_layers = [nn.Linear(total_inputs, num_hidden), s_act_func()] for i in range(0, num_layers): scale_layers += [nn.Linear(num_hidden, num_hidden), s_act_func()] scale_layers += [nn.Linear(num_hidden, num_inputs)] self.scale_net = nn.Sequential(*scale_layers) translate_layers = [nn.Linear(total_inputs, num_hidden), t_act_func()] for i in range(0, num_layers): translate_layers += [nn.Linear(num_hidden, num_hidden), t_act_func()] translate_layers += [nn.Linear(num_hidden, num_inputs)] self.translate_net = nn.Sequential(*translate_layers) def init(m): if isinstance(m, nn.Linear): m.bias.data.fill_(0) nn.init.orthogonal_(m.weight.data) def forward(self, inputs, cond_inputs=None, mode='direct'): mask = self.mask masked_inputs = inputs * mask if cond_inputs is not None: masked_inputs = torch.cat([masked_inputs, cond_inputs], -1) if mode == 'direct': log_s = self.scale_net(masked_inputs) * (1 - mask) t = self.translate_net(masked_inputs) * (1 - mask) s = torch.exp(log_s) return inputs * s + t, log_s.sum(-1, keepdim=True) else: log_s = self.scale_net(masked_inputs) * (1 - mask) t = self.translate_net(masked_inputs) * (1 - mask) s = torch.exp(-log_s) return (inputs - t) * s, -log_s.sum(-1, keepdim=True) class FlowSequential(nn.Sequential): """ A sequential container for flows. In addition to a forward pass it implements a backward pass and computes log jacobians. """ def forward(self, inputs, cond_inputs=None, mode='direct', logdets=None): """ Performs a forward or backward pass for flow modules. Args: inputs: a tuple of inputs and logdets mode: to run direct computation or inverse """ self.num_inputs = inputs.size(-1) if logdets is None: logdets = torch.zeros(inputs.size(0), 1, device=inputs.device) assert mode in ['direct', 'inverse'] if mode == 'direct': for module in self._modules.values(): inputs, logdet = module(inputs, cond_inputs, mode) logdets += logdet else: for module in reversed(self._modules.values()): inputs, logdet = module(inputs, cond_inputs, mode) logdets += logdet return inputs, logdets def log_probs(self, inputs, cond_inputs=None): u, log_jacob = self(inputs, cond_inputs) log_probs = (-0.5 * u.pow(2) - 0.5 * math.log(2 * math.pi)).sum( -1, keepdim=True) return (log_probs + log_jacob).sum(-1, keepdim=True) def sample(self, num_samples=None, noise=None, cond_inputs=None): if noise is None: noise = torch.Tensor(num_samples, self.num_inputs).normal_() device = next(self.parameters()).device noise = noise.to(device) if cond_inputs is not None: cond_inputs = cond_inputs.to(device) samples = self.forward(noise, cond_inputs, mode='inverse')[0] return samples class SingleSpeed(nn.Module): def __init__(self, num_inputs, num_hidden, num_blocks, num_layers): super(SingleSpeed, self).__init__() modules = [] mask = torch.arange(0, num_inputs) % 2 mask = mask.float() for i in range(num_blocks): modules += [ CouplingLayer( num_inputs, num_hidden, mask, None, s_act='tanh', t_act='relu', num_layers=num_layers) ] mask = 1 - mask self.net = FlowSequential(*modules) def forward(self, inputs, cond_inputs=None, mode='direct', logdets=None): return self.net(inputs, cond_inputs=cond_inputs, mode=mode, logdets=logdets) def log_probs(self, inputs, cond_inputs=None): return self.net.log_probs(inputs, cond_inputs=None) def sample(self, num_samples=None, noise=None, cond_inputs=None): return self.net.sample(num_samples=num_samples, noise=noise, cond_inputs=cond_inputs) class FastSlow(nn.Module): def __init__(self, num_fast, num_slow, num_hidden, num_blocks, num_layers): super(FastSlow, self).__init__() self.num_fast = num_fast self.num_slow = num_slow self.num_inputs = num_fast + num_slow # Fast block mask_fast = torch.arange(0, num_fast) % 2 mask_fast = mask_fast.float() modules_fast = [] for _ in range(num_blocks): modules_fast += [ CouplingLayer( num_fast, num_hidden, mask_fast, None, s_act='tanh', t_act='relu', num_layers=num_layers) ] mask_fast = 1 - mask_fast self.net_fast = FlowSequential(*modules_fast) # Slow block mask_slow = torch.arange(0, num_slow) % 2 mask_slow = mask_slow.float() modules_slow = [] for _ in range(num_blocks): modules_slow += [ CouplingLayer( num_slow, num_hidden, mask_slow, None, s_act='tanh', t_act='relu', num_layers=num_layers) ] mask_slow = 1 - mask_slow self.net_slow = FlowSequential(*modules_slow) # Combine fast and slow such that slow is unnchanged just by updating fast block modules = [] mask = torch.cat((torch.ones(num_slow), torch.zeros(num_fast))) modules = [ CouplingLayer( num_slow + num_fast, num_hidden, mask, None, s_act='tanh', t_act='relu', num_layers=num_layers) ] self.net = FlowSequential(*modules) def forward(self, inputs, cond_inputs=None, mode='direct', logdets=None): assert mode in ['direct', 'inverse'] if mode == 'direct': slow, logdets_slow = self.net_slow(inputs[:, 0:self.num_slow], mode=mode) fast, logdets_fast = self.net_fast(inputs[:, self.num_slow:self.num_slow+self.num_fast], mode=mode) inputs = torch.cat((slow, fast), dim=1) inputs, logdets = self.net(inputs, mode=mode) else: inputs, logdets = self.net(inputs, mode=mode) slow, logdets_slow = self.net_slow(inputs[:, 0:self.num_slow], mode=mode) fast, logdets_fast = self.net_fast(inputs[:, self.num_slow:self.num_slow+self.num_fast], mode=mode) inputs = torch.cat((slow, fast), dim=1) return inputs, logdets_slow + logdets_fast + logdets def log_probs(self, inputs, cond_inputs=None): slow, logdets_slow = self.net_slow(inputs[:, 0:self.num_slow]) fast, logdets_fast = self.net_fast(inputs[:, self.num_slow:self.num_slow+self.num_fast]) inputs = torch.cat((slow, fast), dim=1) u, log_jacob = self.net(inputs) log_probs = (-0.5 * u.pow(2) - 0.5 * math.log(2 * math.pi)).sum( -1, keepdim=True) return (log_probs + log_jacob + logdets_slow + logdets_fast).sum(-1, keepdim=True) def sample(self, num_samples=None, noise=None, cond_inputs=None): if noise is None: noise = torch.Tensor(num_samples, self.num_inputs).normal_() device = next(self.parameters()).device noise = noise.to(device) if cond_inputs is not None: cond_inputs = cond_inputs.to(device) samples = self.forward(noise, cond_inputs, mode='inverse')[0] return samples ```
{ "source": "JohannesBuchner/pystrict3", "score": 2 }
#### File: pystrict3/pystrict3lib/classchecker.py ```python import ast import sys from .funcchecker import FuncLister, count_call_arguments internal_members = set(dir(object)).union(dir(classmethod)).union(dir(lambda x: x)) class MethodCallLister(ast.NodeVisitor): """Verifies all calls against call signatures in known_methods. Unknown functions are not verified.""" def __init__(self, filename, class_name, known_methods, known_staticmethods): self.filename = filename self.known_methods = known_methods self.known_staticmethods = known_staticmethods self.class_name = class_name def visit_Call(self, node): self.generic_visit(node) if not (isinstance(node.func, ast.Attribute) and isinstance(node.func.value, ast.Name) and node.func.value.id == 'self'): return funcname = node.func.attr min_call_args, may_have_more = count_call_arguments(node) if funcname in self.known_staticmethods: min_args, max_args = self.known_staticmethods[funcname] is_staticmethod = True elif funcname in self.known_methods: min_args, max_args = self.known_methods[funcname] # self is supplied by Python min_call_args += 1 is_staticmethod = False else: # this is already guaranteed by the ClassPropertiesLister return if max_args >= 0 and min_call_args > max_args: sys.stderr.write('%s:%d: ERROR: Class "%s": %s "%s" (%d..%d arguments) called with too many (%d%s) arguments\n' % ( self.filename, node.lineno, self.class_name, 'static method' if is_staticmethod else 'method', funcname, min_args, max_args, min_call_args, '+' if may_have_more else '')) sys.exit(1) elif min_call_args < min_args and not may_have_more: sys.stderr.write('%s:%d: ERROR: Class "%s": %s "%s" (%d..%d arguments) called with too few (%d%s) arguments\n' % ( self.filename, node.lineno, self.class_name, 'static method' if is_staticmethod else 'method', funcname, min_args, max_args, min_call_args, '+' if may_have_more else '')) sys.exit(1) else: print("call(%s.%s with %d%s args): OK" % (self.class_name, funcname, min_call_args, '+' if may_have_more else '')) class ClassPropertiesLister(ast.NodeVisitor): """Verifies that all class properties that are accessed inside a class are set at some point in the same class.""" def __init__(self, filename): self.filename = filename def visit_ClassDef(self, node): self.generic_visit(node) # skip subclasses metaclasses and other fancy things derived_class = len(node.bases) > 1 \ or len(node.bases) > 0 and not (len(node.bases) == 1 and isinstance(node.bases[0], ast.Name) and node.bases[0].id == 'object') \ or len(node.keywords) > 0 or len(node.decorator_list) > 0 # standalone class # collect all members known_attributes = set() known_members = set(internal_members) for child in ast.iter_child_nodes(node): if isinstance(child, ast.FunctionDef): print("+%s.%s()" % (node.name, child.name)) known_members.add(child.name) if isinstance(child, ast.Assign): for target in child.targets: for name in ast.walk(target): if isinstance(name, ast.Name): print("+%s.%s" % (node.name, name.id)) known_attributes.add(name.id) # collect all assigns for child in ast.walk(node): if isinstance(child, ast.Attribute) and isinstance(child.value, ast.Name) and child.value.id == 'self' and isinstance(child.ctx, ast.Store): known_attributes.add(child.attr) for child in ast.walk(node): if isinstance(child, ast.Attribute) and isinstance(child.value, ast.Name) and child.value.id == 'self' and isinstance(child.ctx, ast.Load): if child.attr in known_attributes: print("accessing attribute %s.%s: OK" % (node.name, child.attr)) continue if child.attr in known_members: print("accessing member %s.%s: OK" % (node.name, child.attr)) continue if derived_class: print("accessing unknown member %s.%s: possibly OK, derived class" % (node.name, child.attr)) continue sys.stderr.write('%s:%d: ERROR: accessing unknown class attribute "%s.%s"\n' % ( self.filename, child.lineno, node.name, child.attr)) sys.exit(1) # verify class members funcs = FuncLister(filename=self.filename) funcs.visit(node) MethodCallLister( filename=self.filename, class_name=node.name, known_methods=funcs.known_functions, known_staticmethods=funcs.known_staticmethods ).visit(node) ``` #### File: pystrict3/pystrict3lib/funcchecker.py ```python import ast import sys import inspect import importlib import builtins import distutils.sysconfig import os from collections import defaultdict def parse_builtin_signature(signature): min_args = 0 for param in signature.parameters.values(): if param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD or param.kind == inspect.Parameter.POSITIONAL_ONLY: if param.default == inspect.Parameter.empty: min_args += 1 else: break for param in signature.parameters.values(): if param.kind == inspect.Parameter.VAR_KEYWORD or param.kind == inspect.Parameter.VAR_POSITIONAL: return min_args, -1 max_args = len(signature.parameters) return min_args, max_args def count_function_min_arguments(arguments): """ returns minimum number of arguments. """ return len(arguments.args) - len(arguments.defaults) def count_function_max_arguments(arguments): """ returns maximum number of arguments. If uncertain, returns -1. """ if arguments.vararg or arguments.kwarg: return -1 return len(arguments.args) + len(arguments.kwonlyargs) def count_function_arguments(arguments): """ returns minimum and maximum number of arguments. If uncertain, the maximum is -1. """ return count_function_min_arguments(arguments), count_function_max_arguments(arguments) def count_call_arguments(call): """ returns the number of arguments given to call, and a bool indicating whether that may be a lower limit """ may_have_more = False min_call_args = 0 for arg in call.args: if isinstance(arg, ast.Starred): # should not count *args may_have_more |= True continue min_call_args += 1 for arg in call.keywords: if arg.arg is None: # **kwargs may_have_more |= True min_call_args += 1 return min_call_args, may_have_more class FuncLister(ast.NodeVisitor): """Compiles a list of all functions and class inits with their call signatures. Result is in the known_functions attribute.""" def __init__(self, filename): self.filename = filename self.known_functions = dict(**FuncLister.KNOWN_BUILTIN_FUNCTIONS) self.known_staticmethods = {} KNOWN_BUILTIN_FUNCTIONS = {} @staticmethod def load_builtin_functions(): for f, func in builtins.__dict__.items(): if inspect.isbuiltin(func) or inspect.isfunction(func): try: FuncLister.KNOWN_BUILTIN_FUNCTIONS[f] = parse_builtin_signature(inspect.signature(func)) except ValueError: FuncLister.KNOWN_BUILTIN_FUNCTIONS[f] = 0, -1 def visit_FunctionDef(self, node): is_staticmethod = len(node.decorator_list) == 1 and isinstance(node.decorator_list[0], ast.Name) and node.decorator_list[0].id == 'staticmethod' if node.decorator_list == [] or is_staticmethod: min_args = count_function_min_arguments(node.args) max_args = count_function_max_arguments(node.args) else: min_args = 0 max_args = -1 if node.name in self.known_functions: min_args_orig, max_args_orig = self.known_functions[node.name] min_combined_args = min(min_args, min_args_orig) if max_args == -1 or max_args_orig == -1: max_combined_args = -1 else: max_combined_args = max(max_args, max_args_orig) else: min_combined_args, max_combined_args = min_args, max_args if is_staticmethod: self.known_staticmethods[node.name] = (min_combined_args, max_combined_args) else: self.known_functions[node.name] = (min_combined_args, max_combined_args) print('function "%s" has %d..%d arguments' % (node.name, min_args, max_args)) self.generic_visit(node) def visit_ClassDef(self, node): # find the child that defines __init__ if node.decorator_list == []: if node.name in self.known_functions: sys.stderr.write('%s:%d: ERROR: Class "%s" redefined\n' % ( self.filename, node.lineno, node.name)) sys.exit(1) for child in ast.iter_child_nodes(node): # look for __init__ method: if not isinstance(child, ast.FunctionDef): continue if not child.name == '__init__': continue arguments = child.args if len(arguments.args) >= 1 and arguments.args[0].arg == 'self': min_args, max_args = count_function_arguments(arguments) # remove self from arguments, as it is supplied by Python if max_args > 0: max_args -= 1 min_args -= 1 self.known_functions[node.name] = (min_args, max_args) print('class "%s" init has %d..%d arguments' % (node.name, min_args, max_args)) self.generic_visit(node) class CallLister(ast.NodeVisitor): """Verifies all calls against call signatures in known_functions. Unknown functions are not verified.""" def __init__(self, filename, known_functions): self.filename = filename self.known_functions = known_functions def visit_Call(self, node): self.generic_visit(node) if not isinstance(node.func, ast.Name): return funcname = node.func.id if funcname not in self.known_functions: return min_args, max_args = self.known_functions[funcname] min_call_args, may_have_more = count_call_arguments(node) if max_args >= 0 and min_call_args > max_args: sys.stderr.write('%s:%d: ERROR: Function "%s" (%d..%d arguments) called with too many (%d%s) arguments\n' % ( self.filename, node.lineno, funcname, min_args, max_args, min_call_args, '+' if may_have_more else '')) sys.exit(1) elif min_call_args < min_args and not may_have_more: sys.stderr.write('%s:%d: ERROR: Function "%s" (%d..%d arguments) called with too few (%d%s) arguments\n' % ( self.filename, node.lineno, funcname, min_args, max_args, min_call_args, '+' if may_have_more else '')) sys.exit(1) else: print("call(%s with %d%s args): OK" % (funcname, min_call_args, '+' if may_have_more else '')) BUILTIN_MODULES = [] for m in list(sys.builtin_module_names) + list(sys.modules.keys()): if not m.startswith('_'): BUILTIN_MODULES.append(m) class ModuleCallLister(ast.NodeVisitor): """Verifies all calls against call signatures in known_functions. Unknown functions are not verified.""" def __init__(self, filename, load_policy='none'): """ If load_policy is 'none', do not load any new modules. if load_policy is 'builtins', load python libraries from the python standard library path. if load_policy is 'all', try to load arbitrary python libraries.""" self.filename = filename if load_policy not in ('none', 'builtins', 'all'): raise ValueError("load_policy needs to be one of ('none', 'builtins', 'all'), not '%s'" % load_policy) self.load_policy = load_policy self.approved_module_names = {k for k in sys.modules.keys() if not k.startswith('_')} if self.load_policy != 'none': self.approved_module_names |= {k for k in sys.builtin_module_names if not k.startswith('_')} # if self.load_policy != 'all': # print("allowed modules:", sorted(self.approved_module_names)) self.used_module_names = {} def visit_Import(self, node): for alias in node.names: if alias.asname is None: self.used_module_names[alias.name] = alias.name # print('+module: "%s"' % (alias.name)) else: self.used_module_names[alias.asname] = alias.name # print('+module: "%s"' % (alias.name)) self.load_module(alias.name) self.generic_visit(node) def visit_ImportFrom(self, node): if node.level == 0: for alias in node.names: if alias.asname is None: self.used_module_names[alias.name] = node.module + '.' + alias.name # print('+module: %s' % (node.module + '.' + alias.name, alias.name)) else: self.used_module_names[alias.asname] = node.module + '.' + alias.name # print('+module: %s' % (node.module + '.' + alias.name, alias.asname)) self.load_module(node.module + '.' + alias.name) self.generic_visit(node) # lazy load the needed module functions KNOWN_CALLS = defaultdict(dict) KNOWN_MODULES = {} def load_module(self, module_name): # if this is a submodule, try to handle by importing the parent parts = module_name.split('.') parent_module = '.'.join(parts[:-1]) if parent_module != '': self.load_module(parent_module) parent_mod = ModuleCallLister.KNOWN_MODULES.get(parent_module) if parent_mod is not None: mod = getattr(parent_mod, parts[-1], None) if mod is not None: ModuleCallLister.KNOWN_MODULES[module_name] = mod return mod del mod ModuleCallLister.KNOWN_MODULES[module_name] = None if self.load_policy != 'all' and module_name.split('.')[0] not in self.approved_module_names: return if self.load_policy == 'builtins': if module_name.split('.')[0] not in self.approved_module_names: std_lib = distutils.sysconfig.get_python_lib(standard_lib=True) loadable_std_file = os.path.exists(os.path.join(std_lib, module_name.split('.')[0] + '.py')) loadable_std_dir = os.path.exists(os.path.join(std_lib, module_name.split('.')[0], '__init__.py')) if not loadable_std_file and not loadable_std_dir: # do not load arbitrary modules print('skipping loading module "%s" outside standard lib' % module_name) return try: print('+loading module %s' % module_name) mod = importlib.import_module(module_name) ModuleCallLister.KNOWN_MODULES[module_name] = mod return mod except ImportError: print('WARNING: loading module %s failed' % module_name) return None def get_function(self, module_name, funcname): mod = ModuleCallLister.KNOWN_MODULES[module_name] assert mod is not None if funcname != "": for level in funcname.split('.'): subm = getattr(mod, level, None) if subm is None: print('skipping unknown function "%s.%s"' % (module_name, level)) return else: del mod mod = subm return mod def lazy_load_call(self, module_name, funcname): functions = ModuleCallLister.KNOWN_CALLS[module_name] if funcname in functions: # use cached result return functions[funcname] func = self.get_function(module_name, funcname) if inspect.isbuiltin(func) or inspect.isfunction(func): try: min_args, max_args = parse_builtin_signature(inspect.signature(func)) print('+function: "%s.%s" (%d..%d) arguments' % (module_name, funcname, min_args, max_args)) except ValueError: min_args, max_args = 0, -1 print('+uninspectable callable: "%s.%s"' % (module_name, funcname)) elif inspect.isclass(func): min_args, max_args = parse_builtin_signature(inspect.signature(func.__init__)) # remove self from arguments, as it is supplied by Python if max_args > 0: max_args -= 1 min_args -= 1 print('+class: "%s.%s" (%d..%d) arguments' % (module_name, funcname, min_args, max_args)) elif hasattr(func, '__call__'): # some type we do not understand, like numpy ufuncs min_args, max_args = 0, -1 print('+uninspectable callable: "%s.%s"' % (module_name, funcname)) else: # not callable return functions[funcname] = min_args, max_args return min_args, max_args def visit_Call(self, node): self.generic_visit(node) if isinstance(node.func, ast.Name): funcname = '' module_alias = node.func.id module_name = self.used_module_names.get(module_alias) elif not isinstance(node.func, ast.Attribute): # print("skipping call: not an attribute") return elif isinstance(node.func.value, ast.Name): funcname = node.func.attr module_alias = node.func.value.id module_name = self.used_module_names.get(module_alias) elif isinstance(node.func.value, ast.Attribute) and isinstance(node.func.value.value, ast.Name): module_alias = node.func.value.value.id + '.' + node.func.value.attr funcname = node.func.attr module_name = self.used_module_names.get(module_alias) if module_name is None and node.func.value.value.id in self.used_module_names: module_name = self.used_module_names.get(node.func.value.value.id) funcname = node.func.value.attr + '.' + node.func.attr else: # print("skipping call: not an 1 or 2-layer attribute: %s") return if module_name is None or module_name not in ModuleCallLister.KNOWN_MODULES: #print('skipping module "%s", because not registered' % module_alias) return del module_alias if self.load_policy in ('builtin', 'none') and module_name not in self.approved_module_names: print('skipping call into unapproved module "%s"' % module_name) return if ModuleCallLister.KNOWN_MODULES[module_name] is None: print('skipping call into not loaded module "%s"' % module_name) return if self.get_function(module_name, funcname) is None: sys.stderr.write('%s:%d: ERROR: "%s.%s" is not in a known module\n' % ( self.filename, node.lineno, module_name, funcname)) sys.exit(1) signature = self.lazy_load_call(module_name, funcname) if signature is None: sys.stderr.write('%s:%d: ERROR: "%s.%s" is not a known function\n' % ( self.filename, node.lineno, module_name, funcname)) sys.exit(1) return min_args, max_args = signature min_call_args, may_have_more = count_call_arguments(node) if max_args >= 0 and min_call_args > max_args: sys.stderr.write('%s:%d: ERROR: function "%s.%s" (%d..%d arguments) called with too many (%d%s) arguments\n' % ( self.filename, node.lineno, module_name, funcname, min_args, max_args, min_call_args, '+' if may_have_more else '')) sys.exit(1) elif min_call_args < min_args and not may_have_more: sys.stderr.write('%s:%d: ERROR: function "%s.%s" (%d..%d arguments) called with too few (%d%s) arguments\n' % ( self.filename, node.lineno, module_name, funcname, min_args, max_args, min_call_args, '+' if may_have_more else '')) sys.exit(1) else: print('call(%s.%s with %d%s args): OK' % (module_name, funcname, min_call_args, '+' if may_have_more else '')) ``` #### File: tests/data23/recipe-121574.py ```python from functools import reduce def matmult(m, v): nrows = len(m) w = [None] * nrows for row in range(nrows): w[row] = reduce(lambda x,y: x+y, list(map(lambda x,y: x*y, m[row], v))) return w #................................................ if __name__=='__main__': m, n = 2, 3 vec = list(range(1, n+1)) mat = [[i*n+x+1 for x in range(n)] for i in range(m)] print('vec=', vec) print('mat=', mat) print('mat . vec=', matmult(mat, vec)) ``` #### File: tests/data23/recipe-197140.py ```python def keypress(): """ Waits for the user to press a key. Returns the ascii code for the key pressed or zero for a function key pressed. """ import msvcrt while 1: if msvcrt.kbhit(): # Key pressed? a = ord(msvcrt.getch()) # get first byte of keyscan code if a == 0 or a == 224: # is it a function key? msvcrt.getch() # discard second byte of key scan code return 0 # return 0 else: return a # else return ascii code def funkeypress(): """ Waits for the user to press any key including function keys. Returns the ascii code for the key or the scancode for the function key. """ import msvcrt while 1: if msvcrt.kbhit(): # Key pressed? a = ord(msvcrt.getch()) # get first byte of keyscan code if a == 0 or a == 224: # is it a function key? b = ord(msvcrt.getch()) # get next byte of key scan code x = a + (b*256) # cook it. return x # return cooked scancode else: return a # else return ascii code def anykeyevent(): """ Detects a key or function key pressed and returns its ascii or scancode. """ import msvcrt if msvcrt.kbhit(): a = ord(msvcrt.getch()) if a == 0 or a == 224: b = ord(msvcrt.getch()) x = a + (b*256) return x else: return a # ----------------------------------------------------------------------------- # demo applications. def about(): return\ """ Keys reported: ENTER, comma, period, greater-than, less-than. Upper and lower case keys: A, C, H, Q. Function Keys: F1, SHIFT-F1, CTRL-F1, ALT-F1, Left arrow, right arrow, page up, page down. Any other keys are assigned to print "Default" Pressing ESC or Q will initiate exit query. Pressing A will print this text. """ def keycommands(x): if x == 13: # ENTER print('ENTER pressed') return True if x in list(map(ord,'aA')): # A print(about()) return True if x in list(map(ord,'cC')): # C print('Continue') return True if x in list(map(ord,'hH')): # H print('HELP') return True if x in list(map(ord,'qQ')) or x == 27: # Q or ESC print('Press any key to exit.') keypress() print('Bye') return False if x == ord(','): # , print('Comma') return True if x == ord('.'): # . print('Period') return True if x == ord('>'): # > print('Greater Than') return True if x == ord('<'): # < print('Less Than') return True if x == 15104: # F1 print('F1') return True if x == 21504: # SHIFT-F1 print('SHIFT-F1') return True if x == 24064: # CTRL-F1 print('CNTRL-F1') return True if x == 26624: # ALT-F1 print('ALT-F1') return True if x == 18912: # PAGE UP print('PAGE UP') return True if x == 20960: # PAGE DOWN print('PAGE DOWN') return True if x == 19424: # LEFT ARROW KEY print('LEFT ARROW KEY') return True if x == 19936: # RIGHT ARROW KEY print('RIGHT ARROW KEY') return True print('Default') # Any remaining keys return True def validating(x): if x in list(map(ord,'hH')): # query if help is needed print('Would you like to see the help menu? <y/n>', end=' ') if keypress() in list(map(ord,'yY')): return ord('h') # help needed else: return ord('c') # help not needed if x in list(map(ord,'qQ')): # query if quitting is requested print('Would you like to quit? <y/n>', end=' ') if keypress() in list(map(ord,'yY')): return ord('q') # quit else: return ord('c') # don't quit return x # otherwise, x is any key other than H,Q. ################################# # The keypress interpreter demo # ################################# def commandloop(): print('Keypress interpreter utility.') print(about()) print('Waiting...') interpreting=True while interpreting: interpreting=keycommands(validating(funkeypress())) #################################### # The IBM scancode display utility # #################################### def scancode(): print('IBM scancode utility.\nPress CTRL-C to quit.') while 1: x=funkeypress() print('Dec: %d Hex: %x' % (x,x)) ######################## # The Exit key example # ######################## def exitkey(): x = True while x != 20448: # END key? print('o', end=' ') x = anykeyevent() # key? if x == 20448 : break # if END key touched, then break. elif x == None: continue # if no key touched, continue printing. else: # if other key touched, prompt user. print('\nPress END key to exit. Other key to continue printing.') x = funkeypress() #------------------------------------------------------------------------------ # The main loop. if __name__ == '__main__': while 1: print("""Please select one from the menu: [1] Keypress interpreter demo. [2] IBM scancode utility. [3] Exit key example\n""") x=keypress() if x == ord('1'): commandloop() if x == ord('2'): scancode() if x == ord('3'): exitkey() print('Press q to quit.\n') if keypress() in list(map(ord,'qQ')): break else: continue ``` #### File: tests/data23/recipe-224980.py ```python class AssertInit(type): """Assert that initializers get called. Set this as a __metaclass__ for the root class in a class hierarchy, and you will get AssertionError if some of the base class initializers isn't called. """ def __new__(cls, classname, bases, classdict): # if class has no real init method, it doesn't # matter if it isn't called classdict['_has_real_init_'] = ('__init__' in classdict) old_init = classdict.get('__init__', lambda self: None) def new_init(self, *args, **kwargs): # here selfclass refers to the class in which # this __init__ function lies (see below this function # definition for the definition of selfclass) # this is code that will be executed by # all initializers except the first one: if hasattr(self, '_visited_bases_'): self._visited_bases_[selfclass] = True old_init(self, *args, **kwargs) return # initialize _visited_bases_ by scanning *all* superclasses # and by creating mappings from the class object to False # if the base class needs to be visited, True otherwise. self._visited_bases_ = vb = {} def recurseBases(bases): for claz in bases: vb[claz] = (not hasattr(claz, '_has_real_init_') or not claz.__dict__['_has_real_init_']) recurseBases(claz.__bases__) recurseBases(bases) old_init(self, *args, **kwargs) # scan _visited_bases_ to see which base class # initializers didn't get visited unvisited = ['%s.%s' % (claz.__module__, claz.__name__) for claz, visited in list(vb.items()) if not visited] if unvisited: fullClassName = '%s.%s' %\ (selfclass.__module__, selfclass.__name__) raise AssertionError("Initializer%s in class%s (%s) not " "visited when constructing object " "from class %s" % (len(unvisited) > 1 and 's' or '', len(unvisited) > 1 and 'es' or '', ', '.join(unvisited), fullClassName)) # ^def new_init classdict['__init__'] = new_init # the newly created class, selfclass, is referred to inside # the new_init function, so it has to be put in a new variable selfclass = super(AssertInit, cls).__new__\ (cls, classname, bases, classdict) return selfclass ########### USAGE ############ def test(): class A(object, metaclass=AssertInit): def __init__(self): print('A init') class B(A): def __init__(self): #A.__init__(self) print('B init') class C(A): pass # a separate root class needs to set the __metaclass__ properly class G(object, metaclass=AssertInit): def __init__(self): print('G init') class D(C, B, G): def __init__(self): B.__init__(self) #G.__init__(self) print('D init') # This will raise an error for not calling two base # class initializers: A and G. # It properly sees that C.__init__ needs not be # called and that B.__init__ was called. D() if __name__ == '__main__': test() ``` #### File: tests/data23/recipe-252237.py ```python from sets import Set import re """ From the SWI-Prolog manual: dwim_match(+Atom1, +Atom2) Succeeds if Atom1 matches Atom2 in `Do What I Mean' sense. Both Atom1 and Atom2 may also be integers or floats. The two atoms match if: o They are identical o They differ by one character (spy == spu) o One character is inserted/deleted (debug == deug) o Two characters are transposed (trace == tarce) o `Sub-words' are glued differently (existsfile == existsFile == exists_file) o Two adjacent sub words are transposed (existsFile == fileExists) Thanks for <NAME> for writing a Levenshtein Distance function in Py. Thanks to <NAME> for pointing me to SWI-Prolog's DWIM algo. """ def dwim_match(s1, s2, degree=1): #passing a degree arg sounds nice, but is #probably dumb... the rest of the code will #break if degree != 1... needs to be reworked #the easy, obvious case if s1 == s2: return True #covers these cases: # - one character of diff # - one character inserted/deleted if ld(s1, s2) == degree: return True #transposition is trickier since it's ld == 2; so, maybe: if ld(s1, s2) == 2: if len(s1) == len(s2): return True #this fails on "pat" and "atp" #the two subword cases: diff gluings; transp'd adjacents w1 = split_words(s1) w2 = split_words(s2) if w1 and w2: #diff gluings if len(w1) == len(w2): if Set([s.lower() for s in w1]) == Set([s.lower() for s in w2]): return True #this may cover both subword cases!? #for now, let's say it does.... #give up return False def split_words(s, other=False): # we consider 4 word separator cases: # "_", "-", "+", camelCase; short of running through a dictionary, I don't # know how to do the no separator case: foobar... if "_" in s: sep = "_" if "-" in s: sep = "-" if "+" in s: sep = "+" if other and other in s: sep = other try: if sep: return s.split(sep) except UnboundLocalError: return case_splitter(s) def case_splitter(s): pattern = re.compile(r"""([A-Z][a-z]*)""") def nullp(str): if str != "": return True else: return False return list(filter(nullp, pattern.split(s))) def ld(a, b): #stolen from m.l. hetland n, m = len(a), len(b) if n > m: # Make sure n <= m, to use O(min(n,m)) space a,b = b,a n,m = m,n current = range(n+1) for i in range(1,m+1): previous, current = current, [i]+[0] * m for j in range(1, n+1): add, delete = previous[j] + 1, current[j-1] + 1 change = previous[j-1] if a[j-1] != b[i-1]: change +=1 current[j] = min(add, delete, change) return current[n] if __name__ == "__main__": s1 = s2 = "foobar" print("Testing: %s, %s" % (s1, s2)) print(dwim_match(s1, s2)) s1 = "spy"; s2 = "spu" print("Testing: %s, %s" % (s1, s2)) print(dwim_match(s1, s2)) s1 = "debug"; s2 = "deug" print("Testing: %s, %s" % (s1, s2)) print(dwim_match(s1, s2)) s1 = "file_exists"; s2 = "file-exists" print("Testing: %s, %s" % (s1, s2)) print(dwim_match(s1, s2)) s1 = "file+exists"; s2 = "file-exists" print("Testing: %s, %s" % (s1, s2)) print(dwim_match(s1, s2)) s1 = "Bartles"; s2 = "bartles" print("Testing: %s, %s" % (s1, s2)) print(dwim_match(s1, s2)) s1 = "fileExists"; s2 = "existsFile" print("Testing: %s, %s" % (s1, s2)) print(dwim_match(s1, s2)) s1 = "bartles"; s2 = "james" print("Testing: %s, %s" % (s1, s2)) print(dwim_match(s1, s2)) ``` #### File: tests/data23/recipe-286132.py ```python class MementoMetaclass(type): cache = {} def __call__(self, *args): print("="*20) print("ClassObj:", self) print("Args:", args) print("="*20) cached = self.cache.get(args, None) if not cached: instance = type.__call__(self, *args) self.cache.update({args:instance}) return instance return cached class Foo(object, metaclass=MementoMetaclass): template = '' def __init__(self, arg1, arg2, arg3): self.template = arg1 a = Foo(1,2,3) b = Foo(2,3,4) c = Foo(1,2,3) d = Foo(2,3,4) e = Foo(5,6,7) f = Foo(5,6,7) print(id(a), id(b), id(c), id(d), id(e), id(f)) ``` #### File: tests/data23/recipe-286160.py ```python import sys import cgi import urllib.request, urllib.error, urllib.parse sys.stderr = sys.stdout HOMEPAGE = 'www.google.co.uk' ###################################################### def getform(valuelist, theform, notpresent=''): """This function, given a CGI form, extracts the data from it, based on valuelist passed in. Any non-present values are set to '' - although this can be changed. (e.g. to return None so you can test for missing keywords - where '' is a valid answer but to have the field missing isn't.)""" data = {} for field in valuelist: if field not in theform: data[field] = notpresent else: if type(theform[field]) != type([]): data[field] = theform[field].value else: values = [x.value for x in theform[field]] # allows for list type values data[field] = values return data def pagefetch(thepage): req = urllib.request.Request(thepage) u = urllib.request.urlopen(req) data = u.read() return data ################################################### if __name__ == '__main__': form = cgi.FieldStorage() data = getform(['url'],form) if not data['url']: data['url'] = HOMEPAGE print("Content-type: text/html") # this is the header to the server print() # so is this blank line test = pagefetch('http://' + data['url']) print(test) ``` #### File: tests/data23/recipe-299207.py ```python class progressbarClass: def __init__(self, finalcount, progresschar=None): import sys self.finalcount=finalcount self.blockcount=0 # # See if caller passed me a character to use on the # progress bar (like "*"). If not use the block # character that makes it look like a real progress # bar. # if not progresschar: self.block=chr(178) else: self.block=progresschar # # Get pointer to sys.stdout so I can use the write/flush # methods to display the progress bar. # self.f=sys.stdout # # If the final count is zero, don't start the progress gauge # if not self.finalcount : return self.f.write('\n------------------ % Progress -------------------1\n') self.f.write(' 1 2 3 4 5 6 7 8 9 0\n') self.f.write('----0----0----0----0----0----0----0----0----0----0\n') return def progress(self, count): # # Make sure I don't try to go off the end (e.g. >100%) # count=min(count, self.finalcount) # # If finalcount is zero, I'm done # if self.finalcount: percentcomplete=int(round(100*count/self.finalcount)) if percentcomplete < 1: percentcomplete=1 else: percentcomplete=100 #print "percentcomplete=",percentcomplete blockcount=int(percentcomplete/2) #print "blockcount=",blockcount if blockcount > self.blockcount: for i in range(self.blockcount,blockcount): self.f.write(self.block) self.f.flush() if percentcomplete == 100: self.f.write("\n") self.blockcount=blockcount return if __name__ == "__main__": from time import sleep pb=progressbarClass(8,"*") count=0 while count<9: count+=1 pb.progress(count) sleep(0.2) pb=progressbarClass(100) pb.progress(20) sleep(0.2) pb.progress(47) sleep(0.2) pb.progress(90) sleep(0.2) pb.progress(100) print("testing 1:") pb=progressbarClass(1) pb.progress(1) ``` #### File: tests/data23/recipe-302498.py ```python import re class REstr(str): cache = {} def __div__(self, regex): try: reg = REstr.cache[regex] except KeyError: REstr.cache[regex] = reg = re.compile(regex) self.sre = reg.search(self) return REstr(self.sre.group()) def __idiv__(self, tpl): try: regex, repl, count = tpl except ValueError: regex, repl = tpl count = 0 try: reg = REstr.cache[regex] except KeyError: REstr.cache[regex] = reg = re.compile(regex) return REstr(reg.sub(repl, self, count)) def __call__(self, g): return self.sre.group(g) if __name__ == '__main__': a = REstr('abcdebfghbij') print("a :", a) print("Match a / 'b(..)(..)' :", end=' ') print(a / 'b(..)(..)') # find match print("a[0], a[1], a[2] :", end=' ') print(a[0], a[1], a[2]) # print letters from string print("a(0), a(1), a(2) :", end=' ') print(a(0), a(1), a(2)) # print matches print("a :", a) a /= 'b.', 'X', 1 # find and replace once print("a :", a) a /= 'b.', 'X' # find and replace all print("a :", a) ``` #### File: tests/data23/recipe-302746.py ```python import threading,queue,time,sys,traceback #Globals (start with a captial letter) Qin = queue.Queue() Qout = queue.Queue() Qerr = queue.Queue() Pool = [] def err_msg(): trace= sys.exc_info()[2] try: exc_value=str(sys.exc_info()[1]) except: exc_value='' return str(traceback.format_tb(trace)),str(sys.exc_info()[0]),exc_value def get_errors(): try: while 1: yield Qerr.get_nowait() except queue.Empty: pass def process_queue(): flag='ok' while flag !='stop': try: flag,item=Qin.get() #will wait here! if flag=='ok': newdata='new'+item Qout.put(newdata) except: Qerr.put(err_msg()) def start_threads(amount=5): for i in range(amount): thread = threading.Thread(target=process_queue) thread.start() Pool.append(thread) def put(data,flag='ok'): Qin.put([flag,data]) def get(): return Qout.get() #will wait here! def get_all(): try: while 1: yield Qout.get_nowait() except queue.Empty: pass def stop_threads(): for i in range(len(Pool)): Qin.put(('stop',None)) while Pool: time.sleep(1) for index,the_thread in enumerate(Pool): if the_thread.isAlive(): continue else: del Pool[index] break #STANDARD use: for i in ('b','c'): put(i) start_threads() stop_threads() for i in get_all(): print(i) for i in get_errors(): print(i) #POOL use #put element into input queue put('a') #setup threads -- will run forever as a pool until you shutdown start_threads() for i in ('b','c'): put(i) #get an element from output queue print(get()) #put even more data in, 7 causes an error for i in ('d','e',7): put(i) #get whatever is available for i in get_all(): print(i) #stop_threads only returns when all threads have stopped stop_threads() print('__threads finished last data available__') for i in get_all(): print(i) for i in get_errors(): print(i) #starting up threads again start_threads() put('f') stop_threads() print('__threads finished(again) last data available__') for i in get_all(): print(i) for i in get_errors(): print(i) ``` #### File: tests/data23/recipe-305306.py ```python import re def convert_template(template, opener='[', closer=']'): opener = re.escape(opener) closer = re.escape(closer) pattern = re.compile(opener + '([_A-Za-z][_A-Za-z0-9]*)' + closer) return re.sub(pattern, r'%(\1)s', template.replace('%','%%')) if __name__ == '__main__': import doctest print('Doctest results: ', doctest.testmod()) ``` #### File: tests/data23/recipe-306705.py ```python import sys, os, rpm def get_rpm_info(rpm_file): """Returns rpm information by querying a rpm""" ts = rpm.ts() fdno = os.open(rpm_file, os.O_RDONLY) try: hdr = ts.hdrFromFdno(fdno) except rpm.error: fdno = os.open(rpm_file, os.O_RDONLY) ts.setVSFlags(rpm._RPMVSF_NOSIGNATURES) hdr = ts.hdrFromFdno(fdno) os.close(fdno) return { 'name': hdr[rpm.RPMTAG_NAME], 'ver' : "%s-%s" % (hdr[rpm.RPMTAG_VERSION],\ hdr[rpm.RPMTAG_RELEASE]), 'epoch': hdr[rpm.RPMTAG_EPOCH],\ 'arch': hdr[rpm.RPMTAG_ARCH] } if __name__ == '__main__': blob = sys.argv[1] rpm_info = get_rpm_info(blob) for key in rpm_info: print('%s:%s' % (key.ljust(11), rpm_info[key])) ``` #### File: tests/data23/recipe-355638.py ```python def require(*types): ''' Return a decorator function that requires specified types. types -- tuple each element of which is a type or class or a tuple of several types or classes. Example to require a string then a numeric argument @require(str, (int, long, float)) will do the trick ''' def deco(func): ''' Decorator function to be returned from require(). Returns a function wrapper that validates argument types. ''' def wrapper (*args): ''' Function wrapper that checks argument types. ''' assert len(args) == len(types), 'Wrong number of arguments.' for a, t in zip(args, types): if type(t) == type(()): # any of these types are ok assert sum(isinstance(a, tp) for tp in t) > 0, '''\ %s is not a valid type. Valid types: %s ''' % (a, '\n'.join(str(x) for x in t)) assert isinstance(a, t), '%s is not a %s type' % (a, t) return func(*args) return wrapper return deco @require(int) def inter(int_val): print('int_val is ', int_val) @require(float) def floater(f_val): print('f_val is ', f_val) @require(str, (int, int, float)) def nameAge1(name, age): print('%s is %s years old' % (name, age)) # another way to do the same thing number = (int, float, int) @require(str, number) def nameAge2(name, age): print('%s is %s years old' % (name, age)) nameAge1('Emily', 8) # str, int ok nameAge1('Elizabeth', 4.5) # str, float ok nameAge2('Romita', 9) # str, long ok nameAge2('Emily', 'eight') # raises an exception! ``` #### File: tests/data23/recipe-363779.py ```python import sys import time def logged(when): """Log every invocation of the function. when -- This should be "pre" or "post". If "post", then I'll also time the function, which may be useful for profiling. """ def log(f, *args, **kargs): print("""\ Called: function: %s args: %s kargs: %s""" % (repr(f), repr(args), repr(kargs)), file=sys.stderr) def pre_logged(f): def wrapper(*args, **kargs): log(f, *args, **kargs) return f(*args, **kargs) return wrapper def post_logged(f): def wrapper(*args, **kargs): start = time.time() try: return f(*args, **kargs) finally: log(f, *args, **kargs) print("""\ time delta: %s""" % (time.time() - start), file=sys.stderr) return wrapper try: return {"pre": pre_logged, "post": post_logged}[when] except KeyError as e: raise ValueError(e) @logged("post") def hello(name): print("Hello,", name) hello("World!") ``` #### File: tests/data23/recipe-392115.py ```python import unittest def makeSigDigs(num, digits, debug=False): """Return a numeric string with significant digits of a given number. Arguments: num -- a numeric value digits -- how many significant digits (int) debug -- boolean; set to True for verbose mode """ notsig = ['0', '.', '-', '+', 'e'] # not significant pad_zeros_left = '' # zeros to pad immed. left of the decimal pad_zeros_right = '' # zeros to pad immed. right of the decimal pad_zeros_last = '' # zeros to pad after last number after decimal str_left = '' # string to prepend to left of zeros and decimal str_right = '' # string to append to right of decimal and zeros dec = '.' # the decimal e_idx = None e_str = '' num = float(num) if debug: print("%s at %s digits:" % (repr(num), digits)) for n in repr(num): if n not in notsig: # ignore zeros and punctuation first_idx = repr(num).find(n) # index of first digit we care about if debug: print("\tfirst digit at %s" % (first_idx)) break try: first_idx # If it doesn't exist, then we're looking at 0.0 except UnboundLocalError: return '0.0' try: e_idx = repr(num).index('e') # get index of e if in scientific notation except: pass if debug: print("\te at: %s" % (e_idx)) dec_idx = repr(num).find('.') # index of the decimal if debug: print("\tdecimal at %s" % (dec_idx)) if dec_idx < first_idx: """All sigdigs to right of decimal '0.033' """ if debug: print("\tdigits are right of decimal.") last_idx = first_idx + digits -1 if last_idx+1 > len(repr(num)[0:e_idx]): # in case we need extra zeros at the end pad_zeros_last = '0'*(last_idx+1 - len(repr(num)[0:e_idx])) if e_idx and last_idx >= e_idx: # fix last_idx if it picks up the 'e' last_idx = e_idx-1 pad_zeros_left = '0'*1 pad_zeros_right = '0'*(first_idx - dec_idx - 1) str_right = repr(num)[first_idx:last_idx+1] elif dec_idx > first_idx + digits - 1: """All sigdigs to left of decimal. '3300.0' """ if debug: print("\tdigits are left of decimal.") last_idx = first_idx + digits - 1 if e_idx and last_idx >= e_idx: # fix last_idx if it picks up the 'e' last_idx = e_idx-1 str_left = repr(num)[first_idx] str_right = repr(num)[first_idx+1:last_idx+1]+'e+'+str(dec_idx-1-first_idx) else: """Sigdigs straddle the decimal '3.300' """ if debug: print("\tnumber straddles decimal.") last_idx = first_idx + digits # an extra place for the decimal if last_idx+1 > len(repr(num)[0:e_idx]): # in case we need extra zeros at the end pad_zeros_last = '0'*(last_idx+1 - len(repr(num)[0:e_idx])) if e_idx and last_idx >= e_idx: # fix last_idx if it picks up the 'e' last_idx = e_idx-1 str_left = repr(num)[first_idx:dec_idx] str_right = repr(num)[dec_idx+1:last_idx + 1] if e_idx: e_str = repr(num)[e_idx:] if debug: print("\tlast digit at %s" % (last_idx)) if debug: print("\t%s %s %s %s %s %s %s" % (str_left or '_', pad_zeros_left or '_', dec or '_', pad_zeros_right or '_', str_right or '_', pad_zeros_last or '_', e_str or '_')) sig_string = str_left+pad_zeros_left+dec+pad_zeros_right+str_right+pad_zeros_last+e_str if debug: print("\tsignificant: %s\n" % (sig_string)) return sig_string class utMakeSigDigs(unittest.TestCase): knownValues = [[333.333, 4, '333.3'], [33.0, 2, '3.3e+1'], [333.33, 2, '3.3e+2'], [33300.00, 4, '3.330e+4'], [0.0033333, 3, '0.00333'], [3.3e-10, 2, '3.3e-10'], [0.0001, 2, '0.00010'], [3.3e-10, 3, '3.30e-10'], [1.0000000, 6, '1.00000'], [1.00000001591, 6, '1.00000'], [33330000000000000000.0, 6, '3.33300e+19'], [33330000000000000000.03, 6, '3.33300e+19'] ] def testKnownValues(self): """MakeSigDigs should return known values for known inputs. """ for el in self.knownValues: self.assertEqual(makeSigDigs(el[0], el[1], debug=True), el[2]) if __name__ == "__main__": unittest.main() ``` #### File: tests/data23/recipe-408762.py ```python def timeit(*args): "Run the timeit.main function with args, catch and parse the output." import sys import re import timeit import io prev_stdout = sys.stdout sys.stdout = io.StringIO() timeit.main(args) out = sys.stdout.getvalue() sys.stdout = prev_stdout # Parse the output, and apply our own formatting match = re.search(r"(\d+\.\d*|\d+) usec", out) time = float(match.group(1)) print("%8.2f us: %s" % (time, args[-1])) if __name__ == "__main__": timeit("object()") timeit("list()") timeit("[]") timeit("int()") timeit("-s", "rng = range(32)", "[i for i in rng] # a list comp") timeit("-s", "class ClassicClass: pass", "ClassicClass() # create a classic class instance") timeit("-s", "class NewStyleClass(object): pass", "NewStyleClass() # create a new style class instance") ``` #### File: tests/data23/recipe-415903.py ```python class ReverseDict(dict): """ A dictionary which can lookup values by key, and keys by value. All values and keys must be hashable, and unique. """ def __init__(self, *args, **kw): dict.__init__(self, *args, **kw) self.reverse = dict((reversed(list(i)) for i in list(self.items()))) def __setitem__(self, key, value): dict.__setitem__(self, key, value) self.reverse[value] = key class LookupDict(dict): """ A dictionary which can lookup values by key, and keys by value. The lookup method returns a list of keys with matching values to the value argument. """ def __init__(self, *args, **kw): dict.__init__(self, *args, **kw) def lookup(self, value): return [item[0] for item in list(self.items()) if item[1] == value] if __name__ == "__main__": a = ReverseDict(((1,2),(3,4))) print(a[1]) print(a.reverse[2]) a["123"] = 67 print(a["123"]) print(a.reverse[67]) print("-" * 20) b = LookupDict(((1,2),(3,4),(4,2))) print(b.lookup(2)) ``` #### File: tests/data23/recipe-425607.py ```python import datetime # a thing of beauty and a joy forever FIRST = 0 SECOND = 1 THIRD = 2 FOURTH = FORTH = 3 # for people who have finger trouble FIFTH = 4 LAST = -1 SECONDLAST = -2 THIRDLAST = -3 MONDAY = MON = 0 TUESDAY = TUE = TUES = 1 WEDNESDAY = WED = 2 THURSDAY = THU = THUR = 3 FRIDAY = FRI = 4 SATURDAY = SAT = 5 SUNDAY = SUN = 6 JANUARY = JAN = 1 FEBRUARY = FEB = 2 MARCH = MAR = 3 APRIL = APR = 4 MAY = 5 JUNE = JUN = 6 JULY = JUL = 7 AUGUST = AUG = 8 SEPTEMBER = SEP = 9 OCTOBER = OCT = 10 NOVEMBER = NOV = 11 DECEMBER = DEC = 12 def dow_date_finder(which_weekday_in_month=FIRST,day=MONDAY,month=JANUARY,year=2000): dt = datetime.date(year,month,1) dow_lst = [] while dt.weekday() != day: dt = dt + datetime.timedelta(days=1) while dt.month == month: dow_lst.append(dt) dt = dt + datetime.timedelta(days=7) return dow_lst[which_weekday_in_month] # may raise an exception if slicing is wrong if __name__ == "__main__": print("2nd tuesday of may 2005") print(dow_date_finder(SECOND,TUESDAY,MAY,2005)) print("last wednesday of april 2005") print(dow_date_finder(LAST,WEDNESDAY,APRIL,2005)) print("secondlast friday of october 2005 - short form") print(dow_date_finder(SECONDLAST,FRI,OCT,2005)) ``` #### File: tests/data23/recipe-440504.py ```python import shelve import time class collection(object): def __init__(self, db): self.db = db def __call__(self, objects): # get the current time in seconds now = time.time() # create/open the shelve db d = shelve.open(self.db, 'c') # find & remove the missing items from the collection removed = [k for k in d if k not in objects] for remove in removed: d.pop(remove) # find & add new items to the collection added = [k for k in objects if k not in d] for obj in added: d[obj] = now # build a list of tuples (item + age in seconds) items = [(k, int((now - d[k]))) for k in d] d.close() return removed, added, items if __name__ == "__main__": """ below is just a cooked up sample of how the collection object can be used """ mycollection = collection('mycollection.db') removed, added, items = mycollection(('b','c','d')) if removed: print("\nitem(s) removed from the collection:\n") for item in removed: print("\t%s" % item) if added: print("\nitem(s) added to the collection:\n") for item in added: print("\t%s" % item) if items: print("\nitem(s):\n") for item in items: i, age = item print("\titem: %-12s age: %s" % (i,age)) ``` #### File: tests/data23/recipe-473784.py ```python class CustomDict( dict ): #--------------------------------------------------------------------------- defaultValue = 'THIS ITEM NOT AVAILABLE' #--------------------------------------------------------------------------- def __getitem__( self, name ): try: return super( CustomDict, self ).__getitem__( name ) except KeyError: return self.defaultValue #--------------------------------------------------------------------------- def __contains__( self, name ): return True #--------------------------------------------------------------------------- def has_key( self, name ): return True ################################################################################ # # # #=============================================================================== class X( object ): #--------------------------------------------------------------------------- def __init__( self ): self._dict = CustomDict( foo = 'bar' ) #--------------------------------------------------------------------------- @property def __dict__( self ): #print 'X.__dict__ ( get() )' return self._dict #--------------------------------------------------------------------------- def __getattr__( self, name ): return self.__dict__[ name ] #--------------------------------------------------------------------------- def __setattr__( self, name, value ): if name == '_dict': return super( X, self ).__setattr__( name, value ) self._dict[ name ] = value ################################################################################ # # # #=============================================================================== if __name__ == '__main__': x = X() print(x.__dict__[ 'foo' ]) print(x.__dict__[ 'bar' ]) print(x.foo) print(x.bar) print(x.__dict__) x.oops = 42 print(x.__dict__) # Output: # bar # THIS ITEM NOT AVAILABLE # bar # THIS ITEM NOT AVAILABLE # {'foo': 'bar'} # {'foo': 'bar', 'oops': 42} ``` #### File: tests/data23/recipe-473800.py ```python import os, win32api, win32con def getenv_system(varname, default=''): v = default try: rkey = win32api.RegOpenKey(win32con.HKEY_LOCAL_MACHINE, 'SYSTEM\\CurrentControlSet\\Control\\Session Manager\\Environment') try: v = str(win32api.RegQueryValueEx(rkey, varname)[0]) v = win32api.ExpandEnvironmentStrings(v) except: pass finally: win32api.RegCloseKey(rkey) return v print('SYSTEM.TEMP => %s' % getenv_system('TEMP')) print('USER.TEMP => %s' % os.getenv('TEMP')) ``` #### File: tests/data23/recipe-473893.py ```python n = 3 # Size of inner region n2, n3, n4 = n**2, n**3, n**4 def show(flatline): 'Display grid from a string (values in row major order with blanks for unknowns)' fmt = '|'.join(['%s' * n] * n) sep = '+'.join(['-' * n] * n) for i in range(n): for j in range(n): offset = (i*n+j)*n2 print(fmt % tuple(flatline[offset:offset+n2])) if i != n-1: print(sep) def _find_friends(cell): 'Return tuple of cells in same row, column, or subgroup' friends = set() row, col = cell // n2, cell % n2 friends.update(row * n2 + i for i in range(n2)) friends.update(i * n2 + col for i in range(n2)) nw_corner = row // n * n3 + col // n * n friends.update(nw_corner + i + j for i in range(n) for j in range(0,n3,n2)) friends.remove(cell) return tuple(friends) friend_cells = list(map(_find_friends, list(range(n4)))) def select_an_unsolved_cell(possibles, heuristic=min): # Default heuristic: select cell with fewest possibilities # Other possible heuristics include: random.choice() and max() return heuristic((len(p), cell) for cell, p in enumerate(possibles) if len(p)>1)[1] def solve(possibles, pending_marks): # Apply pending_marks (list of cell,value pairs) to possibles (list of str). # Mutates both inputs. Return solution as a flat string (values in row-major order) # or return None for dead-ends where all possibilites have been eliminated. for cell, v in pending_marks: possibles[cell] = v for f in friend_cells[cell]: p = possibles[f] if v in p: p = possibles[f] = p.replace(v, '') # exclude value v from friend f if not p: return None # Dead-end: all possibilities eliminated if len(p) == 1: pending_marks.append((f, p[0])) # Check to see if the puzzle is fully solved (each cell has only one possible value) if max(list(map(len, possibles))) == 1: return ''.join(possibles) # If it gets here, there are still unsolved cells cell = select_an_unsolved_cell(possibles) for v in possibles[cell]: # try all possible values for that cell ans = solve(possibles[:], [(cell, v)]) if ans is not None: return ans # ----- Examples ----- for given in [ '53 7 6 195 98 6 8 6 34 8 3 17 2 6 6 28 419 5 8 79', ' 75 4 5 8 17 6 36 2 7 1 5 1 1 5 8 96 1 82 3 4 9 48 ', ' 9 7 4 1 6 2 8 1 43 6 59 1 3 97 8 52 7 6 8 4 7 5 8 2 ', '67 38 921 85 736 1 8 4 7 5 1 8 4 2 6 8 5 175 24 321 61 84', '27 15 8 3 7 4 7 5 1 7 9 2 6 2 5 8 6 5 4 8 59 41', ]: show(given) pending_marks = [(i,v) for i, v in enumerate(given) if v != ' '] possibles = ['123456789'] * len(given) result = solve(possibles, pending_marks) print() show(result) print('=-' * 20) ``` #### File: tests/data23/recipe-475181.py ```python import sys from popen2 import popen3 class FetchPhotos: bin = "gnokii" dir = "A:\predefgallery\predefphotos\\" dest = "." file_list = [] def __init__(self, **kwargs): if "bin" in kwargs: self.bin = kwargs["bin"] if "dir" in kwargs: self.dir = kwargs["dir"] if "dest" in kwargs: self.dest = kwargs["dest"] def fetchList(self): (stdout, stdin, stderr) = popen3("%s --getfilelist '%s*.*'" % (self.bin, self.dir)) list = stdout.readlines() # Useless gnokii prompt del list[0] # Get rid of whitespaces at the ends of the file name self.file_list = [x.strip() for x in list] def fetchPhoto(self, p): print("Fetching file %s..." % p) (stdout, stdin, stderr) = popen3("%s --getfile '%s%s' '%s/%s'" % (self.bin, self.dir, p, self.dest, p)) # Make it blocking, so the program will wait for gnokii stdout.read(1) def fetchAll(self): for i in self.file_list: self.fetchPhoto(i) if __name__ == "__main__": if len(sys.argv) == 2: o = FetchPhotos(dest=sys.argv[1]) else: o = FetchPhotos() o.fetchList() o.fetchAll() ``` #### File: tests/data23/recipe-491264.py ```python import socket class DNSQuery: def __init__(self, data): self.data=data self.dominio='' tipo = (ord(data[2]) >> 3) & 15 # Opcode bits if tipo == 0: # Standard query ini=12 lon=ord(data[ini]) while lon != 0: self.dominio+=data[ini+1:ini+lon+1]+'.' ini+=lon+1 lon=ord(data[ini]) def respuesta(self, ip): packet='' if self.dominio: packet+=self.data[:2] + "\x81\x80" packet+=self.data[4:6] + self.data[4:6] + '\x00\x00\x00\x00' # Questions and Answers Counts packet+=self.data[12:] # Original Domain Name Question packet+='\xc0\x0c' # Pointer to domain name packet+='\x00\x01\x00\x01\x00\x00\x00\x3c\x00\x04' # Response type, ttl and resource data length -> 4 bytes packet+=str.join('',[chr(int(x)) for x in ip.split('.')]) # 4bytes of IP return packet if __name__ == '__main__': ip='192.168.1.1' print('pyminifakeDNS:: dom.query. 60 IN A %s' % ip) udps = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) udps.bind(('',53)) try: while 1: data, addr = udps.recvfrom(1024) p=DNSQuery(data) udps.sendto(p.respuesta(ip), addr) print('Respuesta: %s -> %s' % (p.dominio, ip)) except KeyboardInterrupt: print('Finalizando') udps.close() ``` #### File: tests/data23/recipe-491280.py ```python def example_BackgroundCall(): import urllib.request, urllib.parse, urllib.error,time def work(): return urllib.request.urlopen('http://www.python.org/').read() bkcall=BackgroundCall(work) print('work() executing in background ...') while not bkcall.is_done(): print('.', end=' ') time.sleep(0.010) print('done.') print(bkcall.get_return()[:500]) import sys from time import time as _time, sleep as _sleep class Full(Exception):pass class Empty(Exception):pass class BackgroundCall: """BackgroundCall Example: bkcall=BackgroundCall( time_consuming_function ) ... if bkcall.is_done(): print "got", bkcall.get_return() """ id=None done=0 #1=returned; 2=exception raised def __init__(self, func, args=(), kwargs={}): import _thread def thread_bkcall(): try: self.ret=func(*args, **kwargs) self.done=1 except: self.exc=sys.exc_info() self.done=2 self.id=_thread.start_new(thread_bkcall, ()) def is_done(self): return self.done def get_return(self, wait=1, timeout=None, raise_exception=1, alt_return=None): """delivers the return value or (by default) echoes the exception of the call job wait: 0=no waiting; Attribute error raised if no 1=waits for return value or exception callable -> waits and wait()-call's while waiting for return """ if not self.done and wait: starttime=_time() delay=0.0005 while not self.done: if timeout: remaining = starttime + timeout - _time() if remaining <= 0: #time is over if raise_exception: raise Empty("return timed out") else: return alt_return delay = min(delay * 2, remaining, .05) else: delay = min(delay * 2, .05) if callable(wait): wait() _sleep(delay) #reduce CPU usage by using a sleep if self.done==2: #we had an exception exc=self.exc del self.exc if raise_exception & 1: #by default exception is raised raise exc[0](exc[1]).with_traceback(exc[2]) else: return alt_return return self.ret def get_exception(self): return self.exc if __name__=='__main__': example_BackgroundCall() ``` #### File: tests/data23/recipe-511429.py ```python import os def main(): try: while True: while True: mode = input('Mode: ').lower() if 'search'.startswith(mode): mode = False break elif 'destroy'.startswith(mode): mode = True break print('"search" or "destroy"') path = input('Path: ') extention = input('Extention: ') for path_name in search(path, extention, mode): print('Found:', path_name) except: pass def search(path, extention, destroy): assert os.path.isdir(path) path_list = list() for name in os.listdir(path): path_name = os.path.join(path, name) try: if os.path.isdir(path_name): path_list += search(path_name, extention, destroy) elif os.path.isfile(path_name): if path_name.endswith(extention) or not extention: if destroy: os.remove(path_name) else: path_list.append(path_name) except: print('Error:', path_name) return path_list if __name__ == '__main__': main() ``` #### File: tests/data23/recipe-511490.py ```python from time import time class TokenBucket(object): """An implementation of the token bucket algorithm. >>> bucket = TokenBucket(80, 0.5) >>> print bucket.consume(10) True >>> print bucket.consume(90) False """ def __init__(self, tokens, fill_rate): """tokens is the total tokens in the bucket. fill_rate is the rate in tokens/second that the bucket will be refilled.""" self.capacity = float(tokens) self._tokens = float(tokens) self.fill_rate = float(fill_rate) self.timestamp = time() def consume(self, tokens): """Consume tokens from the bucket. Returns True if there were sufficient tokens otherwise False.""" if tokens <= self.tokens: self._tokens -= tokens else: return False return True def get_tokens(self): if self._tokens < self.capacity: now = time() delta = self.fill_rate * (now - self.timestamp) self._tokens = min(self.capacity, self._tokens + delta) self.timestamp = now return self._tokens tokens = property(get_tokens) if __name__ == '__main__': from time import sleep bucket = TokenBucket(80, 1) print("tokens =", bucket.tokens) print("consume(10) =", bucket.consume(10)) print("consume(10) =", bucket.consume(10)) sleep(1) print("tokens =", bucket.tokens) sleep(1) print("tokens =", bucket.tokens) print("consume(90) =", bucket.consume(90)) print("tokens =", bucket.tokens) ``` #### File: tests/data23/recipe-521901.py ```python import pickle class Upgradable: class_version = '3.0' def __init__(self): self.version = self.__class__.class_version self.new_attr = 42 def pickle(self): return pickle.dumps(self) def new_method(self): ''' Return the answer to life the universe and everything. Would normally break pickles prior to the introduction of new_attr. ''' return self.new_attr @staticmethod def unpickle(data): out = pickle.loads(data) if not hasattr(out, 'version'): out.version = '0.0' if out.version != out.class_version: out.upgrade() return out def upgrade(self): version = float(self.version) print('upgrade from version %s' % self.version) if version < 1.: self.version = '1.0' print('upgrade to version 1.0') if version < 2.: self.version = '2.0' print('upgrade to version 2.0') if version < 3.: self.version = '3.0' self.new_attr = 42 print('upgrade to version 3.0') def __test__(): ug0 = Upgradable() # downgrade to lower version del ug0.version del ug0.new_attr try: # breaks old pickles! ug0.new_method() raise Exception('Should have raised AttributeError!') except AttributeError: pass # check to see if automatic upgrade works ug3 = ug0.unpickle(ug0.pickle()) assert ug3.version == '3.0' assert ug3.new_attr == 42 assert ug3.new_method() == 42 __test__() ``` #### File: tests/data23/recipe-521914.py ```python from contextlib import contextmanager @contextmanager def Switch(): D = {} class _P(Exception): pass def _mkCase(var): class _PP(_P): V = var def __repr__(self): return str(self.V) D[var]=_PP return _PP def switch(var): if var in D: raise D[var]() raise _mkCase(var)() def case(var): if var in D: return D[var] return _mkCase(var) def default(): return _P yield switch, case, default if __name__=="__main__": def test1(): with Switch() as (switch, case, default): try: switch(55) except case(1): print(1) except case(6): print(6) except case(5): print(5) except default(): print('default..') def test2(): with Switch() as (switch, case, default): try:switch('hola') except case(1): print(1) except case('holaS'): print('holaS') except case('hola'): print('hola') except default(): print('default..') test1() test2() ``` #### File: tests/data23/recipe-52304.py ```python class Class1: def static1(name): print("Hello",name) # ...but now, a call such as: Class1.static1("John") # will fail with a TypeError, as 'static1' has become # an unbound-method object, not a plain function. # This is easy to solve with a simple tiny wrapper: class Callable: def __init__(self, anycallable): self.__call__ = anycallable # toy-example usage: class Class2: def static2(name): print("Hi there",name) static2 = Callable(static2) # now, a call such as: Class2.static2("Peter") # works just fine, and as-expected ``` #### File: tests/data23/recipe-52305.py ```python "Yet Another Python Templating Utility, Version 1.2" import sys # utility stuff to avoid tests in the mainline code class _nevermatch: "Polymorphic with a regex that never matches" def match(self, line): return None _never = _nevermatch() # one reusable instance of it suffices def identity(string, why): "A do-nothing-special-to-the-input, just-return-it function" return string def nohandle(string): "A do-nothing handler that just re-raises the exception" raise # and now the real thing class copier: "Smart-copier (YAPTU) class" def copyblock(self, i=0, last=None): "Main copy method: process lines [i,last) of block" def repl(match, self=self): "return the eval of a found expression, for replacement" # uncomment for debug: print '!!! replacing',match.group(1) expr = self.preproc(match.group(1), 'eval') try: return str(eval(expr, self.globals, self.locals)) except: return str(self.handle(expr)) block = self.locals['_bl'] if last is None: last = len(block) while i<last: line = block[i] match = self.restat.match(line) if match: # a statement starts "here" (at line block[i]) # i is the last line to _not_ process stat = match.string[match.end(0):].strip() j=i+1 # look for 'finish' from here onwards nest=1 # count nesting levels of statements while j<last: line = block[j] # first look for nested statements or 'finish' lines if self.restend.match(line): # found a statement-end nest = nest - 1 # update (decrease) nesting if nest==0: break # j is first line to _not_ process elif self.restat.match(line): # found a nested statement nest = nest + 1 # update (increase) nesting elif nest==1: # look for continuation only at this nesting match = self.recont.match(line) if match: # found a contin.-statement nestat = match.string[match.end(0):].strip() stat = '%s _cb(%s,%s)\n%s' % (stat,i+1,j,nestat) i=j # again, i is the last line to _not_ process j=j+1 stat = self.preproc(stat, 'exec') stat = '%s _cb(%s,%s)' % (stat,i+1,j) # for debugging, uncomment...: print "-> Executing: {"+stat+"}" exec(stat, self.globals,self.locals) i=j+1 else: # normal line, just copy with substitution self.ouf.write(self.regex.sub(repl,line)) i=i+1 def __init__(self, regex=_never, dict={}, restat=_never, restend=_never, recont=_never, preproc=identity, handle=nohandle, ouf=sys.stdout): "Initialize self's attributes" self.regex = regex self.globals = dict self.locals = { '_cb':self.copyblock } self.restat = restat self.restend = restend self.recont = recont self.preproc = preproc self.handle = handle self.ouf = ouf def copy(self, block=None, inf=sys.stdin): "Entry point: copy-with-processing a file, or a block of lines" if block is None: block = inf.readlines() self.locals['_bl'] = block self.copyblock() if __name__=='__main__': "Test: copy a block of lines, with full processing" import re rex=re.compile('@([^@]+)@') rbe=re.compile('\+') ren=re.compile('-') rco=re.compile('= ') x=23 # just a variable to try substitution cop = copier(rex, globals(), rbe, ren, rco) lines_block = [line+'\n' for line in """ A first, plain line -- it just gets copied. A second line, with @x@ substitutions. + x+=1 # non-block statements MUST end with comments - Now the substitutions are @x@. + if x>23: After all, @x@ is rather large! = else: After all, @x@ is rather small! - + for i in range(3): Also, @i@ times @x@ is @i*x@. - One last, plain line at the end.""".split('\n')] print("*** input:") print(''.join(lines_block)) print("*** output:") cop.copy(lines_block) ``` #### File: tests/data23/recipe-543271.py ```python def _posmax_psy(seq, key=None): """posmax(seq, key=None): return the position of the first maximum item of a sequence. Accepts the usual key parameter too. >>> posmax([]) Traceback (most recent call last): ... ValueError: maxpos() arg is an empty sequence >>> posmax([1]) 0 >>> posmax(xrange(100)) 99 >>> posmax(xrange(100, 0, -1)) 0 >>> posmax([1,5,0,4,3]) 1 >>> posmax([1,5,0,4,5,3]) 1 >>> l = ['medium', 'longest', 'short'] >>> posmax(l) 2 >>> posmax(l, key=len) 1 >>> posmax(xrange(10**4)) 9999 >>> posmax([2,4,-2,[4],21]) # silly comparison 3 >>> posmax([2,4,-2+3J,[4],21]) Traceback (most recent call last): ... TypeError: no ordering relation is defined for complex numbers """ first = True max_pos = 0 pos = 0 if key is None: for el in seq: if first: max_el = el first = False elif el > max_el: max_el = el max_pos = pos pos += 1 else: for el in seq: key_el = key(el) if first: max_key_el = key_el first = False elif key_el > max_key_el: max_key_el = key_el max_pos = pos pos += 1 if first: raise ValueError("maxpos() arg is an empty sequence") else: return max_pos def _posmax_nopsy(seq, key=None): """posmax(seq, key=None): return the position of the first maximum item of a sequence. Accepts the usual key parameter too. >>> posmax([]) Traceback (most recent call last): ... ValueError: maxpos() arg is an empty sequence >>> posmax([1]) 0 >>> posmax(xrange(100)) 99 >>> posmax(xrange(100, 0, -1)) 0 >>> posmax([1,5,0,4,3]) 1 >>> posmax([1,5,0,4,5,3]) 1 >>> l = ['medium', 'longest', 'short'] >>> posmax(l) 2 >>> posmax(l, key=len) 1 >>> posmax(xrange(10**4)) 9999 >>> posmax([2,4,-2,[4],21]) # silly comparison 3 >>> posmax([2,4,-2+3J,[4],21]) Traceback (most recent call last): ... TypeError: no ordering relation is defined for complex numbers """ first = True max_pos = 0 if key is None: for pos, el in enumerate(seq): if first: max_el = el first = False elif el > max_el: max_el = el max_pos = pos else: for pos, el in enumerate(seq): key_el = key(el) if first: max_key_el = key_el first = False elif key_el > max_key_el: max_key_el = key_el max_pos = pos if first: raise ValueError("maxpos() arg is an empty sequence") else: return max_pos def _posmax_benchmark1(): from time import clock alist = [3]*1000 + [5] + [3]*1000 t = clock() for _ in range(60000): r = posmax(alist) print(round(clock() - t, 2), r) try: import psyco psyco.full() posmax = _posmax_psy except ImportError: posmax = _posmax_nopsy if __name__ == "__main__": import doctest doctest.testmod() print("Doctests finished.\n") _posmax_benchmark1() ``` #### File: tests/data23/recipe-576418.py ```python import threading import time class ThreadGateException(Exception): pass class ThreadGate(object): """ A class which works as a FIFO 'gate' for threads. By default the gate is open and any thread calling on the 'enter' method returns immediately. A thread can 'close' the gate by calling the method 'close'. This thread becomes the owner of the gate. Any other thread calling 'enter' after this is automatically blocked till the owner calls reopens the gate by calling 'open'. The gate requires a certain number of threads to block before the owner exits from the 'close' method. Otherwise, the owner waits for a timeout before returning from the 'close' method, without actually closing the gate. The gate class can be used to block running threads for a particular operation and making sure that they resume after the operation is complete, for a fixed number of threads. """ def __init__(self, numthreads, timeout=0): self.lock = threading.Lock() self.sem = threading.BoundedSemaphore(1) self.evt = threading.Event() self.count = 0 self.owner_timeout = timeout self.owner = None self.nthreads = numthreads # Open by default self.position = 1 def close(self): """ Close the gate. The calling thread becomes the owner of the gate and blocks till the requisite number of threads block on the gate or a timeout occurs, whichever is first. It is an error if the gate is already closed """ if self.position == 0: # Already closed raise ThreadGateException("trying to close an already closed gate") try: self.lock.acquire() self.position = 0 self.owner = threading.currentThread() self.sem.acquire() finally: self.lock.release() # Wait on the event till timeout self.evt.clear() self.evt.wait(self.owner_timeout) # If event was set, requisite number off # threads have blocked, else reset the gate if not self.evt.isSet(): try: print('Owner thread timedout, re-setting gate') self.lock.acquire() self.position = 1 self.owner = None self.sem.release() finally: self.lock.release() return -1 return 0 def open(self): """ Open the gate. The calling thread should be the owner of the gate. It is an error if the gate is already open """ if self.position == 1: # Already open raise ThreadGateException("trying to open an already opened gate") if threading.currentThread() != self.owner: raise ThreadGateException("not owner, cannot open gate") try: self.lock.acquire() self.position = 1 self.owner = None self.sem.release() finally: self.lock.release() def enter(self): """ Enter the gate. If the gate is open, returns immediately, else gets blocked till the gate is opened by the owner """ if self.position==1: return 0 # Lock mutex and increment count try: self.lock.acquire() self.count += 1 if self.count==self.nthreads: self.evt.set() finally: self.lock.release() ct = threading.currentThread() print('Thread %s - Entering Gate' % (ct.getName())) # Lock mutex and decrement count try: # Will block here self.sem.acquire() self.lock.acquire() self.count -= 1 finally: self.lock.release() self.sem.release() print('Thread %s - Exiting Gate' % (ct.getName())) def get_count(self): """ Return count of blocked threads """ return self.count def test(): """ Test code """ import random import queue enterlog = queue.Queue(0) exitlog = queue.Queue(0) def enter(index): enterlog.put(index) def exit(index): exitlog.put(index) class OwnerThread(threading.Thread): """ Owner thread class for gate demo """ def __init__(self, gate): self.gate = gate threading.Thread.__init__(self, None, 'Owner thread') def run(self): # Close the gate print('Closing gate...') ret = self.gate.close() if ret==0: print('Gate closed successfully') print('Gate count=>',self.gate.get_count()) # Open gate after sleeping some time time.sleep(5) if ret==0: print('Opening gate') self.gate.open() else: print('Gate closing not successful') class SampleThread(threading.Thread): """ Sample thread class for gate demo """ def __init__(self, index, gate): self.gate = gate self.index = index threading.Thread.__init__(self, None, 'Thread %d' % self.index, None) def run(self): # Sleep randomly time.sleep(random.choice(list(range(1,10)))) # Mark entry to gate enter(self.index) self.gate.enter() # Mark exit out of gate exit(self.index) def test1(): """ Test code where gate is closed successfully """ print('test1()...') gate = ThreadGate(10, 20) random.seed() print('Starting threads...') # Create 10 threads threads = [] threads.append(OwnerThread(gate)) for x in range(10): threads.append(SampleThread(x, gate)) # Start threads and join for x in range(11): threads[x].start() # Join with threads for x in range(11): threads[x].join() print('Joined with threads') print('Gate count=>',gate.get_count()) # Exit and entry logs must be same print(enterlog) print(exitlog) def test2(): """ Test code where gate is closed unsuccessfully """ print('test1()...') gate = ThreadGate(10, 5) random.seed() print('Starting threads...') # Create 10 threads threads = [] threads.append(OwnerThread(gate)) for x in range(10): threads.append(SampleThread(x, gate)) # Start threads and join for x in range(11): threads[x].start() # Join with threads for x in range(11): threads[x].join() print('Joined with threads') print('Gate count=>',gate.get_count()) # Exit and entry logs must be same print(enterlog) print(exitlog) test1() while not enterlog.empty(): print(enterlog.get(), end=' ') print() while not exitlog.empty(): print(exitlog.get(), end=' ') print() test2() while not enterlog.empty(): print(enterlog.get(), end=' ') print() while not exitlog.empty(): print(exitlog.get(), end=' ') print() if __name__ == "__main__": test() ``` #### File: tests/data23/recipe-576483.py ```python import sys def usage(): print("Call : %s <BitCount>" % sys.argv[0]) print(" shows the dotted netmask (i.e %s 24 => 255.255.255.0)" % sys.argv[0]) def calcDottedNetmask(mask): bits = 0 for i in range(32-mask,32): bits |= (1 << i) return "%d.%d.%d.%d" % ((bits & 0xff000000) >> 24, (bits & 0xff0000) >> 16, (bits & 0xff00) >> 8 , (bits & 0xff)) if __name__ == "__main__": if len(sys.argv) > 1 and sys.argv[1].isdigit(): print(calcDottedNetmask(int(sys.argv[1]))) else: usage() ``` #### File: tests/data23/recipe-576522.py ```python __version__ = '$Id: which_dll.py 2247 2014-10-06 09:19:53Z mn $' r""" Returns the pathnames of the file (.exe or .dll) which would be loaded/executed in the current environment it uses some dirs from configuration (SystemDir, WindowsDir) and dirs from PATH. To obtain version info it uses code from: http://pywin32.hg.sourceforge.net/hgweb/pywin32/pywin32/file/tip/win32/Demos/getfilever.py Example of usage: c:\tools\pyscripts\scripts>which_dll.py libpq.dll 2008-06-09 02:58:26 167936 [b] c:\postgresql\8.3\bin\libpq.dll ver:8.3.3.8160 2008-03-17 01:47:50 167936 [b] c:\tools\libpq.dll ver:8.3.1.8075 2008-03-17 01:47:50 167936 [b] g:\public\libpq.dll ver:8.3.1.8075 trying to load "libpq.dll" ... c:\postgresql\8.3\bin\libpq.dll loaded Author: <NAME> """ USAGE = 'Usage:\n\twhich_dll.py dll_name/exe_name' import sys import time import os import os.path import win32api def get_file_ver(fname): # see: http://pywin32.hg.sourceforge.net/hgweb/pywin32/pywin32/file/tip/win32/Demos/getfilever.py result = [] try: ver_strings = ('ProductVersion', 'FileVersion') pairs = win32api.GetFileVersionInfo(fname, '\\VarFileInfo\\Translation') ## \VarFileInfo\Translation returns list of available (language, codepage) pairs that can be used to retreive string info ## any other must be of the form \StringfileInfo\%04X%04X\parm_name, middle two are language/codepage pair returned from above for lang, codepage in pairs: #print 'lang: ', lang, 'codepage:', codepage for ver_string in ver_strings: str_info = '\\StringFileInfo\\%04X%04X\\%s' % (lang, codepage, ver_string) result.append('%s %s' % (ver_string, win32api.GetFileVersionInfo(fname, str_info).strip())) except: pass return result def get_file_info(file_path): """returns string with file name, its modification time and size""" s = os.stat(file_path) f_date = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(s[8])) f_size = s[6] fv = '' ver_info = get_file_ver(file_path) if ver_info: fv = '\t%s' % ('; '.join(ver_info)) return "%s\t%8s [b]\t%s%s" % (f_date, f_size, file_path, fv) def which(fname): """searches fname in PATH dirs""" if not which_file(fname): if '.' not in fname: # no extension, so we try some "executable" extensions for ext in ('.exe', '.com', '.bat', '.cmd'): fname2 = fname + ext if which_file(fname2): break def which_file(fname): """prints paths for fname where fname can be found, in case of .dll loads it""" files = [] path = win32api.GetEnvironmentVariable('PATH') # try paths as described in MSDN dirs = [os.getcwd(), win32api.GetSystemDirectory(), win32api.GetWindowsDirectory()] + path.split(';') dirs_norm = [] dirs_l = [] for d in dirs: dn = d.lower() if dn not in dirs_l: dirs_l.append(dn) dirs_norm.append(d) for d in dirs_norm: fname2 = os.path.join(d, fname) if os.path.exists(fname2): if fname2 not in files: files.append(fname2) if files: print(('\n'.join([get_file_info(f) for f in files]))) h = 0 if fname.lower().endswith('.dll'): print(('\ttrying to load "%s" ...' % (fname))) try: h = win32api.LoadLibrary(fname) if h: dll_name = win32api.GetModuleFileName(h) print(('\t%s loaded' % (dll_name))) except: print(('\tCannot load "%s" !!!' % (fname))) def main(): if '--version' in sys.argv: print(__version__) return elif '--help' in sys.argv: print(USAGE) return elif '--test' in sys.argv: which('libpq.dll') which('libeay32.dll') which('msvcr71.dll') which('ssleay32.dll') which('cmd.exe') which('grep') which('iclit09b.dll') which('non_existient.dll') return if len(sys.argv) < 2: print(USAGE) else: which(sys.argv[1]) main() ``` #### File: tests/data23/recipe-576614.py ```python import gtk import xml.dom.minidom as minidom class PaletteBox: class PaletteBoxItem: def __init__(self,num,icon,tooltip,size): self.num=num self.icon=icon self.tooltip=tooltip self.Item=gtk.RadioToolButton() self.Item.set_size_request(size,size) def __init__(self,title,items_size = 40): if items_size > 64 : items_size = 64 if items_size < 16 : items_size = 16 self.rowcount=-1 self.item=[] self.items_size = items_size self.button = gtk.Button() self.button.set_focus_on_click(False) self.button.connect("clicked",self.hide_show_box) self.btnbox=gtk.HBox() self.btnlabel=gtk.Label(" " + title ) self.btnarrow=gtk.Arrow(gtk.ARROW_DOWN,gtk.SHADOW_OUT) self.btnarrowx = gtk.ARROW_DOWN self.btnbox.pack_start(self.btnarrow,0,0) self.btnbox.pack_start(self.btnlabel,0,0) self.button.add(self.btnbox) self.hbl = gtk.HBox() self.itemsbox = gtk.Fixed() self.itemsbox.set_size_request(items_size, -1) self.itemsbox.connect("size-allocate",self.redraw_itemsbox) self.hbl.pack_start(self.itemsbox,1,1) self.box=gtk.VBox() self.box.pack_start(self.button,0,0) self.box.pack_start(self.hbl,1,1) def hide_show_box(self,widget): if self.btnarrowx == gtk.ARROW_DOWN: self.btnarrow.set(gtk.ARROW_RIGHT,gtk.SHADOW_OUT) self.hbl.set_property("visible",False) self.btnarrowx=gtk.ARROW_RIGHT elif self.btnarrowx == gtk.ARROW_RIGHT: self.btnarrow.set(gtk.ARROW_DOWN,gtk.SHADOW_OUT) self.hbl.set_property("visible",True) self.btnarrowx=gtk.ARROW_DOWN def set_title(self,title): try: self.button.set_label(title) except: print("PaletteBox.set_title(" + str(title) + ") is not string.") def add_item(self,icon,tooltip,group=None): index = len(self.item) self.item.append(self.PaletteBoxItem(index,icon,tooltip,self.items_size)) if(len(self.item) > 1): self.item[index].Item.set_group(self.item[0].Item) else: self.item[index].Item.set_group(group) self.item[index].Item.set_label(tooltip) self.itemsbox.add(self.item[index].Item) self.redraw_itemsbox(self,self.itemsbox) def redraw_itemsbox(self,widget,event = 0): width = self.itemsbox.get_allocation()[2] rowcount = width / self.items_size if(self.rowcount != rowcount): if rowcount<1 : rowcount = self.items_size colcount = len(self.item) / rowcount extra = len(self.item) % rowcount itemcounter = 0 for i in range(colcount): for j in range(rowcount): self.itemsbox.move(self.item[itemcounter].Item , j * self.items_size , i * self.items_size) itemcounter += 1 for j in range(extra): self.itemsbox.move(self.item[itemcounter].Item , j * self.items_size , colcount * self.items_size) itemcounter += 1 self.rowcount = rowcount class MakePaletteByXML: def __init__(self, xmlpath, parent = gtk.VBox()): try: self.parent = parent x=minidom.parse(xmlpath) for group in x.getElementsByTagName("group"): isnewgroup = True for box in group.getElementsByTagName("box"): if (box.getAttribute("title")) : title = box.getAttribute("title") else : title = "unknown" mypalette = PaletteBox(title) self.parent.pack_start(mypalette.box, 0) for item in box.getElementsByTagName("item"): icon = item.getAttribute("iconpath") tooltip = item.getAttribute("tooltip") if (isnewgroup) : isnewgroup = False mypalette.add_item(icon, tooltip, None) itemgroup = mypalette.item[0].Item else: mypalette.add_item(icon, tooltip, itemgroup) except : print("on read a xml file occured a error .") print("please view a xml file and repir the xml file structure...") w = gtk.Window() w.set_size_request(500,500) w.connect("destroy",gtk.main_quit) p = gtk.HPaned() group=pb1=PaletteBox("First Test") pb1.add_item("1", "A") pb1.add_item("2", "B") pb1.add_item("3", "C") pb1.add_item("4", "D") pb1.add_item("5", "E") pb1.add_item("6", "F") pb1.add_item("7", "G") pb1.add_item("8", "H") pb1.add_item("9", "I") pb1.add_item("10", "J") pb2=PaletteBox("Last Test") pb2.add_item("1", "A",pb1.item[0].Item) pb2.add_item("2", "B",pb1.item[0].Item) pb2.add_item("3", "C",pb1.item[0].Item) pb2.add_item("4", "D",pb1.item[0].Item) pb2.add_item("5", "E",pb1.item[0].Item) pb2.add_item("6", "F",pb1.item[0].Item) pb2.add_item("7", "G",pb1.item[0].Item) pb2.add_item("8", "H",pb1.item[0].Item) pb2.add_item("9", "I",pb1.item[0].Item) pb2.add_item("10", "J",pb1.item[0].Item) vbb=gtk.VBox() vbb.pack_start(pb1.box,0) vbb.pack_start(pb2.box,0) p.pack1(vbb,0,0) v=gtk.VBox() v.add(p) l=gtk.Layout() p.pack2(l) w.add(v) w.show_all() gtk.main() ``` #### File: tests/data23/recipe-576618.py ```python import threading import queue import os import feedparser from urllib.request import urlretrieve #-----------------------------------------------------------------------------# n_threads = 10 feed_url = "http://www.heise.de/newsticker/heise.rdf" left_link = "http://www.heise.de/fastbin/audio_download" \ "?meldung=http://www.heise.de/newsticker/meldung/" try: archive_filename = "%s/.heise" % os.environ["HOME"] except KeyError: archive_filename = "%s%sheise_archive" % (os.environ["HOMEPATH"], os.sep) #-----------------------------------------------------------------------------# class Downloader(threading.Thread): """ Class for worker-threads that download files. Don't tell Marx! """ def __init__(self, links_filenames): threading.Thread.__init__(self) self.setDaemon(True) self.links_filenames = links_filenames self.start() #-------------------------------------------------------------------------# def run(self): while True: link, filename = self.links_filenames.get() urlretrieve(link, filename) self.links_filenames.task_done() #-----------------------------------------------------------------------------# class Archive(object): def __init__(self): feed = feedparser.parse(feed_url) try: archive_file = open(archive_filename) old_links = archive_file.readlines() self.old_links = [link.strip() for link in old_links] archive_file.close() except IOError: self.old_links = [] self.entries_i = list(range(len(feed["entries"]))) self.feed_links = [feed["entries"][entry_i]["link"].encode("utf-8") for entry_i in self.entries_i] self.feed = feed #-------------------------------------------------------------------------# def get_new_entries(self): new_links = [link for link in self.feed_links if link not in self.old_links] titles = [self.feed["entries"][entry_i]["title"].encode("utf-8") for entry_i in self.entries_i if self.feed["entries"][entry_i]["link"].encode("utf-8") in new_links] # the article_id is in the link between "meldung/" and "/from" article_ids = [link.split("meldung/")[1].split("/from")[0] for link in new_links] return new_links, titles, article_ids #-------------------------------------------------------------------------# def store(self): archive_file = open(archive_filename, "w") archive_file.writelines("\n".join(self.feed_links)) archive_file.close() #-----------------------------------------------------------------------------# def prepare_workers(): links_filenames = queue.Queue() return [Downloader(links_filenames) for ii in range(n_threads)][0] #-----------------------------------------------------------------------------# def start_download(link, title, id, downloader): for bad, good in zip(("/", ":", " ", '"', "?"), ("", "", "_", "", "")): title = title.replace(bad, good) filename = "heise_%s_%s.mp3" % (id, title) mp3_link = left_link + id downloader.links_filenames.put((mp3_link, filename)) #-----------------------------------------------------------------------------# if __name__ == "__main__": downloader = prepare_workers() feed_archive = Archive() links, titles, ids = feed_archive.get_new_entries() for link, title, id in zip(links, titles, ids): download_yn = None while download_yn != "y" and download_yn != "n" and download_yn != "c": print(title) download_yn = input('Download mp3? (y/[n]/c)') if download_yn == "": download_yn = "n" if download_yn == "y": start_download(link, title, id, downloader) if download_yn == "c": break if links: print("Waiting for downloads to end...") downloader.links_filenames.join() feed_archive.store() ``` #### File: tests/data23/recipe-576619.py ```python def test_for_day(target_day): """ Accepts a weekday and tests if today is that weekday. """ import time # Get the date object of today's date: todays_date = time.localtime().tm_wday # Form a dictionary of the days of the week, starting on Monday # since this is the time module's assumption: date_dict = dict(enumerate('Monday Tuesday Wednesday Thursday Friday Saturday Sunday'.split())) # Find the weekday of today's date and compare to target: if date_dict[todays_date] == target_day: print("Today is the target (%s)." % target_day) else: print("Today is %s, not %s." % (date_dict[todays_date], target_day)) ``` #### File: tests/data23/recipe-576726.py ```python import threading from time import sleep def intervalExecute(interval, func, *args, **argd): ''' @param interval: execute func(*args, **argd) each interval @return: a callable object to enable you terminate the timer. ''' cancelled = threading.Event() def threadProc(*args, **argd): while True: cancelled.wait(interval) if cancelled.isSet(): break func(*args, **argd) #: could be a lenthy operation th = threading.Thread(target=threadProc, args=args, kwargs=argd) th.start() def close(block=True, timeout=3): ''' @param block: if True, block the caller until the thread is closed or time out @param timout: if blocked, timeout is used @return: if block, True -> close successfully; False -> timeout if non block, always return False ''' if not block: cancelled.set() return False else: cancelled.set() th.join(timeout) isClosed = not th.isAlive() return isClosed return close if __name__=='__main__': # sample usage is as follow.... def testFunc(identifier, txt=''): print('test func entered') sleep(2) print(identifier, txt) cancellObj = intervalExecute(2.0, testFunc, 1, 'haha') help(cancellObj) sleep(5.2) print(cancellObj()) #: cancel the intervalExecute timer. print('after calling close') ``` #### File: tests/data23/recipe-576809.py ```python DEL = '/' class PorReader(object): def __init__(self, file): if type(file) in (str, str): file = open(file) self.file = file self.pos = -1 self.buffer = "" def consumeOne(self, skip=False): p = self.buffer.find(DEL, self.pos+1) output = "" while p == -1: if not skip: output += self.buffer[self.pos+1:] self.buffer = self.file.read(1024) self.pos = -1 p = self.buffer.find(DEL, self.pos+1) if not self.buffer: break if not skip: output += self.buffer[self.pos+1:p] self.pos = p if not skip: output = output.replace("\r\n", "") return output def consume(self, n=1): return [self.consumeOne() for i in range(n)] def skip(self, n=1): for i in range(n): self.consumeOne(skip=True) HEAD = 'SPSS for Microsoft Windows Release 15.04' FLOAT, STR, INT = 0,1,2 class SPSSVariable(object): def __init__(self, name, label=None, numeric=True, decimals=0): self.name = name self.label = label self.numeric = numeric self.decimals = decimals self.valuelabels = None self.index = None def __str__(self): t = 'S' if self.numeric: t = 'I' if self.numeric and self.decimals: t = 'F' return "%s%s%s" % (self.name, (' "%s" ' % self.label if self.label else ''),t) def splitstring(slen=None, s=None, reader=None): if slen is None: slen = reader.consume(2) if s is None: slen, s = slen if type(slen) == str: slen = readnum(slen) while slen > len(s): if reader: s += "/"+reader.consumeOne() else: raise Exception("!") keep = s[slen:] s = s[:slen] return s, keep class SPSSFile(object): def __init__(self, file): self.variables = [] self.vardict = {} self.data = [] self.init(file) def addvar(self, var): var.index = len(self.variables) self.variables.append(var) self.vardict[var.name] = var def getvar(self, varname): return self.vardict[varname] def get(self, var, row): if type(var) in (str, str): var = self.vardict[var] return row[var.index] def init(self, file): r = PorReader(file) r.skip(5) h = r.consumeOne() if not h.startswith(HEAD): raise Exception("Cannot read .por") numvars = readnum(h[len(HEAD):]) h = r.skip(1) keep = r.consumeOne() while True: action = keep[0] #print "ACTION: %s" % action if action == '7': data = r.consume(8) while data[-2][0] != 'C': data += r.consume() decimals = readnum(data[4]) numeric = keep[1:] == '0' name, dummy = splitstring(data[:2]) labellen, label = data[-2:] label, keep = splitstring(labellen[1:], label, r) v = SPSSVariable(name, label, numeric, decimals) self.addvar(v) #print "ADDED VAR ", v, data, `keep`, labellen[1:] if action == 'D': # value labels numvars = readnum(keep[1:]) varnames = [] keep = r.consumeOne() for i in range(numvars): name, keep = splitstring(keep, r.consumeOne(), reader=r) varnames.append(name) numlabels = readnum(keep) keep = r.consumeOne() labels = {} numeric = self.getvar(varnames[0]).numeric for i in range(numlabels): if numeric: val = readnum(keep) name, keep = splitstring(reader=r) else: val, keep = splitstring(keep, r.consumeOne(), reader=r) name, keep = splitstring(keep, r.consumeOne(), reader=r) labels[val] = name #print "VALUE LABELS", varnames, labels for varname in varnames: self.getvar(varname).valuelabels = labels if action == 'F': # data keep = keep[1:] while True: row = [] for var in self.variables: if not keep: keep = r.consumeOne() if keep.startswith("Z"): return if var.numeric: if keep.startswith("*."): row.append(None) keep = keep[2:] else: try: row.append(readnum(keep)) except Exception as e: print(row) print("Exception on %s" % var) raise e keep = "" else: slen = keep x, keep = splitstring(slen, r.consumeOne()) row.append(x) self.data.append(tuple(row)) if action == 'Z': # data print("Done!") return def _codec(str_in, base_from=36, base_to=10): """ Base36 Encoder/Decoder by <NAME> (<EMAIL>) on August 26, 2008 This code has been placed in the public domain. """ ASCII = { "0": 48, "9": 57, "A": 65, "Z": 90 } # There are 8 characters between 9 and A from_digits = [chr(x) for x in range(ASCII["0"], ASCII["9"] + 8 + base_from) if (x >= ASCII["0"] and x <= ASCII["9"]) or (x >= ASCII["A"] and x <= ASCII["Z"])][:base_from] to_digits = [chr(x) for x in range(ASCII["0"], ASCII["9"] + 8 + base_to) if (x >= ASCII["0"] and x <= ASCII["9"]) or (x >= ASCII["A"] and x <= ASCII["Z"])][:base_to] x = int(0) for digit in str(str_in).upper(): x = x * len(from_digits) + from_digits.index(digit) result = "" # This is going to assemble our number in reverse order # so we'll have to fix it before we return it while x > 0: result += to_digits[x % len(to_digits)] x /= len(to_digits) return result[::-1] def decode(s): while s.startswith("0"): s = s[1:] if not s: return 0 try: return int(_codec(s, 30, 10)) except ValueError as e: raise ValueError("Cannot decode %r: %s" % (s, e)) def readnum(s): neg = s.startswith("-") if neg: s = s[1:] if "+" in s: num, exp = list(map(decode, s.split("+"))) result = 30**exp elif "-" in s: num, exp = list(map(decode, s.split("-"))) result = 1. / (30**exp) else: if "." in s: i, d = s.split(".") else: i, d = s, None result = decode(i) if d: for j, digit in enumerate(d): result += decode(digit) / 30.**(j+1) return result * (-1 if neg else 1) if __name__ == '__main__': import sys fn = sys.argv[1] f = SPSSFile(fn) print(len(f.variables), len(f.data)) ``` #### File: tests/data23/recipe-576834.py ```python import struct, array, fcntl class struxx: _fields = None _format = None _buffer = None def __init__(self): self.reset() def __len__(self): """binary represntation length, for fields, use __dict__ or something""" return struct.calcsize(self._format) def __iter__(self): return [getattr(self, field) for field in self._fields.split(";")].__iter__() def reset(self): for field in self._fields.split(";"): setattr(self, field, 0) self._buffer = array.array('B', [0]*len(self)) def pack(self): self._buffer = array.array('B', struct.pack(self._format, *self)) def unpack(self): rv = struct.unpack(self._format, self._buffer) for i in range(len(rv)): setattr(self, self._fields.split(";")[i], rv[i]) def ioctl(self, fd, ioctlno): self.pack() rv = fcntl.ioctl(fd, ioctlno, self._buffer, True) self.unpack() return rv class uint(struxx): _fields = "uint" _format = "I" def get_version(self, fd): return self.ioctl(fd, HIDIOCGVERSION) def get_flags(self, fd): return self.ioctl(fd, HIDIOCGFLAG) def set_flags(self, fd): return self.ioctl(fd, HIDIOCSFLAG) class hiddev_devinfo(struxx): _fields = "bustype;busnum;devnum;ifnum;vendor;product;version;num_applications" _format = "IIIIhhhI" def get(self, fd): return self.ioctl(fd, HIDIOCGDEVINFO) class hiddev_string_descriptor(struxx): _fields = "index;value" _format = "i256c" def reset(self): self.index = 0 self.value = '\0'*256 def pack(self): tmp = struct.pack("i", self.index) + self.value[:256].ljust(256, '\0') self._buffer = array.array('B', tmp) def unpack(self): self.index = struct.unpack("i", self._buffer[:4]) self.value = self._buffer[4:].tostring() def get_string(self, fd, idx): self.index = idx return self.ioctl(fd, HIDIOCGSTRING) class hiddev_report_info(struxx): _fields = "report_type;report_id;num_fields" _format = "III" def get_info(self, fd): return self.ioctl(fd, HIDIOCGREPORTINFO) class hiddev_field_info(struxx): _fields = "report_type;report_id;field_index;maxusage;flags;physical;logical;application;logical_minimum;logical_maximum;physical_minimum;physical_maximum;unit_exponent;unit" _format = "I"*8+"i"*4+"II" def get_info(self, fd): return self.ioctl(fd, HIDIOCGFIELDINFO) class hiddev_usage_ref(struxx): _fields = "report_type;report_id;field_index;usage_index;usage_code;value" _format = "I"*5+"i" class hiddev_collection_info(struxx): _fields = "index;type;usage;level" _format = "I"*4 def get_info(self, fd, index): self.index = index return self.ioctl(fd, HIDIOCGCOLLECTIONINFO) class hiddev_event(struxx): _fields = "hid;value" _format = "Hi" IOCPARM_MASK = 0x7f IOC_NONE = 0x20000000 IOC_WRITE = 0x40000000 IOC_READ = 0x80000000 def FIX(x): return struct.unpack("i", struct.pack("I", x))[0] def _IO(x,y): return FIX(IOC_NONE|(ord(x)<<8)|y) def _IOR(x,y,t): return FIX(IOC_READ|((t&IOCPARM_MASK)<<16)|(ord(x)<<8)|y) def _IOW(x,y,t): return FIX(IOC_WRITE|((t&IOCPARM_MASK)<<16)|(ord(x)<<8)|y) def _IOWR(x,y,t): return FIX(IOC_READ|IOC_WRITE|((t&IOCPARM_MASK)<<16)|(ord(x)<<8)|y) HIDIOCGVERSION =_IOR('H', 0x01, struct.calcsize("I")) HIDIOCAPPLICATION =_IO('H', 0x02) HIDIOCGDEVINFO =_IOR('H', 0x03, len(hiddev_devinfo())) HIDIOCGSTRING =_IOR('H', 0x04, len(hiddev_string_descriptor())) HIDIOCINITREPORT =_IO('H', 0x05) def HIDIOCGNAME(buflen): return _IOR('H', 0x06, buflen) HIDIOCGREPORT =_IOW('H', 0x07, len(hiddev_report_info())) HIDIOCSREPORT =_IOW('H', 0x08, len(hiddev_report_info())) HIDIOCGREPORTINFO =_IOWR('H', 0x09, len(hiddev_report_info())) HIDIOCGFIELDINFO =_IOWR('H', 0x0A, len(hiddev_field_info())) HIDIOCGUSAGE =_IOWR('H', 0x0B, len(hiddev_usage_ref())) HIDIOCSUSAGE =_IOW('H', 0x0C, len(hiddev_usage_ref())) HIDIOCGUCODE =_IOWR('H', 0x0D, len(hiddev_usage_ref())) HIDIOCGFLAG =_IOR('H', 0x0E, struct.calcsize("I")) HIDIOCSFLAG =_IOW('H', 0x0F, struct.calcsize("I")) HIDIOCGCOLLECTIONINDEX =_IOW('H', 0x10, len(hiddev_usage_ref())) HIDIOCGCOLLECTIONINFO =_IOWR('H', 0x11, len(hiddev_collection_info())) def HIDIOCGPHYS(buflen): return _IOR('H', 0x12, buflen) HID_REPORT_TYPE_INPUT =1 HID_REPORT_TYPE_OUTPUT =2 HID_REPORT_TYPE_FEATURE =3 HID_REPORT_TYPE_MIN =1 HID_REPORT_TYPE_MAX =3 HID_REPORT_ID_UNKNOWN =0xffffffff HID_REPORT_ID_FIRST =0x00000100 HID_REPORT_ID_NEXT =0x00000200 HID_REPORT_ID_MASK =0x000000ff HID_REPORT_ID_MAX =0x000000ff def enum_reports(fd): for report_type in (HID_REPORT_TYPE_INPUT, HID_REPORT_TYPE_OUTPUT, HID_REPORT_TYPE_FEATURE): for i in range(HID_REPORT_ID_MAX+1): try: ri = hiddev_report_info() ri.report_type = report_type ri.report_id = i #print "trying", ri.__dict__ ri.get_info(fd) print("%s(%s): %s fields" % ({1: 'input', 2:'output', 3:'feature'}.get(ri.report_type), ri.report_id, ri.num_fields)) for field in range(ri.num_fields): fi = hiddev_field_info() fi.report_type = ri.report_type fi.report_id = ri.report_id fi.field_index = field fi.get_info(fd) print(", ".join(["%s:%s" % (key, fi.__dict__[key]) for key in fi.__dict__ if key not in ("report_type", "report_id", "_buffer") and fi.__dict__[key] ])) #print report_info.__dict__ print() except IOError: pass if __name__=="__main__": # name = "" # for name in globals(): # if name.startswith("HID"): # if type(globals()[name]) == int: # print name, "\t%x" % globals()[name] f = open("/dev/usb/hiddev0", "r") tmp = uint() tmp.get_version(f) print("version 0x%x" % tmp.uint) tmp.get_flags(f) print("flags 0x%x" % tmp.uint) tmp.uint = 3 tmp.set_flags(f) tmp.get_flags(f) print("flags 0x%x" % tmp.uint) devinfo = hiddev_devinfo() devinfo.get(f) print("devinfo", devinfo.__dict__) enum_reports(f) def get_device_name(f): a = array.array('B', [0]*1024) fcntl.ioctl(f, HIDIOCGNAME(1024), a, True) print(a) def get_some_strings(f): for i in range(-10000, 10000): try: string = hiddev_string_descriptor() string.get_string(f, i) print("string %s: %s", string.index, repr(string.value)) except IOError: pass def show_all_collections(f): for i in range(256): try: collection_info = hiddev_collection_info() collection_info.get_info(f, i) print("coll %s" % i, collection_info.__dict__) print(""" idnex: %(index)s type: %(type)s level: %(level)s usage: 0x%(usage)x""" % collection_info.__dict__) except IOError: pass ``` #### File: tests/data23/recipe-576842.py ```python import os, sqlite3 """Walks through the all the Firefox profiles in current user account and cleans all *.sqlite files with "vacuum". It makes firefox faster then often. Should work on Linux, too, when properly changed constants.""" # -------------- constants ----------------------------------------- systemEncoding="mbcs" profileUser= str(os.environ["USERPROFILE"], systemEncoding) profileApp = str(os.environ["APPDATA"], systemEncoding) + r"\Mozilla\Firefox\Profiles" # -------------- functions ----------------------------------------- def searchProfil(profileApp): "all firefox profiles" for profile in os.listdir(profileApp): profileFull=os.path.join(profileApp, profile) searchSqlite(profileFull) def searchSqlite(profile): "all sqlite file in each firefox profile" sq=[os.path.join(profile,s) for s in os.listdir(profile) if s.endswith(".sqlite")] print("\n..."+profile[len(profileUser):]) for s in sq: dirName, fileName=os.path.split(s) conn = sqlite3.connect(s) oldSize=os.path.getsize(s) print(fileName+":", end=' ') try: c=conn.cursor() c.execute("VACUUM") # this is the thing c.close() print("done.", end=' ') print("%.1f%%" % (os.path.getsize(s)*1.0/oldSize*100)) except: print("error.") # ----------------- main ------------------------------------------- if __name__=="__main__": if os.path.isdir(profileApp): searchProfil(profileApp) else: print("Not exists:", profileApp) ``` #### File: tests/data23/recipe-576858.py ```python from email import encoders from email.mime.audio import MIMEAudio from email.mime.base import MIMEBase from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import mimetypes import os import re import smtplib class Email: """ This class handles the creation and sending of email messages via SMTP. This class also handles attachments and can send HTML messages. The code comes from various places around the net and from my own brain. """ def __init__(self, smtpServer): """ Create a new empty email message object. @param smtpServer: The address of the SMTP server @type smtpServer: String """ self._textBody = None self._htmlBody = None self._subject = "" self._smtpServer = smtpServer self._reEmail = re.compile("^([\\w \\._]+\\<[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\>|[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?)$") self.clearRecipients() self.clearAttachments() def send(self): """ Send the email message represented by this object. """ # Validate message if self._textBody is None and self._htmlBody is None: raise Exception("Error! Must specify at least one body type (HTML or Text)") if len(self._to) == 0: raise Exception("Must specify at least one recipient") # Create the message part if self._textBody is not None and self._htmlBody is None: msg = MIMEText(self._textBody, "plain") elif self._textBody is None and self._htmlBody is not None: msg = MIMEText(self._htmlBody, "html") else: msg = MIMEMultipart("alternative") msg.attach(MIMEText(self._textBody, "plain")) msg.attach(MIMEText(self._htmlBody, "html")) # Add attachments, if any if len(self._attach) != 0: tmpmsg = msg msg = MIMEMultipart() msg.attach(tmpmsg) for fname,attachname in self._attach: if not os.path.exists(fname): print("File '%s' does not exist. Not attaching to email." % fname) continue if not os.path.isfile(fname): print("Attachment '%s' is not a file. Not attaching to email." % fname) continue # Guess at encoding type ctype, encoding = mimetypes.guess_type(fname) if ctype is None or encoding is not None: # No guess could be made so use a binary type. ctype = 'application/octet-stream' maintype, subtype = ctype.split('/', 1) if maintype == 'text': fp = open(fname) attach = MIMEText(fp.read(), _subtype=subtype) fp.close() elif maintype == 'image': fp = open(fname, 'rb') attach = MIMEImage(fp.read(), _subtype=subtype) fp.close() elif maintype == 'audio': fp = open(fname, 'rb') attach = MIMEAudio(fp.read(), _subtype=subtype) fp.close() else: fp = open(fname, 'rb') attach = MIMEBase(maintype, subtype) attach.set_payload(fp.read()) fp.close() # Encode the payload using Base64 encoders.encode_base64(attach) # Set the filename parameter if attachname is None: filename = os.path.basename(fname) else: filename = attachname attach.add_header('Content-Disposition', 'attachment', filename=filename) msg.attach(attach) # Some header stuff msg['Subject'] = self._subject msg['From'] = self._from msg['To'] = ", ".join(self._to) msg.preamble = "You need a MIME enabled mail reader to see this message" # Send message msg = msg.as_string() server = smtplib.SMTP(self._smtpServer) server.sendmail(self._from, self._to, msg) server.quit() def setSubject(self, subject): """ Set the subject of the email message. """ self._subject = subject def setFrom(self, address): """ Set the email sender. """ if not self.validateEmailAddress(address): raise Exception("Invalid email address '%s'" % address) self._from = address def clearRecipients(self): """ Remove all currently defined recipients for the email message. """ self._to = [] def addRecipient(self, address): """ Add a new recipient to the email message. """ if not self.validateEmailAddress(address): raise Exception("Invalid email address '%s'" % address) self._to.append(address) def setTextBody(self, body): """ Set the plain text body of the email message. """ self._textBody = body def setHtmlBody(self, body): """ Set the HTML portion of the email message. """ self._htmlBody = body def clearAttachments(self): """ Remove all file attachments. """ self._attach = [] def addAttachment(self, fname, attachname=None): """ Add a file attachment to this email message. @param fname: The full path and file name of the file to attach. @type fname: String @param attachname: This will be the name of the file in the email message if set. If not set then the filename will be taken from the fname parameter above. @type attachname: String """ if fname is None: return self._attach.append( (fname, attachname) ) def validateEmailAddress(self, address): """ Validate the specified email address. @return: True if valid, False otherwise @rtype: Boolean """ if self._reEmail.search(address) is None: return False return True if __name__ == "__main__": # Run some tests mFrom = "Test User <<EMAIL>>" mTo = "<EMAIL>" m = Email("mail.mydomain.com") m.setFrom(mFrom) m.addRecipient(mTo) # Simple Plain Text Email m.setSubject("Plain text email") m.setTextBody("This is a plain text email <b>I should not be bold</b>") m.send() # Plain text + attachment m.setSubject("Text plus attachment") m.addAttachment("/home/user/image.png") m.send() # Simple HTML Email m.clearAttachments() m.setSubject("HTML Email") m.setTextBody(None) m.setHtmlBody("The following should be <b>bold</b>") m.send() # HTML + attachment m.setSubject("HTML plus attachment") m.addAttachment("/home/user/image.png") m.send() # Text + HTML m.clearAttachments() m.setSubject("Text and HTML Message") m.setTextBody("You should not see this text in a MIME aware reader") m.send() # Text + HTML + attachment m.setSubject("HTML + Text + attachment") m.addAttachment("/home/user/image.png") m.send() ``` #### File: tests/data23/recipe-576942.py ```python import hashlib import os def get_thumbnailfile(filename): """Given the filename for an image, return the path to the thumbnail file. Returns None if there is no thumbnail file. """ # Generate the md5 hash of the file uri file_hash = hashlib.md5('file://'+filename).hexdigest() # the thumbnail file is stored in the ~/.thumbnails/normal folder # it is a png file and name is the md5 hash calculated earlier tb_filename = os.path.join(os.path.expanduser('~/.thumbnails/normal'), file_hash) + '.png' if os.path.exists(tb_filename): return tb_filename else: return None if __name__ == '__main__': import sys if len(sys.argv) < 2: print('Usage ---') print(' get_thumbnail.py filename') sys.exit(0) filename = sys.argv[1] tb_filename = get_thumbnailfile(filename) if tb_filename: print('Thumbnail for file %s is located at %s' %( filename, tb_filename)) else: print('No thumbnail found') ``` #### File: tests/data23/recipe-577001.py ```python import pickle import fnmatch import time # mostly here for documentation purposes, not used in code. CREATE_TABLE = ('create table if not exists mbus (id integer primary key ' 'autoincrement, source, dest, data blob)') # read all messages higher than the specified id RECV_MESSAGES = 'select * from mbus where id > ? order by id asc' SEND_MESSAGE = 'insert into mbus values (NULL, ?, ?, ?)' # used at startup to find FIND_LAST_ID = 'select max(id) from mbus' class MBus: def __init__ (self, db, name): self.db = db self.name = name self.seen = self._find_last_id() self.mbox = [] # PRIVATE def _find_last_id (self): return self.db.execute(FIND_LAST_ID, ()).fetchone()[0] or 1 def _poll (self): """Fetch new messages from database and append to mailbox. """ for row in list(self.db.execute(RECV_MESSAGES, (self.seen,))): self.seen, source, dest, blob = row if source != self.name and fnmatch.fnmatch(self.name, dest): tag, data = pickle.loads(str(blob)) self.mbox.append((self.seen, source, tag, data)) def _filter (self, tag, func): """Remove and return matching messages from mailbox and retain the rest. """ mbox = [] for t in self.mbox: if fnmatch.fnmatch(t[2], tag) and func(t): yield t else: mbox.append(t) self.mbox = mbox # PUBLIC def recv (self, tag='*', func=lambda _: True, wait=5, sleep=0.5): end = time.time() + wait while True: self._poll() for t in self._filter(tag, func): yield t if time.time() > end: break time.sleep(sleep) def send (self, dest, tag, **kwargs): data = (tag, kwargs) rowid = self.db.execute(SEND_MESSAGE, (self.name, dest, pickle.dumps(data))).lastrowid return rowid # PBULIC API def connect (db, name): """Create a MBus and populate module environment with it's global methods. The common case is that we connect to only one message bus. To avoid passing around a message bus object we can instead simply do: import mbus mbus.connect(db, 'client') mbus.send('*', 'ping') for rowid, source, tag, data in mbus.recv(tag='pong'): pass """ g = globals() m = MBus(db, name) g['send'] = m.send g['recv'] = m.recv # TESTING if __name__ == '__main__': import os import sys import sqlite3 p = 'test.db' c = not os.path.exists(p) db = sqlite3.connect(p, isolation_level=None) if c: db.execute(CREATE_TABLE) if sys.argv[1] == 'server': mb = MBus(db, 'server') while True: for _, source, _, data in mb.recv(tag='ping'): mb.send(source, 'pong', pid=os.getpid()) sys.exit(0) else: mb = MBus(db, 'client') mb.send('server', 'ping') for _, source, _, data in mb.recv(tag='pong'): print('received pong from pid', data['pid']) ``` #### File: tests/data23/recipe-577194.py ```python class Thing(object): """A thing, does stuff.""" def __init__(self): self.special = "My special value!" def process(self, default=True): """Accept any argument with no special processing (except True).""" if default is True: # Notice I'm checking identity, not truth or equality default = self.special elif not default: # Optional check for False values print("Non-value given!") print(default) if __name__ == "__main__": t = Thing() t.process() # Prints t's special value t.process("something") # Prints 'something' t.process(None) # Prints the False value warning ``` #### File: tests/data23/recipe-577355.py ```python import collections import time # Requires Python 2.7 class Node(object): def __init__(self, value): self.value = value self.next = None self.prev = None def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, self.value) class LinkedList(collections.MutableSequence): def __init__(self, iterable=None): self.sentinel = Node(None) self.sentinel.next = self.sentinel self.sentinel.prev = self.sentinel self.__len = 0 if iterable is not None: self += iterable def get_node(self, index): node = sentinel = self.sentinel i = 0 while i <= index: node = node.__next__ if node == sentinel: break i += 1 if node == sentinel: node = None return node def __getitem__(self, index): node = self.__get_node(index) return node.value def __len__(self): return self.__len def __setitem__(self, index, value): node = self.get_node(index) node.value = value def __delitem__(self, index): node = self.get_node(index) if node: node.prev.next = node.__next__ if node.__next__: node.next.prev = node.prev node.prev = None node.next = None node.value = None self.__len -= 1 def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) list_ = [self.__get_node(i).value for i in range(len(self))] return '%s(%r)' % (self.__class__.__name__, list_) def append(self, value): sentinel = self.sentinel node = Node(value) self.insert_between(node, sentinel.prev, sentinel) def insert(self, index, value): sentinel = self.sentinel new_node = Node(value) len_ = len(self) if len_ == 0: self.insert_between(new_node, sentinel, sentinel) elif index >= 0 and index < len_: node = self.get_node(index) self.insert_between(new_node, node.prev, node) elif index == len_: self.insert_between(new_node, sentinel.prev, sentinel) else: raise IndexError self.__len += 1 def insert_between(self, node, left_node, right_node): if node and left_node and right_node: node.prev = left_node node.next = right_node left_node.next = node right_node.prev = node else: raise IndexError class Stopwatch(object): def __init__(self): self.__start = 0.0 self.__stop = 0.0 self.__duration = 0.0 def start(self): self.__start = time.time() return self def stop(self): self.__stop = time.time() self.__duration = self.__stop - self.__start return self.__duration def duration(self): return self.__duration class Profiler(object): def __init__(self, size): self.size = size self.list = None self.linked_list = None self.sw_create_list = Stopwatch() self.sw_create_linked_list = Stopwatch() self.sw_pop_list = Stopwatch() self.sw_pop_linked_list = Stopwatch() def create_list(self): self.sw_create_list.start() self.list = [i for i in range(self.size)] self.sw_create_list.stop() def create_linked_list(self): self.sw_create_linked_list.start() self.linked_list = LinkedList() for value in self.list: self.linked_list.append(value) self.sw_create_linked_list.stop() def pop_list(self): self.sw_pop_list.start() for i in range(self.size): del self.list[0] self.sw_pop_list.stop() def pop_linked_list(self): self.sw_pop_linked_list.start() for i in range(self.size): del self.linked_list[0] self.sw_pop_linked_list.stop() def report(self): print(("%6s %10d" % ("Size", self.size))) print(("%6s %10s %10s %10s" % ("Type", "Create", "Pop", "Total"))) print(("%6s %10.2f %10.2f %10.2f" % ("List", self.sw_create_list.duration(), \ self.sw_pop_list.duration(), self.sw_create_list.duration() + self.sw_pop_list.duration()))) print(("%6s %10.2f %10.2f %10.2f" % ("Linked", self.sw_create_linked_list.duration(), \ self.sw_pop_linked_list.duration(), self.sw_create_linked_list.duration() + \ self.sw_pop_linked_list.duration()))) print() def run(self): self.create_list() self.pop_list() self.create_linked_list() self.pop_linked_list() self.report() if __name__ == '__main__': Profiler(1000).run() Profiler(2000).run() Profiler(5000).run() Profiler(10000).run() Profiler(20000).run() Profiler(50000).run() Profiler(100000).run() print("Complete.") ``` #### File: tests/data23/recipe-577356.py ```python __author__ = '<NAME> <<EMAIL>>' __source__ = 'http://code.activestate.com/recipes/577356' import os if os.name == 'nt': raise ValueError('dos/windows paths unsupported in this version') def relative_path(base, target): def split_path(path): res = list() while 1: path, basename = os.path.split(path) if path == os.sep and basename == '': # root reached break res.insert(0, basename) if path == '': break return res # check for absolute paths if not base.startswith(os.sep): raise ValueError('base must be absolute: %s' % base) if not target.startswith(os.sep): raise ValueError('target must be absolute: %s' % target) base_parts = split_path(base) target_parts = split_path(target) while len(base_parts) > 0 and \ len(target_parts) > 0 and \ base_parts[0] == target_parts[0]: base_parts.pop(0) target_parts.pop(0) rel_parts = ['..'] * len(base_parts) rel_parts.extend(target_parts) return os.path.join(*rel_parts) if __name__ == '__main__': base = os.sep + os.path.join('a', 'b', 'c', 'd') target = os.sep + os.path.join('a', 'b', 'c1', 'd2') print('base :', base) print('target:', target) print('relative base->target:', relative_path(base, target)) ``` #### File: tests/data23/recipe-577507.py ```python __author__ = '<NAME>' import re class SwitchError(Exception): pass CPAT_TYPE = type(re.compile('.')) STR_TYPE = type('') LIST_TYPE = type([]) TUPLE_TYPE = type(()) class Switch(object): def __init__(self): self.exactCases = {} self.inCases = [] self.patternCases = [] self.defaultHandler = None ## # Try each 'in' case, in the order they were # specified, stopping if we get a match. # Return a tuple of the string we are searching for in the target string, # and the case handler found, or (None, None) if no match found. def _findInCase(self, switchValue): for inStr, aHandler in self.inCases: if inStr in switchValue: return (inStr, aHandler) return (None, None) ## # Try each regex pattern (using re.search), in the order they were # specified, stopping if we get a match. # Return a tuple of the re match object and the case handler found, or # (None, None) if no match found. def _findRegExCase(self, switchValue): for cpat, aHandler in self.patternCases: matchObj = cpat.search(switchValue) if matchObj is not None: return (matchObj, aHandler) return (None, None) ## # Switch on a switch value. A match against the exact # (non-regular-expression) case matches is tried first. If that doesn't # find a match, then if the switch value is a string, the 'in' case # matches are tried next, in the order they were registered. If that # doesn't find a match, then if the switch value is a string, # the regular-expression case matches are tried next, in # the order they were registered. If that doesn't find a match, and # a default case handler was registered, the default case handler is used. # If no match was found, and no default case handler was registered, # SwitchError is raised. # If a switch match is found, the corresponding case handler is called. # The switch value is passed as the first positional parameter, along with # any other positional and keyword parameters that were passed to the # switch method. The switch method returns the return value of the # called case handler. def switch(self, switchValue, *args, **kwargs): caseHandler = None switchType = type(switchValue) try: # Can we find an exact match for this switch value? # For an exact match, we will pass the case value to the case # handler. caseHandler = self.exactCases.get(switchValue) caseValue = switchValue except TypeError: pass # If no exact match, and we have 'in' cases to try, # see if we have a matching 'in' case for this switch value. # For an 'in' operation, we will be passing the left-hand side of # 'in' operator to the case handler. if not caseHandler and switchType in (STR_TYPE, LIST_TYPE, TUPLE_TYPE) \ and self.inCases: caseValue, caseHandler = self._findInCase(switchValue) # If no 'in' match, and we have regex patterns to try, # see if we have a matching regex pattern for this switch value. # For a RegEx match, we will be passing the re.matchObject to the # case handler. if not caseHandler and switchType == STR_TYPE and self.patternCases: caseValue, caseHandler = self._findRegExCase(switchValue) # If still no match, see if we have a default case handler to use. if not caseHandler: caseHandler = self.defaultHandler caseValue = switchValue # If still no case handler was found for the switch value, # raise a SwitchError. if not caseHandler: raise SwitchError("Unknown case value %r" % switchValue) # Call the case handler corresponding to the switch value, # passing it the case value, and any other parameters passed # to the switch, and return that case handler's return value. return caseHandler(caseValue, *args, **kwargs) ## # Register a case handler, and the case value is should handle. # This is a function decorator for a case handler. It doesn't # actually modify the decorated case handler, it just registers it. # It takes a case value (any object that is valid as a dict key), # or any iterable of such case values. def case(self, caseValue): def wrap(caseHandler): # If caseValue is not an iterable, turn it into one so # we can handle everything the same. caseValues = ([ caseValue ] if not hasattr(caseValue, '__iter__') \ else caseValue) for aCaseValue in caseValues: # Raise SwitchError on a dup case value. if aCaseValue in self.exactCases: raise SwitchError("Duplicate exact case value '%s'" % \ aCaseValue) # Add it to the dict for finding exact case matches. self.exactCases[aCaseValue] = caseHandler return caseHandler return wrap ## # Register a case handler for handling a regular expression. def caseRegEx(self, caseValue): def wrap(caseHandler): # If caseValue is not an iterable, turn it into one so # we can handle everything the same. caseValues = ([ caseValue ] if not hasattr(caseValue, '__iter__') \ else caseValue) for aCaseValue in caseValues: # If this item is not a compiled regular expression, compile it. if type(aCaseValue) != CPAT_TYPE: aCaseValue = re.compile(aCaseValue) # Raise SwitchError on a dup case value. for thisCaseValue, _ in self.patternCases: if aCaseValue.pattern == thisCaseValue.pattern: raise SwitchError("Duplicate regex case value '%s'" % \ aCaseValue.pattern) self.patternCases.append((aCaseValue, caseHandler)) return caseHandler return wrap ## # Register a case handler for handling an 'in' operation. def caseIn(self, caseValue): def wrap(caseHandler): # If caseValue is not an iterable, turn it into one so # we can handle everything the same. caseValues = ([ caseValue ] if not hasattr(caseValue, '__iter__') \ else caseValue) for aCaseValue in caseValues: # Raise SwitchError on a dup case value. for thisCaseValue, _ in self.inCases: if aCaseValue == thisCaseValue: raise SwitchError("Duplicate 'in' case value '%s'" % \ aCaseValue) # Add it to the the list of 'in' values. self.inCases.append((aCaseValue, caseHandler)) return caseHandler return wrap ## # This is a function decorator for registering the default case handler. def default(self, caseHandler): self.defaultHandler = caseHandler return caseHandler if __name__ == '__main__': # pragma: no cover # Example uses # Instantiate a switch object. mySwitch = Switch() # Register some cases and case handlers, using the handy-dandy # decorators. # A default handler @mySwitch.default def gotDefault(value, *args, **kwargs): print("Default handler: I got unregistered value %r, "\ "with args: %r and kwargs: %r" % \ (value, args, kwargs)) return value # A single numeric case value. @mySwitch.case(0) def gotZero(value, *args, **kwargs): print("gotZero: I got a %d, with args: %r and kwargs: %r" % \ (value, args, kwargs)) return value # A range of numeric case values. @mySwitch.case(list(range(5, 10))) def gotFiveThruNine(value, *args, **kwargs): print("gotFiveThruNine: I got a %d, with args: %r and kwargs: %r" % \ (value, args, kwargs)) return value # A string case value, for an exact match. @mySwitch.case('Guido') def gotGuido(value, *args, **kwargs): print("gotGuido: I got '%s', with args: %r and kwargs: %r" % \ (value, args, kwargs)) return value # A string value for use with the 'in' operator. @mySwitch.caseIn('lo') def gotLo(value, *args, **kwargs): print("gotLo: I got '%s', with args: %r and kwargs: %r" % \ (value, args, kwargs)) return value # A regular expression pattern match in a string. # You can also pass in a pre-compiled regular expression. @mySwitch.caseRegEx(r'\b([Pp]y\w*)\b') def gotPyword(matchObj, *args, **kwargs): print("gotPyword: I got a matchObject where group(1) is '%s', "\ "with args: %r and kwargs: %r" % \ (matchObj.group(1), args, kwargs)) return matchObj # And lastly, you can pass a iterable to case, caseIn, and # caseRegEx. @mySwitch.case([ 99, 'yo', 200 ]) def gotStuffInSeq(value, *args, **kwargs): print("gotStuffInSeq: I got %r, with args: %r and kwargs: %r" % \ (value, args, kwargs)) return value # Now show what we can do. got = mySwitch.switch(0) # Returns 0, prints "gotZero: I got a 0, with args: () and kwargs: {}" got = mySwitch.switch(6, flag='boring') # Returns 6, prints "gotFiveThruNine: I got a 6, with args: () and # kwargs: {'flag': 'boring'}" got = mySwitch.switch(10, 42) # Returns 10, prints "Default handler: I got unregistered value 10, # with args: (42,) and kwargs: {}" got = mySwitch.switch('Guido', BDFL=True) # Returns 'Guido', prints "gotGuido: I got 'Guido', with args: () and # kwargs: {'BDFL': True}" got = mySwitch.switch('Anyone seen Guido around?') # Returns 'Anyone Seen Guido around?', prints "Default handler: I got # unregistered value 'Anyone seen Guido around?', with args: () and # kwargs: {}", 'cause we used 'case' and not 'caseIn'. got = mySwitch.switch('Yep, and he said "hello".', 99, yes='no') # Returns 'lo', prints "gotLo: I got 'lo', with args: (99,) and # kwargs: {'yes': 'no'}", 'cause we found the 'lo' in 'hello'. got = mySwitch.switch('Bird is the Python word of the day.') # Returns a matchObject, prints "gotPyword: I got a matchObject where # group(1) is 'Python', with args: () and kwargs: {}" got = mySwitch.switch('yo') # Returns 'yo', prints "gotStuffInSeq: I got 'yo', with args: () and # kwargs: {}" ``` #### File: tests/data23/recipe-577701.py ```python class StateMachine: 'A class that implements a flexible state machine' def __init__( self, transitions, first=None ): if type( transitions ) == dict: self.sm = transitions else: self.first = first or transitions.split(',')[0] smtext = [ term.split(':') for term in transitions.split() ] self.sm = dict( [ tuple(a.split(',')), tuple(b.split(',')) ] for a,b in smtext ) self.setstate() def setstate( self, state=None ): self.state = state or self.first def __call__( self, event ): return self.signal( event ) def signal( self, event ): change = self.sm.get( (self.state,event) ) change = change or self.sm.get( (self.state,'*') ) change = change or self.sm.get( ('*',event) ) change = change or self.sm.get( ('*','*') ) emit, newstate = change or ('**ERROR**',self.first) if newstate == '*': newstate = self.state elif newstate == '': newstate = self.first if callable( emit ): result = emit( self.state, event, newstate ) else: result = ( emit, newstate ) self.state = newstate return result if __name__ == '__main__': # Example for demonstration and test. transitions = ''' garden,climb:go-up-to-roof,roof roof,jump:fall-through,cottage cottage,leave:unlock-door,garden *,need-help:can-choose-climb-jump-leave,* *,jump:feel-tired,* *,sleep:feel-refreshed,* *,*:cannot-do,* ''' houseguy = StateMachine( transitions, first='garden' ) print('I start at location: %s' % houseguy.state) actionlist = 'sleep jump need-help climb jump jump leave climb climb'.split() for action in actionlist: result, newstate = houseguy( action ) print('I %s. I %s. Location: %s.' % (action, result, newstate)) ``` #### File: tests/data23/recipe-577796.py ```python import sys import os import random import time def main(): # Deliberately set all parameters as global, (my choice!). global LoggerScreen global MyFiles global savefile global plot global position global horiz global demo global pause global pausestring global serialport global mybyte global grab global csvdata global autosave global filestr # global n # initial parameter settings... LoggerScreen="(C)2011, B.Walker, G0LCU." MyFiles="Data_Logger-Transient_Recorder." savefile="/tmp/LoggerStartup.txt" # Default DEMO mode, set to 0 for REAL mode. demo=1 plot=0 horiz=1 position=79 pause=1 pausestring="1" # The latest Linux device name for current Arduino variants, (01-01-2011). serialport="/dev/ttyACM0" mybyte="?" grab=255 csvdata="?" # Temporarily set to autosave enabled for testing, set to 0 to disable. autosave=1 filestr="0000000000.CSV" # n=0 # Determine AMIGA, Windows-(32 bit), WinUAE or Linux for serial access. if sys.platform=="amiga": # The AMIGA serial port may need to be changed to 1200 baud, no parity, # 8 bit data and 1 stop bit, this applies to WinUAE too. serialport="SER:" if sys.platform=="linux2": # Assumed running from root for the time being. # /dev/ttyUSB0 the device on my test systems, the Arduino Diecimila Board. # It may need to be changed for your needs. serialport="/dev/ttyUSB0" os.system("chmod 666 "+serialport) os.system("stty -F "+serialport+" 1200") os.system("stty -F "+serialport+" raw") if sys.platform=="win32": # This is the COM port number generated on a test system. # It may need to be changed for your needs. serialport="COM3:" os.system("MODE "+serialport+" BAUD=1200 PARITY=N DATA=8 STOP=1 to=on") # A clear screen function for the platforms shown. def clrscn(): if sys.platform=="amiga": print("\f", end=' ') if sys.platform=="linux2": print(os.system("clear"),chr(13)," ",chr(13), end=' ') if sys.platform=="win32": print(os.system("CLS"),chr(13)," ",chr(13), end=' ') # Save the initial screen for future use function. def savescreen(): global MyFiles global savefile global LoggerScreen if sys.platform=="amiga": savefile="S:LoggerStartup.txt" if sys.platform=="linux2": savefile="/tmp/LoggerStartup.txt" if sys.platform=="win32": savefile="C:\\Windows\\Temp\\LoggerStartup.txt" MyFiles=open(savefile,"wb+") MyFiles.write(LoggerScreen) MyFiles.close() # This function does the plotting and generates a text variable in CSV format. # It also sets the timebase values as required, not implimented yet. def doplot(): global horiz global position global savefile global MyFiles global LoggerScreen global demo global pause global pausestring global plot global mybyte global serialport global grab global csvdata csvdata="" horiz=1 while horiz<=64: # Generate a byte as though grabbed from Arduino. if demo==1: grab=int(random.random()*256) # Generate a byte from Arduino. if demo==0: MyFiles=open(serialport,"rb",2) mybyte=str(MyFiles.read(1)) MyFiles.close() # Convert to a decimal value, assume 8 bit integer. grab=ord(mybyte) # Generate the 64 byte CSV string on the fly... csvdata=csvdata+str(grab)+"\r\n" # Convert to 4 bit depth. plot=int(grab/16) # Invert to suit the text display window. plot=15-plot if plot<=0: plot=0 if plot>=15: plot=15 # Set up the plot position per grab. position=79+horiz+plot*79 MyFiles=open(savefile,"rb+") MyFiles.seek(position) MyFiles.write("o") # Now get the whole array. MyFiles.seek(0) LoggerScreen=MyFiles.read(1659) MyFiles.close() # End of screen array update per plot. # Wait for a period for none AMIGA platforms. if sys.platform!="amiga": time.sleep(pause) # time.sleep() does NOT work on an A1200, WinUAE and E-UAE so pause...... if sys.platform=="amiga": pausestring=str(pause) os.system("C:Wait "+pausestring) # ......and then do a clear screen. print("\f", end=' ') # Do a clear screen for other platforms. if sys.platform=="linux2": print(os.system("clear"),chr(13)," ",chr(13), end=' ') if sys.platform=="win32": print(os.system("CLS"),chr(13)," ",chr(13), end=' ') # Now print the whole on screen... print(LoggerScreen) horiz=horiz+1 # This function saves a file to disk every 64 plots in CSV format. def datafile(): global MyFiles global filestr global savefile filestr=str(int(time.time()))+".CSV" if sys.platform=="amiga": savefile="S:" if sys.platform=="linux2": savefile="/tmp/" if sys.platform=="win32": savefile="C:\\Windows\\Temp\\" savefile=savefile+filestr MyFiles=open(savefile,"wb+") MyFiles.write(csvdata) MyFiles.close() # This is the main running code. while 1: # Set up DataLogger screen, use "\r\n" to suit Windows, "\r" is *ignored* on Linux and AMIGA_OS. # This is for the default Command Prompt, (Windows), Terminal, (Linux) and CLI, (AMIGA), modes. LoggerScreen="+-------+-------+-------+-------+-------+-------+-------+--------+ +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | |>(R)UN |\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | +--------+\r\n" LoggerScreen=LoggerScreen+"+-------+-------+-------+-------+-------+-------+-------+--------+ | Ctrl-C |\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | | (K)B |\r\n" LoggerScreen=LoggerScreen+"+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++ +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | | (S)LOW |\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | +---------\r\n" LoggerScreen=LoggerScreen+"+-------+-------+-------+-------+-------+-------+-------+--------+ +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | | 1(0)S |\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | +--------+\r\n" LoggerScreen=LoggerScreen+"| | | | + | | | | |>(1)S |\r\n" LoggerScreen=LoggerScreen+"+-------+-------+-------+-------+-------+-------+-------+--------+ +--------+\r\n" LoggerScreen=LoggerScreen+"+----------------------------------------------------------------+ +--------+\r\n" LoggerScreen=LoggerScreen+"| Status:- Running in DEMO mode. | | (U)NCAL|\r\n" LoggerScreen=LoggerScreen+"+----------------------------------------------------------------+ +--------+\r\n" # Save the startscreen to write to. savescreen() # Clear the screen every 64 plots and restart. clrscn() print(LoggerScreen) # Grab the 64 plots. doplot() # Automatically save to disk when autosave is set to 1. if autosave==1: datafile() main() # DataLogger program end. # Enjoy finding simple solutions to often very difficult problems. ``` #### File: tests/data23/recipe-577865.py ```python import random import math def bound(coefficients): coefficients.reverse() n = len(coefficients) - 1 b = 0.0 for i in range(n): b += abs(coefficients[i] / coefficients[i + 1]) coefficients.reverse() return b def polynomial(z, coefficients): # Horner method t = complex(0, 0) for c in reversed(coefficients): t = t * z + c return t eps = 1e-7 # max error allowed def DurandKerner(coefficients): n = len(coefficients) - 1 roots = [complex(0, 0)] * n bnd = bound(coefficients) retry = True while retry: retry = False # set initial roots as random points within bounding circle for k in range(n): r = bnd * random.random() theta = 2.0 * math.pi * random.random() roots[k] = complex(r * math.cos(theta), r * math.sin(theta)) itCtr = 0 rootsNew = roots[:] flag = True while flag: flag = False for k in range(n): temp = complex(1.0, 0.0) for j in range(n): if j != k: temp *= roots[k] - roots[j] rootsNew[k] = roots[k] - polynomial(roots[k], coefficients) / temp if abs(roots[k] - rootsNew[k]) > eps: # print abs(roots[k] - rootsNew[k]) flag = True if math.isnan(rootsNew[k].real) or math.isnan(rootsNew[k].imag): flag = False retry = True print('retrying...') break roots = rootsNew[:] itCtr += 1 print("iteration count: " + str(itCtr)) return roots # example # x**3-3*x**2+3*x-5=0 coefficients = [complex(-5, 0), complex(3, 0), complex(-3, 0), complex(1, 0)] print("coefficients: " + str(coefficients)) print("roots: " + str(DurandKerner(coefficients))) ``` #### File: tests/data23/recipe-577959.py ```python import threading from queue import Queue # Set up a queue for tasks to be run on the main thread. # Most UI toolkits as glib contains functions to push task this way. Q = Queue() def idle_add(a,b): Q.put((a,b)) def async_int(gen): try: next(gen) except StopIteration: return def do(): try: next(gen) except StopIteration: return idle_add(async_int, gen) threading.Thread(target=do).start() def async(func): return lambda *a,**kw: async_int(func(*a,**kw)) @async def test(): # We start in the main thread print("1 %s" % threading.currentThread()) yield # This part is run in a seperate thread, not blocking the main thread print("2 %s" % threading.currentThread()) yield # Now we are back in the main thread print("3 %s" % threading.currentThread()) yield # And in another background thread print("4 %s" % threading.currentThread()) yield # And we keep all internal variables between the threads! print("5 %s" % threading.currentThread()) if __name__ == "__main__": test() while True: a,b = Q.get() a(b) ``` #### File: tests/data23/recipe-578094.py ```python def print_dict(dictionary, ident = '', braces=1): """ Recursively prints nested dictionaries.""" for key, value in dictionary.items(): if isinstance(value, dict): print('%s%s%s%s' %(ident,braces*'[',key,braces*']')) print_dict(value, ident+' ', braces+1) else: print(ident+'%s = %s' %(key, value)) if __name__ == '__main__': example_dict = { 'key1' : 'value1', 'key2' : 'value2', 'key3' : { 'key3a': 'value3a' }, 'key4' : { 'key4a': { 'key4aa': 'value4aa', 'key4ab': 'value4ab', 'key4ac': 'value4ac'}, 'key4b': 'value4b'} } print_dict(example_dict) ``` #### File: tests/data23/recipe-578129.py ```python import sys import math EPSILON = 0.0000001 class SimpleLinearRegression: """ tool class as help for calculating a linear function """ def __init__(self, data): """ initializes members with defaults """ self.data = data # list of (x,y) pairs self.a = 0 # "a" of y = a + b*x self.b = 0 # "b" of y = a + b*x self.r = 0 # coefficient of correlation def run(self): """ calculates coefficient of correlation and the parameters for the linear function """ sumX, sumY, sumXY, sumXX, sumYY = 0, 0, 0, 0, 0 n = float(len(self.data)) for x, y in self.data: sumX += x sumY += y sumXY += x*y sumXX += x*x sumYY += y*y denominator = math.sqrt((sumXX - 1/n * sumX**2)*(sumYY - 1/n * sumY**2)) if denominator < EPSILON: return False # coefficient of correlation self.r = (sumXY - 1/n * sumX * sumY) self.r /= denominator # is there no relationship between 'x' and 'y'? if abs(self.r) < EPSILON: return False # calculating 'a' and 'b' of y = a + b*x self.b = sumXY - sumX * sumY / n self.b /= (sumXX - sumX**2 / n) self.a = sumY - self.b * sumX self.a /= n return True def function(self, x): """ linear function (be aware of current coefficient of correlation """ return self.a + self.b * x def __repr__(self): """ current linear function for print """ return "y = f(x) = %(a)f + %(b)f*x" % self.__dict__ def example(): """ provides an example with error rates (one per session) @note linear function verified in open office calc """ print("Simple linear regression v0.3 by <NAME> 2012") print(("...Python %s" % sys.version.replace("\n", ""))) data = [(1.0, 18.0), (2, 15.0), (3, 19.0), (4, 10.0)] print(("...data is %s" % data)) linRegr = SimpleLinearRegression(data) if not linRegr.run(): print("...error: failed to calculate parameters") return print(("...the coefficient of correlation r = %f (r**2 is %f)" % (linRegr.r, linRegr.r**2))) print(("...parameter a of y = f(x) = a + b*x is %f" % linRegr.a)) print(("...parameter b of y = f(x) = a + b*x is %f" % linRegr.b)) print(("...linear function is then %s" % linRegr)) print(("...forecast of next value: f(5) = %f" % linRegr.function(5))) firstY = linRegr.function(1) lastY = linRegr.function(4) change = (lastY - firstY) / firstY * 100.0 # keep in mind: reducing of error rate (inverse valuation)! if change < 0: print(("...the trend is about %.1f%% improvement" % -change)) else: print(("...the trend is about %.1f%% to the worse" % change)) if __name__ == "__main__": example() ``` #### File: tests/data23/recipe-578197.py ```python import os, sys def main(): if len(sys.argv) - 1: engine(' '.join(sys.argv[1:])) else: print(os.path.basename(sys.argv[0]), '<directory>') def engine(path): directories = files = 0 for information in os.walk(path): directories += len(information[1]) files += len(information[2]) print('Directories =', directories) print('Files =', files) if __name__ == '__main__': main() ``` #### File: tests/data23/recipe-578208.py ```python from random import random # minimum finder def minimum(value_one, value_two): if value_one < value_two: return value_one return value_two # main function def simulate(boys, girls, years, total, fast): # make sure the ages are DIFFERENT b_ages = list(range(70)) g_ages = list(range(70)) # setup the ages for age in range(70): b_ages[age] = g_ages[age] = 0 b_ages[20] = boys g_ages[20] = girls # simulator for year in range(years): # slow printer if not fast: print('Year =', year) sum = 0 for age in range(70): sum += b_ages[age] print('Boys =', sum) sum = 0 for age in range(70): sum += g_ages[age] print('Girls =', sum) print('Boy Ages =', str(b_ages)[1:-1]) print('Girl Ages =', str(g_ages)[1:-1]) # find out the number of offspring b_born = g_born = 0 for age in range(20, 50): pairs = minimum(b_ages[age], g_ages[age]) total_born = int(random() * (pairs + 1)) half = int(random() * (total_born + 1)) b_born += total_born - half g_born += half # make everyone age one year for age in range(68, -1, -1): b_ages[age + 1] = b_ages[age] g_ages[age + 1] = g_ages[age] # add the offspring b_ages[0] = b_born g_ages[0] = g_born # check for total population if total != 0: sum = 0 for age in range(70): sum += b_ages[age] + g_ages[age] if total <= sum: break # pause for reading if not fast: input('Pausing ...') # finish the simulation print('Year =', year + 1) sum = 0 for age in range(70): sum += b_ages[age] print('Boys =', sum) sum = 0 for age in range(70): sum += g_ages[age] print('Girls =', sum) print('Boy Ages =', str(b_ages)[1:-1]) print('Girl Ages =', str(g_ages)[1:-1]) # calculate the total sum = 0 for age in range(70): sum += b_ages[age] + g_ages[age] print('There are a total of', sum, 'people.') # get input def start(): global notes_words loop = True while loop: try: boys = int(input('How many boys should we start with? ')) loop = False except: pass loop = True while loop: try: girls = int(input('How many girls should we start with? ')) loop = False except: pass loop = True while loop: try: years = int(input('How many years should we simulate? ')) loop = False except: pass loop = True while loop: try: total = int(input('How many people do we want? ')) loop = False except: pass # more vocabulary accept = ['yes', 'y', 'yeah', 'si'] deny = ['no', 'n', 'nada', 'never'] loop = True while loop: try: fast = input('Should we go fast? ') if fast.lower() in accept: fast = True loop = False elif fast.lower() in deny: fast = False loop = False elif fast.lower() in notes_words: print('The available commands are ' + str(accept)[1:-1] + ', ' \ + str(deny)[1:-1] + ', ' + str(notes_words)[1:-1] + '.') else: print('"' + fast + '" is not something that I understand.') except: pass try: simulate(boys, girls, years, total, fast) except: print('The simulation crashed !!!') # define the vocabulary start_words = ['start', 'begin', 'exe', 'execute'] break_words = ['break', 'exit', 'end', 'quit'] notes_words = ['help', '?', '/?', '-?'] # get command print('Executing Population Simulator ...') while True: prompt = input('Please enter a command: ') if prompt.lower() in start_words: start() elif prompt.lower() in break_words: break elif prompt.lower() in notes_words: print('The available commands are ' + str(start_words)[1:-1] + ', ' + \ str(break_words)[1:-1] + ', ' + str(notes_words)[1:-1] + '.') else: print('"' + prompt + '" is not something that I understand.') ``` #### File: tests/data23/recipe-578333.py ```python import time bloated_string = 'bloat me' * 10 # method 1, simple concatenation def slow(): test_string = '' start = time.clock() for i in range(1000): test_string += bloated_string end = time.clock() delta = float(end-start) # print 'slow len: ', len(test_string) return delta # method 2, use list.append() and ''.join() def fast(): test_string = list() start = time.clock() for i in range(1000): test_string.append('%s' % bloated_string) test_string = ''.join(test_string) end = time.clock() delta = float(end-start) # print 'fast len: ', len(test_string) return delta # method 3, use list comprehension and ''.join() def fastest(): test_string = bloated_string start = time.clock() test_string = ''.join([test_string for i in range(1000)]) end = time.clock() delta = float(end-start) # print 'fastest len', len(test_string) return delta if __name__ == '__main__': print('--- CPU TIMES ---') delta_slow = slow() print('delta slow: {delta_slow}'.format(delta_slow=delta_slow)) delta_fast = fast() print('delta fast: {delta_fast}'.format(delta_fast=delta_fast)) delta_fastest = fastest() print('delta fastest: {delta_fastest}'.format(delta_fastest=delta_fastest)) print('---') print('listcomps is %f times faster than (list.append + ''.join())' % \ (delta_fast/delta_fastest)) print('the latter is %f times faster (slower) than simple concat' %\ (delta_slow/delta_fast)) ``` #### File: tests/data23/recipe-64937.py ```python import re, string, urllib.request, urllib.parse, urllib.error """ Various patterns I have encountered in looking for the babelfish result. We try each of them in turn, based on the relative number of times I've seen each of these patterns. $1.00 to anyone who can provide a heuristic for knowing which one to use. This includes AltaVista employees. """ __where = [ re.compile(r'name=\"q\">([^<]*)'), re.compile(r'td bgcolor=white>([^<]*)'), re.compile(r'<\/strong><br>([^<]*)') ] __languages = { 'english' : 'en', 'french' : 'fr', 'spanish' : 'es', 'german' : 'de', 'italian' : 'it', 'portugese' : 'pt', } """ All of the available language names. """ available_languages = [ x.title() for x in list(__languages.keys()) ] """ Calling translate() or babelize() can raise a BabelizerError """ class BabelizerError(Exception): pass class LanguageNotAvailableError(BabelizerError): pass class BabelfishChangedError(BabelizerError): pass class BabelizerIOError(BabelizerError): pass def clean(text): return ' '.join(string.replace(text.strip(), "\n", ' ').split()) def translate(phrase, from_lang, to_lang): phrase = clean(phrase) try: from_code = __languages[from_lang.lower()] to_code = __languages[to_lang.lower()] except KeyError as lang: raise LanguageNotAvailableError(lang) params = urllib.parse.urlencode( { 'BabelFishFrontPage' : 'yes', 'doit' : 'done', 'urltext' : phrase, 'lp' : from_code + '_' + to_code } ) try: response = urllib.request.urlopen('http://babelfish.altavista.com/tr', params) except IOError as what: raise BabelizerIOError("Couldn't talk to server: %s" % what) except: print("Unexpected error:", sys.exc_info()[0]) html = response.read() for regex in __where: match = regex.search(html) if match: break if not match: raise BabelfishChangedError("Can't recognize translated string.") return clean(match.group(1)) def babelize(phrase, from_language, through_language, limit = 12, callback = None): phrase = clean(phrase) seen = { phrase: 1 } if callback: callback(phrase) else: results = [ phrase ] flip = { from_language: through_language, through_language: from_language } next = from_language for i in range(limit): phrase = translate(phrase, next, flip[next]) if phrase in seen: break seen[phrase] = 1 if callback: callback(phrase) else: results.append(phrase) next = flip[next] if not callback: return results if __name__ == '__main__': import sys def printer(x): print(x) sys.stdout.flush(); babelize("I won't take that sort of treatment from you, or from your doggie!", 'english', 'french', callback = printer) ``` #### File: tests/data23/recipe-66003.py ```python class Error(Exception): def __init__(self, errcode, heading_num = 0, sublist_length = 0): self.errcode = errcode if self.errcode == "Length Error - Sublists": self.message = ["All the sublists must be of uniform length."] elif self.errcode == "Heading Error - Empty Item": self.message = ["There is at least one empty heading item.\n", "Please supply only non-empty headings."] elif self.errcode == "Heading Error - heading/sublist missmatch": self.message = ["Number of headings=",repr(heading_num), "\n", "Number of elements in sublists=", repr(sublist_length), "\n", "These numbers must be equal."] print(self.message) else: self.message = "" self.errmsg = "".join(self.message) def __str__(self): return (self.errmsg) pass def escape(s): """Replace special characters '&', "'", '<', '>' and '"' by XML entities.""" s = s.replace("&", "&amp;") # Must be done first! s = s.replace("'", "&apos;") s = s.replace("<", "&lt;") s = s.replace(">", "&gt;") s = s.replace('"', "&quot;") return s def cleanString(s, ident): if type(s) != type(""): s = repr(s) s = escape(s) if ident == "tag": s = s.lower() s = s.replace(" ", "_") return s def LL2XML(LL,headings_tuple = (), root_element = "rows", row_element = "row", xml_declared = "yes"): if headings_tuple == "table": td_list = [] for item in LL[0]: td_list.append("td") headings_tuple = tuple(td_list) root_element = "table" row_element = "tr" xml_declared = "no" root_element = cleanString(root_element, "tag") row_element = cleanString(row_element, "tag") if headings_tuple == (): headings = [cleanString(s,"tag") for s in LL[0]] LL = LL[1:] # remove now redundant heading row else: headings = [cleanString(s,"tag") for s in headings_tuple] # Sublists all of the same length? if ['!' for sublist in LL if len(sublist) != len(LL[0])]: raise Error("Length Error - Sublists") #check headings heading_num = len(headings) if heading_num != len(LL[0]): raise Error("Heading Error - heading/sublist missmatch", heading_num, len(LL[0])) for item in headings: if not cleanString(item,"heading"): raise Error("Heading Error - Empty Item") else: pass # Do the conversion xml = "" if xml_declared == "yes": xml_declaration = '<?xml version="1.0" encoding="iso-8859-1"?>\n' else: xml_declaration = "" bits = [] add_bit = bits.append add_bit(xml_declaration) add_bit('<') add_bit(root_element) add_bit('>') for sublist in LL: add_bit("\n <") add_bit(row_element) add_bit(">\n") i = 0 for item in sublist: tag = headings[i] item = cleanString(item, "item") add_bit(" <") add_bit(tag) add_bit(">") add_bit(item) add_bit("</") add_bit(tag) add_bit(">\n") i = i+1 add_bit(" </") add_bit(row_element) add_bit(">") add_bit("\n</") add_bit(root_element) add_bit(">") xml = "".join(bits) return xml def test(): LL = [['Login', 'First Name', 'Last Name', 'Job', 'Group', 'Office', 'Permission'], ['auser', 'Arnold', 'Atkins', 'Partner', 'Tax', 'London', 'read'], ['buser', 'Bill', 'Brown', 'Partner', 'Tax', 'New York', 'read'], ['cuser', 'Clive', 'Cutler', 'Partner', 'Management', 'Brussels', 'read'], ['duser', 'Denis', 'Davis', 'Developer', 'ISS', 'London', 'admin'], ['euser', 'Eric', 'Ericsson', 'Analyst', 'Analysis', 'London', 'admin'], ['fuser', 'Fabian', 'Fowles', 'Partner', 'IP', 'London', 'read']] LL_no_heads = [['auser', 'Arnold', 'Atkins', 'Partner', 'Tax', 'London', 'read'], ['buser', 'Bill', 'Brown', 'Partner', 'Tax', 'New York', 'read'], ['cuser', 'Clive', 'Cutler', 'Partner', 'Management', 'Brussels', 'read'], ['duser', 'Denis', 'Davis', 'Developer', 'ISS', 'London', 'admin'], ['euser', 'Eric', 'Ericsson', 'Analyst', 'Analysis', 'London', 'admin'], ['fuser', 'Fabian', 'Fowles', 'IP', 'Partner', 'London', 'read']] #Example 1 print("Example 1: Simple case, using defaults.\n") print(LL2XML(LL)) print("\n") #Example 2 print("""Example 2: LL has its headings in the first line, and we define our root and row element names.\n""") print(LL2XML(LL,(),"people","person")) print("\n") #Example 3 print("""Example 3: headings supplied using the headings argument(tuple), using default root and row element names.\n""") print(LL2XML(LL_no_heads,("Login","First Name","Last Name","Job","Group","Office","Permission"))) print("\n") #Example 4 print("""Example 4: The special case where we ask for an HTML table as output by just giving the string "table" as the second argument.\n""") print(LL2XML(LL,"table")) ``` #### File: tests/data23/recipe-67682.py ```python VOS_DOS = 0x00010000 VOS_OS216 = 0x00020000 VOS_OS232 = 0x00030000 VOS_NT = 0x00040000 VOS__BASE = 0x00000000 VOS__WINDOWS16 = 0x00000001 VOS__PM16 = 0x00000002 VOS__PM32 = 0x00000003 VOS__WINDOWS32 = 0x00000004 VOS_DOS_WINDOWS16 = 0x00010001 VOS_DOS_WINDOWS32 = 0x00010004 VOS_OS216_PM16 = 0x00020002 VOS_OS232_PM32 = 0x00030003 VOS_NT_WINDOWS32 = 0x00040004 def normalizer(s): for j in range(len(s)): if len(s[j]) > 3: k = s[j][2:] else: k = '0' + s[j][2:] s[j] = k return s def calcversioninfo(fn): ostypes = [VOS_DOS, VOS_NT, VOS__WINDOWS32, VOS_DOS_WINDOWS16, VOS_DOS_WINDOWS32, VOS_NT_WINDOWS32] verstrings = [] sigstrings = findsignatures(fn) if sigstrings[0] == '': print('No Version Information Available') return for i in sigstrings: FV = normalizer(i.split(',')[8:16]) FOS = normalizer(i.split(',')[32:36]) hexver = FV[3]+FV[2]+FV[1]+FV[0]+':'+FV[7]+FV[6]+FV[5]+FV[4] OStag = int('0x' + FOS[3]+FOS[2]+FOS[1]+FOS[0] + 'L',16) if OStag not in ostypes: continue if hexver not in verstrings: verstrings.append(hexver) myver = max(verstrings) return parsver(myver) def createparsestruct(b): s= '' for i in range(len(b)): s += hex(ord(b[i]))+',' return s[:-1] def findsignatures(file): f = open(file, 'rb') sz = f.read() f.close() res = [] indx=sz.find('\xbd\x04\xef\xfe') cnt = sz.count('\xbd\x04\xef\xfe') while cnt > 1: s = createparsestruct(sz[indx:indx+52]) sz = sz[indx+1:] cnt = sz.count('\xbd\x04\xef\xfe') indx=sz.find('\xbd\x04\xef\xfe') res.append(s) res.append(createparsestruct(sz[indx:indx+52])) return res def parsver(v): a,b,c,d = v[:4], v[4:8], v[9:13], v[13:] return str(int(a,16)) + '.'+ str(int(b,16)) +'.' + str(int(c,16)) + '.' + str(int(d,16)) ``` #### File: tests/data23/recipe-68417.py ```python import os, sys, string, copy, getopt def usage(): print("""patchdiff generates a listing of patches that are different between two solaris boxes. usage: patchdiff hostname1 hostname2""") sys.exit(1) def getpatches(target): f = os.popen('/usr/local/bin/ssh ' + target + ' /bin/showrev -p', 'r') patch = ['', {'obsoletes': None, 'requires': None, 'incompatibles': None, 'packages': None}] patch_listing = [] while 1: line = string.split(f.readline()[:-1]) if not line: break # Break at EOF patch[0] = line[1] patch[1]['obsoletes'] = line[line.index('Obsoletes:')+1:line.index('Requires:')] patch[1]['requires'] = line[line.index('Requires:')+1:line.index('Incompatibles:')] patch[1]['incompatibles'] = line[line.index('Incompatibles:')+1:line.index('Packages:')] patch[1]['packages'] = line[line.index('Packages:')+1:] patch_listing.append([patch[0],copy.copy(patch[1])]) return patch_listing def compare(a,b): a_extra = [] b_extra = [] for i in a: if i not in b: a_extra.append(i) for i in b: if i not in a: b_extra.append(i) return (a_extra,b_extra) def collapse(a): a.sort() older = [] for i in range(0,len(a)): next = i+1 try: if a[i][0][0:6] == a[next][0][0:6]: if a[i][0][7:9] < a[next][0][7:9]: older.append([a[i][0],copy.copy(a[i][1])]) except: pass for i in older: a.remove(i) return a def printout(differences): for i in differences[0]: print(i[0] + "\t", end=' ') for j in differences[1]: if i[0][0:6] == j[0][0:6]: print(j[0], end=' ') print("") if len(sys.argv) != 3: usage() options, target = getopt.getopt(sys.argv[1:], '') patches = (collapse(getpatches(target[0])),collapse(getpatches(target[1]))) differences = compare(patches[0], patches[1]) print(target[0] + '\t' + target[1]) print('---------\t---------') printout(differences) ``` #### File: tests/examples-bad/classdup.py ```python class Foo0(): def __init__(self): pass foo1 = Foo0() class Foo0(): ## error: redefined class def __init__(self, a): pass foo2 = Foo0() ``` #### File: tests/examples-good/3.py ```python def get_node(): return 1 node = get_node() node.foo() ## ok, modification node += 3 ## ok, modification ``` #### File: tests/expect-fail23/recipe-131495.py ```python class sample(object): class one(object): def __get__(self, obj, type=None): print("computing ...") obj.one = 1 return 1 one = one() x=sample() print(x.one) print(x.one) # # other solution: # # lazy attribute descriptor class lazyattr(object): def __init__(self, fget, doc=''): self.fget = fget self.__doc__ = doc def __appoint__(self, name, cl_name): if hasattr(self,"name"): raise SyntaxError("conflict between "+name+" and "+self.name) self.name = name def __get__(self, obj, cl=None): if obj is None: return self value = self.fget(obj) setattr(obj, self.name, value) return value # appointer metaclass: # call the members __appoint__ method class appointer(type): def __init__(self, cl_name, bases, namespace): for name,obj in namespace.items(): try: obj.__appoint__(name, cl_name) except AttributeError: pass super(appointer, self).__init__(cl_name, bases, namespace) # base class for lazyattr users class lazyuser(object, metaclass=appointer): pass # usage sample class sample(lazyuser): def one(self): print("computing ...") return 1 one = lazyattr(one, "one lazyattr") x=sample() print(x.one) print(x.one) del x.one print(x.one) ``` #### File: tests/expect-fail23/recipe-275150.py ```python import cgi print("Content-type: text/html\n\n") global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 bsize = 3 playerToken = "X" myToken = "0" gameOver = 0 winArr = [] rowArr = [] colArr = [] digArr = [] x = 0 while x < bsize * bsize : rowArr.append(0) colArr.append(0) digArr.append(0) x = x + 1 out1 = """<html> <head> <title>Tic Tac Toe in Python</title> <style type="text/css"> .main{border:#9999CC solid 2px; width:350px} .btn{font-family:comic sans ms,verdana,arial,helvetica; font-size:20pt; font-weight:bold; background:#9999CC; width:50px; height:50px; border:#666699 solid 1px; cursor:hand; color:#EFEFFF} .btn_over{font-family:comic sans ms,verdana,arial,helvetica; font-size:20pt; font-weight:bold; background:#EFEFFF; width:50px; height:50px; border:#666699 solid 1px; cursor:hand; color:#9999CC} .btn_down{font-family:comic sans ms,verdana,arial,helvetica; font-size:20pt; font-weight:bold; background:#666699; width:50px; height:50px; border:#666699 solid 1px; cursor:hand; color:#EFEFFF} .footer{font-family:verdana,arial,helvetica; font-size:8pt; color:#FFFFFF} .link{font-family:verdana,arial,helvetica; font-size:8pt; color:#FFFFFF} .link:hover{font-family:verdana,arial,helvetica; font-size:8pt; color:#EFEFFF} </style> <script language="JavaScript"> var doneFlag=false; function toggleVal(who) { var check; eval('check=document.ttt.'+who+'_btn.value;'); if(check==" ") { if(!doneFlag) { eval('document.ttt.'+who+'_btn.value="X";'); eval('document.ttt.'+who+'_btn.disabled="true";'); eval('document.ttt.'