metadata
dict
text
stringlengths
60
3.49M
{ "source": "JohannesSMHI/eoana", "score": 2 }
#### File: eoana/eoana/main.py ```python from eoana.config import Settings # from eoana.handler import some_classes, some_funcs class App: """ Keep it clean, keep it tidy! - read - validate - write """ def __init__(self, *args, **kwargs): self.settings = Settings(**kwargs) def validate(self, *args, **kwargs): """""" raise NotImplementedError def read(self, *args, **kwargs): """""" raise NotImplementedError def write(self, *args, **kwargs): """""" raise NotImplementedError if __name__ == '__main__': app = App() ``` #### File: eoana/readers/geotiff.py ```python import time import numpy as np import rasterio as rio import matplotlib.pyplot as plt import xarray as xr class GeoTIFFReader: """ """ @staticmethod def read(fid, as_type=None, nan_value=None): as_type = as_type or float nan_value = nan_value or 255. rst = rio.open(fid) array = rst.read() array = array[0].astype(as_type) array = np.where(array == nan_value, np.nan, array) return array @staticmethod def read_meta(fid): rst = rio.open(fid) meta = rst.meta.copy() meta.update(compress='lzw') return meta def xarray_reader(fid): xarr = xr.open_rasterio(fid) # xarr.sizes['x'] # xarr.sizes['y'] # xarr.coords['x'].data # xarr.coords['y'].data # xarr.data if __name__ == "__main__": fid = 'C:/Temp/Satellit/sentinel_data/kubdata/2021-02-26-.tif' gf_reader = GeoTIFFReader() array = gf_reader.read(fid, as_type=float) meta = gf_reader.read_meta(fid) ``` #### File: eoana/readers/xlsx.py ```python import pandas as pd class PandasReaderBase: """ """ def __init__(self, *args, **kwargs): super(PandasReaderBase, self).__init__() def get(self, item): """ :param item: str :return: """ if item in self.__dict__.keys(): return self.__getattribute__(item) else: print('Warning! Can´t find attribute: %s' % item) return 'None' @staticmethod def read(*args, **kwargs): """ :param args: tuple Expects: file_path :param kwargs: dict Addition: header encoding dtype keep_default_na :return: """ return pd.read_excel(*args, **kwargs) class PandasXlsxReader(PandasReaderBase): """ Reads txt / csv files """ def __init__(self, *args, **kwargs): super(PandasXlsxReader, self).__init__() for key, item in kwargs.items(): setattr(self, key, item) ``` #### File: eoana/validators/attributes.py ```python from eoana.validators.validator import Validator class MandatoryAttributes(Validator): """ """ def __init__(self, *args, **kwargs): super(MandatoryAttributes, self).__init__() for key, item in kwargs.items(): setattr(self, key, item) def validate(self, list_obj, **kwargs): """ :param list_obj: stations.handler.List :return: """ assert self.attributes report = {'approved': {}, 'disapproved': {}} for attr in self.attributes: if list_obj.has_attribute(attr): if list_obj.get(attr).all(): report['approved'].setdefault(attr, 'No missing values') else: report['disapproved'].setdefault(attr, 'WARNING! Missing values') else: report['disapproved'].setdefault(attr, 'WARNING! Missing attribute') # ValidatorLog.update_info( # list_name=list_obj.get('name'), # validator_name=self.name, # info=report, # ) ```
{ "source": "JohannesSMHI/odv_transformer", "score": 3 }
#### File: odv_transformer/readers/discrete.py ```python import pandas as pd from pathlib import Path from odv_transformer.readers.txt import PandasTxtReader from odv_transformer.utils import decmin_to_decdeg class PhysicalChemicalArchiveReader(PandasTxtReader): """Reader for the PhysicalChemical datatype according to archive format.""" def __init__(self, *args, **kwargs): """Initialize.""" super().__init__(*args, **kwargs) for key, item in kwargs.items(): setattr(self, key, item) self.arguments = list(args) self.files = {} def load(self, *args, **kwargs): """Activate files.""" self._activate_files(*args, **kwargs) def read_element(self, *args, **kwargs): """Read data element. Reading excel sheet into pandas.Dataframe. """ df = self._read_file(*args, **kwargs) if type(df) == pd.DataFrame: if 'LATIT' in df: df['LATIT_DD'] = df['LATIT'].apply(decmin_to_decdeg) if 'LONGI' in df: df['LONGI_DD'] = df['LONGI'].apply(decmin_to_decdeg) return df def _read_file(self, *args, **kwargs): """Read file (element) and return dataframe.""" fid = args[0] if type(args) == tuple else args if fid in self.files: if kwargs.get('dtype') == '': kwargs['dtype'] = str df = self.read(self.files.get(fid), **kwargs) df = self.eliminate_empty_rows(df) else: df = None print('File {} not found in delivery'.format(fid)) return df def _activate_files(self, *args, **kwargs): """Set folder paths to self.files.""" folder_path = Path(args[0]) if type(args) == tuple else Path(args) if not folder_path.exists: raise FileNotFoundError( 'Could not find the given directory: {}'.format(folder_path) ) if folder_path.name != 'processed_data': folder_path = folder_path / 'processed_data' for file_name in folder_path.glob('**/*'): self.files.setdefault(file_name.name, file_name) ```
{ "source": "JohannesSMHI/sirena", "score": 2 }
#### File: sirena/core/calculator.py ```python import numpy as np import pandas as pd from datetime import datetime import statsmodels.api as sm from statsmodels.sandbox.regression.predstd import wls_prediction_std from statsmodels.stats.outliers_influence import summary_table from sklearn.preprocessing import PolynomialFeatures from sirena.utils import round_value class AnnualMeanEquation: """Calculator for annual mean values.""" def __init__(self, *args, ref_value_2000=None, k_value=None, year=None, **kwargs): """Initialize.""" self.ref_value = ref_value_2000 or np.nan self.k = k_value or np.nan self.year = year or np.nan def __call__(self): """Return class calculation. Reference year for RH2000 is 2000 calculated_mean__yyyy = ref_value_2000 - k * (yyyy-2000). """ self.calculated = self.ref_value - self.k * (self.year - 2000) return self.calculated def calculate_apparent_land_uplift(self): """Return apparent land uplift. With a linear regression apparent_land_uplift = k """ return (self.ref_value - self.k * (self.year - 2001)) - self.calculated @property def single_line(self): """Return line.""" return '-' * 65 @property def dubble_line(self): """Return dubble line.""" return '=' * 65 def get_summary_string(self, summary): """Return statistical data summary.""" start_idx = summary.find('* The condition') - 1 return '\n'.join(( summary[:start_idx], self.calculation_string, self.single_line, self.equation_string, self.dubble_line, summary[start_idx + 1:] )) @property def equation_string(self): """Return equation as string.""" return '{} = {} - {} * ({}-2000)'.format( round(self.calculated, 3), self.ref_value, round(self.k, 3), self.year ) @property def calculation_string(self): """Return SMHI calculation string.""" return 'SMHI calculation: M_(yyyy) = ref_value_2000 - k * (yyyy-2000)' class OLSEquation: """Example calculator for an Ordinary Least Squares model. https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.OLS.html """ def __init__(self, *args, data=None, parameter=None, **kwargs): """Initialize.""" self.df = data self.parameter = parameter qf_boolean = self.df[self.parameter].isna() if qf_boolean.any(): self.df.drop(self.df[qf_boolean].index, inplace=True) def __call__(self): """Return class calculation.""" res = sm.OLS( self.df[self.parameter], self.df.loc[:, ['year', 'intercept']], hasconst=True ).fit() return res class OLSLinearRegression: """Example calculator for an Ordinary Least Squares model. https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.OLS.html """ def __init__(self, *args, data=None, parameter=None, **kwargs): """Initialize.""" self.df = data self.parameter = parameter qf_boolean = self.df[self.parameter].isna() if qf_boolean.any(): self.df.drop(self.df[qf_boolean].index, inplace=True) def __call__(self): """Return class calculation.""" x = self.df['year'].values y = self.df[self.parameter].values x = x[:, np.newaxis] y = y[:, np.newaxis] x = sm.add_constant(x) res = sm.OLS(y, x).fit() return res class OLSPolynomialRegression: """Example calculator for an Polynominal Regression model. Source: https://ostwalprasad.github.io/machine-learning/Polynomial-Regression-using-statsmodel.html """ def __init__(self, *args, data=None, parameter=None, polynomial_degree=None, **kwargs): """Initialize.""" self.df = data self.parameter = parameter self.polynomial_degree = polynomial_degree or 2 qf_boolean = self.df[self.parameter].isna() if qf_boolean.any(): self.df.drop(self.df[qf_boolean].index, inplace=True) def __call__(self): """Return class calculation.""" x = self.df['year'].values y = self.df[self.parameter].values x = x[:, np.newaxis] y = y[:, np.newaxis] polynomial_features = PolynomialFeatures(degree=self.polynomial_degree) xp = polynomial_features.fit_transform(x) res = sm.OLS(y, xp).fit() return res class CalculatorBase: """Base class for Node Calculator.""" def __init__(self): """Initialize.""" super().__init__() self.attributes = set([]) def __setattr__(self, key, value): """Set attribute.""" super().__setattr__(key, value) if key != 'attributes' and not key.startswith('_'): self.attributes.add(key) def update_attributes(self, **kwargs): """Update attributes of self.""" for attribute, value in kwargs.items(): setattr(self, attribute, value) class Calculator(CalculatorBase): """Node Calculator.""" def __init__(self, calculation_year=None): """Initialize.""" super().__init__() self.calc_year = calculation_year @staticmethod def calculate_wls_prediction_std(result): """Calculate and return Weighted Least Squares. https://www.statsmodels.org/stable/examples/notebooks/generated/wls.html """ return wls_prediction_std(result) @staticmethod def get_regression_summary(result, conf_int=0.95, columns=None, as_dataframe=False): """Return regression summary.""" column_mapper = { 'Obs': 'obs', 'Dep Var\nPopulation': 'dep_var_population', 'Predicted\nValue': 'predicted_value', 'Std Error\nMean Predict': 'std_error_mean_predict', 'Mean ci\n95% low': 'mean_ci_lo', 'Mean ci\n95% upp': 'mean_ci_up', 'Predict ci\n95% low': 'pred_ci_lo', 'Predict ci\n95% upp': 'pred_ci_up', 'Residual': 'residual', 'Std Error\nResidual': 'std_error_residual', 'Student\nResidual': 'student_residual', "Cook's\nD": 'cooks' } # columns = columns or ['Mean ci\n95% low', 'Mean ci\n95% upp'] simple_table, data_table, table_columns = summary_table(result, alpha=conf_int) table_columns = [column_mapper.get(c) for c in table_columns] if as_dataframe: return pd.DataFrame(data_table, columns=table_columns) def calculate_running_mean(self, data, parameter): """Calculate running mean. Using climatological normal period of 30 years. """ running_mean = data[parameter].rolling( 31, center=True, # min_periods=3, ).mean() self.update_attributes(running_mean=running_mean) def calculate_annual_mean_water_level(self, station_attr): """Calculate annual mean water level and update attribute. Calculations for a specific station. """ if station_attr: try: k = float(round_value(self.result.params[1], nr_decimals=2)) * -1 or np.nan except IndexError: k = np.nan station_attr.setdefault('ref_value_2000', np.nan) station_attr.setdefault('k_value', k) station_attr.setdefault('year', self.calc_year or None) am = AnnualMeanEquation(**station_attr) res = am() station_attr.setdefault('annual_mean', round_value(res, nr_decimals=1)) station_attr.setdefault('apparent_land_uplift', round_value(k, nr_decimals=2)) station_attr.setdefault('summary', am.get_summary_string(self.result.summary2().as_text())) self.update_attributes(**station_attr) def calculate_stats(self, data, parameter): """Calculate statistics.""" data = data.assign(intercept=1., year=lambda x: x.timestamp.dt.year) # ols = OLSPolynomialRegression( # data=data, # parameter=parameter, # polynomial_degree=2 # ) ols = OLSLinearRegression( data=data, parameter=parameter, ) res = ols() reg_sum = self.get_regression_summary( res, conf_int=0.05, as_dataframe=True ) self.update_attributes( result=res, data_values=data[parameter], year=data['year'], predstd=reg_sum['predicted_value'], ci_l=reg_sum['mean_ci_lo'], ci_u=reg_sum['mean_ci_up'], iv_l=reg_sum['pred_ci_lo'], iv_u=reg_sum['pred_ci_up'] ) class Statistics(dict): """Dictionary of stations with applied calculations.""" def __init__(self, calculation_year=None): """Initialize.""" super().__init__() self.calc_year = calculation_year or datetime.now().year print('Calculate annual mean water level for year {}'.format(self.calc_year)) def append_new_station(self, **kwargs): """Append data and calculations to self. Args: **kwargs: Station data/information. """ name = kwargs.get('name') if name: print('New station added: {}'.format(name)) self.setdefault(name, Calculator(calculation_year=self.calc_year)) self[name].calculate_stats(kwargs.get('data'), kwargs.get('parameter')) self[name].calculate_annual_mean_water_level(kwargs.get('station_attr')) self[name].calculate_running_mean(kwargs.get('data'), kwargs.get('parameter')) ``` #### File: sirena/core/data_handler.py ```python from abc import ABC import numpy as np import pandas as pd import datetime as dt class Frame(pd.DataFrame, ABC): """Stores data from one, and only one, station. We intend to insert information from the WIKSI database. """ # datetime start date (timestamp.millisecond = 0) # https://docs.python.org/3.3/library/datetime.html # time before this timestamp counts as negative milliseconds dt_start = dt.datetime(1970, 1, 1) @property def _constructor(self): """Construct Frame. Constructor for Frame, overides method in pandas.DataFrame. """ return Frame def convert_formats(self): """Convert formats of self.""" self['timestamp'] = self['timestamp'].apply( lambda x: self.dt_start + dt.timedelta(milliseconds=float(x)) ) self[self.data_columns] = self[self.data_columns].astype(float) def exclude_flagged_data(self, q_flags=None): """Exclude flagged data. By default we exclude values flagged with: 3 (160) Probably bad 4 (220) Bad 8 (82) Interpolated ..found flag 255, presumably this indicates a bad value """ q_flags = q_flags or ['3', '4', '8', '82', '160', '220', '255'] # qf_boolean = self['quality'].isin(q_flags) # self.drop(self[qf_boolean].index, inplace=True) for qf_column in self.quality_flag_columns: qf_boolean = self[qf_column].isin(q_flags) self.loc[qf_boolean, qf_column.replace('Q_', '')] = np.nan @property def data_columns(self): """Return (only) data columns.""" cols = [] for c in self.columns: if c != 'timestamp' and not c.startswith('Q_'): cols.append(c) return cols @property def quality_flag_columns(self): """Return (only) flag columns.""" cols = [] for c in self.columns: if c.startswith('Q_'): cols.append(c) return cols class DataFrames(dict): """Stores information for multiple stations. Use station name as key in this dictionary of Frame()-objects. """ def append_new_frame(self, **kwargs): """Append new Frame object to self.""" name = kwargs.get('name') data = kwargs.get('data') if name: self.setdefault(name, Frame(data, columns=kwargs.get('columns'))) self[name].convert_formats() self[name].exclude_flagged_data() ``` #### File: sirena/readers/samsa.py ```python import requests class SAMSABase: """Base class for SAMSA reader.""" def __init__(self): """Initialize.""" super(SAMSABase, self).__init__() self.server = None self._time_limit = None self._filters = None self._fields = None def update_attributes(self, **kwargs): """Update attributes.""" for attribute, value in kwargs.items(): setattr(self, attribute, value) def get_data(self, *args, **kwargs): """Return data.""" raise NotImplementedError @property def url(self): """Return url.""" return ''.join((self.server, self.filter_combo)) @property def filter_combo(self): """Return filter_combo.""" return '&'.join((self.time_limit, self.filters, self.fields)) @property def time_limit(self): """Return time_limit.""" return self._time_limit @time_limit.setter def time_limit(self, value): """Set time_limit.""" self._time_limit = 'timeLimit=' + str(value) @property def filters(self): """Return filters.""" return self._filters @filters.setter def filters(self, filter_list): """Set filters.""" self._filters = 'filters=' + ','.join(filter_list) @property def fields(self): """Return fields.""" return self._fields @fields.setter def fields(self, field_list): """Set fields.""" self._fields = 'fields=' + ','.join(field_list) class SAMSAData(SAMSABase): """SAMSA reader.""" def __init__(self): """Initialize.""" super(SAMSAData, self).__init__() def get_data(self): """Return data.""" data = None try: data = requests.get(self.url).json() data = data.get('data') except requests.exceptions.RequestException as e: print('Could not load data.') print(e) # logging.warning('Could not load data.') return data ```
{ "source": "JohannesSMHI/svea_experimental_visualization", "score": 2 }
#### File: svea_expvis/bokeh_widgets/callbacks.py ```python from functools import partial from bokeh.models import Button, FileInput, CustomJS, CrosshairTool from bokeh.layouts import row, Spacer from bokeh.models.widgets import Select from bokeh.plotting import figure from bokeh.events import ButtonClick def update_colormapper(fig=None, plot=None, color_mapper=None, data_source=None, x_sel=None): """Update the color map.""" code = """ var parameter = cb_obj.value; console.log('parameter', parameter); // var data = data_source.data; const {transform} = renderer.glyph.fill_color; transform.low = color_mapper[parameter].low; transform.high = color_mapper[parameter].high; console.log('transform.low', transform.low); console.log('transform.high', transform.high); renderer.glyph.fill_color = {field: parameter, transform: transform}; fig.reset.emit() """ return CustomJS( args=dict(fig=fig, renderer=plot, color_mapper=color_mapper, data_source=data_source, x_sel=x_sel), code=code) def update_colormapper_transect(fig=None, plot=None, color_mapper=None): """Update the color map.""" code = """ var parameter = cb_obj.value; const {transform} = renderer.glyph.fill_color; var z = 'z'; transform.low = color_mapper[parameter].low; transform.high = color_mapper[parameter].high; // console.log('transform.low', transform.low); // console.log('transform.high', transform.high); renderer.glyph.fill_color = {field: z, transform: transform}; //renderer.glyph.fill_color = {field: 'z', transform: color_mapper[parameter]}; //color_bar = color_mapper[parameter]; //color_bar.trigger('change') fig.reset.emit() """ return CustomJS( args=dict(fig=fig, renderer=plot, color_mapper=color_mapper), code=code) def update_colormapper_range(fig=None, plot=None, data_source=None): """Update the color map.""" code = """ var data = data_source.data; var parameter = cb_obj.value; const {transform} = renderer.glyph.fill_color; var z = 'z'; transform.low = Math.min.apply(Math, data.z)-0.1; transform.high = Math.max.apply(Math, data.z)+0.1; renderer.glyph.fill_color = {field: z, transform: transform}; fig.reset.emit() """ return CustomJS( args=dict(fig=fig, renderer=plot, data_source=data_source), code=code) def select_callback(data_source=None, axis_objs=None, axis=None): """Return JS callback select object.""" code = """ var selector_parameter = this.value; var data = data_source.data; var axis_objs = axis_objs; if (axis == 'x') { data['x'] = data[selector_parameter]; } else if (axis == 'y') { data['y'] = data[selector_parameter]; } for (var i = 0; i < axis_objs.length; i++) { axis_objs[i].axis_label = selector_parameter } data_source.selected.indices = []; data_source.change.emit(); """ return CustomJS( code=code, args={'data_source': data_source, 'axis_objs': axis_objs, 'axis': axis} ) def lasso_callback(x_selector=None, y_selector=None, data_source=None, corr_source=None): """Return JS callback lasso object.""" code = """ console.log('lasso_callback'); var x_param = x_selector.value; var y_param = y_selector.value; var data = data_source.data; var new_data = {x: [], y: []}; var indices = data_source.selected.indices; var x_val, y_val; for (var i = 0; i < indices.length; i++) { x_val = data[x_param][indices[i]]; y_val = data[y_param][indices[i]]; new_data.x.push(x_val); new_data.y.push(y_val); } corr_source.data = new_data; """ return CustomJS(args=dict( x_selector=x_selector, y_selector=y_selector, data_source=data_source, corr_source=corr_source ), code=code) def lasso_transect_callback(z_selector=None, pos_source=None, data_source=None, plot_source=None): """Return JS callback lasso object.""" code = """ var x_param = 'timestamp'; var y_param = 'PRES_CTD'; var z_param = z_selector.value; var time_param = 'timestring'; var data = data_source.data; var pos = pos_source.data; var new_data = {x: [], y: [], z: []}; var pos_indices = pos_source.selected.indices; var selected_keys = []; for (var i = 0; i < pos_indices.length; i++) { selected_keys.push(pos[time_param][pos_indices[i]]); } var x_val, y_val, z_val, time_val; for (var i = 0; i < data.x.length; i++) { time_val = data[time_param][i]; if (selected_keys.indexOf(time_val) !== -1) { x_val = data[x_param][i]; y_val = data[y_param][i]; z_val = data[z_param][i]; new_data.x.push(x_val); new_data.y.push(y_val); new_data.z.push(z_val); } } plot_source.data = new_data; """ return CustomJS(args=dict( z_selector=z_selector, pos_source=pos_source, data_source=data_source, plot_source=plot_source, ), code=code) def lasso_corr_callback(x_selector=None, y_selector=None, data_source=None, position_source=None, corr_source=None, corr_plot=None): """Return JS callback lasso object.""" code = """ console.log('lasso_callback'); var x_param = x_selector.value; var y_param = y_selector.value; var data = data_source.data; var pos_data = position_source.data; var new_data = {x: [], y: [], dep: [], key: []}; var indices = cb_obj.indices; var selected_keys = []; for (var i = 0; i < indices.length; i++) { selected_keys.push(pos_data['KEY'][indices[i]]); } var key_val, x_val, y_val, dep_val; for (var i = 0; i < data.KEY.length; i++) { key_val = data.KEY[i]; if (selected_keys.indexOf(key_val) !== -1) { x_val = data[x_param][i]; y_val = data[y_param][i]; dep_val = data['DEPH'][i]; new_data.x.push(x_val); new_data.y.push(y_val); new_data.dep.push(dep_val); new_data.key.push(key_val); } } if (new_data.x.length > 1) { //console.log('axes_range update!', corr_plot.x_range.start, corr_plot.x_range.end, corr_plot.y_range.start, corr_plot.y_range.end) var min_value = Math.min(...new_data.x.filter(x => !Number.isNaN(x)), ...new_data.y.filter(x => !Number.isNaN(x)))-0.2; var max_value = Math.max(...new_data.x.filter(x => !Number.isNaN(x)), ...new_data.y.filter(x => !Number.isNaN(x)))+0.2; corr_plot.x_range.start = min_value; corr_plot.x_range.end = max_value; corr_plot.y_range.start = min_value; corr_plot.y_range.end = max_value; corr_plot.change.emit(); corr_plot.reset.emit(); //console.log('after update!', corr_plot.x_range.start, corr_plot.x_range.end, corr_plot.y_range.start, corr_plot.y_range.end) } corr_source.data = new_data; """ return CustomJS(args=dict( x_selector=x_selector, y_selector=y_selector, data_source=data_source, position_source=position_source, corr_source=corr_source, corr_plot=corr_plot, ), code=code) def range_selection_callback(data_source=None): """Return JS callback select object.""" code = """ var data = data_source.data; var min_dep = cb_obj.value[0]; var max_dep = cb_obj.value[1]; var indices = []; for (var i = 0; i < data.dep.length; i++) { if ((data.dep[i] >= min_dep) && (data.dep[i] <= max_dep)) { indices.push(i) } } data_source.selected.indices = indices; """ return CustomJS(args={'data_source': data_source}, code=code) def range_slider_update_callback(slider=None, data_source=None): """Return JS callback slider object.""" code = """ var data = data_source.data; //var values = []; //var i = 0; //while ( ! isNaN(data.y[i]) ) { // values.push(data.y[i]) // i++ //} slider.start = Math.min.apply(Math, data.dep); slider.end = Math.max.apply(Math, data.dep); slider.value = [slider.start, slider.end]; slider.change.emit(); """ return CustomJS(args={'slider': slider, 'data_source': data_source}, code=code) def month_selection_callback(position_source=None, position_master_source=None): """Return JS callback select object.""" code = """ console.log('month_selection_callback'); // Get data from ColumnDataSource var selected_data = {LATIT: [], LONGI: [], STATN: [], KEY: [], MONTH: []}; var master = master_source.data; var month_mapping = {'All': 'All', 'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}; var selected_month = month_mapping[month.value]; var key_val, lat_val, lon_val, statn_val, mon_val; for (var i = 0; i < master.KEY.length; i++) { key_val = master.KEY[i]; lat_val = master.LATIT[i]; lon_val = master.LONGI[i]; statn_val = master.STATN[i]; mon_val = master.MONTH[i]; if (selected_month == 'All') { selected_data.KEY.push(key_val); selected_data.LATIT.push(lat_val); selected_data.LONGI.push(lon_val); selected_data.STATN.push(statn_val); selected_data.MONTH.push(mon_val); } else if (mon_val == selected_month) { selected_data.KEY.push(key_val); selected_data.LATIT.push(lat_val); selected_data.LONGI.push(lon_val); selected_data.STATN.push(statn_val); selected_data.MONTH.push(mon_val); } } source.data = selected_data; """ # Create a CustomJS callback with the code and the data return CustomJS(args={'source': position_source, 'master_source': position_master_source}, code=code) def lasso_correlation_callback(z_selector=None, pos_source=None, data_source=None, plot_source=None, line_source=None): """Return JS callback lasso object.""" code = """ var mapper = {'DOXY_CTD': 'DOXY_MVP', 'DENS_CTD': 'DENS_MVP'}; var time_param = 'timestring'; var selected_param = z_selector.value; var selected_param_mvp = mapper[selected_param]; var data = data_source.data; var pos = pos_source.data; var pos_indices = pos_source.selected.indices; var selected_keys = []; for (var i = 0; i < pos_indices.length; i++) { selected_keys.push(pos[time_param][pos_indices[i]]); } var new_data = {x: [], y: []}; var x_val, y_val, time_val; for (var i = 0; i < data.PRES_CTD.length; i++) { time_val = data[time_param][i]; if (selected_keys.indexOf(time_val) !== -1) { x_val = data[selected_param][i]; y_val = data[selected_param_mvp][i]; new_data.x.push(x_val); new_data.y.push(y_val); } } var high = Math.max.apply(Math, [Math.max.apply(Math, new_data.x), Math.max.apply(Math, new_data.y)]); var low = Math.min.apply(Math, [Math.min.apply(Math, new_data.x), Math.min.apply(Math, new_data.y)]); line_source.data = {x: [low, high], y: [low, high]}; plot_source.data = new_data; """ return CustomJS(args=dict( z_selector=z_selector, pos_source=pos_source, data_source=data_source, plot_source=plot_source, line_source=line_source, ), code=code) ``` #### File: svea_expvis/bokeh_widgets/map.py ```python from bokeh.plotting import figure from bokeh.tile_providers import get_provider, Vendors tile_provider = get_provider('CARTODBPOSITRON') def get_map(title='', x_range=None, y_range=None, tooltips=None): x_range = x_range or (500000, 3000000) y_range = y_range or (7000000, 10000000) """Return a bokeh figure.""" fig = figure( x_range=x_range, y_range=y_range, x_axis_type="mercator", y_axis_type="mercator", plot_height=500, plot_width=800, tools="pan,lasso_select,wheel_zoom,reset,save", active_drag="lasso_select", active_scroll="wheel_zoom", tooltips=tooltips, title=title ) fig.xgrid.grid_line_color = None fig.ygrid.grid_line_color = None fig.add_tile(tile_provider) return fig ``` #### File: svea_expvis/bokeh_widgets/utils.py ```python import numpy as np import pandas as pd import geopandas as gp from shapely.geometry import Point, MultiPoint from shapely.ops import nearest_points from datetime import datetime as dt from pyproj import CRS, transform from decimal import Decimal, ROUND_HALF_UP from bokeh.models import ColumnDataSource def round_value(value, nr_decimals=2): """Calculate rounded value.""" return str(Decimal(str(value)).quantize(Decimal('%%1.%sf' % nr_decimals % 1), rounding=ROUND_HALF_UP)) def decmin_to_decdeg(pos, string_type=True, decimals=4): """Convert position from decimal degrees into degrees and decimal minutes.""" pos = float(pos) output = np.floor(pos / 100.) + (pos % 100) / 60. output = round_value(output, nr_decimals=decimals) if string_type: return output else: return float(output) def convert_projection(lats, lons): """Convert coordinates to a different system.""" project_projection = CRS('EPSG:4326') google_projection = CRS('EPSG:3857') x, y = transform(project_projection, google_projection, lons, lats, always_xy=True) return x, y def get_columndata_source(df, *args, lat_col=None, lon_col=None): """Return a bokeh ColumnDataSource object.""" if lat_col: xs, ys = convert_projection(df[lat_col].astype(float).values, df[lon_col].astype(float).values) df['LONGI'] = xs df['LATIT'] = ys if any(args): params = list(args) df['x'] = df[params[0]] df['y'] = df[params[1]] if lon_col and lat_col and (lon_col != 'LONGI' and lat_col != 'LATIT'): df = df.drop(columns=[lat_col, lon_col]) return ColumnDataSource(df) def get_columndata_source_json(indata, xy_params=False): """ indata-structure: { timestamp: { lat: value, lon: value, data: { o2: array, dens: array, pressure: array } } } """ new_data = { 'timestring': [], 'timestamp': [], 'PRES_CTD': [], 'DOXY_CTD': [], 'DENS_CTD': [], } for key, item in indata.items(): new_data['DOXY_CTD'].extend(item['data']['o2']) new_data['DENS_CTD'].extend(item['data']['dens']) new_data['PRES_CTD'].extend(item['data']['pressure']) new_data['timestring'].extend([key] * len(item['data']['o2'])) # new_data['timestamp'].extend([dt.strptime(key, "%Y%m%d%H%M%S")] * len(item['data']['o2'])) new_data['timestamp'].extend([pd.Timestamp(key)] * len(item['data']['o2'])) if xy_params: new_data['x'] = new_data['DOXY_CTD'] new_data['y'] = new_data['PRES_CTD'] return ColumnDataSource(new_data) def get_position_columndata_source_json(indata): """ indata-structure: { timestamp: { lat: value, lon: value, data: { o2: array, dens: array, pressure: array } } } """ new_data = { 'timestring': [], 'lat': [], 'lon': [] } for key, item in indata.items(): new_data['timestring'].append(key) new_data['lat'].append(item['lat']) new_data['lon'].append(item['lon']) xs, ys = convert_projection(new_data['lat'], new_data['lon']) new_data['lon'] = xs new_data['lat'] = ys return ColumnDataSource(new_data) def get_matching_columndata_source(data_ctd=None, data_mvp=None, match_timestrings=None): """Pick out matching values between the data sources.""" new_data = { 'timestring': [], 'timestamp': [], 'PRES_CTD': [], 'DOXY_CTD': [], 'DENS_CTD': [], 'DOXY_MVP': [], 'DENS_MVP': [], } df_ctd = pd.DataFrame(data_ctd.data) df_mvp = pd.DataFrame(data_mvp.data) for ctd_time, mvp_time in match_timestrings.items(): mvp_boolean = df_mvp['timestring'] == mvp_time ctd_boolean = df_ctd['timestring'] == ctd_time ctd_boolean = ctd_boolean & (df_ctd['PRES_CTD'].isin(df_mvp.loc[mvp_boolean, 'PRES_CTD'])) for row in df_ctd.loc[ctd_boolean, :].itertuples(): depth_boolean = mvp_boolean & (df_mvp['PRES_CTD'] == row.PRES_CTD) if depth_boolean.sum() == 1: new_data['timestring'].append(row.timestring) new_data['timestamp'].append(row.timestamp) new_data['PRES_CTD'].append(row.PRES_CTD) new_data['DOXY_CTD'].append(row.DOXY_CTD) new_data['DENS_CTD'].append(row.DENS_CTD) new_data['DOXY_MVP'].append(df_mvp.loc[depth_boolean, 'DOXY_CTD'].values[0]) new_data['DENS_MVP'].append(df_mvp.loc[depth_boolean, 'DENS_CTD'].values[0]) return ColumnDataSource(new_data) def get_matching_positions(data_ctd=None, data_mvp=None): gf_ctd = gp.GeoDataFrame(data_ctd.data) gf_ctd.geometry = gf_ctd[['lat', 'lon']].apply(lambda x: Point(x), axis=1) gf_mvp = gp.GeoDataFrame(data_mvp.data) gf_mvp.geometry = gf_mvp[['lat', 'lon']].apply(lambda x: Point(x), axis=1) mvp_points = MultiPoint(gf_mvp['geometry']) matching = {} for row in gf_ctd.itertuples(): mvp_index = np.where(gf_mvp.geometry == nearest_points(row.geometry, mvp_points)[1])[0][0] if row.geometry.distance(mvp_points[mvp_index]) < 10000: matching[row.timestring] = gf_mvp['timestring'][mvp_index] # returning dict. Matching CTD-timestring to MVP-timestring {"CTD-timestring": "MVP-timestring"} return matching ``` #### File: svea_experimental_visualization/svea_expvis/filter.py ```python import pandas as pd class Name: """Class to extract information from file names.""" splitter = '_' def __init__(self, file_name): """Initialize.""" args = file_name.strip('.txt').split(self.splitter) self.date = pd.Timestamp(args[2]) self.shipc = args[3] self.serno = float(args[4]) class SplitNameList: """Holds a lists of file name information.""" dates = [] ships = [] sernos = [] def __init__(self, name_list): """Initialize.""" self.names = name_list for name in name_list: name_obj = Name(name) self.append_date(name_obj.date) self.append_shipc(name_obj.shipc) self.append_serno(name_obj.serno) @classmethod def append_date(cls, d): """Append date to class list.""" cls.dates.append(d) @classmethod def append_shipc(cls, s): """Append ship code to class list.""" cls.ships.append(s) @classmethod def append_serno(cls, s): """Append serno to class list.""" cls.sernos.append(s) class Filter: """Filter filenames according to ctd-standard format eg. 'ctd_profile_20181208_34AR_0171.txt'. """ def __init__(self, name_list): """Initialize.""" lists = SplitNameList(name_list) self.serie_names = pd.Series(lists.names) self.serie_dates = pd.Series(lists.dates) self.serie_ships = pd.Series(lists.ships) self.serie_sernos = pd.Series(lists.sernos) self._boolean = True def add_filter(self, **kwargs): """Add new filter. If any valid filter arguments: append boolean according to @boolean.setter (property.setter). """ if 'month_list' in kwargs: self.boolean = self.serie_dates.dt.month.isin(kwargs.get('month_list')) if 'ship_list' in kwargs: self.boolean = self.serie_ships.isin(kwargs.get('ship_list')) if 'serno_max' in kwargs: self.boolean = self.serie_sernos <= kwargs.get('serno_max') if 'serno_min' in kwargs: self.boolean = self.serie_sernos >= kwargs.get('serno_min') @property def valid_file_names(self): """Return valid file names.""" return self.serie_names[self.boolean].values @property def boolean(self): """Return boolean.""" return self._boolean @boolean.setter def boolean(self, add_bool): """Set boolean.""" self._boolean = self._boolean & add_bool ```
{ "source": "JohannesSMHI/weather-dashboard", "score": 3 }
#### File: weather-dashboard/data_handler/rainy.py ```python RAIN_MAPPER = { 'rainh': ['date', 'hour'], 'raind': ['date'], 'rainw': ['week'], 'rainm': ['month'], 'raint': ['year'] } def get_rainframe(df, parameter): """Return a grouped dataframe based on the timing attribute.""" if not df.empty: return df.groupby( [df['timestamp'].dt.__getattribute__(t_spec) for t_spec in RAIN_MAPPER.get(parameter)] ).max().reset_index(drop=True) else: return df ```
{ "source": "johannessonlab/SpokBlockPaper", "score": 2 }