+who+'.value="X";'); document.ttt.submit(); doneFlag=true; document.getElementById('process').innerHTML="Processing........."; } } else { alert('Invalid Move!'); } } </script> </head> <body> <table width="100%" height="100%"><tr><td align="center"> <table width="346" align="center" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td></td></tr></table> <table width="348" align="center" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td></td></tr></table> <table align="center" cellspacing="0" cellpadding="0" class="main"><tr><td align="center"> <table width="100%" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td align="center"><a href="pyttt.py"><img src="../ttt_py.gif" border="0" alt="Tic Tac Toe (in Python)"></a></td></tr></table> <table width="100%" bgcolor="#EFEFFF" cellspacing="0" cellpadding="0"><tr><td align="center"><a href="http://www.qiksearch.com"><img src="../qiksearch_ttt_py.gif" border="0" alt="www.qiksearch.com"></a></td></tr></table>""" print(out1) def genBox(size): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 count = 0 retVal = '<form name="ttt" method="post" action="pyttt.py">' i = 0 while i < size : j = 0 while j < size : count = count + 1 retVal = retVal + '<input type="button" name="s' + str(count) + '_btn" value=" " class="btn" onClick="toggleVal(\'s' + str(count) + '\')" onMouseover="this.className=\'btn_over\'" onMouseout="this.className=\'btn\'" onMousedown="this.className=\'btn_down\'"><input type="hidden" name="s' + str(count) + '" value=" ">' j = j + 1 retVal = retVal + '<br>' i = i + 1 retVal = retVal + '</form>' print(retVal) def genBox2(size,arr): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 count = 0 retVal = '<form name="ttt" method="post" action="pyttt.py">' i = 0 while i < size : j = 0 while j < size : count = count + 1 retVal = retVal + '<input type="button" name="s' + str(count) + '_btn" value="' + str(arr[count-1]) + '" class="btn" onClick="toggleVal(\'s' + str(count) + '\')" onMouseover="this.className=\'btn_over\'" onMouseout="this.className=\'btn\'" onMousedown="this.className=\'btn_down\'"><input type="hidden" name="s' + str(count) + '" value="' + str(arr[count-1]) + '">' j = j + 1 retVal = retVal + '<br>' i = i + 1 retVal = retVal + '</form>' print(retVal) def isEmpty(who): if who == " ": return 1 else: return 0; def move(bsize,arr): global playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 count = 0 maxCount = 0 pos = 0 retVal = 0 # Build Row Array i = 0 while i < bsize : maxCount = 0 fullCounter = 0 j = 0 while j < bsize : count = count + 1 who = arr[count-1] if who == playerToken : maxCount = maxCount + 1 fullCounter = fullCounter + 1 if who == myToken : fullCounter = fullCounter + 1 j = j + 1 rowArr[i] = maxCount if fullCounter == bsize : rowArr[i] = -1 i = i + 1 # Building Column Array i = 0 while i < bsize : count = i + 1 maxCount = 0 fullCounter = 0 j = 0 while j < bsize : who = arr[count-1] if who == playerToken : maxCount = maxCount + 1 fullCounter = fullCounter + 1 if who == myToken : fullCounter = fullCounter + 1 count = count + bsize j = j + 1 colArr[i] = maxCount if fullCounter == bsize : colArr[i] = -1 i = i + 1 # Building Diagonal Array i = 0 while i < 2 : if i == 0 : count = i + 1 else: count = bsize maxCount = 0 fullCounter = 0 j = 0 while j < bsize : who = arr[count-1] if who == playerToken : maxCount = maxCount + 1 fullCounter = fullCounter + 1 if who == myToken : fullCounter = fullCounter + 1 if i == 0 : count = count + bsize + 1 else: count = count + bsize - 1 j = j + 1 digArr[i] = maxCount if fullCounter == bsize : digArr[i] = -1 i = i + 1 # Finding Max Values maxRow = myMax(0,bsize,"row",rowArr) maxCol = myMax(0,bsize,"col",colArr) maxDig = myMax(0,bsize,"dig",digArr) maxArrs = [] maxArrs.append(myMax(1,bsize,"row",rowArr)) maxArrs.append(myMax(1,bsize,"col",colArr)) maxArrs.append(myMax(1,bsize,"dig",digArr)) if myMax(0,bsize,"x",maxArrs) == 0 : pos = bsize * (maxRow + 1) - bsize if myMax(0,bsize,"x",maxArrs) == 1 : pos = maxCol if myMax(0,bsize,"x",maxArrs) == 2 : if maxDig == 0 : pos = maxDig else: pos = bsize - 1 retFlag = 0 y = 0 while y < bsize : if not(retFlag): if arr[pos] == " " : retVal = pos retFlag = 1 if myMax(0,bsize,"x",maxArrs) == 0 : pos = pos + 1 if myMax(0,bsize,"x",maxArrs) == 1 : pos = pos + bsize if myMax(0,bsize,"x",maxArrs) == 2 : if maxDig == 0 : pos = pos + bsize + 1 else: pos = pos + bsize - 1 y = y + 1 return retVal def myMax(what,bsize,type,arr): global playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 max = -1 maxIndex = -1 if type != "dig" : i = 0 while i < bsize : if arr[i] > max : max = arr[i] maxIndex = i i = i + 1 if type == "dig" : i = 0 while i < 2 : if arr[i] > max : max = arr[i] maxIndex = i i = i + 1 if what == 0 : return maxIndex else: return max def playerWin(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 who = playerToken if (s1 == who == s2 == s3) or (s4 == who == s5 == s6) or (s7 == who == s8 == s9) or (s1 == who == s4 == s7) or (s2 == who == s5 == s8) or (s3 == who == s6 == s9) or (s1 == who == s5 == s9) or (s3 == who == s5 == s7) : return 1 else: return 0 def iWin(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 who = myToken if (s1 == who == s2 == s3) or (s4 == who == s5 == s6) or (s7 == who == s8 == s9) or (s1 == who == s4 == s7) or (s2 == who == s5 == s8) or (s3 == who == s6 == s9) or (s1 == who == s5 == s9) or (s3 == who == s5 == s7) : return 1 else: return 0 def whereWinComp(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 who = myToken if (s1 == who == s2 == s3) : winArr = ['s1','s2','s3'] if (s4 == who == s5 == s6) : winArr = ['s4','s5','s6'] if (s7 == who == s8 == s9) : winArr = ['s7','s8','s9'] if (s1 == who == s4 == s7) : winArr = ['s1','s4','s7'] if (s2 == who == s5 == s8) : winArr = ['s2','s5','s8'] if (s3 == who == s6 == s9) : winArr = ['s3','s6','s9'] if (s1 == who == s5 == s9) : winArr = ['s1','s5','s9'] if (s3 == who == s5 == s7) : winArr = ['s3','s5','s7'] def whereWinPlayer(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 who = playerToken if (s1 == who == s2 == s3) : winArr = ['s1','s2','s3'] if (s4 == who == s5 == s6) : winArr = ['s4','s5','s6'] if (s7 == who == s8 == s9) : winArr = ['s7','s8','s9'] if (s1 == who == s4 == s7) : winArr = ['s1','s4','s7'] if (s2 == who == s5 == s8) : winArr = ['s2','s5','s8'] if (s3 == who == s6 == s9) : winArr = ['s3','s6','s9'] if (s1 == who == s5 == s9) : winArr = ['s1','s5','s9'] if (s3 == who == s5 == s7) : winArr = ['s3','s5','s7'] def draw(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 drawCounter = 0 dCounter = 0 while dCounter < len(vals) : if vals[dCounter] != " " : drawCounter = drawCounter + 1 dCounter = dCounter + 1 if drawCounter == bsize * bsize : return 1 else: return 0 form = cgi.FieldStorage() if form : s1 = form['s1'].value s2 = form['s2'].value s3 = form['s3'].value s4 = form['s4'].value s5 = form['s5'].value s6 = form['s6'].value s7 = form['s7'].value s8 = form['s8'].value s9 = form['s9'].value vals = [s1,s2,s3,s4,s5,s6,s7,s8,s9] if draw() or playerWin() : gameOver = 1 # Computer's Move! movIndex = move(bsize,vals) if not(gameOver) : vals[movIndex] = myToken # Update S's if not(gameOver) : if movIndex == 0 : s1 = myToken if movIndex == 1 : s2 = myToken if movIndex == 2 : s3 = myToken if movIndex == 3 : s4 = myToken if movIndex == 4 : s5 = myToken if movIndex == 5 : s6 = myToken if movIndex == 6 : s7 = myToken if movIndex == 7 : s8 = myToken if movIndex == 8 : s9 = myToken genBox2(bsize,vals) if playerWin() : print('<font face="verdana,arial,helvetica" color="#009900" size="4"><b>Wow! You Won!</b></font><br><br>') print('<input type="button" onClick="location.href=\'pyttt.py\'" value="Play Again!" style="background:#CCCCCC; font-weight:bold; cursor:hand"><br><br>') whereWinPlayer() print('<script language="JavaScript">') winCount = 0 while winCount < len(winArr) : print('document.ttt.' + winArr[winCount] + '_btn.style.color=\'#009900\';') winCount = winCount + 1 w = 0 while w < (bsize * bsize) : if vals[w] == " " : print('document.ttt.s' + str(w + 1) + '_btn.disabled=true;') w = w + 1 print('</script>') gameOver = 1 if iWin() and not(gameOver) : print('<font face="verdana,arial,helvetica" color="#FF0000" size="4"><b>Oops! You Lost!</b></font><br><br>') print('<input type="button" onClick="location.href=\'pyttt.py\'" value="Play Again!" style="background:#CCCCCC; font-weight:bold; cursor:hand"><br><br>') whereWinComp() print('<script language="JavaScript">') winCount = 0 while winCount < len(winArr) : print('document.ttt.' + winArr[winCount] + '_btn.style.color=\'#FF0000\';'); winCount = winCount + 1 w = 0 while w < bsize * bsize : if vals[w] == " " : print('document.ttt.s' + str(w + 1) + '_btn.disabled=true;') w = w + 1 print('</script>') gameOver = 1 if draw() and not(playerWin()) and not(iWin()) : print('<font face="verdana,arial,helvetica" color="#000000" size="4"><b>It\'s a Draw!</b></font><br><br>') print('<input type="button" onClick="location.href=\'pyttt.py\'" value="Play Again!" style="background:#CCCCCC; font-weight:bold; cursor:hand"><br><br>') print('<script language="JavaScript">') w = 0 while w < bsize * bsize : if vals[w] == " " : print('document.ttt.s' + str(w + 1) + '_btn.disabled=true;') w = w + 1 print('</script>') else: genBox(bsize) out2 = """<div style="font-family:verdana,arial,helvetica; font-weight:bold; font-size:10pt; color:#CC0000; background:#EFEFFF; width:100%; padding:3px" id="process"></div> <table width="100%" bgcolor="#9999CC"><tr><td><span class="footer">&#169; 2004 <a href="http://www.qiksearch.com" class="link"><NAME></a> | <a href="http://www.guestbookdepot.com/cgi-bin/guestbook.cgi?book_id=374186" class="link">Sign my Guestbook</a>.</span></td></tr></table> </td></tr></table> <table width="348" align="center" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td></td></tr></table> <table width="346" align="center" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td></td></tr></table> </td></tr></table> </body> </html>""" print(out2) ``` #### File: tests/expect-fail23/recipe-440542.py ```python __author__ = '<NAME>' import copy def uniqueInsert(l, v): ''' Add v to list if it is not already there, else raise ValueError ''' if v is not None: if v in l: raise ValueError('list already contains value %s' % v) assert 0 < v < 10, 'Only 1-9 allowed, got %s' % v l.append(v) class Sudoku: def submat(self, i, j): ''' Return i, j 3x3 submatrix of self. ''' mat = self.mat out = [] for srow_i in range(3): row = [] for scol_i in range(3): v = mat[i * 3 + srow_i][j * 3 + scol_i] row.append(v) out.append(row) return out def copy(self): return Sudoku(copy.deepcopy(self.mat)) def add(self, v, i, j): ''' Fill in an entry in self.mat ''' self.mat[i][j] = v uniqueInsert(self.rows[i], v) uniqueInsert(self.cols[j], v) sub_i = i // 3 * 3 + j // 3 uniqueInsert(self.subs[sub_i], v) def __init__(self, mat): ''' Create a new Sudoku instance. mat -- 9x9 array of digits 1-9 or None if no value is known for that spot ''' self.mat = mat # keep track of all values used in each row, column and sub-matrix. rows = [[] for i in range(9)] cols = [[] for i in range(9)] subs = [[] for i in range(9)] for row_i in range(9): for col_i in range(9): v = self.mat[row_i][col_i] uniqueInsert(rows[row_i], v) uniqueInsert(cols[col_i], v) for srow_i in range(3): for scol_i in range(3): sub = self.submat(srow_i, scol_i) for i in range(3): for j in range(3): v = sub[i][j] sub_i = srow_i * 3 + scol_i uniqueInsert(subs[sub_i], v) self.rows = rows self.cols = cols self.subs = subs def __repr__(self): out = '' for i in range(9): if i % 3 == 0: out += '+-------+-------+-------+\n' for j in range(9): if j % 3 == 0: out += '| ' v = self.mat[i][j] if v is not None: out += '%1d ' % v else: out += ' ' out += '|\n' out += '+-------+-------+-------+\n' return out def solve(self): ''' Solve for the unknown positions of the puzzle ''' min_poss = 9 # Minimum possible number of choices for a cell done = True for i in range(9): for j in range(9): sub_i = i // 3 * 3 + j // 3 # sub-matrix index v = self.mat[i][j] if v: pass else: # not all values filled out so we are not done yet done = False all = set(range(1, 10)) # determine all possible values for this cell possible = (all.difference(self.rows[i]) .difference(self.cols[j]) .difference(self.subs[sub_i])) # see if we have run into a brick wall if len(possible) == 0: raise ValueError('Sudoku not solvable') elif len(possible) < min_poss: # keep track of cell with smallest number of choices min_poss = len(possible) best = possible min_i = i min_j = j if done: out = self else: # Try these possibilities and recurse for b in best: print(min_i, min_j, b) trial = self.copy() trial.add(b, min_i, min_j) print(trial) try: soln = trial.solve() break except ValueError: soln = None if soln is None: print(self) raise ValueError('Sudoku not solvable') out = soln return out N = None easy = [ [7, N, N, 1, 5, N, N, N, 8], [N, N, 4, N, N, 2, N, N, N], [N, N, N, N, N, 4, 5, 6, N], [6, N, N, N, N, N, N, 2, 9], [5, N, 2, N, N, N, 8, N, 4], [3, 4, N, N, N, N, N, N, 1], [N, 3, 8, 6, N, N, N, N, N], [N, N, N, 2, N, N, 9, N, N], [1, N, N, N, 8, N, N, N, 3] ] hard = [ [N, 4, N, N, N, 7, 9, N, N], [N, N, 8, 5, 3, 9, N, N, N], [N, 6, N, N, N, N, 2, N, 3], [N, N, N, N, N, 2, 5, N, N], [N, 8, 6, N, N, N, 1, 4, N], [N, N, 9, 8, N, N, N, N, N], [6, N, 3, N, N, N, N, 9, N], [N, N, N, 9, 8, 6, 3, N, N], [N, N, 1, 4, N, N, N, 6, N] ] evil = [ [4, 2, N, N, N, N, N, 1, N], [N, N, N, 5, 4, N, N, 3, N], [N, N, 6, N, N, 7, N, N, N], [N, N, N, N, N, N, 2, 7, 9], [N, 1, N, N, N, N, N, 6, N], [3, 4, 2, N, N, N, N, N, N], [N, N, N, 9, N, N, 3, N, N], [N, 6, N, N, 3, 8, N, N, N], [N, 8, N, N, N, N, N, 5, 7] ] blank = [ [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N] ] import time easy = Sudoku(easy) hard = Sudoku(hard) evil = Sudoku(evil) print() print('easy') print(easy) time.sleep(2) easy.solve() print() print('hard') print(hard) time.sleep(2) hard.solve() print() print('evil') print(evil) print() time.sleep(2) evil.solve() ``` #### File: tests/expect-fail23/recipe-498266.py ```python from UserDict import DictMixin import sys from time import time class _FakeLock(object): ''' a do-nothin, substituted for a real Lock if there is no threading. Really a micro-optimization. ''' acquire = release = lambda x : None _FakeLock = _FakeLock() # need only one instance def RLock(): ''' make the container threadsafe if running in a threaded context ''' if 'thread' in sys.modules: # thread may be imported either directly or by module threading import threading return threading.RLock() else: return _FakeLock class _Item(object): ''' wrapper for items stored in LruDict, providing them with references to one another ''' __slots__ = "key value nextItem previousItem atime".split() def __init__(self, key, value): self.key = key self.value = value self.nextItem = None self.previousItem = None self.atime = time() class LruDict(DictMixin): ''' store up to size items for up to timeout seconds We inherit from UserDict.DictMixin rather than from dict because DictMixin builds all its methods on a base set of user-supplied ones ''' def __init__(self, timeout=600, size=1000, data=None): self._lock = RLock() self._timeout = timeout self._size = size # pointers to newest and oldest items self._newest = None self._oldest = None self._data = {} if data: self.update(data) def _setNewest(self, item): ''' put a new or retrieved item at the top of the pile ''' item.atime = time() if item is self._newest: # item is already on top return if item.nextItem or item.previousItem: # this item is currently in the pile... self._pullout(item) # pull it out if self._newest: self._newest.nextItem = item # point the previously newest item to this one... item.previousItem = self._newest # and vice versa self._newest = item # reset the 'newest' pointer if not self._oldest: # this only applies if the pile was empty self._oldest = item def _pullout(self, item): ''' pull an item out of the pile and hook up the neighbours to each other ''' if item is self._oldest: if item is self._newest: # removing the only item self._newest = self._oldest = None else: # removing the oldest item of 2 or more self._oldest = item.nextItem self._oldest.previousItem = None elif item is self._newest: # removing the newest item of 2 or more self._newest = item.previousItem self._newest.nextItem = None else: # we are somewhere in between at least 2 others - hitch up the neighbours to each other prev = item.previousItem next = item.nextItem prev.nextItem = next next.previousItem = prev item.nextItem = item.previousItem = None def __setitem__(self, key, value): ''' add a new item or update an old one ''' try: self._lock.acquire() self.prune() # here we make a choice - if we prune a the beginning, we may wind up with size+1 # items; if we prune at the end, we might keep an expired item. Not serious. item = self._data.get(key) if item: item.value = value else: item = self._data[key] = _Item(key, value) self._setNewest(item) finally: self._lock.release() def __getitem__(self, key): ''' get an item and update its access time and pile position ''' try: self._lock.acquire() self.prune() item = self._data[key] self._setNewest(item) return item.value finally: self._lock.release() def __delitem__(self, key): ''' delete an item ''' try: self._lock.acquire() item = self._data.pop(key) self._pullout(item) self.prune() finally: self._lock.release() def prune(self): ''' called by __delitem__, __getitem__, __setitem__, and _contents drop the oldest members until we get back to recent time or to size limit ''' if not len(self._data): return try: self._lock.acquire() outtime = time() - self._timeout while len(self._data) > self._size or self._oldest and self._oldest.atime < outtime: drop = self._data.pop(self._oldest.key) self._oldest = drop.nextItem if self._oldest: self._oldest.previousItem = None finally: self._lock.release() def _contents(self, method, *args): ''' common backend for methods: keys, values, items, __len__, __contains__ ''' try: self._lock.acquire() self.prune() data = getattr(self._data, method)(*args) return data finally: self._lock.release() def __contains__(self, key): return self._contents('__contains__', key) has_key = __contains__ def __len__(self): return self._contents('__len__') def keys(self): return self._contents('keys') def values(self): data = self._contents('values') return [v.value for v in data] def items(self): data = self._contents('items') return [(k, v.value) for k, v in data] def __repr__(self): d = dict(list(self.items())) return '%s(timeout=%s, size=%s, data=%s)' % (self.__class__.__name__, self._timeout, self._size, repr(d)) if __name__ == '__main__': from time import sleep ls = LruDict(timeout=100, size=5) print('expiring items by size') l = 10 for x in range(l): ls[x] = '' print(ls) print('\nexpiring items by time') ls = LruDict(timeout=1, size=100) print(ls) for x in range(10): ls[x] = '' print(ls) sleep(0.21) size = 10000 items = 100000 print('\ncreating a LruDict with length %d and setting %d items' % (size, items)) ls = LruDict(timeout=600, size=size) print(ls) for x in range(items): ls[x] = '' print(len(ls)) ``` #### File: tests/expect-fail23/recipe-577519.py ```python from heapq import heappush, heappop # for priority queue import math import time import random class node: xPos = 0 # x position yPos = 0 # y position distance = 0 # total distance already travelled to reach the node priority = 0 # priority = distance + remaining distance estimate def __init__(self, xPos, yPos, distance, priority): self.xPos = xPos self.yPos = yPos self.distance = distance self.priority = priority def __lt__(self, other): # comparison method for priority queue return self.priority < other.priority def updatePriority(self, xDest, yDest): self.priority = self.distance + self.estimate(xDest, yDest) * 10 # A* # give higher priority to going straight instead of diagonally def nextMove(self, dirs, d): # d: direction to move if dirs == 8 and d % 2 != 0: self.distance += 14 else: self.distance += 10 # Estimation function for the remaining distance to the goal. def estimate(self, xDest, yDest): xd = xDest - self.xPos yd = yDest - self.yPos # Euclidian Distance d = math.sqrt(xd * xd + yd * yd) # Manhattan distance # d = abs(xd) + abs(yd) # Chebyshev distance # d = max(abs(xd), abs(yd)) return(d) # A-star algorithm. # The path returned will be a string of digits of directions. def pathFind(the_map, n, m, dirs, dx, dy, xA, yA, xB, yB): closed_nodes_map = [] # map of closed (tried-out) nodes open_nodes_map = [] # map of open (not-yet-tried) nodes dir_map = [] # map of dirs row = [0] * n for i in range(m): # create 2d arrays closed_nodes_map.append(list(row)) open_nodes_map.append(list(row)) dir_map.append(list(row)) pq = [[], []] # priority queues of open (not-yet-tried) nodes pqi = 0 # priority queue index # create the start node and push into list of open nodes n0 = node(xA, yA, 0, 0) n0.updatePriority(xB, yB) heappush(pq[pqi], n0) open_nodes_map[yA][xA] = n0.priority # mark it on the open nodes map # A* search while len(pq[pqi]) > 0: # get the current node w/ the highest priority # from the list of open nodes n1 = pq[pqi][0] # top node n0 = node(n1.xPos, n1.yPos, n1.distance, n1.priority) x = n0.xPos y = n0.yPos heappop(pq[pqi]) # remove the node from the open list open_nodes_map[y][x] = 0 closed_nodes_map[y][x] = 1 # mark it on the closed nodes map # quit searching when the goal is reached # if n0.estimate(xB, yB) == 0: if x == xB and y == yB: # generate the path from finish to start # by following the dirs path = '' while not (x == xA and y == yA): j = dir_map[y][x] c = str((j + dirs / 2) % dirs) path = c + path x += dx[j] y += dy[j] return path # generate moves (child nodes) in all possible dirs for i in range(dirs): xdx = x + dx[i] ydy = y + dy[i] if not (xdx < 0 or xdx > n-1 or ydy < 0 or ydy > m - 1 or the_map[ydy][xdx] == 1 or closed_nodes_map[ydy][xdx] == 1): # generate a child node m0 = node(xdx, ydy, n0.distance, n0.priority) m0.nextMove(dirs, i) m0.updatePriority(xB, yB) # if it is not in the open list then add into that if open_nodes_map[ydy][xdx] == 0: open_nodes_map[ydy][xdx] = m0.priority heappush(pq[pqi], m0) # mark its parent node direction dir_map[ydy][xdx] = (i + dirs / 2) % dirs elif open_nodes_map[ydy][xdx] > m0.priority: # update the priority open_nodes_map[ydy][xdx] = m0.priority # update the parent direction dir_map[ydy][xdx] = (i + dirs / 2) % dirs # replace the node # by emptying one pq to the other one # except the node to be replaced will be ignored # and the new node will be pushed in instead while not (pq[pqi][0].xPos == xdx and pq[pqi][0].yPos == ydy): heappush(pq[1 - pqi], pq[pqi][0]) heappop(pq[pqi]) heappop(pq[pqi]) # remove the target node # empty the larger size priority queue to the smaller one if len(pq[pqi]) > len(pq[1 - pqi]): pqi = 1 - pqi while len(pq[pqi]) > 0: heappush(pq[1-pqi], pq[pqi][0]) heappop(pq[pqi]) pqi = 1 - pqi heappush(pq[pqi], m0) # add the better node instead return '' # if no route found # MAIN dirs = 8 # number of possible directions to move on the map if dirs == 4: dx = [1, 0, -1, 0] dy = [0, 1, 0, -1] elif dirs == 8: dx = [1, 1, 0, -1, -1, -1, 0, 1] dy = [0, 1, 1, 1, 0, -1, -1, -1] n = 30 # horizontal size of the map m = 30 # vertical size of the map the_map = [] row = [0] * n for i in range(m): # create empty map the_map.append(list(row)) # fillout the map with a '+' pattern for x in range(n / 8, n * 7 / 8): the_map[m / 2][x] = 1 for y in range(m/8, m * 7 / 8): the_map[y][n / 2] = 1 # randomly select start and finish locations from a list sf = [] sf.append((0, 0, n - 1, m - 1)) sf.append((0, m - 1, n - 1, 0)) sf.append((n / 2 - 1, m / 2 - 1, n / 2 + 1, m / 2 + 1)) sf.append((n / 2 - 1, m / 2 + 1, n / 2 + 1, m / 2 - 1)) sf.append((n / 2 - 1, 0, n / 2 + 1, m - 1)) sf.append((n / 2 + 1, m - 1, n / 2 - 1, 0)) sf.append((0, m / 2 - 1, n - 1, m / 2 + 1)) sf.append((n - 1, m / 2 + 1, 0, m / 2 - 1)) (xA, yA, xB, yB) = random.choice(sf) print('Map size (X,Y): ', n, m) print('Start: ', xA, yA) print('Finish: ', xB, yB) t = time.time() route = pathFind(the_map, n, m, dirs, dx, dy, xA, yA, xB, yB) print('Time to generate the route (seconds): ', time.time() - t) print('Route:') print(route) # mark the route on the map if len(route) > 0: x = xA y = yA the_map[y][x] = 2 for i in range(len(route)): j = int(route[i]) x += dx[j] y += dy[j] the_map[y][x] = 3 the_map[y][x] = 4 # display the map with the route added print('Map:') for y in range(m): for x in range(n): xy = the_map[y][x] if xy == 0: print('.', end=' ') # space elif xy == 1: print('O', end=' ') # obstacle elif xy == 2: print('S', end=' ') # start elif xy == 3: print('R', end=' ') # route elif xy == 4: print('F', end=' ') # finish print() input('Press Enter...') ``` #### File: tests/expect-fail23/recipe-577554.py ```python import sys import os def encode_fib(n): # Return string with Fibonacci encoding for n (n >= 1). result = "" if n >= 1: a = 1 b = 1 c = a + b # next Fibonacci number fibs = [b] # list of Fibonacci numbers, starting with F(2), each <= n while n >= c: fibs.append(c) # add next Fibonacci number to end of list a = b b = c c = a + b result = "1" # extra "1" at end for fibnum in reversed(fibs): if n >= fibnum: n = n - fibnum result = "1" + result else: result = "0" + result return result def byteWriter(bitStr, outputFile): global bitStream bitStream += bitStr while len(bitStream) > 8: # write byte(s) if there are more then 8 bits byteStr = bitStream[:8] bitStream = bitStream[8:] outputFile.write(chr(int(byteStr, 2))) def bitReader(n): # number of bits to read global byteArr global bitPosition bitStr = '' for i in range(n): bitPosInByte = 7 - (bitPosition % 8) bytePosition = int(bitPosition / 8) byteVal = byteArr[bytePosition] bitVal = int(byteVal / (2 ** bitPosInByte)) % 2 bitStr += str(bitVal) bitPosition += 1 # prepare to read the next bit return bitStr # MAIN if len(sys.argv) != 4: print('Usage: Fibonacci.py [e|d] [path]InputFileName [path]OutputFileName') sys.exit() mode = sys.argv[1] # encoding/decoding inputFile = sys.argv[2] outputFile = sys.argv[3] # read the whole input file into a byte array fileSize = os.path.getsize(inputFile) fi = open(inputFile, 'rb') # byteArr = map(ord, fi.read(fileSize)) byteArr = bytearray(fi.read(fileSize)) fi.close() fileSize = len(byteArr) print('File size in bytes:', fileSize) print() if mode == 'e': # FILE ENCODING # calculate the total number of each byte value in the file freqList = [0] * 256 for b in byteArr: freqList[b] += 1 # create a list of (frequency, byteValue, encodingBitStr) tuples tupleList = [] for b in range(256): if freqList[b] > 0: tupleList.append((freqList[b], b, '')) # sort the list according to the frequencies descending tupleList = sorted(tupleList, key=lambda tup: tup[0], reverse = True) # assign encoding bit strings to each byte value for b in range(len(tupleList)): tupleList[b] = (tupleList[b][0], tupleList[b][1], encode_fib(b + 1)) # print 'The list of (frequency, byteValue, encodingBitStr) tuples:' # print tupleList # print # write the list of byte values as the compressed file header bitStream = '' # global fo = open(outputFile, 'wb') fo.write(chr(len(tupleList) - 1)) # first write the number of byte values for (freq, byteValue, encodingBitStr) in tupleList: # convert the byteValue into 8-bit and send to be written into file # bitStr = bin(byteValue) # bitStr = bitStr[2:] # remove 0b # bitStr = '0' * (8 - len(bitStr)) + bitStr # add 0's if needed for 8 bits # byteWriter(bitStr, fo) fo.write(chr(byteValue)) # this would do the same # write 32-bit (input file size)-1 value bitStr = bin(fileSize - 1) bitStr = bitStr[2:] # remove 0b bitStr = '0' * (32 - len(bitStr)) + bitStr # add 0's if needed for 32 bits byteWriter(bitStr, fo) # create a dictionary of byteValue : encodingBitStr pairs dic = dict([(tup[1], tup[2]) for tup in tupleList]) # del tupleList # print 'The dictionary of byteValue : encodingBitStr pairs:' # print dic # write the encoded data for b in byteArr: byteWriter(dic[b], fo) byteWriter('0' * 8, fo) # to write the last remaining bits (if any) fo.close() elif mode == 'd': # FILE DECODING bitPosition = 0 # global n = int(bitReader(8), 2) + 1 # first read the number of byte values # print 'Number of byte values:', n dic = dict() for i in range(n): # read the byteValue byteValue = int(bitReader(8), 2) encodingBitStr = encode_fib(i + 1) dic[encodingBitStr] = byteValue # add to the dictionary # print 'The dictionary of encodingBitStr : byteValue pairs:' # print dic # print # read 32-bit file size (number of encoded bytes) value numBytes = int(bitReader(32), 2) + 1 print('Number of bytes to decode:', numBytes) # read the encoded data, decode it, write into the output file fo = open(outputFile, 'wb') for b in range(numBytes): # read bits until a decoding match is found encodingBitStr = '' while True: encodingBitStr += bitReader(1) # if encodingBitStr in dic: if encodingBitStr.endswith('11'): byteValue = dic[encodingBitStr] fo.write(chr(byteValue)) break fo.close() ``` #### File: tests/expect-fail23/recipe-578005.py ```python import os import pygame, sys from pygame.locals import K_a, K_s,K_w,K_d,K_LEFTBRACKET,K_RIGHTBRACKET, K_RIGHT, K_LEFT, QUIT from PIL import Image pygame.init() ''' main() sets these (perhaps differently), so make changes down there. If you cut/copy this code somewhere you need these variables globally, or make it a class and make these attributes. ''' resolution = 300 #the resolution (in dpi) the resulting cropped images should have. infile_folder = '.' #path to folder images to process are in. '.' is the folder this script is in infile_prefix = "album80-86_" #prefix common to all the images you'd like to access start_page = 1 #which page to start on. 0 is the first page. outfile_folder= "./cropped" outfile_prefix = "photo80-86_" outfile_extension = "jpg" #must be three character extension with no period. Why? Because I am lazy. So no "jpeg", okay? BG_COLOR = (0,0,0) def displayRect(screen, px, topleft, prior,pos,scale): # ensure that the rect always has positive width, height if topleft == None: #func was called without a topleft, which means clear the previous rectangle screen.fill(BG_COLOR) rect = px.get_rect() px = pygame.transform.scale(px,[int(rect.width/scale), int(rect.height/scale)]) screen.blit(px, (rect[0]-pos[0],rect[1]-pos[1])) pygame.display.flip() return None #or, the usual situation, topleft is defined, so blit over the old rect and blit in the new. topleft = [(val/scale-pos[i]) for i,val in enumerate(topleft)] x, y = topleft bottomright = pygame.mouse.get_pos() width = bottomright[0] - topleft[0] height = bottomright[1] - topleft[1] if width < 0: x += width width = abs(width) if height < 0: y += height height = abs(height) # eliminate redundant drawing cycles (when mouse isn't moving) current = x, y, width, height if not (width and height): return current if current == prior: return current # draw transparent box and blit it onto canvas rect = px.get_rect() px = pygame.transform.scale(px,[int(rect.width/scale), int(rect.height/scale)]) screen.blit(px, (rect[0]-pos[0],rect[1]-pos[1])) im = pygame.Surface((width, height)) im.fill((128, 128, 128)) pygame.draw.rect(im, (32, 32, 32), im.get_rect(), 1) im.set_alpha(128) screen.blit(im, (x, y)) pygame.display.flip() # return current box extents return (x, y, width, height) def setup(px): screen = pygame.display.set_mode( px.get_rect()[2:] ) screen.blit(px, px.get_rect()) pygame.display.flip() return screen, px def move(pos,scale,px,screen): x,y = pos #print pos,x rect = px.get_rect() screen.fill(BG_COLOR) px = pygame.transform.scale(px,[int(rect.width/scale), int(rect.height/scale)]) screen.blit(px, (rect[0]-x,rect[1]-y)) pygame.display.flip() #px.rect.topleft = pr.rect.topleft[0] - x, def mainLoop(): topleft = bottomright = prior = None n=0 scale = 1 pos = [0,0] #create list of files matching prefix in folder, and sort it # input_loc = first file #input_loc = 'album86-92_003.jpg' infiles = [] len_prefix = len(infile_prefix) for fname in os.listdir(infile_folder): if fname[:len_prefix] == infile_prefix: if fname[-3:] in ['jpg','png']: infiles.append(fname) infiles.sort() file_idx = start_page try: infile = infiles[file_idx] except IndexError: print("the start page you requested is beyond the scope of the files loaded.\nYou have been taken to the last page instead.") file_idx = len(infiles)-1 infile = infiles[file_idx] #get files begining with output prefix, grab suffixes and sort. #but, if folder does not exist or is empty, just start at 0 outfiles = [] len_prefix = len(outfile_prefix) try: for fname in os.listdir(outfile_folder): if fname[:len_prefix] == outfile_prefix: outfiles.append(fname) except OSError: os.makedirs(outfile_folder) out_idx = 0 else: outfiles.sort() try: out_idx = int(outfiles[-1][len_prefix:-4])+1 except ValueError: print("Egad! Not all files with the output prefix specified end with a number followed by a three character extension\nMaybe start a new output folder?") print("...Quitting") return 0 except IndexError: #folder exisits but is empty out_idx = 0 input_loc = os.path.join(infile_folder,infile) screen, px = setup(px = pygame.image.load(input_loc)) outfilename = outfile_prefix+str(out_idx).zfill(3)+'.'+outfile_extension output_loc = os.path.join(outfile_folder,outfilename) while n!=1: for event in pygame.event.get(): if event.type == QUIT: sys.exit(0) if event.type == pygame.MOUSEBUTTONUP: if not topleft: topleft = [(val+pos[i])*scale for i,val in enumerate(event.pos)] #print "tr: ",topleft else: bottomright = [(val+pos[i])*scale for i,val in enumerate(event.pos)] #print "br: ",bottomright if event.type == pygame.KEYDOWN and event.key == K_a: pos = [pos[0]-200,pos[1]] move(pos,scale,px,screen) if event.type == pygame.KEYDOWN and event.key == K_d: pos = [pos[0]+200,pos[1]] move(pos,scale,px,screen) if event.type == pygame.KEYDOWN and event.key == K_w: pos = [pos[0],pos[1]-200] move(pos,scale,px,screen) if event.type == pygame.KEYDOWN and event.key == K_s: pos = [pos[0],pos[1]+200] move(pos,scale,px,screen) if event.type == pygame.KEYDOWN and event.key == K_RIGHTBRACKET: scale = scale/1.25 move(pos,scale,px,screen) if event.type == pygame.KEYDOWN and event.key == K_LEFTBRACKET: scale = scale*1.25 move(pos,scale,px,screen) if event.type == pygame.KEYDOWN and event.key == K_RIGHT: file_idx += 1 try: infile = infiles[file_idx] #print "file_idx: ",file_idx except IndexError: file_idx -= 1 print("End of album") #raise else: input_loc = os.path.join(infile_folder,infile) px = pygame.image.load(input_loc) pos = [0,0] topleft = bottomright = prior = None prior = displayRect(screen, px, topleft, prior,pos,scale) if event.type == pygame.KEYDOWN and event.key == K_LEFT: if file_idx == 0: print("This is the begining of the album, cannot go back a page.") else: #print "file_idx",file_idx file_idx -= 1 infile = infiles[file_idx] input_loc = os.path.join(infile_folder,infile) px = pygame.image.load(input_loc) pos = [0,0] topleft = bottomright = prior = None prior = displayRect(screen, px, topleft, prior,pos,scale) if topleft: #first corner has been selected prior = displayRect(screen, px, topleft, prior,pos,scale) if bottomright: #selection has been made! left, upper, right, lower = ( topleft + bottomright ) # ensure output rect always has positive width, height if right < left: left, right = right, left if lower < upper: lower, upper = upper, lower im = Image.open(input_loc) im = im.crop(( int(left), int(upper), int(right), int(lower))) dpi = resolution im.save(output_loc, dpi = (dpi,dpi)) out_idx += 1 outfilename = outfile_prefix+str(out_idx).zfill(3)+'.'+outfile_extension output_loc = os.path.join(outfile_folder,outfilename) topleft = bottomright = prior = None prior = displayRect(screen, px, topleft, prior,pos,scale) print("saved") return if __name__ == "__main__": os.system( [ 'clear', 'cls' ][ os.name == 'nt' ] ) print(''' Hello! This program exists to speed up cropping out many sections from larger images while also changing the resolution of the cropped images. The Zudell family photo album was scanned at 600 dpi resolution. The default resolution for cropped images is 300 dpi. ''') resolution = input('enter new integer resolution, or nothing for default: ') os.system( [ 'clear', 'cls' ][ os.name == 'nt' ] ) try: resolution = int(resolution) except: print('\nNo new resolution specified, using 300 dpi') resolution = int(300) dirs = [] for f in os.listdir('.'): if os.path.isdir(f): dirs.append(f) print('''\n\n\n\n now, enter the name of the directory you want to work on. here is a list of sub directories within this current directory:\n''') if dirs: for dir in dirs: print(dir) else: print("oops, there are no sub-directories here") print("\n\nenter nothing or nonsense to use the current directory") path = input("enter directory to use: ") infile_folder = path.strip() os.system( [ 'clear', 'cls' ][ os.name == 'nt' ] ) if os.path.isdir(infile_folder): pass elif os.path.isdir('./'+infile_folder): infile_folder = './'+infile_folder else: print("no valid directory entered, using current") infile_folder = '.' for f in os.listdir(infile_folder): print(f) if not os.listdir(infile_folder): print("oh... There aren't any files at all in here") d = input("press enter to quit") pygame.display.quit() print('''\n\n You may choose a filename prefix so that only some of the images in this dir are available for editing. all files in this directory are listed above. \n''') infile_prefix = input('input file prefix (or nothing to use all files): ') os.system( [ 'clear', 'cls' ][ os.name == 'nt' ] ) print('''\n\n You may choose a prefix for output files also. they will go in the ./cropped folder.\n''') outfile_prefix = input('output file prefix (or nothing for default): ') if not outfile_prefix: outfile_prefix = "image_" os.system( [ 'clear', 'cls' ][ os.name == 'nt' ] ) print(''' Use the left ard right arrows to change image. '[' and ']' zoom out and in, respectively. click and drag a box to crop. too move around: w asd And come back to this screen to see unnecessary messages. ''') input('\npress enter to begin') mainLoop() pygame.display.quit() ``` #### File: tests/expect-fail23/recipe-578257.py ```python from sympy.solvers import solve from sympy import Symbol, abs, Real x = Symbol('x', real=True) import pylab as pylab def g(yieldCurve, zeroRates,n, verbose): ''' generates recursively the zero curve expressions eval('(0.06/1.05)+(1.06/(1+x)**2)-1') solves these expressions to get the new rate for that period ''' if len(zeroRates) >= len(yieldCurve): print("\n\n\t+zero curve boot strapped [%d iterations]" % (n)) return else: legn = '' for i in range(0,len(zeroRates),1): if i == 0: legn = '%2.6f/(1+%2.6f)**%d'%(yieldCurve[n], zeroRates[i],i+1) else: legn = legn + ' +%2.6f/(1+%2.6f)**%d'%(yieldCurve[n], zeroRates[i],i+1) legn = legn + '+ (1+%2.6f)/(1+x)**%d-1'%(yieldCurve[n], n+1) # solve the expression for this iteration if verbose: print("-[%d] %s" % (n, legn.strip())) rate1 = solve(eval(legn), x) # Abs here since some solutions can be complex rate1 = min([Real(abs(r)) for r in rate1]) if verbose: print("-[%d] solution %2.6f" % (n, float(rate1))) # stuff the new rate in the results, will be # used by the next iteration zeroRates.append(rate1) g(yieldCurve, zeroRates,n+1, verbose) verbose = True tenors = [.1,.25,0.5,1,2,3,5,7,10,20,30] # # money market, futures, swap rates # yieldCurve = [0.07, 0.09, 0.15, 0.21, 0.37, 0.57, 1.13, 1.70, 2.31, 3.08 ,3.41] #yieldCurve = [0.05, 0.06, 0.07, 0.08 ,0.085 ,0.0857 ,0.0901,0.0915,0.0925,0.0926,0.0934,0.0937] zeroRates = [yieldCurve[0]] # TODO: check that this is the correct rate print("\n\n\t<NAME>, March 2012\n\tYield Curve Bootstrapper\n\t<NAME>\n\n") # kick off the recursive code g(yieldCurve, zeroRates, 1, verbose) print("\tZeroRate Array",zeroRates) pylab.plot(tenors,yieldCurve) pylab.plot(tenors,zeroRates) pylab.show() ``` #### File: tests/expect-fail23/recipe-578853.py ```python import os import random import copy import datetime def mean(x): # mean n = len(x) mean = sum(x) / n return mean def sd(x): # standard deviattion n = len(x) mean = sum(x) / n sd = (sum((x-mean)**2 for x in x) / n) ** 0.5 return sd def is_number(s): try: float(s) return True except ValueError: return False class ndim: # from 3D array to flat array def __init__(self,x,y,z,d): self.dimensions=[x,y,z] self.numdimensions=d self.gridsize=x*y*z def getcellindex(self, location): cindex = 0 cdrop = self.gridsize for index in range(self.numdimensions): cdrop /= self.dimensions[index] cindex += cdrop * location[index] return cindex def getlocation(self, cellindex): res = [] for size in reversed(self.dimensions): res.append(cellindex % size) cellindex /= size return res[::-1] """ how to use ndim class n=ndim(4,4,5,3) print n.getcellindex((0,0,0)) print n.getcellindex((0,0,1)) print n.getcellindex((0,1,0)) print n.getcellindex((1,0,0)) print n.getlocation(20) print n.getlocation(5) print n.getlocation(1) print n.getlocation(0) """ print("###############################################################################") print("# KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM) #") print("# by <NAME> (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) #") print("# Language used: PYTHON #") print("###############################################################################") # input and run parameters error = 0 while True: arch_input = input('InputFile : ') if not os.path.isfile(arch_input): print("Oops! File does not exist. Try again... or CTR/C to exit") else: break while True: try: num_gruppi = int(input('Number of Groups (3 - 20) : ')) except ValueError: print("Oops! That was no valid number. Try again...") else: if(num_gruppi < 3): print("Oops! Number of Groups too low. Try again...") else: if(num_gruppi > 20): print("Oops! Number of Groups too big. Try again...") else: break while True: normaliz = input('Normalization(Max, Std, None) : ') normaliz = normaliz.upper() normaliz = normaliz[0] if(normaliz != 'M' and normaliz != 'S' and normaliz != 'N'): print("Oops! Input M, S or N. Try again...") else: break while True: try: max_alpha = float(input('Start value of alpha (1.8 - 0.9) : ')) except ValueError: print("Oops! That was no valid number. Try again...") else: if(max_alpha > 1.8): print("Oops! Start value of alpha too big. Try again...") else: if(max_alpha < 0.9): print("Oops! Start value of alpha too low. Try again...") else: break while True: try: min_alpha = float(input('End value of alpha (0.5 - 0.0001) : ')) except ValueError: print("Oops! That was no valid number. Try again...") else: if(min_alpha > 0.5): print("Oops! alpha too big. Try again...") else: if(min_alpha < 0.0001): print("Oops! alpha too low. Try again...") else: break while True: try: step_alpha = float(input('Decreasing step of alpha (0.1 - 0.001) : ')) except ValueError: print("Oops! That was no valid number. Try again...") else: if(step_alpha > 0.1): print("Oops! Decreasing step of alpha too big. Try again...") else: if(step_alpha < 0.001): print("Oops! Decreasing step of alpha too low. Try again...") else: break file_input = arch_input gruppi_num = num_gruppi tipo_norm = normaliz alpha_min = min_alpha alpha_max = max_alpha alpha_step = step_alpha # outputs files file_input = arch_input tipo_norm = normaliz gruppi_num = num_gruppi nome_input = file_input.split(".") arch_output = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_out.txt" arch_outsrt = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_outsrt.txt" arch_sort = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_sort.txt" arch_catal = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_catal.txt" arch_medsd = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_medsd.txt" arch_cv = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_cv.txt" arch_grid = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_grid.txt" arch_log = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_log.txt" # start time t0 = datetime.datetime.now() # read input file arr_r = [] arr_orig = [] arr_c = [] mtchx = [] mtchy = [] txt_col = [] xnomi = [] # the numbers of variables / columns in all record must be the same n_rows = 0 n_cols = 0 err_cols = 0 index = 0 for line in open(file_input).readlines(): linea = line.split() if(index == 0): xnomi.append(linea) n_cols = len(linea) else: arr_r.append(linea) if(len(linea) != n_cols): err_cols = 1 print(("Different numbers of variables / columns in the record " + str(index) + " cols " + str(len(linea)))) index += 1 if(err_cols == 1): print(("File " + file_input + " contains errors. Exit ")) quit() index = 0 while index < len(arr_r): linea = arr_r[index] index_c = 0 while index_c < len(linea): if linea[index_c].isdigit(): linea[index_c] = float(linea[index_c]) index_c += 1 arr_r[index] = linea index += 1 arr_orig = copy.deepcopy(arr_r) # original input file testata_cat = copy.deepcopy(xnomi[0]) # original header row # finding columns containing strings and columns containing numbers testata = xnomi[0] testata_orig = copy.deepcopy(xnomi[0]) n_cols = len(testata) - 1 n_rows = len(arr_r) ind_c = 1 err_type = 0 while ind_c < len(testata): ind_r = 1 tipo_num = 0 tipo_txt = 0 while ind_r < len(arr_r): arr_c = arr_r[ind_r] if is_number(arr_c[ind_c]): tipo_num = 1 else: tipo_txt = 1 ind_r += 1 if tipo_num == 1 and tipo_txt == 1: print("The columns / variables " + testata[ind_c] + " contains both strings and numbers.") print(arr_c) err_type = 1 ind_c += 1 if err_type == 1: print("Oops! The columns / variables contains both strings and numbers. Exit. ") quit() index_c = 1 while index_c <= n_cols: txt_col = [] index = 0 while index < len(arr_r): arr_c = arr_r[index] if(isinstance(arr_c[index_c],str)): txt_col.append(arr_c[index_c]) index += 1 set_txt_col = set(txt_col) # remove duplicates txt_col = list(set(set_txt_col)) txt_col.sort() # from strings to numbers if(len(txt_col) > 0): if(len(txt_col) > 1): passo1 = 1.0 / (len(txt_col) - 1) else: passo1 = 0.0 index = 0 while index < len(arr_r): arr_c = arr_r[index] campo1 = arr_c[index_c] indice1 = txt_col.index(campo1) if(len(txt_col) == 1): # same values in the column val_num1 = float(1) else: val_num1 = float(passo1 * indice1) arr_c[index_c] = val_num1 + 0.00000001 # to avoid zero values in means # (to prevent zero divide in CV) index += 1 index_c += 1 # means, max & std xmeans = [] xmaxs = [] xmins = [] ### aggiunto Roberto 4/03/2012 xsds = [] xcv = [] index_c = 0 while index_c <= n_cols: xmeans.append(0.0) xmaxs.append(-9999999999999999.9) xmins.append(9999999999999999.9) ### aggiunto Roberto 4/03/2012 xsds.append(0.0) xcv.append(0.0) index_c += 1 # means & max index = 0 while index < n_rows: arr_c = arr_r[index] index_c = 1 while index_c <= n_cols: xmeans[index_c] += arr_c[index_c] if(arr_c[index_c] > xmaxs[index_c]): xmaxs[index_c] = arr_c[index_c] index_c += 1 index += 1 index_c = 1 while index_c <= n_cols: xmeans[index_c] = xmeans[index_c] / n_rows index_c += 1 # std index = 0 while index < n_rows: arr_c = arr_r[index] index_c = 1 while index_c <= n_cols: xsds[index_c] += (arr_c[index_c] - xmeans[index_c])**2 index_c += 1 index += 1 index_c = 1 while index_c <= n_cols: xsds[index_c] = (xsds[index_c] / (n_cols - 1)) ** 0.5 index_c += 1 # Means, Max, Std, CV output file medsd_file = open(arch_medsd, 'w') # columns names medsd_file.write('%s %s ' % ('Function' , "\t")) index_c = 1 while index_c <= n_cols: medsd_file.write('%s %s ' % (testata[index_c], "\t")) index_c += 1 medsd_file.write('%s' % ('\n')) # means medsd_file.write('%s %s ' % ('Mean' , "\t")) index_c = 1 while index_c <= n_cols: valore = str(xmeans[index_c]) valore = valore[0:6] medsd_file.write('%s %s ' % (valore, "\t")) index_c += 1 medsd_file.write('%s' % ('\n')) # max medsd_file.write('%s %s ' % ('Max' , "\t")) index_c = 1 while index_c <= n_cols: valore = str(xmaxs[index_c]) valore = valore[0:6] medsd_file.write('%s %s ' % (valore, "\t")) index_c += 1 medsd_file.write('%s' % ('\n')) # std medsd_file.write('%s %s ' % ('Std' , "\t")) index_c = 1 while index_c <= n_cols: valore = str(xsds[index_c]) valore = valore[0:6] medsd_file.write('%s %s ' % (valore, "\t")) index_c += 1 medsd_file.write('%s' % ('\n')) # CV medsd_file.write('%s %s ' % ('CV' , "\t")) index_c = 1 med_cv_gen = 0.0 # cv average of all columns / variables while index_c <= n_cols: if xmeans[index_c] == 0: media1 = 0.000001 else: media1 = xmeans[index_c] xcv[index_c] = xsds[index_c] / abs(media1) valore = str(xcv[index_c]) med_cv_gen += xcv[index_c] valore = valore[0:6] medsd_file.write('%s %s ' % (valore, "\t")) index_c += 1 med_cv_gen = med_cv_gen / n_cols str_med_cv_gen = str(med_cv_gen) str_med_cv_gen = str_med_cv_gen[0:6] medsd_file.write('%s' % ('\n')) medsd_file.close() # input standardization # standardization on max if tipo_norm == 'M': index = 0 while index < n_rows: arr_c = arr_r[index] index_c = 1 while index_c <= n_cols: ## aggiornare anche kb_cla.py if xmaxs[index_c] == 0.0: xmaxs[index_c] = 0.00001 arr_c[index_c] = arr_c[index_c] / xmaxs[index_c] index_c += 1 index += 1 # standardization on std if tipo_norm == 'S': index = 0 while index < n_rows: arr_c = arr_r[index] index_c = 1 while index_c <= n_cols: if xsds[index_c] == 0.0: xsds[index_c] = 0.00001 arr_c[index_c] = (arr_c[index_c] - xmeans[index_c]) / xsds[index_c] if arr_c[index_c] < xmins[index_c]: ### aggiunto Roberto 4/03/2012 xmins[index_c] = arr_c[index_c] ### aggiunto Roberto 4/03/2012 index_c += 1 index += 1 # aggiungo xmins per eliminare i valori negativi (aggiunto da Roberto 4/03/2012) index = 0 while index < n_rows: arr_c = arr_r[index] index_c = 1 while index_c <= n_cols: arr_c[index_c] = arr_c[index_c] - xmins[index_c] print(arr_c[index_c]) index_c += 1 index += 1 # fine aggiunta da Roberto 4/03/2012 # start of kohonen algorithm # min and max vectors vmaxs = [] vmins = [] index_c = 0 while index_c <= n_cols: vmaxs.append(-10000000000000.0) vmins.append( 10000000000000.0) index_c += 1 # columns min & max index = 0 while index < n_rows: arr_c = arr_r[index] index_c = 1 while index_c <= n_cols: if arr_c[index_c] > vmaxs[index_c]: vmaxs[index_c] = arr_c[index_c] if arr_c[index_c] < vmins[index_c]: vmins[index_c] = arr_c[index_c] index_c += 1 index += 1 # run parameters and temp arrays n = n_rows m = n_cols nx = gruppi_num ny = gruppi_num ix = 950041 # integer as random seed nsteps = int(10000 * nx * ny) # number of steps nepoks = int(nsteps / n ** 0.5) # number of epochs unit_calc = int(n * m * nx * ny) # running units passo = int(5000 / n) # step of visualization on monitor rmax = nx - 1 rmin = 1.0 if passo < 1: passo = 1 grid = [] # training grid index = 0 while index < nx * ny * m: grid.append(0.0) index += 1 n=ndim(nx,ny,m,3) random.seed(ix) # initial value of random seed to obtain the same sequences in new runs index = 0 while index < nx: index_c = 0 while index_c < ny: index_k = 0 while index_k < m: ig = n.getcellindex((index,index_c,index_k)) grid[ig] = random.random() index_k += 1 index_c += 1 index += 1 gridp = copy.deepcopy(grid) # initial previous grid = current grid gridm = copy.deepcopy(grid) # initial min grid = current grid # for each record in each epoch iter = 0 discrea = 1000000000000.0 # current error discrep = 0.0 # previous error if nepoks < 20: nepoks = 20 # min epochs = 20 nepokx = 0 min_epok = 0 # epoch with min error min_err = 1000000000.0 # min error alpha = float(alpha_max) # initial value of alpha parameter ir = 0.0 # initial value of ir parameter ir ne = 1 print(" ") print('Record ' + str(n_rows) + ' Columns ' + str(n_cols)) # main loop try: while ne <= nepoks: if (ne % passo == 0): # print running message when modulo division = zero min_err_txt = "%14.5f" % min_err # format 8 integers and 3 decimals alpha_txt = "%12.5f" % alpha # format 6 integers and 5 decimals print(('Epoch ' + str(ne) + ' min err ' + min_err_txt + ' min epoch ' + str(min_epok - 1) + " alpha " + alpha_txt)) if min_err < 1000000000.0: nepokx += 1 if min_err > discrea and discrep > discrea and discrea > 0.0: min_epok = ne # current epoch (min) min_err = discrea # copy current grid to min grid gridm = copy.deepcopy(grid) min_err_txt = "%12.3f" % min_err # format 8 integers and 3 decimals alpha_txt = "%12.5f" % alpha # format 6 integer and 5 decimals print(('**** Epoch ' + str(ne - 1) + ' WITH MIN ERROR ' + min_err_txt + " alpha " + alpha_txt)) # cheking the current value of alpha if alpha > alpha_min: discrea = discrep discrep = 0.0 # copy current grid to previous grid gridp = copy.deepcopy(grid) # from the starting row to the ending row i = 0 while i < n_rows: iter += 1 # find the best grid coefficient ihit = 0 jhit = 0 dhit = 100000.0 igx = 0 igy = 0 while igx < nx: igy = 0 while igy < ny: d = 0.0 neff = 0 k = 0 arr_c = arr_r[i] while k < m: # update the sum of squared deviation of input # value from the grid coefficient ig = n.getcellindex((igx,igy,k)) d = d + (arr_c[k+1] - grid[ig]) ** 2 k += 1 d = d / float(m) # d = d / m if d < dhit: dhit = d ihit = int(igx) jhit = int(igy) igy += 1 igx += 1 # update iteration error discrep = discrep + dhit # now we have the coordinates of the best grid coefficient ir = max(rmax * float(1001 - iter) / 1000.0 + 0.9999999999 , 1) ir = int(ir) # new alpha value to increase the radius of groups proximity alpha = max(alpha_max * float(1 - ne * alpha_step) , alpha_min) # update the grid coefficients applying alpha parameter inn0 = int(ihit) - int(ir) inn9 = int(ihit) + int(ir) jnn0 = int(jhit) - int(ir) jnn9 = int(jhit) + int(ir) while inn0 <= inn9: jnn0 = int(jhit) - int(ir) while jnn0 <= jnn9: if not (inn0 < 0 or inn0 >= nx): if not (jnn0 < 0 or jnn0 >= ny): arr_c = arr_r[i] k = 0 while k < m: ig = n.getcellindex((inn0,jnn0,k)) grid[ig] += alpha * (arr_c[k+1] - grid[ig]) k += 1 jnn0 += 1 inn0 += 1 i += 1 else: print() print("Min alpha reached ") print() break ne += 1 except KeyboardInterrupt: print() print("KeyboardInterrupt (Ctrl/C) ") print() pass # computing results # grid = grid min grid = copy.deepcopy(gridm) # write min grid file arch_grid_file = open(arch_grid, 'w') ii = 0 while ii < nx: j = 0 while j < ny: k = 0 while k < m: ig = n.getcellindex((ii,j,k)) arch_grid_file.write('%6i %s %.6i %s %.6i %s %14.7f %s' % (ii,' ', j ,' ', k,' ', grid[ig], "\n")) k += 1 j += 1 ii += 1 arch_grid_file.close() # catalog input by min grid ii = 0 while ii < n_rows: ihit = 0 jhit = 0 dhit = 100000.0 # from 1 to numbers of groups ir = 0 while ir < nx: # from 1 to numbers of groups jc = 0 while jc < ny: # from 1 to numbers of groups d = 0.0 neff = 0 k = 0 while k < n_cols: # update the sum of squared deviation of input # value from the grid coefficient arr_c = arr_r[ii] ig = n.getcellindex((ir,jc,k)) d = d + (arr_c[k+1] - grid[ig]) ** 2 k += 1 d = d / m if d < dhit: # save the coordinates of the best coefficient dhit = d ihit = ir jhit = jc jc += 1 ir += 1 mtchx.append(ihit) mtchy.append(jhit) ii += 1 # write arch_catal file arch_catal_file = open(arch_catal, 'w') ii = 0 while ii < n_rows: arch_catal_file.write("%.6i %s %.6i %s %.6i %s" % (ii, ' ', mtchx[ii], ' ', mtchy[ii], "\n")) ii += 1 arch_catal_file.close() # matrix of statistics arr_cv = [] # CV array of the Groups and Total arr_med = [] # means array of the Groups riga_cv = [] # CV row in arr_cv arr_col = [] # group temporary array arr_grsg = [] # input data array (normalized) arr_grsg_c = [] # copy of arr_grsg (for file out sort) # input matrix sort in group sequence ii = 0 ix = 0 while ii < n_rows: ix += 1 gr1 = str(mtchx[ii]) if mtchx[ii] < 10: gr1 = '0' + str(mtchx[ii]) sg1 = str(mtchy[ii]) if mtchy[ii] < 10: sg1 = '0' + str(mtchy[ii]) riga_norm = arr_r[ii] im = 0 riga_norm1 = [] while im <= m: riga_norm1.append(str(riga_norm[im])) im += 1 riga_norm2 = " ".join(riga_norm1) gr_sg_txt = "G_" + gr1 + "_" + sg1 + " " + str(ix) + " " + riga_norm2 arr_grsg.append(gr_sg_txt) ii += 1 arr_grsg.sort() ii = 0 while ii < n_rows: arr_grsg_c.append(arr_grsg[ii]) ii += 1 # setup of arr_cv matrix num_gr = 0 gruppo0 = "" ir = 0 while ir < n_rows: grsg_key = arr_grsg_c[ir].split() if not grsg_key[0] == gruppo0: gruppo0 = grsg_key[0] num_gr +=1 ic = 1 riga1 = [] riga1.append(grsg_key[0]) while ic <= m + 2: # adding new columns for row mean and n° of records riga1.append(0.0) ic += 1 arr_cv.append(riga1) # cv row ir += 1 riga1 = [] riga1.append("*Means*") # adding new row for cv mean ic = 1 while ic <= m + 2: # adding new column for row mean and n° of records riga1.append(0.0) ic += 1 arr_cv.append(riga1) def found(x): ir = 0 while ir < len(arr_cv): linea_cv = arr_cv[ir] key_cv = linea_cv[0] if key_cv == x: return ir ir += 1 ir = 0 irx = len(arr_grsg_c) ic = 3 linea_cv = arr_cv[0] icx = len(linea_cv) val_col = [] while ic < icx: ir = 0 gruppo = "" val_col = [] while ir < irx: linea = arr_grsg_c[ir].split() if linea[0] == gruppo or gruppo == "": gruppo = linea[0] val_col.append(float(linea[ic])) else: i_gruppo = found(gruppo) linea_cv = arr_cv[i_gruppo] media_v = abs(mean(val_col)) if media_v == 0.0: media_v = 0.0000000001 std_v = sd(val_col) cv_v = std_v / media_v linea_cv[ic-2] = cv_v # cv value linea_cv[len(linea_cv)-1] = len(val_col) # number of records val_col = [] val_col.append(float(linea[ic])) gruppo = linea[0] ir += 1 i_gruppo = found(gruppo) linea_cv = arr_cv[i_gruppo] media_v = abs(mean(val_col)) if media_v == 0.0: media_v = 0.0000000001 std_v = sd(val_col) cv_v = std_v / media_v linea_cv[ic-2] = cv_v # cv value linea_cv[len(linea_cv)-1] = len(val_col) # number of records ic += 1 ir = 0 irx = len(arr_cv) linea_cv = arr_cv[0] icx = len(linea_cv) - 2 ic = 1 num_rec1 = 0 while ir < irx: # rows mean media_riga = 0.0 ic = 1 num_col1 = 0 linea_cv = arr_cv[ir] while ic < icx: media_riga += float(linea_cv[ic]) num_col1 += 1 ic += 1 linea_cv[icx] = media_riga / num_col1 num_rec1 += linea_cv[icx + 1] ir += 1 ir = 0 ic = 1 while ic < icx: # weighted mean of columns media_col = 0.0 ir = 0 num_rec1 = 0 while ir < irx - 1: linea_cv = arr_cv[ir] media_col = media_col + linea_cv[ic] * linea_cv[icx+1] # linea_cv[icx+1] = number of records num_rec1 = num_rec1 + linea_cv[icx+1] ir += 1 linea_cv = arr_cv[irx - 1] linea_cv[ic] = media_col / num_rec1 ic += 1 # updating mean of the row linea_cv = arr_cv[irx - 1] linea_means = linea_cv[1:icx] media_riga = mean(linea_means) linea_cv[icx] = media_riga # Total mean linea_cv[icx + 1] = num_rec1 # n° of records cv_media_gen_after = str(media_riga) cv_media_gen_after = cv_media_gen_after[0:6] # write cv file testata_cv = testata testata_cv[0] = "*Groups*" testata_cv.append("*Mean*") testata_cv.append("N_recs") arch_cv_file = open(arch_cv, 'w') ic = 0 while ic <= icx + 1: arch_cv_file.write('%s %s ' % (testata_cv[ic], " "*(9-len(testata_cv[ic])))) ic += 1 arch_cv_file.write('%s' % ('\n')) ir = 0 while ir < irx: ic = 0 linea_cv = arr_cv[ir] while ic <= icx + 1: if ic == 0: arch_cv_file.write('%s %s ' % (linea_cv[0], " ")) else: if ic <= icx: arch_cv_file.write('%7.4f %s ' % (linea_cv[ic], " ")) else: arch_cv_file.write('%6i %s ' % (linea_cv[ic], " ")) ic += 1 arch_cv_file.write('%s' % ("\n")) ir += 1 ic = 0 media_xcv = mean(xcv[1:icx]) while ic <= icx : # print CV input (before catalogue) if ic == 0: arch_cv_file.write('%s %s ' % ("*CVinp*", " ")) else: if ic < icx: arch_cv_file.write('%7.4f %s ' % (xcv[ic], " ")) else: arch_cv_file.write('%7.4f %s ' % (media_xcv, " ")) arch_cv_file.write('%6i %s ' % (linea_cv[ic+1], " ")) ic += 1 arch_cv_file.write('%s' % ("\n")) #=========istruzioni aggiunte <NAME> 29/02/2012====================== #know_index = str(1.0 - float(cv_media_gen_after) / float(str_med_cv_gen)) #know_index = know_index[0:6] #arch_cv_file.write('%s %s %s' % ('*KIndex* ', know_index, '\n')) #=========fine istruzioni aggiunte da <NAME> 29/02/2012============== arch_cv_file.close() # writing out catalog file testata_cat1 = [] testata_cat1.append("*Group*") arch_output_file = open(arch_output, 'w') ic= 0 while ic < icx: testata_cat1.append(testata_cat[ic]) ic += 1 ic= 0 while ic < len(testata_cat1): arch_output_file.write('%s %s ' % (testata_cat1[ic], " "*(15-len(testata_cat1[ic])))) ic += 1 arch_output_file.write('%s' % ("\n")) index = 0 while index < len(arr_orig): riga_orig = arr_orig[index] ic = 0 while ic < len(riga_orig): if not(isinstance(riga_orig[ic],str)): riga_orig[ic] = str(riga_orig[ic]) ic += 1 # place before 0 if gr / sg < 10 gr1 = str(mtchx[index]) if mtchx[index] < 10: gr1 = '0' + str(mtchx[index]) sg1 = str(mtchy[index]) if mtchy[index] < 10: sg1 = '0' + str(mtchy[index]) arr_rig0 = "G_" + gr1 + "_" + sg1 + " "*8 arch_output_file.write('%s ' % (arr_rig0)) ic= 0 while ic < len(riga_orig): arch_output_file.write('%s %s ' % (riga_orig[ic], " "*(15-len(riga_orig[ic])))) ic += 1 arch_output_file.write('%s' % ("\n")) index += 1 testata_cat1 = [] testata_cat1.append("*Group*") testata_cat1.append("*RecNum*") arch_sort_file = open(arch_sort, 'w') ic= 0 while ic < icx: testata_cat1.append(testata_cat[ic]) ic += 1 ic= 0 while ic < len(testata_cat1): arch_sort_file.write('%s %s ' % (testata_cat1[ic], " "*(15-len(testata_cat1[ic])))) ic += 1 arch_sort_file.write('%s' % ("\n")) index = 0 while index < len(arr_grsg_c): riga_grsg = arr_grsg_c[index].split() ic = 0 while ic < len(riga_grsg): val_txt = riga_grsg[ic] val_txt = val_txt[0:13] arch_sort_file.write('%s %s ' % (val_txt, " "*(15-len(val_txt)))) ic += 1 if index < len(arr_grsg_c) - 1: arch_sort_file.write('%s' % ("\n")) index += 1 arch_sort_file.close() # writing out catalog and sorted file arr_outsrt = [] index = 0 while index < len(arr_orig): riga_sort = [] # place before 0 if gr / sg < 10 gr1 = str(mtchx[index]) if mtchx[index] < 10: gr1 = '0' + str(mtchx[index]) sg1 = str(mtchy[index]) if mtchy[index] < 10: sg1 = '0' + str(mtchy[index]) riga_sort.append("G_" + gr1 + "_" + sg1) ic = 0 riga_orig = arr_orig[index] while ic < len(riga_orig): val_riga = riga_orig[ic] riga_sort.append(val_riga) ic += 1 arr_outsrt.append(riga_sort) index += 1 for line in arr_outsrt: line = "".join(line) arr_outsrt.sort() testata_srt = [] testata_srt.append("*Group*") arch_outsrt_file = open(arch_outsrt, 'w') ic= 0 while ic < icx: testata_srt.append(testata_orig[ic]) ic += 1 ic= 0 while ic < len(testata_srt): arch_outsrt_file.write('%s %s' % (testata_srt[ic], " "*(15-len(testata_srt[ic])))) ic += 1 arch_outsrt_file.write('%s' % ("\n")) index = 0 key_gruppo = "" while index < len(arr_outsrt): riga_sort = arr_outsrt[index] index_c = 0 while index_c < len(riga_sort): if index_c == 0: if riga_sort[0] != key_gruppo: # arch_outsrt_file.write('%s ' % ("\n")) key_gruppo = riga_sort[0] valore = riga_sort[index_c] arch_outsrt_file.write('%s %s' % (valore, " "*(15-len(valore)))) index_c += 1 if index < len(arr_grsg_c) - 1: arch_outsrt_file.write('%s' % ("\n")) index += 1 arch_outsrt_file.close() print("###############################################################################") print("# KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM) #") print("# by <NAME> (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) #") print("# Language used: PYTHON #") print("###############################################################################") arch_log_file = open(arch_log, 'w') arch_log_file.write("%s %s" % ("############################################################################", "\n")) arch_log_file.write("%s %s" % ("# KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM) #", "\n")) arch_log_file.write("%s %s" % ("# by <NAME> (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) #", "\n")) arch_log_file.write("%s %s" % ("# Language used: PYTHON . #", "\n")) arch_log_file.write("%s %s" % ("############################################################################", "\n")) arch_log_file.write("%s %s %s" % ("Input File -> ", file_input, "\n")) arch_log_file.write("%s %s %s" % ("Numer of Groups (3 - 20) -> ", str(gruppi_num), "\n")) arch_log_file.write("%s %s %s" % ("Normalization (Max, Std, None) -> ", tipo_norm, "\n")) arch_log_file.write("%s %s %s" % ("Start Value of alpha (from 1.8 to 0.9) -> ", str(alpha_max), "\n")) arch_log_file.write("%s %s %s" % ("End Value of alpha (from 0.5 to 0.0001) -> ", str(alpha_min), "\n")) arch_log_file.write("%s %s %s" % ("Decreasing step of alpha (from 0.1 to 0.001) -> ", str(alpha_step), "\n")) arch_log_file.write("%s" % ("=========================OUTPUT=======================================================\n")) arch_log_file.write("%s %s %s" % ("Output File Catalog.original ", arch_output, "\n")) arch_log_file.write("%s %s %s" % ("Output File Catalog.sort ", arch_outsrt, "\n")) arch_log_file.write("%s %s %s" % ("Output File Summary sort ", arch_sort, "\n")) arch_log_file.write("%s %s %s" % ("Output File Matrix Catal. ", arch_catal, "\n")) arch_log_file.write("%s %s %s" % ("Output File Means, STD, CV. ", arch_medsd, "\n")) arch_log_file.write("%s %s %s" % ("Output File CV of the Groups ", arch_cv, "\n")) arch_log_file.write("%s %s %s" % ("Output File Training Grid ", arch_grid, "\n")) arch_log_file.write("%s %s %s" % ("Output File Run Parameters ", arch_log, "\n")) #=========istruzioni aggiunte <NAME> 29/02/2012====================== know_index = str(1.0 - float(cv_media_gen_after) / float(str_med_cv_gen)) know_index = know_index[0:6] arch_log_file.write('%s %s %s' % ('*KIndex* ', know_index, '\n')) #=========fine istruzioni aggiunte da <NAME> 29/02/2012============== min_err_txt = "%12.3f" % min_err # format 8 integer and 3 decimals alpha_txt = "%12.5f" % alpha # format 6 integer and 5 decimals alpha_min_txt = "%12.5f" % alpha_min # format 6 integer and 5 decimals print() if min_err == 1000000000.000: print("Oops! No result. Try again with new alpha parameters") print() print(("EPOCH " + str(min_epok -1) + " WITH MIN ERROR " + min_err_txt + " starting alpha " + alpha_min_txt + " ending alpha " + alpha_txt + " Iterations " + str(iter) + " Total Epochs " + str(ne - 1))) print() print('Output File Catalog.original ' + arch_output) print('Output File Catalog.sort ' + arch_outsrt) print('Output File Summary sort ' + arch_sort) print('Output File Matrix Catal. ' + arch_catal) print('Output File Means, STD, CV. ' + arch_medsd) print('Output File CV of the Groups ' + arch_cv) print('Output File Training Grid ' + arch_grid) print('Output File Run Parameters ' + arch_log) print('CV before Catalog ' + str_med_cv_gen) print('CV after Catalog ' + cv_media_gen_after) know_index = str(1.0 - float(cv_media_gen_after) / float(str_med_cv_gen)) know_index = know_index[0:6] print('Knowledge Index ' + know_index) print() # Elapsed time t1 = datetime.datetime.now() elapsed_time = t1 - t0 print("Elapsed time (seconds) : " + str(elapsed_time.seconds)) print() ``` #### File: tests/expect-fail23/recipe-580622.py ```python import os, sys import wx import wx.grid as gridlib import wx.lib.gridmovers as gridmovers import PyPDF2 # only used for output (make_pdf) import fitz # some abbreviations DefPos = wx.DefaultPosition DefSize = wx.DefaultSize class PDFTable(gridlib.PyGridTableBase): def __init__(self): gridlib.PyGridTableBase.__init__(self) self.colLabels = ['File','Pages','from','to','rotate'] self.dataTypes = [gridlib.GRID_VALUE_STRING, gridlib.GRID_VALUE_NUMBER, gridlib.GRID_VALUE_NUMBER, gridlib.GRID_VALUE_NUMBER, gridlib.GRID_VALUE_CHOICE + ':0, 90, 180, 270', ] self.data = [] #============================================================================== # Methods for the wxPyGridTableBase interface (mostly mandatory) #============================================================================== def GetNumberRows(self): return len(self.data) def GetNumberCols(self): return len(self.colLabels) def IsEmptyCell(self, row, col): try: return not self.data[row][col] except IndexError: return True def GetValue(self, row, col): return self.data[row][col] def SetValue(self, row, col, value): self.data[row][col] = value #============================================================================== # Provide column header names #============================================================================== def GetColLabelValue(self, col): return self.colLabels[col] #============================================================================== # Provide row header names (just the line numbers in our case) #============================================================================== def GetRowLabelValue(self,row): return str(row +1) #============================================================================== # Provide type of a cell value #============================================================================== def GetTypeName(self, row, col): return self.dataTypes[col] #============================================================================== # Move a row #============================================================================== def MoveRow(self,frm,to): grid = self.GetView() if grid: # Move the rowLabels and data rows oldData = self.data[frm] del self.data[frm] if to > frm: self.data.insert(to-1,oldData) else: self.data.insert(to,oldData) #============================================================================== # inform the grid about our doing #============================================================================== grid.BeginBatch() msg = gridlib.GridTableMessage( self, gridlib.GRIDTABLE_NOTIFY_ROWS_DELETED, frm, 1) grid.ProcessTableMessage(msg) msg = gridlib.GridTableMessage( self, gridlib.GRIDTABLE_NOTIFY_ROWS_INSERTED, to, 1) grid.ProcessTableMessage(msg) grid.EndBatch() #============================================================================== # Insert a row #============================================================================== def NewRow(self, zeile): grid = self.GetView() if grid: self.data.append(zeile) grid.BeginBatch() msg = gridlib.GridTableMessage( self, gridlib.GRIDTABLE_NOTIFY_ROWS_APPENDED, 1) grid.ProcessTableMessage(msg) grid.EndBatch() #============================================================================== # Duplicate a row #============================================================================== def DuplicateRow(self, row): grid = self.GetView() if grid: zeile = [self.data[row][0], self.data[row][1], self.data[row][2], self.data[row][3], self.data[row][4]] self.data.insert(row, zeile) grid.BeginBatch() msg = gridlib.GridTableMessage( self, gridlib.GRIDTABLE_NOTIFY_ROWS_INSERTED, row, 1) grid.ProcessTableMessage(msg) grid.EndBatch() #============================================================================== # Remove a row #============================================================================== def DeleteRow(self, row): grid = self.GetView() if grid: del self.data[row] grid.BeginBatch() msg = gridlib.GridTableMessage(self, gridlib.GRIDTABLE_NOTIFY_ROWS_DELETED, row, 1) grid.ProcessTableMessage(msg) grid.EndBatch() #============================================================================== # Define the grid #============================================================================== class MyGrid(gridlib.Grid): def __init__(self, parent): gridlib.Grid.__init__(self, parent, -1) table = PDFTable() # create PDFTable object #============================================================================== # Announce our table to the grid and let it manage it ('True') #============================================================================== self.SetTable(table, True) #============================================================================== # do some cell attribute setting #============================================================================== align1 = gridlib.GridCellAttr() align1.SetAlignment(wx.ALIGN_RIGHT, wx.ALIGN_CENTER) self.SetColAttr(2, align1) self.SetColAttr(3, align1) self.SetColAttr(4, align1) align2 = gridlib.GridCellAttr() align2.SetAlignment(wx.ALIGN_CENTER, wx.ALIGN_CENTER) self.SetColAttr(5, align2) #============================================================================== # Enable Row moving #============================================================================== gridmovers.GridRowMover(self) #============================================================================== # Bind: move a row #============================================================================== self.Bind(gridmovers.EVT_GRID_ROW_MOVE, self.OnRowMove, self) #============================================================================== # Bind: delete a row #============================================================================== self.Bind(gridlib.EVT_GRID_LABEL_RIGHT_DCLICK, self.OnRowDel, self) #============================================================================== # Bind: duplicate a row #============================================================================== self.Bind(gridlib.EVT_GRID_LABEL_LEFT_DCLICK, self.OnRowDup, self) #============================================================================== # Event Method: move a row #============================================================================== def OnRowMove(self,evt): frm = evt.GetMoveRow() # Row being moved to = evt.GetBeforeRow() # Before which row to insert self.GetTable().MoveRow(frm,to) #============================================================================== # Event Method: delete a row #============================================================================== def OnRowDel(self, evt): row = evt.GetRow() self.GetTable().DeleteRow(row) #============================================================================== # Event Method: duplicate a row #============================================================================== def OnRowDup(self, evt): row = evt.GetRow() col = evt.GetCol() if col < 0 and row >= 0: # else it is not a row duplication! self.GetTable().DuplicateRow(row) evt.Skip() #============================================================================== # # Define the dialog # #============================================================================== class PDFDialog (wx.Dialog): def __init__(self, parent): wx.Dialog.__init__ (self, parent, id = wx.ID_ANY, title = "Join PDF files", pos = DefPos, size = wx.Size(900,710), style = wx.CAPTION| wx.CLOSE_BOX| wx.DEFAULT_DIALOG_STYLE| wx.MAXIMIZE_BOX| wx.MINIMIZE_BOX| wx.RESIZE_BORDER) self.SetSizeHintsSz(DefSize, DefSize) self.FileList = {} #============================================================================== # Create Sizer 01 (browse button and explaining text) #============================================================================== szr01 = wx.BoxSizer(wx.HORIZONTAL) self.btn_neu = wx.FilePickerCtrl(self, wx.ID_ANY, wx.EmptyString, "Select a PDF file", "*.pdf", DefPos, DefSize, wx.FLP_CHANGE_DIR|wx.FLP_FILE_MUST_EXIST|wx.FLP_SMALL, ) szr01.Add(self.btn_neu, 0, wx.ALIGN_TOP|wx.ALL, 5) msg_txt ="""ADD files with this button. Path and total page number will be appended to the table below.\nDUPLICATE row: double-click its number. MOVE row: drag its number with the mouse. DELETE row: right-double-click its number.""" msg = wx.StaticText(self, wx.ID_ANY, msg_txt, DefPos, wx.Size(-1, 50), wx.ALIGN_LEFT) msg.Wrap(-1) msg.SetFont(wx.Font(10, 74, 90, 90, False, "Arial")) szr01.Add(msg, 0, wx.ALIGN_TOP|wx.ALL, 5) #============================================================================== # Create Sizer 02 (contains the grid) #============================================================================== self.szr02 = MyGrid(self) self.szr02.AutoSizeColumn(0) self.szr02.AutoSizeColumn(1) self.szr02.SetColSize(2, 45) self.szr02.SetColSize(3, 45) self.szr02.SetColSize(4, 45) self.szr02.SetRowLabelSize(30) # Columns 1 and 2 are read only attr_ro = gridlib.GridCellAttr() attr_ro.SetReadOnly(True) self.szr02.SetColAttr(0, attr_ro) self.szr02.SetColAttr(1, attr_ro) #============================================================================== # Create Sizer 03 (output parameters) #============================================================================== szr03 = wx.FlexGridSizer( 5, 2, 0, 0 ) # 4 rows, 2 cols, gap sizes 0 szr03.SetFlexibleDirection( wx.BOTH ) szr03.SetNonFlexibleGrowMode( wx.FLEX_GROWMODE_SPECIFIED ) tx_ausdat = wx.StaticText(self, wx.ID_ANY, "Output:", DefPos, DefSize, 0) tx_ausdat.Wrap(-1) szr03.Add(tx_ausdat, 0, wx.ALIGN_CENTER_VERTICAL|wx.ALL, 5) self.btn_aus = wx.FilePickerCtrl(self, wx.ID_ANY, os.path.join(os.path.expanduser('~'), "joined.pdf"), "Specify output file", "*.pdf", DefPos, wx.Size(480,-1), wx.FLP_OVERWRITE_PROMPT| wx.FLP_SAVE|wx.FLP_SMALL| wx.FLP_USE_TEXTCTRL) szr03.Add(self.btn_aus, 0, wx.ALL, 5) tx_autor = wx.StaticText( self, wx.ID_ANY, "Author:", DefPos, DefSize, 0 ) tx_autor.Wrap( -1 ) szr03.Add( tx_autor, 0, wx.ALL, 5 ) self.ausaut = wx.TextCtrl( self, wx.ID_ANY, os.path.basename(os.path.expanduser('~')), DefPos, wx.Size(480, -1), 0) szr03.Add( self.ausaut, 0, wx.ALL, 5 ) pdf_titel = wx.StaticText( self, wx.ID_ANY, "Title:", DefPos, DefSize, 0 ) pdf_titel.Wrap( -1 ) szr03.Add( pdf_titel, 0, wx.ALL, 5 ) self.austit = wx.TextCtrl( self, wx.ID_ANY, "Joined PDF files", DefPos, wx.Size(480, -1), 0 ) szr03.Add( self.austit, 0, wx.ALL, 5 ) tx_subject = wx.StaticText( self, wx.ID_ANY, "Subject:", DefPos, DefSize, wx.ALIGN_RIGHT) tx_subject.Wrap( -1 ) szr03.Add( tx_subject, 0, wx.ALL, 5 ) self.aussub = wx.TextCtrl( self, wx.ID_ANY, "Joined PDF files", DefPos, wx.Size(480, -1), 0 ) szr03.Add( self.aussub, 0, wx.ALL, 5 ) tx_blank = wx.StaticText( self, wx.ID_ANY, " ", DefPos, DefSize, wx.ALIGN_RIGHT) tx_blank.Wrap( -1 ) szr03.Add( tx_blank, 0, wx.ALL, 5 ) self.noToC = wx.CheckBox( self, wx.ID_ANY, "check if no table of contents wanted", DefPos, DefSize, wx.ALIGN_LEFT) szr03.Add( self.noToC, 0, wx.ALL, 5 ) #============================================================================== # Create Sizer 04 (OK / Cancel buttons) #============================================================================== szr04 = wx.StdDialogButtonSizer() szr04OK = wx.Button(self, wx.ID_OK) szr04.AddButton(szr04OK) szr04Cancel = wx.Button(self, wx.ID_CANCEL) szr04.AddButton(szr04Cancel) szr04.Realize(); #============================================================================== # 3 horizontal lines (decoration only) #============================================================================== linie1 = wx.StaticLine(self, wx.ID_ANY, DefPos, DefSize, wx.LI_HORIZONTAL) linie2 = wx.StaticLine(self, wx.ID_ANY, DefPos, DefSize, wx.LI_HORIZONTAL) linie3 = wx.StaticLine(self, wx.ID_ANY, DefPos, DefSize, wx.LI_HORIZONTAL) mainszr = wx.BoxSizer(wx.VERTICAL) mainszr.Add(szr01, 0, wx.EXPAND, 5) mainszr.Add(linie1, 0, wx.EXPAND |wx.ALL, 5) mainszr.Add(self.szr02, 1, wx.EXPAND, 5) mainszr.Add(linie2, 0, wx.EXPAND|wx.ALL, 5) mainszr.Add(szr03, 0, wx.EXPAND, 5) mainszr.Add(linie3, 0, wx.EXPAND |wx.ALL, 5) mainszr.Add(szr04, 0, wx.ALIGN_TOP|wx.ALIGN_CENTER_HORIZONTAL, 5) self.SetSizer(mainszr) self.Layout() self.Centre(wx.BOTH) #============================================================================== # Define event handlers for the buttons #============================================================================== self.btn_neu.Bind(wx.EVT_FILEPICKER_CHANGED, self.NewFile) self.btn_aus.Bind(wx.EVT_FILEPICKER_CHANGED, self.AusgabeDatei) def __del__(self): pass #============================================================================== # "NewFile" - Event Handler for including new files #============================================================================== def NewFile(self, event): dat = event.GetPath() if dat not in self.FileList: doc = fitz.Document(dat) if doc.needsPass: wx.MessageBox("Cannot read encrypted file\n" + dat, "Encrypted File Error") event.Skip() return self.FileList[dat] = doc else: doc = self.FileList[dat] seiten = doc.pageCount zeile = [dat, str(seiten), 1, str(seiten), 0] self.szr02.Table.NewRow(zeile) self.szr02.AutoSizeColumn(0) self.Layout() event.Skip() #============================================================================== # "AusgabeDatei" - Event Handler for out file #============================================================================== def AusgabeDatei(self, event): event.Skip() #============================================================================== # Create the joined PDF #============================================================================== def make_pdf(dlg): # no file selected: treat like "Cancel" if not len(dlg.szr02.Table.data): # no files there return None cdate = wx.DateTime.Now().Format("D:%Y%m%d%H%M%S-04'30'") ausgabe = dlg.btn_aus.GetPath() pdf_fle_out = open(ausgabe,"wb") pdf_out = PyPDF2.PdfFileWriter() aus_nr = 0 # current page number in output pdf_dict = {"/Creator":"PDF-Joiner", "/Producer":"PyMuPDF, PyPDF2", "/CreationDate": cdate, "/ModDate": cdate, "/Title": dlg.austit.Value, "/Author": dlg.ausaut.Value, "/Subject": dlg.aussub.Value} pdf_out.addMetadata(pdf_dict) parents = {} #============================================================================== # process one input file #============================================================================== for zeile in dlg.szr02.Table.data: dateiname = zeile[0] doc = dlg.FileList[dateiname] max_seiten = int(zeile[1]) #============================================================================== # user input minus 1, PDF pages count from zero # also correct any inconsistent input #============================================================================== von = int(zeile[2]) - 1 bis = int(zeile[3]) - 1 von = max(0, von) # "from" must not be < 0 bis = min(max_seiten - 1, bis) # "to" must not be > max pages - 1 bis = max(von, bis) # "to" cannot be < "from" rot = int(zeile[4]) # get rotation angle pdfin = PyPDF2.PdfFileReader(dateiname) for p in range(von, bis + 1): # read pages from input file pdf_page = pdfin.getPage(p) if rot > 0: pdf_page.rotateClockwise(rot) # rotate the page pdf_out.addPage(pdf_page) # output the page # title = "infile [from-to (max.pages)]" if dlg.noToC.Value: # no ToC wanted continue bm_main_title = "%s [%s-%s (%s)]" % \ (os.path.basename(dateiname[:-4]).encode("latin-1"), von + 1, bis + 1, max_seiten) bm_main = pdf_out.addBookmark(bm_main_title, aus_nr, None, None, False, False, "/Fit") print(1, bm_main_title, aus_nr) parents[1] = bm_main # lvl 1 bookmark is infile's title toc = fitz.GetToC(doc) # get infile's table of contents bm_lst = [] # prepare the relevant sub-ToC for t in toc: if t[2] > von and t[2] <= bis + 1: # relevant page range only bm_lst.append([t[0] + 1, # indent increased 1 level t[1], # the title t[2] + aus_nr - von - 1]) # new page number aus_nr += (bis - von + 1) # increase output counter if bm_lst == []: # do we have a sub-ToC? continue # no, next infile # while indent gap is too large, prepend "filler" bookmarks to bm_lst while bm_lst[0][0] > 2: zeile = [bm_lst[0][0] - 1, "<>", bm_lst[0][2]] bm_lst.insert(0, zeile) # now add infile's bookmarks for b in bm_lst: bm = pdf_out.addBookmark(b[1].encode("latin-1"), b[2], parents[b[0]-1], None, False, False, "/Fit") parents[b[0]] = bm #============================================================================== # all input files processed #============================================================================== pdf_out.write(pdf_fle_out) pdf_fle_out.close() return ausgabe #============================================================================== # # Main program # #============================================================================== if wx.VERSION[0] >= 3: pass else: print("wx Version needs to be at least 3") sys.exit(1) app = None app = wx.App() this_dir = os.getcwd() #============================================================================== # create dialog #============================================================================== dlg = PDFDialog(None) #============================================================================== # Show dialog and wait ... #============================================================================== rc = dlg.ShowModal() #============================================================================== # if OK pressed, create output PDF #============================================================================== if rc == wx.ID_OK: ausgabe = make_pdf(dlg) dlg.Destroy() app = None ``` #### File: tests/expect-fail23/recipe-81330.py ```python import re # # The simplest, lambda-based implementation # def multiple_replace(dict, text): """ Replace in 'text' all occurences of any key in the given dictionary by its corresponding value. Returns the new tring.""" # Create a regular expression from the dictionary keys regex = re.compile("(%s)" % "|".join(map(re.escape, list(dict.keys())))) # For each match, look-up corresponding value in dictionary return regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], text) # # You may combine both the dictionnary and search-and-replace # into a single object using a 'callable' dictionary wrapper # which can be directly used as a callback object. # # In Python 2.2+ you may extend the 'dictionary' built-in class instead from UserDict import UserDict class Xlator(UserDict): """ An all-in-one multiple string substitution class """ def _make_regex(self): """ Build a regular expression object based on the keys of the current dictionary """ return re.compile("(%s)" % "|".join(map(re.escape, list(self.keys())))) def __call__(self, mo): """ This handler will be invoked for each regex match """ # Count substitutions self.count += 1 # Look-up string return self[mo.string[mo.start():mo.end()]] def xlat(self, text): """ Translate text, returns the modified text. """ # Reset substitution counter self.count = 0 # Process text return self._make_regex().sub(self, text) # # Test # if __name__ == "__main__": text = "<NAME> is the creator of Perl" dict = { "<NAME>" : "<NAME>", "creator" : "Benevolent Dictator for Life", "Perl" : "Python", } print(multiple_replace(dict, text)) xlat = Xlator(dict) print(xlat.xlat(text)) print("Changed %d thing(s)" % xlat.count) ```
{ "source": "JohannesBuchner/ultragem", "score": 3 }
#### File: JohannesBuchner/ultragem/ultragem.py ```python import random import time import pygame import sys import copy import numpy from pygame.locals import QUIT, KEYUP, K_ESCAPE, K_BACKSPACE, MOUSEBUTTONUP, MOUSEBUTTONDOWN from gemengine import Board, InitialFillerDoubleLockSpecial, InitialFillerDoubleLock, InitialFillerDisable, NastyTopFiller, BoardGravityPuller, Combiner, PairCombiner, Activater FPS = 60 # frames per second to update the screen HINTFPS = FPS / 10 SCOREFPS = FPS / 20 WINDOWWIDTH = 400 # width of the program's window, in pixels WINDOWHEIGHT = 400 # height in pixels GEMIMAGESIZE = 32 # width & height of each space in pixels # NUMGEMIMAGES is the number of gem types. You will need .png image files named # gem0.png, gem1.png, etc. up to gem(N-1).png. NUMGEMIMAGES = 7 NUMFIREIMAGES = 30 NUMGLANCEIMAGES = 29 # NUMMATCHSOUNDS is the number of different sounds to choose from when a match # is made. The .wav files are named match0.wav, match1.wav, etc. NUMMATCHSOUNDS = 6 MOVERATE = 5 # 1 to 100, larger num means faster animations HIGHLIGHTCOLOR = (0, 255, 255) # color of the selected gem's border HINTCOLOR = (128, 255, 255) # color to hint to a possible move BGCOLOR = (170, 190, 255) # background color on the screen #BGCOLOR = (255, 255, 255) # background color on the screen GRIDCOLOR = (0, 0, 255) # color of the game board GAMEOVERCOLOR = (255, 100, 100) # color of the "Game over" text. GAMEOVERBGCOLOR = (0, 0, 0) # background color of the "Game over" text. SCORECOLOR = (85, 65, 0) LINKCOLOR = (0, 0, 255) # Constants for the different directions. The numbers correspond to the # keyboard's keypad, but they could be any arbitrary value. UP = 8 RIGHT = 6 DOWN = 2 LEFT = 4 EMPTY_SPACE = -1 # an arbitrary, nonnegative value ROWABOVEBOARD = 'row above board' # an arbitrary, noninteger value class GameInvalidException(Exception): pass class UltraGemGame(object): def __init__(self, gameid=1): self.gameid = gameid self.ncolors = 6 self.journey = 'journey-auto' self.setBoardSize(8,8) self.rng = numpy.random #self.rng.seed(4) def setBoardSize(self, h, w): self.BOARDWIDTH = w # how many columns in the board self.BOARDHEIGHT = h # how many rows in the board # The amount of space to the sides of the board to the edge of the window is # used several times, so calculate it once here and store in variables. self.XMARGIN = int((WINDOWWIDTH - GEMIMAGESIZE * self.BOARDWIDTH) / 2) self.YMARGIN = int((WINDOWHEIGHT - GEMIMAGESIZE * self.BOARDHEIGHT) / 2) def run(self): pygame.init() self.BASICFONT = pygame.font.Font('freesansbold.ttf', 24) self.SMALLFONT = pygame.font.Font('freesansbold.ttf', 12) self.FPSCLOCK = pygame.time.Clock() self.WINDOWSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT)) pygame.display.set_caption('UltraGem') self.WINDOWSURF.fill(BGCOLOR) txt = self.BASICFONT.render('Loading ...', 1, GAMEOVERCOLOR, GAMEOVERBGCOLOR) rect = txt.get_rect() rect.center = int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2) self.WINDOWSURF.blit(txt, rect) pygame.display.update() # Load the images self.GEMIMAGES = {} for lock, status in ('N',0), ('X', -1), ('2',1), ('3',2): for modifier, type in ('N',1), ('stripeH',2), ('stripeV',3), ('bomb',4): for color in range(NUMGEMIMAGES): i = color + 1 print('loading comb%s-%s-%s.png for %d,%d,%d' % (lock, i, modifier, status, type, color)) gemImage = pygame.image.load('graphics/comb%s-%s-%s.png' % (lock, i, modifier)) if gemImage.get_size() != (GEMIMAGESIZE, GEMIMAGESIZE): gemImage = pygame.transform.smoothscale(gemImage, (GEMIMAGESIZE, GEMIMAGESIZE)) self.GEMIMAGES[(status, type, color)] = gemImage modifier, type = 'spark', 5 i = 'N' gemImage = pygame.image.load('graphics/comb%s-%s-%s.png' % (lock, i, modifier)) if gemImage.get_size() != (GEMIMAGESIZE, GEMIMAGESIZE): gemImage = pygame.transform.smoothscale(gemImage, (GEMIMAGESIZE, GEMIMAGESIZE)) self.GEMIMAGES[(status, type, 0)] = gemImage print('loading comb%s-%s-%s.png for %d,%d,%d' % (lock, i, modifier, status, type, 0)) if status > 0: modifier, type = 'empty', 0 gemImage = pygame.image.load('graphics/gemlock%s.png' % (lock)) if gemImage.get_size() != (GEMIMAGESIZE, GEMIMAGESIZE): gemImage = pygame.transform.smoothscale(gemImage, (GEMIMAGESIZE, GEMIMAGESIZE)) self.GEMIMAGES[(status, type, 0)] = gemImage print('loading gemlock%s.png for %d,%d,%d' % (lock, status, type, 0)) status, type, color = 0, -1, 0 gemImage = pygame.image.load('graphics/nonfield.png') if gemImage.get_size() != (GEMIMAGESIZE, GEMIMAGESIZE): gemImage = pygame.transform.smoothscale(gemImage, (GEMIMAGESIZE, GEMIMAGESIZE)) self.GEMIMAGES[(status, type, color)] = gemImage print('loading nonfield.png for %d,%d,%d' % (status, type, 0)) #print('images loaded:', self.GEMIMAGES.keys()) self.FIREIMAGES = [] for i in range(1,NUMFIREIMAGES+1): gemImage = pygame.image.load('graphics/fire%s.png' % i) if gemImage.get_size() != (GEMIMAGESIZE, GEMIMAGESIZE): gemImage = pygame.transform.smoothscale(gemImage, (GEMIMAGESIZE, GEMIMAGESIZE)) self.FIREIMAGES.append(gemImage) self.GLANCEIMAGES = [] for i in range(1,NUMGLANCEIMAGES+1): gemImage = pygame.image.load('graphics/glance%s.png' % i) if gemImage.get_size() != (GEMIMAGESIZE, GEMIMAGESIZE): gemImage = pygame.transform.smoothscale(gemImage, (GEMIMAGESIZE, GEMIMAGESIZE)) self.GLANCEIMAGES.append(gemImage) # Load the sounds. GAMESOUNDS = {} GAMESOUNDS['bad swap'] = pygame.mixer.Sound('sounds/badswap.wav') GAMESOUNDS['match'] = [] for i in range(NUMMATCHSOUNDS): GAMESOUNDS['match'].append(pygame.mixer.Sound('sounds/match%s.wav' % i)) self.GAMESOUNDS = GAMESOUNDS BOARDRECTS = [] for x in range(self.BOARDWIDTH): BOARDRECTS.append([]) for y in range(self.BOARDHEIGHT): r = pygame.Rect((self.XMARGIN + (x * GEMIMAGESIZE), self.YMARGIN + (y * GEMIMAGESIZE), GEMIMAGESIZE, GEMIMAGESIZE)) BOARDRECTS[x].append(r) self.BOARDRECTS = BOARDRECTS while True: try: self.last_move = None, None, None, None self.nswaps = 0 self.boardlog = [] self.score = self.scoring_function([]) self.events_processed = 0 self.initGame() self.runGame() success = self.score[self.goalid] >= self.goalvalue if success: self.gameid += 1 with open('currentgame', 'w') as f: f.write('%d\n' % self.gameid) except GameInvalidException as e: self.gameid += 1 print(e) def setupGame(self, seed): nrows, ncols, ncolors = self.BOARDWIDTH, self.BOARDHEIGHT, self.ncolors rng = numpy.random.RandomState(seed) board = Board(nrows=nrows, ncols=ncols) # make lower numbers more likely to be selected prows = 1. / (0.2 + numpy.arange(nrows)) prows /= prows.sum() ndrows = rng.choice(numpy.arange(nrows), p=prows) ndlrows = rng.choice(numpy.arange(nrows), p=prows) pcols = 1. / (0.2+ numpy.arange(ncols)) pcols /= pcols.sum() ndcols = rng.choice(numpy.arange(nrows), p=pcols) ndlcols = rng.choice(numpy.arange(nrows), p=pcols) if rng.uniform() < 0.1: types = [2,3,4,5] if rng.uniform() < 0.5 else [2,3,4] InitialFillerDoubleLockSpecial(board, ncolors=ncolors, types=types, nrows=ndlrows, ncols=ndlcols, rng=rng).run() else: InitialFillerDoubleLock(board, nrows=ndlrows, ncols=ndlcols, rng=rng).run() if rng.uniform() < 0.1: InitialFillerDisable(board, nrows=ndrows, ncols=ndcols, rng=rng).run() topfill = NastyTopFiller(board, ncolors=ncolors) return board, topfill def setupUniqueGame(self, seed): nrows, ncols, ncolors = self.BOARDWIDTH, self.BOARDHEIGHT, self.ncolors board, topfill = self.setupGame(seed) for i in range(1, seed): board2, _ = self.setupGame(i) if (board2.status == board.status).all() and (board2.type == board.type).all() and (board2.color == board.color).all(): raise GameInvalidException("Board with seed=%d same as seed=%d" % (i, seed)) return board, topfill def loadGame(self, gameid): self.BOARDWIDTH, self.BOARDHEIGHT, self.ncolors = None, None, None with open('%s/%d' % (self.journey, gameid)) as f: gameprops = {} for line in f: key, value = line.split(':') gameprops[key] = value key = key.upper() if key == 'NCOLORS': self.ncolors = int(value) elif key == 'MAXSWAPS': self.maxswaps = int(value) elif key == 'GOALID': self.goalid = int(value) elif key == 'NMIN': self.goalvalue = int(value) elif key == 'DIFFICULTY': d = float(value) if d < 0.2: self.difficulty_text = 'SUPER EASY' elif d < 0.5: self.difficulty_text = 'EASY' elif d < 0.75: self.difficulty_text = 'HARD' elif d < 1.0: self.difficulty_text = 'VERY HARD' else: self.difficulty_text = 'EXTREME' elif key == 'BOARD': a, b = value.split('x') self.setBoardSize(int(a), int(b)) break nrows, ncols, ncolors = self.BOARDWIDTH, self.BOARDHEIGHT, self.ncolors board = Board(nrows=nrows, ncols=ncols) for i, line in enumerate(f): #print('parsing line', line) for k in range(self.BOARDWIDTH): txt = line[k*4:(k+1)*4] #print('parsing chunk: "%s"' % txt) type = 0 color = 0 status = 0 if txt == ' ': # empty pass elif txt[1] == 'X': type = -1 elif txt[1] == 'B': status = 2 type = 0 elif txt[1] == 'b': status = 1 type = 0 elif txt[0] == ' ': type = 1 color = int(txt[1]) elif txt[0] == '=': type = 2 color = int(txt[1]) elif txt[0] == '|': type = 3 color = int(txt[1]) elif txt[0] == 'X': type = 4 color = int(txt[1]) elif txt[0] == '#': type = 5 color = 0 if txt[2] == 'L': status = 2 elif txt[2] == 'l': status = 1 board.type[i,k] = type board.color[i,k] = color board.status[i,k] = status topfill = NastyTopFiller(board, ncolors=ncolors) return board, topfill def initGame(self): #board, topfill = self.setupUniqueGame(self.gameid) board, topfill = self.loadGame(self.gameid) rng = self.rng self.board = board self.topfill = topfill self.grav = BoardGravityPuller(board) self.comb = Combiner(board) self.paircomb = PairCombiner(board) self.acto = Activater(board) def fillBoardAndAnimate(self, board, points=None): # dropping phase anychange = True nshuffles = 0 self.gameLog('fillBoardAndAnimate', self.board.copy()) print(self.board) while True: while anychange: changes = self.grav.run() anychange = len(changes) > 0 movingGems = [] #print('grav changes:', changes, anychange) self.gameLog('grav', self.board.copy()) print(self.board) for j, i, move in changes: if move == 'dropped from top': directionx = 0 directiony = 1 elif move == 'dropped from top-left': directionx = 1 directiony = 1 elif move == 'dropped from top-right': directionx = -1 directiony = 1 else: assert False, move assert self.getImageNum(j,i) != -1 movingGems.append(dict(imageNum=self.getImageNum(j,i), x=i-directionx, y=j-directiony, directionx=directionx, directiony=directiony)) changes = self.topfill.run() anychange = len(changes) > 0 or anychange #print('topfill changes:', changes, anychange) self.gameLog('topfill', self.board.copy()) print(self.board) for j, i, move in changes: directionx = 0 directiony = 1 assert self.getImageNum(j,i) != -1 movingGems.append(dict(imageNum=self.getImageNum(j,i), x=i-directionx, y=j-directiony, directionx=directionx, directiony=directiony)) if movingGems: #print('moving gems:', movingGems) boardCopy = self.getBoardCopyMinusGems(board, movingGems) self.animateMovingGems(boardCopy, movingGems, points) #self.moveGems(board, movingGems) self.updateBoard(board) #print('board now:', board) #print('final board:', board) # combining phase anychange = self.comb.run() self.gameLog('comb', self.board.copy()) if anychange: # have to find the differences and transition # using fire boardCopy = copy.deepcopy(board) self.updateBoard(board) print(self.board) self.transitionBoard(boardCopy, board) #print(('STEP %d: activation...' % nstep)) anychange = self.acto.run() or anychange self.gameLog('acto', self.board.copy()) if anychange: boardCopy = copy.deepcopy(board) self.updateBoard(board) print(self.board) self.transitionBoard(boardCopy, board) continue # ok, the board settled down now # we should ask the agent/user what they want to do now #print(('STEP %d: finding valid moves ...' % nstep)) moves = list(self.paircomb.enumerate_valid_moves()) if len(moves) == 0: # no moves left -- shuffle #print(('shuffling ...')) nshuffles += 1 if nshuffles > 20: raise GameInvalidException('Too many shuffles') boardCopy = copy.deepcopy(board) self.paircomb.shuffle() self.gameLog('paircomb.shuffle', self.board.copy()) self.updateBoard(board) self.transitionBoard(boardCopy, board, type='glance') continue self.gameLog('moves', moves) self.rng.shuffle(moves) return moves def continueGame(self, board, move): boardCopy = copy.deepcopy(board) self.paircomb.run(*move) self.gameLog('paircomb.run', self.board.copy()) self.updateBoard(board) self.transitionBoard(boardCopy, board) self.comb.set_last_interaction(*move) self.last_move = move print(self.board) # combining phase anychange = self.comb.run() self.gameLog('comb', self.board.copy()) if anychange: # have to find the differences and transition # using fire boardCopy = copy.deepcopy(board) self.updateBoard(board) print(self.board) self.transitionBoard(boardCopy, board) #print(('STEP %d: activation...' % nstep)) anychange = self.acto.run() or anychange self.gameLog('acto', self.board.copy()) if anychange: boardCopy = copy.deepcopy(board) self.updateBoard(board) print(self.board) self.transitionBoard(boardCopy, board) # dropping phase return self.fillBoardAndAnimate(board, []) def isValidMove(self, x1, y1, x2, y2): for (fromj,fromi,toj,toi),score in self.possible_moves: if x1 == fromi and y1 == fromj and x2 == toi and y2 == toj: return (fromj,fromi,toj,toi) print('possible moves:') for move, score in self.possible_moves: print(move) print() print('not:',x1,y1,x2,y2) return False def getBoardCopyMinusGems(self, board, gems): # Gems is a list of dicts, with keys 'imageNum', 'x', 'y', 'direction'. boardCopy = copy.deepcopy(board) # Remove some of the gems from this board data structure copy. for gem in gems: if gem['y'] != ROWABOVEBOARD and gem['y'] >= 0: #print('temporarily disabling', gem['x'], gem['y']) boardCopy[gem['x']][gem['y']] = EMPTY_SPACE return boardCopy def getImageNum(self, j, i): color = self.board.color[j,i] type = self.board.type[j,i] status = self.board.status[j,i] if type == 0 and status == 0: return EMPTY_SPACE else: if type == 5: color = 0 return (status, type, color) def updateBoard(self, board): for x in range(self.BOARDWIDTH): for y in range(self.BOARDHEIGHT): board[x][y] = self.getImageNum(y,x) def moveGems(self, board, movingGems): # movingGems is a list of dicts with keys 'x', 'y', 'direction', and 'imageNum' for gem in movingGems: if gem['y'] != ROWABOVEBOARD: #print('marking empty', gem['x'], gem['y']) board[gem['x']][gem['y']] = EMPTY_SPACE movex = gem['directionx'] movey = gem['directiony'] #print('filling', gem['x']+movex, gem['y']+movey) board[gem['x'] + movex][gem['y'] + movey] = gem['imageNum'] else: board[gem['x']][0] = gem['imageNum'] # ignore 'direction', just move to top row def transitionBoard(self, oldboard, newboard, type='fire'): progress = 0 # progress at 0 represents beginning, progress at 100 represents finish. differences = [] for x in range(self.BOARDWIDTH): for y in range(self.BOARDHEIGHT): if oldboard[x][y] != newboard[x][y]: differences.append((x,y)) #print('differences:', differences) if not differences: return if type == 'fire': NIMG = NUMFIREIMAGES elif type == 'glance': NIMG = NUMGLANCEIMAGES while progress < NIMG: #print('transitioning...', progress) self.WINDOWSURF.fill(BGCOLOR) if progress < 22: self.drawBoard(oldboard) else: self.drawBoard(newboard) # Draw fire where they differ. for x,y in differences: self.drawFire(x, y, progress, type=type) self.drawScore(update=False) pygame.display.update() self.FPSCLOCK.tick(FPS) progress += 1 self.drawBoard(newboard) self.drawScore(update=True) pygame.display.update() def drawFire(self, x, y, progress, type): pixelx = self.XMARGIN + (x * GEMIMAGESIZE) pixely = self.YMARGIN + (y * GEMIMAGESIZE) r = pygame.Rect( (pixelx, pixely, GEMIMAGESIZE, GEMIMAGESIZE) ) if type == 'fire': self.WINDOWSURF.blit(self.FIREIMAGES[progress], r) elif type == 'glance': self.WINDOWSURF.blit(self.GLANCEIMAGES[progress], r) else: assert False, type def animateMovingGems(self, board, gems, pointsText): progress = 0 # progress at 0 represents beginning, progress at 100 represents finish. while progress <= 100: self.WINDOWSURF.fill(BGCOLOR) self.drawBoard(board) # Draw each gem. for gem in gems: self.drawMovingGem(gem, progress) self.drawScore(update=False) pygame.display.update() self.FPSCLOCK.tick(FPS) progress += MOVERATE def drawMovingGem(self, gem, progress): movex = 0 movey = 0 progress *= 0.01 #print('moving...', progress, gem) fraction = progress fraction = numpy.arctan((progress - 0.5) * 10) * 1.13 / numpy.pi + 0.5 movex = gem['directionx'] * int(fraction * GEMIMAGESIZE) movey = gem['directiony'] * int(fraction * GEMIMAGESIZE) basex = gem['x'] basey = gem['y'] if basey == ROWABOVEBOARD: basey = -1 pixelx = self.XMARGIN + (basex * GEMIMAGESIZE) pixely = self.YMARGIN + (basey * GEMIMAGESIZE) r = pygame.Rect( (pixelx + movex, pixely + movey, GEMIMAGESIZE, GEMIMAGESIZE) ) self.WINDOWSURF.blit(self.GEMIMAGES[gem['imageNum']], r) def drawBoard(self, board): pygame.draw.rect(self.WINDOWSURF, BGCOLOR, (self.XMARGIN, self.YMARGIN - GEMIMAGESIZE, GEMIMAGESIZE * self.BOARDWIDTH, GEMIMAGESIZE * (self.BOARDHEIGHT+1)), 0) for x in range(self.BOARDWIDTH): for y in range(self.BOARDHEIGHT): pygame.draw.rect(self.WINDOWSURF, GRIDCOLOR, self.BOARDRECTS[x][y], 1) gemToDraw = board[x][y] if gemToDraw != EMPTY_SPACE: self.WINDOWSURF.blit(self.GEMIMAGES[gemToDraw], self.BOARDRECTS[x][y]) def scoring_function(self, events): nspecial = [0, 0, 0] ncombispecial_index = {22:0,42:1,44:2,51:3,52:4,54:5,55:6} ncombispecial = [0, 0, 0, 0, 0, 0, 0] nunlocked = 0 ndestroyed = 0 score = 0 for type, value in events: if type == 'activated': if value in (2,3): nspecial[0] += 1 elif value == 4: nspecial[1] += 1 elif value == 5: nspecial[2] += 1 score += 10 * value elif type == 'unlocked': nunlocked += value elif type == 'destroyed': ndestroyed += value score += value elif type == 'combined': ncombispecial[ncombispecial_index[value]] += 1 return [score, ndestroyed, nunlocked] + nspecial + ncombispecial def drawScore(self, update=True): lastscore = self.score if update: newevents = self.board.events[self.events_processed:] newscore = self.scoring_function(newevents) self.score = [a+b for a,b in zip(newscore, lastscore)] _, _, y, x = self.last_move #print('new score:', newscore, x, y) if newscore[0] > 0 and x is not None: pointsSurf = self.BASICFONT.render(str(newscore[0]), 1, SCORECOLOR) pointsRect = pointsSurf.get_rect() pointsRect.center = (x * GEMIMAGESIZE + self.XMARGIN, y * GEMIMAGESIZE + self.YMARGIN) self.WINDOWSURF.blit(pointsSurf, pointsRect) pygame.display.update() self.FPSCLOCK.tick(SCOREFPS) self.events_processed = len(self.board.events) done = self.score[self.goalid] todo = self.goalvalue top = 10 middle = WINDOWHEIGHT - GEMIMAGESIZE / 2 - 10 left = self.XMARGIN anycolor = 6 scoretxt = '%d' % (done) if self.goalid == 0: imageIds = [] goaltxt = 'score > %d' % todo elif self.goalid == 1: imageIds = [] goaltxt = '%d destroyed' % todo elif self.goalid == 2: imageIds = [(1, 0, 0)] goaltxt = '%d unlocked' % todo elif self.goalid == 3: imageIds = [(0, 2, anycolor)] goaltxt = '%d stripes' % todo elif self.goalid == 4: imageIds = [(0, 4, anycolor)] goaltxt = '%d bombs' % todo elif self.goalid == 5: imageIds = [(0, 5, 0)] goaltxt = '%d zappers' % todo elif self.goalid == 6: imageIds = [(0, 2, anycolor), (0, 3, anycolor)] goaltxt = '%d stripe+stripe' % todo elif self.goalid == 7: imageIds = [(0, 2, anycolor), (0, 4, anycolor)] goaltxt = '%d stripe+bomb' % todo elif self.goalid == 8: imageIds = [(0, 4, anycolor), (0, 4, anycolor)] goaltxt = '%d bomb+bomb' % todo elif self.goalid == 9: imageIds = [(0, 5, 0), (0, 1, anycolor)] goaltxt = '%d zapper+gem' % todo elif self.goalid == 10: imageIds = [(0, 5, 0), (0, 2, anycolor)] goaltxt = '%d zapper+stripe' % todo elif self.goalid == 11: imageIds = [(0, 5, 0), (0, 4, anycolor)] goaltxt = '%d zapper+bomb' % todo elif self.goalid == 12: imageIds = [(0, 5, 0), (0, 5, 0)] goaltxt = '%d zapper+zapper' % todo else: assert False if len(imageIds) > 0: goaltxt = '%d' % todo leveltxt = '%s LEVEL %d' % (self.difficulty_text, self.gameid) levelImg = self.BASICFONT.render(leveltxt, 1, SCORECOLOR) # score is a global variable levelRect = levelImg.get_rect() levelRect.top = top levelRect.left = 10 self.WINDOWSURF.blit(levelImg, levelRect) contacttxt = 'issue?' contactImg = self.SMALLFONT.render(contacttxt, 1, LINKCOLOR) # score is a global variable contactRect = contactImg.get_rect() contactRect.top = top contactRect.right = WINDOWWIDTH - 10 self.contactButton = contactRect self.WINDOWSURF.blit(contactImg, contactRect) scoreImg = self.BASICFONT.render(scoretxt, 1, SCORECOLOR) # score is a global variable scoreRect = scoreImg.get_rect() scoreRect.left = 10 scoreRect.centery = middle self.WINDOWSURF.blit(scoreImg, scoreRect) goaltxt = 'GOAL: %s' % (goaltxt) goalImg = self.BASICFONT.render(goaltxt, 1, SCORECOLOR) # score is a global variable goalRect = goalImg.get_rect() goalRect.top = top goalRect.left = left goalRect.centery = middle self.WINDOWSURF.blit(goalImg, goalRect) sparewidth = 0 left += goalRect.width + sparewidth if len(imageIds) > 0: imageId = imageIds[0] r = pygame.Rect((left, top, GEMIMAGESIZE, GEMIMAGESIZE) ) r.centery = middle self.WINDOWSURF.blit(self.GEMIMAGES[imageId], r) left += GEMIMAGESIZE + sparewidth if len(imageIds) > 1: plusImg = self.BASICFONT.render('+', 1, SCORECOLOR) plusRect = plusImg.get_rect() plusRect.left = left plusRect.centery = middle left += plusRect.width + sparewidth self.WINDOWSURF.blit(plusImg, plusRect) imageId = imageIds[1] r = pygame.Rect((left, top, GEMIMAGESIZE, GEMIMAGESIZE) ) r.centery = middle self.WINDOWSURF.blit(self.GEMIMAGES[imageId], r) left += GEMIMAGESIZE + sparewidth # draw number of swaps left swaptxt = '%d' % (self.maxswaps - self.nswaps) swapImg = self.BASICFONT.render(swaptxt, 1, SCORECOLOR) swapRect = swapImg.get_rect() swapRect.right = WINDOWWIDTH - 10 swapRect.centery = middle self.WINDOWSURF.blit(swapImg, swapRect) def checkForGemClick(self, pos): # See if the mouse click was on the board for x in range(self.BOARDWIDTH): for y in range(self.BOARDHEIGHT): if self.BOARDRECTS[x][y].collidepoint(pos[0], pos[1]): return (x, y) # Return board x and y where the click occurred. return None # Click was not on the board. def gameLog(self, movement, newdata): self.boardlog.append((movement, newdata)) def checkForLinkClick(self, pos): # See if the mouse click was on the board if self.contactButton.collidepoint(pos[0], pos[1]): #try: import webbrowser import urllib if hasattr(urllib, 'urlencode'): urlencode = urllib.urlencode else: urlencode = urllib.parse.urlencode logtxts = [] lastBoard = None nevents_processed = 0 for i, (movement, newdata) in enumerate(self.boardlog, 1): if movement == 'moves': logtxt = "\n%d. possible moves:" % i for move, score in newdata: logtxt += "\n* %d,%d -> %d,%d" % (move) logtxts.append(logtxt) continue if lastBoard is not None and newdata == lastBoard: logtxts.append("%d: %s (no change)" % (i, movement)) continue logtxt = "%d: after %s:\n```\n%s\n```\n" % (i, movement, newdata) lastBoard = newdata for type, value in newdata.events[nevents_processed:]: logtxt += "* Event: %s - %s\n" % (type, value) logtxts.append(logtxt) nevents_processed = len(newdata.events) logtxt = '' for logtxti in logtxts[::-1]: if len(logtxt) + len(logtxti) > 5000: break logtxt += '\n' logtxt += logtxti print(len(logtxt)) body = """ Hi! My issue/suggestion/question/ is ... Debug information --------------------------------- I was playing this board: ``` %s ``` with %d colors, %d swaps. Goal %d of type=%d. My last moves were: %s """ % (str(self.board), self.ncolors, self.maxswaps, self.goalvalue, self.goalid, logtxt) #title = 'Level %d' % self.gameid webbrowser.open("https://github.com/JohannesBuchner/ultragem/issues/new?%s" % (urlencode(dict(body=body)))) #except Exception: # pass def highlightSpace(self, x, y): pygame.draw.rect(self.WINDOWSURF, HIGHLIGHTCOLOR, self.BOARDRECTS[x][y], 4) def hintMove(self): (fromj, fromi, toj, toi), score = self.possible_moves[0] for i in range(3): x, y = fromi, fromj pygame.draw.rect(self.WINDOWSURF, HINTCOLOR, self.BOARDRECTS[x][y], 4) x, y = toi, toj pygame.draw.rect(self.WINDOWSURF, HINTCOLOR, self.BOARDRECTS[x][y], 4) pygame.display.update() self.FPSCLOCK.tick(HINTFPS) x, y = fromi, fromj pygame.draw.rect(self.WINDOWSURF, GRIDCOLOR, self.BOARDRECTS[x][y], 4) x, y = toi, toj pygame.draw.rect(self.WINDOWSURF, GRIDCOLOR, self.BOARDRECTS[x][y], 4) pygame.display.update() self.FPSCLOCK.tick(HINTFPS) def getSwappingGems(self, board, firstXY, secondXY): firstGem = dict(imageNum=board[firstXY[0]][firstXY[1]], x=firstXY[0], directionx=0, y=firstXY[1], directiony=0) secondGem = dict(imageNum=board[secondXY[0]][secondXY[1]], x=secondXY[0], directionx=0, y=secondXY[1], directiony=0) highlightedGem = None if firstGem['x'] == secondGem['x'] + 1 and firstGem['y'] == secondGem['y']: firstGem['directionx'] = -1 secondGem['directionx'] = +1 elif firstGem['x'] == secondGem['x'] - 1 and firstGem['y'] == secondGem['y']: firstGem['directionx'] = +1 secondGem['directionx'] = -1 elif firstGem['y'] == secondGem['y'] + 1 and firstGem['x'] == secondGem['x']: firstGem['directiony'] = -1 secondGem['directiony'] = +1 elif firstGem['y'] == secondGem['y'] - 1 and firstGem['x'] == secondGem['x']: firstGem['directiony'] = +1 secondGem['directiony'] = -1 else: # These gems are not adjacent and can't be swapped. return None, None return firstGem, secondGem def runGame(self): mainBoard = [[EMPTY_SPACE] * self.BOARDHEIGHT for x in range(self.BOARDWIDTH)] # Drop the initial gems. self.possible_moves = self.fillBoardAndAnimate(mainBoard, []) self.nswaps = 0 firstSelectedGem = None lastMouseDownX = None lastMouseDownY = None isGameOver = False clickContinueTextSurf = None while True: clickedSpace = None isGameOver = self.score[self.goalid] >= self.goalvalue or self.nswaps >= self.maxswaps for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit(0) if event.type == KEYUP: if event.key == K_ESCAPE: pygame.quit() sys.exit(0) elif event.key == K_BACKSPACE: return if event.type == MOUSEBUTTONUP: if isGameOver: return if event.pos == (lastMouseDownX, lastMouseDownY): # This is a mouse click. clickedSpace = self.checkForGemClick(event.pos) self.checkForLinkClick(event.pos) else: # This is the end of a mouse drag, and the first gem has already been selected. firstSelectedGem = self.checkForGemClick((lastMouseDownX, lastMouseDownY)) mouseOverSpace = self.checkForGemClick(event.pos) if mouseOverSpace and (mouseOverSpace[0] == firstSelectedGem[0] + 1 or \ mouseOverSpace[0] == firstSelectedGem[0] - 1 or \ mouseOverSpace[1] == firstSelectedGem[1] + 1 or \ mouseOverSpace[1] == firstSelectedGem[1] - 1): clickedSpace = mouseOverSpace if not firstSelectedGem or not mouseOverSpace: # If this MOUSEBUTTONUP was not part of a valid drag, deselect both. firstSelectedGem = None mouseOverSpace = None if event.type == MOUSEBUTTONDOWN: lastMouseDownX, lastMouseDownY = event.pos # Check if this is the first or second gem to be clicked. if clickedSpace and not firstSelectedGem: firstSelectedGem = clickedSpace elif clickedSpace and firstSelectedGem: # Two gems have been selected. Swap the gems. firstSwappingGem, secondSwappingGem = self.getSwappingGems(mainBoard, firstSelectedGem, clickedSpace) if firstSwappingGem is None and secondSwappingGem is None: firstSelectedGem = None # Deselect the first gem. continue # Show the swap animation on the screen. boardCopy = self.getBoardCopyMinusGems(mainBoard, (firstSwappingGem, secondSwappingGem)) self.animateMovingGems(boardCopy, [firstSwappingGem, secondSwappingGem], []) # Swap the gems in the board data structure. mainBoard[firstSwappingGem['x']][firstSwappingGem['y']] = secondSwappingGem['imageNum'] mainBoard[secondSwappingGem['x']][secondSwappingGem['y']] = firstSwappingGem['imageNum'] # See if this is a matching move. move = self.isValidMove(firstSwappingGem['x'],firstSwappingGem['y'], secondSwappingGem['x'], secondSwappingGem['y']) if not move: # Not a matching move: swap the gems back self.GAMESOUNDS['bad swap'].play() firstSwappingGem, secondSwappingGem = self.getSwappingGems(mainBoard, firstSelectedGem, clickedSpace) self.animateMovingGems(boardCopy, [firstSwappingGem, secondSwappingGem], []) mainBoard[firstSwappingGem['x']][firstSwappingGem['y']] = secondSwappingGem['imageNum'] mainBoard[secondSwappingGem['x']][secondSwappingGem['y']] = firstSwappingGem['imageNum'] self.hintMove() else: # successful move. # reset selection firstSelectedGem = None secondSwappingGem = None self.nswaps += 1 self.possible_moves = self.continueGame(mainBoard, move) if self.score[self.goalid] >= self.goalvalue or self.nswaps >= self.maxswaps: isGameOver = True # Draw the board. self.WINDOWSURF.fill(BGCOLOR) self.drawBoard(mainBoard) if firstSelectedGem != None: self.highlightSpace(firstSelectedGem[0], firstSelectedGem[1]) if isGameOver: if clickContinueTextSurf == None: if self.score[self.goalid] >= self.goalvalue: #endtxt = 'Final Score: %s (Click to continue)' % (self.score[0]) endtxt = 'SUCCESS! Click for next level' else: endtxt = 'ALMOST! Click to try again.' clickContinueTextSurf = self.BASICFONT.render(endtxt, 1, GAMEOVERCOLOR, GAMEOVERBGCOLOR) clickContinueTextRect = clickContinueTextSurf.get_rect() clickContinueTextRect.center = int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2) self.WINDOWSURF.blit(clickContinueTextSurf, clickContinueTextRect) self.drawScore(update=True) pygame.display.update() self.FPSCLOCK.tick(FPS) if __name__ == '__main__': try: if len(sys.argv) > 1: gameid = int(sys.argv[1]) else: gameid = int(open('currentgame', 'r').read()) except Exception: gameid = 1 game = UltraGemGame(gameid=gameid) game.run() ```
{ "source": "JohannesBuchner/uncertaincolors", "score": 3 }
#### File: JohannesBuchner/uncertaincolors/uncertaincolors.py ```python import numpy import colorsys from matplotlib import pyplot as plt from matplotlib.colors import rgb_to_hsv, hsv_to_rgb def all_to_rgb(value, error, cm=plt.cm.cool, lo=0, hi=1): x = numpy.linspace(0, 1, 400) colors = cm(x*(hi - lo) + lo)[:,:3] #J, C, H = cspace_convert(colors, 'sRGB1', satspace).transpose() H, S, V = rgb_to_hsv(colors).transpose() frac = S.min() / S colors = cm(value.flatten()*(hi - lo) + lo)[:,:3] H, S, V = rgb_to_hsv(colors).transpose() S *= numpy.interp(x=value.flatten(), xp=x, fp=frac) error = numpy.where(error >= 0, numpy.where(error <= 1, error, 1), 0) S *= 1 - error.flatten() total = hsv_to_rgb(numpy.dstack((H, S, V))) total = total.reshape(value.shape[0], value.shape[1], 3) total[total<0] = 0 total[total>1] = 1 return total if __name__ == '__main__': import matplotlib.pyplot as plt x = numpy.linspace(-1,1, 500) y = numpy.linspace(-1,1, 500) X, Y = numpy.meshgrid(x, y) value = (-Y+1)/2. error = (X+1)/2. total = all_to_rgb(value, error, cm=plt.cm.viridis_r, hi=0.5) plt.imshow(total) plt.xlabel('Uncertainty') plt.ylabel('Value') plt.savefig('demo_colorspace.png', bbox_inches='tight') plt.close() value = numpy.abs(X) error = (X**2 + Y**2)**0.5 plt.title('Measurement Value') plt.imshow(value) plt.xlabel('X') plt.ylabel('Y') plt.colorbar() plt.savefig('demo_observation_value.png', bbox_inches='tight') plt.close() plt.imshow(error) plt.title('Measurement Error') plt.xlabel('X') plt.ylabel('Y') plt.colorbar() plt.savefig('demo_observation_error.png', bbox_inches='tight') plt.close() total = all_to_rgb(value, error, cm=plt.cm.viridis_r, hi=0.5) plt.imshow(total) plt.xlabel('X') plt.ylabel('Y') plt.savefig('demo_observation_viridis.png', bbox_inches='tight') plt.close() total = all_to_rgb(value, error, cm=plt.cm.cool_r) plt.imshow(total) plt.xlabel('X') plt.ylabel('Y') plt.savefig('demo_observation_cool.png', bbox_inches='tight') plt.close() total = all_to_rgb(value, error, cm=plt.cm.plasma_r, hi=0.6) plt.imshow(total) plt.xlabel('X') plt.ylabel('Y') plt.savefig('demo_observation_plasma.png', bbox_inches='tight') plt.close() total = all_to_rgb(value, error, cm=plt.cm.winter) plt.imshow(total) plt.xlabel('X') plt.ylabel('Y') plt.savefig('demo_observation_winter.png', bbox_inches='tight') plt.close() total = all_to_rgb(value, error, cm=plt.cm.spring) plt.imshow(total) plt.xlabel('X') plt.ylabel('Y') plt.savefig('demo_observation_spring.png', bbox_inches='tight') plt.close() total = all_to_rgb(value, error, cm=plt.cm.summer) plt.imshow(total) plt.xlabel('X') plt.ylabel('Y') plt.savefig('demo_observation_summer.png', bbox_inches='tight') plt.close() total = all_to_rgb(value, error, cm=plt.cm.RdBu_r) plt.imshow(total) plt.xlabel('X') plt.ylabel('Y') plt.savefig('demo_observation_RdBu.png', bbox_inches='tight') plt.close() total = all_to_rgb(value, error, cm=plt.cm.coolwarm) plt.imshow(total) plt.xlabel('X') plt.ylabel('Y') plt.savefig('demo_observation_coolwarm.png', bbox_inches='tight') plt.close() ```
{ "source": "johannesCmayer/pt-kana", "score": 3 }
#### File: johannesCmayer/pt-kana/data_manipulation.py ```python import json hiragana = json.load(open('Vocabularies/hiragana.json')) katakana = json.load(open('Vocabularies/katakana.json')) class Instance: def __init__(self, target, translation, frequency, correct, incorrect): self.target = target self.translation = translation self.frequency = frequency self.correct = correct self.incorrect = incorrect l = [] for (hk, hv), (kk, kv) in zip(hiragana.items(), katakana.items()): l.append(Instance(hk, hv, 0, [], []).__dict__) l.append(Instance(kk,kv,0, [], []).__dict__) print(f"generated file with {len(l)} entries") tdump = json.dumps(l,indent=4) with open("Vocabularies/alternating_kana_base.json", 'w') as f: f.write(tdump) ```
{ "source": "johannesCmayer/tracker", "score": 3 }
#### File: johannesCmayer/tracker/main.py ```python import datetime import click import os import json import re from pathlib import Path import math #TODO [#A] fix negative time for future event being off by one day minus #TODO Have tracker groups, that are visually seperated in the output and can be ordered #TODO allow to change the ordering of trackers #TODO Unhardcode goal display #TODO Save the history of all updates in a file #TODO Allow to different kinds of input as dates (not just one hardcoded one, e.g. allow to specify seconds, and have a shortcut for now, and allow to add to now[possibly without having to specify the now e.g. +1d10:00:00]) #TODO Allow teh user to specify the save file location (possibly with config in same dir or in .config) SAVE_FILE = f"{Path.home()}/.config/tracker/tracker.json" @click.group() @click.pass_context def cli(ctx): pass @cli.command() @click.pass_context @click.option('-n', '--name', required=True, help="The name of the tracker") def remove(ctx, name): """Delete tracker""" d_dict = ctx.obj del d_dict[name] with open(SAVE_FILE, 'w') as f: json.dump(d_dict, f, indent=4) print(f"Removed tracker {name}") @cli.command() @click.pass_context @click.option('-n', '--name', required=True, help="The name of the tracker") @click.option('-d', '--date', required=True, help="The start tracking date") def create(ctx, name, date): """Create tracker""" regex = r'^\d\d\d\d-\d\d-\d\dT\d\d:\d\d$' if not re.search(regex, date): print(f"Invalid format. Use format: {regex}") exit(1) d_dict = ctx.obj if name in d_dict: print(f"Tracker {name} already exists.") return d_dict[name] = date with open(SAVE_FILE, 'w') as f: json.dump(d_dict, f, indent=4) print(f"Creating tracker {name}") @cli.command() @click.pass_context @click.option('-n', '--name', required=True, help="The name of the tracker") @click.option('-d', '--date', required=True, help="The start tracking date") def update(ctx, name, date): """Update tracker""" regex = r'^\d\d\d\d-\d\d-\d\dT\d\d:\d\d$' if not re.search(regex, date): print(f"Invalid format. Use format: {regex}") exit(1) d_dict = ctx.obj if name not in d_dict: print(f"Tracker {name} does not exsist.") return d_dict[name] = date with open(SAVE_FILE, 'w') as f: json.dump(d_dict, f, indent=4) print(f"Updating tracker {name}") #TODO fix if the event is more than a year away @cli.command() @click.pass_context @click.option('-n', '--name', required=False, help="The name of the tracker") def list(ctx, name): """List active trackers""" if len(ctx.obj) == 0: print(f"{SAVE_FILE} contains no trackers.") else: print_list = [] for item_name, date in ctx.obj.items(): if name != None and name != item_name: continue time = (datetime.datetime.now() - datetime.datetime.strptime(date, '%Y-%m-%dT%H:%M')) negative_days = time.days < 0 years = math.floor(abs(time.days / 365)) days = abs(time.days+1 if negative_days else time.days) % 365 #TODO fix the countdown of time (it seems to be offset by an hour) total_seconds = (60*60*24 - time.seconds) if negative_days else time.seconds hours = total_seconds // 60**2 minutes = abs(total_seconds // 60) % 60 seconds = abs(total_seconds) % 60 print_list.append([ item_name, "- " if negative_days else "", f"{years}y " if years != 0 else '', f"{days}d " if days != 0 else '', f"{hours:02.0f}:", f"{minutes:02.0f}:", f"{seconds:02}" ]) for j, e in enumerate(print_list): for i, arg in enumerate(e): max_len = max([len(x[i]) for x in print_list]) postfix = ": " if i == 0 else "" print(arg + postfix + " " * (max_len - len(arg)), end='') print() def main(): data_dir = os.path.dirname(SAVE_FILE) if not os.path.isdir(data_dir): a = '' while a != 'y' and a != 'n': a = input(f"{SAVE_FILE} config file does not exsist. Create it? y/n: ") if a == 'y': os.makedirs(data_dir) elif a == 'n': print("No config file. Aborting.") exit(1) data = {} if os.path.isfile(SAVE_FILE): with open(SAVE_FILE, 'r') as f: json_d = f.read() if json_d != '': data = json.loads(json_d) cli(obj=data) if __name__ == "__main__": main() ```
{ "source": "JohannesDev/Tribus", "score": 3 }
#### File: JohannesDev/Tribus/sever.py ```python import asyncio import random import websockets async def sendMessage(websocket, path): while True: r = lambda: random.randint(0,255) color = '#%02X%02X%02X' % (r(),r(),r()) await websocket.send(color) print("Color: ", color) await asyncio.sleep(5) start_server = websockets.serve(sendMessage, '127.0.0.1', 5678) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever() ```
{ "source": "JohannesDienst/polyglot_integration", "score": 2 }
#### File: jython/jython/examplemodule.py ```python def triple(value): return value*value*value ```
{ "source": "Johannesduvenage/binance-tradebot", "score": 3 }
#### File: Johannesduvenage/binance-tradebot/Database.py ```python import sqlite3 import os.path as op from future.utils import iteritems DATABASE = op.join(op.dirname(op.abspath(__file__)), 'database/tradebot.db') try: connection = sqlite3.connect(DATABASE, check_same_thread = False) except Exception as e: raise e class Database(object): def __init__(self): self.cursor = connection.cursor() def trader_exists(self, thread_name, key): sql = "select id from trader_data where thread_name=? and key=?" self.cursor.execute(sql, (thread_name, key)) data = self.cursor.fetchone() if not data: return False return True def trader_update(self, data): """ data = {'thread_name': name, 'pairs': {'key': 'value', 'key': 'value'}} """ thread_name = data['thread_name'] inserts = [] updates = [] for (key, val) in iteritems(data['pairs']): if self.trader_exists(thread_name, key): updates.append((val, thread_name, key)) else: inserts.append((thread_name, key, val)) if inserts: self.cursor.executemany("insert into trader_data (thread_name, key, value) values (?,?,?)", inserts) if updates: self.cursor.executemany("update trader_data set value=? where thread_name=? and key=?", updates) connection.commit() def trader_read(self, thread_name, key=''): data = {'thread_name': thread_name, 'pairs': {}} if not key: self.cursor.execute("select key, value from trader_data where thread_name='thread-1'") rows = self.cursor.fetchall() for row in rows: data['pairs'][row[0]]= row[1] else: self.cursor.execute("select value from trader_data where thread_name=? and key=?", (thread_name, key)) row = self.cursor.fetchone() if row: data['pairs'][key] = row[0] return data def order_exists(self, order_id): sql = "select id from order_data where order_id=?" self.cursor.execute(sql, (str(order_id),)) if not self.cursor.fetchone(): return False return True def order_update(self, data): tup = (data['price'], data['orig_quantity'], data['executed_quantity'], data['side'], int(data['time']), data['status'], str(data['order_id'])) if self.order_exists(data['order_id']): sql = "update order_data set price=?, orig_qty=?, exec_qty=?, side=?, time=?, status=? where order_id=?" else: sql = "insert into order_data (price, orig_qty, exec_qty, side, time, status, order_id) values (?,?,?,?,?,?,?)" self.cursor.execute(sql, tup) connection.commit() def order_read(self, order_id, key=''): if not key: sql = "select price, orig_qty, exec_qty, side, time, status from order_data where order_id=?" self.cursor.execute(sql, (str(order_id),)) order = self.cursor.fetchone() if not order: return None order_dict = {'order_id': str(order_id), 'price': order[0], 'orig_quantity': order[1], 'executed_quantity': order[2], 'side': order[3], 'time': order[4], 'status': order[5]} else: sql = "select %s from order_data where order_id=?" % key self.cursor.execute(sql, (str(order_id),)) order = self.cursor.fetchone() if not order: return None order_dict = {'order_id': str(order_id), key: order[0]} return order_dict ``` #### File: Johannesduvenage/binance-tradebot/DictMap.py ```python class DictMap(dict): """ Example: m = DictMap({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer']) """ def __init__(self, *args, **kwargs): super(DictMap, self).__init__(*args, **kwargs) for arg in args: if isinstance(arg, dict): # for k, v in arg.iteritems(): for k, v in arg.items(): self[k] = v if kwargs: for k, v in kwargs.iteritems(): self[k] = v def __getattr__(self, attr): return self.get(attr) def __setattr__(self, key, value): self.__setitem__(key, value) def __setitem__(self, key, value): super(DictMap, self).__setitem__(key, value) self.__dict__.update({key: value}) def __delattr__(self, item): self.__delitem__(item) def __delitem__(self, key): super(DictMap, self).__delitem__(key) del self.__dict__[key] ```
{ "source": "JohannesEbke/drillbit", "score": 2 }
#### File: proof_of_concept/atlas_files/sum.py ```python from cPickle import load from glob import glob from collections import defaultdict from pprint import pprint def dict_sum(defdicts): res = defaultdict(lambda: 0) keys = set() for d in defdicts: keys.update(d.keys()) for k in keys: res[k] += d.get(k, 0) return dict(res) def count_stuff(filename): d = load(file(filename)) runs = d['Run'] counts = defaultdict(lambda: 0) for run in runs: for ds in d[run]['Datasets']: for x in ds['value']: tag = ".".join(x[0].split('.')[-3:-1]) counts['files'] += x[4] counts['files:' + tag] += x[4] if x[6]: counts['events.in:' + tag] += x[6] counts['events.with.duplicates'] += x[6] if x[5]: counts['filesize:' + tag] += x[5] counts['total.filesize'] += x[5] if tag.startswith('merge'): counts['total.merged.filesize'] += x[5] if tag.startswith('physics'): counts['total.physics.filesize'] += x[5] if tag.startswith('recon'): counts['total.recon.filesize'] += x[5] return dict(counts) def get_events_in_files(filename): d = load(file(filename)) runs = d['Run'] return sum(sum(sum(x[6] for x in ds['value'] if x[6]) for ds in d[run]['Datasets']) for run in runs) def get_events(filename): d = load(file(filename)) runs = d['Run'] return sum(sum(int(ds['value']) for ds in d[run]['#Events'] if ds['value'] != 'n.a.' and ds['accepted']) for run in runs) what = "" func = count_stuff #print what + " in 2008: " #pprint( func("runquery-2008.pickle")) #print what + " in 2009: " #pprint( func("runquery-2009.pickle")) #print what + " in 2010: " #pprint( dict_sum(func(x) for x in glob("runquery-2010-*.pickle"))) #print what + " in 2011: " #pprint( func("runquery-2011.pickle")) #print what + " in 2012: " #pprint( func("runquery-2012.pickle")) #print what + " in 2013: " #pprint( func("runquery-2013-1.pickle")) #print what + " sum: " pprint( dict_sum(func(x) for x in glob('*.pickle'))) ``` #### File: proof_of_concept/dispatch_simulator/test_dispatch_simulator.py ```python from dispatch_simulator import DitPackSet, EmptyDitPack from pprint import pprint from time import time def as_cols(lst): return ["Column_{}".format(i) for i in lst] def as_tabs(lst): return ["Tablet_{}".format(i) for i in lst] def test_simple(): input_packs = [EmptyDitPack(as_cols(range(3)), as_tabs(range(10)))] packset = DitPackSet(input_packs) for tablet, readers in packset.readers_by_tablet(): print tablet pprint(readers) def test_massive(): input_packs = [EmptyDitPack(as_cols(range(10000)), as_tabs(range(1000*1000)))] packset = DitPackSet(input_packs) for i, (tablet, readers) in enumerate(packset.readers_by_tablet()): if i%100000 == 0: print i, tablet pass def test_multi(): input_packs = [EmptyDitPack(as_cols(range(0, 5)), as_tabs(range(0, 5))), EmptyDitPack(as_cols(range(6, 10)), as_tabs(range(0, 5))), EmptyDitPack(as_cols(range(0, 5)), as_tabs(range(5, 10))), EmptyDitPack(as_cols(range(5, 10)), as_tabs(range(5, 10)))] packset = DitPackSet(input_packs) for tablet, readers in packset.readers_by_tablet(): print tablet pprint(readers) def test_multi_massive(): n_tablets = 1000*1000 input_packs = [EmptyDitPack(as_cols(range(0, 5000)), as_tabs(range(0, n_tablets))), EmptyDitPack(as_cols(range(5010, 10000)), as_tabs(range(0, n_tablets))), EmptyDitPack(as_cols(range(0, 4000)), as_tabs(range(n_tablets, 2*n_tablets))), EmptyDitPack(as_cols(range(4010, 10000)), as_tabs(range(n_tablets, 2*n_tablets)))] packset = DitPackSet(input_packs) for i, (tablet, readers) in enumerate(packset.readers_by_tablet()): if i%100000 == 0: print i, tablet pass def test_many_massive(): input_packs = [] COLUMN_GROUPS = 10 COLUMNS_PER_FILE = 1000 TABLET_GROUPS = 1000 TABLETS_PER_FILE = 10 print "Running dispatching over", COLUMN_GROUPS*TABLET_GROUPS, "virtual files, each containing", COLUMNS_PER_FILE, print "columns and", TABLETS_PER_FILE, "tablets (event groups), plus one file containing one column for all tablets." print "Expected: Warnings about 10 tablets missing for one column, and 1 tablet missing for 1 column." print "-"*80 start_time = time() for i in range(COLUMN_GROUPS): common_columns = as_cols(range(i*COLUMNS_PER_FILE, (i+1)*COLUMNS_PER_FILE)) for j in range(TABLET_GROUPS): tablets = as_tabs(range(TABLETS_PER_FILE*j, TABLETS_PER_FILE*(j+1))) if i == 3 and j == 234: # This particular file is missing a column (note the COLUMNS_PER_FILE+1 instead of COLUMNS_PER_FILE) columns = as_cols(range(i*COLUMNS_PER_FILE+1, COLUMNS_PER_FILE*(i+1))) input_packs.append(EmptyDitPack(columns, tablets)) else: input_packs.append(EmptyDitPack(common_columns, tablets)) # Extra column that spans all tablets except the last one tablets = as_tabs(range(0, TABLETS_PER_FILE * TABLET_GROUPS - 1)) columns = as_cols([COLUMNS_PER_FILE * COLUMN_GROUPS]) input_packs.append(EmptyDitPack(columns, tablets)) packset = DitPackSet(input_packs) for i, (tablet, readers) in enumerate(packset.readers_by_tablet()): # Dispatch one job here pass end_time = time() print "Dispatching took {:.03} seconds.".format(end_time - start_time) def main(): test_many_massive() if __name__ == "__main__": main() ``` #### File: drillbit/src/httpzip.py ```python from zipfile import ZipFile from os import write from sys import stderr from urllib2 import urlopen, Request, HTTPError from bisect import bisect import struct MAX_RANGES_PER_REQUEST = 250 # Tune this to avoid initial FULL HEAD MIN_HOLE_SIZE = 64*1024 # minimum hole size between ranges, 64k seems to be nice def chunks(l, n): return [l[i:i+n] for i in range(0, len(l), n)] class HTTPFile(object): """A buffered HTTP file that supports prefetching of ranges""" def __init__(self, url, filesize): self.url = url self.size = filesize self.fpos = 0 self.prefetch_buffer = [] self.prefetch_buffer_start = [] self.prefetch_buffer_end = [] def vread(self, ranges): """Do a vector read""" global MAX_RANGES_PER_REQUEST if len(ranges) == 0: return [] if len(ranges) > MAX_RANGES_PER_REQUEST: # Do a Map-Reduce! return reduce(list.__add__, map(self.vread, chunks(ranges, MAX_RANGES_PER_REQUEST))) req = Request(self.url, headers={"Range": "bytes="+",".join("-".join((str(s), str(e))) for s,e in ranges)}) #print req.headers try: r = urlopen(req) except HTTPError, e: if e.code == 413: # FULL HEAD if MAX_RANGES_PER_REQUEST < 2: raise else: MAX_RANGES_PER_REQUEST = MAX_RANGES_PER_REQUEST/2 print >> stderr, "Hit HTTP full head - reducing max ranges per request to", MAX_RANGES_PER_REQUEST return self.vread(ranges) else: raise #print "CODE: ", r.getcode() #print r.info() assert r.getcode() == 206 if len(ranges) == 1: return [r.read()] else: t = r.info().getheader("Content-Type") tp, boundary = t.split(";") boundary = boundary.strip() assert tp == "multipart/byteranges" assert boundary.startswith('boundary="') and boundary.endswith('"') boundary = boundary[len('boundary="'):-1] data = [None]*len(ranges) range_map = dict(("%i-%i/%i" % (s,e,self.size), i) for i, (s, e) in enumerate(ranges)) current_range = None ranges_received = set() newlines = 0 while True: line = r.readline() if not line: assert len(ranges_received) == len(ranges), ranges_received break line = line.strip() if not line: # file starts after empty newline newlines += 1 if newlines == 1: if current_range is None: # ignore additional ranges continue start, end = ranges[current_range] #print "Reading range ", current_range, " with ", (end - start), " bytes..." data[current_range] = r.read(end - start) ranges_received.add(current_range) current_range = None if len(ranges_received)== len(ranges): break else: newlines = 0 if line.startswith("Content-Range: bytes "): current_range = range_map[line[len("Content-Range: bytes "):]] assert not current_range in ranges_received assert len(data) == len(ranges) return data def really_read(self, size=None): if size is None: size = self.size - self.fpos res = self.vread([(self.fpos, self.fpos+size)]) self.fpos += size return res def read(self, size=None): if size is None: size = self.size - self.fpos if self.prefetch_buffer_start: i = bisect(self.prefetch_buffer_start, self.fpos) if i > 0 and self.prefetch_buffer_end[i-1] >= (self.fpos + size): # can be satisified from prefetch buffer offset = self.fpos - self.prefetch_buffer_start[i-1] self.fpos += size return self.prefetch_buffer[i-1][offset:offset+size] else: return self.really_read(size) else: return self.really_read(size) def seek(self, n, whence=0): if whence == 0: self.fpos = n elif whence == 1: self.fpos += n elif whence == 2: self.fpos = self.size + n def tell(self): return self.fpos def prefetch(self, read_areas): self.prefetch_buffer_start.extend(start for start, _ in read_areas) self.prefetch_buffer_end.extend(end for _, end in read_areas) self.prefetch_buffer.extend(self.vread(read_areas)) def httpopen(url): r = urlopen(url) size = int(r.info().getheader("Content-Length")) r.close() return HTTPFile(url, size) class RemoteZipFile(object): """A potentially remote ZIP file""" def __init__(self, name_or_url): # Holes smaller than 5MB will be read anyway. if name_or_url.startswith("http:"): self._f = httpopen(name_or_url) self._use_read_buffer = True # prefetch the last MB to capture most of the index self._f.prefetch([(self._f.size-1024*1024, self._f.size)]) else: self._f = open(name_or_url) self._use_read_buffer = False self._zf = ZipFile(self._f) if self._use_read_buffer: self._sinfo = sorted((i.header_offset, i) for i in self._zf.infolist()) self._dict = dict((i.filename, i) for i in self._zf.infolist()) def keys(self): return self._zf.namelist() def require(self, required): if self._use_read_buffer: def get_block_range(block_id): s = self._sinfo[block_id][1].header_offset if block_id != len(self._sinfo)-1: e = self._sinfo[block_id + 1][1].header_offset else: e = self._f.size - 1 return (s, e) blocks = [j for j, (_, i) in enumerate(self._sinfo) if i.filename in required] read_blocks = [] for i in blocks: if not read_blocks: read_blocks.append(get_block_range(i)) else: start, end = read_blocks[-1] b_start, b_end = get_block_range(i) if b_start > end + MIN_HOLE_SIZE: read_blocks.append((b_start, b_end)) else: read_blocks[-1] = (start, b_end) self._f.prefetch(read_blocks) rset = set(required) for i in self._zf.infolist(): if i.filename in rset: rset.remove(i.filename) x = self._zf.open(i) write(1, struct.pack("i", len(i.filename))) write(1, i.filename) write(1, struct.pack("i", i.file_size)) write(1, x.read()) #x.read1(i.file_size) #x.read()#1(i.file_size) assert not rset, rset # "http://lcg-lrz-dc66.grid.lrz.de//pnfs/lrz-muenchen.de/data/atlas/dq2/atlaslocalgroupdisk/user/ebke/20130318/user.ebke.20130318.test1/dit0.zip") if __name__ == "__main__": import sys f = RemoteZipFile(sys.argv[1]) if len(sys.argv) < 2: print >> stderr, "Usage: <file> [one|all]" elif len(sys.argv) == 2: keys = "\n".join(sorted(f.keys())) write(1, struct.pack("i", len(keys))) write(1, keys) required = map(str.strip, sys.stdin.readline().split(";")) f.require(required) elif sys.argv[2] == "all": f.require(sorted(f.keys())) elif sys.argv[2] == "half": f.require(sorted(f.keys())[:len(f.keys())/2]) elif sys.argv[2] == "one": f.require([sorted(f.keys())[42]]) elif sys.argv[2] == "two": f.require(sorted(f.keys())[42:44]) else: assert False ```
{ "source": "JohannesEbke/xdg_json_cache", "score": 3 }
#### File: xdg_json_cache/app_json_file_cache/app_cache.py ```python from .function_cache import FunctionCache class AppCache: def __init__(self, app_name): self.app_name = app_name def __call__(self, name, vary=None, cheap_default_func=None): return FunctionCache(self.app_name, name, vary, cheap_default_func=cheap_default_func) ``` #### File: xdg_json_cache/app_json_file_cache/function_cache.py ```python from functools import partial from .data_cache import DataCache class FunctionCache(DataCache): def __init__(self, *args, **kwargs): cheap_default_func = kwargs.pop("cheap_default_func") super(FunctionCache, self).__init__(*args, **kwargs) self._cheap_default_func = cheap_default_func def __call__(self, func): def f(*args, **kwargs): key = {'args': args, 'kwargs': kwargs} assert args == () or kwargs == {}, 'Mixing positional and keyword arguments not supported: {}'.format(key) try: return self.get(key) except KeyError: if self._cheap_default_func: return self._cheap_default_func(*args, **kwargs) self.store(key, func(*args, **kwargs)) return self.get(key) f.clear = self.clear f.recalculate = partial(self.recalculate, func) return f def recalculate(self, func, *args, **kwargs): key = {'args': args, 'kwargs': kwargs} assert args == () or kwargs == {}, 'Mixing positional and keyword arguments not supported: {}'.format(key) self.store(key, func(*args, **kwargs)) ``` #### File: xdg_json_cache/app_json_file_cache/test_basics.py ```python from os.path import exists from . import AppCache Cache = AppCache("app_json_file_cache") def test_simple(): assert Cache("test_simple")(lambda: 12)() == 12 assert Cache("test_simple")(lambda: 13)() == 12 Cache("test_simple").clear() def test_vary(): assert Cache("test_simple", vary=1)(lambda: 12)() == 12 assert Cache("test_simple", vary=2)(lambda: 13)() == 13 Cache("test_simple").clear() def test_corrupt(): assert Cache("test_simple", vary=1)(lambda: 12)() == 12 c = Cache("test_simple") fn = c._filename(c._key_to_string({'args': [], 'kwargs': {}})) assert exists(fn) with open(fn, "w") as fd: fd.write("not JSON") assert Cache("test_simple", vary=1)(lambda: 24)() == 24 Cache("test_simple")(lambda: 24).clear() assert not exists(fn) def test_parameter(): cached_f = Cache("test_parameter")(lambda x: x * 2) assert cached_f(4) == 8 assert cached_f(5) == 10 cached_f2 = Cache("test_parameter")(lambda x: x * 4) assert cached_f2(4) == 8 # Cached, returns "old" value assert cached_f2(5) == 10 # Cached, returns "old" value Cache("test_parameter").clear() def test_parameter_dict(): cached_f = Cache("test_parameter")(lambda x, y: dict(list(x.items()) + list(y.items()))) assert cached_f({'a': 1, 'b': 2}, {'c': 3}) == {'a': 1, 'b': 2, 'c': 3} assert cached_f({'a': 1, 'b': 3}, {'c': 3}) == {'a': 1, 'b': 3, 'c': 3} cached_f2 = Cache("test_parameter")(lambda x, y: {}) assert cached_f2({'a': 1, 'b': 2}, {'c': 3}) == {'a': 1, 'b': 2, 'c': 3} # Cached, returns "old" value assert cached_f2({'a': 1, 'b': 3}, {'c': 3}) == {'a': 1, 'b': 3, 'c': 3} # Cached, returns "old" value assert cached_f2({'a': 2, 'b': 3}, {'c': 3}) == {} # This one is not cached cached_f2.clear() def test_keyword_args(): @Cache("keyword") def keyword_function(a=1, b=2): return a + b @Cache("keyword") def test_keyword_function(a=1, b=2, c=0): return 0 assert keyword_function() == 3 assert keyword_function(a=10) == 12 assert keyword_function(b=10) == 11 assert keyword_function(b=10, a=10) == 20 assert test_keyword_function(a=10) == 12 assert test_keyword_function(b=10) == 11 assert test_keyword_function(b=10, a=10) == 20 assert test_keyword_function(a=10, b=10) == 20 assert test_keyword_function() == 3 assert test_keyword_function(a=10, b=10, c=1) == 0 keyword_function.clear() ```
{ "source": "johanneseder711/personal_finance", "score": 3 }
#### File: src/API/n26.py ```python from n26.api import Api def get_n26_balance(): api_client = Api() total_balance = api_client.get_spaces()['totalBalance'] total_balance = str(total_balance).replace('.',',') # display the string (which is the money amount) with a "." as a separator of thousands num_digits = len(total_balance.split(',')[0]) # every 3 digits we need a seperator num_digits -= 3 # only if the number has at least 4 digits while num_digits > 0: total_balance = total_balance[:num_digits] + '.' + total_balance[num_digits:] num_digits -= 3 statements = api_client.get_transactions() last_transaction_found = False counter = 0 # define space name or list of spaces spaces = ['Hawaii'] # while the last transaction is not found while not last_transaction_found: # iterate over the dicctionary while we have a transaction between main space and other spaces # there transactions do not show as a payment (income or expense), so they will be excluded if ('partnerName' in statements[counter]) and (any(space in statements[counter]['partnerName'] for space in spaces)): counter += 1 else: last_transaction_found = True last_transaction_amount = statements[counter]['amount'] last_transaction_amount = str(last_transaction_amount).replace('.',',') return (total_balance, last_transaction_amount) ``` #### File: src/WebScraping/bitpanda.py ```python import streamlit as st from selenium import webdriver from selenium.webdriver.common.by import By from WebScraping.helperfunctions.wait import wait_for_full_load from WebScraping.helperfunctions.credentials import get_credentials import time def expand_shadow_element(driver, element): shadow_root = driver.execute_script('return arguments[0].shadowRoot', element) return shadow_root def get_bitpanda_balance(): # define the URL for this site URL = 'https://account.bitpanda.com/login' # get the correct login credentials for this site user,pw = get_credentials(URL) # start the session driver = webdriver.Safari() driver.get(URL) #driver.maximize_window() time.sleep(5) # find the shadow root element to accept cookies root1 = driver.find_element(By.TAG_NAME,'bpc-cookie-banner') shadow_root1 = expand_shadow_element(driver, root1) print('\n \n \n shadow_root1 element',shadow_root1) # accept cookies # FINISHED HERE -> STILL NOT WORKING TO FIND THE CORRECT ROOT SHADOW ELEMENT AND ACCEPT COOKIES # REFFERE https://stackoverflow.com/questions/37384458/how-to-handle-elements-inside-shadow-dom-from-selenium expanded_driver = shadow_root1.find_element(By.CLASS_NAME,"bpc-cookie-accept-button").click() print('\n \n \n \n expanded_driver element',expanded_driver) # wait for full load wait_for_full_load(expanded_driver,"login-submit",how='id') # input username/email expanded_driver.find_element(By.ID,"email").send_keys(user) time.sleep(5) # input password expanded_driver.find_element(By.ID,"password']").send_keys(pw) # click login submit button expanded_driver.find_element(By.ID, "login-submit").click() ``` #### File: WebScraping/helperfunctions/wait.py ```python import time from selenium.webdriver.common.by import By def wait_for_full_load(driver, path, how='xpath'): ''' A function that takes in an xpath of an element and a driver (browser). The function will be exited as soon as the element is available on the site. ''' waiting = True while waiting: # check if at least one element is already available on the site if how == 'xpath': elements = driver.find_elements(By.XPATH, path) print(len(elements)) elif how == 'css': elements = driver.find_elements(By.CSS_SELECTOR, path) elif how == 'id': elements = driver.find_elements(By.ID, path) if len(elements)!=0: waiting = False return; else: time.sleep(1) ```
{ "source": "johannesemme/ESA", "score": 3 }
#### File: johannesemme/ESA/esa.py ```python import logging import numpy as np from xml_processing import XmlDumpFile import gzip import pickle from sklearn.feature_extraction.text import TfidfVectorizer import click from click_loglevel import LogLevel import os import re import requests url = "http://snowball.tartarus.org/algorithms/danish/stop.txt" snowball_stopwords = re.findall('^(\w+)', requests.get(url).text, flags=re.MULTILINE | re.UNICODE) class ExplicitSemanticAnalysis(object): """ Computing semantic relatedness using Wikipedia-based explicit semantic analysis. Explicit semantic analysis proposed by <NAME> and <NAME>, 2007. """ def __init__(self, new_model = False, stop_words=snowball_stopwords, max_n_pages=None, model_name = "", noredirecting=True): self.stop_words = stop_words self.max_n_pages = max_n_pages self.model_name = model_name self.noredirecting = noredirecting self.logger = logging.getLogger(__name__) self.logger.addHandler(logging.NullHandler()) self.file_path = "ESA models/" if new_model: self.logger.info('Creating new ESA model') self.setup_ESA() self.logger.info('Storing ESA model in pickle files') self.save_pkl() else: self.logger.info('Load existing model...') self.load_pkl() def setup_ESA(self): """ Setup ESA model """ self._dump_file = XmlDumpFile(discard_redirects=self.noredirecting) self._titles, texts = zip(*[(page['title'], page['text']) for page in self._dump_file.iter_article_pages(max_n_pages=self.max_n_pages)]) self.logger.info('TFIDF vectorizing') # remove words occuring less than 5 times + remove words occuring in more than half the documents self._transformer = TfidfVectorizer(stop_words=self.stop_words, min_df=5, max_df=0.5) self._Y = self._transformer.fit_transform(texts) def query(self, query_text, n=5): processed_query_text = " ".join(query_text.lower().split()) # process query y = self._transformer.transform([processed_query_text]) # transform query text with TFIDF transformer D = np.array((self._Y * y.T).todense()) # calculate score using dot product indices = np.argsort(-D, axis=0) titles = [self._titles[index] for index in indices[:n, 0]] return titles def save_pkl(self): """Save parameters to pickle files.""" try: os.makedirs(self.file_path) except FileExistsError: pass # directory already exists items = [ ('_titles', 'wikipedia-esa-titles.pkl.gz'), ('_Y', 'wikipedia-esa-y.pkl.gz'), ('_transformer', 'wikipedia-esa-transformer.pkl.gz') ] for attr, filename in items: full_filename = self.file_path + self.model_name + "_" + filename self.logger.info('Writing parameters to pickle file {}'.format(full_filename)) with gzip.open(full_filename, 'w') as f: pickle.dump(getattr(self, attr), f, -1) def load_pkl(self): """Load parameters from pickle files.""" items = [ ('_titles', 'wikipedia-esa-titles.pkl.gz'), ('_Y', 'wikipedia-esa-y.pkl.gz'), ('_transformer', 'wikipedia-esa-transformer.pkl.gz') ] for attr, filename in items: full_filename = self.file_path + self.model_name + "_" + filename self.logger.info('Reading parameters from pickle file {}'.format(full_filename)) with gzip.open(full_filename) as f: setattr(self, attr, pickle.load(f)) @click.command() @click.option("--new_model", default=False) @click.option("--noredirecting", default=True) @click.option("--model_name", default="") @click.option("-l", "--log_level", type=LogLevel(), default=logging.INFO) @click.option("--num_matches", default=10) @click.option("--num_wikipages", default=None) def model(new_model, log_level, num_matches, num_wikipages, model_name, noredirecting): logging.basicConfig( format="[%(levelname)-8s] %(message)s", level=log_level, ) logging.log(log_level, "Log level set to %r", log_level) esa_model = ExplicitSemanticAnalysis(new_model = new_model, max_n_pages = num_wikipages, model_name = model_name, noredirecting = noredirecting) while True: input_text = input("Enter query (type 'q' for exit): ") if input_text == "q": break print() output = esa_model.query(query_text = input_text, n = num_matches) print(output) print("------" * 20 ) if __name__ == "__main__": model() ``` #### File: johannesemme/ESA/wiki_db.py ```python from marisa_trie import Trie import logging from logging import basicConfig import re import click from typing import List import numpy as np KEY_RULE = re.compile("^(.*):([^:]+)$") logger = logging.getLogger(__name__) @click.command() @click.argument("wikidata_dump_file", type=click.Path(exists=True)) @click.argument("out_file", type=click.Path()) def build_interwiki_db(wikidata_dump_file: str, out_file: List[str] = None): logging.basicConfig(level=logging.INFO) interwiki_db = WikiDB.build(wikidata_dump_file) interwiki_db.save(out_file) class WikIDB(object): def __init__(self, title_trie: Trie, data: np.ndarray, indptr: np.ndarray, title_indices: np.ndarray): self._title_trie = title_trie self._data = data self._indptr = indptr self._title_indices = title_indices ```
{ "source": "johannesfritz/liberating-archives", "score": 3 }
#### File: johannesfritz/liberating-archives/app.py ```python import flask from flask import Response import json import sqlite # Create the application. app = flask.Flask(__name__) @app.route('/') def index(): """ Displays the index page accessible at '/' """ return flask.render_template('index.html') if __name__ == '__main__': app.debug=True app.run() ```
{ "source": "johannesgaa/daydreamerhost", "score": 2 }
#### File: daydreamerhost/tests/test_app.py ```python from .context import daydreamerhost def test_app(capsys, example_fixture): # pylint: disable=W0612,W0613 daydreamerhost.Blueprint.run() captured = capsys.readouterr() assert "Hello World..." in captured.out ```
{ "source": "JohannesGaessler/presentation_mc", "score": 3 }
#### File: JohannesGaessler/presentation_mc/02_pi_crude.py ```python import numpy as np from scipy.integrate import quad import matplotlib.pyplot as plt plt.figure(figsize=(32.0, 6.0)) def f(x): return 1 - np.sqrt(1 - x ** 2) SAMPLE_SIZE = 1000 Ef = quad(lambda x: f(x), 0, 1)[0] Varf = quad(lambda x: (f(x) - Ef) ** 2, 0, 1)[0] rand_x = np.random.rand(SAMPLE_SIZE) rand_y = f(rand_x) plot_x = np.linspace(start=0, stop=1.0, num=101, endpoint=True) for i in range(5): plt.subplot(1, 5, i+1) plt.xlim(0, 1) plt.ylim(0, 1) plt.xlabel("$x$") plt.ylabel("$y$") plt.plot(plot_x, f(plot_x)) plt.bar(x=0, height=rand_y[i], width=1.0, align="edge", color=(1.0, 0.0, 0.0, 0.5)) plt.savefig("pi_crude.png") pi_empirical = 4 * (1.0 - np.sum(rand_y)/SAMPLE_SIZE) print(f"Estimate: {pi_empirical:.6f}") print(f"Empirical uncertainty: {4 * np.sqrt(np.var(rand_y) / SAMPLE_SIZE) / pi_empirical * 100:.4f}%") print(f"Expected uncertainty: {4 * np.sqrt(Varf / SAMPLE_SIZE) / np.pi * 100:.4f}%") ``` #### File: JohannesGaessler/presentation_mc/04_pi_vegas.py ```python import numpy as np import matplotlib.pyplot as plt plt.figure(figsize=(20.0, 6.0)) def f(x): return 1 - np.sqrt(1 - x ** 2) EXPECTED_AREA = 1.0 - np.pi / 4 def vegas(iterations=3, samples_per_iteration=333, num_bins=20, K=1000, alpha=1.0, make_plots=False): bin_edges = np.linspace(start=0, stop=1, endpoint=True, num=num_bins+1) bin_widths = bin_edges[1:] - bin_edges[:-1] weighted_function_value_sum = 0.0 for j in range(iterations): random_numbers = np.random.rand(samples_per_iteration) random_bins = np.random.randint(low=0, high=num_bins, size=samples_per_iteration) random_bins_low = bin_edges[random_bins] random_bins_high = bin_edges[random_bins + 1] random_bin_widths = random_bins_high - random_bins_low random_numbers_transformed = random_bins_low + random_numbers * random_bin_widths function_values = f(random_numbers_transformed) weighted_function_values = function_values * random_bin_widths * num_bins if make_plots: plt.subplot(1, iterations, j+1) plt.xlim(0, 1) plt.ylim(0, 1) plot_x = np.linspace(start=0.001, stop=1.0, num=1000, endpoint=True) plt.vlines( x=random_numbers_transformed[:100], ymin=0, ymax=weighted_function_values[:100], color="black", label="$samples$" ) plt.plot(plot_x, f(plot_x), label="$f(x)$") plt.bar( x=bin_edges[:-1], height=EXPECTED_AREA/(num_bins * bin_widths), width=bin_widths, align="edge", color=(1.0, 0.0, 0.0, 0.5), label="$g(x)$" ) plt.xlabel("$x$") if j == 0: plt.ylabel("$y$") plt.legend(loc="upper left") weighted_function_value_sum += np.sum(weighted_function_values) bin_weights = np.zeros(num_bins) for i in range(num_bins): bin_weights[i] = np.sum(function_values[random_bins == i]) bin_weights *= bin_widths #bin_splits = 1 + K * bin_weights / np.sum(bin_weights) bin_splits = 1 + K * ((bin_weights / np.sum(bin_weights) - 1) / np.log(bin_weights / np.sum(bin_weights))) ** alpha bin_splits = bin_splits.astype(int) refined_bin_edges = np.zeros(1 + np.sum(bin_splits)) refined_bin_weights = np.zeros(refined_bin_edges.shape[0] - 1) index = 0 for i in range(num_bins): new_bin_edges = np.linspace(start=bin_edges[i], stop=bin_edges[i+1], num=bin_splits[i], endpoint=False) refined_bin_edges[index:index+bin_splits[i]] = new_bin_edges refined_bin_weights[index:index+bin_splits[i]] = bin_weights[i] / bin_splits[i] index += bin_splits[i] refined_bin_edges[-1] = 1.0 average_bin_weight = np.mean(bin_weights) new_bin_edges = np.zeros_like(bin_edges) current_sum = 0 current_refined_index = 0 for i in range(num_bins-1): while current_sum < average_bin_weight: current_sum += refined_bin_weights[current_refined_index] current_refined_index += 1 current_sum -= average_bin_weight new_bin_edges[i + 1] = refined_bin_edges[current_refined_index] new_bin_edges[-1] = 1 bin_edges = new_bin_edges bin_widths = bin_edges[1:] - bin_edges[:-1] if make_plots: plt.savefig("pi_vegas.png") integral_estimate = weighted_function_value_sum / (iterations * samples_per_iteration) return 4 * (1.0 - integral_estimate) if __name__ == "__main__": print(f"Estimate: {vegas(make_plots=True)} s") #plt.show() ```
{ "source": "johannes-gehrs/centos_packages", "score": 2 }
#### File: johannes-gehrs/centos_packages/config.py ```python from __future__ import absolute_import, division, unicode_literals import os import logging OS_VERSIONS = ['6', '7'] DATA_DIR = '/tmp/centos_packages/' REPO_BASE_URL = 'http://mirror.centos.org/centos/' REPOSITORIES = ['os', 'updates', 'centosplus', 'extras', 'fasttrack'] REPOSITORIES_PRETTY = {'os': 'Base', 'updates': 'Updates', 'extras': 'Extras', 'fasttrack': 'Fasttrack'} LIMIT_RESULTS = 250 CACHE_MAX_AGE = 4260 CACHE_IN_DEBUG_MODE = False def active_repos(): return [repo for repo in REPOSITORIES if not repo == 'centosplus'] # Logging LOGDIR = DATA_DIR + 'log/' LOGFILE = LOGDIR + 'centos_packages.log' if not os.path.isdir(LOGDIR): os.makedirs(LOGDIR) logging.basicConfig(filename=LOGFILE, level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s') ``` #### File: johannes-gehrs/centos_packages/packages.py ```python from __future__ import absolute_import, division, unicode_literals import xml.etree.ElementTree as ElT import bz2 import io import os import uuid import sqlite3 import config import re import datetime import pickle import requests REPODATA_ARC_SUFFIX = "x86_64/" METADATA_SUFFIX = "repodata/repomd.xml" PACKAGE_TIMESTAMP_FILE = config.DATA_DIR + 'packages_timestamp.pickled' YUM_REPODATA_XML_NAMESPACE = 'http://linux.duke.edu/metadata/repo' def _find_db_link_in_xml(xml_text): root = ElT.fromstring(xml_text) for data_elmnt in root.iter('{' + YUM_REPODATA_XML_NAMESPACE + '}data'): if data_elmnt.attrib['type'] == 'primary_db': return data_elmnt.find('{' + YUM_REPODATA_XML_NAMESPACE + '}location').attrib['href'] else: raise ValueError('Data not found in XML') def _download_one(version): for repo in config.active_repos(): repo_base_url = config.REPO_BASE_URL + unicode(version) + \ '/' + repo + '/' + REPODATA_ARC_SUFFIX metadata_request_ulr = repo_base_url + METADATA_SUFFIX metadata_request = requests.get(metadata_request_ulr) db_href = _find_db_link_in_xml(metadata_request.text) db_request_url = repo_base_url + db_href db_request = requests.get(db_request_url) if db_request.status_code != 200: raise IOError('Could not get file ' + db_request_url) database = bz2.decompress(db_request.content) temp_filename = config.DATA_DIR + unicode(uuid.uuid1()) final_filename = config.DATA_DIR + repo + '_' + version + '.sqlite' with io.open(temp_filename, mode='wb') as file: file.write(database) os.rename(temp_filename, final_filename) def download(): for version in config.OS_VERSIONS: _download_one(version) def _conn_factory(version, repo): conn = sqlite3.connect(config.DATA_DIR + repo + '_' + version + '.sqlite') conn.row_factory = sqlite3.Row return conn def _primary_query_execute(conn, repo): c = conn.cursor() query = ''' SELECT name, arch, version, epoch, ? AS repo, "release", summary, description, rpm_sourcerpm, url, rpm_license AS license, location_href, pkgKey FROM packages WHERE 1=1 -- AND name = 'kernel' --LIMIT 15 ''' c.execute(query, (repo,)) return c.fetchall() def _read_from_dbs(version): package_list = [] for repo in config.active_repos(): conn = _conn_factory(version, repo) package_list = package_list + _primary_query_execute(conn, repo) return package_list def _prepare(package_list): prepared = {} for row in package_list: prepared.setdefault(row[b'name'], []).append(dict(row)) for name in prepared: prepared[name].sort(cmp=compare_rpm_versions) return prepared def _not_none_epoch(epoch): if epoch is not None: return epoch return '0' def _is_int(mystring): try: int(mystring) return True except ValueError: return False # http://stackoverflow.com/questions/3206319/how-do-i-compare-rpm-versions-in-python # hold my beer while I implement this def _compare_rpm_label_fields(field1, field2): alphanumeric_matches = lambda field: list(re.finditer(r'[a-zA-Z0-9]+', field)) field1_matches, field2_matches = alphanumeric_matches(field1), alphanumeric_matches(field2) for match_pair in zip(field1_matches, field2_matches): value_pair = [match.group() for match in match_pair] numeric_vals = [_is_int(value) for value in value_pair] # Non-equal types if not all(numeric_vals) and any(numeric_vals): if numeric_vals[1]: return -1 if numeric_vals[0]: return 1 # Equal types: Alphanumeric if not any(numeric_vals): if value_pair[0] < value_pair[1]: return -1 if value_pair[0] > value_pair[1]: return 1 # Equal types: Numeric if all(numeric_vals): if int(value_pair[0]) < int(value_pair[1]): return -1 if int(value_pair[0]) > int(value_pair[1]): return 1 assert value_pair[0] == value_pair[1] # Decision by no. of fields if len(field1_matches) < len(field2_matches): return -1 if len(field1_matches) > len(field2_matches): return 1 if len(field1_matches) == len(field2_matches): return 0 raise RuntimeError('This code should not be reached, because one of the if paths ' 'should have been executed.') def compare_rpm_versions(version_one, version_two): label_components = ['epoch', 'version', 'release'] for component in label_components: result = _compare_rpm_label_fields(version_one[component], version_two[component]) if result != 0: break return result def get_version(version): return _prepare(_read_from_dbs(version)) def get_all(): packages_dict = {} for os_version in config.OS_VERSIONS: packages_dict[os_version] = get_version(os_version) return packages_dict def minor_os_release(all_packages_dict): newest_package_version = all_packages_dict['centos-release'][-1] major_release = newest_package_version['version'] minor_release_integer = re.match(r'.*?\.', newest_package_version['release']).group()[:-1] return major_release + '.' + minor_release_integer def set_timestamp_to_now(): now = datetime.datetime.now() with io.open(PACKAGE_TIMESTAMP_FILE, mode='wb') as myfile: pickle.dump(now, myfile) def get_timestamp(): with io.open(PACKAGE_TIMESTAMP_FILE, mode='rb') as myfile: timestamp = pickle.load(myfile) return timestamp def rpm_download_url(package_version, os_version): return config.REPO_BASE_URL + os_version + '/' + package_version['repo'] + \ '/' + REPODATA_ARC_SUFFIX + package_version['location_href'] def newest_versions_as_list(os_version, all_packages_dict): newest_versions_list = [] for package_name in all_packages_dict[os_version]: newest_versions_list.append(all_packages_dict[os_version][package_name][-1]) return newest_versions_list ```
{ "source": "johannes-gehrs/nutrition-diary", "score": 3 }
#### File: nutrition-diary/app/scrape_fddb.py ```python from __future__ import absolute_import, division, unicode_literals from decimal import Decimal import re from pyquery import PyQuery as Pq from app import models def _decimal_from_string(value_string): decimal_match = re.search(r'\d+\,\d+', value_string) if decimal_match is not None: return Decimal(decimal_match.group().replace(',', '.')) else: return Decimal(re.search(r'\d+', value_string).group()) def _quantities(pq_page): identifier_divs = pq_page('div.sidrow') raw_values = {Pq(div).text(): Pq(div).next().text() for div in identifier_divs} relevant_keys = ['Fett', 'Ballaststoffe', 'Kohlenhydrate', 'Protein', 'Kalorien'] filtered_values = {key: raw_values.get(key, '0 g') for key in relevant_keys} return {key: _decimal_from_string(filtered_values[key]) for key in filtered_values} def _serving(pq_page): serving = pq_page('a.servb')[0] description = serving.text_content() serving_size_in_g_match = re.search(r'\d+\ g', description) serving_size_in_ml_match = re.search(r'\d+\ ml', description) to_int = lambda string: int(re.search(r'\d+', string).group()) if serving_size_in_g_match is not None: serving_size_in_g_as_int = to_int(serving_size_in_g_match.group()) # We simply treat ml as grams (Punk rock) elif serving_size_in_ml_match is not None: serving_size_in_g_as_int = to_int(serving_size_in_ml_match.group()) else: raise ValueError("Can't find serving size") return description, serving_size_in_g_as_int def _name(pq_page): return pq_page('div.pageheadline h1').text() def item(url): pq_page = Pq(url) name = _name(pq_page) quantities = _quantities(pq_page) serving = _serving(pq_page) return models.FoodType(name=name, source_url=url, calories=quantities['Kalorien'], fiber=quantities['Ballaststoffe'], fat=quantities['Fett'], carbon=quantities['Kohlenhydrate'], protein=quantities['Protein'], serving_description=serving[0], serving_size=serving[1]) ``` #### File: johannes-gehrs/nutrition-diary/fabfile.py ```python from __future__ import absolute_import, division, unicode_literals from fabric.api import run, cd, env env.hosts = ['<EMAIL>'] def deploy(): code_dir = '/usr/share/nutrition-diary' with cd(code_dir): run("git pull") run("pip install --upgrade --requirement=requirements.txt") run("/etc/init.d/gunicorn reload") ```
{ "source": "johannesgiorgis/my-timewarrior-extensions", "score": 2 }
#### File: my-timewarrior-extensions/extensions/catsum.py ```python import datetime import io import json import logging import pprint import sys from typing import Dict, Any from dateutil import tz # set logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # create handler c_handler = logging.StreamHandler() c_handler.setLevel(logging.INFO) # Create formatters and add it to handlers LOG_FORMAT = "[%(asctime)s - %(levelname)-8s - %(module)s:%(name)s ] %(message)s" c_format = logging.Formatter(LOG_FORMAT) c_handler.setFormatter(c_format) # Add handlers to the logger logger.addHandler(c_handler) DATE_FORMAT = "%Y%m%dT%H%M%SZ" # TODO: Convert to defaultdict # https://www.accelebrate.com/blog/using-defaultdict-python # https://stackoverflow.com/questions/9358983/dictionaries-and-default-values # https://docs.python.org/2/library/collections.html#collections.defaultdict CATEGORIES: dict = { "PT": "Personal Time", "PW": "Planned Work", "UW": "Unplanned Work", "OW": "Other Work", } def main(): print("~" * 100) totals = calculate_totals(sys.stdin) # print(totals) if not totals: sys.exit(0) categories_total = extract_categories(totals) # All Categories Statistics category_percent_breakdown = get_category_percent_breakdown(categories_total) formatted_category_breakdown = format_category_breakdown(category_percent_breakdown) display_category_breakdown(formatted_category_breakdown) # remove personal category categories_total.pop("Personal Time", None) work_category_percent_breakdown = get_category_percent_breakdown(categories_total) formatted_work_category_breakdown = format_category_breakdown(work_category_percent_breakdown) display_category_breakdown(formatted_work_category_breakdown) # formatted_category_breakdown.pop("Personal Time", None) # formatted # print(type(formatted_category_breakdown)) # print(formatted_category_breakdown.keys()) def format_seconds(seconds: int) -> str: """ Convert seconds to a formatted string Convert seconds: 3661 To formatted: " 1:01:01" """ # print(seconds, type(seconds)) hours = seconds // 3600 minutes = seconds % 3600 // 60 seconds = seconds % 60 return f"{hours:4d}:{minutes:02d}:{seconds:02d}" def calculate_totals(input_stream: io.TextIOWrapper) -> Dict[str, datetime.timedelta]: from_zone = tz.tzutc() to_zone = tz.tzlocal() # Extract the configuration settings. header = 1 configuration = dict() body = "" for line in input_stream: if header: if line == "\n": header = 0 else: fields = line.strip().split(": ", 2) if len(fields) == 2: configuration[fields[0]] = fields[1] else: configuration[fields[0]] = "" else: body += line # Sum the seconds tracked by tag totals = dict() untagged = None j = json.loads(body) for object in j: start = datetime.datetime.strptime(object["start"], DATE_FORMAT) if "end" in object: end = datetime.datetime.strptime(object["end"], DATE_FORMAT) else: end = datetime.datetime.utcnow() tracked = end - start if "tags" not in object or object["tags"] == []: if untagged is None: untagged = tracked else: untagged += tracked else: for tag in object["tags"]: if tag in totals: totals[tag] += tracked else: totals[tag] = tracked if "temp.report.start" not in configuration: print("There is no data in the database") return totals start_utc = datetime.datetime.strptime(configuration["temp.report.start"], DATE_FORMAT) start_utc = start_utc.replace(tzinfo=from_zone) start = start_utc.astimezone(to_zone) if "temp.report.end" in configuration: end_utc = datetime.datetime.strptime(configuration["temp.report.end"], DATE_FORMAT) end_utc = end_utc.replace(tzinfo=from_zone) end = end_utc.astimezone(to_zone) else: end = datetime.datetime.now() if len(totals) == 0 and untagged is None: print(f"No data in the range {start:%Y-%m-%d %H:%M:%S} - {end:%Y-%m-%d %H:%M:%S}") return totals print(f"\nCategory Summary Data for {start:%Y-%m-%d %H:%M:%S} - {end:%Y-%m-%d %H:%M:%S}") return totals def extract_categories(totals: Dict[str, datetime.timedelta]) -> Dict[str, datetime.timedelta]: categories_total = {} for category, category_full_name in CATEGORIES.items(): categories_total[category_full_name] = totals.get(category, datetime.timedelta(0)) return categories_total def get_category_percent_breakdown( category_run_times: Dict[str, datetime.timedelta] ) -> Dict[str, Any]: logger.debug("Getting category percentage breakdown...") total_time = sum([run_time.total_seconds() for run_time in category_run_times.values()]) logger.debug(f"Total Time:{total_time}") category_percentage_breakdown: dict = {} for category, run_time in category_run_times.items(): category_percent = run_time.total_seconds() / total_time category_percentage_breakdown[category] = { "percent": category_percent, "duration": run_time.total_seconds() / 60, "run_time": format_seconds(int(run_time.total_seconds())), } # add total time statistics category_percentage_breakdown["Total"] = { "percent": total_time / total_time, "duration": total_time / 60, "run_time": format_seconds(int(total_time)), } logger.debug(pprint.pformat(category_percentage_breakdown)) return category_percentage_breakdown def format_category_breakdown(category_breakdown: dict) -> Dict[str, Any]: # print(type(category_breakdown)) # pprint.pprint(category_breakdown) formatted_category_breakdown = {} for category, category_statistics in category_breakdown.items(): formatted_category_breakdown[category] = { # convert duration to mins "duration": round(category_statistics["duration"], 2), "percent": round(category_statistics["percent"] * 100, 2), "run_time": category_statistics["run_time"], } return formatted_category_breakdown def display_category_breakdown(category_breakdown: dict, title: str = "Category Breakdown"): # Determine largest width max_width = len("Category") for category_statistics in category_breakdown.values(): if len(category_statistics) > max_width: max_width = len(category_statistics) print_dotted_line() print(f"\t\t{title.capitalize():>{max_width}}") print( f"{'Category':{max_width}}\t" f"{'Duration':{max_width}}\t" f"{'Run_Time':>{max_width + 2}}\t" f"{'Percent':{max_width + 1}}" ) for category, category_statistics in category_breakdown.items(): print( f"{category:{max_width}}\t" f"{category_statistics['duration']:{max_width}}\t" f"{category_statistics['run_time']:}\t" f"{category_statistics['percent']}%" ) print_dotted_line() def print_dotted_line(width: int = 72): """Print a dotted (rather 'dashed') line""" print("-" * width) if __name__ == "__main__": main() ```
{ "source": "johannes-graeter/UnFlow", "score": 2 }
#### File: e2eflow/core/train.py ```python import os import re from multiprocessing import Process import numpy as np import tensorflow as tf try: import memory_saving_gradients tf.__dict__["gradients"] = memory_saving_gradients.gradients_memory # tf.__dict__["gradients"] = memory_saving_gradients.gradients_speed print("Use memory_saving_gradients reduce net memory usage for cost of speed. " "See https://github.com/openai/gradient-checkpointing.") except ImportError: print("To fit bigger nets into memory get https://github.com/openai/gradient-checkpointing " "and put it in your Pythonpath.") pass import tensorflow.contrib.slim as slim from . import util from .flow_util import flow_error_avg, flow_to_color, flow_error_image, outlier_pct from .image_warp import image_warp from .input import resize_input, resize_output_crop, resize_output, resize_output_flow from .losses import occlusion, DISOCC_THRESH, create_outgoing_mask from .supervised import supervised_loss from .unsupervised import unsupervised_loss from .util import add_to_debug_output from .util import summarized_placeholder from ..gui import display from ..ops import forward_warp def restore_networks(sess, params, ckpt, ckpt_path=None): # Attention this is converted to checkpoints in e2eflow/util.py::convert_input_strings finetune = params.get('finetune', []) train_all = params.get('train_all', None) spec = params.get('flownet', 'S') flownet_num = len(spec) net_names = ['flownet_c'] + ['stack_{}_flownet'.format(i + 1) for i in range(flownet_num - 1)] + ['funnet'] assert len(finetune) <= flownet_num # Save all trained networks, restore all networks which are kept fixed if train_all: restore_external_nets = finetune if ckpt is None else [] variables_to_save = slim.get_variables_to_restore(include=net_names) else: restore_external_nets = finetune if ckpt is None else finetune[:flownet_num - 1] variables_to_save = slim.get_variables_to_restore(include=net_names[-2:]) saver = tf.train.Saver(variables_to_save, max_to_keep=1000) sess.run(tf.global_variables_initializer()) if ckpt is not None: # continue training saver.restore(sess, ckpt.model_checkpoint_path) saver.recover_last_checkpoints(ckpt.all_model_checkpoint_paths) for i, ckpt in enumerate(restore_external_nets): print('-- restore', net_names[i], ckpt.model_checkpoint_path) try: nets_to_restore = [net_names[i]] variables_to_restore = slim.get_variables_to_restore( include=nets_to_restore) restorer = tf.train.Saver(variables_to_restore) restorer.restore(sess, ckpt.model_checkpoint_path) except: # load partial network (missing final 2 upconvolutions) nets_to_restore = [net_names[i]] variables_to_restore = slim.get_variables_to_restore( include=nets_to_restore) variables_to_restore = [v for v in variables_to_restore if not 'full_res' in v.name] restorer = tf.train.Saver(variables_to_restore) restorer.restore(sess, ckpt.model_checkpoint_path) return saver def _add_loss_summaries(): losses = tf.get_collection('losses') for l in losses: tensor_name = re.sub('tower_[0-9]*/', '', l.op.name) tf.summary.scalar(tensor_name, l) def _add_variable_summaries(): ms = tf.get_collection('motion_angles') assert (len(ms) == 1) batch_size, var_length = ms[0].shape.as_list() for i in range(batch_size): for j in range(var_length): tensor_names = "motion_angles/batch{}/motion{}".format(i, j) tf.summary.scalar(tensor_names, ms[0][i, j]) # train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) def add_weights(layer_name): conv5_vars = tf.get_default_graph().get_tensor_by_name('funnet/alexnet_v2/{}/weights:0'.format(layer_name)) add_to_debug_output('debug/{}/weights'.format(layer_name), conv5_vars) # for n in ['conv1', 'conv2', 'conv3', 'conv4', 'conv5']: # add_weights(n) # act = tf.get_collection('funnet/alexnet_v2/fc8') # print(act) # bs, a, b, c = act[0].shape.as_list() # act = tf.reshape(act, (bs, a * b * c)) # for i in range(batch_size): # for j in range(a * b * c): # tensor_names = "motion_angles/batch{}/activation{}".format(i, j) # tf.summary.scalar(tensor_names, act[i, j]) def _add_param_summaries(): params = tf.get_collection('params') for p in params: tensor_name = re.sub('tower_[0-9]*/', '', p.op.name) tf.summary.scalar(tensor_name, p) def _add_image_summaries(): images = tf.get_collection('train_images') for im in images: tensor_name = re.sub('tower_[0-9]*/', '', im.op.name) tf.summary.image(tensor_name, im) def _add_debug_tensor_summaries(): ts = tf.get_collection('debug_tensors') for t in ts: name = re.sub('tower_[0-9]*/', '', t.op.name) tf.summary.scalar(name + '/mean', tf.reduce_mean(t)) tf.summary.scalar(name + '/max', tf.reduce_max(t)) tf.summary.scalar(name + '/min', tf.reduce_min(t)) def _eval_plot(results, image_names, title): display(results, image_names, title) class Trainer(): def __init__(self, train_batch_fn, eval_batch_fn, params, train_summaries_dir, eval_summaries_dir, ckpt_dir, normalization, debug=False, experiment="", interactive_plot=False, supervised=False, devices=None): self.train_summaries_dir = train_summaries_dir self.eval_summaries_dir = eval_summaries_dir self.ckpt_dir = ckpt_dir self.params = params self.debug = debug self.train_batch_fn = train_batch_fn self.eval_batch_fn = eval_batch_fn self.normalization = normalization self.experiment = experiment self.interactive_plot = interactive_plot self.plot_proc = None self.supervised = supervised self.loss_fn = supervised_loss if supervised else unsupervised_loss self.devices = devices or '/gpu:0' self.shared_device = devices[0] if len(devices) == 1 else '/cpu:0' def run(self, min_iter, max_iter): """Train (at most) from min_iter + 1 to max_iter. If checkpoints are found in ckpt_dir, they must be have a global_step within [min_iter, max_iter]. In this case, training is continued from global_step + 1 until max_iter is reached. """ save_interval = self.params['save_interval'] ckpt = tf.train.get_checkpoint_state(self.ckpt_dir) if ckpt is not None: ckpt_path = ckpt.model_checkpoint_path global_step = int(ckpt_path.split('/')[-1].split('-')[-1]) assert global_step >= min_iter, 'training stage not reached' start_iter = global_step + 1 if start_iter > max_iter: print('-- train: max_iter reached') return else: start_iter = min_iter + 1 print('-- training from i = {} to {}'.format(start_iter, max_iter)) assert (max_iter - start_iter + 1) % save_interval == 0 for i in range(start_iter, max_iter + 1, save_interval): self.train(i, i + save_interval - 1, i - (min_iter + 1)) #self.eval(1) if self.plot_proc: self.plot_proc.join() def get_train_and_loss_ops(self, batch, learning_rate, global_step): if self.params['flownet'] == 'resnet': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) else: opt = tf.train.AdamOptimizer(beta1=0.9, beta2=0.999, learning_rate=learning_rate) def _add_summaries(): _add_loss_summaries() _add_param_summaries() _add_variable_summaries() if self.debug: _add_image_summaries() _add_debug_tensor_summaries() if len(self.devices) == 1: loss_ = self.loss_fn(batch, self.params, self.normalization) if self.params.get('train_motion_only'): scope = "funnet" else: scope = None train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) train_op = opt.minimize(loss_, var_list=train_vars) _add_summaries() else: tower_grads = [] with tf.variable_scope(tf.get_variable_scope()): for i, devid in enumerate(self.devices): with tf.device(devid): with tf.name_scope('tower_{}'.format(i)) as scope: loss_ = self.loss_fn(batch, self.params, self.normalization) _add_summaries() # Reuse variables for the next tower. tf.get_variable_scope().reuse_variables() # Retain the summaries from the final tower. tower_summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) grads = opt.compute_gradients(loss_) tower_grads.append(grads) grads = average_gradients(tower_grads) apply_gradient_op = opt.apply_gradients(grads) train_op = apply_gradient_op return train_op, loss_ def train(self, start_iter, max_iter, iter_offset): ckpt = tf.train.get_checkpoint_state(self.ckpt_dir) with tf.Graph().as_default(), tf.device(self.shared_device): batch = self.train_batch_fn(iter_offset) with tf.name_scope('params') as scope: learning_rate_ = util.summarized_placeholder('learning_rate', 'train') summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) global_step_ = tf.placeholder(tf.int32, name="global_step") train_op, loss_ = self.get_train_and_loss_ops(batch, learning_rate_, global_step_) summaries = tf.get_collection(tf.GraphKeys.SUMMARIES) summary_ = tf.summary.merge(summaries) sess_config = tf.ConfigProto(allow_soft_placement=True) with tf.Session(config=sess_config) as sess: if self.debug: summary_writer = tf.summary.FileWriter(self.train_summaries_dir, sess.graph) run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE, report_tensor_allocations_upon_oom=True) # run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() else: summary_writer = tf.summary.FileWriter(self.train_summaries_dir) run_options = None run_metadata = None saver = restore_networks(sess, self.params, ckpt) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for local_i, i in enumerate(range(start_iter, max_iter + 1)): # if INTERACTIVE_PLOT: # plt.title = "{} ({})".format(self.experiment, i) decay_iters = local_i + iter_offset if 'manual_decay_lrs' in self.params \ and 'manual_decay_iters' in self.params: decay_index = 0 iter_counter = 0 for decay_i, manual_decay_iter in enumerate(self.params['manual_decay_iters']): iter_counter += manual_decay_iter if decay_iters <= iter_counter: decay_index = decay_i break learning_rate = self.params['manual_decay_lrs'][decay_index] else: decay_interval = self.params['decay_interval'] decay_after = self.params.get('decay_after', 0) if decay_iters >= decay_after: decay_minimum = decay_after / decay_interval decay = (decay_iters // decay_interval) - decay_minimum learning_rate = self.params['learning_rate'] / (2 ** decay) else: learning_rate = self.params['learning_rate'] feed_dict = {learning_rate_: learning_rate, global_step_: i} _, loss = sess.run( [train_op, loss_], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) if i == 1 or i % self.params['display_interval'] == 0: summary = sess.run(summary_, feed_dict=feed_dict) summary_writer.add_summary(summary, i) print("-- train: i = {}, loss = {}".format(i, loss)) save_path = os.path.join(self.ckpt_dir, 'model.ckpt') saver.save(sess, save_path, global_step=max_iter) summary_writer.close() coord.request_stop() coord.join(threads) def eval(self, num): assert num == 1 # TODO enable num > 1 with tf.Graph().as_default(): inputs = self.eval_batch_fn() im1, im2, input_shape = inputs[:3] truths = inputs[3:] height, width, _ = tf.unstack(tf.squeeze(input_shape), num=3, axis=0) im1 = resize_input(im1, height, width, 384, 1280) im2 = resize_input(im2, height, width, 384, 1280) _, flow, flow_bw = unsupervised_loss( (im1, im2), params=self.params, normalization=self.normalization, augment=False, return_flow=True) im1 = resize_output(im1, height, width, 3) im2 = resize_output(im2, height, width, 3) flow = resize_output_flow(flow, height, width, 2) flow_bw = resize_output_flow(flow_bw, height, width, 2) variables_to_restore = tf.all_variables() images_ = [image_warp(im1, flow) / 255, flow_to_color(flow), 1 - (1 - occlusion(flow, flow_bw)[0]) * create_outgoing_mask(flow), forward_warp(flow_bw) < DISOCC_THRESH] image_names = ['warped image', 'flow', 'occ', 'reverse disocc'] values_ = [] averages_ = [] truth_tuples = [] if len(truths) == 4: flow_occ, mask_occ, flow_noc, mask_noc = truths flow_occ = resize_output_crop(flow_occ, height, width, 2) flow_noc = resize_output_crop(flow_noc, height, width, 2) mask_occ = resize_output_crop(mask_occ, height, width, 1) mask_noc = resize_output_crop(mask_noc, height, width, 1) truth_tuples.append(('occluded', flow_occ, mask_occ)) truth_tuples.append(('non-occluded', flow_noc, mask_noc)) images_ += [flow_error_image(flow, flow_occ, mask_occ, mask_noc)] image_names += ['flow error'] else: raise NotImplementedError() truth_tuples.append(('flow', truths[0], truths[1])) for name, gt_flow, mask in truth_tuples: error_ = flow_error_avg(gt_flow, flow, mask) error_avg_ = summarized_placeholder('AEE/' + name, key='eval_avg') outliers_ = outlier_pct(gt_flow, flow, mask) outliers_avg = summarized_placeholder('outliers/' + name, key='eval_avg') values_.extend([error_, outliers_]) averages_.extend([error_avg_, outliers_avg]) losses = tf.get_collection('losses') for l in losses: values_.append(l) tensor_name = re.sub('tower_[0-9]*/', '', l.op.name) loss_avg_ = summarized_placeholder(tensor_name, key='eval_avg') averages_.append(loss_avg_) ckpt = tf.train.get_checkpoint_state(self.ckpt_dir) assert ckpt is not None, "No checkpoints to evaluate" # Correct path for ckpts from different machine # ckpt_path = self.ckpt_dir + "/" + os.path.basename(ckpt.model_checkpoint_path) ckpt_path = ckpt.model_checkpoint_path with tf.Session() as sess: summary_writer = tf.summary.FileWriter(self.eval_summaries_dir) saver = tf.train.Saver(variables_to_restore) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) restore_networks(sess, self.params, ckpt) global_step = ckpt_path.split('/')[-1].split('-')[-1] coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) averages = np.zeros(len(averages_)) num_iters = 0 image_lists = [] try: while not coord.should_stop(): results = sess.run(values_ + images_) values = results[:len(averages_)] images = results[len(averages_):] image_lists.append(images) averages += values num_iters += 1 except tf.errors.OutOfRangeError: pass averages /= num_iters feed = {k: v for (k, v) in zip(averages_, averages)} summary_ = tf.summary.merge_all('eval_avg') summary = sess.run(summary_, feed_dict=feed) summary_writer.add_summary(summary, global_step) print("-- eval: i = {}".format(global_step)) coord.request_stop() coord.join(threads) summary_writer.close() if self.interactive_plot: if self.plot_proc: self.plot_proc.terminate() self.plot_proc = Process(target=_eval_plot, args=([image_lists], image_names, "{} (i={})".format(self.experiment, global_step))) self.plot_proc.start() def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: if g is not None: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) if grads != []: # Average over the 'tower' dimension. grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads ```
{ "source": "johannesgreiner/qiskit-optimization", "score": 3 }
#### File: qiskit_optimization/converters/inequality_to_equality.py ```python import copy import math from typing import List, Optional, Union import numpy as np from ..exceptions import QiskitOptimizationError from ..problems.constraint import Constraint from ..problems.linear_constraint import LinearConstraint from ..problems.quadratic_constraint import QuadraticConstraint from ..problems.quadratic_objective import QuadraticObjective from ..problems.quadratic_program import QuadraticProgram from ..problems.variable import Variable from .quadratic_program_converter import QuadraticProgramConverter class InequalityToEquality(QuadraticProgramConverter): """Convert inequality constraints into equality constraints by introducing slack variables. Examples: >>> from qiskit_optimization.problems import QuadraticProgram >>> from qiskit_optimization.converters import InequalityToEquality >>> problem = QuadraticProgram() >>> # define a problem >>> conv = InequalityToEquality() >>> problem2 = conv.convert(problem) """ _delimiter = "@" # users are supposed not to use this character in variable names def __init__(self, mode: str = "auto") -> None: """ Args: mode: To choose the type of slack variables. There are 3 options for mode. - 'integer': All slack variables will be integer variables. - 'continuous': All slack variables will be continuous variables. - 'auto': Use integer variables if possible, otherwise use continuous variables. """ self._src: Optional[QuadraticProgram] = None self._dst: Optional[QuadraticProgram] = None self._mode = mode def convert(self, problem: QuadraticProgram) -> QuadraticProgram: """Convert a problem with inequality constraints into one with only equality constraints. Args: problem: The problem to be solved, that may contain inequality constraints. Returns: The converted problem, that contain only equality constraints. Raises: QiskitOptimizationError: If a variable type is not supported. QiskitOptimizationError: If an unsupported mode is selected. QiskitOptimizationError: If an unsupported sense is specified. """ self._src = copy.deepcopy(problem) self._dst = QuadraticProgram(name=problem.name) # set a converting mode mode = self._mode if mode not in ["integer", "continuous", "auto"]: raise QiskitOptimizationError(f"Unsupported mode is selected: {mode}") # Copy variables for x in self._src.variables: if x.vartype == Variable.Type.BINARY: self._dst.binary_var(name=x.name) elif x.vartype == Variable.Type.INTEGER: self._dst.integer_var(name=x.name, lowerbound=x.lowerbound, upperbound=x.upperbound) elif x.vartype == Variable.Type.CONTINUOUS: self._dst.continuous_var( name=x.name, lowerbound=x.lowerbound, upperbound=x.upperbound ) else: raise QiskitOptimizationError(f"Unsupported variable type {x.vartype}") # Copy the objective function constant = self._src.objective.constant linear = self._src.objective.linear.to_dict(use_name=True) quadratic = self._src.objective.quadratic.to_dict(use_name=True) if self._src.objective.sense == QuadraticObjective.Sense.MINIMIZE: self._dst.minimize(constant, linear, quadratic) else: self._dst.maximize(constant, linear, quadratic) # For linear constraints for lin_const in self._src.linear_constraints: if lin_const.sense == Constraint.Sense.EQ: self._dst.linear_constraint( lin_const.linear.coefficients, lin_const.sense, lin_const.rhs, lin_const.name ) elif lin_const.sense in [Constraint.Sense.LE, Constraint.Sense.GE]: self._add_slack_var_linear_constraint(lin_const) else: raise QiskitOptimizationError( f"Internal error: type of sense in {lin_const.name} is not supported: " f"{lin_const.sense}" ) # For quadratic constraints for quad_const in self._src.quadratic_constraints: if quad_const.sense == Constraint.Sense.EQ: self._dst.quadratic_constraint( quad_const.linear.coefficients, quad_const.quadratic.coefficients, quad_const.sense, quad_const.rhs, quad_const.name, ) elif quad_const.sense in [Constraint.Sense.LE, Constraint.Sense.GE]: self._add_slack_var_quadratic_constraint(quad_const) else: raise QiskitOptimizationError( f"Internal error: type of sense in {quad_const.name} is not supported: " f"{quad_const.sense}" ) return self._dst def _add_slack_var_linear_constraint(self, constraint: LinearConstraint): linear = constraint.linear sense = constraint.sense name = constraint.name any_float = self._any_float(linear.to_array()) mode = self._mode if mode == "integer": if any_float: raise QiskitOptimizationError( f'"{name}" contains float coefficients. ' 'We can not use an integer slack variable for "{name}"' ) elif mode == "auto": mode = "continuous" if any_float else "integer" new_rhs = constraint.rhs if mode == "integer": # If rhs is float number, round up/down to the nearest integer. if sense == Constraint.Sense.LE: new_rhs = math.floor(new_rhs) if sense == Constraint.Sense.GE: new_rhs = math.ceil(new_rhs) lin_bounds = linear.bounds lhs_lb = lin_bounds.lowerbound lhs_ub = lin_bounds.upperbound var_ub = 0.0 sign = 0 if sense == Constraint.Sense.LE: var_ub = new_rhs - lhs_lb if var_ub > 0: sign = 1 elif sense == Constraint.Sense.GE: var_ub = lhs_ub - new_rhs if var_ub > 0: sign = -1 new_linear = linear.to_dict(use_name=True) if var_ub > 0: # Add a slack variable. mode_name = {"integer": "int", "continuous": "continuous"} slack_name = f"{name}{self._delimiter}{mode_name[mode]}_slack" if mode == "integer": self._dst.integer_var(name=slack_name, lowerbound=0, upperbound=var_ub) elif mode == "continuous": self._dst.continuous_var(name=slack_name, lowerbound=0, upperbound=var_ub) new_linear[slack_name] = sign self._dst.linear_constraint(new_linear, "==", new_rhs, name) def _add_slack_var_quadratic_constraint(self, constraint: QuadraticConstraint): quadratic = constraint.quadratic linear = constraint.linear sense = constraint.sense name = constraint.name any_float = self._any_float(linear.to_array()) or self._any_float(quadratic.to_array()) mode = self._mode if mode == "integer": if any_float: raise QiskitOptimizationError( f'"{name}" contains float coefficients. ' 'We can not use an integer slack variable for "{name}"' ) elif mode == "auto": mode = "continuous" if any_float else "integer" new_rhs = constraint.rhs if mode == "integer": # If rhs is float number, round up/down to the nearest integer. if sense == Constraint.Sense.LE: new_rhs = math.floor(new_rhs) if sense == Constraint.Sense.GE: new_rhs = math.ceil(new_rhs) lin_bounds = linear.bounds quad_bounds = quadratic.bounds lhs_lb = lin_bounds.lowerbound + quad_bounds.lowerbound lhs_ub = lin_bounds.upperbound + quad_bounds.upperbound var_ub = 0.0 sign = 0 if sense == Constraint.Sense.LE: var_ub = new_rhs - lhs_lb if var_ub > 0: sign = 1 elif sense == Constraint.Sense.GE: var_ub = lhs_ub - new_rhs if var_ub > 0: sign = -1 new_linear = linear.to_dict(use_name=True) if var_ub > 0: # Add a slack variable. mode_name = {"integer": "int", "continuous": "continuous"} slack_name = f"{name}{self._delimiter}{mode_name[mode]}_slack" if mode == "integer": self._dst.integer_var(name=slack_name, lowerbound=0, upperbound=var_ub) elif mode == "continuous": self._dst.continuous_var(name=slack_name, lowerbound=0, upperbound=var_ub) new_linear[slack_name] = sign self._dst.quadratic_constraint(new_linear, quadratic.coefficients, "==", new_rhs, name) def interpret(self, x: Union[np.ndarray, List[float]]) -> np.ndarray: """Convert a result of a converted problem into that of the original problem. Args: x: The result of the converted problem or the given result in case of FAILURE. Returns: The result of the original problem. """ # convert back the optimization result into that of the original problem names = [var.name for var in self._dst.variables] # interpret slack variables sol = {name: x[i] for i, name in enumerate(names)} new_x = np.zeros(self._src.get_num_vars()) for i, var in enumerate(self._src.variables): new_x[i] = sol[var.name] return new_x @staticmethod def _any_float(values: np.ndarray) -> bool: """Check whether the list contains float or not. This method is used to check whether a constraint contain float coefficients or not. Args: values: Coefficients of the constraint Returns: bool: If the constraint contains float coefficients, this returns True, else False. """ return any(isinstance(v, float) and not v.is_integer() for v in values) @property def mode(self) -> str: """Returns the mode of the converter Returns: The mode of the converter used for additional slack variables """ return self._mode @mode.setter def mode(self, mode: str) -> None: """Set a new mode for the converter Args: mode: The new mode for the converter """ self._mode = mode ``` #### File: qiskit_optimization/translators/ising.py ```python import math from typing import Tuple import numpy as np from qiskit.opflow import I, ListOp, OperatorBase, PauliOp, PauliSumOp, SummedOp from qiskit.quantum_info import Pauli from qiskit_optimization.exceptions import QiskitOptimizationError from qiskit_optimization.problems.quadratic_program import QuadraticProgram def to_ising(quad_prog: QuadraticProgram) -> Tuple[OperatorBase, float]: """Return the Ising Hamiltonian of this problem. Variables are mapped to qubits in the same order, i.e., i-th variable is mapped to i-th qubit. See https://github.com/Qiskit/qiskit-terra/issues/1148 for details. Args: quad_prog: The problem to be translated. Returns: A tuple (qubit_op, offset) comprising the qubit operator for the problem and offset for the constant value in the Ising Hamiltonian. Raises: QiskitOptimizationError: If an integer variable or a continuous variable exists in the problem. QiskitOptimizationError: If constraints exist in the problem. """ # if problem has variables that are not binary, raise an error if quad_prog.get_num_vars() > quad_prog.get_num_binary_vars(): raise QiskitOptimizationError( "The type of all variables must be binary. " "You can use `QuadraticProgramToQubo` converter " "to convert integer variables to binary variables. " "If the problem contains continuous variables, `to_ising` cannot handle it. " "You might be able to solve it with `ADMMOptimizer`." ) # if constraints exist, raise an error if quad_prog.linear_constraints or quad_prog.quadratic_constraints: raise QiskitOptimizationError( "There must be no constraint in the problem. " "You can use `QuadraticProgramToQubo` converter " "to convert constraints to penalty terms of the objective function." ) # initialize Hamiltonian. num_nodes = quad_prog.get_num_vars() pauli_list = [] offset = 0.0 zero = np.zeros(num_nodes, dtype=bool) # set a sign corresponding to a maximized or minimized problem. # sign == 1 is for minimized problem. sign == -1 is for maximized problem. sense = quad_prog.objective.sense.value # convert a constant part of the object function into Hamiltonian. offset += quad_prog.objective.constant * sense # convert linear parts of the object function into Hamiltonian. for idx, coef in quad_prog.objective.linear.to_dict().items(): z_p = zero.copy() weight = coef * sense / 2 z_p[idx] = True pauli_list.append(PauliOp(Pauli((z_p, zero)), -weight)) offset += weight # create Pauli terms for (i, j), coeff in quad_prog.objective.quadratic.to_dict().items(): weight = coeff * sense / 4 if i == j: offset += weight else: z_p = zero.copy() z_p[i] = True z_p[j] = True pauli_list.append(PauliOp(Pauli((z_p, zero)), weight)) z_p = zero.copy() z_p[i] = True pauli_list.append(PauliOp(Pauli((z_p, zero)), -weight)) z_p = zero.copy() z_p[j] = True pauli_list.append(PauliOp(Pauli((z_p, zero)), -weight)) offset += weight # Remove paulis whose coefficients are zeros. qubit_op = sum(pauli_list) # qubit_op could be the integer 0, in this case return an identity operator of # appropriate size if isinstance(qubit_op, OperatorBase): qubit_op = qubit_op.reduce() else: qubit_op = I ^ num_nodes return qubit_op, offset def from_ising( qubit_op: OperatorBase, offset: float = 0.0, linear: bool = False, ) -> QuadraticProgram: r"""Create a quadratic program from a qubit operator and a shift value. Variables are mapped to qubits in the same order, i.e., i-th variable is mapped to i-th qubit. See https://github.com/Qiskit/qiskit-terra/issues/1148 for details. Args: qubit_op: The qubit operator of the problem. offset: The constant term in the Ising Hamiltonian. linear: If linear is True, :math:`x^2` is treated as a linear term since :math:`x^2 = x` for :math:`x \in \{0,1\}`. Otherwise, :math:`x^2` is treat as a quadratic term. The default value is False. Returns: The quadratic program corresponding to the qubit operator. Raises: QiskitOptimizationError: if there are Pauli Xs or Ys in any Pauli term QiskitOptimizationError: if there are more than 2 Pauli Zs in any Pauli term QiskitOptimizationError: if any Pauli term has an imaginary coefficient NotImplementedError: If the input operator is a ListOp """ if isinstance(qubit_op, PauliSumOp): qubit_op = qubit_op.to_pauli_op() # No support for ListOp yet, this can be added in future # pylint: disable=unidiomatic-typecheck if type(qubit_op) == ListOp: raise NotImplementedError( "Conversion of a ListOp is not supported, convert each " "operator in the ListOp separately." ) quad_prog = QuadraticProgram() quad_prog.binary_var_list(qubit_op.num_qubits) if not isinstance(qubit_op, SummedOp): pauli_list = [qubit_op.to_pauli_op()] else: pauli_list = qubit_op.to_pauli_op() # prepare a matrix of coefficients of Pauli terms # `pauli_coeffs_diag` is the diagonal part # `pauli_coeffs_triu` is the upper triangular part pauli_coeffs_diag = [0.0] * qubit_op.num_qubits pauli_coeffs_triu = {} for pauli_op in pauli_list: pauli_op = pauli_op.to_pauli_op() pauli = pauli_op.primitive coeff = pauli_op.coeff if not math.isclose(coeff.imag, 0.0, abs_tol=1e-10): raise QiskitOptimizationError(f"Imaginary coefficient exists: {pauli_op}") if np.any(pauli.x): raise QiskitOptimizationError(f"Pauli X or Y exists in the Pauli term: {pauli}") # indices of Pauli Zs in the Pauli term z_index = np.where(pauli.z)[0] num_z = len(z_index) if num_z == 1: pauli_coeffs_diag[z_index[0]] = coeff.real elif num_z == 2: pauli_coeffs_triu[z_index[0], z_index[1]] = coeff.real else: raise QiskitOptimizationError( f"There are more than 2 Pauli Zs in the Pauli term: {pauli}" ) linear_terms = {} quadratic_terms = {} # For quadratic pauli terms of operator # x_i * x_j = (1 - Z_i - Z_j + Z_i * Z_j)/4 for (i, j), weight in pauli_coeffs_triu.items(): # Add a quadratic term to the object function of `QuadraticProgram` # The coefficient of the quadratic term in `QuadraticProgram` is # 4 * weight of the pauli quadratic_terms[i, j] = 4 * weight pauli_coeffs_diag[i] += weight pauli_coeffs_diag[j] += weight offset -= weight # After processing quadratic pauli terms, only linear paulis are left # x_i = (1 - Z_i)/2 for i, weight in enumerate(pauli_coeffs_diag): # Add a linear term to the object function of `QuadraticProgram` # The coefficient of the linear term in `QuadraticProgram` is # 2 * weight of the pauli if linear: linear_terms[i] = -2 * weight else: quadratic_terms[i, i] = -2 * weight offset += weight quad_prog.minimize(constant=offset, linear=linear_terms, quadratic=quadratic_terms) return quad_prog ``` #### File: test/converters/test_converters.py ```python import unittest from test.optimization_test_case import QiskitOptimizationTestCase import numpy as np from docplex.mp.model import Model from qiskit.algorithms import NumPyMinimumEigensolver from qiskit.opflow import Z, I import qiskit_optimization.optionals as _optionals from qiskit_optimization import QuadraticProgram, QiskitOptimizationError from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, CplexOptimizer, ADMMOptimizer, ) from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters from qiskit_optimization.converters import ( InequalityToEquality, IntegerToBinary, LinearEqualityToPenalty, MaximizeToMinimize, ) from qiskit_optimization.problems import Constraint, Variable from qiskit_optimization.translators import from_docplex_mp QUBIT_OP_MAXIMIZE_SAMPLE = ( -199999.5 * (I ^ I ^ I ^ Z) + -399999.5 * (I ^ I ^ Z ^ I) + -599999.5 * (I ^ Z ^ I ^ I) + -799999.5 * (Z ^ I ^ I ^ I) + 100000 * (I ^ I ^ Z ^ Z) + 150000 * (I ^ Z ^ I ^ Z) + 300000 * (I ^ Z ^ Z ^ I) + 200000 * (Z ^ I ^ I ^ Z) + 400000 * (Z ^ I ^ Z ^ I) + 600000 * (Z ^ Z ^ I ^ I) ) OFFSET_MAXIMIZE_SAMPLE = 1149998 class TestConverters(QiskitOptimizationTestCase): """Test Converters""" def test_empty_problem(self): """Test empty problem""" op = QuadraticProgram() conv = InequalityToEquality() op = conv.convert(op) conv = IntegerToBinary() op = conv.convert(op) conv = LinearEqualityToPenalty() op = conv.convert(op) conv = MaximizeToMinimize() op = conv.convert(op) _, shift = op.to_ising() self.assertEqual(shift, 0.0) def test_valid_variable_type(self): """Validate the types of the variables for QuadraticProgram.to_ising.""" # Integer variable with self.assertRaises(QiskitOptimizationError): op = QuadraticProgram() op.integer_var(0, 10, "int_var") _ = op.to_ising() # Continuous variable with self.assertRaises(QiskitOptimizationError): op = QuadraticProgram() op.continuous_var(0, 10, "continuous_var") _ = op.to_ising() def test_inequality_binary(self): """Test InequalityToEqualityConverter with binary variables""" op = QuadraticProgram() for i in range(3): op.binary_var(name=f"x{i}") # Linear constraints linear_constraint = {"x0": 1, "x1": 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1") linear_constraint = {"x1": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2") linear_constraint = {"x0": 1, "x2": 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2") # Quadratic constraints quadratic = {("x0", "x1"): 1, ("x1", "x2"): 2} op.quadratic_constraint({}, quadratic, Constraint.Sense.LE, 3, "x0x1_x1x2LE") quadratic = {("x0", "x1"): 3, ("x1", "x2"): 4} op.quadratic_constraint({}, quadratic, Constraint.Sense.GE, 3, "x0x1_x1x2GE") # Convert inequality constraints into equality constraints conv = InequalityToEquality() op2 = conv.convert(op) self.assertListEqual( [v.name for v in op2.variables], [ "x0", "x1", "x2", "x1x2@int_slack", "x0x2@int_slack", "x0x1_x1x2LE@int_slack", "x0x1_x1x2GE@int_slack", ], ) # Check names and objective senses self.assertEqual(op.name, op2.name) self.assertEqual(op.objective.sense, op2.objective.sense) # For linear constraints lst = [ op2.linear_constraints[0].linear.to_dict()[0], op2.linear_constraints[0].linear.to_dict()[1], ] self.assertListEqual(lst, [1, 1]) self.assertEqual(op2.linear_constraints[0].sense, Constraint.Sense.EQ) lst = [ op2.linear_constraints[1].linear.to_dict()[1], op2.linear_constraints[1].linear.to_dict()[2], op2.linear_constraints[1].linear.to_dict()[3], ] self.assertListEqual(lst, [1, -1, 1]) lst = [op2.variables[3].lowerbound, op2.variables[3].upperbound] self.assertListEqual(lst, [0, 3]) self.assertEqual(op2.linear_constraints[1].sense, Constraint.Sense.EQ) lst = [ op2.linear_constraints[2].linear.to_dict()[0], op2.linear_constraints[2].linear.to_dict()[2], op2.linear_constraints[2].linear.to_dict()[4], ] self.assertListEqual(lst, [1, 3, -1]) lst = [op2.variables[4].lowerbound, op2.variables[4].upperbound] self.assertListEqual(lst, [0, 2]) self.assertEqual(op2.linear_constraints[2].sense, Constraint.Sense.EQ) # For quadratic constraints lst = [ op2.quadratic_constraints[0].quadratic.to_dict()[(0, 1)], op2.quadratic_constraints[0].quadratic.to_dict()[(1, 2)], op2.quadratic_constraints[0].linear.to_dict()[5], ] self.assertListEqual(lst, [1, 2, 1]) lst = [op2.variables[5].lowerbound, op2.variables[5].upperbound] self.assertListEqual(lst, [0, 3]) lst = [ op2.quadratic_constraints[1].quadratic.to_dict()[(0, 1)], op2.quadratic_constraints[1].quadratic.to_dict()[(1, 2)], op2.quadratic_constraints[1].linear.to_dict()[6], ] self.assertListEqual(lst, [3, 4, -1]) lst = [op2.variables[6].lowerbound, op2.variables[6].upperbound] self.assertListEqual(lst, [0, 4]) new_x = conv.interpret(np.arange(7)) np.testing.assert_array_almost_equal(new_x, np.arange(3)) def test_inequality_integer(self): """Test InequalityToEqualityConverter with integer variables""" op = QuadraticProgram() for i in range(3): op.integer_var(name=f"x{i}", lowerbound=-3, upperbound=3) # Linear constraints linear_constraint = {"x0": 1, "x1": 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1") linear_constraint = {"x1": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2") linear_constraint = {"x0": 1, "x2": 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2") # Quadratic constraints quadratic = {("x0", "x1"): 1, ("x1", "x2"): 2} op.quadratic_constraint({}, quadratic, Constraint.Sense.LE, 3, "x0x1_x1x2LE") quadratic = {("x0", "x1"): 3, ("x1", "x2"): 4} op.quadratic_constraint({}, quadratic, Constraint.Sense.GE, 3, "x0x1_x1x2GE") conv = InequalityToEquality() op2 = conv.convert(op) self.assertListEqual( [v.name for v in op2.variables], [ "x0", "x1", "x2", "x1x2@int_slack", "x0x2@int_slack", "x0x1_x1x2LE@int_slack", "x0x1_x1x2GE@int_slack", ], ) # For linear constraints lst = [ op2.linear_constraints[0].linear.to_dict()[0], op2.linear_constraints[0].linear.to_dict()[1], ] self.assertListEqual(lst, [1, 1]) self.assertEqual(op2.linear_constraints[0].sense, Constraint.Sense.EQ) lst = [ op2.linear_constraints[1].linear.to_dict()[1], op2.linear_constraints[1].linear.to_dict()[2], op2.linear_constraints[1].linear.to_dict()[3], ] self.assertListEqual(lst, [1, -1, 1]) lst = [op2.variables[3].lowerbound, op2.variables[3].upperbound] self.assertListEqual(lst, [0, 8]) self.assertEqual(op2.linear_constraints[1].sense, Constraint.Sense.EQ) lst = [ op2.linear_constraints[2].linear.to_dict()[0], op2.linear_constraints[2].linear.to_dict()[2], op2.linear_constraints[2].linear.to_dict()[4], ] self.assertListEqual(lst, [1, 3, -1]) lst = [op2.variables[4].lowerbound, op2.variables[4].upperbound] self.assertListEqual(lst, [0, 10]) self.assertEqual(op2.linear_constraints[2].sense, Constraint.Sense.EQ) # For quadratic constraints lst = [ op2.quadratic_constraints[0].quadratic.to_dict()[(0, 1)], op2.quadratic_constraints[0].quadratic.to_dict()[(1, 2)], op2.quadratic_constraints[0].linear.to_dict()[5], ] self.assertListEqual(lst, [1, 2, 1]) lst = [op2.variables[5].lowerbound, op2.variables[5].upperbound] self.assertListEqual(lst, [0, 30]) lst = [ op2.quadratic_constraints[1].quadratic.to_dict()[(0, 1)], op2.quadratic_constraints[1].quadratic.to_dict()[(1, 2)], op2.quadratic_constraints[1].linear.to_dict()[6], ] self.assertListEqual(lst, [3, 4, -1]) lst = [op2.variables[6].lowerbound, op2.variables[6].upperbound] self.assertListEqual(lst, [0, 60]) new_x = conv.interpret(np.arange(7)) np.testing.assert_array_almost_equal(new_x, np.arange(3)) def test_inequality_mode_integer(self): """Test integer mode of InequalityToEqualityConverter()""" op = QuadraticProgram() for i in range(3): op.binary_var(name=f"x{i}") # Linear constraints linear_constraint = {"x0": 1, "x1": 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1") linear_constraint = {"x1": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2") linear_constraint = {"x0": 1, "x2": 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2") conv = InequalityToEquality(mode="integer") op2 = conv.convert(op) lst = [op2.variables[3].vartype, op2.variables[4].vartype] self.assertListEqual(lst, [Variable.Type.INTEGER, Variable.Type.INTEGER]) def test_inequality_mode_continuous(self): """Test continuous mode of InequalityToEqualityConverter()""" op = QuadraticProgram() for i in range(3): op.binary_var(name=f"x{i}") # Linear constraints linear_constraint = {"x0": 1, "x1": 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1") linear_constraint = {"x1": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2") linear_constraint = {"x0": 1, "x2": 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2") conv = InequalityToEquality(mode="continuous") op2 = conv.convert(op) lst = [op2.variables[3].vartype, op2.variables[4].vartype] self.assertListEqual(lst, [Variable.Type.CONTINUOUS, Variable.Type.CONTINUOUS]) def test_inequality_mode_auto(self): """Test auto mode of InequalityToEqualityConverter()""" op = QuadraticProgram() for i in range(3): op.binary_var(name=f"x{i}") # Linear constraints linear_constraint = {"x0": 1, "x1": 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1") linear_constraint = {"x1": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2") linear_constraint = {"x0": 1.1, "x2": 2.2} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 3.3, "x0x2") conv = InequalityToEquality(mode="auto") op2 = conv.convert(op) lst = [op2.variables[3].vartype, op2.variables[4].vartype] self.assertListEqual(lst, [Variable.Type.INTEGER, Variable.Type.CONTINUOUS]) def test_penalize_sense(self): """Test PenalizeLinearEqualityConstraints with senses""" op = QuadraticProgram() for i in range(3): op.binary_var(name=f"x{i}") # Linear constraints linear_constraint = {"x0": 1, "x1": 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1") linear_constraint = {"x1": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2") linear_constraint = {"x0": 1, "x2": 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2") self.assertEqual(op.get_num_linear_constraints(), 3) conv = LinearEqualityToPenalty() with self.assertRaises(QiskitOptimizationError): conv.convert(op) def test_penalize_binary(self): """Test PenalizeLinearEqualityConstraints with binary variables""" op = QuadraticProgram() for i in range(3): op.binary_var(name=f"x{i}") # Linear constraints linear_constraint = {"x0": 1, "x1": 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1") linear_constraint = {"x1": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 2, "x1x2") linear_constraint = {"x0": 1, "x2": 3} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 2, "x0x2") self.assertEqual(op.get_num_linear_constraints(), 3) conv = LinearEqualityToPenalty() op2 = conv.convert(op) self.assertEqual(op2.get_num_linear_constraints(), 0) new_x = conv.interpret(np.arange(3)) np.testing.assert_array_almost_equal(new_x, np.arange(3)) def test_penalize_integer(self): """Test PenalizeLinearEqualityConstraints with integer variables""" op = QuadraticProgram() for i in range(3): op.integer_var(name=f"x{i}", lowerbound=-3, upperbound=3) # Linear constraints linear_constraint = {"x0": 1, "x1": 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1") linear_constraint = {"x1": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 2, "x1x2") linear_constraint = {"x0": 1, "x2": -1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x2") op.minimize(constant=3, linear={"x0": 1}, quadratic={("x1", "x2"): 2}) self.assertEqual(op.get_num_linear_constraints(), 3) conv = LinearEqualityToPenalty() op2 = conv.convert(op) self.assertEqual(op2.get_num_linear_constraints(), 0) new_x = conv.interpret([0, 1, -1]) np.testing.assert_array_almost_equal(new_x, [0, 1, -1]) def test_integer_to_binary(self): """Test integer to binary""" op = QuadraticProgram() for i in range(0, 2): op.binary_var(name=f"x{i}") op.integer_var(name="x2", lowerbound=0, upperbound=5) linear = {} for i, x in enumerate(op.variables): linear[x.name] = i + 1 op.maximize(0, linear, {}) conv = IntegerToBinary() op2 = conv.convert(op) self.assertEqual(op2.get_num_vars(), 5) self.assertListEqual([x.vartype for x in op2.variables], [Variable.Type.BINARY] * 5) self.assertListEqual([x.name for x in op2.variables], ["x0", "x1", "x2@0", "x2@1", "x2@2"]) dct = op2.objective.linear.to_dict() self.assertEqual(dct[2], 3) self.assertEqual(dct[3], 6) self.assertEqual(dct[4], 6) def test_binary_to_integer(self): """Test binary to integer""" op = QuadraticProgram() for i in range(0, 2): op.binary_var(name=f"x{i}") op.integer_var(name="x2", lowerbound=0, upperbound=5) linear = {"x0": 1, "x1": 2, "x2": 1} op.maximize(0, linear, {}) linear = {} for x in op.variables: linear[x.name] = 1 op.linear_constraint(linear, Constraint.Sense.EQ, 6, "x0x1x2") conv = IntegerToBinary() _ = conv.convert(op) new_x = conv.interpret([0, 1, 1, 1, 1]) np.testing.assert_array_almost_equal(new_x, [0, 1, 5]) def test_optimizationproblem_to_ising(self): """Test optimization problem to operators""" op = QuadraticProgram() for i in range(4): op.binary_var(name=f"x{i}") linear = {} for x in op.variables: linear[x.name] = 1 op.maximize(0, linear, {}) linear = {} for i, x in enumerate(op.variables): linear[x.name] = i + 1 op.linear_constraint(linear, Constraint.Sense.EQ, 3, "sum1") penalize = LinearEqualityToPenalty(penalty=1e5) op2 = penalize.convert(op) qubitop, offset = op2.to_ising() self.assertEqual(qubitop, QUBIT_OP_MAXIMIZE_SAMPLE) self.assertEqual(offset, OFFSET_MAXIMIZE_SAMPLE) def test_ising_to_quadraticprogram_linear(self): """Test optimization problem to operators with linear=True""" op = QUBIT_OP_MAXIMIZE_SAMPLE offset = OFFSET_MAXIMIZE_SAMPLE quadratic = QuadraticProgram("test") quadratic.from_ising(op, offset, linear=True) self.assertEqual(quadratic.name, "test") self.assertEqual(quadratic.get_num_vars(), 4) self.assertEqual(quadratic.get_num_linear_constraints(), 0) self.assertEqual(quadratic.get_num_quadratic_constraints(), 0) self.assertEqual(quadratic.objective.sense, quadratic.objective.Sense.MINIMIZE) self.assertAlmostEqual(quadratic.objective.constant, 900000) linear_matrix = np.zeros((1, 4)) linear_matrix[0, 0] = -500001 linear_matrix[0, 1] = -800001 linear_matrix[0, 2] = -900001 linear_matrix[0, 3] = -800001 quadratic_matrix = np.zeros((4, 4)) quadratic_matrix[0, 1] = 400000 quadratic_matrix[0, 2] = 600000 quadratic_matrix[1, 2] = 1200000 quadratic_matrix[0, 3] = 800000 quadratic_matrix[1, 3] = 1600000 quadratic_matrix[2, 3] = 2400000 np.testing.assert_array_almost_equal( quadratic.objective.linear.coefficients.toarray(), linear_matrix ) np.testing.assert_array_almost_equal( quadratic.objective.quadratic.coefficients.toarray(), quadratic_matrix ) def test_ising_to_quadraticprogram_quadratic(self): """Test optimization problem to operators with linear=False""" op = QUBIT_OP_MAXIMIZE_SAMPLE offset = OFFSET_MAXIMIZE_SAMPLE quadratic = QuadraticProgram("test") quadratic.from_ising(op, offset, linear=False) self.assertEqual(quadratic.name, "test") self.assertEqual(quadratic.get_num_vars(), 4) self.assertEqual(quadratic.get_num_linear_constraints(), 0) self.assertEqual(quadratic.get_num_quadratic_constraints(), 0) self.assertEqual(quadratic.objective.sense, quadratic.objective.Sense.MINIMIZE) self.assertAlmostEqual(quadratic.objective.constant, 900000) quadratic_matrix = np.zeros((4, 4)) quadratic_matrix[0, 0] = -500001 quadratic_matrix[0, 1] = 400000 quadratic_matrix[0, 2] = 600000 quadratic_matrix[0, 3] = 800000 quadratic_matrix[1, 1] = -800001 quadratic_matrix[1, 2] = 1200000 quadratic_matrix[1, 3] = 1600000 quadratic_matrix[2, 2] = -900001 quadratic_matrix[2, 3] = 2400000 quadratic_matrix[3, 3] = -800001 np.testing.assert_array_almost_equal( quadratic.objective.quadratic.coefficients.toarray(), quadratic_matrix ) @unittest.skipIf(not _optionals.HAS_CPLEX, "CPLEX not available.") def test_continuous_variable_decode(self): """Test decode func of IntegerToBinaryConverter for continuous variables""" mdl = Model("test_continuous_varable_decode") c = mdl.continuous_var(lb=0, ub=10.9, name="c") x = mdl.binary_var(name="x") mdl.maximize(c + x * x) op = from_docplex_mp(mdl) converter = IntegerToBinary() op = converter.convert(op) admm_params = ADMMParameters() qubo_optimizer = MinimumEigenOptimizer(NumPyMinimumEigensolver()) continuous_optimizer = CplexOptimizer(cplex_parameters={"threads": 1, "randomseed": 1}) solver = ADMMOptimizer( qubo_optimizer=qubo_optimizer, continuous_optimizer=continuous_optimizer, params=admm_params, ) result = solver.solve(op) new_x = converter.interpret(result.x) self.assertEqual(new_x[0], 10.9) def test_auto_penalty(self): """Test auto penalty function""" op = QuadraticProgram() op.binary_var("x") op.binary_var("y") op.binary_var("z") op.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2}) op.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="EQ", rhs=2, name="xyz_eq") lineq2penalty = LinearEqualityToPenalty(penalty=1e5) lineq2penalty_auto = LinearEqualityToPenalty() qubo = lineq2penalty.convert(op) qubo_auto = lineq2penalty_auto.convert(op) exact_mes = NumPyMinimumEigensolver() exact = MinimumEigenOptimizer(exact_mes) result = exact.solve(qubo) result_auto = exact.solve(qubo_auto) self.assertEqual(result.fval, result_auto.fval) np.testing.assert_array_almost_equal(result.x, result_auto.x) def test_auto_penalty_warning(self): """Test warnings of auto penalty function""" op = QuadraticProgram() op.binary_var("x") op.binary_var("y") op.binary_var("z") op.minimize(linear={"x": 1, "y": 2}) op.linear_constraint(linear={"x": 0.5, "y": 0.5, "z": 0.5}, sense="EQ", rhs=1, name="xyz") with self.assertLogs("qiskit_optimization", level="WARNING") as log: lineq2penalty = LinearEqualityToPenalty() _ = lineq2penalty.convert(op) warning = ( "WARNING:qiskit_optimization.converters.linear_equality_to_penalty:" "Warning: Using 100000.000000 for the penalty coefficient because a float " "coefficient exists in constraints. \nThe value could be too small. If so, " "set the penalty coefficient manually." ) self.assertIn(warning, log.output) def test_penalty_recalculation_when_reusing(self): """Test the penalty retrieval and recalculation of LinearEqualityToPenalty""" op = QuadraticProgram() op.binary_var("x") op.binary_var("y") op.binary_var("z") op.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2}) op.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="EQ", rhs=2, name="xyz_eq") # First, create a converter with no penalty lineq2penalty = LinearEqualityToPenalty() self.assertIsNone(lineq2penalty.penalty) # Then converter must calculate the penalty for the problem (should be 4.0) lineq2penalty.convert(op) self.assertEqual(4, lineq2penalty.penalty) # Re-use the converter with a newly defined penalty lineq2penalty.penalty = 3 lineq2penalty.convert(op) self.assertEqual(3, lineq2penalty.penalty) # Re-use the converter letting the penalty be calculated again lineq2penalty.penalty = None lineq2penalty.convert(op) self.assertEqual(4, lineq2penalty.penalty) def test_penalty_recalculation_when_reusing2(self): """Test the penalty retrieval and recalculation of LinearEqualityToPenalty 2""" op = QuadraticProgram() op.binary_var("x") op.binary_var("y") op.binary_var("z") op.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2}) op.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="EQ", rhs=2, name="xyz_eq") # First, create a converter with no penalty lineq2penalty = LinearEqualityToPenalty() self.assertIsNone(lineq2penalty.penalty) # Then converter must calculate the penalty for the problem (should be 4.0) lineq2penalty.convert(op) self.assertEqual(4, lineq2penalty.penalty) # Re-use the converter for a new problem op2 = QuadraticProgram() op2.binary_var("x") op2.minimize(linear={"x": 10}) op2.linear_constraint({"x": 1}, "==", 0) lineq2penalty.convert(op2) self.assertEqual(11, lineq2penalty.penalty) def test_linear_equality_to_penalty_decode(self): """Test decode func of LinearEqualityToPenalty""" qprog = QuadraticProgram() qprog.binary_var("x") qprog.binary_var("y") qprog.binary_var("z") qprog.maximize(linear={"x": 3, "y": 1, "z": 1}) qprog.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="EQ", rhs=2, name="xyz_eq") lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qprog) exact_mes = NumPyMinimumEigensolver() exact = MinimumEigenOptimizer(exact_mes) result = exact.solve(qubo) new_x = lineq2penalty.interpret(result.x) np.testing.assert_array_almost_equal(new_x, [1, 1, 0]) infeasible_x = lineq2penalty.interpret([1, 1, 1]) np.testing.assert_array_almost_equal(infeasible_x, [1, 1, 1]) def test_0var_range_inequality(self): """Test InequalityToEquality converter when the var_rang of the slack variable is 0""" op = QuadraticProgram() op.binary_var("x") op.binary_var("y") op.linear_constraint(linear={"x": 1, "y": 1}, sense="LE", rhs=0, name="xy_leq1") op.linear_constraint(linear={"x": 1, "y": 1}, sense="GE", rhs=2, name="xy_geq1") op.quadratic_constraint(quadratic={("x", "x"): 1}, sense="LE", rhs=0, name="xy_leq2") op.quadratic_constraint(quadratic={("x", "y"): 1}, sense="GE", rhs=1, name="xy_geq2") ineq2eq = InequalityToEquality() new_op = ineq2eq.convert(op) self.assertEqual(new_op.get_num_vars(), 2) self.assertTrue( all(l_const.sense == Constraint.Sense.EQ for l_const in new_op.linear_constraints) ) self.assertTrue( all(q_const.sense == Constraint.Sense.EQ for q_const in new_op.quadratic_constraints) ) def test_integer_to_binary2(self): """Test integer to binary variables 2""" mod = QuadraticProgram() mod.integer_var(name="x", lowerbound=0, upperbound=1) mod.integer_var(name="y", lowerbound=0, upperbound=1) mod.minimize(1, {"x": 1}, {("x", "y"): 2}) mod.linear_constraint({"x": 1}, "==", 1) mod.quadratic_constraint({"x": 1}, {("x", "y"): 2}, "==", 1) mod2 = IntegerToBinary().convert(mod) self.assertListEqual( [e.name + "@0" for e in mod.variables], [e.name for e in mod2.variables] ) self.assertDictEqual(mod.objective.linear.to_dict(), mod2.objective.linear.to_dict()) self.assertDictEqual(mod.objective.quadratic.to_dict(), mod2.objective.quadratic.to_dict()) self.assertEqual(mod.get_num_linear_constraints(), mod2.get_num_linear_constraints()) for cst, cst2 in zip(mod.linear_constraints, mod2.linear_constraints): self.assertDictEqual(cst.linear.to_dict(), cst2.linear.to_dict()) self.assertEqual(mod.get_num_quadratic_constraints(), mod2.get_num_quadratic_constraints()) for cst, cst2 in zip(mod.quadratic_constraints, mod2.quadratic_constraints): self.assertDictEqual(cst.linear.to_dict(), cst2.linear.to_dict()) self.assertDictEqual(cst.quadratic.to_dict(), cst2.quadratic.to_dict()) def test_integer_to_binary_quadratic(self): """Test integer to binary variables with quadratic expressions""" mod = QuadraticProgram() mod.integer_var(name="x", lowerbound=10, upperbound=13) mod.minimize(quadratic={("x", "x"): 1}) mod2 = IntegerToBinary().convert(mod) self.assertListEqual([e.name for e in mod2.variables], ["x@0", "x@1"]) self.assertEqual(mod.get_num_linear_constraints(), 0) self.assertEqual(mod.get_num_quadratic_constraints(), 0) self.assertAlmostEqual(mod2.objective.constant, 100) self.assertDictEqual(mod2.objective.linear.to_dict(use_name=True), {"x@0": 20, "x@1": 40}) self.assertDictEqual( mod2.objective.quadratic.to_dict(use_name=True), {("x@0", "x@0"): 1, ("x@1", "x@1"): 4, ("x@0", "x@1"): 4}, ) def test_integer_to_binary_zero_range_variable(self): """Test integer to binary variables with zero range variables""" with self.subTest("zero range variable in a linear expression of the objective"): mod = QuadraticProgram() mod.integer_var(name="x", lowerbound=10, upperbound=10) mod.minimize(linear={"x": 1}) mod2 = IntegerToBinary().convert(mod) self.assertListEqual([e.name for e in mod2.variables], ["x@0"]) self.assertEqual(mod.get_num_linear_constraints(), 0) self.assertEqual(mod.get_num_quadratic_constraints(), 0) self.assertAlmostEqual(mod2.objective.constant, 10) self.assertDictEqual(mod2.objective.linear.to_dict(), {}) self.assertDictEqual(mod2.objective.quadratic.to_dict(), {}) with self.subTest("zero range variable in a quadratic expression of the objective"): mod = QuadraticProgram() mod.integer_var(name="x", lowerbound=10, upperbound=10) mod.minimize(quadratic={("x", "x"): 1}) mod2 = IntegerToBinary().convert(mod) self.assertListEqual([e.name for e in mod2.variables], ["x@0"]) self.assertEqual(mod.get_num_linear_constraints(), 0) self.assertEqual(mod.get_num_quadratic_constraints(), 0) self.assertAlmostEqual(mod2.objective.constant, 100) self.assertDictEqual(mod2.objective.linear.to_dict(), {}) self.assertDictEqual(mod2.objective.quadratic.to_dict(), {}) with self.subTest("zero range variable in a linear constraint"): mod = QuadraticProgram() mod.integer_var(name="x", lowerbound=10, upperbound=10) mod.binary_var(name="y") mod.linear_constraint({"x": 1, "y": 1}, "<=", 100) mod2 = IntegerToBinary().convert(mod) self.assertListEqual([e.name for e in mod2.variables], ["x@0", "y"]) self.assertEqual(mod.get_num_linear_constraints(), 1) self.assertEqual(mod.get_num_quadratic_constraints(), 0) self.assertAlmostEqual(mod2.objective.constant, 0) self.assertDictEqual(mod2.objective.linear.to_dict(), {}) self.assertDictEqual(mod2.objective.quadratic.to_dict(), {}) cst = mod2.get_linear_constraint(0) self.assertDictEqual(cst.linear.to_dict(use_name=True), {"y": 1}) self.assertEqual(cst.sense, Constraint.Sense.LE) self.assertAlmostEqual(cst.rhs, 90) self.assertEqual(cst.name, "c0") with self.subTest("zero range variable in a quadratic constraint"): mod = QuadraticProgram() mod.integer_var(name="x", lowerbound=10, upperbound=10) mod.binary_var(name="y") mod.quadratic_constraint({"x": 1}, {("x", "x"): 2, ("x", "y"): 3}, ">=", 100) mod2 = IntegerToBinary().convert(mod) self.assertListEqual([e.name for e in mod2.variables], ["x@0", "y"]) self.assertEqual(mod.get_num_linear_constraints(), 0) self.assertEqual(mod.get_num_quadratic_constraints(), 1) self.assertAlmostEqual(mod2.objective.constant, 0) self.assertDictEqual(mod2.objective.linear.to_dict(), {}) self.assertDictEqual(mod2.objective.quadratic.to_dict(), {}) cst = mod2.get_quadratic_constraint(0) self.assertDictEqual(cst.linear.to_dict(use_name=True), {"y": 30}) self.assertEqual(cst.sense, Constraint.Sense.GE) self.assertAlmostEqual(cst.rhs, -110) self.assertEqual(cst.name, "q0") if __name__ == "__main__": unittest.main() ``` #### File: qiskit-optimization/test/test_readme_sample.py ```python import unittest import contextlib import io from pathlib import Path import re from test import QiskitOptimizationTestCase class TestReadmeSample(QiskitOptimizationTestCase): """Test sample code from readme""" def test_readme_sample(self): """readme sample test""" # pylint: disable=exec-used readme_name = "README.md" readme_path = Path(__file__).parent.parent.joinpath(readme_name) if not readme_path.exists() or not readme_path.is_file(): self.fail(msg=f"{readme_name} not found at {readme_path}") return # gets the first matched code sample # assumes one code sample to test per readme readme_sample = None with open(readme_path, encoding="UTF-8") as readme_file: match_sample = re.search( "```python.*```", readme_file.read(), flags=re.S, ) if match_sample: # gets the matched string stripping the markdown code block readme_sample = match_sample.group(0)[9:-3] if readme_sample is None: self.skipTest(f"No sample found inside {readme_name}.") return with contextlib.redirect_stdout(io.StringIO()) as out: try: exec(readme_sample, globals()) except Exception as ex: # pylint: disable=broad-except self.fail(str(ex)) return result_x = None result_fval = None str_ref1 = "optimal value:" str_ref2 = "optimal function value:" texts = out.getvalue().split("\n") for text in texts: idx = text.find(str_ref1) if idx >= 0: result_x = text[idx + len(str_ref1) :].strip() continue idx = text.find(str_ref2) if idx >= 0: result_fval = float(text[idx + len(str_ref2) :]) if result_x is not None and result_fval is not None: break if result_x is None: self.fail(f"Failed to find result.x inside {readme_name}.") return if result_fval is None: self.fail(f"Failed to find result.fval inside {readme_name}.") return with self.subTest("test result.x"): self.assertEqual(result_x, "[1. 0. 1. 0.]") with self.subTest("test result.fval"): self.assertAlmostEqual(result_fval, 4.0) if __name__ == "__main__": unittest.main() ``` #### File: test/translators/test_docplex_mp.py ```python from test.optimization_test_case import QiskitOptimizationTestCase from docplex.mp.model import Model from qiskit_optimization.exceptions import QiskitOptimizationError from qiskit_optimization.problems import Constraint, QuadraticProgram from qiskit_optimization.translators.docplex_mp import from_docplex_mp, to_docplex_mp class TestDocplexMpTranslator(QiskitOptimizationTestCase): """Test from_docplex_mp and to_docplex_mp""" def test_from_and_to(self): """test from_docplex_mp and to_docplex_mp""" q_p = QuadraticProgram("test") q_p.binary_var(name="x") q_p.integer_var(name="y", lowerbound=-2, upperbound=4) q_p.continuous_var(name="z", lowerbound=-1.5, upperbound=3.2) q_p.minimize( constant=1, linear={"x": 1, "y": 2}, quadratic={("x", "y"): -1, ("z", "z"): 2}, ) q_p.linear_constraint({"x": 2, "z": -1}, "==", 1) q_p.quadratic_constraint({"x": 2, "z": -1}, {("y", "z"): 3}, "==", 1) q_p2 = from_docplex_mp(to_docplex_mp(q_p)) self.assertEqual(q_p.export_as_lp_string(), q_p2.export_as_lp_string()) mod = Model("test") x = mod.binary_var("x") y = mod.integer_var(-2, 4, "y") z = mod.continuous_var(-1.5, 3.2, "z") mod.minimize(1 + x + 2 * y - x * y + 2 * z * z) mod.add(2 * x - z == 1, "c0") mod.add(2 * x - z + 3 * y * z == 1, "q0") self.assertEqual(q_p.export_as_lp_string(), mod.export_as_lp_string()) def test_from_without_variable_names(self): """test from_docplex_mp without explicit variable names""" mod = Model() x = mod.binary_var() y = mod.continuous_var() z = mod.integer_var() mod.minimize(x + y + z + x * y + y * z + x * z) mod.add_constraint(x + y == z) # linear EQ mod.add_constraint(x + y >= z) # linear GE mod.add_constraint(x + y <= z) # linear LE mod.add_constraint(x * y == z) # quadratic EQ mod.add_constraint(x * y >= z) # quadratic GE mod.add_constraint(x * y <= z) # quadratic LE q_p = from_docplex_mp(mod) var_names = [v.name for v in q_p.variables] self.assertListEqual(var_names, ["x0", "x1", "x2"]) senses = [Constraint.Sense.EQ, Constraint.Sense.GE, Constraint.Sense.LE] for i, c in enumerate(q_p.linear_constraints): self.assertDictEqual(c.linear.to_dict(use_name=True), {"x0": 1, "x1": 1, "x2": -1}) self.assertEqual(c.rhs, 0) self.assertEqual(c.sense, senses[i]) for i, c in enumerate(q_p.quadratic_constraints): self.assertEqual(c.rhs, 0) self.assertDictEqual(c.linear.to_dict(use_name=True), {"x2": -1}) self.assertDictEqual(c.quadratic.to_dict(use_name=True), {("x0", "x1"): 1}) self.assertEqual(c.sense, senses[i]) def test_unsupported_features(self): """Test unsupported features""" with self.subTest("semiinteget_var"), self.assertRaises(QiskitOptimizationError): mod = Model() mod.semiinteger_var(lb=1, name="x") _ = from_docplex_mp(mod) with self.subTest("range constraint"), self.assertRaises(QiskitOptimizationError): mod = Model() x = mod.binary_var("x") mod.add_range(0, 2 * x, 1) _ = from_docplex_mp(mod) with self.subTest("equivalence constraint"), self.assertRaises(QiskitOptimizationError): mod = Model() x = mod.binary_var("x") y = mod.binary_var("y") mod.add_equivalence(x, x + y <= 1, 1) _ = from_docplex_mp(mod) with self.subTest("not equal constraint"), self.assertRaises(QiskitOptimizationError): mod = Model() x = mod.binary_var("x") y = mod.binary_var("y") mod.add(x != y) _ = from_docplex_mp(mod) with self.subTest("PWL constraint"), self.assertRaises(QiskitOptimizationError): mod = Model() x = mod.binary_var("x") mod.add(mod.piecewise(-1, [(0, 0)], 1)(x) <= 1) _ = from_docplex_mp(mod) with self.subTest("lazy constraint"), self.assertRaises(QiskitOptimizationError): mod = Model() x = mod.binary_var("x") y = mod.binary_var("y") mod.add_lazy_constraint(x + y <= 1) _ = from_docplex_mp(mod) with self.subTest("user cut constraint"), self.assertRaises(QiskitOptimizationError): mod = Model() x = mod.binary_var("x") y = mod.binary_var("y") mod.add_user_cut_constraint(x + y <= 1) _ = from_docplex_mp(mod) with self.subTest("sos1"), self.assertRaises(QiskitOptimizationError): mod = Model() x = mod.binary_var("x") y = mod.binary_var("y") mod.add_sos1([x, y]) _ = from_docplex_mp(mod) with self.subTest("sos2"), self.assertRaises(QiskitOptimizationError): mod = Model() x = mod.binary_var("x") y = mod.binary_var("y") z = mod.binary_var("z") mod.add_sos2([x, y, z]) _ = from_docplex_mp(mod) def test_indicator_constraints(self): """Test indicator constraints""" with self.subTest("active 0, sense <="): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=0, linear_ct=(y + 2 * z <= 1), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": -5.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 1) with self.subTest("active 0, sense >="): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=0, linear_ct=(y + 2 * z >= 1), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": 4.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 1) with self.subTest("active 1, sense <="): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y + 2 * z <= 1), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": 5.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 6) with self.subTest("active 1, sense >="): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y + 2 * z >= 1), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": -4.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, -3) with self.subTest("active 0, sense =="): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=0, linear_ct=(y + 2 * z == 1), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": -5.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 1) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": 4.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 1) with self.subTest("active 1, sense =="): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y + 2 * z == 1), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": 5.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 6) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": -4.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, -3) with self.subTest("active 0, sense <=, indicator_big_m"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=0, linear_ct=(y + 2 * z <= 1), name="ind") quad_prog = from_docplex_mp(mod, indicator_big_m=100) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": -100.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, 1) with self.subTest("active 0, sense >=, indicator_big_m"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=0, linear_ct=(y + 2 * z >= 1), name="ind") quad_prog = from_docplex_mp(mod, indicator_big_m=100) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": 100.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, 1) with self.subTest("active 1, sense <=, indicator_big_m"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y + 2 * z <= 1), name="ind") quad_prog = from_docplex_mp(mod, indicator_big_m=100) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": 100.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, 101) with self.subTest("active 1, sense >=, indicator_big_m"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y + 2 * z >= 1), name="ind") quad_prog = from_docplex_mp(mod, indicator_big_m=100) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": -100.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, -99) with self.subTest("active 0, sense ==, indicator_big_m"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=0, linear_ct=(y + 2 * z == 1), name="ind") quad_prog = from_docplex_mp(mod, indicator_big_m=100) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": -100.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, 1) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": 100.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, 1) with self.subTest("active 1, sense ==, indicator_big_m"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y + 2 * z == 1), name="ind") quad_prog = from_docplex_mp(mod, indicator_big_m=100) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": 100.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, 101) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": -100.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, -99) with self.subTest("active 0, sense <=, obvious bound"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=0, linear_ct=(y + 2 * z <= 10), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 10) with self.subTest("active 0, sense >=, obvious bound"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator( binary_var=x, active_value=0, linear_ct=(y + 2 * z >= -10), name="ind" ) quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, -10) with self.subTest("active 1, sense <=, obvious bound"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y + 2 * z <= 10), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 10) with self.subTest("active 1, sense >=, obvious bound"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator( binary_var=x, active_value=1, linear_ct=(y + 2 * z >= -10), name="ind" ) quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, -10) with self.subTest("active 0, sense ==, too small rhs"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator( binary_var=x, active_value=0, linear_ct=(y + 2 * z == -10), name="ind" ) quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": -16.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, -10) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, -10) with self.subTest("active 0, sense ==, too large rhs"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=0, linear_ct=(y + 2 * z == 10), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 10) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": 13, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 10) with self.subTest("active 1, sense ==, too small rhs"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator( binary_var=x, active_value=1, linear_ct=(y + 2 * z == -10), name="ind" ) quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": 16.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 6) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, -10) with self.subTest("active 1, sense ==, too large rhs"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y + 2 * z == 10), name="ind") quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 10) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": -13.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, -3) with self.subTest("no name"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y == 1)) mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y <= 1)) mod.add_indicator(binary_var=x, active_value=1, linear_ct=(y >= 1)) quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 4) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind0_LE") ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind0_GE") ind = quad_prog.get_linear_constraint(2) self.assertEqual(ind.name, "ind1") ind = quad_prog.get_linear_constraint(3) self.assertEqual(ind.name, "ind2") with self.subTest("sense <=, binary_var is included as part of linear_ct too"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, linear_ct=(x + y + 2 * z <= -10)) quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind0") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": 18.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 7) with self.subTest("sense >=, binary_var is included as part of linear_ct too"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, linear_ct=(x + y + 2 * z >= 10)) quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 1) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind0") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual( ind.linear.to_dict(use_name=True), {"x": -12.0, "y": 1.0, "z": 2.0} ) self.assertEqual(ind.rhs, -3) with self.subTest("sense ==, binary_var is included as part of linear_ct too"): mod = Model() x = mod.binary_var("x") y = mod.integer_var(lb=-1, ub=2, name="y") z = mod.continuous_var(lb=-1, ub=2, name="z") mod.add_indicator(binary_var=x, linear_ct=(x + y + 2 * z == 0)) quad_prog = from_docplex_mp(mod) self.assertEqual(quad_prog.get_num_linear_constraints(), 2) ind = quad_prog.get_linear_constraint(0) self.assertEqual(ind.name, "ind0_LE") self.assertEqual(ind.sense, Constraint.Sense.LE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": 8.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, 7) ind = quad_prog.get_linear_constraint(1) self.assertEqual(ind.name, "ind0_GE") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(use_name=True), {"x": -2.0, "y": 1.0, "z": 2.0}) self.assertEqual(ind.rhs, -3) def test_logical_expressions(self): """test from_docplex_mp with logical expressions""" with self.subTest("logical NOT"): mod = Model() x = mod.binary_var("x") y = mod.logical_not(x) mod.add_constraint(y <= 1) mod.add_constraint(y**2 == 2) q_p = from_docplex_mp(mod) self.assertListEqual([v.name for v in q_p.variables], ["x", "_not1"]) self.assertEqual(q_p.get_num_linear_constraints(), 2) lin = q_p.get_linear_constraint(0) self.assertEqual(lin.name, "c0") self.assertEqual(lin.sense, Constraint.Sense.EQ) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"x": 1, "_not1": 1}) self.assertAlmostEqual(lin.rhs, 1) lin = q_p.get_linear_constraint(1) self.assertEqual(lin.name, "c1") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"_not1": 1}) self.assertAlmostEqual(lin.rhs, 1) self.assertEqual(q_p.get_num_quadratic_constraints(), 1) quad = q_p.get_quadratic_constraint(0) self.assertEqual(quad.name, "q0") self.assertEqual(quad.sense, Constraint.Sense.EQ) self.assertDictEqual(quad.linear.to_dict(), {}) self.assertDictEqual(quad.quadratic.to_dict(use_name=True), {("_not1", "_not1"): 1}) self.assertAlmostEqual(quad.rhs, 2) with self.subTest("logical AND"): mod = Model() x = mod.binary_var("x") y = mod.binary_var("y") z = mod.logical_and(x, y) mod.add_constraint(z <= 1) mod.add_constraint(z**2 == 2) q_p = from_docplex_mp(mod) self.assertListEqual([v.name for v in q_p.variables], ["x", "y", "_and2"]) self.assertEqual(q_p.get_num_linear_constraints(), 4) lin = q_p.get_linear_constraint(0) self.assertEqual(lin.name, "c0") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"x": -1, "_and2": 1}) self.assertAlmostEqual(lin.rhs, 0) lin = q_p.get_linear_constraint(1) self.assertEqual(lin.name, "c1") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"y": -1, "_and2": 1}) self.assertAlmostEqual(lin.rhs, 0) lin = q_p.get_linear_constraint(2) self.assertEqual(lin.name, "c2") self.assertEqual(lin.sense, Constraint.Sense.GE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"x": -1, "y": -1, "_and2": 1}) self.assertAlmostEqual(lin.rhs, -1) lin = q_p.get_linear_constraint(3) self.assertEqual(lin.name, "c3") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"_and2": 1}) self.assertAlmostEqual(lin.rhs, 1) self.assertEqual(q_p.get_num_quadratic_constraints(), 1) quad = q_p.get_quadratic_constraint(0) self.assertEqual(quad.name, "q0") self.assertEqual(quad.sense, Constraint.Sense.EQ) self.assertDictEqual(quad.linear.to_dict(), {}) self.assertDictEqual(quad.quadratic.to_dict(use_name=True), {("_and2", "_and2"): 1}) self.assertAlmostEqual(quad.rhs, 2) with self.subTest("logical OR"): mod = Model() x = mod.binary_var("x") y = mod.binary_var("y") z = mod.logical_or(x, y) mod.add_constraint(z <= 1) mod.add_constraint(z**2 == 2) q_p = from_docplex_mp(mod) self.assertListEqual([v.name for v in q_p.variables], ["x", "y", "_or2"]) self.assertEqual(q_p.get_num_linear_constraints(), 4) lin = q_p.get_linear_constraint(0) self.assertEqual(lin.name, "c0") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"x": 1, "_or2": -1}) self.assertAlmostEqual(lin.rhs, 0) lin = q_p.get_linear_constraint(1) self.assertEqual(lin.name, "c1") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"y": 1, "_or2": -1}) self.assertAlmostEqual(lin.rhs, 0) lin = q_p.get_linear_constraint(2) self.assertEqual(lin.name, "c2") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"x": -1, "y": -1, "_or2": 1}) self.assertAlmostEqual(lin.rhs, 0) lin = q_p.get_linear_constraint(3) self.assertEqual(lin.name, "c3") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(use_name=True), {"_or2": 1}) self.assertAlmostEqual(lin.rhs, 1) self.assertEqual(q_p.get_num_quadratic_constraints(), 1) quad = q_p.get_quadratic_constraint(0) self.assertEqual(quad.name, "q0") self.assertEqual(quad.sense, Constraint.Sense.EQ) self.assertDictEqual(quad.linear.to_dict(), {}) self.assertDictEqual(quad.quadratic.to_dict(use_name=True), {("_or2", "_or2"): 1}) self.assertAlmostEqual(quad.rhs, 2) def test_trivial_constraints_from_docplex_mp(self): """test trivial constraints of from_docplex_mp""" with self.subTest("trivial linear constraint"), self.assertWarns(UserWarning): mod = Model() x = mod.binary_var("x") mod.add_constraint(x + 1 <= x + 1) q_p = from_docplex_mp(mod) self.assertListEqual([v.name for v in q_p.variables], ["x"]) self.assertEqual(q_p.get_num_linear_constraints(), 1) self.assertEqual(q_p.get_num_quadratic_constraints(), 0) lin = q_p.get_linear_constraint(0) self.assertEqual(lin.name, "c0") self.assertEqual(lin.sense, Constraint.Sense.LE) self.assertDictEqual(lin.linear.to_dict(), {}) self.assertAlmostEqual(lin.rhs, 0) with self.subTest("trivial quadratic constraint"), self.assertWarns(UserWarning): mod = Model() x = mod.binary_var("x") mod.add_constraint(x * x == x * x) q_p = from_docplex_mp(mod) self.assertListEqual([v.name for v in q_p.variables], ["x"]) self.assertEqual(q_p.get_num_linear_constraints(), 0) self.assertEqual(q_p.get_num_quadratic_constraints(), 1) quad = q_p.get_quadratic_constraint(0) self.assertEqual(quad.name, "q0") self.assertEqual(quad.sense, Constraint.Sense.EQ) self.assertDictEqual(quad.linear.to_dict(), {}) self.assertDictEqual(quad.quadratic.to_dict(), {}) self.assertAlmostEqual(quad.rhs, 0) with self.subTest("trivial indicator constraint"), self.assertWarns(UserWarning): mod = Model() x = mod.binary_var("x") mod.add_indicator(x, x + 1 >= x + 1) q_p = from_docplex_mp(mod) self.assertListEqual([v.name for v in q_p.variables], ["x"]) self.assertEqual(q_p.get_num_linear_constraints(), 1) self.assertEqual(q_p.get_num_quadratic_constraints(), 0) ind = q_p.get_linear_constraint(0) self.assertEqual(ind.name, "ind0") self.assertEqual(ind.sense, Constraint.Sense.GE) self.assertDictEqual(ind.linear.to_dict(), {}) self.assertAlmostEqual(ind.rhs, 0) def test_trivial_constraints_to_docplex_mp(self): """test trivial constraints of to_docplex_mp""" with self.subTest("trivial linear constraint"): q_p = QuadraticProgram() q_p.linear_constraint(sense="==", rhs=1.0) mod = to_docplex_mp(q_p) self.assertEqual(mod.number_of_variables, 0) self.assertEqual(mod.number_of_constraints, 1) self.assertEqual(mod.number_of_linear_constraints, 1) cst = mod.get_constraint_by_index(0) left = cst.get_left_expr() self.assertTrue(left.is_constant()) self.assertAlmostEqual(left.constant, 0) right = cst.get_right_expr() self.assertTrue(right.is_constant()) self.assertAlmostEqual(right.constant, 1) with self.subTest("trivial quadratic constraint"): q_p = QuadraticProgram() q_p.quadratic_constraint(sense="==", rhs=1.0) mod = to_docplex_mp(q_p) self.assertEqual(mod.number_of_variables, 0) self.assertEqual(mod.number_of_constraints, 1) self.assertEqual(mod.number_of_linear_constraints, 1) cst = mod.get_constraint_by_index(0) left = cst.get_left_expr() self.assertTrue(left.is_constant()) self.assertAlmostEqual(left.constant, 0) right = cst.get_right_expr() self.assertTrue(right.is_constant()) self.assertAlmostEqual(right.constant, 1) ```
{ "source": "johannesgrothe/Smarthome_System", "score": 3 }
#### File: Smarthome_System/exporters/temp_dir_manager.py ```python import logging import os import shutil class TempDirManager: _path: str _logger: logging.Logger def __init__(self, path: str): self._logger = logging.getLogger(self.__class__.__name__) self._path = path def assert_temp(self): if not os.path.isdir(self._path): os.mkdir(self._path) def clean_temp(self): for filename in [x for x in os.listdir(self._path) if os.path.isfile(os.path.join(self._path, x))]: self._logger.info(f"Deleting '{filename}'") os.remove(os.path.join(self._path, filename)) for dirname in [x for x in os.listdir(self._path) if os.path.isdir(os.path.join(self._path, x))]: self._logger.info(f"Deleting Directory '{dirname}'") shutil.rmtree(os.path.join(self._path, dirname)) ``` #### File: Smarthome_System/tests/test_software_version.py ```python import pytest from utils.software_version import SoftwareVersion def test_software_version_operators(): with pytest.raises(ValueError): SoftwareVersion.from_string("2.4") with pytest.raises(ValueError): SoftwareVersion.from_string("2.4.3.5") assert SoftwareVersion.from_string("2.4.11") == SoftwareVersion(2, 4, 11) assert str(SoftwareVersion(1, 0, 8)) == "1.0.8" assert SoftwareVersion(1, 0, 8) == SoftwareVersion(1, 0, 8) assert SoftwareVersion(1, 0, 8) != SoftwareVersion(1, 0, 9) assert SoftwareVersion(1, 0, 8) < SoftwareVersion(1, 0, 9) assert SoftwareVersion(1, 0, 8) > SoftwareVersion(1, 0, 7) assert SoftwareVersion(1, 1, 8) > SoftwareVersion(1, 0, 15) def test_software_version_follows(): assert SoftwareVersion(2, 3, 8).follows(SoftwareVersion(2, 3, 7)) assert SoftwareVersion(2, 3, 0).follows(SoftwareVersion(2, 2, 7)) assert SoftwareVersion(3, 0, 0).follows(SoftwareVersion(2, 3, 7)) assert not SoftwareVersion(2, 3, 8).follows(SoftwareVersion(2, 3, 8)) assert not SoftwareVersion(2, 3, 8).follows(SoftwareVersion(2, 3, 9)) assert not SoftwareVersion(2, 3, 8).follows(SoftwareVersion(2, 2, 13)) assert not SoftwareVersion(3, 0, 1).follows(SoftwareVersion(2, 3, 7)) assert not SoftwareVersion(3, 1, 0).follows(SoftwareVersion(2, 3, 7)) assert not SoftwareVersion(4, 0, 0).follows(SoftwareVersion(2, 3, 7)) ``` #### File: Smarthome_System/utils/cpp_file.py ```python from abc import abstractmethod, ABCMeta from typing import Union _indentation_depth = 4 class CppElement(metaclass=ABCMeta): @staticmethod def _render_indent(indentation: int) -> str: return " " * _indentation_depth * indentation @abstractmethod def render_content(self, indentation: int) -> [str]: """ Renders the content of the C++ element into lines of code :return: the lines of code as strings """ class CppContainer(metaclass=ABCMeta): _elements: list[CppElement] def __init__(self): self._elements = [] def add(self, elem: CppElement): """ Adds an element to the C++ file :param elem: Element to add :return: None """ self._elements.append(elem) def _render_elements(self, indentation: int) -> [str]: lines = [] for elem in self._elements: elem_lines = elem.render_content(indentation) elem_lines[len(elem_lines) - 1] = elem_lines[len(elem_lines) - 1] lines += elem_lines return lines class CppPragma(CppElement): _name: str def __init__(self, name: str): self._name = name def render_content(self, indentation: int) -> [str]: return [self._render_indent(indentation) + f"#pragma {self._name}"] class CppImport(CppElement): _name: str _in_package: bool def __init__(self, name: str, in_package: bool): self._name = name self._in_package = in_package def render_content(self, indentation: int) -> [str]: include_buf = f"\"{self._name}\"" if self._in_package else f"<{self._name}>" return [self._render_indent(indentation) + f"#include {include_buf}"] class CppBlankLine(CppElement): _blank_lines: int def __init__(self, blank_lines: int = 0): self._blank_lines = blank_lines def render_content(self, indentation: int) -> [str]: return ["\n" * self._blank_lines] class CppVariable(CppElement): _type: str _name: str _value: Union[int, str] _docstring: str def __init__(self, var_type: str, name: str, value: Union[int, str], docstr: str = ""): self._type = var_type self._name = name self._value = value self._docstring = docstr def render_content(self, indentation: int) -> [str]: docstr_buf = "" if not self._docstring else f" // {self._docstring}" value_buf = str(self._value) if isinstance(self._value, int) else f"\"{self._value}\"" type_prefix = self._type type_suffix = "" if type_prefix.endswith("[]"): type_prefix = type_prefix[:-2].strip() type_suffix = "[] " return [self._render_indent(indentation) + f"{type_prefix} {self._name} {type_suffix}= {value_buf};{docstr_buf}"] class CppComment(CppElement): _content: str def __init__(self, content: str): self._content = content def render_content(self, indentation: int) -> [str]: parts = self._content.split("\n") return [self._render_indent(indentation) + f"// {x}" for x in parts] class CppEnumClass(CppElement): class _CppEnumClassElement(CppElement): _name: str _value: int _docstring: str def __init__(self, name: str, value: int, docstring: str = ""): self._name = name self._value = value self._docstring = docstring def render_content(self, indentation: int, last_elem: bool = False) -> str: buf_comment = "" if self._docstring: buf_comment = f" // {self._docstring}" line_end = "" if not last_elem: line_end = "," return f"{self._render_indent(indentation)}{self._name} = {str(self._value)}{line_end}{buf_comment}" _name: str _docstring: str _items: list[_CppEnumClassElement] def __init__(self, name: str, docstring: str): super().__init__() self._name = name self._docstring = docstring self._items = [] def add_element(self, name: str, value: int, docstring: str = ""): self._items.append(self._CppEnumClassElement(name, value, docstring)) def render_content(self, indentation: int) -> [str]: return [""] + \ CppComment(self._docstring).render_content(indentation) + \ [self._render_indent(indentation) + "enum class " + self._name + " {"] + \ [x.render_content(indentation + 1) for x in self._items[:-1]] + \ [self._items[-1].render_content(indentation + 1, True)] + \ [self._render_indent(indentation) + "};"] class CppNamespace(CppElement, CppContainer): _name: str _docstring: str def __init__(self, name: str, docstring: str): super().__init__() self._name = name self._docstring = docstring def render_content(self, indentation: int) -> [str]: return [""] + \ CppComment(self._docstring).render_content(indentation) + \ [self._render_indent(indentation) + "namespace " + self._name + " {"] + \ self._render_elements(indentation + 1) + \ [self._render_indent(indentation) + "}"] class CppFile(CppContainer): """Contains a C++ file for editing and saving""" def save(self, filename: str): """ Saves the C++ file to the disk :param filename: Name of the file to add :return: None """ lines = self._render_elements(0) with open(filename, "w") as file_p: out_lines = [x + "\n" for x in lines] file_p.writelines(out_lines) ```
{ "source": "johanneshardt/raspberrify", "score": 3 }
#### File: raspberrify/raspberrify/sense.py ```python import logging from sense_hat import SenseHat from typing import List sense = SenseHat() sense.set_rotation(r=180) sense.clear() def show(matrix: List[List[int]]) -> None: if len(matrix) == 64 and all(len(e) == 3 for e in matrix): sense.set_pixels(matrix) else: logging.exception(msg="Invalid matrix dimensions.") ``` #### File: raspberrify/raspberrify/spotify.py ```python import spotipy import requests from PIL import Image from spotipy.oauth2 import SpotifyOAuth from enum import Enum, unique, auto @unique class State(Enum): PLAYING = auto() PAUSED = auto() class Playback: def __init__(self, sp: spotipy.client.Spotify): self.client = sp self.track = None self.track_id = None self.state = None self.image_link = None self.cached_track = None self.refresh() def refresh(self) -> None: track = self.client.currently_playing() if track is not None and track["item"] is not None: self.state = State.PLAYING self.track = track["item"]["name"] self.track_id = track["item"]["id"] self.image_link = track["item"]["album"]["images"][0]["url"] else: self.status = State.PAUSED def get_cover(self) -> Image.Image: response = requests.get(self.image_link, stream=True) response.raise_for_status() im = Image.open(response.raw) return im def toggle_playback(self) -> None: if self.state == State.PLAYING: print("Paused playback.") self.pause_playback() else: print("Resumed playback.") self.start_playback() # TODO Handle case when nothing is playing?? # TODO combine with Playback class somehow? def authorize( client_id: str, client_secret: str, redirect_uri: str ) -> spotipy.client.Spotify: scope = ["user-read-currently-playing", "user-library-read"] sp = spotipy.Spotify( auth_manager=SpotifyOAuth( client_id=client_id, client_secret=client_secret, redirect_uri=redirect_uri, scope=" ".join(scope), ) ) return sp ```
{ "source": "johannesharmse/move_37_course", "score": 3 }
#### File: dynamic_programming/basic_scripts/value_iteration.py ```python from __future__ import print_function, division from builtins import range # Note: you may need to update your version of future # sudo pip install -U future import numpy as np from grid_world import standard_grid from utils import print_values, print_policy # SMALL_ENOUGH is referred to by the mathematical symbol theta in equations SMALL_ENOUGH = 1e-3 GAMMA = 0.9 ALL_POSSIBLE_ACTIONS = ('U', 'D', 'L', 'R') def best_action_value(grid, V, s): # finds the highest value action (max_a) from state s, returns the action and value best_a = None best_value = float('-inf') grid.set_state(s) # loop through all possible actions to find the best current action for a in ALL_POSSIBLE_ACTIONS: transititions = grid.get_transition_probs(a) expected_v = 0 expected_r = 0 for (prob, r, state_prime) in transititions: expected_r += prob * r expected_v += prob * V[state_prime] v = expected_r + GAMMA * expected_v if v > best_value: best_value = v best_a = a return best_a, best_value def calculate_values(grid): # initialize V(s) V = {} states = grid.all_states() for s in states: V[s] = 0 # repeat until convergence # V[s] = max[a]{ sum[s',r] { p(s',r|s,a)[r + gamma*V[s']] } } while True: # biggest_change is referred to by the mathematical symbol delta in equations biggest_change = 0 for s in grid.non_terminal_states(): old_v = V[s] _, new_v = best_action_value(grid, V, s) V[s] = new_v biggest_change = max(biggest_change, np.abs(old_v - new_v)) if biggest_change < SMALL_ENOUGH: break return V def initialize_random_policy(): # policy is a lookup table for state -> action # we'll randomly choose an action and update as we learn policy = {} for s in grid.non_terminal_states(): policy[s] = np.random.choice(ALL_POSSIBLE_ACTIONS) return policy def calculate_greedy_policy(grid, V): policy = initialize_random_policy() # find a policy that leads to optimal value function for s in policy.keys(): grid.set_state(s) # loop through all possible actions to find the best current action best_a, _ = best_action_value(grid, V, s) policy[s] = best_a return policy if __name__ == '__main__': # this grid gives you a reward of -0.1 for every non-terminal state # we want to see if this will encourage finding a shorter path to the goal grid = standard_grid(obey_prob=0.8, step_cost=-0.5) # print rewards print("rewards:") print_values(grid.rewards, grid) # calculate accurate values for each square V = calculate_values(grid) # calculate the optimum policy based on our values policy = calculate_greedy_policy(grid, V) # our goal here is to verify that we get the same answer as with policy iteration print("values:") print_values(V, grid) print("policy:") print_policy(policy, grid) ``` #### File: src/gradient_policy/lunar_lander.py ```python import tensorflow as tf import numpy as np import gym def discount_and_normalize_rewards(episode_rewards): """Calculate normalized episode reward""" discounted_episode_rewards = np.zeros_like(episode_rewards) cumulative = 0.0 for i in reversed(range(len(episode_rewards))): cumulative = cumulative * gamma + episode_rewards[i] discounted_episode_rewards[i] = cumulative mean = np.mean(discounted_episode_rewards) std = np.std(discounted_episode_rewards) discounted_episode_rewards = (discounted_episode_rewards - mean) / (std) return discounted_episode_rewards def reinforce(env, state_size, action_size, max_episodes, learning_rate, gamma, render=False): """Training""" ### POLICY ESTIMATOR ### with tf.name_scope("inputs"): input_ = tf.placeholder(tf.float32, [None, state_size], name="input_") actions = tf.placeholder(tf.int32, [None, action_size], name="actions") discounted_episode_rewards_ = tf.placeholder(tf.float32, [None,], name="discounted_episode_rewards") # Add this placeholder for having this variable in tensorboard mean_reward_ = tf.placeholder(tf.float32 , name="mean_reward") with tf.name_scope("fc1"): fc1 = tf.contrib.layers.fully_connected(inputs = input_, num_outputs = 10, activation_fn=tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer()) with tf.name_scope("fc2"): fc2 = tf.contrib.layers.fully_connected(inputs = fc1, num_outputs = action_size, activation_fn= tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer()) with tf.name_scope("fc3"): fc3 = tf.contrib.layers.fully_connected(inputs = fc2, num_outputs = action_size, activation_fn= None, weights_initializer=tf.contrib.layers.xavier_initializer()) with tf.name_scope("softmax"): action_distribution = tf.nn.softmax(fc3) with tf.name_scope("loss"): # tf.nn.softmax_cross_entropy_with_logits computes the cross entropy of the result after applying the softmax function # If you have single-class labels, where an object can only belong to one class, you might now consider using # tf.nn.sparse_softmax_cross_entropy_with_logits so that you don't have to convert your labels to a dense one-hot array. neg_log_prob = tf.nn.softmax_cross_entropy_with_logits_v2(logits = fc3, labels = actions) loss = tf.reduce_mean(neg_log_prob * discounted_episode_rewards_) with tf.name_scope("train"): train_opt = tf.train.AdamOptimizer(learning_rate).minimize(loss) # tensorboard # Setup TensorBoard Writer # writer = tf.summary.FileWriter("./tensorboard/pg/1") ## Losses # tf.summary.scalar("Loss", loss) ## Reward mean # tf.summary.scalar("Reward_mean", mean_reward_) # write_op = tf.summary.merge_all() ### TRAINING ### allRewards = [] total_rewards = 0 maximumRewardRecorded = 0 episode = 0 episode_states, episode_actions, episode_rewards = [],[],[] saver = tf.train.Saver() with tf.Session() as sess: # sess.run(tf.initialize_all_variables()) sess.run(tf.global_variables_initializer()) for episode in range(max_episodes): episode_rewards_sum = 0 # Launch the game state = env.reset() while True: # Choose action a, remember WE'RE NOT IN A DETERMINISTIC ENVIRONMENT, WE'RE OUTPUT PROBABILITIES. action_probability_distribution = sess.run(action_distribution, feed_dict={input_: state.reshape([1,8])}) action = np.random.choice(range(action_probability_distribution.shape[1]), p=action_probability_distribution.ravel()) # select action w.r.t the actions prob if render: env.render() # Perform a new_state, reward, done, info = env.step(action) # Store s, a, r episode_states.append(state) # For actions because we output only one (the index) we need 2 (1 is for the action taken) # We need [0., 1.] (if we take right) not just the index action_ = np.zeros(action_size) action_[action] = 1 episode_actions.append(action_) episode_rewards.append(reward) if done: # Calculate sum reward episode_rewards_sum = np.sum(episode_rewards) # allRewards.append(episode_rewards_sum) # total_rewards = np.sum(allRewards) # # Mean reward # mean_reward = np.divide(total_rewards, episode+1) # maximumRewardRecorded = np.amax(allRewards) print("==========================================") print("Episode: ", episode) print("Reward: ", episode_rewards_sum) # print("Mean Reward", mean_reward) # print("Max reward so far: ", maximumRewardRecorded) # Calculate discounted reward discounted_episode_rewards = discount_and_normalize_rewards(episode_rewards) # Feedforward, gradient and backpropagation loss_, _ = sess.run([loss, train_opt], feed_dict={input_: np.vstack(np.array(episode_states)), actions: np.vstack(np.array(episode_actions)), discounted_episode_rewards_: discounted_episode_rewards }) # # Write TF Summaries # summary = sess.run(write_op, feed_dict={input_: np.vstack(np.array(episode_states)), # actions: np.vstack(np.array(episode_actions)), # discounted_episode_rewards_: discounted_episode_rewards, # mean_reward_: mean_reward # }) # writer.add_summary(summary, episode) # writer.flush() # Reset the transition stores episode_states, episode_actions, episode_rewards = [],[],[] break state = new_state # Save Model if episode % 100 == 0: saver.save(sess, "./models/model.ckpt") print("Model saved") def predict(env, state_size, action_size, n_episodes=10, render=True): ### POLICY ESTIMATOR ### with tf.name_scope("inputs"): input_ = tf.placeholder(tf.float32, [None, state_size], name="input_") actions = tf.placeholder(tf.int32, [None, action_size], name="actions") discounted_episode_rewards_ = tf.placeholder(tf.float32, [None,], name="discounted_episode_rewards") # Add this placeholder for having this variable in tensorboard mean_reward_ = tf.placeholder(tf.float32 , name="mean_reward") with tf.name_scope("fc1"): fc1 = tf.contrib.layers.fully_connected(inputs = input_, num_outputs = 10, activation_fn=tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer()) with tf.name_scope("fc2"): fc2 = tf.contrib.layers.fully_connected(inputs = fc1, num_outputs = action_size, activation_fn= tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer()) with tf.name_scope("fc3"): fc3 = tf.contrib.layers.fully_connected(inputs = fc2, num_outputs = action_size, activation_fn= None, weights_initializer=tf.contrib.layers.xavier_initializer()) with tf.name_scope("softmax"): action_distribution = tf.nn.softmax(fc3) with tf.name_scope("loss"): # tf.nn.softmax_cross_entropy_with_logits computes the cross entropy of the result after applying the softmax function # If you have single-class labels, where an object can only belong to one class, you might now consider using # tf.nn.sparse_softmax_cross_entropy_with_logits so that you don't have to convert your labels to a dense one-hot array. neg_log_prob = tf.nn.softmax_cross_entropy_with_logits_v2(logits = fc3, labels = actions) loss = tf.reduce_mean(neg_log_prob * discounted_episode_rewards_) with tf.name_scope("train"): train_opt = tf.train.AdamOptimizer(learning_rate).minimize(loss) # tensorboard # Setup TensorBoard Writer # writer = tf.summary.FileWriter("./tensorboard/pg/1") ## Losses # tf.summary.scalar("Loss", loss) ## Reward mean # tf.summary.scalar("Reward_mean", mean_reward_) # write_op = tf.summary.merge_all() ### TRAINING ### allRewards = [] total_rewards = 0 maximumRewardRecorded = 0 episode = 0 episode_states, episode_actions, episode_rewards = [],[],[] # saver = tf.train.Saver() saver = tf.train.Saver() with tf.Session() as sess: env.reset() rewards = [] # Load the model saver.restore(sess, "./models/model.ckpt") for episode in range(n_episodes): state = env.reset() step = 0 done = False total_rewards = 0 print("****************************************************") print("EPISODE ", episode) while True: # Choose action a, remember WE'RE NOT IN A DETERMINISTIC ENVIRONMENT, WE'RE OUTPUT PROBABILITIES. action_probability_distribution = sess.run(action_distribution, feed_dict={input_: state.reshape([1,8])}) #print(action_probability_distribution) action = np.random.choice(range(action_probability_distribution.shape[1]), p=action_probability_distribution.ravel()) # select action w.r.t the actions prob if render: env.render() new_state, reward, done, info = env.step(action) total_rewards += reward if done: rewards.append(total_rewards) print ("Score", total_rewards) break state = new_state env.close() print ("Score over time: " + str(sum(rewards)/10)) if __name__ == "__main__": env = gym.make('LunarLander-v2') env = env.unwrapped # n frames state_size = 8 # possible actions action_size = env.action_space.n # max episodes for training max_episodes = 1000 learning_rate = 0.01 # discount rate gamma = 0.95 # reinforce(env, state_size, action_size, \ # max_episodes, learning_rate, gamma, render=False) predict(env, state_size, action_size) ``` #### File: src/monte_carlo/mc.py ```python from copy import deepcopy import numpy as np class FiniteMCModel: def __init__(self, state_space, action_space, gamma=1.0, epsilon=0.1): """MCModel takes in state_space and action_space (finite) Arguments --------- state_space: int OR list[observation], where observation is any hashable type from env's obs. action_space: int OR list[action], where action is any hashable type from env's actions. gamma: float, discounting factor. epsilon: float, epsilon-greedy parameter. If the parameter is an int, then we generate a list, and otherwise we generate a dictionary. >>> m = FiniteMCModel(2,3,epsilon=0) >>> m.Q [[0, 0, 0], [0, 0, 0]] >>> m.Q[0][1] = 1 >>> m.Q [[0, 1, 0], [0, 0, 0]] >>> m.pi(1, 0) 1 >>> m.pi(1, 1) 0 >>> d = m.generate_returns([(0,0,0), (0,1,1), (1,0,1)]) >>> assert(d == {(1, 0): 1, (0, 1): 2, (0, 0): 2}) >>> m.choose_action(m.pi, 1) 0 """ self.gamma = gamma self.epsilon = epsilon self.Q = None if isinstance(action_space, int): self.action_space = np.arange(action_space) actions = [0]*action_space # Action representation self._act_rep = "list" else: self.action_space = action_space actions = {k:0 for k in action_space} self._act_rep = "dict" if isinstance(state_space, int): self.state_space = np.arange(state_space) self.Q = [deepcopy(actions) for _ in range(state_space)] else: self.state_space = state_space self.Q = {k:deepcopy(actions) for k in state_space} # Frequency of state/action. self.Ql = deepcopy(self.Q) def pi(self, action, state): """pi(a,s,A,V) := pi(a|s) We take the argmax_a of Q(s,a). q[s] = [q(s,0), q(s,1), ...] """ if self._act_rep == "list": if action == np.argmax(self.Q[state]): return 1 return 0 elif self._act_rep == "dict": if action == max(self.Q[state], key=self.Q[state].get): return 1 return 0 def b(self, action, state): """b(a,s,A) := b(a|s) Sometimes you can only use a subset of the action space given the state. Randomly selects an action from a uniform distribution. """ return self.epsilon/len(self.action_space) + (1-self.epsilon) * self.pi(action, state) def generate_returns(self, ep): """Backup on returns per time period in an epoch Arguments --------- ep: [(observation, action, reward)], an episode trajectory in chronological order. """ G = {} # return on state C = 0 # cumulative reward for tpl in reversed(ep): observation, action, reward = tpl G[(observation, action)] = C = reward + self.gamma*C return G def choose_action(self, policy, state): """Uses specified policy to select an action randomly given the state. Arguments --------- policy: function, can be self.pi, or self.b, or another custom policy. state: observation of the environment. """ probs = [policy(a, state) for a in self.action_space] return np.random.choice(self.action_space, p=probs) def update_Q(self, ep): """Performs a action-value update. Arguments --------- ep: [(observation, action, reward)], an episode trajectory in chronological order. """ # Generate returns, return ratio G = self.generate_returns(ep) for s in G: state, action = s q = self.Q[state][action] self.Ql[state][action] += 1 N = self.Ql[state][action] self.Q[state][action] = q * N/(N+1) + G[s]/(N+1) def score(self, env, policy, n_samples=1000): """Evaluates a specific policy with regards to the env. Arguments --------- env: an openai gym env, or anything that follows the api. policy: a function, could be self.pi, self.b, etc. """ rewards = [] for _ in range(n_samples): observation = env.reset() cum_rewards = 0 while True: action = self.choose_action(policy, observation) observation, reward, done, _ = env.step(action) cum_rewards += reward if done: rewards.append(cum_rewards) break return np.mean(rewards) if __name__ == "__main__": import doctest doctest.testmod() ```
{ "source": "JohannesHaubner/TopOpt", "score": 3 }
#### File: topopt/quadrature/quadrature.py ```python from scipy import integrate as integrate import numpy as np import pickle from pathlib import Path here = Path(__file__).parent sigma = 7./32 def f(r): return 2*r**3 - 3*r**2 +1 def squared_norm(x1, x2, y1, y2): return np.power(x1 -y1, 2) + np.power(x2 -y2, 2) def kappa(x1, x2, y1, y2): if squared_norm(x1,x2,y1,y2)<=8: return 1. elif squared_norm(x1,x2,y1,y2) <= 25./2: return f((squared_norm(x1, x2, y1,y2)-8)/(9./2)) else: return 0. def int_jk(x1, x2, y1, y2,sigma): return np.power(squared_norm(x1,x2,y1,y2),-1-1*sigma)*kappa(x1,x2,y1,y2) def tilde_h2(x,y,z, sigma): return np.power(np.power(x+y,2) + np.power(z,2), -1-sigma) def hat_h2(x,y,z, sigma): return -1.0*z*np.power(np.power(x+y,2)+np.power(z,2),-1-sigma) def h3(x1,x2,y1,y2, sigma): return np.power(np.power(x1+y1,2) + np.power(x2+y2,2),-1-sigma) def int_21(x,y,sigma): return tilde_h2(1,x,y,sigma) + tilde_h2(x,1,y,sigma) + tilde_h2(x,y,1,sigma) def int_22(x,y,sigma): return hat_h2(1,x,y,sigma) + hat_h2(x,1,y,sigma) + hat_h2(x,y,1,sigma) def int_3(x, y, z, sigma): return h3(1,x,y,z, sigma) def get_weights(sigma): string = str(here) + "/integral_approximations_sigma_" + str(sigma) + ".pkl" try: file = open(string, "rb") except: save_weights(sigma) file = open(string, "rb") return file def save_weights(sigma): sig = sigma ints = {} print('compute quadrature for ', 2) ints["int2_1"] = integrate.nquad(int_21, [[0, 1], [0, 1]], args=(sig,)) ints["int2_2"] = integrate.nquad(int_22, [[0, 1], [0, 1]], args=(sig,)) print('compute quadrature for ', 3) ints["int3"] = integrate.nquad(int_3, [[0, 1], [0, 1], [0, 1]], args=(sig,)) indexes = [[2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [3, 2], [3, 3], [4, 0], [4, 1], [4, 2]] for k in range(len(indexes)): print('compute quadrature for ', k + 4) ints["int" + str(4 + k)] = integrate.nquad(int_jk, [[0, 1], [0, 1], [indexes[k][0], indexes[k][0] + 1], [indexes[k][1], indexes[k][1] + 1]], args=(sig,)) string = str(here) + "/integral_approximations_sigma_" + str(sigma) + ".pkl" file = open(string, "wb") pickle.dump(ints, file) file.close() if __name__ == '__main__': sigma = 7./16 string = "integral_approximations_sigma_" + str(sigma) + ".pkl" try: file = open(string, "rb") except: save_weights(sigma) file = open(string, "rb") output = pickle.load(file) print(output) ``` #### File: TopOpt/topopt/topopt.py ```python from dolfin import * from dolfin_adjoint import * import numpy as np from scipy import io import ufl set_log_level(LogLevel.ERROR) from preprocessing import Preprocessing from ipopt_solver import IPOPTSolver, IPOPTProblem import Hs_regularization as Hs_reg try: from pyadjoint import ipopt # noqa: F401 except ImportError: print("""This example depends on IPOPT and Python ipopt bindings. \ When compiling IPOPT, make sure to link against HSL, as it \ is a necessity for practical problems.""") raise # turn off redundant output in parallel parameters["std_out_all_processes"] = False mu = Constant(1.0) # viscosity alphaunderbar = 2.5 * mu / (100**2) # parameter for \alpha alphabar = 2.5 * mu / (0.01**2) # parameter for \alpha q = Constant(0.01) # q value that controls difficulty/discrete-valuedness of solution def alpha(rho): """Inverse permeability as a function of rho, equation (40)""" return conditional(gt(rho, 1.0),0.0, conditional(gt(rho, -1.0), alphabar*(-1.0/16*rho**4 + 3.0/8*rho**2 -0.5*rho + 3.0/16), -1.0*alphabar*rho)) N = 40 delta = 1.5 # The aspect ratio of the domain, 1 high and \delta wide V = 1.0/3 * delta # want the fluid to occupy 1/3 of the domain mesh = Mesh(RectangleMesh(MPI.comm_world, Point(0.0, 0.0), Point(delta, 1.0), int(delta*N), N)) controls_file = File('../Output/final_controls_' + str(N) +'.pvd') # test if alpha does the correct thing #P_h = FiniteElement("CG", mesh.ufl_cell(), 1) #P = FunctionSpace(mesh, P_h) #c = interpolate(Expression("-4+8*x[0]", degree=1), P) #testfile = File('./Output/c.pvd') #v = TestFunction(P) #vh = assemble(alpha(c)*v*dx) #c.vector()[:] = vh[:] #testfile << c A = FunctionSpace(mesh, "CG", 1) # control function space U_h = VectorElement("CG", mesh.ufl_cell(), 2) P_h = FiniteElement("CG", mesh.ufl_cell(), 1) W = FunctionSpace(mesh, U_h*P_h) # mixed Taylor-Hood function space B = FunctionSpace(mesh, "DG", 0) b = Function(B) k = len(b.vector()[:]) b.vector()[:] = range(k) #file = File("./Output/b_ved.pvd") #file << b # Define the boundary condition on velocity class InflowOutflow(UserExpression): def eval(self, values, x): values[1] = 0.0 values[0] = 0.0 l = 1.0/6.0 gbar = 1.0 if x[0] == 0.0 or x[0] == delta: if (1.0/4 - l/2) < x[1] < (1.0/4 + l/2): t = x[1] - 1.0/4 values[0] = gbar*(1 - (2*t/l)**2) if (3.0/4 - l/2) < x[1] < (3.0/4 + l/2): t = x[1] - 3.0/4 values[0] = gbar*(1 - (2*t/l)**2) def value_shape(self): return (2,) def forward(rho): """Solve the forward problem for a given fluid distribution rho(x).""" w = Function(W) (u, p) = TrialFunctions(W) (v, q) = TestFunctions(W) F = (alpha(rho) * inner(u, v) * dx + inner(grad(u), grad(v)) * dx + inner(grad(p), v) * dx + inner(div(u), q) * dx) bc = DirichletBC(W.sub(0), InflowOutflow(degree=2), "on_boundary") solve(lhs(F) == rhs(F), w, bcs=bc) return w def save_control(x0, controls_file, index=-1, J = None): #TODO rho = preprocessing.dof_to_control(x0) rho.rename("density", "density") print('objective function value J', J(rho)) controls_file << rho if index +1: filename = '../Output/matlab_controls_' + str(N) + '_' + str(index +1) + '.mat' io.savemat(filename, mdict={'data': x0}) pass if __name__ == "__main__": x0 = (2.*V/delta -1)*np.ones(int(k/2)) # preprocessing class which contains dof_to_control-mapping weighting = 1. # consider L2-mass-matrix + weighting * Hs-matrix sigma = 7./16 preprocessing = Preprocessing(N, B) inner_product_matrix = Hs_reg.AssembleHs(N,delta,sigma).get_matrix(weighting) rho = preprocessing.dof_to_control(x0) # get reduced objective function: rho --> j(rho) set_working_tape(Tape()) w = forward(rho) (u, p) = split(w) controls = File("../Output/control_iterations_guess" + str(N) +".pvd") allctrls = File("../Output/allcontrols_" + str(N) + ".pvd") rho_viz = Function(A, name="ControlVisualisation") def eval_cb(j, rho): rho_viz.assign(rho) controls << rho_viz allctrls << rho_viz # objective function J = assemble(0.5 * inner(alpha(rho) * u, u) * dx + 0.5 * mu * inner(grad(u), grad(u)) * dx) # penalty term in objective function J2 = assemble(ufl.Max(rho - 1.0, 0.0)**2 *dx + ufl.Max(-rho - 1.0, 0.0)**2 *dx) m = Control(rho) Jhat = [ReducedFunctional(J, m, eval_cb_post=eval_cb), ReducedFunctional(J2, m)] # constraints v = 1.0 /V * assemble((0.5 * (rho + 1)) * dx) - 1.0 # volume constraint s = assemble( 1.0/delta*(rho*rho -1.0) *dx) # spherical constraint constraints = [ReducedFunctional(v,m), ReducedFunctional(s,m)] bounds = [[0.0, 0.0],[-1.0, 0.0]] # [[lower bound vc, upper bound vc],[lower bound sc, upper bound sc]] # scaling scaling_Jhat = [1.0, 0.0] # objective for optimization: scaling_Jhat[0]*Jhat[0]+scaling_Jhat[1]*Jhat[1] scaling_constraints = [1.0, 1.0] # scaling of constraints for Ipopt reg = 10.0 # regularization parameter # problem problem = IPOPTProblem(Jhat, scaling_Jhat, constraints, scaling_constraints, bounds, preprocessing, inner_product_matrix, reg) ipopt = IPOPTSolver(problem) #ipopt.test_objective(len(x0)) #ipopt.test_constraints(len(x0), 1, option=1) x0 = ipopt.solve(x0) save_control(x0, controls_file, 0, J = Jhat[0]) # different weights for H_sigma matrix weight = [0.01, 0.01, 0.01] # different penalization parameters eta = [40, 200, 1000] # bounds for the constraints bounds = [[0.0, 0.0], [0.0, 0.0]] for j in range(len(eta)): # update inner product weighting = weight[j] # consider L2-mass-matrix + weighting * Hs-matrix inner_product_matrix = Hs_reg.AssembleHs(N,delta,sigma).get_matrix(weighting) scaling_Jhat = [1.0, eta[j]] # move x0 onto sphere x0 = preprocessing.move_onto_sphere(x0, V, delta) # solve optimization problem problem = IPOPTProblem(Jhat, scaling_Jhat, constraints, scaling_constraints, bounds, preprocessing, inner_product_matrix, reg) ipopt = IPOPTSolver(problem) x0 = ipopt.solve(x0) save_control(x0, controls_file, j+1, J = Jhat[0]) ```
{ "source": "johannesheinz/morsecode", "score": 4 }
#### File: morsecode/src/clustering.py ```python import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from decoder import Signal class Clustering: """ A machine learning algorithm that uses unsupervised learning processes in order to determine clusters. """ _kmeans: KMeans _prediction: list _n_clusters: int = 0 def __init__(self, number_of_clusters: int): """ Configures the algorithm :param number_of_clusters: The number of clusters for the algorithm to form. """ self._n_clusters = number_of_clusters def train(self, batch: list) -> list: """ Forms the configured number of clusters out of the given batch. :param batch: Training data in the form of a list of tuples. :return: Returns a list of labels for each data point """ data = np.array(batch) n_samples = len(batch) print("Samples: %d" % n_samples) self._kmeans = KMeans(n_clusters=self._n_clusters, init='k-means++', random_state=150).fit(data) self._prediction = self._kmeans.predict(data) plt.figure(figsize=(12, 12)) plt.scatter(data[:, 0], data[:, 1], c=self._prediction) plt.title("k-means++") plt.show() return self._prediction def get_label_mapping(self) -> dict: """ Matches the internal labels to pre-defined enums that contain semantics. :return: A mapping that contains a Signal for every internally used label. """ mapping = dict() print() model_long = ((0.30, 0.85), (0.39, 0.93), (0.25, 0.99)) self._map(mapping, model_long, Signal.LONG) model_short = ((0.10, 0.85), (0.15, 0.92), (0.08, 0.99)) self._map(mapping, model_short, Signal.SHORT) model_pause_short = ((0.10, 0.05), (0.15, 0.15), (0.08, 0.10)) self._map(mapping, model_pause_short, Signal.PAUSE_SHORT) model_pause_medium = ((0.30, 0.05), (0.39, 0.15), (0.25, 0.10)) self._map(mapping, model_pause_medium, Signal.PAUSE_MEDIUM) model_pause_long = ((1.70, 0.05), (2.81, 0.15), (1.65, 0.10)) self._map(mapping, model_pause_long, Signal.PAUSE_LONG) # TODO : Plot test points print() return mapping def _map(self, _map: dict, tuples: list, signal: Signal) -> None: prediction = self._kmeans.predict(np.array(tuples)) _sum = 0.0 for label in prediction: _sum += label print("%20s -> %f" % (signal, (_sum / len(prediction)))) label = round(_sum / len(prediction)) _map[label] = signal ``` #### File: morsecode/src/input.py ```python import csv import sys import wave from _datetime import datetime import matplotlib.pyplot as plt import numpy as np import pyaudio from scipy.fftpack import fft # Based on the source code of 'Rattlesnake', a script for active noise cancellation. # > Source: https://github.com/loehnertz/rattlesnake # > Author: <NAME> # Also based on the source code of 'Audio-Spectrum-Analyzer-in-Python' # > Source: https://github.com/markjay4k/Audio-Spectrum-Analyzer-in-Python # > Author: <NAME> class Input: def __init__(self): # stream constants self.CHUNK = 256 self.FORMAT = pyaudio.paInt16 self.CHANNELS = 1 self.RATE = 8000 self.pause = False # Loudness area in which the signal is thought to be the same self.TOLERANCE = 0.48 # 0.225 # stream object self.pa = pyaudio.PyAudio() def _read_waveaudio(self, file): """ Reads in the given wave file and returns a new PyAudio stream object from it. :param file: The path to the file to read in :return (waveform, stream): (The actual audio data as a waveform, the PyAudio object for said data) """ # Open the waveform from the command argument try: waveform = wave.open(file, 'rb') except wave.Error: print('The program can only process wave audio files (.wav)') sys.exit() except FileNotFoundError: print('The chosen file does not exist') sys.exit() print("Sample width: %d" % waveform.getsampwidth()) print("Format: %d" % self.pa.get_format_from_width(waveform.getsampwidth())) print("Channels: %d" % waveform.getnchannels()) print("Framerate: %d" % waveform.getframerate()) # Load PyAudio and create a useable waveform object self.stream = self.pa.open( format=self.pa.get_format_from_width(waveform.getsampwidth()), channels=waveform.getnchannels(), rate=waveform.getframerate(), input=True, output=False, frames_per_buffer=self.CHUNK, ) # self.stream = self.pa.open( # format=self.FORMAT, # channels=self.CHANNELS, # rate=self.RATE, # input=True, # output=True, # frames_per_buffer=self.CHUNK, # ) # Return the waveform as well as the generated PyAudio stream object return waveform # , stream def _export(self, tuples: list) -> str: filename = 'waveaudio_' + datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '.csv' print(" - Writing read audio wave data to '%s'." % filename) with open(filename, 'w', newline='') as csv_file: writer = csv.writer(csv_file, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow(['endtime'] + ['loudness']) for endtime, loudness in tuples: writer.writerow([round(endtime, 4)] + [round(loudness, 4)]) return filename def _plot_wave(self, amplitudes): # Find out max value for normalization maxPCM = 0 for pcmMax in np.abs(amplitudes): if pcmMax is not np.nan and pcmMax > maxPCM: maxPCM = pcmMax counter = 1 previous = 0.0 x = list() y = list() average = [0.0] for pcmMax in np.array(amplitudes): normalized = abs(pcmMax / maxPCM) if abs(normalized - previous) > self.TOLERANCE: # Signal has changed if previous < 0.4 and normalized > 0.6: y.append(np.min(average)) elif previous > 0.6 and normalized < 0.4: y.append(np.max(average)) else: y.append(np.mean(average)) x.append(counter) average.clear() average.append(normalized) previous = normalized counter += 1 print("Length amplitudes: %d, Length y: %d, Max amplitude: %f" % (len(amplitudes), len(y), maxPCM)) # absys = np.abs(amplitudes) # print(len(absys)) # print("#############################################") # for p, absy in zip(y, absys): # print('p: %f, abs: %f' % (p, absy)) # print("#############################################") # Display the plotted graph fig = plt.figure(figsize=(25, 5)) ax = fig.add_subplot(111) ax.plot(x, y, 'b') plt.show() return list(zip(x, y)) def read_file(self, filename: str) -> list: """ Reads a sound file and extracts data. :param filename: :return: """ print("Opening sound file '%s' ..." % filename) # Read in the given file # (waveform, stream) = self._read_waveaudio(filename) waveform = self._read_waveaudio(filename) fmt = self.pa.get_format_from_width(waveform.getsampwidth()) originals = list() fouriers = list() # Counting the iterations of the while-loop iteration = 0 # Read a first chunk and continue to do so for as long as there is a stream to read in original = waveform.readframes(self.CHUNK) threshold = 0.0 while original != b'': try: # Read byte array as signed 16 bit PCM data _bytes = np.frombuffer(original, dtype=np.int16) originals.extend(_bytes) # Read as floats # if len(original) % 4 == 0: # format = int(len(original) / 4) * 'f' # unpacked = struct.unpack(format, original) # try: # data_int = struct.unpack(str(2 * self.CHUNK) + 'B', original) # except struct.error: # break _fft = fft(_bytes) # Reduce FFT to relevant values (exclude edge cases) lower_bound: int = 10 upper_bound: int = round(0.45 * len(_fft)) fourier = (np.abs(_fft[0:self.CHUNK]) / (128 * self.CHUNK))[lower_bound:upper_bound] if len(fourier) > 0: fourier_max = np.max(fourier) fourier_min = np.min(fourier) # Set threshold to 50% if fourier_max > 2 * threshold: threshold = fourier_max / 2 if fourier_max > threshold: # self.THRESHOLD_FOURIER: fouriers.append(fourier_max) else: fouriers.append(fourier_min) ################################################################################## # print(fourier) # print(np.abs(fourier[0:self.CHUNK]) / (128 * self.CHUNK)) # fig = plt.figure(figsize=(7, 4)) # ax = fig.add_subplot(111) # xf = np.linspace(0, self.RATE, self.CHUNK) # line_fft, = ax.semilogx(xf, np.random.rand(self.CHUNK), '-', lw=2) # line_fft.set_ydata((np.abs(fourier[0:self.CHUNK]) / (128 * self.CHUNK))) # plt.show() # print(np.max((np.abs(fourier[0:self.CHUNK]) / (128 * self.CHUNK)))) # originals.extend(np.array(data_int, dtype='b')[::2] + 128) ################################################################################## # Read in the next chunk of data original = waveform.readframes(self.CHUNK) # Add up one to the iterations iteration += 1 except (KeyboardInterrupt, SystemExit): break # Stop the stream after there is no more data to read self.stream.stop_stream() self.stream.close() # Plot input stream and derived max/min FFT _, (ax1, ax2) = plt.subplots(2, figsize=(20, 6)) ax1.plot(originals, 'g') ax2.plot(fouriers, 'r') plt.show() # Terminate PyAudio as well as the program self.pa.terminate() # sys.exit() tuples = self._plot_wave(fouriers) samplewidth = waveform.getsampwidth() framerate = int(waveform.getframerate()) seconds = (iteration * samplewidth * self.CHUNK) / (2 * framerate) print("Estimated duration (s): %f" % seconds) # print("LENGTHS: iterations: %d, originals: %d, fouriers: %d, tuples: %d" % (iteration, len(originals), len(fouriers), len(tuples))) # Transform time unit to seconds factor = seconds / iteration tuples_in_seconds = list() for endtime, loudness in tuples: tuples_in_seconds.append((factor * endtime, loudness)) # TODO: Normalize durations to ~12 WPM # Return filename of the exported file return self._export(tuples_in_seconds) def record_microphone(self, resolution: int) -> None: print(resolution) pass if __name__ == "__main__": _input = Input() _input.read_file('testfile.wav') ```
{ "source": "johannesheinz/triangulation", "score": 2 }
#### File: triangulation/tests/test_triangulation.py ```python import pytest from triangulation import calculate as calc @pytest.fixture(scope='function') def setup(): return 3 def test_fail(setup): assert setup == 2 def test_calculate(): assert calc.check_intersection() def test_calculate_2(): assert calc.check_orientation() ``` #### File: triangulation/triangulation/input.py ```python import json def read_coordinates(filename='coordinates.json'): """ Summary line. Parameters ---------- arg1 : int Description of arg1 Returns ------- int Description of return value """ with open(filename, 'r') as input: # Example plot: http://www.wolframalpha.com/input/?i=plot+%5B+%5B1,+1%5D,+%5B1,+6%5D,+%5B10,+6%5D,+%5B10,+1%5D,+%5B7,+1%5D,+%5B7,+4%5D,+%5B4,+4%5D,+%5B4,+1%5D+%5D coordinates_json = json.loads(input.read()) # Store in dictionary coordinates = {} for index, coordinate in enumerate(coordinates_json): coordinates[index + 1] = coordinate return(coordinates) ```
{ "source": "johanneshiry/Weinretter", "score": 3 }
#### File: Weinretter/backend/validation.py ```python import requests from schematics.exceptions import ValidationError def validate_captcha(token): r = requests.post( "https://www.google.com/recaptcha/api/siteverify", {"response": token, "secret": "<KEY>"}, ) json = r.json() if not json["success"] or json["score"] < 0.5: raise ValidationError("Captcha invalid") ```
{ "source": "johanneshk/pyleus", "score": 2 }
#### File: tests/cli/topologies_test.py ```python import pytest from pyleus.configuration import Configuration, DEFAULTS import pyleus.cli.topologies from pyleus.cli.topologies import kill_topology from pyleus.cli.topologies import list_topologies from pyleus.cli.topologies import submit_topology from pyleus.testing import mock @pytest.fixture def configs(): """Create a mock Configuration object with mock.sentinel values Eg. Configuration( base_jar=mock.sentinel.base_jar, config_file=mock.sentinel.config_file, ... ) """ return Configuration(**dict( (k, getattr(mock.sentinel, k)) for k in DEFAULTS._asdict().keys() )) def test_submit_topology(configs): mock_storm_cluster = mock.Mock() with mock.patch.object(pyleus.cli.topologies, 'StormCluster', return_value=mock_storm_cluster) as mock_ctr: submit_topology(mock.sentinel.jar_path, configs) mock_ctr.assert_called_once_with( configs.storm_cmd_path, configs.nimbus_host, configs.nimbus_port, configs.verbose, configs.jvm_opts, ) mock_storm_cluster.submit.assert_called_once_with(mock.sentinel.jar_path) def test_kill_topology(configs): mock_storm_cluster = mock.Mock() with mock.patch.object(pyleus.cli.topologies, 'StormCluster', return_value=mock_storm_cluster) as mock_ctr: kill_topology(configs) mock_ctr.assert_called_once_with( configs.storm_cmd_path, configs.nimbus_host, configs.nimbus_port, configs.verbose, configs.jvm_opts, ) mock_storm_cluster.kill.assert_called_once_with(configs.topology_name, configs.wait_time) def test_list_topologies(configs): mock_storm_cluster = mock.Mock() with mock.patch.object(pyleus.cli.topologies, 'StormCluster', return_value=mock_storm_cluster) as mock_ctr: list_topologies(configs) mock_ctr.assert_called_once_with( configs.storm_cmd_path, configs.nimbus_host, configs.nimbus_port, configs.verbose, configs.jvm_opts, ) mock_storm_cluster.list.assert_called_once_with() ```
{ "source": "johanneshugger/speedrun", "score": 4 }
#### File: speedrun/speedrun/resource.py ```python import os import time class WaiterMixin(object): """ Class to wait on a process to finish before starting the computation. """ @staticmethod def is_alive(pid): """Checks if a process with PID `pid` is alive.""" try: os.kill(pid, 0) except OSError: return False else: return True def wait_for_pid(self, pid, timeout=1): """Wait till the process with PID `pid` is dead.""" while True: if not self.is_alive(pid): break else: time.sleep(timeout) continue # noinspection PyUnresolvedReferences def wait(self): """ This function blocks until a specified process has terminated. This can be useful for pipelining multiple experiments. You may call this function anytime after `auto_setup` is called, e.g. in the `__init__` of your experiment or before the training training loop. The commandline arguments this function listens to are: `--wait.for`: specifies the PID of the process to wait for. `--wait.check_interval`: Interval to query the status of the process being waited for. `--wait.verbose`: Whether to print info. Example ------- This is assuming that your file calls this function somewhere. $ python my_script.py TEST-0 --wait.for 1234 --wait.check_interval 10 --wait.verbose True This will wait for the process with PID 1234. While doing so, it will check its status every 10 seconds. Warning ------- May destroy friendships. """ pid_to_wait_for = self.get_arg('wait.for', None) timeout = self.get_arg('wait.check_interval', 1) verbose = self.get_arg('wait.verbose', True) if pid_to_wait_for is None: return if verbose: message = f"Waiting for PID {pid_to_wait_for} to finish (my PID is {os.getpid()})..." (self.print if hasattr(self, 'print') else print)(message) self.wait_for_pid(pid_to_wait_for, timeout) if verbose: message = f"Done waiting for PID {pid_to_wait_for}. It's showtime!" (self.print if hasattr(self, 'print') else print)(message) return True ```
{ "source": "JohannesIBK/plyoox-bot", "score": 2 }
#### File: plyoox-bot/src/main.py ```python import asyncio import json import logging import time import traceback import aiohttp import asyncpg import discord from asyncpg.pool import Pool from discord.ext import commands from utils.db.cache import BotCache from utils.ext.context import Context logger = logging.getLogger(__name__) available_langs = ["de", "en"] loaded_langs = {} for _lang in available_langs: with open(f"utils/languages/{_lang}/commands_{_lang}.json", 'r') as f: lang = dict(json.load(f)) loaded_langs.update({_lang: lang}) cogs = [ "plugins.Owner", "plugins.Moderation", "plugins.Administration", "plugins.Help", "plugins.Leveling", "plugins.Utilities", "plugins.Commands", "plugins.Errors", "plugins.Fun", "plugins.Events", "plugins.Infos", "plugins.Logging", "plugins.Timers", 'plugins.SupportServer' ] intents = discord.Intents.none() intents.guild_messages = True intents.bans = True intents.reactions = True intents.guilds = True intents.members = True async def get_prefix(bot, msg: discord.Message): config = await bot.cache.get(msg.guild.id) if config is not None: return config.prefix return [f'<@{bot.user.id}> ', f'<@!{bot.user.id}> '] async def set_game(bot): while True: await bot.change_presence( activity=discord.Activity( type=discord.ActivityType.listening, name='plyoox.net | +help'), status=discord.Status.online) await asyncio.sleep(3600) class Plyoox(commands.Bot): def __init__(self): super().__init__( command_prefix=get_prefix, case_insensitive=True, max_messages=10000, allowed_mentions=discord.AllowedMentions(everyone=False, roles=False), intents=intents ) self.startTime = time.time() self.version = 'v3.0.0' self.owner_id = 263347878150406144 self.commandsCount = {} self.cache: BotCache = BotCache(self) self._lang = loaded_langs async def on_ready(self): self.gamesLoop = asyncio.create_task(set_game(self)) self.session = aiohttp.ClientSession(loop=self.loop) for cog in cogs: try: self.load_extension(cog) except commands.ExtensionAlreadyLoaded: self.reload_extension(cog) if self.user.id == 505433541916622850: self.load_extension('plugins.BotLists') logger.info(time.strftime("Started at %d.%m.%Y %H:%M:%S")) logger.info(f"Boot-Time: {round(time.time() - self.startTime, 2)}s") logger.info(f'{len(cogs)} Plugins loaded.') print(f"Boot-Time: {round(time.time() - self.startTime, 2)}s") print(f'Server: {len(self.guilds)} [{self.shard_count}]') print(f'{len(cogs)} Plugins loaded.') async def get_context(self, message, *, cls=Context): return await super().get_context(message, cls=cls) async def process_commands(self, message: discord.Message): ctx = await self.get_context(message) if ctx.command is None: return try: await self.invoke(ctx) finally: await ctx.release() async def on_command(self, ctx): command = ctx.command.parent or ctx.command command_name = command.name.lower() if command_name not in self.commandsCount: self.commandsCount[command_name] = 1 else: self.commandsCount[command_name] += 1 async def lang(self, guild_id, modul, utils=False): cache = await self.cache.get(guild_id) if not cache: if utils: return {**self._lang["en"][modul.lower()], **self._lang["utils"]} else: return self._lang["en"][modul.lower()] guild_lang = cache.lang if utils: return {**self._lang[guild_lang][modul.lower()], **self._lang[guild_lang]["utils"]} else: return self._lang[guild_lang][modul.lower()] async def create_db_pool(self, port): self.db: Pool = await asyncpg.create_pool( database='discord', user='plyoox', password='1', port=port, host="localhost" ) async def on_error(self, event_method, *args, **kwargs): logger.error(traceback.format_exc()) ``` #### File: src/plugins/Events.py ```python import logging import typing import discord from discord.ext import commands import main from other import db from utils.ext.formatter import formatMessage class Events(commands.Cog): def __init__(self, bot: main.Plyoox): self.bot = bot async def checkGuilds(self): await self.bot.wait_until_ready() guilds = self.bot.guilds db_guilds = (entry['sid'] for entry in await self.bot.db.fetch('SELECT sid FROM config.guild')) for guild in guilds: if guild.id not in db_guilds: await db.gotAddet(self.bot, guild) bots = len(list(filter(lambda m: m.bot, guild.members))) embed = discord.Embed(color=discord.Color.green(), title="**__SERVER JOINED__**") embed.add_field(name="Name", value=guild.name, inline=False) embed.add_field(name="Member", value=f'User: {len(guild.members)}\nBots: {bots}', inline=False) embed.add_field(name="Owner", value=guild.owner, inline=False) embed.add_field(name="Region", value=str(guild.region), inline=False) embed.add_field(name="Stats", value=f'__Rollen:__ {len(guild.roles)}' f'\n__TextChannel:__ {len(guild.text_channels)}\n' f'__VoiceChannels:__ {len(guild.voice_channels)}', inline=False) await self.bot.get_channel(715260033926955070).send(embed=embed) @commands.Cog.listener() async def on_guild_channel_create(self, channel: typing.Union[discord.TextChannel, discord.VoiceChannel, discord.CategoryChannel]): guild = channel.guild if not guild.me.guild_permissions.manage_channels: return mute_role_id = await self.bot.db.fetchval( 'SELECT muterole from automod.config WHERE sid = $1', guild.id) mute_role = guild.get_role(mute_role_id) if mute_role is None: return if isinstance(channel, discord.TextChannel): if channel.permissions_synced: return overwrite = discord.PermissionOverwrite.from_pair( deny=discord.Permissions(permissions=2099776), allow=discord.Permissions(permissions=0)) return await channel.set_permissions(mute_role, overwrite=overwrite) if isinstance(channel, discord.VoiceChannel): if channel.permissions_synced: return overwrite = discord.PermissionOverwrite.from_pair( deny=discord.Permissions(permissions=2097664), allow=discord.Permissions(permissions=0)) return await channel.set_permissions(mute_role, overwrite=overwrite) if isinstance(channel, discord.CategoryChannel): overwrite = discord.PermissionOverwrite.from_pair( deny=discord.Permissions(permissions=2099776), allow=discord.Permissions(permissions=0)) return await channel.set_permissions(mute_role, overwrite=overwrite) @commands.Cog.listener() async def on_guild_role_delete(self, role: discord.Role): guild = role.guild roles = await self.bot.db.fetchrow( 'SELECT welcomer.joinroles, config.modroles, config.muterole, leveling.noxprole, ' 'leveling.roles, config.helperroles ' 'FROM automod.config LEFT JOIN config.leveling ON config.sid = leveling.sid ' 'LEFT JOIN config.welcomer ON config.sid = welcomer.sid WHERE config.sid = $1', role.guild.id) if roles is None: return if roles['noxprole'] == role.id: return await self.bot.db.execute( "UPDATE config.leveling SET noxprole = NULL WHERE sid = $2", roles['noxprole'], guild.id) if (levelRoles := roles['roles']) is not None: if role.id in levelRoles: for lvlRole in levelRoles: if lvlRole[0] == role.id: return await self.bot.db.execute( "UPDATE config.leveling SET roles = array_remove(roles, $1) " "WHERE sid = $2", lvlRole, guild.id) if (modRoles := roles['modroles']) is not None: if role.id in modRoles: for modRole in modRoles: if role.id == modRole: return await self.bot.db.execute( "UPDATE automod.config SET modroles = array_remove(modroles, $1) " "WHERE sid = $2", role.id, guild.id) if (helperRoles := roles['helperroles']) is not None: if role.id in helperRoles: for helperRole in helperRoles: if role.id == helperRole: return await self.bot.db.execute( "UPDATE automod.config SET helperroles = array_remove(helperroles, $1) " "WHERE sid = $2", role.id, guild.id) if (joinRoles := roles['joinroles']) is not None: if role.id in joinRoles: for joinRole in joinRoles: if role.id == joinRole: return await self.bot.db.execute( "UPDATE config.welcomer SET joinroles = array_remove(joinroles, $1) " "WHERE sid = $2", role.id, guild.id) if role.id == roles['muterole']: return await self.bot.db.execute( "UPDATE automod.config SET muterole = NULL WHERE sid = $1", guild.id) @commands.Cog.listener() async def on_guild_channel_delete(self, channel): guild = channel.guild channels = await self.bot.db.fetchrow( 'SELECT welcomer.joinchannel, welcomer.leavechannel, leveling.channel AS lvlchannel, ' 'leveling.noxpchannels, config.logchannel FROM automod.config ' 'LEFT JOIN config.leveling ON config.sid = leveling.sid LEFT JOIN config.welcomer ' 'ON config.sid = welcomer.sid WHERE config.sid = $1', guild.id) if channels is None: return if channel.id == channels['joinchannel']: return await self.bot.db.execute( "UPDATE config.welcomer SET joinchannel = NULL WHERE sid = $1", guild.id) elif channel.id == channels['leavechannel']: return await self.bot.db.execute( "UPDATE config.welcomer SET leavechannel = NULL WHERE sid = $1", guild.id) elif channel.id == channels['logchannel']: return await self.bot.db.execute( "UPDATE automod.config SET logchannel = NULL WHERE sid = $1", guild.id) elif channel.id == channels['lvlchannel']: return await self.bot.db.execute( "UPDATE config.leveling SET channel = NULL WHERE sid = $1", guild.id) if (noXpChannels := channels['noxpchannels']) is not None: if channel.id in noXpChannels: for noXpChannel in noXpChannels: if channel.id == noXpChannel: return await self.bot.db.execute( "UPDATE config.leveling SET noxpchannels = " "array_remove(noxpchannels, $1) WHERE sid = $2", noXpChannel, guild.id) @commands.Cog.listener() async def on_guild_join(self, guild: discord.Guild): await db.gotAddet(self.bot, guild) bots = len(list(filter(lambda m: m.bot, guild.members))) embed = discord.Embed(color=discord.Color.green(), title="**__SERVER JOINED__**") embed.add_field(name="Name", value=guild.name, inline=False) embed.add_field(name="Member", value=f'User: {len(guild.members)}\nBots: {bots}', inline=False) embed.add_field(name="Owner", value=guild.owner, inline=False) embed.add_field(name="Region", value=str(guild.region), inline=False) embed.add_field(name="Stats", value=f'__Rollen:__ {len(guild.roles)}' f'\n__TextChannel:__ {len(guild.text_channels)}' f'\n__VoiceChannels:__ {len(guild.voice_channels)}', inline=False) await self.bot.get_channel(715260033926955070).send(embed=embed) @commands.Cog.listener() async def on_guild_remove(self, guild): await self.bot.db.execute("DELETE FROM config.guild WHERE sid = $1", guild.id) await self.bot.db.execute("DELETE FROM automod.users WHERE sid = $1", guild.id) await self.bot.db.execute("DELETE FROM extra.timers WHERE sid = $1", guild.id) await self.bot.db.execute("DELETE FROM extra.commands WHERE sid = $1", guild.id) await self.bot.cache.remove(guild.id) bots = len(list(filter(lambda m: m.bot, guild.members))) embed = discord.Embed(color=discord.Color.red(), title="**__SERVER LEAVED__**") embed.add_field(name="Name", value=guild.name, inline=False) embed.add_field(name="Member", value=f'User: {len(guild.members)}\nBots: {bots}', inline=False) embed.add_field(name="Owner", value=guild.owner, inline=False) embed.add_field(name="Region", value=guild.region, inline=False) embed.add_field(name="Stats", value=f'__Rollen:__ {len(guild.roles)}' f'\n__TextChannel:__ {len(guild.text_channels)}' f'\n__VoiceChannels:__ {len(guild.voice_channels)}', inline=False) await self.bot.get_channel(715260033926955070).send(embed=embed) @commands.Cog.listener() async def on_member_join(self, member: discord.Member): guild = member.guild data = await self.bot.db.fetchrow( 'SELECT joinmessage, joinroles, joinchannel, joinstate, modules.welcomer ' 'FROM config.welcomer ' 'FULL OUTER JOIN config.modules ON welcomer.sid = modules.sid WHERE welcomer.sid = $1', guild.id) if not data or not data['welcomer']: return if data["joinstate"] != "o" and data["joinmessage"]: msg = formatMessage(data["joinmessage"], member) if msg is None: return if data['joinstate'] == "d": await member.send(msg) elif data["joinstate"] == "c": channel = guild.get_channel(data["joinchannel"]) await channel.send(msg) if data["joinroles"]: roles = [] for _role in data["joinroles"]: _role = guild.get_role(_role) if _role is not None: roles.append(_role) try: await member.add_roles(*roles) except discord.Forbidden: logging.info(f"Could not add role to {member.id}") punish_data = await self.bot.db.fetchrow( 'SELECT timers.type, config.muterole FROM automod.config INNER JOIN extra.timers ' 'ON config.sid = timers.sid WHERE config.sid = $1 AND timers.objid = $2 AND ' 'timers.type = 1', guild.id, member.id) if punish_data: muterole_id: int = punish_data['muterole'] muterole = guild.get_role(muterole_id) if muterole is not None: await member.add_roles(muterole) @commands.Cog.listener() async def on_member_remove(self, member: discord.Member): data = await self.bot.db.fetchrow( 'SELECT leavechannel, leavemessage, leavestate, modules.welcomer FROM config.welcomer ' 'INNER JOIN config.modules ON welcomer.sid = modules.sid WHERE welcomer.sid = $1', member.guild.id) if not data or not data['welcomer'] or data["leavestate"] == "o": return if data["leavemessage"] and data["leavechannel"]: channel = member.guild.get_channel(data["leavechannel"]) msg = formatMessage(data['leavemessage'], member) if msg is not None and channel is not None: await channel.send(msg) def setup(bot): bot.add_cog(Events(bot)) ``` #### File: src/utils/automod.py ```python import datetime import json import re import time import discord from utils.enums.Timer import TimerType from utils.ext import checks from utils.ext import logs from utils.ext import standards as std from utils.ext.context import Context DISCORD_INVITE = r'(discord(app\.com\/invite|\.com(\/invite)?|\.gg)\/?[a-zA-Z0-9-]{2,32})' EXTERNAL_LINK = r'((https?:\/\/(www\.)?|www\.)[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6})' EVERYONE_MENTION = r'@(here|everyone)' discordRegex = re.compile(DISCORD_INVITE, re.IGNORECASE) linkRegex = re.compile(EXTERNAL_LINK, re.IGNORECASE) everyoneRegex = re.compile(EVERYONE_MENTION) def find_word(word): return re.compile(r'\b({0})\b'.format(word), flags=re.IGNORECASE).search async def manage_punishment(ctx: Context, punishment, reason): try: await ctx.message.delete() except discord.NotFound: return lang = await ctx.lang(module=["automod", "moderation"], utils=True) config = await ctx.bot.cache.get(ctx.guild.id) if not config.automod: return config = config.automod.config user = ctx.author reason = lang["word.automod"] + ": " + reason punishment_str = '' date = None if punishment == 1: if checks.hasPermsByName(ctx, ctx.me, 'kick_members'): punishment_str = "kick" await ctx.guild.kick(user, reason=reason) elif punishment == 2: if checks.hasPermsByName(ctx, ctx.me, 'ban_members'): punishment_str = "ban" await ctx.guild.ban(user, reason=reason) elif punishment == 3: if checks.hasPermsByName(ctx, ctx.me, 'ban_members'): punishment_str = "tempban" date = datetime.timedelta(seconds=config.bantime) await ctx.db.execute( 'INSERT INTO extra.timers (sid, objid, type, time, data) VALUES ' '($1, $2, $3, $4, $5)', ctx.guild.id, user.id, TimerType.BAN.value, config.bantime, json.dumps({ 'reason': reason })) await ctx.guild.ban(user, reason=reason) elif punishment == 4: if checks.hasPermsByName(ctx, ctx.me, 'manage_roles'): if config.muterole is None: return punishment_str = "tempmute" date = datetime.timedelta(seconds=config.mutetime) await ctx.db.execute( 'INSERT INTO extra.timers (sid, objid, type, time, data) VALUES ' '($1, $2, $3, $4, $5)', ctx.guild.id, user.id, TimerType.MUTE.value, config.mutetime, json.dumps({ 'reason': reason })) await user.add_roles(config.muterole, reason=reason) mod_embed = std.automodLog(ctx, punishment_str, lang, date, reason) user_embed = std.dmEmbed(lang, reason=reason, guildName=ctx.guild.name, punishType=punishment_str, duration=date) await logs.createLog(ctx, mEmbed=mod_embed, uEmbed=user_embed, automod=True, user=user) async def add_points(ctx: Context, new_points, reason, user: discord.Member = None): try: await ctx.message.delete() except discord.NotFound: pass lang = await ctx.lang(module=["automod", "moderation"], utils=True) config = await ctx.bot.cache.get(ctx.guild.id) if user is not None and reason is not None: reason = reason.replace(str(ctx.author) + ": ", "") reason = reason or lang["log.noreason"][:-1] if not config.automod: return config = config.automod.config if user is None: punished_user = ctx.author else: punished_user = user await ctx.bot.db.execute( 'INSERT INTO automod.users (uid, sid, points, time, reason) VALUES ($1, $2, $3, $4, $5)', punished_user.id, ctx.guild.id, new_points, time.time(), reason) points = await ctx.bot.db.fetchval( 'SELECT sum(points) FROM automod.users WHERE uid = $1 AND sid = $2 AND $3 - time < 2592000', punished_user.id, ctx.guild.id, time.time()) action = config.action max_points = config.maxpoints unix_time_mute = unix_time_ban = time.time() + 86400 if config.mutetime: unix_time_mute = time.time() + config.mutetime if config.bantime: unix_time_ban = time.time() + config.bantime if points >= max_points and action is not None: if action == 1: if checks.hasPermsByName(ctx, ctx.me, 'kick_members'): await createAutomodLog(ctx, reason, lang, points=f"{points}/{max_points}", punished_user=punished_user, punishment="kick", user=user) await ctx.guild.kick(punished_user, reason=lang["word.automod"] + ": " + reason) await ctx.bot.db.execute( "DELETE FROM automod.users WHERE uid = $1 AND sid = $2", punished_user.id, ctx.guild.id) elif action == 2: if checks.hasPermsByName(ctx, ctx.me, 'kick_members'): await createAutomodLog(ctx, reason, lang, points=f"{points}/{max_points}", punished_user=punished_user, punishment="ban", user=user) await ctx.guild.ban(punished_user, reason=lang["word.automod"] + ": " + reason) await ctx.bot.db.execute( "DELETE FROM automod.users WHERE uid = $1 AND sid = $2", punished_user.id, ctx.guild.id) elif action == 3: if checks.hasPermsByName(ctx, ctx.me, 'ban_members'): date = datetime.timedelta(seconds=unix_time_ban) await createAutomodLog(ctx, reason, lang, points=f"{points}/{max_points}", date=date, punished_user=punished_user, punishment="tempban", user=user) await ctx.guild.ban(punished_user, reason=lang["word.automod"] + ": " + reason) await ctx.db.execute( 'INSERT INTO extra.timers (sid, objid, type, time, data) VALUES' ' ($1, $2, $3, $4, $5)', ctx.guild.id, punished_user.id, 0, unix_time_ban, json.dumps({ 'reason': lang["word.automod"] + ": " + lang["word.tempban"] })) elif action == 4: if checks.hasPermsByName(ctx, ctx.me, 'manage_roles'): if config.muterole is None: return date = datetime.timedelta(seconds=unix_time_ban) await createAutomodLog(ctx, reason, lang, points=f"{points}/{max_points}", date=date, punished_user=punished_user, punishment="tempmute", user=user) await punished_user.add_roles(config.muterole, reason=lang["word.automod"] + ": " + reason) await ctx.bot.db.execute( "DELETE FROM automod.users WHERE uid = $1 AND sid = $2", punished_user.id, ctx.guild.id) await ctx.db.execute( 'INSERT INTO extra.timers (sid, objid, type, time, data) VALUES ' '($1, $2, $3, $4, $5)', ctx.guild.id, punished_user.id, 1, unix_time_mute, json.dumps({ 'reason': lang["word.automod"] + ": " + reason })) else: await createAutomodLog(ctx, reason, lang, points=f"{points}/{max_points}", punished_user=punished_user, punishment="log", user=user) async def createAutomodLog(ctx, reason, lang, *, points, punishment, date=None, user, punished_user): if user is None: mod_embed = std.automodLog(ctx, punishment, lang, date, reason, points) else: mod_embed = std.automodLog(ctx, punishment, lang, date, reason, points, extra_user=punished_user, mod=ctx.author) user_embed = std.automodUserEmbed(lang, reason, ctx.guild.name, punishment, points, date) await logs.createLog(ctx=ctx, mEmbed=mod_embed, uEmbed=user_embed, user=punished_user, automod=True) async def automod(ctx: Context): bot = ctx.bot guild = ctx.guild msg = ctx.message channel = ctx.channel config = await ctx.cache.get(ctx.guild.id) modules = config.modules automod_cf = config.automod lang = await ctx.lang(module=["automod", "moderation"], utils=True) if not modules.automod or not config.automod: return if automod_cf.blacklist.state: blacklist = automod_cf.blacklist for word in blacklist.words: if find_word(word)(msg.content.lower()): if not await checks.ignoresAutomod(ctx): if channel.id in blacklist.whitelist: return if blacklist.state == 5: return await add_points(ctx, blacklist.points, lang["reason.blacklistedword"]) else: return await manage_punishment(ctx, blacklist.state, lang["reason.blacklistedword"]) if discordRegex.findall(msg.content): invites = automod_cf.invites if await checks.ignoresAutomod(ctx): return if not invites.state: return if channel.id in invites.whitelist: return whitelisted_servers = [guild.id] whitelisted_servers.extend([int(guildID) for guildID in invites.partner]) has_invite = False for invite in discordRegex.findall(msg.content): try: invite = await bot.fetch_invite(invite[0]) except discord.NotFound: continue except discord.Forbidden: if invites.state == 5: return await add_points(ctx, invites.points, lang["reason.invite"]) else: return await manage_punishment(ctx, invites.state, lang["reason.invite"]) if invite.guild.id not in whitelisted_servers: has_invite = True break if has_invite: if invites.state == 5: return await add_points(ctx, invites.points, lang["reason.invite"]) else: return await manage_punishment(ctx, invites.state, lang["reason.invite"]) elif linkRegex.findall(msg.content): links = automod_cf.links if await checks.ignoresAutomod(ctx): return if not links.state: return if channel.id in links.whitelist: return links_list = ['discord.gg', 'discord.com', 'plyoox.net', 'wiki.plyoox.net'] links_list.extend(links.links) links_obj = linkRegex.findall(msg.content) for linkObj in links_obj: link = linkObj[0].replace(linkObj[1], '') if links.iswhitelist: if link not in links_list: if links.state == 5: return await add_points(ctx, links.points, lang["reason.link"]) else: return await manage_punishment(ctx, links.state, lang["reason.link"]) else: if link in links_list: if links.state == 5: return await add_points(ctx, links.points, lang["reason.link"]) else: return await manage_punishment(ctx, links.state, lang["reason.link"]) if not msg.clean_content.islower() and len(msg.content) > 15: caps = automod_cf.caps if await checks.ignoresAutomod(ctx): return len_caps = len(re.findall(r'[A-ZÄÖÜ]', msg.clean_content)) percent = len_caps / len(msg.content) if percent > 0.7: if not caps.state: return if channel.id in caps.whitelist: return if caps.state == 5: return await add_points(ctx, caps.points, lang["reason.caps"]) else: return await manage_punishment(ctx, caps.state, lang["reason.caps"]) if len(msg.raw_mentions) + len(msg.raw_role_mentions) + \ len(everyoneRegex.findall(msg.content)) >= 3: mentions = automod_cf.mentions if await checks.ignoresAutomod(ctx): return len_mentions = sum(m != ctx.author.id for m in msg.raw_mentions) \ + len(msg.raw_role_mentions) if not mentions.state: return if channel.id in mentions.whitelist: return if mentions.everyone: len_mentions += len(everyoneRegex.findall(msg.content)) if len_mentions >= mentions.count: if mentions.state == 5: return await add_points(ctx, mentions.points, lang["reason.mentions"]) else: return await manage_punishment(ctx, mentions.state, lang["reason.mentions"]) ``` #### File: utils/ext/checks.py ```python import discord from discord.ext import commands from utils.ext import context def isMod(*, helper: bool = False): async def predicate(ctx: context.Context): perms = ctx.author.permissions_in(ctx.channel) if ctx.message.author.id == <PASSWORD> or perms.manage_guild: return True data = await ctx.cache.get(ctx.guild.id) config = data.automod if data is None or data.automod is None: return roles = [] roles.extend(config.config.modroles) if helper: roles.extend(config.config.helperroles) user_roles = [role.id for role in ctx.author.roles] if any(role in roles for role in user_roles): return True else: if helper: raise commands.MissingPermissions(['Du musst ein Moderator oder Helfer sein, um den Command auszuführen']) raise commands.MissingPermissions(['Du musst ein Moderator sein, um den Command auszuführen']) return commands.check(predicate) def isAdmin(): async def predicate(ctx): user = ctx.author if user.id == ctx.bot.owner_id or user.guild_permissions.administrator: return True else: raise commands.MissingPermissions(['administrator']) return commands.check(predicate) def hasPerms(**perms): async def predicate(ctx): if ctx.message.author.id == <PASSWORD>: return True permissions = ctx.channel.permissions_for(ctx.author) missing = [perm for perm, value in perms.items() if getattr(permissions, perm, None) != value] if not missing: return True raise commands.MissingPermissions(missing) return commands.check(predicate) def isBriiaan(): async def predicate(ctx): return ctx.guild.id == 665609018793787422 return commands.check(predicate) def isActive(modul): async def predicate(ctx: context.Context): config = await ctx.cache.get(ctx.guild.id) if config is None or not config.modules: return False if modul == 'fun' and config.modules.fun: return True if modul == 'leveling' and config.modules.leveling: return True if modul == 'timers' and config.modules.timers: return True else: raise commands.DisabledCommand return commands.check(predicate) def hasPermsByName(ctx, member, permsSearch): if not isinstance(member, discord.Member): return False perms = [perm for perm, value in member.permissions_in(ctx.channel) if value] if permsSearch.lower() in perms: return True async def ignoresAutomod(ctx: context.Context): if not ctx.me.top_role.position > ctx.message.author.top_role.position: return True if ctx.author.permissions_in(ctx.channel).manage_messages: return True data = await ctx.cache.get(ctx.guild.id) if data is None or data.automod.config is None: return False roles = [] roles.extend(data.automod.config.modroles) roles.extend(data.automod.config.helperroles) author_roles = [role.id for role in ctx.author.roles] if any(roleID in roles for roleID in author_roles): return True ``` #### File: utils/ext/cmds.py ```python from discord.ext import commands class CommandsExtension(commands.Command): def __init__(self, func, **kwargs): super().__init__(func, **kwargs) self.showHelp = kwargs.get('showHelp', True) if not isinstance(self.showHelp, bool): raise TypeError(f'Excepted type bool got type {type(self.showHelp)}') self.category = kwargs.get('category', None) self.help = kwargs.get('help', None) def cmd(*args, **kwargs): return commands.command(*args, **kwargs, cls=CommandsExtension) class GroupExtension(commands.Group): def __init__(self, func, **kwargs): super().__init__(func, **kwargs) self.showHelp = kwargs.get('showHelp', True) if not isinstance(self.showHelp, bool): raise TypeError(f'Excepted type bool got type {type(self.showHelp)}') self.category = kwargs.get('category', None) self.help = kwargs.get('help', None) def grp(*args, **kwargs): return commands.group(*args, **kwargs, cls=GroupExtension) ``` #### File: utils/ext/context.py ```python import asyncio import io import discord from asyncpg.pool import Pool from discord.ext import commands from utils.db.cache import BotCache from utils.ext import standards as std class Context(commands.Context): def __init__(self, **kwargs): super().__init__(**kwargs) self.pool = self.bot.db self._db = None async def safe_send(self, content, *, escape_mentions=True, **kwargs): if escape_mentions: content = discord.utils.escape_mentions(content) content.replace("`", "") if len(content) > 2000: fp = io.BytesIO(content.encode()) kwargs.pop('file', None) return await self.reply(file=discord.File(fp, filename='message_to_long.txt'), **kwargs) else: return await self.reply(content) @property def db(self) -> Pool: return self._db if self._db else self.pool @property def cache(self) -> BotCache: return self.bot.cache async def lang(self, utils=False, module=None): if module is None: module = self.cog.qualified_name if isinstance(module, list): data = {} for _module in module: data |= await self.bot.lang(self.guild.id, _module.lower(), utils) else: data = await self.bot.lang(self.guild.id, module.lower(), utils) return data async def release(self): if self._db is not None: await self.bot.pool.release(self._db) self._db = None async def error(self, message: str, **kwargs): return await self.reply(embed=std.getErrorEmbed(message), **kwargs) async def embed(self, message: str, signed=False, **kwargs): embed = std.getEmbed(message) if signed: embed.set_footer(icon_url=self.author.avatar_url, text=f'Requested by {self.author}') return await self.reply(embed=embed, **kwargs) async def prompt(self, message, *, timeout=60.0, delete_after=True, reacquire=True, author_id=None): if not self.channel.permissions_for(self.me).add_reactions: raise RuntimeError('Der Bot kann keine Reaktionen hinzufügen.') fmt = f'{message}\n\nReagiere mit {std.yes_emoji} um zu bestätigen oder {std.no_emoji} ' \ f'um abzubrechen. ' author_id = author_id or self.author.id msg = await self.reply('Ping!', embed=discord.Embed(color=std.normal_color, description=fmt)) confirm = None def check(payload): nonlocal confirm if payload.message_id != msg.id or payload.user_id != author_id: return False codepoint = str(payload.emoji) if codepoint == std.yes_emoji: confirm = True return True elif codepoint == std.no_emoji: confirm = False return True return False for emoji in (std.yes_emoji, std.no_emoji): await msg.add_reaction(emoji) if reacquire: await self.release() try: await self.bot.wait_for('raw_reaction_add', check=check, timeout=timeout) except asyncio.TimeoutError: confirm = None try: if delete_after: await msg.delete() finally: return confirm class FakeContext: def __init__(self, bot, guild): self.bot = bot self.guild = guild @property def cache(self): return self.bot.cache @property def me(self): return self.guild.me ``` #### File: utils/ext/converters.py ```python import discord from discord.ext import commands from utils.ext.context import Context class ActionReason(commands.Converter): reason: str raw_reason: str async def convert(self, ctx: Context, argument): lang = await ctx.lang() if len(argument) > 510 - len(str(ctx.author)): raise commands.BadArgument(lang["converters.error.reasontolong"].format(a=str(len(argument)), m=str(len(str(ctx.author))))) reason = str(ctx.author) + ": " + argument self.reason = reason self.raw_reason = argument return self def __str__(self): return self.raw_reason class BannedMember(commands.Converter): async def convert(self, ctx: Context, argument): lang = await ctx.lang() if argument.isdigit(): member_id = int(argument, base=10) try: return await ctx.guild.fetch_ban(discord.Object(id=member_id)) except discord.NotFound as e: raise commands.BadArgument(lang["converters.notbanned"]) from e ban_list = await ctx.guild.bans() user = discord.utils.find(lambda u: str(u.user) == argument, ban_list) if user is None: raise commands.BadArgument(lang["converters.notbanned"]) return user class AdvancedMember(commands.Converter): async def convert(self, ctx, argument): try: return await commands.UserConverter().convert(ctx, argument) except commands.BadArgument: try: user_id = int(argument, base=10) return await ctx.bot.fetch_user(user_id) except (ValueError, discord.NotFound): raise commands.UserNotFound(argument) ``` #### File: utils/ext/errors.py ```python class FakeArgument: def __init__(self, name): self.name = name class ModeratorCommand(Exception): pass ``` #### File: utils/ext/standards.py ```python import datetime import discord yes_emoji = "<:yes:703900321465892914>" no_emoji = "<:no:703900335327936602>" ola_emoji = '<:ola:703928958063738910>' info_emoji = '<:info:703900394580869140>' error_emoji = '<:close:820400830480908428>' law_emoji = '<:law:704432646356467814>' level_emoji = '<:level:704442402718482432>' question_emoji = '\u2754' coin_emoji = '<:coin:718169101821804564>' upvote_emoji = '+' # '\u2795' downvote_emoji = '-' # '\u2796' # Status online_emoji = "<:online:703932456289435659>" offline_emoji = "<:offline:703932515349430292>" idle_emoji = "<:idle:703932474501103706>" dnd_emoji = "<:dnd:703932490485727232>" streaming_emoji = '<:streaming:703900783543975956>' bots_emoji = "<:bot:703924061004234752>" clyde_emoji = '<:clyde:703927804563030076>' # Badges balance_emoji = '<:balance:820728032775372821>' brilliance_emoji = '<:brilliance:820728032590692373>' bravery_emoji = '<:bravery:820728032817709107>' booster_emoji = '<:booster:703906501382766612>' booster2_emoji = '<:booster2:703906512246145044>' booster3_emoji = '<:booster3:703906523092484177>' booster4_emoji = '<:booster4:703906534534414346>' supporter_emoji = '<:supporter:703906781859938364>' partner_emoji = '<:partner:703906812348334130>' staff_emoji = '<:staff:703906898851790859>' botdev_emoji = '<:botdev:703907073402077205>' bughunter_badge = '<:bughunter:703906553325158440>' bughunter2_badge = '<:bughunter2:747904909378060319>' nitro_emoji = '<:nitro:703907279795257444>' hypesquad_emoji = '<:hypesquad:314068430854684672>' # Guild channel_emoji = '<:channel:703906598879494257>' lockedchannel_emoji = '<:locked_channel:703906663140294666>' lockedVoice_emoji = '<:locked_voice:703906683918745630>' voice_emoji = '<:voice:703906627065085973>' verified_emoji = '<:verified:703900283192868894>' members_emoji = '<:members:703906700889161748>' owner_emoji = '<:owner:703906757344493649>' invite_emoji = '<:invite:703906645113045062>' richPresence_emoji = '<:richpresence:703907208340963378>' mention_emoji = '<:mention:703907048760279072>' folder_emoji = '<:folder:703900379104149534>' nametag_emoji = '<:nametag:703936161089060895>' globe_emoji = '\U0001F310' stats_emoji = '\U0001F4CA' list_emoji = '\U0001F4C4' lock_emoji = '\U0001F512' date_emoji = '\U0001F4C5' inbox_emoji = '\U0001F4E5' outbox_emoji = '\U0001F4E4' tropy_emoji = '\U0001F3C6' arrow = '<:arrow:762598973886169099>' # Colors error_color = 0xff0000 normal_color = 0x7289DA help_color = 0x38b3e8 tag_color = 0x7adeaa plyoox_color = 0x24c689 avatar_url = 'https://cdn.discordapp.<EMAIL>' \ '/avatars/505433541916622850/ccc8ba894dd4188ecf37de0a53430f22.webp?size=1024' def quote(string, shorten=False): if shorten and len(string) > 1018: string = string[:1015] + "..." return "```" + str(string) + "```" def cut(string: str, max_len=1024): if len(string) > max_len: string = string[:1021] + "..." return string # Embeds def getEmbed(description: str = None, signed: discord.Member = None) -> discord.Embed: """ :param description: Message to send :param signed: User who requested the command :return: discord.Embed """ embed = discord.Embed(color=normal_color) if description is not None: embed.description = description if signed: embed.set_footer(icon_url=signed.avatar_url, text=f'Requested by {signed}') return embed def getErrorEmbed(errorMessage: str) -> discord.Embed: """ :param errorMessage: Message to send :return: discord.Embed """ embed = discord.Embed( color=error_color, title=f'{error_emoji} __**ERROR**__', description=errorMessage) return embed def dmEmbed(lang, *, reason, guildName, punishType, duration: datetime.timedelta = None) -> discord.Embed: embed = discord.Embed(color=normal_color) embed.timestamp = datetime.datetime.utcnow() embed.set_footer(text=lang['log.embed.footer'], icon_url=avatar_url) duration = fixTimeDelta(duration) reason = reason or '' if reason: reason = lang['log.embed.reason'].format(r=reason) if punishType in ["ban", "tempban"]: if duration: embed.description = lang['log.embed.ban.temp'] \ .format(n=guildName, r=reason, d=duration) else: embed.description = lang['log.embed.ban.perm'] \ .format(n=guildName, r=reason) elif punishType == 'kick': embed.description = lang["log.embed.kick"].format(n=guildName, r=reason) elif punishType in ["tempmute", "mute"]: if duration: embed.description = lang['log.embed.mute.temp'] \ .format(n=guildName, r=reason, d=duration) else: embed.description = lang['log.embed.mute.perm'] \ .format(n=guildName, r=reason) return embed def automodUserEmbed(lang, reason, guildName, type: str, points=None, duration: datetime.timedelta = None): embed = discord.Embed(color=normal_color) embed.timestamp = datetime.datetime.utcnow() embed.set_footer(text=lang['log.embed.footer'], icon_url=avatar_url) if duration is not None: duration = fixTimeDelta(duration) if type.replace("temp", "") in ["ban", "mute"]: if type.startswith("temp"): message = lang["log.message.temp"].format(d=duration) else: message = lang["log.message.perm"] message = message.format(t=lang["word." + type.replace("temp", "")]) else: message = lang["log.message." + type] if type == "log": message = message.format(p=points, n=guildName, r=reason) else: message = message.format(n=guildName, r=reason) embed.description = message return embed def cmdEmbed(action, reason, lang: dict[str, str], mod=None, user=None, amount=None, duration: datetime.timedelta = None) -> discord.Embed: current_user = mod or user reason = reason or lang['log.noreason'] embed = discord.Embed(color=discord.Color.orange(), title=lang["word." + action].upper()) embed.set_footer(text="Plyoox", icon_url=avatar_url) embed.set_author(name=str(current_user), icon_url=current_user.avatar_url) if user is not None: embed.add_field(name=arrow + lang["word.user"], value=f"```{user} [{user.id}]```") embed.set_author(name=str(user), icon_url=user.avatar_url) if mod is not None: embed.add_field(name=arrow + lang["word.moderator"], value=quote(mod)) if reason is not None: embed.add_field(name=arrow + lang["word.reason"], value=quote(reason)) if duration is not None: embed.add_field(name=arrow + lang["word.duration"], value=quote(fixTimeDelta(duration))) if amount is not None: embed.add_field(name=arrow + lang["word.amount"], value=quote(amount)) return embed def automodLog(ctx, action, lang: dict[str, str], duration: datetime.timedelta, reason, points=None, extra_user: discord.Member = None, mod: discord.Member = None): user = extra_user or ctx.author embed = discord.Embed( color=plyoox_color, title=lang["word." + action], timestamp=datetime.datetime.utcnow() ) embed.set_author(name=lang["word.automod"], icon_url=user.avatar_url) embed.set_footer(text=f'ID: {user.id}') embed.description = lang[action.replace("temp", "") + ".embed.description"].format( u=user, c=ctx.channel, r=reason.replace(lang["word.automod"] + ": ", "") ) if mod: embed.add_field(name=arrow + lang["word.moderator"], value=ctx.author.mention) if duration is not None: embed.add_field(name=arrow + lang["word.punishuntil"], value=quote(fixTimeDelta(duration))) if points is not None: embed.add_field(name=arrow + lang["word.points"], value=quote(points)) if not mod: embed.add_field(name=arrow + lang["word.message"], value=quote(ctx.message.content)) return embed def fixTimeDelta(time: datetime.timedelta) -> datetime.timedelta: if time is None: return try: time_str = str(time)[-2:] time_seconds = int(time_str) except (IndexError, ValueError): return time if time_seconds >= 55: time += datetime.timedelta(seconds=60-time_seconds) return time ``` #### File: src/utils/mee6level.py ```python import json import asyncio import aiohttp BASE = "https://mee6.xyz/api/plugins/levels/leaderboard/" GUILD_ID = "YOUR_ID" user_list = [] LEVEL_API_URL = BASE + str(GUILD_ID) + "?page=" async def get_level(): counter = 0 fetched_all = False async with aiohttp.ClientSession() as session: while True: async with session.get(LEVEL_API_URL + str(counter)) as res: data = await res.json() users = data["players"] counter += 1 for user in users: if user["level"] == 0: fetched_all = True break user_list.append({"uid": int(user["id"]), "xp": user["xp"]}) if fetched_all: break async def main(): await get_level() print(len(user_list)) with open("users.json_files", "w") as f: json_files.dump(user_list, fp=f) asyncio.run(main()) ```
{ "source": "johannesjh/fava", "score": 3 }