#### File: Annotation/scripts/GFFnumerator.py ```python import sys # To exit the script import os # For the input name import argparse # For the fancy options # import time import datetime import gffutils import gffutils.inspect as inspect # ------------------------------------------------------ version = 1 versiondisplay = "{0:.2f}".format(version) # ============================ # Make a nice menu for the user # ============================ parser = argparse.ArgumentParser(description="* Script to re-name the IDs of the genes and features of a GFF3 file *") # Create the object using class argparse # Add options parser.add_argument('GFF', help="GFF3 file sorted beforehand") parser.add_argument('--sample', '-s', help="String representing sample that gets appended into the gene IDs") parser.add_argument("--printdb", "-p", help="Print the database into a file instead of saving it in memory", default=False, action='store_true') parser.add_argument('--version', '-v', action='version', version='%(prog)s ' + versiondisplay) try: # ArgumentParser parses arguments through the parse_args() method You can # parse the command line by passing a sequence of argument strings to # parse_args(). By default, the arguments are taken from sys.argv[1:] args = parser.parse_args() GFFopen = open(args.GFF, 'r') except IOError as msg: # Check that the file exists parser.error(str(msg)) parser.print_help() # ============================ # --------------------------------- # Make database # --------------------------------- # t0 = time.time() # This will parse the file, infer the relationships among the features in the file, and store the features and relationships # See https://pythonhosted.org/gffutils/autodocs/gffutils.create_db.html # I expect a MAKER gff, where CDS have no unique ID if args.printdb: input_base = os.path.splitext(args.GFF)[0] # Taking out the prefix of the file input_name = os.path.basename(input_base) # Remove the path dbfnchoice = input_name + '.db' else: dbfnchoice = ':memory:' id_spec={"gene": ["ID", "Name"], "mRNA": ["ID", "transcript_id"]} # http://daler.github.io/gffutils/database-ids.html db = gffutils.create_db(data = args.GFF, dbfn = dbfnchoice, force = True, # force=True overwrite any existing databases. id_spec = id_spec, merge_strategy = "create_unique") # Add an underscore an integer at the end for each consecutive occurrence of the same ID # verbose = True,) # t1 = time.time() # db_results = inspect.inspect(db) # Report # print("\n\nIt took {0:.1f}s to create database".format(t1 - t0)) # --------------------------------- ## Get iterator of all genes genes = [gene for gene in db.features_of_type("gene")] nogenes = db.count_features_of_type("gene") # Get ids of genes in database allIDsGenes = [gene.id for gene in db.features_of_type("gene")] ## Make new IDs for the genes if args.sample is not None: newIDgene = [args.sample + "{0:05d}".format(n) for n in range(1, nogenes + 1)] else: newIDgene = ["gene.{0:05d}".format(n) for n in range(1, nogenes + 1)] # --------------------------- ### Change IDs # --------------------------- def getnewID(id): indexgene = allIDsGenes.index(id) newid = newIDgene[indexgene] # print(newid) return(newid) def gen(): sys.stdout.write("##gff-version 3\n") # Add a line to mark the file with this script now = datetime.datetime.now() newhead = '# Original file ' + os.path.basename(args.GFF) + ' modified with GFFnummerator.py v. ' + str(versiondisplay) + ' on ' + str(now) + '\n' sys.stdout.write(newhead) # Actual GFF for gene in db.features_of_type('gene'): # for gene in db.features_of_type('gene', order_by='start'): newidgene = getnewID(gene.id) gene['ID'] = newidgene print(gene) mRNA = 1 for child in list(db.children(gene)): if child.featuretype == "mRNA": child['Parent'] = newidgene # make a new ID for the mRNA newidrna = newidgene + "-mRNA" + str(mRNA) mRNA += 1 child['ID'] = newidrna print(child) # Update all the features that depend on the mRNA, assuming each feature has a SINGLE parent typeids = {'gene':1, 'mRNA':1, 'exon':1, 'CDS':1, 'five_prime_UTR':1, 'three_prime_UTR':1} for grandchild in list(db.children(gene, level = 2)): grandchild['Parent'] = newidrna # TODO Add something here, a conditional, in case there are multiple parents typefea = grandchild.featuretype # What type are we dealing with? newidchild = newidrna + '-' + typefea + "{0:01d}".format(typeids[typefea]) grandchild['ID'] = newidchild typeids[typefea] += 1 # Increase the count of the corresponding type for this gene print(grandchild) gen() ```
{ "source": "JohannesStutz/beproductive", "score": 2 }
#### File: beproductive/beproductive/blocker.py ```python __all__ = ['APP_NAME', 'REDIRECT', 'WIN_PATH', 'LINUX_PATH', 'NOTIFY_DURATION', 'ICON_PATH', 'host_fp', 'host_fp_copy', 'host_fp_blocked', 'Blocker'] # Cell from pathlib import Path from shutil import copy import beproductive.config as config import sys try: from win10toast import ToastNotifier win_notify = ToastNotifier() except: win_notify = False # Cell APP_NAME = 'Be Productive' REDIRECT = '127.0.0.1' WIN_PATH = r'C:\Windows\System32\drivers\etc' LINUX_PATH = r'/etc' NOTIFY_DURATION = 5 # CHANGE TO 5 FOR PRODUCTION ICON_PATH = 'icon.ico' if sys.platform == 'win32': host_path = Path(WIN_PATH) else: host_path = Path(LINUX_PATH) host_fp = host_path/'hosts' host_fp_copy = host_path/'hosts.original' host_fp_blocked = host_path/'hosts.blocked' # Cell class Blocker(): "The core of the package. It modifies the hosts file of the OS." def __init__(self, redirect=REDIRECT): self.adminrights = False self.redirect = redirect self.blocklist = config.load_config() if not host_fp_copy.exists(): self._setup() if self._create_blocked_list(): self.adminrights = True def _setup(self): "Creates a copy of the `hosts` file and saves it as `hosts.original`" try: copy(host_fp, host_fp_copy) self.notify("Setup successful") except PermissionError: self._raise_permission_error() def _create_blocked_list(self): "Creates a copy of `hosts.original` and saves it to `hosts.blocked`. Then adds all blocked sites." try: copy(host_fp_copy, host_fp_blocked) with open(host_fp_blocked, "a") as blocked_file: for url in self.blocklist: # TODO: refine, add www only if not in url, remove www if in url blocked_file.write(f"{self.redirect} {url} www.{url} api.{url}\n") # Special case for Twitter which has a special API URL if url == 'twitter.com': blocked_file.write(f"{self.redirect} tpop-api.twitter.com\n") return True except PermissionError: self._raise_permission_error() return False def block(self, notify=False): "Blocks all specified websites by replacing `hosts` file with `hosts.blocked`" try: copy(host_fp_blocked, host_fp) except PermissionError: self._raise_permission_error() return False if notify: self.notify("Websites blocked, enjoy your work.") return "Websites blocked" def unblock(self, notify=False): "Unblocks all websites by restoring the original `hosts` file" try: copy(host_fp_copy, host_fp) except PermissionError: self._raise_permission_error() return False if notify: self.notify("All websites unblocked.") return "Websites unblocked" def notify(self, message, title=APP_NAME, duration=NOTIFY_DURATION): "Sends notification to CLI and - if available - to GUI" print(message) if win_notify: win_notify.show_toast(title, message, duration=duration) def _raise_permission_error(self): self.notify("Permission Error. Please run the command line tool as ADMINISTRATOR.") ``` #### File: beproductive/beproductive/pomodoro.py ```python __all__ = ['WORK_TIME', 'BREAK_TIME', 'POMODOROS', 'pomodoro'] # Cell from time import sleep from .blocker import * import sys WORK_TIME = 25 # minutes BREAK_TIME = 5 # minutes POMODOROS = 4 # Cell def pomodoro(work_time=WORK_TIME, break_time=BREAK_TIME, pomodoros=POMODOROS): blocker = Blocker() if not blocker.adminrights: return False turn = 1 while turn <= pomodoros: if blocker.block(): blocker.notify(f"Pomodoro no. {turn} of {pomodoros} started, work for {work_time} minutes") else: blocker.notify("An error occured. Please exit with ctrl+c") sleep(work_time*60) blocker.unblock() if turn < pomodoros: blocker.notify(f"Pomodoro no. {turn} ended, take a {break_time} minutes break") sleep(break_time*60) else: blocker.notify(f"Pomodoro session ended, take a longer break. All websites unblocked.", duration=10) turn += 1 ```
{ "source": "JohannesStutz/blurry", "score": 2 }
#### File: blurry/blurry/core.py ```python __all__ = ['show_cv2', 'blur', 'pixelate', 'find_faces', 'blur_areas', 'anonymize', 'load_img', 'path', 'get_image_download_link', 'img1', 'img2', 'img3', 'example', 'img_file', 'uploaded_file'] # Cell import cv2 import numpy as np import fastcore import math from pathlib import Path import matplotlib.pyplot as plt from PIL import Image ### For Streamlit ### import streamlit as st import base64 from io import BytesIO # Cell def show_cv2(img: np.ndarray) -> None: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) display(Image.fromarray(img)) # Cell def blur(img: np.ndarray, factor=1, sigma_x=0) -> np.ndarray: h, w, _ = img.shape kernel_size = max(w,h) / 3 kernel_size *= factor kernel_size = math.ceil(kernel_size) # Make sure that kernel size is an odd number if kernel_size % 2 == 0: kernel_size += 1 return cv2.GaussianBlur(img, (kernel_size, kernel_size), sigma_x) # Cell def pixelate(img: np.ndarray, factor=1) -> np.ndarray: h, w, _ = img.shape aspect_ratio = h/w # New sizes small_h, small_w = 10/factor*aspect_ratio, 10/factor # Make sure resized version is at least 1 pixel in both dimensions and Integer small_h, small_w = int(max(1, small_h)), int(max(1, small_w)) small = cv2.resize(img, (small_w, small_h), interpolation=cv2.INTER_LINEAR) output = cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST) return output # Cell def find_faces(img): "Finds faces in a picture and returns tuples of (x, y, w, h) for each face" assert Path('haarcascade_frontalface_default.xml').is_file(), "haarcascade file not found" face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.1, 4) return faces # Cell def blur_areas(img, areas, factor=1, blur_func=blur): """ Blurs defined areas in a cv2 image. Inputs: img: cv2 image in BGR format areas: tuples of (x, y, w, h) factor: increase (>1.0) or decrease (<1.0) default blurring degrade_func: `blur` or `pixelate` (or any function that takes the arguments `image` and `factor`) Returns: cv2 image in BGR format """ for (x, y, w, h) in areas: y = int(y - 0.1*h) h = int(1.25*h) img[y:y+h,x:x+w] = blur_func(img[y:y+h,x:x+w], factor=factor) return img # Cell def anonymize(img, factor=1, mode='blur', convert2rgb=False)->np.ndarray: faces = find_faces(img) if mode == 'pixelate': blur_func = pixelate else: blur_func = blur img = blur_areas(img, faces, factor=factor, blur_func=blur_func) if convert2rgb: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img # Cell def load_img(fn): img = cv2.imread(str(fn)) assert isinstance(img, np.ndarray), "Image file not found" return img # Cell path = Path('test_images') # Cell def get_image_download_link(img): """Generates a link allowing the PIL image to be downloaded in: PIL image out: href string Source: https://discuss.streamlit.io/t/how-to-download-file-in-streamlit/1806/19 """ buffered = BytesIO() img.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode() href = f'<a href="data:file/jpg;base64,{img_str}" download="blurredfaces.jpg">Download result</a>' return href # Cell st.title("Blurry Faces"); st.write("Upload any photo with people in it, and this tool will pixelate the faces.") # Cell img1 = path/'group.jpg' img2 = path/'group_closer.jpg' img3 = path/'crowd.jpg' st.image([Image.open(img1), Image.open(img2), Image.open(img3)], width=200) example = st.radio("Choose an example image", ["Group", "Small group", "Large crowd"]) img_file = None if example == "Group": img_file = img1 elif example == "Small group": img_file = img2 elif example == "Large crowd": img_file = img3 # Cell uploaded_file = st.file_uploader("Or upload a photo:", type=['png', 'jpg', 'jpeg'], accept_multiple_files=False) # Cell if uploaded_file or img_file: if uploaded_file: file = uploaded_file elif img_file: file = img_file #st.write("Processing...") img = Image.open(file) img_array = np.array(img) anon_img = anonymize(img_array, mode='pixelate') anon_img_pil = Image.fromarray(anon_img) st.image(anon_img, caption=" ", use_column_width='auto') st.markdown(get_image_download_link(anon_img_pil), unsafe_allow_html=True) ```
{ "source": "JohannesTheo/SurvivalBox", "score": 3 }