#### File: fava/ext/__init__.py ```python import ast import importlib import inspect import sys from typing import List from typing import Optional from typing import Tuple from typing import Type from fava.helpers import BeancountError class FavaExtensionError(BeancountError): """Error in one of Fava's extensions.""" class FavaExtensionBase: """Base class for extensions for Fava. Any extension should inherit from this class. :func:`find_extension` will discover all subclasses of this class in the specified modules. """ report_title: Optional[str] = None def __init__(self, ledger, config=None) -> None: """ Base init function. Args: ledger: Input ledger file. config: Configuration options string passed from the beancount file's 'fava-extension' line. """ self.ledger = ledger try: self.config = ast.literal_eval(config) except ValueError: self.config = None self.name = self.__class__.__qualname__ def run_hook(self, event, *args) -> None: """Run a hook. Args: event: One of the possible events. """ try: getattr(self, event)(*args) except AttributeError: pass def find_extensions( base_path: str, name: str ) -> Tuple[List[Type[FavaExtensionBase]], List[FavaExtensionError]]: """Find extensions in a module. Args: base_path: The module can be relative to this path. name: The name of the module containing the extensions. Returns: A tuple (classes, errors) where classes is a list of subclasses of :class:`FavaExtensionBase` found in ``name``. """ classes = [] sys.path.insert(0, base_path) try: module = importlib.import_module(name) except ImportError: error = FavaExtensionError( None, f'Importing module "{name}" failed.', None ) return ( [], [error], ) for _, obj in inspect.getmembers(module, inspect.isclass): if issubclass(obj, FavaExtensionBase) and obj != FavaExtensionBase: classes.append(obj) sys.path.pop(0) if not classes: error = FavaExtensionError( None, f'Module "{name}" contains no extensions.', None, ) return ( [], [error], ) return classes, [] ``` #### File: ext/portfolio_list/__init__.py ```python import re from beancount.core.data import Open from beancount.core.number import Decimal from beancount.core.number import ZERO from fava.ext import FavaExtensionBase from fava.helpers import FavaAPIException from fava.template_filters import cost_or_value class PortfolioList(FavaExtensionBase): # pragma: no cover """Sample Extension Report that just prints out an Portfolio List.""" report_title = "Portfolio List" def portfolio_accounts(self): """An account tree based on matching regex patterns.""" tree = self.ledger.root_tree portfolios = [] for option in self.config: opt_key = option[0] if opt_key == "account_name_pattern": portfolio = self._account_name_pattern(tree, option[1]) elif opt_key == "account_open_metadata_pattern": portfolio = self._account_metadata_pattern( tree, option[1][0], option[1][1] ) else: raise FavaAPIException("Portfolio List: Invalid option.") portfolios.append(portfolio) return portfolios def _account_name_pattern(self, tree, pattern): """ Returns portfolio info based on matching account name. Args: tree: Ledger root tree node. pattern: Account name regex pattern. Return: Data structured for use with a querytable (types, rows). """ title = "Account names matching: '" + pattern + "'" selected_accounts = [] regexer = re.compile(pattern) for acct in tree.keys(): if (regexer.match(acct) is not None) and ( acct not in selected_accounts ): selected_accounts.append(acct) selected_nodes = [tree[x] for x in selected_accounts] portfolio_data = self._portfolio_data(selected_nodes) return title, portfolio_data def _account_metadata_pattern(self, tree, metadata_key, pattern): """ Returns portfolio info based on matching account open metadata. Args: tree: Ledger root tree node. metadata_key: Metadata key to match for in account open. pattern: Metadata value's regex pattern to match for. Return: Data structured for use with a querytable - (types, rows). """ title = ( "Accounts with '" + metadata_key + "' metadata matching: '" + pattern + "'" ) selected_accounts = [] regexer = re.compile(pattern) for entry in self.ledger.all_entries_by_type[Open]: if (metadata_key in entry.meta) and ( regexer.match(entry.meta[metadata_key]) is not None ): selected_accounts.append(entry.account) selected_nodes = [tree[x] for x in selected_accounts] portfolio_data = self._portfolio_data(selected_nodes) return title, portfolio_data def _portfolio_data(self, nodes): """ Turn a portfolio of tree nodes into querytable-style data. Args: nodes: Account tree nodes. Return: types: Tuples of column names and types as strings. rows: Dictionaries of row data by column names. """ operating_currency = self.ledger.options["operating_currency"][0] acct_type = ("account", str(str)) bal_type = ("balance", str(Decimal)) alloc_type = ("allocation", str(Decimal)) types = [acct_type, bal_type, alloc_type] rows = [] portfolio_total = ZERO for node in nodes: row = {} row["account"] = node.name balance = cost_or_value(node.balance) if operating_currency in balance: balance_dec = balance[operating_currency] portfolio_total += balance_dec row["balance"] = balance_dec rows.append(row) for row in rows: if "balance" in row: row["allocation"] = round( (row["balance"] / portfolio_total) * 100, 2 ) return types, rows ``` #### File: src/fava/json_api.py ```python import functools import os import shutil from os import path from os import remove from typing import List from flask import Blueprint from flask import get_template_attribute from flask import jsonify from flask import render_template from flask import request from fava.context import g from fava.core.documents import filepath_in_document_folder from fava.core.documents import is_document_or_import_file from fava.core.misc import align from fava.helpers import FavaAPIException from fava.serialisation import deserialise from fava.serialisation import serialise json_api = Blueprint("json_api", __name__) # pylint: disable=invalid-name def get_api_endpoint(func): """Register a GET endpoint.""" @json_api.route(f"/{func.__name__}", methods=["GET"]) @functools.wraps(func) def _wrapper(*args, **kwargs): return jsonify({"success": True, "data": func(*args, **kwargs)}) return _wrapper def put_api_endpoint(func): """Register a PUT endpoint.""" @json_api.route(f"/{func.__name__}", methods=["PUT"]) @functools.wraps(func) def _wrapper(*args, **kwargs): request_data = request.get_json() if request_data is None: raise FavaAPIException("Invalid JSON request.") res = func(request_data, *args, **kwargs) return jsonify({"success": True, "data": res}) return _wrapper def delete_api_endpoint(func): """Register a DELETE endpoint.""" route = func.__name__.replace("delete_", "") @json_api.route(f"/{route}", methods=["DELETE"]) @functools.wraps(func) def _wrapper(*args, **kwargs): return jsonify({"success": True, "data": func(*args, **kwargs)}) return _wrapper def json_response(func): """Jsonify the response.""" @functools.wraps(func) def _wrapper(*args, **kwargs): json_data = func(*args, **kwargs) if "success" not in json_data: json_data["success"] = True return jsonify(json_data) return _wrapper @json_api.errorhandler(FavaAPIException) @json_response def _json_api_exception(error): return {"success": False, "error": error.message} @json_api.errorhandler(OSError) @json_response def _json_api_oserror(error): return {"success": False, "error": error.strerror} @get_api_endpoint def changed() -> bool: """Check for file changes.""" return g.ledger.changed() @get_api_endpoint def errors() -> int: """Number of errors.""" return len(g.ledger.errors) @get_api_endpoint def payee_accounts() -> List[str]: """Rank accounts for the given payee.""" payee = request.args.get("payee", "") return g.ledger.attributes.payee_accounts(payee) @get_api_endpoint def query_result(): """Render a query result to HTML.""" query = request.args.get("query_string", "") table = get_template_attribute("_query_table.html", "querytable") contents, types, rows = g.ledger.query_shell.execute_query(query) if contents: if "ERROR" in contents: raise FavaAPIException(contents) table = table(contents, types, rows) if types and g.ledger.charts.can_plot_query(types): return { "chart": g.ledger.charts.query(types, rows), "table": table, } return {"table": table} @get_api_endpoint def extract(): """Extract entries using the ingest framework.""" entries = g.ledger.ingest.extract( request.args.get("filename"), request.args.get("importer") ) return list(map(serialise, entries)) @get_api_endpoint def context(): """Entry context.""" entry_hash = request.args.get("entry_hash") entry, balances, slice_, sha256sum = g.ledger.context(entry_hash) content = render_template("_context.html", entry=entry, balances=balances) return {"content": content, "sha256sum": sha256sum, "slice": slice_} @get_api_endpoint def move() -> str: """Move a file.""" if not g.ledger.options["documents"]: raise FavaAPIException("You need to set a documents folder.") account = request.args.get("account") new_name = request.args.get("newName") filename = request.args.get("filename") if not account: raise FavaAPIException("No account specified.") if not filename: raise FavaAPIException("No filename specified.") if not new_name: raise FavaAPIException("No new filename given.") new_path = filepath_in_document_folder( g.ledger.options["documents"][0], account, new_name, g.ledger ) if not path.isfile(filename): raise FavaAPIException(f"Not a file: '{filename}'") if path.exists(new_path): raise FavaAPIException(f"Target file exists: '{new_path}'") if not path.exists(path.dirname(new_path)): os.makedirs(path.dirname(new_path), exist_ok=True) shutil.move(filename, new_path) return f"Moved {filename} to {new_path}." @get_api_endpoint def payee_transaction(): """Last transaction for the given payee.""" entry = g.ledger.attributes.payee_transaction(request.args.get("payee")) return serialise(entry) @put_api_endpoint def source(request_data) -> str: """Write one of the source files and return the updated sha256sum.""" return g.ledger.file.set_source( request_data.get("file_path"), request_data.get("source"), request_data.get("sha256sum"), ) @put_api_endpoint def source_slice(request_data) -> str: """Write an entry source slice and return the updated sha256sum.""" return g.ledger.file.save_entry_slice( request_data.get("entry_hash"), request_data.get("source"), request_data.get("sha256sum"), ) @put_api_endpoint def format_source(request_data) -> str: """Format beancount file.""" return align( request_data["source"], g.ledger.fava_options["currency-column"] ) @delete_api_endpoint def delete_document() -> str: """Delete a document.""" filename = request.args.get("filename") if not filename: raise FavaAPIException("No filename specified.") if not is_document_or_import_file(filename, g.ledger): raise FavaAPIException("No valid document or import file.") if not path.exists(filename): raise FavaAPIException(f"{filename} does not exist.") remove(filename) return f"Deleted {filename}." @json_api.route("/add_document", methods=["PUT"]) @json_response def add_document(): """Upload a document.""" if not g.ledger.options["documents"]: raise FavaAPIException("You need to set a documents folder.") upload = request.files["file"] if not upload: raise FavaAPIException("No file uploaded.") filepath = filepath_in_document_folder( request.form["folder"], request.form["account"], upload.filename, g.ledger, ) directory, filename = path.split(filepath) if path.exists(filepath): raise FavaAPIException(f"{filepath} already exists.") if not path.exists(directory): os.makedirs(directory, exist_ok=True) upload.save(filepath) if request.form.get("hash"): g.ledger.file.insert_metadata( request.form["hash"], "document", filename ) return {"data": f"Uploaded to {filepath}"} @put_api_endpoint def attach_document(request_data): """Attach a document to an entry.""" filename = request_data["filename"] entry_hash = request_data["entry_hash"] g.ledger.file.insert_metadata(entry_hash, "document", filename) return f"Attached '{filename}' to entry." @put_api_endpoint def add_entries(request_data): """Add multiple entries.""" try: entries = [deserialise(entry) for entry in request_data["entries"]] except KeyError as error: raise FavaAPIException(f"KeyError: {error}") from error g.ledger.file.insert_entries(entries) return f"Stored {len(entries)} entries." ``` #### File: fava/plugins/tag_discovered_documents.py ```python from beancount.core.data import Document __plugins__ = ["tag_discovered_documents"] def tag_discovered_documents(entries, options_map): """Tag automatically added documents.""" errors = [] if "documents" not in options_map or not options_map["documents"]: return entries, errors for index, entry in enumerate(entries): if isinstance(entry, Document) and entry.meta["lineno"] == 0: tags = ( set(entry.tags).union(["discovered"]) if entry.tags else {"discovered"} ) entries[index] = entry._replace(tags=tags) return entries, errors ``` #### File: fava/tests/test_core_inventory.py ```python from beancount.core.amount import A from fava.core.inventory import CounterInventory def test_add(): inv = CounterInventory() key = "KEY" inv.add(key, 10) assert len(inv) == 1 inv.add(key, -10) assert inv.is_empty() def test_add_amount(): inv = CounterInventory() inv.add_amount(A("10 USD")) inv.add_amount(A("30 USD")) assert len(inv) == 1 inv.add_amount(A("-40 USD")) assert inv.is_empty() inv.add_amount(A("10 USD")) inv.add_amount(A("20 CAD")) inv.add_amount(A("10 USD")) assert len(inv) == 2 inv.add_amount(A("-20 CAD")) assert len(inv) == 1 def test_add_inventory(): inv = CounterInventory() inv2 = CounterInventory() inv3 = CounterInventory() inv.add_amount(A("10 USD")) inv2.add_amount(A("30 USD")) inv3.add_amount(A("-40 USD")) inv.add_inventory(inv2) assert len(inv) == 1 inv.add_inventory(inv3) assert inv.is_empty() inv = CounterInventory() inv.add_inventory(inv2) assert len(inv) == 1 ```
{ "source": "johannesjmeyer/pennylane-pyquest", "score": 2 }
#### File: pennylane-pyquest/pennylane_pyquest/pyquest_mixed.py ```python import numpy as np import pyquest_cffi as pqc from .pyquest_device import PyquestDevice from .utils import reorder_matrix, reorder_state class DensityQuregContext: def __init__(self, wires): self.wires = wires def __enter__(self): self.env = pqc.utils.createQuestEnv()() self.qureg = pqc.utils.createDensityQureg()(self.wires, env=self.env) return self def __exit__(self, etype, value, traceback): pqc.utils.destroyQureg()(self.qureg, env=self.env) pqc.utils.destroyQuestEnv()(self.env) class PyquestMixed(PyquestDevice): _capabilities = {"mixed_state": True} operations = { "BasisState", "QubitStateVector", "QubitUnitary", "PauliX", "PauliY", "PauliZ", "MultiRZ", "PauliRot", "Hadamard", "S", "T", "CNOT", "SWAP", "CZ", "PhaseShift", "RX", "RY", "RZ", "CRX", "CRY", "CRZ", "MixDephasing", "MixDepolarising", "MixDamping", "MixKrausMap", } def __init__(self, wires, *, shots=1000, analytic=True, error_model=None): """ Args: error_model(operation->list[operation]): A function that is called for every operation in the queue and returns a list of operations that represent additional errors. """ super().__init__(wires, shots=shots, analytic=analytic) self.error_model = error_model def reset(self): super().reset() self._density_matrix = None self._probs = None def _qureg_context(self): return DensityQuregContext(self.num_wires) def _init_state_vector(self, state, context): state = reorder_state(state) matrix = np.outer(state.conj(), state).ravel() pqc.cheat.setDensityAmps()( qureg=context.qureg, startind=0, reals=np.real(matrix), imags=np.imag(matrix), numamps=len(matrix), ) def _preprocess_operations(self, operations): if not self.error_model: return operations out = [] for op in operations: out.append(op) out = out + self.error_model(op) return out def _extract_information(self, context): self._density_matrix = reorder_matrix(pqc.cheat.getDensityMatrix()(context.qureg)) self._probs = np.real(np.diag(self._density_matrix)) @property def state(self): return self._density_matrix @property def density_matrix(self): return self._density_matrix ```
{ "source": "johannesjmeyer/pennylane-sf", "score": 2 }
#### File: pennylane-sf/pennylane_sf/simulator.py ```python import abc import numpy as np from pennylane import Device import strawberryfields as sf from ._version import __version__ class StrawberryFieldsSimulator(Device): r"""Abstract StrawberryFields simulator device for PennyLane. Args: wires (int): the number of modes to initialize the device in analytic (bool): indicates if the device should calculate expectations and variances analytically shots (int): Number of circuit evaluations/random samples used to estimate expectation values of observables. If ``analytic=True``, this setting is ignored. hbar (float): the convention chosen in the canonical commutation relation :math:`[x, p] = i \hbar` """ name = 'Strawberry Fields Simulator PennyLane plugin' pennylane_requires = '>=0.6.0' version = __version__ author = '<NAME>ac' short_name = 'strawberryfields' _operation_map = {} _observable_map = {} def __init__(self, wires, *, analytic=True, shots=1000, hbar=2): super().__init__(wires, shots) self.hbar = hbar self.prog = None self.eng = None self.q = None self.state = None self.samples = None self.analytic = analytic def execution_context(self): """Initialize the engine""" self.reset() self.prog = sf.Program(self.num_wires) self.q = self.prog.register return self.prog def apply(self, operation, wires, par): """Apply a quantum operation. Args: operation (str): name of the operation wires (Sequence[int]): subsystems the operation is applied on par (tuple): parameters for the operation """ # convert PennyLane parameter conventions to # Strawberry Fields conventions if operation == "DisplacedSqueezedState": sf_par = (par[0]*np.exp(par[1]*1j), par[2], par[3]) elif operation == "CatState": sf_par = (par[0]*np.exp(par[1]*1j), par[2]) else: sf_par = par op = self._operation_map[operation](*sf_par) op | [self.q[i] for i in wires] #pylint: disable=pointless-statement @abc.abstractmethod def pre_measure(self): """Run the engine""" raise NotImplementedError def expval(self, observable, wires, par): """Evaluate the expectation of an observable. Args: observable (str): name of the observable wires (Sequence[int]): subsystems the observable is evaluated on par (tuple): parameters for the observable Returns: float: expectation value """ ex, var = self._observable_map[observable](self.state, wires, par) if not self.analytic: # estimate the expectation value # use central limit theorem, sample normal distribution once, only ok # if shots is large (see https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem) ex = np.random.normal(ex, np.sqrt(var / self.shots)) return ex def var(self, observable, wires, par): """Evaluate the variance of an observable. Args: observable (str): name of the observable wires (Sequence[int]): subsystems the observable is evaluated on par (tuple): parameters for the observable Returns: float: variance value """ _, var = self._observable_map[observable](self.state, wires, par) return var def cov(self, observable1, wires1, par1, observable2, wires2, par2): if observable1 != "NumberOperator" or observable2 != "NumberOperator": raise Exception("Only NumberOperator supported so far.") ev1 = self.expval(observable1, wires1, par1) ev2 = self.expval(observable2, wires2, par2) data = self.state.all_fock_probs() photon_numbers = np.zeros_like(data, dtype=int) wires = sorted([wires1[0], wires2[0]]) photon_numbers = np.moveaxis(photon_numbers, wires[0], 0) photon_numbers = np.moveaxis(photon_numbers, wires[1], 1) for i in range(data.shape[wires1[0]]): for j in range(data.shape[wires2[0]]): photon_numbers[i, j, ...] = i * j photon_numbers = np.moveaxis(photon_numbers, 1, wires[1]) photon_numbers = np.moveaxis(photon_numbers, 0, wires[0]) # print("wires = ", wires) # for i in range(photon_numbers.shape[0]): # for j in range(photon_numbers.shape[1]): # for k in range(photon_numbers.shape[2]): # print("photon_numbers[{0}, {1}, {2}] = {3}".format(i, j, k, photon_numbers[i, j, k])) ev12 = np.abs(np.sum(photon_numbers * data)) return ev12 - ev1 * ev2 def reset(self): """Reset the device""" sf.hbar = self.hbar if self.eng is not None: self.eng.reset() self.eng = None if self.state is not None: self.state = None if self.q is not None: self.q = None if self.prog is not None: self.prog = None if self.samples is not None: self.samples = None @property def operations(self): """Get the supported set of operations. Returns: set[str]: the set of PennyLane operation names the device supports """ return set(self._operation_map.keys()) @property def observables(self): """Get the supported set of observables. Returns: set[str]: the set of PennyLane observable names the device supports """ return set(self._observable_map.keys()) ```
{ "source": "johannesjmeyer/qml", "score": 3 }
#### File: qml/demonstrations/qsim_beyond_classical.py ```python import pennylane as qml from pennylane_cirq import ops import cirq import numpy as np ###################################################################### # To start, we need to define the qubit grid that we will use for mimicking # Google's Sycamore chip, although we will only use 12 qubits instead of # the 54 that the actual chip has. This is so that you can run # this demo without having access to a supercomputer! # # We define the 12 qubits in a rectangular grid, setting the coordinates for # each qubit following the paper's suplementary dataset [#Martinis2020]_. We also create # a mapping between the wire number and the Cirq qubit to more easily reference # specific qubits later. Feel free to play around with different grids and # number of qubits. Just keep in mind that the grid needs to stay # connected. You could, for example, remove the final row (last four qubits # in the list) to simulate an 8-qubit system. # qubits = sorted([ cirq.GridQubit(3, 3), cirq.GridQubit(3, 4), cirq.GridQubit(3, 5), cirq.GridQubit(3, 6), cirq.GridQubit(4, 3), cirq.GridQubit(4, 4), cirq.GridQubit(4, 5), cirq.GridQubit(4, 6), cirq.GridQubit(5, 3), cirq.GridQubit(5, 4), cirq.GridQubit(5, 5), cirq.GridQubit(5, 6), ]) wires = len(qubits) # create a mapping between wire number and Cirq qubit qb2wire = {i: j for i, j in zip(qubits, range(wires))} ###################################################################### # Now let's create the ``qsim`` device, available via the Cirq plugin, making # use of the ``wires`` and ``qubits`` keywords that we defined above. # First, we need to define the number of 'shots' per circuit instance to # be used---where the number of shots simply corresponds to the number # of times that the circuit is sampled. This will also be needed later when # calculating the cross-entropy benchmarking fidelity. The more shots, the # more accurate the results will be. 500,000 shots will be used here---the same # number of samples used in the paper---but feel free to # change this (depending on your own computational restrictions). # shots = 500000 dev = qml.device('cirq.qsim', wires=wires, qubits=qubits, shots=shots) ###################################################################### # The next step would be to prepare the necessary gates. Some of these # gates are not natively supported in PennyLane, but are accessible # through the Cirq plugin. We can define the remaining gates by hand. # # For the single-qubit gates we need the :math:`\sqrt{X}` and # :math:`\sqrt{Y}` gates, which can be written as :math:`RX(\pi/2)` and # :math:`RY(\pi/2)` respectively, as well as the :math:`\sqrt{W}` gate, # where :math:`W = \frac{X + Y}{2}`. The latter is easiest defined by its # unitary matrix # # .. math:: # # \frac{1}{\sqrt{2}} # \begin{bmatrix} # 1 & \sqrt{i} \\ # \sqrt{-i} & 1 \\ # \end{bmatrix}. # # The :math:`\sqrt{X}` gate is already implemented in PennyLane, while the # two other gates can be implemented as follows: sqrtYgate = lambda wires: qml.RY(np.pi / 2, wires=wires) sqrtWgate = lambda wires: qml.QubitUnitary( np.array([[1, -np.sqrt(1j)], [np.sqrt(-1j), 1]]) / np.sqrt(2), wires=wires ) single_qubit_gates = [qml.SX, sqrtYgate, sqrtWgate] ###################################################################### # For the two-qubit gates we need the iSWAP gate # # .. math:: # # \begin{bmatrix} # 1 & 0 & 0 & 0 \\ # 0 & 0 & i & 0 \\ # 0 & i & 0 & 0 \\ # 0 & 0 & 0 & 1 # \end{bmatrix}, # # as well as the CPhase gate # # .. math:: # # \begin{bmatrix} # 1 & 0 & 0 & 0 \\ # 0 & 1 & 0 & 0 \\ # 0 & 0 & 1 & 0 \\ # 0 & 0 & 0 & e^{-i\phi} # \end{bmatrix}, # # both accessible via the Cirq plugin. # ###################################################################### # Assembling the circuit # ---------------------- # # Here comes one of the tricky parts. To decide which qubits the # two-qubit gates should be applied to, we have to look at how they are # connected to each other. In an alternating pattern, each pair of # neighbouring qubits gets labeled with a letter A-D, where A and B # correspond to all horizontally neighbouring qubits (in a row), and C and # D to the vertically neighbouring qubits (in a column). This is depicted # in the figure below, where you can also see how the single-qubit gates # are applied, as well as the cycles, each consisting of a layer of # single-qubit gates and a pair of two-qubit gates. Note that each coloured # two-qubit gate represented in the image is implemented as the two # consecutive gates iSWAP and CPhase in this demo. # # .. figure:: ../demonstrations/qsim_beyond_classical/supremacy_circuit.png # :align: center # :width: 90% # # **Image taken from <NAME>., <NAME>., <NAME>. et al.** [#Arute2019]_ # # The logic below iterates through all connections and returns a # dictionary, ``gate_order``, where the keys are the connection labels # between different qubits and the values are lists of all neighbouring # qubit pairs. We will use this dictionary inside the circuit to iterate # through the different pairs and apply the two two-qubit gates that we # just defined above. The way we iterate through the dictionary will depend # on a gate sequence defined in the next section. # from itertools import combinations gate_order = {"A":[], "B":[], "C":[], "D":[]} for i, j in combinations(qubits, 2): wire_1 = qb2wire[i] wire_2 = qb2wire[j] if i in j.neighbors(): if i.row == j.row and i.col % 2 == 0: gate_order["A"].append((wire_1, wire_2)) elif i.row == j.row and j.col % 2 == 0: gate_order["B"].append((wire_1, wire_2)) elif i.col == j.col and i.row % 2 == 0: gate_order["C"].append((wire_1, wire_2)) elif i.col == j.col and j.row % 2 == 0: gate_order["D"].append((wire_1, wire_2)) ###################################################################### # At this point we can define the gate sequence, which is the order the # two-qubit gates are applied to the different qubit pairs. For example, # ``["A", "B"]`` would mean that the two-qubit gates are first applied to # all qubits connected with label A, and then, during the next full cycle, # the two-qubit gates are applied to all qubits connected with label B. # This would then correspond to a 2-cycle run (or a circuit with a depth of # 2). # # While we can define any patterns we'd like, the two gate sequences below # are the ones that are used in the paper. The shorter one is # used for their classically verifiable benchmarking. The slightly # longer sequence, which is much harder to simulate classically, is used # for estimating the cross-entropy fidelity in what they call the "supremacy # regime". We will use the shorter gate sequence for the following # demonstration; feel free to play around with other combinations. # m = 14 # number of cycles gate_sequence_longer = np.resize(["A", "B", "C", "D", "C", "D", "A", "B"], m) gate_sequence = np.resize(["A", "B", "C", "D"], m) ###################################################################### # The single-qubit gates are randomly selected and applied to each qubit in # the circuit, while avoiding the same gate being applied to the same wire # twice in a row. We do this by creating a helper function ``generate_single_qubit_gate_list()`` that # specifies the order in which the single-qubit # gates should be applied. We can use this list within the # circuit to know which gate to apply when. # def generate_single_qubit_gate_list(): # create the first list by randomly selecting indices # from single_qubit_gates g = [list(np.random.choice(range(len(single_qubit_gates)), size=wires))] for cycle in range(len(gate_sequence)): g.append([]) for w in range(wires): # check which gate was applied to the wire previously one_gate_removed = list(range(len(single_qubit_gates))) bool_list = np.array(one_gate_removed) == g[cycle][w] # and remove it from the choices of gates to be applied pop_idx = np.where(bool_list)[0][0] one_gate_removed.pop(pop_idx) g[cycle + 1].append(np.random.choice(one_gate_removed)) return g ###################################################################### # Finally, we can define the circuit itself and create a QNode that we will # use for circuit evaluation with the ``qsim`` device. The two-qubit gates # are applied to the qubits connected by A, B, C, or D as defined above. # The circuit ends with a half-cycle, consisting of only a layer of # single-qubit gates. # # From the QNode, we need both the probabilities of the measurement # results, as well as raw samples. To facilitate this, we add a keyword # argument to our circuit allowing us to switch between the two returns. We # sample from the Pauli-Z observable on all wires, which will give us the # eigenvalues :math:`\pm 1` of the observable, corresponding to the states # :math:`\left|0\right>` and :math:`\left|1\right>`. # @qml.qnode(dev) def circuit(seed=42, return_probs=False): np.random.seed(seed) gate_idx = generate_single_qubit_gate_list() # m full cycles - single-qubit gates & two-qubit gate for i, gs in enumerate(gate_sequence): for w in range(wires): single_qubit_gates[gate_idx[i][w]](wires=w) for qb_1, qb_2 in gate_order[gs]: ops.ISWAP(wires=(qb_1, qb_2)) ops.CPhase(-np.pi/6, wires=(qb_1, qb_2)) # one half-cycle - single-qubit gates only for w in range(wires): single_qubit_gates[gate_idx[-1][w]](wires=w) if return_probs: return qml.probs(wires=range(wires)) else: return [qml.sample(qml.PauliZ(i)) for i in range(wires)] ###################################################################### # The cross-entropy benchmarking fidelity # --------------------------------------- # # The performance metric that is used in the experiment, and the one that we # will use in this demo, is called the linear cross-entropy benchmarking # fidelity. It's defined as # # .. math:: # # F_{XEB} = 2^{n}\left<P(x_i)\right> - 1, # # where :math:`n` is the number of qubits, :math:`P(x_i)` is the # probability of bitstring :math:`x_i` computed for the ideal quantum # circuit, and the average is over the observed bitstrings. # # The idea behind using this fidelity is that it will be close to 1 for # samples obtained from random quantum circuits, such as the one we defined # above, and close to zero for a uniform probability distribution, which # can be effectively sampled from classically. Sampling a bitstring from a # random quantum circuit would follow the distribution # # .. math:: # # Pr(p) = (N - 1)(1- p)^{N-2}, # # where :math:`N = 2^n` is the number of possible bitstrings [#Boixo2018]_. # This distribution is approximated well by the Porter-Thomas distribution, # given by :math:`Pr(p) = Ne^{-Np}`, a characteristic property of chaotic quantum # systems. From this we can then calculate the expectation value # :math:`\left<P(x_i)\right>` as follows: # # .. math:: # # \left<P(x_i)\right> = \int_0^1 p^2 N (N-1)(1-p)^{N-2}dp = \frac{2}{N+1}, # # which leads to the theoretical fidelity # # .. math:: # # F_{XEB} = 2^{n}\left<P(x_i)\right> - 1 = \frac{2N}{N+1} - 1. # # We implement this fidelity as the function below, where ``samples`` is a # list of sampled bitstrings, and ``probs`` is a list with corresponding # sampling probabilities for the same noiseless circuit. # def fidelity_xeb(samples, probs): sampled_probs = [] for bitstring in samples: # convert each bitstring into an integer bitstring_idx = int(bitstring, 2) # retrieve the corresponding probability for the bitstring sampled_probs.append(probs[bitstring_idx]) return 2 ** len(samples[0]) * np.mean(sampled_probs) - 1 ###################################################################### # We set a random seed and use it to calculate the probability for all the # possible bitstrings. It is then possible to sample from exactly the same # circuit by using the same seed. Before calculating the cross-entropy # benchmarking fidelity, the Pauli-Z samples need to be converted into # their correponding bitstrings, since we need the samples to be in the # computational basis. # # .. note:: # # Every time the previously defined circuit is run using the ``qsim`` device, ``qsimcirq`` # will print a warning message because the circuit has no intermediate measurements. # More information about this warning can be found in the `Measurement sampling # section of the qsimcirq guide <https://quantumai.google/qsim/tutorials/qsimcirq#measurement_sampling>`__. # seed = np.random.randint(0, 42424242) probs = circuit(seed=seed, return_probs=True) # transpose the samples to get the shape (shots, wires) circuit_samples = circuit(seed=seed).T # take the eigenvalues and transform -1 to 1 and 1 to 0 bitstring_samples = [] for sam in circuit_samples: bitstring_sample = -(sam - 1) // 2 bitstring_samples.append("".join(str(bs) for bs in bitstring_sample)) f_circuit = fidelity_xeb(bitstring_samples, probs) ###################################################################### # Similarly, we can sample random bitstrings from a uniform probability # distribution by generating all basis states, along with their # corresponding bitstrings, and sample directly from them using NumPy. # basis_states = dev.generate_basis_states(wires) random_integers = np.random.randint(0, len(basis_states), size=shots) bitstring_samples = [] for i in random_integers: bitstring_samples.append("".join(str(bs) for bs in basis_states[i])) f_uniform = fidelity_xeb(bitstring_samples, probs) ###################################################################### # Finally, let's compare the two different values. Sampling from the # circuit's probability distribution should give a fidelity close to 1, # while sampling from a uniform distribution should give a fidelity # close to 0. # # .. note:: # # The cross-entropy benchmarking fidelity may output # values that are negative or that are larger than 1, for any finite # number of samples. This is due to the random nature of the sampling. # For an infinite amount of samples, or circuit runs, the observed # values will tend towards the theoretical ones, and will then always # lie in the 0-to-1 interval. # print("Circuit's distribution:", f"{f_circuit:.7f}".rjust(12)) print("Uniform distribution:", f"{f_uniform:.7f}".rjust(14)) ###################################################################### # .. rst-class:: sphx-glr-script-out # # Out: # # .. code-block:: none # # Circuit's distribution: 1.0398803 # Uniform distribution: 0.0013487 # ###################################################################### # To show that the fidelity from the circuit sampling actually tends # towards the theoretical value calculated above we can run several # different random circuits, calculate their respective cross-entropy # benchmarking fidelities and then calculate the mean fidelity of all the # runs. The more evaluations we do, the closer to the theoretical value we # should get. # # In the experiment, they typically calculate each of their # presented fidelities over ten circuit instances, which only differ # in the choices of single-qubit gates. In this demo, we use even more # instances to demonstrate a value closer to the theoretically obtained # one. # # .. note:: # # The following mean fidelity calculations can be interesting to play # around with. You can change the qubit grid at the top of this demo # using, e.g., 8 or 4 qubits; change the number of shots used; as well # as the number of circuit evaluations below. Running the following code # snippet, the mean fidelity should still tend towards the theoretical # value (which will be lower for fewer qubits). # N = 2 ** wires theoretical_value = 2 * N / (N + 1) - 1 print("Theoretical:", f"{theoretical_value:.7f}".rjust(24)) f_circuit = [] num_of_evaluations = 100 for i in range(num_of_evaluations): seed = np.random.randint(0, 42424242) probs = circuit(seed=seed, return_probs=True) samples = circuit(seed=seed).T bitstring_samples = [] for sam in samples: new_sam = -(sam - 1) // 2 bitstring_samples.append("".join(str(bs) for bs in new_sam)) f_circuit.append(fidelity_xeb(bitstring_samples, probs)) print(f"\r{i + 1:4d} / {num_of_evaluations:4d}{' ':17}{np.mean(f_circuit):.7f}", end="") print("\rObserved:", f"{np.mean(f_circuit):.7f}".rjust(27)) ############################################################################## # .. rst-class:: sphx-glr-script-out # # Out: # # .. code-block:: none # # Theoretical: 0.9995118 # Observed: 0.9999512 # ###################################################################### # Classical hardness # ------------------ # # Why are we calculating this specific fidelity, and what does it actually # mean if we get a cross-entropy benchmarking fidelity close to 1? This is # an important question, containing one of the main arguments behind why # this experiment is used to demonstrate "quantum supremacy". # # Much is due to the Porter-Thompson probability distribution that the # random quantum circuits follow, which is hard to simulate classically. # On the other hand, a quantum device, running a circuit as the one # constructed above, should be able to sample from such a distribution # without much overhead. Thus, by showing that a quantum device can produce # a high enough fidelity value for a large enough circuit, "quantum # supremacy" can be claimed. This is exactly what Google's experiment # has done. # # There's still one issue that hasn't been touched on yet: the addition of # noise in quantum hardware. Simply put, this noise will lower the # cross-entropy benchmarking fidelity---the larger the # circuit, the more noise there will be, and thus the lower the fidelity, with the # fidelity approaching 0 as the noise increases. # By calculating the specific single-qubit, two-qubit, and readout errors # of the Sycamore chip, and using them to simulate a noisy circuit, the Google # AI quantum team was able to compare the run-times with the output from # their actual hardware device. This way, they managed to show that a # significant speedup could be gained from using a quantum computer, and # thus proclaimed "quantum supremacy" (see Fig. 4 in [#Arute2019]_). # # .. note:: # # For more reading on this, the original paper [#Arute2019]_ is highly # recommended (along with the suplementary information [#Arute2019sup]_ if you want # to dive deeper into the math and physics of the experiment). The blog # post in [#Sohaib2019]_, along with the accompanying GitHub repo, also provides # a nice introduction to the cross-entropy benchmarking fidelity, and # includes calculations highlighting the effects of added noise models. # ###################################################################### # References # ---------- # # .. [#Arute2019] # # <NAME>., <NAME>., <NAME>. et al. "Quantum supremacy using a programmable # superconducting processor" # `Nature 574, 505-510 (2019) <https://doi.org/10.1038/s41586-019-1666-5>`__. # # .. [#Arute2019sup] # # <NAME>., <NAME>., <NAME>. et al. Supplementary information for "Quantum # supremacy using a programmable superconducting processor" # `arXiv:1910.11333 (2019) <https://arxiv.org/abs/1910.11333>`__ # # .. [#Martinis2020] # # <NAME>. et al. (2020), `Quantum supremacy using a programmable # superconducting processor, Dryad, Dataset <https://doi.org/10.5061/dryad.k6t1rj8>`__ # # .. [#Boixo2018] # # <NAME>., <NAME>., <NAME>. et al. Characterizing quantum supremacy # in near-term devices. # `Nature Phys 14, 595-600 (2018) <https://doi.org/10.1038/s41567-018-0124-x>`__ # # .. [#Sohaib2019] # # <NAME>. and <NAME>., `Unpacking the Quantum Supremacy Benchmark with Python # <https://medium.com/@sohaib.alam/unpacking-the-quantum-supremacy-benchmark-with-python-67a46709d>`__ # ```
{ "source": "JohannesJolkkonen/aws-twitter-analysis", "score": 2 }
#### File: aws-twitter-analysis/lamba/amazon-comprehend.py ```python import boto3 import logging import os logger = logging.getLogger() logger.setLevel(logging.INFO) client = boto3.client('comprehend') def start_topic_job(client, input, output): client.start_topics_detection_job( InputDataConfig={ 'S3Uri': input, 'InputFormat': 'ONE_DOC_PER_LINE' }, OutputDataConfig={ 'S3Uri': output, 'KmsKeyId': '' }, JobName='job-name-string', NumberOfTopics=4, VpcConfig={ 'SecurityGroupIds': ['string'], 'Subnets': ['string'] } ) def start_sentiment_job(client, input, output): client.start_sentiment_detection_job( InputDataConfig={ 'S3Uri': input, 'InputFormat': 'ONE_DOC_PER_LINE' }, OutputDataConfig={ 'S3Uri': output }, DataAccessRoleArn=os.getenv('COMPREHEND_IAM_ROLE'), JobName='job-name-string', LanguageCode='en' ) def lambda_handler(event, context): logger.info(f'Event: {event}') bucket = event['Records'][0]['s3']['bucket']['name'] key = event['Records'][0]['s3']['object']['key'].replace('%3A', ':') input = f's3://{bucket}/{key}' output = f"s3://{os.getenv('OUTPUT_BUCKET')}" start_sentiment_job(client, input, output) ``` #### File: aws-twitter-analysis/lamba/parse-comprehend-results.py ```python import json import random import boto3 import shutil import os download_path = './download/output.tar.gz' upload_path = './upload' try: os.mkdir('./download') os.mkdir(upload_path) except: pass uri = 'twitter-comprehend-output-bucket' key = '902466892473-KP-04d2491a86f2290b69d20c43fa98eaac/output/output.tar.gz' root = key.split('/')[0] def s3_unpack(uri, key): # Download compressed comprehend-output from s3 and unpack it. s3_client = boto3.client('s3') s3_client.download_file(uri, key, Filename=download_path) shutil.unpack_archive(download_path, extract_dir=upload_path) s3_unpack(uri, key) def parse_phrases(infile_path): # Read and write keyphrases from comprehend-output into json. # Return random selection of phrases as a list. data = [] with open(infile_path, 'r') as file: for line in file.readlines(): try: obj = json.loads(line)['KeyPhrases'] except: pass n = json.loads(line)['Line'] for item in obj: phrase = item['Text'] score = item['Score'] if len(phrase) > 16 and len(phrase) < 80 and '@' not in phrase and score > 0.99: item = {} item['id'] = n item['score'] = float(score) item['phrase'] = phrase data.append(item) # items = sorted(data.items(), key=lambda x: x[1], reverse=True) with open('clean-json.json', 'w') as file: for item in data: file.write(json.dumps(item, indent=4) + '\n') highlights = [] for i in range(15): phrase = random.choice(data) print((phrase)['phrase']) highlights.append(phrase) parse_phrases(upload_path+'/output') ```
{ "source": "johannesjung/uncertainty-adversarial-paper", "score": 2 }
#### File: johannesjung/uncertainty-adversarial-paper/cats_and_dogs.py ```python import keras import numpy as np from keras.applications.resnet50 import ResNet50, preprocess_input from keras.layers import Dropout, Dense import src.utilities as U import os import h5py from keras import backend as K H5PATH = '/data-local/lsgs/cats_dogs.h5' def load_or_create_dataset(): if not os.path.exists(H5PATH): cats = U.load_jpgs('/data-local/lsgs/PetImages/Cat') catlabel = np.zeros(cats.shape[0]) dogs = U.load_jpgs('/data-local/lsgs/PetImages/Dog') doglabel = np.ones(dogs.shape[0]) data = np.concatenate([cats, dogs]) labels = np.concatenate([catlabel, doglabel]) inds = np.random.permutation(data.shape[0]) X = preprocess_input(data.astype(np.float)) Y = keras.utils.to_categorical(labels) # shuffle data X = X[inds] Y = Y[inds] N = X.shape[0] split = int(0.8 * N) X_train = X[:split] Y_train = Y[:split] X_test = X[split:] Y_test = Y[split:] # write to database file to avoid this crap later with h5py.File(H5PATH, 'w') as f: tr = f.create_group('train') te = f.create_group('test') tr.create_dataset('X', data=X_train) tr.create_dataset('Y', data=Y_train) te.create_dataset('X', data=X_test) te.create_dataset('Y', data=Y_test) return X_train, Y_train, X_test, Y_test else: with h5py.File(H5PATH, 'r') as f: X_train = f['train']['X'].value Y_train = f['train']['Y'].value X_test = f['test']['X'].value Y_test = f['test']['Y'].value return X_train, Y_train, X_test, Y_test def define_model_resnet(): K.set_learning_phase(True) rn50 = ResNet50(weights='imagenet', include_top='False') a = Dropout(rate=0.5)(rn50.output) a = Dense(2, activation='softmax')(a) model = keras.models.Model(inputs=rn50.input, outputs=a) # freeze resnet layers for layer in rn50.layers: layer.trainable = False return model if __name__ == '__main__': model = define_model_resnet() wname = 'save/cats_dogs_rn50_w_run.h5' model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam') X_train, Y_train, X_test, Y_test = load_or_create_dataset() model.fit(X_train, Y_train, epochs=15, validation_data=(X_test, Y_test), shuffle='batch') name = U.gen_save_name(wname) model.save_weights(name) ```
{ "source": "johanneskastl/opnsense-core", "score": 2 }
#### File: ipsec/vici/session.py ```python import collections import socket from .exception import SessionException, CommandException, EventUnknownException from .protocol import Transport, Packet, Message class Session(object): def __init__(self, sock=None): if sock is None: sock = socket.socket(socket.AF_UNIX) sock.connect("/var/run/charon.vici") self.handler = SessionHandler(Transport(sock)) def version(self): """Retrieve daemon and system specific version information. :return: daemon and system specific version information :rtype: dict """ return self.handler.request("version") def stats(self): """Retrieve IKE daemon statistics and load information. :return: IKE daemon statistics and load information :rtype: dict """ return self.handler.request("stats") def reload_settings(self): """Reload strongswan.conf settings and any plugins supporting reload. """ self.handler.request("reload-settings") def initiate(self, sa): """Initiate an SA. :param sa: the SA to initiate :type sa: dict :return: generator for logs emitted as dict :rtype: generator """ return self.handler.streamed_request("initiate", "control-log", sa) def terminate(self, sa): """Terminate an SA. :param sa: the SA to terminate :type sa: dict :return: generator for logs emitted as dict :rtype: generator """ return self.handler.streamed_request("terminate", "control-log", sa) def redirect(self, sa): """Redirect an IKE_SA. :param sa: the SA to redirect :type sa: dict """ self.handler.request("redirect", sa) def install(self, policy): """Install a trap, drop or bypass policy defined by a CHILD_SA config. :param policy: policy to install :type policy: dict """ self.handler.request("install", policy) def uninstall(self, policy): """Uninstall a trap, drop or bypass policy defined by a CHILD_SA config. :param policy: policy to uninstall :type policy: dict """ self.handler.request("uninstall", policy) def list_sas(self, filters=None): """Retrieve active IKE_SAs and associated CHILD_SAs. :param filters: retrieve only matching IKE_SAs (optional) :type filters: dict :return: generator for active IKE_SAs and associated CHILD_SAs as dict :rtype: generator """ return self.handler.streamed_request("list-sas", "list-sa", filters) def list_policies(self, filters=None): """Retrieve installed trap, drop and bypass policies. :param filters: retrieve only matching policies (optional) :type filters: dict :return: generator for installed trap, drop and bypass policies as dict :rtype: generator """ return self.handler.streamed_request("list-policies", "list-policy", filters) def list_conns(self, filters=None): """Retrieve loaded connections. :param filters: retrieve only matching configuration names (optional) :type filters: dict :return: generator for loaded connections as dict :rtype: generator """ return self.handler.streamed_request("list-conns", "list-conn", filters) def get_conns(self): """Retrieve connection names loaded exclusively over vici. :return: connection names :rtype: dict """ return self.handler.request("get-conns") def list_certs(self, filters=None): """Retrieve loaded certificates. :param filters: retrieve only matching certificates (optional) :type filters: dict :return: generator for loaded certificates as dict :rtype: generator """ return self.handler.streamed_request("list-certs", "list-cert", filters) def load_conn(self, connection): """Load a connection definition into the daemon. :param connection: connection definition :type connection: dict """ self.handler.request("load-conn", connection) def unload_conn(self, name): """Unload a connection definition. :param name: connection definition name :type name: dict """ self.handler.request("unload-conn", name) def load_cert(self, certificate): """Load a certificate into the daemon. :param certificate: PEM or DER encoded certificate :type certificate: dict """ self.handler.request("load-cert", certificate) def load_key(self, private_key): """Load a private key into the daemon. :param private_key: PEM or DER encoded key """ self.handler.request("load-key", private_key) def load_shared(self, secret): """Load a shared IKE PSK, EAP or XAuth secret into the daemon. :param secret: shared IKE PSK, EAP or XAuth secret :type secret: dict """ self.handler.request("load-shared", secret) def flush_certs(self, filter=None): """Flush the volatile certificate cache. Flush the certificate stored temporarily in the cache. The filter allows to flush only a certain type of certificates, e.g. CRLs. :param filter: flush only certificates of a given type (optional) :type filter: dict """ self.handler.request("flush-certs", filter) def clear_creds(self): """Clear credentials loaded over vici. Clear all loaded certificate, private key and shared key credentials. This affects only credentials loaded over vici, but additionally flushes the credential cache. """ self.handler.request("clear-creds") def load_pool(self, pool): """Load a virtual IP pool. Load an in-memory virtual IP and configuration attribute pool. Existing pools with the same name get updated, if possible. :param pool: virtual IP and configuration attribute pool :type pool: dict """ return self.handler.request("load-pool", pool) def unload_pool(self, pool_name): """Unload a virtual IP pool. Unload a previously loaded virtual IP and configuration attribute pool. Unloading fails for pools with leases currently online. :param pool_name: pool by name :type pool_name: dict """ self.handler.request("unload-pool", pool_name) def get_pools(self, options): """Retrieve loaded pools. :param options: filter by name and/or retrieve leases (optional) :type options: dict :return: loaded pools :rtype: dict """ return self.handler.request("get-pools", options) def listen(self, event_types): """Register and listen for the given events. :param event_types: event types to register :type event_types: list :return: generator for streamed event responses as (event_type, dict) :rtype: generator """ return self.handler.listen(event_types) class SessionHandler(object): """Handles client command execution requests over vici.""" def __init__(self, transport): self.transport = transport def _communicate(self, packet): """Send packet over transport and parse response. :param packet: packet to send :type packet: :py:class:`vici.protocol.Packet` :return: parsed packet in a tuple with message type and payload :rtype: :py:class:`collections.namedtuple` """ self.transport.send(packet) return Packet.parse(self.transport.receive()) def _register_unregister(self, event_type, register): """Register or unregister for the given event. :param event_type: event to register :type event_type: str :param register: whether to register or unregister :type register: bool """ if register: packet = Packet.register_event(event_type) else: packet = Packet.unregister_event(event_type) response = self._communicate(packet) if response.response_type == Packet.EVENT_UNKNOWN: raise EventUnknownException( "Unknown event type '{event}'".format(event=event_type) ) elif response.response_type != Packet.EVENT_CONFIRM: raise SessionException( "Unexpected response type {type}, " "expected '{confirm}' (EVENT_CONFIRM)".format( type=response.response_type, confirm=Packet.EVENT_CONFIRM, ) ) def request(self, command, message=None): """Send request with an optional message. :param command: command to send :type command: str :param message: message (optional) :type message: str :return: command result :rtype: dict """ if message is not None: message = Message.serialize(message) packet = Packet.request(command, message) response = self._communicate(packet) if response.response_type != Packet.CMD_RESPONSE: raise SessionException( "Unexpected response type {type}, " "expected '{response}' (CMD_RESPONSE)".format( type=response.response_type, response=Packet.CMD_RESPONSE ) ) command_response = Message.deserialize(response.payload) if "success" in command_response: if command_response["success"] != b"yes": raise CommandException( "Command failed: {errmsg}".format( errmsg=command_response["errmsg"] ) ) return command_response def streamed_request(self, command, event_stream_type, message=None): """Send command request and collect and return all emitted events. :param command: command to send :type command: str :param event_stream_type: event type emitted on command execution :type event_stream_type: str :param message: message (optional) :type message: str :return: generator for streamed event responses as dict :rtype: generator """ if message is not None: message = Message.serialize(message) self._register_unregister(event_stream_type, True); try: packet = Packet.request(command, message) self.transport.send(packet) exited = False while True: response = Packet.parse(self.transport.receive()) if response.response_type == Packet.EVENT: if not exited: try: yield Message.deserialize(response.payload) except GeneratorExit: exited = True pass else: break if response.response_type == Packet.CMD_RESPONSE: command_response = Message.deserialize(response.payload) else: raise SessionException( "Unexpected response type {type}, " "expected '{response}' (CMD_RESPONSE)".format( type=response.response_type, response=Packet.CMD_RESPONSE ) ) finally: self._register_unregister(event_stream_type, False); # evaluate command result, if any if "success" in command_response: if command_response["success"] != b"yes": raise CommandException( "Command failed: {errmsg}".format( errmsg=command_response["errmsg"] ) ) def listen(self, event_types): """Register and listen for the given events. :param event_types: event types to register :type event_types: list :return: generator for streamed event responses as (event_type, dict) :rtype: generator """ for event_type in event_types: self._register_unregister(event_type, True) try: while True: response = Packet.parse(self.transport.receive()) if response.response_type == Packet.EVENT: try: yield response.event_type, Message.deserialize(response.payload) except GeneratorExit: break finally: for event_type in event_types: self._register_unregister(event_type, False) ``` #### File: service/tests/core.py ```python import unittest import json from modules import processhandler class DummySocket(object): """ Simple wrapper to simulate socket client for the processhandler """ def __init__(self): """ init :return: """ self._send_data = '' self._receive_data = [] self._closed = False def setTestData(self, data): """ set data to send :param data: text :return: """ self._closed = False self._receive_data = [] self._send_data = data def recv(self, size): """ implement sock.rec, flush to self._send_data :param size: :return: """ return self._send_data def sendall(self, data): """ send back to "client" :param data: text :return: """ self._receive_data.append(data) def close(self): """ close connection :return: """ self._closed = True def getReceived(self): """ fetch received data :return: """ return ''.join(self._receive_data) class TestCoreMethods(unittest.TestCase): def setUp(self): """ setup test, load config :return: """ self.config_path = '%s/../conf' % '/'.join(__file__.split('/')[:-1]) self.dummysock = DummySocket() self.act_handler = processhandler.ActionHandler(config_path=self.config_path, config_environment={}) def tearDown(self): """ end test :return: """ self.dummysock = None def test_escape_sequence(self): """ test if "end of data" is send correctly :return: """ # send unknown command self.dummysock.setTestData('xxxxxx\n') cmd_thread = processhandler.HandlerClient(connection=self.dummysock, client_address=None, action_handler=self.act_handler, simulation_mode=False) cmd_thread.run() self.assertEquals(self.dummysock.getReceived()[-4:], '\n%c%c%c' % (chr(0), chr(0), chr(0)), "Invalid sequence") def test_command_unknown(self): """ test invalid command :return: """ self.dummysock.setTestData('xxxxxx\n') cmd_thread = processhandler.HandlerClient(connection=self.dummysock, client_address=None, action_handler=self.act_handler, simulation_mode=False) cmd_thread.run() self.assertEquals(self.dummysock.getReceived().split('\n')[0], 'Action not found', 'Invalid response') def test_configd_actions(self): """ request configd command list :return: """ self.dummysock.setTestData('configd actions json\n') cmd_thread = processhandler.HandlerClient(connection=self.dummysock, client_address=None, action_handler=self.act_handler, simulation_mode=False) cmd_thread.run() response = json.loads(self.dummysock.getReceived()[:-4]) self.assertGreater(len(response), 10, 'number of configd commands very suspicious') ``` #### File: service/tests/template.py ```python import os import unittest import collections from modules import config from modules import template class TestConfigMethods(unittest.TestCase): def setUp(self): """ setup test, load config :return: """ conf_path = '%s/config/config.xml' % '/'.join(__file__.split('/')[:-1]) self.conf = config.Config(conf_path) def tearDown(self): """ end test :return: """ self.conf = None def test_type(self): """ test correct config type :return: """ self.assertEquals(type(self.conf.get()), collections.OrderedDict) def test_interface(self): """ test existence of interface :return: """ self.assertIn('interfaces', self.conf.get(), 'interfaces section missing') self.assertIn('lan', self.conf.get()['interfaces'], 'lan section missing') self.assertIn('ipaddr', self.conf.get()['interfaces']['lan'], 'lan address missing') class TestTemplateMethods(unittest.TestCase): def setUp(self): """ setup test, load config create temp directory :return: """ conf_path = '%s/config/config.xml' % '/'.join(__file__.split('/')[:-1]) self.output_path = '%s/output/' % '/'.join(__file__.split('/')[:-1]) self.conf = config.Config(conf_path) self.tmpl = template.Template(target_root_directory=self.output_path) self.tmpl.set_config(self.conf.get()) if not os.path.exists(self.output_path): os.mkdir(self.output_path) def tearDown(self): """ end test, remove test data :return: """ self.conf = None if os.path.exists(self.output_path): for root, dirs, files in os.walk(self.output_path, topdown=False): for filename in files: os.unlink('%s/%s' % (root, filename)) for dirname in dirs: os.rmdir('%s/%s' % (root, dirname)) os.rmdir(self.output_path) def test_sample(self): """ test sample template :return: """ generated_filenames = self.tmpl.generate('OPNsense.Sample') self.assertEquals(len(generated_filenames), 3, 'number of output files not 3') def test_all(self): """ Test if all expected templates are created, can only find test for static defined cases. Calls "generate *" and compares that to all defined templates in all +TARGET files Fails on first missing case. :return: """ self.expected_filenames = dict() self.generated_filenames = list() templates_path = '%s/../templates' % '/'.join(__file__.split('/')[:-1]) for root, dirs, files in os.walk(templates_path): for filenm in files: if filenm == '+TARGETS': filename = '%s/%s' % (root, filenm) for line in open(filename).read().split('\n'): line = line.strip() if len(line) > 1 and line[0] != '#' and line.find('[') == -1: expected_filename = ('%s%s' % (self.output_path, line.split(':')[-1])).replace('//', '/') self.expected_filenames[expected_filename] = {'src': filename} for filename in self.tmpl.generate('*'): self.generated_filenames.append(filename.replace('//', '/')) for expected_filename in self.expected_filenames: message = 'missing %s (%s' % (expected_filename, self.expected_filenames[expected_filename]['src']) self.assertIn(expected_filename, self.generated_filenames, message) ```
{ "source": "johanneskoester/igv-reports", "score": 2 }
#### File: igv-reports/test/test_bam.py ```python import unittest import pathlib from igv_reports import bam class BAMTest(unittest.TestCase): def test_bam(self): region = { "chr": "minigenome", "start": 4000, "end": 10000 } bam_file_path = str((pathlib.Path(__file__).parent / "data/minigenome/alignments.bam").resolve()) data = bam.get_data(bam_file_path, region) self.assertTrue(data) ```
{ "source": "johanneskoester/JUDI", "score": 3 }
#### File: JUDI/judi/paramdb.py ```python import pandas as pd class ParamDb(object): """Parameter database""" def __init__(self, name=''): self.name = name self.df = pd.DataFrame({'JUDI': ['*']}) def add_param(self, param_info, name=None): if isinstance(param_info, list): param_info = {name: param_info} if isinstance(param_info, dict): param_info = pd.DataFrame(param_info) if isinstance(param_info, pd.Series): param_info = pd.DataFrame([param_info]) if not isinstance(param_info, pd.DataFrame): print("Error! input data must be a list, series or dataframe!!!") return 1 self.df = self.df.assign(key=1).merge(param_info.assign(key=1), on='key', how='outer').drop('key', 1) def copy(self, name=''): other = ParamDb(name) other.df = self.df.copy() return other def mask(self, mask_cols): self.df = self.df.drop(mask_cols, 1).drop_duplicates() def show(self): print(self.name, ':') if 'JUDI' in self.df.columns: print(self.df.drop('JUDI', 1)) else: print(self.df) JUDI_PARAM = ParamDb("global pdb") def add_param(param_info, name = None): """Add a parameter or a group of parameters in the global parameter database Args: param_info (list/dict/Pandas Series/DataFrame): Information about the parameter or group of parameters. If not already so, param_info is converted to a pandas DataFrame and then it is added to the global parameter database via a Cartesian product. Kwargs: name (str): Used if param_info is a list and denotes the name of the parameter. Returns: int. The return code: 0 for success and 1 for error! Raises: None """ JUDI_PARAM.add_param(param_info, name) return 0 def show_param_db(): """Print the global parameter database """ JUDI_PARAM.show() def copy_param_db(): return JUDI_PARAM.copy() def mask_global_param_db(mask_cols): param = JUDI_PARAM.copy() masked = JUDI_PARAM.copy() param_cols = list(set(param.columns) - set(mask_cols)) param = param.drop(mask_cols, 1).drop_duplicates() masked = masked.drop(param_cols, 1).drop_duplicates() return(param, masked) def mask_param_db(param_db, mask_cols): pdb = param_db.copy() pdb = pdb.drop(mask_cols, 1).drop_duplicates() return pdb def param_diff(big, small): diff_cols = list(set(big.param.columns) - set(small.param.columns)) return big.param[diff_cols].drop_duplicates() ```
{ "source": "johanneskool/Ceres29", "score": 3 }
#### File: backend/orm/models.py ```python __author__ = '<NAME>' import os import pickle import secrets from datetime import datetime from backend import app from backend import db from backend.parsing import Network class File(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, unique=True) timestamp = db.Column(db.DateTime) filename = db.Column(db.String) filesize = db.Column(db.Integer) hash = db.Column(db.String, unique=True) def __init__(self, file, name): self.timestamp = datetime.utcnow() self.filename = file self.filesize = os.path.getsize(os.path.join(app.config['UPLOAD_FOLDER'], file)) # create hash to save directory in while True: hash = secrets.token_urlsafe(64) if hash not in [file.hash for file in File.query.all()]: self.hash = hash break # check if name already present here count = 1 actual_name = name while name in [file.name for file in File.query.all()]: # append (number) to end if already exists name = actual_name + " (" + str(count) + ")" count += 1 self.name = name network = Network.TopNetwork(self.name, self.filename, self.hash, self.filesize, self.timestamp) # converts to correct models and saves file in hash folder with open(os.path.join(app.config['JSON_FOLDER'], self.hash, "network.p"), "wb") as f: pickle.dump(network, f, protocol=pickle.HIGHEST_PROTOCOL) @property def location_path(self): return os.path.join(app.config['JSON_FOLDER'], self.hash) @property def default(self): return os.path.join(app.config["JSON_FOLDER"], self.location_path, Network.filenames['default']) @property def fiedler(self): return os.path.join(app.config["JSON_FOLDER"], self.location_path, Network.filenames['fiedler']) def get_pickle(self): with open(os.path.join(self.location_path, "network.p"), 'rb') as f: return pickle.load(f) def __repr__(self): return "<File {}>".format(self.name) ``` #### File: Ceres29/backend/views.py ```python __author__ = '<NAME>, <NAME>, <NAME>, <NAME>' import os from flask import render_template, request, redirect, flash, url_for, send_from_directory, abort, jsonify from backend import app from backend.functions_file import get_available_files, handle_file_upload from backend.orm.models import File # Index page @app.route('/', methods=['GET', 'POST']) def index(): data_id = request.args.get('data') if request.method == 'GET': if app.config['DEVELOPMENT'] == True: flash( 'Flask is currently running development mode. This is an example to show how we handle messages in our layout. Possible types for flash are info, warning, danger, success, and Flask\'s default category message is also allowed. HTML is no longer allowed in the messages for safety reasons', 'info') return render_template("index.html", data=data_id, title="Home") if request.method == 'POST': return handle_file_upload(request) # Choose file page @app.route('/upload', methods=['GET', 'POST']) def upload(): data_id = request.args.get('data') if request.method == 'GET': return render_template("upload.html", files_available=get_available_files(), data=data_id, title="Upload a file") if request.method == 'POST': return handle_file_upload(request) # Visualization page @app.route('/vis', methods=['GET']) @app.route('/vis/<int:data_id>', methods=['GET']) def vis(data_id=None): if (data_id is None) and (request.args.get('data') is None): flash('Please select a file before going to the visualization') return redirect(url_for('upload')) elif data_id is None: data_id = request.args.get('data') data_name = File.query.get(data_id).name if request.method == 'GET': return render_template("vis.html", files_available=get_available_files(), data=data_name, title=data_name, data_id=data_id) # Get data endpoint @app.route('/data/<data_id>', methods=['GET']) def data(data_id): file = File.query.get(data_id) if request.args.get('trace'): trace = int(request.args.get('trace')) network = file.get_pickle().get_subnetwork(trace) return network.json_string else: clustertype = request.args.get('type') # If unknown type do a 400 Bad Request; type does not exist if clustertype not in ['pagerank', 'cluster', 'degrees', 'lexicographic', 'cluster_graph', 'betweenness', 'fiedler', 'default']: abort(400) # load the graph either from an already generated json or create the json graph_path = os.path.join(app.config["JSON_FOLDER"], file.hash) filename = clustertype + ".json" if os.path.exists(os.path.join(graph_path, filename)): return send_from_directory(graph_path, filename) else: # get serialized data network = file.get_pickle() if clustertype == "cluster_graph": cluster_network = network.get_cluster_graph() cluster_network.save_as_json(os.path.join(graph_path, filename)) else: network.reorder(clustertype) network.save_as_json(os.path.join(graph_path, filename)) return send_from_directory(graph_path, filename) # Block some requests to static @app.before_request def a_little_bit_of_security_is_allowed(): if '/static/uploads' in request.path \ and '/static/uploads/Quick_Test_10x10_sparse.csv' not in request.path: abort(403) if '/static/json' in request.path: abort(403) # # Endpoint for different visualizations # @app.route('/subgraphs/<int:id>', methods=['GET']) # def subgraph(id): # if request.args.get('trace'): # trace = [int(i) for i in request.args.get('trace').split(',')] # file = File.query.get(id) # network = file.get_pickle() # for i in trace: # network = network.get_subnetwork(i) # return network.json_string ```
{ "source": "JohannesKreuzer/temp-probe-exporter", "score": 3 }
#### File: JohannesKreuzer/temp-probe-exporter/prometheus_temperature.py ```python from __future__ import print_function import re import sys import os import time import serial import yaml from prometheus_client import start_http_server, Gauge def main(): """Do things with stuff""" if len(sys.argv) != 2: print('Usage: {0} <config.yaml>'.format(sys.argv[0])) sys.exit() try: conf_file = open(sys.argv[1], 'r') conf = yaml.safe_load(conf_file) except Exception as e: print('Error loading config: {0}'.format(str(e)), file=sys.stderr) sensor_mappings = conf.get('sensor_mappings') prometheus_port = conf.get('exporter_port', 8104) method = conf.get('method') onewire_temperature_c = Gauge('onewire_temp', 'Temperature in C', ['name','id']) # Start the prometheus HTTP server start_http_server(prometheus_port) if method == 'serial': read_serial(onewire_temperature_c, sensor_mappings, conf.get('serial_port')) elif method == 'w1': read_w1(onewire_temperature_c, sensor_mappings) else: print('Invalid method specified: {0}'.format(method), file=sys.stderr) sys.exit() def read_serial(onewire_temperature_c, sensor_mappings, serial_port): """Read data from a serial port""" ser = serial.Serial(serial_port, timeout=60) while 1: line = ser.readline() m = re.match(r'(.*):(-?[0-9.]+)\n', line.decode('ascii')) if m: onewire_temperature_c.labels(name=sensor_mappings[m.group(1)], id=m.group(1)).set(m.group(2)) def read_w1(onewire_temperature_c, sensor_mappings): """Read data from /sys/bus/w1/drivers/w1_slave_driver/""" base_dir = '/sys/bus/w1/drivers/w1_slave_driver/' # Get our device: path_mappings = {} for (directory, dirs, files) in os.walk(base_dir): for dev_dir in dirs: try: id_file = open('{0}/{1}/id'.format(base_dir, dev_dir), 'r') id_val = id_file.read().encode('hex').upper() id_file.close() therm_file = open('{0}/{1}/w1_slave'.format(base_dir, dev_dir), 'r') path_mappings[id_val] = therm_file except (OSError, IOError) as e: print('Skipping {0} due to error: {1}'.format(dev_dir, str(e)), file=sys.stderr) break while 1: for device_id, therm_file in path_mappings.items(): therm_contents = therm_file.read() therm_file.seek(0) m = re.search(r't=(-?\d+)$', therm_contents) if m: temperature = (float(m.group(1)) / 1000) # A reading of 85000 seems to mean "it's not working". If you actually want to # measure things that are 85°C, then my apologies. if temperature != 85: onewire_temperature_c.labels(name=sensor_mappings[device_id],id=device_id).set(temperature) time.sleep(1) if __name__ == '__main__': main() ```
{ "source": "johanneslanger/sagemaker-workshop-with-ground-truth", "score": 3 }
#### File: tf-2-workflow-smpipelines/train_model/model_def.py ```python import tensorflow as tf def get_model(): inputs = tf.keras.Input(shape=(13,)) hidden_1 = tf.keras.layers.Dense(13, activation='tanh')(inputs) hidden_2 = tf.keras.layers.Dense(6, activation='sigmoid')(hidden_1) outputs = tf.keras.layers.Dense(1)(hidden_2) return tf.keras.Model(inputs=inputs, outputs=outputs) ```
{ "source": "JohannesLiu/Deep-Learning-Loss-Function-Collection-for-Imbalanced-Data", "score": 2 }
#### File: Deep-Learning-Loss-Function-Collection-for-Imbalanced-Data/losses/ClassBalancedLoss.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from .LossFunc import focal_loss import numpy as np class ClassBalancedLoss(torch.nn.Module): def __init__(self, samples_per_class=None, beta=0.9999, gamma=0.5, loss_type="focal"): super(ClassBalancedLoss, self).__init__() if loss_type not in ["focal", "sigmoid", "softmax"]: loss_type = "focal" if samples_per_class is None: num_classes = 5000 samples_per_class = [1] * num_classes effective_num = 1.0 - np.power(beta, samples_per_class) weights = (1.0 - beta) / np.array(effective_num) self.constant_sum = len(samples_per_class) weights = (weights / np.sum(weights) * self.constant_sum).astype(np.float32) self.class_weights = weights self.beta = beta self.gamma = gamma self.loss_type = loss_type def update(self, samples_per_class): if samples_per_class is None: return effective_num = 1.0 - np.power(self.beta, samples_per_class) weights = (1.0 - self.beta) / np.array(effective_num) self.constant_sum = len(samples_per_class) weights = (weights / np.sum(weights) * self.constant_sum).astype(np.float32) self.class_weights = weights def forward(self, x, y): _, num_classes = x.shape labels_one_hot = F.one_hot(y, num_classes).float() weights = torch.tensor(self.class_weights, device=x.device).index_select(0, y) weights = weights.unsqueeze(1) if self.loss_type == "focal": cb_loss = focal_loss(x, labels_one_hot, weights, self.gamma) elif self.loss_type == "sigmoid": cb_loss = F.binary_cross_entropy_with_logits(x, labels_one_hot, weights) else: # softmax pred = x.softmax(dim=1) cb_loss = F.binary_cross_entropy(pred, labels_one_hot, weights) return cb_loss class ClassBalancedLossMod(nn.Module): def __init__(self,beta = 0.9999,gamma = 0.5,epsilon=0.1, loss_type = 'softmax'): super(ClassBalancedLossMod, self).__init__() self.beta = beta self.gamma = gamma self.epsilon = epsilon self.loss_type = loss_type def forward(self,logits, labels, device="cuda"): """Compute the Class Balanced Loss between `logits` and the ground truth `labels`. Class Balanced Loss: ((1-beta)/(1-beta^n))*Loss(labels, logits) where Loss is one of the standard losses used for Neural Networks. Args: labels: A int tensor of size [batch]. logits: A float tensor of size [batch, no_of_classes]. samples_per_cls: A python list of size [no_of_classes]. no_of_classes: total number of classes. int loss_type: string. One of "sigmoid", "focal", "softmax". beta: float. Hyperparameter for Class balanced loss. gamma: float. Hyperparameter for Focal loss. Returns: cb_loss: A float tensor representing class balanced loss """ # self.epsilon = 0.1 #labelsmooth beta = self.beta gamma = self.gamma no_of_classes = logits.shape[1] samples_per_cls = torch.Tensor([sum(labels == i) for i in range(logits.shape[1])]) if torch.cuda.is_available(): samples_per_cls = samples_per_cls.cuda() effective_num = 1.0 - torch.pow(beta, samples_per_cls) weights = (1.0 - beta) / ((effective_num)+1e-8) # print(weights) weights = weights / torch.sum(weights) * no_of_classes labels =labels.reshape(-1,1) labels_one_hot = torch.zeros(len(labels), no_of_classes).to(device).scatter_(1, labels, 1) weights = torch.tensor(weights).float() if torch.cuda.is_available(): weights = weights.cuda() labels_one_hot = torch.zeros(len(labels), no_of_classes).cuda().scatter_(1, labels, 1).cuda() labels_one_hot = (1 - self.epsilon) * labels_one_hot + self.epsilon / no_of_classes weights = weights.unsqueeze(0) weights = weights.repeat(labels_one_hot.shape[0],1) * labels_one_hot weights = weights.sum(1) weights = weights.unsqueeze(1) weights = weights.repeat(1,no_of_classes) if self.loss_type == "focal": cb_loss = focal_loss(labels_one_hot, logits, weights, gamma) elif self.loss_type == "sigmoid": cb_loss = F.binary_cross_entropy_with_logits(input = logits,target = labels_one_hot, pos_weight = weights) elif self.loss_type == "softmax": pred = logits.softmax(dim = 1) cb_loss = F.binary_cross_entropy(input = pred, target = labels_one_hot, weight = weights) return cb_loss def test(): torch.manual_seed(123) batch_size = 10 num_classes = 5 x = torch.rand(batch_size, num_classes) y = torch.randint(0, 5, size=(batch_size,)) samples_per_class = [1, 2, 3, 4, 5] loss_type = "focal" loss_fn = ClassBalancedLoss(samples_per_class, loss_type=loss_type) loss = loss_fn(x, y) print(loss) if __name__ == '__main__': test() ``` #### File: Deep-Learning-Loss-Function-Collection-for-Imbalanced-Data/losses/CSCE.py ```python import torch import torch.nn as nn from torch.nn import functional as F import numpy as np class CSCE(nn.Module): """ CBCE(CSCE) with DRW """ def __init__(self, para_dict=None): super(CSCE, self).__init__() self.num_class_list = para_dict["num_class_list"] self.device = para_dict["device"] cfg = para_dict["cfg"] scheduler = cfg.LOSS.CSCE.SCHEDULER self.step_epoch = cfg.LOSS.CSCE.DRW_EPOCH if scheduler == "drw": self.betas = [0, 0.999999] elif scheduler == "default": self.betas = [0.999999, 0.999999] self.weight = None def update_weight(self, beta): effective_num = 1.0 - np.power(beta, self.num_class_list) per_cls_weights = (1.0 - beta) / np.array(effective_num) per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(self.num_class_list) self.weight = torch.FloatTensor(per_cls_weights).to(self.device) def reset_epoch(self, epoch): idx = (epoch-1) // self.step_epoch beta = self.betas[idx] self.update_weight(beta) def forward(self, x, target, **kwargs): return F.cross_entropy(x, target, weight= self.weight) ``` #### File: Deep-Learning-Loss-Function-Collection-for-Imbalanced-Data/losses/QualityFocalLoss.py ```python import torch.nn as nn import torch.nn.functional as F from .utils import weighted_loss from .utils import quality_focal_loss class QualityFocalLoss(nn.Module): r"""Quality Focal Loss (QFL) is a variant of `Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection <https://arxiv.org/abs/2006.04388>`_. Args: use_sigmoid (bool): Whether sigmoid operation is conducted in QFL. Defaults to True. beta (float): The beta parameter for calculating the modulating factor. Defaults to 2.0. reduction (str): Options are "none", "mean" and "sum". loss_weight (float): Loss weight of current loss. """ def __init__(self, use_sigmoid=True, beta=2.0, reduction='mean', loss_weight=1.0): super(QualityFocalLoss, self).__init__() assert use_sigmoid is True, 'Only sigmoid in QFL supported now.' self.use_sigmoid = use_sigmoid self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (torch.Tensor): Predicted joint representation of classification and quality (IoU) estimation with shape (N, C), C is the number of classes. target (tuple([torch.Tensor])): Target category label with shape (N,) and target quality label with shape (N,). weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.use_sigmoid: loss_cls = self.loss_weight * quality_focal_loss( pred, target, beta=self.beta) else: raise NotImplementedError return loss_cls ``` #### File: Deep-Learning-Loss-Function-Collection-for-Imbalanced-Data/losses/utils.py ```python import functools import torch.nn.functional as F def gaussian_focal_loss(pred, gaussian_target, alpha=2.0, gamma=4.0): """`Focal Loss <https://arxiv.org/abs/1708.02002>`_ for targets in gaussian distribution. Args: pred (torch.Tensor): The prediction. gaussian_target (torch.Tensor): The learning target of the prediction in gaussian distribution. alpha (float, optional): A balanced form for Focal Loss. Defaults to 2.0. gamma (float, optional): The gamma for calculating the modulating factor. Defaults to 4.0. """ eps = 1e-12 pos_weights = gaussian_target.eq(1) neg_weights = (1 - gaussian_target).pow(gamma) pos_loss = -(pred + eps).log() * (1 - pred).pow(alpha) * pos_weights neg_loss = -(1 - pred + eps).log() * pred.pow(alpha) * neg_weights return pos_loss + neg_loss def quality_focal_loss(pred, target, beta=2.0): r"""Quality Focal Loss (QFL) is from `Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection <https://arxiv.org/abs/2006.04388>`_. Args: pred (torch.Tensor): Predicted joint representation of classification and quality (IoU) estimation with shape (N, C), C is the number of classes. target (tuple([torch.Tensor])): Target category label with shape (N,) and target quality label with shape (N,). beta (float): The beta parameter for calculating the modulating factor. Defaults to 2.0. Returns: torch.Tensor: Loss tensor with shape (N,). """ assert len(target) == 2, """target for QFL must be a tuple of two elements, including category label and quality label, respectively""" # label denotes the category id, score denotes the quality score label, score = target # negatives are supervised by 0 quality score pred_sigmoid = pred.sigmoid() scale_factor = pred_sigmoid zerolabel = scale_factor.new_zeros(pred.shape) loss = F.binary_cross_entropy_with_logits( pred, zerolabel, reduction='none') * scale_factor.pow(beta) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = pred.size(1) pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1) pos_label = label[pos].long() # positives are supervised by bbox quality (IoU) score scale_factor = score[pos] - pred_sigmoid[pos, pos_label] loss[pos, pos_label] = F.binary_cross_entropy_with_logits( pred[pos, pos_label], score[pos], reduction='none') * scale_factor.abs().pow(beta) loss = loss.sum(dim=1, keepdim=False) return loss def distribution_focal_loss(pred, label): r"""Distribution Focal Loss (DFL) is from `Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection <https://arxiv.org/abs/2006.04388>`_. Args: pred (torch.Tensor): Predicted general distribution of bounding boxes (before softmax) with shape (N, n+1), n is the max value of the integral set `{0, ..., n}` in paper. label (torch.Tensor): Target distance label for bounding boxes with shape (N,). Returns: torch.Tensor: Loss tensor with shape (N,). """ dis_left = label.long() dis_right = dis_left + 1 weight_left = dis_right.float() - label weight_right = label - dis_left.float() loss = F.cross_entropy(pred, dis_left, reduction='none') * weight_left \ + F.cross_entropy(pred, dis_right, reduction='none') * weight_right return loss def reduce_loss(loss, reduction): """Reduce losses as specified. Args: loss (Tensor): Elementwise losses tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced losses tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce losses. Args: loss (Tensor): Element-wise losses. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed losses values. """ # if weight is specified, apply element-wise weight if weight is not None: loss = loss * weight # if avg_factor is not specified, just reduce the losses if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the losses by avg_factor if reduction == 'mean': loss = loss.sum() / avg_factor # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given losses function. To use this decorator, the losses function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise losses without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise losses loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ # if weight is specified, apply element-wise weight if weight is not None: loss = loss * weight.mean(dim=-1) # if avg_factor is not specified, just reduce the loss if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': loss = loss.sum() / avg_factor # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise loss loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper ```
{ "source": "JohannesLiu/HNRE-Pytorch", "score": 2 }
#### File: kddirkit/config/args.py ```python import datetime import json import os import pickle import sys import time import torch import math import argparse class Parser(object): def __init__(self, config_path, model , is_training = None): self.config = json.loads(open(config_path,'r').read()) self.is_training = is_training self.model = model self._trainParser = argparse.ArgumentParser(description ="training-" + model) self._testParser = argparse.ArgumentParser(description ="testing-" + model) self._oneParser = argparse.ArgumentParser(description ="one-" + model) if self.is_training == True: self.reset_train_parser() elif self.is_training == False: self.reset_test_parser() else : self.reset_one_parser() @property def trainParser(self): return self._trainParser @property def testParser(self): return self._testParser @property def oneParser(self): return self._oneParser def reset_train_parser(self): # training self._trainParser.add_argument('--model', help='neural models to encode sentences', type=str, default=self.model) self._trainParser.add_argument('--use_baseline', help='baseline or hier', type=bool, default=False) self._trainParser.add_argument('--mode', help='test mode', type=str, default='pr') self._trainParser.add_argument('--gpu', help='gpu(s) to use', type=str, default='0') self._trainParser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') self._trainParser.add_argument('--data_path', help ='path to load data', type=str, default='./data/') self._trainParser.add_argument('--model_dir', help ='path to store model', type= str, default ='./outputs/ckpt/') self._trainParser.add_argument('--summary_dir', help ='path to store summary_dir', type=str, default='./outputs/summary') self._trainParser.add_argument('--batch_size', help ='entity numbers used each training time', type= int, default= 160) self._trainParser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') self._trainParser.add_argument('--max_epoch', help='maximum of training epochs', type=int, default= 40) self._trainParser.add_argument('--save_epoch', help='frequency of training epochs', type=int, default=2) self._trainParser.add_argument('--restore_epoch', help='epoch to continue training', type=int, default=0) self._trainParser.add_argument('--learning_rate', help='learning rate', type=float, default=0.2) self._trainParser.add_argument('--weight_decay', help='weight_decay', type=float, default=0.00001) self._trainParser.add_argument('--keep_prob', help='dropout rate', type=float, default=0.5) self._trainParser.add_argument('--word_size', help='maximum of relations', type=int, default=self.config['word_size']) self._trainParser.add_argument('--hidden_size', help='hidden feature size', type=int, default=230) self._trainParser.add_argument('--pos_size', help='position embedding size', type=int, default=5) # statistics self._trainParser.add_argument('--max_length', help='maximum of number of words in one sentence', type=int, default=self.config['fixlen']) self._trainParser.add_argument('--pos_num', help='number of position embedding vectors', type=int, default=self.config['maxlen']*2 +1) self._trainParser.add_argument('--num_classes', help='maximum of relations', type=int, default=len(self.config['relation2id'])) self._trainParser.add_argument('--vocabulary_size', help='maximum of relations', type=int, default=len(self.config['word2id'])) def reset_test_parser(self): # test_settings self._testParser.add_argument('--model', help='neural models to encode sentences', type=str, default=self.model) self._testParser.add_argument('--use_baseline', help='baseline or hier', type=bool, default=False) self._testParser.add_argument('--mode', help='test mode', type=str, default='pr') self._testParser.add_argument('--gpu', help='gpu(s) to use', type=str, default='0') self._testParser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') self._testParser.add_argument('--allow_growth', help='occupying gpu(s) gradually', type=bool, default=True) self._testParser.add_argument('--checkpoint_path', help='path to store model', type=str, default='./outputs/ckpt/') self._testParser.add_argument('--logits_path', help='path to store model', type=str, default='./outputs/logits/') self._testParser.add_argument('--data_path', help='path to load data', type=str, default='./data/') self._testParser.add_argument('--batch_size', help='instance(entity pair) numbers to use each training(testing) time', type=int, default=262) self._testParser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') # training settings self._testParser.add_argument('--max_epoch', help='maximum of training epochs', type=int, default=30) self._testParser.add_argument('--save_epoch', help='frequency of training epochs', type=int, default=2) self._testParser.add_argument('--learning_rate', help='entity numbers used each training time', type=float, default=0.2) self._testParser.add_argument('--weight_decay', help='weight_decay', type=float, default=0.00001) self._testParser.add_argument('--keep_prob', help='dropout rate', type=float, default=1.0) # test_settings self._testParser.add_argument('--test_single', help='only test one checkpoint', type=bool, default=True) self._testParser.add_argument('--test_start_ckpt', help='first epoch to test', type=int, default=1) self._testParser.add_argument('--test_end_ckpt', help='last epoch to test', type=int, default=30) self._testParser.add_argument('--test_sleep', help='time units to sleep ', type=float, default=10) self._testParser.add_argument('--test_use_step', help='test step instead of epoch', type=bool, default=False) self._testParser.add_argument('--test_start_step', help='first step to test', type=int, default=0 * 1832) self._testParser.add_argument('--test_end_step', help='last step to test', type=int, default=30 * 1832) self._testParser.add_argument('--test_step', help='step to add per test', type=int, default=1832) # parameters # self._testParser.add_argument('--word_size', help='maximum of relations', type=int, default=self.config['word_size']) self._testParser.add_argument('--word_size', help='maximum of relations', type=int, default=50) self._testParser.add_argument('--hidden_size', help='hidden feature size', type=int, default=230) self._testParser.add_argument('--pos_size', help='position embedding size', type=int, default=5) # statistics self._testParser.add_argument('--max_length', help='maximum of number of words in one sentence', type=int, default=self.config['fixlen']) self._testParser.add_argument('--pos_num', help='number of position embedding vectors', type=int, default=self.config['maxlen']*2+1) self._testParser.add_argument('--num_classes', help='maximum of relations', type=int, default=len(self.config['relation2id'])) self._testParser.add_argument('--vocabulary_size', help='maximum of relations', type=int, default=len(self.config['word2id'])) def reset_one_parser(self): #traning # overall self._oneParser.add_argument('--model', help='neural models to encode sentences', type=str, default=self.model) self._oneParser.add_argument('--use_baseline', help='baseline or hier', type=bool, default=False) self._oneParser.add_argument('--mode', help='test mode', type=str, default='pr') self._oneParser.add_argument('--gpu', help='gpu(s) to use', type=str, default='0') self._oneParser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') self._oneParser.add_argument('--allow_growth', help='occupying gpu(s) gradually', type=bool, default=True) self._oneParser.add_argument('--data_path', help ='path to load data', type=str, default='./data/') self._oneParser.add_argument('--model_dir', help ='path to store model', type= str, default ='./outputs/ckpt/') self._oneParser.add_argument('--summary_dir', help ='path to store summary_dir', type=str, default='./outputs/summary') self._oneParser.add_argument('--training_batch_size', help ='entity numbers used each training time', type= int, default= 160) self._oneParser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') self._oneParser.add_argument('--layer_pattern', help='default, ag-0, ag-1, ag-2', type=str, default='default') # training self._oneParser.add_argument('--max_epoch', help='maximum of training epochs', type=int, default= 80) self._oneParser.add_argument('--save_epoch', help='frequency of training epochs', type=int, default=2) self._oneParser.add_argument('--restore_epoch', help='epoch to continue training', type=int, default=0) self._oneParser.add_argument('--learning_rate', help='learning rate', type=float, default=0.2) self._oneParser.add_argument('--weight_decay', help='weight_decay', type=float, default=0.00001) self._oneParser.add_argument('--keep_prob', help='dropout rate', type=float, default=0.5) # parameters self._oneParser.add_argument('--word_size', help='maximum of relations', type=int, default=self.config['word_size']) self._oneParser.add_argument('--hidden_size', help='hidden feature size', type=int, default=230) self._oneParser.add_argument('--pos_size', help='position embedding size', type=int, default=5) self._oneParser.add_argument('--losses', help='loss_function', type=str, default='cross_entropy') # statistics self._oneParser.add_argument('--max_length', help='maximum of number of words in one sentence', type=int, default=self.config['fixlen']) self._oneParser.add_argument('--pos_num', help='number of position embedding vectors', type=int, default=self.config['maxlen']*2 +1) self._oneParser.add_argument('--num_classes', help='maximum of relations', type=int, default=len(self.config['relation2id'])) self._oneParser.add_argument('--vocabulary_size', help='maximum of relations', type=int, default=len(self.config['word2id'])) #testing #overall self._oneParser.add_argument('--checkpoint_path', help='path to store model', type=str, default='./outputs/ckpt/') self._oneParser.add_argument('--logits_path', help='path to store model', type=str, default='./outputs/logits/') self._oneParser.add_argument('--testing_batch_size', help='instance(entity pair) numbers to use each training(testing) time', type=int, default=262) # test_settings self._oneParser.add_argument('--test_single', help='only test one checkpoint', type=bool, default=True) self._oneParser.add_argument('--test_start_ckpt', help='first epoch to test', type=int, default=1) self._oneParser.add_argument('--test_end_ckpt', help='last epoch to test', type=int, default=30) self._oneParser.add_argument('--test_sleep', help='time units to sleep ', type=float, default=10) self._oneParser.add_argument('--test_use_step', help='test step instead of epoch', type=bool, default=False) self._oneParser.add_argument('--test_start_step', help='first step to test', type=int, default=0 * 1832) self._oneParser.add_argument('--test_end_step', help='last step to test', type=int, default=30 * 1832) self._oneParser.add_argument('--test_step', help='step to add per test', type=int, default=1832) if __name__=="__main__": args = Parser("./data/config", "trials") trainParser = args.trainParser testParser = args.testParser oneParser = args.oneParser for key in args.__dict__: print(f"{key}:{args.__dict__[key]}") ``` #### File: kddirkit/dataloaders/DealDataset.py ```python import torch from torch.utils.data import Dataset, DataLoader, TensorDataset from torch.autograd import Variable import numpy as np class DealDataset(Dataset): """ 下载数据、初始化数据,都可以在这里完成 """ def __init__(self): # xy = np.loadtxt('./dataset/diabetes.csv.gz', delimiter=',', dtype=np.float32) # 使用numpy读取数据 # self.x_data = torch.from_numpy(xy[:, 0:-1]) # self.y_data = torch.from_numpy(xy[:, [-1]]) # self.len = xy.shape[0] NotImplemented def __getitem__(self, index): # return self.x_data[index], self.y_data[index] NotImplemented def __len__(self): # return self.len NotImplemented ``` #### File: kddirkit/frameworks/Tester.py ```python import torch import numpy as np import pandas as pd class Tester(object): def __init__(self): super(Tester, self).__init__() f = open("raw_data/relation2id.txt", "r") content = f.readlines()[1:] self.id2rel = {} for i in content: rel, rid = i.strip().split() self.id2rel[(int)(rid)] = rel f.close() self.fewrel_100 = {} f = open("data/rel100.txt", "r") content = f.readlines() for i in content: self.fewrel_100[i.strip()] = 1 f.close() self.fewrel_200 = {} f = open("data/rel200.txt", "r") content = f.readlines() for i in content: self.fewrel_200[i.strip()] = 1 f.close() ``` #### File: networks/embedders/RelQueryMatrix.py ```python import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable class RelQueryMatrix(nn.module): def __init__(self, hier, hidden_size, relation_level_layer, DEVICE = "cpu", weight_matrix =None): nn.Module.__init__(self) self.layer = relation_level_layer self.hier = hier self.hidden_size = hidden_size self.weight_matrix = weight_matrix self.relation_matrixs = [] self.DEVICE= DEVICE self.reset_parameter() def reset_parameter(self): if self.weight_matrix != None : for i in range(self.hier): self.relation_matrixs.append(nn.Embedding(self.layer[i], self.hidden_size, _weight=nn.init.xavier_uniform( torch.Tensor(self.layer[i], self.hidden_size))).to(self.DEVICE)) else: #这里要放每一层关系的权重 NotImplemented @property def relation_matrixs(self): return self.relation_matrixs ``` #### File: kddirkit/plots/RelTree.py ```python import dgl import networkx as nx import torch from matplotlib import pyplot as plt import matplotlib.patches as mpatches import pandas as pd class RelTree(object): def __init__(self, nodes_data, edges_data): super(RelTree, self).__init__() self.nodes_data = nodes_data self.edges_data = edges_data self.src = nyt_data.edges_data['src'].to_numpy() self.dst = nyt_data.edges_data['des'].to_numpy() self.g = dgl.graph((self.dst, self.src)) self.savePath = "./data_analysis/tree.png" self.rel2id_path = "D:/PycharmProjects/KGNS/raw_data/relation2id.csv" self.rel2id_pd = pd.read_csv(self.rel2id_path) self.virtual_weight = 570088 self.weight_rel2id_pd = pd.DataFrame([self.virtual_weight], columns=['Counts']).append(self.rel2id_pd[['Counts']]).fillna(0) self.weight_rel2id_np = self.weight_rel2id_pd.to_numpy() # weight_rel2id_np = weight_rel2id_np[np.isnan(weight_rel2id_np)] = 0 self.weight_rel2id_Tensor = torch.LongTensor(self.weight_rel2id_np) def out_degree2color(self, out_degree): if out_degree==1 and out_degree<5 : return 'g' if out_degree>1 and out_degree<5 : return 'y' elif out_degree>=5 : return 'r' else: return 'b' def longTail2color(self, instanceCounts): if instanceCounts>=1 and instanceCounts<=200 : return 'g' if instanceCounts>200 and instanceCounts<=10000 : return 'y' elif instanceCounts>10000: return 'r' else: return 'b' @property def OutDegreeTree(self, savePath = None): tree_g = self.g.to_networkx().to_directed() fig = plt.figure(figsize=(16, 9)) pos = nx.drawing.nx_agraph.graphviz_layout(tree_g, prog='dot') values = [self.out_degree2color(tree_g.out_degree(i)) for i in range(len(self.nodes_data))] values[0] = 'purple' pos[0] = [1800, 306] nx.draw(tree_g, pos, with_labels=True, node_color=values, arrows=True, alpha=0.5) color = ['purple', 'red', 'yellow', 'green', 'blue'] # 指定bar的颜色 labels = ['virtual relation', 'counts of sub chidr en $> 5$', 'counts of sub chidren $\geq 1$', 'counts of sub chidren $=1$', 'bottom relation'] # legend标签列表,上面的color即是颜色列表 patches = [mpatches.Patch(color=color[i], label="{:s}".format(labels[i])) for i in range(len(color))] plt.legend(handles=patches) if savePath != None: fig.savefig(savePath) # 保存图片 ./data_analysis/tree.png] return fig @property def InstanceTree(self, savePath = None): tree_g = self.g.to_networkx().to_directed() # tree_g.add_node("root") fig = plt.figure(figsize=(16, 9)) pos = nx.drawing.nx_agraph.graphviz_layout(tree_g, prog='dot') values = [self.longTail2color(self.weight_rel2id_np[i]) for i in range(len(self.nodes_data))] # tree_g.remove_node(1) values[0] = 'purple' pos[0] = [1800, 306] nx.draw(tree_g, pos, with_labels=True, node_color=values, arrows=True, alpha=0.5) color = ['purple', 'red', 'yellow', 'green', 'blue'] # 指定bar的颜色 labels = ['virtual relation', 'counts of instances $> 10000$', 'counts of instances $> 200$', 'counts of instances $\geq=1$', 'counts of instances $=0$'] # legend标签列表,上面的color即是颜色列表 patches = [mpatches.Patch(color=color[i], label="{:s}".format(labels[i])) for i in range(len(color))] plt.legend(handles=patches) if savePath != None: fig.savefig('./data_analysis/tree.png') # 保存图片 return fig if __name__ == '__main__': from kddirkit.dataloaders.LoadNYT import * nyt_data = NYTDataLoader() RelTree = RelTree(nyt_data.nodes_data, nyt_data.edges_data) fig = RelTree.OutDegreeTree plt.show() ```
{ "source": "johanneslotz/scripts", "score": 3 }
#### File: johanneslotz/scripts/histoapp_to_bigtiff_tiles.py ```python from curses import meta from fileinput import filename import io import json from urllib import response import numpy as np import pyvips import requests import tqdm from PIL import Image import math import shutil import os Image.MAX_IMAGE_PIXELS = None # adapt as needed baseurl="https://histoapp.mevis.fraunhofer.de" patch_size = 8000 project="project" image="image.sqreg" level=4 z=1 userCredentials=('user','<PASSWORD>') def setupBigTiff(project, imageName, level): metadata = requests.get('{}/api/v1/projects/{}/images/{}'.format(baseurl, project, imageName), auth = userCredentials).json() try: serverLevel = len(metadata["voxelsizes"])-level-1 except KeyError: if metadata['status'] == "unauthenticated": raise Exception("Username or password seems to be wrong.") extent = [math.ceil(d/(2**level)) for d in metadata["extent"]] voxelsize = [metadata["voxelsizes"][serverLevel]['x'], metadata["voxelsizes"][serverLevel]['y']] # imagefile = pyvips.Image.black(extent[0],extent[1],bands=3) print("Downloading {} at resolution {}x{}...".format(imageName,extent[0],extent[1])) return serverLevel, extent, voxelsize def getPatch(project, image, level, z, startPx, endPx, patch_number): url = '{}/api/v1/projects/{}/images/{}/region/{}/start/{}/{}/{}/size/{}/{}'.format(baseurl, project, image, level, startPx[0], startPx[1], z, endPx[0]-startPx[0], endPx[1]-startPx[1]) response = requests.get(url, auth = userCredentials) filename = os.path.join("tmp","{:04d}.jpg".format(patch_number)) try: os.mkdir("tmp") except FileExistsError: pass except Exception as e: raise(e) try: with open(filename, 'wb') as f: # result.raw.decode_content = True f.write(response.content) except Exception as e: print(url) print(response) print(response.content) raise(e) return filename def main(): serverLevel, extent, voxelsize = setupBigTiff(project, image, level) voxelsize = (1.0/(np.array(voxelsize)/1000000)).tolist() # µm/pixel to pixel/mm patch_number = 0 tiles=[] rows = math.ceil(extent[0]/ patch_size) for y in tqdm.trange(0, extent[1], patch_size, desc="Rows "): for x in tqdm.trange(0, extent[0], patch_size, desc="Columns", leave=False): startPx=(x,y) endPx=(extent[0] if x+patch_size > extent[0] else x+patch_size, extent[1] if y+patch_size > extent[1] else y+patch_size) if endPx[0] > extent[0]: endPx[0] tile_filename = getPatch(project, image, level, z, startPx, endPx, patch_number) tiles.append(tile_filename) patch_number = patch_number + 1 # save tiles to file vips_tiles = [pyvips.Image.new_from_file(f) for f in tiles] im = pyvips.Image.arrayjoin(vips_tiles, across=rows) im.tiffsave("{}_{}_{}.tif".format(image,level,z), xres=voxelsize[0], yres=voxelsize[1], tile=True, pyramid=True, compression="jpeg", bigtiff=True, rgbjpeg=False) # im.write_to_file("{}_{}_{}.jpg".format(image,level,z)) if __name__ == "__main__": main() ```
{ "source": "johannesmik/neurons", "score": 3 }
#### File: neurons/examples/jeffress_small.py ```python import numpy as np from neurons import spiking from neurons import plotting from neurons import tools def test_jeffress(): neurons = 11 timesteps = 100 ax_delays = np.array([0, 5, 15, 25, 0, 25, 15, 5, 0, 0, 0]) model = spiking.SRM_X(neurons=neurons, threshold=np.array([1]*neurons), t_current=np.array([5]*neurons), t_membrane=np.array([10]*neurons), eta_reset=np.array([2.0]*neurons), ax_delay=ax_delays) weights = np.zeros((neurons, neurons)) # Connect input layer weights[0, (1, 2, 3)] = 1 weights[4, (5, 6, 7)] = 1 # Connect to output layer weights[(1, 5), 8] = 1.05 weights[(2, 6), 9] = 1.05 weights[(3, 7), 10] = 1.05 print(weights) spiketrain = np.zeros((neurons, timesteps), dtype=bool) manual_spiketrain = True if manual_spiketrain: spiketrain[0, (20, 25, 30)] = 1 spiketrain[4, (0, 5, 10)] = 1 else: spiketrain[0,:] = tools.sound(timesteps, 85, 0.6, 4) spiketrain[4,:] = tools.sound(timesteps, 60, 0.6, 4) psth = plotting.PSTH(spiketrain, binsize=5) curr = plotting.CurrentPlot(4) for t in range(timesteps): current = model.check_spikes(spiketrain, weights, t) curr.add(current[[0, 3, 7, 10]]) psth.show_plot() curr.show_plot() if __name__ == "__main__": test_jeffress() plotting.show() ``` #### File: neurons/tests/test_tutorials.py ```python __author__ = 'johannes' import pytest import numpy as np from neurons import spiking, learning class TestSRMNetwork: " The first tutorial: SRM network " def test_tutorial_works(self): model = spiking.SRM(neurons=3, threshold=1, t_current=0.3, t_membrane=20, eta_reset=5) weights = np.array([[0, 0, 1.], [0, 0, 1.], [0, 0, 0]]) spiketrain = np.array([[0, 0, 1, 0, 0, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool) for time in range(10): total_potential = model.check_spikes(spiketrain, weights, time) print("Spiketrain:") print(spiketrain) expected_spiketrain = np.array([[0, 0, 1, 0, 0, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 1, 0]], dtype=bool) assert np.array_equal(spiketrain, expected_spiketrain) class TestLearning: " The second tutorial: Learning " def test_tutorial_works(self): stdp_model = learning.STDP(eta=0.05, w_in=0.5, w_out=0.5, tau=10.0, window_size=5) weights = np.array([[0, 0, 1.], [0, 0, 1.], [0, 0, 0]]) spiketrain = np.array([[0, 0, 1, 0, 0, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 1, 0]], dtype=bool) for time in range(10): stdp_model.weight_change(spiketrain, weights, time) print("Weights after") print(weights) # That's the output that I got during my first run expected_weights = np.array([[0, 0, 1.18586337], [0, 0, 1.17766241], [0, 0, 0]]) nullmatrix = np.zeros((3, 3)) assert np.array_equal(nullmatrix, np.around(expected_weights - weights, 5)) class TestSpikeAndLearn: " The third tutorial: Spike and Learn " def test_tutorial_works(self): srm_model = spiking.SRM(neurons=3, threshold=1, t_current=0.3, t_membrane=20, eta_reset=5) stdp_model = learning.STDP(eta=0.05, w_in=0.5, w_out=0.5, tau=10.0, window_size=5) weights = np.array([[0, 0, 1.], [0, 0, 1.], [0, 0, 0]]) spiketrain = np.array([[0, 0, 1, 0, 0, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool) for time in range(10): srm_model.check_spikes(spiketrain, weights, time) stdp_model.weight_change(spiketrain, weights, time) # Output that I got during my first run. There's a possibility that this is wrong calculations. expected_spiketrain = np.array([[0, 0, 1, 0, 0, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 1, 0]], dtype=bool) print(weights) expected_weights = np.array([[0, 0, 1.18586337], [0, 0, 1.17766241], [0, 0, 0]]) assert np.array_equal(spiketrain, expected_spiketrain) nullmatrix = np.zeros((3, 3)) assert np.array_equal(nullmatrix, np.around(expected_weights - weights, 5)) ```
{ "source": "johannesmse/Euler", "score": 4 }
#### File: johannesmse/Euler/problem_007.py ```python import math def sieveOfEratosthenes(n) : primes = [True for i in range(n + 1)] i = 2 while i <= math.sqrt(n) : if primes[i] : j = i**2 k = 0 while j <= n : primes[j] = False k += 1 j = i**2 + k * i i += 1 n_primes = [] for i in range(2, n+1) : if primes[i] : n_primes.append(i) print(n_primes[10000]) sieveOfEratosthenes(150000) ``` #### File: johannesmse/Euler/problem_011.py ```python def file_to_grid(filename) : grid = [] f = open(filename, "r") for row in f : numbers = row.split(" ") grid.append(list(map(int, numbers))) return grid # Finds greatest product of four adjacent numbers in the rows of the grid def greatest_row_product(grid) : product = 0 for row in grid : for i in range(len(row) - 3) : product = max(product, row[i] * row[i+1] * row[i+2] * row[i+3]) return product # Diagonal def greatest_diagonal_product(grid) : product = 0 for i in range(len(grid) - 3) : # right-diagonal numbers for j in range(len(grid) - 3) : product = max(product, grid[i][j] * grid[i+1][j+1] * grid[i+2][j+2] * grid[i+3][j+3]) # left-diagonal numbers for j in range(3, len(grid)) : product = max(product, grid[i][j] * grid[i+1][j-1] * grid[i+2][j-2] * grid[i+3][j-3]) return product grid = file_to_grid("problem_011.txt") transpose = list(map(list, zip(*grid))) product = max(greatest_row_product(grid), greatest_row_product(transpose), greatest_diagonal_product(grid)) print(product) ```
{ "source": "johannes-mueller/cython", "score": 3 }
#### File: cython/bin/cython-generate-lexicon.py ```python import functools import re import os import sys # Make sure we import the right Cython cythonpath, _ = os.path.split(os.path.realpath(__file__)) # bin directory cythonpath, _ = os.path.split(cythonpath) if os.path.exists(os.path.join(cythonpath, "Cython")): sys.path.insert(0, cythonpath) print("Found (and using) local cython directory") # else we aren't in a development directory from Cython.Compiler import Lexicon def main(): arg = '--overwrite' if len(sys.argv) == 2: arg = sys.argv[1] if len(sys.argv) > 2 or arg not in ['--overwrite','--here']: print("""Call the script with either: --overwrite to update the existing Lexicon.py file (default) --here to create an version of Lexicon.py in the current directory """) return generated_code = ( f"# generated with:\n" f"# {sys.implementation.name} {sys.version.splitlines()[0].strip()}\n" "\n" f"{generate_character_sets()}\n" ) print("Reading file", Lexicon.__file__) with open(Lexicon.__file__, 'r') as f: parts = re.split(r"(# (?:BEGIN|END) GENERATED CODE\n?)", f.read()) if len(parts) not in (4,5) or ' GENERATED CODE' not in parts[1] or ' GENERATED CODE' not in parts[3]: print("Warning: generated code section not found - code not inserted") return parts[2] = generated_code output = "".join(parts) if arg == "--here": outfile = "Lexicon.py" else: assert arg == "--overwrite" outfile = Lexicon.__file__ print("Writing to file", outfile) with open(outfile, 'w') as f: f.write(output) # The easiest way to generate an appropriate character set is just to use the str.isidentifier method # An alternative approach for getting character sets is at https://stackoverflow.com/a/49332214/4657412 @functools.lru_cache() def get_start_characters_as_number(): return [ i for i in range(sys.maxunicode) if str.isidentifier(chr(i)) ] def get_continue_characters_as_number(): return [ i for i in range(sys.maxunicode) if str.isidentifier('a'+chr(i)) ] def get_continue_not_start_as_number(): start = get_start_characters_as_number() cont = get_continue_characters_as_number() assert set(start) <= set(cont), \ "We assume that all identifier start characters are also continuation characters." return sorted(set(cont).difference(start)) def to_ranges(char_num_list): # Convert the large lists of character digits to # list of characters # a list pairs of characters representing closed ranges char_num_list = sorted(char_num_list) first_good_val = char_num_list[0] single_chars = [] ranges = [] for n in range(1, len(char_num_list)): if char_num_list[n]-1 != char_num_list[n-1]: # discontinuous if first_good_val == char_num_list[n-1]: single_chars.append(chr(char_num_list[n-1])) else: ranges.append(chr(first_good_val) + chr(char_num_list[n-1])) first_good_val = char_num_list[n] return ''.join(single_chars), ''.join(ranges) def make_split_strings(chars, splitby=60, indent=" "): lines = [f'u"{chars[i:i+splitby]}"' for i in range(0, len(chars), splitby)] return indent + f"\n{indent}".join(lines) def generate_character_sets(): declarations = [] for char_type, char_generator in [ ("unicode_start_ch", get_start_characters_as_number), ("unicode_continuation_ch", get_continue_not_start_as_number), ]: for set_type, chars in zip(("any", "range"), to_ranges(char_generator())): declarations.append( f"{char_type}_{set_type} = (\n" f"{make_split_strings(chars)}\n" f")\n" ) return "".join(declarations) if __name__ == "__main__": main() ``` #### File: Cython/Compiler/AnalysedTreeTransforms.py ```python from __future__ import absolute_import from .Visitor import ScopeTrackingTransform from .Nodes import StatListNode, SingleAssignmentNode, CFuncDefNode, DefNode from .ExprNodes import DictNode, DictItemNode, NameNode, UnicodeNode from .PyrexTypes import py_object_type from .StringEncoding import EncodedString from . import Symtab class AutoTestDictTransform(ScopeTrackingTransform): # Handles autotestdict directive excludelist = ['__cinit__', '__dealloc__', '__richcmp__', '__nonzero__', '__bool__', '__len__', '__contains__'] def visit_ModuleNode(self, node): if node.is_pxd: return node self.scope_type = 'module' self.scope_node = node if not self.current_directives['autotestdict']: return node self.all_docstrings = self.current_directives['autotestdict.all'] self.cdef_docstrings = self.all_docstrings or self.current_directives['autotestdict.cdef'] assert isinstance(node.body, StatListNode) # First see if __test__ is already created if u'__test__' in node.scope.entries: # Do nothing return node pos = node.pos self.tests = [] self.testspos = node.pos test_dict_entry = node.scope.declare_var(EncodedString(u'__test__'), py_object_type, pos, visibility='public') create_test_dict_assignment = SingleAssignmentNode(pos, lhs=NameNode(pos, name=EncodedString(u'__test__'), entry=test_dict_entry), rhs=DictNode(pos, key_value_pairs=self.tests)) self.visitchildren(node) node.body.stats.append(create_test_dict_assignment) return node def add_test(self, testpos, path, doctest): pos = self.testspos keystr = u'%s (line %d)' % (path, testpos[1]) key = UnicodeNode(pos, value=EncodedString(keystr)) value = UnicodeNode(pos, value=doctest) self.tests.append(DictItemNode(pos, key=key, value=value)) def visit_ExprNode(self, node): # expressions cannot contain functions and lambda expressions # do not have a docstring return node def visit_FuncDefNode(self, node): if not node.doc or (isinstance(node, DefNode) and node.fused_py_func): return node if not self.cdef_docstrings: if isinstance(node, CFuncDefNode) and not node.py_func: return node if not self.all_docstrings and '>>>' not in node.doc: return node pos = self.testspos if self.scope_type == 'module': path = node.entry.name elif self.scope_type in ('pyclass', 'cclass'): if isinstance(node, CFuncDefNode): if node.py_func is not None: name = node.py_func.name else: name = node.entry.name else: name = node.name if self.scope_type == 'cclass' and name in self.excludelist: return node if self.scope_type == 'pyclass': class_name = self.scope_node.name else: class_name = self.scope_node.class_name if isinstance(node.entry.scope, Symtab.PropertyScope): property_method_name = node.entry.scope.name path = "%s.%s.%s" % (class_name, node.entry.scope.name, node.entry.name) else: path = "%s.%s" % (class_name, node.entry.name) else: assert False self.add_test(node.pos, path, node.doc) return node ``` #### File: Compiler/Tests/TestParseTreeTransforms.py ```python import os from Cython.TestUtils import TransformTest from Cython.Compiler.ParseTreeTransforms import * from Cython.Compiler.Nodes import * from Cython.Compiler import Main, Symtab, Options class TestNormalizeTree(TransformTest): def test_parserbehaviour_is_what_we_coded_for(self): t = self.fragment(u"if x: y").root self.assertLines(u""" (root): StatListNode stats[0]: IfStatNode if_clauses[0]: IfClauseNode condition: NameNode body: ExprStatNode expr: NameNode """, self.treetypes(t)) def test_wrap_singlestat(self): t = self.run_pipeline([NormalizeTree(None)], u"if x: y") self.assertLines(u""" (root): StatListNode stats[0]: IfStatNode if_clauses[0]: IfClauseNode condition: NameNode body: StatListNode stats[0]: ExprStatNode expr: NameNode """, self.treetypes(t)) def test_wrap_multistat(self): t = self.run_pipeline([NormalizeTree(None)], u""" if z: x y """) self.assertLines(u""" (root): StatListNode stats[0]: IfStatNode if_clauses[0]: IfClauseNode condition: NameNode body: StatListNode stats[0]: ExprStatNode expr: NameNode stats[1]: ExprStatNode expr: NameNode """, self.treetypes(t)) def test_statinexpr(self): t = self.run_pipeline([NormalizeTree(None)], u""" a, b = x, y """) self.assertLines(u""" (root): StatListNode stats[0]: SingleAssignmentNode lhs: TupleNode args[0]: NameNode args[1]: NameNode rhs: TupleNode args[0]: NameNode args[1]: NameNode """, self.treetypes(t)) def test_wrap_offagain(self): t = self.run_pipeline([NormalizeTree(None)], u""" x y if z: x """) self.assertLines(u""" (root): StatListNode stats[0]: ExprStatNode expr: NameNode stats[1]: ExprStatNode expr: NameNode stats[2]: IfStatNode if_clauses[0]: IfClauseNode condition: NameNode body: StatListNode stats[0]: ExprStatNode expr: NameNode """, self.treetypes(t)) def test_pass_eliminated(self): t = self.run_pipeline([NormalizeTree(None)], u"pass") self.assertTrue(len(t.stats) == 0) class TestWithTransform(object): # (TransformTest): # Disabled! def test_simplified(self): t = self.run_pipeline([WithTransform(None)], u""" with x: y = z ** 3 """) self.assertCode(u""" $0_0 = x $0_2 = $0_0.__exit__ $0_0.__enter__() $0_1 = True try: try: $1_0 = None y = z ** 3 except: $0_1 = False if (not $0_2($1_0)): raise finally: if $0_1: $0_2(None, None, None) """, t) def test_basic(self): t = self.run_pipeline([WithTransform(None)], u""" with x as y: y = z ** 3 """) self.assertCode(u""" $0_0 = x $0_2 = $0_0.__exit__ $0_3 = $0_0.__enter__() $0_1 = True try: try: $1_0 = None y = $0_3 y = z ** 3 except: $0_1 = False if (not $0_2($1_0)): raise finally: if $0_1: $0_2(None, None, None) """, t) class TestInterpretCompilerDirectives(TransformTest): """ This class tests the parallel directives AST-rewriting and importing. """ # Test the parallel directives (c)importing import_code = u""" cimport cython.parallel cimport cython.parallel as par from cython cimport parallel as par2 from cython cimport parallel from cython.parallel cimport threadid as tid from cython.parallel cimport threadavailable as tavail from cython.parallel cimport prange """ expected_directives_dict = { u'cython.parallel': u'cython.parallel', u'par': u'cython.parallel', u'par2': u'cython.parallel', u'parallel': u'cython.parallel', u"tid": u"cython.parallel.threadid", u"tavail": u"cython.parallel.threadavailable", u"prange": u"cython.parallel.prange", } def setUp(self): super(TestInterpretCompilerDirectives, self).setUp() compilation_options = Options.CompilationOptions(Options.default_options) ctx = Main.Context.from_options(compilation_options) transform = InterpretCompilerDirectives(ctx, ctx.compiler_directives) transform.module_scope = Symtab.ModuleScope('__main__', None, ctx) self.pipeline = [transform] self.debug_exception_on_error = DebugFlags.debug_exception_on_error def tearDown(self): DebugFlags.debug_exception_on_error = self.debug_exception_on_error def test_parallel_directives_cimports(self): self.run_pipeline(self.pipeline, self.import_code) parallel_directives = self.pipeline[0].parallel_directives self.assertEqual(parallel_directives, self.expected_directives_dict) def test_parallel_directives_imports(self): self.run_pipeline(self.pipeline, self.import_code.replace(u'cimport', u'import')) parallel_directives = self.pipeline[0].parallel_directives self.assertEqual(parallel_directives, self.expected_directives_dict) # TODO: Re-enable once they're more robust. if False: from Cython.Debugger import DebugWriter from Cython.Debugger.Tests.TestLibCython import DebuggerTestCase else: # skip test, don't let it inherit unittest.TestCase DebuggerTestCase = object class TestDebugTransform(DebuggerTestCase): def elem_hasattrs(self, elem, attrs): return all(attr in elem.attrib for attr in attrs) def test_debug_info(self): try: assert os.path.exists(self.debug_dest) t = DebugWriter.etree.parse(self.debug_dest) # the xpath of the standard ElementTree is primitive, don't use # anything fancy L = list(t.find('/Module/Globals')) assert L xml_globals = dict((e.attrib['name'], e.attrib['type']) for e in L) self.assertEqual(len(L), len(xml_globals)) L = list(t.find('/Module/Functions')) assert L xml_funcs = dict((e.attrib['qualified_name'], e) for e in L) self.assertEqual(len(L), len(xml_funcs)) # test globals self.assertEqual('CObject', xml_globals.get('c_var')) self.assertEqual('PythonObject', xml_globals.get('python_var')) # test functions funcnames = ('codefile.spam', 'codefile.ham', 'codefile.eggs', 'codefile.closure', 'codefile.inner') required_xml_attrs = 'name', 'cname', 'qualified_name' assert all(f in xml_funcs for f in funcnames) spam, ham, eggs = [xml_funcs[funcname] for funcname in funcnames] self.assertEqual(spam.attrib['name'], 'spam') self.assertNotEqual('spam', spam.attrib['cname']) assert self.elem_hasattrs(spam, required_xml_attrs) # test locals of functions spam_locals = list(spam.find('Locals')) assert spam_locals spam_locals.sort(key=lambda e: e.attrib['name']) names = [e.attrib['name'] for e in spam_locals] self.assertEqual(list('abcd'), names) assert self.elem_hasattrs(spam_locals[0], required_xml_attrs) # test arguments of functions spam_arguments = list(spam.find('Arguments')) assert spam_arguments self.assertEqual(1, len(list(spam_arguments))) # test step-into functions step_into = spam.find('StepIntoFunctions') spam_stepinto = [x.attrib['name'] for x in step_into] assert spam_stepinto self.assertEqual(2, len(spam_stepinto)) assert 'puts' in spam_stepinto assert 'some_c_function' in spam_stepinto except: f = open(self.debug_dest) try: print(f.read()) finally: f.close() raise if __name__ == "__main__": import unittest unittest.main() ``` #### File: Cython/Tests/TestCodeWriter.py ```python from Cython.TestUtils import CythonTest class TestCodeWriter(CythonTest): # CythonTest uses the CodeWriter heavily, so do some checking by # roundtripping Cython code through the test framework. # Note that this test is dependent upon the normal Cython parser # to generate the input trees to the CodeWriter. This save *a lot* # of time; better to spend that time writing other tests than perfecting # this one... # Whitespace is very significant in this process: # - always newline on new block (!) # - indent 4 spaces # - 1 space around every operator def t(self, codestr): self.assertCode(codestr, self.fragment(codestr).root) def test_print(self): self.t(u""" print(x + y ** 2) print(x, y, z) print(x + y, x + y * z, x * (y + z)) """) def test_if(self): self.t(u"if x:\n pass") def test_ifelifelse(self): self.t(u""" if x: pass elif y: pass elif z + 34 ** 34 - 2: pass else: pass """) def test_def(self): self.t(u""" def f(x, y, z): pass def f(x = 34, y = 54, z): pass """) def test_cdef(self): self.t(u""" cdef f(x, y, z): pass cdef public void (x = 34, y = 54, z): pass cdef f(int *x, void *y, Value *z): pass cdef f(int **x, void **y, Value **z): pass cdef inline f(int &x, Value &z): pass """) def test_longness_and_signedness(self): self.t(u"def f(unsigned long long long long long int y):\n pass") def test_signed_short(self): self.t(u"def f(signed short int y):\n pass") def test_typed_args(self): self.t(u"def f(int x, unsigned long int y):\n pass") def test_cdef_var(self): self.t(u""" cdef int hello cdef int hello = 4, x = 3, y, z """) def test_for_loop(self): self.t(u""" for x, y, z in f(g(h(34) * 2) + 23): print(x, y, z) else: print(43) """) self.t(u""" for abc in (1, 2, 3): print(x, y, z) else: print(43) """) def test_while_loop(self): self.t(u""" while True: while True: while True: continue """) def test_inplace_assignment(self): self.t(u"x += 43") def test_cascaded_assignment(self): self.t(u"x = y = z = abc = 43") def test_attribute(self): self.t(u"a.x") def test_return_none(self): self.t(u""" def f(x, y, z): return cdef f(x, y, z): return def f(x, y, z): return None cdef f(x, y, z): return None def f(x, y, z): return 1234 cdef f(x, y, z): return 1234 """) if __name__ == "__main__": import unittest unittest.main() ``` #### File: Cython/Tests/TestTestUtils.py ```python import os.path import unittest import tempfile import textwrap import shutil from ..TestUtils import write_file, write_newer_file class TestTestUtils(unittest.TestCase): def setUp(self): super(TestTestUtils, self).setUp() self.temp_dir = tempfile.mkdtemp() def tearDown(self): if self.temp_dir and os.path.isdir(self.temp_dir): shutil.rmtree(self.temp_dir) super(TestTestUtils, self).tearDown() def _test_path(self, filename): return os.path.join(self.temp_dir, filename) def _test_write_file(self, content, expected, **kwargs): file_path = self._test_path("abcfile") write_file(file_path, content, **kwargs) assert os.path.isfile(file_path) with open(file_path, 'rb') as f: found = f.read() assert found == expected, (repr(expected), repr(found)) def test_write_file_text(self): text = u"abcüöä" self._test_write_file(text, text.encode('utf8')) def test_write_file_dedent(self): text = u""" A horse is a horse, of course, of course, And no one can talk to a horse of course """ self._test_write_file(text, textwrap.dedent(text).encode('utf8'), dedent=True) def test_write_file_bytes(self): self._test_write_file(b"ab\0c", b"ab\0c") def test_write_newer_file(self): file_path_1 = self._test_path("abcfile1.txt") file_path_2 = self._test_path("abcfile2.txt") write_file(file_path_1, "abc") assert os.path.isfile(file_path_1) write_newer_file(file_path_2, file_path_1, "xyz") assert os.path.isfile(file_path_2) assert os.path.getmtime(file_path_2) > os.path.getmtime(file_path_1) def test_write_newer_file_same(self): file_path = self._test_path("abcfile.txt") write_file(file_path, "abc") mtime = os.path.getmtime(file_path) write_newer_file(file_path, file_path, "xyz") assert os.path.getmtime(file_path) > mtime def test_write_newer_file_fresh(self): file_path = self._test_path("abcfile.txt") assert not os.path.exists(file_path) write_newer_file(file_path, file_path, "xyz") assert os.path.isfile(file_path) ``` #### File: tutorial/cdef_classes/sin_of_square.py ```python from cython.cimports.libc.math import sin @cython.cclass class Function: @cython.ccall def evaluate(self, x: float) -> float: return 0 @cython.cclass class SinOfSquareFunction(Function): @cython.ccall def evaluate(self, x: float) -> float: return sin(x ** 2) ``` #### File: tutorial/clibraries/queue3.py ```python from cython.cimports import cqueue from cython import cast @cython.cclass class Queue: """A queue class for C integer values. >>> q = Queue() >>> q.append(5) >>> q.peek() 5 >>> q.pop() 5 """ _c_queue = cython.declare(cython.pointer(cqueue.Queue)) def __cinit__(self): self._c_queue = cqueue.queue_new() if self._c_queue is cython.NULL: raise MemoryError() def __dealloc__(self): if self._c_queue is not cython.NULL: cqueue.queue_free(self._c_queue) @cython.ccall def append(self, value: cython.int): if not cqueue.queue_push_tail(self._c_queue, cast(cython.p_void, cast(cython.Py_ssize_t, value))): raise MemoryError() # The `cpdef` feature is obviously not available for the original "extend()" # method, as the method signature is incompatible with Python argument # types (Python does not have pointers). However, we can rename # the C-ish "extend()" method to e.g. "extend_ints()", and write # a new "extend()" method that provides a suitable Python interface by # accepting an arbitrary Python iterable. @cython.ccall def extend(self, values): for value in values: self.append(value) @cython.cfunc def extend_ints(self, values: cython.p_int, count: cython.size_t): value: cython.int for value in values[:count]: # Slicing pointer to limit the iteration boundaries. self.append(value) @cython.ccall @cython.exceptval(-1, check=True) def peek(self) -> cython.int: value: cython.int = cast(cython.Py_ssize_t, cqueue.queue_peek_head(self._c_queue)) if value == 0: # this may mean that the queue is empty, # or that it happens to contain a 0 value if cqueue.queue_is_empty(self._c_queue): raise IndexError("Queue is empty") return value @cython.ccall @cython.exceptval(-1, check=True) def pop(self) -> cython.int: if cqueue.queue_is_empty(self._c_queue): raise IndexError("Queue is empty") return cast(cython.Py_ssize_t, cqueue.queue_pop_head(self._c_queue)) def __bool__(self): return not cqueue.queue_is_empty(self._c_queue) ``` #### File: tutorial/clibraries/queue.py ```python from cython.cimports import cqueue @cython.cclass class Queue: _c_queue = cython.declare(cython.pointer(cqueue.Queue)) def __cinit__(self): self._c_queue = cqueue.queue_new() ``` #### File: tutorial/cython_tutorial/primes_cpp.py ```python import cython from cython.cimports.libcpp.vector import vector def primes(nb_primes: cython.uint): i: cython.int p: vector[cython.int] p.reserve(nb_primes) # allocate memory for 'nb_primes' elements. n: cython.int = 2 while p.size() < nb_primes: # size() for vectors is similar to len() for i in p: if n % i == 0: break else: p.push_back(n) # push_back is similar to append() n += 1 # If possible, C values and C++ objects are automatically # converted to Python objects at need. return p # so here, the vector will be copied into a Python list. ``` #### File: tutorial/external/keyword_args_call.py ```python from cython.cimports.strstr import strstr def main(): data: cython.p_char = "hfvcakdfagbcffvschvxcdfgccbcfhvgcsnfxjh" pos = strstr(needle='akd', haystack=data) print(pos is not cython.NULL) ``` #### File: userguide/extension_types/shrubbery.py ```python from __future__ import print_function @cython.cclass class Shrubbery: width: cython.int height: cython.int def __init__(self, w, h): self.width = w self.height = h def describe(self): print("This shrubbery is", self.width, "by", self.height, "cubits.") ``` #### File: userguide/language_basics/optional_subclassing.py ```python from __future__ import print_function @cython.cclass class A: @cython.cfunc def foo(self): print("A") @cython.cclass class B(A): @cython.cfunc def foo(self, x=None): print("B", x) @cython.cclass class C(B): @cython.ccall def foo(self, x=True, k:cython.int = 3): print("C", x, k) ``` #### File: userguide/language_basics/parameter_refcount.py ```python from __future__ import print_function from cython.cimports.cpython.ref import PyObject import sys python_dict = {"abc": 123} python_dict_refcount = sys.getrefcount(python_dict) @cython.cfunc def owned_reference(obj: object): refcount = sys.getrefcount(python_dict) print('Inside owned_reference: {refcount}'.format(refcount=refcount)) @cython.cfunc def borrowed_reference(obj: cython.pointer(PyObject)): refcount = obj.ob_refcnt print('Inside borrowed_reference: {refcount}'.format(refcount=refcount)) def main(): print('Initial refcount: {refcount}'.format(refcount=python_dict_refcount)) owned_reference(python_dict) borrowed_reference(cython.cast(cython.pointer(PyObject), python_dict)) ``` #### File: tests/run/builtin_types_class.py ```python from __future__ import print_function import cython # https://github.com/cython/cython/issues/3954 # calls to the __class__ attributes of builtin types were optimized to something invalid @cython.locals(d=dict) def test_dict(d): """ >>> test_dict({}) dict {} """ print(d.__class__.__name__) print(d.__class__()) @cython.locals(i=int) def test_int(i): """ >>> test_int(0) int 0 """ print(i.__class__.__name__) print(i.__class__()) @cython.cclass class C: def __str__(self): return "I'm a C object" @cython.locals(c=C) def test_cdef_class(c): """ # This wasn't actually broken but is worth testing anyway >>> test_cdef_class(C()) C I'm a C object """ print(c.__class__.__name__) print(c.__class__()) @cython.locals(d=object) def test_object(o): """ >>> test_object({}) dict {} >>> test_object(1) int 0 >>> test_object(C()) C I'm a C object """ print(o.__class__.__name__) print(o.__class__()) ``` #### File: tests/run/pure_py_cimports.py ```python from cython.cimports.libc import math from cython.cimports.libc.math import ceil def libc_math_ceil(x): """ >>> libc_math_ceil(1.5) [2, 2] """ return [int(n) for n in [ceil(x), math.ceil(x)]] ``` #### File: cython/Tools/cevaltrace.py ```python from __future__ import print_function, absolute_import import re import os.path from dis import get_instructions # requires Python 3.4+ # collapse some really boring byte codes _COLLAPSE = {'NOP', 'LOAD_CONST', 'POP_TOP', 'JUMP_FORWARD'} #_COLLAPSE.clear() _is_start = re.compile(r"\s* switch \s* \( opcode \)", re.VERBOSE).match # Py3: TARGET(XX), Py2: case XX _match_target = re.compile(r"\s* (?: TARGET \s* \( | case \s* ) \s* (\w+) \s* [:)]", re.VERBOSE).match _ignored = re.compile(r"\s* PREDICTED[A-Z_]*\(", re.VERBOSE).match _is_end = re.compile(r"\s* } \s* /\* \s* switch \s* \*/", re.VERBOSE).match _find_pyversion = re.compile(r'\#define \s+ PY_VERSION \s+ "([^"]+)"', re.VERBOSE).findall class ParseError(Exception): def __init__(self, message="Failed to parse ceval.c"): super(ParseError, self).__init__(message) def parse_ceval(file_path): snippets = {} with open(file_path) as f: lines = iter(f) for line in lines: if _is_start(line): break else: raise ParseError() targets = [] code_lines = [] for line in lines: target_match = _match_target(line) if target_match: if code_lines: code = ''.join(code_lines).rstrip() for target in targets: snippets[target] = code del code_lines[:], targets[:] targets.append(target_match.group(1)) elif _ignored(line): pass elif _is_end(line): break else: code_lines.append(line) else: if not snippets: raise ParseError() return snippets def translate(func, ceval_snippets): start_offset = 0 code_obj = getattr(func, '__code__', None) if code_obj and os.path.exists(code_obj.co_filename): start_offset = code_obj.co_firstlineno with open(code_obj.co_filename) as f: code_line_at = { i: line.strip() for i, line in enumerate(f, 1) if line.strip() }.get else: code_line_at = lambda _: None for instr in get_instructions(func): code_line = code_line_at(instr.starts_line) line_no = (instr.starts_line or start_offset) - start_offset yield line_no, code_line, instr, ceval_snippets.get(instr.opname) def main(): import sys import importlib.util if len(sys.argv) < 3: print("Usage: %s path/to/Python/ceval.c script.py ..." % sys.argv[0], file=sys.stderr) return ceval_source_file = sys.argv[1] version_header = os.path.join(os.path.dirname(ceval_source_file), '..', 'Include', 'patchlevel.h') if os.path.exists(version_header): with open(version_header) as f: py_version = _find_pyversion(f.read()) if py_version: py_version = py_version[0] if not sys.version.startswith(py_version + ' '): print("Warning: disassembling with Python %s, but ceval.c has version %s" % ( sys.version.split(None, 1)[0], py_version, ), file=sys.stderr) snippets = parse_ceval(ceval_source_file) for code in _COLLAPSE: if code in snippets: snippets[code] = '' for file_path in sys.argv[2:]: module_name = os.path.basename(file_path) print("/*######## MODULE %s ########*/" % module_name) print('') spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) for func_name, item in sorted(vars(module).items()): if not callable(item): continue print("/* FUNCTION %s */" % func_name) print("static void") # assuming that it highlights in editors print("%s() {" % func_name) last_line = None for line_no, code_line, instr, snippet in translate(item, snippets): if last_line != line_no: if code_line: print('') print('/*# %3d %s */' % (line_no, code_line)) print('') last_line = line_no print(" %s:%s {%s" % ( instr.opname, ' /* %s */' % instr.argrepr if instr.arg is not None else '', ' /* ??? */' if snippet is None else ' /* ... */ }' if snippet == '' else '', )) print(snippet or '') print("} /* FUNCTION %s */" % func_name) if __name__ == '__main__': main() ``` #### File: cython/Tools/dump_github_issues.py ```python import configparser import gzip import json import os.path from datetime import datetime from urllib.request import urlopen GIT_CONFIG_FILE = ".git/config" class RateLimitReached(Exception): pass def gen_urls(repo): i = 0 while True: yield f"https://api.github.com/repos/{repo}/issues?state=all&per_page=100&page={i}" i += 1 def read_rate_limit(): with urlopen("https://api.github.com/rate_limit") as p: return json.load(p) def parse_rate_limit(limits): limits = limits['resources']['core'] return limits['limit'], limits['remaining'], datetime.fromtimestamp(limits['reset']) def load_url(url): with urlopen(url) as p: data = json.load(p) if isinstance(data, dict) and 'rate limit' in data.get('message', ''): raise RateLimitReached() assert isinstance(data, list), type(data) return data or None # None indicates empty last page def join_list_data(lists): result = [] for data in lists: if not data: break result.extend(data) return result def output_filename(repo): timestamp = datetime.now() return f"github_issues_{repo.replace('/', '_')}_{timestamp.strftime('%Y%m%d_%H%M%S')}.json.gz" def write_gzjson(file_name, data, indent=2): with gzip.open(file_name, "wt", encoding='utf-8') as gz: json.dump(data, gz, indent=indent) def find_origin_url(git_config=GIT_CONFIG_FILE): assert os.path.exists(git_config) parser = configparser.ConfigParser() parser.read(git_config) return parser.get('remote "origin"', 'url') def parse_repo_name(git_url): if git_url.endswith('.git'): git_url = git_url[:-4] return '/'.join(git_url.split('/')[-2:]) def dump_issues(repo): """Main entry point.""" print(f"Reading issues from repo '{repo}'") urls = gen_urls(repo) try: paged_data = map(load_url, urls) issues = join_list_data(paged_data) except RateLimitReached: limit, remaining, reset_time = parse_rate_limit(read_rate_limit()) print(f"FAILURE: Rate limits ({limit}) reached, remaining: {remaining}, reset at {reset_time}") return filename = output_filename(repo) print(f"Writing {len(issues)} to {filename}") write_gzjson(filename, issues) ### TESTS def test_join_list_data(): assert join_list_data([]) == [] assert join_list_data([[1,2]]) == [1,2] assert join_list_data([[1,2], [3]]) == [1,2,3] assert join_list_data([[0], [1,2], [3]]) == [0,1,2,3] assert join_list_data([[0], [1,2], [[[]],[]]]) == [0,1,2,[[]],[]] def test_output_filename(): filename = output_filename("re/po") import re assert re.match(r"github_issues_re_po_[0-9]{8}_[0-9]{6}\.json", filename) def test_find_origin_url(): assert find_origin_url() def test_parse_repo_name(): assert parse_repo_name("https://github.com/cython/cython") == "cython/cython" assert parse_repo_name("git+ssh://[email protected]/cython/cython.git") == "cython/cython" assert parse_repo_name("git+ssh://[email protected]/fork/cython.git") == "fork/cython" def test_write_gzjson(): import tempfile with tempfile.NamedTemporaryFile() as tmp: write_gzjson(tmp.name, [{}]) # test JSON format with gzip.open(tmp.name) as f: assert json.load(f) == [{}] # test indentation with gzip.open(tmp.name) as f: assert f.read() == b'[\n {}\n]' ### MAIN if __name__ == '__main__': repo_name = parse_repo_name(find_origin_url()) dump_issues(repo_name) ```
{ "source": "johannes-mueller/redshift", "score": 2 }
#### File: custom_components/redshift/__init__.py ```python import logging import datetime as DT import homeassistant.core as HA import homeassistant.helpers.event as EV from homeassistant.helpers import entity_registry from homeassistant.const import ( STATE_ON, SERVICE_TURN_ON, ATTR_AREA_ID, ATTR_ENTITY_ID, ATTR_DEVICE_ID ) from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP ) from .calculator import RedshiftCalculator DOMAIN = 'redshift' _LOGGER = logging.getLogger('redshift') async def async_setup(hass, config): def inactive(): return hass.states.get(DOMAIN+'.active').state != 'True' def fetch_light_states(): return { lgt: hass.states.get(lgt) for lgt in hass.states.async_entity_ids('light') if hass.states.get(lgt).state == STATE_ON } def current_target_color_temp(): return manual_color_temp or round(redshift_calculator.color_temp()) def color_temp_in_limits(lgt): min_mired = hass.states.get(lgt).attributes['min_mireds'] max_mired = hass.states.get(lgt).attributes['max_mireds'] return min(max_mired, max(min_mired, current_target_color_temp())) async def apply_new_color_temp(lgt): color_temp = color_temp_in_limits(lgt) current_color_temp = _color_temp_of_state(hass.states.get(lgt)) if color_temp == current_color_temp: return _LOGGER.debug("%s -> %s", lgt, color_temp) attrs = {ATTR_ENTITY_ID: lgt, ATTR_COLOR_TEMP: color_temp} known_states[lgt] = HA.State(lgt, STATE_ON, attrs) await hass.services.async_call('light', SERVICE_TURN_ON, attrs) def forget_off_lights(current_states): return dict( filter(lambda x: x[0] in current_states.keys(), known_states.items()) ) async def maybe_apply_new_color_temp(lgt, current_state): if lgt in lights_not_to_touch: return known_state = known_states.get(lgt) known_color_temp = _color_temp_of_state(known_state) current_color_temp = _color_temp_of_state(current_state) light_just_went_on = known_state is None nobody_changed_color_temp_since_last_time = known_color_temp == current_color_temp _LOGGER.debug("%s: %s %s" % (lgt, known_color_temp, current_color_temp)) if nobody_changed_color_temp_since_last_time or light_just_went_on: await apply_new_color_temp(lgt) async def timer_event(event): nonlocal known_states await hass.async_block_till_done() current_states = fetch_light_states() known_states = forget_off_lights(current_states) if inactive(): return for lgt, current_state in current_states.items(): await maybe_apply_new_color_temp(lgt, current_state) def dont_touch(event): for entity_id in entities_ids_from_event(event): lights_not_to_touch.add(entity_id) def handle_again(event): for entity_id in entities_ids_from_event(event): if entity_id not in lights_not_to_touch: _LOGGER.warning("Unknown entity_id: %s" % entity_id) continue lights_not_to_touch.remove(entity_id) def entities_ids_from_event(event): entity_reg = entity_registry.async_get(hass) device_id = event.data.get(ATTR_DEVICE_ID) if device_id is not None: for entry in entity_registry.async_entries_for_device(entity_reg, device_id): yield entry.entity_id area_id = event.data.get(ATTR_AREA_ID) if area_id is not None: for entry in entity_registry.async_entries_for_area(entity_reg, area_id): yield entry.entity_id entity_ids = event.data.get(ATTR_ENTITY_ID, []) if isinstance(entity_ids, str): entity_ids = [entity_ids] for entity_id in entity_ids: yield entity_id async def deactivate(event): nonlocal manual_color_temp manual_color_temp = event.data.get('color_temp') if manual_color_temp is not None: manual_color_temp = round(_kelvin_to_mired(manual_color_temp)) await timer_event(None) hass.states.async_set(DOMAIN+'.active', False) async def activate(_): nonlocal manual_color_temp manual_color_temp = None hass.states.async_set(DOMAIN+'.active', True) await timer_event(None) def finalized_config(): final_config = dict( evening_time="17:00", night_time="23:00", morning_time="06:00", day_color_temp=6250, night_color_temp=2500 ) final_config.update(config[DOMAIN]) return final_config def make_redshift_calculator(): return RedshiftCalculator( final_config['evening_time'], final_config['night_time'], final_config['morning_time'], _kelvin_to_mired(final_config['day_color_temp']), _kelvin_to_mired(final_config['night_color_temp']), ) final_config = finalized_config() redshift_calculator = make_redshift_calculator() known_states = {} manual_color_temp = None lights_not_to_touch = set() hass.services.async_register(DOMAIN, 'dont_touch', dont_touch) hass.services.async_register(DOMAIN, 'handle_again', handle_again) hass.services.async_register(DOMAIN, 'activate', activate) hass.services.async_register(DOMAIN, 'deactivate', deactivate) hass.states.async_set(DOMAIN+'.active', True) EV.async_track_time_interval(hass, timer_event, DT.timedelta(seconds=1)) return True def _kelvin_to_mired(kelvin): return 1e6/kelvin def _color_temp_of_state(state): if state is None: return None return state.attributes.get(ATTR_COLOR_TEMP) ``` #### File: redshift/tests/conftest.py ```python import pytest import freezegun as FG import homeassistant.core as HA from homeassistant.const import ( STATE_ON, SERVICE_TURN_ON, ATTR_ENTITY_ID, ) from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ) from .common import ( make_lights, ) from .const import ( MIN_MIRED, MAX_MIRED, ) @pytest.fixture async def lights(hass): """Provide lights 'light.light_1' and 'light.light_2'.""" await make_lights(hass, ['light_1', 'light_2'], area_name="area_1") @pytest.fixture async def more_lights(hass, lights): """Provide lights 'light.light_3' and 'light.light_4'.""" await make_lights(hass, ['light_3', 'light_4'], area_name="area_2") @pytest.fixture async def turn_on_service(hass): """Mock SERVICE_TURN_ON for lights.""" calls = [] @HA.callback def mock_service_log(call): """Mock service call.""" entity = call.data[ATTR_ENTITY_ID] color_temp = min(MAX_MIRED, max(MIN_MIRED, round(call.data.get(ATTR_COLOR_TEMP)))) attrs = { ATTR_COLOR_TEMP: color_temp, 'min_mireds': MIN_MIRED, 'max_mireds': MAX_MIRED } hass.states.async_set(entity, STATE_ON, attrs) calls.append(call) hass.services.async_register('light', SERVICE_TURN_ON, mock_service_log) return calls @pytest.fixture def start_at_noon(): """Fake noon time.""" with FG.freeze_time("2020-12-13 12:00:00") as frozen_time: yield frozen_time @pytest.fixture def start_at_night(): """Fake night time (3am).""" with FG.freeze_time("2020-12-13 03:00:00") as frozen_time: yield frozen_time ```
{ "source": "JohannesNakayama/CitationNetworks", "score": 3 }
#### File: JohannesNakayama/CitationNetworks/bibl_io.py ```python import pandas as pd import uuid import re import math import networkx as nx import json #%% class Bibliography: """ a bibliography containing bibliographic data """ def __init__(self, path_list, db_src): self.bib_df = _read_bib(path_list, db_src) self.bib_dict = _convert_bib_to_dict(self.bib_df, db_src) self.cit_rel = _extract_cit_rel(self.bib_dict) def export_bib_dict(self, path): """ write bibliographic dictionary to a json file """ with open(path, 'w') as json_file: json.dump(self.bib_dict, json_file) #%% class CitationNetwork: """ a citation network in the form of a weighted DAG """ def __init__(self, BibObject, keywords, w_method): self.keywords = keywords self.cit_net = _create_citation_network(BibObject, keywords, w_method) self.out_deg_dist = _extract_out_deg_dist(self.cit_net) def add_enclosing(self): """ add sink and source to citation network """ self.cit_net.add_edges_from(_enclose_cit_rel(self.cit_net)) #%% class MainPathNetwork: """ a network of main paths constructed from a citation network """ def __init__(self, CitNetObject, mc=1, iterations=1): self.cit_net_raw = CitNetObject self.main_paths, self.main_net = _main_path_analysis(CitNetObject, mc, iterations) self.main_path_net = nx.DiGraph(kw=CitNetObject.keywords) def create_network(self, mw=1): """ create a main path network contains all edges that are part of a main path network is pruned with some options """ self.main_path_net.add_weighted_edges_from(self.main_net) _rm_list_e = [] for e in self.main_path_net.edges: if self.main_path_net.get_edge_data(e[0], e[1])['weight'] < mw: _rm_list_e.append(e) self.main_path_net.remove_edges_from(_rm_list_e) _rm_list_n = [] for n in self.main_path_net.nodes: if (self.main_path_net.in_degree(n) == 0 and self.main_path_net.out_degree(n) == 0): _rm_list_n.append(n) self.main_path_net.remove_nodes_from(_rm_list_n) #%% def _read_bib(path_list, db_src): """ read output data from bibliographic database args: path_list: a list of paths to read from db_src: database source of the bibliographic data returns: bib_df: a bibliographic dataframe """ # get database specifics db_specs = _switch_case_db(db_src) # read file(s) if len(path_list) == 1: bib_df = pd.read_csv( path_list[0], usecols=db_specs['columns'], dtype=db_specs['dtype'], sep=db_specs['sep'], index_col=False ) else: bib_df = pd.concat( [ pd.read_csv( path, usecols=db_specs['columns'], dtype=db_specs['dtype'], sep=db_specs['sep'], index_col=False ) for path in path_list ], ignore_index=True ) # some more formatting bib_df['db_src'] = db_src bib_df = bib_df.rename(columns=db_specs['new_cols']) return bib_df #%% def _convert_bib_to_dict(bib_df, db_src): """ convert bibliographic dataframe into python dictionary args: bib_df: a bibliographic dataframe db_src: database source of the bibliographic data returns: bib_dict: a bibliographic dictionary """ # get database specifics db_specs = _switch_case_db(db_src) # extract and reformat data keys = bib_df.columns bib_dict = {} # create a dictionary entries for j in range(bib_df.shape[0]): entry = {} for key in keys: entry[key] = bib_df.loc[j, key] entry = _split_columns(entry, db_specs['to_split']) # split non-atomic columns bib_dict[str(uuid.uuid4())] = entry return bib_dict #%% # switch scopus specifics def _switch_scopus(): """ in case db_src='scopus', use these specifications args: None returns: wos: the scopus specifics """ # define scopus specifics scopus = { 'columns': [ 'Title', 'Authors', 'Author(s) ID', 'Source title', 'Year', 'Volume', 'Issue', 'Cited by', 'References', 'DOI', 'ISBN', 'ISSN', 'CODEN', 'PubMed ID', 'EID' ], 'dtype': { 'Title': 'str', 'Authors': 'str', 'Author(s) ID': 'str', 'Source title': 'str', 'Year': 'float64', 'Volume': 'str', 'Issue': 'str', 'Cited by': 'float64', 'References': 'str', 'DOI': 'str', 'ISBN': 'str', 'ISSN': 'str', 'CODEN': 'str', 'PubMed ID': 'str', 'EID': 'str' }, 'sep': ',', 'new_cols': { 'Title': 'title', 'Authors': 'authors', 'Author(s) ID': 'scopus_author_id', 'Source title': 'source', 'Year': 'year', 'Volume': 'vol', 'Issue': 'issue', 'Cited by': 'cit_count', 'References': 'refs', 'DOI': 'doi', 'ISBN': 'isbn', 'ISSN': 'issn', 'CODEN': 'coden', 'PubMed ID': 'pmid', 'EID': 'eid' }, 'to_split': { 'authors': ',', 'scopus_author_id': ';', 'refs': ';', 'isbn': ';' } } return scopus #%% # switch web of science specifics def _switch_wos(): """ in case db_src='wos', use these specifications args: None returns: wos: the wos specifics """ # define web of science specifics wos = { 'columns': [ 'TI', 'AU', 'AF', 'RI', 'OI', 'SO', 'PY', 'VL', 'IS', 'TC', 'Z9', 'CR', 'U1', 'U2', 'DI', 'D2', 'BN', 'SN', 'PM', 'J9', 'JI', 'BP', 'EP' ], 'dtype': { 'TI': 'str', 'AU': 'str', 'AF': 'str', 'RI': 'str', 'OI': 'str', 'SO': 'str', 'PY': 'float64', 'VL': 'str', 'IS': 'str', 'TC': 'float64', 'Z9': 'float64', 'CR': 'str', 'U1': 'float64', 'U2': 'float64', 'DI': 'str', 'D2': 'str', 'BN': 'str', 'SN': 'str', 'PM': 'str', 'J9': 'str', 'JI': 'str', 'BP': 'str', 'EP': 'str' }, 'sep': '\t', 'new_cols': { 'TI': 'title', 'AU': 'authors', 'AF': 'authors_full', 'RI': 'researcher_id', 'OI': 'orcid', 'SO': 'source', 'PY': 'year', 'VL': 'vol', 'IS': 'issue', 'TC': 'cit_count', 'Z9': 'cit_count_z9', 'CR': 'refs', 'U1': 'usage_count_180d', 'U2': 'usage_count_2013', 'DI': 'doi', 'D2': 'book_doi', 'BN': 'isbn', 'SN': 'issn', 'PM': 'pmid', 'J9': 'src_abb_29', 'JI': 'src_abb_iso', 'BP': 'start_page', 'EP': 'end_page' }, 'to_split': { 'authors': ';', 'authors_full': ';', 'researcher_id': ';', 'orcid': ';', 'refs': ';', 'isbn': ';' } } return wos #%% # switch case replacement # adapted from: https://www.pydanny.com/why-doesnt-python-have-switch-case.html def _switch_case_db(arg): """ replacement for switch case args: arg: the case to execute returns: func(): the switch function """ # dictionary referring to switch statements switcher = { 'scopus': _switch_scopus, 'wos': _switch_wos } # print status if exception occurs if arg not in ['scopus', 'wos']: print( 'Expection: Unknown db_source ' + str(arg) + '\nOutput might not be in proper format' ) # switch function func = switcher.get(arg, lambda: [[], {}]) return func() #%% # split non-atomic columns def _split_columns(entry, split_list): """ split pre-defined dictionary entries along pre-defined separators args: entry: a bibliography entry split_list: a pre-defined list of columns to separate returns: entry: the split entry """ # function to strip trailing spaces space_stripper = lambda x: x.rstrip().lstrip() # iterate over pre-defined split_list for label, separator in split_list.items(): try: entry[label] = space_stripper(entry[label]).rstrip(';') entry[label] = entry[label].split(separator) entry[label] = list( map(space_stripper, entry[label]) ) except: continue return entry #%% def _extract_cit_rel(bib_dict): """ extract the citation relation args: bib_dict: a bibliographic dictionary returns: cit_rel: a list of tuples (x, y) with 'x cites y' """ # initialize citation relation cit_rel = [] # iterate over all bibliography entries for key in bib_dict.keys(): doi_at_key = bib_dict[key]['doi'] # check if a doi is available, if not: continue if len(str(doi_at_key)) > 8: pass else: continue refs_at_key = bib_dict[key]['refs'] # try to extract doi and append to citation relation try: for ref_idx in range(len(refs_at_key)): ref_doi = _extract_doi( refs_at_key[ref_idx], bib_dict[key]['db_src'] ) if ref_doi == 'NO_DOI': continue if ref_doi != doi_at_key: cit_rel.append((ref_doi, doi_at_key)) except: continue return cit_rel #%% # extract doi from reference string # with a little help from: https://www.crossref.org/blog/dois-and-matching-regular-expressions/ def _extract_doi(ref_elem, db_src='wos'): """ extract doi from reference (CAUTION: only works for db_src == 'wos' so far!) args: ref_elem: a reference db_src: database source of the bibliographic data returns: doi if doi is extractable 'NO_DOI' if no doi is extractable """ # currently: only works for web of science if db_src == 'wos': regex_doi = re.compile('10.\d{4,9}/[-._;()/:A-Za-z0-9]+$') # define regex for doi # try searching for doi in reference string try: res = regex_doi.search(ref_elem) doi = res.group(0) return doi # if not successful: return value for missing doi except: return 'NO_DOI' # <CODE FOR SCOPUS HERE> -> elif db_src == 'scopus': <CODE> else: return 'NO_DOI' #%% #%% def _create_citation_network(BibObject, keywords=['citation network'], w_method='nppc'): """ create a citation network args: BibObject: Bibliography object keywords: list of keywords as graph attributes (for later reference) w_method: weighting method (so far only 'nppc') returns: net: a citation network """ # create directed graph net = nx.DiGraph(kw=keywords) net.add_edges_from(BibObject.cit_rel) net = _break_cycles(net) net = _compute_edge_weights(net, w_method) return net #%% def _compute_edge_weights(net, method='nppc'): """ compute the edge weights of a citation network args: net: a citation network method: a weighting method (so far only 'nppc') returns: net: the net with weighted edges """ if method == 'nppc': # node pair projection count # extract all pairs of connected nodes con_nodes = _find_connected_nodes(net) # compute nppc weights for sub in [nx.all_simple_paths( net, source=pair[0], target=pair[1] ) for pair in con_nodes]: tmp = net.subgraph({node for path in sub for node in path}) for edge in tmp.edges: try: net[edge[0]][edge[1]]['weight'] += 1 except: net[edge[0]][edge[1]]['weight'] = 1 else: print('This does not seem to be a valid weighting method.') return net #%% def _find_connected_nodes(net): """ find all connected nodes (a, b) where there is a path from a to b args: net: a citation network returns: con_nodes: a list of tuples with all connected nodes """ con_nodes = [ (struc[0], i) for node in net.nodes for struc in nx.bfs_successors(net, node) for i in struc[1] ] return(con_nodes) #%% def _extract_out_deg_dist(net): """ extract the distribution of out-degrees in the citation network for later pruning args: net: a citation graph returns: a pandas Dataframe with the frequency distribution of out-degrees """ out_deg_list = [net.out_degree(node) for node in net.nodes] freq = [0] * (max(out_deg_list) + 1) for i in out_deg_list: freq[i] += 1 data = { 'out_degree': list(range(max(out_deg_list) + 1)), 'freq': freq } return(pd.DataFrame(data)) #%% def _enclose_cit_rel(net): """ add sink and source to a citation network args: net: an unweighted citation network return: enclosing: list of edges to add sink and source """ try: source_edges = [('source', node, {'weight': 1}) for node in net.nodes if net.in_degree(node) == 0] sink_edges = [(node, 'sink', {'weight': 1}) for node in net.nodes if net.out_degree(node) == 0] return(source_edges + sink_edges) except: return(False) #%% def _break_cycles(net): """ breaks potential cycles in a citation net args: net: a citation net returns: net: the acyclic citation net """ flag = True counter = 0 while(flag): try: counter += 1 cycles = nx.find_cycle(net) net.remove_edge(cycles[-1][0], cycles[-1][1]) except: if counter == 1: print('NOTE: {} edge was removed to break cycles'.format(counter)) else: print('NOTE: {} edges were removed to break cycles'.format(counter)) flag = False if counter >= 100: print('NOTE: There are oddly many cycles. Please check your data to avoid problems in the further process.') flag = False return(net) #%% def _main_path_analysis(CitNetObject, mc, iterations): """ conduct main path analysis on a citation network args: CitNetObject: a CitationNetwork object mc: minimum citations for start nodes iterations: number of iterations to conduct returns: main_paths: a list of all mined main paths main_net: the edges of all main paths in one list """ # setup CitNetObject.cit_net.remove_nodes_from(['source', 'sink']) print('NOTE: source and sink have been removed from your citation network') init_net = CitNetObject.cit_net # iterations for i in range(iterations): # initialize start_nodes = _retrieve_start_nodes(init_net, mc) main_paths = [] main_net = [] for node in start_nodes: # loop setup counter = 0 # if paths cross lengths of 100, the while loop is interrupted flag = True error = False mp = [] cur_nodes = [node] # find main path while(flag): # create list containing all lists of out_edges of the current nodes candidates = [ [ (e[0], e[1], init_net.edges[e[0], e[1]]['weight']) for e in init_net.out_edges(cur_node) ] for cur_node in cur_nodes ] # extract weights from candidate edges weights = [[t[2] for t in l] for l in candidates] # determine maximum and prepare next iteration mw = [max(w) for w in weights] max_idx = [ [ i for i, j in enumerate(weights[m]) if j == mw[m] ] for m in range(len(mw)) ] # update current nodes and extend current main path cur_nodes.clear() for i, mi in enumerate(max_idx): next_edges = [candidates[i][j] for j in mi] mp.extend(next_edges) cur_nodes.extend([e[1] for e in next_edges]) cur_nodes = list(dict.fromkeys(cur_nodes)) # remove node from current nodes if end of path is reached rm_idx = [] for i in range(len(cur_nodes)): if init_net.out_degree(cur_nodes[i]) == 0: rm_idx.append(i) for idx in sorted(rm_idx, reverse=True): del cur_nodes[idx] counter += 1 # stop criteria if not cur_nodes: flag = False if counter >= 100: print('This takes oddly long. Something must have gone wrong.') error = True flag = False # append extracted main path to main path collection and extend main path network mp = list(dict.fromkeys(mp)) main_paths.append(mp) main_net.extend(mp) # report potential error if error: print('An error occurred.') break init_net = nx.DiGraph() init_net.add_weighted_edges_from(main_net) return(main_paths, main_net) #%% def _retrieve_start_nodes(net, mc): """ retrieve nodes with in_degree == 0 as starting points for main path analysis args: net: a CitationNetwork object mc: minimum citations returns: list of start nodes in net """ return [node for node in net.nodes if (net.in_degree(node) == 0 and net.out_degree(node) > mc)] ```
{ "source": "JohannesNE/parse-vital", "score": 2 }
#### File: JohannesNE/parse-vital/parse_vital.py ```python import gzip from construct import * import warnings import io from pathlib import Path import collections import textwrap import pandas as pd # Import file construct obj from vital_file_struct import body_str, header_str class Track: ''' Object which contains all packets from one track ''' def __init__(self, vital_obj, trkid): # Get rec from trkid self.info, = (trk for trk in vital_obj.track_info if trk.trkid == trkid) self.recs = [rec for rec in vital_obj.recs if rec.trkid == trkid] self.devname = 'VITAL' if self.info.devid == 0 else \ [dev.devname for dev in vital_obj.dev_info if dev.devid == self.info.devid][-1] # Convert values using adc_gain and adc_offset for i, rec in enumerate(self.recs): if self.info.rec_type == 1: # Waveform self.recs[i]['values'].vals_real = [val * self.info.adc_gain + self.info.adc_offset for val in rec['values'].vals] elif self.info.rec_type == 2: # Numeric self.recs[i]['values'].vals_real = rec['values'].val[0] * self.info.adc_gain + self.info.adc_offset elif self.info.rec_type == 5: # String (Annotation) self.recs[i]['values'].vals_real = rec['values'].sval self.recs[i]['values'].num = 1 # There is only one value (string) per rec else: raise Exception(f'Unknown rec_type: {self.info.rec_type}') def __str__(self): n_recs = [rec['values'].num for rec in self.recs] return textwrap.dedent(f''' ======= TRACK INFO ======= name: {self.info.name} unit: {self.info.unit} starttime: {self.recs[0].dt.format()} ({self.recs[0].dt.humanize()}) measurements: {sum(n_recs)} in {len(n_recs)} blocks -------------------------- ''') def to_pandas_ts(self, concat_list = True): ''' Convert track to data frame with time and (real) value ''' try: # In events srate us 0. As there is only one value per rec, it can just be set to None freq = f'{1000/self.info.srate}ms' except ZeroDivisionError: freq = None pandas_ts = [] for rec in self.recs: index = pd.date_range(start = rec.dt.datetime, freq = freq, periods = rec['values'].num) pandas_ts.append(pd.Series(rec['values'].vals_real, index = index)) if concat_list: pandas_ts = pd.concat(pandas_ts) return pandas_ts def save_to_file(self, folder_path = None, file_name = None, gzip = False): ''' Save csv file containing track ''' if file_name is None: file_name = Path(self.info._io.name).stem + '_' + self.info.name + '_' + str(self.info.trkid) + ('.csv.gz' if gzip else '.csv') if folder_path is None: folder_path = 'converted' folder_path = Path(folder_path) #Create folder if it does not exist folder_path.mkdir(parents=True, exist_ok=True) file_path = folder_path / file_name pandas_ts = self.to_pandas_ts() pandas_ts.to_csv(file_path, header = False, compression='gzip' if gzip else 'infer') print(f'Saved {file_path}') class Vital: ''' Class that holds an entire .vital file as a dict ''' def __init__(self, path): self.load_vital(path) self.track_info = ListContainer([packet.data for packet in self.file.body if packet.type == 0]) self.dev_info = ListContainer([packet.data for packet in self.file.body if packet.type == 9]) # Event tracks may be duplicated in trackinfo. # Keep only the first EVENTS track. track_names = [trk.name for trk in self.track_info] i_event = [i for i, x in enumerate(track_names) if x == "EVENT"] if(len(i_event) > 1): i_event.pop() # Keep one instance for i in sorted(i_event, reverse=True): del self.track_info[i] self.recs = ListContainer([packet.data for packet in self.file.body if packet.type == 1]) def __str__(self): ''' Human readable description when Vital object is printed ''' return textwrap.dedent(f''' ======= VITAL FILE INFO ======= Path: {self.file.header._io.filename} Size: {self.summed_datalen/1000.0} KB Format Ver.: {self.file.header.format_ver} Tracks (n): {len(self.track_info)} ----------- Tracks ------------ ''') + \ pd.DataFrame(self.track_info)[['trkid', 'name', 'unit']].to_string(index = False) + \ textwrap.dedent(''' ------------------------------- ''') def get_track(self, trkid = None, name = None): ''' Returns record. Can be called with either name or trkid. If both are given, they are tested to match. ''' if trkid is None and name is None: raise ValueError('get_rec expected either trkid or name') # Get trkid if name is given if not name is None: trkid_from_name, = (x.trkid for x in self.track_info if x.name == name) if not trkid is None: assert trkid == trkid_from_name trkid = trkid_from_name return Track(self, trkid) def save_track_info(self, path): ''' Save csv file with track info ''' track_df = pd.DataFrame(self.track_info)[['trkid', 'name', 'unit', 'srate', 'devid']] dev_df = pd.DataFrame(self.dev_info)[['devid', 'devname']] track_df = pd.merge(track_df, dev_df, how = 'left', on = 'devid') path = Path(path) path.mkdir(parents=True, exist_ok=True) track_df.to_csv(path / Path('tracks.csv'), index=False) print('Saved Track Info (tracks.csv)') def save_tracks_to_file(self, trackids = None, names = None, path = None, save_all = False, gzip = False): ''' Save tracks to individual csv files ''' if path is None: path = self.vital_filename if save_all: tracks = [self.get_track(trackid) for trackid in [track_info.trkid for track_info in self.track_info]] self.save_track_info(path) elif trackids is None and names is None: raise ValueError('Expected either trkids, names or save_all') else: if names is not None: tracks = [self.get_track(name = name) for name in names] else: tracks = [self.get_track(trackid = trackid) for trackid in trackids] for track in tracks: track.save_to_file(folder_path=path, gzip = gzip) def load_vital(self, path): with gzip.GzipFile(path, 'rb') as f: # the last 4 bits of a gzip files is its unpacked size total_file_size = f.seek(0, io.SEEK_END) f.seek(0) header = header_str.parse_stream(f) # Loop until stream error body = ListContainer() completed = False data_read = header.headerlen + 10 print('') while not completed: try: body.append(body_str.parse_stream(f)) data_read = data_read + body[-1].datalen + 5 print(f'Data read: {round(data_read/1000)} of {total_file_size/1000} kB', end="\r", flush=True) except StreamError: #print("End of stream reached") completed = True print() # Check that all packets have been parsed self.summed_datalen = sum([x.datalen + 5 for x in body]) + header.headerlen + 10 #print("Total file size: " + str(total_file_size/1000) + "kB") assert total_file_size == self.summed_datalen, "The summed datalen does not match the filesize" self.vital_filename = Path(path).stem self.file = Container(header=header, body=body) # When run as __main__ (from command line) def main(args): try: vitfile = Vital(args.vitalfile) except FileNotFoundError as err: print(err) return if args.info: print(vitfile) else: #TODO output Save tracks if args.trkid is not None: try: trkid_int = [int(id) for id in args.trkid] except ValueError as err: print('Error: Expected --trkid as list of integers') print(err) return else: trkid_int = None vitfile.save_tracks_to_file(trackids = trkid_int, names = args.name, save_all = args.saveall, path=args.outdir, gzip=args.gzip) if __name__ == "__main__": import sys import argparse parser = argparse.ArgumentParser(description=''' Convert .Vital file to .csv files Output CSVs will be named <record name>_<track name>_<device id>.csv[.gz] ''') parser.add_argument('vitalfile', type=str, help = 'Path to input file (.vital)') parser.add_argument('--outdir', '-o', type=str, help = 'Directory for csv files (default=./converted)') parser.add_argument('--info', '-I', action='store_true', help = 'Info about .vital file') parser.add_argument('--trkid', '-t', nargs='+', help = 'Id(s) of track(s) to save') parser.add_argument('--name', '-n', nargs='+', help = 'Name(s) of track(s) to save') parser.add_argument('--saveall', action='store_true', help = 'Save all tracks') parser.add_argument('--gzip', action='store_true', help = 'Compress all tracks with gzip') main(parser.parse_args()) ```
{ "source": "johannesnicolaus/celseq2", "score": 3 }
#### File: celseq2/celseq2/demultiplex.py ```python from collections import Counter import argparse from celseq2.helper import filehandle_fastq_gz, print_logger from celseq2.helper import join_path, mkfolder, base_name import plotly.graph_objs as go from plotly.offline import plot import pandas as pd def str2int(s): """ str('1-3,6,89-90,67') => [1,2,3,6,67,89,90] """ intervals = list(map(lambda x: x.strip().split('-'), s.strip().split(','))) out = [] for x in intervals: try: p, q = map(int, x) except ValueError: out += [int(x[0])] continue if p > q: p, q = q, p out += list(range(p, q + 1)) return(sorted(list(set(out)))) def bc_dict_seq2id(bc_index_fpath, col_seq=None): """ dict[barcode_seq] = barcode_id """ if col_seq is None: col_seq = 0 out = dict() with open(bc_index_fpath, 'rt') as fin: # next(fin) # remove header # out = list(map(lambda row: row.strip().split(), fin)) # out = {row[1]: int(row[0]) for row in out} row_num = 1 for row in fin: if row.startswith('#'): continue row = row.strip().split() # print('{}:{}'.format(row_num, row)) row_val = row[col_seq] row_key = row_num out[row_key] = row_val row_num += 1 return(out) def bc_dict_id2seq(bc_index_fpath, col_seq=None): """ dict[barcode_id] = barcode_seq""" if col_seq is None: col_seq = 0 out = dict() with open(bc_index_fpath, 'rt') as fin: # next(fin) # remove header # out = map(lambda row: row.strip().split(), fin) # out = {int(row[0]): row[1] for row in out} row_num = 1 for row in fin: if row.startswith('#'): continue row = row.strip().split() # print('{}:{}'.format(row_num, row)) row_val = row[col_seq] row_key = row_num out[row_key] = row_val row_num += 1 return(out) def demultiplexing(read1_fpath, read2_fpath, dict_bc_id2seq, outdir, start_umi=0, start_bc=6, len_umi=6, len_bc=6, len_tx=35, bc_qual_min=10, is_gzip=True, save_unknown_bc_fastq=False, tagging_only=False, tag_to='tagged.fastq', do_bc_rev_complement=False, do_tx_rev_complement=False, verbose=False): """ Demultiplexing to fastq files based on barcode sequence. """ if is_gzip: fh_umibc = filehandle_fastq_gz(read1_fpath) fh_tx = filehandle_fastq_gz(read2_fpath) else: fh_umibc = open(read1_fpath, 'rt') fh_tx = open(read2_fpath, 'rt') sample_counter = Counter() bc_fhout = dict() for bc_id, bc_seq in dict_bc_id2seq.items(): # bc_id = '[{}]'.format('-'.join(map(str, bc_id))) bc_fhout[bc_seq] = join_path(outdir, 'BC-{}-{}.fastq'.format(bc_id, bc_seq)) mkfolder(join_path(outdir, 'UNKNOWN')) bc_fhout['UNKNOWNBC_R1'] = join_path(outdir, 'UNKNOWN', 'UNKNOWNBC_R1.fq') bc_fhout['UNKNOWNBC_R2'] = join_path(outdir, 'UNKNOWN', 'UNKNOWNBC_R2.fq') if tagging_only: out_fpath_tagged_fq = join_path(outdir, tag_to) out_fh_tagged_fq = open(out_fpath_tagged_fq, 'w') for bc_seq, v in bc_fhout.items(): if bc_seq.startswith('UNKNOWN'): bc_fhout[bc_seq] = open(v, 'w') continue if tagging_only: bc_fhout[bc_seq] = out_fh_tagged_fq else: bc_fhout[bc_seq] = open(v, 'w') i = 0 while(True): if verbose and i % 1000000 == 0: print_logger('Processing {:,} reads...'.format(i)) try: umibc_name = next(fh_umibc).rstrip() umibc_seq = next(fh_umibc).rstrip() next(fh_umibc) umibc_qualstr = next(fh_umibc).rstrip() tx_name = next(fh_tx).rstrip() tx_seq = next(fh_tx).rstrip() next(fh_tx) tx_qualstr = next(fh_tx).rstrip() i += 1 except StopIteration: break # Quality check? or user should feed good files # if not (umibc_name and umibc_seq and umibc_qualstr and tx_name and tx_seq and tx_qualstr): # raise Exception('FastQError: Possible Broken Fastq. Check pair-{}.\n'.format(i+1)) # if len(umibc_seq) != len(umibc_qualstr) or len(tx_seq) != len(tx_qualstr): # raise Exception('FastQError: Possible multi-line Fastq. Convert to 4-line please.\n') # if umibc_name.split()[0] != tx_name.split()[0]: # raise Exception('FastQError: Reads are not paired at pair-{}.\n'.format(i+1)) sample_counter['total'] += 1 umibc_idx = sorted(list(set(range(start_umi, start_umi + len_umi)) | set(range(start_bc, start_bc + len_bc)))) if len(umibc_seq) < len(umibc_idx): continue umibc_min_qual = min((ord(umibc_qualstr[i]) - 33 for i in umibc_idx)) if umibc_min_qual < bc_qual_min: continue sample_counter['qualified'] += 1 umi = umibc_seq[start_umi:(start_umi + len_umi)] cell_bc = umibc_seq[start_bc:(start_bc + len_bc)] try: fhout = bc_fhout[cell_bc] except KeyError: if save_unknown_bc_fastq: fhout = bc_fhout['UNKNOWNBC_R1'] fhout.write('{}\n{}\n{}\n{}\n'.format(umibc_name, umibc_seq, "+", umibc_qualstr)) fhout = bc_fhout['UNKNOWNBC_R2'] fhout.write('{}\n{}\n{}\n{}\n'.format(tx_name, tx_seq, "+", tx_qualstr)) sample_counter['unknown'] += 1 continue # if len(tx_seq) < len_tx: # continue if len(tx_seq) > len_tx: tx_seq, tx_qualstr = tx_seq[:len_tx], tx_qualstr[:len_tx] read_name = '@BC-{}_UMI-{}'.format(cell_bc, umi) fhout.write('{}\n{}\n{}\n{}\n'.format(read_name, tx_seq, "+", tx_qualstr)) sample_counter[cell_bc] += 1 sample_counter['saved'] += 1 sample_counter['unqualified'] = sample_counter['total'] - \ sample_counter['qualified'] for _, v in bc_fhout.items(): v.close() fh_umibc.close() fh_tx.close() return(sample_counter) def write_demultiplexing(stats, dict_bc_id2seq, stats_fpath): if stats_fpath is None: stats_fpath = 'demultiplexing.csv' try: fh_stats = open(stats_fpath, 'w') except Exception as e: raise Exception(e) fh_stats.write('BC,Reads(#),Reads(%)\n') for bc_id, bc_seq in dict_bc_id2seq.items(): # bc_id = '[{:04d}]'.format('-'.join(map(str, bc_id))) formatter = '{:04d}-{},{},{:07.3f}\n' fh_stats.write(formatter.format(bc_id, bc_seq, stats[bc_seq], stats[bc_seq] / stats['total'] * 100)) formatter = '{},{},{:07.3f}\n' fh_stats.write(formatter.format('saved', stats['saved'], stats['saved'] / stats['total'] * 100)) fh_stats.write(formatter.format('unknown', stats['unknown'], stats['unknown'] / stats['total'] * 100)) fh_stats.write(formatter.format('qualified', stats['qualified'], stats['qualified'] / stats['total'] * 100)) fh_stats.write(formatter.format('unqualified', stats['unqualified'], stats['unqualified'] / stats['total'] * 100)) fh_stats.write(formatter.format('total', stats['total'], stats['total'] / stats['total'] * 100)) def plotly_demultiplexing_stats(fpaths=[], saveto='', fnames=[]): ''' Save a plotly box graph with a list of demultiplexing stats files Parameters ---------- fpaths : list A list of file paths saveto : str File path to save the html file as the plotly box graph fnames : list A list of strings to label each ``fpaths`` Returns ------- bool True if saving successfully, False otherwise ''' if not fnames: fnames = [base_name(f) for f in fpaths] if len(fnames) != len(fpaths): fnames = [base_name(f) for f in fpaths] num_reads_data = [] for i in range(len(fpaths)): f = fpaths[i] fname = fnames[i] stats = pd.read_csv(f, index_col=0) cell_stats = stats.iloc[:-5, :] # tail 5 lines are fixed as the overall stats overall_stats = stats.iloc[-5:, :] num_reads_data.append( go.Box( y=cell_stats['Reads(#)'], name='{} (#Saved={}/#Total={})'.format( fname, overall_stats.loc['saved', 'Reads(#)'], overall_stats.loc['total', 'Reads(#)']))) layout = go.Layout( # legend=dict(x=-.1, y=-.2), xaxis=dict(showticklabels=False), title='Number of reads saved per BC per item') fig = go.Figure(data=num_reads_data, layout=layout) try: plot(fig, filename=saveto, auto_open=False) return(True) except Exception as e: print(e, flush=True) return(False) def main(): parser = argparse.ArgumentParser(add_help=True) parser.add_argument('read1_fpath', type=str) parser.add_argument('read2_fpath', type=str) parser.add_argument('--bc-index', type=str, metavar='FILENAME', help='File path to barcode dictionary') parser.add_argument('--bc-seq-column', type=int, metavar='N', default=0, help=('Column of cell barcode dictionary file ' 'which tells the actual sequences.')) parser.add_argument('--bc-index-used', type=str, metavar='string', default='1-96', help='Index of used barcode IDs (default=1-96)') parser.add_argument('--min-bc-quality', metavar='N', type=int, default=10, help='Minimal quality for barcode reads (default=10)') parser.add_argument('--out-dir', metavar='DIRNAME', type=str, default='.', help='Output directory. Defaults to current directory') parser.add_argument('--is-gzip', dest='is_gzip', action='store_true') parser.add_argument('--not-gzip', dest='is_gzip', action='store_false') parser.set_defaults(is_gzip=True) parser.add_argument('--stats-file', metavar='STATFILE', type=str, default='demultiplexing.log', help='Statistics (default: demultiplexing.log)') parser.add_argument('--umi-start-position', metavar='N', type=int, default=0, help=('Start index of UMI on R1. ' 'Default: 0. (0-based).')) parser.add_argument('--umi-length', metavar='N', type=int, default=6, help='Length of UMI (default=6)') parser.add_argument('--bc-start-position', metavar='N', type=int, default=6, help=('Start index of cell barcode on R1. ' 'Default: 6. (0-based).')) parser.add_argument('--bc-length', metavar='N', type=int, default=6, help='Length of CELSeq barcode (default=6)') parser.add_argument('--cut-length', metavar='N', type=int, default=35, help='Length of read on R2 to be mapped. (default=35)') parser.add_argument('--save-unknown-bc-fastq', dest='save_unknown_bc_fastq', action='store_true') parser.set_defaults(save_unknown_bc_fastq=False) parser.add_argument('--tagging-only', dest='tagging_only', action='store_true', help=('Demultiplexed reads are merged to a file named' ' \"tagged.fastq\" under --out-dir.')) parser.set_defaults(tagging_only=False) parser.add_argument( '--tag-to', dest='tag_to', default='tagged.fastq', help=('File base name to save the tagged fastq file. ' 'Only used when tagging_only.')) parser.add_argument('--verbose', dest='verbose', action='store_true') parser.set_defaults(verbose=False) args = parser.parse_args() bc_dict = bc_dict_id2seq(args.bc_index, args.bc_seq_column) bc_index_used = str2int(args.bc_index_used) bc_dict = {x: bc_dict.get(x, None) for x in bc_index_used} print_logger('Demultiplexing starts {}--{} ...'.format(args.read1_fpath, args.read2_fpath)) out = demultiplexing(read1_fpath=args.read1_fpath, read2_fpath=args.read2_fpath, outdir=args.out_dir, dict_bc_id2seq=bc_dict, start_umi=args.umi_start_position, start_bc=args.bc_start_position, len_umi=args.umi_length, len_bc=args.bc_length, len_tx=args.cut_length, bc_qual_min=args.min_bc_quality, is_gzip=args.is_gzip, save_unknown_bc_fastq=args.save_unknown_bc_fastq, tagging_only=args.tagging_only, tag_to=args.tag_to, do_bc_rev_complement=False, do_tx_rev_complement=False, verbose=args.verbose) print_logger('Demultiplexing ends {}--{}.'.format(args.read1_fpath, args.read2_fpath)) write_demultiplexing(out, bc_dict, args.stats_file) if __name__ == "__main__": main() ``` #### File: celseq2/celseq2/diagnose.py ```python import argparse from .helper import print_logger from .helper import filehandle_fastq_gz from collections import Counter def get_dict_bc_has_reads(r1, bc_index, bc_seq_col): print(r1) with open(bc_index, 'rt') as fin: # next(fin) rows = map(lambda row: row.strip().split(), fin) known_bc = set([row[bc_seq_col] for row in rows]) print_logger('There are {} different cell barcodes.'.format(len(known_bc))) res = Counter({bc: 0 for bc in known_bc}) bc_len = len(next(iter(res))) fh_r1 = filehandle_fastq_gz(r1) if r1.endswith('.gz') else open(r1, 'r') i = 0 while True: if i % 1000000 == 0: print_logger('Processing {:,} reads...'.format(i)) try: _ = next(fh_r1).rstrip() r1_seq = next(fh_r1).rstrip() _ = next(fh_r1).rstrip() _ = next(fh_r1).rstrip() i += 1 r1_bc = r1_seq[:bc_len] if not r1_bc: continue if r1_bc in known_bc: res[r1_bc] += 1 else: res['unknown'] += 1 except StopIteration: break print_logger('Processed total {:,} reads...'.format(i)) fh_r1.close() return res def main(): parser = argparse.ArgumentParser(add_help=True) parser.add_argument( '--bc-index', metavar='FILENAME', type=str, help=('File path to cell barcode index.')) parser.add_argument( '--bc-seq-col', metavar='N', default=1, type=int, help=('Column index of cell barcode index file to find the sequence', ' of cell barcodes. Default: 1 (2nd column).')) parser.add_argument( '--r1', metavar='FILENAME', type=str, help=('File path to R1.')) parser.add_argument( '-o', '--output', metavar='FILENAME', type=str, required=True, help=('File path save output log.')) args = parser.parse_args() if args.r1 and args.bc_index: counter_bc_size = get_dict_bc_has_reads(args.r1, args.bc_index, args.bc_seq_col) fhout = open(args.output, 'w') tot = sum([counter_bc_size[x] for x in counter_bc_size]) bc_size_max, bc_size_min = float('-inf'), float('inf') for bc in counter_bc_size: if bc != 'unknown' and counter_bc_size[bc] > bc_size_max: bc_size_max = counter_bc_size[bc] if bc != 'unknown' and counter_bc_size[bc] < bc_size_min: bc_size_min = counter_bc_size[bc] fhout.write('{:>{}}\t{:,}\t{:06.2f}\n'.format( bc, 20, counter_bc_size[bc], counter_bc_size[bc] * 100 / tot)) valid_bc_size_val = [counter_bc_size[x] for x in counter_bc_size if x != 'unknown'] bc_size_avg = sum([x / len(valid_bc_size_val) for x in valid_bc_size_val]) fhout.write('{:>{}}\t{:,}\t{:06.2f}\n'.format( 'bc_size_max', 20, bc_size_max, bc_size_max * 100 / tot)) fhout.write('{:>{}}\t{:,}\t{:06.2f}\n'.format( 'bc_size_min', 20, bc_size_min, bc_size_min * 100 / tot)) fhout.write('{:>{}}\t{:06.2f}\t{:06.2f}\n'.format( 'bc_size_avg', 20, bc_size_avg, bc_size_avg * 100 / tot)) fhout.write('{:>{}}\t{:,}\t{:06.2f}\n'.format( 'total', 20, tot, tot * 100 / tot)) fhout.close() if __name__ == '__main__': main() ``` #### File: celseq2/celseq2/dummy_species.py ```python import random import argparse def gtf_attr_str(gene_id=None, gene_name=None, gene_biotype=None, transcript_id=None, exon_num=None): ''' Simple writer to fill 'attribute' column of GTF >>> gtf_attr_str() >>> gtf_attr_str('g1', 'dummy_gene_1', 'g1_tx1', 1) 'gene_id "g1"; gene_name "dummy_gene_1"; transcript_id "g1_tx1"; exon_number "1";' >>> gtf_attr_str('g1', 'dummy_gene_1') 'gene_id "g1"; gene_name "dummy_gene_1";' ''' if not gene_id or not gene_name: return(None) out = "gene_id \"{gid}\"; gene_name \"{gname}\";".format(gid=gene_id, gname=gene_name) if gene_biotype: out += " gene_biotype \"{biotype}\";".format(biotype=gene_biotype) if transcript_id: out += " transcript_id \"{txid}\";".format(txid=transcript_id) if exon_num: out += " exon_number \"{exidx}\";".format(exidx=exon_num) return(out) def gtf_str(chrm, src, feature, start, end, score, strand, frame, attr): ''' Formatter to write single GTF line. ''' out = ('{chrm}\t{src}\t{feature}\t{start}\t{end}\t{score}\t' '{strand}\t{frame}\t{attr}').format(chrm=chrm, src=src, feature=feature, start=start, end=end, score=score, strand=strand, frame=frame, attr=attr) return(out) def dummy_gtf(saveto=None, len_exon=100, len_intron=200, len_intergenic=300): ''' Create dummy GTF annations. ''' fout = open(saveto, 'wt') s_stream, e_stream = 1, 1 src = 'celseq2' score = '.' frame = '.' out = [] # g0 g_attr = gtf_attr_str(gene_id='g0', gene_name='celseq2_gene-0', gene_biotype='protein_coding') g = gtf_str(chrm='chr1', src=src, feature='gene', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g0', gene_name='celseq2_gene-0', gene_biotype='protein_coding', transcript_id='tx0') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) for i in range(2): exon_attr = gtf_attr_str(gene_id='g0', gene_name='celseq2_gene-0', gene_biotype='protein_coding', transcript_id='tx0', exon_num=i + 1) s_stream, e_stream = s_stream, s_stream + len_exon - 1 exon = gtf_str(chrm='chr1', src=src, feature='exon', start=s_stream, end=e_stream, score=score, strand='+', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intron s_stream, e_stream = e_stream - 2 * len_exon - 1 * len_intron + 1, e_stream # g8 g_attr = gtf_attr_str(gene_id='g8', gene_name='celseq2_gene-8', gene_biotype='lincRNA') g = gtf_str(chrm='chr2', src=src, feature='gene', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g8', gene_name='celseq2_gene-8', transcript_id='tx8', gene_biotype='lincRNA') tx = gtf_str(chrm='chr2', src=src, feature='transcript', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) for i in range(2): exon_attr = gtf_attr_str(gene_id='g8', gene_name='celseq2_gene-8', gene_biotype='lincRNA', transcript_id='tx8', exon_num=i + 1) s_stream, e_stream = s_stream, s_stream + len_exon - 1 exon = gtf_str(chrm='chr2', src=src, feature='exon', start=s_stream, end=e_stream, score=score, strand='+', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intron s_stream = e_stream + 1 + len_intergenic # g1 g_attr = gtf_attr_str(gene_id='g1', gene_name='celseq2_gene-1', gene_biotype='miRNA') g = gtf_str(chrm='chr1', src=src, feature='gene', start=s_stream, end=s_stream + 3 * len_exon + 2 * len_intron - 1, score=score, strand='-', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g1', gene_name='celseq2_gene-1', gene_biotype='miRNA', transcript_id='tx1') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=s_stream, end=s_stream + 3 * len_exon + 2 * len_intron - 1, score=score, strand='-', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) for i in range(3, 0, -1): exon_attr = gtf_attr_str(gene_id='g1', gene_name='celseq2_gene-1', gene_biotype='miRNA', transcript_id='tx1', exon_num=i) s_stream, e_stream = s_stream, s_stream + len_exon - 1 exon = gtf_str(chrm='chr1', src=src, feature='exon', start=s_stream, end=e_stream, score=score, strand='-', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intron s_stream = e_stream + 1 + len_intergenic # g2 g_attr = gtf_attr_str(gene_id='g2', gene_name='celseq2_gene-2', gene_biotype='protein_coding') g = gtf_str(chrm='chr1', src=src, feature='gene', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='-', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g2', gene_name='celseq2_gene-2', gene_biotype='protein_coding', transcript_id='tx2.1') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='-', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) for i in range(2, 0, -1): exon_attr = gtf_attr_str(gene_id='g2', gene_name='celseq2_gene-2', gene_biotype='protein_coding', transcript_id='tx2', exon_num=i) s_stream, e_stream = s_stream, s_stream + len_exon - 1 exon = gtf_str(chrm='chr1', src=src, feature='exon', start=s_stream, end=e_stream, score=score, strand='-', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intron tx_attr = gtf_attr_str(gene_id='g2', gene_name='celseq2_gene-2', gene_biotype='protein_coding', transcript_id='tx2.2') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=int(e_stream - 1.5 * len_exon), end=int(e_stream + 1.5 * len_exon), score=score, strand='-', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) exon_attr = gtf_attr_str(gene_id='g2', gene_name='celseq2_gene-2', gene_biotype='protein_coding', transcript_id='tx2.2', exon_num=1) exon = gtf_str(chrm='chr1', src=src, feature='exon', start=int(e_stream - 1.5 * len_exon), end=int(e_stream + 1.5 * len_exon), score=score, strand='-', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intergenic # g3 g_attr = gtf_attr_str(gene_id='g3', gene_name='celseq2_gene-3', gene_biotype='protein_coding') g = gtf_str(chrm='chr1', src=src, feature='gene', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g3', gene_name='celseq2_gene-3', gene_biotype='protein_coding', transcript_id='tx3') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) for i in range(2): exon_attr = gtf_attr_str(gene_id='g3', gene_name='celseq2_gene-3', gene_biotype='protein_coding', transcript_id='tx3', exon_num=i + 1) s_stream, e_stream = s_stream, s_stream + len_exon - 1 exon = gtf_str(chrm='chr1', src=src, feature='exon', start=s_stream, end=e_stream, score=score, strand='+', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intron s_stream = e_stream + 1 + len_intergenic # g4 g_attr = gtf_attr_str(gene_id='g4', gene_name='celseq2_gene-4', gene_biotype='protein_coding') g = gtf_str(chrm='chr1', src=src, feature='gene', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g4', gene_name='celseq2_gene-4', gene_biotype='protein_coding', transcript_id='tx4') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) for i in range(2): exon_attr = gtf_attr_str(gene_id='g4', gene_name='celseq2_gene-4', gene_biotype='protein_coding', transcript_id='tx4', exon_num=i + 1) s_stream, e_stream = s_stream, s_stream + len_exon - 1 exon = gtf_str(chrm='chr1', src=src, feature='exon', start=s_stream, end=e_stream, score=score, strand='+', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intron # g5 s_stream, e_stream = e_stream - len_exon + 1, e_stream g_attr = gtf_attr_str(gene_id='g5', gene_name='celseq2_gene-5', gene_biotype='protein_coding') g = gtf_str(chrm='chr1', src=src, feature='gene', start=s_stream, end=e_stream, score=score, strand='-', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g5', gene_name='celseq2_gene-5', gene_biotype='protein_coding', transcript_id='tx5') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=s_stream, end=e_stream, score=score, strand='-', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) for i in range(1, 0, -1): exon_attr = gtf_attr_str(gene_id='g5', gene_name='celseq2_gene-5', gene_biotype='protein_coding', transcript_id='tx5', exon_num=i) s_stream, e_stream = s_stream, s_stream + len_exon - 1 exon = gtf_str(chrm='chr1', src=src, feature='exon', start=s_stream, end=e_stream, score=score, strand='-', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intron s_stream = e_stream + 1 + len_intergenic # g6 g_attr = gtf_attr_str(gene_id='g6', gene_name='celseq2_gene-6', gene_biotype='protein_coding') g = gtf_str(chrm='chr1', src=src, feature='gene', start=s_stream, end=s_stream + 1 * len_exon + 0 * len_intron - 1, score=score, strand='+', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g6', gene_name='celseq2_gene-6', gene_biotype='protein_coding', transcript_id='tx6') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=s_stream, end=s_stream + 1 * len_exon + 0 * len_intron - 1, score=score, strand='+', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) exon_attr = gtf_attr_str(gene_id='g6', gene_name='celseq2_gene-6', gene_biotype='protein_coding', transcript_id='tx6', exon_num=1) exon = gtf_str(chrm='chr1', src=src, feature='exon', start=s_stream, end=s_stream + 1 * len_exon + 0 * len_intron - 1, score=score, strand='+', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) # g7 g_attr = gtf_attr_str(gene_id='g7', gene_name='celseq2_gene-7', gene_biotype='protein_coding') g = gtf_str(chrm='chr1', src=src, feature='gene', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=g_attr) fout.write('{}\n'.format(g)) out.append(g) tx_attr = gtf_attr_str(gene_id='g7', gene_name='celseq2_gene-7', gene_biotype='protein_coding', transcript_id='tx7') tx = gtf_str(chrm='chr1', src=src, feature='transcript', start=s_stream, end=s_stream + 2 * len_exon + 1 * len_intron - 1, score=score, strand='+', frame=frame, attr=tx_attr) fout.write('{}\n'.format(tx)) out.append(tx) for i in range(2): exon_attr = gtf_attr_str(gene_id='g7', gene_name='celseq2_gene-7', gene_biotype='protein_coding', transcript_id='tx7', exon_num=i + 1) s_stream, e_stream = s_stream, s_stream + len_exon - 1 exon = gtf_str(chrm='chr1', src=src, feature='exon', start=s_stream, end=e_stream, score=score, strand='+', frame=frame, attr=exon_attr) fout.write('{}\n'.format(exon)) out.append(exon) s_stream = e_stream + 1 + len_intron e_total = e_stream print('End of chr1 is {}'.format(e_total)) fout.close() return(out) def dummy_fasta(saveto, max_len=5000): ''' Generate FASTA chr1: total length 5K chr2: same as very first 500bp ''' fasta = ['A'] * int(max_len * 0.25) + \ ['T'] * int(max_len * 0.25) + \ ['G'] * int(max_len * 0.25) + \ ['C'] * int(max_len * 0.25) random.seed(42) random.shuffle(fasta) chr1 = fasta chr2 = fasta[:500] wrap_len = 60 with open(saveto, 'w') as fout: fout.write('>chr1\n') for i in range(0, len(chr1), wrap_len): j = i + wrap_len if i + wrap_len < len(chr1) else len(chr1) fout.write('{}\n'.format( ''.join(chr1[i:j]))) fout.write('>chr2\n') for i in range(0, len(chr2), wrap_len): j = i + wrap_len if i + wrap_len < len(chr2) else len(chr2) fout.write('{}\n'.format( ''.join(chr2[i:j]))) def get_argument_parser(): parser = argparse.ArgumentParser(add_help=True) parser.add_argument( '--gtf', metavar="FILE", help='Save dummy GTF to file.') parser.add_argument( '--fasta', metavar="FILE", help='Save dummy FASTA to file.') parser.add_argument( '--test', action='store_true', default=False, help='Perform doctest only.') return(parser) def main(): p = get_argument_parser() args = p.parse_args() if args.test: import doctest doctest.testmod() else: dummy_gtf(args.gtf) dummy_fasta(args.fasta) if __name__ == '__main__': main() ``` #### File: celseq2/tests/test_demultiplexing.py ```python import pytest from celseq2.helper import md5sum ''' Test demultiplexing. Expectation is from the stats.log of demultiplexing. ''' def test_demultiplexing(instance_demultiplex_stats): calc = md5sum(instance_demultiplex_stats) # e.g. 0027-GTGATC 18 003.333 assert calc == '7ed86eb8520bc17bd3f91c1e136cf2b1' ``` #### File: celseq2/tests/test_simulate_celseq2_data.py ```python import pytest import HTSeq from celseq2.helper import md5sum def test_simulate_celseq2(instance_celseq2_data): r1_gz, r2_gz = instance_celseq2_data assert md5sum(r1_gz) == '2a633d13fa343211a02bea6a4e14183b' assert md5sum(r2_gz) == '97f490bf9929f1b64d7e0142ade72576' ```
{ "source": "johannesnicolaus/singlecell", "score": 3 }
#### File: singlecell/indrop/config.py ```python import logging from pkg_resources import resource_string, resource_filename import yaml #from jinja2 import Environment, PackageLoader, select_autoescape _LOGGER = logging.getLogger(__name__) #_TEMPLATE_ENV = Environment( # loader=PackageLoader('singlecell', # os.path.join('data', 'templates')), # autoescape=select_autoescape(['html', 'xml']) #) def read_config(config_file): """Read the configuration file (in YAML format). We rely on a simple configuration file that contains a set of sections, with each section containing a list of options. With this simple two-level hierarchy, it is straightforward to assign default values to options based on the configuration file template included in the package. A separate function checks whether mandatory options (e.g., input files) are specified. TODO: docstring""" # read the configuration file template containing the default values for # various options with open(get_config_template_file(), 'rb') as fh: config = yaml.load(fh) # read the user-provided configuration file that can be used to override # default option values with open(config_file, 'rb') as fh: user_config = yaml.load(fh) errors = False for section, entries in user_config.items(): if section not in config: _LOGGER.warning( 'Ignoring invalid section "%s" in configuration file', section) continue sec = config[section] for option, value in entries.items(): if option not in sec: _LOGGER.warning( 'Ignoring invalid option "%s" in section "%s" of ' 'configuration file.', option, section) elif value is not None: if sec[option] is not None and not \ isinstance(value, type(sec[option])): _LOGGER.error( 'Wrong data type for option "%s" in section "%s": ' 'Should be "%s", but got "%s" (%s).', option, section, str(type(sec[option])), str(type(value), str(value))) errors = True sec[option] = value return config, errors def write_config(conf, output_file): """Write documentation to yaml file.""" with open(output_file, 'w') as ofh: yaml.dump(conf, ofh, default_flow_style=False) def get_config_template(): """Create a configuration file template for use with the inDrop pipeline. TODO: docstring """ return resource_string('singlecell', 'data/indrop/config_template.yaml')\ .decode('utf-8') def get_config_template_file(): """Get the path of the configuration file template. TODO: docstring """ return resource_filename('singlecell', 'data/indrop/config_template.yaml') ``` #### File: singlecell/indrop/quantify_transcript_expression.py ```python import sys import argparse from genometools import misc from .. import expression _LOGGER = misc.get_logger() def get_argument_parser(): desc = 'Quantify transcript expression based on aligned inDrop reads.' parser = argparse.ArgumentParser( description=desc, add_help=False) g = parser.add_argument_group('Help') g.add_argument('-h', '--help', action='help', help='Show this help message and exit.') g = parser.add_argument_group('Input and output files') g.add_argument( '-a', '--alignment-file', type=str, required=True, help='.bam file containing the mapped reads.') g.add_argument( '-e', '--gene-expression-file', type=str, required=True, help='.tsv file containing UMI-filtered (!) gene expression values.') g.add_argument( '-g', '--gene-file', type=str, required=True, help='.tsv file containing list of protein-coding genes.') g.add_argument( '-n', '--genome-annotation-file', type=str, required=True, help='.gtf file containing genome annotations.') g.add_argument( '-or', '--output-file', type=str, required=True, help='Output file (.pickle format).') g = parser.add_argument_group('Counting parameters') g.add_argument( '-m', '--max-genes', type=int, required=False, default=0, help=('Maxmimum number of genes to process. If 0, ' 'process all genes. [0]') ) return parser def main(args=None): """Entry point for script.""" if args is None: parser = get_argument_parser() args = parser.parse_args() alignment_file = args.alignment_file gene_expression_file = args.gene_expression_file gene_file = args.gene_file genome_annotation_file = args.genome_annotation_file output_file = args.output_file max_genes = args.max_genes if max_genes == 0: max_genes = None expression.quantify_transcript_expression( alignment_file, gene_expression_file, gene_file, genome_annotation_file, output_file, max_genes=max_genes) return 0 if __name__ == '__main__': return_code = main() sys.exit(return_code) ``` #### File: singlecell/qc/general.py ```python import numpy as np import plotly.graph_objs as go from plotly import tools from genometools.expression import ExpMatrix from .. import util def plot_cell_transcript_distribution( matrix, name='', color='rgb(31, 119, 180)', width=1350, height=600, font_size=16, font_family='serif'): """Plot the number of transcripts per cell. """ fig = tools.make_subplots(rows=1, cols=2, shared_yaxes=False) hist_trace = go.Histogram( x=matrix.sum(axis=0), histnorm='percent', marker=dict( color=color, ) ) assert isinstance(matrix, ExpMatrix) fig.append_trace(hist_trace, 1, 1) num_transcripts = matrix.sum(axis=0) # works? s = np.sort(num_transcripts)[::-1] step_size = int((matrix.shape[1])/200.0) x = s[::step_size] y = np.arange(matrix.shape[1])[::step_size] + 1 scatter_trace = go.Scatter( x=x, y=y, mode='lines', line=dict( color=color, width=3.0, ), ) fig.append_trace(scatter_trace, 1, 2) layout = go.Layout( title = '%s (n=%d)' % (name, matrix.n), width=width, height=height, font=dict( size=font_size, family=font_family, ), showlegend=False, ) fig['layout'].update(layout) xaxis_hist = dict( title='Number of transcripts', ) yaxis_hist = dict( title='Fraction of cells (%)' ) fig['layout'].xaxis1.update(xaxis_hist) fig['layout'].yaxis1.update(yaxis_hist) xaxis_scatter = dict( title='Transcript threshold', ) yaxis_scatter = dict( title=('Number of cells above threshold'), autorange=False, range=[0, matrix.shape[1]*1.05], ) fig['layout'].xaxis2.update(xaxis_scatter) fig['layout'].yaxis2.update(yaxis_scatter) return fig def plot_transcriptome_components( matrix, species='human', name='', width=950, height=800, font_size=16, font_family='serif'): """Plots showing mitochondrial and ribosomal transcriptome components. TODO: docstring """ def generate_scatter_trace(matrix, sel_genes, color): transcripts = matrix.sum(axis=0) sel_sum = matrix.loc[sel_genes].sum(axis=0) sel_frac = sel_sum / matrix.sum(axis=0) trace = go.Scatter( x=transcripts, y=100*sel_frac, text=matrix.cells, mode='markers', marker=dict( opacity=0.7, color=color, ), ) return trace def generate_hist_trace(matrix, sel_genes, color): transcripts = matrix.sum(axis=0) sel_sum = matrix.loc[sel_genes].sum(axis=0) sel_frac = sel_sum / matrix.sum(axis=0) trace = go.Histogram( y=100*sel_frac, autobiny=False, ybins=dict( start=0, end=100.1, size=5.0001, ), marker=dict( color=color, ), histnorm='percent', ) return trace fig = tools.make_subplots(rows=2, cols=2, shared_yaxes=True) mito_genes = util.get_mitochondrial_genes(species=species) ribo_genes = util.get_ribosomal_genes(species=species) mito_color = 'rgb(255, 127, 14)' ribo_color = 'rgb(31, 119, 180)' try: mito_trace1 = generate_hist_trace(matrix, mito_genes, mito_color) mito_trace2 = generate_scatter_trace( matrix, mito_genes, mito_color) except KeyError: pass else: fig.append_trace(mito_trace1, 1, 1) fig.append_trace(mito_trace2, 1, 2) try: ribo_trace1 = generate_scatter_trace( matrix, ribo_genes, ribo_color) ribo_trace2 = generate_hist_trace(matrix, ribo_genes, ribo_color) except KeyError: pass else: fig.append_trace(ribo_trace1, 2, 1) fig.append_trace(ribo_trace2, 2, 2) if name: name = name + ' ' title = '%s(n=%d)' % (name, matrix.shape[1]) layout = go.Layout( title=title, width=width, height=height, font=dict( size=font_size, family='font_family', ), showlegend=False, bargap=0.1, ) #fig['layout'].update(height=600, width=600, title='i <3 subplots') xaxis_hist = dict( title='Fraction of cells (%)' ) xaxis_scatter = dict( title='Number of transcripts' ) yaxis_mito = dict( title='Fraction of mitochondrial<br> transcripts (%)', autorange=False, range=[0, 100], zeroline=True, ) yaxis_ribo = dict( title='Fraction of ribosomal<br> transcripts (%)', autorange=False, range=[0, 100], zeroline=True, ) fig['layout'].update(layout) fig['layout'].xaxis1.update(xaxis_hist) fig['layout']['xaxis1']['title'] = '' fig['layout'].xaxis3.update(xaxis_hist) #fig['layout'].xaxis.update(xaxis) fig['layout'].xaxis2.update(xaxis_scatter) fig['layout']['xaxis2']['title'] = '' fig['layout'].xaxis4.update(xaxis_scatter) fig['layout'].yaxis1.update(yaxis_mito) fig['layout'].yaxis2.update(yaxis_ribo) #fig['layout']['yaxis2'].update(yaxis_mito) #fig['layout']['yaxis2']['title'] = '' #fig['layout']['yaxis4'].update(yaxis_ribo) #fig['layout']['yaxis4']['title'] = '' return fig ``` #### File: tests/indrop/test_reads.py ```python import os import logging from pkg_resources import resource_filename import pytest from genometools import misc from singlecell import indrop _LOGGER = logging.getLogger(__name__) @pytest.mark.online def test_process_reads(my_barcode_read_file, my_mrna_read_file, my_output_pypath): """Tests the read processing function.""" barcode1_file = resource_filename( 'singlecell', 'data/indrop/gel_barcode1_list.txt') barcode2_file = resource_filename( 'singlecell', 'data/indrop/gel_barcode2_list.txt') output_read_file = str(my_output_pypath.join('processed_reads.fastq')) output_count_file = str(my_output_pypath.join('barcode_counts.tsv')) output_log_file = str(my_output_pypath.join('read_processing_log.txt')) indrop.reads.process_reads( my_barcode_read_file, my_mrna_read_file, barcode1_file, barcode2_file, output_read_file, output_count_file, output_log_file) md5sum = misc.get_file_md5sum(output_read_file) assert md5sum == '4a21825d92ed776f126dd89843ba16d6' md5sum = misc.get_file_md5sum(output_count_file) assert md5sum == 'b2776081a49442bb01e62e1470574f18' ```
{ "source": "JohannesPertl/spotipy", "score": 2 }
#### File: tests/integration/test_user_endpoints.py ```python from __future__ import print_function import os import sys from spotipy import ( CLIENT_CREDS_ENV_VARS as CCEV, prompt_for_user_token, Spotify, SpotifyException, ) import unittest import warnings import requests from pprint import pprint # noqa class AuthTestSpotipy(unittest.TestCase): """ These tests require user authentication - provide client credentials using the following environment variables :: 'SPOTIPY_CLIENT_USERNAME' 'SPOTIPY_CLIENT_ID' 'SPOTIPY_CLIENT_SECRET' 'SPOTIPY_REDIRECT_URI' """ playlist = "spotify:user:plamere:playlist:2oCEWyyAPbZp9xhVSxZavx" playlist_new_id = "spotify:playlist:7GlxpQjjxRjmbb3RP2rDqI" four_tracks = ["spotify:track:6RtPijgfPKROxEzTHNRiDp", "spotify:track:7IHOIqZUUInxjVkko181PB", "4VrWlk8IQxevMvERoX08iC", "http://open.spotify.com/track/3cySlItpiPiIAzU3NyHCJf"] two_tracks = ["spotify:track:6RtPijgfPKROxEzTHNRiDp", "spotify:track:7IHOIqZUUInxjVkko181PB"] other_tracks = ["spotify:track:2wySlB6vMzCbQrRnNGOYKa", "spotify:track:29xKs5BAHlmlX1u4gzQAbJ", "spotify:track:1PB7gRWcvefzu7t3LJLUlf"] album_ids = ["spotify:album:6kL09DaURb7rAoqqaA51KU", "spotify:album:6RTzC0rDbvagTSJLlY7AKl"] bad_id = 'BAD_ID' @classmethod def setUpClass(self): if sys.version_info >= (3, 2): # >= Python3.2 only warnings.filterwarnings( "ignore", category=ResourceWarning, # noqa message="unclosed.*<ssl.SSLSocket.*>") missing = list(filter(lambda var: not os.getenv(CCEV[var]), CCEV)) if missing: raise Exception( ('Please set the client credentials for the test application' ' using the following environment variables: {}').format( CCEV.values())) self.username = os.getenv(CCEV['client_username']) self.scope = ( 'playlist-modify-public ' 'user-library-read ' 'user-follow-read ' 'user-library-modify ' 'user-read-private ' 'user-top-read ' 'user-follow-modify ' 'user-read-recently-played ' 'ugc-image-upload' ) self.token = prompt_for_user_token(self.username, scope=self.scope) self.spotify = Spotify(auth=self.token) # Helper def get_or_create_spotify_playlist(self, playlist_name): playlists = self.spotify.user_playlists(self.username) while playlists: for item in playlists['items']: if item['name'] == playlist_name: return item playlists = self.spotify.next(playlists) return self.spotify.user_playlist_create( self.username, playlist_name) # Helper def get_as_base64(self, url): import base64 return base64.b64encode(requests.get(url).content).decode("utf-8") def test_track_bad_id(self): try: self.spotify.track(self.bad_id) self.assertTrue(False) except SpotifyException: self.assertTrue(True) def test_basic_user_profile(self): user = self.spotify.user(self.username) self.assertTrue(user['id'] == self.username.lower()) def test_current_user(self): user = self.spotify.current_user() self.assertTrue(user['id'] == self.username.lower()) def test_me(self): user = self.spotify.me() self.assertTrue(user['id'] == self.username.lower()) def test_user_playlists(self): playlists = self.spotify.user_playlists(self.username, limit=5) self.assertTrue('items' in playlists) self.assertTrue(len(playlists['items']) == 5) def test_user_playlist_tracks(self): playlists = self.spotify.user_playlists(self.username, limit=5) self.assertTrue('items' in playlists) for playlist in playlists['items']: user = playlist['owner']['id'] pid = playlist['id'] results = self.spotify.user_playlist_tracks(user, pid) self.assertTrue(len(results['items']) >= 0) def test_current_user_saved_albums(self): # List albums = self.spotify.current_user_saved_albums() self.assertTrue(len(albums['items']) > 1) # Add self.spotify.current_user_saved_albums_add(self.album_ids) # Contains self.assertTrue( self.spotify.current_user_saved_albums_contains( self.album_ids) == [ True, True]) # Remove self.spotify.current_user_saved_albums_delete(self.album_ids) albums = self.spotify.current_user_saved_albums() self.assertTrue(len(albums['items']) > 1) def test_current_user_playlists(self): playlists = self.spotify.current_user_playlists(limit=10) self.assertTrue('items' in playlists) self.assertTrue(len(playlists['items']) == 10) def test_user_playlist_follow(self): self.spotify.user_playlist_follow_playlist( 'plamere', '4erXB04MxwRAVqcUEpu30O') follows = self.spotify.user_playlist_is_following( 'plamere', '4erXB04MxwRAVqcUEpu30O', [ self.spotify.current_user()['id']]) self.assertTrue(len(follows) == 1, 'proper follows length') self.assertTrue(follows[0], 'is following') self.spotify.user_playlist_unfollow( 'plamere', '4erXB04MxwRAVqcUEpu30O') follows = self.spotify.user_playlist_is_following( 'plamere', '4erXB04MxwRAVqcUEpu30O', [ self.spotify.current_user()['id']]) self.assertTrue(len(follows) == 1, 'proper follows length') self.assertFalse(follows[0], 'is no longer following') def test_current_user_saved_tracks(self): tracks = self.spotify.current_user_saved_tracks() self.assertTrue(len(tracks['items']) > 0) def test_current_user_save_and_unsave_tracks(self): tracks = self.spotify.current_user_saved_tracks() total = tracks['total'] self.spotify.current_user_saved_tracks_add(self.four_tracks) tracks = self.spotify.current_user_saved_tracks() new_total = tracks['total'] self.assertTrue(new_total - total == len(self.four_tracks)) tracks = self.spotify.current_user_saved_tracks_delete( self.four_tracks) tracks = self.spotify.current_user_saved_tracks() new_total = tracks['total'] self.assertTrue(new_total == total) def test_categories(self): response = self.spotify.categories() self.assertTrue(len(response['categories']) > 0) def test_category_playlists(self): response = self.spotify.categories() for cat in response['categories']['items']: cat_id = cat['id'] response = self.spotify.category_playlists(category_id=cat_id) if len(response['playlists']["items"]) > 0: break self.assertTrue(True) def test_new_releases(self): response = self.spotify.new_releases() self.assertTrue(len(response['albums']) > 0) def test_featured_releases(self): response = self.spotify.featured_playlists() self.assertTrue(len(response['playlists']) > 0) def test_current_user_follows(self): response = self.spotify.current_user_followed_artists() artists = response['artists'] self.assertTrue(len(artists['items']) > 0) def test_current_user_top_tracks(self): response = self.spotify.current_user_top_tracks() items = response['items'] self.assertTrue(len(items) > 0) def test_current_user_top_artists(self): response = self.spotify.current_user_top_artists() items = response['items'] self.assertTrue(len(items) > 0) def test_current_user_recently_played(self): # No cursor res = self.spotify.current_user_recently_played() self.assertTrue(len(res['items']) <= 50) played_at = res['items'][0]['played_at'] # Using `before` gives tracks played before res = self.spotify.current_user_recently_played( before=res['cursors']['after']) self.assertTrue(len(res['items']) <= 50) self.assertTrue(res['items'][0]['played_at'] < played_at) played_at = res['items'][0]['played_at'] # Using `after` gives tracks played after res = self.spotify.current_user_recently_played( after=res['cursors']['before']) self.assertTrue(len(res['items']) <= 50) self.assertTrue(res['items'][0]['played_at'] > played_at) def test_user_playlist_ops(self): sp = self.spotify # create empty playlist playlist = self.get_or_create_spotify_playlist( 'spotipy-testing-playlist-1') playlist_id = playlist['id'] # remove all tracks from it sp.user_playlist_replace_tracks( self.username, playlist_id, []) playlist = sp.user_playlist(self.username, playlist_id) self.assertTrue(playlist['tracks']['total'] == 0) self.assertTrue(len(playlist['tracks']['items']) == 0) # add tracks to it sp.user_playlist_add_tracks( self.username, playlist_id, self.four_tracks) playlist = sp.user_playlist(self.username, playlist_id) self.assertTrue(playlist['tracks']['total'] == 4) self.assertTrue(len(playlist['tracks']['items']) == 4) # remove two tracks from it sp.user_playlist_remove_all_occurrences_of_tracks(self.username, playlist_id, self.two_tracks) playlist = sp.user_playlist(self.username, playlist_id) self.assertTrue(playlist['tracks']['total'] == 2) self.assertTrue(len(playlist['tracks']['items']) == 2) # replace with 3 other tracks sp.user_playlist_replace_tracks(self.username, playlist_id, self.other_tracks) playlist = sp.user_playlist(self.username, playlist_id) self.assertTrue(playlist['tracks']['total'] == 3) self.assertTrue(len(playlist['tracks']['items']) == 3) def test_playlist(self): # New playlist ID pl = self.spotify.playlist(self.playlist_new_id) self.assertTrue(pl["tracks"]["total"] > 0) # Old playlist ID pl = self.spotify.playlist(self.playlist) self.assertTrue(pl["tracks"]["total"] > 0) def test_playlist_tracks(self): # New playlist ID pl = self.spotify.playlist_tracks(self.playlist_new_id, limit=2) self.assertTrue(len(pl["items"]) == 2) self.assertTrue(pl["total"] > 0) # Old playlist ID pl = self.spotify.playlist_tracks(self.playlist, limit=2) self.assertTrue(len(pl["items"]) == 2) self.assertTrue(pl["total"] > 0) def test_playlist_upload_cover_image(self): pl1 = self.get_or_create_spotify_playlist('spotipy-testing-playlist-1') plid = pl1['uri'] old_b64 = pl1['images'][0]['url'] # Upload random dog image r = requests.get('https://dog.ceo/api/breeds/image/random') dog_base64 = self.get_as_base64(r.json()['message']) self.spotify.playlist_upload_cover_image(plid, dog_base64) # Image must be different pl1 = self.spotify.playlist(plid) new_b64 = self.get_as_base64(pl1['images'][0]['url']) self.assertTrue(old_b64 != new_b64) def test_playlist_cover_image(self): pl = self.get_or_create_spotify_playlist('spotipy-testing-playlist-1') plid = pl['uri'] res = self.spotify.playlist_cover_image(plid) self.assertTrue(len(res) > 0) first_image = res[0] self.assertTrue('width' in first_image) self.assertTrue('height' in first_image) self.assertTrue('url' in first_image) def test_user_follows_and_unfollows_artist(self): # Initially follows 1 artist res = self.spotify.current_user_followed_artists() self.assertTrue(res['artists']['total'] == 1) # Follow 2 more artists artists = ["6DPYiyq5kWVQS4RGwxzPC7", "0NbfKEOTQCcwd6o7wSDOHI"] self.spotify.user_follow_artists(artists) res = self.spotify.current_user_followed_artists() self.assertTrue(res['artists']['total'] == 3) # Unfollow these 2 artists self.spotify.user_unfollow_artists(artists) res = self.spotify.current_user_followed_artists() self.assertTrue(res['artists']['total'] == 1) def test_user_follows_and_unfollows_user(self): # TODO improve after implementing `me/following/contains` users = ["11111204", "xlqeojt6n7on0j7coh9go8ifd"] # Follow 2 more users self.spotify.user_follow_users(users) # Unfollow these 2 users self.spotify.user_unfollow_users(users) def test_deprecated_starred(self): pl = self.spotify.user_playlist(self.username) self.assertTrue(pl["tracks"] is None) self.assertTrue(pl["owner"] is None) def test_deprecated_user_playlist(self): # Test without user due to change from # https://developer.spotify.com/community/news/2018/06/12/changes-to-playlist-uris/ pl = self.spotify.user_playlist(None, self.playlist) self.assertTrue(pl["tracks"]["total"] > 0) def test_deprecated_user_playlis(self): # Test without user due to change from # https://developer.spotify.com/community/news/2018/06/12/changes-to-playlist-uris/ pl = self.spotify.user_playlist_tracks(None, self.playlist, limit=2) self.assertTrue(len(pl["items"]) == 2) self.assertTrue(pl["total"] > 0) ```
{ "source": "JohannesPertl/vreddit-download-bot", "score": 3 }
#### File: services/upload/upload.py ```python import json import logging import os import redis import requests import sys import shared.util as util from shared.exceptions import InvalidRequest, AlreadyProcessed def main(): request_json = redis.spop(current_set) if request_json: request = json.loads(request_json.decode('utf-8')) try: upload_request(request) except InvalidRequest as ie: util.open_lock(redis, request['id']) logging.info(f"Invalid upload request {request['id']} : {request['link']}: {ie}") except AlreadyProcessed as ape: util.open_lock(redis, request['id']) logging.error(ape) except Exception as e: util.handle_failed_request(redis, request, current_set, e) logging.error( f"{type(e).__name__} occurred while uploading request {request['id']} : {request['link']} : {e}") def upload_request(request): # Check for duplicates util.already_processed_check(redis, request) # Create request uploaded_link = upload(request['reddit_link']) request.update( uploaded_link=uploaded_link ) request_json = json.dumps(request) # Enqueue for replying if uploaded_link: success = redis.sadd(next_set, request_json) logging.info(f"Uploaded request {request['id']} : {request['link']}.") else: raise Exception("Invalid upload link.") def upload(link): try: response_json = upload_via_reddittube(link) if response_json['status'] == 'ok': return response_json['share_url'] else: raise Exception(f"Invalid response status: {response_json['status']}") except Exception as e: raise Exception(f"Couldn't upload to reddittube: {e}") def upload_via_reddittube(link): site_url = "https://reddit.tube/parse" response = requests.get(site_url, params={ 'url': link }, timeout=250) return response.json() if __name__ == '__main__': util.log("upload") config = util.load_configuration() redis = redis.Redis(host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT']) current_set = config['REDIS_REQUESTS_UPLOAD'] next_set = config['REDIS_REQUESTS_REPLY'] while True: main() ``` #### File: vreddit-download-bot/shared/util.py ```python import json import logging import os import re import sys import urllib.parse from urllib.error import HTTPError, URLError from urllib.request import Request import praw import requests import yaml from shared.exceptions import AlreadyProcessed def load_configuration(): conf_file = os.path.join(os.path.dirname(__file__), os.environ['CONFIG']) with open(conf_file, encoding='utf8') as f: config = yaml.safe_load(f) # load dependent configuration config['FOOTER'] = "\n\n *** \n" + config['INFO_LINK'] + "&#32;|&#32;" + config[ 'CONTACT_LINK'] return config CONFIG = load_configuration() def authenticate(): """Authenticate via praw.ini file, look at praw documentation for more info""" authentication = praw.Reddit(site_name=CONFIG['BOT_NAME']) logging.info(f'Authenticated as {authentication.user.me()}') return authentication def log(service, stdout=False): if stdout: logging.basicConfig( stream=sys.stdout, level=logging.INFO, format=f'{service:<6}: %(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) else: logging.basicConfig( filename=f"shared/logs/bot.log", level=logging.INFO, format=f'{service:<6}: %(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) def get_reddit_item(reddit, request): if request['type'] == "message": return reddit.inbox.message(request['id']) else: return reddit.comment(request['id']) def contains_link(string): """Returns link or empty string""" match_link = re.search( r"https?://(www\.)?[-a-zA-Z0-9@:%._+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_+.~#?&/=]*)", string) return match_link[0] if match_link else "" def contains_username(name, string): """Returns regex search""" return re.search(r"(?i)u/" + name, string) def get_lock(request_id): return f"{CONFIG['REDIS_REQUESTS_LOCKED']}:{request_id}" def open_lock(redis, request_id): # Remove redundant lock to free up space lock = get_lock(request_id) redis.delete(lock) def handle_failed_request(redis, request, current_set, exception): if request['retries'] > 10: open_lock(redis, request['id']) request.update( error=str(exception) ) next_set = CONFIG['REDIS_REQUESTS_FAILED'] logging.error(f"Reached retry limit. Pushing request {request['id']} : {request['link']} to failed requests.") else: request['retries'] += 1 next_set = current_set request_json = json.dumps(request) redis.sadd(next_set, request_json) def is_link_valid(link): # Check if download is valid without downloading if "reddit.tube" in link: if requests.head(link, timeout=10).ok: return True return False try: status_code = urllib.request.urlopen(link, timeout=2).getcode() return status_code == 200 except (HTTPError, URLError, ValueError): return False def already_processed_check(redis, request): if redis.sismember(CONFIG['REDIS_REQUESTS_SUCCESS'], request['id']): raise AlreadyProcessed(request['link']) ```
{ "source": "johannespetereit/eShopOnContainers", "score": 3 }
#### File: eShopOnContainers/locust/eshoptasks.py ```python from locust import TaskSet, task, seq_task class TrafficTasks(TaskSet): def on_start(self): pass @task(70) class Browse(TaskSet): def on_start(self): print(f"{self.locust.user_info['Email']} is browsing") self.reload_shop() @task(15) def reload_shop(self): self.locust.executor.show_index() @task(30) def update_product_list(self): self.locust.executor.update_product_list() @task(80) def update_product_list_simple(self): self.locust.executor.update_product_list_simple() @task(7) def stop_browsing(self): self.interrupt() @task(50) class Shop(TaskSet): def on_start(self): if not self.locust.executor.is_logged_in: print(f"{self.locust.user_info['Email']} cannot shop, not logged in") self.interrupt() else: print(f"{self.locust.user_info['Email']} starts shopping") @task(20) def add_to_basket(self): self.locust.executor.add_to_basket() @task(30) def reload_shop(self): self.locust.executor.show_index() @task(30) def update_product_list(self): self.locust.executor.update_product_list() @task(80) def update_product_list_simple(self): self.locust.executor.update_product_list_simple() @task(40) def stop_shopping(self): self.interrupt() @task(20) def show_basket(self): self.locust.executor.show_basket() @task(13) def show_orders(self): self.locust.executor.show_orders() @task(12) def show_order_detail(self): self.locust.executor.show_order_detail() @task(10) def goto_checkout(self): self.locust.executor.show_checkout() @task(30) class Checkout(TaskSet): def on_start(self): if not self.locust.executor.is_logged_in or not self.locust.executor.has_items_in_basket: print(f"{self.locust.user_info['Email']} can't checkout, not logged in or nothing in basket") self.interrupt() else: print(f"{self.locust.user_info['Email']} checking out") @seq_task(1) def show_basket(self): self.locust.executor.show_basket() @seq_task(2) def goto_checkout(self): self.locust.executor.show_checkout() @seq_task(3) def perform_checkout(self): self.locust.executor.perform_checkout() self.interrupt() @task(40) class Login(TaskSet): def on_start(self): if not self.locust.executor.can_log_in: print(f"{self.locust.user_info['Email']} cannot login: No user available to login") self.interrupt() elif self.locust.executor.is_logged_in: print(f"{self.locust.user_info['Email']} is already logged in") self.interrupt() else: print(f"{self.locust.user_info['Email']} is logging in") self.show_login() def show_login(self): self.locust.executor.show_login() @task(80) def perform_login(self): self.locust.executor.perform_login() self.interrupt() @task(12) def give_up_login(self): self.locust.executor.give_up_login() self.interrupt() @task(10) class Register(TaskSet): def on_start(self): self.show_register() def show_register(self): self.locust.executor.show_register() @task(30) def perform_register(self): self.locust.executor.perform_register() self.interrupt() @task(70) def give_up_register(self): self.locust.executor.give_up_register() self.interrupt() ```
{ "source": "johannespetrat/OptML", "score": 3 }
#### File: OptML/optml/models.py ```python import abc from sklearn.base import BaseEstimator class Model(BaseEstimator): def __init__(self): raise NotImplementedError("You need to implement the initialisation function for this model!") @abc.abstractmethod def get_params(self): raise NotImplementedError("You need to implement the 'get_params' function for this model!") class KerasModel(Model): __model_module__ = 'keras' def __init__(self): raise NotImplementedError("You need to implement the initialisation function for this model! " + "It should at least specify 'batch_size' and the number of epochs.") def fit(self, X, y, verbose=0): return self.model.fit(X,y, epochs=self.epochs, batch_size=self.batch_size, verbose=verbose) def predict(self, X): return self.model.predict(X) ``` #### File: OptML/optml/optimizer_base.py ```python import numpy as np import abc from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression from sklearn.model_selection import KFold class Optimizer(object): def __init__(self, model, hyperparams, eval_func): """ Keyword arguments: model - a model as specified in the readme hyperparams - a list of Parameter instances eval_func - scoring function to be minimized. Takes input (y_true, y_predicted) where y_true and y_predicted are numpy arrays """ self.model = model self.hyperparam_history = [] self.hyperparams = hyperparams self.eval_func = eval_func self.model_module = self.infer_model_type(model) self.param_dict = {p.name:p for p in hyperparams} def infer_model_type(self, model): if 'xgboost' in model.__module__.lower(): return 'xgboost' elif 'pipeline' in model.__module__.lower(): return 'pipeline' elif 'sklearn' in model.__module__.lower(): return 'sklearn' elif (hasattr(model, '__model_module__')) and ('keras' in model.__model_module__.lower()): return 'keras' else: raise NotImplementedError("{} not implemented for module '{}'".format( str(type(self))[:-2].split('.')[-1], model.__module__)) def get_kfold_split(self, n_folds, X): """ Splits X into n_folds folds Args: n_folds: integer specifying number of folds X: data to be split Returns: a generator with tuples of form (train_idxs, test_idxs) """ kf = KFold(n_splits=n_folds) return kf.split(X) @abc.abstractmethod def get_next_hyperparameters(self): raise NotImplementedError("This class needs a get_next_hyperparameters(...) function") @abc.abstractmethod def fit(self, X, y, params): raise NotImplementedError("This class needs a self.fit(X, y, params) function") def build_new_model(self, new_hyperparams): if self.model_module == 'pipeline': new_model = self.model.set_params(**new_hyperparams) elif (self.model_module == 'sklearn') or (self.model_module == 'xgboost'): new_model = self.model.__class__(**new_hyperparams) elif self.model_module == 'statsmodels': raise NotImplementedError("Not yet implemented for 'statsmodels'") #new_model = self.model.__class__(**new_hyperparams) #new_model = ModelConverter(new_model).convert() elif self.model_module == 'keras': new_model = self.model.__class__(**new_hyperparams) else: raise NotImplementedError("{} not implemented for module '{}'".format( str(type(self))[:-2].split('.')[-1], self.model_module)) return new_model def get_best_params_and_model(self): """ Returns the best parameters and model after optimization. Keyword arguments: None """ best_params_idx = np.argmax([score for score, params in self.hyperparam_history]) best_params = self.hyperparam_history[best_params_idx][1] if isinstance(self.model, Pipeline): all_params = self.model.get_params() all_params.update(best_params) best_model = self.model.set_params(**all_params) else: best_model = self.model.__class__(**dict(self.model.get_params(), **best_params)) return best_params, best_model class MissingValueException(Exception): pass class Parameter(object): def __init__(self, name, param_type, lower=None, upper=None, possible_values=None, distribution=None): """ Keywords: name - String specifying the name of this parameter param_type - 'categorical', 'continuous', 'integer', 'boolean', 'int_array' or 'continuous_array' lower - lower bound of parameter (only applicable to numerical types) upper - upper bound of parameter (only applicable to numerical types) possible_values - list of possible values a parameter can take (only applicable to categorical type) distribution - specifies a distribution to sample from (only applicable to continuous types); not actually implemented yet """ param_type = param_type.lower() if not param_type in ['categorical', 'continuous', 'integer', 'boolean', 'int_array', 'continuous_array']: raise ValueError("param_type needs to be 'categorical','continuous','integer', 'int_array', 'continuous_array' or 'boolean'") if (param_type == 'categorical') and (possible_values is None): raise MissingValueException("Need to provide possible values for categorical parameters.") self.possible_values = possible_values self.param_type = param_type.lower() if (param_type in ['continuous', 'integer', 'int_array', 'continuous_array']) and ( (lower is None) or (upper is None)): raise MissingValueException("Need to provide 'lower' and 'upper' for parameters of type.".format( param_type)) self.lower = lower self.upper = upper self.name = name if distribution is not None: self.distribution = distribution if param_type.lower() in ['int_array', 'continuous_array']: if len(lower)!=len(upper): raise ValueError("'lower' and 'upper' must be of the same length.") self.size = len(lower) def random_sample(self): """ returns a uniformly random sample of the parameter Keywords: None """ if self.param_type == 'integer': return np.random.choice(np.arange(self.lower, self.upper+1, 1)) elif self.param_type == 'categorical': return str(np.random.choice(self.possible_values)) elif self.param_type == 'continuous': return np.random.uniform(self.lower, self.upper) elif self.param_type == 'boolean': return np.random.choice([True, False]) elif self.param_type == 'continuous_array': return [np.random.uniform(self.lower[i],self.upper[i]) for i in range(len(self.lower))] elif self.param_type == 'int_array': return [np.random.choice(np.arange(self.lower[i],self.upper[i]),1)[0] for i in range(len(self.lower))] ``` #### File: OptML/tests/test_hyperopt_optimizer.py ```python import numpy as np import unittest from optml.hyperopt_optimizer import HyperoptOptimizer from optml import Parameter from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification def clf_score(y_true,y_pred): return np.sum(y_true==y_pred)/float(len(y_true)) class TestHyperoptOptimizer(unittest.TestCase): def test_param_space(self): interval = [0,10] p1 = Parameter('test_integer', 'integer', lower=interval[0], upper=interval[1]) p2 = Parameter('test_categorical', 'categorical', possible_values=['A','B','C']) p3 = Parameter('test_boolean', 'boolean') p4 = Parameter('test_continuous', 'continuous', lower=interval[0], upper=interval[1]) p5 = Parameter('test_continuous_array', 'continuous_array', lower=[interval[0]], upper=[interval[1]]) model = RandomForestClassifier() hyperopt = HyperoptOptimizer(model, [p1,p2,p3,p4],lambda x: x) param_space = hyperopt.param_space with self.assertRaises(ValueError): hyperopt = HyperoptOptimizer(model, [p1,p2,p3,p4,p5],lambda x: x) def test_improvement(self): np.random.seed(4) data, target = make_classification(n_samples=100, n_features=45, n_informative=15, n_redundant=5, class_sep=1, n_clusters_per_class=4, flip_y=0.4) model = RandomForestClassifier(max_depth=5) model.fit(data, target) start_score = clf_score(target, model.predict(data)) p1 = Parameter('max_depth', 'integer', lower=1, upper=10) hyperopt = HyperoptOptimizer(model, [p1], clf_score) best_params, best_model = hyperopt.fit(X_train=data, y_train=target, n_iters=10) best_model.fit(data, target) final_score = clf_score(target, best_model.predict(data)) self.assertTrue(final_score>start_score) for status in hyperopt.trials.statuses(): self.assertEqual(status, 'ok') ``` #### File: OptML/tests/test_random_search.py ```python import numpy as np import unittest from optml.random_search import RandomSearchOptimizer from optml import Parameter from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification def clf_score(y_true,y_pred): return np.sum(y_true==y_pred)/float(len(y_true)) class TestRandomSearchOptimizer(unittest.TestCase): def test_improvement(self): np.random.seed(4) data, target = make_classification(n_samples=100, n_features=45, n_informative=15, n_redundant=5, class_sep=1, n_clusters_per_class=4, flip_y=0.4) model = RandomForestClassifier(max_depth=5) model.fit(data, target) start_score = clf_score(target, model.predict(data)) p1 = Parameter('max_depth', 'integer', lower=1, upper=10) rand_search = RandomSearchOptimizer(model, [p1], clf_score) best_params, best_model = rand_search.fit(X_train=data, y_train=target, n_iters=10) best_model.fit(data, target) final_score = clf_score(target, best_model.predict(data)) self.assertTrue(final_score>start_score) ```
{ "source": "johannespischinger/mlops_project", "score": 3 }
#### File: src/models/predict_model.py ```python import argparse import torch from train_model import CNNModel def loader(): parser = argparse.ArgumentParser(description="Evaluation arguments") parser.add_argument("load_model_from", default="") parser.add_argument("load_data_from", default="") # add any additional argument that you want args = parser.parse_args() # Loading the model checkpoint = torch.load(args.load_model_from) model = CNNModel() model.load_state_dict(checkpoint["state_dict"]) model.eval() path = args.load_data_from dataset = torch.load(path) return model, dataset def prediction(model, data): testloader = torch.utils.data.DataLoader(data) test_acc = [] with torch.no_grad(): test_acc = [] for images, labels in testloader: prediction = torch.exp(model(images.float().unsqueeze(1))) top_p, top_class = prediction.topk(1, dim=1) equals = top_class == labels.view(*top_class.shape) test_acc.append(torch.mean(equals.type(torch.FloatTensor))) else: print(f"Accuracy: {sum(test_acc) / len(test_acc)}") if __name__ == "__main__": model, dataset = loader() prediction(model, dataset) ``` #### File: mlops_project/tests/test_data.py ```python import os import numpy as np import pytest import torch from tests import _PROJECT_ROOT @pytest.mark.skipif( not os.path.exists(f"{_PROJECT_ROOT}/data/processed"), reason="Data files not found", ) def test_load(): test = torch.load(f"{_PROJECT_ROOT}/data/processed/test.pt") train = torch.load(f"{_PROJECT_ROOT}/data/processed/train.pt") # test, train = load() assert ( len(train) == 25000 ), "Dataset did not have the correct number of samples" assert ( len(test) == 5000 ), "Dataset did not have the correct number of samples" assert [ list(image.shape) == [1, 28, 28] for image, _ in test ], "Shape of sample is not correct" assert [ list(image.shape) == [1, 28, 28] for image, _ in train ], "Shape of sample is not correct" train_labels = [] test_labels = [] for _, label in train: train_labels.append(label) for _, label in test: test_labels.append(label) assert ( len(torch.from_numpy(np.asarray(train_labels)).unique()) == 10 ), "Not all labels are represented in the training dataset" assert ( len(torch.from_numpy(np.asarray(test_labels)).unique()) == 10 ), "Not all labels are represented in the test dataset" ```
{ "source": "johannespischinger/senti_anal", "score": 3 }
#### File: opensentiment/gcp/storage_utils.py ```python from datetime import datetime from google.cloud import storage def save_to_model_gs(save_dir: str, model_name: str) -> None: """Function to upload model to google storage bucket""" scheme = "gs://" bucket_name = save_dir[len(scheme) :].split("/")[0] prefix = "{}{}/".format(scheme, bucket_name) bucket_path = save_dir[len(prefix) :].rstrip("/") datetime_ = datetime.now().strftime("model_%Y%m%d_%H%M%S") name = model_name.split("/")[-3] if bucket_path: model_path = "{}/{}/{}".format(bucket_path, datetime_, name) else: model_path = "{}/{}".format(datetime_, name) bucket = storage.Client().bucket(bucket_name) blob = bucket.blob(model_path) blob.upload_from_filename(model_name) ``` #### File: opensentiment/models/predict_model.py ```python import logging import os from pathlib import Path import torch from torch.utils.data import DataLoader import wandb from opensentiment.models.bert_model import SentimentClassifier from opensentiment.utils import get_project_root logger = logging.getLogger(__name__) def predict( model_name: str, models_path: str, batch_size: int = 64, data_path: str = "tests/dummy_dataset", ) -> float: wandb.init( project="BERT", entity="senti_anal", name=os.getcwd().split("/")[-1], job_type="test", ) model = SentimentClassifier() model.load_state_dict(torch.load(os.path.join(models_path, model_name))) model.eval() wandb.watch(model, log_freq=100) test_set = torch.load( os.path.join(get_project_root(), f"{data_path}/test_dataset.pt") ) test_loader = DataLoader(test_set, batch_size=batch_size) total_pred = 0 corr_pred = 0 with torch.no_grad(): for data in test_loader: input_ids = data["input_id"] attention_masks = data["attention_mask"] targets = data["target"] predictions = model(input_ids, attention_masks) _, pred_class = torch.max(predictions, dim=1) corr_pred += torch.sum(pred_class == targets) total_pred += targets.shape[0] wandb.log({"test_acc": corr_pred / total_pred}) logger.info(f"Final test accuracy: {corr_pred/total_pred:.4}") return corr_pred / total_pred ``` #### File: opensentiment/models/train_model.py ```python import logging import os from collections import defaultdict from typing import Any, Dict, Tuple import hydra import numpy as np import torch import transformers from omegaconf import DictConfig from torch import nn from torch.utils.data import DataLoader from tqdm import tqdm import wandb from opensentiment.gcp.storage_utils import save_to_model_gs from opensentiment.models.bert_model import SentimentClassifier from opensentiment.utils import get_project_root logger = logging.getLogger(__name__) def train_model( model: nn.Module, data_loader: DataLoader, criterion: Any, optimizer: Any, scheduler: Any, max_norm: float = 1.0, ) -> [torch.Tensor, np.float64]: model.train() train_loss = [] correct_pred = 0 total_pred = 0 for d in tqdm(data_loader): input_ids = d["input_id"] attention_masks = d["attention_mask"] targets = d["target"] # forward prop predictions = model(input_ids, attention_masks) loss = criterion(predictions, targets) _, pred_classes = torch.max(predictions, dim=1) # backprop loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=max_norm) optimizer.step() scheduler.step() optimizer.zero_grad() # training loss and number of correct prediction train_loss.append(loss.item()) correct_pred += torch.sum(pred_classes == targets) total_pred += targets.shape[0] return correct_pred / total_pred, np.mean(train_loss) def eval_model( model: nn.Module, data_loader: DataLoader, criterion: Any, ) -> [torch.Tensor, float]: model.eval() eval_loss = [] correct_pred = 0 total_pred = 0 with torch.no_grad(): for d in tqdm(data_loader): input_ids = d["input_id"] attention_masks = d["attention_mask"] targets = d["target"] # forward prop predictions = model(input_ids, attention_masks) loss = criterion(predictions, targets) _, pred_classes = torch.max(predictions, dim=1) eval_loss.append(loss.item()) correct_pred += torch.sum(pred_classes == targets) total_pred += targets.shape[0] return correct_pred / total_pred, np.mean(eval_loss) @hydra.main(config_path="config", config_name="default_config.yaml") def train(cfg: DictConfig) -> Tuple[Dict, str]: if cfg.wandb_key_api: os.environ["WANDB_API_KEY"] = cfg.wandb_key_api wandb.init( project="BERT", entity="senti_anal", name=os.getcwd().split("/")[-1], job_type="train", ) config = cfg.experiments torch.manual_seed(config.seed) train_set = torch.load( os.path.join(get_project_root(), f"{config.data_path}/train_dataset.pt") ) val_set = torch.load( os.path.join(get_project_root(), f"{config.data_path}/val_dataset.pt") ) train_loader = DataLoader(train_set, batch_size=config.batch_size) val_loader = DataLoader(val_set, batch_size=config.batch_size) model = SentimentClassifier() wandb.watch(model, log_freq=100) total_steps = len(train_loader) * config.epochs criterion = torch.nn.CrossEntropyLoss() optimizer = transformers.AdamW( params=model.parameters(), lr=config.learning_rate, correct_bias=False ) scheduler = transformers.get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=config.num_warmup_steps, num_training_steps=total_steps, ) history = defaultdict(list) best_accuracy = 0 best_model_name = "untrained_model.pt" logger.info("Start training:") for epoch in range(config.epochs): # training part print(f"epoch : {epoch + 1}/{config.epochs}") train_acc, train_loss = train_model( model, train_loader, criterion, optimizer, scheduler, config.max_norm, ) # validation part val_acc, val_loss = eval_model(model, val_loader, criterion) # saving training logs history["train_acc"].append(train_acc) history["train_loss"].append(train_loss) history["val_acc"].append(val_acc) history["val_loss"].append(val_loss) wandb.log( { "train_loss": train_loss, "train_acc": train_acc, "val_loss": val_loss, "val_acc": val_acc, } ) logger.info( f"train_loss: {train_loss}, train_acc: {train_acc} ,val_loss: {val_loss}, val_acc: {val_acc}" ) # saving model if performance improved if val_acc > best_accuracy: best_model_name = f"best_model_state_{val_acc:.2}.pt" best_accuracy = val_acc torch.save(model.state_dict(), os.path.join(os.getcwd(), best_model_name)) if cfg.job_dir_gs: logger.info(f"Uploading model google bucket: {cfg.job_dir_gs}") save_to_model_gs(cfg.job_dir_gs, best_model_name) return history, best_model_name if __name__ == "__main__": train() ``` #### File: api/fast/test_serve_api.py ```python import pytest from fastapi.testclient import TestClient import glob import os from opensentiment.utils import paths_to_file_ext from opensentiment.api.fast.serve_api import app client_not_loaded = TestClient(app) def test_read_main(): response = client_not_loaded.get("/") assert response.status_code == 200 assert response.json() == {"Model Serve API": "running"} class TestAPP: not_model_exists = not bool( paths_to_file_ext(folder="model_store", file_ext="ckpt")[0] ) response_missing = "dummy" @pytest.mark.skipif(not_model_exists, reason="no model found") @pytest.mark.parametrize( "path,expected_status,expected_text,expected_sentiment", [ ( "/api/v1/serve_single", 422, response_missing, response_missing, ), ( "/api/v1/serve_single?query_text=a positive review. i like it", 200, "a positive review. i like it", "Positive", ), ( "/api/v1/serve_single?query_text=a negative review. i hate it", 200, "a negative review. i hate it", "Negativ", ), ], ) def test_serve_single( self, path, expected_status, expected_text, expected_sentiment ): with TestClient(app) as client_loaded: response = client_loaded.get(path) assert response.status_code == expected_status r_json = response.json() if expected_status == 200: assert ( r_json["query_text"] == expected_text ), f"got {r_json}, expected {expected_text}" assert ( r_json["prediction"][0][1] == expected_sentiment ), f"got {r_json}, expected_sentiment {expected_sentiment}" @pytest.mark.skipif(not_model_exists, reason="no model found") @pytest.mark.parametrize( "path,expected_status,expected_text", [ ("/api/v1/serve_batch", 422, response_missing), ("/api/v1/serve_batch?q=foo&q=bar", 200, ["foo", "bar"]), ], ) def test_serve_batch(self, path, expected_status, expected_text): with TestClient(app) as client_loaded: response = client_loaded.get(path) assert response.status_code == expected_status r_json = response.json() if expected_status == 200: assert ( r_json["query_list"] == expected_text ), f"got {response.json()}, expected {expected_text}" ``` #### File: tests/data/test_dataset_pl.py ```python import os from collections import abc from typing import Dict, List, Tuple, Union import hydra import omegaconf import pytest import pytorch_lightning as pl from opensentiment.utils import return_omegaconf_modified @pytest.mark.parametrize( "config,shapes_desired", [ ( return_omegaconf_modified( { "data": { "datamodule": { "only_take_every_n_sample": 512, "num_workers": {"train": 0}, } }, "logging": {"wandb": {"mode": "offline"}}, } ), [ ("attention_mask", [32, 128]), ("input_ids", [32, 128]), ("labels", [32]), ], ), ( return_omegaconf_modified( { "data": { "datamodule": { "only_take_every_n_sample": 512, "max_seq_length": 32, "batch_size": { "train": 16, "val": 16, "test": 16, }, } }, "logging": {"wandb": {"mode": "offline"}}, } ), [ ("attention_mask", [16, 32]), ("input_ids", [16, 32]), ("labels", [16]), ], ), ], ) def test_dataset( config: omegaconf.OmegaConf, shapes_desired: List[Tuple[str, List[int]]] ): dm: pl.LightningDataModule = hydra.utils.instantiate( config.data.datamodule, _recursive_=False ) dm.prepare_data() dm.setup("fit") sample = next(iter(dm.train_dataloader())) shapes = [(x[0], x[1].shape) for x in sample.items()] assert len(shapes) == len(sample) for i in shapes_desired: assert i[0] in sample, f"{i[0]} not in dataset {sample}" assert i[1] == list( sample[i[0]].shape ), f"shape {i[1]} {i[0]} not in expected but instead {list(sample[i[0]].shape)}" ``` #### File: tests/models/test_bert_model_pl.py ```python import os from collections import abc from typing import List, Tuple import omegaconf import pytest import pytorch_lightning as pl from hydra import compose, initialize_config_dir import hydra from opensentiment.models import train_model_pl from opensentiment.utils import get_project_root, return_omegaconf_modified AVAIL_GPU = 0 @pytest.mark.parametrize( "config", [ (return_omegaconf_modified({"model": {"transformer_freeze": False}})), (return_omegaconf_modified({"model": {"transformer_freeze": True}})), ( return_omegaconf_modified( { "model": {"transformer_freeze": False}, "data": { "datamodule": { "model_name_or_path": "distilbert-base-uncased-finetuned-sst-2-english" } }, } ) ), ], ) def test_model( config: omegaconf.OmegaConf, ): hydra.core.global_hydra.GlobalHydra.instance().clear() hydra_dir = os.path.join(get_project_root(), ".cache", "Hydratest") os.makedirs(hydra_dir, exist_ok=True) model: pl.LightningModule = hydra.utils.instantiate( config.model, **{ "model_name_or_path": config.data.datamodule.model_name_or_path, "train_batch_size": config.data.datamodule.batch_size.train, }, optim=config.optim, data=config.data, logging=config.logging, _recursive_=False, ) for name, param in model.named_parameters(): if "classifier" in name or not config.model.transformer_freeze: # trainable layers assert param.requires_grad is True else: assert param.requires_grad is False return model ```
{ "source": "johannespitz/MNF_VBNN", "score": 2 }
#### File: johannespitz/MNF_VBNN/mutual_information.py ```python import sys import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt import seaborn as sns def _compute_mi(model, samples, num_runs): predictions_list = [] for idx in tqdm(range(num_runs), file=sys.stdout): predictions_list.append(model.predict(samples, batch_size=10000)) probs = np.asarray(predictions_list) mean = probs.mean(axis=0) def _entropy(ps): return -1. * (ps * np.log(ps + 1e-8)).sum(axis=-1) mean_H = _entropy(mean) indi_H = _entropy(probs) return mean_H - indi_H.mean(axis=0), mean_H def plot_mi(tests_dict, model, num_runs=20): fig, axs = plt.subplots(2, 1, figsize=(20, 10)) for name, samples in tests_dict.items(): mi, ent = _compute_mi(model, samples, num_runs) print(f'MI: {name:15s} min: {mi.min():.4f}, max: {mi.max():.4f}, mean: {mi.mean():.4f}') print(f'PE: {name:15s} min: {ent.min():.4f}, max: {ent.max():.4f}, mean: {ent.mean():.4f}') # with self.summary_writer.as_default(): # tf.summary.histogram('mi/' + name, mi, epoch) # tf.summary.histogram('ent/' + name, ent, epoch) sns.distplot(mi, label=name, ax=axs[0], kde=True, kde_kws=dict(gridsize=1000)) sns.distplot(ent, label=name, ax=axs[1], kde=True, kde_kws=dict(gridsize=1000)) plt.legend() fig.tight_layout() return plt ```
{ "source": "johannespitz/probability", "score": 2 }
#### File: experimental/mcmc/particle_filter.py ```python from __future__ import print_function import collections import functools import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.distributions import categorical from tensorflow_probability.python.distributions import distribution as distribution_lib from tensorflow_probability.python.distributions import exponential from tensorflow_probability.python.distributions import uniform from tensorflow_probability.python.internal import distribution_util as dist_util from tensorflow_probability.python.internal import docstring_util from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import tensor_util from tensorflow_probability.python.internal import tensorshape_util from tensorflow_probability.python.util import SeedStream __all__ = [ 'ess_below_threshold', 'infer_trajectories', 'particle_filter', 'reconstruct_trajectories', 'resample_independent', 'resample_minimum_variance', 'resample_deterministic_minimum_error' ] # TODO(b/153467570): Move SampleParticles into `tfp.distributions`. class SampleParticles(distribution_lib.Distribution): """Like tfd.Sample, but inserts new rightmost batch (vs event) dim.""" def __init__(self, distribution, num_particles, name=None): parameters = dict(locals()) with tf.name_scope(name or 'SampleParticles') as name: self._distribution = distribution self._num_particles = tensor_util.convert_nonref_to_tensor( num_particles, dtype_hint=tf.int32, name='num_particles') super(SampleParticles, self).__init__( dtype=distribution.dtype, reparameterization_type=distribution.reparameterization_type, validate_args=distribution.validate_args, allow_nan_stats=distribution.allow_nan_stats, name=name) self._parameters = self._no_dependency(parameters) @property def num_particles(self): return self._num_particles @property def distribution(self): return self._distribution def _event_shape(self): return self.distribution.event_shape def _event_shape_tensor(self, **kwargs): return self.distribution.event_shape_tensor(**kwargs) def _batch_shape(self): return tf.nest.map_structure( lambda b: tensorshape_util.concatenate( # pylint: disable=g-long-lambda [tf.get_static_value(self.num_particles)], b), self.distribution.batch_shape) def _batch_shape_tensor(self, **kwargs): return tf.nest.map_structure( lambda b: ps.concat([[self.num_particles], b], axis=0), self.distribution.batch_shape_tensor(**kwargs)) def _log_prob(self, x, **kwargs): return self._call_log_measure('_log_prob', x, kwargs) def _log_cdf(self, x, **kwargs): return self._call_log_measure('_log_cdf', x, kwargs) def _log_sf(self, x, **kwargs): return self._call_log_measure('_log_sf', x, kwargs) def _call_log_measure(self, attr, x, kwargs): return getattr(self.distribution, attr)(x, **kwargs) # TODO(b/152797117): Override _sample_n, once it supports joint distributions. def sample(self, sample_shape=(), seed=None, name=None): with tf.name_scope(name or 'sample_particles'): sample_shape = ps.concat([ dist_util.expand_to_vector(sample_shape), [self.num_particles]], axis=0) return self.distribution.sample(sample_shape, seed=seed) # TODO(davmre): Replace this hack with a more efficient TF builtin. def _batch_gather(params, indices, axis=0): """Gathers a batch of indices from `params` along the given axis. Args: params: `Tensor` of shape `[d[0], d[1], ..., d[N - 1]]`. indices: int `Tensor` of shape broadcastable to that of `params`. axis: int `Tensor` dimension of `params` (and of the broadcast indices) to gather over. Returns: result: `Tensor` of the same type and shape as `params`. """ params_rank = ps.rank_from_shape(ps.shape(params)) indices_rank = ps.rank_from_shape(ps.shape(indices)) params_with_axis_on_right = dist_util.move_dimension( params, source_idx=axis, dest_idx=-1) indices_with_axis_on_right = ps.broadcast_to( dist_util.move_dimension(indices, source_idx=axis - (params_rank - indices_rank), dest_idx=-1), ps.shape(params_with_axis_on_right)) result = tf.gather(params_with_axis_on_right, indices_with_axis_on_right, axis=params_rank - 1, batch_dims=params_rank - 1) return dist_util.move_dimension(result, source_idx=-1, dest_idx=axis) def _dummy_indices_like(indices): """Returns dummy indices ([0, 1, 2, ...]) with batch shape like `indices`.""" indices_shape = ps.shape(indices) num_particles = indices_shape[0] return tf.broadcast_to( ps.reshape( ps.range(num_particles), ps.concat([[num_particles], ps.ones([ps.rank_from_shape(indices_shape) - 1], dtype=np.int32)], axis=0)), indices_shape) def _gather_history(structure, step, num_steps): """Gather up to `num_steps` of history from a nested structure.""" initial_step = ps.maximum(0, step - num_steps) return tf.nest.map_structure( lambda x: tf.gather(x, ps.range(initial_step, step)), structure) def ess_below_threshold(unnormalized_log_weights, threshold=0.5): """Determines if the effective sample size is much less than num_particles.""" with tf.name_scope('ess_below_threshold'): num_particles = ps.size0(unnormalized_log_weights) log_weights = tf.math.log_softmax(unnormalized_log_weights, axis=0) log_ess = -tf.math.reduce_logsumexp(2 * log_weights, axis=0) return log_ess < (ps.log(num_particles) + ps.log(threshold)) ParticleFilterStepResults = collections.namedtuple( 'ParticleFilterStepResults', ['particles', 'log_weights', 'parent_indices', 'incremental_log_marginal_likelihood', # Track both incremental and accumulated likelihoods because they're cheap, # and this allows users to get the accumulated likelihood without needing # to trace every step. 'accumulated_log_marginal_likelihood' ]) def _default_trace_fn(results): return (results.particles, results.log_weights, results.parent_indices, results.incremental_log_marginal_likelihood) ParticleFilterLoopVariables = collections.namedtuple( 'ParticleFilterLoopVariables', ['step', 'previous_step_results', 'accumulated_traced_results', 'state_history', # Set to `tf.zeros([0])` if not tracked. 'num_steps_traced' ]) particle_filter_arg_str = """ Each latent state is a `Tensor` or nested structure of `Tensor`s, as defined by the `initial_state_prior`. Each of the `transition_fn`, `observation_fn`, and `proposal_fn` args, if specified, takes arguments `(step, state)`, where `state` represents the latent state at timestep `step`. These `fn`s may also, optionally, take additional keyword arguments `state_history` and `observation_history`, which will be passed if and only if the corresponding `num_steps_state_history_to_pass` or `num_steps_observation_history_to_pass` arguments are provided to this method. These are described further below. Args: observations: a (structure of) Tensors, each of shape `concat([[num_observation_steps, b1, ..., bN], event_shape])` with optional batch dimensions `b1, ..., bN`. initial_state_prior: a (joint) distribution over the initial latent state, with optional batch shape `[b1, ..., bN]`. transition_fn: callable returning a (joint) distribution over the next latent state. observation_fn: callable returning a (joint) distribution over the current observation. num_particles: `int` `Tensor` number of particles. initial_state_proposal: a (joint) distribution over the initial latent state, with optional batch shape `[b1, ..., bN]`. If `None`, the initial particles are proposed from the `initial_state_prior`. Default value: `None`. proposal_fn: callable returning a (joint) proposal distribution over the next latent state. If `None`, the dynamics model is used ( `proposal_fn == transition_fn`). Default value: `None`. resample_criterion_fn: optional Python `callable` with signature `do_resample = resample_criterion_fn(log_weights)`, where `log_weights` is a float `Tensor` of shape `[b1, ..., bN, num_particles]` containing log (unnormalized) weights for all particles at the current step. The return value `do_resample` determines whether particles are resampled at the current step. In the case `resample_criterion_fn==None`, particles are resampled at every step. The default behavior resamples particles when the current effective sample size falls below half the total number of particles. Note that the resampling criterion is not used at the final step---there, particles are always resampled, so that we return unweighted values. Default value: `tfp.experimental.mcmc.ess_below_threshold`. rejuvenation_kernel_fn: optional Python `callable` with signature `transition_kernel = rejuvenation_kernel_fn(target_log_prob_fn)` where `target_log_prob_fn` is a provided callable evaluating `p(x[t] | y[t], x[t-1])` at each step `t`, and `transition_kernel` should be an instance of `tfp.mcmc.TransitionKernel`. Default value: `None`. # TODO(davmre): not yet supported. num_transitions_per_observation: scalar Tensor positive `int` number of state transitions between regular observation points. A value of `1` indicates that there is an observation at every timestep, `2` that every other step is observed, and so on. Values greater than `1` may be used with an appropriately-chosen transition function to approximate continuous-time dynamics. The initial and final steps (steps `0` and `num_timesteps - 1`) are always observed. Default value: `None`. num_steps_state_history_to_pass: scalar Python `int` number of steps to include in the optional `state_history` argument to `transition_fn`, `observation_fn`, and `proposal_fn`. If `None`, this argument will not be passed. Default value: `None`. num_steps_observation_history_to_pass: scalar Python `int` number of steps to include in the optional `observation_history` argument to `transition_fn`, `observation_fn`, and `proposal_fn`. If `None`, this argument will not be passed. Default value: `None`. """ non_markovian_specification_str = """ #### Non-Markovian models (state and observation history). Models that do not follow the [Markov property]( https://en.wikipedia.org/wiki/Markov_property), which requires that the current state contains all information relevent to the future of the system, are supported by specifying `num_steps_state_history_to_pass` and/or `num_steps_observation_history_to_pass`. If these are specified, additional keyword arguments `state_history` and/or `observation_history` (respectively) will be passed to each of `transition_fn`, `observation_fn`, and `proposal_fn`. The `state_history`, if requested, is a structure of `Tensor`s like the initial state, but with a batch dimension prefixed to every Tensor, of size `num_steps_state_history_to_pass` , so that `state_history[-1]` represents the previous state (for `transition_fn` and `proposal_fn`, this will equal the `state` arg), `state_history[-2]` the state before that, and so on. The `observation_history` is a structure like `observations`, but with leading dimension of `minimum(step, num_steps_observation_history_to_pass)`. At the initial step, `observation_history=None` will be passed and should be handled appropriately. At subsequent steps, `observation_history[-1]` refers to the observation at the previous timestep, and so on. """ @docstring_util.expand_docstring( particle_filter_arg_str=particle_filter_arg_str) def infer_trajectories(observations, initial_state_prior, transition_fn, observation_fn, num_particles, initial_state_proposal=None, proposal_fn=None, resample_criterion_fn=ess_below_threshold, rejuvenation_kernel_fn=None, num_transitions_per_observation=1, num_steps_state_history_to_pass=None, num_steps_observation_history_to_pass=None, seed=None, name=None): # pylint: disable=g-doc-args """Use particle filtering to sample from the posterior over trajectories. ${particle_filter_arg_str} seed: Python `int` seed for random ops. name: Python `str` name for ops created by this method. Default value: `None` (i.e., `'infer_trajectories'`). Returns: trajectories: a (structure of) Tensor(s) matching the latent state, each of shape `concat([[num_timesteps, num_particles, b1, ..., bN], event_shape])`, representing unbiased samples from the posterior distribution `p(latent_states | observations)`. incremental_log_marginal_likelihoods: float `Tensor` of shape `[num_observation_steps, b1, ..., bN]`, giving the natural logarithm of an unbiased estimate of `p(observations[t] | observations[:t])` at each timestep `t`. Note that (by [Jensen's inequality]( https://en.wikipedia.org/wiki/Jensen%27s_inequality)) this is *smaller* in expectation than the true `log p(observations[t] | observations[:t])`. ${non_markovian_specification_str} #### Examples **Tracking unknown position and velocity**: Let's consider tracking an object moving in a one-dimensional space. We'll define a dynamical system by specifying an `initial_state_prior`, a `transition_fn`, and `observation_fn`. The structure of the latent state space is determined by the prior distribution. Here, we'll define a state space that includes the object's current position and velocity: ```python initial_state_prior = tfd.JointDistributionNamed({ 'position': tfd.Normal(loc=0., scale=1.), 'velocity': tfd.Normal(loc=0., scale=0.1)}) ``` The `transition_fn` specifies the evolution of the system. It should return a distribution over latent states of the same structure as the prior. Here, we'll assume that the position evolves according to the velocity, with a small random drift, and the velocity also changes slowly, following a random drift: ```python def transition_fn(_, previous_state): return tfd.JointDistributionNamed({ 'position': tfd.Normal( loc=previous_state['position'] + previous_state['velocity'], scale=0.1), 'velocity': tfd.Normal(loc=previous_state['velocity'], scale=0.01)}) ``` The `observation_fn` specifies the process by which the system is observed at each time step. Let's suppose we observe only a noisy version of the = current position. ```python def observation_fn(_, state): return tfd.Normal(loc=state['position'], scale=0.1) ``` Now let's track our object. Suppose we've been given observations corresponding to an initial position of `0.4` and constant velocity of `0.01`: ```python # Generate simulated observations. observed_positions = tfd.Normal(loc=tf.linspace(0.4, 0.8, 0.01), scale=0.1).sample() # Run particle filtering to sample plausible trajectories. (trajectories, # {'position': [40, 1000], 'velocity': [40, 1000]} lps) = tfp.experimental.mcmc.infer_trajectories( observations=observed_positions, initial_state_prior=initial_state_prior, transition_fn=transition_fn, observation_fn=observation_fn, num_particles=1000) ``` For all `i`, `trajectories['position'][:, i]` is a sample from the posterior over position sequences, given the observations: `p(state[0:T] | observations[0:T])`. Often, the sampled trajectories will be highly redundant in their earlier timesteps, because most of the initial particles have been discarded through resampling (this problem is known as 'particle degeneracy'; see section 3.5 of [Doucet and Johansen][1]). In such cases it may be useful to also consider the series of *filtering* distributions `p(state[t] | observations[:t])`, in which each latent state is inferred conditioned only on observations up to that point in time; these may be computed using `tfp.mcmc.experimental.particle_filter`. #### References [1] <NAME> and <NAME>. A tutorial on particle filtering and smoothing: Fifteen years later. _Handbook of nonlinear filtering_, 12(656-704), 2009. https://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf """ with tf.name_scope(name or 'infer_trajectories') as name: seed = SeedStream(seed, 'infer_trajectories') (particles, log_weights, parent_indices, incremental_log_marginal_likelihoods) = particle_filter( observations=observations, initial_state_prior=initial_state_prior, transition_fn=transition_fn, observation_fn=observation_fn, num_particles=num_particles, initial_state_proposal=initial_state_proposal, proposal_fn=proposal_fn, resample_criterion_fn=resample_criterion_fn, rejuvenation_kernel_fn=rejuvenation_kernel_fn, num_transitions_per_observation=num_transitions_per_observation, num_steps_state_history_to_pass=num_steps_state_history_to_pass, num_steps_observation_history_to_pass=( num_steps_observation_history_to_pass), trace_fn=_default_trace_fn, seed=seed, name=name) weighted_trajectories = reconstruct_trajectories(particles, parent_indices) # Resample all steps of the trajectories using the final weights. resample_indices = categorical.Categorical( dist_util.move_dimension( log_weights[-1, ...], source_idx=0, dest_idx=-1)).sample(num_particles, seed=seed) trajectories = tf.nest.map_structure( lambda x: _batch_gather(x, resample_indices, axis=1), weighted_trajectories) return trajectories, incremental_log_marginal_likelihoods @docstring_util.expand_docstring( particle_filter_arg_str=particle_filter_arg_str, non_markovian_specification_str=non_markovian_specification_str) def particle_filter(observations, initial_state_prior, transition_fn, observation_fn, num_particles, initial_state_proposal=None, proposal_fn=None, resample_criterion_fn=ess_below_threshold, rejuvenation_kernel_fn=None, # TODO(davmre): not yet supported. pylint: disable=unused-argument num_transitions_per_observation=1, num_steps_state_history_to_pass=None, num_steps_observation_history_to_pass=None, trace_fn=_default_trace_fn, step_indices_to_trace=None, seed=None, name=None): # pylint: disable=g-doc-args """Samples a series of particles representing filtered latent states. The particle filter samples from the sequence of "filtering" distributions `p(state[t] | observations[:t])` over latent states: at each point in time, this is the distribution conditioned on all observations *up to that time*. Because particles may be resampled, a particle at time `t` may be different from the particle with the same index at time `t + 1`. To reconstruct trajectories by tracing back through the resampling process, see `tfp.mcmc.experimental.reconstruct_trajectories`. ${particle_filter_arg_str} trace_fn: Python `callable` defining the values to be traced at each step. It takes a `ParticleFilterStepResults` tuple and returns a structure of `Tensor`s. The default function returns `(particles, log_weights, parent_indices, step_log_likelihood)`. step_indices_to_trace: optional `int` `Tensor` listing, in increasing order, the indices of steps at which to record the values traced by `trace_fn`. If `None`, the default behavior is to trace at every timestep, equivalent to specifying `step_indices_to_trace=tf.range(num_timsteps)`. seed: Python `int` seed for random ops. name: Python `str` name for ops created by this method. Default value: `None` (i.e., `'particle_filter'`). Returns: particles: a (structure of) Tensor(s) matching the latent state, each of shape `concat([[num_timesteps, num_particles, b1, ..., bN], event_shape])`, representing (possibly weighted) samples from the series of filtering distributions `p(latent_states[t] | observations[:t])`. log_weights: `float` `Tensor` of shape `[num_timesteps, num_particles, b1, ..., bN]`, such that `log_weights[t, :]` are the logarithms of normalized importance weights (such that `exp(reduce_logsumexp(log_weights), axis=-1) == 1.`) of the particles at time `t`. These may be used in conjunction with `particles` to compute expectations under the series of filtering distributions. parent_indices: `int` `Tensor` of shape `[num_timesteps, num_particles, b1, ..., bN]`, such that `parent_indices[t, k]` gives the index of the particle at time `t - 1` that the `k`th particle at time `t` is immediately descended from. See also `tfp.experimental.mcmc.reconstruct_trajectories`. incremental_log_marginal_likelihoods: float `Tensor` of shape `[num_observation_steps, b1, ..., bN]`, giving the natural logarithm of an unbiased estimate of `p(observations[t] | observations[:t])` at each observed timestep `t`. Note that (by [Jensen's inequality]( https://en.wikipedia.org/wiki/Jensen%27s_inequality)) this is *smaller* in expectation than the true `log p(observations[t] | observations[:t])`. ${non_markovian_specification_str} """ seed = SeedStream(seed, 'particle_filter') with tf.name_scope(name or 'particle_filter'): num_observation_steps = ps.size0(tf.nest.flatten(observations)[0]) num_timesteps = ( 1 + num_transitions_per_observation * (num_observation_steps - 1)) # If no criterion is specified, default is to resample at every step. if not resample_criterion_fn: resample_criterion_fn = lambda _: True # Canonicalize the list of steps to trace as a rank-1 tensor of (sorted) # positive integers. E.g., `3` -> `[3]`, `[-2, -1]` -> `[N - 2, N - 1]`. if step_indices_to_trace is not None: (step_indices_to_trace, traced_steps_have_rank_zero) = _canonicalize_steps_to_trace( step_indices_to_trace, num_timesteps) # Dress up the prior and prior proposal as a fake `transition_fn` and # `proposal_fn` respectively. prior_fn = lambda _1, _2: SampleParticles( # pylint: disable=g-long-lambda initial_state_prior, num_particles) prior_proposal_fn = ( None if initial_state_proposal is None else lambda _1, _2: SampleParticles( # pylint: disable=g-long-lambda initial_state_proposal, num_particles)) # Initially the particles all have the same weight, `1. / num_particles`. broadcast_batch_shape = tf.convert_to_tensor( functools.reduce( ps.broadcast_shape, tf.nest.flatten(initial_state_prior.batch_shape_tensor()), []), dtype=tf.int32) log_uniform_weights = ps.zeros( ps.concat([ [num_particles], broadcast_batch_shape], axis=0), dtype=tf.float32) - ps.log(num_particles) # Initialize from the prior and incorporate the first observation. dummy_previous_step = ParticleFilterStepResults( particles=prior_fn(0, []).sample(), log_weights=log_uniform_weights, parent_indices=None, incremental_log_marginal_likelihood=0., accumulated_log_marginal_likelihood=0.) initial_step_results = _filter_one_step( step=0, # `previous_particles` at the first step is a dummy quantity, used only # to convey state structure and num_particles to an optional # proposal fn. previous_step_results=dummy_previous_step, observation=tf.nest.map_structure( lambda x: tf.gather(x, 0), observations), transition_fn=prior_fn, observation_fn=observation_fn, proposal_fn=prior_proposal_fn, resample_criterion_fn=resample_criterion_fn, seed=seed) def _loop_body(step, previous_step_results, accumulated_traced_results, state_history, num_steps_traced): """Take one step in dynamics and accumulate marginal likelihood.""" step_has_observation = ( # The second of these conditions subsumes the first, but both are # useful because the first can often be evaluated statically. ps.equal(num_transitions_per_observation, 1) | ps.equal(step % num_transitions_per_observation, 0)) observation_idx = step // num_transitions_per_observation current_observation = tf.nest.map_structure( lambda x, step=step: tf.gather(x, observation_idx), observations) history_to_pass_into_fns = {} if num_steps_observation_history_to_pass: history_to_pass_into_fns['observation_history'] = _gather_history( observations, observation_idx, num_steps_observation_history_to_pass) if num_steps_state_history_to_pass: history_to_pass_into_fns['state_history'] = state_history new_step_results = _filter_one_step( step=step, previous_step_results=previous_step_results, observation=current_observation, transition_fn=functools.partial( transition_fn, **history_to_pass_into_fns), observation_fn=functools.partial( observation_fn, **history_to_pass_into_fns), proposal_fn=( None if proposal_fn is None else functools.partial(proposal_fn, **history_to_pass_into_fns)), resample_criterion_fn=resample_criterion_fn, has_observation=step_has_observation, seed=seed) return _update_loop_variables( step=step, current_step_results=new_step_results, accumulated_traced_results=accumulated_traced_results, state_history=state_history, trace_fn=trace_fn, step_indices_to_trace=step_indices_to_trace, num_steps_traced=num_steps_traced) loop_results = tf.while_loop( cond=lambda step, *_: step < num_timesteps, body=_loop_body, loop_vars=_initialize_loop_variables( initial_step_results=initial_step_results, num_timesteps=num_timesteps, num_steps_state_history_to_pass=num_steps_state_history_to_pass, trace_fn=trace_fn, step_indices_to_trace=step_indices_to_trace)) results = tf.nest.map_structure(lambda ta: ta.stack(), loop_results.accumulated_traced_results) if step_indices_to_trace is not None: # If we were passed a rank-0 (single scalar) step to trace, don't # return a time axis in the returned results. results = ps.cond( traced_steps_have_rank_zero, lambda: tf.nest.map_structure(lambda x: x[0, ...], results), lambda: results) return results def _canonicalize_steps_to_trace(step_indices_to_trace, num_timesteps): """Canonicalizes `3` -> `[3]`, `[-2, -1]` -> `[N - 2, N - 1]`, etc.""" step_indices_to_trace = tf.convert_to_tensor( step_indices_to_trace, dtype_hint=tf.int32) traced_steps_have_rank_zero = ps.equal( ps.rank_from_shape(ps.shape(step_indices_to_trace)), 0) # Canonicalize negative step indices as positive. step_indices_to_trace = ps.where(step_indices_to_trace < 0, num_timesteps + step_indices_to_trace, step_indices_to_trace) # Canonicalize scalars as length-one vectors. return (ps.reshape(step_indices_to_trace, [ps.size(step_indices_to_trace)]), traced_steps_have_rank_zero) def _initialize_loop_variables(initial_step_results, num_timesteps, num_steps_state_history_to_pass, trace_fn, step_indices_to_trace): """Initialize arrays and other quantities passed through the filter loop.""" # Create arrays to store traced values (particles, likelihoods, etc). num_steps_to_trace = (num_timesteps if step_indices_to_trace is None else ps.size0(step_indices_to_trace)) traced_results = trace_fn(initial_step_results) trace_arrays = tf.nest.map_structure( lambda x: tf.TensorArray(dtype=x.dtype, size=num_steps_to_trace), traced_results) # If we are supposed to trace at step 0, write the traced values. num_steps_traced, trace_arrays = ps.cond( (True if step_indices_to_trace is None else ps.equal(step_indices_to_trace[0], 0)), lambda: (1, # pylint: disable=g-long-lambda tf.nest.map_structure( lambda ta, x: ta.write(0, x), trace_arrays, traced_results)), lambda: (0, trace_arrays)) # Because `while_loop` requires Tensor values, we'll represent the lack of # state history by a static-shape empty Tensor. # This can be detected elsewhere by branching on # `tf.is_tensor(state_history) and state_history.shape[0] == 0`. state_history = tf.zeros([0]) if num_steps_state_history_to_pass: # Repeat the initial state, so that `state_history` always has length # `num_steps_state_history_to_pass`. state_history = tf.nest.map_structure( lambda x: tf.broadcast_to( # pylint: disable=g-long-lambda x[tf.newaxis, ...], ps.concat([[num_steps_state_history_to_pass], ps.shape(x)], axis=0)), initial_step_results.particles) return ParticleFilterLoopVariables( step=1, previous_step_results=initial_step_results, accumulated_traced_results=trace_arrays, state_history=state_history, num_steps_traced=num_steps_traced) def _update_loop_variables(step, current_step_results, accumulated_traced_results, state_history, trace_fn, step_indices_to_trace, num_steps_traced): """Update the loop state to reflect a step of filtering.""" # Write particles, indices, and likelihoods to their respective arrays. trace_this_step = True if step_indices_to_trace is not None: trace_this_step = ps.equal( step_indices_to_trace[ps.minimum( num_steps_traced, ps.cast(ps.size0(step_indices_to_trace) - 1, dtype=np.int32))], step) num_steps_traced, accumulated_traced_results = ps.cond( trace_this_step, lambda: (num_steps_traced + 1, # pylint: disable=g-long-lambda tf.nest.map_structure( lambda x, y: x.write(num_steps_traced, y), accumulated_traced_results, trace_fn(current_step_results))), lambda: (num_steps_traced, accumulated_traced_results)) history_is_empty = (tf.is_tensor(state_history) and state_history.shape[0] == 0) if not history_is_empty: # Permute the particles from previous steps to match the current resampled # indices, so that the state history reflects coherent trajectories. resampled_state_history = tf.nest.map_structure( lambda x: _batch_gather(x[1:], # pylint: disable=g-long-lambda current_step_results.parent_indices, axis=1), state_history) # Update the history by concat'ing the carried-forward elements with the # most recent state. state_history = tf.nest.map_structure( lambda h, s: tf.concat([h, s[tf.newaxis, ...]], axis=0), resampled_state_history, current_step_results.particles) return ParticleFilterLoopVariables( step=step + 1, previous_step_results=current_step_results, accumulated_traced_results=accumulated_traced_results, state_history=state_history, num_steps_traced=num_steps_traced) def _filter_one_step(step, observation, previous_step_results, transition_fn, observation_fn, proposal_fn, resample_criterion_fn, has_observation=True, seed=None): """Advances the particle filter by a single time step.""" with tf.name_scope('filter_one_step'): seed = SeedStream(seed, 'filter_one_step') num_particles = ps.size0(previous_step_results.log_weights) proposed_particles, proposal_log_weights = _propose_with_log_weights( step=step - 1, particles=previous_step_results.particles, transition_fn=transition_fn, proposal_fn=proposal_fn, seed=seed) log_weights = tf.nn.log_softmax( proposal_log_weights + previous_step_results.log_weights, axis=-1) # If this step has an observation, compute its weights and marginal # likelihood (and otherwise, leave weights unchanged). observation_log_weights = ps.cond( has_observation, lambda: ps.broadcast_to( # pylint: disable=g-long-lambda _compute_observation_log_weights( step, proposed_particles, observation, observation_fn), ps.shape(log_weights)), lambda: tf.zeros_like(log_weights)) unnormalized_log_weights = log_weights + observation_log_weights log_weights = tf.nn.log_softmax(unnormalized_log_weights, axis=0) # Every entry of `log_weights` differs from `unnormalized_log_weights` # by the same normalizing constant. We extract that constant by examining # an arbitrary entry. incremental_log_marginal_likelihood = ( unnormalized_log_weights[0] - log_weights[0]) # Adaptive resampling: resample particles iff the specified criterion. do_resample = resample_criterion_fn(unnormalized_log_weights) # Some batch elements may require resampling and others not, so # we first do the resampling for all elements, then select whether to use # the resampled values for each batch element according to # `do_resample`. If there were no batching, we might prefer to use # `tf.cond` to avoid the resampling computation on steps where it's not # needed---but we're ultimately interested in adaptive resampling # for statistical (not computational) purposes, so this isn't a dealbreaker. resampled_particles, resample_indices = _resample( proposed_particles, log_weights, resample_independent, seed=seed) uniform_weights = (ps.zeros_like(log_weights) - ps.log(num_particles)) (resampled_particles, resample_indices, log_weights) = tf.nest.map_structure( lambda r, p: ps.where(do_resample, r, p), (resampled_particles, resample_indices, uniform_weights), (proposed_particles, _dummy_indices_like(resample_indices), log_weights)) return ParticleFilterStepResults( particles=resampled_particles, log_weights=log_weights, parent_indices=resample_indices, incremental_log_marginal_likelihood=incremental_log_marginal_likelihood, accumulated_log_marginal_likelihood=( previous_step_results.accumulated_log_marginal_likelihood + incremental_log_marginal_likelihood)) def _propose_with_log_weights(step, particles, transition_fn, proposal_fn=None, seed=None): """Proposes a new batch of particles with importance weights. Args: step: int `Tensor` current step. particles: Nested structure of `Tensor`s each of shape `[b1, ..., bN, num_particles, latent_part_event_shape]`, where `b1, ..., bN` are optional batch dimensions. transition_fn: callable, producing a distribution over `particles` at the next step. proposal_fn: callable, producing a distribution over `particles` at the next step. Default value: `None`. seed: Python `int` random seed. Default value: `None`. Returns: proposed_particles: Nested structure of `Tensor`s, matching `particles`. proposal_log_weights: `Tensor` of shape `concat([[b1, ..., bN], [num_particles]])`. """ with tf.name_scope('propose_with_log_weights'): transition_dist = transition_fn(step, particles) # If no proposal was specified, use the dynamics. if proposal_fn is None: return transition_dist.sample(seed=seed), 0.0 proposal_dist = proposal_fn(step, particles) proposed_particles = proposal_dist.sample(seed=seed) proposal_log_weights = ( transition_dist.log_prob(proposed_particles) - proposal_dist.log_prob(proposed_particles)) return proposed_particles, proposal_log_weights def _compute_observation_log_weights(step, particles, observation, observation_fn): """Computes particle importance weights from an observation step. Args: step: int `Tensor` current step. particles: Nested structure of `Tensor`s, each of shape `concat([[num_particles, b1, ..., bN], latent_part_event_shape])`, where `b1, ..., bN` are optional batch dimensions. observation: Nested structure of `Tensor`s, each of shape `concat([[b1, ..., bN], observation_part_event_shape])` where `b1, ..., bN` are optional batch dimensions. observation_fn: callable, producing a distribution over `observation`s. Returns: log_weights: `Tensor` of shape `concat([num_particles, b1, ..., bN])`. """ with tf.name_scope('compute_observation_log_weights'): observation_dist = observation_fn(step, particles) return observation_dist.log_prob(observation) def _resample(particles, log_weights, resample_fn, seed=None): """Resamples the current particles according to provided weights. Args: particles: Nested structure of `Tensor`s each of shape `[num_particles, b1, ..., bN, ...]`, where `b1, ..., bN` are optional batch dimensions. log_weights: float `Tensor` of shape `[num_particles, b1, ..., bN]`, where `b1, ..., bN` are optional batch dimensions. resample_fn: choose the function used for resampling. Use 'resample_minimum_variance' for minimum variance resampling. Use 'resample_deterministic_minimum_error' for minimum error resampling. Use 'resample_independent' for independent resampling. seed: Python `int` random seed. Returns: resampled_particles: Nested structure of `Tensor`s, matching `particles`. resample_indices: int `Tensor` of shape `[num_particles, b1, ..., bN]`. """ with tf.name_scope('resample'): weights_shape = ps.shape(log_weights) num_particles = weights_shape[0] log_probs = tf.math.log_softmax(log_weights, axis=0) resampled_indices = resample_fn(log_probs, num_particles, (), seed=seed) resampled_particles = tf.nest.map_structure( lambda x: _batch_gather(x, resampled_indices, axis=0), particles) return resampled_particles, resampled_indices def reconstruct_trajectories(particles, parent_indices, name=None): """Reconstructs the ancestor trajectory that generated each final particle.""" with tf.name_scope(name or 'reconstruct_trajectories'): # Walk backwards to compute the ancestor of each final particle at time t. final_indices = _dummy_indices_like(parent_indices[-1]) ancestor_indices = tf.scan( fn=lambda ancestor, parent: _batch_gather(parent, ancestor, axis=0), elems=parent_indices[1:], initializer=final_indices, reverse=True) ancestor_indices = tf.concat([ancestor_indices, [final_indices]], axis=0) return tf.nest.map_structure( lambda part: _batch_gather(part, ancestor_indices, axis=1), particles) # TODO(b/153689734): rewrite so as not to use `move_dimension`. def resample_independent(log_probs, event_size, sample_shape, seed=None, name=None): """Categorical resampler for sequential Monte Carlo. This function is based on Algorithm #1 in the paper [Maskell et al. (2006)][1]. Args: log_probs: A tensor-valued batch of discrete log probability distributions. event_size: the dimension of the vector considered a single draw. sample_shape: the `sample_shape` determining the number of draws. seed: Python '`int` used to seed calls to `tf.random.*`. Default value: None (i.e. no seed). name: Python `str` name for ops created by this method. Default value: `None` (i.e., `'resample_independent'`). Returns: resampled_indices: The result is similar to sampling with ```python expanded_sample_shape = tf.concat([[event_size], sample_shape]), axis=-1) tfd.Categorical(logits=log_probs).sample(expanded_sample_shape)` ``` but with values sorted along the first axis. It can be considered to be sampling events made up of a length-`event_size` vector of draws from the `Categorical` distribution. For large input values this function should give better performance than using `Categorical`. The sortedness is an unintended side effect of the algorithm that is harmless in the context of simple SMC algorithms. #### References [1]: <NAME>, <NAME> and <NAME>. A Single Instruction Multiple Data Particle Filter. In 2006 IEEE Nonlinear Statistical Signal Processing Workshop. http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf """ with tf.name_scope(name or 'resample_independent') as name: log_probs = tf.convert_to_tensor(log_probs, dtype_hint=tf.float32) log_probs = dist_util.move_dimension(log_probs, source_idx=0, dest_idx=-1) batch_shape = ps.shape(log_probs)[:-1] num_markers = ps.shape(log_probs)[-1] # `working_shape` specifies the total number of events # we will be generating. working_shape = ps.concat([sample_shape, batch_shape], axis=0) # `points_shape` is the shape of the final result. points_shape = ps.concat([working_shape, [event_size]], axis=0) # `markers_shape` is the shape of the markers we temporarily insert. markers_shape = ps.concat([working_shape, [num_markers]], axis=0) # Generate one real point for each particle. log_points = -exponential.Exponential( rate=tf.constant(1.0, dtype=log_probs.dtype)).sample( points_shape, seed=seed) # We divide up the unit interval [0, 1] according to the provided # probability distributions using `cumsum`. # At the end of each division we place a 'marker'. # We generate random points on the unit interval. # We sort the combination of points and markers. The number # of points between the markers defining a division gives the number # of samples we require in that division. # For example, suppose `probs` is `[0.2, 0.3, 0.5]`. # We divide up `[0, 1]` using 3 markers: # # | | | # 0. 0.2 0.5 1.0 <- markers # # Suppose we generate four points: [0.1, 0.25, 0.9, 0.75] # After sorting the combination we get: # # 0.1 0.25 0.75 0.9 <- points # * | * | * *| # 0. 0.2 0.5 1.0 <- markers # # We have one sample in the first category, one in the second and # two in the last. # # All of these computations are carried out in batched form. markers = ps.concat( [tf.zeros(points_shape, dtype=tf.int32), tf.ones(markers_shape, dtype=tf.int32)], axis=-1) log_marker_positions = tf.broadcast_to( tf.math.cumulative_logsumexp(log_probs, axis=-1), markers_shape) log_points_and_markers = ps.concat( [log_points, log_marker_positions], axis=-1) indices = tf.argsort(log_points_and_markers, axis=-1, stable=False) sorted_markers = tf.gather_nd( markers, indices[..., tf.newaxis], batch_dims=( ps.rank_from_shape(sample_shape) + ps.rank_from_shape(batch_shape))) markers_and_samples = ps.cast( tf.cumsum(sorted_markers, axis=-1), dtype=tf.int32) markers_and_samples = tf.minimum(markers_and_samples, num_markers - 1) # Collect up samples, omitting markers. resampled = tf.reshape(markers_and_samples[tf.equal(sorted_markers, 0)], points_shape) return dist_util.move_dimension(resampled, source_idx=-1, dest_idx=0) # TODO(b/153199903): replace this function with `tf.scatter_nd` when # it supports `batch_dims`. def _scatter_nd_batch(indices, updates, shape, batch_dims=0): """A partial implementation of `scatter_nd` supporting `batch_dims`.""" # `tf.scatter_nd` does not support a `batch_dims` argument. # Instead we use the gradient of `tf.gather_nd`. # From a purely mathematical perspective this works because # (if `tf.scatter_nd` supported `batch_dims`) # `gather_nd` and `scatter_nd` (with matching `indices`) are # adjoint linear operators and # the gradient w.r.t `x` of `dot(y, A(x))` is `adjoint(A)(y)`. # # Another perspective: back propagating through a "neural" network # containing a gather operation carries derivatives backwards through the # network, accumulating the derivatives in the locations that # were gathered from, ie. they are scattered. # If the network multiplies each gathered element by # some quantity, then the backwardly propagating derivatives are scaled # by this quantity before being scattered. # Combining this with the fact that`GradientTape.gradient` # starts back-propagation with derivatives equal to `1`, this allows us # to use the multipliers to determine the quantities scattered. # # However, derivatives are only supported for floating point types # so we 'tunnel' our types through the `float64` type. # So the implmentation is "partial" in the sense that it supports # data that can be losslessly converted to `tf.float64` and back. dtype = updates.dtype internal_dtype = tf.float64 multipliers = ps.cast(updates, internal_dtype) with tf.GradientTape() as tape: zeros = tf.zeros(shape, dtype=internal_dtype) tape.watch(zeros) weighted_gathered = multipliers * tf.gather_nd( zeros, indices, batch_dims=batch_dims) grad = tape.gradient(weighted_gathered, zeros) return ps.cast(grad, dtype=dtype) # TODO(b/153689734): rewrite so as not to use `move_dimension`. def resample_minimum_variance( log_probs, event_size, sample_shape, seed=None, name=None): """Minimum variance resampler for sequential Monte Carlo. This function is based on Algorithm #2 in [Maskell et al. (2006)][1]. Args: log_probs: A tensor-valued batch of discrete log probability distributions. event_size: the dimension of the vector considered a single draw. sample_shape: the `sample_shape` determining the number of draws. seed: Python '`int` used to seed calls to `tf.random.*`. Default value: None (i.e. no seed). name: Python `str` name for ops created by this method. Default value: `None` (i.e., `'resample_minimum_variance'`). Returns: resampled_indices: The result is similar to sampling with ```python expanded_sample_shape = tf.concat([[event_size], sample_shape]), axis=-1) tfd.Categorical(logits=log_probs).sample(expanded_sample_shape)` ``` but with values sorted along the first axis. It can be considered to be sampling events made up of a length-`event_size` vector of draws from the `Categorical` distribution. However, although the elements of this event have the appropriate marginal distribution, they are not independent of each other. Instead they have been chosen so as to form a good representative sample, suitable for use with Sequential Monte Carlo algorithms. The sortedness is an unintended side effect of the algorithm that is harmless in the context of simple SMC algorithms. #### References [1]: <NAME>, <NAME> and <NAME>. A Single Instruction Multiple Data Particle Filter. In 2006 IEEE Nonlinear Statistical Signal Processing Workshop. http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf """ with tf.name_scope(name or 'resample_minimum_variance') as name: log_probs = tf.convert_to_tensor(log_probs, dtype_hint=tf.float32) log_probs = dist_util.move_dimension(log_probs, source_idx=0, dest_idx=-1) batch_shape = ps.shape(log_probs)[:-1] working_shape = ps.concat([sample_shape, batch_shape], axis=-1) log_cdf = tf.math.cumulative_logsumexp(log_probs[..., :-1], axis=-1) # Each resampling requires a single uniform random variable offset = uniform.Uniform( low=tf.constant(0., log_cdf.dtype), high=tf.constant(1., log_cdf.dtype)).sample( working_shape, seed=seed)[..., tf.newaxis] # It is possible for numerical error to result in a cumulative # sum that exceeds 1 so we need to clip. markers = ps.cast( tf.floor(event_size * tf.math.exp(log_cdf) + offset), tf.int32) indices = markers[..., tf.newaxis] updates = tf.ones(ps.shape(indices)[:-1], dtype=tf.int32) scatter_shape = ps.concat( [working_shape, [event_size + 1]], axis=-1) batch_dims = (ps.rank_from_shape(sample_shape) + ps.rank_from_shape(batch_shape)) x = _scatter_nd_batch(indices, updates, scatter_shape, batch_dims=batch_dims) resampled = tf.cumsum(x, axis=-1)[..., :-1] return dist_util.move_dimension(resampled, source_idx=-1, dest_idx=0) def _finite_differences(sums): """The inverse of `tf.cumsum` with `axis=-1`.""" return ps.concat( [sums[..., :1], sums[..., 1:] - sums[..., :-1]], axis=-1) def _samples_from_counts(values, counts, total_number): """Construct sequences of values from tabulated numbers of counts.""" extended_result_shape = ps.concat( [ps.shape(counts)[:-1], [total_number + 1]], axis=0) padded_counts = ps.concat( [ps.zeros_like(counts[..., :1]), counts[..., :-1]], axis=-1) edge_positions = ps.cumsum(padded_counts, axis=-1) # We need to scatter `values` into an array according to # the given `counts`. # Because the final result typically consists of sequences of samples # that are constant in blocks, we can scatter just the finite # differences of the values (which become the 'edges' of the blocks) # and then cumulatively sum them back up # at the end. (Reminiscent of run length encoding.) # Eg. suppose we have values = `[0, 2, 1]` # and counts = `[2, 3, 4]` # Then the output we require is `[0, 0, 2, 2, 2, 1, 1, 1, 1]`. # The finite differences of the input are: # `[0, 2, -1]`. # The finite differences of the output are: # `[0, 0, 2, 0, 0, -1, 0, 0, 0]`. # The latter is the former scattered into a larger array. # # So the algorithm is essentially # compute finite differences -> scatter -> undo finite differences edge_heights = _finite_differences(values) edges = _scatter_nd_batch( edge_positions[..., tf.newaxis], edge_heights, extended_result_shape, batch_dims=ps.rank_from_shape(ps.shape(counts)) - 1) result = tf.cumsum(edges, axis=-1)[..., :-1] return result # TODO(b/153689734): rewrite so as not to use `move_dimension`. def resample_deterministic_minimum_error( log_probs, event_size, sample_shape, seed=None, name='resample_deterministic_minimum_error'): """Deterministic minimum error resampler for sequential Monte Carlo. This function is based on Algorithm #3 in [Maskell et al. (2006)][1]. Args: log_probs: A tensor-valued batch of discrete log probability distributions. event_size: the dimension of the vector considered a single draw. sample_shape: the `sample_shape` determining the number of draws. Because this resampler is deterministic it simply replicates the draw you would get for `sample_shape=[1]`. seed: This argument is unused but is present so that this function shares its interface with the other resampling functions. Default value: None name: Python `str` name for ops created by this method. Default value: `None` (i.e., `'resample_deterministic_minimum_error'`). Returns: resampled_indices: The result is similar to sampling with ```python expanded_sample_shape = tf.concat([sample_shape, [event_size]]), axis=-1) tfd.Categorical(logits=log_probs).sample(expanded_sample_shape)` ``` but with values chosen deterministically so that the empirical distribution is as close as possible to the specified distribution. It is intended to provide a good representative sample, suitable for use with Sequential Monte Carlo algorithms. #### References [1]: <NAME>, <NAME> and <NAME>. A Single Instruction Multiple Data Particle Filter. In 2006 IEEE Nonlinear Statistical Signal Processing Workshop. http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf """ del seed with tf.name_scope(name or 'resample_deterministic_minimum_error'): sample_shape = tf.convert_to_tensor(sample_shape, dtype_hint=tf.int32) log_probs = dist_util.move_dimension( log_probs, source_idx=0, dest_idx=-1) probs = tf.math.exp(log_probs) prob_shape = ps.shape(probs) pdf_size = prob_shape[-1] # If we could draw fractional numbers of samples we would # choose `ideal_numbers` for the number of each element. ideal_numbers = event_size * probs # We approximate the ideal numbers by truncating to integers # and then repair the counts starting with the one with the # largest fractional error and working our way down. first_approximation = tf.floor(ideal_numbers) missing_fractions = ideal_numbers - first_approximation first_approximation = ps.cast( first_approximation, dtype=tf.int32) fraction_order = tf.argsort(missing_fractions, axis=-1) # We sort the integer parts and fractional parts together. batch_dims = ps.rank_from_shape(prob_shape) - 1 first_approximation = tf.gather_nd( first_approximation, fraction_order[..., tf.newaxis], batch_dims=batch_dims) missing_fractions = tf.gather_nd( missing_fractions, fraction_order[..., tf.newaxis], batch_dims=batch_dims) sample_defect = event_size - tf.reduce_sum( first_approximation, axis=-1, keepdims=True) unpermuted = tf.broadcast_to( tf.range(pdf_size), prob_shape) increments = tf.cast( unpermuted >= pdf_size - sample_defect, dtype=first_approximation.dtype) counts = first_approximation + increments samples = _samples_from_counts(fraction_order, counts, event_size) result_shape = tf.concat([sample_shape, prob_shape[:-1], [event_size]], axis=0) # Replicate sample up to batch size. # TODO(dpiponi): rather than replicating, spread the "error" over # multiple samples with a minimum-discrepancy sequence. resampled = tf.broadcast_to(samples, result_shape) return dist_util.move_dimension(resampled, source_idx=-1, dest_idx=0) ```
{ "source": "johannespitz/pyro", "score": 2 }
#### File: contrib/epidemiology/sir.py ```python import torch from torch.nn.functional import pad import pyro import pyro.distributions as dist from .compartmental import CompartmentalModel from .distributions import infection_dist class SimpleSIRModel(CompartmentalModel): """ Susceptible-Infected-Recovered model. To customize this model we recommend forking and editing this class. This is a stochastic discrete-time discrete-state model with three compartments: "S" for susceptible, "I" for infected, and "R" for recovered individuals (the recovered individuals are implicit: ``R = population - S - I``) with transitions ``S -> I -> R``. :param int population: Total ``population = S + I + R``. :param float recovery_time: Mean recovery time (duration in state ``I``). Must be greater than 1. :param iterable data: Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of ``S -> I`` transitions. This allows false negative but no false positives. """ def __init__(self, population, recovery_time, data): compartments = ("S", "I") # R is implicit. duration = len(data) super().__init__(compartments, duration, population) assert isinstance(recovery_time, float) assert recovery_time > 1 self.recovery_time = recovery_time self.data = data series = ("S2I", "I2R", "obs") full_mass = [("R0", "rho")] def global_model(self): tau = self.recovery_time R0 = pyro.sample("R0", dist.LogNormal(0., 1.)) rho = pyro.sample("rho", dist.Beta(2, 2)) return R0, tau, rho def initialize(self, params): # Start with a single infection. return {"S": self.population - 1, "I": 1} def transition_fwd(self, params, state, t): R0, tau, rho = params # Sample flows between compartments. S2I = pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0 / tau, num_susceptible=state["S"], num_infectious=state["I"], population=self.population)) I2R = pyro.sample("I2R_{}".format(t), dist.Binomial(state["I"], 1 / tau)) # Update compartments with flows. state["S"] = state["S"] - S2I state["I"] = state["I"] + S2I - I2R # Condition on observations. pyro.sample("obs_{}".format(t), dist.ExtendedBinomial(S2I, rho), obs=self.data[t] if t < self.duration else None) def transition_bwd(self, params, prev, curr, t): R0, tau, rho = params # Reverse the flow computation. S2I = prev["S"] - curr["S"] I2R = prev["I"] - curr["I"] + S2I # Condition on flows between compartments. pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0 / tau, num_susceptible=prev["S"], num_infectious=prev["I"], population=self.population), obs=S2I) pyro.sample("I2R_{}".format(t), dist.ExtendedBinomial(prev["I"], 1 / tau), obs=I2R) # Condition on observations. pyro.sample("obs_{}".format(t), dist.ExtendedBinomial(S2I, rho), obs=self.data[t]) class OverdispersedSIRModel(CompartmentalModel): """ Overdispersed Susceptible-Infected-Recovered model. To customize this model we recommend forking and editing this class. This is a stochastic discrete-time discrete-state model with three compartments: "S" for susceptible, "I" for infected, and "R" for recovered individuals (the recovered individuals are implicit: ``R = population - S - I``) with transitions ``S -> I -> R``. This model accounts for superspreading (overdispersed individual reproductive number) by assuming each infected individual infects BetaBinomial-many susceptible individuals, where the BetaBinomial distribution acts as an overdispersed Binomial distribution, adapting the more standard NegativeBinomial distribution that acts as an overdispersed Poisson distribution [1,2] to the setting of finite populations. To preserve Markov structure, we follow [2] and assume all infections by a single individual occur on the single time step where that individual makes an ``I -> R`` transition. That is, whereas the :class:`SimpleSIRModel` assumes infected individuals infect `Binomial(S,R/tau)`-many susceptible individuals during each infected time step (over `tau`-many steps on average), this model assumes they infect `BetaBinomial(k,...,S)`-many susceptible individuals but only on the final time step before recovering. **References** [1] <NAME>, <NAME>, <NAME>, <NAME> (2005) "Superspreading and the effect of individual variation on disease emergence" https://www.nature.com/articles/nature04153.pdf [2] <NAME>, <NAME>, <NAME> (2017) "Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series" https://academic.oup.com/mbe/article/34/11/2982/3952784 :param int population: Total ``population = S + I + R``. :param float recovery_time: Mean recovery time (duration in state ``I``). Must be greater than 1. :param iterable data: Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of ``S -> I`` transitions. This allows false negative but no false positives. """ def __init__(self, population, recovery_time, data): compartments = ("S", "I") # R is implicit. duration = len(data) super().__init__(compartments, duration, population) assert isinstance(recovery_time, float) assert recovery_time > 1 self.recovery_time = recovery_time self.data = data series = ("S2I", "I2R", "obs") full_mass = [("R0", "rho", "k")] def global_model(self): tau = self.recovery_time R0 = pyro.sample("R0", dist.LogNormal(0., 1.)) k = pyro.sample("k", dist.Exponential(1.)) rho = pyro.sample("rho", dist.Beta(2, 2)) return R0, k, tau, rho def initialize(self, params): # Start with a single infection. return {"S": self.population - 1, "I": 1} def transition_fwd(self, params, state, t): R0, k, tau, rho = params # Sample flows between compartments. I2R = pyro.sample("I2R_{}".format(t), dist.Binomial(state["I"], 1 / tau)) S2I = pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0, num_susceptible=state["S"], num_infectious=state["I"], population=self.population, concentration=k)) # Update compartments with flows. state["S"] = state["S"] - S2I state["I"] = state["I"] + S2I - I2R # Condition on observations. pyro.sample("obs_{}".format(t), dist.ExtendedBinomial(S2I, rho), obs=self.data[t] if t < self.duration else None) def transition_bwd(self, params, prev, curr, t): R0, k, tau, rho = params # Reverse the flow computation. S2I = prev["S"] - curr["S"] I2R = prev["I"] - curr["I"] + S2I # Condition on flows between compartments. pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0, num_susceptible=prev["S"], num_infectious=prev["I"], population=self.population, concentration=k), obs=S2I) pyro.sample("I2R_{}".format(t), dist.ExtendedBinomial(prev["I"], 1 / tau), obs=I2R) # Condition on observations. pyro.sample("obs_{}".format(t), dist.ExtendedBinomial(S2I, rho), obs=self.data[t]) class SparseSIRModel(CompartmentalModel): """ Susceptible-Infected-Recovered model with sparsely observed infections. To customize this model we recommend forking and editing this class. This is a stochastic discrete-time discrete-state model with four compartments: "S" for susceptible, "I" for infected, and "R" for recovered individuals (the recovered individuals are implicit: ``R = population - S - I``) with transitions ``S -> I -> R``. This model allows observations of **cumulative** infections at uneven time intervals. To preserve Markov structure (and hence tractable inference) this model adds an auxiliary compartment ``O`` denoting the fully-observed cumulative number of observations at each time point. At observed times (when ``mask[t] == True``) ``O`` must exactly match the provided data; between observed times ``O`` stochastically imputes the provided data. :param int population: Total ``population = S + I + R``. :param float recovery_time: Mean recovery time (duration in state ``I``). Must be greater than 1. :param iterable data: Time series of **cumulative** observed infections. Whenever ``mask[t] == True``, ``data[t]`` corresponds to an observation; otherwise ``data[t]`` can be arbitrary, e.g. NAN. :param iterable mask: Boolean time series denoting whether an observation is made at each time step. Should satisfy ``len(mask) == len(data)``. """ def __init__(self, population, recovery_time, data, mask): assert len(data) == len(mask) duration = len(data) compartments = ("S", "I", "O") # O is auxiliary, R is implicit. super().__init__(compartments, duration, population) assert isinstance(recovery_time, float) assert recovery_time > 1 self.recovery_time = recovery_time self.data = data self.mask = mask series = ("S2I", "I2R", "S2O", "obs") full_mass = [("R0", "rho")] def global_model(self): tau = self.recovery_time R0 = pyro.sample("R0", dist.LogNormal(0., 1.)) rho = pyro.sample("rho", dist.Beta(2, 2)) return R0, tau, rho def initialize(self, params): # Start with a single infection. return {"S": self.population - 1, "I": 1, "O": 0} def transition_fwd(self, params, state, t): R0, tau, rho = params # Sample flows between compartments. S2I = pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0 / tau, num_susceptible=state["S"], num_infectious=state["I"], population=self.population)) I2R = pyro.sample("I2R_{}".format(t), dist.Binomial(state["I"], 1 / tau)) S2O = pyro.sample("S2O_{}".format(t), dist.ExtendedBinomial(S2I, rho)) # Update compartments with flows. state["S"] = state["S"] - S2I state["I"] = state["I"] + S2I - I2R state["O"] = state["O"] + S2O # Condition on cumulative observations. mask_t = self.mask[t] if t < self.duration else False data_t = self.data[t] if t < self.duration else None pyro.sample("obs_{}".format(t), dist.Delta(state["O"]).mask(mask_t), obs=data_t) def transition_bwd(self, params, prev, curr, t): R0, tau, rho = params # Reverse the flow computation. S2I = prev["S"] - curr["S"] I2R = prev["I"] - curr["I"] + S2I S2O = curr["O"] - prev["O"] # Condition on flows between compartments. pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0 / tau, num_susceptible=prev["S"], num_infectious=prev["I"], population=self.population), obs=S2I) pyro.sample("I2R_{}".format(t), dist.ExtendedBinomial(prev["I"], 1 / tau), obs=I2R) pyro.sample("S2O_{}".format(t), dist.ExtendedBinomial(S2I, rho), obs=S2O) # Condition on cumulative observations. pyro.sample("obs_{}".format(t), dist.Delta(curr["O"]).mask(self.mask[t]), obs=self.data[t]) class UnknownStartSIRModel(CompartmentalModel): """ Susceptible-Infected-Recovered model with unknown date of first infection. To customize this model we recommend forking and editing this class. This is a stochastic discrete-time discrete-state model with three compartments: "S" for susceptible, "I" for infected, and "R" for recovered individuals (the recovered individuals are implicit: ``R = population - S - I``) with transitions ``S -> I -> R``. This model demonstrates: 1. How to incorporate spontaneous infections from external sources; 2. How to incorporate time-varying piecewise ``rho`` by supporting forecasting in :meth:`transition_fwd`. 3. How to override the :meth:`predict` method to compute extra statistics. :param int population: Total ``population = S + I + R``. :param float recovery_time: Mean recovery time (duration in state ``I``). Must be greater than 1. :param int pre_obs_window: Number of time steps before beginning ``data`` where the initial infection may have occurred. Must be positive. :param iterable data: Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of ``S -> I`` transitions. This allows false negative but no false positives. """ def __init__(self, population, recovery_time, pre_obs_window, data): compartments = ("S", "I") # R is implicit. duration = pre_obs_window + len(data) super().__init__(compartments, duration, population) assert isinstance(recovery_time, float) assert recovery_time > 1 self.recovery_time = recovery_time assert isinstance(pre_obs_window, int) and pre_obs_window > 0 self.pre_obs_window = pre_obs_window self.post_obs_window = len(data) # We set a small time-constant external infecton rate such that on # average there is a single external infection during the # pre_obs_window. This allows unknown time of initial infection # without introducing long-range coupling across time. self.external_rate = 1 / pre_obs_window # Prepend data with zeros. if isinstance(data, list): data = [0.] * self.pre_obs_window + data else: data = pad(data, (self.pre_obs_window, 0), value=0.) self.data = data series = ("S2I", "I2R", "obs") full_mass = [("R0", "rho0", "rho1")] def global_model(self): tau = self.recovery_time R0 = pyro.sample("R0", dist.LogNormal(0., 1.)) # Assume two different response rates: rho0 before any observations # were made (in pre_obs_window), followed by a higher response rate rho1 # after observations were made (in post_obs_window). rho0 = pyro.sample("rho0", dist.Beta(2, 2)) rho1 = pyro.sample("rho1", dist.Beta(2, 2)) # Whereas each of rho0,rho1 are scalars (possibly batched over samples), # we construct a time series rho with an extra time dim on the right. rho = torch.cat([ rho0.unsqueeze(-1).expand(rho0.shape + (self.pre_obs_window,)), rho1.unsqueeze(-1).expand(rho1.shape + (self.post_obs_window,)), ], dim=-1) # Model external infections as an infectious pseudo-individual added # to num_infectious when sampling S2I below. X = self.external_rate * tau / R0 return R0, X, tau, rho def initialize(self, params): # Start with no internal infections. return {"S": self.population, "I": 0} def transition_fwd(self, params, state, t): R0, X, tau, rho = params # Sample flows between compartments. S2I = pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0 / tau, num_susceptible=state["S"], num_infectious=state["I"] + X, population=self.population)) I2R = pyro.sample("I2R_{}".format(t), dist.Binomial(state["I"], 1 / tau)) # Update compartments with flows. state["S"] = state["S"] - S2I state["I"] = state["I"] + S2I - I2R # In .transition_fwd() t will always be an integer but may lie outside # of [0,self.duration) when forecasting. rho_t = rho[..., t] if t < self.duration else rho[..., -1] data_t = self.data[t] if t < self.duration else None # Condition on observations. pyro.sample("obs_{}".format(t), dist.ExtendedBinomial(S2I, rho_t), obs=data_t) def transition_bwd(self, params, prev, curr, t): R0, X, tau, rho = params # Reverse the flow computation. S2I = prev["S"] - curr["S"] I2R = prev["I"] - curr["I"] + S2I # Condition on flows between compartments. pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0 / tau, num_susceptible=prev["S"], num_infectious=prev["I"] + X, population=self.population), obs=S2I) pyro.sample("I2R_{}".format(t), dist.ExtendedBinomial(prev["I"], 1 / tau), obs=I2R) # Condition on observations. pyro.sample("obs_{}".format(t), dist.ExtendedBinomial(S2I, rho[..., t]), obs=self.data[t]) def predict(self, forecast=0): """ Augments :meth:`~pyro.contrib.epidemiology.compartmental.Compartmental.predict` with samples of ``first_infection`` i.e. the first time index at which the infection ``I`` becomes nonzero. Note this is measured from the beginning of ``pre_obs_window``, not the beginning of data. :param int forecast: The number of time steps to forecast forward. :returns: A dictionary mapping sample site name (or compartment name) to a tensor whose first dimension corresponds to sample batching. :rtype: dict """ samples = super().predict(forecast) # Extract the time index of the first infection (samples["I"] > 0) # for each sample trajectory in the samples["I"] tensor. samples["first_infection"] = samples["I"].cumsum(-1).eq(0).sum(-1) return samples class RegionalSIRModel(CompartmentalModel): r""" Susceptible-Infected-Recovered model with coupling across regions. To customize this model we recommend forking and editing this class. This is a stochastic discrete-time discrete-state model with three compartments in each region: "S" for susceptible, "I" for infected, and "R" for recovered individuals (the recovered individuals are implicit: ``R = population - S - I``) with transitions ``S -> I -> R``. Regions are coupled by a ``coupling`` matrix with entries in ``[0,1]``. The all ones matrix is equivalent to a single region. The identity matrix is equivalent to a set of independent regions. This need not be symmetric, but symmetric matrices are probably more physically plausible. The expected number of new infections each time step ``S2I`` is Binomial distributed with mean:: E[S2I] = S (1 - (1 - R0 / (population @ coupling)) ** (I @ coupling)) ≈ R0 S (I @ coupling) / (population @ coupling) # for small I Thus in a nearly entirely susceptible population, a single infected individual infects approximately ``R0`` new individuals on average, independent of ``coupling``. This model demonstrates: 1. How to create a regional model with a ``population`` vector. 2. How to model both homogeneous parameters (here ``R0``) and heterogeneous parameters with hierarchical structure (here ``rho``) using ``self.region_plate``. 3. How to approximately couple regions in :meth:`transition_bwd` using ``prev["I_approx"]``. :param torch.Tensor population: Tensor of per-region populations, defining ``population = S + I + R``. :param torch.Tensor coupling: Pairwise coupling matrix. Entries should be in ``[0,1]``. :param float recovery_time: Mean recovery time (duration in state ``I``). Must be greater than 1. :param iterable data: Time x Region sized tensor of new observed infections. Each time step is vector of Binomials distributed between 0 and the number of ``S -> I`` transitions. This allows false negative but no false positives. """ def __init__(self, population, coupling, recovery_time, data): duration = len(data) num_regions, = population.shape assert coupling.shape == (num_regions, num_regions) assert (0 <= coupling).all() assert (coupling <= 1).all() assert isinstance(recovery_time, float) assert recovery_time > 1 if isinstance(data, torch.Tensor): # Data tensors should be oriented as (time, region). assert data.shape == (duration, num_regions) compartments = ("S", "I") # R is implicit. # We create a regional model by passing a vector of populations. super().__init__(compartments, duration, population, approximate=("I",)) self.coupling = coupling self.recovery_time = recovery_time self.data = data series = ("S2I", "I2R", "obs") full_mass = [("R0", "rho")] def global_model(self): # Assume recovery time is a known constant. tau = self.recovery_time # Assume reproductive number is unknown but homogeneous. R0 = pyro.sample("R0", dist.LogNormal(0., 1.)) # Assume response rate is heterogeneous and model it with a # hierarchical Gamma-Beta prior. rho_c1 = pyro.sample("rho_c1", dist.Gamma(2, 1)) rho_c0 = pyro.sample("rho_c0", dist.Gamma(2, 1)) with self.region_plate: rho = pyro.sample("rho", dist.Beta(rho_c1, rho_c0)) return R0, tau, rho def initialize(self, params): # Start with a single infection in region 0. I = torch.zeros_like(self.population) I[0] += 1 S = self.population - I return {"S": S, "I": I} def transition_fwd(self, params, state, t): R0, tau, rho = params # Account for infections from all regions. I_coupled = state["I"] @ self.coupling pop_coupled = self.population @ self.coupling with self.region_plate: # Sample flows between compartments. S2I = pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0 / tau, num_susceptible=state["S"], num_infectious=I_coupled, population=pop_coupled)) I2R = pyro.sample("I2R_{}".format(t), dist.Binomial(state["I"], 1 / tau)) # Update compartments with flows. state["S"] = state["S"] - S2I state["I"] = state["I"] + S2I - I2R # Condition on observations. pyro.sample("obs_{}".format(t), dist.ExtendedBinomial(S2I, rho), obs=self.data[t] if t < self.duration else None) def transition_bwd(self, params, prev, curr, t): R0, tau, rho = params # Account for infections from all regions. This uses approximate (point # estimate) counts I_approx for infection from other regions, but uses # the exact (enumerated) count I for infections from one's own region. I_coupled = prev["I_approx"] @ self.coupling I_coupled = I_coupled + (prev["I"] - prev["I_approx"]) * self.coupling.diag() I_coupled = I_coupled.clamp(min=0) # In case I_approx is negative. pop_coupled = self.population @ self.coupling # Reverse the flow computation. S2I = prev["S"] - curr["S"] I2R = prev["I"] - curr["I"] + S2I with self.region_plate: # Condition on flows between compartments. pyro.sample("S2I_{}".format(t), infection_dist(individual_rate=R0 / tau, num_susceptible=prev["S"], num_infectious=I_coupled, population=pop_coupled), obs=S2I) pyro.sample("I2R_{}".format(t), dist.ExtendedBinomial(prev["I"], 1 / tau), obs=I2R) # Condition on observations. pyro.sample("obs_{}".format(t), dist.ExtendedBinomial(S2I, rho), obs=self.data[t]) ``` #### File: contrib/epidemiology/test_seir.py ```python import pytest import torch import pyro.distributions as dist from pyro.contrib.epidemiology import OverdispersedSEIRModel, SimpleSEIRModel @pytest.mark.parametrize("duration", [3, 7]) @pytest.mark.parametrize("forecast", [0, 7]) @pytest.mark.parametrize("options", [ {}, {"dct": 1.}, {"num_quant_bins": 8}, ], ids=str) def test_simple_smoke(duration, forecast, options): population = 100 incubation_time = 2.0 recovery_time = 7.0 # Generate data. model = SimpleSEIRModel(population, incubation_time, recovery_time, [None] * duration) for attempt in range(100): data = model.generate({"R0": 1.5, "rho": 0.5})["obs"] if data.sum(): break assert data.sum() > 0, "failed to generate positive data" # Infer. model = SimpleSEIRModel(population, incubation_time, recovery_time, data) num_samples = 5 model.fit(warmup_steps=2, num_samples=num_samples, max_tree_depth=2, **options) # Predict and forecast. samples = model.predict(forecast=forecast) assert samples["S"].shape == (num_samples, duration + forecast) assert samples["E"].shape == (num_samples, duration + forecast) assert samples["I"].shape == (num_samples, duration + forecast) @pytest.mark.parametrize("duration", [3, 7]) @pytest.mark.parametrize("forecast", [0, 7]) @pytest.mark.parametrize("options", [ {}, {"dct": 1.}, {"num_quant_bins": 8}, ], ids=str) def test_overdispersed_smoke(duration, forecast, options): population = 100 incubation_time = 2.0 recovery_time = 7.0 # Generate data. model = OverdispersedSEIRModel( population, incubation_time, recovery_time, [None] * duration) for attempt in range(100): data = model.generate({"R0": 1.5, "rho": 0.5, "k": 1.0})["obs"] if data.sum(): break assert data.sum() > 0, "failed to generate positive data" # Infer. model = OverdispersedSEIRModel( population, incubation_time, recovery_time, data) num_samples = 5 model.fit(warmup_steps=2, num_samples=num_samples, max_tree_depth=2, **options) # Predict and forecast. samples = model.predict(forecast=forecast) assert samples["S"].shape == (num_samples, duration + forecast) assert samples["E"].shape == (num_samples, duration + forecast) assert samples["I"].shape == (num_samples, duration + forecast) @pytest.mark.parametrize("duration", [3, 7]) @pytest.mark.parametrize("forecast", [0, 7]) def test_coalescent_likelihood_smoke(duration, forecast): population = 100 incubation_time = 2.0 recovery_time = 7.0 # Generate data. model = OverdispersedSEIRModel( population, incubation_time, recovery_time, [None] * duration) for attempt in range(100): data = model.generate({"R0": 1.5, "rho": 0.5, "k": 1.0})["obs"] if data.sum(): break assert data.sum() > 0, "failed to generate positive data" leaf_times = torch.rand(5).pow(0.5) * duration coal_times = dist.CoalescentTimes(leaf_times).sample() coal_times = coal_times[..., torch.randperm(coal_times.size(-1))] # Infer. model = OverdispersedSEIRModel( population, incubation_time, recovery_time, data, leaf_times=leaf_times, coal_times=coal_times) num_samples = 5 model.fit(warmup_steps=2, num_samples=num_samples, max_tree_depth=2) # Predict and forecast. samples = model.predict(forecast=forecast) assert samples["S"].shape == (num_samples, duration + forecast) assert samples["E"].shape == (num_samples, duration + forecast) assert samples["I"].shape == (num_samples, duration + forecast) ```
{ "source": "johannespitz/softlearning", "score": 2 }
#### File: examples/development/simulate_policy.py ```python import argparse from distutils.util import strtobool import json import os from pathlib import Path import pickle import tensorflow as tf import pandas as pd from softlearning.environments.utils import ( get_environment_from_params, get_environment) from softlearning.policies.utils import get_policy_from_variant from softlearning.samplers import rollouts from softlearning.utils.video import save_video DEFAULT_RENDER_KWARGS = { 'mode': 'human', } def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('checkpoint_path', type=str, help='Path to the checkpoint.') parser.add_argument('--max-path-length', '-l', type=int, default=1000) parser.add_argument('--num-rollouts', '-n', type=int, default=10) parser.add_argument('--render-kwargs', '-r', type=json.loads, default='{}', help="Kwargs for rollouts renderer.") parser.add_argument('--video-save-path', type=Path, default=None) parser.add_argument('--deterministic', '-d', type=lambda x: bool(strtobool(x)), nargs='?', const=True, default=True, help="Evaluate policy deterministically.") args = parser.parse_args() return args def load_checkpoint(checkpoint_path, session=None): session = session or tf.keras.backend.get_session() checkpoint_path = checkpoint_path.rstrip('/') trial_path = os.path.dirname(checkpoint_path) variant_path = os.path.join(trial_path, 'params.pkl') with open(variant_path, 'rb') as f: variant = pickle.load(f) metadata_path = os.path.join(checkpoint_path, ".tune_metadata") if os.path.exists(metadata_path): with open(metadata_path, "rb") as f: metadata = pickle.load(f) else: metadata = None with session.as_default(): pickle_path = os.path.join(checkpoint_path, 'checkpoint.pkl') with open(pickle_path, 'rb') as f: picklable = pickle.load(f) progress_path = os.path.join(trial_path, 'progress.csv') progress = pd.read_csv(progress_path) return picklable, variant, progress, metadata def load_policy_and_environment(picklable, variant): environment_params = ( variant['environment_params']['training'] if 'evaluation' in variant['environment_params'] else variant['environment_params']['training']) environment = get_environment_from_params(environment_params) policy = get_policy_from_variant(variant, environment) policy.set_weights(picklable['policy_weights']) return policy, environment def simulate_policy(checkpoint_path, deterministic, num_rollouts, max_path_length, render_kwargs, video_save_path=None, evaluation_environment_params=None): checkpoint_path = checkpoint_path.rstrip('/') picklable, variant, progress, metadata = load_checkpoint(checkpoint_path) policy, environment = load_policy_and_environment(picklable, variant) render_kwargs = {**DEFAULT_RENDER_KWARGS, **render_kwargs} with policy.set_deterministic(deterministic): paths = rollouts(num_rollouts, environment, policy, path_length=max_path_length, render_kwargs=render_kwargs) if video_save_path and render_kwargs.get('mode') == 'rgb_array': fps = 1 // getattr(environment, 'dt', 1/30) for i, path in enumerate(paths): video_save_dir = os.path.expanduser('/tmp/simulate_policy/') video_save_path = os.path.join(video_save_dir, f'episode_{i}.mp4') save_video(path['images'], video_save_path, fps=fps) return paths if __name__ == '__main__': gpu_options = tf.GPUOptions(allow_growth=True) session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) tf.keras.backend.set_session(session) args = parse_args() simulate_policy(**vars(args)) ``` #### File: softlearning/policies/utils.py ```python from collections import OrderedDict from copy import deepcopy from softlearning.preprocessors.utils import get_preprocessor_from_params def get_gaussian_policy(*args, **kwargs): from .gaussian_policy import FeedforwardGaussianPolicy policy = FeedforwardGaussianPolicy(*args, **kwargs) return policy def get_uniform_policy(*args, **kwargs): from .uniform_policy import ContinuousUniformPolicy policy = ContinuousUniformPolicy(*args, **kwargs) return policy POLICY_FUNCTIONS = { 'GaussianPolicy': get_gaussian_policy, 'UniformPolicy': get_uniform_policy, } def get_policy(policy_type, *args, **kwargs): return POLICY_FUNCTIONS[policy_type](*args, **kwargs) def get_policy_from_params(policy_params, env, *args, **kwargs): policy_type = policy_params['type'] policy_kwargs = deepcopy(policy_params.get('kwargs', {})) observation_preprocessors_params = policy_kwargs.pop( 'observation_preprocessors_params', {}) observation_keys = policy_kwargs.pop( 'observation_keys', None) or env.observation_keys observation_shapes = OrderedDict(( (key, value) for key, value in env.observation_shape.items() if key in observation_keys )) observation_preprocessors = OrderedDict() for name, observation_shape in observation_shapes.items(): preprocessor_params = observation_preprocessors_params.get(name, None) if not preprocessor_params: observation_preprocessors[name] = None continue observation_preprocessors[name] = get_preprocessor_from_params( env, preprocessor_params) action_range = (env.action_space.low, env.action_space.high) policy = POLICY_FUNCTIONS[policy_type]( input_shapes=observation_shapes, output_shape=env.action_shape, action_range=action_range, observation_keys=observation_keys, *args, preprocessors=observation_preprocessors, **policy_kwargs, **kwargs) return policy def get_policy_from_variant(variant, *args, **kwargs): policy_params = variant['policy_params'] return get_policy_from_params(policy_params, *args, **kwargs) ```
{ "source": "johannes-qvarford/jq-todo-backend-py", "score": 2 }
#### File: jq-todo-backend-py/jqtodobackend/backend.py ```python from typing import List from uuid import UUID from fastapi import FastAPI, Depends from jqtodobackend.models import Todo, CreatedTodo, TodoChanges from jqtodobackend.repository import TodoRepository app = FastAPI() @app.get("/", response_model=List[CreatedTodo]) def get_all(repo: TodoRepository = Depends(TodoRepository)): ts = repo.all() return ts @app.delete("/") def delete_all(repo: TodoRepository = Depends(TodoRepository)): repo.clear() @app.post("/", response_model=CreatedTodo) def post(todo: Todo, repo: TodoRepository = Depends(TodoRepository)): created = CreatedTodo.from_todo(todo) repo.insert(created) return created @app.get( "/{_id}", response_model=CreatedTodo, responses={404: {"description": "Todo could not be found"}}, ) def get(_id: UUID, repo: TodoRepository = Depends(TodoRepository)): return repo.find(_id).as_http_response() @app.patch("/{_id}") def patch( _id: UUID, todo_changes: TodoChanges, repo: TodoRepository = Depends(TodoRepository) ): repo.patch(_id, todo_changes) @app.delete("/{_id}") def delete(_id: UUID, repo: TodoRepository = Depends(TodoRepository)): repo.delete(_id) ```
{ "source": "JohannesRanderath/randydata", "score": 2 }
#### File: JohannesRanderath/randydata/setup.py ```python from setuptools import setup def readme(): with open("README.rst") as f: return f.read() setup( name="randydata", version="0.3.1.9", description="Tools for SQL or Excel of observational data handling.", long_description=readme(), keywords="excel sql data handling", url="https://github.com/JohannesRanderath/randydata", author="<NAME>", author_email="<EMAIL>", license="MIT", packages=["randydata"], install_requires=["pandas>=1.4.1", "mysql>=0.0.3", "sqlalchemy>=1.4.32", "IPython>=8.1.1", "greenlet>=1.1.2", "numpy>=1.22.3", "python-dateutil>=2.8.2", "pytz>=2021.3", "six>=1.16.0", "appnope>=0.1.2", "backcall>=0.2.0", "decorator>=5.1.1", "jedi>=0.18.1", "parso>=0.8.3", "matplotlib-inline>=0.1.3", "traitlets>=5.1.1", "pexpect>=4.8.0", "ptyprocess>=0.7.0", "pickleshare>=0.7.5", "prompt-toolkit>=3.0.28", "wcwidth>=0.2.5", "pygments>=2.11.2", "setuptools>=58.1.0", "stack-data>=0.2.0", "asttokens>=2.0.5", "executing>=0.8.3", "pure-eval>=0.2.2", "protobuf>=3.19.4", "openpyxl>=3.0.9"], include_package_data=True ) ```
{ "source": "JohannesRanderath/StudyProblems", "score": 3 }