#### File: SurvivalBox/survivalbox/card.py ```python __author__ = '<NAME>' import pygame import numpy as np from .game_objects import Sheep, Wolf, Fireplace class Card(pygame.Surface): # Some colors black = (0,0,0) white = (255,255,255) white2 = (244,244,244) grey = (130,130,130) grey2 = (230,230,230) dark = (51,51,51) dark2 = (42,49,59) blue = (45,162,225) blue2 = (35,192,234) cyan = (21,163,186) cyan2 = (0,186,175) orange = (251,140,0) FIX_TILE_SIZE = 8 # a fixed size for the card. Every observation we be rescaled to a representation with TileSize of 8 pixels. def __init__(self, width, height, Title): # the size of the map in grid points # self.MAP_WIDTH = map_size[0] # self.MAP_HEIGHT = map_size[1] # self.MAP_GRID_H = map_grid_h # some margins self.margin_out = 10 self.margin_in = 10 #w = 2 * self.margin_in + 2 * self.margin_out + 100 #h = 2 * self.margin_in + 2 * self.margin_out + self.MAP_HEIGHT * Card.FIX_TILE_SIZE # w = min_width # h = min_height pygame.Surface.__init__(self, (width, height)) self.TitleString = Title self.Title_y = 0 self.Active = False #self.TileSize = tile_size # Standard colors self.TitleColor = Card.white2 self.TitleBg_Active = Card.orange self.TitleBg_Inactive = Card.grey self.StatsColor = Card.white2 self.CardColor = Card.dark2 # Standard font self.TitleFont = pygame.font.SysFont("monaco", 18, False, False) self.StatsFont = pygame.font.SysFont("monaco", 15, False, False) # self.update_static(self.Active) def update(self, active): if self.Active != active: self.Active = not self.Active self.update_static(self.Active) def scale_to(self, tile_size): # maybe some TileSize depending rescaling? hm... # Currently fixed size return None def update_static(self, active): # Clear the Card self.fill((0,0,0)) # Draw the Card background background = (self.margin_out, 0, self.get_width() - 2 * self.margin_out, self.get_height()) # pygame.draw.rect(self, self.CardColor, background) pygame.draw.rect(self, self.CardColor, background) # Draw the Card title self.Title_y = self.draw_title(active) return self.Title_y def empty_position(self, position): ending_at_x = position[0] ending_at_y = position[1] + self.StatsFont.get_height() #+ self.margin_in return (ending_at_x, ending_at_y) def draw_observation(self, raw_image, position): x = self.margin_in + self.margin_out + position[0] y = position[1] self.blit(raw_image, (x,y)) ending_at_x = x + raw_image.get_width() ending_at_y = y + raw_image.get_height() #+ self.margin_in return (ending_at_x, ending_at_y) def draw_statistic(self, text_string, position, color=None, bg_color=None): ''' This method will render some text_string as statistic. X wise the outer and inner margin is applied by default, allowing for an extra offset through the position[0] argument. Y wise no margin is applied ''' x = self.margin_in + self.margin_out + position[0] y = position[1] # set colors by user or default if color is None: color = self.StatsColor if bg_color is None: bg_color = self.CardColor # draw the text to the surface Text = self.StatsFont.render(text_string, 1, color, bg_color) self.blit(Text,(x,y)) # returns the ending x and y pixel positions inside the card. Those can be used in later calls. ending_at_x = x + Text.get_width() ending_at_y = y + Text.get_height() #+ self.margin_in return (ending_at_x, ending_at_y) def draw_line(self, thickness, color, position, full_width=False, y_margin=None): ''' Draws a line. Before and after the line we apply an y_margin ''' if y_margin is None: y_margin = self.margin_in if full_width: x = 0 width = self.get_width() else: x = self.margin_in + self.margin_out + position[0] width = self.get_width() - 2 * self.margin_in - 2 * self.margin_out y = position[1] + y_margin the_line = (x, y, width, thickness) pygame.draw.rect(self, color, the_line) ending_at_x = x + width ending_at_y = y + thickness + y_margin return (ending_at_x, ending_at_y) def draw_title(self, active): # Draw a Title depending on the ACTIVE status if active: # Calculate dimensions TitleText = self.TitleFont.render(self.TitleString, 1, self.TitleColor, self.TitleBg_Active) TitleBg = (0, 0, self.get_width(), TitleText.get_height() + 2 * self.margin_in) # Draw background and title pygame.draw.rect(self, self.TitleBg_Active, TitleBg) self.blit(TitleText, (self.margin_out + self.margin_in, self.margin_in)) # Calculate and draw decoration TitleBottom = TitleBg[1] + TitleBg[3] deco_left = [( 0, TitleBottom ), (self.margin_out, TitleBottom ), (self.margin_out, TitleBottom + self.margin_out)] deco_right = [(self.get_width() , TitleBottom ), (self.get_width() - self.margin_out, TitleBottom ), (self.get_width() - self.margin_out, TitleBottom + self.margin_out)] pygame.draw.polygon(self, self.TitleBg_Active, deco_left) pygame.draw.polygon(self, self.TitleBg_Active, deco_right) else: # Calculate dimensions TitleText = self.TitleFont.render(self.TitleString, 1, self.TitleColor, self.TitleBg_Inactive) TitleBg = (self.margin_out, 0, self.get_width() - 2 * self.margin_out, TitleText.get_height() + 2 * self.margin_in) TitleBottom = TitleBg[1] + TitleBg[3] # Draw background and title pygame.draw.rect(self,self.TitleBg_Inactive, TitleBg) self.blit(TitleText, (self.margin_out + self.margin_in, self.margin_in)) # return the bottom y position so it can be used to place other objects. ending_at_y = TitleBottom + self.margin_in return ending_at_y def reset(self, active=False): self.update_static(active) class AgentCard(Card): def __init__(self, agent_entry, map_dimension_x, map_dimension_y, tile_size, full_map_obs, basic=True, detail=True, observation=True): self.BASIC_INFO = basic self.DETAIL_INFO = detail self.OBSERVATION = observation # Calculate the total size of the card to init base class self.FIX_TILE_SIZE = 8 self.MAP_W = map_dimension_x * self.FIX_TILE_SIZE self.MAP_H = map_dimension_y * self.FIX_TILE_SIZE self.FULL_MAP_OBS = full_map_obs if tile_size == self.FIX_TILE_SIZE: self.OBSERVATION = False self.TileSize = tile_size self.AgentEntry = agent_entry self.ID = agent_entry["ID"] self.Agent = agent_entry["Agent"] self.Statistics = self.Agent.Statistics self.AgentView = agent_entry["AgentView"] self.VIEW_W = self.AgentView.get_width() self.VIEW_H = self.AgentView.get_height() if self.FULL_MAP_OBS: self.Scaled_VIEW_W = self.MAP_W self.Scaled_VIEW_H = self.MAP_H else: self.ViewPort_GRID_W = agent_entry["ViewPort_Grid"][0] self.ViewPort_GRID_H = agent_entry["ViewPort_Grid"][1] self.Scaled_VIEW_W = self.ViewPort_GRID_W * self.FIX_TILE_SIZE self.Scaled_VIEW_H = self.ViewPort_GRID_H * self.FIX_TILE_SIZE self.VIEW_Y = 0 self.BASIC_STATS_Y = 0 self.DETAIL_STATS_Y = 0 self.OBSERVATION_Y = 0 self.MIN_WIDTH = 202 self.MIN_HEIGHT = 0 Card.__init__(self, 0,0, "Calculating size...") self.CARD_WIDTH = self.calculate_card_width() self.CARD_HEIGHT = self.update_static() Card.__init__(self, self.CARD_WIDTH, self.CARD_HEIGHT, "Agent: {}".format(self.ID)) self.update_static(self.Active) def calculate_card_width(self): Observation_W = (self.VIEW_W + 2 * self.margin_in + 2 * self.margin_out) Scaled_Observation_W = (self.Scaled_VIEW_W + 2 * self.margin_in + 2 * self.margin_out) return max(self.MIN_WIDTH, Observation_W, Scaled_Observation_W) def update(self, active=False): super(AgentCard,self).update(active) # Reasign our Agent View because its self.AgentView = self.AgentEntry["AgentView"] self.Statistics = self.Agent.Statistics next_x = 0 next_y = self.VIEW_Y if self.TileSize != self.FIX_TILE_SIZE: ScaledView = pygame.transform.scale(self.AgentView, ( self.Scaled_VIEW_W, self.Scaled_VIEW_H )) next_x, next_y = self.draw_observation(ScaledView, (0, next_y)) else: next_x, next_y = self.draw_observation(self.AgentView, (0, next_y)) # Draw Stats if self.BASIC_INFO: next_y = self.BASIC_STATS_Y if active: color = Card.orange else: color=None next_x, next_y = self.draw_statistic("Energy: {:.2f}".format(self.Agent.Energy), (0,next_y), color) next_x, next_y = self.draw_statistic("Reward: {:3.1f}".format(self.Statistics["rewards"]["reward_total"]), (0,next_y), color) if self.DETAIL_INFO: next_y = self.DETAIL_STATS_Y stats = self.get_detailed_statistics() next_x, next_y = self.draw_statistic("Food: {} | {}".format(stats[0][0], stats[0][0]), (0,next_y), stats[0][2]) next_x, next_y = self.draw_statistic("Fire: {} | {}".format(stats[1][0], stats[1][1]), (0,next_y), stats[1][2]) next_x, next_y = self.draw_statistic("Sheep: {} | {}".format(stats[2][0], stats[2][1]), (0,next_y), stats[2][2]) next_x, next_y = self.draw_statistic("Wolf: {} | {}".format(stats[3][0], stats[3][1]), (0,next_y), stats[3][2]) if self.OBSERVATION: self.draw_observation(self.AgentView, (0, self.OBSERVATION_Y)) def get_detailed_statistics(self): food = [self.Statistics["specialisation"]["collected_food"], self.Statistics["rewards"]["reward_from_food"], None] fire = [self.Statistics["specialisation"]["steps_as_fireguard"], self.Statistics["rewards"]["reward_from_fire"], None] sheep = [self.Statistics["specialisation"]["steps_as_shepherd"], self.Statistics["rewards"]["reward_from_sheep"], None] wolf = [self.Statistics["specialisation"]["catched_wolf"], self.Statistics["rewards"]["reward_from_wolf"], None] stats = [food, fire, sheep, wolf] # find the entry the currently contributes the most to the reward and set a highlight color rewards = [entry[1] for entry in stats] max_reward = max(rewards) if max_reward > 0: index_max_reward = np.argmax(rewards) stats[index_max_reward][2] = Card.blue return stats def scale_to(self, tile_size): # maybe some TileSize depending rescaling? hm... # currently fixed size return None def update_static(self, active=False): next_y = super(AgentCard,self).update_static(active) self.VIEW_Y = next_y # draw window next_y += (self.Scaled_VIEW_H + self.margin_in) next_x, next_y = self.draw_statistic("({}x{}) pixels".format(self.AgentView.get_width(), self.AgentView.get_height()) , (0,next_y)) if self.BASIC_INFO: next_x, next_y = self.draw_line(2, Card.grey,(0,next_y)) self.BASIC_STATS_Y = next_y next_x, next_y = self.empty_position((0,next_y)) # Energy next_x, next_y = self.empty_position((0,next_y)) # Reward if self.DETAIL_INFO: next_x, next_y = self.draw_line(2, Card.grey,(0,next_y)) self.DETAIL_STATS_Y = next_y next_x, next_y = self.empty_position((0,next_y)) # Food next_x, next_y = self.empty_position((0,next_y)) # Fire next_x, next_y = self.empty_position((0,next_y)) # Sheep next_x, next_y = self.empty_position((0,next_y)) # Wolf if self.OBSERVATION: # if the current y position is in close range to the map end, allign for a nicer view! next_y = self.y_allign_to(self.MAP_H, next_y) next_x, next_y = self.draw_line(4, Card.black,(0,next_y), True) next_x, next_y = self.draw_statistic("Observation:" , (0,next_y)) next_y += self.margin_in self.OBSERVATION_Y = next_y next_y += (self.AgentView.get_height()) next_y = self.y_allign_to(self.MAP_H, next_y) return next_y + self.margin_in def y_allign_to(self, anchor_pos, y_pos, activation_range=150): if (0 < (anchor_pos - y_pos) < activation_range): #print("ALLGIN") return (anchor_pos - self.margin_in) else: return y_pos class StatisticsCard(Card): def __init__(self, map_statistics, map_meta, npc_list, rewards): self.MAP_INFO = True self.NPC_INFO = True self.map = map_statistics self.MAP_WIDTH = map_meta["width"] - 2 # minus border self.MAP_HEIGHT = map_meta["height"] - 2 # minus border self.rewards = rewards self.NPCs = npc_list self.NPC_Y = 0 # Init a first time onlyfor dimension calculations Card.__init__(self, 0, 0, "Calculating size...") self.CARD_HEIGHT = self.update_static() self.CARD_WIDTH = 490 # Now init with the correct dimensions Card.__init__(self, self.CARD_WIDTH, self.CARD_HEIGHT, "SurvivalBox statistics") self.TitleBg_Active = Card.blue self.TitleBg_Inactive = Card.blue self.CARD_HEIGHT = self.update_static() def update(self, npc_list, active=False): super(StatisticsCard, self).update(active) if self.NPC_INFO: # draw npc stats next_x = 0 next_y = self.NPC_Y for NPC in npc_list: stats = NPC.Statistics["specialisation"] ID = NPC.ID if isinstance(NPC, Sheep): FOOD = stats["collected_food"] WS = stats["steps_with_shepherd"] WOS = stats["steps_without_shepherd"] DIED = stats["catched_by_wolf"] next_x, next_y = self.draw_statistic("Sheep {}: food {} | shepherd ({},{}) | died {}".format(ID, FOOD, WS, WOS, DIED),(0, next_y)) elif isinstance(NPC, Wolf): HUNTING = stats["steps_hunting"] SHEEP = stats["catched_sheep"] CATCHED = stats["catched_by_survivor"] ATTACK = stats["attacked_survivor"] next_x, next_y = self.draw_statistic("Wolf {}: chasing {} | sheep {} | attacks {} | died {}".format(ID, HUNTING, SHEEP, ATTACK, CATCHED),(0, next_y)) elif isinstance(NPC, Fireplace): ON = stats["steps_fire_on"] OFF = stats["steps_fire_off"] SWTICHES = stats["fire_switches"] next_x, next_y = self.draw_statistic("Fire {}: on {} | off {} | switches {}".format(ID, ON,OFF,SWTICHES),(0, next_y)) else: raise Exception("Not a valid NPC type!") def update_static(self, active=False): # update title active status next_y = super(StatisticsCard, self).update_static(active) next_x, next_y = self.draw_statistic("Rewards: Food (+{}) / Fire (+{})".format(self.rewards["grass"], self.rewards["fire"]), (0, next_y)) next_x, next_y = self.draw_statistic(" Sheep (+{}) / Wolf (+{})".format(self.rewards["sheep"], self.rewards["wolf"]), (0, next_y)) if self.MAP_INFO: next_x, next_y = self.draw_line( 2, Card.grey, (0, next_y)) next_x, next_y = self.draw_statistic("Map: {} x {} ({})".format(self.MAP_WIDTH, self.MAP_HEIGHT, self.map["total"]), (0, next_y)) next_x, next_y = self.draw_statistic("Tiles: {} Water | {} Dirt | {} Grass".format(self.map["water"], self.map["dirt"], self.map["grass"]),(0, next_y)) if self.NPC_INFO: next_x, next_y = self.draw_line( 4, Card.black, (0, next_y), True) next_x, next_y = self.draw_statistic("NPCs:",(0, next_y)) self.NPC_Y = next_y + self.margin_in next_y = self.NPC_Y for npc in self.NPCs: next_x, next_y = self.empty_position((next_x, next_y)) return next_y + self.margin_in ```
{ "source": "johannestreutlein/op-tie-breaking", "score": 3 }
#### File: op-tie-breaking/src/op_with_tie_breaking.py ```python import argparse import matplotlib.pyplot as plt import numpy as np import datetime import pandas as pd import json import os from utils.uniquify import uniquify def op_tie_breaking_evaluation(hash_lists, args): '''This function evaluates our method, other-play with tie-breaking. It applies the tie-breaking function to different training runs to choose policies and then starts an experiment that calculates cross-play values for the chosen policies. It would probably be better to run this with sacred, as part of an experiment, instead of an extra python file, etc., but this suffices for now. ''' chosen_indices_dict = {} n_seeds_total = args.n_seeds_per_run number_of_runs = len(hash_lists[args.hash_function_seeds[0]]) // args.n_seeds_per_run for hash_seed, hashs in hash_lists.items(): print('\n\n=============================================') print('-----------seed of hash function: {}---------'.format(hash_seed)) n_seeds = 1 #the case of one seed represents simply doing other-play chosen_indices_dict[hash_seed] = {} while n_seeds <= n_seeds_total: print('\n\n----------- seeds per run: {}--------'.format(n_seeds)) print('-------------------------------------') chosen_indices = [] for index in range(number_of_runs): print('\n-------- run {} -------'.format(index)) hash_list = np.array(hashs[index*n_seeds_total:index*n_seeds_total+n_seeds_total]) hash_list = hash_list[:n_seeds] print('\nhash_list:') print(hash_list) chosen_indices.append(op_with_tie_breaking(hash_list)) print('\nchosen indices:') print(chosen_indices) chosen_indices_dict[hash_seed][n_seeds] = chosen_indices n_seeds *= 2 print('\nDoing a new cross play evaluation with the chosen models, for each hash-function seed\n\n') #now, constructing new csv with model paths #very inefficient with a loop and creating copies, but it doesn't matter at the moment new_model_paths = pd.DataFrame() for n_seeds in range(int(np.floor(np.log2(n_seeds_total))) + 1): for hash_seed in args.hash_function_seeds: for runs, chosen_policy in enumerate(chosen_indices_dict[hash_seed][2 ** n_seeds]): new_model_paths = new_model_paths.append(args.model_paths.iloc[runs * n_seeds_total + chosen_policy], ignore_index=True) print('Prepared model paths:') print(new_model_paths) filename = os.path.join('results', 'op_with_tie_breaking', 'chosen_model_list_hash_run_{}.csv'.format(args.hash_run)) filename = uniquify(filename) new_model_paths.to_csv(filename) os.system('python3 src/main.py --env-config={} --config=policy_gradient \ with seed={} \ evaluate=True \ cross_play=True \ calculate_hash=False \ test_nepisode={} \ n_seeds_per_run={} \ hash_function_seeds={} \ model_paths={}'.format(args.env, args.seed, args.test_nepisode, number_of_runs, str(args.hash_function_seeds).replace(' ', ''), filename)) #here, each run corresponds to a chosen amount of seeds and each seed is a chosen policy from a different run def op_with_tie_breaking(hashes): '''this implements other-play with tie-breaking. input is a list of tie-breaking values, output is index of policy with highest value. The actual values are calculated in the hash-run, by a method of the environment ''' best_policy = hashes.argmax() print('\nIndex chosen policy:') print(best_policy) return best_policy def load_info(args): returns = None filename = os.path.join('results', 'sacred', args.hash_run, 'config.json') print('\n\nloading config from {}'.format(filename)) with open(filename) as json_file: config = json.load(json_file) args.env = config["env"] args.hash_function_seeds = config["hash_function_seeds"] print(args.hash_function_seeds) filename = os.path.join('results', 'sacred', args.hash_run, 'info.json') print('\n\nloading hashs from ' + filename) hash_lists = {} with open(filename) as json_file: data = json.load(json_file) for seed in args.hash_function_seeds: hashs = data['trajectories_hash_{}'.format(seed)] print('\n') print('hash values seed {}:'.format(seed)) print(hashs) hash_lists[seed] = hashs args.model_paths = data['model_paths'] args.model_paths = pd.DataFrame(args.model_paths) print('\nModel paths:') print(args.model_paths) return hash_lists, args if __name__ == '__main__': print(datetime.datetime.now()) # Define the parser parser = argparse.ArgumentParser(description='Short sample app') parser.add_argument('--hash_run', action="store", dest='hash_run', default=None) #sacred directory of the run from hash calculation parser.add_argument('--test_nepisode', action="store", dest='test_nepisode', default='2048') #number of episodes to use to calculate cross-play values parser.add_argument('--seed', action="store", dest='seed', default='100') # seed for environment and policy randomness parser.add_argument('--n_seeds_per_run', action="store", dest='n_seeds_per_run', default='32') # seed for environment and policy randomness # Now, parse the command line arguments and store the # values in the `args` variable args = parser.parse_args() args.test_nepisode = json.loads(args.test_nepisode) args.seed = json.loads(args.seed) args.n_seeds_per_run= json.loads(args.n_seeds_per_run) hash_lists, args = load_info(args) op_tie_breaking_evaluation(hash_lists, args) print('\n\n') ``` #### File: op-tie-breaking/src/plot_cross_play_heatmap.py ```python import argparse import numpy as np import datetime import pandas as pd import json import seaborn as sns import matplotlib.pyplot as plt import os from utils.uniquify import uniquify import matplotlib as mpl def plot_cross_play_heatmap(matrices, args): mpl.rcParams.update({ "font.size": 8, }) mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['ps.fonttype'] = 42 grid_kws = {"width_ratios": (.48, .48, .04), "wspace": .3, "hspace": .3} f, (ax1, ax2, cbar_ax) = plt.subplots(1, 3, gridspec_kw=grid_kws, figsize=(5.8, 2.6)) ax1.title.set_text('Other-play') ax2.title.set_text('Other-play with tie-breaking') axes = [ax1, ax2] maxim = 0 minim = 0 for index, matrix in enumerate(matrices): print('return matrix:') print(matrix) off_diag = matrix[~np.eye(matrix.shape[0], dtype=bool)] print('off_diagonal_mean:') print(off_diag.mean()) print('off_diagonal_std:') print(off_diag.std()) maxim = max([maxim, matrix.max()]) minim = min([minim, matrix.min()]) for index, matrix in enumerate(matrices): heatmap = sns.heatmap(matrix, cmap='viridis', ax=axes[index], cbar=bool(index), cbar_ax=cbar_ax, vmax=maxim, vmin=minim)#linewidth=0.5,ticklabels=True, yticklabels=True heatmap.set_xlabel('Player 2 seed') heatmap.set_ylabel('Player 1 seed') heatmap.tick_params(length=0, labeltop=True, labelbottom=False) plt.gcf().subplots_adjust(top=0.8) if args.save: filename = 'results/op_with_tie_breaking/evalrun_{}_index_{}_cross_play_heatmap_{}.pdf'.format(args.run, args.index, args.env) filename = uniquify(filename) plt.savefig(filename) plt.show() def load_data(args): filename = os.path.join('results/sacred', args.run, 'info.json') print('\n\nLoading returns from ' + filename) returns = [] with open(filename) as json_file: data = json.load(json_file) for dict in data['test_return_mean']: returns.append(dict['value']) filename = os.path.join('results/sacred', args.run, 'config.json') print('\n\nLoading config from ' + filename) with open(filename) as json_file: config = json.load(json_file) args.env = config["env"] args.n_seeds_per_run = config["n_seeds_per_run"] matrices = [] #pick out a run by its index. for index in args.index: relevant_returns = returns[index * args.n_seeds_per_run**2: (index + 1) * args.n_seeds_per_run**2] #make it into a matrix return_matrix = np.array(relevant_returns).reshape(args.n_seeds_per_run, args.n_seeds_per_run) matrices.append(return_matrix) return matrices, args if __name__ == '__main__': print(datetime.datetime.now()) # Define the parser parser = argparse.ArgumentParser(description='Short sample app') # sacred directory of the run of op_with_tie_breaking.py evaluation parser.add_argument('--run', action="store", dest='run', default=None) parser.add_argument('--save', action="store", dest='save', default=True) # the starting index of the run of which the cross-play value should be plotted to a heatmap # should be a list of two indices, the first one corresponding to other-play, the other one to op with tie-breaking parser.add_argument('--index', action="store", dest='index', default='[0,100]') # Now, parse the command line arguments and store the # values in the `args` variable args = parser.parse_args() print("\nargs:") print(args) args.index = json.loads(args.index) #masks = None #if args.hash_run is None: # args.hash_run=args.run # Individual arguments can be accessed as attributes... matrices, args = load_data(args) plot_cross_play_heatmap(matrices, args) ``` #### File: src/utils/hash_function.py ```python import torch as th import numpy as np from zlib import crc32 import torch.nn as nn import torch.nn.functional as F class HashFunction(nn.Module): #this implements the neural network for hashing def __init__(self, input_shape, seed, args): with th.random.fork_rng(): #we set the random seed here to coordinate between the different principals th.manual_seed(seed) np.random.seed(seed) super(HashFunction, self).__init__() self.args = args self.fc1 = nn.Linear(input_shape, args.hash_hidden_dim).double() self.fc2 = nn.Linear(args.hash_hidden_dim, args.hash_hidden_dim).double() self.fc3 = nn.Linear(args.hash_hidden_dim, args.hash_hidden_dim).double() self.fc4 = nn.Linear(args.hash_hidden_dim, args.hash_hidden_dim).double() self.fc5 = nn.Linear(args.hash_hidden_dim, 1).double() def forward(self, inputs): h1 = F.relu(self.fc1(inputs*np.sqrt(inputs.shape[-1]))) h2 = F.relu(self.fc2(h1*np.sqrt(h1.shape[-1]))) h3 = F.relu(self.fc3(h2*np.sqrt(h2.shape[-1]))) h4 = F.relu(self.fc4(h3*np.sqrt(h3.shape[-1]))) hashs = self.fc5(h4*np.sqrt(h4.shape[-1])) return hashs def hash_function(histories, seed, args, logger): hash_type = args.hash_type if hash_type == 'cov': histories = np.array(histories.T, dtype=np.float64) # prepare for calculating moments histories -= histories.mean(axis=1, keepdims=True) # center each random variable logger.console_logger.info( 'Calculating central moments with {} samples of {}-dim RV'.format(histories.shape[0], histories.shape[1])) cov_matrix = np.cov(histories) #could also calculate higher moments potentially logger.console_logger.info( 'Cov matrix:\n' + str(cov_matrix)) history_hash = cov_matrix.mean() logger.console_logger.info( 'Cov matrix mean: ' + str(history_hash)) if hash_type == 'nn': input_shape = histories.shape[-1] hash_network = HashFunction(input_shape, seed, args) input = th.tensor(histories, dtype=th.float64) hashs = hash_network.forward(input) history_hash = hashs.mean().item() return history_hash ```
{ "source": "JohannesTruongLe/dataset_analysis_framework", "score": 3 }