#### File: JohannesRanderath/StudyProblems/app.py ```python from flask import Flask, render_template, redirect, request, flash, send_from_directory, jsonify, url_for from flask_session import Session from session_handling import is_logged_in, current_user, logout_from_session, login_to_session from patterns_and_types import check_password_requirements, is_email from security import generate_password_hash, verify_password, decrypt_token, generate_password_reset_link, \ generate_change_email_link, generate_email_confirmation_link from mail import html_confirmation_email, html_change_mail_email, html_reset_password_mail, html_friend_request_mail, \ html_accepted_friend_mail, html_new_question_mail, html_question_answered, send_email, send_user_email from database import create_new_user, update_user_hash, update_user_email, update_email_confirmed, get_user_email,\ get_username_by_email, close_connection, get_usernames_starting_with, user_exists, add_friend_request, add_message,\ get_user_messages, confirm_friend, delete_message, get_friends, exists_friend_or_request, delete_friends_from_db, \ get_questions_from_user, get_questions_for_user, add_question, get_question, question_exists, add_answer, \ delete_all_messages_asked_question, delete_all_messages_answered_question, get_email_preferences_not, \ update_email_preferences app = Flask(__name__) app.config.from_object("config.Config") Session(app) def flash_form_data(request_form): try: form_data = {key: request_form.get(key) for key in request_form.keys()} form_data_strings = [key + ":" + form_data[key] for key in form_data.keys()] flash(",".join(form_data_strings), "form-data") return True except Exception as e: print("In app.flash_form_data: ", e) return False def render_my_template(template: str, **kwargs): """ For the badges indicating the number of messages and questions to update with every refresh, we need to calculate them every time we render a template. This function does these calculations and passes them as parameters to the desired template. :param template: html template the route function wants to render :param kwargs: parameters given by the route function :return: rendered template from flask.render_template with all required parameters """ user = current_user() if user: # If the user is logged in, we can calculate the values by getting the values from the database num_of_messages = len(get_user_messages(user)) questions_to_me = get_questions_for_user(user) num_of_questions_to_me = len(questions_to_me) num_of_unanswered_questions_to_me = len([question for question in questions_to_me if not question["answer"]]) questions_from_me = get_questions_from_user(user) num_of_questions_from_me = len(questions_from_me) num_of_unanswered_questions_from_me = len([question for question in questions_from_me if not question["answer"]]) else: # If no user is logged in, we don't need the values num_of_messages = None num_of_questions_to_me = None num_of_unanswered_questions_to_me = None num_of_questions_from_me = None num_of_unanswered_questions_from_me = None return render_template(template, num_of_messages=num_of_messages, num_of_questions_to_me=num_of_questions_to_me, num_of_questions_from_me=num_of_questions_from_me, num_of_unanswered_questions_to_me=num_of_unanswered_questions_to_me, num_of_unanswered_questions_from_me=num_of_unanswered_questions_from_me, **kwargs) @app.route("/robots.txt") @app.route("/styles.css") @app.route("/favicon.ico") def get_static_from_root(): """ Make robots.txt available to crawlers and styles.css as well as favicon.ico to browsers. :return: desired static file """ return send_from_directory(app.static_folder, request.path[1:]) @app.route("/") @is_logged_in def home(): """ Home page displaying the messages. :return: index.html """ messages = get_user_messages(current_user()) # Display messages oldest to newest messages = list(reversed(messages)) return render_my_template("index.html", messages=messages) @app.route("/my_questions") @is_logged_in def my_questions(): """ Overview of all questions the user asked and their answers if available. :return: my_questions.html """ questions = get_questions_from_user(current_user()) # Display questions oldest to newest if questions: questions = list(reversed(questions)) message_answered_question() return render_my_template("my_questions.html", questions=questions) @app.route("/to_answer", methods=["POST", "GET"]) @is_logged_in def to_answer(): """ Overview of all questions assigned to the user, grouped by questions they haven't answered and those, they already answered. From this view they can choose which question to answer next and do so. :return: to_answer.html """ questions = get_questions_for_user(current_user()) # Display in oldest to newest if questions: questions = list(reversed(questions)) unanswered_questions = [question for question in questions if not question["answer"]] answered_questions = [question for question in questions if question not in unanswered_questions] message_asked_question() return render_my_template("to_answer.html", unanswered_questions=unanswered_questions, answered_questions=answered_questions) @app.route("/manage_friends") @is_logged_in def manage_friends(): """ Overview of friends, functionality to remove some of them, ask them questions and send new friend requests. :return: friends.html """ friends = get_friends(current_user()) num_of_friends = len(friends) return render_my_template("friends.html", friends=friends, numOfFriends=num_of_friends) @app.route("/get_usernames_list") @is_logged_in def get_usernames_list(): """ NO VIEW AJAX call to get usernames starting with a given substring that are not friends with the current user. Used in user search to send friend requests :return: json list of usernames starting with substring <startswith> or an empty list if no substring given """ startswith = request.args.get("startswith") if not startswith: # Do not expose all usernames. Return an empty list when no substring given return jsonify([]) else: usernames = get_usernames_starting_with(startswith) usernames = [username[0] for username in usernames] if current_user() in usernames: usernames.remove(current_user()) friends = get_friends(current_user()) usernames = [username for username in usernames if username not in friends] return jsonify(usernames) @app.route("/add_friend", methods=["POST"]) @is_logged_in def add_friend(): """ NO VIEW Logic function to add friend request to library and send notifications to other user. :return: redirect back to /manage_friends """ username = request.form.get("username").lower() user = current_user() # other user has to be given, must exist and can't be the same as the user logged in. if not username or username == user or not user_exists(username): flash("User not found", "danger") return redirect(url_for("manage_friends")) # There can be no more than one friend request / friend relationship between the same users if exists_friend_or_request(username, user): flash("You already are friends with that user or it exists a friend request.", "warning") return redirect(url_for("manage_friends")) if not add_friend_request(user, username): flash("An unexpected error occurred. Try again later.") return redirect(url_for("manage_friends")) # Send email notification if user wishes so and has a confirmed email. if "friend_request" not in get_email_preferences_not(username): send_user_email(username, "New friend request", html_friend_request_mail(user)) if not add_message(user, username, "friend_request"): flash("An unexpected error occurred. Try again later.", "danger") return redirect(url_for("manage_friends")) flash("Friend request sent", "success") return redirect(url_for("manage_friends")) @app.route("/accept_friend_request", methods=["POST"]) @is_logged_in def accept_friend_request(): """ NO VIEW Logic function to confirm friend request in database and send notifications. :return: redirect to home (/) """ username = current_user() if not confirm_friend(request.form.get("username").lower(), username) \ or not delete_message(request.form.get("message_id")): flash("An error occurred. Please try again later", "danger") return redirect(url_for("home")) add_message(username, request.form.get("username").lower(), "accepted_friend_request") # if they didn't opt out and confirmed their email, send them an email. if "accepted_friend" not in get_email_preferences_not(request.form.get("username").lower()): send_user_email(request.form.get("username").lower(), "New friend", html_accepted_friend_mail(username)) flash("Friend request accepted.", "success") return redirect(url_for("home")) @app.route("/decline_friend_request", methods=["POST"]) @is_logged_in def decline_friend_request(): """ NO VIEW Logic function to remove friend request and message from database and notify user. :return: redirect back to home (/) """ if not delete_message(request.form.get("message_id")) \ or not delete_friends_from_db(current_user(), request.form.get("username").lower()): flash("An error occurred. Please try again later", "danger") return redirect(url_for("home")) add_message(current_user(), request.form.get("username").lower(), "declined_friend_request") # No email is sent for declined requests flash("Friend request declined.", "important") return redirect(url_for("home")) @app.route("/remove_friend", methods=["POST"]) @is_logged_in def remove_friend(): """ NO VIEW Logic function to remove friendship from database and notify former friend. :return: redirect back to /manage_friends """ username = request.form.get("username").lower() if not username or not delete_friends_from_db(current_user(), username) \ or not delete_message(request.form.get("message_id")): flash("An error occurred, please try again later", "danger") return redirect(url_for("manage_friends")) add_message(current_user(), username, "removed_friend") # No email is sent for removed friends flash("Friend removed", "success") return redirect(url_for("manage_friends")) @app.route("/discard_message", methods=["POST"]) @is_logged_in def discard_message(): """ NO VIEW Logic function to remove read messages from database :return: redirect back to home (/) """ if not delete_message(request.form.get("message_id")): flash("An error occurred, please try again.", "danger") return redirect(url_for("home")) flash("Message deleted.", "success") return redirect(url_for("home")) @app.route("/ask_question", methods=["POST", "GET"]) @is_logged_in def ask_question(): """ View to create new question and assign it to a friend. Adds question to database and notifies assigned friend. :return: redirect to all asked questions (/my_questions) if successful and back to ask_question if not. """ if request.method == "POST": friend = request.form.get("friend") question = request.form.get("question") if not friend or not question: flash("Please supply all required parameters", "danger") flash_form_data(request.form) return redirect(url_for("ask_question")) if not user_exists(friend): flash("User does not exist", "danger") flash_form_data(request.form) return redirect(url_for("ask_question")) if not add_question(current_user(), friend, question): flash("An error occurred, please try again later", "danger") flash_form_data(request.form) return redirect(url_for("ask_question")) add_message(current_user(), friend, "asked_question") if "new_question" not in get_email_preferences_not(friend): send_user_email(friend, "New question", html_new_question_mail(current_user())) flash("Question asked", "success") return redirect(url_for("my_questions")) else: # Get friends for dropdown with all friends to choose one to assign the question to # If clicked to ask a specific friend, preselect them. friends = get_friends(current_user()) friend = request.args.get("friend") return render_my_template("ask_question.html", friends=friends, ask_friend=friend) @app.route("/answer_question", methods=["POST", "GET"]) @is_logged_in def answer_question(): """ View to answer question the user was assigned to by a friend. Adds answer to database and notifies friend :return: answer_question.html from get :return: redirect to /to_answer from post """ if request.method == "POST": question_id = request.form.get("id") question = get_question(question_id) answer = request.form.get("answer") if not question_id or not answer: flash("Please supply all required parameters", "danger") flash_form_data(request.form) return redirect(url_for("to_answer")) if not question_exists(question_id) or not question: flash("Question not found", "danger") flash_form_data(request.form) return redirect(url_for("to_answer")) if not add_answer(question_id, answer): flash("An error occurred, please try again.", "danger") flash_form_data(request.form) redirect(url_for("to_answer")) add_message(current_user(), question["sender"], "answered_question") # send email if user didn't opt out and confirmed their email. if "question_answered" not in get_email_preferences_not(question["sender"]): send_user_email(question["sender"], "Question answered", html_question_answered(current_user())) flash("Question answered", "success") return redirect(url_for("to_answer")) else: question_id = request.args.get("id") if not question_id: flash("Illegal parameters", "danger") return redirect(url_for("to_answer")) question = get_question(int(question_id)) if not question: flash("Question not found", "danger") return redirect(url_for("to_answer")) if question["answer"]: flash("Question already answered.", "warning") return redirect(url_for("to_answer")) return render_my_template("answer_question.html", question=question) @app.route("/message_asked_question", methods=["POST"]) @is_logged_in def message_asked_question(): """ When clicked on message informing about a new question the user got assigned to, showing all questions they were assigned to. And deleting messages informing about new questions as they saw all of them now :return: redirect to /to_answer """ delete_all_messages_asked_question(current_user()) return redirect(url_for("to_answer")) @app.route("/message_answered_question", methods=["POST"]) @is_logged_in def message_answered_question(): """ When clicked on message informing about a new answer to a question the user asked, showing all questions they asked. And deleting messages informing about new answers as they saw all of them now :return: redirect to /my_questions """ delete_all_messages_answered_question(current_user()) return redirect(url_for("my_questions")) @app.route("/account", methods=["POST", "GET"]) @is_logged_in def account(): """ View to manage account related details 1. Change password 2. Change email or add new email if the user didn't add one before 3. Update preferences for email notifications :return: account.html """ if request.method == "POST": # 1. Change password if request.form.get("type") == "change_password": old_password = request.form.get("old_password") new_password = request.form.get("new_password") confirmation = request.form.get("confirmation") # Check given data and perform password change if not old_password: flash("Old password required", "warning") return redirect(url_for("account")) if not new_password: flash("New password required", "warning") return redirect(url_for("account")) if not confirmation: flash("Please confirm password", "warning") return redirect(url_for("account")) if not verify_password(current_user(), old_password): flash("Wrong password", "warning") return redirect(url_for("account")) if not new_password == confirmation: flash("Passwords do not match", "warning") return redirect(url_for("account")) if not update_user_hash(generate_password_hash(new_password), current_user()): flash("An unexpected error occurred. Please try again later", "danger") return redirect(url_for("account")) flash("Password changed", "success") return redirect(url_for("account")) # 2. Change account email if request.form.get("type") == "change_email": new_email = request.form.get("new_email") if not new_email: flash("new email required", "warning") return redirect(url_for("account")) old_email = get_user_email(current_user()) # if the user never had an email in their account, we confirm as in the registration process if not old_email: if not update_user_email(current_user(), new_email): flash("An unexpected error occurred. Please try again later", "danger") return redirect(url_for("account")) if not send_email(new_email, "Please confirm your email", html_confirmation_email(generate_email_confirmation_link( new_email, app.config["EMAIL_CONFIRMATION_SALT"]))): flash("An error occurred. Please try again later.", "danger") return redirect(url_for("home")) flash("Email set", "success") return redirect(url_for("account")) # if there is already an email assigned to their account, we don't update this before they # didn't confirm the email else: if not send_email(new_email, "Confirm new email", html_change_mail_email(generate_change_email_link(old_email, new_email, app.config["CHANGE_EMAIL_SALT"]))): flash("An error occurred. Please try again later.", "danger") return redirect(url_for("home")) flash("Confirmation link sent", "success") return redirect(url_for("account")) # 3. Update email preferences if request.form.get("type") == "email_preferences": # Save preferences as comma separated list in string to database email_preferences_not = [] if not request.form.get("friend_request"): email_preferences_not.append("friend_request") if not request.form.get("accepted_friend"): email_preferences_not.append("accepted_friend") if not request.form.get("new_question"): email_preferences_not.append("new_question") if not request.form.get("question_answered"): email_preferences_not.append("question_answered") if not update_email_preferences(current_user(), email_preferences_not): flash("An error occurred, please try again later.", "danger") return redirect(url_for("home")) flash("Email preferences updated", "success") return redirect(url_for("account")) else: # Show logged in user and email preferences in account view. username = current_user() email_preferences_not = get_email_preferences_not(username) return render_my_template("account.html", username=username, email_preferences_not=email_preferences_not) @app.route("/logout") @is_logged_in def logout(): """ NO VIEW Logic function to log user out Removes session and redirects to / (which is redirected to /login as they are no longer logged in) :return: redirect to home (/) """ if not logout_from_session(): flash("An error occurred, please try again", "danger") return redirect(url_for("home")) flash("You are now logged out", "success") return redirect(url_for("home")) @app.route("/login", methods=["POST", "GET"]) def login(): """ View for user to log in. :return: login.html from get :return: redirect to home (/) if successful :return: redirect back to /login if unsuccessful """ if request.method == "POST": username = request.form.get("username").lower() if not username: flash("Username required", "warning") return redirect(url_for("login")) if not request.form.get("password"): flash("Password required", "warning") flash_form_data(request.form) return redirect(url_for("login")) if not verify_password(username, request.form.get("password")): flash("Wrong username or password", "danger") flash_form_data(request.form) return redirect(url_for("login")) if not login_to_session(username): flash("An error occurred, please try again.", "danger") flash_form_data(request.form) return redirect(url_for("login")) flash("Login successful", "success") return redirect(url_for("home")) else: return render_my_template("login.html") @app.route("/register", methods=["POST", "GET"]) def register(): """ View to register user. Logs user in automatically when successful. :return: register.html from get :return: redirect to home (/) when successful :return: redirect back to /register when unsuccessful """ if request.method == "POST": username = request.form.get("username").lower() password = request.form.get("password") email = request.form.get("email") # Check given data if not username: flash("Username required", "warning") flash_form_data(request.form) return redirect(url_for("register")) if not password: flash("Password required", "warning") flash_form_data(request.form) return redirect(url_for("register")) if not request.form.get("confirmation"): flash("Please confirm password", "warning") flash_form_data(request.form) return redirect(url_for("register")) if user_exists(username): flash("Username already exists", "danger") flash_form_data(request.form) return redirect(url_for("register")) if not password == request.form.get("confirmation"): flash("Passwords do not match", "warning") flash_form_data(request.form) return redirect(url_for("register")) if not check_password_requirements(password): flash("Password does not meet requirements") flash_form_data(request.form) return redirect(url_for("register")) # Register user if not create_new_user(username, generate_password_hash(password)): flash("An unexpected error occurred. Please try again later", "danger") flash_form_data(request.form) return redirect(url_for("register")) # email is optional if email and is_email(email): update_user_email(username, email) if not send_email(email, "Please confirm your email", html_confirmation_email(generate_email_confirmation_link( email, app.config["EMAIL_CONFIRMATION_SALT"]))): flash("An error occurred. Please try again later.", "danger") flash_form_data(request.form) return redirect(url_for("register")) # Log in automatically if not login_to_session(username): flash("An error occurred, please try again", "danger") flash_form_data(request.form) return render_my_template(url_for("register")) flash("You are successfully registered", "success") return redirect(url_for("home")) else: return render_my_template("register.html") @app.route("/confirm/<token>") def confirm(token): """ Confirm email with link given in email Update email confirmed in database :param token: Token generated by itsdangerous :return: redirect to home (/) :return: bad_confirmation_link.html when unsuccessful """ try: email = decrypt_token(token, app.config["EMAIL_CONFIRMATION_SALT"]) except Exception as e: print("In app.confirm: ", e) return render_my_template("bad_confirmation_link.html") if not update_email_confirmed(email): flash("An error occurred, please try again", "danger") return redirect(url_for("home")) flash("Email confirmed. Thank you", "success") return redirect(url_for("home")) @app.route("/change_email/<token>") def change_email(token): """ Confirm email change in account that already had an email assigned to it. Updates email in database :param token: Token generated by itsdangerous :return: redirect to home (/) when successful :return: bad_change_email_link.html when unsuccessful """ try: data = decrypt_token(token, app.config["CHANGE_EMAIL_SALT"]) old_email = data["old_email"] new_email = data["new_email"] if not update_user_email(get_username_by_email(old_email), new_email): flash("An error occurred, please try again", "danger") return redirect(url_for("home")) flash("Email updated!", "success") return redirect(url_for("home")) except Exception as e: print("In app.change_email: ", e) return render_my_template("bad_change_email_link.html") @app.route("/reset_password/<token>", methods=["POST", "GET"]) def reset_password(token): """ Reset password with password reset link. :param token: token generated by itsdangerous :return: reset_password.html from get if link valid :return: bad_password_reset_link.html if link not valid :return: redirect to /login if successful :return: redirect back to reset_password if unsuccessful """ if request.method == "POST": username = request.form.get("username").lower() password = request.form.get("<PASSWORD>") confirmation = request.form.get("confirmation") if not username: flash("Username required", "warning") return render_my_template("reset_password.html", username=username) if not password: flash("Password required") return render_my_template("reset_password.html", username=username) if not confirmation: flash("Please confirm password", "warning") return render_my_template("reset_password.html", username=username) if not password == confirmation: flash("Passwords do not match", "warning") return render_my_template("reset_password.html", username=username) if not check_password_requirements(password): flash("Password does not meet criteria", "warning") return render_my_template("reset_password.html", username=username) if not update_user_hash(generate_password_hash(password), username): flash("An error occurred, please try again", "danger") return render_my_template("reset_password.html", username=username) flash("Password reset successfully", "success") return redirect(url_for("login")) else: try: username = decrypt_token(token, app.config["RESET_PASSWORD_SALT"]) return render_my_template("reset_password.html", username=username) except Exception as e: print("In app.reset_password: ", e) return render_my_template("bad_password_reset_link.html") @app.route("/request_password_reset", methods=["POST", "GET"]) def request_password_reset(): """ View to enter username from forgot password? link. Sends password reset mail to user if there is an email associated with their account. :return: request_password_reset.html """ if request.method == "POST": username = request.form.get("username").lower() if not username: flash("Username required", "warning") return render_my_template("request_password_reset.html") if not send_user_email(username, "Reset password", html_reset_password_mail(generate_password_reset_link( username, app.config["RESET_PASSWORD_SALT"]))): flash("An error occurred. Probably the username doesn't exist or no email is associated with it.", "danger") return render_my_template("request_password_reset.html") flash("Reset link sent", "success") return render_my_template("request_password_reset.html") else: return render_my_template("request_password_reset.html") @app.teardown_appcontext def close_db(exception): """ Close database on app closing. :param exception: From app.teardown_appcontext, is passed to database.py :return: None """ close_connection(exception) if __name__ == '__main__': app.run() ```
{ "source": "johannesrave/GH_CPython", "score": 4 }
#### File: GH_CPython/GrasshopperSyntax/curve.py ```python import Grasshopper02 as gh def AddArc(plane, radius, angle_degrees): """Adds an arc curve to the document Parameters: plane = plane on which the arc will lie. The origin of the plane will be the center point of the arc. x-axis of the plane defines the 0 angle direction. radius = radius of the arc angle_degrees = interval of arc Returns: id of the new curve object """ if not isinstance(plane, gh.Plane): raise Exception("plane should be an instance of Plane") elif not isinstance(radius, float): raise Exception("radius should be an instance of float") elif not isinstance(angle_degrees, float): raise Exception("angle_degrees should be an instance of float") else: rc = gh.Curve('<Curve>','AddArc', plane, radius, angle_degrees, '</Curve>') return rc def AddArc3Pt(start, end, point_on_arc): """Adds a 3-point arc curve to the document Parameters: start, end = endpoints of the arc point_on_arc = a point on the arc Returns: id of the new curve object """ if not (isinstance(start, gh.Point)): raise Exception("start should be an instance of a Point") elif not isinstance(end, gh.Point): raise Exception("end should be an instance of a Point") elif not isinstance(point_on_arc, gh.Point): raise Exception("point_on_arc should be an instance of a Point") else: rc = gh.Curve('<Curve>','AddArc3Pt', start, end, point_on_arc, '</Curve>') return rc def AddArcPtTanPt(start, direction, end): """Adds an arc curve, created from a start point, a start direction, and an end point, to the document Returns: id of the new curve object """ if not (isinstance(start, gh.Point)): raise Exception("start should be an instance of a gh.Point") elif not isinstance(end, gh.Point): raise Exception("end should be an instance of a gh.Point") elif not isinstance(direction, gh.Vector): raise Exception("direction should be an instance of a gh.Vector") else: rc = gh.Curve('<Curve>','AddArcPtTanPt', start, direction, end, '</Curve>') return rc def AddBlendCurve(curves, parameters, reverses, continuities): """Makes a curve blend between two curves Parameters: curves = two curves parameters = two curve parameters defining the blend end points reverses = two boolean values specifying to use the natural or opposite direction of the curve continuities = two numbers specifying continuity at end points 0 = position, 1 = tangency, 2 = curvature Returns: identifier of new curve on success """ if not isinstance(curves, list) \ or len(curves) != 2 \ or not isinstance(curves[0], gh.Curve) \ or not isinstance(curves[1], gh.Curve): raise Exception("curves should be a list of two curves") elif not isinstance(parameters, list) \ or len(parameters)!=2 \ or not isinstance(parameters[0], float) \ or not isinstance(parameters[1], float): raise Exception("parameters should be a list of two floats defining the blend end points ") elif not isinstance(reverses, list) \ or len(reverses)!= 2 \ or not isinstance(reverses[0], bool) \ or not isinstance(reverses[1], bool): raise Exception("reverses should be a list of two boolean values specifying to use the natural or opposite direction of the curve") elif not isinstance(continuities, list) \ or len(continuities)!= 2 \ or not isinstance(continuities[0],int) \ or not isinstance(continuities[1], int)\ or continuities[0]>2 or continuities[1]>2\ or continuities[0]<0 or continuities[1]<0 : raise Exception("continuities should be a list of two numbers specifying continuity at end points 0 = position, 1 = tangency, 2 = curvature") else: rc = gh.Curve('<Curve>','AddBlendCurve', curves, parameters, reverses, continuities, '</Curve>') return rc def AddCircle(plane_or_center, radius): """Adds a circle curve to the document Parameters: plane_or_center = plane on which the circle will lie. If a point is passed, this will be the center of the circle on the active construction plane radius = the radius of the circle Returns: id of the new curve object """ if not isinstance(plane_or_center, gh.Plane) or not isinstance(plane_or_center, gh.Point): raise Exception("plane_or_center should be an instance of Plane") elif not isinstance(radius, float): raise Exception("radius should be an instance of float") else: rc = gh.Curve('<Curve>','AddCircle', plane_or_center, radius,'</Curve>') return rc def AddCircle3Pt(first, second, third): """Adds a 3-point circle curve to the document Parameters: first, second, third = points on the circle Returns: id of the new curve object """ if not (isinstance(first, gh.Point)): raise Exception("first should be an instance of a Point") elif not isinstance(second, gh.Point): raise Exception("second should be an instance of a Point") elif not isinstance(third, gh.Point): raise Exception("third should be an instance of a Point") else: rc = gh.Curve('<Curve>','AddCircle3Pt', first, second, third, '</Curve>') return rc def AddCurve(points, degree=3): """Adds a control points curve object to the document Parameters: points = a list of points degree[opt] = degree of the curve Returns: id of the new curve object """ if not isinstance(points, list) or not len(points)>1: raise Exception("points should be a list of more than one point") elif not isinstance(degree, int): raise Exception("degree should be an int representing the degree of the curve") else: for i in points: if not isinstance(i, gh.Point): raise Exception("points should be list of points") rc = gh.Curve('<Curve>','AddCurve', points, degree, '</Curve>') return rc def AddEllipse(plane, radiusX, radiusY): """Adds an elliptical curve to the document Parameters: plane = the plane on which the ellipse will lie. The origin of the plane will be the center of the ellipse radiusX, radiusY = radius in the X and Y axis directions Returns: id of the new curve object if successful """ if not isinstance(plane, gh.Plane): raise Exception("plane should be an instance of Plane") elif not isinstance(radiusX, float) or not isinstance(radiusY, float): raise Exception("radiusX, radiusY should be floats representing radius in the X and Y axis directions") else: rc = gh.Curve('<Curve>','AddEllipse', plane, radiusX, radiusY, '</Curve>') return rc def AddEllipse3Pt(center, second, third): """Adds a 3-point elliptical curve to the document Parameters: center = center point of the ellipse second = end point of the x axis third = end point of the y axis Returns: id of the new curve object if successful """ if not isinstance(center, gh.Point)or not isinstance(second, gh.Point) or not isinstance(third, gh.Point): raise Exception("center, second and third should be instances of gh.Point") else: rc = gh.Curve('<Curve>','AddEllipse3Pt', center, second, third, '</Curve>') return rc def AddFilletCurve(curve0id, curve1id, radius=1.0, base_point0=None, base_point1=None): """Adds a fillet curve between two curve objects Parameters: curve0id = identifier of the first curve object curve1id = identifier of the second curve object radius [opt] = fillet radius base_point0 [opt] = base point of the first curve. If omitted, starting point of the curve is used base_point1 [opt] = base point of the second curve. If omitted, starting point of the curve is used Returns: id of the new curve object if successful """ if not isinstance(curve0id, gh.Curve) or not isinstance(curve1id, gh.Curve): raise Exception("curve0id and curve1id should be instances of gh.Curve") elif not isinstance(radius, float): raise Exception("radius should be a float number") elif base_point0 != None: if not isinstance(base_point0, gh.Point): raise Exception("base_point0 should be an instance of gh.Point or None") elif base_point1 != None: if not isinstance(base_point1, gh.Point): raise Exception("base_point1 shoule be an instance of gh.Point or None") else: rc = gh.Curve('<Curve>','AddFilletCurve', curve0id, curve1id, radius, base_point0, base_point1, '</Curve>') return rc def AddInterpCrvOnSrf(surface_id, points): """Adds an interpolated curve object that lies on a specified surface. Note, this function will not create periodic curves, but it will create closed curves. Parameters: surface_id = identifier of the surface to create the curve on points = list of 3D points that lie on the specified surface. The list must contain at least 2 points Returns: id of the new curve object if successful """ return rc def AddInterpCrvOnSrfUV(surface_id, points): """Adds an interpolated curve object based on surface parameters, that lies on a specified surface. Note, this function will not create periodic curves, but it will create closed curves. Parameters: surface_id = identifier of the surface to create the curve on points = list of 2D surface parameters. The list must contain at least 2 sets of parameters Returns: id of the new curve object if successful """ return rc def AddInterpCurve(points, degree=3, knotstyle=0, start_tangent=None, end_tangent=None): """Adds an interpolated curve object to the document. Options exist to make a periodic curve or to specify the tangent at the endpoints. The resulting curve is a non-rational NURBS curve of the specified degree. Parameters: points = list containing 3D points to interpolate. For periodic curves, if the final point is a duplicate of the initial point, it is ignored. The number of control points must be >= (degree+1). degree[opt] = The degree of the curve (must be >=1). Periodic curves must have a degree >= 2. For knotstyle = 1 or 2, the degree must be 3. For knotstyle = 4 or 5, the degree must be odd knotstyle[opt] 0 Uniform knots. Parameter spacing between consecutive knots is 1.0. 1 Chord length spacing. Requires degree = 3 with arrCV1 and arrCVn1 specified. 2 Sqrt (chord length). Requires degree = 3 with arrCV1 and arrCVn1 specified. 3 Periodic with uniform spacing. 4 Periodic with chord length spacing. Requires an odd degree value. 5 Periodic with sqrt (chord length) spacing. Requires an odd degree value. start_tangent [opt] = 3d vector that specifies a tangency condition at the beginning of the curve. If the curve is periodic, this argument must be omitted. end_tangent [opt] = 3d vector that specifies a tangency condition at the end of the curve. If the curve is periodic, this argument must be omitted. Returns: id of the new curve object if successful """ return rc def AddLine(start, end): """Adds a line curve to the current model. Parameters: start, end = end points of the line Returns: id of the new curve object """ return rc def AddNurbsCurve(points, knots, degree, weights=None): """Adds a NURBS curve object to the document Parameters: points = list containing 3D control points knots = Knot values for the curve. The number of elements in knots must equal the number of elements in points plus degree minus 1 degree = degree of the curve. must be greater than of equal to 1 weights[opt] = weight values for the curve. Number of elements should equal the number of elements in points. Values must be greater than 0 """ return rc def AddPolyline(points, replace_id=None): """Adds a polyline curve to the current model Parameters: points = list of 3D points. Duplicate, consecutive points will be removed. The list must contain at least two points. If the list contains less than four points, then the first point and last point must be different. replace_id[opt] = If set to the id of an existing object, the object will be replaced by this polyline Returns: id of the new curve object if successful """ return rc def AddRectangle(plane, width, height): """Add a rectangular curve to the document Paramters: plane = plane on which the rectangle will lie width, height = width and height of rectangle as measured along the plane's x and y axes Returns: id of new rectangle """ return rc def AddSpiral(point0, point1, pitch, turns, radius0, radius1=None): """Adds a spiral or helical curve to the document Parameters: point0 = helix axis start point or center of spiral point1 = helix axis end point or point normal on spiral plane pitch = distance between turns. If 0, then a spiral. If > 0 then the distance between helix "threads" turns = number of turns radius0, radius1 = starting and ending radius Returns: id of new curve on success """ return rc def AddSubCrv(curve_id, param0, param1): """Add a curve object based on a portion, or interval of an existing curve object. Similar in operation to Rhino's SubCrv command Parameters: curve_id = identifier of a closed planar curve object param0, param1 = first and second parameters on the source curve Returns: id of the new curve object if successful """ return rc def ArcAngle(curve_id, segment_index=-1): """Returns the angle of an arc curve object. Parameters: curve_id = identifier of a curve object segment_index [opt] = identifies the curve segment if curve_id identifies a polycurve Returns: The angle in degrees if successful. """ return arc.AngleDegrees def ArcCenterPoint(curve_id, segment_index=-1): """Returns the center point of an arc curve object Parameters: curve_id = identifier of a curve object segment_index [opt] = identifies the curve segment if curve_id identifies a polycurve Returns: The 3D center point of the arc if successful. """ return arc.Center def ArcMidPoint(curve_id, segment_index=-1): """Returns the mid point of an arc curve object Parameters: curve_id = identifier of a curve object segment_index [opt] = identifies the curve segment if curve_id identifies a polycurve Returns: The 3D mid point of the arc if successful. """ return arc.MidPoint def ArcRadius(curve_id, segment_index=-1): """Returns the radius of an arc curve object Parameters: curve_id = identifier of a curve object segment_index [opt] = identifies the curve segment if curve_id identifies a polycurve Returns: The radius of the arc if successful. """ return arc.Radius #Point def CircleCenterPoint(curve_id, segment_index=-1, return_plane=False): """Returns the center point of a circle curve object Parameters: curve_id = identifier of a curve object segment_index [opt] = identifies the curve segment if return_plane [opt] = if True, the circle's plane is returned curve_id identifies a polycurve Returns: The 3D center point of the circle if successful. The plane of the circle if return_plane is True """ return circle.Center def CircleCircumference(curve_id, segment_index=-1): """Returns the circumference of a circle curve object Parameters: curve_id = identifier of a curve object segment_index [opt] = identifies the curve segment if curve_id identifies a polycurve Returns: The circumference of the circle if successful. """ return circle.Circumference def CircleRadius(curve_id, segment_index=-1): """Returns the radius of a circle curve object Parameters: curve_id = identifier of a curve object segment_index [opt] = identifies the curve segment if curve_id identifies a polycurve Returns: The radius of the circle if successful. """ return circle.Radius def CloseCurve(curve_id, tolerance=-1.0): """Closes an open curve object by making adjustments to the end points so they meet at a point Parameters: curve_id = identifier of a curve object tolerance[opt] = maximum allowable distance between start and end point. If omitted, the current absolute tolerance is used Returns: id of the new curve object if successful """ return rc def ClosedCurveOrientation(curve_id, direction=(0, 0, 1)): """Determine the orientation (counter-clockwise or clockwise) of a closed, planar curve Parameters: curve_id = identifier of a curve object direction[opt] = 3d vector that identifies up, or Z axs, direction of the plane to test against Returns: 1 if the curve's orientation is clockwise -1 if the curve's orientation is counter-clockwise 0 if unable to compute the curve's orientation """ return int(orientation) def ConvertCurveToPolyline(curve_id, angle_tolerance=5.0, tolerance=0.01, delete_input=False, min_edge_length=0, max_edge_length=0): """Convert curve to a polyline curve Parameters: curve_id = identifier of a curve object angle_tolerance [opt] = The maximum angle between curve tangents at line endpoints. If omitted, the angle tolerance is set to 5.0. tolerance[opt] = The distance tolerance at segment midpoints. If omitted, the tolerance is set to 0.01. delete_input[opt] = Delete the curve object specified by curve_id. If omitted, curve_id will not be deleted. min_edge_length[opt] = Minimum segment length max_edge_length[opt] = Maximum segment length Returns: The new curve if successful. """ return id #point def CurveArcLengthPoint(curve_id, length, from_start=True): """Returns the point on the curve that is a specified arc length from the start of the curve. Parameters: curve_id = identifier of a curve object length = The arc length from the start of the curve to evaluate. from_start[opt] = If not specified or True, then the arc length point is calculated from the start of the curve. If False, the arc length point is calculated from the end of the curve. Returns: Point3d if successful """ def CurveArea(curve_id): """Returns area of closed planar curves. The results are based on the current drawing units. Parameters: curve_id = The identifier of a closed, planar curve object. Returns: List of area information. The list will contain the following information: Element Description 0 The area. If more than one curve was specified, the value will be the cumulative area. 1 The absolute (+/-) error bound for the area. """ return mp.Area, mp.AreaError def CurveAreaCentroid(curve_id): """Returns area centroid of closed, planar curves. The results are based on the current drawing units. Parameters: curve_id = The identifier of a closed, planar curve object. Returns: Tuple of area centroid information containing the following information: Element Description 0 The 3d centroid point. If more than one curve was specified, the value will be the cumulative area. 1 A 3d vector with the absolute (+/-) error bound for the area centroid. """ return mp.Centroid, mp.CentroidError def CurveArrows(curve_id, arrow_style=None): """Enables or disables a curve object's annotation arrows Parameters: curve_id = identifier of a curve arrow_style[opt] = the style of annotation arrow to be displayed 0 = no arrows 1 = display arrow at start of curve 2 = display arrow at end of curve 3 = display arrow at both start and end of curve Returns: if arrow_style is not specified, the current annotation arrow style if arrow_style is specified, the previos arrow style """ def CurveBooleanDifference(curve_id_0, curve_id_1): """Calculates the difference between two closed, planar curves and adds the results to the document. Note, curves must be coplanar. Parameters: curve_id_0 = identifier of the first curve object. curve_id_1 = identifier of the second curve object. Returns: The identifiers of the new objects if successful, None on error. """ return curves def CurveBooleanIntersection(curve_id_0, curve_id_1): """Calculates the intersection of two closed, planar curves and adds the results to the document. Note, curves must be coplanar. Parameters: curve_id_0 = identifier of the first curve object. curve_id_1 = identifier of the second curve object. Returns: The identifiers of the new objects. """ return curves def CurveBooleanUnion(curve_id): """Calculate the union of two or more closed, planar curves and add the results to the document. Note, curves must be coplanar. Parameters: curve_id = list of two or more close planar curves identifiers Returns: The identifiers of the new objects. """ return curves def CurveBrepIntersect(curve_id, brep_id, tolerance=None): """Intersects a curve object with a brep object. Note, unlike the CurveSurfaceIntersection function, this function works on trimmed surfaces. Parameters: curve_id = identifier of a curve object brep_id = identifier of a brep object tolerance [opt] = distance tolerance at segment midpoints. If omitted, the current absolute tolerance is used. Returns: List of identifiers for the newly created intersection curve and point objects if successful. None on error. """ return curves, points def CurveClosestObject(curve_id, object_ids): """Returns the 3D point locations on two objects where they are closest to each other. Note, this function provides similar functionality to that of Rhino's ClosestPt command. Parameters: curve_id = identifier of the curve object to test object_ids = list of identifiers of point cloud, curve, surface, or polysurface to test against Returns: Tuple containing the results of the closest point calculation. The elements are as follows: 0 The identifier of the closest object. 1 The 3-D point that is closest to the closest object. 2 The 3-D point that is closest to the test curve. """ def CurveClosestPoint(curve_id, test_point, segment_index=-1): """Returns parameter of the point on a curve that is closest to a test point. Parameters: curve_id = identifier of a curve object point = sampling point segment_index [opt] = curve segment if curve_id identifies a polycurve Returns: The parameter of the closest point on the curve """ return t def CurveContourPoints(curve_id, start_point, end_point, interval=None): """Returns the 3D point locations calculated by contouring a curve object. Parameters: curve_id = identifier of a curve object. start_point = 3D starting point of a center line. end_point = 3D ending point of a center line. interval [opt] = The distance between contour curves. If omitted, the interval will be equal to the diagonal distance of the object's bounding box divided by 50. Returns: A list of 3D points, one for each contour """ return list(rc) def CurveCurvature(curve_id, parameter): """Returns the curvature of a curve at a parameter. See the Rhino help for details on curve curvature Parameters: curve_id = identifier of the curve parameter = parameter to evaluate Returns: Tuple of curvature information on success element 0 = point at specified parameter element 1 = tangent vector element 2 = center of radius of curvature element 3 = radius of curvature element 4 = curvature vector None on failure """ return point, tangent, center, radius, cv def CurveCurveIntersection(curveA, curveB=None, tolerance=-1): """Calculates intersection of two curve objects. Parameters: curveA = identifier of the first curve object. curveB = identifier of the second curve object. If omitted, then a self-intersection test will be performed on curveA. tolerance [opt] = absolute tolerance in drawing units. If omitted, the document's current absolute tolerance is used. Returns: List of tuples of intersection information if successful. The list will contain one or more of the following elements: Element Type Description [n][0] Number The intersection event type, either Point (1) or Overlap (2). [n][1] Point3d If the event type is Point (1), then the intersection point on the first curve. If the event type is Overlap (2), then intersection start point on the first curve. [n][2] Point3d If the event type is Point (1), then the intersection point on the first curve. If the event type is Overlap (2), then intersection end point on the first curve. [n][3] Point3d If the event type is Point (1), then the intersection point on the second curve. If the event type is Overlap (2), then intersection start point on the second curve. [n][4] Point3d If the event type is Point (1), then the intersection point on the second curve. If the event type is Overlap (2), then intersection end point on the second curve. [n][5] Number If the event type is Point (1), then the first curve parameter. If the event type is Overlap (2), then the start value of the first curve parameter range. [n][6] Number If the event type is Point (1), then the first curve parameter. If the event type is Overlap (2), then the end value of the first curve parameter range. [n][7] Number If the event type is Point (1), then the second curve parameter. If the event type is Overlap (2), then the start value of the second curve parameter range. [n][8] Number If the event type is Point (1), then the second curve parameter. If the event type is Overlap (2), then the end value of the second curve parameter range. """ def CurveDegree(curve_id, segment_index=-1): """Returns the degree of a curve object. Parameters: curve_id = identifier of a curve object. segment_index [opt] = the curve segment if curve_id identifies a polycurve. Returns: The degree of the curve if successful. None on error. """ return curve.Degree def CurveDeviation(curve_a, curve_b): """Returns the minimum and maximum deviation between two curve objects Parameters: curve_a, curve_b = identifiers of two curves Returns: tuple of deviation information on success element 0 = curve_a parameter at maximum overlap distance point element 1 = curve_b parameter at maximum overlap distance point element 2 = maximum overlap distance element 3 = curve_a parameter at minimum overlap distance point element 4 = curve_b parameter at minimum overlap distance point element 5 = minimum distance between curves None on error """ return maxa, maxb, maxd, mina, minb, mind def CurveDim(curve_id, segment_index=-1): """Returns the dimension of a curve object Parameters: curve_id = identifier of a curve object. segment_index [opt] = the curve segment if curve_id identifies a polycurve. Returns: The dimension of the curve if successful. None on error. """ return curve.Dimension def CurveDirectionsMatch(curve_id_0, curve_id_1): """Tests if two curve objects are generally in the same direction or if they would be more in the same direction if one of them were flipped. When testing curve directions, both curves must be either open or closed - you cannot test one open curve and one closed curve. Parameters: curve_id_0 = identifier of first curve object curve_id_1 = identifier of second curve object Returns: True if the curve directions match, otherwise False. """ return Rhino.Geometry.Curve.DoDirectionsMatch(curve0, curve1) def CurveDiscontinuity(curve_id, style): """Search for a derivatitive, tangent, or curvature discontinuity in a curve object. Parameters: curve_id = identifier of curve object style = The type of continuity to test for. The types of continuity are as follows: Value Description 1 C0 - Continuous function 2 C1 - Continuous first derivative 3 C2 - Continuous first and second derivative 4 G1 - Continuous unit tangent 5 G2 - Continuous unit tangent and curvature Returns: List 3D points where the curve is discontinuous """ return points def CurveDomain(curve_id, segment_index=-1): """Returns the domain of a curve object. Parameters: curve_id = identifier of the curve object segment_index[opt] = the curve segment if curve_id identifies a polycurve. """ return [dom.Min, dom.Max] def CurveEditPoints(curve_id, return_parameters=False, segment_index=-1): """Returns the edit, or Greville, points of a curve object. For each curve control point, there is a corresponding edit point. Parameters: curve_id = identifier of the curve object return_parameters[opt] = if True, return as a list of curve parameters. If False, return as a list of 3d points segment_index[opt] = the curve segment is curve_id identifies a polycurve Returns: curve parameters of 3d points on success None on error """ return nc.GrevillePoints() def CurveEndPoint(curve_id, segment_index=-1): """Returns the end point of a curve object Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: The 3-D end point of the curve if successful. """ return curve.PointAtEnd def CurveFilletPoints(curve_id_0, curve_id_1, radius=1.0, base_point_0=None, base_point_1=None, return_points=True): """Find points at which to cut a pair of curves so that a fillet of a specified radius fits. A fillet point is a pair of points (point0, point1) such that there is a circle of radius tangent to curve curve0 at point0 and tangent to curve curve1 at point1. Of all possible fillet points, this function returns the one which is the closest to the base point base_point_0, base_point_1. Distance from the base point is measured by the sum of arc lengths along the two curves. Parameters: curve_id_0 = identifier of the first curve object. curve_id_1 = identifier of the second curve object. radius [opt] = The fillet radius. If omitted, a radius of 1.0 is specified. base_point_0 [opt] = The base point on the first curve. If omitted, the starting point of the curve is used. base_point_1 [opt] = The base point on the second curve. If omitted, the starting point of the curve is used. return_points [opt] = If True (Default), then fillet points are returned. Otherwise, a fillet curve is created and it's identifier is returned. Returns: If return_points is True, then a list of point and vector values if successful. The list elements are as follows: 0 A point on the first curve at which to cut (arrPoint0). 1 A point on the second curve at which to cut (arrPoint1). 2 The fillet plane's origin (3-D point). This point is also the center point of the fillet 3 The fillet plane's X axis (3-D vector). 4 The fillet plane's Y axis (3-D vector). 5 The fillet plane's Z axis (3-D vector). If return_points is False, then the identifier of the fillet curve if successful. None if not successful, or on error. """ return scriptcontext.errorhandler() def CurveFrame(curve_id, parameter, segment_index=-1): """Returns the plane at a parameter of a curve. The plane is based on the tangent and curvature vectors at a parameter. Parameters: curve_id = identifier of the curve object. parameter = parameter to evaluate. segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: The plane at the specified parameter if successful. None if not successful, or on error. """ return scriptcontext.errorhandler() def CurveKnotCount(curve_id, segment_index=-1): """Returns the knot count of a curve object. Parameters: curve_id = identifier of the curve object. segment_index [opt] = the curve segment if curve_id identifies a polycurve. Returns: The number of knots if successful. None if not successful or on error. """ return nc.Knots.Count def CurveKnots(curve_id, segment_index=-1): """Returns the knots, or knot vector, of a curve object Parameters: curve_id = identifier of the curve object. segment_index [opt] = the curve segment if curve_id identifies a polycurve. Returns: knot values if successful. None if not successful or on error. """ return rc def CurveLength(curve_id, segment_index=-1, sub_domain=None): """Returns the length of a curve object. Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve sub_domain [opt] = list of two numbers identifing the sub-domain of the curve on which the calculation will be performed. The two parameters (sub-domain) must be non-decreasing. If omitted, the length of the entire curve is returned. Returns: The length of the curve if successful. None if not successful, or on error. """ return curve.GetLength() def CurveMidPoint(curve_id, segment_index=-1): """Returns the mid point of a curve object. Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: The 3D mid point of the curve if successful. None if not successful, or on error. """ return scriptcontext.errorhandler() def CurveNormal(curve_id, segment_index=-1): """Returns the normal direction of the plane in which a planar curve object lies. Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: The 3D normal vector if sucessful. None if not successful, or on error. """ return scriptcontext.errorhandler() def CurveNormalizedParameter(curve_id, parameter): """Converts a curve parameter to a normalized curve parameter; one that ranges between 0-1 Parameters: curve_id = identifier of the curve object parameter = the curve parameter to convert Returns: normalized curve parameter """ return curve.Domain.NormalizedParameterAt(parameter) def CurveParameter(curve_id, parameter): """Converts a normalized curve parameter to a curve parameter; one within the curve's domain Parameters: curve_id = identifier of the curve object parameter = the normalized curve parameter to convert Returns: curve parameter """ return curve.Domain.ParameterAt(parameter) def CurvePerpFrame(curve_id, parameter): """Returns the perpendicular plane at a parameter of a curve. The result is relatively parallel (zero-twisting) plane Parameters: curve_id = identifier of the curve object parameter = parameter to evaluate Returns: Plane on success None on error """ if rc: return plane def CurvePlane(curve_id, segment_index=-1): """Returns the plane in which a planar curve lies. Note, this function works only on planar curves. Parameters: curve_id = identifier of the curve object segment_index[opt] = the curve segment if curve_id identifies a polycurve Returns: The plane in which the curve lies if successful. None if not successful, or on error. """ return scriptcontext.errorhandler() def CurvePointCount(curve_id, segment_index=-1): """Returns the control points count of a curve object. Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: Number of control points if successful. None if not successful """ def CurvePoints(curve_id, segment_index=-1): """Returns the control points, or control vertices, of a curve object. If the curve is a rational NURBS curve, the euclidean control vertices are returned. """ def CurveRadius(curve_id, test_point, segment_index=-1): """Returns the radius of curvature at a point on a curve. Parameters: curve_id = identifier of the curve object test_point = sampling point segment_index[opt] = the curve segment if curve_id identifies a polycurve Returns: The radius of curvature at the point on the curve if successful. None if not successful, or on error. """ def CurveSeam(curve_id, parameter): """Adjusts the seam, or start/end, point of a closed curve. Parameters: curve_id = identifier of the curve object parameter = The parameter of the new start/end point. Note, if successful, the resulting curve's domain will start at dblParameter. Returns: True or False indicating success or failure. """ def CurveStartPoint(curve_id, segment_index=-1, point=None): """Returns the start point of a curve object Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve point [opt] = new start point Returns: The 3D starting point of the curve if successful. """ def CurveSurfaceIntersection(curve_id, surface_id, tolerance=-1, angle_tolerance=-1): """Calculates intersection of a curve object with a surface object. Note, this function works on the untrimmed portion of the surface. Parameters: curve_id = The identifier of the first curve object. surface_id = The identifier of the second curve object. If omitted, the a self-intersection test will be performed on curve. tolerance [opt] = The absolute tolerance in drawing units. If omitted, the document's current absolute tolerance is used. angle_tolerance [opt] = angle tolerance in degrees. The angle tolerance is used to determine when the curve is tangent to the surface. If omitted, the document's current angle tolerance is used. Returns: Two-dimensional list of intersection information if successful. The list will contain one or more of the following elements: Element Type Description (n, 0) Number The intersection event type, either Point(1) or Overlap(2). (n, 1) Point3d If the event type is Point(1), then the intersection point on the first curve. If the event type is Overlap(2), then intersection start point on the first curve. (n, 2) Point3d If the event type is Point(1), then the intersection point on the first curve. If the event type is Overlap(2), then intersection end point on the first curve. (n, 3) Point3d If the event type is Point(1), then the intersection point on the second curve. If the event type is Overlap(2), then intersection start point on the surface. (n, 4) Point3d If the event type is Point(1), then the intersection point on the second curve. If the event type is Overlap(2), then intersection end point on the surface. (n, 5) Number If the event type is Point(1), then the first curve parameter. If the event type is Overlap(2), then the start value of the first curve parameter range. (n, 6) Number If the event type is Point(1), then the first curve parameter. If the event type is Overlap(2), then the end value of the curve parameter range. (n, 7) Number If the event type is Point(1), then the U surface parameter. If the event type is Overlap(2), then the U surface parameter for curve at (n, 5). (n, 8) Number If the event type is Point(1), then the V surface parameter. If the event type is Overlap(2), then the V surface parameter for curve at (n, 5). (n, 9) Number If the event type is Point(1), then the U surface parameter. If the event type is Overlap(2), then the U surface parameter for curve at (n, 6). (n, 10) Number If the event type is Point(1), then the V surface parameter. If the event type is Overlap(2), then the V surface parameter for curve at (n, 6). """ def CurveTangent(curve_id, parameter, segment_index=-1): """Returns a 3D vector that is the tangent to a curve at a parameter. Parameters: curve_id = identifier of the curve object parameter = parameter to evaluate segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: A 3D vector if successful. None on error. """ def CurveWeights(curve_id, segment_index=-1): """Returns list of weights that are assigned to the control points of a curve Parameters: curve_id = identifier of the curve object segment_index[opt] = the curve segment if curve_id identifies a polycurve Returns: The weight values of the curve if successful. None if not successful, or on error. """ def DivideCurve(curve_id, segments, create_points=False, return_points=True): """Divides a curve object into a specified number of segments. Parameters: curve_id = identifier of the curve object segments = The number of segments. create_points [opt] = Create the division points. If omitted or False, points are not created. return_points [opt] = If omitted or True, points are returned. If False, then a list of curve parameters are returned. Returns: If return_points is not specified or True, then a list containing 3D division points. If return_points is False, then an array containing division curve parameters. None if not successful, or on error. """ def DivideCurveEquidistant(curve_id, distance, create_points=False, return_points=True): """Divides a curve such that the linear distance between the points is equal. Parameters: curve_id = the object's identifier distance = linear distance between division points create_points[opt] = create the division points return_points[opt] = If True, return a list of points. If False, return a list of curve parameters Returns: A list of points or curve parameters based on the value of return_points None on error """ def DivideCurveLength(curve_id, length, create_points=False, return_points=True): """Divides a curve object into segments of a specified length. Parameters: curve_id = identifier of the curve object length = The length of each segment. create_points [opt] = Create the division points. If omitted or False, points are not created. return_points [opt] = If omitted or True, points are returned. If False, then a list of curve parameters are returned. Returns: If return_points is not specified or True, then a list containing 3D division points if successful. If return_points is False, then an array containing division curve parameters if successful. None if not successful, or on error. """ def EllipseCenterPoint(curve_id): """Returns the center point of an elliptical-shaped curve object. Parameters: curve_id = identifier of the curve object. Returns: The 3D center point of the ellipse if successful. """ def EllipseQuadPoints(curve_id): """Returns the quadrant points of an elliptical-shaped curve object. Parameters: curve_id = identifier of the curve object. Returns: Four 3D points identifying the quadrants of the ellipse """ def EvaluateCurve(curve_id, t, segment_index=-1): """Evaluates a curve at a parameter and returns a 3D point Parameters: curve_id = identifier of the curve object t = the parameter to evaluate segment_index [opt] = the curve segment if curve_id identifies a polycurve """ def ExplodeCurves(curve_ids, delete_input=False): """Explodes, or un-joins, one curves. Polycurves will be exploded into curve segments. Polylines will be exploded into line segments. ExplodeCurves will return the curves in topological order. Parameters: curve_ids = the curve object(s) to explode. delete_input[opt] = Delete input objects after exploding. Returns: List identifying the newly created curve objects """ def ExtendCurve(curve_id, extension_type, side, boundary_object_ids): """Extends a non-closed curve object by a line, arc, or smooth extension until it intersects a collection of objects. Parameters: curve_id: identifier of curve to extend extension_type: 0 = line, 1 = arc, 2 = smooth side: 0=extend from the start of the curve, 1=extend from the end of the curve boundary_object_ids: curve, surface, and polysurface objects to extend to Returns: The identifier of the new object if successful. None if not successful """ def ExtendCurveLength(curve_id, extension_type, side, length): """Extends a non-closed curve by a line, arc, or smooth extension for a specified distance Parameters: curve_id: curve to extend extension_type: 0 = line, 1 = arc, 2 = smooth side: 0=extend from start of the curve, 1=extend from end of the curve length: distance to extend Returns: The identifier of the new object None if not successful """ def ExtendCurvePoint(curve_id, side, point): """Extends a non-closed curve by smooth extension to a point Parameters: curve_id: curve to extend side: 0=extend from start of the curve, 1=extend from end of the curve point: point to extend to Returns: The identifier of the new object if successful. None if not successful, or on error. """ def FairCurve(curve_id, tolerance=1.0): """Fairs a curve. Fair works best on degree 3 (cubic) curves. Fair attempts to remove large curvature variations while limiting the geometry changes to be no more than the specified tolerance. Sometimes several applications of this method are necessary to remove nasty curvature problems. Parameters: curve_id = curve to fair tolerance[opt] = fairing tolerance Returns: True or False indicating success or failure """ def FitCurve(curve_id, degree=3, distance_tolerance=-1, angle_tolerance=-1): """Reduces number of curve control points while maintaining the curve's same general shape. Use this function for replacing curves with many control points. For more information, see the Rhino help for the FitCrv command. Parameters: curve_id = Identifier of the curve object degree [opt] = The curve degree, which must be greater than 1. The default is 3. distance_tolerance [opt] = The fitting tolerance. If distance_tolerance is not specified or <= 0.0, the document absolute tolerance is used. angle_tolerance [opt] = The kink smoothing tolerance in degrees. If angle_tolerance is 0.0, all kinks are smoothed. If angle_tolerance is > 0.0, kinks smaller than angle_tolerance are smoothed. If angle_tolerance is not specified or < 0.0, the document angle tolerance is used for the kink smoothing. Returns: The identifier of the new object None if not successful, or on error. """ def InsertCurveKnot(curve_id, parameter, symmetrical=False): """Inserts a knot into a curve object Parameters: curve_id = identifier of the curve object parameter = parameter on the curve symmetrical[opt] = if True, then knots are added on both sides of the center of the curve Returns: True or False indicating success or failure """ def IsArc(curve_id, segment_index=-1): """Verifies an object is an arc curve Parameters: curve_id = Identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False """ def IsCircle(curve_id, tolerance=None): """Verifies an object is a circle curve Parameters: curve_id = Identifier of the curve object tolerance [opt] = If the curve is not a circle, then the tolerance used to determine whether or not the NURBS form of the curve has the properties of a circle. If omitted, Rhino's internal zero tolerance is used Returns: True or False """ def IsCurve(object_id): "Verifies an object is a curve" def IsCurveClosable(curve_id, tolerance=None): """Decide if it makes sense to close off the curve by moving the end point to the start point based on start-end gap size and length of curve as approximated by chord defined by 6 points Parameters: curve_id = identifier of the curve object tolerance[opt] = maximum allowable distance between start point and end point. If omitted, the document's current absolute tolerance is used Returns: True or False """ def IsCurveClosed(object_id): return " " def IsCurveInPlane(object_id, plane=None): """Test a curve to see if it lies in a specific plane Parameters: object_id = the object's identifier plane[opt] = plane to test. If omitted, the active construction plane is used Returns: True or False """ def IsCurveLinear(object_id, segment_index=-1): """Verifies an object is a linear curve Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False indicating success or failure """ def IsCurvePeriodic(curve_id, segment_index=-1): """Verifies an object is a periodic curve object Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False """ def IsCurvePlanar(curve_id, segment_index=-1): """Verifies an object is a planar curve Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False indicating success or failure """ def IsCurveRational(curve_id, segment_index=-1): """Verifies an object is a rational NURBS curve Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False indicating success or failure """ def IsEllipse(object_id, segment_index=-1): """Verifies an object is an elliptical-shaped curve Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False indicating success or failure """ def IsLine(object_id, segment_index=-1): """Verifies an object is a line curve Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False indicating success or failure """ def IsPointOnCurve(object_id, point, segment_index=-1): """Verifies that a point is on a curve Parameters: curve_id = identifier of the curve object point = the test point segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False indicating success or failure """ def IsPolyCurve(object_id, segment_index=-1): """Verifies an object is a PolyCurve curve Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False """ def IsPolyline(object_id, segment_index=-1): """Verifies an object is a Polyline curve object Parameters: curve_id = identifier of the curve object segment_index [opt] = the curve segment if curve_id identifies a polycurve Returns: True or False """ def JoinCurves(object_ids, delete_input=False, tolerance=None): """Joins multiple curves together to form one or more curves or polycurves Parameters: object_ids = list of multiple curves delete_input[opt] = delete input objects after joining tolerance[opt] = join tolerance. If omitted, 2.1 * document absolute tolerance is used Returns: List of Guids representing the new curves """ def LineFitFromPoints(points): """Returns a line that was fit through an array of 3D points Parameters: points = a list of at least two 3D points Returns: line on success """ def MakeCurveNonPeriodic(curve_id, delete_input=False): """Makes a periodic curve non-periodic. Non-periodic curves can develop kinks when deformed Parameters: curve_id = identifier of the curve object delete_input[opt] = delete the input curve Returns: id of the new or modified curve if successful None on error """ def MeanCurve(curve0, curve1, tolerance=None): """Creates an average curve from two curves Parameters: curve0, curve1 = identifiers of two curves tolerance[opt] = angle tolerance used to match kinks between curves Returns: id of the new or modified curve if successful None on error """ def MeshPolyline(polyline_id): """Creates a polygon mesh object based on a closed polyline curve object. The created mesh object is added to the document Parameters: polyline_id = identifier of the polyline curve object Returns: identifier of the new mesh object None on error """ def OffsetCurve(object_id, direction, distance, normal=None, style=1): """Offsets a curve by a distance. The offset curve will be added to Rhino Parameters: object_id = identifier of a curve object direction = point describing direction of the offset distance = distance of the offset normal[opt] = normal of the plane in which the offset will occur. If omitted, the normal of the active construction plane will be used style[opt] = the corner style 0 = None, 1 = Sharp, 2 = Round, 3 = Smooth, 4 = Chamfer Returns: List of ids for the new curves on success None on error """ def OffsetCurveOnSurface(curve_id, surface_id, distance_or_parameter): """Offset a curve on a surface. The source curve must lie on the surface. The offset curve or curves will be added to Rhino Parameters: curve_id, surface_id = curve and surface identifiers distance_or_parameter = If a single number is passed, then this is the distance of the offset. Based on the curve's direction, a positive value will offset to the left and a negative value will offset to the right. If a tuple of two values is passed, this is interpreted as the surface U,V parameter that the curve will be offset through Returns: Identifiers of the new curves if successful None on error """ def PlanarClosedCurveContainment(curve_a, curve_b, plane=None, tolerance=None): """Determines the relationship between the regions bounded by two coplanar simple closed curves Parameters: curve_a, curve_b = identifiers of two planar, closed curves plane[opt] = test plane. If omitted, the currently active construction plane is used tolerance[opt] = if omitted, the document absolute tolerance is used Returns: a number identifying the relationship if successful 0 = the regions bounded by the curves are disjoint 1 = the two curves intersect 2 = the region bounded by curve_a is inside of curve_b 3 = the region bounded by curve_b is inside of curve_a None if not successful """ def PlanarCurveCollision(curve_a, curve_b, plane=None, tolerance=None): """Determines if two coplanar curves intersect Parameters: curve_a, curve_b = identifiers of two planar curves plane[opt] = test plane. If omitted, the currently active construction plane is used tolerance[opt] = if omitted, the document absolute tolerance is used Returns: True if the curves intersect; otherwise False """ def PointInPlanarClosedCurve(point, curve, plane=None, tolerance=None): """Determines if a point is inside of a closed curve, on a closed curve, or outside of a closed curve Parameters: point = text point curve = identifier of a curve object plane[opt] = plane containing the closed curve and point. If omitted, the currently active construction plane is used tolerance[opt] = it omitted, the document abosulte tolerance is used Returns: number identifying the result if successful 0 = point is outside of the curve 1 = point is inside of the curve 2 = point in on the curve """ def PolyCurveCount(curve_id, segment_index=-1): """Returns the number of curve segments that make up a polycurve""" def PolylineVertices(curve_id, segment_index=-1): "Returns the vertices of a polyline curve on success" def ProjectCurveToMesh(curve_ids, mesh_ids, direction): """Projects one or more curves onto one or more surfaces or meshes Parameters: curve_ids = identifiers of curves to project mesh_ids = identifiers of meshes to project onto direction = projection direction Returns: list of identifiers """ def ProjectCurveToSurface(curve_ids, surface_ids, direction): """Projects one or more curves onto one or more surfaces or polysurfaces Parameters: curve_ids = identifiers of curves to project surface_ids = identifiers of surfaces to project onto direction = projection direction Returns: list of identifiers """ def RebuildCurve(curve_id, degree=3, point_count=10): """Rebuilds a curve to a given degree and control point count. For more information, see the Rhino help for the Rebuild command. Parameters: curve_id = identifier of the curve object degree[opt] = new degree (must be greater than 0) point_count [opt] = new point count, which must be bigger than degree. Returns: True of False indicating success or failure """ def ReverseCurve(curve_id): """Reverses the direction of a curve object. Same as Rhino's Dir command Parameters: curve_id = identifier of the curve object Returns: True or False indicating success or failure """ def SimplifyCurve(curve_id, flags=0): "Replace a curve with a geometrically equivalent polycurve" def SplitCurve(curve_id, parameter, delete_input=True): """Splits, or divides, a curve at a specified parameter. The parameter must be in the interior of the curve's domain Parameters: curve_id = the curve to split parameter = one or more parameters to split the curve at delete_input[opt] = delete the input curve Returns: list of new curves on success None on error """ def TrimCurve(curve_id, interval, delete_input=True): """Trims a curve by removing portions of the curve outside a specified interval Paramters: curve_id = the curve to trim interval = two numbers indentifying the interval to keep. Portions of the curve before domain[0] and after domain[1] will be removed. If the input curve is open, the interval must be increasing. If the input curve is closed and the interval is decreasing, then the portion of the curve across the start and end of the curve is returned delete_input[opt] = delete the input curve Reutrns: identifier of the new curve on success None on failure """ ``` #### File: GH_CPython/GrasshopperSyntax/Grasshopper.py ```python import sys version = sys.version_info[0] class Line: def __init__(self, *args): """Adds new line using two input points, or two input lists or 6 input doubles :param args: """ if len(args) == 2: if isinstance(args[0], Point) and isinstance(args[1], Point): self.X1 = args[0].X self.Y1 = args[0].Y self.Z1 = args[0].X self.X2 = args[1].Z self.Y2 = args[1].Y self.Z2 = args[1].Z elif isinstance(args[0], list) and isinstance(args[1], list): self.X1 = args[0][0] self.Y1 = args[0][1] self.Z1 = args[0][2] self.X2 = args[1][0] self.Y2 = args[1][1] self.Z2 = args[1][2] elif version == 2: if isinstance(args[0], basestring) and isinstance(args[1], basestring): pointa = Point(args[0]) pointb = Point(args[1]) self.X1 = pointa.X self.Y1 = pointa.Y self.Z1 = pointa.Z self.X2 = pointb.X self.Y2 = pointb.Y self.Z2 = pointb.Z elif version == 3: if isinstance(args[0], str) and isinstance(args[1], str): pointa = Point(args[0]) pointb = Point(args[1]) self.X1 = pointa.X self.Y1 = pointa.Y self.Z1 = pointa.Z self.X2 = pointb.X self.Y2 = pointb.Y self.Z2 = pointb.Z elif len(args) == 6: self.X1 = args[0] self.Y1 = args[1] self.Z1 = args[2] self.X2 = args[3] self.Y2 = args[4] self.Z2 = args[5] '''def addLine(self): return "gCPy.Line(" + str(self.X1) + ", " \ + str(self.Y1) + ", " \ + str(self.Z1) + ", " \ + str(self.X2) + ", " \ + str(self.Y2) + ", " \ + str(self.Z2) + ")"''' def addLine(self): return ["<Line>", self.X1, self.Y1, self.Z1, self.X2, self.Y2, self.Z2] def __repr__(self): return str(["<Line>",self.X1,self.Y1,self.Z1,self.X2,self.Y2,self.Z2,"</line>"]) def length(self): return ((self.X2 - self.X1) ** 2 + (self.Y2 - self.Y1) ** 2 + (self.Z2 - self.Z1) ** 2) ** 0.5 def pointOnLine(self, parameter=0.5): return Point((self.X2 - self.X1) * parameter + self.X1, \ (self.Y2 - self.Y1) * parameter + self.Y1, \ (self.Z2 - self.Z1) * parameter + self.Z1) def __str__(self): return str(["<Line>", self.X1, self.Y1, self.Z1, self.X2, self.Y2, self.Z2, "</Line>"]) allLines = [] for i in range(200): l = Line(i, i+1, i+2, i-1, i-2, i-5) allLines.append(l) print(allLines[5]) class Point: """Adds new point in cartesian coordinates using 3 doubles x, y, z as input :param: x (double): is the x coordinate y (double): is the y coordinate z (double): is the z coordinate :return: representation of 3d point :Example: import Grasshopper as gh point1 = gh.Point(0, 0, 0) point2 = gh.Point(1., 1., 0.) """ def __init__(self, x=0., y=0., z=0.): if version == 2: if isinstance(x, list): self.X = x[0] self.Y = x[1] self.Z = x[2] elif isinstance(x, basestring): new_vars = [] x = x.replace("gCPy.Point(", "").replace(")", "").lstrip().rstrip() variables = x.split(",") for i in variables: new_vars.append(float(i)) self.X = new_vars[0] self.Y = new_vars[1] self.Z = new_vars[2] else: self.X = x self.Y = y self.Z = z elif version == 3: if isinstance(x, list): self.X = x[0] self.Y = x[1] self.Z = x[2] elif isinstance(x, str): new_vars = [] x = x.replace("gCPy.Point(", "").replace(")", "").lstrip().rstrip() variables = x.split(",") for i in variables: new_vars.append(float(i)) self.X = new_vars[0] self.Y = new_vars[1] self.Z = new_vars[2] else: self.X = x self.Y = y self.Z = z self.addPoint = "gCPy.Point(" + str(x) + "," + str(y) + "," + str(z) + ")" def __repr__(self): return "gCPy.Point(" + str(self.X) + "," + str(self.Y) + "," + str(self.Z) + ")" def __str__(self): return "gCPy.Point(" + str(self.X) + "," + str(self.Y) + "," + str(self.Z) + ")" class Surface: def __init__(self, *args): if len(args) == 4: if isinstance(args[0], Point) and isinstance(args[1], Point) and isinstance(args[2], Point) and isinstance(args[3], Point): self.P1 = args[0] self.P2 = args[1] self.P3 = args[2] self.P4 = args[3] self.addSurface = "gCPy.Surface("+ str(args[0].X) + "," \ + str(args[0].Y) + "," \ + str(args[0].Z) + "," \ + str(args[1].X) + "," \ + str(args[1].Y) + "," \ + str(args[1].Z) + "," \ + str(args[2].X) + "," \ + str(args[2].Y) + "," \ + str(args[2].Z) + "," \ + str(args[3].X) + "," \ + str(args[3].Y) + "," \ + str(args[3].Z) + "," \ + ")" elif len(args) == 2: if isinstance(args[0],Line) and isinstance(args[1], Line): pass else: print("you have to create surface from 4 points") ########################### DEFINE METHODS ################################ def addLine(*args): """Adds new line between two points :param: args pointa, pointb (Point3): instance of points [x1, y1, z1], [x2, y2, z2]: two points as lists x1, y1, z1, x2, y2, z2 : 6 doubles represent coordinates of line end points. :return: """ if len(args) == 2: return Line(args[0], args[1]) elif len(args) == 6: return Line(args[0], args[1], args[2], args[3], args[4], args[5]) def addPoint(*args): """ :param args: :return: """ if len(args) == 1: return Point(args[0]) elif len(args) == 3: return Point(args[0], args[1], args[2]) def addSurface(*args): return Surface(args[0], args[1], args[2], args[3]).addSurface if __name__ == '__main__': print(__name__) ``` #### File: GH_CPython/GrasshopperSyntax/plane.py ```python def DistanceToPlane(plane, point): """Returns the distance from a 3D point to a plane Parameters: plane (plane): the plane point (point): List of 3 numbers or Point3d Returns: number: The distance if successful, otherwise None Example: import rhinoscriptsyntax as rs point = rs.GetPoint("Point to test") if point: plane = rs.ViewCPlane() if plane: distance = rs.DistanceToPlane(plane, point) if distance is not None: print("Distance to plane: ", distance) See Also: Distance PlaneClosestPoint """ def EvaluatePlane(plane, parameter): """Evaluates a plane at a U,V parameter Parameters: plane (plane): the plane to evaluate parameter ([number, number]): list of two numbers defining the U,V parameter to evaluate Returns: point: Point3d on success Example: import rhinoscriptsyntax as rs view = rs.CurrentView() plane = rs.ViewCPlane(view) point = rs.EvaluatePlane(plane, (5,5)) rs.AddPoint( point ) See Also: PlaneClosestPoint """ def IntersectPlanes(plane1, plane2, plane3): """Calculates the intersection of three planes Parameters: plane1 (plane): the 1st plane to intersect plane2 (plane): the 2nd plane to intersect plane3 (plane): the 3rd plane to intersect Returns: point: the intersection point between the 3 planes on success None: on error Example: import rhinoscriptsyntax as rs plane1 = rs.WorldXYPlane() plane2 = rs.WorldYZPlane() plane3 = rs.WorldZXPlane() point = rs.IntersectPlanes(plane1, plane2, plane3) if point: rs.AddPoint(point) See Also: LineLineIntersection LinePlaneIntersection PlanePlaneIntersection """ def MovePlane(plane, origin): """Moves the origin of a plane Parameters: plane (plane): Plane or ConstructionPlane origin (point): Point3d or list of three numbers Returns: plane: moved plane Example: import rhinoscriptsyntax as rs origin = rs.GetPoint("CPlane origin") if origin: plane = rs.ViewCPlane() plane = rs.MovePlane(plane,origin) rs.ViewCplane(plane) See Also: PlaneFromFrame PlaneFromNormal RotatePlane """ def PlaneClosestPoint(plane, point, return_point=True): """Returns the point on a plane that is closest to a test point. Parameters: plane (plane): The plane point (point): The 3-D point to test. return_point (bool, optional): If omitted or True, then the point on the plane that is closest to the test point is returned. If False, then the parameter of the point on the plane that is closest to the test point is returned. Returns: point: If return_point is omitted or True, then the 3-D point point: If return_point is False, then an array containing the U,V parameters of the point None: if not successful, or on error. Example: import rhinoscriptsyntax as rs point = rs.GetPoint("Point to test") if point: plane = rs.ViewCPlane() if plane: print(rs.PlaneClosestPoint(plane, point)) See Also: DistanceToPlane EvaluatePlane """ def PlaneCurveIntersection(plane, curve, tolerance=None): """Intersect an infinite plane and a curve object Parameters: plane (plane): The plane to intersect. curve (guid): The identifier of the curve object torerance (number, optional): The intersection tolerance. If omitted, the document's absolute tolerance is used. Returns: A list of intersection information tuple if successful. The list will contain one or more of the following tuple: Element Type Description [0] Number The intersection event type, either Point (1) or Overlap (2). [1] Point3d If the event type is Point (1), then the intersection point on the curve. If the event type is Overlap (2), then intersection start point on the curve. [2] Point3d If the event type is Point (1), then the intersection point on the curve. If the event type is Overlap (2), then intersection end point on the curve. [3] Point3d If the event type is Point (1), then the intersection point on the plane. If the event type is Overlap (2), then intersection start point on the plane. [4] Point3d If the event type is Point (1), then the intersection point on the plane. If the event type is Overlap (2), then intersection end point on the plane. [5] Number If the event type is Point (1), then the curve parameter. If the event type is Overlap (2), then the start value of the curve parameter range. [6] Number If the event type is Point (1), then the curve parameter. If the event type is Overlap (2), then the end value of the curve parameter range. [7] Number If the event type is Point (1), then the U plane parameter. If the event type is Overlap (2), then the U plane parameter for curve at (n, 5). [8] Number If the event type is Point (1), then the V plane parameter. If the event type is Overlap (2), then the V plane parameter for curve at (n, 5). [9] Number If the event type is Point (1), then the U plane parameter. If the event type is Overlap (2), then the U plane parameter for curve at (n, 6). [10] Number If the event type is Point (1), then the V plane parameter. If the event type is Overlap (2), then the V plane parameter for curve at (n, 6). None: on error Example: import rhinoscriptsyntax as rs curve = rs.GetObject("Select curve", rs.filter.curve) if curve: plane = rs.WorldXYPlane() intersections = rs.PlaneCurveIntersection(plane, curve) if intersections: for intersection in intersections: rs.AddPoint(intersection[1]) See Also: IntersectPlanes PlanePlaneIntersection PlaneSphereIntersection """ def PlaneEquation(plane): """Returns the equation of a plane as a tuple of four numbers. The standard equation of a plane with a non-zero vector is Ax+By+Cz+D=0 Parameters: plane (plane): the plane to deconstruct Returns: tuple(number, number, number, number): containing four numbers that represent the coefficients of the equation (A, B, C, D) if successful None: if not successful Example: import rhinoscriptsyntax as rs plane = rs.ViewCPlane() equation = rs.PlaneEquation(plane) print("A =", equation[0]) print("B =", equation[1]) print("C =", equation[2]) print("D =", equation[3]) See Also: PlaneFromFrame PlaneFromNormal PlaneFromPoints """ def PlaneFitFromPoints(points): """Returns a plane that was fit through an array of 3D points. Parameters: points (point): An array of 3D points. Returns: plane: The plane if successful None: if not successful Example: import rhinoscriptsyntax as rs points = rs.GetPoints() if points: plane = rs.PlaneFitFromPoints(points) if plane: magX = plane.XAxis.Length magY = plane.YAxis.Length rs.AddPlaneSurface( plane, magX, magY ) See Also: PlaneFromFrame PlaneFromNormal PlaneFromPoints """ def PlaneFromFrame(origin, x_axis, y_axis): """Construct a plane from a point, and two vectors in the plane. Parameters: origin (point): A 3D point identifying the origin of the plane. x_axis (vector): A non-zero 3D vector in the plane that determines the X axis direction. y_axis (vector): A non-zero 3D vector not parallel to x_axis that is used to determine the Y axis direction. Note, y_axis does not have to be perpendicular to x_axis. Returns: plane: The plane if successful. Example: import rhinoscriptsyntax as rs origin = rs.GetPoint("CPlane origin") if origin: xaxis = (1,0,0) yaxis = (0,0,1) plane = rs.PlaneFromFrame( origin, xaxis, yaxis ) rs.ViewCPlane(None, plane) See Also: MovePlane PlaneFromNormal PlaneFromPoints RotatePlane """ def PlaneFromNormal(origin, normal, xaxis=None): """Creates a plane from an origin point and a normal direction vector. Parameters: origin (point): A 3D point identifying the origin of the plane. normal (vector): A 3D vector identifying the normal direction of the plane. xaxis (vector, optional): optional vector defining the plane's x-axis Returns: plane: The plane if successful. Example: import rhinoscriptsyntax as rs origin = rs.GetPoint("CPlane origin") if origin: direction = rs.GetPoint("CPlane direction") if direction: normal = direction - origin normal = rs.VectorUnitize(normal) rs.ViewCPlane( None, rs.PlaneFromNormal(origin, normal) ) See Also: MovePlane PlaneFromFrame PlaneFromPoints RotatePlane """ def PlaneFromPoints(origin, x, y): """Creates a plane from three non-colinear points Parameters: origin (point): origin point of the plane x, y (point): points on the plane's x and y axes Returns: plane: The plane if successful, otherwise None Example: import rhinoscriptsyntax as rs corners = rs.GetRectangle() if corners: rs.ViewCPlane( rs.PlaneFromPoints(corners[0], corners[1], corners[3])) See Also: PlaneFromFrame PlaneFromNormal """ def PlanePlaneIntersection(plane1, plane2): """Calculates the intersection of two planes Parameters: plane1 (plane): the 1st plane to intersect plane2 (plane): the 2nd plane to intersect Returns: line: a line with two 3d points identifying the starting/ending points of the intersection None: on error Example: import rhinoscriptsyntax as rs plane1 = rs.WorldXYPlane() plane2 = rs.WorldYZPlane() line = rs.PlanePlaneIntersection(plane1, plane2) if line: rs.AddLine(line[0], line[1]) See Also: IntersectPlanes LineLineIntersection LinePlaneIntersection """ def PlaneSphereIntersection(plane, sphere_plane, sphere_radius): """Calculates the intersection of a plane and a sphere Parameters: plane (plane): the plane to intersect sphere_plane (plane): equatorial plane of the sphere. origin of the plane is the center of the sphere sphere_radius (number): radius of the sphere Returns: list(number, point|plane, number): of intersection results Element Type Description [0] number The type of intersection, where 0 = point and 1 = circle. [1] point or plane If a point intersection, the a Point3d identifying the 3-D intersection location. If a circle intersection, then the circle's plane. The origin of the plane will be the center point of the circle [2] number If a circle intersection, then the radius of the circle. None: on error Example: import rhinoscriptsyntax as rs plane = rs.WorldXYPlane() radius = 10 results = rs.PlaneSphereIntersection(plane, plane, radius) if results: if results[0]==0: rs.AddPoint(results[1]) else: rs.AddCircle(results[1], results[2]) See Also: IntersectPlanes LinePlaneIntersection PlanePlaneIntersection """ def PlaneTransform(plane, xform): """Transforms a plane Parameters: plane (plane): Plane to transform xform (transform): Transformation to apply Returns: plane:the resulting plane if successful None: if not successful Example: import rhinoscriptsyntax as rs plane = rs.ViewCPlane() xform = rs.XformRotation(45.0, plane.Zaxis, plane.Origin) plane = rs.PlaneTransform(plane, xform) rs.ViewCPlane(None, plane) See Also: PlaneFromFrame PlaneFromNormal PlaneFromPoints """ def RotatePlane(plane, angle_degrees, axis): """Rotates a plane Parameters: plane (plane): Plane to rotate angle_degrees (number): rotation angle in degrees axis (vector): Axis of rotation or list of three numbers Returns: plane: rotated plane on success Example: import rhinoscriptsyntax as rs plane = rs.ViewCPlane() rotated = rs.RotatePlane(plane, 45.0, plane.XAxis) rs.ViewCPlane( None, rotated ) See Also: MovePlane PlaneFromFrame PlaneFromNormal """ def WorldXYPlane(): """Returns Rhino's world XY plane Returns: plane: Rhino's world XY plane Example: import rhinoscriptsyntax as rs view = rs.CurrentView() rs.ViewCPlane( view, rs.WorldXYPlane() ) See Also: WorldYZPlane WorldZXPlane """ def WorldYZPlane(): """Returns Rhino's world YZ plane Returns: plane: Rhino's world YZ plane Example: import rhinoscriptsyntax as rs view = rs.CurrentView() rs.ViewCPlane( view, rs.WorldYZPlane() ) See Also: WorldXYPlane WorldZXPlane """ def WorldZXPlane(): """Returns Rhino's world ZX plane Returns: plane: Rhino's world ZX plane Example: import rhinoscriptsyntax as rs view = rs.CurrentView() rs.ViewCPlane( view, rs.WorldZXPlane() ) See Also: WorldXYPlane WorldYZPlane """ ```
{ "source": "johannesreichard/pi-433-remote", "score": 2 }
#### File: johannesreichard/pi-433-remote/pi-433-remote.py ```python from flask import Flask, render_template from subprocess import call app = Flask(__name__) SENDER_CONFIG = '10101' SEND_CONFIG = ['-u', '-s'] RECEIVER = { 'A': '1', 'B': '2', 'C': '3', 'D': '4', } STATES = { 'on':'1', 'off':'0' } def send_signal(receiver, state): call(['./send', SENDER_CONFIG, *SEND_CONFIG, receiver, state]) @app.route('/') def index(): return render_template('index.html') @app.route('/on/', methods=['POST']) def on_all(): for _, value in RECEIVER.items(): send_signal(value, STATES['on']) return 'all on' @app.route('/off/', methods=['POST']) def off_all(): for _, value in RECEIVER.items(): send_signal(value, STATES['off']) return 'all off' @app.route('/receiver/<receiver_id>/<state_id>/', methods=['POST']) def switch(receiver_id, state_id): if receiver_id not in RECEIVER.keys(): return '{} not in {}'.format(receiver_id, RECEIVER.keys()), 400 elif state_id not in STATES.keys(): return '{} not in {}'.format(state_id, STATES.keys()), 400 else: send_signal(RECEIVER[receiver_id], STATES[state_id]) return '{} {}'.format(receiver_id, state_id) ```
{ "source": "Johannes-R-Schmid/eo-learn", "score": 3 }
#### File: eolearn/geometry/utilities.py ```python import numpy as np from rasterio import features, transform from shapely.geometry import Polygon from eolearn.core import EOTask class VectorToRaster(EOTask): """ Task burns into one of the EOPatch's features geo-referenced shapes given in provided Geopandas DataFrame. :param feature: A tuple of feature type and feature name, e.g. (FeatureType.MASK, 'cloud_mask') :type feature: (FeatureType, str) :param vector_data: Vector data :type vector_data: geopandas.GeoDataFrame :param raster_value: Value of raster pixels which are contained inside of vector polygons :type raster_value: int or float :param raster_shape: Can be a tuple in form of (height, width) of an existing feature from which the shape will be taken e.g. (FeatureType.MASK, 'IS_DATA') :type raster_shape: (int, int) or (FeatureType, str) :param raster_dtype: `numpy` data type of the obtained raster array :type raster_dtype: numpy.dtype :param no_data_value: Value of raster pixels which are outside of vector polygons :type no_data_value: int or float """ def __init__(self, feature, vector_data, raster_value, raster_shape, raster_dtype=np.uint8, no_data_value=0): self.feature_type, self.feature_name = next(iter(self._parse_features(feature))) self.vector_data = vector_data self.raster_value = raster_value self.raster_shape = raster_shape self.raster_dtype = raster_dtype self.no_data_value = no_data_value def _get_submap(self, eopatch): """ Returns a new geopandas dataframe with same structure as original one (columns) except that it contains only polygons that are contained within the given bbox. :param eopatch: input EOPatch :type eopatch: EOPatch :return: New EOPatch :rtype: EOPatch """ bbox = Polygon(eopatch.bbox.get_polygon()) filtered_data = self.vector_data[self.vector_data.geometry.intersects(bbox)].copy(deep=True) filtered_data.geometry = filtered_data.geometry.intersection(bbox) return filtered_data def _get_shape(self, eopatch): if isinstance(self.raster_shape, (tuple, list)) and len(self.raster_shape) == 2: if isinstance(self.raster_shape[0], int) and isinstance(self.raster_shape[1], int): return self.raster_shape feature_type, feature_name = next(self._parse_features(self.raster_shape)(eopatch)) return eopatch.get_spatial_dimension(feature_type, feature_name) raise ValueError('Could not determine shape of the raster image') def execute(self, eopatch): """ Execute function which adds new vector layer to the EOPatch :param eopatch: input EOPatch :type eopatch: EOPatch :return: New EOPatch with added vector layer :rtype: EOPatch """ bbox_map = self._get_submap(eopatch) height, width = self._get_shape(eopatch) dst_transform = transform.from_bounds(*eopatch.bbox, width=width, height=height) if self.feature_name in eopatch[self.feature_type]: raster = eopatch[self.feature_type][self.feature_name].squeeze() else: raster = np.ones((height, width), dtype=self.raster_dtype) * self.no_data_value if not bbox_map.empty: features.rasterize([(bbox_map.cascaded_union.buffer(0), self.raster_value)], out=raster, transform=dst_transform, dtype=self.raster_dtype) eopatch[self.feature_type][self.feature_name] = raster[..., np.newaxis] return eopatch ``` #### File: Johannes-R-Schmid/eo-learn/install_all.py ```python import sys import subprocess SUBPACKAGE_LIST = ['core', 'coregistration', 'features', 'geometry', 'io', 'mask', 'ml_tools'] def pip_command(name, args): subprocess.check_call([sys.executable, '-m', 'pip', 'install'] + args + ['./{}'.format(name)]) if __name__ == '__main__': for subpackage in SUBPACKAGE_LIST: pip_command(subpackage, sys.argv[1:]) ```
{ "source": "johannesruetten/ChargingEnvironment", "score": 2 }
#### File: envs/custom_env_dir/conv_optim.py ```python import cvxpy as cvx import numpy as np import mosek from envs.custom_env_dir.data_handler import DataHandler import gym import os ''' CALCULATE THEORETICAL OPTIMUM BY MEANS OF CONVEX OPTIMIZATION ASSUMING COMPLETE KNOWLEDGE OF FUTURE DATA ''' class ConvOptim(): def run_optimizer(self, store_dir, benchmark, supervised_training_set, game_collection, supervised_test_set, development): # Initialize charging environment with given EV data env = gym.make('ChargingEnv-v0', game_collection=game_collection, battery_capacity=24, charging_rate=6, penalty_coefficient=12, obs='benchmark') # Sample each day 10 times for benchmark and test set if benchmark: n_games = len(game_collection)*10 test= True if development: filename = 'Theoretical_limit_DEV' else: filename = 'Theoretical_limit_TEST' elif supervised_test_set: test = True n_games = len(game_collection)*10 filename = 'Supervised_test' elif supervised_training_set: n_games = 50000 #für imitation learning dataset hochgesetzt filename = 'Supervised_train' # Create lists to store optimization results price_list, input_price_list, arr_list, soc_list, action_list, dates, day_cats, \ nextday_cats, starts, ends, scores, avg_scores, eps_history, pen_history, steps_array, \ final_soc, t_step, t_sin, t_cos, t_saw1, t_saw2 , t0, t1, t2, t3, t4, t5, t6, t7, t8, \ t9, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, d1, d2, d3, d4 \ = [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], \ [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [] for i in range(n_games): # Create lists to store optimization results for each episode/game episode_prices, episode_input_prices, episode_soc, episode_actions, episode_day_cats, \ episode_nextday_cats, calc_actions, episode_t_step, episode_t_sin, episode_t_cos, \ episode_t_saw1, episode_t_saw2 , episode_t0, episode_t1, episode_t2, episode_t3, \ episode_t4, episode_t5, episode_t6, episode_t7, episode_t8, episode_t9, episode_t10, \ episode_t11, episode_t12, episode_t13, episode_t14, episode_t15, episode_t16, episode_t17, \ episode_t18, episode_t19, episode_t20, episode_t21, episode_t22, episode_t23, \ episode_d1, episode_d2, episode_d3, episode_d4 \ = [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], \ [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [] # Get initial data from the environment reward=0 observation = env.reset(test, i) score = 0 initial_soc = int(round(env.soc*100,0)) steps = env.n_steps prices = env.hourly_prices['Spot'][env.start_ind+168:env.end_ind+168].to_list() # Define objective function action = cvx.Variable(steps, integer=True) soc = cvx.Variable(steps, integer=True) objective = cvx.Minimize(prices@action) # Define constraints constraints = [action >=-25, action <=25, soc == initial_soc + cvx.cumsum(action), soc>=0, soc<=100, soc[steps-1]==100] # Define problem prob = cvx.Problem(objective, constraints) # Solve problem with the selected solver prob.solve(solver=cvx.MOSEK) ''' _____________________________________________________ Store all necessary data in a CSV file for evaluation _____________________________________________________ ''' episode_prices = env.hourly_prices['Spot'][168:192].to_list() episode_day_cats = env.hourly_prices['day_cat'][168] episode_nextday_cats = env.hourly_prices['day_cat'][191] episode_input_prices = env.hourly_prices['Spot'].to_list() episode_soc.append(initial_soc/100) episode_t_step = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] episode_t_sin = env.hourly_prices['t_sin'][168:192].to_list() episode_t_cos = env.hourly_prices['t_cos'][168:192].to_list() episode_t_saw1 = env.hourly_prices['t_saw1'][168:192].to_list() episode_t_saw2 = env.hourly_prices['t_saw2'][168:192].to_list() episode_t0 = env.hourly_prices['t0'][168:192].to_list() episode_t1 = env.hourly_prices['t1'][168:192].to_list() episode_t2 = env.hourly_prices['t2'][168:192].to_list() episode_t3 = env.hourly_prices['t3'][168:192].to_list() episode_t4 = env.hourly_prices['t4'][168:192].to_list() episode_t5 = env.hourly_prices['t5'][168:192].to_list() episode_t6 = env.hourly_prices['t6'][168:192].to_list() episode_t7 = env.hourly_prices['t7'][168:192].to_list() episode_t8 = env.hourly_prices['t8'][168:192].to_list() episode_t9 = env.hourly_prices['t9'][168:192].to_list() episode_t10 = env.hourly_prices['t10'][168:192].to_list() episode_t11 = env.hourly_prices['t11'][168:192].to_list() episode_t12 = env.hourly_prices['t12'][168:192].to_list() episode_t13 = env.hourly_prices['t13'][168:192].to_list() episode_t14 = env.hourly_prices['t14'][168:192].to_list() episode_t15 = env.hourly_prices['t15'][168:192].to_list() episode_t16 = env.hourly_prices['t16'][168:192].to_list() episode_t17 = env.hourly_prices['t17'][168:192].to_list() episode_t18 = env.hourly_prices['t18'][168:192].to_list() episode_t19 = env.hourly_prices['t19'][168:192].to_list() episode_t20 = env.hourly_prices['t20'][168:192].to_list() episode_t21 = env.hourly_prices['t21'][168:192].to_list() episode_t22 = env.hourly_prices['t22'][168:192].to_list() episode_t23 = env.hourly_prices['t23'][168:192].to_list() episode_d1 = env.hourly_prices['d1'][168:192].to_list() episode_d2 = env.hourly_prices['d2'][168:192].to_list() episode_d3 = env.hourly_prices['d3'][168:192].to_list() episode_d4 = env.hourly_prices['d4'][168:192].to_list() for j in range(0,env.start_ind): episode_soc.append(initial_soc/100) episode_actions.append('-') calc_actions.append(0) for j in range(0,(env.end_ind-env.start_ind)): episode_soc.append(soc[j].value/100) episode_actions.append((action[j].value/100)*24) calc_actions.append((action[j].value/100)*24) for j in range(24-env.end_ind): episode_soc.append(soc[(env.end_ind-env.start_ind-1)].value/100) episode_actions.append('-') calc_actions.append(0) price_array = np.array(episode_prices)/10 action_array = np.array(calc_actions) episode_rewards = price_array*action_array*(-1) if i%100==0: print('episode: ', i, ' reward: ', sum(episode_rewards)) price_list.append(episode_prices) arr_list.append(env.start_ind) input_price_list.append(episode_input_prices) soc_list.append(episode_soc) action_list.append(episode_actions) dates.append(env.game_date) day_cats.append(episode_day_cats) nextday_cats.append(episode_nextday_cats) starts.append(env.start_time) ends.append(env.end_time) final_soc.append(1) scores.append(sum(episode_rewards)) eps_history.append('-') pen_history.append('-') avg_scores.append('-') t_step.append(episode_t_step) t_sin.append(episode_t_sin) t_cos.append(episode_t_cos) t_saw1.append(episode_t_saw1) t_saw2.append(episode_t_saw2) t0.append(episode_t0) t1.append(episode_t1) t2.append(episode_t2) t3.append(episode_t3) t4.append(episode_t4) t5.append(episode_t5) t6.append(episode_t6) t7.append(episode_t7) t8.append(episode_t8) t9.append(episode_t9) t10.append(episode_t10) t11.append(episode_t11) t12.append(episode_t12) t13.append(episode_t13) t14.append(episode_t14) t15.append(episode_t15) t16.append(episode_t16) t17.append(episode_t17) t18.append(episode_t18) t19.append(episode_t19) t20.append(episode_t20) t21.append(episode_t21) t22.append(episode_t22) t23.append(episode_t23) d1.append(episode_d1) d2.append(episode_d2) d3.append(episode_d3) d4.append(episode_d4) # benchark is stored with one entire episode summarized in one row if benchmark: DataHandler().store_benchmark_results(price_list, soc_list, action_list, dates, day_cats, starts, ends, scores, avg_scores, \ final_soc, eps_history, pen_history, filename, store_dir) # labeled dataset is stored with single charging/discarging decisions in one row elif supervised_training_set or supervised_test_set: DataHandler().store_supervised_dataset(price_list, input_price_list, arr_list, soc_list, action_list, dates, \ day_cats, nextday_cats, starts, ends, scores, \ avg_scores, final_soc, eps_history, pen_history, filename, store_dir, \ t_step, t_sin, t_cos, t_saw1, t_saw2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, \ t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, d1, d2, d3, d4) else: print('nothing stored...') ``` #### File: envs/custom_env_dir/dqn_agent.py ```python from envs.custom_env_dir.custom_dqn import DeepQNetwork from envs.custom_env_dir.replay_memory import ReplayBuffer import numpy as np import torch as T from datetime import datetime import os class DQNAgent(object): def __init__(self, gamma, epsilon, lr, n_actions, input_dims, optimizer, fc1_dims, fc2_dims, mem_size, batch_size, chkpt_dir, replace, eps_min, eps_dec, algo, env_name): self.gamma = gamma self.epsilon = epsilon self.lr = lr self.n_actions = n_actions self.input_dims = input_dims self.batch_size = batch_size self.eps_min = eps_min self.eps_dec = eps_dec self.replace_target_cnt = replace self.algo = algo self.env_name = env_name self.chkpt_dir = chkpt_dir cwd = os.getcwd() self.action_space = [i for i in range(n_actions)] self.learn_step_counter = 0 now = datetime.now().strftime('%Y%m%d_%H%M') # Replay memory self.memory = ReplayBuffer(mem_size, input_dims, n_actions) # Q-network / online network self.q_eval = DeepQNetwork(self.lr, self.n_actions, input_dims=self.input_dims, name=optimizer+'_gamma'+str(gamma)+'_lr'+\ (('%.15f' % lr).rstrip('0').rstrip('.'))+\ '_replace'+str(replace)+'_HL['+str(fc1_dims)+\ ' ,'+str(fc2_dims)+']_q_eval.pt',chkpt_dir=self.chkpt_dir,\ fc1_dims=fc1_dims, fc2_dims=fc2_dims, seed=1, optimizer=optimizer) # Target network self.q_next = DeepQNetwork(self.lr, self.n_actions, input_dims=self.input_dims, name=optimizer+'_gamma'+str(gamma)+'_lr'+\ (('%.15f' % lr).rstrip('0').rstrip('.'))+\ '_replace'+str(replace)+'_HL['+str(fc1_dims)+\ ' ,'+str(fc2_dims)+']_q_next.pt',chkpt_dir=self.chkpt_dir,\ fc1_dims=fc1_dims, fc2_dims=fc2_dims, seed=1, optimizer=optimizer) # Function for action selection def choose_action(self, observation): # Apply e-greedy action selection if np.random.random() > self.epsilon: state = T.tensor([observation],dtype=T.float).to(self.q_eval.device) actions = self.q_eval.forward(state) action = T.argmax(actions).item() else: action = np.random.choice(self.action_space) return action # Store state transitions in replay memory def store_transition(self, state, action, reward, state_): self.memory.store_transition(state, action, reward, state_) # Function samples mini-batch of transitions from replay memory def sample_memory(self): state, action, reward, new_state = \ self.memory.sample_buffer(self.batch_size) states = T.tensor(state).to(self.q_eval.device) rewards = T.tensor(reward).to(self.q_eval.device) actions = T.tensor(action).to(self.q_eval.device) states_ = T.tensor(new_state).to(self.q_eval.device) return states, actions, rewards, states_ # Function updates weights of the target network every C steps def replace_target_network(self): if self.learn_step_counter % self.replace_target_cnt == 0: self.q_next.load_state_dict(self.q_eval.state_dict()) # Function decrements epsilon during training process def decrement_epsilon(self): self.epsilon = self.epsilon - self.eps_dec \ if self.epsilon > self.eps_min else self.eps_min # Function stores current model parameters def save_models(self): self.q_eval.save_checkpoint() self.q_next.save_checkpoint() # Function stores final agent at the end of each training run def save_models_final(self): self.q_eval.save_checkpoint_final() self.q_next.save_checkpoint_final() def load_models(self): self.q_eval.load_checkpoint() self.q_next.load_checkpoint() def load_models_final(self): self.q_eval.load_checkpoint_final() self.q_next.load_checkpoint_final() def learn(self): if self.memory.mem_cntr < self.batch_size: return # sets gradient of optimizer object to zero self.q_eval.optimizer.zero_grad() self.replace_target_network() states, actions, rewards, states_ = self.sample_memory() indices = np.arange(self.batch_size) # q_eval ist the main DQN (online network) q_pred = self.q_eval.forward(states)[indices, actions] # q_next is the target network q_next = self.q_next.forward(states_).max(dim=1)[0] q_target = rewards + self.gamma*q_next loss = self.q_eval.loss(q_target, q_pred).to(self.q_eval.device) loss.backward() self.q_eval.optimizer.step() self.learn_step_counter += 1 self.decrement_epsilon() ```
{ "source": "Johannes-Sahlmann/jwst-visit-parser", "score": 3 }
#### File: jwst-visit-parser/visitparser/parser.py ```python from collections import OrderedDict import copy import re from astropy.table import Table, join import numpy as np iswhitespace = lambda x: re.fullmatch("\s+", x) is not None # set up regular expressions for parsing rx_dict = { 'template': re.compile(r'# (?P<apt_templates>.*)'), } def _parse_line(line, rx_dict): """Do a regex search against all defined regexes. Return the key and match result of the first matching regex. See https://www.vipinajayakumar.com/parsing-text-with-python/ """ for key, rx in rx_dict.items(): match = rx.search(line) if match: return key, match # if there are no matches return None, None # Some lightweight classes for parsed information class Statement(object): """Capture visit file statement delimited by a semicolon.""" def __init__(self, cmdstring, verbose=False): cmdparts = cmdstring.split(' ,') self.name = cmdparts[0] self.args = cmdparts[1:] try: self.scriptname = cmdparts[2] except IndexError: self.scriptname = 'NONE' if verbose: for part in cmdparts: print(" " + part) def __repr__(self): return ("<Statement {} >".format(self.name)) class Aux(Statement): """Capture statement identified by AUX keyword.""" def __init__(self, cmdstring, verbose=False): super().__init__(cmdstring, verbose=verbose) for param in self.args: if '=' in param: key, value = param.split('=') try: value = float(value) except: pass self.__dict__[key] = value class Dither(Statement): """Capture statement identified by DITHER keyword.""" def __init__(self, cmdstring, verbose=False): super().__init__(cmdstring, verbose=verbose) self.id = self.args[0].split('=')[1] for param in self.args: if '=' in param: key, value = param.split('=') try: value = float(value) except: pass self.__dict__[key] = value class Momentum(Statement): """Capture statement identified by MOMENTUM keyword.""" def __init__(self, cmdstring, verbose=False): super().__init__(cmdstring, verbose=verbose) for param in self.args: if '=' in param: key, value = param.split('=') try: value = float(value) except: pass self.__dict__[key] = value class SlewOrAct(Statement): """Capture statement identified by SLEW or ACT keyword.""" def __init__(self, cmdstring, group=None, sequence=None, verbose=False): super().__init__(cmdstring, verbose=verbose) self.group = group self.sequence = sequence try: self.activity = int(self.args[0], base=16) # note, these are base 16 hex numbers except ValueError as e: print('Activity number parsing raises ValueError:\n{}\nSetting to 99'.format(e)) self.activity = 99 for param in self.args[2:]: if '=' in param: key, value = param.split('=') try: value = float(value) except: pass self.__dict__[key] = value @property def gsa(self): "Group, sequence, activity" return "{:02d}{:1d}{:02d}".format(self.group, self.sequence, self.activity) class VisitDescription(Statement): """Capture statement identified by VISIT keyword.""" def __init__(self, cmdstring, verbose=False): super().__init__(cmdstring, verbose=verbose) self.id = self.args[0] for param in self.args[1:]: if '=' in param: key, value = param.split('=') try: value = float(value) except: pass self.__dict__[key] = value class Activity(SlewOrAct): """Capture information related to activity.""" def __init__(self, cmdstring, *args, **kwargs): super().__init__(cmdstring, *args, **kwargs) # self.scriptname = self.args[1] def __repr__(self): return ("Activity {}: {}".format(self.gsa, self.describe())) def describe(self): if self.scriptname == 'NRCWFSCMAIN': description = """{s.scriptname} {s.CONFIG} WFCGROUP={s.WFCGROUP} Readout={s.NGROUPS:.0f} groups, {s.NINTS:.0f} ints SW={s.FILTSHORTA}, LW={s.FILTLONGA}""" elif self.scriptname == 'NRCMAIN': description = """{s.scriptname} {s.CONFIG} Readout={s.NGROUPS:.0f} groups, {s.NINTS:.0f} ints SW={s.FILTSHORTA}, LW={s.FILTLONGA}""" elif self.scriptname == 'NRCWFCPMAIN': mod = self.CONFIG[3] # a or B description = "{s.scriptname} {s.FILTSHORT" + mod + "}+{s.PUPILSHORT" + mod + \ "} Readout={s.NGROUPS:.0f} groups, {s.NINTS:.0f} ints" elif self.scriptname == 'SCSAMMAIN': description = """SCSAMMAIN dx={s.DELTAX}, dy={s.DELTAY}, dpa={s.DELTAPA}""" elif self.scriptname == 'NRCSUBMAIN': description = """NRCSUBMAIN subarray={s.SUBARRAY}""" else: description = """{s.scriptname}""" try: return description.format(s=self) except AttributeError as e: print('Activity {} raised AttributeError:\n{}'.format(self.scriptname, e)) class Guide(SlewOrAct): """Expand Guide statement.""" def describe(self): if self.args[1] == 'FGSVERMAIN': return ("Verification") else: detnum = self.DETECTOR[-1] return """FGS{detnum}""".format(detnum=detnum, s=self) def __repr__(self): return ("Guide {}: {}".format(self.gsa, self.describe())) class Slew(SlewOrAct): """Expand statement identified by SLEW keyword.""" def __repr__(self): return ( "Slew {}: for {} on GS at ({}, {}) with PA={}".format(self.gsa, 'N/A', self.GSRA, self.GSDEC, self.GSPA)) # "Slew {}: for {} on GS at ({}, {}) with PA={}".format(self.gsa, self.GUIDEMODE, self.GSRA, # self.GSDEC, self.GSPA)) class Visit(): """Class for JWST visit file information""" def __init__(self, templates, statements, groups): self.templates = templates self.groups = groups self.statements = statements # store non-exposure related information in class asstributes dithers = OrderedDict() for statement in self.statements: if statement.name == 'VISIT': self.id = statement.id self.visit_parameters = statement elif statement.name == 'MOMENTUM': self.momentum = statement elif statement.name == 'AUX': self.aux = statement elif statement.name == 'DITHER': dithers['{}'.format(statement.id)] = statement self.dithers = dithers # construct astropy table with basic content script_statements = [] self.table = Table(names=('GROUP_ID', 'SEQ_ID', 'ACT_ID', 'GSA', 'TYPE', 'SCRIPT'), dtype=(int, int, int, object, object, object)) for group_id, group in self.groups.items(): for seq_id, seq in group.items(): for statement in seq: self.table.add_row((np.int(group_id.split('_')[1]), np.int(seq_id.split('_')[1]), statement.activity, statement.gsa, statement.name, statement.scriptname)) script_statements.append(statement) for colname in 'TYPE SCRIPT GSA'.split(): self.table[colname] = np.array(self.table[colname]).astype(str) self.table.meta['comments']=['{}'.format(self.id)] self.number_of_statements = len(self.table) self.script_statements = np.array(script_statements) def __repr__(self): return ( "Visit {}: {:>2} dithers, {:>2} groups, {:>3} observation statements. Uses {}".format(self.id, len(self.dithers), len(self.groups), self.number_of_statements, self.templates)) def overview_table(self, instrument=None): """Return an astropy table with specific information, one row per exposure/activity. Parameters ---------- instrument : str JWST instrument name, case insensitive Returns ------- table : astropy.table Table with additional information extracted from the statements. """ table = copy.deepcopy(self.table) if instrument.lower() == 'niriss': remove_index = np.array([i for i, script in enumerate(self.table['SCRIPT']) if script[0:3] not in ['NIS', 'NRC']]) table.remove_rows(remove_index) column_names = 'GSA OPMODE TARGTYPE DITHERID PATTERN NINTS NGROUPS PUPIL FILTER SUBARRAY'.split() instrument_table = Table(names=tuple(column_names), dtype=tuple([object]*10)) for statement in self.script_statements: if statement.gsa in table['GSA']: row = [statement.gsa] for colname in instrument_table.colnames[1:]: try: value = str(getattr(statement, colname)) except AttributeError: value = 'NONE' row.append(value) instrument_table.add_row(vals=row) for colname in instrument_table.colnames: instrument_table[colname] = np.array(instrument_table[colname]).astype(str) table = join(table, instrument_table, keys='GSA') return table def parse_visit_file(filename, verbose=False): """Read and parse the visit file line-by-line. Parameters ---------- filename : str Name fo file to parse verbose : bool verbosity Returns ------- visit : Visit object Object containing all information extracted from the file. """ with open(filename) as file: lines = file.readlines() key, match = _parse_line(lines[0], rx_dict) if key == 'template': apt_templates = match.group('apt_templates').split(',') # Simple parsing that ignores commands and newlines, but respects the fact that # OSS parameters are separated by the exact string " ," with the comma necessarily after whitespace. nocomments = [l.strip() for l in lines if not (l.startswith("#") or iswhitespace(l))] for i in range(len(nocomments)): if nocomments[i].startswith(','): nocomments[i] = ' ' + nocomments[i] merged = ''.join(nocomments) commands = merged.split(';') if verbose: print(commands) # Now iterate through the statements groups = OrderedDict() commands = np.array(commands) # process initial statements statements = [] for index,cmd in enumerate(commands): if cmd == '': continue if verbose: print(cmd) print('*'*50) parsedcmd = Statement(cmd) if parsedcmd.name == 'GROUP': break elif parsedcmd.name == 'VISIT': parsedcmd = VisitDescription(cmd) elif parsedcmd.name == 'MOMENTUM': parsedcmd = Momentum(cmd) elif parsedcmd.name == 'AUX': parsedcmd = Aux(cmd) elif parsedcmd.name == 'DITHER': parsedcmd = Dither(cmd) statements.append(parsedcmd) # process groups and sequences for ii, cmd in enumerate(commands[index:]): if cmd == '': continue parsedcmd = Statement(cmd) if parsedcmd.name == 'GROUP': ct_group = int(parsedcmd.args[0].split()[0]) groups['GROUP_{:02d}'.format(ct_group)] = OrderedDict() continue elif parsedcmd.name == 'SEQ': ct_seq = int(parsedcmd.args[0].split()[0]) seq_statements = [] groups['GROUP_{:02d}'.format(ct_group)]['SEQ_{:02d}'.format(ct_seq)] = seq_statements continue elif parsedcmd.name == 'SLEW': parsedcmd = Slew(cmd, group=ct_group, sequence=ct_seq) elif parsedcmd.name == 'ACT': if parsedcmd.args[1] == 'FGSMAIN' or parsedcmd.args[1] == 'FGSVERMAIN': parsedcmd = Guide(cmd, group=ct_group, sequence=ct_seq) else: parsedcmd = Activity(cmd, group=ct_group, sequence=ct_seq) seq_statements.append(parsedcmd) return Visit(apt_templates, statements, groups) def crosscheck_wfsc_visit_file(filename): """ TODO ---- update Perrin's function to updated code. Parameters ---------- filename Returns ------- """ statements, apt_template = parse_visit_file(filename) print("==WFSC crosscheck for file {}==".format(filename)) print("From APT template: {}".format(apt_template)) # Check slew statements slews = [s for s in statements if (isinstance(s, Slew) or isinstance(s, Guide))] # Check activity statements acts = [s for s in statements if isinstance(s, Activity)] is_wfsc_visit = any(['WFSC' in a.scriptname for a in acts]) print("\nContains {} slew or guide statement(s):".format(len(slews))) for s in slews: print(" " + repr(s)) print("\nContains {} activity statement(s):".format(len(acts))) act_by_num = dict() for s in acts: print(" " + repr(s)) act_by_num[s.gsa] = s if is_wfsc_visit: aux = [s for s in statements if s.name == 'AUX'] if len(aux) is 0: raise RuntimeError("WFSC VISIT BUT NO AUX STATEMENT FOUND!") # Check for presence of AUX statement ```
{ "source": "Johannes-Sahlmann/pystrometry", "score": 3 }
#### File: pystrometry/utils/archives.py ```python import os from astropy.table import Table from astroquery.gaia import Gaia, TapPlus import pandas as pd def get_gaiadr_data(analysis_dataset_name, data_dir, source_id_array=None, gaia_data_release='dr3int5', overwrite_query=False, gaia_table_name='gaia_source', shared_user_name='dr3int5'): """Query a Gaia archive table by source_id. Only data corresponding to source_id_array are returned. Parameters ---------- analysis_dataset_name data_dir source_id_array gaia_data_release overwrite_query gaia_table_name Returns ------- """ # retrieve Gaia DR data by submitting list of source_id to GACS output_file = os.path.join(data_dir, '{}_{}_sources.parquet'.format(gaia_data_release, analysis_dataset_name)) if (not os.path.isfile(output_file)) or (overwrite_query): if 'int' in gaia_data_release: gaia = TapPlus(url="http://geapre.esac.esa.int/tap-server/tap") if getattr(gaia, '_TapPlus__isLoggedIn') is False: gaia.login() table_name = 'user_{}'.format(shared_user_name) else: gaia = Gaia table_name = '{}'.format(gaia_data_release) if source_id_array is not None: input_table_name = '{}_source_id'.format(analysis_dataset_name) input_table = os.path.join(data_dir, '%s.vot' % input_table_name) source_id_column_name = 'source_id' Table([source_id_array], names=['source_id']).write(input_table, format='votable', overwrite=True) query = ''' SELECT * FROM (select * FROM tap_upload.{0}) AS input INNER JOIN (select * FROM {1}.{3}) AS gdr ON (input.{2} = gdr.source_id) ;'''.format(input_table_name, table_name, source_id_column_name, gaia_table_name) job = gaia.launch_job_async(query=query, upload_resource=input_table, upload_table_name=input_table_name, verbose=True) # dump_to_file=True, output_file=output_file) else: query = 'select * FROM {}.{};'.format(table_name, gaia_table_name) job = gaia.launch_job_async(query=query, verbose=True) table = job.get_results() df = table.to_pandas() df.to_parquet(output_file) else: df = pd.read_parquet(output_file) print('Retrieved {} rows from {}.{}'.format(len(df), gaia_data_release, gaia_table_name)) return df ``` #### File: pystrometry/utils/du437_tools.py ```python import copy import os from astropy.table import Table from astropy.time import Time import numpy as np import pylab as pl from .. import gaia_astrometry, pystrometry try: from helpers.table_helpers import plot_columns_simple except ImportError: print('universal_helpers not available') def apply_elimination_cuts(table, selection_cuts, parameter_mapping): """Eliminate rows in astropy table based on input parameters. Parameters ---------- table selection_cuts parameter_mapping Returns ------- Examples -------- selection_cuts = OrderedDict({'period_1': {'operator': '<', 'threshold': 1000.}, 'period_2': {'operator': '>', 'threshold': 50.}, 'm2sini': {'operator': '>', 'threshold': 10.}, }) parameter_mapping = {'period': 'PER', 'ecc': 'ECC', 'm2sini': 'MSINI', 'omega': 'OM', 'plx': 'PAR', } """ string_repr = '' for field, parameters in selection_cuts.items(): if parameters['operator'] == '>': remove_index = np.where(table[parameter_mapping[field]] > parameters['threshold'])[0] elif parameters['operator'] == '<': remove_index = np.where(table[parameter_mapping[field]] < parameters['threshold'])[0] table.remove_rows(remove_index) string_repr += '{:>10} {} {:>6}\n'.format(field, parameters['operator'], parameters['threshold']) return table, string_repr def apply_selection_cuts(table, selection_cuts, parameter_mapping): """ Parameters ---------- table selection_cuts parameter_mapping Returns ------- """ string_repr = '' for field, parameters in selection_cuts.items(): field = field.split('_')[0] if parameters['operator'] == '>': remove_index = np.where(table[parameter_mapping[field]] < parameters['threshold'])[0] elif parameters['operator'] == '<': remove_index = np.where(table[parameter_mapping[field]] > parameters['threshold'])[0] table.remove_rows(remove_index) string_repr += '{:>10} {} {:>6}\n'.format(field, parameters['operator'], parameters['threshold']) return table, string_repr def period_phase_error(period_day_fit, period_day_truth, time_span_day): """Return the period phase error as defined in BH-011.""" return np.abs((period_day_fit - period_day_truth)/period_day_truth * time_span_day/period_day_truth) def make_comparison_figures(table, parameter_mapping, mapping_dr3id_to_starname, highlight_index=None, description_str='', save_plot=True, plot_dir=os.getcwd(), time_span_day=1000., period_phase_error_threshold=0.2): """ Parameters ---------- table parameter_mapping highlight_index description_str save_plot plot_dir Returns ------- """ # also save table with discrepancies discrepancy_table = Table() discrepancy_table['sourceId'] = table['sourceId'] discrepancy_table['Name'] = table['Name'] discrepancy_table['Name_dedreq'] = table['Name_dedreq-695'] discrepancy_table['m2_mjup'] = table['{}_m2_mjup'.format('p1')] for miks_name, mapped_name in parameter_mapping.items(): if miks_name not in 'plx'.split(): miks_field = 'p1_{}'.format(miks_name) else: miks_field = '{}'.format(miks_name) if miks_field not in table.colnames: continue pl.figure(figsize=(8, 8), facecolor='w', edgecolor='k') pl.plot(table[mapped_name], table[miks_field], 'bo') discrepancy_table[miks_field] = table[miks_field] discrepancy_table[mapped_name] = table[mapped_name] discrepancy_table['{}_discrepancy'.format(miks_field)] = table[mapped_name] - table[miks_field] # discrepancy in percent # discrepancy_table['{}_discr_rel'.format(miks_field)] = 100.*np.abs(table[mapped_name] - table[miks_field])/np.abs(table[miks_field]) discrepancy_table['{}_discr_rel'.format(miks_field)] = 100.*np.abs(table[mapped_name] - table[miks_field])/np.abs(table[mapped_name]) if highlight_index is not None: pl.plot(table[mapped_name][highlight_index], table[miks_field][highlight_index], 'ro', ms=15, mfc='none') pl.axis('equal') xymax = np.max(np.array([pl.xlim()[1], pl.ylim()[1]])) pl.plot([0, xymax], [0, xymax], 'k--') pl.xlabel('{} ({})'.format(mapped_name, table.meta['comparison_to'])) pl.ylabel('{} (DU437)'.format(miks_field)) pl.title('{} sources from {}'.format(len(table), table.meta['comparison_to'])) pl.text(0.01, 0.99, description_str, horizontalalignment='left', verticalalignment='top', transform=pl.gca().transAxes) pl.show() if save_plot: figure_name = os.path.join(plot_dir, '{}_comparison_to_{}.pdf'.format(miks_field, table.meta['comparison_to'])) pl.savefig(figure_name, transparent=True, bbox_inches='tight', pad_inches=0) # period phase error: miks_name = 'period_day' miks_field = 'p1_{}'.format(miks_name) mapped_name = parameter_mapping[miks_name] period_day_fit = table[miks_field] period_day_truth = table[mapped_name] discrepancy_table['period_phase_error'] = period_phase_error(period_day_fit, period_day_truth, time_span_day) n_period_recovered = len(np.where(np.abs(discrepancy_table['period_phase_error'])<period_phase_error_threshold)[0]) pl.figure(figsize=(8, 4), facecolor='w', edgecolor='k') pl.plot(period_day_truth, discrepancy_table['period_phase_error'], 'k.') pl.ylim((-1,1)) pl.fill_between(pl.xlim(), period_phase_error_threshold, y2=-period_phase_error_threshold, color='g', alpha=0.5) pl.xlabel('Truth period (day)') pl.ylabel('Period phase error') description_str_2 = '{}/{} = {:2.1f}% within +/- {:2.1f}\n'.format(n_period_recovered, len(discrepancy_table), n_period_recovered/len(discrepancy_table)*100, period_phase_error_threshold)+description_str pl.text(0.01, 0.99, description_str_2, horizontalalignment='left', verticalalignment='top', transform=pl.gca().transAxes) pl.show() if save_plot: figure_name = os.path.join(plot_dir, 'period_phase_error_{}.pdf'.format(table.meta['comparison_to'])) pl.savefig(figure_name, transparent=True, bbox_inches='tight', pad_inches=0) # pl.close('all') threshold = {'delta_chi2': {'value': 1000, 'operator': '>'}, 'f_test_probability': {'value': 1e-100, 'operator': '<'} } for miks_field in ['meritFunction', 'chi2WithPlanet', 'chi2SingleStar', 'delta_chi2', 'f_test_probability', 'p1_estSNratio', 'p1_period_snr']: pl.figure(figsize=(8, 4), facecolor='w', edgecolor='k') index = np.where(discrepancy_table['period_phase_error'] < 100)[0] pl.loglog(discrepancy_table['period_phase_error'][index], table[miks_field][index], 'bo', alpha=0.7) # pl.ylim((-1,1)) # pl.fill_between(pl.xlim(), period_phase_error_threshold, y2=-period_phase_error_threshold, color='g', alpha=0.5) pl.xlabel('Period phase error') pl.ylabel(miks_field) n_passed_threshold = None if miks_field in ['delta_chi2', 'f_test_probability']: value = threshold[miks_field]['value'] operator = threshold[miks_field]['operator'] if operator == '>': n_passed_threshold = len(np.where(table[miks_field] > value)[0]) pl.fill_between(pl.xlim(), value, y2=pl.ylim()[1], color='g', alpha=0.5) elif operator == '<': n_passed_threshold = len(np.where(table[miks_field] < value)[0]) pl.fill_between(pl.xlim(), value, y2=pl.ylim()[0], color='g', alpha=0.5) pl.title('{} of {} systems shown. {} pass threshold'.format(len(index), len(table), n_passed_threshold)) pl.text(0.01, 0.99, description_str, horizontalalignment='left', verticalalignment='top', transform=pl.gca().transAxes) pl.show() if save_plot: figure_name = os.path.join(plot_dir, 'period_phase_error_vs_{}_{}.pdf'.format(miks_field, table.meta['comparison_to'])) pl.savefig(figure_name, transparent=True, bbox_inches='tight', pad_inches=0) if 1: formats = {} for key in discrepancy_table.colnames:#['angular_distance', 'phot_g_mean_mag', 'parallax', 'pmra', 'pmdec']: if 'discr' in key: formats[key] = '%>2.1f' elif 'm2' in key: formats[key] = '%2.1f' # else: # formats[key] = '%2.3f' discrepancy_table_file = os.path.join(plot_dir, 'comparison_to_{}.csv'.format(table.meta['comparison_to'])) if 'p1_period_discr_rel' in discrepancy_table.colnames: discrepancy_table.sort('p1_period_discr_rel') discrepancy_table.write(discrepancy_table_file, format='ascii.fixed_width', delimiter=',', bookend=False, overwrite=True, formats=formats) try: pl.figure(figsize=(8, 8), facecolor='w', edgecolor='k') # pl.plot(table['p1_a1'], np.abs(table['p1_period'] - table[parameter_mapping['period']]), 'bo') # pl.xlabel('Fitted semimajor axis (mas)') pl.plot(table['a1_mas_minimum'], np.abs(table['p1_period'] - table[parameter_mapping['period']]), 'bo') pl.xlabel('Expected semimajor axis (mas)') pl.ylabel('Period error (day)') pl.show() if save_plot: figure_name = os.path.join(plot_dir, 'period_error_vs_a1.pdf') pl.savefig(figure_name, transparent=True, bbox_inches='tight', pad_inches=0) except KeyError: pass return discrepancy_table def get_gaia_iad(source_id, t_ref_jd, epoch_data_dir, verbose=False): """Return Gaia Epoch Astrometry Data. Parameters ---------- selected_systems index epoch_data_dir Returns ------- """ t_ref_mjd = Time(t_ref_jd, format='jd').mjd iad = gaia_astrometry.GaiaIad(source_id, epoch_data_dir) iad.load_data() iad_mjd = Time(iad.epoch_data[iad.time_column] * 365.25 + t_ref_jd, format='jd').mjd iad.epoch_data['MJD'] = iad_mjd iad.epoch_data_for_prototype = Table() iad.epoch_data_for_prototype['t-t_ref'] = iad.epoch_data[iad.time_column] for key in ['spsi_obs', 'cpsi_obs', 'ppfact_obs', 'da_mas_obs', 'errda_mas_obs', 'transitId', 'direction_AL0_AC1', 'OB']: iad.epoch_data_for_prototype[key] = iad.epoch_data[key] if key in ['spsi_obs', 'cpsi_obs']: iad.epoch_data_for_prototype['t{}'.format(key)] = iad.epoch_data_for_prototype[ 't-t_ref'] * \ iad.epoch_data_for_prototype[key] iad.epoch_data = copy.deepcopy(iad.epoch_data_for_prototype) iad.time_column = 't-t_ref' iad.epoch_data['MJD'] = iad_mjd iad.t_ref_mjd = t_ref_mjd iad.scan_angle_definition = 'gaia' if verbose: iad.epoch_data.pprint() return iad def make_orbit_system(selected_systems, index, scan_angle_definition, t_ref_mjd, m1_MS=1., degenerate_orbit=False, verbose=False): """Return an OrbitSystem for the specified input table row. Parameters ---------- selected_systems index epoch_data_dir mapping_dr3id_to_starname plot_dir m1_MS rv show_plot degenerate_orbit Returns ------- """ alpha_mas = selected_systems['p1_a1_mas'][index] absolute_parallax_mas = selected_systems['plx_mas'][index] a_m = pystrometry.convert_from_angular_to_linear(alpha_mas, absolute_parallax_mas) P_day = selected_systems['p1_period_day'][index] m2_kg = pystrometry.pjGet_m2(m1_MS*pystrometry.MS_kg, a_m, P_day) m2_MJ = m2_kg/pystrometry.MJ_kg attribute_dict = { 'offset_alphastar_mas': selected_systems['alphaStarOffset_mas'][index], 'offset_delta_mas': selected_systems['deltaOffset_mas'][index], # 'RA_deg': 0., # 'DE_deg': 0., 'RA_deg': selected_systems['alpha0_deg'][index], 'DE_deg': selected_systems['delta0_deg'][index], # 'plx_mas': selected_systems['plx'][index], 'absolute_plx_mas': selected_systems['plx_mas'][index], 'muRA_mas': selected_systems['muAlphaStar_masPyr'][index], 'muDE_mas': selected_systems['muDelta_masPyr'][index], 'P_day': selected_systems['p1_period_day'][index], 'ecc': selected_systems['p1_ecc'][index], 'omega_deg': selected_systems['p1_omega_deg'][index], 'OMEGA_deg': selected_systems['p1_OMEGA_deg'][index], 'i_deg': selected_systems['p1_incl_deg'][index], 'a_mas': selected_systems['p1_a1_mas'][index], 'Tp_day': t_ref_mjd + selected_systems['p1_Tp_day-T0'][index], 'm1_MS': m1_MS, 'm2_MJ': m2_MJ, 'Tref_MJD': t_ref_mjd, 'scan_angle_definition': scan_angle_definition, } if degenerate_orbit: attribute_dict['omega_deg'] += 180. attribute_dict['OMEGA_deg'] += 180. orbit = pystrometry.OrbitSystem(attribute_dict=attribute_dict) if verbose: print(orbit) return orbit def make_astrometric_orbit_plotter(selected_systems, index, epoch_data_dir, degenerate_orbit=False, verbose=False, m1_MS=1.): """Return AstrometricOrbitPlotter object Parameters ---------- selected_systems index epoch_data_dir degenerate_orbit verbose m1_MS Returns ------- """ source_id = selected_systems['sourceId'][index] t_ref_jd = selected_systems['T0_JD'][index] iad = get_gaia_iad(source_id, t_ref_jd, epoch_data_dir, verbose=verbose) orbit = make_orbit_system(selected_systems, index, iad.scan_angle_definition, iad.t_ref_mjd, m1_MS=m1_MS, degenerate_orbit=degenerate_orbit, verbose=verbose) # set coeffMatrix in orbit object ppm_signal_mas = orbit.ppm(iad.epoch_data['MJD'], psi_deg=np.rad2deg( np.arctan2(iad.epoch_data['spsi_obs'], iad.epoch_data['cpsi_obs'])), offsetRA_mas=selected_systems['alphaStarOffset_mas'][index], offsetDE_mas=selected_systems['deltaOffset_mas'][index], externalParallaxFactors=iad.epoch_data['ppfact_obs'], verbose=True) # 1/0 plot_dict = {} plot_dict['model_parameters'] = {0: orbit.attribute_dict} plot_dict['linear_coefficients'] = {'matrix': orbit.coeffMatrix} # dict ('matrix', 'table') plot_dict['data_type'] = '1d' if hasattr(iad, 'xi'): plot_dict['data_type'] = 'gaia_2d' else: plot_dict['data_type'] = '1d' plot_dict['scan_angle_definition'] = iad.scan_angle_definition for key in iad.epoch_data.colnames: if '_obs' in key: new_key = key.replace('_obs', '') if new_key == 'errda_mas': new_key = 'sigma_da_mas' iad.epoch_data[new_key] = iad.epoch_data[key] plot_dict['data'] = iad if verbose: iad.epoch_data.pprint() axp = pystrometry.AstrometricOrbitPlotter(plot_dict) # axp.print_residual_statistics() return axp def make_orbit_figures(selected_systems, index, epoch_data_dir, mapping_dr3id_to_starname=None, plot_dir=os.path.expanduser('~'), m1_MS=1., rv=None, show_plot=True, degenerate_orbit=False, verbose=False): axp = make_astrometric_orbit_plotter(selected_systems, index, epoch_data_dir, degenerate_orbit=degenerate_orbit, verbose=verbose, m1_MS=m1_MS) iad = axp.data n_curve = 1500 timestamps_curve_2d = np.linspace(np.min(iad.epoch_data['MJD']), np.max(iad.epoch_data['MJD']), n_curve) axp.t_curve_MJD = timestamps_curve_2d if 'phot_g_mean_mag' in selected_systems.colnames: mag_str = ' $G$={:2.1f}'.format(selected_systems['phot_g_mean_mag'][index]) else: mag_str = '' if mapping_dr3id_to_starname is not None: axp.title = 'Gaia DR3 {} ({}{})'.format(source_id, mapping_dr3id_to_starname[source_id], mag_str) name_seed = 'DR3_{}_{}'.format(source_id, mapping_dr3id_to_starname[source_id]) else: name_seed = 'DR3_{}'.format(source_id) argument_dict = {'plot_dir': plot_dir, 'ppm_panel': True, 'frame_residual_panel': True, 'orbit_only_panel': False, 'ppm_description': 'default', 'epoch_omc_description': 'default', 'orbit_description': 'default', 'arrow_offset_x': +100, 'arrow_offset_y': +100, 'name_seed': name_seed, 'scan_angle_definition': scan_angle_definition} argument_dict['save_plot'] = True argument_dict['omc_panel'] = True argument_dict['orbit_only_panel'] = False # argument_dict['make_condensed_summary_figure'] = True # argument_dict['make_xy_residual_figure'] = True argument_dict['make_condensed_summary_figure'] = False argument_dict['make_xy_residual_figure'] = False argument_dict['make_1d_overview_figure'] = True argument_dict['excess_noise'] = selected_systems['excessNoise'][index] argument_dict['merit_function'] = selected_systems['meritFunction'][index] if show_plot: axp.plot(argument_dict=argument_dict) if rv is not None: from ..pystrometry import plot_rv_data my_orbit = copy.deepcopy(orbit) # my_orbit.m2_MJ = orbit.m2_MJ/10. plot_rv_data(rv, orbit_system=my_orbit, n_orbit=np.ceil(np.ptp(rv['MJD'])/orbit.P_day)+1) pl.show() return axp def make_orbit_figure(selected_systems, index, epoch_data_dir, mapping_dr3id_to_starname=None, plot_dir=os.path.expanduser('~'), m1_MS=1., rv=None, show_plot=True, degenerate_orbit=False, epoch_data_suffix=None): source_id = selected_systems['sourceId'][index] t_ref_jd = selected_systems['T0_JD'][index] t_ref_mjd = Time(t_ref_jd, format='jd').mjd if epoch_data_suffix is None: iad = gaia_astrometry.GaiaIad(source_id, epoch_data_dir) else: iad = gaia_astrometry.GaiaIad(source_id, epoch_data_dir, epoch_data_suffix=epoch_data_suffix) iad.load_data(filter_on_frame_uncertainty=True) # pl.close('all') # pl.figure() # pl.hist(iad.epoch_data['errda_mas_obs']) # # pl.show() # pl.savefig('test.png') iad_mjd = Time(iad.epoch_data[iad.time_column]*365.25+t_ref_jd, format='jd').mjd iad.epoch_data['MJD'] = iad_mjd iad.epoch_data_for_prototype = Table() iad.epoch_data_for_prototype['t-t_ref'] = iad.epoch_data[iad.time_column] for key in ['spsi_obs', 'cpsi_obs', 'ppfact_obs', 'da_mas_obs', 'errda_mas_obs', 'transitId', 'direction_AL0_AC1', 'OB']: iad.epoch_data_for_prototype[key] = iad.epoch_data[key] if key in ['spsi_obs', 'cpsi_obs']: iad.epoch_data_for_prototype['t{}'.format(key)] = iad.epoch_data_for_prototype['t-t_ref'] \ * iad.epoch_data_for_prototype[key] iad.epoch_data = copy.deepcopy(iad.epoch_data_for_prototype) iad.time_column = 't-t_ref' iad.epoch_data['MJD'] = iad_mjd iad.t_ref_mjd = t_ref_mjd scan_angle_definition = 'gaia' # loop over every companion in system from collections import OrderedDict model_parameters = OrderedDict() orbit_description = OrderedDict() # for planet_index in np.arange(1, selected_systems['Nplanets'][index]+1): for planet_index in np.arange(selected_systems['Nplanets'][index]): planet_number = planet_index + 1 alpha_mas = selected_systems['p{}_a1_mas'.format(planet_number)][index] absolute_parallax_mas = selected_systems['plx_mas'][index] a_m = pystrometry.convert_from_angular_to_linear(alpha_mas, absolute_parallax_mas) P_day = selected_systems['p{}_period_day'.format(planet_number)][index] m2_kg = pystrometry.pjGet_m2(m1_MS*pystrometry.MS_kg, a_m, P_day) m2_MJ = m2_kg/pystrometry.MJ_kg attribute_dict = { 'offset_alphastar_mas': selected_systems['alphaStarOffset_mas'][index], 'offset_delta_mas': selected_systems['deltaOffset_mas'][index], # 'RA_deg': 0., # 'DE_deg': 0., 'RA_deg': selected_systems['alpha0_deg'][index], 'DE_deg': selected_systems['delta0_deg'][index], # 'plx_mas': selected_systems['plx'][index], 'absolute_plx_mas': selected_systems['plx_mas'][index], 'muRA_mas': selected_systems['muAlphaStar_masPyr'][index], 'muDE_mas': selected_systems['muDelta_masPyr'][index], 'P_day': selected_systems['p{}_period_day'.format(planet_number)][index], 'ecc': selected_systems['p{}_ecc'.format(planet_number)][index], 'omega_deg': selected_systems['p{}_omega_deg'.format(planet_number)][index], 'OMEGA_deg': selected_systems['p{}_OMEGA_deg'.format(planet_number)][index], 'i_deg': selected_systems['p{}_incl_deg'.format(planet_number)][index], 'a_mas': selected_systems['p{}_a1_mas'.format(planet_number)][index], 'Tp_day': iad.t_ref_mjd + selected_systems['p{}_Tp_day-T0'.format(planet_number)][index], 'm1_MS': m1_MS, 'm2_MJ': m2_MJ, 'Tref_MJD': iad.t_ref_mjd, 'scan_angle_definition': scan_angle_definition, } if degenerate_orbit: attribute_dict['omega_deg'] += 180. attribute_dict['OMEGA_deg'] += 180. # print(attribute_dict) # print(pystrometry.geometric_elements(np.array([selected_systems['p1_{}'.format(key)][index] for key in 'A B F G'.split()]))) # print(pystrometry.mean_anomaly(iad.t_ref_mjd, attribute_dict['Tp_day'], attribute_dict['P_day'])) if planet_index == 0: orbit = pystrometry.OrbitSystem(attribute_dict=attribute_dict) # print(orbit) # set coeffMatrix in orbit object ppm_signal_mas = orbit.ppm(iad.epoch_data['MJD'], psi_deg=np.rad2deg( np.arctan2(iad.epoch_data['spsi_obs'], iad.epoch_data['cpsi_obs'])), offsetRA_mas=selected_systems['alphaStarOffset_mas'][index], offsetDE_mas=selected_systems['deltaOffset_mas'][index], externalParallaxFactors=iad.epoch_data['ppfact_obs'], verbose=True) model_parameters[planet_index] = attribute_dict # display additional info on orbit panel # if 'P1_sigma_a1_mas' in selected_systems.columns: # p1_a1_div_sigma_a1_mas # if ('sigma_p1_a1_mas' in selected_systems.columns) and (selected_systems['Nplanets'][index]==1): if ('sigma_p1_a1_mas' in selected_systems.columns) and (selected_systems['Nplanets'][index]==1): # temporary: only for single-companion solutions orbit_descr = '$\\alpha={0[p1_a1_mas]:2.{prec}f}\\pm{0[sigma_p1_a1_mas]:2.{prec}f}$ mas (ratio={0[p1_a1_div_sigma_a1_mas]:2.1f})\n'.format(dict(selected_systems[index]), prec=3) orbit_descr += '$P={0[p1_period_day]:2.{prec}f}\\pm{0[sigma_p1_period_day]:2.{prec}f}$ d\n'.format(dict(selected_systems[index]), prec=1) orbit_descr += '$e={0[p1_ecc]:2.{prec}f}\\pm{0[sigma_p1_ecc]:2.{prec}f}$\n'.format(dict(selected_systems[index]), prec=3) orbit_descr += '$i={0[p1_incl_deg]:2.{prec}f}$ deg\n'.format(dict(selected_systems[index]), prec=2) orbit_descr += '$\\omega={0[p1_omega_deg]:2.{prec}f}$ deg\n'.format(dict(selected_systems[index]), prec=2) orbit_descr += '$\\Omega={0[p1_OMEGA_deg]:2.{prec}f}$ deg\n'.format(dict(selected_systems[index]), prec=2) orbit_descr += '$M_1={0:2.{prec}f}$ Msun\n'.format(m1_MS, prec=2) orbit_descr += '$M_2={0:2.{prec}f}$ Mjup\n'.format(m2_MJ, prec=2) else: orbit_descr = 'default' orbit_description[planet_index] = orbit_descr plot_dict = {} # plot_dict['model_parameters'] = {0: attribute_dict} plot_dict['model_parameters'] = model_parameters plot_dict['linear_coefficients'] = {'matrix': orbit.coeffMatrix} # dict ('matrix', 'table') plot_dict['data_type'] = '1d' if hasattr(iad, 'xi'): plot_dict['data_type'] = 'gaia_2d' else: plot_dict['data_type'] = '1d' plot_dict['scan_angle_definition'] = scan_angle_definition for key in iad.epoch_data.colnames: if '_obs' in key: new_key = key.replace('_obs', '') if new_key == 'errda_mas': new_key = 'sigma_da_mas' iad.epoch_data[new_key] = iad.epoch_data[key] plot_dict['data'] = iad # iad.epoch_data.pprint() axp = pystrometry.AstrometricOrbitPlotter(plot_dict) axp.print_residual_statistics() n_curve = 1500 timestamps_curve_2d = np.linspace(np.min(iad.epoch_data['MJD']), np.max(iad.epoch_data['MJD']), n_curve) axp.t_curve_MJD = timestamps_curve_2d if 'phot_g_mean_mag' in selected_systems.colnames: mag_str = ' $G$={:2.1f}'.format(selected_systems['phot_g_mean_mag'][index]) else: mag_str = '' if mapping_dr3id_to_starname is not None: axp.title = 'Gaia DR3 {} ({}{})'.format(source_id, mapping_dr3id_to_starname[source_id], mag_str) name_seed = 'DR3_{}_{}'.format(source_id, mapping_dr3id_to_starname[source_id].replace('/', '-')) else: name_seed = 'DR3_{}'.format(source_id) argument_dict = {'plot_dir': plot_dir, 'ppm_panel': True, 'frame_residual_panel': True, 'orbit_only_panel': True, 'ppm_description': 'default', 'epoch_omc_description': 'default', 'orbit_description': orbit_description, 'arrow_offset_x': +100, 'arrow_offset_y': +100, 'name_seed': name_seed, 'scan_angle_definition': scan_angle_definition} argument_dict['save_plot'] = True argument_dict['omc_panel'] = True argument_dict['orbit_only_panel'] = False # argument_dict['orbit_only_panel'] = True # argument_dict['make_condensed_summary_figure'] = True # argument_dict['make_xy_residual_figure'] = True argument_dict['make_condensed_summary_figure'] = False argument_dict['make_xy_residual_figure'] = False argument_dict['make_1d_overview_figure'] = True argument_dict['excess_noise'] = selected_systems['excessNoise_mas'][index] argument_dict['merit_function'] = selected_systems['meritFunction'][index] if show_plot: axp.plot(argument_dict=argument_dict) if rv is not None: from ..pystrometry import plot_rv_data my_orbit = copy.deepcopy(orbit) # my_orbit.m2_MJ = orbit.m2_MJ/10. plot_rv_data(rv, orbit_system=my_orbit, n_orbit=np.ceil(np.ptp(rv['MJD'])/orbit.P_day)+1) pl.show() return axp def show_best_solution(file, out_dir): """Make figures showing the MIKS best solution. Parameters ---------- file : str csv file containing solutions Returns ------- """ data = Table.read(file, format='csv', data_start=2) units_table = Table.read(file, format='csv', data_start=1) units = {key: str(value) for key, value in zip(units_table[0].colnames, [units_table[0][c] for c in units_table.colnames])} # apply cuts on data threshold = 1e7 for colname in data.colnames: if colname != 'sourceId': if np.any(np.abs(data[colname]) > threshold): data.remove_rows(np.where(np.abs(data[colname]) > threshold)[0]) print('Eliminated {} of {} rows with values > {:1.0e}'.format(len(units_table)-len(data), len(data), threshold)) plot_columns_simple(data, os.path.join(out_dir, 'best_solution_simple_plots'), name_seed='best_solution', units=units) ```
{ "source": "Johannes-Sahlmann/uhelpers", "score": 2 }
#### File: uhelpers/uhelpers/table_helpers.py ```python import os import numpy as np import pylab as pl def print_column_statistics(t): """ print basic statistics of columns in astropy table """ for colnam in t.colnames: try: print('Mean %s : %3.3f median %3.3f std %3.3f' % (colnam, np.mean(t[colnam]), np.median(t[colnam]), np.std(t[colnam]))) except: pass def plot_columns_simple(t, plot_dir, save_plot=True, name_seed='table', selected_columns=None, overwrite=False, show_plot=False, highlight_index=None, units=None): """Plot astropy column values versus row number. :param t: :param plot_dir: :return: """ for colnam in t.colnames: fig_name = os.path.join(plot_dir, '%s_%s.pdf' % (name_seed, colnam)) if (not os.path.isfile(fig_name)) | (overwrite) | (show_plot): if selected_columns is None: pass elif (selected_columns is not None) & (colnam not in selected_columns): continue try: if t[colnam].dtype == 'object': coord = np.array(t[colnam]).astype(np.float) else: coord = np.array(t[colnam]) if units is None: unit = t[colnam].unit else: unit = units[colnam] pl.figure(figsize=(6, 6), facecolor='w', edgecolor='k'); pl.clf(); pl.plot(coord, 'bo') if highlight_index is not None: pl.plot(highlight_index, coord[highlight_index], 'go', ms=20) pl.title('%s (%s)' % (colnam, unit)) pl.ylabel('%s (%s)' % (colnam, unit)) if show_plot: pl.show() if save_plot: if not os.path.isdir(plot_dir): os.makedirs(plot_dir) fig_name = os.path.join(plot_dir, '%s_%s.pdf' % (name_seed, colnam)) pl.savefig(fig_name, transparent=True, bbox_inches='tight', pad_inches=0.05, overwrite=overwrite) except: print('Exception occurred') pass ``` #### File: uhelpers/tests/test_archive_helpers.py ```python import netrc import os from astropy.table import Table import pytest from ..archive_helpers import get_exoplanet_orbit_database, gacs_list_query local_dir = os.path.dirname(os.path.abspath(__file__)) ON_TRAVIS = os.environ.get('TRAVIS') == 'true' @pytest.mark.skipif(ON_TRAVIS, reason='timeout issue.') def test_eod(): """Test the access to the exoplanet orbit database.""" catalog = get_exoplanet_orbit_database(local_dir, verbose=False) assert len(catalog) > 100 @pytest.mark.skipif(ON_TRAVIS, reason='Requires access to .netrc file.') def test_gacs_list_query(): # print('test gacs list query') # Define which host in the .netrc file to use HOST = 'http://gea.esac.esa.int' # Read from the .netrc file in your home directory secrets = netrc.netrc() username, account, password = secrets.authenticators(HOST) out_dir = os.path.dirname(__file__) T = Table() id_str_input_table = 'ID_HIP' T[id_str_input_table] = [1, 2, 3, 4, 5, 6, 7] gacs_table_name = 'tgas_source' id_str_gacs_table = 'hip' input_table_name = 'hip_star_list' input_table = os.path.join(out_dir, 'hip_star_list.vot') T[[id_str_input_table]].write(input_table, format='votable', overwrite=1) T_out = gacs_list_query(username, password, out_dir, input_table, input_table_name, gacs_table_name, id_str_gacs_table, id_str_input_table) T_out.pprint() ```
{ "source": "johannessarpola/django-pastebin", "score": 2 }
#### File: pastebin/core/app_messages.py ```python from django.contrib import messages class Messenger: """ Simpole wrapper for the django messages """ def __init__(self, domain): super().__init__() self.domain = domain import logging self.logger = logging.getLogger(__name__) def add_info_to_req(self, request, message): messages.add_message(request, messages.INFO, message) def add_warn_to_req(self, request, message): messages.add_message(request, messages.WARNING, message) def add_err_to_req(self, request, message): messages.add_message(request, messages.ERROR, message) self.logger.warning("Err message raised in domain {} with message: {}".format(self.domain, message)) ``` #### File: pastebin/forms/user_forms.py ```python from django.contrib.auth.forms import UserCreationForm from django import forms from django.contrib.auth.models import User from django.forms import ModelForm from pastebin.models import UserExtraInfo class RegistrationForm(UserCreationForm): username = forms.CharField(max_length=30) first_name = forms.CharField(max_length=30) last_name = forms.CharField(max_length=30) email = forms.EmailField(max_length=75) class Meta: model = User fields = ("username", "first_name", "last_name", "email",) def save(self, commit=True): user = super(RegistrationForm, self).save(commit=False) user.username = self.cleaned_data["username"] user.first_name = self.cleaned_data["first_name"] user.last_name = self.cleaned_data["last_name"] user.email = self.cleaned_data["email"] if commit: user.update() return user class ExtraEditForm(ModelForm): class Meta: model = UserExtraInfo fields = ['bio'] labels = { 'bio': ('Your bio') } help_texts = { 'bio': 'Let us know more about you' } def update(self, user): from pastebin.core.user_retriever import UserRetriever e_info = UserRetriever().get_user_extra_info_if_exists(user) if e_info is None: e_info = UserExtraInfo() e_info.paste_count = 0 e_info.bio = self.cleaned_data['bio'] e_info.save() def save(self, commit=True): from pastebin.core.user_retriever import UserRetriever e_info = UserRetriever().get_user_extra_info_if_exists(self.user) if e_info is None: e_info = UserExtraInfo() e_info.paste_count = 0 e_info.bio = self.cleaned_data['bio'] e_info.save(commit) class UserEditForm(ModelForm): class Meta: model = User fields = ['email', 'first_name', 'last_name'] labels = { 'email': ('Your email'), 'first_name': ('Your first name'), 'last_name': ('Your last name'), } def update_with_user(self, user:User): self.user = User.objects.get_or_create(id=user.id)[0] self.update() def update(self, commit=True): user = self.user user.first_name = self.cleaned_data["first_name"] user.last_name = self.cleaned_data["last_name"] user.email = self.cleaned_data["email"] user.save(commit) def create_user_edit_form_with_initial(user): u = UserEditForm( initial= {'email': user.email, 'first_name': user.first_name, 'last_name': user.last_name} ) return u def create_user_extra_edit_form_with_initial(user): from pastebin.core.user_retriever import UserRetriever retriever = UserRetriever() e_info = retriever.get_user_extra_info_if_exists(user) return ExtraEditForm(initial={'bio': e_info.bio}) ```
{ "source": "johannes-scharlach/pod-control", "score": 2 }
#### File: pod-control/src/script.py ```python from __future__ import division, print_function import math import numpy as np from scipy import linalg from matplotlib.pyplot import plot, subplot, legend, figure import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d import example2sys as e2s import analysis def optionPricingScript(): N = 1000 option = "call" r = 0.05 T = 1 K = 10.5 L = 30 integrator = "dopri5" integrator_options = {"nsteps" : 2000} sys = e2s.optionPricing(N=N, option=option, r=r, T=T, K=K, L=L) sys.integrator = integrator sys.integrator_options = integrator_options timeSteps = list(np.linspace(0, T, 10)) res = sys(timeSteps) fig = figure() ax = fig.add_subplot(111, projection='3d') N2 = int(1.5*K*N/L) X, Y, Z = [], [], [] for i in range(len(timeSteps)): X.append([timeSteps[i] for _ in range(N2)]) Y.append([j*L/N for j in range(N2)]) Z.append(list(res[i])[:N2]) ax.plot_surface(X, Y, Z) def controllableHeatSystemPlot(): X = [[0.0, 0.0, 0.0, 0.0, 0.0], [0.042646464646464648, 0.042646464646464648, 0.042646464646464648, 0.042646464646464648, 0.042646464646464648], [0.085292929292929295, 0.085292929292929295, 0.085292929292929295, 0.085292929292929295, 0.085292929292929295], [0.12793939393939394, 0.12793939393939394, 0.12793939393939394, 0.12793939393939394, 0.12793939393939394], [0.17058585858585859, 0.17058585858585859, 0.17058585858585859, 0.17058585858585859, 0.17058585858585859], [0.21323232323232325, 0.21323232323232325, 0.21323232323232325, 0.21323232323232325, 0.21323232323232325], [0.25587878787878787, 0.25587878787878787, 0.25587878787878787, 0.25587878787878787, 0.25587878787878787], [0.29852525252525253, 0.29852525252525253, 0.29852525252525253, 0.29852525252525253, 0.29852525252525253], [0.34117171717171718, 0.34117171717171718, 0.34117171717171718, 0.34117171717171718, 0.34117171717171718], [0.38381818181818184, 0.38381818181818184, 0.38381818181818184, 0.38381818181818184, 0.38381818181818184], [0.42646464646464649, 0.42646464646464649, 0.42646464646464649, 0.42646464646464649, 0.42646464646464649], [0.46911111111111115, 0.46911111111111115, 0.46911111111111115, 0.46911111111111115, 0.46911111111111115], [0.51175757575757574, 0.51175757575757574, 0.51175757575757574, 0.51175757575757574, 0.51175757575757574], [0.55440404040404045, 0.55440404040404045, 0.55440404040404045, 0.55440404040404045, 0.55440404040404045], [0.59705050505050505, 0.59705050505050505, 0.59705050505050505, 0.59705050505050505, 0.59705050505050505], [0.63969696969696976, 0.63969696969696976, 0.63969696969696976, 0.63969696969696976, 0.63969696969696976], [0.68234343434343436, 0.68234343434343436, 0.68234343434343436, 0.68234343434343436, 0.68234343434343436], [0.72498989898989896, 0.72498989898989896, 0.72498989898989896, 0.72498989898989896, 0.72498989898989896], [0.76763636363636367, 0.76763636363636367, 0.76763636363636367, 0.76763636363636367, 0.76763636363636367], [0.81028282828282827, 0.81028282828282827, 0.81028282828282827, 0.81028282828282827, 0.81028282828282827], [0.85292929292929298, 0.85292929292929298, 0.85292929292929298, 0.85292929292929298, 0.85292929292929298], [0.89557575757575758, 0.89557575757575758, 0.89557575757575758, 0.89557575757575758, 0.89557575757575758], [0.93822222222222229, 0.93822222222222229, 0.93822222222222229, 0.93822222222222229, 0.93822222222222229], [0.98086868686868689, 0.98086868686868689, 0.98086868686868689, 0.98086868686868689, 0.98086868686868689], [1.0235151515151515, 1.0235151515151515, 1.0235151515151515, 1.0235151515151515, 1.0235151515151515], [1.0661616161616161, 1.0661616161616161, 1.0661616161616161, 1.0661616161616161, 1.0661616161616161], [1.1088080808080809, 1.1088080808080809, 1.1088080808080809, 1.1088080808080809, 1.1088080808080809], [1.1514545454545455, 1.1514545454545455, 1.1514545454545455, 1.1514545454545455, 1.1514545454545455], [1.1941010101010101, 1.1941010101010101, 1.1941010101010101, 1.1941010101010101, 1.1941010101010101], [1.2367474747474747, 1.2367474747474747, 1.2367474747474747, 1.2367474747474747, 1.2367474747474747], [1.2793939393939395, 1.2793939393939395, 1.2793939393939395, 1.2793939393939395, 1.2793939393939395], [1.3220404040404041, 1.3220404040404041, 1.3220404040404041, 1.3220404040404041, 1.3220404040404041], [1.3646868686868687, 1.3646868686868687, 1.3646868686868687, 1.3646868686868687, 1.3646868686868687], [1.4073333333333333, 1.4073333333333333, 1.4073333333333333, 1.4073333333333333, 1.4073333333333333], [1.4499797979797979, 1.4499797979797979, 1.4499797979797979, 1.4499797979797979, 1.4499797979797979], [1.4926262626262627, 1.4926262626262627, 1.4926262626262627, 1.4926262626262627, 1.4926262626262627], [1.5352727272727273, 1.5352727272727273, 1.5352727272727273, 1.5352727272727273, 1.5352727272727273], [1.5779191919191919, 1.5779191919191919, 1.5779191919191919, 1.5779191919191919, 1.5779191919191919], [1.6205656565656565, 1.6205656565656565, 1.6205656565656565, 1.6205656565656565, 1.6205656565656565], [1.6632121212121214, 1.6632121212121214, 1.6632121212121214, 1.6632121212121214, 1.6632121212121214], [1.705858585858586, 1.705858585858586, 1.705858585858586, 1.705858585858586, 1.705858585858586], [1.7485050505050506, 1.7485050505050506, 1.7485050505050506, 1.7485050505050506, 1.7485050505050506], [1.7911515151515152, 1.7911515151515152, 1.7911515151515152, 1.7911515151515152, 1.7911515151515152], [1.8337979797979798, 1.8337979797979798, 1.8337979797979798, 1.8337979797979798, 1.8337979797979798], [1.8764444444444446, 1.8764444444444446, 1.8764444444444446, 1.8764444444444446, 1.8764444444444446], [1.9190909090909092, 1.9190909090909092, 1.9190909090909092, 1.9190909090909092, 1.9190909090909092], [1.9617373737373738, 1.9617373737373738, 1.9617373737373738, 1.9617373737373738, 1.9617373737373738], [2.0043838383838386, 2.0043838383838386, 2.0043838383838386, 2.0043838383838386, 2.0043838383838386], [2.047030303030303, 2.047030303030303, 2.047030303030303, 2.047030303030303, 2.047030303030303], [2.0896767676767678, 2.0896767676767678, 2.0896767676767678, 2.0896767676767678, 2.0896767676767678], [2.1323232323232322, 2.1323232323232322, 2.1323232323232322, 2.1323232323232322, 2.1323232323232322], [2.174969696969697, 2.174969696969697, 2.174969696969697, 2.174969696969697, 2.174969696969697], [2.2176161616161618, 2.2176161616161618, 2.2176161616161618, 2.2176161616161618, 2.2176161616161618], [2.2602626262626262, 2.2602626262626262, 2.2602626262626262, 2.2602626262626262, 2.2602626262626262], [2.302909090909091, 2.302909090909091, 2.302909090909091, 2.302909090909091, 2.302909090909091], [2.3455555555555558, 2.3455555555555558, 2.3455555555555558, 2.3455555555555558, 2.3455555555555558], [2.3882020202020202, 2.3882020202020202, 2.3882020202020202, 2.3882020202020202, 2.3882020202020202], [2.430848484848485, 2.430848484848485, 2.430848484848485, 2.430848484848485, 2.430848484848485], [2.4734949494949494, 2.4734949494949494, 2.4734949494949494, 2.4734949494949494, 2.4734949494949494], [2.5161414141414142, 2.5161414141414142, 2.5161414141414142, 2.5161414141414142, 2.5161414141414142], [2.5587878787878791, 2.5587878787878791, 2.5587878787878791, 2.5587878787878791, 2.5587878787878791], [2.6014343434343434, 2.6014343434343434, 2.6014343434343434, 2.6014343434343434, 2.6014343434343434], [2.6440808080808083, 2.6440808080808083, 2.6440808080808083, 2.6440808080808083, 2.6440808080808083], [2.6867272727272726, 2.6867272727272726, 2.6867272727272726, 2.6867272727272726, 2.6867272727272726], [2.7293737373737375, 2.7293737373737375, 2.7293737373737375, 2.7293737373737375, 2.7293737373737375], [2.7720202020202023, 2.7720202020202023, 2.7720202020202023, 2.7720202020202023, 2.7720202020202023], [2.8146666666666667, 2.8146666666666667, 2.8146666666666667, 2.8146666666666667, 2.8146666666666667], [2.8573131313131315, 2.8573131313131315, 2.8573131313131315, 2.8573131313131315, 2.8573131313131315], [2.8999595959595958, 2.8999595959595958, 2.8999595959595958, 2.8999595959595958, 2.8999595959595958], [2.9426060606060607, 2.9426060606060607, 2.9426060606060607, 2.9426060606060607, 2.9426060606060607], [2.9852525252525255, 2.9852525252525255, 2.9852525252525255, 2.9852525252525255, 2.9852525252525255], [3.0278989898989899, 3.0278989898989899, 3.0278989898989899, 3.0278989898989899, 3.0278989898989899], [3.0705454545454547, 3.0705454545454547, 3.0705454545454547, 3.0705454545454547, 3.0705454545454547], [3.1131919191919191, 3.1131919191919191, 3.1131919191919191, 3.1131919191919191, 3.1131919191919191], [3.1558383838383839, 3.1558383838383839, 3.1558383838383839, 3.1558383838383839, 3.1558383838383839], [3.1984848484848487, 3.1984848484848487, 3.1984848484848487, 3.1984848484848487, 3.1984848484848487], [3.2411313131313131, 3.2411313131313131, 3.2411313131313131, 3.2411313131313131, 3.2411313131313131], [3.2837777777777779, 3.2837777777777779, 3.2837777777777779, 3.2837777777777779, 3.2837777777777779], [3.3264242424242427, 3.3264242424242427, 3.3264242424242427, 3.3264242424242427, 3.3264242424242427], [3.3690707070707071, 3.3690707070707071, 3.3690707070707071, 3.3690707070707071, 3.3690707070707071], [3.4117171717171719, 3.4117171717171719, 3.4117171717171719, 3.4117171717171719, 3.4117171717171719], [3.4543636363636363, 3.4543636363636363, 3.4543636363636363, 3.4543636363636363, 3.4543636363636363], [3.4970101010101011, 3.4970101010101011, 3.4970101010101011, 3.4970101010101011, 3.4970101010101011], [3.5396565656565659, 3.5396565656565659, 3.5396565656565659, 3.5396565656565659, 3.5396565656565659], [3.5823030303030303, 3.5823030303030303, 3.5823030303030303, 3.5823030303030303, 3.5823030303030303], [3.6249494949494951, 3.6249494949494951, 3.6249494949494951, 3.6249494949494951, 3.6249494949494951], [3.6675959595959595, 3.6675959595959595, 3.6675959595959595, 3.6675959595959595, 3.6675959595959595], [3.7102424242424243, 3.7102424242424243, 3.7102424242424243, 3.7102424242424243, 3.7102424242424243], [3.7528888888888892, 3.7528888888888892, 3.7528888888888892, 3.7528888888888892, 3.7528888888888892], [3.7955353535353535, 3.7955353535353535, 3.7955353535353535, 3.7955353535353535, 3.7955353535353535], [3.8381818181818184, 3.8381818181818184, 3.8381818181818184, 3.8381818181818184, 3.8381818181818184], [3.8808282828282827, 3.8808282828282827, 3.8808282828282827, 3.8808282828282827, 3.8808282828282827], [3.9234747474747476, 3.9234747474747476, 3.9234747474747476, 3.9234747474747476, 3.9234747474747476], [3.9661212121212124, 3.9661212121212124, 3.9661212121212124, 3.9661212121212124, 3.9661212121212124], [4.0087676767676772, 4.0087676767676772, 4.0087676767676772, 4.0087676767676772, 4.0087676767676772], [4.0514141414141411, 4.0514141414141411, 4.0514141414141411, 4.0514141414141411, 4.0514141414141411], [4.094060606060606, 4.094060606060606, 4.094060606060606, 4.094060606060606, 4.094060606060606], [4.1367070707070708, 4.1367070707070708, 4.1367070707070708, 4.1367070707070708, 4.1367070707070708], [4.1793535353535356, 4.1793535353535356, 4.1793535353535356, 4.1793535353535356, 4.1793535353535356], [4.2220000000000004, 4.2220000000000004, 4.2220000000000004, 4.2220000000000004, 4.2220000000000004]] Y = [[0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.25, 0.5, 0.75, 1.0]] Z = [[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0015430421821912409, 0.010984840303416558, 0.0020332564133142194, 0.0], [0.0, 0.0077968031683554803, 0.031022894076792776, 0.0095067953629537523, 0.0], [0.0, 0.017571100997872374, 0.056329350774577791, 0.020894697941237512, 0.0], [0.0, 0.029644523981234506, 0.085018102982247934, 0.034833660319807953, 0.0], [0.0, 0.043195094325510421, 0.11584040207148256, 0.050409700797255916, 0.0], [0.0, 0.057672581359243587, 0.14795469568571279, 0.067010746357283935, 0.0], [0.0, 0.07270548263204496, 0.18078672764167972, 0.084223268287766273, 0.0], [0.0, 0.088039792052027444, 0.21393804243083081, 0.10176421384888192, 0.0], [0.0, 0.10349876380927669, 0.24712588654189302, 0.11943636499456661, 0.0], [0.0, 0.11895653221336827, 0.28014381808580069, 0.13709901474700226, 0.0], [0.0, 0.13432079015019452, 0.31283585331932157, 0.1546487476266834, 0.0], [0.0, 0.14952144059037062, 0.34507953948481418, 0.17200682793649588, 0.0], [0.0, 0.16450315589995371, 0.37677486699430063, 0.18911094315514743, 0.0], [0.0, 0.17922051143527856, 0.40783702823439999, 0.20590979768631218, 0.0], [0.0, 0.19363480456208157, 0.43819169441897449, 0.22235958331588901, 0.0], [0.0, 0.20771198277894445, 0.46777194921102894, 0.23842167868156311, 0.0], [0.0, 0.22142129827777562, 0.49651630713174599, 0.25406115700727655, 0.0], [0.0, 0.23473443992589826, 0.52436744457774742, 0.26924582319099677, 0.0], [0.0, 0.24762497783822562, 0.55127139704663042, 0.28394559846777639, 0.0], [0.0, 0.26006801296359128, 0.57717706175773409, 0.29813213246815362, 0.0], [0.0, 0.27203996063490388, 0.60203589943386715, 0.31177856414052302, 0.0], [0.0, 0.28351842160372109, 0.6258017657374888, 0.32485937970945039, 0.0], [0.0, 0.29448210990189883, 0.64843082649974049, 0.33735033372936629, 0.0], [0.0, 0.30491081743362214, 0.66988152666691536, 0.34922841085301332, 0.0], [0.0, 0.31478540204695837, 0.69011459312122514, 0.36047181362743042, 0.0], [0.0, 0.32408779037917307, 0.7090930583279289, 0.37105996663018903, 0.0], [0.0, 0.33280098973038819, 0.72678229618706036, 0.3809735305719873, 0.0], [0.0, 0.34090910517899503, 0.74315006439792497, 0.39019442215392058, 0.0], [0.0, 0.34839735943285438, 0.75816654956068796, 0.39870583689695943, 0.0], [0.0, 0.35525211375601395, 0.77180441250577947, 0.40649227309736202, 0.0], [0.0, 0.36146088886589928, 0.78403883217408843, 0.41353955567970335, 0.0], [0.0, 0.36701238506234735, 0.79484754692107229, 0.4198348591260308, 0.0], [0.0, 0.37189650109177119, 0.80421089248205735, 0.42536672892845612, 0.0], [0.0, 0.37610435141009496, 0.81211183607827331, 0.43012510119049502, 0.0], [0.0, 0.37962828161446155, 0.81853600630478551, 0.43410132012134051, 0.0], [0.0, 0.38246188188553465, 0.82347171855153034, 0.43728815324631459, 0.0], [0.0, 0.384599998330243, 0.82690999578312274, 0.43967980421096403, 0.0], [0.0, 0.38603874214821143, 0.8288445845557818, 0.44127192309301566, 0.0], [0.0, 0.38677549656824151, 0.82927196618698118, 0.44206161416253364, 0.0], [0.0, 0.3868089215149445, 0.82819136301673379, 0.44204744105263316, 0.0], [0.0, 0.3861389559948239, 0.82560473974593651, 0.441229429298447, 0.0], [0.0, 0.38476681816655461, 0.82151679980284376, 0.43960906625087359, 0.0], [0.0, 0.38269500309466992, 0.81593497674358417, 0.43718929835072184, 0.0], [0.0, 0.37992727820182209, 0.80886942071885992, 0.43397452574590184, 0.0], [0.0, 0.37646867640443799, 0.80033297999623865, 0.42997059428092405, 0.0], [0.0, 0.37232548695489098, 0.79034117758772138, 0.42518478485712707, 0.0], [0.0, 0.36750524399946177, 0.7789121830139476, 0.41962580018835527, 0.0], [0.0, 0.36201671287520065, 0.76606677925987521, 0.41330374897173755, 0.0], [0.0, 0.35586987416843641, 0.75182832497876328, 0.40623012750354842, 0.0], [0.0, 0.34907590556441043, 0.73622271201392342, 0.39841779877223438, 0.0], [0.0, 0.34164716152033325, 0.71927831831442013, 0.38988096906688058, 0.0], [0.0, 0.3335971507989488, 0.70102595633053044, 0.38063516214316911, 0.0], [0.0, 0.32494051190318696, 0.68149881698238857, 0.37069719099389575, 0.0], [0.0, 0.3156929864566223, 0.66073240930377652, 0.36008512727516379, 0.0], [0.0, 0.30587139057801288, 0.63876449587062045, 0.34881826844390262, 0.0], [0.0, 0.29549358430201472, 0.61563502413167159, 0.33691710266636998, 0.0], [0.0, 0.28457843910160513, 0.5913860537661354, 0.32440327156147158, 0.0], [0.0, 0.27314580357130036, 0.56606168020038372, 0.31129953084660689, 0.0], [0.0, 0.26121646733355131, 0.53970795442280095, 0.29762970895759955, 0.0], [0.0, 0.24881212323390947, 0.51237279924251911, 0.28341866371798785, 0.0], [0.0, 0.2359553278937834, 0.48410592214442127, 0.26869223713639512, 0.0], [0.0, 0.22266946069243612, 0.45495872489876998, 0.25347720841425392, 0.0], [0.0, 0.20897868125286265, 0.4249842100898979, 0.23780124524927942, 0.0], [0.0, 0.19490788550882757, 0.39423688473389085, 0.22169285352327664, 0.0], [0.0, 0.18048266043297559, 0.3627726611605665, 0.20518132546573875, 0.0], [0.0, 0.16572923750832091, 0.33064875533995636, 0.18829668638753025, 0.0], [0.0, 0.15067444502773722, 0.29792358283819992, 0.17106964008149153, 0.0], [0.0, 0.13534565930818188, 0.26465665259203697, 0.15353151298925896, 0.0], [0.0, 0.11977075490838322, 0.230908458695081, 0.13571419723581657, 0.0], [0.0, 0.1039780539405448, 0.19674037039269046, 0.11765009263534411, 0.0], [0.0, 0.087996274568271249, 0.16221452048551094, 0.099372047773770608, 0.0], [0.0, 0.07185447878459332, 0.12739369234491038, 0.080913300274946837, 0.0], [0.0, 0.055582019565875364, 0.092341205746871796, 0.062307416358138933, 0.0], [0.0, 0.039208487502702991, 0.057120801738880921, 0.043588229791245978, 0.0], [0.0, 0.022763657064014849, 0.021796526833578658, 0.024789780285256892, 0.0], [0.0, 0.0062774318518430709, -0.013567384422752614, 0.0059462522661637473, 0.0], [0.0, -0.010220215191933337, -0.04890663319809832, -0.012908081383800884, 0.0], [0.0, -0.02669927968060793, -0.084156952846915462, -0.031738939613953576, 0.0], [0.0, -0.043129799752941407, -0.11925424693220481, -0.050512074899474908, 0.0], [0.0, -0.059481879250624203, -0.15413466706163412, -0.069193369367463953, 0.0], [0.0, -0.075725804199668997, -0.18873481636687092, -0.087748828393692913, 0.0], [0.0, -0.091832018127376069, -0.22299175029602458, -0.10614472960964851, 0.0], [0.0, -0.10777124506704452, -0.25684319255271576, -0.12434760743161492, 0.0], [0.0, -0.12351449346645146, -0.29022757594174492, -0.14232436861789335, 0.0], [0.0, -0.13903313884811175, -0.32308419831745361, -0.16004231924217194, 0.0], [0.0, -0.15429895935836982, -0.35535330869787463, -0.17746924244904311, 0.0], [0.0, -0.16928419603115316, -0.38697622908127116, -0.19457344711834335, 0.0], [0.0, -0.18396159844962998, -0.41789545405677297, -0.21132383083627407, 0.0], [0.0, -0.19830447686780406, -0.44805475915804754, -0.22768993360463352, 0.0], [0.0, -0.21228674938348249, -0.47739930109904799, -0.24364199474027248, 0.0], [0.0, -0.22588299008318258, -0.50587571855951297, -0.25915100619854875, 0.0], [0.0, -0.23906847490250127, -0.5334322286663381, -0.27418876573917694, 0.0], [0.0, -0.25181922678107144, -0.56001872144634102, -0.28872792799346603, 0.0], [0.0, -0.26411205916198383, -0.58558685079873019, -0.30274205430303469, 0.0], [0.0, -0.27592461820777736, -0.61009012248729777, -0.31620566073881917, 0.0], [0.0, -0.28723542342261288, -0.63348397864773032, -0.32909426447222562, 0.0], [0.0, -0.29802390672727019, -0.65572587883413891, -0.34138442828040072, 0.0], [0.0, -0.30827044985396185, -0.67677537736604243, -0.35305380317343249, 0.0], [0.0, -0.31795642002470548, -0.69659419688197033, -0.36408116903074589, 0.0]] fig = figure() ax = fig.gca(projection='3d') ax.plot_surface(X[:15], Y[:15], Z[:15], rstride=1, cstride=1) plt.show() analysis.controllableHeatSystemComparison(control="sin", T=4.) analysis.controllableHeatSystemComparison(control="hat", T=1.) analysis.controllableHeatSystemComparison(control="hat", T=4.) analysis.controllableHeatSystemComparison(control="BLaC", T=1.) analysis.controllableHeatSystemComparison(control="BLaC", T=4.) analysis.controllableHeatSystemComparison(control="one", T=.1) analysis.controllableHeatSystemComparison(control="identity", T=.1) analysis.controllableHeatSystemComparison(control="identity", T=4.) ``` #### File: pod-control/src/tests.py ```python from __future__ import division, print_function import numpy as np import math from pod import * from example2sys import * import unittest from numpy.testing import assert_array_equal, assert_array_almost_equal def _number_to_array(s): return np.array([s]) class testPod(unittest.TestCase): """test lss functionalities""" def test_abcd_normalize(self): A, B = np.zeros((5, 5)), np.ones((5, 1)) C, D = np.ones((1, 5)), np.zeros((1, 1)) sys_without_D = lss(A, B, C, None) sys_without_A = lss(None, B, C, D) assert_array_equal(sys_without_A.A, A) assert_array_equal(sys_without_D.D, D) def test_zero_control(self): A, B = np.zeros((5, 5)), np.ones((5, 1)) C, D = np.ones((1, 5)), np.zeros((1, 1)) sys = lss(A, B, C, D) sys.x0 = np.ones((5, 1)) sys(2.0) assert_array_equal(sys.x, np.ones((5, 1))) # def testIdentity(self): # N = 5 # T = range(N) # U = [0., 1., 0., 2., -1.] # U = map(_number_to_array, U) # R = [0., 5., 5., 15., 10.] # R = map(_number_to_array, R) # A, B = None, np.ones((5, 1)) # C, D = np.ones((1, 5)), None # sys = lss(A,B,C,D) # for i in range(1, N): # self.assertAlmostEqual(sys(T[i], U[i]), R[i]) # assert sys.t == T[i] # sys.setupODE() # timeWithSteps = [list(np.linspace(t-1, t, 2**t)) for t in T] # for i in range(1, N): # results = sys(timeWithSteps[i], U[i]) # self.assertAlmostEqual(results[-1], R[i]) # assert sys.t == timeWithSteps[i][-1] # R = [r+u for r, u in zip(R, U)] # R = map(np.array, R) # D = np.ones((1, 1)) # sys = lss(A, B, C, D) # for i in range(1, N): # self.assertAlmostEqual(sys(T[i], U[i]), R[i]) def test_f(self): A = [[1., 1.], [0., 1.]] B = [[1.], [1.]] C = [[1., 1.]] D = [[0.]] x = [0., 0.] u = [1.] sys = lss(A, B, C, D) assert_array_equal(sys.f(0., np.array(x), u), np.array([1., 1.])) x = [1., 1.] u = [0.] assert_array_equal(sys.f(0., np.array(x), u), np.array([2., 1.])) x = [10., 2.] u = [-3] assert_array_equal(sys.f(0., np.array(x), u), np.array([10+2-3., 2-3.])) def test_truncation_functions(self): """Reduce system of order 3 and check truncation matrices. Matrix `A` is in real schur form with all eigenvalues in the left half of the complex plane. The system is reduced from order 3 to orders 1 and 2. Order, number of inputs and outputs and the pseudo inverse property of T and Ti of the systems are checked. """ A = np.array([[-6, -3, 1], [0, -2.2, 6], [0, 0, -0.5]]) B = np.array([[1.], [1.], [1.]]) C = np.array([[2., 1., 0.002]]) D = None sys = lss(A, B, C, D) sys.x0 = np.ones((3,)) for reduction in lss.reduction_functions: if reduction is "inoptimal_truncation_square_root": continue for k in [1, 2, 3]: rsys = lss(sys, reduction=reduction, k=k) assert rsys.order == k assert rsys.inputs == 1 assert rsys.outputs == 1 if hasattr(rsys, 'T'): assert rsys.T.shape == (3, k) assert rsys.Ti.shape == (k, 3) assert_array_almost_equal(np.dot(rsys.Ti, rsys.T), np.eye(k)) assert_array_almost_equal(np.dot(rsys.Ti, sys.x0), rsys.x0) class testExample2sys(unittest.TestCase): """Test the example system generator""" def test_rcLadder(self): resistors = [1.0, 1.0, 1.0] capacitors = [1.0, 1.0, 1.0] sys = rcLadder(resistors, capacitors) sys2 = rcLadder(resistors + [np.inf], capacitors) assert sys.inputs == 1 assert sys.outputs == 1 assert sys.order == 3 for matrix in ['A', 'B', 'C', 'D']: assert_array_equal(getattr(sys, matrix), getattr(sys2, matrix)) def test_thermalRCNetwork(self): u = lambda t, x=None: np.array([1.]) C0, sys = thermalRCNetwork(1e90, 1e87, 100, 3, u) assert sys.inputs == 1 assert sys.outputs == 1 assert sys.order == 99 self.assertAlmostEqual(sys.control(0.), np.array([1.0])) self.assertAlmostEqual(sys.control(math.pi), np.array([1.0])) self.assertAlmostEqual(sys.control(.5*math.pi), np.array([1.0])) u = lambda t, x=None: np.array([math.sin(t)]) C0, sys = thermalRCNetwork(1e90, 1e87, 100, 3, u) assert sys.inputs == 1 assert sys.outputs == 1 assert sys.order == 99 self.assertAlmostEqual(sys.control(0.), np.array([.0])) self.assertAlmostEqual(sys.control(math.pi), np.array([.0])) self.assertAlmostEqual(sys.control(.5*math.pi), np.array([1.0])) def test__thermalRCNetworkCapacitors(self): capacitors = [.000455, .00388, .0115, .0481, .0316, 2.79] C, r, n = 1.0, 3, 6 def test__thermalRCNetworkResistors(self): resistors = [5.52, 17.2, 55.2, 46.8, 56.7, 27.9] R, r, n = 1.0, 3, 6 if __name__ == '__main__': unittest.main() ```
{ "source": "johannesschmude/ibmpairs", "score": 2 }
#### File: ibmpairs/tests/test_paw.py ```python import sys, os, time, glob # Python unit testing import unittest # compare files import filecmp # requests module import requests # requests module mocking import responses # regular expressions import re # handle json import json # handle timestamps import datetime # get PAW to test sys.path.append('.') from ibmpairs import paw # message logging tool import logging # handle ZIP files import zipfile # handling scientific data import numpy import pandas # string type compatibility with Python 2 and 3 PYTHON_VERSION = sys.version_info[0] if PYTHON_VERSION == 2: string_type = basestring else: string_type = str #}}} # fold: parameter settings{{{ # define global test parameters TEST_DATA_DIR = 'tests/data' PAIRS_SERVER = 'pairs.res.ibm.com' PAIRS_BASE_URI = '/' QUERY_ENDPOINT = 'v2/query' STATUS_ENDPOINT = 'v2/queryjobs/' DOWNLOAD_ENDPOINT = 'v2/queryjobs/download/' REAL_CONNECT = False PAIRS_USER = 'fakeUser' PAIRS_PASSWORD = '<PASSWORD>' PAIRS_PASSWORD_FILE_NAME = 'ibmpairspass.txt' # read/overwrite parameters from environment for var in ( 'REAL_CONNECT', 'PAIRS_SERVER', 'PAIRS_USER', ): if 'PAW_TESTS_'+var in os.environ: exec( "%s = os.environ['PAW_TESTS_%s']" % (var, var) ) # convert types read in from environment REAL_CONNECT = REAL_CONNECT == 'true' # set credentials if os.path.exists(os.path.expanduser(PAIRS_PASSWORD_FILE_NAME)): try: PAIRS_PASSWORD = paw.get_pairs_api_password(PAIRS_SERVER, PAIRS_USER) except: PAIRS_PASSWORD = <PASSWORD> PAIRS_CREDENTIALS = (PAIRS_USER, PAIRS_PASSWORD) # }}} # fold: test PAIRS point queries{{{ class TestPointQuery(unittest.TestCase): """ Test cases for querying point data from PAIRS. """ # fold: setup mocked environment#{{{ @classmethod def setUpClass(cls): # define and start PAIRS mock server cls.pairsServerMock = responses.RequestsMock() ## define endpoint processing def point_data_endpoint(request): respCode = 400 payload = json.loads(request.body) # perform some tests on payload sent if payload['spatial']['type'] == 'point' \ and len(payload['spatial']['coordinates']) > 1 \ and len(payload['spatial']['coordinates']) % 2 == 0: respCode = 200 # check whether a raster or vector point query is performed if re.match('^P', payload['layers'][0]['id']) is not None: # so far, vector queries can take a single point only if 2==len(payload['spatial']['coordinates']): response_body = json.load( open(os.path.join(TEST_DATA_DIR, 'point-data-sample-response-vector.json')) ) else: respCode = 400 else: # generate response body response_body = json.load( open(os.path.join(TEST_DATA_DIR,'point-data-sample-response-raster.json')) ) headers = {} return respCode, headers, json.dumps(response_body) ## add endpoint cls.pairsServerMock.add_callback( responses.POST, 'https://'+PAIRS_SERVER+PAIRS_BASE_URI+QUERY_ENDPOINT, callback=point_data_endpoint, content_type='application/json', ) cls.pairsServerMock.start() @classmethod def tearDownClass(cls): cls.pairsServerMock.stop() #}}} def test_from_point_query_raster(self): """ Test querying raster point data. """ # query mocked data logging.info("TEST: Query (mocked) point data.") # define point query testPointQuery = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'point-data-sample-request-raster.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) # submit point query testPointQuery.submit() # for complience with general PAW query scheme, perform fake poll and download testPointQuery.poll_till_finished() testPointQuery.download() testPointQuery.create_layers() # try to split property string column (although having no effect, it should run through) colsBeforeSplit = len(testPointQuery.vdf.columns) testPointQuery.split_property_string_column() colsAfterSplit = len(testPointQuery.vdf.columns) self.assertEqual(colsBeforeSplit, colsAfterSplit) # check vector data frame ## number of data points is correct logging.info("TEST: Perform vector data frame tests.") self.assertEqual( 2, len(testPointQuery.vdf) ) ## column names agree with data response self.assertListEqual( sorted( list(testPointQuery.querySubmit.json()['data'][0].keys()) \ + [paw.PAIRS_VECTOR_GEOMETRY_COLUMN_NAME] ), sorted(testPointQuery.vdf.columns), ) ## check (some) data types from response self.assertIsInstance( testPointQuery.vdf.longitude[0], float, ) self.assertIsInstance( testPointQuery.vdf.timestamp[0], datetime.datetime, ) self.assertIsInstance( testPointQuery.vdf.value[0], string_type, ) def test_from_point_query_vector(self): """ Test querying vector point data. """ # query mocked data logging.info("TEST: Query (mocked) point data.") # define point query testPointQuery = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'point-data-sample-request-vector.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) # submit point query testPointQuery.submit() # for complience with general PAW query scheme, perform fake poll and download testPointQuery.poll_till_finished() testPointQuery.download() testPointQuery.create_layers() # check vector data frame ## number of data points is correct logging.info("TEST: Perform vector data frame tests.") self.assertEqual( 2, len(testPointQuery.vdf) ) ## column names agree with data response self.assertListEqual( sorted( list(testPointQuery.querySubmit.json()['data'][0].keys()) ), sorted(testPointQuery.vdf.columns), ) ## check (some) data types from response self.assertIsInstance( testPointQuery.vdf.timestamp[0], datetime.datetime, ) self.assertIsInstance( testPointQuery.vdf.value[0], string_type, ) # check property string column splitting colsBeforeSplit = len(testPointQuery.vdf.columns) testPointQuery.split_property_string_column() colsAfterSplit = len(testPointQuery.vdf.columns) if paw.PROPERTY_STRING_COL_NAME_POINT in testPointQuery.vdf.columns: self.assertLess(colsBeforeSplit, colsAfterSplit) else: self.assertEqual(colsBeforeSplit, colsAfterSplit) # run twice to double-check it is not increasing the number of columns testPointQuery.split_property_string_column() colsAfter2ndSplit = len(testPointQuery.vdf.columns) self.assertEqual(colsAfterSplit, colsAfter2ndSplit) @unittest.skipIf( not REAL_CONNECT, "Skip checking mock against real service." ) def test_mock_from_point_query(self): """ Checks the real PAIRS point query service against the mock used. """ # get real data self.pairsServerMock.stop() testPointQueryRasterReal = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'point-data-sample-request-raster.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) testPointQueryVectorReal = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'point-data-sample-request-vector.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) self.pairsServerMock.start() # get mock data testPointQueryRasterMock = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'point-data-sample-request-raster.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) testPointQueryVectorMock = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'point-data-sample-request-vector.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) # compare data entry keys self.assertListEqual( sorted(testPointQueryRasterReal.querySubmit.json()['data'][0].keys()), sorted(testPointQueryRasterMock.querySubmit.json()['data'][0].keys()), ) self.assertListEqual( sorted(testPointQueryVectorReal.querySubmit.json()['data'][0].keys()), sorted(testPointQueryVectorMock.querySubmit.json()['data'][0].keys()), ) def test_dataframe_generation(self): """ Tests functions that massage the received data to the *unified* PAW dataframe. """ # query mocked data logging.info("TEST: Generation of unified PAW dataframe for point data.") testPointQuery = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'point-data-sample-request-raster.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) # submit query testPointQuery.submit() # set timestamp column testPointQuery.set_timestamp_column('timestamp') # set point coordinate columns testPointQuery.set_lat_lon_columns('latitude', 'longitude', 'geometry') #}}} # fold: test PAIRS raster and vector queries{{{ class TestPollQuery(unittest.TestCase): """ Test cases for poll-queries of raster and vector data from PAIRS. """ # fold: general class parameters#{{{ ## time to simulate raster query generation RASTER_QUERY_TIME_SEC = 2 ## relative deviation of file size for comparing downloaded data with mock REL_FILESIZE_DEV = .1 ## local sample data PAIRS_RASTER_ZIP_PATH = os.path.join(TEST_DATA_DIR,'12_07_2018T18_39_36-1544202000_23976938.zip') PAIRS_AGG_RASTER_ZIP_PATH = os.path.join(TEST_DATA_DIR,'12_07_2018T19_10_50-1544202000_25850895.zip') PAIRS_VECTOR_ZIP_PATH = os.path.join(TEST_DATA_DIR,'04_10_2019T21_45_15-1554912000_35115995.zip') #}}} # fold: test environment setup#{{{ @classmethod def setUpClass(cls): # mock polls till finished cls.pollsTillRasterFinished = 2 cls.pollsTillAggFinished = 2 # define time of last server call (default UNIX epoch time 0) cls.lastCallTime = datetime.datetime.fromtimestamp(0) # define and start PAIRS mock server cls.pairsServerMock = responses.RequestsMock() # define query submit endpoint processings def submit_query_endpoint(request): respCode = 400 payload = json.loads(request.body) # perform some tests on payload sent if payload['spatial']['type'] == 'square' \ and len(payload['spatial']['coordinates']) == 4: respCode = 200 # generate response body (depending on various scenarios) if "aggregation" in payload["spatial"].keys(): response_body = json.load( open(os.path.join(TEST_DATA_DIR,'aggregation-data-sample-response.json')) ) elif re.match('^P', payload['layers'][0]['id']) is not None: response_body = json.load( open(os.path.join(TEST_DATA_DIR,'vector-data-sample-response.json')) ) else: response_body = json.load( open(os.path.join(TEST_DATA_DIR,'raster-data-sample-response.json')) ) headers = {} return respCode, headers, json.dumps(response_body) # define query status endpoint processings def poll_query_status_endpoint(request): # extract PAIRS query ID from query URL pairsQueryID = request.url.split('/')[-1] # generate response body headers = {} if pairsQueryID == os.path.splitext( os.path.basename(cls.PAIRS_RASTER_ZIP_PATH) )[0].split('-')[-1]: cls.pollsTillRasterFinished -= 1 if cls.pollsTillRasterFinished > 0: response_body = json.load( open(os.path.join(TEST_DATA_DIR,'raster-data-sample-status-running-response.json')) ) else: response_body = json.load( open(os.path.join(TEST_DATA_DIR,'raster-data-sample-status-finished-response.json')) ) elif pairsQueryID == os.path.splitext( os.path.basename(cls.PAIRS_AGG_RASTER_ZIP_PATH) )[0].split('-')[-1]: cls.pollsTillAggFinished -= 1 if cls.pollsTillAggFinished > 0: response_body = json.load( open(os.path.join(TEST_DATA_DIR,'aggregation-data-sample-status-running-response.json')) ) else: response_body = json.load( open(os.path.join(TEST_DATA_DIR,'aggregation-data-sample-status-finished-response.json')) ) elif pairsQueryID == os.path.splitext( os.path.basename(cls.PAIRS_VECTOR_ZIP_PATH) )[0].split('-')[-1]: cls.pollsTillAggFinished -= 1 if cls.pollsTillAggFinished > 0: response_body = json.load( open(os.path.join(TEST_DATA_DIR,'vector-data-sample-status-running-response.json')) ) else: response_body = json.load( open(os.path.join(TEST_DATA_DIR,'vector-data-sample-status-finished-response.json')) ) else: return 404, headers, json.dumps( { "message": "mocked test server does not have data for ID '{}'".format(pairsQueryID) } ) # simulate query processing time time.sleep(cls.RASTER_QUERY_TIME_SEC) # result return return 200, headers, json.dumps(response_body) ## add endpoints ### query submit cls.pairsServerMock.add_callback( responses.POST, 'https://'+PAIRS_SERVER+PAIRS_BASE_URI+QUERY_ENDPOINT, callback=submit_query_endpoint, content_type='application/json', ) ### query downloads for queryZIPPath in [ cls.PAIRS_RASTER_ZIP_PATH, cls.PAIRS_AGG_RASTER_ZIP_PATH, cls.PAIRS_VECTOR_ZIP_PATH ]: queryID = os.path.splitext( os.path.basename(queryZIPPath) )[0].split('-')[-1] with open(queryZIPPath, 'rb') as queryData: cls.pairsServerMock.add( responses.GET, r'https://{}{}{}{}'.format(PAIRS_SERVER, PAIRS_BASE_URI, DOWNLOAD_ENDPOINT, queryID), body = queryData.read(), status = 200, content_type='application/zip', stream=True, ) ### query status cls.pairsServerMock.add_callback( responses.GET, re.compile( r'https://{}{}{}[0-9]+_[0-9]+'.format(PAIRS_SERVER, PAIRS_BASE_URI, STATUS_ENDPOINT) ), callback=poll_query_status_endpoint, content_type='application/json', ) ### start the mocked server cls.pairsServerMock.start() @classmethod def tearDownClass(cls): cls.pairsServerMock.stop() #}}} # fold: test ordinary raster queries#{{{ def raster_query(self, useLocalZip=False): """ Query raster data in various ways. """ # query mocked data logging.info("TEST: Query (mocked) data.") testRasterQuery = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'raster-data-sample-request.json'))) \ if not useLocalZip else self.PAIRS_RASTER_ZIP_PATH, 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) # check that query got submitted testRasterQuery.submit() if not useLocalZip: self.assertTrue(testRasterQuery.querySubmit.ok) # poll and check that data status is finished testRasterQuery.poll_till_finished(printStatus=True) if not useLocalZip: self.assertTrue(testRasterQuery.queryStatus.ok) # check that certain files exist testRasterQuery.download() self.assertTrue( os.path.exists(testRasterQuery.zipFilePath) ) logging.info("TEST: Check files downloaded.") with zipfile.ZipFile(testRasterQuery.zipFilePath) as zf: # test the existence of the basic meta file for fileName in ['output.info', ]: self.assertTrue( fileName in zf.namelist() ) # check that for each GeoTiff file there exists a corresonding JSON meta file for rasterFilePath in zf.namelist(): # find all PAIRS GeoTiff files if rasterFilePath.endswith('.tiff'): # check a corresponding JSON file exists self.assertTrue( rasterFilePath+'.json' in zf.namelist() ) # try to temporarily open the JSON file json.loads(zf.read(rasterFilePath+'.json')) # load raster meta data logging.info("TEST: Load raster meta data.") testRasterQuery.list_layers() # check that 'details' of raster data have been successfully loaded by # getting the spatial reference information self.assertIsInstance( list(testRasterQuery.metadata.values())[0]["details"]["spatialRef"], string_type ) # check that all data are listed as type raster self.assertTrue( all([ 'raster' == meta['layerType'] for meta in testRasterQuery.metadata.values() ]) ) logging.info("TEST: Create NumPy arrays from raster data.") # load the raster data into a NumPy array testRasterQuery.create_layers() # access the numpy array for name, meta in testRasterQuery.metadata.items(): if meta['layerType'] == 'raster': self.assertIsInstance( testRasterQuery.data[name], numpy.ndarray ) # check that the data acknowledgement statement is not empty self.assertIsNotNone(testRasterQuery.dataAcknowledgeText) def test_raster_query(self): """ Test querying raster data. """ self.raster_query() def test_raster_query_cached(self): """ Test querying raster data from local PAIRS ZIP file. """ self.raster_query(useLocalZip=True) #}}} # fold: test raster aggregation queries#{{{ def raster_aggregation_query(self, useLocalZip=False): """ Query aggregated raster data. """ # query mocked data logging.info("TEST: Query (mocked) aggregation data.") testRasterAggQuery = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'aggregation-data-sample-request.json'))) \ if not useLocalZip else self.PAIRS_AGG_RASTER_ZIP_PATH, 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) # check that query got submitted testRasterAggQuery.submit() if not useLocalZip: self.assertTrue(testRasterAggQuery.querySubmit.ok) # poll and check that data status is finished testRasterAggQuery.poll_till_finished(printStatus=True) if not useLocalZip: self.assertTrue(testRasterAggQuery.queryStatus.ok) # check that certain files exist testRasterAggQuery.download() self.assertTrue( os.path.exists(testRasterAggQuery.zipFilePath) ) logging.info("TEST: Check files downloaded.") with zipfile.ZipFile(testRasterAggQuery.zipFilePath) as zf: # test the existence of the basic meta file for fileName in ['output.info', ]: self.assertTrue( fileName in zf.namelist() ) # check that for each aggregated CSV file there exists a corresonding JSON meta file for rasterFilePath in zf.namelist(): # find all PAIRS GeoTiff files if rasterFilePath.endswith('.csv'): # check a corresponding JSON file exists self.assertTrue( rasterFilePath+'.json' in zf.namelist() ) # try to temporarily open the JSON file json.loads(zf.read(rasterFilePath+'.json')) # load aggregated raster meta data (which are actually vector-type data!) logging.info("TEST: Load aggregated raster meta data.") testRasterAggQuery.list_layers() # check that 'details' of raster data have been successfully loaded by # getting the spatial reference information self.assertIsInstance( list(testRasterAggQuery.metadata.values())[0]["details"]["spatialRef"], string_type ) # check that all data are listed as type vector self.assertTrue( all([ 'vector' == meta['layerType'] for meta in testRasterAggQuery.metadata.values() ]) ) logging.info("TEST: Create Pandas dataframes from aggregated raster data.") # load the aggregated raster data as vector data into Pandas dataframes testRasterAggQuery.create_layers() # access the numpy array for name, meta in testRasterAggQuery.metadata.items(): if meta['layerType'] == 'vector': self.assertIsInstance( testRasterAggQuery.data[name], pandas.DataFrame, ) # check that the data acknowledgement statement is not empty self.assertIsNotNone(testRasterAggQuery.dataAcknowledgeText) def test_raster_aggregation_query(self): """ Test querying aggregated raster data. """ self.raster_aggregation_query() def test_raster_aggregation_query_cached(self): """ Test querying aggregated raster data from local PAIRS ZIP file. """ self.raster_aggregation_query(useLocalZip=True) #}}} # fold: test vector queries #{{{ def vector_query(self, useLocalZip=False): """ Query vector data in various ways. """ # query mocked data logging.info("TEST: Query (mocked) data.") testVectorQuery = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'vector-data-sample-request.json'))) \ if not useLocalZip else self.PAIRS_VECTOR_ZIP_PATH, 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) # check that query got submitted testVectorQuery.submit() if not useLocalZip: self.assertTrue(testVectorQuery.querySubmit.ok) # poll and check that data status is finished testVectorQuery.poll_till_finished(printStatus=True) if not useLocalZip: self.assertTrue(testVectorQuery.queryStatus.ok) # check that certain files exist testVectorQuery.download() self.assertTrue( os.path.exists(testVectorQuery.zipFilePath) ) logging.info("TEST: Check files downloaded.") with zipfile.ZipFile(testVectorQuery.zipFilePath) as zf: pass # test the existence of the basic meta file # ATTENTION: disabled for now, because it needs to be implemented #for fileName in ['output.info', ]: # self.assertTrue( # fileName in zf.namelist() # ) # load raster meta data logging.info("TEST: Load vector meta data.") testVectorQuery.list_layers() # check that all data are listed as type vector self.assertTrue( all([ 'vector' == meta['layerType'] for meta in testVectorQuery.metadata.values() ]) ) logging.info("TEST: Create dataframe from raster data.") # load the raster data into a NumPy array testVectorQuery.create_layers() # access the vector dataframe for name, meta in testVectorQuery.metadata.items(): if meta['layerType'] == 'vector': self.assertIsInstance( testVectorQuery.data[name], pandas.DataFrame, ) # try to split property string column (if any) testVectorQuery.vdf = testVectorQuery.data[name] # check property string column splitting colsBeforeSplit = len(testVectorQuery.vdf.columns) testVectorQuery.split_property_string_column() colsAfterSplit = len(testVectorQuery.vdf.columns) if paw.PROPERTY_STRING_COL_NAME in testVectorQuery.vdf.columns: self.assertLess(colsBeforeSplit, colsAfterSplit) else: self.assertEqual(colsBeforeSplit, colsAfterSplit) # run twice to double-check it is not increasing the number of columns testVectorQuery.split_property_string_column() colsAfter2ndSplit = len(testVectorQuery.vdf.columns) self.assertEqual(colsAfterSplit, colsAfter2ndSplit) # check that the data acknowledgement statement is not empty self.assertIsNotNone(testVectorQuery.dataAcknowledgeText) def test_vector_query(self): """ Test querying vector data. """ self.vector_query() def test_vector_query_cached(self): """ Test querying vector data from local PAIRS ZIP file. """ self.vector_query(useLocalZip=True) #}}} def TO_BE_IMPLEMENTED_test_dataframe_generation(self): """ Tests functions that massage the received data to the *unified* PAW dataframe. """ # query mocked data logging.info("TEST: Generation of unified PAW dataframe for raster data.") testRasterQuery = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'raster-data-sample-request.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) testRasterQuery.submit() testRasterQuery.poll_till_finished(printStatus=True) testRasterQuery.download() # create dataframe from ratser data testRasterQuery.create_dataframe() # check that the dataset and datalayer column names have been added self.assertIn( 'layerName', testRasterQuery.dataframe[list(testRasterQuery.metadata.keys())[0]].columns ) # fold: test cached mock data to simulate PAIRS server against real service#{{{ @unittest.skipIf( not REAL_CONNECT, "Skip checking mock against real service." ) def test_mock_raster_query(self): """ Checks the real PAIRS raster query service against the mock used. """ # get real data # prevent the responses module to complain about unused URL endponts of the mock try: self.pairsServerMock.stop() except Exception as e: # catch not all requests called error logging.warning( 'Stopping the mocked PAIRS server caused (potentially irrelevant) trouble: {}'.format(e) ) # check query submit logging.info("TEST: Perform query to real PAIRS server.") subResp = requests.post( 'https://'+PAIRS_SERVER+PAIRS_BASE_URI+QUERY_ENDPOINT, json = json.load(open(os.path.join(TEST_DATA_DIR,'raster-data-sample-request.json'))), auth = PAIRS_CREDENTIALS, ).json() self.assertIn( 'id', subResp.keys() ) self.assertIsInstance( subResp['id'], string_type ) # check query poll while True: statResp = requests.get( 'https://'+PAIRS_SERVER+PAIRS_BASE_URI+STATUS_ENDPOINT+subResp['id'], auth = PAIRS_CREDENTIALS, ).json() assert set(['id', 'rtStatus', 'statusCode']) <= set(statResp.keys()) self.assertIsInstance( statResp['statusCode'], int ) if statResp['statusCode'] >= 20: break # check query result downloadResp = requests.get( 'https://'+PAIRS_SERVER+PAIRS_BASE_URI+DOWNLOAD_ENDPOINT+subResp['id'], auth = PAIRS_CREDENTIALS, stream = True, ) pairsDataZip = '/tmp/pairs-test-raster-download-{}.zip'.format(subResp['id']) with open(pairsDataZip, 'wb') as f: for chunk in downloadResp.iter_content(chunk_size=1024): if chunk: f.write(chunk) self.pairsServerMock.start() # basic test of real data self.assertTrue( zipfile.is_zipfile(pairsDataZip) ) # get mock data testRasterQuery = paw.PAIRSQuery( json.load(open(os.path.join(TEST_DATA_DIR,'raster-data-sample-request.json'))), 'https://'+PAIRS_SERVER, auth = PAIRS_CREDENTIALS, baseURI = PAIRS_BASE_URI, ) testRasterQuery.submit() testRasterQuery.poll_till_finished(printStatus=True) testRasterQuery.download() pairsMockZip = testRasterQuery.queryDir+'.zip' # make sure that files in mock are available in real download # and that the size of the data and the mock are approximately the same logging.info("TEST: Check that all files from the mock exist in the real data queried.") with zipfile.ZipFile(pairsMockZip, 'r') as mock, \ zipfile.ZipFile(pairsDataZip, 'r') as real: # generate info dictionaries mockInfo = { f.filename: f.file_size for f in mock.infolist() } realInfo = { f.filename: f.file_size for f in real.infolist() } # check that files in mock are contained in real data (in terms of names) assert set(mockInfo.keys()) <= set(realInfo.keys()) # check that file sizes are approximately the same for key in mockInfo.keys(): self.assertAlmostEqual( mockInfo[key], realInfo[key], delta = self.REL_FILESIZE_DEV * realInfo[key] ) #}}} # }}} if __name__ == '__main__': unittest.main() ```
{ "source": "JohannesSchuele/unet-keras", "score": 3 }
#### File: unet-keras/model/vgg16_graphnet.py ```python from __future__ import print_function import numpy as np import warnings from keras.models import Model from keras.layers import Flatten from keras.layers import Dense from keras.layers import Input from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import GlobalMaxPooling1D from keras.layers import GlobalMaxPooling2D from keras.optimizers import * from keras.layers import GlobalAveragePooling2D from keras.preprocessing import image from keras.utils import layer_utils from keras.utils.data_utils import get_file from keras import backend as K from keras.applications.imagenet_utils import decode_predictions from keras.applications.imagenet_utils import preprocess_input from keras.engine.topology import get_source_inputs from model.utils import callback class GraphNet_vgg16(Model): """Instantiates the VGG16 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one """ def __init__(self, input_size= [256, 256,2], pretrained_weights = None, max_nr_nodes =128 ): self.input_size = input_size, self.pretrained_weights = pretrained_weights, self.max_nr_nodes = max_nr_nodes adj_dim = int((max_nr_nodes * max_nr_nodes - max_nr_nodes) / 2) # Block 1 input = Input(shape=[input_size[0], input_size[1], input_size[2]], name="input_image") x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(input) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(adj_dim, (3, 3), activation='sigmoid', padding='same', name='block5_conv3')(x) #x = MaxPooling2D(,(2, 2), strides=(2, 2), name='block5_pool')(x) output = GlobalMaxPooling2D(data_format="channels_last")(x) #model = Model(inputs, x, name='graph_vgg16') # initialize Keras Model with defined above input and output layers super(GraphNet_vgg16, self).__init__(inputs=input, outputs=output) # load preatrained weights if pretrained_weights: self.load_weights(pretrained_weights) def build(self): self.compile(optimizer=Adam(), loss="binary_crossentropy", metrics=["accuracy"]) self.summary() def save_model(self, name): self.save_weights(name) @staticmethod def checkpoint(checkpoint_callback_name): return callback(checkpoint_callback_name) # TODO: FIX SAVING MODEL: AT THIS POINT, ONLY SAVING MODEL WEIGHTS IS AVAILBILE # SINCE SUBSCLASSING FROM KERAS.MODEL RESTRICTS SAVING MODEL AS AN HDF5 FILE ```
{ "source": "johannes-schuetze/ALTO-framework-sim", "score": 3 }
#### File: pyparsing-2.0.1/examples/searchparser.py ```python from pyparsing import Word, alphanums, Keyword, Group, Combine, Forward, Suppress, Optional, OneOrMore, oneOf from sets import Set class SearchQueryParser: def __init__(self): self._methods = { 'and': self.evaluateAnd, 'or': self.evaluateOr, 'not': self.evaluateNot, 'parenthesis': self.evaluateParenthesis, 'quotes': self.evaluateQuotes, 'word': self.evaluateWord, 'wordwildcard': self.evaluateWordWildcard, } self._parser = self.parser() def parser(self): """ This function returns a parser. The grammar should be like most full text search engines (Google, Tsearch, Lucene). Grammar: - a query consists of alphanumeric words, with an optional '*' wildcard at the end of a word - a sequence of words between quotes is a literal string - words can be used together by using operators ('and' or 'or') - words with operators can be grouped with parenthesis - a word or group of words can be preceded by a 'not' operator - the 'and' operator precedes an 'or' operator - if an operator is missing, use an 'and' operator """ operatorOr = Forward() operatorWord = Group(Combine(Word(alphanums) + Suppress('*'))).setResultsName('wordwildcard') | \ Group(Word(alphanums)).setResultsName('word') operatorQuotesContent = Forward() operatorQuotesContent << ( (operatorWord + operatorQuotesContent) | operatorWord ) operatorQuotes = Group( Suppress('"') + operatorQuotesContent + Suppress('"') ).setResultsName("quotes") | operatorWord operatorParenthesis = Group( (Suppress("(") + operatorOr + Suppress(")")) ).setResultsName("parenthesis") | operatorQuotes operatorNot = Forward() operatorNot << (Group( Suppress(Keyword("not", caseless=True)) + operatorNot ).setResultsName("not") | operatorParenthesis) operatorAnd = Forward() operatorAnd << (Group( operatorNot + Suppress(Keyword("and", caseless=True)) + operatorAnd ).setResultsName("and") | Group( operatorNot + OneOrMore(~oneOf("and or") + operatorAnd) ).setResultsName("and") | operatorNot) operatorOr << (Group( operatorAnd + Suppress(Keyword("or", caseless=True)) + operatorOr ).setResultsName("or") | operatorAnd) return operatorOr.parseString def evaluateAnd(self, argument): return self.evaluate(argument[0]).intersection(self.evaluate(argument[1])) def evaluateOr(self, argument): return self.evaluate(argument[0]).union(self.evaluate(argument[1])) def evaluateNot(self, argument): return self.GetNot(self.evaluate(argument[0])) def evaluateParenthesis(self, argument): return self.evaluate(argument[0]) def evaluateQuotes(self, argument): """Evaluate quoted strings First is does an 'and' on the indidual search terms, then it asks the function GetQuoted to only return the subset of ID's that contain the literal string. """ r = Set() search_terms = [] for item in argument: search_terms.append(item[0]) if len(r) == 0: r = self.evaluate(item) else: r = r.intersection(self.evaluate(item)) return self.GetQuotes(' '.join(search_terms), r) def evaluateWord(self, argument): return self.GetWord(argument[0]) def evaluateWordWildcard(self, argument): return self.GetWordWildcard(argument[0]) def evaluate(self, argument): return self._methods[argument.getName()](argument) def Parse(self, query): #print self._parser(query)[0] return self.evaluate(self._parser(query)[0]) def GetWord(self, word): return Set() def GetWordWildcard(self, word): return Set() def GetQuotes(self, search_string, tmp_result): return Set() def GetNot(self, not_set): return Set().difference(not_set) class ParserTest(SearchQueryParser): """Tests the parser with some search queries tests containts a dictionary with tests and expected results. """ tests = { 'help': Set([1, 2, 4, 5]), 'help or hulp': Set([1, 2, 3, 4, 5]), 'help and hulp': Set([2]), 'help hulp': Set([2]), 'help and hulp or hilp': Set([2, 3, 4]), 'help or hulp and hilp': Set([1, 2, 3, 4, 5]), 'help or hulp or hilp or halp': Set([1, 2, 3, 4, 5, 6]), '(help or hulp) and (hilp or halp)': Set([3, 4, 5]), 'help and (hilp or halp)': Set([4, 5]), '(help and (hilp or halp)) or hulp': Set([2, 3, 4, 5]), 'not help': Set([3, 6, 7, 8]), 'not hulp and halp': Set([5, 6]), 'not (help and halp)': Set([1, 2, 3, 4, 6, 7, 8]), '"help me please"': Set([2]), '"help me please" or hulp': Set([2, 3]), '"help me please" or (hulp and halp)': Set([2]), 'help*': Set([1, 2, 4, 5, 8]), 'help or hulp*': Set([1, 2, 3, 4, 5]), 'help* and hulp': Set([2]), 'help and hulp* or hilp': Set([2, 3, 4]), 'help* or hulp or hilp or halp': Set([1, 2, 3, 4, 5, 6, 8]), '(help or hulp*) and (hilp* or halp)': Set([3, 4, 5]), 'help* and (hilp* or halp*)': Set([4, 5]), '(help and (hilp* or halp)) or hulp*': Set([2, 3, 4, 5]), 'not help* and halp': Set([6]), 'not (help* and helpe*)': Set([1, 2, 3, 4, 5, 6, 7]), '"help* me please"': Set([2]), '"help* me* please" or hulp*': Set([2, 3]), '"help me please*" or (hulp and halp)': Set([2]), '"help me please" not (hulp and halp)': Set([2]), '"help me please" hulp': Set([2]), 'help and hilp and not holp': Set([4]), 'help hilp not holp': Set([4]), 'help hilp and not holp': Set([4]), } docs = { 1: 'help', 2: 'help me please hulp', 3: 'hulp hilp', 4: 'help hilp', 5: 'halp thinks he needs help', 6: 'he needs halp', 7: 'nothing', 8: 'helper', } index = { 'help': Set((1, 2, 4, 5)), 'me': Set((2,)), 'please': Set((2,)), 'hulp': Set((2, 3,)), 'hilp': Set((3, 4,)), 'halp': Set((5, 6,)), 'thinks': Set((5,)), 'he': Set((5, 6,)), 'needs': Set((5, 6,)), 'nothing': Set((7,)), 'helper': Set((8,)), } def GetWord(self, word): if (word in self.index): return self.index[word] else: return Set() def GetWordWildcard(self, word): result = Set() for item in list(self.index.keys()): if word == item[0:len(word)]: result = result.union(self.index[item]) return result def GetQuotes(self, search_string, tmp_result): result = Set() for item in tmp_result: if self.docs[item].count(search_string): result.add(item) return result def GetNot(self, not_set): all = Set(list(self.docs.keys())) return all.difference(not_set) def Test(self): all_ok = True for item in list(self.tests.keys()): print(item) r = self.Parse(item) e = self.tests[item] print('Result: %s' % r) print('Expect: %s' % e) if e == r: print('Test OK') else: all_ok = False print('>>>>>>>>>>>>>>>>>>>>>>Test ERROR<<<<<<<<<<<<<<<<<<<<<') print('') return all_ok if __name__=='__main__': if ParserTest().Test(): print('All tests OK') else: print('One or more tests FAILED') ``` #### File: ALTO-framework-sim/utilities/add_Interfaces.py ```python import sys def read_in(): lines = sys.stdin.readlines() for i in range(len(lines)): lines[i] = lines[i].replace('\n','') #print lines return lines output = "" try: file_handle = open('Conf/networkGen_config.txt', 'r') except (OSError, IOError) as e: print e print "Goodbye" altoCount = 0#will be increased at every city, to roughly group citys into one PID data = read_in() for line in data: #print "HELLO" #if its not a edge but a city name if '//' in line: altoCount +=1 #increase by one once new City is worked with. output = "\t" + line print output #if there is a empty line elif len(line) < 3: continue #else its a edge and meta needs to be added else: igp_pos = line.find("=") output = "\t" + line[:igp_pos] + "\t[label=%s,headlabel=\"%s-%s\" ,alias=1,latency=4];"%(str(line[igp_pos+1:]),str(line[7:igp_pos]),str(line[:3])) print output sys.stdout.flush() ``` #### File: ALTO-framework-sim/utilities/detVPnumb_.py ```python import random import datetime from utilities import file_interfaces_ from Views import traceroute_ def genVpStatistics(nodeList, shortestPathsDict, graphName): print "generating statistics about the optimal number of Vantage Points for the graph\n" #print shortestPathsDict HASH_MULTIPLIER = 100000 #string containing all latency for write to file text_total_links = "Graph: "+graphName+"\nDate: " + str(datetime.datetime.now())+"\nNum VPs\tNum Links\tNum Nodes\n0\t0\n1\t0\n" vPs = traceroute_.getVantagePoints(nodeList) #the list of vantage points from where we collect interfaces(headlabels) tmpPathAverage = 0 tmpNodeAverage = 0 averageLinksFound = 0 averageNodesFound = 0 #print vPs #TODO remove? #hiddenNodes = traceroute_.getHiddenNodes(nodeList) #the list of nodes that will not appear in the trace #starredNodes = traceroute_.getStarredNodes(nodeList)#the list of nodes that will appear as * in the trace numbVPs = 2 # determines how many Vantage points are to be used #run as many times as there are vantage points while(numbVPs<=len(vPs)): #print "New Round, Number of VPs: ", numbVPs tmpPathAverage = 0 tmpNodeAverage = 0 linksFound = list() nodesFound = list() #links found during itteration #loop number of samples required times for numb in range(0,1000): #print "Iteration Nr: ", numb linksFound = list() nodesFound = list() vantagePoint = list() #generate list of randomly vantage points to run traces to/ from #if(numbVPs != len(vPs)): #vantagePoints = getRandVantagePoints(vPs, numbVPs) #else: #vantagePoints = vPs tmp = shuffleVPs(vPs) vantagePoints = tmp[:numbVPs] #targets = vantagePoints #loop list to get all possible starting points for src in vantagePoints: #floop list to get all possible destinations for target in vantagePoints: #print "From %s to %s"%(src, target) #skipp if I'm tracing to myself if src == target: continue #extract the path temp = shortestPathsDict[src] tempVPs = temp[target] #if length is 1 its trying to trace to itself (should not be possible) #if len(tempVPs) == 1: #continue #linksFound.append((src*HASH_MULTIPLIER)+target) #has the src and dest to represent the directed edge #hash the found edge and append to list of liks found for key in range(len(tempVPs)-1): #print "Here: ",tempVPs first=tempVPs[key] second = tempVPs[key+1] #Adding up the edges between src and target. linksFound.append((first*HASH_MULTIPLIER)+second) nodesFound.append(first) nodesFound.append(second) tmpPathAverage = tmpPathAverage + len(set(linksFound)) tmpNodeAverage = tmpNodeAverage + len(set(nodesFound)) #print "VPs: %s: number of edges: %d"%(str(vantagePoints),len(set(linksFound))) #print "set of links found: ", len(set(linksFound)) averageLinksFound = averageLinksFound + float(float(tmpPathAverage)/1000) averageNodesFound = averageNodesFound + float(float(tmpNodeAverage)/1000) #print "Average : ", averageLinksFound text_total_links = text_total_links + "" + str(numbVPs) + "\t" + str(averageLinksFound) + "\t\t" + str(averageNodesFound)+"\n" averageLinksFound = 0 averageNodesFound = 0 numbVPs = numbVPs + 1 file_interfaces_.writeLinkCount(text_total_links,graphName) print "done" return text_total_links #takes a list off all available vantage points and returns number def getRandVantagePoints(vpList, number): randVPs = [] count = 0 while(count <= number): tmp = random.choice(vpList) randVPs.append(tmp) count = count + 1 return randVPs # 2nd approach, shuffel list and return def shuffleVPs(array): random.shuffle(array) return array ``` #### File: ALTO-framework-sim/utilities/drawGraph_.py ```python import pydot from PIL import Image #function transforms #def transformGraphReady(): def drawGraph(hoodDict, grName): graph = pydot.Dot(label = grName, graph_type='digraph', overlap ='scale', splines ='false') graph.set_edge_defaults(len='4') #first we generate the nodes for key in hoodDict.keys(): node_a = pydot.Node(str(key), shape="box") graph.add_node(node_a) for node in hoodDict.keys(): for entry, value in hoodDict[node].items(): edge = pydot.Edge(str(node), str(entry), label = str(value), ) graph.add_edge(edge) graph.write_jpeg('Output/'+grName+'.jpeg', prog='neato') graph.write_dot('Output/DOT/'+grName+'.dot') #Image.open('Output/'+grName+'.jpeg').show() def drawNetworkMap(netmapList, grName): graph = pydot.Dot(label = grName, graph_type='digraph', overlap ='scale', splines ='false') for key, val in netmapList.iteritems(): name = ""+key+" |{ " #print key #print val[0] #converting the set val to a list to apply list functions to it iterVal = list(val) for n in range(len(val)): if len (iterVal) == 1: name = name + str(iterVal.pop(0)) +" }" else: name = name + str(iterVal.pop(0)) +" | " #print name node = pydot.Node(label = name, shape = "record") node.set_name(key) graph.add_node(node) name = "" graph.write_jpeg('Output/'+grName+'.jpeg', prog='neato') graph.write_dot('Output/DOT/'+grName+'.dot') #struct3 [shape=record,label="hello\nworld |{ b |{c|<here> d|e}| f}| g | h"] #method to write a traceRoute View into a dot file and jpeg #@param nodes list of all found nodes #@param edges list of all found edges #@param grName string containing output name of graph def drawTracerouteView(traceView, grName): sd_pairs = () total_Edges = [] nodes = [] #FORMATING*********************************************************************** #FIRST all edges have to be determined, SECOND if path is discovered, no additional entry needed!!! #itterating the tree to get the subtree out, i.e. the sub list (3rd level) for outta_key, subtree in traceView.iteritems(): for inna_key, pathList in subtree.iteritems(): #print "DRAWING" #print "outter : %d, inner: %d"%(outta_key,inna_key) #print pathList #if the list has one element if len(pathList) == 1: #if the one element is the same as the outta_key then no trace happend (src=dst) if pathList[0]==outta_key: #print "self discovered: %d and %d"%(outta_key,pathList[0]) #build the list of nodes. Every node has a trace to itself, so best way to build node List nodes.append(pathList[0]) #continue #the trace went to a neighbor node (one hop) else: if (isInListOfTuples(total_Edges, outta_key, pathList[0])==0): #print "Adding Real neighbors: %d and %d"%(outta_key,pathList[0]) sd_pairs = outta_key, pathList[0] total_Edges.append(sd_pairs) #there is a list with min 2 entries and n length. divide into edge pairs starting with src node (outta_key)! else: if (isInListOfTuples(total_Edges, outta_key, pathList[0])==0): sd_pairs = outta_key, pathList[0] total_Edges.append(sd_pairs) #print "ADDING pairs: ", sd_pairs for x in range(0,len(pathList)-1): #print "add: %d | %d"%(pathList[x],pathList[x+1]) if (isInListOfTuples(total_Edges, pathList[x], pathList[x+1])==0): sd_pairs = pathList[x],pathList[x+1] total_Edges.append(sd_pairs) #print "THE TOTAL EDGES" #print total_Edges #print "THE TOTAL NODES" #print nodes #DRAWING************************************************************************* graph = pydot.Dot(label = grName, graph_type='digraph', overlap ='scale', splines ='false') graph.set_edge_defaults(len='2') for n in nodes: node_a = pydot.Node(str(n), shape="box", style="filled", color="red", fillcolor="yellow") graph.add_node(node_a) for src, dest in total_Edges: edge = pydot.Edge(str(src), str(dest), label = str(1), ) graph.add_edge(edge) graph.write_jpeg('Output/'+grName+'.jpeg', prog='neato') graph.write_dot('Output/DOT/'+grName+'.dot') #draw the graph that results from the merge process. Note: Every object is one cluster def drawMerge(pidDict, grName): #print "IN DRAW Func" graph = pydot.Dot(label = grName, graph_type='digraph', overlap ='scale', splines ='false', compound='true') #graph.set_edge_defaults(len='2') for pid, pidObj in pidDict.iteritems(): #print "currently dealing with: ", pid #pidObj.printME() #generate new cluster cluster = pydot.Cluster(graph_name = pid, label = pid, style='filled', color='lightgrey', labelloc = "t") #populate cluster: #nodes first for node in set(pidObj.nodes): #while len(node) > 0: #print "Drawing: ", node this_node = pydot.Node(name = str(node), shape="box") cluster.add_node(this_node) for node in set(pidObj.s_nodes): #print "drawing Starred: ", node this_node = pydot.Node(name = str(node), shape="box", style = 'filled', color = 'yellow') cluster.add_node(this_node) for node in set(pidObj.a_nodes): #print "alias Starred: ", node this_node = pydot.Node(name = str(node), shape="record") cluster.add_node(this_node) for edge, weight in pidObj.in_edges.iteritems(): src, dst = edge #print "Edge: ", src, dst, weight this_edge = pydot.Edge(str(src), str(dst), label = str(weight)) cluster.add_edge(this_edge) #for edge, weight in pidObj.out_edges.iteritems(): # src, dst = edge # print "Edge: ", src, dst, weight # this_edge = pydot.Edge(str(src), str(dst), label = str(weight)) # cluster.add_edge(this_edge) cluster.set_parent_graph(graph) graph.add_subgraph(cluster) #edges connecting PIDs have to be added at the end since they don't belong into a subgraph. for pid, pidObj in pidDict.iteritems(): for edge, weight in pidObj.out_edges.iteritems(): src, dst = edge #print "Edge: ", src, dst, weight this_edge = pydot.Edge(str(src), str(dst), label = str(weight)) graph.add_edge(this_edge) for dstPID, weight in pidObj.foundNeighborPIDs.iteritems():#TODO remove if practice prooves uneccesary! this_edge = pydot.Edge(str(pid), str(dstPID), label = str(weight)) graph.add_edge(this_edge) #graph.write_jpg('Output/FIN_'+grName+'.jpg', prog='dot')#TODO neato might not render the graph right!!! graph.write_raw('Output/RESULTS/'+grName+'_Graph.dot')#this is what i really want, a dot file to adjust in yED graphically and to manually apply learned ALTO knowledge to it. def makeNodeStarred(n): return "*"+str(n)+"*" def makeNodeAlias(interface, src ): return (str(interface)+"-"+str(src)) #function returns 1 if it found the supplied pair in the supplied list, 0 if its not in yet. def isInListOfTuples(ListOfTuples, src, dest): for i, v in enumerate(ListOfTuples): if (v[0] == src): if(v[1] == dest): #if edge (src --> dest) exists in tuple, return 1 return 1 else: continue return 0 ```
{ "source": "JohannesSeidel/pyNastran", "score": 3 }
#### File: bdf/bdf_interface/replication.py ```python from typing import List, Optional from pyNastran.bdf.bdf_interface.utils import expand_tabs from pyNastran.bdf.cards.utils import wipe_empty_fields from pyNastran.bdf.errors import ReplicationError def to_fields_replication(card_lines): # type: (List[str]) -> List[Optional[str]] """ Converts a series of lines in a card into string versions of the field. Handles large, small, and CSV formatted cards. Same as to_fields, but uses a different method to determine if it's large or small field format. Parameters ---------- lines : List[str] the lines of the BDF card object Returns ------- fields : List[str] the string formatted fields of the card .. warning:: this function is used by the reader and isn't intended to be called by a separate process .. code-block:: python >>> card_lines = ['GRID,1,,1.0,2.0,3.0'] >>> card_name = 'GRID' >>> fields = to_fields_replication(lines) >>> fields ['GRID', '1', '', '1.0', '2.0', '3.0'] """ #print('to_fields_replicationA =', card_lines) #line0 = card_lines[0] fields = [] for iline, line in enumerate(card_lines): line = line.rstrip() if '\t' in line: line = expand_tabs(line) #print(' line = %r' % line) if ',' in line: assert '\t' not in line, '%r' % line sline = line.split(',') #print('sline = ', iline, sline) if iline == 0: card_name = sline[0] #assert card_name != '=', card_lines fields.append(card_name) if '*' in sline[0]: fields.extend(sline[1:5]) for unused_i in range(5 - len(sline)): fields.append('') else: fields.extend(sline[1:9]) for unused_i in range(9 - len(sline)): fields.append('') else: assert '\t' not in line, line if iline == 0: card_name = line[0:8] assert card_name != '=', card_lines fields.append(card_name) if '*' in card_name: fields.extend([line[8:24], line[24:40], line[40:56], line[56:72]]) else: fields.extend([line[8:16], line[16:24], line[24:32], line[32:40], line[40:48], line[48:56], line[56:64], line[64:72]]) if '*' in card_name: raise ReplicationError('* found in unexpected position; %r\nlines = %s' % (card_name, card_lines)) wiped_fields = wipe_empty_fields(fields) for field in fields: sfield = field.strip() #while '= ' in sfield: #sfield = field.replace('= ','=') #print('sfield=%r' % sfield) if ' ' in sfield: raise RuntimeError('field=%r has embedded blanks\nfields=%s' % (sfield, fields)) return wiped_fields def get_nrepeats(field, old_card, new_card): """=4, =(11)""" msg = 'field=%r; expected =(1), =2, ...\nold_card=%s\nnew_card=%s' % ( field, old_card, new_card) assert field[0] == '=', msg assert '.' not in field, msg assert '*' not in field, msg if '(' in field or ')' in field: assert field[1] == '(', msg assert field[-1] == ')', msg fieldi = field[2:-1] assert '(' not in fieldi, msg assert ')' not in fieldi, msg else: assert '(' not in field, msg assert ')' not in field, msg fieldi = field[1:] nrepeats = int(fieldi) return nrepeats def float_replication(field, old_field): """*4., *(11.5)""" msg = 'field=%r; expected *(1.), *2., ..., *11.' % field assert field[0] == '*', msg assert '.' in field, msg assert len(field) >= 3, msg if '(' in field: assert field[1] == '(', msg assert field[-1] == ')', msg fieldi = field[2:-1] assert '(' not in fieldi, msg assert ')' not in fieldi, msg else: assert '(' not in field, msg assert ')' not in field, msg fieldi = field[1:] nfloat = float(fieldi) field2 = nfloat + float(old_field) return field2 def int_replication(field, old_field): # type: (str, str) -> int """*4, *(11)""" msg = 'field=%r; expected *(1), *2, ..., *11' % field assert field[0] == '*', msg assert '.' not in field, msg if '(' in field: assert field[1] == '(', msg assert field[-1] == ')', msg fieldi = field[2:-1] assert '(' not in fieldi, msg assert ')' not in fieldi, msg else: assert '(' not in field, msg assert ')' not in field, msg fieldi = field[1:] assert '*' not in fieldi, msg assert len(field) >= 2, msg #assert len(field) == 2, 'field=%r; expected *1, *2, *3, ..., *9' % field # integer nint = int(fieldi) field2 = nint + int(old_field) return field2 def _field(old_card, ifield): """helper for replication""" #if isinstance(old_card, list): #print(old_card, ifield) field2 = old_card[ifield] #else: #field2 = old_card.field(ifield) return field2 def repeat_cards(old_card, new_card): """helper for replication""" card = [] cards = [] #print('*old_card = %s' % old_card) #print('*new_card = %s' % new_card) assert old_card != new_card for ifield, field in enumerate(new_card): if field is None: field2 = _field(old_card, ifield) #field2 = old_card.field(ifield) #print(' %i: %r -> %r' % (ifield, field, field2)) #assert field2 is None, 'field=%s field2=%s' % (field, field2) card.append(field2) continue if field == '': field2 = field elif field == '=': field2 = _field(old_card, ifield) elif field == '==': # just append the remaining fields #print(' %s : extending %s' % (ifield, old_card[ifield:])) card.extend(old_card[ifield:]) break elif '*' in field: # this is an increment, not multiplication... old_field = _field(old_card, ifield) #old_field = old_card.field(ifield) if '.' in field: field2 = float_replication(field, old_field) else: field2 = int_replication(field, old_field) else: msg = 'field=%r\nold_card=%s\nnew_card=%s' % (field, old_card, new_card) assert '(' not in field, msg assert '*' not in field, msg assert '=' not in field, msg field = field2 #print(' %i: %r -> %r' % (ifield, field, field2)) card.append(field2) #print(' appending %s' % card) cards.append(card) return cards ``` #### File: bdf/bdf_interface/stats.py ```python from typing import List, Set, Dict, Any, Union def get_bdf_stats(model, return_type='string', word=''): # type: (Any, str, str) -> Union[str, List[str]] """ Print statistics for the BDF Parameters ---------- return_type : str (default='string') the output type ('list', 'string') 'list' : list of strings 'string' : single, joined string word : str; default='' model flag Returns ------- return_data : str, optional the output data .. note:: if a card is not supported and not added to the proper lists, this method will fail .. todo:: RBE3s from OP2s can show up as ???s """ card_dict_groups = [ 'params', 'nodes', 'spoints', 'epoints', 'points', 'gridb', 'elements', 'ao_element_flags', 'normals', 'rigid_elements', 'plotels', 'properties', 'pbusht', 'pdampt', 'pelast', 'properties_mass', 'masses', 'materials', 'creep_materials', 'hyperelastic_materials', 'MATT1', 'MATT2', 'MATT3', 'MATT4', 'MATT5', 'MATT8', 'MATT9', 'MATS1', 'MATS3', 'MATS8', 'MATT8', 'coords', 'mpcs', # axisysmmetric # dynamic cards 'dareas', 'delays', 'dphases', 'nlparms', 'nlpcis', 'tsteps', 'tstepnls', 'rotors', # direct matrix input - DMIG - dict 'dmi', 'dmig', 'dmij', 'dmiji', 'dmik', 'dmiax', 'dequations', 'transfer_functions', 'tics', # frequencies - dict[List[FREQ]] 'frequencies', # optimization - dict 'dconadds', 'dconstrs', 'desvars', 'topvar', 'ddvals', 'dlinks', 'dresps', 'dvcrels', 'dvmrels', 'dvprels', 'dvgrids', # SESETx - dict 'suport1', # tables 'tables', 'tables_d', 'tables_m', 'random_tables', 'tables_sdamping', # methods 'methods', 'cMethods', # aero 'caeros', 'paeros', 'aecomps', 'aefacts', 'aelinks', 'aelists', 'aeparams', 'aesurf', 'aesurfs', 'aestats', 'gusts', 'flfacts', 'flutters', 'splines', 'trims', 'divergs', 'csschds', # thermal 'bcs', 'thermal_materials', 'phbdys', 'views', 'view3ds', 'convection_properties', # contact 'bsurf', 'bsurfs', 'blseg', 'bconp', 'bcrparas', 'bctadds', 'bctparas', 'bctsets', # sets 'sets', 'usets', # superelements 'csuper', 'csupext', 'sebulk', 'sebndry', 'seconct', 'seelt', 'seexcld', 'selabel', 'seloc', 'seload', 'sempln', 'senqset', 'setree', 'se_sets', 'se_usets', # ??? 'dscreen', 'dti', 'nxstrats', 'radcavs', 'radmtx', 'ringaxs', 'ringfl', 'tempds', 'spcoffs', ] scalar_attrs = [ 'aero', 'aeros', 'grdset', # handled below # not handled 'axic', 'axif', 'baror', 'beamor', 'doptprm', 'dtable', 'zona', ] list_attrs = [ 'asets', 'bsets', 'csets', 'omits', 'qsets', 'se_bsets', 'se_csets', 'se_qsets', 'suport', 'se_suport', 'monitor_points', ] skip_attrs = [ 'active_filename', 'active_filenames', 'debug', 'log', 'reject_lines', 'is_nx', 'is_msc', 'is_bdf_vectorized', 'dumplines', 'values_to_skip', 'system_command_lines', 'executive_control_lines', 'case_control_lines', 'case_control_deck', 'is_superelements', 'special_cards', 'units', 'sol', 'sol_iline', 'sol_method', 'cards_to_read', 'card_count', 'superelement_models', 'wtmass', 'echo', 'force_echo_off', 'read_includes', 'reject_cards', 'reject_count', 'punch', 'include_dir', 'include_filenames', 'save_file_structure', 'rsolmap_to_str', 'nastran_format', 'nid_map', 'bdf_filename', 'radset', 'is_zona', # handled below 'mpcadds', 'mpcs', 'spcadds', 'spcs', 'loads', 'load_combinations', 'dloads', 'dload_entries', 'aero', 'aeros', 'mkaeros', 'nsmadds', 'nsms', 'seqgp', ] + list_attrs + card_dict_groups + scalar_attrs #missed_attrs = [] #for attr in model.object_attributes(): #if attr in skip_attrs: #continue #missed_attrs.append(attr) #assert missed_attrs == [], missed_attrs # These are ignored because they're lists #ignored_types = set([ #'spoints', 'spointi', # singleton #'grdset', # singleton #'spcs', #'suport', 'se_suport', # suport, suport1 - list #'doptprm', # singleton ## SETx - list #'sets', 'asets', 'bsets', 'csets', 'qsets', #'se_bsets', 'se_csets', 'se_qsets', #]) ## TODO: why are some of these ignored? #ignored_types2 = set([ #'case_control_deck', 'caseControlDeck', ## done #'sol', 'loads', 'mkaeros', #'reject_lines', 'reject_cards', ## not cards #'debug', 'executive_control_lines', #'case_control_lines', 'cards_to_read', 'card_count', #'is_structured', 'uniqueBulkDataCards', #'model_type', 'include_dir', #'sol_method', 'log', #'sol_iline', #'reject_count', '_relpath', #'special_cards',]) #unsupported_types = ignored_types.union(ignored_types2) #all_params = object_attributes(model, keys_to_skip=unsupported_types) msg = ['---BDF Statistics%s---' % word] # sol if 'Superelement' not in word: msg.append('SOL %s\n' % model.sol) msg.extend(_get_bdf_stats_loads(model)) # load_combinations / loads: handled below # dloads for (lid, loads) in sorted(model.dloads.items()): msg.append('bdf.dloads[%s]' % lid) groups_dict = {} # type: Dict[str, Any] for loadi in loads: groups_dict[loadi.type] = groups_dict.get(loadi.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') for (lid, loads) in sorted(model.dload_entries.items()): msg.append('bdf.dload_entries[%s]' % lid) groups_dict = {} for loadi in loads: groups_dict[loadi.type] = groups_dict.get(loadi.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') # spcs for (spc_id, spcadds) in sorted(model.spcadds.items()): msg.append('bdf.spcadds[%s]' % spc_id) groups_dict = {} for spcadd in spcadds: groups_dict[spcadd.type] = groups_dict.get(spcadd.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') for (spc_id, spcs) in sorted(model.spcs.items()): msg.append('bdf.spcs[%s]' % spc_id) groups_dict = {} for spc in spcs: groups_dict[spc.type] = groups_dict.get(spc.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') # mpcs for (mpc_id, mpcadds) in sorted(model.mpcadds.items()): msg.append('bdf.mpcadds[%s]' % mpc_id) groups_dict = {} for mpcadd in mpcadds: groups_dict[mpcadd.type] = groups_dict.get(mpcadd.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') for (mpc_id, mpcs) in sorted(model.mpcs.items()): msg.append('bdf.mpcs[%s]' % mpc_id) groups_dict = {} for mpc in mpcs: groups_dict[mpc.type] = groups_dict.get(mpc.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') # nsms for (nsm_id, nsmadds) in sorted(model.nsmadds.items()): msg.append('bdf.nsmadds[%s]' % nsm_id) groups_dict = {} for nsmadd in nsmadds: groups_dict[nsmadd.type] = groups_dict.get(nsmadd.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') for (mpc_id, nsms) in sorted(model.nsms.items()): msg.append('bdf.nsms[%s]' % mpc_id) groups_dict = {} for nsm in nsms: groups_dict[nsm.type] = groups_dict.get(nsm.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') # aero if model.aero: msg.append('bdf.aero') msg.append(' %-8s 1' % ('AERO:')) # aeros if model.aeros: msg.append('bdf:aeros') msg.append(' %-8s 1' % ('AEROS:')) #mkaeros if model.mkaeros: msg.append('bdf:mkaeros') msg.append(' %-8s %s' % ('MKAERO:', len(model.mkaeros))) # radset if model.radset: msg.append('bdf:radset') msg.append(' %-8s 1' % ('RADSET:')) #mkaeros if model.seqgp: msg.append('bdf:seqgp') msg.append(' %-8s 1' % ('SEQGP:')) for card_group_name in card_dict_groups: try: card_group = getattr(model, card_group_name) except AttributeError: msgi = 'cant find card_group_name=%r' % card_group_name raise AttributeError(msgi) groups = set() # type: Set[str] if not isinstance(card_group, dict): msgi = '%s is a %s; not dictionary, which is required by get_bdf_stats()' % ( card_group_name, type(card_group)) model.log.error(msgi) continue #raise RuntimeError(msg) for card in card_group.values(): if isinstance(card, list): for card2 in card: groups.add(card2.type) else: groups.add(card.type) group_msg = [] for card_name in sorted(groups): try: ncards = model.card_count[card_name] group_msg.append(' %-8s : %s' % (card_name, ncards)) except KeyError: # we get in here because we used add_grid or similar method, which # doesn't increase the card_count, so instead we'll use _type_to_id_map counter = '???' if card_name in model._type_to_id_map: counter = len(model._type_to_id_map[card_name]) if card_name == 'CORD2R' and counter == '???': # there is always 1 CORD2R that isn't added to card_count/_type_to_id_map continue group_msg.append(' %-8s : %s' % (card_name, counter)) #assert card_name == 'CORD2R', model.card_count if group_msg: msg.append('bdf.%s' % card_group_name) msg.append('\n'.join(group_msg)) msg.append('') if model.reject_lines: # List[card]; card = List[str] msg.append('Rejected Cards') for name, counter in sorted(model.card_count.items()): if name not in model.cards_to_read: msg.append(' %-8s %s' % (name + ':', counter)) msg.append('') for super_id, superelement in model.superelement_models.items(): msg += get_bdf_stats(superelement, return_type='list', word=' (Superelement %i)' % super_id) if return_type == 'string': return '\n'.join(msg) return msg def _get_bdf_stats_loads(model): # type: (Any) -> List[str] """helper for ``get_bdf_stats(...)``""" # loads msg = [] if model.is_bdf_vectorized: ## kind of hackish for (lid, load_combination) in sorted(model.load_combinations.items()): msg.append('bdf.load_combinations[%s]' % lid) msg.append('') if len(model.loads): msg.append('bdf.loads[%s] : ???') else: for (lid, load_combinations) in sorted(model.load_combinations.items()): msg.append('bdf.load_combinations[%s]' % lid) groups_dict = {} # type: Dict[str, int] for load_combination in load_combinations: groups_dict[load_combination.type] = groups_dict.get(load_combination.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') for (lid, loads) in sorted(model.loads.items()): msg.append('bdf.loads[%s]' % lid) groups_dict = {} for loadi in loads: groups_dict[loadi.type] = groups_dict.get(loadi.type, 0) + 1 for name, count_name in sorted(groups_dict.items()): msg.append(' %-8s %s' % (name + ':', count_name)) msg.append('') return msg ``` #### File: bdf/bdf_interface/uncross_reference.py ```python from typing import List, Dict, Any from pyNastran.bdf.bdf_interface.safe_cross_reference import SafeXrefMesh class UnXrefMesh(SafeXrefMesh): """ Unlinks up the various cards in the BDF. """ def __init__(self) -> None: """ The main BDF class defines all the parameters that are used. """ SafeXrefMesh.__init__(self) def uncross_reference(self, word: str='') -> None: """uncross references the model""" self.log.debug("Uncross Referencing%s..." % word) self._uncross_reference_nodes() self._uncross_reference_coords() self._uncross_reference_elements() self._uncross_reference_properties() self._uncross_reference_materials() self._uncross_reference_masses() self._uncross_reference_aero() self._uncross_reference_constraints() self._uncross_reference_loads() self._uncross_reference_sets() self._uncross_reference_optimization() self._uncross_reference_superelements() for super_id, superelement in sorted(self.superelement_models.items()): superelement.uncross_reference(word=' (Superelement %i)' % super_id) def _uncross_reference_nodes(self) -> None: """uncross references the GRID objects""" for node in self.nodes.values(): node.uncross_reference() for point in self.points.values(): point.uncross_reference() def _uncross_reference_coords(self) -> None: """uncross references the CORDx objects""" for cid, coord in self.coords.items(): if cid == 0: continue coord.uncross_reference() def _uncross_reference_elements(self) -> None: """uncross references the element objects""" for element in self.elements.values(): try: element.uncross_reference() except TypeError: raise NotImplementedError('%s.uncross_reference' % element.type) except AttributeError: print(element) raise for element in self.masses.values(): element.uncross_reference() for element in self.rigid_elements.values(): element.uncross_reference() for element in self.plotels.values(): element.uncross_reference() def _uncross_reference_properties(self) -> None: """uncross references the property objects""" for prop in self.properties.values(): try: prop.uncross_reference() #except TypeError: #raise NotImplementedError('%s.uncross_reference' % prop.type) except AttributeError: print(prop) print('%s.uncross_reference error' % prop.type) raise def _uncross_reference_materials(self) -> None: """uncross references the material objects""" try: for material in self.materials.values(): material.uncross_reference() except AttributeError: print(material) raise try: for material in self.creep_materials.values(): material.uncross_reference() except AttributeError: print(material) raise data = [self.MATS1, self.MATS3, self.MATS8, self.MATT1, self.MATT2, self.MATT3, self.MATT4, self.MATT5, self.MATT8, self.MATT9] for material_deps in data: for mat in material_deps.values(): try: mat.uncross_reference() except AttributeError: print(mat) raise def _uncross_reference_masses(self) -> None: """uncross references the mass objects""" for mass in self.masses.values(): mass.uncross_reference() for prop in self.properties_mass.values(): prop.uncross_reference() def _uncross_reference_aero(self) -> None: """uncross references the aero objects""" for caero in self.caeros.values(): caero.uncross_reference() for paero in self.paeros.values(): paero.uncross_reference() for trim in self.trims.values(): trim.uncross_reference() for csschd in self.csschds.values(): csschd.uncross_reference() for spline in self.splines.values(): spline.uncross_reference() for aecomp in self.aecomps.values(): aecomp.uncross_reference() for aelist in self.aelists.values(): aelist.uncross_reference() for aeparam in self.aeparams.values(): aeparam.uncross_reference() for trim in self.trims.values(): trim.uncross_reference() for csschd in self.csschds.values(): csschd.uncross_reference() #for aestat in self.aestats.values(): #aestat.uncross_reference() for aesurf in self.aesurf.values(): aesurf.uncross_reference() for aesurfs in self.aesurfs.values(): aesurfs.uncross_reference() for flutter in self.flutters.values(): flutter.uncross_reference() for monitor_point in self.monitor_points: monitor_point.uncross_reference() if self.aero: self.aero.uncross_reference() if self.aeros: self.aeros.uncross_reference() def _uncross_reference_constraints(self) -> None: """ Unlinks the SPCADD, SPC, SPCAX, SPCD, MPCADD, MPC, SUPORT, SUPORT1, SESUPORT cards. """ for spcadds in self.spcadds.values(): for spcadd in spcadds: spcadd.uncross_reference() for spc in self.spcs.values(): for spci in spc: spci.uncross_reference() for spcoffs in self.spcoffs.values(): for spcoff in spcoffs: spcoff.uncross_reference() for mpcadds in self.mpcadds.values(): for mpcadd in mpcadds: mpcadd.uncross_reference() for mpc in self.mpcs.values(): for mpci in mpc: mpci.uncross_reference() for suport in self.suport: suport.uncross_reference() for suport1 in self.suport1.values(): suport1.uncross_reference() for se_suport in self.se_suport: se_suport.uncross_reference() def _uncross_reference_loads(self) -> None: """ Unlinks the LOAD PLOAD1, PLOAD2, PLOAD4 FORCE, FORCE1, FORCE2 MOMENT, MOMENT1, MOMENT2 DLOAD, ACSRCE, RLOAD1, RLOAD2, TLOAD1, TLOAD2 DPHASE, DAREA TEMP """ for (unused_lid, load_combinations) in self.load_combinations.items(): for load_combination in load_combinations: load_combination.uncross_reference() for (unused_lid, loads) in self.loads.items(): for load in loads: load.uncross_reference() for (unused_lid, dloads) in self.dloads.items(): for dload in dloads: dload.uncross_reference() for (unused_lid, dload_entries) in self.dload_entries.items(): for dload_entry in dload_entries: dload_entry.uncross_reference() for unused_key, darea in self.dareas.items(): darea.uncross_reference() for unused_key, dphase in self.dphases.items(): dphase.uncross_reference() for unused_key, tic in self.tics.items(): tic.uncross_reference() def _uncross_reference_sets(self) -> None: """uncross references the set objects""" for set_obj in self.asets: set_obj.uncross_reference() for set_obj in self.omits: set_obj.uncross_reference() for set_obj in self.bsets: set_obj.uncross_reference() for set_obj in self.csets: set_obj.uncross_reference() for set_obj in self.qsets: set_obj.uncross_reference() for unused_name, set_objs in self.usets.items(): for set_obj in set_objs: set_obj.uncross_reference() # superelements for unused_key, set_obj in self.se_sets.items(): set_obj.uncross_reference() for set_obj in self.se_bsets: set_obj.uncross_reference() for set_obj in self.se_csets: set_obj.uncross_reference() for set_obj in self.se_qsets: set_obj.uncross_reference() for set_obj in self.se_usets: set_obj.uncross_reference() def _uncross_reference_optimization(self) -> None: """uncross references the optimization objects""" for unused_key, deqatn in self.dequations.items(): deqatn.uncross_reference() for unused_key, dresp in self.dresps.items(): dresp.uncross_reference() for unused_key, dconstrs in self.dconstrs.items(): for dconstr in dconstrs: dconstr.uncross_reference() for unused_key, dvcrel in self.dvcrels.items(): dvcrel.uncross_reference() for unused_key, dvmrel in self.dvmrels.items(): dvmrel.uncross_reference() for unused_key, dvprel in self.dvprels.items(): dvprel.uncross_reference() for unused_key, desvar in self.desvars.items(): desvar.uncross_reference() for unused_key, desvar in self.topvar.items(): desvar.uncross_reference() ``` #### File: cards/elements/rods.py ```python from numpy.linalg import norm # type: ignore from pyNastran.utils.numpy_utils import integer_types from pyNastran.bdf.field_writer_8 import set_blank_if_default from pyNastran.bdf.cards.base_card import Element #, Mid from pyNastran.bdf.bdf_interface.assign_type import ( integer, integer_or_blank, double_or_blank) from pyNastran.bdf.field_writer_8 import print_card_8 from pyNastran.bdf.field_writer_16 import print_card_16 class RodElement(Element): # CROD, CONROD, CTUBE def __init__(self): Element.__init__(self) @property def node_ids(self): return self._node_ids(nodes=self.nodes_ref, allow_empty_nodes=False) def get_edge_ids(self): return [tuple(sorted(self.node_ids))] def Mass(self): r""" get the mass of the element. .. math:: m = \left( \rho A + nsm \right) L """ L = self.Length() mass = (self.Rho() * self.Area() + self.Nsm()) * L return mass class CROD(RodElement): """ +------+-----+-----+----+----+ | 1 | 2 | 3 | 4 | 5 | +======+=====+=====+====+====+ | CROD | EID | PID | N1 | N2 | +------+-----+-----+----+----+ """ type = 'CROD' _field_map = { 1: 'eid', 2:'pid', } def _update_field_helper(self, n, value): if n == 3: self.nodes[0] = value elif n == 4: self.nodes[1] = value else: raise KeyError('Field %r=%r is an invalid %s entry.' % (n, value, self.type)) @classmethod def export_to_hdf5(cls, h5_file, model, eids): """exports the elements in a vectorized way""" #comments = [] pids = [] nodes = [] for eid in eids: element = model.elements[eid] #comments.append(element.comment) pids.append(element.pid) nodes.append(element.nodes) #h5_file.create_dataset('_comment', data=comments) h5_file.create_dataset('eid', data=eids) h5_file.create_dataset('pid', data=pids) h5_file.create_dataset('nodes', data=nodes) def __init__(self, eid, pid, nids, comment=''): """ Creates a CROD card Parameters ---------- eid : int element id pid : int property id (PROD) nids : List[int, int] node ids comment : str; default='' a comment for the card """ RodElement.__init__(self) if comment: self.comment = comment self.eid = eid self.pid = pid self.prepare_node_ids(nids) assert len(self.nodes) == 2 self.nodes_ref = None self.pid_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a CROD card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ eid = integer(card, 1, 'eid') pid = integer_or_blank(card, 2, 'pid', eid) nids = [integer(card, 3, 'n1'), integer(card, 4, 'n2')] assert len(card) == 5, 'len(CROD card) = %i\ncard=%s' % (len(card), str(card)) return CROD(eid, pid, nids, comment=comment) @classmethod def add_op2_data(cls, data, comment=''): """ Adds a CROD card from the OP2 Parameters ---------- data : List[varies] a list of fields defined in OP2 format comment : str; default='' a comment for the card """ eid = data[0] pid = data[1] nids = data[2:4] return CROD(eid, pid, nids, comment=comment) def cross_reference(self, model): msg = ', which is required by CROD eid=%s' % (self.eid) self.nodes_ref = model.Nodes(self.nodes, msg=msg) self.pid_ref = model.Property(self.pid, msg=msg) def safe_cross_reference(self, model, xref_errors): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by CROD eid=%s' % self.eid self.nodes_ref = model.Nodes(self.node_ids, msg=msg) self.pid_ref = model.safe_property(self.pid, self.eid, xref_errors, msg=msg) def uncross_reference(self) -> None: """Removes cross-reference links""" self.nodes = self.node_ids self.pid = self.Pid() self.nodes_ref = None self.pid_ref = None def _verify(self, xref): eid = self.eid pid = self.Pid() unused_edges = self.get_edge_ids() assert isinstance(eid, int), 'eid=%r' % eid assert isinstance(pid, int), 'pid=%r' % pid if xref: # True mid = self.Mid() L = self.Length() A = self.Area() nsm = self.Nsm() mpa = self.MassPerLength() mass = self.Mass() assert isinstance(mid, integer_types), 'mid=%r' % mid assert isinstance(L, float), 'L=%r' % L assert isinstance(A, float), 'A=%r' % A assert isinstance(nsm, float), 'nsm=%r' % nsm assert isinstance(mpa, float), 'mass_per_length=%r' % mpa assert isinstance(mass, float), 'mass=%r' % mass c = self.Centroid() for i in range(3): assert isinstance(c[i], float), 'centroid[%i]=%r' % (i, c[i]) def Length(self): r""" Gets the length of the element. .. math:: L = \sqrt{ (n_{x2}-n_{x1})^2+(n_{y2}-n_{y1})^2+(n_{z2}-n_{z1})^2 } """ if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) L = norm(self.nodes_ref[1].get_position() - self.nodes_ref[0].get_position()) return L def Rho(self): r"""returns the material density \f$ \rho \f$""" if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.mid_ref.rho def Centroid(self): return (self.nodes_ref[0].get_position() + self.nodes_ref[1].get_position()) / 2. def center_of_mass(self): return self.Centroid() def Mid(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.Mid() def Area(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.A def Nsm(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.nsm def E(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.mid_ref.E() def G(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.mid_ref.G() def J(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.J() def C(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.c def MassPerLength(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) mass_per_length = self.pid_ref.mid_ref.rho * self.pid_ref.A + self.pid_ref.nsm return mass_per_length def raw_fields(self): list_fields = ['CROD', self.eid, self.Pid()] + self.node_ids return list_fields def repr_fields(self): return self.raw_fields() def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.raw_fields() return self.comment + print_card_8(card) def write_card_16(self, is_double=False): card = self.raw_fields() return self.comment + print_card_16(card) class CTUBE(RodElement): """ +-------+-----+-----+----+----+ | 1 | 2 | 3 | 4 | 5 | +=======+=====+=====+====+====+ | CTUBE | EID | PID | N1 | N2 | +-------+-----+-----+----+----+ """ type = 'CTUBE' _field_map = { 1: 'eid', 2:'pid', } def _update_field_helper(self, n, value): if n == 3: self.nodes[0] = value elif n == 4: self.nodes[1] = value else: raise KeyError('Field %r=%r is an invalid %s entry.' % (n, value, self.type)) @classmethod def export_to_hdf5(cls, h5_file, model, eids): """exports the elements in a vectorized way""" #comments = [] pids = [] nodes = [] for eid in eids: element = model.elements[eid] #comments.append(element.comment) pids.append(element.pid) nodes.append(element.nodes) #h5_file.create_dataset('_comment', data=comments) h5_file.create_dataset('eid', data=eids) h5_file.create_dataset('pid', data=pids) h5_file.create_dataset('nodes', data=nodes) def __init__(self, eid, pid, nids, comment=''): """ Creates a CTUBE card Parameters ---------- eid : int element id pid : int property id nids : List[int, int] node ids comment : str; default='' a comment for the card """ RodElement.__init__(self) if comment: self.comment = comment self.eid = eid self.pid = pid self.prepare_node_ids(nids) assert len(self.nodes) == 2 self.nodes_ref = None self.pid_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a CTUBE card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ eid = integer(card, 1, 'eid') pid = integer_or_blank(card, 2, 'pid', eid) nids = [integer(card, 3, 'n1'), integer(card, 4, 'n2')] assert len(card) == 5, 'len(CTUBE card) = %i\ncard=%s' % (len(card), card) return CTUBE(eid, pid, nids, comment=comment) @classmethod def add_op2_data(cls, data, comment=''): """ Adds a CTUBE card from the OP2 Parameters ---------- data : List[varies] a list of fields defined in OP2 format comment : str; default='' a comment for the card """ eid = data[0] pid = data[1] nids = data[2:4] return CTUBE(eid, pid, nids, comment=comment) def cross_reference(self, model): msg = ', which is required by CTUBE eid=%s' % (self.eid) self.nodes_ref = model.Nodes(self.nodes, msg=msg) self.pid_ref = model.Property(self.pid, msg=msg) def safe_cross_reference(self, model, xref_errors): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by CTUBE eid=%s' % self.eid self.nodes_ref = model.Nodes(self.node_ids, msg=msg) self.pid_ref = model.safe_property(self.pid, self.eid, xref_errors, msg=msg) ## TODO: xref coord def uncross_reference(self) -> None: """Removes cross-reference links""" self.nodes = self.node_ids self.pid = self.Pid() self.nodes_ref = None self.pid_ref = None def _verify(self, xref): pid = self.Pid() unused_edges = self.get_edge_ids() assert isinstance(pid, int), 'pid=%r' % pid if xref: A = self.Area() L = self.Length() nsm = self.Nsm() assert isinstance(A, float), 'A=%r' % A assert isinstance(L, float), 'L=%r' % L assert isinstance(nsm, float), 'nsm=%r' % nsm if self.pid_ref.mid_ref.type == 'MAT1': mpa = self.pid_ref.MassPerLength() mass = self.Mass() assert isinstance(mpa, float), 'mass_per_length=%r' % mpa assert isinstance(mass, float), 'mass=%r' % mass elif self.pid_ref.mid_ref.type == 'MAT4': pass else: msg = '_verify does not support self.pid_ref.mid_ref.type=%s' % ( self.pid_ref.mid_ref.type) raise NotImplementedError(msg) c = self.Centroid() for i in range(3): assert isinstance(c[i], float), 'centroid[%i]=%r' % (i, c[i]) def Length(self): r""" Gets the length of the element. .. math:: L = \sqrt{ (n_{x2}-n_{x1})^2+(n_{y2}-n_{y1})^2+(n_{z2}-n_{z1})^2 } """ if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) L = norm(self.nodes_ref[1].get_position() - self.nodes_ref[0].get_position()) return L def Rho(self): r"""returns the material density \f$ \rho \f$""" if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.mid_ref.rho def Mid(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.Mid() def Mass(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.MassPerLength() * self.Length() def Nsm(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.Nsm() def Area(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.Area() def E(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.mid_ref.E() def G(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.mid_ref.G() def J(self): if self.pid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.pid_ref.J() def Centroid(self): return (self.nodes_ref[0].get_position() + self.nodes_ref[1].get_position()) / 2. def center_of_mass(self): return self.Centroid() def raw_fields(self): list_fields = ['CTUBE', self.eid, self.Pid()] + self.node_ids return list_fields def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.repr_fields() return self.comment + print_card_8(card) class CONROD(RodElement): """ +--------+-----+-----+----+-----+---+---+---+-----+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +========+=====+=====+====+=====+===+===+===+=====+ | CONROD | EID | N1 | N2 | MID | A | J | C | NSM | +--------+-----+-----+----+-----+---+---+---+-----+ """ type = 'CONROD' pid = -10 # 10 is the element type per DMAP _field_map = { 1: 'eid', 4:'mid', 5:'A', 6:'j', 7:'c', 8:'nsm', } def _update_field_helper(self, n, value): if n == 2: self.nodes[0] = value elif n == 3: self.nodes[1] = value else: raise KeyError('Field %r=%r is an invalid %s entry.' % (n, value, self.type)) @classmethod def export_to_hdf5(cls, h5_file, model, eids): """exports the elements in a vectorized way""" #comments = [] nodes = [] mids = [] A = [] J = [] c = [] nsm = [] for eid in eids: element = model.elements[eid] #comments.append(element.comment) mids.append(element.mid) nodes.append(element.nodes) A.append(element.A) J.append(element.j) c.append(element.c) nsm.append(element.nsm) #h5_file.create_dataset('_comment', data=comments) h5_file.create_dataset('eid', data=eids) h5_file.create_dataset('nodes', data=nodes) h5_file.create_dataset('mid', data=mids) h5_file.create_dataset('A', data=A) h5_file.create_dataset('J', data=J) h5_file.create_dataset('c', data=c) h5_file.create_dataset('nsm', data=nsm) def __init__(self, eid, mid, nids, A=0.0, j=0.0, c=0.0, nsm=0.0, comment=''): """ Creates a CONROD card Parameters ---------- eid : int element id mid : int material id nids : List[int, int] node ids A : float area j : float; default=0. polar moment of inertia c : float; default=0. stress factor nsm : float; default=0. non-structural mass per unit length comment : str; default='' a comment for the card """ RodElement.__init__(self) if comment: self.comment = comment self.eid = eid self.mid = mid self.A = A self.j = j self.c = c self.nsm = nsm self.prepare_node_ids(nids) assert len(self.nodes) == 2 self.nodes_ref = None self.mid_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a CONROD card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ eid = integer(card, 1, 'eid') nids = [integer(card, 2, 'n1'), integer(card, 3, 'n2')] mid = integer(card, 4, 'mid') A = double_or_blank(card, 5, 'A', 0.0) j = double_or_blank(card, 6, 'j', 0.0) c = double_or_blank(card, 7, 'c', 0.0) nsm = double_or_blank(card, 8, 'nsm', 0.0) assert len(card) <= 9, 'len(CONROD card) = %i\ncard=%s' % (len(card), str(card)) return CONROD(eid, mid, nids, A, j, c, nsm, comment=comment) @classmethod def add_op2_data(cls, data, comment=''): """ Adds a CONROD card from the OP2 Parameters ---------- data : List[varies] a list of fields defined in OP2 format comment : str; default='' a comment for the card """ eid = data[0] nids = data[1:3] mid = data[3] A = data[4] j = data[5] c = data[6] nsm = data[7] return CONROD(eid, mid, nids, A, j, c, nsm, comment=comment) def cross_reference(self, model): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by CONROD eid=%s' % (self.eid) self.nodes_ref = model.Nodes(self.nodes, msg=msg) self.mid_ref = model.Material(self.mid, msg=msg) def safe_cross_reference(self, model, xref_errors): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by CONROD eid=%s' % self.eid self.nodes_ref = model.Nodes(self.node_ids, msg=msg) self.mid_ref = model.safe_material(self.mid, self.eid, xref_errors, msg=msg) def uncross_reference(self) -> None: """Removes cross-reference links""" self.nodes = self.node_ids self.mid = self.Mid() self.nodes_ref = None self.mid_ref = None def _verify(self, xref): pid = self.Pid() assert pid == -10, 'pid=%r' % pid unused_edges = self.get_edge_ids() if xref: # True mid = self.Mid() L = self.Length() A = self.Area() nsm = self.Nsm() mpa = self.MassPerLength() mass = self.Mass() assert isinstance(mid, integer_types), 'mid=%r' % mid assert isinstance(L, float), 'L=%r' % L assert isinstance(A, float), 'A=%r' % A assert isinstance(nsm, float), 'nsm=%r' % nsm assert isinstance(mpa, float), 'mass_per_length=%r' % mpa assert isinstance(mass, float), 'mass=%r' % mass c = self.Centroid() for i in range(3): assert isinstance(c[i], float), 'centroid[%i]=%r' % (i, c[i]) def Length(self): r""" Gets the length of the element. .. math:: L = \sqrt{ (n_{x2}-n_{x1})^2+(n_{y2}-n_{y1})^2+(n_{z2}-n_{z1})^2 } """ if self.mid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) L = norm(self.nodes_ref[1].get_position() - self.nodes_ref[0].get_position()) return L def Rho(self): r"""returns the material density \f$ \rho \f$""" if self.mid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.mid_ref.rho def Centroid(self): """Get the centroid of the element (save as the center of mass for the CONROD)""" if self.mid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return (self.nodes_ref[0].get_position() + self.nodes_ref[1].get_position()) / 2. def center_of_mass(self): """Get the center of mass of the element (save as the centroid for the CONROD)""" return self.Centroid() def Mid(self): if self.mid_ref is None: return self.mid #elif self.mid is None: #print ("No material defined for element ", self.eid) #return None return self.mid_ref.mid def Pid(self): """Spoofs the property id for the CONROD""" return self.pid def MassPerLength(self): """Gets the mass per length of the CONROD""" if self.mid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) massPerLength = self.mid_ref.rho * self.A + self.nsm return massPerLength def C(self): """torsional constant""" return self.c def Area(self): return self.A def J(self): r"""returns the Polar Moment of Inertia, :math:`J`""" return self.j def Nsm(self): """Placeholder method for the non-structural mass""" return self.nsm def E(self): r"""returns the Young's Modulus, :math:`E`$""" if self.mid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.mid_ref.E() def G(self): r"""returns the Shear Modulus, :math:`G`""" if self.mid_ref is None: msg = 'Element eid=%i has not been cross referenced.\n%s' % (self.eid, str(self)) raise RuntimeError(msg) return self.mid_ref.G() #def write_code_aster(self): #msg = '' #msg += " POUTRE=_F(GROUP_MA='CONROD_%s',\n" % self.eid #msg += " SECTION='CERCLE', # circular section\n" #if self.Thickness(): #msg += " CARA=('R','EP'), # radius, thickness\n" #msg += " VALE=(%g,%g),\n" % ( #self.Radius(), self.Thickness()) #else: #msg += " CARA=('R') # radius\n" #msg += " VALE=(%g),\n" % self.Radius() #return msg def raw_fields(self): list_fields = [ 'CONROD', self.eid] + self.node_ids + [ self.Mid(), self.A, self.j, self.c, self.nsm] return list_fields def repr_fields(self): j = set_blank_if_default(self.j, 0.0) c = set_blank_if_default(self.c, 0.0) nsm = set_blank_if_default(self.nsm, 0.0) list_fields = [ 'CONROD', self.eid] + self.node_ids + [self.Mid(), self.A, j, c, nsm] return list_fields def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.repr_fields() if size == 8: return self.comment + print_card_8(card) return self.comment + print_card_16(card) ``` #### File: bdf/cards/expand_card.py ```python from typing import List, Union from pyNastran.utils.numpy_utils import integer_types from pyNastran.bdf.bdf_interface.assign_type import interpret_value def expand_thru(fields, set_fields=True, sort_fields=False): # type: (List[str], bool, bool) -> List[int] """ Expands a list of values of the form [1,5,THRU,9,13] to be [1,5,6,7,8,9,13] Parameters ---------- fields : List[int/str] the fields to expand set_fields : bool; default=True Should the fields be converted to a set and then back to a list? This is useful for [2, 'THRU' 5, 1] sort_fields : bool; default=False Should the fields be sorted at the end? """ # ..todo: should this be removed...is the field capitalized when read in? if isinstance(fields, integer_types): return [fields] #elif isinstance(fields[0], integer_types): # don't use this [1, 'THRU', 10] #return fields elif len(fields) == 1: return [int(fields[0])] fields = [field.upper() if isinstance(field, str) else field for field in fields] out = [] nfields = len(fields) i = 0 while i < nfields: if isinstance(fields[i], str) and fields[i] == 'THRU': istart = int(fields[i - 1]) iend = int(fields[i + 1]) # adding 1 to iend for the range offset for j in range(istart+1, iend + 1): out.append(j) i += 2 else: out.append(int(fields[i])) i += 1 if set_fields: out = list(set(out)) if sort_fields: out.sort() return out def expand_thru_by(fields: List[str], set_fields: bool=True, sort_fields: bool=True, require_int: bool=True, allow_blanks: bool=False) -> List[int]: """ Expands a list of values of the form [1,5,THRU,9,BY,2,13] to be [1,5,7,9,13] Parameters ---------- fields : List[int/str] the fields to expand set_fields : bool; default=True Should the fields be converted to a set and then back to a list to remove duplicates? This is useful for [2, 'THRU' 5, 1] sort_fields : bool; default=False Should the fields be sorted at the end? require_int : bool; default=True True : all data must be integers False : floats are allowed (e.g., DDVAL) allow_blanks : bool; default=Fals True : blank/Nones are ignored (e.g., NSM1/NSML1) False : crash .. todo:: not tested Notes ----- used for QBDY3 and what else ??? """ if require_int: func = int else: func = interpret_value # ..todo: should this be removed...is the field capitalized when read in? fields = [field.upper() if isinstance(field, str) else field for field in fields] if len(fields) == 1: return [func(fields[0])] out = [] nfields = len(fields) i = 0 by = 1 while i < nfields: #print('fields[i]=%r' % fields[i]) is_blank = ( allow_blanks and ( (isinstance(fields[i], str) and fields[i].strip() == '') or fields[i] is None) ) if is_blank: #print('blank=%s' % fields[i]) i += 1 continue if fields[i] == 'THRU': by = 1 by_case = False if i + 2 < nfields and fields[i + 2] == 'BY': by = func(fields[i + 3]) else: by = 1 by_case = True min_value = func(fields[i - 1]) max_value = func(fields[i + 1]) max_range = int((max_value - min_value) // by + 1) # max range value for j in range(0, max_range): # +1 is to include final point value = min_value + by * j out.append(value) out.append(max_value) if by_case: # null/standard case # A thru B i += 2 else: # BY case # A thru B by C i += 4 else: out.append(func(fields[i])) i += 1 if set_fields: out = list(set(out)) if sort_fields: out.sort() return out ``` #### File: bdf/cards/material_deps.py ```python from pyNastran.bdf.cards.base_card import BaseCard from pyNastran.bdf.bdf_interface.assign_type import ( integer, integer_or_blank, double, double_or_blank, string) from pyNastran.bdf.field_writer_8 import print_card_8 from pyNastran.bdf.field_writer_16 import print_card_16 class MaterialDependence(BaseCard): def __init__(self): self.mid = None def Mid(self): if self.mid_ref is None: return self.mid return self.mid_ref.mid # TODO: is this something that should be supported? def _get_table(self, key): """internal method for accessing tables""" table = getattr(self, key) table_ref = getattr(self, key + '_ref') if table_ref is not None: return table_ref.tid return table class MaterialDependenceThermal(MaterialDependence): def __init__(self): MaterialDependence.__init__(self) def _xref_table(self, model, key, msg): slot = getattr(self, key) if slot is not None: setattr(self, key + '_ref', model.TableM(slot, msg)) class MATS1(MaterialDependence): """ Specifies stress-dependent material properties for use in applications involving nonlinear materials. This entry is used if a MAT1, MAT2 or MAT9 entry is specified with the same MID in a nonlinear solution sequence (SOLs 106 and 129). """ type = 'MATS1' def __init__(self, mid, tid, Type, h, hr, yf, limit1, limit2, comment=''): MaterialDependence.__init__(self) if comment: self.comment = comment #: Identification number of a MAT1, MAT2, or MAT9 entry. self.mid = mid #: Identification number of a TABLES1 or TABLEST entry. If H is #: given, then this field must be blank. self.tid = tid #: Type of material nonlinearity. ('NLELAST' for nonlinear elastic #: or 'PLASTIC' for elastoplastic.) self.Type = Type #: Work hardening slope (slope of stress versus plastic strain) #: in units of stress. For elastic-perfectly plastic cases, #: H=0.0. For more than a single slope in the plastic range, #: the stress-strain data must be supplied on a TABLES1 entry #: referenced by TID, and this field must be blank self.h = h #: Hardening Rule, selected by one of the following values #: (Integer): (1) Isotropic (Default) (2) Kinematic #: (3) Combined isotropic and kinematic hardening self.hr = hr #: Yield function criterion, selected by one of the following #: values (1) <NAME> (2) Tresca (3) Mohr-Coulomb #: (4) Drucker-Prager self.yf = yf #: Initial yield point self.limit1 = limit1 #: Internal friction angle, measured in degrees, for the #: Mohr-Coulomb and Drucker-Prager yield criteria self.limit2 = limit2 self.tid_ref = None self.mid_ref = None @classmethod def _init_from_empty(cls): mid = 1 tid = 1 Type = None h = None hr = None yf = None limit1 = None limit2 = None return MATS1(mid, tid, Type, h, hr, yf, limit1, limit2, comment='') def validate(self): if self.Type not in ['NLELAST', 'PLASTIC']: raise ValueError('MATS1 Type must be [NLELAST, PLASTIC]; Type=%r' % self.Type) @classmethod def add_card(cls, card, comment=''): """ Adds a MATS1 card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ mid = integer(card, 1, 'mid') tid = integer_or_blank(card, 2, 'tid') Type = string(card, 3, 'Type') if Type not in ['NLELAST', 'PLASTIC', 'PLSTRN']: raise ValueError('MATS1 Type must be [NLELAST, PLASTIC, PLSTRN]; Type=%r' % Type) if Type == 'NLELAST': # should we even read these? h = None hr = None yf = None limit1 = None limit2 = None #h = blank(card, 4, 'h') #hr = blank(card, 6, 'hr') #yf = blank(card, 5, 'yf') #limit1 = blank(card, 7, 'yf') #limit2 = blank(card, 8, 'yf') else: h = double_or_blank(card, 4, 'H') yf = integer_or_blank(card, 5, 'yf', 1) hr = integer_or_blank(card, 6, 'hr', 1) limit1 = double(card, 7, 'limit1') if yf in [3, 4]: limit2 = double(card, 8, 'limit2') else: #limit2 = blank(card, 8, 'limit2') limit2 = None assert len(card) <= 9, 'len(MATS1 card) = %i\ncard=%s' % (len(card), card) return MATS1(mid, tid, Type, h, hr, yf, limit1, limit2, comment=comment) @classmethod def add_op2_data(cls, data, comment=''): """ Adds a MATS1 card from the OP2 Parameters ---------- data : List[varies] a list of fields defined in OP2 format comment : str; default='' a comment for the card """ (mid, tid, Type, h, yf, hr, limit1, limit2) = data if Type == 1: Type = 'NLELAST' elif Type == 2: Type = 'PLASTIC' elif Type == 3: Type = 'PLSTRN' else: # pragma: no cover raise RuntimeError(f'Invalid Type: mid={mid}; Type={Type}; must be 1=NLELAST, ' '2=PLASTIC, or 3=PLSTRN') return MATS1(mid, tid, Type, h, hr, yf, limit1, limit2, comment=comment) def Yf(self): d = {1: 'VonMises', 2: 'Tresca', 3: 'MohrCoulomb', 4: 'Drucker-Prager'} return d[self.yf] def Hf(self): d = {1: 'Isotropic', 2: 'Kinematic', 3: 'Combined'} return d[self.hr] def E(self, strain): """ Gets E (Young's Modulus) for a given strain. Parameters ---------- strain : float / None the strain (None -> linear E value) Returns ------- E : float Young's Modulus """ msg = "E (Young's Modulus) not implemented for MATS1" raise NotImplementedError(msg) #if self.tid: #E = self.tid_ref.Value(strain) #return E def cross_reference(self, model): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by MATS1 mid=%s' % self.mid self.mid_ref = model.Material(self.mid, msg=msg) if self.tid: # then self.h is used self.tid_ref = model.Table(self.tid, msg=msg) # TABLES1 or TABLEST def uncross_reference(self) -> None: """Removes cross-reference links""" self.mid = self.Mid() if self.tid: self.tid = self.Tid() self.tid_ref = None self.mid_ref = None def Tid(self): if self.tid_ref is None: return self.tid return self.tid_ref.tid def raw_fields(self): list_fields = ['MATS1', self.Mid(), self.Tid(), self.Type, self.h, self.yf, self.hr, self.limit1, self.limit2] return list_fields def repr_fields(self): return self.raw_fields() def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.repr_fields() if size == 8: return self.comment + print_card_8(card) return self.comment + print_card_16(card) class MATT1(MaterialDependenceThermal): """ Specifies temperature-dependent material properties on MAT1 entry fields via TABLEMi entries. +-------+-------+-------+-------+-------+--------+------+------+-------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +=======+=======+=======+=======+=======+========+======+======+=======+ | MATT1 | MID | T(E) | T(G) | T(NU) | T(RHO) | T(A) | | T(GE) | +-------+-------+-------+-------+-------+--------+------+------+-------+ | | T(ST) | T(SC) | T(SS) | | | | | | +-------+-------+-------+-------+-------+--------+------+------+-------+ """ type = 'MATT1' @classmethod def _init_from_empty(cls): mid = 1 return MATT1(mid, e_table=None, g_table=None, nu_table=None, rho_table=None, a_table=None, ge_table=None, st_table=None, sc_table=None, ss_table=None, comment='') def __init__(self, mid, e_table=None, g_table=None, nu_table=None, rho_table=None, a_table=None, ge_table=None, st_table=None, sc_table=None, ss_table=None, comment=''): MaterialDependenceThermal.__init__(self) if comment: self.comment = comment self.mid = mid if e_table == 0: e_table = None if g_table == 0: g_table = None if nu_table == 0: nu_table = None if rho_table == 0: rho_table = None if a_table == 0: a_table = None if ge_table == 0: ge_table = None if st_table == 0: st_table = None if sc_table == 0: sc_table = None if ss_table == 0: ss_table = None self.e_table = e_table self.g_table = g_table self.nu_table = nu_table self.rho_table = rho_table self.a_table = a_table self.ge_table = ge_table self.st_table = st_table self.sc_table = sc_table self.ss_table = ss_table self.mid_ref = None self.ss_table_ref = None self.e_table_ref = None self.g_table_ref = None self.nu_table_ref = None self.rho_table_ref = None self.a_table_ref = None self.ge_table_ref = None self.st_table_ref = None self.sc_table_ref = None self.ss_table_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a MATT1 card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ mid = integer(card, 1, 'mid') e_table = integer_or_blank(card, 2, 'T(E)') g_table = integer_or_blank(card, 3, 'T(G)') nu_table = integer_or_blank(card, 4, 'T(nu)') rho_table = integer_or_blank(card, 5, 'T(rho)') a_table = integer_or_blank(card, 6, 'T(A)') ge_table = integer_or_blank(card, 8, 'T(ge)') st_table = integer_or_blank(card, 9, 'T(st)') sc_table = integer_or_blank(card, 10, 'T(sc)') ss_table = integer_or_blank(card, 11, 'T(ss)') assert len(card) <= 12, 'len(MATT1 card) = %i\ncard=%s' % (len(card), card) return MATT1(mid, e_table, g_table, nu_table, rho_table, a_table, ge_table, st_table, sc_table, ss_table, comment=comment) @classmethod def add_op2_data(cls, data, comment=''): """ Adds a MATT1 card from the OP2 Parameters ---------- data : List[varies] a list of fields defined in OP2 format comment : str; default='' a comment for the card """ (mid, E_table, G_table, nu_table, rho_table, A_table, dunno_a, ge_table, st_table, sc_table, ss_table, dunno_b) = data if E_table == 0: E_table = None elif E_table > 100000000: E_table = -(E_table - 100000000) if G_table == 0: G_table = None elif G_table > 100000000: G_table = -(G_table - 100000000) if nu_table == 0: nu_table = None elif nu_table > 100000000: nu_table = -(nu_table - 100000000) if rho_table == 0: rho_table = None elif rho_table > 100000000: rho_table = -(rho_table - 100000000) if E_table == 0: E_table = None if A_table > 100000000: A_table = -(A_table - 100000000) mat = MATT1(mid, E_table, G_table, nu_table, rho_table, A_table, ge_table, st_table, sc_table, ss_table, comment=comment) assert dunno_a == 0, '%s; dunno_a=%s\n%s' % (data, dunno_a, str(mat)) assert dunno_b == 0, '%s; dunno_b=%s\n%s' % (data, dunno_b, str(mat)) return mat def E(self, temperature): """ Gets E (Young's Modulus) for a given temperature. Parameters ---------- temperature : float; default=None the temperature (None -> linear E value) Returns ------- E : float Young's Modulus """ E = None if self.E_table: E = self.E_table.Value(temperature) return E def cross_reference(self, model): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by MATT1 mid=%s' % self.mid self.mid_ref = model.Material(self.mid, msg=msg) self._xref_table(model, 'e_table', msg=msg) self._xref_table(model, 'g_table', msg=msg) self._xref_table(model, 'nu_table', msg=msg) self._xref_table(model, 'rho_table', msg=msg) self._xref_table(model, 'a_table', msg=msg) self._xref_table(model, 'ge_table', msg=msg) self._xref_table(model, 'st_table', msg=msg) self._xref_table(model, 'sc_table', msg=msg) self._xref_table(model, 'ss_table', msg=msg) def uncross_reference(self) -> None: """Removes cross-reference links""" self.mid = self.Mid() ## TODO: remove refs self.e_table = self.E_table() self.g_table = self.G_table() self.nu_table = self.Nu_table() self.rho_table = self.Rho_table() self.a_table = self.A_table() self.ge_table = self.Ge_table() self.st_table = self.St_table() self.sc_table = self.Sc_table() self.ss_table = self.Ss_table() self.mid_ref = None self.mid_ref = None self.ss_table_ref = None self.e_table_ref = None self.g_table_ref = None self.nu_table_ref = None self.rho_table_ref = None self.a_table_ref = None self.ge_table_ref = None self.st_table_ref = None self.sc_table_ref = None self.ss_table_ref = None def E_table(self): return self._get_table('e_table') def G_table(self): return self._get_table('g_table') def Nu_table(self): return self._get_table('nu_table') def Rho_table(self): return self._get_table('rho_table') def A_table(self): return self._get_table('a_table') def Ge_table(self): return self._get_table('ge_table') def St_table(self): return self._get_table('st_table') def Sc_table(self): return self._get_table('sc_table') def Ss_table(self): return self._get_table('ss_table') def raw_fields(self): list_fields = [ 'MATT1', self.Mid(), self.E_table(), self.G_table(), self.Nu_table(), self.Rho_table(), self.A_table(), self.Ge_table(), self.St_table(), self.Sc_table(), self.Ss_table(), ] return list_fields def repr_fields(self): return self.raw_fields() def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.repr_fields() if size == 8: return self.comment + print_card_8(card) return self.comment + print_card_16(card) class MATT2(MaterialDependenceThermal): """ Specifies temperature-dependent material properties on MAT2 entry fields via TABLEMi entries. +-------+-------+--------+--------+--------+--------+--------+--------+--------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +=======+=======+========+========+========+========+========+========+========+ | MATT2 | MID | T(G12) | T(G13) | T(G13) | T(G22) | T(G23) | T(G33) | T(RHO) | +-------+-------+--------+--------+--------+--------+--------+--------+--------+ | | T(A1) | T(A2) | T(A3) | | T(GE) | T(ST) | T(SC) | T(SS) | +-------+-------+--------+--------+--------+--------+--------+--------+--------+ """ type = 'MATT2' @classmethod def _init_from_empty(cls): mid = 1 return MATT2(mid, g11_table=None, g12_table=None, g13_table=None, g22_table=None, g23_table=None, g33_table=None, rho_table=None, a1_table=None, a2_table=None, a3_table=None, ge_table=None, st_table=None, sc_table=None, ss_table=None, comment='') def __init__(self, mid, g11_table=None, g12_table=None, g13_table=None, g22_table=None, g23_table=None, g33_table=None, rho_table=None, a1_table=None, a2_table=None, a3_table=None, ge_table=None, st_table=None, sc_table=None, ss_table=None, comment=''): MaterialDependenceThermal.__init__(self) if comment: self.comment = comment self.mid = mid self.g11_table = g11_table self.g12_table = g12_table self.g13_table = g13_table self.g22_table = g22_table self.g23_table = g23_table self.g33_table = g33_table self.rho_table = rho_table self.a1_table = a1_table self.a2_table = a2_table self.a3_table = a3_table self.ge_table = ge_table self.st_table = st_table self.sc_table = sc_table self.ss_table = ss_table self.mid_ref = None self.g11_table_ref = None self.g12_table_ref = None self.g13_table_ref = None self.g22_table_ref = None self.g23_table_ref = None self.g33_table_ref = None self.rho_table_ref = None self.a1_table_ref = None self.a2_table_ref = None self.a3_table_ref = None self.ge_table_ref = None self.st_table_ref = None self.sc_table_ref = None self.ss_table_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a MATT2 card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ mid = integer(card, 1, 'mid') g11_table = integer_or_blank(card, 2, 'T(G11)') g12_table = integer_or_blank(card, 3, 'T(G12)') g13_table = integer_or_blank(card, 4, 'T(G13)') g22_table = integer_or_blank(card, 5, 'T(G22)') g23_table = integer_or_blank(card, 6, 'T(G23)') g33_table = integer_or_blank(card, 7, 'T(G33)') rho_table = integer_or_blank(card, 8, 'T(rho)') a1_table = integer_or_blank(card, 9, 'T(A1)') a2_table = integer_or_blank(card, 10, 'T(A2)') a3_table = integer_or_blank(card, 11, 'T(A3)') ge_table = integer_or_blank(card, 13, 'T(ge)') st_table = integer_or_blank(card, 14, 'T(st)') sc_table = integer_or_blank(card, 15, 'T(sc)') ss_table = integer_or_blank(card, 16, 'T(ss)') assert len(card) <= 17, 'len(MATT2 card) = %i\ncard=%s' % (len(card), card) return MATT2(mid, g11_table, g12_table, g13_table, g22_table, g23_table, g33_table, rho_table, a1_table, a2_table, a3_table, ge_table, st_table, sc_table, ss_table, comment=comment) def cross_reference(self, model): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by MATT2 mid=%s' % self.mid self.mid_ref = model.Material(self.mid, msg=msg) self._xref_table(model, 'g11_table', msg=msg) self._xref_table(model, 'g12_table', msg=msg) self._xref_table(model, 'g13_table', msg=msg) self._xref_table(model, 'g22_table', msg=msg) self._xref_table(model, 'g23_table', msg=msg) self._xref_table(model, 'g33_table', msg=msg) self._xref_table(model, 'rho_table', msg=msg) self._xref_table(model, 'a1_table', msg=msg) self._xref_table(model, 'a2_table', msg=msg) self._xref_table(model, 'a3_table', msg=msg) self._xref_table(model, 'ge_table', msg=msg) self._xref_table(model, 'st_table', msg=msg) self._xref_table(model, 'sc_table', msg=msg) self._xref_table(model, 'ss_table', msg=msg) def uncross_reference(self) -> None: """Removes cross-reference links""" self.mid = self.Mid() self.g11_table = self.G11_table() self.g12_table = self.G12_table() self.g13_table = self.G13_table() self.g22_table = self.G22_table() self.g23_table = self.G23_table() self.g33_table = self.G33_table() self.rho_table = self.Rho_table() self.a1_table = self.A1_table() self.a2_table = self.A2_table() self.a3_table = self.A3_table() self.ge_table = self.Ge_table() self.st_table = self.St_table() self.sc_table = self.Sc_table() self.ss_table = self.Ss_table() self.mid_ref = None def G11_table(self): return self._get_table('g11_table') def G12_table(self): return self._get_table('g12_table') def G13_table(self): return self._get_table('g13_table') def G22_table(self): return self._get_table('g22_table') def G23_table(self): return self._get_table('g23_table') def G33_table(self): return self._get_table('g33_table') def Rho_table(self): return self._get_table('rho_table') def A1_table(self): return self._get_table('a1_table') def A2_table(self): return self._get_table('a2_table') def A3_table(self): return self._get_table('a3_table') def Ge_table(self): return self._get_table('ge_table') def St_table(self): return self._get_table('st_table') def Sc_table(self): return self._get_table('sc_table') def Ss_table(self): return self._get_table('ss_table') def raw_fields(self): list_fields = [ 'MATT2', self.Mid(), self.G11_table(), self.G12_table(), self.G13_table(), self.G22_table(), self.G23_table(), self.G33_table(), self.Rho_table(), self.A1_table(), self.A2_table(), self.A3_table(), None, self.Ge_table(), self.St_table(), self.Sc_table(), self.Ss_table() ] return list_fields def repr_fields(self): return self.raw_fields() def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.repr_fields() if size == 8: return self.comment + print_card_8(card) return self.comment + print_card_16(card) #MATT3 - CTRIAX6 only class MATT3(MaterialDependenceThermal): """ Specifies temperature-dependent material properties on MAT3 entry fields via TABLEMi entries that are temperature dependent. +--------+-------+-------+--------+-------+----------+----------+---------+--------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +========+=======+=======+========+=======+==========+==========+=========+========+ | MATT3 | MID | T(EX) | T(ETH) | T(EZ) | T(NUXTH) | T(NUTHZ) | T(NUZX) | T(RHO) | +--------+-------+-------+--------+-------+----------+----------+---------+--------+ | | | | T(GZX) | T(AX) | T(ATH) | T(AZ) | | T(GE) | +--------+-------+-------+--------+-------+----------+----------+---------+--------+ """ type = 'MATT3' @classmethod def _init_from_empty(cls): mid = 1 return MATT3(mid, ex_table=None, eth_table=None, ez_table=None, nuth_table=None, nuxz_table=None, rho_table=None, gzx_table=None, ax_table=None, ath_table=None, az_table=None, ge_table=None, comment='') def __init__(self, mid, ex_table=None, eth_table=None, ez_table=None, nuth_table=None, nuxz_table=None, rho_table=None, gzx_table=None, ax_table=None, ath_table=None, az_table=None, ge_table=None, comment=''): """ Creates a MATT3 card """ MaterialDependenceThermal.__init__(self) if comment: self.comment = comment self.mid = mid self.ex_table = ex_table self.eth_table = eth_table self.ez_table = ez_table self.nuth_table = nuth_table self.nuxz_table = nuxz_table self.rho_table = rho_table self.gzx_table = gzx_table self.ax_table = ax_table self.ath_table = ath_table self.az_table = az_table self.ge_table = ge_table self.ex_table_ref = None self.eth_table_ref = None self.ez_table_ref = None self.nuth_table_ref = None self.nuxz_table_ref = None self.rho_table_ref = None self.gzx_table_ref = None self.ax_table_ref = None self.ath_table_ref = None self.az_table_ref = None self.ge_table_ref = None self.mid_ref = None def cross_reference(self, model): msg = ', which is required by MATT3 mid=%s' % self.mid self.mid_ref = model.Material(self.mid, msg=msg) #self._get_table('ex_table') if self.ex_table is not None: self.ex_table_ref = model.TableM(self.ex_table) if self.eth_table is not None: self.eth_table_ref = model.TableM(self.eth_table) if self.ez_table is not None: self.ez_table_ref = model.TableM(self.ez_table) if self.nuth_table is not None: self.nuth_table_ref = model.TableM(self.nuth_table) if self.nuxz_table is not None: self.nuxz_table_ref = model.TableM(self.nuxz_table) if self.rho_table is not None: self.rho_table_ref = model.TableM(self.rho_table) if self.gzx_table is not None: self.gzx_table_ref = model.TableM(self.gzx_table) if self.ax_table is not None: self.ax_table_ref = model.TableM(self.ax_table) if self.ath_table is not None: self.ath_table_ref = model.TableM(self.ath_table) if self.az_table is not None: self.az_table_ref = model.TableM(self.az_table) if self.ge_table is not None: self.ge_table_ref = model.TableM(self.ge_table) def uncross_reference(self) -> None: """Removes cross-reference links""" self.mid = self.Mid() self.mid_ref = None self.ex_table = self.Ex_table() self.eth_table = self.Eth_table() self.ez_table = self.Ez_table() self.nuth_table = self.Nuth_table() self.nuxz_table = self.Nuxz_table() self.rho_table = self.Rho_table() self.gzx_table = self.Gzx_table() self.ax_table = self.Ax_table() self.ath_table = self.Ath_table() self.az_table = self.Az_table() self.ge_table = self.Ge_table() self.ex_table_ref = None self.eth_table_ref = None self.ez_table_ref = None self.nuth_table_ref = None self.nuxz_table_ref = None self.rho_table_ref = None self.gzx_table_ref = None self.ax_table_ref = None self.ath_table_ref = None self.az_table_ref = None self.ge_table_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a MATT3 card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ mid = integer(card, 1, 'mid') ex_table = integer_or_blank(card, 2, 'T(EX)') eth_table = integer_or_blank(card, 3, 'T(ETH)') ez_table = integer_or_blank(card, 5, 'T(EZ)') nuth_table = integer_or_blank(card, 6, 'T(NUTH)') nuxz_table = integer_or_blank(card, 7, 'T(NUXZ)') rho_table = integer_or_blank(card, 8, 'T(RHO)') gzx_table = integer_or_blank(card, 11, 'T(GZX)') ax_table = integer_or_blank(card, 12, 'T(AX)') ath_table = integer_or_blank(card, 13, 'T(ATH)') az_table = integer_or_blank(card, 14, 'T(AZ)') ge_table = integer_or_blank(card, 16, 'T(GE)') assert len(card) <= 16, 'len(MATT3 card) = %i\ncard=%s' % (len(card), card) return MATT3(mid, ex_table, eth_table, ez_table, nuth_table, nuxz_table, rho_table, gzx_table, ax_table, ath_table, az_table, ge_table, comment=comment) def Ex_table(self): if self.ex_table_ref is not None: return self.ex_table_ref.tid return self.ex_table def Eth_table(self): if self.eth_table_ref is not None: return self.eth_table_ref.tid return self.eth_table def Ez_table(self): if self.ez_table_ref is not None: return self.ez_table_ref.tid return self.eth_table def Nuth_table(self): if self.nuth_table_ref is not None: return self.nuth_table_ref.tid return self.nuth_table def Nuxz_table(self): if self.nuxz_table_ref is not None: return self.nuxz_table_ref.tid return self.nuxz_table def Rho_table(self): if self.rho_table_ref is not None: return self.rho_table_ref.tid return self.rho_table def Gzx_table(self): if self.gzx_table_ref is not None: return self.gzx_table_ref.tid return self.gzx_table def Ax_table(self): if self.ax_table_ref is not None: return self.ax_table_ref.tid return self.ax_table def Ath_table(self): if self.ath_table_ref is not None: return self.ath_table_ref.tid return self.ath_table def Az_table(self): if self.az_table_ref is not None: return self.az_table_ref.tid return self.az_table def Ge_table(self): if self.ge_table_ref is not None: return self.ge_table_ref.tid return self.ge_table def raw_fields(self): list_fields = [ 'MATT3', self.Mid(), self.Ex_table(), self.Eth_table(), self.Ez_table(), self.Nuth_table(), self.Nuxz_table(), self.Rho_table(), None, None, self.Gzx_table(), self.Ax_table(), self.Ath_table(), self.Az_table(), None, self.Ge_table(), ] return list_fields def repr_fields(self): return self.raw_fields() def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.repr_fields() if size == 8: return self.comment + print_card_8(card) return self.comment + print_card_16(card) class MATT4(MaterialDependenceThermal): """ Specifies temperature-dependent material properties on MAT2 entry fields via TABLEMi entries. +-------+-------+-------+-------+--------+-------+-------+---------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | +=======+=======+=======+=======+========+=======+=======+=========+ | MATT4 | MID | T(K) | T(CP) | | T(H) | T(mu) | T(HGEN) | +-------+-------+-------+-------+--------+-------+-------+---------+ """ type = 'MATT4' @classmethod def _init_from_empty(cls): mid = 1 return MATT4(mid, k_table=None, cp_table=None, h_table=None, mu_table=None, hgen_table=None, comment='') def __init__(self, mid, k_table=None, cp_table=None, h_table=None, mu_table=None, hgen_table=None, comment=''): MaterialDependenceThermal.__init__(self) if comment: self.comment = comment if k_table == 0: k_table = None if cp_table == 0: cp_table = None if h_table == 0: h_table = None if mu_table == 0: mu_table = None if hgen_table == 0: hgen_table = None self.mid = mid self.k_table = k_table self.cp_table = cp_table self.h_table = h_table self.mu_table = mu_table self.hgen_table = hgen_table self.mid_ref = None self.k_table_ref = None self.cp_table_ref = None self.h_table_ref = None self.mu_table_ref = None self.hgen_table_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a MATT4 card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ mid = integer(card, 1, 'mid') k_table = integer_or_blank(card, 2, 'T(K)') cp_table = integer_or_blank(card, 3, 'T(CP)') h_table = integer_or_blank(card, 5, 'T(H)') mu_table = integer_or_blank(card, 6, 'T(mu)') hgen_table = integer_or_blank(card, 7, 'T(HGEN)') assert len(card) <= 8, 'len(MATT4 card) = %i\ncard=%s' % (len(card), card) return MATT4(mid, k_table, cp_table, h_table, mu_table, hgen_table, comment=comment) @classmethod def add_op2_data(cls, data, comment=''): """ Adds a MATT4 card from the OP2 Parameters ---------- data : List[varies] a list of fields defined in OP2 format comment : str; default='' a comment for the card """ (mid, k_table, cp_table, null, h_table, mu_table, hgen_table) = data assert null == 0, data return MATT4(mid, k_table, cp_table, h_table, mu_table, hgen_table, comment=comment) def cross_reference(self, model): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by MATT4 mid=%s' % self.mid self.mid_ref = model.Material(self.mid, msg=msg) self._xref_table(model, 'k_table', msg=msg) self._xref_table(model, 'cp_table', msg=msg) self._xref_table(model, 'h_table', msg=msg) self._xref_table(model, 'mu_table', msg=msg) self._xref_table(model, 'hgen_table', msg=msg) def uncross_reference(self) -> None: """Removes cross-reference links""" self.mid = self.Mid() self.k_table = self.K_table() self.cp_table = self.Cp_table() self.h_table = self.H_table() self.mu_table = self.Mu_table() self.hgen_table = self.Hgen_table() self.mid_ref = None self.mid_ref = None self.k_table_ref = None self.cp_table_ref = None self.h_table_ref = None self.mu_table_ref = None self.hgen_table_ref = None def K_table(self): return self._get_table('k_table') def Cp_table(self): return self._get_table('cp_table') def H_table(self): return self._get_table('h_table') def Mu_table(self): return self._get_table('mu_table') def Hgen_table(self): return self._get_table('hgen_table') def raw_fields(self): list_fields = [ 'MATT4', self.Mid(), self.K_table(), self.Cp_table(), None, self.H_table(), self.Mu_table(), self.Hgen_table() ] return list_fields def repr_fields(self): return self.raw_fields() def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.repr_fields() if size == 8: return self.comment + print_card_8(card) return self.comment + print_card_16(card) class MATT5(MaterialDependenceThermal): """ Specifies temperature-dependent material properties on MAT2 entry fields via TABLEMi entries. +-------+---------+---------+--------+--------+--------+--------+--------+-------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +=======+=========+=========+========+========+========+========+========+=======+ | MATT5 | MID | T(Kxx) | T(Kxy) | T(Kxz) | T(Kyy) | T(Kyz) | T(Kzz) | T(CP) | +-------+---------+---------+--------+--------+--------+--------+--------+-------+ | | | T(HGEN) | | | | | | | +-------+---------+---------+--------+--------+--------+--------+--------+-------+ """ type = 'MATT5' @classmethod def _init_from_empty(cls): mid = 1 return MATT5(mid, kxx_table=None, kxy_table=None, kxz_table=None, kyy_table=None, kyz_table=None, kzz_table=None, cp_table=None, hgen_table=None, comment='') def __init__(self, mid, kxx_table=None, kxy_table=None, kxz_table=None, kyy_table=None, kyz_table=None, kzz_table=None, cp_table=None, hgen_table=None, comment=''): MaterialDependenceThermal.__init__(self) if comment: self.comment = comment self.mid = mid self.kxx_table = kxx_table self.kxy_table = kxy_table self.kxz_table = kxz_table self.kyy_table = kyy_table self.kyz_table = kyz_table self.kzz_table = kzz_table self.cp_table = cp_table self.hgen_table = hgen_table self.mid_ref = None self.kxx_table_ref = None self.kxy_table_ref = None self.kxz_table_ref = None self.kyy_table_ref = None self.kyz_table_ref = None self.kzz_table_ref = None self.cp_table_ref = None self.hgen_table_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a MATT5 card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ mid = integer(card, 1, 'mid') kxx_table = integer_or_blank(card, 2, 'T(Kxx)') kxy_table = integer_or_blank(card, 3, 'T(Kxy)') kxz_table = integer_or_blank(card, 5, 'T(Kxz)') kyy_table = integer_or_blank(card, 6, 'T(Kyy)') kyz_table = integer_or_blank(card, 7, 'T(Kyz)') kzz_table = integer_or_blank(card, 8, 'T(Kyz)') cp_table = integer_or_blank(card, 9, 'T(Kyz)') hgen_table = integer_or_blank(card, 11, 'T(HGEN)') assert len(card) <= 12, 'len(MATT5 card) = %i\ncard=%s' % (len(card), card) return MATT5(mid, kxx_table, kxy_table, kxz_table, kyy_table, kyz_table, kzz_table, cp_table, hgen_table, comment=comment) @classmethod def add_op2_data(cls, data, comment=''): """ Adds a MATT5 card from the OP2 Parameters ---------- data : List[varies] a list of fields defined in OP2 format comment : str; default='' a comment for the card """ (mid, kxx_table, kxy_table, kxz_table, kyy_table, kyz_table, kzz_table, cp_table, null, hgen_table) = data if kxx_table == 0: kxx_table = None if kxy_table == 0: kxy_table = None if kxz_table == 0: kxz_table = None if kyy_table == 0: kyy_table = None if kyz_table == 0: kyz_table = None if kzz_table == 0: kzz_table = None if cp_table == 0: cp_table = None if hgen_table == 0: hgen_table = None assert null == 0, data return MATT5(mid, kxx_table, kxy_table, kxz_table, kyy_table, kyz_table, kzz_table, cp_table, hgen_table, comment=comment) def cross_reference(self, model): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by MATT5 mid=%s' % self.mid self.mid_ref = model.Material(self.mid, msg=msg) self._xref_table(model, 'kxx_table', msg=msg) self._xref_table(model, 'kxy_table', msg=msg) self._xref_table(model, 'kxz_table', msg=msg) self._xref_table(model, 'kyy_table', msg=msg) self._xref_table(model, 'kyz_table', msg=msg) self._xref_table(model, 'kzz_table', msg=msg) self._xref_table(model, 'cp_table', msg=msg) self._xref_table(model, 'hgen_table', msg=msg) def uncross_reference(self) -> None: """Removes cross-reference links""" self.mid = self.Mid() self.kxx_table = self.Kxx_table() self.kxy_table = self.Kxy_table() self.kxz_table = self.Kxz_table() self.kyy_table = self.Kyy_table() self.kyz_table = self.Kyz_table() self.kzz_table = self.Kzz_table() self.cp_table = self.Cp_table() self.hgen_table = self.Hgen_table() self.mid_ref = None self.kxx_table_ref = None self.kxy_table_ref = None self.kxz_table_ref = None self.kyy_table_ref = None self.kyz_table_ref = None self.kzz_table_ref = None self.cp_table_ref = None self.hgen_table_ref = None def Kxx_table(self): return self._get_table('kxx_table') def Kxy_table(self): return self._get_table('kxy_table') def Kxz_table(self): return self._get_table('kxz_table') def Kyy_table(self): return self._get_table('kyy_table') def Kyz_table(self): return self._get_table('kyz_table') def Kzz_table(self): return self._get_table('kzz_table') def Cp_table(self): return self._get_table('cp_table') def Hgen_table(self): return self._get_table('hgen_table') def raw_fields(self): list_fields = ['MATT5', self.Mid(), self.Kxx_table(), self.Kxy_table(), self.Kxz_table(), self.Kyy_table(), self.Kyz_table(), self.Kzz_table(), self.Cp_table(), None, self.Hgen_table()] return list_fields def repr_fields(self): return self.raw_fields() def write_card(self, size: int=8, is_double: bool=False) -> str: card = self.repr_fields() if size == 8: return self.comment + print_card_8(card) return self.comment + print_card_16(card) class MATT8(MaterialDependenceThermal): """ Specifies temperature-dependent material properties on MAT2 entry fields via TABLEMi entries. +-------+--------+--------+-------+---------+--------+--------+--------+--------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +=======+========+========+=======+=========+========+========+========+========+ | MATT8 | MID | T(E1) | T(E2) | T(Nu12) | T(G12) | T(G1z) | T(G2z) | T(RHO) | +-------+--------+--------+-------+---------+--------+--------+--------+--------+ | | T(A1) | T(A2) | | T(Xt) | T(Xc) | T(Yt) | T(Yc) | T(S) | +-------+--------+--------+-------+---------+--------+--------+--------+--------+ | | T(GE) | T(F12) | | | | | | | +-------+--------+--------+-------+---------+--------+--------+--------+--------+ """ type = 'MATT8' @classmethod def _init_from_empty(cls): mid = 1 return MATT8(mid, e1_table=None, e2_table=None, nu12_table=None, g12_table=None, g1z_table=None, g2z_table=None, rho_table=None, a1_table=None, a2_table=None, xt_table=None, xc_table=None, yt_table=None, yc_table=None, s_table=None, ge_table=None, f12_table=None, comment='') def __init__(self, mid, e1_table=None, e2_table=None, nu12_table=None, g12_table=None, g1z_table=None, g2z_table=None, rho_table=None, a1_table=None, a2_table=None, xt_table=None, xc_table=None, yt_table=None, yc_table=None, s_table=None, ge_table=None, f12_table=None, comment=''): MaterialDependenceThermal.__init__(self) if comment: self.comment = comment self.mid = mid self.e1_table = e1_table self.e2_table = e2_table self.nu12_table = nu12_table self.g12_table = g12_table self.g1z_table = g1z_table self.g2z_table = g2z_table self.rho_table = rho_table self.a1_table = a1_table self.a2_table = a2_table self.xt_table = xt_table self.xc_table = xc_table self.yt_table = yt_table self.yc_table = yc_table self.s_table = s_table self.ge_table = ge_table self.f12_table = f12_table self.mid_ref = None self.e1_table_ref = None self.e2_table_ref = None self.nu12_table_ref = None self.g12_table_ref = None self.g1z_table_ref = None self.g2z_table_ref = None self.rho_table_ref = None self.a1_table_ref = None self.a2_table_ref = None self.xt_table_ref = None self.xc_table_ref = None self.yt_table_ref = None self.yc_table_ref = None self.s_table_ref = None self.ge_table_ref = None self.f12_table_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a MATT8 card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ mid = integer(card, 1, 'mid') e1_table = integer_or_blank(card, 2, 'T(E1)') e2_table = integer_or_blank(card, 3, 'T(E2)') nu12_table = integer_or_blank(card, 3, 'T(Nu12)') g12_table = integer_or_blank(card, 5, 'T(G12)') g1z_table = integer_or_blank(card, 6, 'T(G1z)') g2z_table = integer_or_blank(card, 7, 'T(G2z)') rho_table = integer_or_blank(card, 8, 'T(Rho)') a1_table = integer_or_blank(card, 9, 'T(A1)') a2_table = integer_or_blank(card, 10, 'T(A2)') xt_table = integer_or_blank(card, 12, 'T(Xt)') xc_table = integer_or_blank(card, 13, 'T(Xc)') yt_table = integer_or_blank(card, 14, 'T(Yt)') yc_table = integer_or_blank(card, 15, 'T(Yc)') s_table = integer_or_blank(card, 16, 'T(S)') ge_table = integer_or_blank(card, 17, 'T(GE)') f12_table = integer_or_blank(card, 18, 'T(F12)') assert len(card) <= 19, 'len(MATT8 card) = %i\ncard=%s' % (len(card), card) return MATT8(mid, e1_table, e2_table, nu12_table, g12_table, g1z_table, g2z_table, rho_table, a1_table, a2_table, xt_table, xc_table, yt_table, yc_table, s_table, ge_table, f12_table, comment=comment) def cross_reference(self, model): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by MATT1 mid=%s' % self.mid self.mid_ref = model.Material(self.mid, msg=msg) if self.e1_table is not None: self.e1_table_ref = model.TableM(self.e1_table) if self.e2_table is not None: self.e2_table_ref = model.TableM(self.e2_table) if self.nu12_table is not None: self.nu12_table_ref = model.TableM(self.nu12_table) if self.g12_table is not None: self.g12_table_ref = model.TableM(self.g12_table) if self.g1z_table is not None: self.g1z_table_ref = model.TableM(self.g1z_table) if self.g2z_table is not None: self.g2z_table_ref = model.TableM(self.g2z_table) if self.rho_table is not None: self.rho_table_ref = model.TableM(self.rho_table) if self.a1_table is not None: self.a1_table_ref = model.TableM(self.a1_table) if self.a2_table is not None: self.a2_table_ref = model.TableM(self.a2_table) if self.xt_table is not None: self.xt_table_ref = model.TableM(self.xt_table) if self.xc_table is not None: self.xc_table_ref = model.TableM(self.xc_table) if self.yt_table is not None: self.yt_table_ref = model.TableM(self.yt_table) if self.s_table is not None: self.s_table_ref = model.TableM(self.s_table) def uncross_reference(self) -> None: """Removes cross-reference links""" self.e1_table = self.E1_table() self.e2_table = self.E2_table() self.nu12_table = self.Nu12_table() self.g12_table = self.G12_table() self.g1z_table = self.G1z_table() self.g2z_table = self.G2z_table() self.rho_table = self.Rho_table() self.a1_table = self.A1_table() self.a2_table = self.A2_table() self.xt_table = self.Xt_table() self.xc_table = self.Xc_table() self.yt_table = self.Yt_table() self.yc_table = self.Yc_table() self.s_table = self.S_table() self.ge_table = self.Ge_table() self.f12_table = self.F12_table() self.e1_table_ref = None self.e2_table_ref = None self.nu12_table_ref = None self.g12_table_ref = None self.g1z_table_ref = None self.g2z_table_ref = None self.rho_table_ref = None self.a1_table_ref = None self.a2_table_ref = None self.xt_table_ref = None self.xc_table_ref = None self.yt_table_ref = None self.yc_table_ref = None self.s_table_ref = None self.ge_table_ref = None self.f12_table_ref = None def E1_table(self): if self.e1_table_ref is not None: return self.e1_table_ref.tid return self.e1_table def E2_table(self): if self.e2_table_ref is not None: return self.e2_table_ref.tid return self.e2_table def Nu12_table(self): if self.nu12_table_ref is not None: return self.nu12_table_ref.tid return self.nu12_table def G12_table(self): if self.g12_table_ref is not None: return self.g12_table_ref.tid return self.g12_table def G1z_table(self): if self.g1z_table_ref is not None: return self.g1z_table_ref.tid return self.g1z_table def G2z_table(self): if self.g2z_table_ref is not None: return self.g2z_table_ref.tid return self.g2z_table def Rho_table(self): if self.rho_table_ref is not None: return self.rho_table_ref.tid return self.rho_table def A1_table(self): if self.a1_table_ref is not None: return self.a1_table_ref.tid return self.a1_table def A2_table(self): if self.a2_table_ref is not None: return self.a2_table_ref.tid return self.a2_table def S_table(self): if self.s_table_ref is not None: return self.s_table_ref.tid return self.s_table def Ge_table(self): if self.ge_table_ref is not None: return self.ge_table_ref.tid return self.ge_table def F12_table(self): if self.f12_table_ref is not None: return self.f12_table_ref.tid return self.f12_table def Xt_table(self): if self.xt_table_ref is not None: return self.xt_table_ref.tid return self.xt_table def Xc_table(self): if self.xc_table_ref is not None: return self.xc_table_ref.tid return self.xc_table def Yt_table(self): if self.yt_table_ref is not None: return self.yt_table_ref.tid return self.yt_table def Yc_table(self): if self.yc_table_ref is not None: return self.yc_table_ref.tid return self.yc_table def raw_fields(self): list_fields = ['MATT8', self.mid, self.E1_table(), self.E2_table(), self.G12_table(), self.G1z_table(), self.G2z_table(), self.Rho_table(), self.A1_table(), self.A2_table(), None, self.Xt_table(), self.Xc_table(), self.Yt_table(), self.Yc_table(), self.S_table(), self.Ge_table(), self.F12_table()] return list_fields def write_card(self, size: int=8, is_double: bool=False) -> str: """ +--------+--------+--------+--------+--------+--------+--------+--------+--------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +========+========+========+========+========+========+========+========+========+ | MATT9 | MID | T(G11) | T(G12) | T(G13) | T(G14) | T(G15) | T(G16) | T(G22) | +--------+--------+--------+--------+--------+--------+--------+--------+--------+ | | T(G23) | T(G24) | T(G25) | T(G26) | T(G33) | T(G34) | T(G35) | T(G36) | +--------+--------+--------+--------+--------+--------+--------+--------+--------+ | | T(G44) | T(G45) | T(G46) | T(G55) | T(G56) | T(G66) | T(RHO) | T(A1) | +--------+--------+--------+--------+--------+--------+--------+--------+--------+ | | T(A2) | T(A3) | T(A4) | T(A5) | T(A6) | | T(GE) | | +--------+--------+--------+--------+--------+--------+--------+--------+--------+ """ list_fields = self.raw_fields() return self.comment + print_card_8(list_fields) class MATT9(MaterialDependenceThermal): type = 'MATT9' @classmethod def _init_from_empty(cls): mid = 1 return MATT9(mid, g11_table=None, g12_table=None, g13_table=None, g14_table=None, g15_table=None, g16_table=None, g22_table=None, g23_table=None, g24_table=None, g25_table=None, g26_table=None, g33_table=None, g34_table=None, g35_table=None, g36_table=None, g44_table=None, g45_table=None, g46_table=None, g55_table=None, g56_table=None, g66_table=None, rho_table=None, a1_table=None, a2_table=None, a3_table=None, a4_table=None, a5_table=None, a6_table=None, ge_table=None, comment='') def __init__(self, mid, g11_table=None, g12_table=None, g13_table=None, g14_table=None, g15_table=None, g16_table=None, g22_table=None, g23_table=None, g24_table=None, g25_table=None, g26_table=None, g33_table=None, g34_table=None, g35_table=None, g36_table=None, g44_table=None, g45_table=None, g46_table=None, g55_table=None, g56_table=None, g66_table=None, rho_table=None, a1_table=None, a2_table=None, a3_table=None, a4_table=None, a5_table=None, a6_table=None, ge_table=None, comment=''): MaterialDependenceThermal.__init__(self) if comment: self.comment = comment self.mid = mid self.g11_table = g11_table self.g12_table = g12_table self.g13_table = g13_table self.g14_table = g14_table self.g15_table = g15_table self.g16_table = g16_table self.g22_table = g22_table self.g23_table = g23_table self.g24_table = g24_table self.g25_table = g25_table self.g26_table = g26_table self.g33_table = g33_table self.g34_table = g34_table self.g35_table = g35_table self.g36_table = g36_table self.g44_table = g44_table self.g45_table = g45_table self.g46_table = g46_table self.g55_table = g55_table self.g56_table = g56_table self.g66_table = g66_table self.rho_table = rho_table self.a1_table = a1_table self.a2_table = a2_table self.a3_table = a3_table self.a4_table = a4_table self.a5_table = a5_table self.a6_table = a6_table self.ge_table = ge_table self.mid_ref = None @classmethod def add_card(cls, card, comment=''): """ Adds a MATT8 card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ mid = integer(card, 1, 'mid') g11_table = integer_or_blank(card, 2, 'T(G11)') g12_table = integer_or_blank(card, 3, 'T(G12)') g13_table = integer_or_blank(card, 4, 'T(G13)') g14_table = integer_or_blank(card, 5, 'T(G14)') g15_table = integer_or_blank(card, 6, 'T(G15)') g16_table = integer_or_blank(card, 7, 'T(G16)') g22_table = integer_or_blank(card, 8, 'T(G22)') g23_table = integer_or_blank(card, 9, 'T(G23)') g24_table = integer_or_blank(card, 10, 'T(G24)') g25_table = integer_or_blank(card, 11, 'T(G25)') g26_table = integer_or_blank(card, 12, 'T(G26)') g33_table = integer_or_blank(card, 13, 'T(G33)') g34_table = integer_or_blank(card, 14, 'T(G34)') g35_table = integer_or_blank(card, 15, 'T(G35)') g36_table = integer_or_blank(card, 16, 'T(G36)') g44_table = integer_or_blank(card, 17, 'T(G44)') g45_table = integer_or_blank(card, 18, 'T(G45)') g46_table = integer_or_blank(card, 19, 'T(G46)') g55_table = integer_or_blank(card, 20, 'T(G55)') g56_table = integer_or_blank(card, 21, 'T(G56)') g66_table = integer_or_blank(card, 22, 'T(G66)') rho_table = integer_or_blank(card, 23, 'T(RHO)') a1_table = integer_or_blank(card, 24, 'T(A1)') a2_table = integer_or_blank(card, 25, 'T(A2)') a3_table = integer_or_blank(card, 26, 'T(A3)') a4_table = integer_or_blank(card, 27, 'T(A4)') a5_table = integer_or_blank(card, 28, 'T(A5)') a6_table = integer_or_blank(card, 29, 'T(A6)') ge_table = integer_or_blank(card, 31, 'T(GE)') assert len(card) <= 32, 'len(MATT9 card) = %i\ncard=%s' % (len(card), card) return MATT9(mid, g11_table, g12_table, g13_table, g14_table, g15_table, g16_table, g22_table, g23_table, g24_table, g25_table, g26_table, g33_table, g34_table, g35_table, g36_table, g44_table, g45_table, g46_table, g55_table, g56_table, g66_table, rho_table, a1_table, a2_table, a3_table, a4_table, a5_table, a6_table, ge_table, comment=comment) def cross_reference(self, model): """ Cross links the card so referenced cards can be extracted directly Parameters ---------- model : BDF() the BDF object """ msg = ', which is required by MATT1 mid=%s' % self.mid self.mid_ref = model.Material(self.mid, msg=msg) #if self.e1_table is not None: #self.e1_table_ref = model.TableM(self.e1_table) #if self.e2_table is not None: #self.e2_table_ref = model.TableM(self.e2_table) def uncross_reference(self) -> None: """Removes cross-reference links""" pass #self.e1_table = self.E1_table() #self.e2_table = self.E2_table() #self.e1_table_ref = None #self.e2_table_ref = None #def E1_table(self): #if self.e1_table_ref is not None: #return self.e1_table_ref.tid #return self.e1_table def raw_fields(self): list_fields = [ 'MATT9', self.mid, self.g11_table, self.g12_table, self.g13_table, self.g14_table, self.g15_table, self.g16_table, self.g22_table, self.g23_table, self.g24_table, self.g25_table, self.g26_table, self.g33_table, self.g34_table, self.g35_table, self.g36_table, self.g44_table, self.g45_table, self.g46_table, self.g55_table, self.g56_table, self.g66_table, self.rho_table, self.a1_table, self.a2_table, self.a3_table, self.a4_table, self.a5_table, self.a6_table, self.ge_table, ] return list_fields def write_card(self, size: int=8, is_double: bool=False) -> str: list_fields = self.raw_fields() return self.comment + print_card_8(list_fields) ``` #### File: cards/test/test_contact.py ```python import copy import unittest from pyNastran.bdf.bdf import BDF from pyNastran.bdf.cards.test.utils import save_load_deck #from pyNastran.bdf.field_writer_8 import print_card class TestContact(unittest.TestCase): def test_contact_01(self): """checks the BSURF cards""" model = BDF(debug=False) lines = [ 'BSURF 3 1 2 3 4 5 6 7', ' 8 9 10 11 12 13 14 15', ' 16 17 18 19 20 21 22 23', ] unused_card = model.add_card(copy.deepcopy(lines), 'BSURF', is_list=False) out = model.bsurf[3].write_card(8, None) lines2 = out.split('\n') for line, line2 in zip(lines, lines2): self.assertEqual(line, line2) def test_contact_2(self): sid = 42 eids = [1, 2, 3] model = BDF(debug=False) sid = 42 bsurf = model.add_bsurf(sid, eids, comment='bsurf') bsurf.raw_fields() sid = 43 g1s = [10, 11, 12] g2s = [20, 21, 22] g3s = [30, 31, 32] bsurfs = model.add_bsurfs(sid, eids, g1s, g2s, g3s, comment='bsurfs') bsurfs.raw_fields() contact_set_id = 44 source_ids = [37, 38] target_ids = [47, 48] frictions = [0.11, 0.22] min_distances = [0.001, 0.001] max_distances = [0.1, 0.2] bctset = model.add_bctset(contact_set_id, source_ids, target_ids, frictions, min_distances, max_distances, comment='bctset') bctset.raw_fields() contract_region = 100 surface = 'BOT' contact_type = 'RIGID' offset = .1012 master_grid_point = 101 bcrpara = model.add_bcrpara(contract_region, surface, offset, contact_type, master_grid_point, comment='bcrpara') bcrpara.raw_fields() model.validate() contact_region = 102 params = {'cat' : 111, 'dog' : 222, 'frog' : 0.} bctpara = model.add_bctpara(contact_region, params, comment='bctpara') bctpara.raw_fields() str(bctpara) contact_region = 300 contact_sets = [301, 302] bctadd = model.add_bctadd(contact_region, contact_sets, comment='bctadd') bctadd.raw_fields() save_load_deck(model) if __name__ == '__main__': # pragma: no cover unittest.main() ``` #### File: bdf/mesh_utils/mesh.py ```python import numpy as np from pyNastran.bdf.cards.aero.utils import ( points_elements_from_quad_points, create_axisymmetric_body) def create_structured_chexas(model, pid, x, y, z, nx, ny, nz, eid=1, nid=1): nid0 = nid nnodes = nx * ny * nz nelements = (nx - 1) * (ny - 1) * (nz - 1) assert nelements > 0, f'nx={nx} ny={ny} nz={nz} nelements={nelements}' #points, elements = points_elements_from_cube_points( #p1, p2, p3, p4, #p5, p6, p7, p8, #x, y, z, dtype='int32') xv, yv, zv = np.meshgrid(x, y, z) for point in zip(xv.ravel(), yv.ravel(), zv.ravel()): model.add_grid(nid, point) nid += 1 node_ids = np.arange(nnodes, dtype='int32').reshape(nx, ny, nz) #print(node_ids) p1 = node_ids[:nx-1, :ny-1, :nz-1].ravel() p2 = node_ids[1:, :ny-1, :nz-1].ravel() p3 = node_ids[1:, 1:, :nz-1].ravel() p4 = node_ids[:nx-1, 1:, :nz-1].ravel() p5 = node_ids[:nx-1, :ny-1, 1:].ravel() p6 = node_ids[1:, :ny-1, 1:].ravel() p7 = node_ids[1:, 1:, 1:].ravel() p8 = node_ids[:nx-1, 1:, 1:].ravel() elements = np.vstack([p1, p2, p3, p4, p5, p6, p7, p8]).T #print(elements) #print(elements.shape) for node_ids in (elements + nid0).tolist(): #print(node_ids, type(node_ids)) model.add_chexa(eid, pid, node_ids) eid += 1 return nid, eid #def points_elements_from_cube_points(p1, p2, p3, p4, #p5, p6, p7, p8, #x, y, z, dtype='int32'): #""" #Creates nodes and elements in a structured grid given 8 points. #Parameters #---------- #p1-p8 : (3, ) float ndarray #corner point locations #x, y, z : (n, ) float ndarray #percentage in x, y, and z directions #dtype : str; default='int32' #the type of elements #Returns #------- #points (nx, ny, nz, 3) float ndarray #the points #elements (nquads, 8) int ndarray #series of hexa elements #nhexas = (nx-1) * (ny-1) * (nz-1) #""" #nx = x.shape[0] #ny = y.shape[0] #nz = z.shape[0] #elements = elements_from_cube(nx, ny, nz, dtype=dtype) #npoints = nx * ny ## shape the vectors so we can multiply them #x = x.reshape((1, nx)) #y = y.reshape((1, ny)) #z = y.reshape((1, nz)) #p1 = np.asarray(p1).reshape(1, 3) #p2 = np.asarray(p2).reshape(1, 3) #p3 = np.asarray(p3).reshape(1, 3) #p4 = np.asarray(p4).reshape(1, 3) #p5 = np.asarray(p5).reshape(1, 3) #p6 = np.asarray(p6).reshape(1, 3) #p7 = np.asarray(p7).reshape(1, 3) #p8 = np.asarray(p8).reshape(1, 3) ## x repeats ny times and varies slowly ## y repeats nx times and varies quickly #xv = np.repeat(x, ny, axis=1).reshape(npoints, 1) #yv = np.repeat(y, nx, axis=0).reshape(npoints, 1) ## calculate the points a and b xv% along the chord #a = xv * p2 + (1 - xv) * p1 #b = xv * p3 + (1 - xv) * p4 ## calculate the point yv% along the span #points = yv * b + (1 - yv) * a #assert points.shape == (npoints, 3), 'npoints=%s shape=%s' % (npoints, str(points.shape)) ## create a matrix with the point counter ##ipoints = np.arange(npoints, dtype='int32').reshape((nx, ny)) #return points, elements def create_structured_cquad4s(model, pid, p1, p2, p3, p4, nx, ny, nid=1, eid=1, theta_mcid=0.): """ Parameters ---------- p1 / p2 / p3 / p4 : (3, ) float ndarray points defining the quad nx : int points in the p1-p2 direction ny : int points in the p1-p4 direction nid / eid : int node / element id offset Returns ------- nid : int ??? eid : int ??? """ nid0 = nid x = np.linspace(0., 1., nx + 1) y = np.linspace(0., 1., ny + 1) points, elements = points_elements_from_quad_points( p1, p2, p3, p4, x, y, dtype='int32') for point in points: model.add_grid(nid, point) nid += 1 for node_ids in elements + nid0: model.add_cquad4(eid, pid, node_ids, theta_mcid=theta_mcid) eid += 1 return nid, eid #def cone3d(model, pid, #xs, radius, nx=5, ntheta=10, endpoint=True): #""" #create a cone by segments in 3d #xs = [0., 1., 2.] #radius = [1., 2., 4.] #>>> cone(model, pid, xs, radius1, radius2) #""" #xstation = np.asarray(xstation) #ystation = np.zeros(xstation.shape) #zstation = np.zeros(xstation.shape) #aspect_ratio = 1.0 #xyz_elems = create_axisymmetric_body( #nx, aspect_ratio, #xstation, ystation, zstation, radii, #p1, dy, dz) #return ``` #### File: mesh_utils/test/test_mesh_utils.py ```python import os import unittest from io import StringIO from docopt import DocoptExit import numpy as np from cpylog import SimpleLogger #import pyNastran #from pyNastran.bdf.bdf import BDF #root_path = pyNastran.__path__[0] #test_path = os.path.join(root_path, 'bdf', 'test', 'unit') import pyNastran from pyNastran.bdf.bdf import BDF, read_bdf from pyNastran.bdf.mesh_utils.bdf_equivalence import bdf_equivalence_nodes from pyNastran.bdf.mesh_utils.export_mcids import export_mcids from pyNastran.bdf.mesh_utils.split_cbars_by_pin_flag import split_cbars_by_pin_flag from pyNastran.bdf.mesh_utils.split_elements import split_line_elements from pyNastran.bdf.mesh_utils.pierce_shells import ( pierce_shell_model) #, quad_intersection, triangle_intersection) from pyNastran.bdf.mesh_utils.mirror_mesh import ( write_bdf_symmetric, bdf_mirror, bdf_mirror_plane) from pyNastran.bdf.mesh_utils.mass_properties import ( mass_properties, mass_properties_nsm) #mass_properties_breakdown from pyNastran.bdf.mesh_utils.make_half_model import make_symmetric_model from pyNastran.bdf.mesh_utils.bdf_merge import bdf_merge from pyNastran.bdf.mesh_utils.utils import cmd_line # not tested from pyNastran.bdf.mesh_utils.mesh import create_structured_cquad4s, create_structured_chexas PKG_PATH = pyNastran.__path__[0] MODEL_PATH = os.path.abspath(os.path.join(PKG_PATH, '..', 'models')) np.set_printoptions(edgeitems=3, infstr='inf', linewidth=75, nanstr='nan', precision=3, suppress=True, threshold=1000, formatter=None) class TestMeshUtils(unittest.TestCase): """various mesh_utils tests""" def test_free_faces(self): """CTETRA10""" #bdf free_faces [-d | -l] [-f] [--encoding ENCODE] BDF_FILENAME SKIN_FILENAME #with self.assertRaises(SystemExit): #cmd_line(argv=['bdf', 'free_faces']) bdf_filename = os.path.join(MODEL_PATH, 'solid_bending', 'solid_bending.bdf') #log = get_logger(log=None, level='info', encoding='utf-8') cmd_line(argv=['bdf', 'free_faces', bdf_filename, 'skin.bdf'], quiet=True) os.remove('skin.bdf') def test_structured_cquads(self): """tests create_structured_cquad4s""" pid = 42 p1 = [0., 0., 0.] p2 = [1., 0., 0.] p3 = [1., 1., 0.] p4 = [0., 1., 0.] model = BDF() nx = 10 ny = 20 create_structured_cquad4s(model, pid, p1, p2, p3, p4, nx, ny, nid=1, eid=1, theta_mcid=0.) def test_structured_chexas(self): """tests test_structured_chexas""" #1U CubeSat is 10 cm, 10 cm, 11.35 cm. #2U CubeSat is 10 cm, 10 cm, 22.70 cm. #6U CubeSat is 20 cm, 10 cm, 34.05 cm. model = BDF() pid = 1 i = 20. j = 10. k = 5. p1 = [0., 0., 0.] p2 = [i, 0., 0.] p3 = [i, j, 0.] p4 = [0., j, 0.] p5 = [0., 0., k] p6 = [i, 0., k] p7 = [i, j, k] p8 = [0., j, k] nx = 2 ny = 2 nz = 2 x = np.linspace(0., i, nx + 1) y = np.linspace(0., j, ny + 1) z = np.linspace(0., k, nz + 1) create_structured_chexas(model, pid, x, y, z, nx, ny, nz, eid=1) model.write_bdf('test_structured_chexas.bdf') def test_eq1(self): """Collapse nodes 2 and 3; consider 1-3""" log = SimpleLogger(level='error') msg = ( 'CEND\n' 'BEGIN BULK\n' 'GRID,1,,0.,0.,0.\n' 'GRID,2,,0.,0.,0.5\n' 'GRID,3,,0.,0.,0.51\n' 'GRID,10,,0.,0.,1.\n' 'GRID,11,,0.,0.,1.\n' 'CTRIA3,1,1,1,2,11\n' 'CTRIA3,3,1,2,3,11\n' 'CTRIA3,4,1,1,2,10\n' 'PSHELL,1,1,0.1\n' 'MAT1,1,3.0,, 0.3\n' 'ENDDATA' ) bdf_filename = 'nonunique.bdf' bdf_filename_out = 'unique.bdf' with open(bdf_filename, 'w') as bdf_file: bdf_file.write(msg) tol = 0.2 bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=None, crash_on_collapse=False, log=log, debug=False) # model = BDF(debug=False) # model.read_bdf(bdf_filename_out) # assert len(model.nodes) == 3, len(model.nodes) os.remove(bdf_filename) os.remove(bdf_filename_out) def test_eq2(self): r""" 5 6 *-------* 40 | \ | | \ | | \ | *-------* 3 1 20 """ log = SimpleLogger(level='error') msg = ( 'CEND\n' 'BEGIN BULK\n' 'GRID,1, , 0., 0., 0.\n' 'GRID,20,, 1., 0., 0.\n' 'GRID,3, , 1.01, 0., 0.\n' 'GRID,40,, 1., 1., 0.\n' 'GRID,5, , 0., 1., 0.\n' 'GRID,6, , 0., 1.01, 0.\n' 'CTRIA3,1, 100,1,20,6\n' 'CTRIA3,10,100,3,40,5\n' 'PSHELL,100,1000,0.1\n' 'MAT1,1000,3.0,, 0.3\n' 'ENDDATA' ) bdf_filename = 'nonunique.bdf' bdf_filename_out = 'unique.bdf' with open(bdf_filename, 'w') as bdf_file: bdf_file.write(msg) tol = 0.2 # Collapse 5/6 and 20/3; Put a 40 and 20 to test non-sequential IDs bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=None, crash_on_collapse=False, log=log, debug=False) model = BDF(log=log, debug=False) model.read_bdf(bdf_filename_out) msg = 'nnodes=%s\n' % len(model.nodes) for nid, node in sorted(model.nodes.items()): msg += 'nid=%s xyz=%s\n' % (nid, node.xyz) assert len(model.nodes) == 4, msg #os.remove(bdf_filename) os.remove(bdf_filename_out) tol = 0.009 # Don't collapse anything because the tolerance is too small bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=None, crash_on_collapse=False, log=log, debug=False) model = BDF(log=log, debug=False) model.read_bdf(bdf_filename_out) assert len(model.nodes) == 6, len(model.nodes) os.remove(bdf_filename_out) tol = 0.2 node_set = [2, 3] # Node 2 is not defined, so crash with self.assertRaises(RuntimeError): # node 2 is not defined because it should be node 20 bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=node_set, crash_on_collapse=False, log=log, debug=False) tol = 0.2 node_list = [20, 3] # Only collpase 2 nodes bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=node_list, crash_on_collapse=False, log=log, debug=False) model = BDF(log=log, debug=False) model.read_bdf(bdf_filename_out) assert len(model.nodes) == 5, len(model.nodes) os.remove(bdf_filename_out) tol = 0.2 node_set = {20, 3} # Only collpase 2 nodes bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=node_set, crash_on_collapse=False, log=log, debug=False) model = BDF(log=log, debug=False) model.read_bdf(bdf_filename_out) assert len(model.nodes) == 5, len(model.nodes) os.remove(bdf_filename_out) tol = 0.2 aset = np.array([20, 3, 4], dtype='int32') bset = np.array([20, 3], dtype='int32') node_set = np.intersect1d(aset, bset) assert len(node_set) > 0, node_set # Only collpase 2 nodes bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=node_set, crash_on_collapse=False, debug=False) model = BDF(debug=False) model.read_bdf(bdf_filename_out) assert len(model.nodes) == 5, len(model.nodes) os.remove(bdf_filename_out) def test_eq3(self): """node_set=None""" log = SimpleLogger(level='error') lines = [ '$pyNastran: version=msc', '$pyNastran: punch=True', '$pyNastran: encoding=ascii', '$NODES', '$ Nodes to merge:', '$ 5987 10478', '$ GRID 5987 35.46 -6. 0.', '$ GRID 10478 35.46 -6. 0.', '$ 5971 10479', '$ GRID 5971 34.92 -6. 0.', '$ GRID 10479 34.92 -6. 0.', '$ 6003 10477', '$ GRID 6003 36. -6. 0.', '$ GRID 10477 36. -6. 0.', 'GRID 5971 34.92 -6. 0.', 'GRID 5972 34.92-5.73333 0.', 'GRID 5973 34.92-5.46667 0.', 'GRID 5987 35.46 -6. 0.', 'GRID 5988 35.46-5.73333 0.', 'GRID 5989 35.46-5.46667 0.', 'GRID 6003 36. -6. 0.', 'GRID 6004 36.-5.73333 0.', 'GRID 6005 36.-5.46667 0.', 'GRID 10476 36. -6. -1.5', 'GRID 10477 36. -6. 0.', 'GRID 10478 35.46 -6. 0.', 'GRID 10479 34.92 -6. 0.', 'GRID 10561 34.92 -6. -.54', '$ELEMENTS_WITH_PROPERTIES', 'PSHELL 1 1 .1', 'CQUAD4 5471 1 5971 5987 5988 5972', 'CQUAD4 5472 1 5972 5988 5989 5973', 'CQUAD4 5486 1 5987 6003 6004 5988', 'CQUAD4 5487 1 5988 6004 6005 5989', 'PSHELL 11 1 .1', 'CTRIA3 9429 11 10561 10476 10478', 'CTRIA3 9439 11 10478 10479 10561', 'CTRIA3 9466 11 10476 10477 10478', '$MATERIALS', 'MAT1 1 3. .3', ] bdf_filename = 'nonunique2.bdf' bdf_filename_out = 'unique2.bdf' with open(bdf_filename, 'w') as bdf_file: bdf_file.write('\n'.join(lines)) tol = 0.01 bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=None, crash_on_collapse=False, log=log, debug=False) model = BDF(debug=False) model.read_bdf(bdf_filename_out) assert len(model.nodes) == 11, len(model.nodes) os.remove(bdf_filename) os.remove(bdf_filename_out) def test_eq4(self): r""" 5 6 *-------* 40 | \ | | \ | | \ | *-------* 3 1 20 """ log = SimpleLogger(level='error') msg = 'CEND\n' msg += 'BEGIN BULK\n' msg += 'GRID,1, , 0., 0., 0.\n' msg += 'GRID,20,, 1., 0., 0.\n' msg += 'GRID,3, , 1.01, 0., 0.\n' msg += 'GRID,41,, 1., 1., 0.\n' # eq msg += 'GRID,4,, 1., 1., 0.\n' # eq msg += 'GRID,40,, 1., 1., 0.\n' # eq msg += 'GRID,4,, 1., 1., 0.\n' # eq msg += 'GRID,5, , 0., 1., 0.\n' msg += 'GRID,6, , 0., 1.01, 0.\n' msg += 'CTRIA3,1, 100,1,20,6\n' msg += 'CTRIA3,10,100,3,40,5\n' msg += 'PSHELL,100,1000,0.1\n' msg += 'MAT1,1000,3.0,, 0.3\n' msg += 'ENDDATA' bdf_filename = 'nonunique.bdf' bdf_filename_out = 'unique.bdf' with open(bdf_filename, 'w') as bdf_file: bdf_file.write(msg) tol = 0.2 node_set = [4, 40, 41] # Collapse 5/6 and 20/3; Put a 40 and 20 to test non-sequential IDs bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=4, xref=True, node_set=node_set, crash_on_collapse=False, log=log, debug=False) model = BDF(log=log, debug=False) model.read_bdf(bdf_filename_out) nids = model.nodes.keys() assert len(model.nodes) == 6, 'nnodes=%s nodes=%s' % (len(model.nodes), nids) assert 1 in nids, nids assert 20 in nids, nids assert 3 in nids, nids assert 4 in nids, nids assert 5 in nids, nids assert 6 in nids, nids assert 40 not in nids, nids assert 41 not in nids, nids #print(nids) os.remove(bdf_filename) os.remove(bdf_filename_out) def test_merge_01(self): """merges multiple bdfs into a single deck""" log = SimpleLogger(level='error') bdf_filename1 = os.path.join(MODEL_PATH, 'bwb', 'bwb_saero.bdf') bdf_filename2 = os.path.join(MODEL_PATH, 'sol_101_elements', 'static_solid_shell_bar.bdf') bdf_filename3 = os.path.join(MODEL_PATH, 'solid_bending', 'solid_bending.bdf') bdf_filename4 = os.path.join(MODEL_PATH, 'iSat', 'ISat_Dploy_Sm.dat') bdf_filename_out1 = os.path.join(MODEL_PATH, 'bwb', 'BWBsaero_staticbar_8.out') bdf_filename_out2 = os.path.join(MODEL_PATH, 'bwb', 'BWBsaero_static_bar_16.out') bdf_filename_out3 = os.path.join(MODEL_PATH, 'bwb', 'BWBsaero_staticbar_isat.out') bdf_filenames1 = [bdf_filename1, bdf_filename2] bdf_filenames2 = [bdf_filename1, bdf_filename2, bdf_filename3, bdf_filename4] bdf_merge(bdf_filenames1, bdf_filename_out=bdf_filename_out1, renumber=True, encoding=None, size=8, is_double=False, cards_to_skip=None, log=log) bdf_merge(bdf_filenames1, bdf_filename_out=bdf_filename_out2, renumber=False, encoding=None, size=16, is_double=False, cards_to_skip=None, log=log) bdf_merge(bdf_filenames2, bdf_filename_out=bdf_filename_out3, renumber=False, encoding=None, size=16, is_double=False, cards_to_skip=None, log=log) read_bdf(bdf_filename_out1, log=log) read_bdf(bdf_filename_out2, log=log) read_bdf(bdf_filename_out3, log=log) def test_exit(self): """tests totally failing to run""" with self.assertRaises(SystemExit): cmd_line(argv=['bdf']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'export_caero_mesh']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'convert']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'scale']) #with self.assertRaises(SystemExit): #cmd_line(argv=['bdf', 'bin']) #with self.assertRaises(SystemExit): #cmd_line(argv=['bdf', 'filter']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'mirror']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'renumber']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'equivalence']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'free_faces']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'merge']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'export_caero_mesh']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'transform']) with self.assertRaises(SystemExit): cmd_line(argv=['bdf', 'export_mcids']) def test_export_caero_mesh(self): """tests multiple ``bdf`` tools""" bdf_filename = os.path.join(MODEL_PATH, 'bwb', 'bwb_saero.bdf') argv = ['bdf', 'export_caero_mesh', bdf_filename, '-o', 'caero_no_sub.bdf'] with self.assertRaises(SystemExit): cmd_line(argv=argv[:1]) with self.assertRaises(SystemExit): cmd_line(argv=argv[:2]) cmd_line(argv=argv, quiet=True) argv = ['bdf', 'export_caero_mesh', bdf_filename, '-o', 'caero_aesurf.bdf', '--subpanels', '--pid', 'aesurf'] cmd_line(argv=argv, quiet=True) argv = ['bdf', 'export_caero_mesh', bdf_filename, '-o', 'caero_caero.bdf', '--subpanels', '--pid', 'caero'] cmd_line(argv=argv, quiet=True) argv = ['bdf', 'export_caero_mesh', bdf_filename, '-o', 'caero_paero.bdf', '--subpanels', '--pid', 'paero'] cmd_line(argv=argv, quiet=True) argv = ['bdf', 'export_caero_mesh', bdf_filename, '-o', 'caero.bdf', '--subpanels'] cmd_line(argv=argv, quiet=True) #bdf mirror IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [--plane PLANE] [--tol TOL] argv = ['bdf', 'mirror', 'caero.bdf', '-o', 'caero2.bdf', '--plane', 'xz', '--tol', '1e-5'] cmd_line(argv=argv, quiet=True) argv = ['bdf', 'equivalence', 'caero2.bdf', '0.001', '-o', 'caero3.bdf'] cmd_line(argv=argv, quiet=True) argv = ['bdf', 'merge', 'caero2.bdf', 'caero2.bdf', '-o', 'caero3_merged.bdf'] cmd_line(argv=argv, quiet=True) argv = ['bdf', 'renumber', 'caero3.bdf', 'caero4.bdf', '--size', '8'] cmd_line(argv=argv, quiet=True) #bdf transform IN_BDF_FILENAME [-o OUT_CAERO_BDF_FILENAME] [--shift XYZ] argv = ['bdf', 'transform', 'caero4.bdf', '-o', 'caero5.bdf', '--shift', '0,0,20.'] cmd_line(argv=argv, quiet=True) #' bdf convert IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [--in_units IN_UNITS] [--out_units OUT_UNITS]\n' argv = ['bdf', 'convert', 'caero5.bdf', '-o', 'caero6.bdf', '--in_units', 'in,lbm', '--out_units', 'ft,lbm'] cmd_line(argv=argv, quiet=True) argv = ['bdf', 'scale', 'caero6.bdf', #'-o', 'caero6.bdf', '--length', '0.5', '--time', '1.', '--mass', str(0.5**3.)] cmd_line(argv=argv, quiet=True) os.remove('caero.bdf') os.remove('caero2.bdf') os.remove('caero3.bdf') os.remove('caero3_merged.bdf') os.remove('caero4.bdf') os.remove('caero5.bdf') os.remove('caero6.bdf') #os.remove('caero5.scaled.bdf') os.remove('caero6.scaled.bdf') os.remove('caero_aesurf.bdf') os.remove('caero_caero.bdf') os.remove('caero_paero.bdf') os.remove('caero_no_sub.bdf') def test_export_mcids(self): """creates material coordinate systems""" log = SimpleLogger(level='error') bdf_filename = os.path.join(MODEL_PATH, 'bwb', 'bwb_saero.bdf') csv_filename = os.path.join(MODEL_PATH, 'bwb', 'mcids.csv') export_mcids(bdf_filename, csv_filename, export_xaxis=True, export_yaxis=True, iply=9, log=log, debug=False) model = read_bdf(bdf_filename, xref=False, debug=False) model.safe_cross_reference() #os.remove('mcids.csv') argv = ['bdf', 'export_mcids', bdf_filename, '-o', csv_filename, '--iplies', '0,1,2,3,4,5,6,7,8,9,10', '--no_x', '--no_y'] with self.assertRaises(DocoptExit): # can't define both --no_x and --no_y cmd_line(argv=argv, quiet=True) argv = ['bdf', 'export_mcids', bdf_filename, '-o', csv_filename, '--iplies', '0,1,2,3,4,5,6,7,8,9', '--no_x'] cmd_line(argv=argv, quiet=True) eids = [1204, 1211] export_mcids(model, csv_filename=None, eids=eids, export_xaxis=True, export_yaxis=True, iply=9, log=log, debug=False) export_mcids(model, csv_filename=None, eids=eids, export_xaxis=True, export_yaxis=False, iply=9, log=log, debug=False) export_mcids(model, csv_filename=None, eids=eids, export_xaxis=False, export_yaxis=True, iply=9, log=log, debug=False) with self.assertRaises(AssertionError): # export_xaxis and export_yaxis can't both be False export_mcids(model, csv_filename=None, eids=eids, export_xaxis=False, export_yaxis=False, iply=9) with self.assertRaises(RuntimeError): # no iply=10 export_mcids(model, csv_filename, eids=eids, export_xaxis=True, export_yaxis=True, iply=10) #os.remove('mcids.csv') def test_split_cbars_by_pin_flag_1(self): """null pin flag test""" bdf_filename = os.path.join(MODEL_PATH, 'sol_101_elements', 'static_solid_shell_bar.bdf') split_cbars_by_pin_flag(bdf_filename, pin_flags_filename='pin_flags.csv', bdf_filename_out='pin_flags.bdf', debug=False) os.remove('pin_flags.csv') os.remove('pin_flags.bdf') argv = ['bdf', 'split_cbars_by_pin_flags', bdf_filename, '-o', 'pin_flags.bdf', '-p', 'pin_flags.csv'] cmd_line(argv=argv, quiet=True) os.remove('pin_flags.csv') os.remove('pin_flags.bdf') def test_split_cbars_by_pin_flag_2(self): """real pin flag test""" lines = [ 'SOL 101\n', 'CEND\n', 'SUBCASE 10\n', ' LOAD = 10\n', ' SPC = 123456\n', ' DISP(PLOT) = ALL\n', ' STRESS(PLOT) = ALL\n', 'BEGIN BULK\n', 'ENDDATA', ] model = BDF(debug=False) with self.assertRaises(NotImplementedError): model.read_bdf(bdf_filename=lines, validate=True, xref=True, punch=False, read_includes=True, encoding=None) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [1., 0., 0.]) model.add_grid(3, [2., 0., 0.]) model.add_grid(4, [3., 0., 0.]) pid = 1000 mid = 1000 Type = 'BAR' dim = [1., 2.] model.add_pbarl(pid, mid, Type, dim) E = 3.0e7 G = 3.0e6 nu = None model.add_mat1(mid, E, G, nu) x = [0., 1., 0.] g0 = None model.add_cbar(1, pid, [1, 2], x, g0, offt='GGG', pa=0, pb=0, wa=None, wb=None, comment='reaction') model.add_cbar(2, pid, [2, 3], x, g0, offt='GGG', pa=0, pb=456, wa=None, wb=None, comment='End B') model.add_cbar(3, pid, [3, 4], x, g0, offt='GGG', pa=456, pb=0, wa=None, wb=None, comment='End A') sid = 10 node = 4 mag = 1. xyz = [1., 1., 0.] model.add_force(sid, node, mag, xyz) model.add_spc1(123456, '123456', 1) model.validate() bdf_file = StringIO() bdf_file.writelines(lines) bdf_file.seek(0) model.read_bdf(bdf_filename=bdf_file, validate=True, xref=False, punch=False, read_includes=True, encoding=None) #model.write_bdf('spike.bdf') split_cbars_by_pin_flag(model, pin_flags_filename='pin_flags.csv', bdf_filename_out='pin_flags.bdf', debug=False) os.remove('pin_flags.csv') os.remove('pin_flags.bdf') def test_split_line_elements(self): """tests split_line_elements""" model = BDF(debug=False) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [1., 0., 0.]) pid = 1000 mid = 1000 Type = 'BAR' dim = [1., 2.] model.add_pbarl(pid, mid, Type, dim) E = 3.0e7 G = 3.0e6 nu = None model.add_mat1(mid, E, G, nu) x = [0., 1., 0.] g0 = None #model.add_cbar(1, pid, 1, 2, x, g0, offt='GGG', pa=0, pb=0, #wa=None, wb=None, comment='reaction') #model.add_cbar(2, pid, 2, 3, x, g0, offt='GGG', pa=0, pb=456, #wa=None, wb=None, comment='End B') #model.add_cbar(3, pid, 3, 4, x, g0, offt='GGG', pa=456, pb=0, #wa=None, wb=None, comment='End A') #eids = [1, 2, 3] nids = [1, 2] model.add_cbar(1, pid, nids, x, g0, offt='GGG', pa=456, pb=5, wa=None, wb=None, comment='End A') model.add_cbeam(2, 2000, nids, x, g0, offt='GGG', bit=None, pa=456, pb=5, wa=None, wb=None, sa=0, sb=0, comment='') A = 42. model.add_conrod(3, mid, nids, A) model.add_prod(4000, mid, A) model.add_crod(4, 4000, nids) Type = 'ROD' xxb = [0.] dims = [[1.]] model.add_pbeaml(2000, mid, Type, xxb, dims) eids = [1, 2, 3, 4] split_line_elements(model, eids, neids=10, eid_start=101, nid_start=101) bdf_file = StringIO() model.write_bdf(bdf_file, close=False) #print(bdf_file.getvalue()) def test_shells_add(self): """ tests differential mass and material coordinate systems on CQUAD4/CTRIA3 elements """ pid = 10 mid1 = 100 model = BDF(debug=False) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [1., 0., 0.]) model.add_grid(3, [1., 1., 0.]) model.add_grid(4, [0., 1., 0.]) model.add_cquad4(10, pid, [1, 2, 3, 4]) model.add_ctria3(11, pid, [1, 2, 3]) mids = [100, 100, 100] thicknesses = [0.1, 0.1, 0.1] model.add_pcomp(pid, mids, thicknesses, thetas=[0., 45., 90.], souts=None, nsm=0., sb=0., ft=None, tref=0., ge=0., lam=None, z0=None, comment='') pid = 11 model.add_ctria3(12, pid, [1, 2, 3], theta_mcid=45., zoffset=0., tflag=0, T1=0.1, T2=0.1, T3=0.1, # absolute - mass=0.1*0.5=0.05 comment='') model.add_ctria3(13, pid, [1, 2, 3], theta_mcid=1, zoffset=0., tflag=0, T1=0.1, T2=0.1, T3=0.1, # absolute comment='') model.add_cquad4(14, pid, [1, 2, 3, 4], theta_mcid=45., zoffset=0., tflag=0, T1=0.1, T2=0.1, T3=0.1, T4=0.1, # absolute comment='') model.add_cquad4(15, pid, [1, 2, 3, 4], theta_mcid=1, zoffset=0., tflag=1, T1=0.1, T2=0.1, T3=0.1, T4=0.1, # relative comment='') origin = [0., 0., 0.] zaxis = [0., 0., 1.] xzplane = [1., 0., 0.] model.add_cord2r(1, origin, zaxis, xzplane, rid=0) model.add_pshell(pid, mid1=mid1, t=2.) e11 = 1.0 e22 = 2.0 nu12 = 0.3 model.add_mat8(mid1, e11, e22, nu12, rho=1.0) model.validate() model.cross_reference() model.pop_xref_errors() mass = mass_properties(model, element_ids=13)[0] bdf_file = StringIO() model.write_bdf(bdf_file) model.uncross_reference() model.cross_reference() model.pop_xref_errors() assert np.allclose(mass, 0.05), mass # t=0.1; A=0.5; nsm=0.; mass=0.05 mass = mass_properties(model, element_ids=14)[0] bdf_file = StringIO() model.write_bdf(bdf_file, close=False) bdf_file.seek(0) assert np.allclose(mass, 0.1), mass # t=0.1; A=1.0; nsm=0.; mass=0.1 csv_filename = 'mcids.csv' export_mcids(model, csv_filename=csv_filename, eids=[12, 13], export_xaxis=True, export_yaxis=True, iply=0) #with open(csv_filename, 'r') as csv_file: #lines = csv_file.readlines() #assert len(lines) > 0, 'lines=%s' % lines #for line in lines: #print(line.rstrip()) #print('-------------') export_mcids(model, csv_filename=csv_filename, eids=[14, 15], export_xaxis=True, export_yaxis=True, iply=0) model.uncross_reference() model.safe_cross_reference() model.uncross_reference() os.remove(csv_filename) #bdf_file = model.write_bdf(bdf_file) model2 = BDF(debug=False) model2.read_bdf(bdf_file, punch=True) #with open(csv_filename, 'r') as csv_file: #lines = csv_file.readlines() #assert len(lines) > 0, 'lines=%s' % lines #for line in lines: #print(line.rstrip()) def test_mirror(self): """tests bdf mirroring""" log = SimpleLogger(level='error') pid_pshell = 10 pid_psolid = 11 mid1 = 100 model = BDF(log=log) # (log=log) model.add_grid(1, [10., 10., 10.]) model.add_grid(2, [11., 10., 10.]) model.add_grid(3, [11., 11., 10.]) model.add_grid(4, [10., 11., 10.]) model.add_grid(5, [10., 10., 11.]) model.add_grid(6, [11., 10., 11.]) model.add_grid(7, [11., 11., 11.]) model.add_grid(8, [10., 11., 11.]) model.add_cquad4(1, pid_pshell, [1, 2, 3, 4]) # mass=1 model.add_ctria3(2, pid_pshell, [1, 2, 3]) # mass=0.5 model.add_conrod(3, mid1, [1, 3], A=1.0, j=0.0, c=0.0, nsm=0.0) #model.add_ctetra(4, pid_psolid, [1, 2, 3, 5]) # penta # pyram #model.add_chexa(7, pid_psolid, [1, 2, 3, 4, 5, 6, 7, 8]) model.add_pshell(pid_pshell, mid1=mid1, t=1.) model.add_psolid(pid_psolid, mid1) E = 1.0 G = None nu = 0.3 model.add_mat1(mid1, E, G, nu, rho=1.0) model.validate() model.cross_reference() mass1, unused_cg1, unused_inertia1 = mass_properties(model) # mirror_model=None -> new model # # just a cord2r # y+ right plane = np.array([ [0., 0., 0.], [0., 0., 1.], [1., 0., 0.], ]) model, unsed_mirror_model, unused_nid_offset, unused_eid_offset = bdf_mirror_plane( model, plane, mirror_model=None, log=None, debug=True, use_nid_offset=False) #for nid, node in sorted(mirror_model.nodes.items()): #print(nid, node.xyz) out_filename = 'sym.bdf' write_bdf_symmetric(model, out_filename=out_filename, encoding=None, size=8, is_double=False, enddata=None, close=True, plane='xz') # +y/-y model2 = read_bdf(out_filename, log=log) assert len(model2.nodes) == 16, model2.nodes mass2, cg2, unused_inertia2 = mass_properties(model2) #print('cg1=%s cg2=%s' % (cg1, cg2)) assert np.allclose(mass1*2, mass2), 'mass1=%s mass2=%s' % (mass1, mass2) assert np.allclose(cg2[1], 0.), 'cg2=%s stats=%s' % (cg2, model2.get_bdf_stats()) os.remove('sym.bdf') def test_mirror2(self): """mirrors the BDF (we care about the aero cards)""" log = SimpleLogger(level='warning') bdf_filename = os.path.join(MODEL_PATH, 'bwb', 'bwb_saero.bdf') model = bdf_mirror(bdf_filename, plane='xz', log=log)[0] model.uncross_reference() model.cross_reference() make_symmetric_model(model, plane='xz', zero_tol=1e-12) #model.validate() def test_pierce_model(self): """tests pierce_shell_model""" log = SimpleLogger(level='error') pid = 10 mid1 = 100 model = BDF(log=log) # intersects (min) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [1., 0., 0.]) model.add_grid(3, [1., 1., 0.]) model.add_grid(4, [0., 1., 0.]) model.add_cquad4(1, pid, [1, 2, 3, 4]) # intersects (max) model.add_grid(5, [0., 0., 1.]) model.add_grid(6, [1., 0., 1.]) model.add_grid(7, [1., 1., 1.]) model.add_grid(8, [0., 1., 1.]) model.add_cquad4(2, pid, [5, 6, 7, 8]) # intersects (mid) model.add_grid(9, [0., 0., 0.5]) model.add_grid(10, [1., 0., 0.5]) model.add_grid(11, [1., 1., 0.5]) model.add_grid(12, [0., 1., 0.5]) model.add_cquad4(3, pid, [9, 10, 11, 12]) # doesn't intersect model.add_grid(13, [10., 0., 0.]) model.add_grid(14, [11., 0., 0.]) model.add_grid(15, [11., 1., 0.]) model.add_grid(16, [10., 1., 0.]) model.add_cquad4(4, pid, [13, 14, 15, 16]) model.add_pshell(pid, mid1=mid1, t=2.) E = 1.0 G = None nu = 0.3 model.add_mat1(mid1, E, G, nu, rho=1.0) model.validate() model.cross_reference() xyz_points = [ [0.4, 0.6, 0.], [-1., -1, 0.], ] pierce_shell_model(model, xyz_points) #def test_intersect(self): #p0 = np.array([0,0,0], 'd') #p1 = np.array([1,0,0], 'd') #p2 = np.array([0,1,0], 'd') #p3 = np.array([1,1,0], 'd') #v = np.array([0,0,-1], 'd') #for i in range(10): #for j in range(10): #p = np.array([i*.2-.5, j*.2-.5, 1.], 'd') #print(i, j, p, #triangle_intersection(p, v, p0, p1, p2), #quad_intersection(p, v, p0, p1, p3, p2)) if __name__ == '__main__': # pragma: no cover unittest.main() ``` #### File: converters/abaqus/abaqus_cards.py ```python import numpy as np allowed_element_types = [ 'r2d2', 'conn2d2', 'cpe3', 'cpe4', 'cpe4r', 'cps3', 'cps4', 'cps4r', 'coh2d4', 'c3d10h', 'cohax4', 'cax3', 'cax4r', 'mass', 'rotaryi', 't2d2', 'c3d8r', ] class SolidSection: """a SolidSection defines depth and a material""" def __init__(self, param_map, data_lines, log): self.param_map = param_map self.data_lines = data_lines self.material = param_map['material'] if len(data_lines) == 0: pass elif len(data_lines) == 1: assert len(data_lines) == 1, data_lines line0 = data_lines[0] assert len(line0) == 1, data_lines try: self.thickness = float(line0[0]) except ValueError: self.thickness = 0. for line in data_lines: log.info('solid - %r' % line) def __repr__(self): """prints a summary for the solid section""" msg = 'SolidSection(\n' msg += ' param_map = %r,\n' % self.param_map msg += ' thickness = %s,\n' % self.thickness msg += ')\n' return msg class Material: """a Material object is a series of nodes & elements (of various types)""" def __init__(self, name, sections, density=None, ndepvars=None, ndelete=None): self.name = name self.density = density #self.depvar = None self.ndelete = ndelete self.ndepvars = ndepvars self.user_material = None #print(sections) #if 'density' in sections: #self.density = sections['density'] #if 'depvar' in sections: #self.depvar = sections['depvar'] #if 'user_material' in sections: #self.user_material = sections['user_material'] self.sections = sections def __repr__(self): """prints a summary for the material""" msg = 'Material(\n' msg += ' name=%r,\n' % self.name for key, value in self.sections.items(): msg += ' %r : %r,\n' % (key, value) msg += ')\n' return msg def write(self, abq_file): #*Material, name=Glassy828DEA #*Density #1180., #*Elastic #2.14078e+09, 0.42718 #*Material, name=MAT1_828DEA_Dam #*Density #1180., #*Depvar, delete=4 #20, #*User Material, constants=16 #** K CTELIN C10 C01 DAM_FORM FUNC_FORM EVOLF EVMF #3.2e+09, 5.667e-05, 3.75e+08, 0., 2., 1., 50000., 0.05 #**EVM0ISO EVM0VOL EVM0VM DAM_METHOD ALPHA A B C #0., 0.5, 0.5, 1., 0., 0., 0.5, 0.6 #*Material, name=Steel #*Density #7800., #*Elastic #2e+11, 0.3 abq_file.write('*Material, name=%s\n' % write_name(self.name)) if self.density: abq_file.write('*Density\n %s,\n' % self.density) if self.ndepvars: ndelete = '' if self.ndelete is None else ', delete=%s' % self.ndelete abq_file.write('*Depvar%s\n %s,\n' % (ndelete, self.ndepvars)) if self.user_material: nconstants = '' abq_file.write('*User Material%s\n %s,\n' % (nconstants, self.user_material)) #abq_file.write('** skipping Material %s\n' % self.name) class Assembly: def __init__(self, element_types, node_sets, element_sets): self.element_types = element_types self.node_sets = node_sets self.element_sets = element_sets def write(self, abq_file): abq_file.write('** skipping Assembly\n') def __repr__(self): """summary for the Assembly""" etypes = list(self.element_types.keys()) nsets = list(self.node_sets.keys()) esets = list(self.element_sets.keys()) msg = ( 'Assembly:\n' ' element_types = %s\n' ' node_sets = %s\n' ' element_sets = %s\n' % (etypes, nsets, esets) ) return msg class Part: """a Part object is a series of nodes & elements (of various types)""" def __init__(self, name, nids, nodes, element_types, node_sets, element_sets, solid_sections, log): """ creates a Part object Parameters ---------- name : str the name element_types : Dict[element_type] : node_ids element_type : str the element type bars: r2d2 : (nelements, 2) int ndarray shells: cpe3 : (nelements, 3) int ndarray cpe4 : (nelements, 4) int ndarray cpe4r : (nelements, 4) int ndarray cps3 : (nelements, 3) int ndarray cps4 : (nelements, 4) int ndarray cps4r : (nelements, 4) int ndarray coh2d4 : (nelements, 4) int ndarray cohax4 : (nelements, 4) int ndarray cax3 : (nelements, 3) int ndarray cax4r : (nelements, 4) int ndarray solids: c3d10h : (nelements, 10) int ndarray """ self.name = name self.log = log self.node_sets = node_sets self.element_sets = element_sets self.solid_sections = solid_sections try: self.nids = np.array(nids, dtype='int32') except ValueError: msg = 'nids=%s is not integers' % nids raise ValueError(msg) nnodes = len(self.nids) node0 = nodes[0] node_shape = len(node0) if node_shape == 3: self.nodes = np.array(nodes, dtype='float32') elif node_shape == 2: # abaqus can have only x/y coordinates, so we fake the z coordinate self.nodes = np.zeros((nnodes, 3), dtype='float32') nodes2 = np.array(nodes, dtype='float32') #print(nodes2.shape, self.nodes.shape) self.nodes[:, :2] = nodes2 else: raise NotImplementedError(node0) # bars self.r2d2 = None # ---shells--- # plane strain self.cpe3 = None self.cpe4 = None self.cpe4r = None # plane stress self.cps3 = None self.cps4 = None self.cps4r = None # other self.coh2d4 = None self.cohax4 = None self.cax3 = None self.cax4r = None # solids self.c3d10h = None self.c3d8r = None #----------------------------------- # eids self.r2d2_eids = None self.cpe3_eids = None self.cpe4_eids = None self.cpe4r_eids = None self.cps3_eids = None self.cps4_eids = None self.cps4r_eids = None self.coh2d4_eids = None self.cohax4_eids = None self.cax3_eids = None self.cax4r_eids = None # rigid elements self.c3d10h_eids = None self.c3d8r_eids = None self._store_elements(element_types) def _etypes_nnodes(self): """internal helper method""" etypes_nnodes = [ ('r2d2', 2), # similar to a CBAR # shells ('cpe3', 3), ('cpe4', 4), ('cpe4r', 4), ('cps3', 3), ('cps4', 4), ('cps4r', 4), # quad, plane stress, reduced ('coh2d4', 4), # cohesive zone ('cohax4', 4), # cohesive zone ('cax3', 3), ('cax4r', 4), # solids ('c3d10h', 10), # tet10 ('c3d8r', 8), # hexa8 ] return etypes_nnodes def _store_elements(self, element_types): """helper method for the init""" etypes_nnodes = self._etypes_nnodes() for etype, nnodes in etypes_nnodes: if etype in element_types: etype_eids = '%s_eids' % etype elements = element_types[etype] eids_elements = np.array(elements, dtype='int32') setattr(self, etype, eids_elements) # r2d2 setattr(self, etype_eids, eids_elements[:, 0]) # r2d2_eids assert eids_elements.shape[1] == nnodes + 1, eids_elements.shape def element(self, eid): """gets a specific element of the part""" elem = None etypes_nnodes = self._etypes_nnodes() for etype, nnodes in etypes_nnodes: etype_eids = '%s_eids' % etype eids = getattr(self, etype_eids) # r2d2_eids if eids is not None: ieid = np.where(eid == eids)[0] if len(ieid): ieidi = ieid[0] elems = getattr(self, etype) # r2d2 elem = elems[ieid, :] return etype, ieid, elem return None, None, None def check_materials(self, materials): """validates the materials""" for section in self.solid_sections: key = section.material if key in materials: self.log.debug('material=%r for part=%r exists' % (key, self.name)) else: self.log.warning('key=%r is an invalid material' % key) @property def nelements(self): """Gets the total number of elements""" n_r2d2 = self.r2d2.shape[0] if self.r2d2 is not None else 0 # plane strain n_cpe3 = self.cpe3.shape[0] if self.cpe3 is not None else 0 n_cpe4 = self.cpe4.shape[0] if self.cpe4 is not None else 0 n_cpe4r = self.cpe4r.shape[0] if self.cpe4r is not None else 0 # plane stress n_cps3 = self.cps3.shape[0] if self.cps3 is not None else 0 n_cps4 = self.cps4.shape[0] if self.cps4 is not None else 0 n_cps4r = self.cps4r.shape[0] if self.cps4r is not None else 0 n_coh2d4 = self.coh2d4.shape[0] if self.coh2d4 is not None else 0 n_c3d10h = self.c3d10h.shape[0] if self.c3d10h is not None else 0 n_cohax4 = self.cohax4.shape[0] if self.cohax4 is not None else 0 n_cax3 = self.cax3.shape[0] if self.cax3 is not None else 0 n_cax4r = self.cax4r.shape[0] if self.cax4r is not None else 0 n_c3d8r = self.c3d8r.shape[0] if self.c3d8r is not None else 0 neids = (n_r2d2 + n_cpe3 + n_cpe4 + n_cpe4r + # plane strain n_cps3 + n_cps4 + n_cps4r + # plane stress n_coh2d4 + n_c3d10h + n_cohax4 + n_cax3 + n_cax4r + n_c3d8r) assert neids > 0, neids return neids def __repr__(self): """prints a summary for the part""" nnodes = self.nodes.shape[0] n_r2d2 = self.r2d2.shape[0] if self.r2d2 is not None else 0 # plane strain n_cpe3 = self.cpe3.shape[0] if self.cpe3 is not None else 0 n_cpe4 = self.cpe4.shape[0] if self.cpe4 is not None else 0 n_cpe4r = self.cpe4r.shape[0] if self.cpe4r is not None else 0 # plane stress n_cps3 = self.cps3.shape[0] if self.cps3 is not None else 0 n_cps4 = self.cps4.shape[0] if self.cps4 is not None else 0 n_cps4r = self.cps4r.shape[0] if self.cps4r is not None else 0 n_coh2d4 = self.coh2d4.shape[0] if self.coh2d4 is not None else 0 n_c3d10h = self.c3d10h.shape[0] if self.c3d10h is not None else 0 n_cohax4 = self.cohax4.shape[0] if self.cohax4 is not None else 0 n_cax3 = self.cax3.shape[0] if self.cax3 is not None else 0 n_cax4r = self.cax4r.shape[0] if self.r2d2 is not None else 0 n_c3d8r = self.c3d8r.shape[0] if self.c3d8r is not None else 0 neids = (n_r2d2 + n_cpe3 + n_cpe4 + n_cpe4r + # plane strain n_cps3 + n_cps4 + n_cps4r + # plane stress n_coh2d4 + n_c3d10h + n_cohax4 + n_cax3 + n_cax4r + n_c3d8r) assert neids == self.nelements, 'something is out of date...' msg = ( f'Part(name={self.name}, nnodes={nnodes:d}, neids={neids:d},\n' f' n_r2d2={n_r2d2}, n_cps3={n_cps3}, n_cpe3={n_cpe3}, ' f'n_cpe4={n_cpe4}, n_cpe4r={n_cpe4r}, n_coh2d4={n_coh2d4},\n' f' n_cohax4={n_cohax4}, n_cax3={n_cax3}, n_cax4r={n_cax4r},' f' n_cps4r={n_cps4r},\n' f' n_c3d10h={n_c3d10h}, n_c3d8r=n_c3d8r)\n' ) nsets = list(self.node_sets.keys()) esets = list(self.element_sets.keys()) msg += ' Node Sets: %s\n' % nsets msg += ' Element Sets: %s\n' % esets for section in self.solid_sections: msg += str(section) + '\n' return msg @property def element_types(self): """simplified way to access all the elements as a dictionary""" element_types = {} element_types['r2d2'] = (self.r2d2_eids, self.r2d2) # plane strain element_types['cpe3'] = (self.cpe3_eids, self.cpe3) element_types['cpe4'] = (self.cpe4_eids, self.cpe4) element_types['cpe4r'] = (self.cpe4r_eids, self.cpe4r) # plane stress element_types['cps3'] = (self.cps3_eids, self.cps3) element_types['cps4'] = (self.cps4_eids, self.cps4) element_types['cps4r'] = (self.cps4r_eids, self.cps4r) element_types['cohax4'] = (self.cohax4_eids, self.cohax4) element_types['coh2d4'] = (self.coh2d4_eids, self.coh2d4) element_types['cax3'] = (self.cax3_eids, self.cax3) element_types['cax4r'] = (self.cax4r_eids, self.cax4r) #element_types['cps4r'] = (self.cps4r_eids, self.cps4r) element_types['c3d10h'] = (self.c3d10h_eids, self.c3d10h) return element_types def write(self, abq_file, is_2d=False): """writes a Part""" #name, nids, nodes, element_types, node_sets, element_sets, # solid_sections, log abq_file.write('*Part,name=%s\n' % write_name(self.name)) abq_file.write('*Node\n') if is_2d: for nid, node in zip(self.nids, self.nodes): abq_file.write('%i,\t%s,\t%s,\t%s\n' % (nid, node[0], node[1], node[2])) else: for nid, node in zip(self.nids, self.nodes): abq_file.write('%i,\t%s,\t%s\n' % (nid, node[0], node[1])) for set_name, values in sorted(self.node_sets.items()): write_node_set_to_file(abq_file, set_name, values) for elem_type, (eids, elems) in self.element_types.items(): if eids is None: continue abq_file.write('*Element,type=%s\n' % elem_type) nnodes = elems.shape[1] fmt = '%s,\t' * (nnodes - 1) + '%s\n' for eid, elem in zip(eids, elems): abq_file.write(fmt % tuple(elem)) for set_name, values in sorted(self.element_sets.items()): write_element_set_to_file(abq_file, set_name, values) abq_file.write('*endpart\n') def write_name(name): """Abaqus has odd rules for writing words without spaces vs. with spaces""" return '%r' % name if ' ' in name else '%s' % name def write_element_set_to_file(abq_file, set_name, values_array): """writes an element set""" abq_file.write('*Elset, elset=%s\n' % write_name(set_name)) write_set_to_file(abq_file, values_array) def write_node_set_to_file(abq_file, set_name, values_array): """writes a node set""" abq_file.write('*Nset, nset=%s\n' % write_name(set_name)) write_set_to_file(abq_file, values_array) def write_set_to_file(abq_file, values_array): """writes 16 integer values per line to a set card""" assert isinstance(values_array, np.ndarray), type(values_array) nvalues = len(values_array) nrows = nvalues // 16 nleftover = nvalues % 16 if nrows: values_array_square = values_array[:nrows*16].reshape(nrows, 16) fmt = '%i,\t' * 16 + '\n' fmt2 = '%i,\t' * 15 + '%i\n' for row in values_array_square[:-1, :]: abq_file.write(fmt % tuple(row)) abq_file.write(fmt2 % tuple(values_array_square[-1, :])) if nleftover: fmt = '%i,\t' * (nleftover - 1) + '%i\n' leftover = values_array[nrows*16:] abq_file.write(fmt % tuple(leftover)) ``` #### File: cart3d/dev/intersect.py ```python from numpy import zeros, cross, dot, allclose, sign from numpy.linalg import norm from pyNastran.converters.cart3d.cart3d_reader import Cart3D from scipy.spatial import KDTree class Intersect: def __init__(self, nodes, elements, regions): self.nodes = nodes self.elements = elements self.regions = regions def intersect_tris(self): # ==== Calculate Global Edge Length ==== elements = self.elements - 1 nodes = self.nodes ne, three = elements.shape p1 = nodes[elements[:, 0], :] p2 = nodes[elements[:, 1], :] p3 = nodes[elements[:, 2], :] centroid = (p1 + p2 + p3) / 3. a = p2 - p1 b = p3 - p1 n = cross(a, b) assert len(n) == ne, 'len(n)=%s ne=%s' % (len(n), ne) print(n) ni = norm(n, axis=1) print('n.shape=%s ni.shape=%s' % (n.shape, ni.shape)) assert len(ni) == ne, 'len(ni)=%s ne=%s' % (len(ni), ne) A = 0.5 * ni # area print(min(ni)) assert A.min() > 0, A #sys.exit() n /= ni[:, None] # normal vector assert len(n) == ne, 'len(n)=%s ne=%s' % (len(n), ne) # Global Edge Length gel = zeros((ne, 2), dtype='float64') gel[:, 0] = norm(a, axis=1) gel[:, 1] = norm(b, axis=1) gel2 = gel.max(axis=1) assert len(gel2) == ne, 'len(gel2)=%s ne=%s' % (len(gel2), ne) # single valued "Global Edge Length" (hence the i) geli = max(gel2) print('global_edge_length = %s' % geli) # we increase the search size just cause... # we're expecting nice isotropic triangles, but aren't totally # relying on it geli *= 1.05 print('global_edge_length_i = %s' % geli) # ==== create node -> element map ==== nid_to_eid_map = [[]] * ne for eid, (n1, n2, n3) in enumerate(elements): nid_to_eid_map[n1].append(eid) nid_to_eid_map[n2].append(eid) nid_to_eid_map[n3].append(eid) # ==== Create KD Tree of centroids ==== centroid_tree = KDTree(centroid) # ==== Intersect All Mesh Geoms ==== elements2 = [] for i, element in enumerate(elements): c = centroid[i] nodes1 = elements[i] snodes = set(nodes1) gel2i = gel2[i] print('c[%i] = %s' % (i, c)) pts = centroid_tree.query_ball_point(c, gel2i) #print(pts) for pt in pts: diff = norm(c - centroid[pt]) nodes2 = elements[pt] common_set = snodes.intersection(nodes2) if not common_set: print(' c[%i]=%s alt[%i]=%s diff=%s gel2=%s valid=%s' % (i, list(nodes1), pt, list(nodes2), diff, gel2[pt], diff < geli)) is_intersection = self.intersect(i, pt, nodes1, nodes2, nodes, n) #print(centroid_tree.query(c, k=10)) #break def intersect(self, e1, e2, element1, element2, nodes, n): """ http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/pubs/tritri.pdf """ n2 = n[e2] #print("nodes.shape =", nodes.shape) pt = nodes[element2[0], :] d2 = -dot(n2, pt) # vo2 - node 0 on element 2 #dvi = [] #for i in range(3): #ei = element1[i] #dvii = dot(n2, nodes[ei, :]) + d2 #dvi.append(dvii) #print(" dvi = %s" % dvi) #e1 = elements1 dvi2 = dot(n2, nodes[element1, :].T) + d2 sdvi = sign(dvi2) sign_range = sdvi.max() - sdvi.min() if allclose(dvi2.min(), 0.) or sign_range == 2.: print(" element2 = ", element2[0]) print(" ", pt) print(" d2", d2) print(" dvi = %s" % dvi2) print(" sign_range = %s" % sign_range) is_intersection = True raise NotImplementedError() else: is_intersection = False #print(" n2=%s" % (n2)) return is_intersection def remove_inner_elements(self): pass def intersect_model(cart3d_filename): cart3d = Cart3D() cart3d.read_cart3d(cart3d_filename) intersect = Intersect(cart3d.points, cart3d.elements, cart3d.regions) intersect.intersect_tris() def main(): cart3d_filename = 'threePlugs_bin.tri' intersect_model(cart3d_filename) if __name__ == '__main__': # pragma: no cover main() ``` #### File: nastran/menus/setup_model_sidebar.py ```python import os import sys # kills the program when you hit Cntl+C from the command line import signal signal.signal(signal.SIGINT, signal.SIG_DFL) from qtpy.QtWidgets import QApplication, QPushButton from pyNastran.gui.utils.qt.dialogs import save_file_dialog from pyNastran.gui.utils.qt.results_window import ResultsWindow from pyNastran.converters.nastran.wildcards import GEOM_BDF_SAVE from pyNastran.converters.nastran.menus.modify_map import MODIFY_MAP, UPDATE_MAP from pyNastran.converters.nastran.menus.modify_menu import ModifyMenu from pyNastran.converters.nastran.menus.model_sidebar import Sidebar def build_form_from_model(model): form = [] objs = [] i = 0 nodes_form = [] properties_form = [] materials_form = [] caeros_form = [] #splines_form = [] import numpy as np nids = list(model.nodes.keys()) spoints = list(model.spoints.keys()) ngrids = len(nids) nspoints = len(spoints) nnodes = ngrids + nspoints nid_type = np.zeros((nnodes, 2), dtype='int32') nid_type[:ngrids, 0] = nids nid_type[:ngrids, 1] = 0 # grid nid_type[ngrids:ngrids+nspoints, 0] = spoints nid_type[ngrids:ngrids+nspoints, 1] = 1 # spoint #for nid, nid_typei in nid_type: #if nid_typei == 0: #nodes_form.append(('GRID %i' % nid, i, [])) #elif nid_typei == 1: #nodes_form.append(('SPOINT %i' % nid, i, [])) #else: # pragma: no cover #raise RuntimeError(nid_type) #i += 1 elements_form = [] mass_form = [] rigid_elements_form = [] for eid, elem in sorted(model.elements.items()): elements_form.append(('%s %i' % (elem.type, eid), i, [])) objs.append(elem) i += 1 for eid, elem in sorted(model.masses.items()): mass_form.append(('%s %i' % (elem.type, eid), i, [])) objs.append(elem) i += 1 for eid, elem in sorted(model.rigid_elements.items()): rigid_elements_form.append(('%s %i' % (elem.type, eid), i, [])) objs.append(elem) i += 1 elem_form = [] if elements_form and mass_form and rigid_elements_form: elem_form = [ ('Elastic', None, elements_form), ('Masses', None, mass_form), ('Rigid', None, rigid_elements_form), ] elif elements_form and mass_form: elem_form = [ ('Elastic', None, elements_form), ('Masses', None, mass_form), ] elif elements_form and rigid_elements_form: elem_form = [ ('Elastic', None, elements_form), ('Rigid', None, rigid_elements_form), ] elif mass_form and rigid_elements_form: elem_form = [ ('Masses', None, mass_form), ('Rigid', None, rigid_elements_form), ] elif elements_form: elem_form = [ ('Elastic', None, elements_form), ] elif mass_form: elem_form = [ ('Masses', None, mass_form), ] elif rigid_elements_form: elem_form = [ ('Rigid', None, rigid_elements_form), ] for pid, prop in sorted(model.properties.items()): properties_form.append(('%s %i' % (prop.type, pid), i, [])) objs.append(prop) i += 1 for mid, mat in sorted(model.materials.items()): materials_form.append(('%s %i' % (mat.type, mid), i, [])) objs.append(mat) i += 1 for caeroid, caero in sorted(model.caeros.items()): caeros_form.append(('%s %i' % (caero.type, caeroid), i, [])) objs.append(caero) i += 1 #for splineid, spline in sorted(model.splines.items()): #splines_form.append(('%s %i' % (spline.type, splineid), i, [])) #i += 1 #coords_form = [] #for cid, coord in sorted(model.coords.items()): #coords_form.append(('%s %i' % (coord.type, cid), i, [])) #i += 1 #nodes = ('Nodes', None, nodes_form) elements = ('Elements', None, elem_form) properties = ('Properties', None, properties_form) materials = ('Materials', None, materials_form) caeros = ('CAEROs', None, caeros_form) #splines = ('SPLINEs', None, splines_form) #coords = ('Coords', None, coords_form) #if nodes_form: #form.append(nodes) if elem_form: form.append(elements) if properties_form: form.append(properties) if materials_form: form.append(materials) if caeros_form: form.append(caeros) #if splines_form: #form.append(splines) #if coords_form: #form.append(coords) #print(form) assert len(objs) > 0, objs return form, objs class ModelSidebar(Sidebar): def __init__(self, parent, nastran_io=None): self.bdf_filename = None self.model = None self.objs = None self.parent2 = parent self.nastran_io = nastran_io from functools import partial right_click_actions = [ ('Print...', self.on_print, True), ('Stats...', self.on_stats, True), ('Modify...', self.on_modify, True), ] export_button = QPushButton('Export') export_button.clicked.connect(self.on_export) setup_dict = { 4: export_button, } form = [] parent = self.parent2 super(ModelSidebar, self).__init__(parent, data=form, actions=right_click_actions, results_window_title='Model', clear_data=False, setup_dict=setup_dict, debug=True) self.apply_button.setVisible(False) self.show() def on_print(self, icase): """prints the selected card""" obj = self.objs[icase] print(obj) self.model.log.info('\n' + str(obj)) def on_stats(self, icase): """prints the stats for the selected card""" stats = self.objs[icase].get_stats() print(stats) self.model.log.info(str(stats)) def on_modify(self, icase): """opens a menu to modify a card""" obj = self.objs[icase] update_function_name = None if obj.type in UPDATE_MAP: update_function_name = UPDATE_MAP[obj.type] try: variables = MODIFY_MAP[obj.type] except KeyError: self.model.log.warning(f'{obj.type} does not support Modify...') keys = list(MODIFY_MAP.keys()) keys.sort() print('keys=', keys) print(obj) return self.load_menu(self.model, obj, variables, update_function_name, win_parent=None) def load_menu(self, model, obj, variables, update_function_name, win_parent=None): data = { 'font_size': 9, 'model' : model, 'obj' : obj, 'variables': variables, 'update_function_name': update_function_name, } parent = self.parent self.menu = ModifyMenu(data, nastran_io=self.nastran_io, win_parent=None) self.menu.show() self.menu.exec_() def set_model(self, model): self.model = model self.bdf_filename = model.bdf_filename form, objs = build_form_from_model(self.model) self.objs = objs self.result_case_window.update_data(form) def on_export(self): """exports a modified bdf model""" bdf_filename_base, ext = os.path.splitext(self.bdf_filename) default_name = bdf_filename_base + '.modified' + ext default_dirname = os.path.dirname(default_name) fname, unused_flt = save_file_dialog(self, 'Save As...', default_dirname, GEOM_BDF_SAVE) if not fname: return self.model.write_bdf(fname) def __repr__(self): return '<nastran_menu.ModelSidebar(...)>' def main(): # pragma: no cover app = QApplication(sys.argv) import pyNastran PKG_PATH = pyNastran.__path__[0] MODEL_PATH = os.path.join(PKG_PATH, '..', 'models') bdf_filename = os.path.join(MODEL_PATH, 'bwb', 'bwb_saero.bdf') #bdf_filename = os.path.join(MODEL_PATH, 'aero', 'bah_plane', 'bah_plane.bdf') from pyNastran.bdf.bdf import read_bdf model = read_bdf(bdf_filename) print(model.get_bdf_stats()) unused_name = 'name' #res_widget.update_results(form, name) #-------------------------------------------- m = ModelSidebar(app) m.set_model(model) sys.exit(app.exec_()) if __name__ == "__main__": # pragma: no cover main() ``` #### File: converters/panair/assign_type.py ```python from typing import List, Union, Optional def double(value, name): # type: (str, str) -> float """casts to an float value""" if isinstance(value, float): return value fvalue = float(value) return fvalue def integer(value, name): # type: (str, str) -> int """casts to an integer value""" if isinstance(value, int): return value value = value fvalue = float(value) if not fvalue.is_integer(): raise RuntimeError('%s=%r is not an integer' % (name, fvalue)) return int(fvalue) def fortran_value(value): # type: (float) -> str return "%8.4E" % value def integer_or_blank(value, name, default=None): # type: (str, str, Optional[Union[float, int]]) -> Optional[Union[float, int]] value = value.strip() if not value: return default fvalue = float(value) if not fvalue.is_integer(): raise RuntimeError('%s=%r is not an integer' % (name, fvalue)) return int(fvalue) def double_or_blank(value, name, default=None): # type: (str, str, Optional[float]) -> Optional[float] value = value.strip() if not value: return default try: fvalue = float(value) except ValueError: raise SyntaxError('%s=%r is not a float' % (name, value)) return fvalue ``` #### File: converters/shabp/test_shabp.py ```python import os import unittest import numpy as np from cpylog import SimpleLogger import pyNastran from pyNastran.converters.shabp.shabp import read_shabp from pyNastran.converters.shabp.shabp_results import ShabpOut PKG_PATH = pyNastran.__path__[0] MODEL_PATH = os.path.join(PKG_PATH, 'converters', 'shabp', 'models') class TestShabp(unittest.TestCase): """tests S/HABP""" def test_shabp_1(self): """tests nose.mk5""" log = SimpleLogger(level='info', encoding='utf-8') shabp_filename = os.path.join(MODEL_PATH, 'nose', 'noseX_working.mk5') model = read_shabp(shabp_filename, log=log) npatches_expected = 1 assert len(model.X) == npatches_expected, f'npatches_expected={npatches_expected} len(model.X)={len(model.X)}' assert len(model.Y) == npatches_expected, f'npatches_expected={npatches_expected} len(model.X)={len(model.Y)}' assert len(model.Z) == npatches_expected, f'npatches_expected={npatches_expected} len(model.X)={len(model.Z)}' #print(f'component_name_to_patch = {model.component_name_to_patch}') #print(f'patch_to_component_num = {model.patch_to_component_num}') #print(f'component_to_params = {model.component_to_params}') #print(f'component_num_to_name = {model.component_num_to_name}') #print(f'component_name_to_num = {model.component_name_to_num}') assert model.component_name_to_patch == {'ellipse': [1]}, model.component_name_to_patch assert model.patch_to_component_num == {0: 1}, model.patch_to_component_num assert model.component_to_params == {0: [5, 5, 1, 0, 0, 0.0, 1.0, 0.0, 1.0, 3.0, 3.0]}, model.component_to_params assert model.component_num_to_name == {0: 'ellipse'}, model.component_num_to_name assert model.component_name_to_num == {'ellipse': 0}, model.component_name_to_num areas = model.get_area_by_patch() assert np.allclose(areas, [266.47640991]), areas areas = model.get_area_by_component() assert np.allclose(areas['ellipse'], 266.47640991), areas areas, lengths = model.get_area_xlength_by_component() assert np.allclose(areas['ellipse'], 266.47640991), areas assert np.allclose(lengths['ellipse'], 20.0), lengths #self.title = '' #self.header = '' #self.shabp_cases = {} def test_shabp_2(self): """tests the flap""" log = SimpleLogger(level='info', encoding='utf-8') shabp_infilename = os.path.join(MODEL_PATH, 'flap', 'flap_inviscid.mk5') shabp_outfilename = os.path.join(MODEL_PATH, 'flap', 'SHABP.OUT') #test.model.load_shabp_geometry(shabp_infilename) #test.on_load_geometry(shabp_infilename, geometry_format='shabp', raise_error=True) model = read_shabp(shabp_infilename, read_special_routines=True, log=log, debug=None) #print(f'component_name_to_patch = {model.component_name_to_patch}') #print(f'patch_to_component_num = {model.patch_to_component_num}') #print(f'component_to_params = {model.component_to_params}') #print(f'component_num_to_name = {model.component_num_to_name}') #print(f'component_name_to_num = {model.component_name_to_num}') assert model.component_name_to_patch == {'COMP1': [1], 'FLAP': [2]}, model.component_name_to_patch assert model.patch_to_component_num == {0: 1, 1: 2}, model.patch_to_component_num assert model.component_to_params == {0: [3, 1, 1, 0, 0, 0.0, 1.0, 0.0, 1.0, 3.0, 3.0], 1: [3, 1, 1, 0, 0, 0.0, 1.0, 0.0, 1.0, 3.0, 3.0]}, model.component_to_params assert model.component_num_to_name == {0: 'COMP1', 1: 'FLAP'}, model.component_num_to_name assert model.component_name_to_num == {'COMP1': 0, 'FLAP': 1}, model.component_name_to_num areas = model.get_area_by_patch() assert np.allclose(areas, [50., 124.6875]), areas areas = model.get_area_by_component() assert np.allclose(areas['COMP1'], 124.6875), areas assert np.allclose(areas['FLAP'], 50.0), areas areas, lengths = model.get_area_xlength_by_component() assert np.allclose(areas['COMP1'], 124.6875), areas assert np.allclose(areas['FLAP'], 50.0), areas assert np.allclose(lengths['COMP1'], 24.9375), lengths assert np.allclose(lengths['FLAP'], 34.9375), lengths out_model = ShabpOut(model, log=log) Cpd, unused_deltad = out_model.read_shabp_out(shabp_outfilename) #test.on_load_results(shabp_outfilename) if __name__ == '__main__': unittest.main() ``` #### File: stl/dev/stl_mesh.py ```python import numpy as np from pyNastran.converters.stl.stl import read_stl from scipy.spatial import cKDTree import scipy.interpolate def projected_barycentric_coord(p, q, u, v): r""" points p, q vector u, v 3 *v / \ <----p q*----*u 1 2 u = p2 - p1 v = p3 - p1 """ n = np.cross(u, v) one_over_4_area_squared = 1.0 / (n @ n) w = p - q b[2] = (np.cross(u, w) @ n) * one_over_4_area_squared b[1] = (np.cross(w, v) @ n) * one_over_4_area_squared b[0] = 1.0 - b[1] - b[2] return b def project_points_onto_stl(stl, points): """ Parameters ---------- nodes : (n, 3) ndarray floats The nodes on the surface. elements : (n, 3) ndarray ints The elements on the surface. """ nodes = stl.nodes elements = stl.elements if not hasattr(stl, 'centroids'): n1 = elements[:, 0] n2 = elements[:, 1] n3 = elements[:, 2] p1 = nodes[n1, :] p2 = nodes[n2, :] p3 = nodes[n3, :] centroids = (p1 + p2 + p3) / 3. stl.centroids = centroids tree = cKDTree(centroids, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) stl.tree = tree #tree = scipy.spatial.KDTree(data, leafsize=10) #tree.query_ball_point(x, r, p=2., eps=0) #tree.query_ball_tree(other, r, p=2., eps=0) #tree.query_pairs(r, p=2., eps=0) #tree.sparse_distance_matrix(other, max_distance, p=2.) tree = stl.tree #d : array of floats #The distances to the nearest neighbors. #If x has shape tuple+(self.m,), then d has shape tuple+(k,). #Missing neighbors are indicated with infinite distances. #i : ndarray of ints #The locations of the neighbors in self.data. #If `x` has shape tuple+(self.m,), then `i` has shape tuple+(k,). #Missing neighbors are indicated with self.n. dist, i = tree.query(points, k=1, eps=0, p=2, distance_upper_bound=np.inf, n_jobs=1) # distance from centroid to point, such that we get the element id directly print('dist =', dist) print('i =', i) n1 = elements[i, 0] n2 = elements[i, 1] n3 = elements[i, 2] p1 = nodes[n1, :] p2 = nodes[n2, :] p3 = nodes[n3, :] u = p2 - p1 v = p3 - p1 #w = points_rotated - p1 n = np.cross(u, v) #n2 = 1 / n**2 #gamma_a = (np.cross(u, w) @ n) / n2 #gamma_b = (np.cross(u, w) @ n) / n2 try: nmag = np.linalg.norm(n, axis=1) except ValueError: print('n.shape =', n.shape) raise #area = nmag / 2. assert nmag.size == n1.size, 'nmag.size=%s n1.size=%s' % (nmag.size, n1.size) print('n1 =', n1) print('n2 =', n2) print('n3 =', n3) p = points a = p1 b = p2 c = p3 # http://math.stackexchange.com/questions/544946/determine-if-projection-of-3d-point-onto-plane-is-within-a-triangle pc = p - c alpha = np.linalg.norm(np.cross(p - b, pc)) / nmag beta = np.linalg.norm(np.cross(pc, p - a)) / nmag gamma = 1 - alpha - beta #print('alpha =', alpha) #print('beta =', beta) #print('gamma =', gamma) #print('a*p =', alpha[:, np.newaxis] * p1) p_prime = alpha[:, np.newaxis] * p1 + beta[:, np.newaxis] * p2 + gamma[:, np.newaxis] * p3 #print('p_prime =\n', p_prime) #tree.query_ball_point(x, r, p=2., eps=0) #tree.query_ball_tree(other, r, p=2., eps=0) #tree.query_pairs(r, p=2., eps=0) #tree.sparse_distance_matrix(other, max_distance, p=2.) return p_prime def project_line_onto_stl(stl, pa, pb, npoints=11): """top down projection""" normal = np.array([0., 0., -1.], dtype='float32') #max_z = nodes[:, 2].max() #min_z = nodes[:, 2].min() # TODO: rotate if want a new normal #dz = max_z - min_z #dzi = dz / 20. #points_rotated = points #out_points = project_points_onto_stl(stl, points) # TODO: rotate if want a new normal p = np.linspace(0., 1., num=npoints, endpoint=True) p21 = pb - pa ratio = p21 / np.linalg.norm(p21) print('p =', p) print('ratio =', ratio) points = pa + p[:, np.newaxis] * ratio print('points =', points) out_points = project_points_onto_stl(stl, points) return out_points def project_curve_onto_stl(stl, points, npoints=11): """top down projection""" normal = np.array([0., 0., -1.], dtype='float32') #max_z = nodes[:, 2].max() #min_z = nodes[:, 2].min() # TODO: rotate if want a new normal #dz = max_z - min_z #dzi = dz / 20. #points_rotated = points #out_points = project_points_onto_stl(stl, points) # TODO: rotate if want a new normal # create interpolation curve from points p2 = points[1:, :] p1 = points[:-1, :] dx = np.linalg.norm(p2 - p1, axis=1) assert dx.size == p1.shape[0] t = dx.sum() pa = points[0, :] dp = points - pa dx2 = np.linalg.norm(dp, axis=1) t = dx2.sum() # http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.interpolate.interp1d.html func = scipy.interpolate.interp1d(t, dx2, kind='cubic', axis=-1, copy=True, bounds_error=None, fill_value=np.nan, assume_sorted=False) # cubic spline p = np.linspace(0., t, num=npoints, endpoint=True) t2 = func(p) dx = func(t2) + pa #p21 = pb - pa #ratio = p21 / np.linalg.norm(p21) #print('p =', p) #print('ratio =', ratio) points = pa + dx print('points =', points) out_points = project_points_onto_stl(stl, points) return out_points def main(): import os import pyNastran PKG_PATH = pyNastran.__path__[0] stl_filename = os.path.join(PKG_PATH, 'converters', 'stl', 'sphere.stl') stl = read_stl(stl_filename) #XYZ Global = (2.0035907914418716, 1.3287668328026303, 2.873731014735773) #NodeID = 142; xyz=(1.88823, 1.5, 2.94889) #lineNo=2110 annotate_cell_picker() #XYZ Global = (1.9419959964242275, 1.141259948469464, 2.869267723165781) #NodeID = 141; xyz=(1.93018, 1.02165, 2.85504) #lineNo=2110 annotate_cell_picker() #XYZ Global = (2.1320656653448338, 1.4367816967143772, 2.83778333777658) #NodeID = 137; xyz=(2.25, 1.5, 2.79904) # nids = [142, 137, 141] # 2.0035907914418716, 1.3287668328026303, 2.873731014735773 points = np.array([ [2.0035907914418716, 1.3287668328026303, 2.873731014735773], [2.25, 1.5, 2.79904], [2.25, 1.5, 2.79903], ], dtype='float32') pa = points[0, :] pb = points[1, :] out_points = project_points_onto_stl(stl, points) out_points2 = project_line_onto_stl(stl, pa, pb, npoints=11) #out_points3 = project_curve_onto_stl(stl, points, npoints=11) def build(): from pyNastran.bdf.bdf import BDF model = BDF(debug=False) xyz1 = [0., 0., 0.] xyz2 = [0., 1., 0.] xyz3 = [1., 1., 0.] xyz4 = [1., 0., 0.] model.add_grid(1, xyz=xyz1) model.add_grid(2, xyz=xyz2) model.add_grid(3, xyz=xyz3) model.add_grid(4, xyz=xyz4) model.add_cquad4(eid=1, pid=1000, nids=[1, 2, 3, 4]) model.add_pshell(pid=100, mid1=1000, t=0.1) model.add_mat1(mid=1000, E=1e7, G=None, nu=0.3) if __name__ == '__main__': build() main() ``` #### File: cards/elements/beams.py ```python from collections import defaultdict import numpy as np from pyNastran.bdf.bdf_interface.assign_type import ( integer, integer_or_blank, double_or_blank, integer_double_string_or_blank) from pyNastran.bdf.field_writer_8 import print_card_8, set_blank_if_default from pyNastran.dev.bdf_vectorized2.cards.elements.bars import init_x_g0 from pyNastran.bdf.cards.base_card import _format_comment class BeamElement: """base class for CBEAM""" card_name = '' def __init__(self, model): """intializes the BeamElement""" self.model = model self.is_current = True self.eid = np.array([], dtype='int32') self.pid = np.array([], dtype='int32') self.nids = np.array([], dtype='float64') self.offt = np.array([], dtype='|U8') self.x = np.array([], dtype='float64') self.g0 = np.array([], dtype='int32') self.pin_flags = np.array([], dtype='int32') self.wa_offset = np.array([], dtype='float64') self.wb_offset = np.array([], dtype='float64') self.sab_warping = np.array([], dtype='int32') self._eid = [] self._pid = [] self._nids = [] self._offt = [] self._x = [] self._g0 = [] self._pin_flags = [] self._wa_offset = [] self._wb_offset = [] self._sab_warping = [] self.comment = defaultdict(str) def check_if_current(self, nid, nids): """we split this up to reason about it easier""" if self.is_current: if nid in nids: # card exists, so we use that slot add_card = False else: add_card = True else: add_card = True return add_card #def get_element_by_eid(self, eid): #self.make_current() #ieid = np.searchsorted(eid, self.eid) #return self[ieid] def make_current(self): """creates an array of the GRID points""" if not self.is_current: if len(self.eid) > 0: # there are already elements in self.eid self.eid = np.hstack([self.eid, self._eid]) self.pid = np.vstack([self.pid, self._pid]) self.nids = np.hstack([self.nids, self._nids]) self.offt = np.hstack([self.offt, self._offt]) self.x = np.hstack([self.x, self._x]) self.g0 = np.hstack([self.g0, self._g0]) self.pin_flags = np.hstack([self.pin_flags, self._pin_flags]) self.wa_offset = np.hstack([self.wa_offset, self._wa_offset]) self.wb_offset = np.hstack([self.wb_offset, self._wb_offset]) # don't need to handle comments else: self.eid = np.array(self._eid, dtype='int32') self.pid = np.array(self._pid, dtype='int32') self.nids = np.array(self._nids, dtype='int32') self.offt = np.array(self._offt, dtype='|U8') self.x = np.array(self._x, dtype='float64') self.g0 = np.array(self._g0, dtype='int32') self.pin_flags = np.array(self._pin_flags, dtype='int32') self.wa_offset = np.array(self._wa_offset, dtype='float64') self.wb_offset = np.array(self._wb_offset, dtype='float64') assert len(self.eid) == len(np.unique(self.eid)) isort = np.argsort(self.eid) self.eid = self.eid[isort] self.pid = self.pid[isort] self.nids = self.nids[isort, :] self.offt = self.offt[isort] self.x = self.x[isort, :] self.g0 = self.g0[isort] self.pin_flags = self.pin_flags[isort, :] self.wa_offset = self.wa_offset[isort, :] self.wb_offset = self.wb_offset[isort, :] self._eid = [] self._pid = [] self._nids = [] self._offt = [] self._x = [] self._g0 = [] self._pin_flags = [] self._wa_offset = [] self._wb_offset = [] self._sab_warping = [] self.is_current = True def cross_reference(self, model): """does this do anything?""" self.make_current() def __len__(self): """returns the number of elements""" return len(self.eid) + len(self._eid) def repr_indent(self, indent=''): self.make_current() neids = len(self.eid) if neids == 0: return '%s%sv; nelements=%s' % (indent, self.card_name, neids) msg = '%s%sv; nelements=%s:\n' % (indent, self.card_name, neids) msg += '%s eid = %s\n' % (indent, self.eid) upid = np.unique(self.pid) if len(upid) == 1 and upid[0] == 0: msg += '%s upid = %s\n' % (indent, upid) else: msg += '%s pid = %s\n' % (indent, self.pid) #msg += ' nid =\n%s' % self.nid return msg def __repr__(self): return self.repr_indent('') class CBEAMv(BeamElement): """ +-------+-----+-----+-----+-----+-----+-----+-----+----------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +=======+=====+=====+=====+=====+=====+=====+=====+==========+ | CBEAM | EID | PID | GA | GB | X1 | X2 | X3 | OFFT/BIT | +-------+-----+-----+-----+-----+-----+-----+-----+----------+ | | PA | PB | W1A | W2A | W3A | W1B | W2B | W3B | +-------+-----+-----+-----+-----+-----+-----+-----+----------+ | | SA | SB | | | | | | | +-------+-----+-----+-----+-----+-----+-----+-----+----------+ or +-------+-----+-----+-----+-----+-----+-----+-----+----------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +=======+=====+=====+=====+=====+=====+=====+=====+==========+ | CBEAM | EID | PID | GA | GB | G0 | | | OFFT/BIT | +-------+-----+-----+-----+-----+-----+-----+-----+----------+ | | PA | PB | W1A | W2A | W3A | W1B | W2B | W3B | +-------+-----+-----+-----+-----+-----+-----+-----+----------+ | | SA | SB | | | | | | | +-------+-----+-----+-----+-----+-----+-----+-----+----------+ offt/bit are MSC specific fields """ card_name = 'CBEAM' def add(self, eid, pid, nids, x, g0, offt='GGG', bit=None, pin_flags=None, wa=None, wb=None, sa=0, sb=0, comment=''): """ Adds a CBEAM card Parameters ---------- pid : int property id mid : int material id nids : List[int, int] node ids; connected grid points at ends A and B x : List[float, float, float] Components of orientation vector, from GA, in the displacement coordinate system at GA (default), or in the basic coordinate system g0 : int Alternate method to supply the orientation vector using grid point G0. Direction of is from GA to G0. is then transferred to End A offt : str; default='GGG' Offset vector interpretation flag None : bit is active bit : float; default=None Built-in twist of the cross-sectional axes about the beam axis at end B relative to end A. For beam p-elements ONLY! None : offt is active pin_flags : List[int, int]; default=None None : [0, 0]; don't release the DOFs Pin Flag at End A/B. Releases the specified DOFs wa / wb : List[float, float, float] Components of offset vectors from the grid points to the end points of the axis of the shear center sa / sb : int; default=0 Scalar or grid point identification numbers for the ends A and B, respectively. The degrees-of-freedom at these points are the warping variables . SA and SB cannot be specified for beam p-elements comment : str; default='' a comment for the card offt/bit are MSC specific fields """ if g0 is None: g0 = -1 else: x = [np.nan, np.nan, np.nan] if pin_flags is None: pin_flags = [0, 0] self.model.bars.add(eid) self.is_current = False self._eid.append(eid) self._pid.append(pid) self._nids.append(nids) self._x.append(x) self._g0.append(g0) self._offt.append(offt) self._wa_offset.append(wa) self._wb_offset.append(wb) self._sab_warping.append([sa, sb]) self._pin_flags.append(pin_flags) #self._offset.append(wa_offset) if comment: self.comment[eid] = _format_comment(comment) def add_card(self, card, comment=''): """ Adds a CBEAM card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ eid = integer(card, 1, 'eid') pid = integer_or_blank(card, 2, 'pid', eid) ga = integer(card, 3, 'ga') gb = integer(card, 4, 'gb') x, g0 = init_x_g0(card, eid) offt, bit = init_offt_bit(card, eid)# offt doesn't exist in NX nastran pin_flag_a = integer_or_blank(card, 9, 'pa', 0) pin_flag_b = integer_or_blank(card, 10, 'pb', 0) wa = np.array([double_or_blank(card, 11, 'w1a', 0.0), double_or_blank(card, 12, 'w2a', 0.0), double_or_blank(card, 13, 'w3a', 0.0)], 'float64') wb = np.array([double_or_blank(card, 14, 'w1b', 0.0), double_or_blank(card, 15, 'w2b', 0.0), double_or_blank(card, 16, 'w3b', 0.0)], 'float64') sa = integer_or_blank(card, 17, 'sa', 0) sb = integer_or_blank(card, 18, 'sb', 0) assert len(card) <= 19, 'len(CBEAM card) = %i\ncard=%s' % (len(card), card) return self.add(eid, pid, [ga, gb], x, g0, offt, bit, [pin_flag_a, pin_flag_b], wa, wb, sa, sb, comment=comment) #def update(self, grid): #"""functions like a dictionary""" #nid = grid.nid #add_card = self.check_if_current(eid, self.eid) #if add_card: #self.add(nid, grid.xyz, cp=grid.cp, cd=grid.cd, # add_cquad4 #ps=grid.ps, seid=grid.seid, comment=grid.comment) #self.is_current = False #else: #inid = np.where(nid == self.nid)[0] #self.nid[inid] = grid.nid #self.xyz[inid] = grid.xyz #self.cp[inid] = grid.cp #self.cd[inid] = grid.cd #self.ps[inid] = grid.ps #self.seid[inid] = grid.seid #self.comment[nid] = comment #self.is_current = True # implicit #def __iter__(self): #pass #def __next__(self): #pass #def __items__(self): #pass #def __keys__(self): #pass #def __values__(self): #pass #def __getitem__(self, i): #"""this works on index""" #self.make_current() #eid = self.eid[i] #return GRID(nid, self.xyz[i], cp=self.cp[i], cd=self.cd[i], #ps=self.ps[i], seid=self.seid[i], comment=self.comment[nid]) #def __setitem__(self, i, value): #pass #def __delitem__(self, i): #pass @classmethod def get_x_g0_defaults(cls, x, g0): """ X and G0 compete for the same fields, so the method exists to make it easier to write the card Returns ------- x_g0 : varies g0 : List[int, None, None] x : List[float, float, float] """ if g0 is not None: return (g0, None, None) else: #print('x =', self.x) #print('g0 =', self.g0) #x1 = set_blank_if_default(self.x[0], 0.0) #x2 = set_blank_if_default(self.x[1], 0.0) #x3 = set_blank_if_default(self.x[2], 0.0) return list(x) def write_card(self, size=8, is_double=False, bdf_file=None): assert bdf_file is not None self.make_current() msg = '' for eid, pid, nodes, x, g0, offt, pin_flags, wa_offset, wb_offset in zip( self.eid, self.pid, self.nids, self.x, self.g0, self.offt, self.pin_flags, self.wa_offset, self.wb_offset): x1, x2, x3 = self.get_x_g0_defaults(x, g0) #pa = set_blank_if_default(self.pa, 0) #pb = set_blank_if_default(self.pb, 0) #w1a = set_blank_if_default(self.wa[0], 0.0) #w2a = set_blank_if_default(self.wa[1], 0.0) #w3a = set_blank_if_default(self.wa[2], 0.0) #w1b = set_blank_if_default(self.wb[0], 0.0) #w2b = set_blank_if_default(self.wb[1], 0.0) #w3b = set_blank_if_default(self.wb[2], 0.0) ga, gb = nodes pin_flag_a, pin_flag_b = pin_flags w1a, w2a, w3a = wa_offset w1b, w2b, w3b = wb_offset #sa = set_blank_if_default(self.sa, 0) #sb = set_blank_if_default(self.sb, 0) sa = sb = 0 #(x1, x2, x3) = self.get_x_g0_defaults() # offt doesn't exist in NX nastran offt = set_blank_if_default(offt, 'GGG') list_fields = ['CBEAM', eid, pid, ga, gb, x1, x2, x3, offt, pin_flag_a, pin_flag_b, w1a, w2a, w3a, w1b, w2b, w3b, sa, sb] msg += self.comment[eid] + print_card_8(list_fields) bdf_file.write(msg) return msg class Beams: """Stores CBEAM elements that exist in 3D space""" def __init__(self, model): self.model = model self.cbeam = model.cbeam self._eids = set() def add(self, eid): if eid not in self._eids: self._eids.add(eid) else: raise RuntimeError('eid=%s is duplicated' % eid) def write_card(self, size=8, is_double=False, bdf_file=None): assert bdf_file is not None if len(self.cbeam): self.cbeam.write_card(size, is_double, bdf_file) def make_current(self): self.cbeam.make_current() def __len__(self): return len(self.cbeam) def repr_indent(self, indent=''): msg = '%s<Beams> : nelements=%s\n' % (indent, len(self)) msg += '%s CBEAM: %s\n' % (indent, len(self.cbeam)) return msg def __repr__(self): return self.repr_indent(indent='') def init_offt_bit(card, eid): """offt doesn't exist in NX nastran""" field8 = integer_double_string_or_blank(card, 8, 'field8') if isinstance(field8, float): offt = None bit = field8 elif field8 is None: offt = 'GGG' # default bit = None elif isinstance(field8, str): bit = None offt = field8 msg = 'invalid offt parameter of CBEAM...offt=%s' % offt assert offt[0] in ['G', 'B', 'O', 'E'], msg assert offt[1] in ['G', 'B', 'O', 'E'], msg assert offt[2] in ['G', 'B', 'O', 'E'], msg else: msg = ('field8 on %s card is not a string(offt) or bit ' '(float)...field8=%s\n' % (card.field(0), field8)) raise RuntimeError("Card Instantiation: %s" % msg) return offt, bit ``` #### File: cards/elements/rods.py ```python from collections import defaultdict import numpy as np from pyNastran.bdf.bdf_interface.assign_type import ( integer, integer_or_blank, double_or_blank) from pyNastran.bdf.field_writer_8 import print_card_8, set_blank_if_default from pyNastran.bdf.cards.base_card import _format_comment class Rods: """intializes the Rods""" def __init__(self, model): self.model = model self.conrod = model.conrod self.crod = model.crod self.ctube = model.ctube self._eids = set() def add(self, eid): if eid not in self._eids: self._eids.add(eid) else: raise RuntimeError('eid=%s is duplicated' % eid) def write_card(self, size=8, is_double=False, bdf_file=None): assert bdf_file is not None if len(self.conrod): self.conrod.write_card(size, is_double, bdf_file) if len(self.crod): self.crod.write_card(size, is_double, bdf_file) if len(self.ctube): self.ctube.write_card(size, is_double, bdf_file) def make_current(self): self.conrod.make_current() self.crod.make_current() self.ctube.make_current() def __len__(self): return len(self.conrod) + len(self.crod) + len(self.ctube) def repr_indent(self, indent=' '): msg = '%s<Rods> : nelements=%s\n' % (indent, len(self)) msg += '%s CONROD: %s\n' % (indent, len(self.conrod)) msg += '%s CROD : %s\n' % (indent, len(self.crod)) msg += '%s CTUBE : %s\n' % (indent, len(self.ctube)) return msg def __repr__(self): return self.repr_indent(indent='') class RodElement: """base class for CONROD, CROD, and CTUBE""" card_name = '' def check_if_current(self, eid, eids): """we split this up to reason about it easier""" if self.is_current: if eid in eids: # card exists, so we use that slot add_card = False else: add_card = True else: add_card = True return add_card def cross_reference(self, model): """does this do anything?""" self.make_current() def __len__(self): """returns the number of elements""" return len(self.eid) + len(self._eid) def repr_indent(self, indent=''): self.make_current() neids = len(self.eid) if neids == 0: return '%s%sv; nelements=%s' % (indent, self.card_name, neids) msg = '%s%sv; nelements=%s\n' % (indent, self.card_name, neids) msg += '%s eid = %s\n' % (indent, self.eid) if hasattr(self, 'pid'): upid = np.unique(self.pid) if len(upid) == 1: msg += '%s upid = %s\n' % (indent, upid) else: msg += '%s pid = %s\n' % (indent, self.pid) else: msg += '%s A = %s\n' % (indent, self.A) msg += '%s j = %s\n' % (indent, self.j) msg += '%s c = %s\n' % (indent, self.c) msg += '%s nsm = %s\n' % (indent, self.nsm) return msg #umcid = np.unique(self.mcid) #if len(umcid) == 1 and umcid[0] == 0: #msg += ' umcid = %s\n' % umcid #else: #msg += ' umcid = %s\n' % umcid #msg += ' mcid = %s\n' % self.mcid #utheta = np.unique(self.theta) #if len(utheta) == 1 and umcid[0] == 0: #msg += ' utheta = %s\n' % utheta #else: #msg += ' theta = %s\n' % self.theta #msg += ' is_theta = %s\n' % self.is_theta #msg += ' nid =\n%s' % self.nid #return msg def __repr__(self): return self.repr_indent(indent='') class CONRODv(RodElement): """ +--------+-----+-----+----+-----+---+---+---+-----+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +========+=====+=====+====+=====+===+===+===+=====+ | CONROD | EID | N1 | N2 | MID | A | J | C | NSM | +--------+-----+-----+----+-----+---+---+---+-----+ """ card_name = 'CONROD' def __init__(self, model): self.model = model self.is_current = True self.eid = np.array([], dtype='int32') self.nids = np.array([], dtype='int32') self.mid = np.array([], dtype='int32') self.A = np.array([], dtype='float64') self.j = np.array([], dtype='float64') self.c = np.array([], dtype='float64') self.nsm = np.array([], dtype='float64') self._eid = [] self._nids = [] self._mid = [] self._A = [] self._j = [] self._c = [] self._nsm = [] self.comment = defaultdict(str) def add(self, eid, mid, nids, A=0., j=0., c=0., nsm=0., comment=''): """ Creates a CONROD card Parameters ---------- eid : int element id mid : int material id nids : List[int, int] node ids A : float area j : float; default=0. polar moment of inertia c : float; default=0. stress factor nsm : float; default=0. non-structural mass per unit length comment : str; default='' a comment for the card """ self.model.rods.add(eid) self.is_current = False self._eid.append(eid) self._nids.append(nids) self._mid.append(mid) self._A.append(A) self._j.append(j) self._c.append(c) self._nsm.append(nsm) if comment: self.comment[eid] = _format_comment(comment) def add_card(self, card, comment=''): """ Adds a CONROD card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ eid = integer(card, 1, 'eid') nids = [integer(card, 2, 'n1'), integer(card, 3, 'n2')] mid = integer(card, 4, 'mid') A = double_or_blank(card, 5, 'A', 0.0) j = double_or_blank(card, 6, 'j', 0.0) c = double_or_blank(card, 7, 'c', 0.0) nsm = double_or_blank(card, 8, 'nsm', 0.0) self.add(eid, mid, nids, A, j, c, nsm, comment=comment) def write_card(self, size=8, is_double=False, bdf_file=None): assert bdf_file is not None self.make_current() msg = '' for eid, mid, nodes, A, j, c, nsm in zip(self.eid, self.mid, self.nids, self.A, self.j, self.c, self.nsm): j = set_blank_if_default(j, 0.0) c = set_blank_if_default(c, 0.0) nsm = set_blank_if_default(nsm, 0.0) list_fields = ['CONROD', eid] + nodes.tolist() + [mid, A, j, c, nsm] msgi = print_card_8(list_fields) msg += self.comment[eid] + msgi.rstrip() + '\n' bdf_file.write(msg) return msg def make_current(self): """creates an array of the elements""" if not self.is_current: if len(self.eid) > 0: # there are already elements in self.eid self.eid = np.hstack([self.eid, self._eid]) self.mid = np.vstack([self.mid, self._mid]) self.nids = np.hstack([self.nids, self._nids]) self.A = np.hstack([self.A, self._A]) self.j = np.hstack([self.j, self._j]) self.c = np.hstack([self.c, self._c]) self.nsm = np.hstack([self.nsm, self._nsm]) # don't need to handle comments else: self.eid = np.array(self._eid, dtype='int32') self.mid = np.array(self._mid, dtype='int32') self.nids = np.array(self._nids, dtype='int32') self.A = np.array(self._A, dtype='float64') self.j = np.array(self._j, dtype='float64') self.c = np.array(self._c, dtype='float64') self.nsm = np.array(self._nsm, dtype='float64') assert len(self.eid) == len(np.unique(self.eid)) self._eid = [] self._mid = [] self._nids = [] self._A = [] self._j = [] self._c = [] self._nsm = [] self.is_current = True class CRODv(RodElement): """ +------+-----+-----+----+----+ | 1 | 2 | 3 | 4 | 5 | +======+=====+=====+====+====+ | CROD | EID | PID | N1 | N2 | +------+-----+-----+----+----+ """ card_name = 'CROD' def __init__(self, model): self.model = model self.is_current = True self.eid = np.array([], dtype='int32') self.pid = np.array([], dtype='int32') self.nids = np.array([], dtype='int32') self._eid = [] self._pid = [] self._nids = [] self._dofs = [] self.comment = defaultdict(str) def add(self, eid, pid, nids, comment=''): """ Creates a CROD card Parameters ---------- eid : int element id pid : int property id (PROD) nids : List[int, int] node ids comment : str; default='' a comment for the card """ self.model.solids.add(eid) self.is_current = False self._eid.append(eid) self._pid.append(pid) self._nids.append(nids) if comment: self.comment[eid] = _format_comment(comment) def add_card(self, card, comment=''): """ Adds a CROD card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ eid = integer(card, 1, 'eid') pid = integer_or_blank(card, 2, 'pid', eid) nids = [integer(card, 3, 'n1'), integer(card, 4, 'n2')] assert len(card) == 5, 'len(CROD card) = %i\ncard=%s' % (len(card), str(card)) self.add(eid, pid, nids, comment=comment) def write_card(self, size=8, is_double=False, bdf_file=None): assert bdf_file is not None self.make_current() msg = '' for eid, pid, nodes in zip(self.eid, self.pid, self.nids): list_fields = ['CROD', eid, pid] + nodes.tolist() msgi = print_card_8(list_fields) msg += self.comment[eid] + msgi.rstrip() + '\n' bdf_file.write(msg) return msg def make_current(self): """creates an array of the elements""" if not self.is_current: if len(self.eid) > 0: # there are already elements in self.eid self.eid = np.hstack([self.eid, self._eid]) self.pid = np.vstack([self.pid, self._pid]) self.nids = np.hstack([self.nids, self._nids]) # don't need to handle comments else: self.eid = np.array(self._eid, dtype='int32') self.pid = np.array(self._pid, dtype='int32') self.nids = np.array(self._nids, dtype='int32') assert len(self.eid) == len(np.unique(self.eid)) self._eid = [] self._pid = [] self._nids = [] self.is_current = True class CTUBEv(RodElement): """ +--------+-----+-----+----+----+ | 1 | 2 | 3 | 4 | 5 | +========+=====+=====+====+====+ | CELAS3 | EID | PID | S1 | S2 | +--------+-----+-----+----+----+ """ card_name = 'CTUBE' def __init__(self, model): self.model = model self.is_current = True self.eid = np.array([], dtype='int32') self.pid = np.array([], dtype='int32') self.nids = np.array([], dtype='int32') self._eid = [] self._pid = [] self._nids = [] self.comment = defaultdict(str) def add(self, eid, pid, nids, comment=''): """ Creates a CTUBE card Parameters ---------- eid : int element id pid : int property id nids : List[int, int] node ids comment : str; default='' a comment for the card """ self.model.rods.add(eid) self.is_current = False self._eid.append(eid) self._pid.append(pid) self._nids.append(nids) if comment: self.comment[eid] = _format_comment(comment) def add_card(self, card, comment=''): """ Adds a CTUBE card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ eid = integer(card, 1, 'eid') pid = integer_or_blank(card, 2, 'pid', eid) nids = [integer(card, 3, 'n1'), integer(card, 4, 'n2')] assert len(card) == 5, 'len(CTUBE card) = %i\ncard=%s' % (len(card), card) self.add(eid, pid, nids, comment=comment) def write_card(self, size=8, is_double=False, bdf_file=None): assert bdf_file is not None self.make_current() msg = '' for eid, pid, nodes in zip(self.eid, self.pid, self.nids): list_fields = ['CTUBE', eid, pid, nodes[0], nodes[1]] msgi = print_card_8(list_fields) msg += self.comment[eid] + msgi.rstrip() + '\n' bdf_file.write(msg) return msg def make_current(self): """creates an array of the elements""" if not self.is_current: if len(self.eid) > 0: # there are already elements in self.eid self.eid = np.hstack([self.eid, self._eid]) self.pid = np.vstack([self.pid, self._pid]) self.nids = np.hstack([self.nids, self._nids]) # don't need to handle comments else: self.eid = np.array(self._eid, dtype='int32') self.pid = np.array(self._pid, dtype='int32') self.nids = np.array(self._nids, dtype='int32') assert len(self.eid) == len(np.unique(self.eid)) self._eid = [] self._pid = [] self._nids = [] self.is_current = True ``` #### File: dev/vtk_examples/vector_field2.py ```python import vtk import numpy as np from pyNastran.gui.gui_utils.vtk_utils import numpy_to_vtk def main(): grid = vtk.vtkUnstructuredGrid() grid_mapper = vtk.vtkDataSetMapper() grid_mapper.SetInputData(grid) #grid_mapper.SetInputData(grid) nodes = np.array([ [0., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 2., 1.], ], dtype='float32') points = vtk.vtkPoints() points.SetNumberOfPoints(4) points_array = numpy_to_vtk( num_array=nodes, deep=True, array_type=vtk.VTK_FLOAT, ) nelements = 1 grid.Allocate(nelements, 1000) grid.SetPoints(points) elem = vtk.vtkQuad() pts = elem.GetPointIds() pts.SetId(0, 0) pts.SetId(1, 1) pts.SetId(2, 2) pts.SetId(3, 3) grid.InsertNextCell(elem.GetCellType(), pts) grid.Modified() forces = np.array([ [0., 0.1, 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., .3], ], dtype='float32') rend = vtk.vtkRenderer() if 1: maskPts = vtk.vtkMaskPoints() maskPts.SetInputData(grid) arrow = vtk.vtkArrowSource() arrow.SetTipResolution(16) arrow.SetTipLength(0.3) arrow.SetTipRadius(0.1) glyph = vtk.vtkGlyph3D() glyph.SetSourceConnection(arrow.GetOutputPort()) glyph.SetInputConnection(maskPts.GetOutputPort()) glyph.SetVectorModeToUseNormal() glyph.SetScaleFactor(1) glyph.SetColorModeToColorByVector() glyph.SetScaleModeToScaleByVector() glyph.OrientOn() glyph.Update() glyph_mapper = vtk.vtkPolyDataMapper() glyph_mapper.SetInputConnection(glyph.GetOutputPort()) glyph_mapper.SetScalarModeToUsePointFieldData() glyph_mapper.SetColorModeToMapScalars() glyph_mapper.ScalarVisibilityOn() glyph_mapper.SelectColorArray('Elevation') # Colour by scalars. #glyph_mapper.SetScalarRange(scalarRangeElevation) glyph_actor = vtk.vtkActor() glyph_actor.SetMapper(glyph_mapper) glyph_actor.RotateX(-45) glyph_actor.RotateZ(45) rend.AddViewProp(glyph_actor) #rend.AddActor(glyph_actor) geom_actor = vtk.vtkActor() geom_actor.SetMapper(grid_mapper) # ------------------------------------------------------------ # Create the RenderWindow, Renderer and Interactor # ------------------------------------------------------------ renWin = vtk.vtkRenderWindow() iren = vtk.vtkRenderWindowInteractor() renWin.AddRenderer(rend) iren.SetRenderWindow(renWin) # add actors #rend.AddViewProp(geom_actor) #rend.AddViewProp(edgeActor) rend.AddActor(geom_actor) #rend.AddViewProp(glyph_actor) #rend.AddActor2D(scalarBar) rend.SetBackground(0.7, 0.8, 1.0) renWin.SetSize(800, 800) renWin.Render() iren.Start() main() ``` #### File: gui_objects/test/test_settings.py ```python import unittest from numpy import allclose from pyNastran.gui.gui_objects.utils import autotype_value class TestSettings(unittest.TestCase): def test_settings_bool(self): value = autotype_value('true', bool) assert value is True value = autotype_value('false', bool) assert value is False value = autotype_value(True, bool) assert value is True value = autotype_value(False, bool) assert value is False def test_settings_int(self): value = autotype_value('1', int) assert allclose(value, 1) value = autotype_value(1, int) assert allclose(value, 1) with self.assertRaises(ValueError): value = autotype_value('4.2', int) value = autotype_value(['1', '2', '3'], int) assert allclose(value, [1, 2, 3]) value = autotype_value([1, 2, 3], int) assert allclose(value, [1, 2, 3]) value = autotype_value(('1', '2', '3'), int) assert allclose(value, (1, 2, 3)) value = autotype_value((1, 2, 3), int) assert allclose(value, (1, 2, 3)) def test_settings_float(self): value = autotype_value('1.1', float) assert allclose(value, 1.1) value = autotype_value(1.1, float) assert allclose(value, 1.1) value = autotype_value(['1.1', '2.2', '3.3'], float) assert allclose(value, [1.1, 2.2, 3.3]) value = autotype_value([1.1, 2.2, 3.3], float) assert allclose(value, [1.1, 2.2, 3.3]) value = autotype_value(('1.1', '2.2', '3.3'), float) assert allclose(value, (1.1, 2.2, 3.3)) value = autotype_value((1.1, 2.2, 3.3), float) assert allclose(value, (1.1, 2.2, 3.3)) if __name__ == '__main__': unittest.main() ``` #### File: gui/qt_files/scalar_bar.py ```python import numpy as np import vtk from pyNastran.gui.utils.colormaps import colormap_dict, RGB_MAPS, HSV_MAPS class ScalarBar: """defines the ScalarBar at the side of the vtk panel""" def set_visibility(self, is_visible): """show/hide the scalar bar""" #print('is_visible=%s; is_shown=%s' % (is_visible, self.is_shown)) if is_visible: self.VisibilityOn() else: self.VisibilityOff() def VisibilityOn(self): """shows the scalar bar""" if not self.is_shown: self.scalar_bar.VisibilityOn() self.scalar_bar.Modified() self.is_shown = True def VisibilityOff(self): """hides the scalar bar""" if self.is_shown: self.scalar_bar.VisibilityOff() self.scalar_bar.Modified() self.is_shown = False def __init__(self, is_horizontal=False): """creates the scalar bar""" self.scalar_bar = vtk.vtkScalarBarActor() self.color_function = vtk.vtkColorTransferFunction() self.color_function.SetNanColor(1., 1., 1.) self.is_shown = True self.is_horizontal = False self.colormap = 'jet' self.colormap_order = None self.is_low_to_high = True self.min_value = 10. self.max_value = 20. self.nlabels = 11 self.ncolors = 11 self.data_format = '%i' #self.color_function.SetNanColor(0., 0., 0.) #self.color_function.SetColorSpaceToLab() #self.color_function.SetColorSpaceToRGB() #self.scalar_bar.SetDragable(True) #self.scalar_bar.SetPickable(True) # blue - low # red - high drange = [10., 20.] self.color_function.SetColorSpaceToHSV() self.color_function.HSVWrapOff() self.color_function.SetRange(*drange) self.color_function.AddRGBPoint(drange[0], 0.0, 0.0, 1.0) self.color_function.AddRGBPoint(drange[1], 1.0, 0.0, 0.0) self.scalar_bar.SetTitle("Title1") self.scalar_bar.SetLookupTable(self.color_function) #self.scalar_bar.SetNanColor(0., 0., 0.) # RGB color - black #self.scalar_bar.SetNanColor(1., 1., 1., 0.) # RGBA color - white # old #self.scalar_bar.SetHeight(0.9) #self.scalar_bar.SetWidth(0.20) # the width is set first #self.scalar_bar.SetPosition(0.77, 0.1) if is_horizontal: # put the scalar bar at the top self.scalar_bar.SetOrientationToHorizontal() width = 0.95 height = 0.15 x = (1 - width) / 2. y = 1 - 0.02 - height else: # put the scalar bar at the right side self.scalar_bar.SetOrientationToVertical() width = 0.2 height = 0.9 x = 1 - 0.01 - width y = (1 - height) / 2. self.scalar_bar.SetPosition(x, y) # the width is set first # after the width is set, this is adjusted self.scalar_bar.SetHeight(height) self.scalar_bar.SetWidth(width) self.scalar_bar.SetPosition(x, y) prop_title = vtk.vtkTextProperty() prop_title.SetFontFamilyToArial() #prop_title.ItalicOff() prop_title.BoldOn() prop_title.ShadowOn() prop_label = vtk.vtkTextProperty() prop_label.BoldOff() prop_label.ShadowOn() #self.scalar_bar.SetTitleTextProperty(prop_title) #self.scalar_bar.SetLabelTextProperty(prop_label) self.scalar_bar.SetLabelFormat("%i") # allows 0-1 to be nice number when ranging values (gotta pick something) self.scalar_bar.SetNumberOfLabels(11) self.scalar_bar.SetMaximumNumberOfColors(11) #self.scalar_bar.VisibilityOff() # first load -> scalar bar off #self.scalar_bar.ShadowOn() #self.scalar_bar.RepositionableOn() self.scalar_bar.VisibilityOff() def update_color_function(self, min_value, max_value, colormap='jet', colormap_order=None, is_low_to_high=True): """updates the color_function""" # jet - HSV :) # jet with RGB is red to blue (not a bad colormap, but not jet) # viridis and plasma look good as HSV # (not sure on the exact difference, but it probably should be # RGB based on the others) # # viridis - RGB # plasma - RGB # magma - not HSV, RGB # inferno - not HSV, RGB if colormap_order is None: if colormap in ['jet', 'jet2', 'blend', None] or colormap in HSV_MAPS: colormap_order = 'hsv' colormap = 'jet' elif colormap in RGB_MAPS: colormap_order = 'rgb' else: raise NotImplementedError(colormap) update_color_function = ( colormap_order != self.colormap_order or is_low_to_high != self.is_low_to_high or min_value != self.min_value or max_value != self.max_value or colormap != self.colormap # this iss last, so it's faster ) if not update_color_function: return self.colormap = colormap self.colormap_order = colormap_order self.is_low_to_high = is_low_to_high self.color_function.RemoveAllPoints() if colormap_order == 'rgb': self.color_function.SetColorSpaceToRGB() elif colormap_order == 'hsv': self.color_function.SetColorSpaceToHSV() else: raise NotImplementedError(colormap_order) if colormap == 'jet': if is_low_to_high: self.color_function.AddRGBPoint(min_value, 0.0, 0.0, 1.0) # blue self.color_function.AddRGBPoint(max_value, 1.0, 0.0, 0.0) # red else: self.color_function.AddRGBPoint(min_value, 1.0, 0.0, 0.0) # red self.color_function.AddRGBPoint(max_value, 0.0, 0.0, 1.0) # blue else: if isinstance(colormap, str): colormap = colormap_dict[colormap] else: assert isinstance(colormap[0][0], float), colormap vals = np.linspace(min_value, max_value, num=len(colormap)) if is_low_to_high: vals = vals[::-1] for val, (red, green, blue) in zip(vals, colormap): self.color_function.AddRGBPoint(val, red, green, blue) def update_position(self, is_horizontal=True): """updates if the scalar bar is horizontal/vertical""" update_position = is_horizontal is not self.is_horizontal if not update_position: return if is_horizontal: # put the scalar bar at the top self.is_horizontal = True self.scalar_bar.SetOrientationToHorizontal() width = 0.95 height = 0.15 x = (1 - width) / 2. y = 1 - 0.02 - height else: # put the scalar bar at the right side self.is_horizontal = False self.scalar_bar.SetOrientationToVertical() width = 0.2 height = 0.9 x = 1 - 0.01 - width y = (1 - height) / 2. self.scalar_bar.SetHeight(height) self.scalar_bar.SetWidth(width) self.scalar_bar.SetPosition(x, y) def update_title(self, title): """Updates the title. Pads the text so text isn't huge.""" nchars = len(title) if nchars > 10: padding = '' else: nspaces = (10 - nchars) // 2 + nchars % 2 padding = nspaces * ' ' self.scalar_bar.SetTitle('%s%s%s' % (padding, title, padding)) def update_data_format(self, min_value, max_value, data_format, nlabels=None, ncolors=None): """updates the data format and number of values/colors""" data_format_display = data_format if nlabels is None: # and labelsize is None: nvalues = 11 if data_format == '%i': data_format_display = '%.0f' nvalues = int(max_value - min_value) + 1 # old if nvalues < 7: nvalues = 7 elif nvalues > 30: nvalues = 11 # new #if 0: #text_prop = self.scalar_bar.GetLabelTextProperty() ##font_size = text_prop.GetFontSize() #nvalues_max = 11 #nvalues_min = 7 #if nvalues > nvalues_max: #font_size = 4 #nvalues = nvalues_max #font_size = text_prop.SetFontSize(font_size) #text_prop.Modified() #elif nvalues < nvalues_min: #nvalues = nvalues_min #font_size = 12 #font_size = text_prop.SetFontSize(font_size) #text_prop.Modified() else: if data_format == '%i': data_format_display = '%.0f' nvalues = nlabels if ncolors is None: ncolors = nvalues assert data_format_display is not None, 'data_format is invalid = %r' % data_format_display # the code explodes if these are too big if nvalues > 100: nvalues = 100 if ncolors > 100: ncolors = 100 if ncolors < 2 and (max_value - min_value) > 0: # data_format == '%i' and ncolors = 2 update_data_format = ( min_value != self.min_value or max_value != self.max_value or data_format != self.data_format or #nlabels != self.nlabels or ncolors != self.ncolors ) if not update_data_format: return self.scalar_bar.SetLabelFormat(data_format_display) #print('ncolors=%s nvalues=%s' % (ncolors, nvalues)) self.scalar_bar.SetNumberOfLabels(nvalues) self.scalar_bar.SetMaximumNumberOfColors(ncolors) def update(self, title, min_value, max_value, norm_value, data_format, nlabels=None, labelsize=None, ncolors=None, colormap='jet', colormap_order=None, is_low_to_high=True, is_horizontal=True, is_shown=True): """updates the scalar bar""" #self.set_visibility(is_shown) self.update_color_function(min_value, max_value, colormap=colormap, colormap_order=colormap_order, is_low_to_high=is_low_to_high) self.update_position(is_horizontal=is_horizontal) #if 0: #self.color_function.SetRange(min_value, max_value) #self.color_function.Update() #scalar_range = self.grid.GetScalarRange() #print('scalar_range', scalar_range) #self.grid_mapper.SetScalarRange(scalar_range) #self.grid_mapper.SetScalarRange(min_value, max_value) #self.grid_mapper.SetScalarRange(max_value, min_value) #self.grid_mapper.Update() #self.scalar_bar.SetLookupTable(self.color_function) self.update_title(title) self.update_data_format(min_value, max_value, data_format, nlabels=nlabels, ncolors=ncolors) self.min_value = min_value self.max_value = max_value self.set_visibility(is_shown) self.scalar_bar.Modified() #def _is_int_result(data_format): #if 'i' in data_format: #return True #return False ``` #### File: utils/vtk/gui_utils.py ```python def add_actors_to_gui(gui, actors, render=True): """adds multiple vtk actors""" if not len(actors): return renderer = gui.rend for actor in actors: renderer.AddActor(actor) if render: renderer.Render() def remove_actors_from_gui(gui, actors, render=True): """removes multiple vtk actors""" if not len(actors): return renderer = gui.rend for actor in actors: renderer.RemoveActor(actor) if render: renderer.Render() ``` #### File: dev/pyyeti/locate.py ```python import numpy as np def findvals(m, v): """ Get partition vector for all occurrences of all values in `v` in `m`. Parameters ---------- m : array Array to be searched. v : array Array of values to find in m. Returns ------- pv : 1d ndarray Values are indexes into `m` of any value in `v`. Will be empty if `m` has none of the values in `v`. `m` is flattened to 1d before searching (using column-major ordering 'F'). The values in `pv` correspond to:: [ 0 r ... 1 r+1 ... ... r-1 2r-1 ... r*c-1 ] where m is r x c Examples -------- >>> import numpy as np >>> import locate >>> m = np.array([[10, 20], [30, 20]]) >>> locate.findvals(m, 20) array([2, 3]) >>> locate.findvals(m, 30) array([1]) >>> locate.findvals(m, 100) array([], dtype=int64) """ m = np.atleast_1d(m) v = np.atleast_1d(v) m = m.flatten(order='F') v = v.flatten() pv = np.zeros(len(m), dtype=bool) for i in range(len(v)): pv |= m == v[i] return pv.nonzero()[0] def find_subsequence(seq, subseq): """ Returns indices of where subseq occurs in seq. Both are 1d numpy arrays. Parameters ---------- seq : array 1D array to search in. subseq : array 1D array to search for. Returns ------- pv : array 1D numpy array of indices: - length will be equal to the number of occurrences of subseq - the indices are to the start of each subseq in seq Will be empty if subseq is not found in seq. Examples -------- >>> import locate >>> a = [1, 2, 3, 4, 5, 6, 2, 3] >>> sub = [2, 3] >>> locate.find_subsequence(a,sub) array([1, 6]) >>> locate.find_subsequence(a,[6, 5]) array([], dtype=int64) """ seq = np.asarray(seq).reshape(-1) subseq = np.asarray(subseq).reshape(-1) target = subseq @ subseq candidates = np.where(np.correlate(seq, subseq, mode='valid') == target)[0] # some of the candidates entries may be false positives; check: check = candidates[:, np.newaxis] + np.arange(len(subseq)) mask = np.all((np.take(seq, check) == subseq), axis=-1) return candidates[mask] def find_rows(matrix, row): """ Returns indices of where row occurs in matrix. Parameters ---------- matrix : array 2d numpy array. row : array 1d numpy array. Returns ------- pv : array A 1d numpy array of row indices. Will be empty if row is not found or if length(row) != cols(matrix). Examples -------- >>> import numpy as np >>> import locate >>> mat = np.array([[7, 3], [6, 8], [4, 0], ... [9, 2], [1, 5], [6, 8]]) >>> locate.find_rows(mat,np.array([1, 2])) array([], dtype=int64) >>> pv = locate.find_rows(mat,np.array([6, 8])) >>> pv array([1, 5]) >>> mat[pv,:] array([[6, 8], [6, 8]]) """ (r1, c1) = np.shape(matrix) c2 = len(row) if c1 != c2: return np.array([], dtype=int) i = find_subsequence(matrix.flatten('C'), row) pv = np.mod(i, c1) == 0 return i[pv] // c1 def get_intersection(D1, D2, keep=0): """ Get row intersection partition vectors between two matrices or vectors. Parameters ---------- D1 : array 1d or 2d array. D2 : array 1d or 2d array. keep : integer 0, 1 or 2: - if 0, rows are only swapped in the larger matrix - if 1, rows are only swapped in D2 - if 2, rows are only swapped in D1 Returns ------- tuple: (pv1, pv2) pv1 : array Row index vector into D1. pv2 : array Row index vector into D2. `pv1` and `pv2` are found such that: :: D1[pv1] == D2[pv2] (Note for matrices: M[i] == M[i, :]) For matrices, the number of columns in D1 and D2 must be equal to get non-empty results. Examples -------- >>> import numpy as np >>> import locate >>> mat1 = np.array([[7, 3], [6, 8], [4, 0], [9, 2], [1, 5]]) >>> mat2 = np.array([[9, 2], [1, 5], [7, 3]]) >>> pv1, pv2 = locate.get_intersection(mat1, mat2) >>> pv1 array([3, 4, 0]) >>> pv2 array([0, 1, 2]) >>> np.all(mat1[pv1] == mat2[pv2]) True >>> locate.get_intersection(mat1, mat2, 1) (array([0, 3, 4]), array([2, 0, 1])) >>> locate.get_intersection(mat2, mat1, 2) (array([2, 0, 1]), array([0, 3, 4])) >>> locate.get_intersection(mat2, mat1) (array([0, 1, 2]), array([3, 4, 0])) >>> mat3 = np.array([[1,2,3]]) >>> locate.get_intersection(mat1, mat3) (array([], dtype=int64), array([], dtype=int64)) """ D1 = np.array(D1) D2 = np.array(D2) if D1.ndim == D2.ndim == 1: c1 = c2 = 1 r1 = len(D1) r2 = len(D2) D1 = np.atleast_2d(D1) D2 = np.atleast_2d(D2) D1 = D1.T D2 = D2.T else: D1 = np.atleast_2d(D1) D2 = np.atleast_2d(D2) (r1, c1) = np.shape(D1) (r2, c2) = np.shape(D2) if c1 != c2: return np.array([], dtype=int), np.array([], dtype=int) # loop over the smaller one; index into 'd2' can be in any order if r1 <= r2: r = r1 d1 = D1 d2 = D2 switch = False else: r = r2 d1 = D2 d2 = D1 switch = True pv1 = np.zeros(r, dtype=int) pv2 = np.zeros(r, dtype=int) j = 0 for i in range(r): l = find_rows(d2, d1[i]) if l.size > 0: pv1[j] = i pv2[j] = l[0] j += 1 if j == 0: return np.array([], dtype=int), np.array([], dtype=int) if switch: t = pv1[:j] pv1 = pv2[:j] pv2 = t else: pv1 = pv1[:j] pv2 = pv2[:j] if switch and keep == 1: si = pv1.argsort() return pv1.take(si), pv2.take(si) elif not switch and keep == 2: si = pv2.argsort() return pv1.take(si), pv2.take(si) return pv1, pv2 def find2zo(pv, n): """ Return a True/False vector of length n where the True values are located according to pv. Example: >>> import numpy as np >>> import locate >>> pv = np.array([0,3,5]) >>> locate.find2zo(pv,8) array([ True, False, False, True, False, True, False, False], dtype=bool) """ tf = np.zeros(n, dtype=bool) tf[pv] = True return tf def flippv(pv, n): """Flips the meaning of an index partition vector. Parameters ---------- pv : ndarray The index partition to flip. n : integer The length of the dimension to partition. Returns ------- notpv : ndarray The complement of pv. Example: >>> import numpy as np >>> import locate >>> pv = np.array([0,3,5]) >>> locate.flippv(pv,8) array([1, 2, 4, 6, 7]) """ tf = np.ones(n, dtype=bool) tf[pv] = False return tf.nonzero()[0] def list_intersection(L1, L2): """ Get list intersection partition vectors between two lists Parameters ---------- L1 : list List 1; the output vectors maintain the order of `L1`. L1 : list List 2. Returns ------- tuple: (pv1, pv2) pv1 : ndarray. Index vector into L1. pv2 : ndarray. Index vector into L2. `pv1` and `pv2` are found such that: [L1[i] for i in pv1] == [L2[i] for i in pv2] Examples -------- >>> import locate >>> pv1, pv2 = locate.list_intersection(['a', 3, 'z', 0], ... [0, 'z', 1, 'a']) >>> pv1 array([0, 2, 3]) >>> pv2 array([3, 1, 0]) >>> locate.list_intersection(['a', 'b'], [1, 2]) (array([], dtype=int64), array([], dtype=int64)) """ inters = set(L1) & set(L2) r = len(inters) if r == 0: return np.array([], dtype=int), np.array([], dtype=int) pv1 = np.zeros(r, dtype=int) pv2 = np.zeros(r, dtype=int) j = 0 for j, item in enumerate(inters): pv1[j] = L1.index(item) pv2[j] = L2.index(item) si = pv1.argsort() return pv1[si], pv2[si] if __name__ == '__main__': mat1 = np.array([[7, 3], [6, 8], [4, 0], [9, 2], [1, 5]]) mat2 = np.array([[9, 2], [1, 5], [7, 3]]) pv1, pv2 = get_intersection(mat1, mat2) assert np.all(np.array([3, 4, 0]) == pv1) assert np.all(np.array([0, 1, 2]) == pv2) pv1, pv2 = get_intersection(mat1, mat2, 1) assert np.all(np.array([0, 3, 4]) == pv1) assert np.all(np.array([2, 0, 1]) == pv2) pv1, pv2 = get_intersection(mat1, mat2, 2) assert np.all(np.array([3, 4, 0]) == pv1) assert np.all(np.array([0, 1, 2]) == pv2) pv = np.array([0, 3, 5]) tf = find2zo(pv, 8) assert np.all(np.array([True, False, False, True, False, True, False, False]) == tf) import doctest doctest.testmod() ``` #### File: pyNastran/op2/export_to_vtk.py ```python from pyNastran.bdf.bdf import BDF from pyNastran.op2.op2 import OP2 from numpy import zeros, searchsorted, arange #def pack_nodes(fmt, data): #return '' def pack_int_array(fmt, data): return ' '.join([str(val) for val in data]) + '\n' def pack_float_1d_array(fmt, data): return ' '.join([str(val) for val in data.ravel()]) + '\n' def pack_float_3d_array(fmt, data): msg = '' for datai in data[0, :, :]: msgi = '' for dataii in datai: msgi += '%s ' % dataii msg += msgi[:-1] + '\n' return msg #+ '\n\n' def pack_float_2d_array(fmt, data): msg = '' for datai in data: msgi = '' for dataii in datai: msgi += '%s ' % dataii msg += msgi[:-1] + '\n' return msg #+ '\n' #def pack(fmt, data): # return '' def export_to_vtk(model): bdf_filename = model + '.bdf' op2_filename = model + '.op2' vtk_filename = model + '.vtk' export_to_vtk_filename(bdf_filename, op2_filename, vtk_filename) model.log.info('finished exporting %s' % vtk_filename) def export_to_vtk_filename(bdf_filename, op2_filename, vtk_filename, debug=False, log=None): with open(vtk_filename, 'w') as vtk_file: vtk_file.write('# vtk DataFile Version 3.1\n') vtk_file.write('created by pyNastran\n') #vtk_file.write('BINARY\n') vtk_file.write('ASCII\n') vtk_file.write('DATASET UNSTRUCTURED_GRID\n') etype_map = { # line 'CDAMP1' : 3, 'CDAMP2' : 3, 'CDAMP3' : 3, 'CDAMP4' : 3, 'CELAS1' : 3, 'CELAS2' : 3, 'CELAS3' : 3, 'CELAS4' : 3, 'CBAR' : 3, 'CBEAM' : 3, 'CROD' : 3, 'CONROD' : 3, 'CTUBE' : 3, 'CTRIA3' : 5, # triangle 'CQUAD4' : 9, # quad 'CSHEAR' : 9, # quad # quadratic 'CTRIA6' : 22, # quadratic triangle #'CQUAD8' : 23/28/30, 'CTETRA' : 10, 'CPENTA' : 13, # wedge 'CPYRAM' : 14, 'CHEXA' : 12, # hex # quadratic solids #'CTETRA' : 64, #'CPENTA' : 65, # wedge #'CPYRAM' : 66, #'CHEXA' : 67, # hex } bdf = BDF(debug=debug, log=log) bdf.read_bdf(bdf_filename) op2 = OP2(debug=debug, log=log) op2.read_op2(op2_filename) out = bdf.get_card_ids_by_card_types() #print('cards = [', ', '.join(sorted(out.keys())), ']') grids = sorted(out['GRID']) spoint = sorted(out['SPOINT']) epoint = sorted(out['EPOINT']) ngrid = len(grids) nspoint = len(spoint) nepoint = len(epoint) nnodes = ngrid + nspoint + nepoint ncrod = len(out['CROD']) nconrod = len(out['CONROD']) nctube = len(out['CTUBE']) ncbeam = len(out['CBEAM']) ncbar = len(out['CBAR']) nline = ncrod + nconrod + nctube + ncbeam + ncbar ncelas1 = len(out['CELAS1']) ncelas2 = len(out['CELAS2']) ncelas3 = len(out['CELAS3']) ncelas4 = len(out['CELAS4']) ncdamp1 = len(out['CDAMP1']) ncdamp2 = len(out['CDAMP2']) ncdamp3 = len(out['CDAMP3']) ncdamp4 = len(out['CDAMP4']) n0d = (ncelas1 + ncelas2 + ncelas3 + ncelas4 + ncdamp1 + ncdamp2 + ncdamp3 + ncdamp4) nctria3 = len(out['CTRIA3']) ncquad4 = len(out['CQUAD4']) nctria6 = len(out['CTRIA6']) ncquad8 = len(out['CQUAD8']) ncshear = len(out['CSHEAR']) nshell = nctria3 + ncquad4 + nctria6 + ncquad8 + ncshear nctetra4 = len(out['CTETRA']) ncpyram5 = len(out['CPYRAM']) ncpenta6 = len(out['CPENTA']) nchexa8 = len(out['CHEXA']) nctetra10 = 0 ncpyram8 = 0 ncpenta15 = 0 nchexa20 = 0 nsolid = (nctetra4 + ncpyram5 + ncpenta6 + nchexa8 + nctetra10 + ncpyram8 + ncpenta15 + nchexa20) #nelements = n0d + nline + nshell + nsolid nelements = 0 etypes = [ 'CELAS1', 'CELAS2', 'CELAS3', 'CELAS4', 'CDAMP1', 'CDAMP2', 'CDAMP3', 'CDAMP4', 'CROD', 'CONROD', 'CTUBE', 'CBAR', 'CBEAM', 'CFAST', 'CBUSH', 'CBUSH1D', 'CBUSH2D', 'CTRIA3', 'CQUAD4', 'CTRIA6', 'CQUAD8', 'CSHEAR', 'CTETRA', 'CPENTA', 'CPYRAM', 'CHEXA', ] assert len(etypes) == len(set(etypes)), 'there are duplicate etypes' for etype in etypes: if etype in out: ne = len(out[etype]) nelements += ne nproperties = nelements bdf_nelements = bdf.nelements # SPOINT & EPOINT are implicitly defined xyz_cid0 = zeros((nnodes, 3), dtype='float32') nids = zeros(nnodes, dtype='float32') for i, nid in enumerate(grids): xyz_cid0[i, :] = bdf.nodes[nid].get_position() nids[:ngrid] = grids if nspoint: nids[i:i+nspoint] = spoint if nepoint: nids[i+nspoint:] = epoint nid_fmt = '%ii' % nnodes xyz_fmt = '%ii' % (nnodes * 3) vtk_file.write('POINTS %i float\n' % nnodes) vtk_file.write(pack_float_2d_array(xyz_fmt, xyz_cid0)) nelements = n0d + nline + nshell + nsolid nmaterials = nelements eid_fmt = '%ii' % nelements eids = zeros(nelements, dtype='int32') cell_types = zeros(nelements, dtype='int32') pids = zeros(nelements, dtype='int32') mids = zeros(nelements, dtype='int32') # we'll add 1 to the slot count of each # so for a single CROD, it has 2 nodes and 1 extra value (to indicate it's a line) # for a total of 3 nline_slots = nline * 3 nshell_slots = 4 * nctria3 + 5 * (ncquad4 + ncshear) + 7 * nctria6 + 9 * ncquad8 nsolid_slots = 5 * nctetra4 + 6 * ncpyram5 + 7 * ncpenta6 + 9 * nchexa8 bdf.log.debug('nline=%s nshell=%s nsolid=%s' % (nline, nshell, nsolid)) assert nelements == bdf_nelements, 'nelements=%s bdf.nelements=%s card_count=\n%s' % ( nelements, bdf_nelements, bdf.card_count) nelements_slots = nline_slots + nshell_slots + nsolid_slots i = 0 vtk_file.write('CELLS %i %i\n' % (nelements, nelements_slots)) for eid, elem in sorted(bdf.elements.items()): etype = etype_map[elem.type] nids2 = searchsorted(nids, elem.node_ids) nnodesi = len(nids2) vtk_file.write('%i %s\n' % (nnodesi, str(nids2)[1:-1])) if elem.type in ['CTETRA', 'CPENTA', 'CHEXA', 'CPYRAM', 'CBEAM', 'CROD', 'CBAR']: pid = elem.Pid() mid = elem.Mid() elif elem.type in ['CELAS1', 'CELAS2', 'CELAS3', 'CELAS4', 'CDAMP1', 'CDAMP2', 'CDAMP3', 'CDAMP4', 'CBUSH', 'CFAST']: pid = elem.Pid() mid = 0 elif elem.type in ['CQUAD4', 'CQUAD8', 'CQUADX', 'CQUADX8', 'CQUAD', 'CTRIA3', 'CTRIA6', 'CTRIAX', 'CTRIAX6', 'CSHEAR']: pid = elem.Pid() prop = elem.pid_ref if prop.type in ['PCOMP', 'PCOMPG']: mid = prop.Mid(0) elif prop.type in ['PSHELL']: mid = prop.Mid1() elif prop.type in ['PSHEAR']: mid = prop.Mid() else: raise NotImplementedError(prop) elif elem.type in ['CONROD']: pid = 0 mid = elem.Mid() else: raise NotImplementedError(elem) eids[i] = eid pids[i] = pid mids[i] = mid cell_types[i] = etype i += 1 assert nelements == bdf_nelements, 'i=%s nelements=%s bdf.nelements=%s' % (i, nelements, bdf_nelements) #vtk_file.write('\n') vtk_file.write('CELL_TYPES %i\n' % nelements) vtk_file.write(pack_int_array(eid_fmt, cell_types)) vtk_file.write('\n') vtk_file.write('POINT_DATA %i\n' % nnodes) vtk_file.write('NodeID %i float\n' % nnodes) vtk_file.write(pack_int_array(nid_fmt, nids)) fmt = '%si' % nelements if nelements: vtk_file.write('ElementID %i float\n' % nelements) vtk_file.write(pack_int_array(eid_fmt, eids)) if nproperties: vtk_file.write('PropertyID %i float\n' % nproperties) vtk_file.write(pack_int_array(eid_fmt, pids)) if nmaterials: vtk_file.write('MaterialID %i float\n' % nmaterials) vtk_file.write(pack_int_array(eid_fmt, mids)) nodal_cases = [op2.eigenvectors, op2.displacements, op2.velocities, op2.accelerations] fmt = '%sf' % (nnodes * 6) for cases in nodal_cases: keys = list(cases.keys()) if not keys: continue key0 = keys[0] #print(key0) node_ids = cases[key0].node_gridtype[:, 0] if nnodes == len(node_ids): # every node exists i = arange(nnodes) ni = nnodes else: # node_ids is a subset of nids i = searchsorted(nids, node_ids) ni = len(i) names = ['T1', 'T2', 'T3', 'R1', 'R2', 'R3'] for isubcase, case in sorted(cases.items()): if case.is_real: #if i is None: #data = case.data #ni = nnodes #else: #data = zeros((nnodes, 6), dtype='float32') #data[:, i, :] = case.data data = case.data[:, i, :] ntimes = case.data.shape[0] case_type = case.__class__.__name__ for itime in range(ntimes): if 0: for icol, name in enumerate(names): title = '%s_%s_isubcase=%s_itime=%s' % (case_type, name, isubcase, itime) vtk_file.write('SCALARS %s float\n' % title) vtk_file.write('LOOKUP_TABLE default\n') #datai = data[itime, i, icol] vtk_file.write(pack_float_1d_array(fmt, data[itime, i, icol])) if 1: title = '%s_isubcase=%s_itime=%s' % (case_type, isubcase, itime) #FIELD RealDisplacementArray_FIELD_isubcase=1_itime=0 6 #t1 1 72 float #0.00764469 0.00762899 ... vtk_file.write('FIELD %s 6\n' % title) for icol, name in enumerate(names): vtk_file.write('%s 1 %s float\n' % (name, ni)) datai = case.data[itime, i, icol] vtk_file.write(pack_float_1d_array(fmt, data[itime, i, icol])) if 0: title = '%s_FIELD_isubcase=%s_itime=%s' % (case_type, isubcase, itime) vtk_file.write('FIELD %s 6 %i float\n' % (title, ni)) vtk_file.write('LOOKUP_TABLE default\n') vtk_file.write(pack_float_2d_array(fmt, data[itime, i, :])) #CELLS 217 1039 ``` #### File: op2/op2_interface/random_results.py ```python class RandomObjects: prefix = '' postfix = '' def __init__(self): self.displacements = {} self.velocities = {} self.accelerations = {} self.load_vectors = {} self.spc_forces = {} self.mpc_forces = {} self.crod_force = {} self.conrod_force = {} self.ctube_force = {} self.cbar_force = {} self.cbeam_force = {} self.cbush_stress = {} self.cbush_strain = {} self.crod_stress = {} self.conrod_stress = {} self.ctube_stress = {} self.cbar_stress = {} self.cbeam_stress = {} self.crod_strain = {} self.conrod_strain = {} self.ctube_strain = {} self.cbar_strain = {} self.cbeam_strain = {} self.ctetra_strain = {} self.cpenta_strain = {} self.chexa_strain = {} self.ctetra_stress = {} self.cpenta_stress = {} self.chexa_stress = {} self.celas1_stress = {} self.celas2_stress = {} self.celas3_stress = {} self.celas4_stress = {} self.celas1_strain = {} self.celas2_strain = {} self.celas3_strain = {} self.celas4_strain = {} self.celas1_force = {} self.celas2_force = {} self.celas3_force = {} self.celas4_force = {} self.ctria3_force = {} self.ctria6_force = {} self.ctriar_force = {} self.cquad4_force = {} self.cquad8_force = {} self.cquadr_force = {} self.ctria3_stress = {} self.ctria6_stress = {} self.cquad4_stress = {} self.cquad8_stress = {} self.cquadr_stress = {} self.ctriar_stress = {} self.ctria3_strain = {} self.ctria6_strain = {} self.cquad4_strain = {} self.cquad8_strain = {} self.cquadr_strain = {} self.ctriar_strain = {} self.cbend_stress = {} self.cbend_strain = {} self.cbend_force = {} self.cshear_stress = {} self.cshear_strain = {} self.cshear_force = {} self.cbush_force = {} self.cdamp1_force = {} self.cdamp2_force = {} self.cdamp3_force = {} self.cdamp4_force = {} self.cvisc_force = {} self.cquad4_composite_stress = {} self.cquad8_composite_stress = {} self.cquadr_composite_stress = {} self.ctria3_composite_stress = {} self.ctria6_composite_stress = {} self.ctriar_composite_stress = {} self.cquad4_composite_strain = {} self.cquad8_composite_strain = {} self.cquadr_composite_strain = {} self.ctria3_composite_strain = {} self.ctria6_composite_strain = {} self.ctriar_composite_strain = {} def get_table_types(self): tables = [ 'displacements', 'velocities', 'accelerations', 'load_vectors', 'spc_forces', 'mpc_forces', 'celas1_force', 'celas2_force', 'celas3_force', 'celas4_force', 'crod_force', 'conrod_force', 'ctube_force', 'cbar_force', 'cbeam_force', 'cquad4_force', 'cquad8_force', 'cquadr_force', 'ctria3_force', 'ctria6_force', 'ctriar_force', 'celas1_stress', 'celas2_stress', 'celas3_stress', 'celas4_stress', 'crod_stress', 'conrod_stress', 'ctube_stress', 'cbar_stress', 'cbeam_stress', 'ctria3_stress', 'ctriar_stress', 'ctria6_stress', 'cquadr_stress', 'cquad4_stress', 'cquad8_stress', 'ctetra_stress', 'cpenta_stress', 'chexa_stress', 'celas1_strain', 'celas2_strain', 'celas3_strain', 'celas4_strain', 'crod_strain', 'conrod_strain', 'ctube_strain', 'cbar_strain', 'cbeam_strain', 'ctria3_strain', 'ctriar_strain', 'ctria6_strain', 'cquadr_strain', 'cquad4_strain', 'cquad8_strain', 'ctetra_strain', 'cpenta_strain', 'chexa_strain', 'cquad4_composite_stress', 'cquad8_composite_stress', 'cquadr_composite_stress', 'ctria3_composite_stress', 'ctria6_composite_stress', 'ctriar_composite_stress', 'cquad4_composite_strain', 'cquad8_composite_strain', 'cquadr_composite_strain', 'ctria3_composite_strain', 'ctria6_composite_strain', 'ctriar_composite_strain', 'cbend_stress', 'cbend_strain', 'cbend_force', 'cbush_stress', 'cbush_strain', 'cshear_stress', 'cshear_strain', 'cshear_force', 'cbush_force', 'cdamp1_force', 'cdamp2_force', 'cdamp3_force', 'cdamp4_force', 'cvisc_force', ] return [self.prefix + table + self.postfix for table in tables] class AutoCorrelationObjects(RandomObjects): """storage class for the ATO objects""" prefix = 'ato.' #postfix = '' class PowerSpectralDensityObjects(RandomObjects): """storage class for the PSD objects""" prefix = 'psd.' #postfix = '' class RootMeansSquareObjects(RandomObjects): """storage class for the RMS objects""" prefix = 'rms.' #postfix = '' class CumulativeRootMeansSquareObjects(RandomObjects): """storage class for the CRMS objects""" prefix = 'crm.' #postfix = '' class NumberOfCrossingsObjects(RandomObjects): """storage class for the NO objects""" prefix = 'no.' #postfix = '' class RAECONS: """storage class for the RAECONS objects""" def __init__(self): self.ctria3_strain = {} self.cquad4_strain = {} self.chexa_strain = {} def get_table_types(self): tables = [ 'chexa_strain', 'ctria3_strain', 'cquad4_strain', ] return ['RAECONS.' + table for table in tables] class RASCONS: """storage class for the RASCONS objects""" def __init__(self): self.ctetra_stress = {} self.cpenta_stress = {} self.chexa_stress = {} self.ctetra_strain = {} self.cpenta_strain = {} self.chexa_strain = {} self.ctria3_stress = {} self.ctria6_stress = {} self.cquad4_stress = {} self.cquad8_stress = {} self.cquadr_stress = {} self.ctriar_stress = {} self.ctria3_strain = {} self.ctria6_strain = {} self.cquad4_strain = {} self.cquad8_strain = {} self.cquadr_strain = {} self.ctriar_strain = {} def get_table_types(self): tables = [ # OES - isotropic CTRIA3/CQUAD4 stress 'ctria3_stress', 'ctriar_stress', 'ctria6_stress', 'cquadr_stress', 'cquad4_stress', 'cquad8_stress', # OES - isotropic CTRIA3/CQUAD4 strain 'ctria3_strain', 'ctriar_strain', 'ctria6_strain', 'cquadr_strain', 'cquad4_strain', 'cquad8_strain', 'ctetra_stress', 'chexa_stress', 'cpenta_stress', 'ctetra_strain', 'chexa_strain', 'cpenta_strain', ] return ['RASCONS.' + table for table in tables] class RAPCONS: """storage class for the RAPCONS objects""" def __init__(self): self.cquad4_composite_stress = {} self.cquad8_composite_stress = {} self.cquadr_composite_stress = {} self.ctria3_composite_stress = {} self.ctria6_composite_stress = {} self.ctriar_composite_stress = {} def get_table_types(self): tables = [ 'cquad4_composite_stress', 'cquad8_composite_stress', 'cquadr_composite_stress', 'ctria3_composite_stress', 'ctria6_composite_stress', 'ctriar_composite_stress', #'cquad4_composite_strain', #'cquad8_composite_strain', #'cquadr_composite_strain', #'ctria3_composite_strain', #'ctria6_composite_strain', #'ctriar_composite_strain', ] return ['RAPCONS.' + table for table in tables] class RAPEATC: """storage class for the RAPEATC objects""" def __init__(self): self.cquad4_composite_stress = {} self.cquad8_composite_stress = {} self.cquadr_composite_stress = {} self.ctria3_composite_stress = {} self.ctria6_composite_stress = {} self.ctriar_composite_stress = {} def get_table_types(self): tables = [ 'cquad4_composite_stress', 'cquad8_composite_stress', 'cquadr_composite_stress', 'ctria3_composite_stress', 'ctria6_composite_stress', 'ctriar_composite_stress', #'cquad4_composite_strain', #'cquad8_composite_strain', #'cquadr_composite_strain', #'ctria3_composite_strain', #'ctria6_composite_strain', #'ctriar_composite_strain', ] return ['RAPEATC.' + table for table in tables] class RAFCONS: """storage class for the RAFCONS objects""" def __init__(self): self.cbar_force = {} self.cquad4_force = {} self.cbush_force = {} def get_table_types(self): tables = [ 'cbar_force', 'cquad4_force', 'cbush_force', ] return ['RAFCONS.' + table for table in tables] class RAGCONS: """storage class for the RAGCONS objects""" def __init__(self): self.grid_point_forces = {} def get_table_types(self): tables = [ 'grid_point_forces', ] return ['RAGCONS.' + table for table in tables] class RAGEATC: """storage class for the RAGEATC objects""" def __init__(self): self.grid_point_forces = {} def get_table_types(self): tables = [ 'grid_point_forces', ] return ['RAGEATC.' + table for table in tables] class RANCONS: """storage class for the RANCONS objects""" def __init__(self): self.cbar_strain_energy = {} self.cbush_strain_energy = {} self.chexa_strain_energy = {} self.ctria3_strain_energy = {} self.cquad4_strain_energy = {} def get_table_types(self): tables = [ 'cbar_strain_energy', 'cbush_strain_energy', 'chexa_strain_energy', 'ctria3_strain_energy', 'cquad4_strain_energy', ] return ['RANCONS.' + table for table in tables] class RADEFFM: """storage class for the RADEFFM objects""" def __init__(self): self.eigenvectors = {} def get_table_types(self): tables = [ 'eigenvectors', ] return ['RADEFFM.' + table for table in tables] class RADCONS: def __init__(self): self.eigenvectors = {} def get_table_types(self): tables = [ 'eigenvectors', ] return ['RADCONS.' + table for table in tables] class RADEATC: """storage class for the RADEATC objects""" def __init__(self): self.eigenvectors = {} def get_table_types(self): tables = [ 'eigenvectors', ] return ['RADEATC.' + table for table in tables] class RANEATC: """storage class for the RANEATC objects""" def __init__(self): self.cbar_strain_energy = {} self.cbush_strain_energy = {} self.chexa_strain_energy = {} self.ctria3_strain_energy = {} self.cquad4_strain_energy = {} def get_table_types(self): tables = [ 'cbar_strain_energy', 'cbush_strain_energy', 'chexa_strain_energy', 'ctria3_strain_energy', 'cquad4_strain_energy', ] return ['RANEATC.' + table for table in tables] class ROUGV1: """storage class for the ROUGV1 objects""" def __init__(self): self.displacements = {} self.velocities = {} self.accelerations = {} self.eigenvectors = {} def get_table_types(self): tables = [ 'displacements', 'velocities', 'accelerations', 'eigenvectors', ] return ['ROUGV1.' + table for table in tables] class RAFEATC: """storage class for the RAFEATC objects""" def __init__(self): self.cbar_force = {} self.cquad4_force = {} self.cbush_force = {} def get_table_types(self): tables = [ 'cbar_force', 'cquad4_force', 'cbush_force', ] return ['RAFEATC.' + table for table in tables] class RASEATC: """storage class for the RASEATC objects""" def __init__(self): self.chexa_stress = {} self.cquad4_stress = {} def get_table_types(self): tables = [ 'chexa_stress', 'cquad4_stress', ] return ['RASEATC.' + table for table in tables] class RAEEATC: """storage class for the RAEEATC objects""" def __init__(self): self.chexa_strain = {} self.ctria3_strain = {} self.cquad4_strain = {} def get_table_types(self): tables = [ 'chexa_strain', 'ctria3_strain', 'cquad4_strain', ] return ['RAEEATC.' + table for table in tables] ``` #### File: op2/result_objects/grid_point_weight.py ```python from io import StringIO from struct import pack import numpy as np from pyNastran.utils import object_attributes, object_methods from pyNastran.op2.result_objects.op2_objects import _write_table_header from pyNastran.op2.op2_interface.write_utils import export_to_hdf5 float_types = (float, np.float32) integer_types = (int, np.int32) # ? ? ? ? #good = (4, 2, 4, 8, 1464878927, 538976327, 8, 4, -1, 4, 4, 7, 4, 28, 101, 0, 0, 0, 0, 0, 1, 28, 4, -2, 4, 4, 1, 4, 4, 0, 4, 4, 2, 4, 8, 1464878927, 538976327, 8, 4, -3, 4, 4, 1, 4, 4, 0, 4, 4, 146, 4) #bad = (4, 2, 4, 8, 1464878927, 538976327, 8, 4, -1, 4, 4, 7, 4, 28, 102, 0, 0, 0, 512, 0, 0, 28, 4, -2, 4, 4, 1, 4, 4, 0, 4, 4, 7, 4, 28, 1464878927, 538976327, 9, 27, 19, 0, 1, 28, 4, -3, 4, 4, 1, 4, 4) class GridPointWeight: def __init__(self): """ .. seealso:: http://www.6dof.com/index.php?option=com_content&view=article&id=298:output-from-the-grid-point-weight-generator&catid=178:courses-and-trainings&Itemid=61 """ # The Grid Point Weight Generator (GPWG) module computes the rigid body # mass properties of an entire structure with respect to a user specified point and with # respect to the center of mass. Output from the module is requested by a PARAM # GRDPNT card in the Bulk Data Deck which specifies from which grid point mass # computations are to be referenced. Optionally, the absence of a specific grid point # (i.e. PARAM, GRDPNT, 0) automatically causes the origin of the basic # coordinate system to be utilized as a reference. The mass properties are initially # defined in the basic coordinate system. Subsequently, the mass properties are # transformed to principal mass axes and to principal inertia axes. The actual printout # is composed of several elements. These are: self.reference_point = None # M0 RIGID BODY MASS MATRIX IN BASIC COORDINATE SYSTEM # This is the rigid body mass matrix of the entire structure in the basic coordinate # system with respect to a reference point chosen by the analyst. self.MO = None # S TRANSFORMATION MATRIX FOR SCALAR MASS PARTITION # S is the transformation from the basic coordinate system to the set of principal axes # for the 3 x 3 scalar mass partition of the 6 x 6 mass matrix. The principal axes for # just the scalar partition are known as the principal mass axes. self.S = None self.mass = None # XC.G. YC.G. ZC.G. # It is possible in NASTRAN to assemble a structural model having different values of # mass in each coordinate direction at a grid point. This can arise, for example, by # assembling scalar mass components or from omitting some components by means of bar # element pin flags. Consequently three distinct mass systems are assembled one in each of # the three directions of the principal mass axes (the S system). This third tabulation # has five columns. The first column lists the axis direction in the S coordinates. The # second column lists the mass associated with the appropriate axis direction. The final # three columns list the x, y, and z coordinate distances from the reference point to the # center of mass for each of the three mass systems. self.cg = None # I(S) INERTIAS RELATIVE TO C.G. # This is the 3 x 3 mass moment of inertia partition with respect to the center of # gravity referred to the principal mass axes (the S system). This is not necessarily a # diagonal matrix because the determination of the S system does not involve second # moments. The values of inertias at the center of gravity are found from the values at # the reference point employing the parallel axes rule. self.IS = None # I(Q) PRINCIPAL INERTIAS # The principal moments of inertia at the center of gravity are displayed in matrix # form with reference to the Q system of axes. The Q system is obtained from an eigenvalue # analysis of the I(S) matrix. self.IQ = None # Q TRANSFORMATION MATRIX I(Q) = QT*IBAR(S)*Q # Q is the coordinate transformation between the S axes and the Q axes. IBAR(S) is the # same as I(s) except that the signs of the offdiagonal terms are reversed. self.Q = None self.title = '' self.subtitle = '' self.label = '' self.superelement_adaptivity_index = '' def export_to_hdf5(self, group, log) -> None: """exports the object to HDF5 format""" export_to_hdf5(self, group, log) def object_attributes(self, mode='public', keys_to_skip=None, filter_properties=False): if keys_to_skip is None: keys_to_skip = [] my_keys_to_skip = [ 'object_methods', 'object_attributes', ] return object_attributes(self, mode=mode, keys_to_skip=keys_to_skip+my_keys_to_skip, filter_properties=filter_properties) def object_methods(self, mode='public', keys_to_skip=None): if keys_to_skip is None: keys_to_skip = [] my_keys_to_skip = [] my_keys_to_skip = [ 'object_methods', 'object_attributes', ] return object_methods(self, mode=mode, keys_to_skip=keys_to_skip+my_keys_to_skip) def __eq__(self, weight): msg = '' if not self.reference_point == weight.reference_point: msg += f'reference_point: {self.reference_point} -> {weight.reference_point}\n' if not np.array_equal(self.MO, weight.MO): msg += f'reference_point: {self.MO} -> {weight.MO}\n' if not np.array_equal(self.S, weight.S): msg += f'reference_point: {self.S} -> {weight.S}\n' if not np.array_equal(self.mass, weight.mass): msg += f'reference_point: {self.mass} -> {weight.mass}\n' if not np.array_equal(self.cg, weight.cg): msg += f'reference_point: {self.cg} -> {weight.cg}\n' if not np.array_equal(self.IS, weight.IS): msg += f'reference_point: {self.IS} -> {weight.IS}\n' if not np.array_equal(self.IQ, weight.IQ): msg += f'reference_point: {self.IQ} -> {weight.IQ}\n' if not np.array_equal(self.Q, weight.Q): msg += f'reference_point: {self.Q} -> {weight.Q}' if msg: raise ValueError('GridPointWeight:\n' + msg) return True def set_grid_point_weight(self, reference_point, MO, S, mass, cg, IS, IQ, Q, approach_code=1, table_code=13, title='', subtitle='', label='', superelement_adaptivity_index=''): """used by the op2 reader to set the table parameters""" self.reference_point = reference_point self.approach_code = approach_code self.table_code = table_code self.MO = MO self.S = S self.mass = mass self.cg = cg self.IS = IS self.IQ = IQ self.Q = Q self.title = title self.subtitle = subtitle self.label = label self.superelement_adaptivity_index = superelement_adaptivity_index def get_stats(self, key='', short=True): key2 = f'[{key!r}]' if short: msg = (f'GridPointWeight{key2}: ref_point=%s mass=%g; ' '[reference_point, M0, S, mass, cg, IS, IQ, Q]\n' % ( self.reference_point, self.mass.max())) else: msg = ( f'GridPointWeight{key2}:' ' reference_point=%s\n' ' mass=[%10g %10g %10g]\n' ' cg =[%10g %10g %10g]\n' ' [%10g %10g %10g]\n' ' [%10g %10g %10g]\n\n' ' IS =[%10g %10g %10g]\n' ' [%10g %10g %10g]\n' ' [%10g %10g %10g]\n\n' ' IQ =[%10g %10s %10s]\n' ' [%10s %10g %10s]\n' ' [%10s %10s %10g]\n\n' ' Q = [%10g %10g %10g]\n' ' [%10g %10g %10g]\n' ' [%10g %10g %10g]\n' % ( self.reference_point, self.mass[0], self.mass[1], self.mass[2], self.cg[0, 0], self.cg[0, 1], self.cg[0, 2], self.cg[1, 0], self.cg[1, 1], self.cg[1, 2], self.cg[2, 0], self.cg[2, 1], self.cg[2, 2], self.IS[0, 0], self.IS[0, 1], self.IS[0, 2], self.IS[1, 0], self.IS[1, 1], self.IS[1, 2], self.IS[2, 0], self.IS[2, 1], self.IS[2, 2], self.IQ[0], '', '', '', self.IQ[1], '', '', '', self.IQ[2], self.Q[0, 0], self.Q[0, 1], self.Q[0, 2], self.Q[1, 0], self.Q[1, 1], self.Q[1, 2], self.Q[2, 0], self.Q[2, 1], self.Q[2, 2], ) ) return msg def __repr__(self): f = StringIO() page_stamp = 'PAGE %i' page_num = 1 self.write_f06(f, page_stamp, page_num) msg = f.getvalue() return msg def _write_table_3(self, op2_file, fascii, new_result, table_name, itable=-3): import inspect frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) fascii.write('%s.write_table_3: %s\n' % (self.__class__.__name__, call_frame[1][3])) if new_result and itable != -3: header = [ 4, 146, 4, ] else: header = [ 4, itable, 4, 4, 1, 4, 4, 0, 4, 4, 146, 4, ] op2_file.write(pack(b'%ii' % len(header), *header)) fascii.write('table_3_header = %s\n' % header) #op2_file.write(pack('12i', *[4, itable, 4, #4, 1, 4, #4, 0, 4, #4, 146, 4, #])) approach_code = self.approach_code table_code = self.table_code #isubcase = self.isubcase #random_code = self.random_code #format_code = 1 isubcase = 0 num_wide = 79 # self.num_wide #acoustic_flag = self.acoustic_flag if hasattr(self, 'acoustic_flag') else 0 reference_point = self.reference_point reference_point = 22 #thermal = self.thermal title = b'%-128s' % self.title.encode('ascii') subtitle = b'%-128s' % self.subtitle.encode('ascii') # missing superelement_adaptivity_index label = b'%-128s' % self.label.encode('ascii') #1, 13, 0, 0, 0, 0, 0, 0, 0, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ftable3 = b'i' * 50 + b'128s 128s 128s' #print(self.get_stats()) table3 = [ approach_code, table_code, reference_point, isubcase, 0, 0, 0, 0, 0, num_wide, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, title, subtitle, label, ] n = 0 from itertools import count for i, val, ftable3i in zip(count(), table3, ftable3.decode('ascii')): assert val is not None, 'i=%s val=%s ftable3i=%s\n%s' % (i, val, ftable3i, self.get_stats()) if isinstance(val, integer_types): n += 4 assert ftable3i == 'i', 'i=%s val=%s type=%s' % (i, val, ftable3i) elif isinstance(val, float_types): n += 4 assert ftable3i == 'f', 'i=%s val=%s type=%s' % (i, val, ftable3i) else: n += len(val) assert n == 584, n data = [584] + table3 + [584] fmt = b'i' + ftable3 + b'i' #op2_file.write(pack(fascii, '%s header 3c' % table_name, fmt, data)) fascii.write('%s header 3c = %s\n' % (table_name, data)) #j = 7 #print(ftable3[:j]) #print(table3[:j]) #pack(ftable3[:j], *table3[:j]) op2_file.write(pack(fmt, *data)) def write_op2(self, op2_file, op2_ascii, date, endian=b'<'): itable = -1 import inspect #allowed_tables = [ #'OUGV1', 'BOUGV1', 'BOPHIG', 'BOPG1', #'OUPV1', #'OQP1', 'OQMG1', 'OQG1', 'OQGV1', 'OPNL1', #'OPG1', 'OPGV1', #'OAGATO1', 'OAGCRM1', 'OAGNO1', 'OAGPSD1', 'OAGRMS1', #'OQGPSD1', #'OCRPG', 'OCRUG', 'OUG1', #'OUGV1PAT', #] #assert self.table_name in allowed_tables, self.table_name table_name = 'OGPWG' frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) subtable_name = b'OGPWG' if itable == -1: _write_table_header(op2_file, op2_ascii, date, table_name, subtable_name) itable = -3 #s = Struct(op2_format) #unused_node = self.node_gridtype[:, 0] #gridtype = self.node_gridtype[:, 1] #format_table4_1 = Struct(self._endian + b'15i') #format_table4_2 = Struct(self._endian + b'3i') # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] #nnodes_device = self.node_gridtype[:, 0] * 10 + self.device_code #(2+6) => (node_id, gridtypei, t1i, t2i, t3i, r1i, r2i, r3i) #ntotal = nnodes * (2 + 6) #print('shape = %s' % str(self.data.shape)) #assert nnodes > 1, nnodes #assert ntotal > 1, ntotal #unused_device_code = self.device_code #fascii.write(' ntimes = %s\n' % self.ntimes) #fmt = '%2i %6f' #print('ntotal=%s' % (ntotal)) #for itime in range(self.ntimes): # good = (4, -4, 4, 4, 1, 4, 4, 0, 4, 4, 78, 4, 312, 1057795080, 0, 0, 0, 0, 0, 0, 1057795080, 0, 0, 0, 1111254630, 0, 0, 1057795080, 0, -1036229018, 0, 0, 0, 0, 1143715840, -1451229184, 0, 0, 0, -1036229018, -1451229184, 1169886464, 0, 0, 1111254630, 0, 0, 0, 1171293184, 1065353216) #bad = (4, -4, 4, 4, 1, 4, 4, 0, 4, 4, 78, 4, 312, 1057795080, 0, 0, 0, 0, 0, 0, 1057795080, 0, 0, 0, 1111254630, 0, 0, 1057795080, 0, -1036229018, 0, 0, 0, 0, 1143715840, -1451229184, 0, 0, 0, -1036229018, -1451229184, 1169886464, 0, 0, 1111254630, 0, 0, 0, 1171293184, 1065353216, 0, 0, 0, 1065353216, 0, 0, 0, 1065353216, 1057795080, 0, -2147483648, 0, 1057795080, 1118530999, 0, -2147483648, 1057795080, 1118530999, 0, 0, 1143715840, 696254464, 0, 696254464, 1156812654, 0, 0, 0, 1160033719, 1143715840, 1156812654, 1160033719, 1065353216, 0, 0, 0, 1065353216, 0, 0, 0, 1065353216, 312, -5, 4, 4, 1, 4, 4, 0, 4, 4, 0, 4, 4, 4, 2, 4, 8, 1447515471, 538976305) ntotal = 78 # 79 * 4 = 316 new_result = True self._write_table_3(op2_file, op2_ascii, new_result, table_name, itable) # record 4 itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4*ntotal] op2_file.write(pack(b'%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4*ntotal)) # ------------------------------------------------------- fmt = endian + b'78f' mcg = np.zeros((3, 4), dtype=self.cg.dtype) mcg[:, 0] = self.mass mcg[:, 1:] = self.cg data = (self.MO.ravel().tolist() + self.S.ravel().tolist() + mcg.ravel().tolist() + self.IS.ravel().tolist() + self.IQ.ravel().tolist() + self.Q.ravel().tolist()) assert None not in data, data msgi = pack(fmt, *data) op2_file.write(msgi) # ------------------------------------------------------- itable -= 1 header = [4 * ntotal, 4, itable, 4, 4, 1, 4, 4, 0, 4, 4, 0, 4, ] op2_file.write(pack(endian + b'13i', *header)) op2_ascii.write('footer = %s\n' % header) return itable def write_f06(self, f06_file, page_stamp, page_num): """ writes the f06 Parameters ---------- f06_file : file / StringIO a file-like object page_stamp : str the page formatter (e.g., 'PAGE %i') page_num : int the active page number Returns ------- page_num : int the new page number """ if self.reference_point is None: return page_num msg = [' O U T P U T F R O M G R I D P O I N T W E I G H T G E N E R A T O R'] msg.append('0 REFERENCE POINT = %i' % self.reference_point) # MO msg.append(' M O') for i in range(6): msg.append(' * %13.6E %13.6E %13.6E %13.6E %13.6E %13.6E *' % tuple(self.MO[i, :])) msg.append(' S') for i in range(3): msg.append(' * %13.6E %13.6E %13.6E *' % tuple(self.S[i, :])) msg.append(' DIRECTION') msg.append(' MASS AXIS SYSTEM (S) MASS X-C.G. Y-C.G. Z-C.G.') msg.append(' X %12.6E %13.6E %13.6E %13.6E' % (self.mass[0], self.cg[0, 0], self.cg[0, 1], self.cg[0, 2])) msg.append(' Y %12.6E %13.6E %13.6E %13.6E' % (self.mass[1], self.cg[1, 0], self.cg[1, 1], self.cg[1, 2])) msg.append(' Z %12.6E %13.6E %13.6E %13.6E' % (self.mass[2], self.cg[2, 0], self.cg[2, 1], self.cg[2, 2])) msg.append(' I(S)') for i in range(3): msg.append(' * %13.6E %13.6E %13.6E *' % tuple(self.IS[i, :])) msg.append(' I(Q)') msg.append(' * %13.6E %13s %13s *' % (self.IQ[0], '', '')) msg.append(' * %13s %13.6E %13s *' % ('', self.IQ[1], '')) msg.append(' * %13s %13s %13.6E *' % ('', '', self.IQ[2])) msg.append(' Q') for i in range(3): msg.append(' * %13.6E %13.6E %13.6E *' % tuple(self.Q[i, :])) msg.append('\n' + page_stamp % page_num + '\n') f06_file.write('\n'.join(msg)) return page_num + 1 ``` #### File: tables/lama_eigenvalues/lama.py ```python from struct import Struct from pyNastran.op2.op2_interface.op2_common import OP2Common from pyNastran.op2.tables.lama_eigenvalues.lama_objects import ( RealEigenvalues, ComplexEigenvalues, BucklingEigenvalues) class LAMA(OP2Common): def __init__(self): OP2Common.__init__(self) def _read_complex_eigenvalue_3(self, data, ndata): """parses the Complex Eigenvalues Table 3 Data""" #raise NotImplementedError(self.table_name) self.words = [ 'aCode', 'tCode', '???', 'isubcase', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???'] #self.show_data(data) unused_three = self.parse_approach_code(data) self.six = self.add_data_parameter(data, 'six', b'i', 10, False) # seven self._read_title(data) def _read_buckling_eigenvalue_3(self, data, ndata): """parses the Buckling Eigenvalues Table 3 Data""" #print(self.show_data(data)) #self._read_title_helper(data) self.words = [ 'aCode', 'tCode', '???', 'isubcase', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???'] #self.show_data(data) unused_three = self.parse_approach_code(data) self.seven = self.add_data_parameter(data, 'seven', b'i', 10, False) # seven #: residual vector augmentation flag self.residual_flag = self.add_data_parameter(data, 'residual_flag', b'i', 11, False) #: fluid modes flag self.fluid_flag = self.add_data_parameter(data, 'fluid_flag', b'i', 12, False) self._read_title(data) def _read_complex_eigenvalue_4(self, data, ndata): """parses the Complex Eigenvalues Table 4 Data""" if self.read_mode == 1: return ndata ntotal = 24 # 4 * 6 nmodes = ndata // ntotal n = 0 #assert self.isubcase != 0, self.isubcase clama = ComplexEigenvalues(self.title, self.table_name, nmodes) #assert self.title not in self.eigenvalues, f'table={self.table_name_str} title={self.title} optimization_count={self._count}' self.eigenvalues[self.title] = clama #self.eigenvalues[self.isubcase] = clama structi = Struct(self._endian + b'ii4f') for i in range(nmodes): edata = data[n:n+ntotal] out = structi.unpack(edata) if self.is_debug_file: self.binary_debug.write(' eigenvalue%s - %s\n' % (i, str(out))) #(imode, order, eigr, eigc, freq, damping) = out # CLAMA #print('imode=%s order=%s eigr=%s eigc=%s freq=%s damping=%s' % #(imode, order, eigr, eigc, freq, damping)) clama.add_op2_line(out, i) n += ntotal assert n == ndata, 'clama length error' return n def _read_buckling_eigenvalue_4(self, data, ndata): """parses the Buckling Eigenvalues Table 4 Data""" # BLAMA - Buckling eigenvalue summary table # CLAMA - Complex eigenvalue summary table # LAMA - Normal modes eigenvalue summary table if self.read_mode == 1: return ndata ntotal = 28 # 4 * 7 nmodes = ndata // ntotal n = 0 #assert self.isubcase != 0, self.isubcase blama = BucklingEigenvalues(self.title, self.table_name, nmodes) #assert self.title not in self.eigenvalues, f'table={self.table_name_str} title={self.title} optimization_count={self._count}' self.eigenvalues[self.title] = blama #self.eigenvalues[self.isubcase] = lama structi = Struct(self._endian + b'ii5f') for i in range(nmodes): edata = data[n:n+ntotal] out = structi.unpack(edata) if self.is_debug_file: self.binary_debug.write(' eigenvalue%s - %s\n' % (i, str(out))) #(imode, order, eigen, omega, freq, mass, stiff) = out # BLAMA?? #(mode_num, extract_order, eigenvalue, radian, cycle, genM, genK) = line # LAMA #(root_num, extract_order, eigr, eigi, cycle, damping) = data # CLAMA blama.add_op2_line(out, i) n += ntotal return n def _read_real_eigenvalue_3(self, data, ndata): """parses the Real Eigenvalues Table 3 Data""" self.words = [ 'aCode', 'tCode', '???', 'isubcase', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???', '???'] #self.show_data(data) unused_three = self.parse_approach_code(data) self.seven = self.add_data_parameter(data, 'seven', b'i', 10, False) # seven ## residual vector augmentation flag self.residual_flag = self.add_data_parameter(data, 'residual_flag', b'i', 11, False) ## fluid modes flag self.fluid_flag = self.add_data_parameter(data, 'fluid_flag', b'i', 12, False) self.title = None #print(self.data_code) #self.add_data_parameter(data,'format_code', 'i',9,False) ## format code #: number of words per entry in record; #.. todo:: is this needed for this table ??? #self.add_data_parameter(data,'num_wide', 'i',10,False) #if self.analysis_code == 2: # sort2 #self.lsdvmn = self.get_values(data,'i',5) #print("*isubcase=%s" % self.isubcase) #print("analysis_code=%s table_code=%s thermal=%s" % ( #self.analysis_code, self.table_code, self.thermal)) #self.print_block(data) self._read_title(data) def _read_real_eigenvalue_4(self, data, ndata): """parses the Real Eigenvalues Table 4 Data""" if self.read_mode == 1: return ndata nmodes = ndata // 28 n = 0 ntotal = 28 #assert self.isubcase != 0, self.isubcase lama = RealEigenvalues(self.title, self.table_name, nmodes=nmodes) if self.table_name in [b'LAMA', b'LAMAS']: result_name = 'eigenvalues' elif self.table_name == b'LAMAF': result_name = 'eigenvalues_fluid' else: # pragma: no cover raise NotImplementedError(self.table_name) slot = getattr(self, result_name) #assert self.title not in slot, f'{result_name}: table={self.table_name_str} title={self.title!r} optimization_count={self._count}' slot[self.title] = lama structi = Struct(self._endian + b'ii5f') for i in range(nmodes): edata = data[n:n+28] out = structi.unpack(edata) if self.is_debug_file: self.binary_debug.write(' eigenvalue%s - %s\n' % (i, str(out))) #(imode, extract_order, eigenvalue, radian, cycle, gen_mass, gen_stiffness) = out lama.add_f06_line(out, i) n += ntotal return n ``` #### File: oes_stressStrain/real/oes_bush.py ```python import numpy as np from numpy import zeros from pyNastran.utils.numpy_utils import integer_types from pyNastran.op2.tables.oes_stressStrain.real.oes_objects import StressObject, StrainObject, OES_Object from pyNastran.f06.f06_formatting import write_floats_13e, _eigenvalue_header class RealBushArray(OES_Object): def __init__(self, data_code, is_sort1, isubcase, dt): OES_Object.__init__(self, data_code, isubcase, apply_data_code=False) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.ielement = 0 self.nelements = 0 # result specific #print('RealBushArray.nonlinear_factor =', self.nonlinear_factor) @property def is_real(self): return True @property def is_complex(self): return False def _reset_indices(self): self.itotal = 0 if self.table_name not in ['OESRMS2', 'OESNO2', 'OSTRRMS2', 'OSTRNO2']: self.ielement = 0 def _get_msgs(self): raise NotImplementedError('%s needs to implement _get_msgs' % self.__class__.__name__) def get_headers(self): raise NotImplementedError('%s needs to implement get_headers' % self.__class__.__name__) #return headers def build(self): """sizes the vectorized attributes of the RealBushArray""" #print("self.ielement =", self.ielement) #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal if self.element_type == 102: #nnodes_per_element = 1 pass else: raise NotImplementedError(self.element_type) # buggy MSC 2005 (was this ever fixed?) # NX doesn't have this bug if self.table_name in ['OESRMS2', 'OESNO2', 'OSTRRMS2', 'OSTRNO2']: self.ntotal = self.nelements self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("***name=%s type=%s nnodes_per_element=%s ntimes=%s nelements=%s ntotal=%s" % ( #self.element_name, self.element_type, nnodes_per_element, self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' _times = zeros(self.ntimes, dtype=dtype) element = zeros(self.ntotal, dtype='int32') # [tx, ty, tz, rx, ry, rz] data = zeros((self.ntimes, self.ntotal, 6), dtype='float32') if self.load_as_h5: #for key, value in sorted(self.data_code.items()): #print(key, value) group = self._get_result_group() self._times = group.create_dataset('_times', data=_times) self.element = group.create_dataset('element', data=element) self.data = group.create_dataset('data', data=data) else: self._times = _times self.element = element self.data = data def build_dataframe(self): """creates a pandas dataframe""" import pandas as pd headers = self.get_headers() if self.nonlinear_factor not in (None, np.nan): #Time 0.00 0.10 #ElementID Item #11 tx 0.0 0.0 # ty 0.0 0.0 # tz 0.0 0.0 # rx 0.0 0.0 # ry 0.0 0.0 # rz 0.0 0.0 #21 tx 0.0 0.0 column_names, column_values = self._build_dataframe_transient_header() data_frame = self._build_pandas_transient_elements( column_values, column_names, headers, self.element, self.data) else: # >25.0 #Static tx ty tz rx ry rz #ElementID #1 1000.0 0.0 0.0 0.0 0.0 0.0 # # <=24.2 #Static 0 #ElementID Item #1 tx 1000.0 # ty 0.0 # tz 0.0 # rx 0.0 # ry 0.0 # rz 0.0 data_frame = pd.DataFrame(self.data[0], columns=headers, index=self.element) data_frame.index.name = 'ElementID' data_frame.columns.names = ['Static'] #data_frame = pd.Panel(self.data, major_axis=self.element, minor_axis=headers).to_frame() #data_frame.columns.names = ['Static'] #data_frame.index.names = ['ElementID', 'Item'] self.data_frame = data_frame def __eq__(self, table): # pragma: no cover assert self.is_sort1 == table.is_sort1 self._eq_header(table) if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) ntimes = self.data.shape[0] i = 0 if self.is_sort1: for itime in range(ntimes): for ieid, eid, in enumerate(self.element): t1 = self.data[itime, ieid, :] t2 = table.data[itime, ieid, :] (fx1, fy1, fz1, unused_mx1, unused_my1, unused_mz1) = t1 (fx2, fy2, fz2, unused_mx2, unused_my2, unused_mz2) = t2 if not np.allclose(t1, t2): #if not np.array_equal(t1, t2): msg += '%s\n (%s, %s, %s)\n (%s, %s, %s)\n' % ( eid, fx1, fy1, fz1, #mx1, my1, mz1 fx2, fy2, fz2) #mx2, my2, mz2 i += 1 if i > 10: print(msg) raise ValueError(msg) else: raise NotImplementedError(self.is_sort2) if i > 0: print(msg) raise ValueError(msg) return True def add_sort1(self, dt, eid, tx, ty, tz, rx, ry, rz): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.element[self.itotal] = eid self.data[self.itime, self.itotal, :] = [tx, ty, tz, rx, ry, rz] self.itotal += 1 self.ielement += 1 def get_stats(self, short=False): if not self.is_built: return ['<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.ntotal ntimes = self.ntimes #ntotal = self.ntotal nelements = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i\n' % (self.__class__.__name__, ntimes, nelements)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i\n' % (self.__class__.__name__, nelements)) ntimes_word = '1' headers = self.get_headers() n = len(headers) assert n == self.data.shape[2], 'nheaders=%s shape=%s' % (n, str(self.data.shape)) msg.append(' data: [%s, ntotal, %i] where %i=[%s]\n' % (ntimes_word, n, n, str(', '.join(headers)))) msg.append(' element.shape = %s\n' % str(self.element.shape).replace('L', '')) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) msg.append(' element type: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_element_index(self, eids): # elements are always sorted; nodes are not itot = np.searchsorted(eids, self.element) #[0] return itot def eid_to_element_node_index(self, eids): ind = np.ravel([np.searchsorted(self.element == eid) for eid in eids]) return ind def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg = self._get_msgs() (ntimes, unused_ntotal) = self.data.shape[:2] eids = self.element for itime in range(ntimes): dt = self._times[itime] header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg)) #[tx, ty, tz, rx, ry, rz] tx = self.data[itime, :, 0] ty = self.data[itime, :, 1] tz = self.data[itime, :, 2] rx = self.data[itime, :, 3] ry = self.data[itime, :, 4] rz = self.data[itime, :, 5] for eid, txi, tyi, tzi, rxi, ryi, rzi in zip( eids, tx, ty, tz, rx, ry, rz): vals = [txi, tyi, tzi, rxi, ryi, rzi] vals2 = write_floats_13e(vals) [txi, tyi, tzi, rxi, ryi, rzi] = vals2 f06_file.write('0 %8i %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, txi, tyi, tzi, rxi, ryi, rzi)) f06_file.write(page_stamp % page_num) page_num += 1 if self.nonlinear_factor in (None, np.nan): page_num -= 1 return page_num def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 #if isinstance(self.nonlinear_factor, float): #op2_format = '%sif' % (7 * self.ntimes) #raise NotImplementedError() #else: #op2_format = 'i21f' #s = Struct(op2_format) eids = self.element # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = self.data.shape[1] # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide ntotal = ntotali * nelements #print('shape = %s' % str(self.data.shape)) #assert self.ntimes == 1, self.ntimes #device_code = self.device_code op2_ascii.write(' ntimes = %s\n' % self.ntimes) eids_device = self.element * 10 + self.device_code #fmt = '%2i %6f' #print('ntotal=%s' % (ntotal)) #assert ntotal == 193, ntotal if self.is_sort1: struct1 = Struct(endian + b'i6f') else: raise NotImplementedError('SORT2') op2_ascii.write('nelements=%i\n' % nelements) for itime in range(self.ntimes): #print('3, %s' % itable) self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 #print('stress itable = %s' % itable) itable -= 1 #print('4, %s' % itable) header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) tx = self.data[itime, :, 0] ty = self.data[itime, :, 1] tz = self.data[itime, :, 2] rx = self.data[itime, :, 3] ry = self.data[itime, :, 4] rz = self.data[itime, :, 5] for eid, eid_device, txi, tyi, tzi, rxi, ryi, rzi in zip( eids, eids_device, tx, ty, tz, rx, ry, rz): data = [eid_device, txi, tyi, tzi, rxi, ryi, rzi] vals = [txi, tyi, tzi, rxi, ryi, rzi] vals2 = write_floats_13e(vals) [txi, tyi, tzi, rxi, ryi, rzi] = vals2 op2_ascii.write('0 %8i %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, txi, tyi, tzi, rxi, ryi, rzi)) op2.write(struct1.pack(*data)) #for eid, axiali, SMai, torsioni, SMti in zip(eids_device, axial, SMa, torsion, SMt): #data = [eid, axiali, SMai, torsioni, SMti] #op2_ascii.write(' eid=%s axial=%s SMa=%s torsion=%s SMt=%s\n' % tuple(data)) #op2.write(struct1.pack(*data)) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class RealBushStressArray(RealBushArray, StressObject): def __init__(self, data_code, is_sort1, isubcase, dt): RealBushArray.__init__(self, data_code, is_sort1, isubcase, dt) StressObject.__init__(self, data_code, isubcase) def get_headers(self): headers = ['tx', 'ty', 'tz', 'rx', 'ry', 'rz'] return headers def _get_msgs(self): if self.element_type == 102: pass else: raise NotImplementedError(self.element_type) msg = [ ' S T R E S S E S I N B U S H E L E M E N T S ( C B U S H )\n \n', ' ELEMENT-ID STRESS-TX STRESS-TY STRESS-TZ STRESS-RX STRESS-RY STRESS-RZ \n', ] return msg class RealBushStrainArray(RealBushArray, StrainObject): def __init__(self, data_code, is_sort1, isubcase, dt): RealBushArray.__init__(self, data_code, is_sort1, isubcase, dt) StrainObject.__init__(self, data_code, isubcase) def get_headers(self): headers = ['tx', 'ty', 'tz', 'rx', 'ry', 'rz'] return headers def _get_msgs(self): if self.element_type == 102: pass else: raise NotImplementedError(self.element_type) msg = [ ' S T R A I N S I N B U S H E L E M E N T S ( C B U S H )\n' ' \n' ' ELEMENT-ID STRAIN-TX STRAIN-TY STRAIN-TZ STRAIN-RX STRAIN-RY STRAIN-RZ \n' ] return msg ``` #### File: op2/writer/test_op2_writer.py ```python import unittest import os from cpylog import get_logger import pyNastran #from pyNastran.bdf.bdf import BDF #from pyNastran.op2.op2 import OP2, FatalError, read_op2 #from pyNastran.op2.op2_interface.op2_common import get_scode_word from pyNastran.op2.op2_geom import read_op2_geom#, OP2Geom, from pyNastran.op2.op2 import read_op2 from pyNastran.op2.test.test_op2 import run_op2 #from pyNastran.op2.writer.op2_writer import OP2Writer PKG_PATH = pyNastran.__path__[0] MODEL_PATH = os.path.abspath(os.path.join(PKG_PATH, '..', 'models')) class TestOP2Writer(unittest.TestCase): def test_write_1(self): """tests basic op2 writing""" log = get_logger(log=None, level='warning', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'solid_bending') op2_filename = os.path.join(folder, 'solid_bending.op2') op2_filename_debug = os.path.join(folder, 'solid_bending.debug.out') op2_filename_out = os.path.join(folder, 'solid_bending_out.op2') op2_filename_debug_out = os.path.join(folder, 'solid_bending_out.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, include_results='displacements', log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) assert op2 == op2b def test_write_2(self): """tests basic op2 writing""" log = get_logger(log=None, level='warning', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'solid_bending') op2_filename = os.path.join(folder, 'solid_bending.op2') op2_filename_debug = os.path.join(folder, 'solid_bending.debug.out') op2_filename_out = os.path.join(folder, 'solid_bending_out.op2') op2_filename_debug_out = os.path.join(folder, 'solid_bending_out.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' op2 = read_op2(op2_filename, debug_file=op2_filename_debug, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) assert op2 == op2b def _test_write_3(self): """tests basic op2 writing""" log = get_logger(log=None, level='warning', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'sol_101_elements') op2_filename = os.path.join(folder, 'static_solid_shell_bar.op2') op2_filename_debug = os.path.join(folder, 'static_solid_shell_bar.debug.out') op2_filename_out = os.path.join(folder, 'static_solid_shell_bar_out.op2') op2_filename_debug_out = os.path.join(folder, 'static_solid_shell_bar_out.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) unused_op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out) def test_write_4(self): """tests basic op2 writing""" log = get_logger(log=None, level='warning', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'sol_101_elements') op2_filename = os.path.join(folder, 'static_solid_shell_bar.op2') op2_filename_debug = os.path.join(folder, 'static_solid_shell_bar.debug.out') op2_filename_out = os.path.join(folder, 'static_solid_shell_bar_out.op2') op2_filename_debug_out = os.path.join(folder, 'static_solid_shell_bar_out.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_write_5(self): """tests basic op2 writing""" log = get_logger(log=None, level='warning', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'sol_101_elements') op2_filename = os.path.join(folder, 'mode_solid_shell_bar.op2') op2_filename_debug = os.path.join(folder, 'mode_solid_shell_bar.debug.out') op2_filename_out = os.path.join(folder, 'mode_solid_shell_bar_out.op2') op2_filename_debug_out = os.path.join(folder, 'mode_solid_shell_bar_out.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' exclude_results = [ #'*_strain_energy', ] op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, exclude_results=exclude_results, log=log, ) op2.write_op2(op2_filename_out) #is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_write_6(self): """tests basic op2 writing""" log = get_logger(log=None, level='warning', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'sol_101_elements') op2_filename = os.path.join(folder, 'transient_solid_shell_bar.op2') op2_filename_debug = os.path.join(folder, 'transient_solid_shell_bar.debug.out') op2_filename_out = os.path.join(folder, 'transient_solid_shell_bar_out.op2') op2_filename_debug_out = os.path.join(folder, 'transient_solid_shell_bar_out.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_write_7(self): """tests basic op2 writing""" log = get_logger(log=None, level='warning', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'sol_101_elements') op2_filename = os.path.join(folder, 'freq_solid_shell_bar.op2') op2_filename_debug = os.path.join(folder, 'freq_solid_shell_bar.debug.out') op2_filename_out = os.path.join(folder, 'freq_solid_shell_bar_out.op2') op2_filename_debug_out = os.path.join(folder, 'freq_solid_shell_bar_out.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_write_elements_1(self): """tests basic op2 writing""" log = get_logger(log=None, level='warning', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'elements') op2_filename = os.path.join(folder, 'freq_elements.op2') op2_filename_debug = os.path.join(folder, 'freq_elements.debug.out') op2_filename_out = os.path.join(folder, 'freq_elements_out.op2') op2_filename_debug_out = os.path.join(folder, 'freq_elements_out.debug.out') #model = os.path.splitext(op2_filename)[0] op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_write_elements_2(self): """tests basic op2 writing""" log = get_logger(log=None, level='info', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'elements') op2_filename = os.path.join(folder, 'freq_elements2.op2') op2_filename_debug = os.path.join(folder, 'freq_elements2.debug.out') op2_filename_out = os.path.join(folder, 'freq_elements_out2.op2') op2_filename_debug_out = os.path.join(folder, 'freq_elements_out2.debug.out') #model = os.path.splitext(op2_filename)[0] exclude_results = [ 'ctria6_force', 'ctriar_force', 'cshear_force', 'cvisc_force', 'modal_contribution.cshear_stress', ] op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, exclude_results=exclude_results, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) unused_op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) #op2.assert_op2_equal(op2b, #skip_results=['params', ], #stop_on_failure=True, debug=False) def test_write_elements_3(self): """tests basic op2 writing""" log = get_logger(log=None, level='info', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'elements') op2_filename = os.path.join(folder, 'freq_random_elements.op2') op2_filename_debug = os.path.join(folder, 'freq_random_elements.debug.out') op2_filename_out = os.path.join(folder, 'freq_random_elements_out.op2') op2_filename_debug_out = os.path.join(folder, 'freq_random_elements_out.debug.out') #model = os.path.splitext(op2_filename)[0] exclude_results = [ 'ctria6_force', 'ctriar_force', 'cshear_force', 'cvisc_force', 'cshear_stress', '*strain_energy', ] op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, exclude_results=exclude_results, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_write_elements_4(self): """tests basic op2 writing""" log = get_logger(log=None, level='info', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'elements') op2_filename = os.path.join(folder, 'modes_complex_elements.op2') op2_filename_debug = os.path.join(folder, 'modes_complex_elements.debug.out') op2_filename_out = os.path.join(folder, 'modes_complex_elements_out.op2') op2_filename_debug_out = os.path.join(folder, 'modes_complex_elements_out.debug.out') #model = os.path.splitext(op2_filename)[0] exclude_results = [ 'ctria6_force', 'ctriar_force', 'cshear_force', 'cvisc_force', 'cshear_stress', #'*strain_energy', ] op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, exclude_results=exclude_results, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_write_elements_5(self): """tests basic op2 writing""" log = get_logger(log=None, level='info', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'elements') op2_filename = os.path.join(folder, 'time_elements.op2') op2_filename_debug = os.path.join(folder, 'time_elements.debug.out') op2_filename_out = os.path.join(folder, 'time_elements_out.op2') op2_filename_debug_out = os.path.join(folder, 'time_elements_out.debug.out') #model = os.path.splitext(op2_filename)[0] exclude_results = [ 'cshear_force', 'cvisc_force', 'cshear_stress', 'grid_point_forces', '*strain_energy', ] op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, exclude_results=exclude_results, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_thermal_1(self): """tests basic op2 thermal writing""" log = get_logger(log=None, level='info', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'elements') op2_filename = os.path.join(folder, 'time_thermal_elements.op2') op2_filename_debug = os.path.join(folder, 'time_thermal_elements.debug.out') op2_filename_out = os.path.join(folder, 'time_thermal_elements_out.op2') op2_filename_debug_out = os.path.join(folder, 'time_thermal_elements.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' exclude_results = [ 'chbdye_thermal_load', 'chexa_thermal_load', ] op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, exclude_results=exclude_results, log=log) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) def test_thermal_2(self): """tests basic op2 thermal writing""" log = get_logger(log=None, level='info', encoding='utf-8') folder = os.path.join(MODEL_PATH, 'other') op2_filename = os.path.join(folder, 'hd15306.op2') op2_filename_debug = os.path.join(folder, 'hd15306.debug.out') op2_filename_out = os.path.join(folder, 'hd15306_out.op2') op2_filename_debug_out = os.path.join(folder, 'hd15306_out.debug.out') #debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] #debug_file = model + '.debug.out' exclude_results = [ 'chbdyg_thermal_load', 'crod_thermal_load', 'cquad4_thermal_load', #'chbdye_thermal_load', #'chexa_thermal_load', ] op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, exclude_results=exclude_results, debug=True, log=log) str(op2.get_op2_stats(short=True)) op2.write_op2(op2_filename_out) #, is_mag_phase=False) op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out, log=log) op2.assert_op2_equal(op2b, skip_results=['params', ], stop_on_failure=True, debug=False) #def test_thermal_3(self): #"""tests basic op2 thermal writing""" #folder = os.path.join(MODEL_PATH, 'other') #op2_filename = os.path.join(folder, 'ofprand1.op2') #op2_filename_debug = os.path.join(folder, 'ofprand1.debug.out') #op2_filename_out = os.path.join(folder, 'ofprand1_out.op2') #op2_filename_debug_out = os.path.join(folder, 'ofprand1.debug.out') ##debug_file = 'solid_bending.debug.out' #model = os.path.splitext(op2_filename)[0] ##debug_file = model + '.debug.out' #exclude_results = [ ##'chbdyg_thermal_load', ##'crod_thermal_load', ##'cquad4_thermal_load', ##'chbdye_thermal_load', ##'chexa_thermal_load', #] #op2 = read_op2_geom(op2_filename, debug_file=op2_filename_debug, #exclude_results=exclude_results, ##include_results='eigenvectors', ##include_results=['crod_stress', 'cbar_stress'], ##include_results=['crod_force', 'cbar_force'], ##include_results='element_forces', ##include_results='stress', #) #print(op2.get_op2_stats(short=True)) #op2.write_op2(op2_filename_out, is_mag_phase=False) #op2b = read_op2_geom(op2_filename_out, debug_file=op2_filename_debug_out) ##op2b = read_op2(op2_filename_out, debug_file=op2_filename_debug_out) #op2.assert_op2_equal(op2b, #skip_results=['params', ], #stop_on_failure=True, debug=False) if __name__ == '__main__': unittest.main() ``` #### File: utils/test/test_log.py ```python import os import unittest from pyNastran.utils.log import make_log class TestLog(unittest.TestCase): def test_make_log(self): """tests make_log""" make_log() os.remove('pyNastran.log') if __name__ == "__main__": # pragma: no cover unittest.main() ```
{ "source": "JohannesSMHI/BAWS-vis", "score": 2 }
#### File: BAWS-vis/bawsvis/session.py ```python import os from bawsvis.config import Settings from bawsvis.writers.raster import raster_writer from bawsvis.writers.dictionary import json_writer from bawsvis.writers.text import np_text_writer class Session: """ """ def __init__(self, data_path=None): self.setting = Settings() self.data_path = data_path def export_data(self, data=None, file_name=None, writer='raster'): """ :param data: :param file_name: :param writer: :return: """ file_name = ''.join((self.setting.export_directory, file_name)) if writer == 'raster': raster_writer(file_name, data, self.setting.raster_template_meta) elif writer == 'json': json_writer(file_name, data) elif writer == 'text': np_text_writer(data, file_name) ``` #### File: BAWS-vis/bawsvis/utils.py ```python import os import numpy as np import rasterio as rio from collections import Mapping from pyproj import Proj, CRS, transform def transform_ref_system(lat=0.0, lon=0.0, in_proj='EPSG:3006', # SWEREF 99TM 1200 out_proj='EPSG:4326'): """ Transform coordinates from one spatial reference system to another. in_proj is your current reference system out_proj is the reference system you want to transform to, default is EPSG:4326 = WGS84 (Another good is EPSG:4258 = ETRS89 (Europe), almost the same as WGS84 (in Europe) and not always clear if coordinates are in WGS84 or ETRS89, but differs <1m. lat = latitude lon = longitude To find your EPSG check this website: http://spatialreference.org/ref/epsg/ """ o_proj = CRS(out_proj) i_proj = CRS(in_proj) x, y = transform(i_proj, o_proj, float(lon), float(lat)) return y, x class Grid: """ """ def __init__(self, meta): self.meta = meta self.proj = Proj(**self.meta['crs']) self.map_width = int(self.meta['width'] * self.meta['transform'][0]) self.map_height = int(self.meta['height'] * self.meta['transform'][0]) self.x_size = int(self.map_width / self.meta['width']) self.y_size = int(self.map_height / self.meta['height']) self.xmin_proj = self.meta['transform'][2] self.xmax_proj = self.xmin_proj + self.map_width self.ymax_proj = self.meta['transform'][5] self.ymin_proj = self.ymax_proj - self.map_height self.xmin_wgs84, self.ymin_wgs84 = self.llcord self.xmax_wgs84, self.ymax_wgs84 = self.urcord self.map_wgs84_width = self.xmax_wgs84 - self.xmin_wgs84 self.map_wgs84_height = self.ymax_wgs84 - self.ymin_wgs84 self.x_wgs84_size = self.map_wgs84_width / self.meta['width'] self.y_wgs84_size = self.map_wgs84_height / self.meta['height'] def get_longitude_grid(self): """ :return: """ array1d = np.arange(self.xmin_proj, self.xmax_proj, self.x_size) return np.tile(array1d, (self.map_height, 1)) def get_latitude_grid(self): """ :return: """ array1d = np.arange(self.ymin_proj, self.ymax_proj, self.y_size) return np.flip(np.tile(array1d, (self.map_width, 1))).T def get_longitude_wgs84grid(self): """ :return: """ array1d = np.arange(self.xmin_wgs84, self.xmax_wgs84, self.x_wgs84_size) return np.tile(array1d, (self.meta['height'], 1)) def get_latitude_wgs84grid(self): """ :return: """ array1d = np.arange(self.ymin_wgs84, self.ymax_wgs84, self.y_wgs84_size) return np.flip(np.tile(array1d, (self.meta['width'], 1))).T @property def llcord(self): return self.proj(*(self.xmin_proj, self.ymin_proj), inverse=True) @property def urcord(self): return self.proj(*(self.xmax_proj, self.ymax_proj), inverse=True) def generate_filepaths(directory, pattern='', not_pattern='DUMMY_PATTERN', pattern_list=[], endswith='', only_from_dir=True): """ :param directory: :param pattern: :param not_pattern: :param pattern_list: :param endswith: :param only_from_dir: :return: """ for path, subdir, fids in os.walk(directory): if only_from_dir: if path != directory: continue for f in fids: if pattern in f and not_pattern not in f and f.endswith(endswith): if any(pattern_list): for pat in pattern_list: if pat in f: yield os.path.abspath(os.path.join(path, f)) else: yield os.path.abspath(os.path.join(path, f)) def recursive_dict_update(d, u): """ Recursive dictionary update using Copied from: http://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth via satpy """ for k, v in u.items(): if isinstance(v, Mapping): r = recursive_dict_update(d.get(k, {}), v) d.setdefault(k, r) else: d.setdefault(k, u[k]) return d # if __name__ == "__main__": # # meta = get_raster_meta('C:/Utveckling/BAWS-vis/bawsvis/etc/raster_template.tiff') # g = Grid(meta) ``` #### File: bawsvis/writers/dictionary.py ```python import json def json_writer(file_path, data, indent=4): with open(file_path, "w") as outfile: json.dump(data, outfile, indent=indent) ```
{ "source": "JohannesSMHI/ctdpy", "score": 3 }
#### File: ctdpy/core/mapping.py ```python import pandas as pd class AttributeDict(dict): """Base class for attribute dictionaries.""" def __init__(self): """Initialize.""" super().__init__() def _add_arrays_to_entries(self, **entries): """Add arrays as attributes to self.""" for key, array in entries.items(): # TODO Check if array is needed if only one value setattr(self, key, array) def add_entries(self, **entries): """Turn elements in arrays into attributes with a corresponding official field name.""" for key, array in entries.items(): setattr(self, key, key) setattr(self, key.lower(), key) if isinstance(array, pd.core.series.Series): array = array.values for value in array: if not pd.isnull(value): setattr(self, value, key) setattr(self, value.lower(), key) def add_entries_from_keylist(self, data, from_combo_keys=None, from_synonyms=None, to_key=''): """Create mapping attributes for ShipMapping(). Args: data (dict): from_combo_keys (list): list of keys from_synonyms (list): list of keys to_key (str): """ from_combo_keys = from_combo_keys or [] from_synonyms = from_synonyms or [] for i, value in enumerate(data[to_key]): setattr(self, value, value) if any(from_combo_keys): setattr(self, ''.join([data[key][i].zfill(2) for key in from_combo_keys]), value) if any(from_synonyms): for key in from_synonyms: setattr(self, data[key][i], value) setattr(self, data[key][i].upper(), value) def keys(self): """Return list of keys from self attributes.""" return list(self.__dict__.keys()) def get(self, key): """Get attribute from self using key.""" try: return getattr(self, key) except AttributeError: try: return getattr(self, key.lower()) except Exception: if '[' in key: try: key = key.split('[')[0].strip() return getattr(self, key.lower()) except Exception: # print('No mapping found for key: ' + key) return key else: # print('No mapping found for key: ' + key) return key def get_list(self, key_list): """Get list of values from self attributes based on key_list.""" return [self.get(key) for key in key_list] def get_mapping_dict(self, key_list): """Get dictionary from self attributes based on key_list.""" return dict([(key, self.get(key)) for key in key_list]) def __getitem__(self, key): """Get item from self. If not key exists return None""" return getattr(self, key) class ParameterMapping(AttributeDict): """Load file to map data fields and parameters to a standard setting format.""" def __init__(self): """Initialize.""" super().__init__() def map_parameter_list(self, para_list, ext_list=False): """Return mapped parameter list. Args: para_list (list): list of parameters ext_list (bool): False or True, NotImplemented """ return self.get_list(para_list) def get_parameter_mapping(self, para_list, ext_list=False): """Get a dictionary with mapped parameters from the given para_list.""" return self.get_mapping_dict(para_list) class ShipMapping(AttributeDict): """Load file to map 2sign-cntry and 2sign-shipc to 4sign-shipc (ICES / SMHI).""" def __init__(self): """Initialize.""" super().__init__() def map_cntry_and_shipc(self, cntry=None, shipc=None): """Get SHIP code (according to standard of ICES).""" return self.get(cntry + shipc) def map_shipc(self, cntry_shipc): """Map SHIP code (according to standard of ICES).""" return self.get(cntry_shipc) ``` #### File: core/readers/umsc.py ```python import re import numpy as np from ctdpy.core import utils from ctdpy.core.readers.seabird import SeaBird from ctdpy.core.readers.metadata import XLSXmeta from ctdpy.core.calculator import Calculator class SeaBirdUMSC(SeaBird): """Reader for seabird data according to UMSC processing routines.""" def __init__(self, settings): """Initialize.""" super().__init__(settings) @staticmethod def add_calculated_parameters(df, latit): """Add caluculated parameters to dataframe.""" calc = Calculator() df['DEPH'] = calc.get_true_depth(attribute_dictionary={'latitude': latit, 'pressure': df['PRES_CTD'].astype(np.float), 'gravity': df['PRES_CTD'].astype(np.float), 'density': df['DENS_CTD'].astype(np.float)}) def _convert_formats(self, meta_dict, filename): """Set and/or convert formats of metadata.""" timestamp = self._get_datetime(meta_dict['SDATE']) meta_dict['SDATE'] = utils.get_format_from_datetime_obj(timestamp, '%Y-%m-%d') meta_dict['STIME'] = utils.get_format_from_datetime_obj(timestamp, '%H:%M') # meta_dict['SERNO'] = self._get_serno(meta_dict['SERNO']) # meta_dict.setdefault('PROJ', 'BAS') # meta_dict.setdefault('ORDERER', 'HAV, SMHI') meta_dict.setdefault('SLABO', 'UMSC') meta_dict.setdefault('ALABO', 'UMSC') meta_dict.setdefault('POSYS', 'GPS') if filename: meta_dict['FILE_NAME'] = filename def get_metadata(self, serie, map_keys=True, filename=None): """Return dictionary with metadata.""" meta_dict = {} for ident, sep in zip(['identifier_metadata', 'identifier_metadata_2'], ['separator_metadata', 'separator_metadata_2']): data = self.get_meta_dict(serie, identifier=self.settings.datasets['cnv'].get(ident), separator=self.settings.datasets['cnv'].get(sep), keys=self.settings.datasets['cnv'].get('keys_metadata')) meta_dict = utils.recursive_dict_update(meta_dict, data) if map_keys: new_dict = {} for key in meta_dict: if meta_dict[key]: new_dict.setdefault(self.settings.pmap.get(key), meta_dict[key]) meta_dict = new_dict self._convert_formats(meta_dict, filename) return meta_dict def get_meta_dict(self, series, keys=None, identifier='', separator=''): """Get metadata information for a specific identifier and separator.""" keys = keys or [] meta_dict = {} boolean_startswith = self.get_index(series, identifier, as_boolean=True) if any(keys): for key in keys: boolean_contains = self.get_index(series, key, contains=True, as_boolean=True) boolean = boolean_startswith & boolean_contains if any(boolean): if key == 'SERIAL NO': meta = re.search('SERIAL NO. (.+?) ', series[boolean].iloc[0]).group(1) else: meta = series[boolean].tolist()[0].split(separator)[-1].strip() meta_dict.setdefault(key, meta) else: return series.loc[boolean_startswith] return meta_dict def _setup_dataframe(self, serie, metadata=None): """Convert pandas Serie into pandas DataFrame.""" header = self.get_data_header(serie, dataset='cnv') df = self.get_data_in_frame(serie, header, dataset='cnv') df = self.df_handler.map_column_names_of_dataframe(df) # TODO use metadata['LATIT'] instead of 62. self.add_calculated_parameters(df, latit=62.) # metadata['LATIT']) return df class MetadataUMSC(XLSXmeta): """Metadata Class for UMSC reader.""" def __init__(self, settings): """Initialize.""" super().__init__(settings) self.data = {} self.file_specs = self.settings.readers['umsc']['datasets']['xlsx'] ```
{ "source": "JohannesSMHI/ctdvis", "score": 3 }
#### File: ctdvis/tests/app_to_serve.py ```python from bokeh.plotting import curdoc from ctdvis.session import Session """ Ref: https://stackoverflow.com/questions/55049175/running-bokeh-server-on-local-network In a conda-prompt run: cd "PATH_TO_THIS_SCRIPT" bokeh serve app_to_serve.py Bokeh app running at: http://localhost:5006/app_to_serve """ def bokeh_qc_tool(): """Return bokeh layout. Path to CTD-standard-format (including auto-QC-fields). """ data_dir = r'C:\Temp\CTD_DV\test_flex_format' filters = None # filters = dict( # # month_list=[1, 2, 3], # month_list=[4], # # month_list=[7, 8, 9], # # month_list=[10, 11, 12], # # ship_list=['77SE', '34AR'] # # serno_min=311, # # serno_max=355, # ) s = Session( # visualize_setting='slua_vis', visualize_setting='smhi_expedition_vis', # visualize_setting='smhi_vis', data_directory=data_dir, filters=filters, ) s.setup_datahandler() layout = s.run_tool(return_layout=True) return layout bokeh_layout = bokeh_qc_tool() doc = curdoc() doc.add_root(bokeh_layout) ```