#### File: lib/dataloader/KITTI.py ```python import logging import pandas as pd from lib.dataloader.base_class import DataLoaderBase from lib.dataloader.constants.KITTI import KITTI_COLS LOGGER = logging.getLogger(__name__) class KITTIDataLoader(DataLoaderBase): """KITTI DataLoader class.""" def __init__(self, image_path, label_path, save_labels_as_dataframe_path=None): """Init. Args: image_path (str or pathlib.Path): Path to images of KITTI Dataset. label_path (str or pathlib.Path): Path of labels of KITTI Dataset. save_labels_as_dataframe_path (str or pathlib.Path): Path to save the pickled pandas DataFrame to. Can be None if saving is not needed. """ super().__init__() LOGGER.debug("Build KITTI dataloader ...") self._image_path = image_path self._label_path = label_path self._save_labels_as_dataframe_path = save_labels_as_dataframe_path def generate_sample(self): """Generate sample. Yields: pandas.DataFrame: Pandas Dataframe holding labels from one file. Column names can be seen in dataloader.constants.KITTI_COLS. Index is the FILENAME_LABELPOSITION in file. """ for file in list(self._label_path.iterdir()): LOGGER.debug("Reading from %s", file) labels_from_one_file = pd.read_csv(file, index_col=None, header=None, names=KITTI_COLS, delimiter=' ') # Set file name + label position in file as index base_name = file.stem sample_index = [base_name + '_' + str(label_idx) for label_idx in range(labels_from_one_file.shape[0])] labels_from_one_file.insert(loc=0, column='name', value=sample_index) labels_from_one_file.set_index('name', inplace=True) yield labels_from_one_file def store_labels(self, output_path=None): """Store labels as Data Frame pickle file. Args: output_path (str or pathlib.Path or None): Path to store file. If None, take path given during init. """ if not output_path: output_path = self._save_labels_as_dataframe_path assert self._save_labels_as_dataframe_path, "No path to store to given." LOGGER.debug("Store data ...") labels = self.build_label_dataframe() output_path.parent.mkdir(parents=True, exist_ok=True) labels.to_pickle(output_path) ``` #### File: lib/manifold/tsne.py ```python import numpy as np import tqdm from sklearn.neighbors import NearestNeighbors from lib.manifold.metric import compute_gaussian_similarity from lib.manifold.base_class import ManifoldBase class TSNE(ManifoldBase): """TSNE class. For detailed description reder to T-SNE paper (http://www.cs.toronto.edu/~hinton/absps/tsne.pdf) """ def __init__(self, seed=42, n_components=2, perplexity=10, n_iter=200, learning_rate=0.2, fine_tune_share=0.1): """Init. Args: seed (int): Random seed to ensure reproducibility. n_components (int): Number of components of output space. perplexity (int): Number of nearest neighbours considered during optimization. n_iter (int): Number of iterations. learning_rate (float): Learning rate. fine_tune_share (float): Share of fine-tuning epochs. Example: If fine_tune_share is 0.1 and n_iter is 100, than 100*(1-fine_tune_share)= 90 are trained with the original learning rate, the rest 0.1*100=10 epochs are trained with 0.1*learning_rate """ self._random_state = np.random.RandomState(seed) self._n_components = n_components self._perplexity = perplexity self._n_iter = n_iter self._learning_rate = learning_rate self._fine_tune_share = fine_tune_share self._fine_tune_epoch = int(self._n_iter*(1-self._fine_tune_share)) def fit(self, data): """Perform TSNE on data. Args: data (numpy.ndarray(numpy.float)): Data to fit of shape [n_samples, n_features]. Returns: numpy.ndarray(numpy.float): Data in embedded space of shape [n_samples, self._n_components] """ n_samples = data.shape[0] # Init data into embedded space data_embedded = self._random_state.randn(n_samples, self._n_components) # Compute asymmetric probablity function in original/old space neighbour_distances, neighbour_idx = \ NearestNeighbors(n_neighbors=self._perplexity, metric='euclidean').fit(data).kneighbors(data) asym_prob_table_old_space = _compute_asym_prob_table( similarity_function=compute_gaussian_similarity, neighbour_distances=neighbour_distances, neighbour_idx=neighbour_idx) data_embedded = self._gradient_descent(asym_prop_old_space=asym_prob_table_old_space, data=data_embedded, neighbours_old_space=neighbour_idx) return data_embedded def _gradient_descent(self, asym_prop_old_space, data, neighbours_old_space): """Optimize the model. Args: asym_prop_old_space (numpy.ndarray(numpy.float)): Table of size [n_samples, n_samples], where each cell shows the asymmetic probabilty between to samples (indices refer to whatsamples) of the orignal data. data (numpy.ndarray(numpy.float)): Data of new space. Data should have shape of [n_samples, n_features]. neighbours_old_space (numpy.ndarray(numpy.float): Idx in shape [n_samples, n_neighbours] to the neighbours, for calculation example refer to from sklearn.neighbors import NearestNeighbors. Returns: numpy.ndarray(numpy.float): Data embedded in new space. Data shape is [n_samples, self._n_components] """ neighbour_distances, neighbour_idx_table = \ NearestNeighbors(n_neighbors=self._perplexity, metric='euclidean').fit(data).kneighbors(data) asym_prob_new_space = _compute_asym_prob_table( similarity_function=compute_gaussian_similarity, neighbour_distances=neighbour_distances, neighbour_idx=neighbour_idx_table) learning_rate = self._learning_rate for iter_idx in tqdm.tqdm(range(self._n_iter), desc="Fit data with TSNE"): for first_idx in range(data.shape[0]): sum_value = 0 neighbour_table = np.concatenate([neighbours_old_space, neighbour_idx_table], axis=1) for neighbour_idx in range(neighbour_table.shape[1]): second_idx = neighbour_table[first_idx, neighbour_idx] sum_value += \ 2 * ((data[first_idx] - data[second_idx]) * (asym_prop_old_space[first_idx, second_idx] - asym_prob_new_space[first_idx, second_idx] + asym_prop_old_space[second_idx, first_idx] - asym_prob_new_space[second_idx, first_idx])) data[first_idx] -= learning_rate * sum_value if iter_idx % 5 == 0: neighbour_distances, neighbour_idx_table = \ NearestNeighbors(n_neighbors=self._perplexity, metric='euclidean').fit(data).kneighbors(data) asym_prob_new_space = _compute_asym_prob_table( similarity_function=compute_gaussian_similarity, neighbour_distances=neighbour_distances, neighbour_idx=neighbour_idx_table) if iter_idx == self._fine_tune_epoch: learning_rate *= 0.1 data -= np.mean(data) data /= np.std(data) return data def _compute_asym_prob_table(neighbour_distances, neighbour_idx, similarity_function=compute_gaussian_similarity): """Compute asymetric probability table. For details refer to the T-SNE paper. Args: neighbour_distances (numpy.ndarray(numpy.float)): Distances in shape [n_samples, n_neighbours]. For calculation example refer to from sklearn.neighbors import NearestNeighbors. neighbour_idx (numpy.ndarray(numpy.float)): Idx in shape [n_samples, n_neighbours] to the neighbours, for example calculation refer to from sklearn.neighbors import NearestNeighbors. similarity_function (function): Function to call calculate the distance from. For example refer to manifold.metric.compute_gaussian_similarity(). Returns: numpy.ndarray(numpy.float): Table of size [n_samples, n_samples], where each cell shows the asymmetric probability between to samples (indices refer to what samples). """ dissim_table = _compute_dissim_table(similarity_function=similarity_function, neighbour_idx=neighbour_idx, neighbour_distances=neighbour_distances) asym_similarity_table = _compute_asym_prob_table_given_dissim(similarity_table=dissim_table, neighbour_idx_table=neighbour_idx) return asym_similarity_table def _compute_dissim_table(neighbour_idx, neighbour_distances, similarity_function=compute_gaussian_similarity): """Compute dissimilarity table. For details refer to the T-SNE paper. Args: neighbour_distances (numpy.ndarray(numpy.float)): Refer to manifold.tsne._compute_asym_prob_table() docstring. neighbour_idx(numpy.ndarray (numpy.float)): Refer to manifold.tsne._compute_asym_prob_table() docstring. similarity_function (function): Refer to manifold.tsne._compute_asym_prob_table() docstring Returns: numpy.ndarray(numpy.float): Table of size [n_samples, n_samples], where each cell shows the dissimilarity between to samples (indices refer to what samples). """ n_samples = neighbour_idx.shape[0] table = np.zeros([n_samples, n_samples]) skip_table = np.zeros_like(table, dtype=np.bool) for first_idx in range(n_samples): for second_idx in range(neighbour_idx.shape[1]): if first_idx != second_idx and not skip_table[first_idx][second_idx]: skip_table[first_idx][second_idx] = True skip_table[second_idx][first_idx] = True similarity = similarity_function \ (distance=neighbour_distances[first_idx, second_idx]) table[first_idx][second_idx] = similarity table[second_idx][first_idx] = similarity return table def _compute_asym_prob_table_given_dissim(similarity_table, neighbour_idx_table): n_samples = similarity_table.shape[0] asym_similarity_table = np.zeros([n_samples, n_samples]) for idx in range(n_samples): neighbours_idx = neighbour_idx_table[idx, :] denom = np.sum(np.exp(-similarity_table[idx, neighbours_idx])) for neighbour_idx in neighbours_idx: asym_similarity_table[idx, neighbour_idx] = \ np.exp(-similarity_table[idx, neighbour_idx]) / denom return asym_similarity_table ``` #### File: lib/util/argparse_util.py ```python import argparse def string_to_bool(source): """Translate string to bools. [yes, true t, y, 1] are interpreted as True, whereas [no, false , f, n, 0] as False. No sensitive case. Credits go to: https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse/43357954 Args: source (str): Valid inputs are [('yes', 'true', 't', 'y', '1', 'no', 'false', 'f', 'n', '0'] Returns: bool: Translated string. Raises: ArgumentTypeError: String was not valid input. """ if source.lower() in ('yes', 'true', 't', 'y', '1'): output = True elif source.lower() in ('no', 'false', 'f', 'n', '0'): output = False else: raise argparse.ArgumentTypeError('Boolean value expected.') return output def default_config_parse(default_config_path): """Parse inline commands. Args: default_config_path (str): Path to default config. Returns: argparse.Namespace: Container holding config (dict): Dictionary holding configs verbose (bool): Bool value, which can be used for setting verbosity """ parser = argparse.ArgumentParser() parser.add_argument('--config', help="Path to config file.", type=str, default=default_config_path) parser.add_argument('--verbose', help="Increase output verbosity.", required=False, default='False', type=str) args = parser.parse_args() args.verbose = string_to_bool(args.verbose) return args ``` #### File: lib/util/matplotblib_util.py ```python import logging import matplotlib.pyplot as plt import numpy as np LOGGER = logging.getLogger(__name__) def save_bar_chart(data, output_path, y_label, x_tick_labels, title, bar_width=.75, size_inches=(10, 7)): """Save bar chart. Args: data (list(int or float)): Each entry in list refers to one bar. Should have same length as x_tick_labels. output_path (str or pathlib.Path): Path to save bar chart to. y_label (str): Label for y axis. x_tick_labels (list(str)): Name for each bar. This number will be displayed right below the bar. title (str): Title of bar bar_width (float): Bar width. size_inches (tuple(int or float)): Size of plot in inches. """ LOGGER.debug("Plot file ...") ind = np.arange(len(x_tick_labels)) fig, ax = plt.subplots() fig.set_size_inches(*size_inches, forward=True) rects = ax.bar(ind, data, bar_width, color='b') ax.set_ylabel(y_label) ax.set_title(title) ax.set_xticks(ind) ax.set_xticklabels(x_tick_labels) for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2., 1.0*height, '%d' % int(height), ha='center', va='bottom') LOGGER.debug("Save file ...") plt.savefig(output_path) def save_scatter_plot_with_classes(output_path, types, data, class_color_dict): """Saves scatter to disk. Each point needs to have class (which is held in types). Plot each point of a class with the same color. Args: output_path (str or pathlib.Path): Path to save figure to types (list(str)): Each entry holds a class. Index must match data rows. data (numpy.ndarray(numpy.float)): Data of size [n_samples, 2] class_color_dict (dict): Each key refers to class while the entries refer to the color. """ for class_types, color in class_color_dict.items(): subset = data[types == class_types, :] plt.scatter(subset[:, 0], subset[:, 1], c=color, label=class_types, s=10) plt.legend() plt.savefig(output_path) ``` #### File: dataset_analysis_framework/scripts/compute_embedded_space.py ```python import logging import tqdm import numpy as np import pandas as pd from lib.manifold.tsne import TSNE from lib.config.general_config import Config from lib.util.matplotblib_util import save_scatter_plot_with_classes from lib.util.logging_util import configure_logging_verbosity from lib.util.argparse_util import default_config_parse LOGGER = logging.getLogger(__name__) def _load_data_from_directory(feature_path, type_container=None): """Load data from directory and prepare. Args: feature_path (Str): Path to bounding box features. type_container (pandas.DataFrame or None): pandas Dataframe holding the types of whole dataset. Index must match the file names in feature_path. Returns: numpy.ndarray(numpy.float): Features of bounding boxes in size [n_samples, n_features] types (str): Class type refering to each sample. Only returned if type_container is not None identifier (str): Uniqie label identifier. Only returned if type_container is not None. """ data = [] file_list = list(feature_path.glob('*')) for path_to_data in tqdm.tqdm(file_list, desc='Load features'): data.append(np.load(path_to_data)) data = np.array(data) output = data if type_container is not None: identifier = np.array([file.stem for file in file_list]) types = np.array([type_container.loc[file.stem] for file in file_list]) output = (data, types, identifier) return output def save_embedded_features(feature_path, label_path, output_path, output_plot_path): """Perform TSNE and save features. Args: feature_path (str or pathlib.Path): Path to box features. label_path (str or pathlib.Path): Path to pickled pandas Data Frame of labels. output_path (str or pathlib.Path or None): Path to save embedded features to. Does not save if None. output_plot_path (str or pathlib.Path or None): Path to save plot to. Does not save if None. """ LOGGER.info("Save embedded features ... ") type_container = pd.read_pickle(str(label_path))['type'] data, types, _ = _load_data_from_directory(feature_path, type_container) # Normalize data data -= np.mean(data) data /= np.std(data) embedded_space = TSNE().fit(data) if output_path: np.save(output_path, embedded_space) if output_plot_path: class_color_dict = { 'Car': 'b', 'Van': 'g', 'Truck': 'r', 'Pedestrian': 'c', 'Person_sitting': 'm', 'Cyclist': 'k', 'Tram': 'y' } save_scatter_plot_with_classes(output_path=output_plot_path, types=types, data=embedded_space, class_color_dict=class_color_dict) def _main(): """Main script.""" args = default_config_parse(default_config_path='settings/scripts/compute_embedded_space.yaml') configure_logging_verbosity(verbose=args.verbose) config = Config.build_from_yaml(args.config) save_embedded_features(**config.config) if __name__ == '__main__': _main() ``` #### File: dataset_analysis_framework/scripts/compute_feature_maps.py ```python import logging import numpy as np import tqdm from PIL import Image from lib.config.general_config import Config import lib.feature_extractor.resnet as resnet from lib.util.logging_util import configure_logging_verbosity from lib.util.argparse_util import default_config_parse LOGGER = logging.getLogger(__name__) def save_features(file_list, output_path, model): """Perform inference and save feature to disk. Args: file_list (list(str or pathlib.Path)): List holding absolute paths to images to perform inference on. output_path (str or pathlib.Path): Output path to store feature maps in. model (feature_extractor.FeatureExtractorBase): Feature extractor model. """ output_path.mkdir(parents=True, exist_ok=True) for file in tqdm.tqdm(file_list, desc="Compute Features"): img = Image.open(file) image_np = np.array(img) image_np_expanded = np.expand_dims(image_np, axis=0) out = model.inference(input_data=image_np_expanded) np.save(output_path/file.stem, out) def _get_label_names(inference_list_path): """Get label name out of inference list. This method returns the label base name (so the file base name) not the label identifier. Args: inference_list_path (str or pathlib.Path): Refer to compute_feature_maps for details. Returns: numpy.ndarray: List of unique label base names. """ inference_list = np.loadtxt(str(inference_list_path), dtype=np.str) label_names = [entry.split('_')[0] for entry in inference_list] label_names = np.unique(label_names) return label_names def compute_feature_maps(output_path, input_path, inference_list_path, resnet_config_path, verbose=False): """Compute feature maps and save to disk. The feature maps will be stored to output_path. Args: output_path (str or pathlib.Path): Path to save feature maps to. input_path (str or pathlib.Path): Path to image folder. inference_list_path (str or pathlib.Path): Path to inference list (example creation and details at scripts/computer_inference_list.py). resnet_config_path (str or pathlib.Path): Path to ResNet config file. verbose (bool): Set verbosity. """ LOGGER.info("Compute feature maps ... ") configure_logging_verbosity(verbose=verbose) label_names = _get_label_names(inference_list_path) image_paths = [input_path/(label_name + '.png') for label_name in label_names] model = resnet.ResNet.build_from_yaml(resnet_config_path) save_features(file_list=image_paths, output_path=output_path, model=model) def _main(): """Main script.""" args = default_config_parse(default_config_path='settings/scripts/compute_feature_maps.yaml') configure_logging_verbosity(verbose=args.verbose) config = Config.build_from_yaml(args.config) compute_feature_maps(**config.config) if __name__ == '__main__': _main() ``` #### File: dataset_analysis_framework/scripts/compute_inference_list.py ```python import logging import numpy as np import pandas as pd from lib.config.general_config import Config from lib.dataloader.constants.KITTI import TYPE, CLASS_LIST from lib.util.logging_util import configure_logging_verbosity from lib.util.argparse_util import default_config_parse LOGGER = logging.getLogger(__name__) def compute_inference_list(label_path, output_path, seed=42, verbose=False): """Compute inference list and save to disk. This method will save a .txt file with each column holding an unique identifier for a label. For each class n amount of samples are written to the file. n is equal to the minimum amount of samples for a class. For KITTI, Pedestrian_sitting is the class with the fewest occurrences (222), so for every class 222 samples would be chosen. Args: label_path (str or pathlib.Path): Path to labels as pickled pandas Data Frame file. output_path (str or pathlib.Path): Path to save the inference list to. seed (int): Random seed to enable reproducibility. verbose (True): Set verbosity. """ LOGGER.info("Compute inference list ... ") configure_logging_verbosity(verbose=verbose) random_state = np.random.RandomState(seed) labels = pd.read_pickle(str(label_path)) n_samples_dict = dict() # Count samples per class for class_types in CLASS_LIST: n_samples_dict[class_types] = np.sum(labels[TYPE] == class_types) # From each class get the same amount of samples like the class with the fewest n of samples min_n = n_samples_dict[min(n_samples_dict, key=n_samples_dict.get)] inference_list = [] for class_types in CLASS_LIST: labels_one_class = labels[labels[TYPE] == class_types] identifier = random_state.choice(labels_one_class.index.values, size=min_n, replace=False) inference_list.append(identifier) inference_list = [item for sublist in inference_list for item in sublist] np.savetxt(str(output_path), inference_list, fmt='%s') def _main(): """Main script.""" args = default_config_parse(default_config_path='settings/scripts/compute_inference_list.yaml') configure_logging_verbosity(verbose=args.verbose) config = Config.build_from_yaml(args.config) compute_inference_list(**config.config, verbose=args.verbose) if __name__ == '__main__': _main() ```
{ "source": "johannesu/cnn-cells", "score": 3 }
#### File: johannesu/cnn-cells/network.py ```python import lasagne def setup(input_var, box_size = 29,): # Setup network net = lasagne.layers.InputLayer( shape=(None, 1, box_size, box_size), input_var=input_var) # stage 1 : filter bank -> squashing -> max-pooling net = lasagne.layers.Conv2DLayer( net, num_filters=30, filter_size=(3, 3), nonlinearity = lasagne.nonlinearities.rectify) net = lasagne.layers.MaxPool2DLayer(net, pool_size=(2, 2)) # stage 2 : filter bank -> squashing -> max-pooling net = lasagne.layers.Conv2DLayer( net, num_filters=30, filter_size=(3, 3), nonlinearity = lasagne.nonlinearities.rectify) net = lasagne.layers.MaxPool2DLayer(net, pool_size=(2, 2)) # last stage: stanard 2-layer fully connected neural network with 50% dropout net = lasagne.layers.DenseLayer( lasagne.layers.dropout(net, p=.5), num_units=100, nonlinearity=lasagne.nonlinearities.rectify) # Softmax output net = lasagne.layers.DenseLayer( lasagne.layers.dropout(net, p=.5), num_units=2, nonlinearity=lasagne.nonlinearities.softmax) return net ```
{ "source": "johannesulf/dsigma", "score": 3 }
#### File: dsigma/dsigma/physics.py ```python import numpy as np from astropy import constants as c from astropy import units as u from scipy.special import jv, jn_zeros from astropy.cosmology import FlatLambdaCDM __all__ = ['mpc_per_degree', 'projection_angle', 'critical_surface_density', 'effective_critical_surface_density', 'lens_magnification_shear_bias'] _sigma_crit_factor = (c.c**2 / (4 * np.pi * c.G)).to(u.Msun / u.pc).value def mpc_per_degree(z, cosmology=FlatLambdaCDM(H0=100, Om0=0.3), comoving=False): """Estimate the angular scale in Mpc/degree at certain redshift. Parameters ---------- cosmology : astropy.cosmology, optional Cosmology to assume for calculations. z : float or numpy array Redshift of the object. comoving : boolen Use comoving distance instead of physical distance when True. Default: False Returns ------- float or numpy array Physical scale in unit of Mpc/degree. """ if comoving: return (cosmology.comoving_transverse_distance(z).to(u.Mpc).value * np.deg2rad(1)) return (cosmology.angular_diameter_distance(z).to(u.Mpc).value * np.deg2rad(1)) def projection_angle(ra_l, dec_l, ra_s, dec_s): r"""Calculate projection angle between lens and sources. Parameters ---------- ra_l, dec_l : float or numpy array Coordinates of the lens galaxies in degrees. ra_s, dec_s : float or numpy array Coordinates of the source galaxies in degrees. Returns ------- cos_2phi, sin_2phi : float or numpy array The :math:`\cos` and :math:`\sin` of :math:`2 \phi`, where :math:`\phi` is the angle measured from right ascension direction to a line connecting the lens and source galaxies. """ # Convert everything into radians. ra_l, dec_l = np.deg2rad(ra_l), np.deg2rad(dec_l) ra_s, dec_s = np.deg2rad(ra_s), np.deg2rad(dec_s) # Calculate the tan(phi). mask = np.cos(dec_s) * np.sin(ra_s - ra_l) != 0 if hasattr(mask, "__len__"): tan_phi = ( (np.cos(dec_l) * np.sin(dec_s) - np.sin(dec_l) * np.cos(dec_s) * np.cos(ra_s - ra_l))[mask] / (np.cos(dec_s) * np.sin(ra_s - ra_l))[mask]) cos_2phi = np.repeat(-1.0, len(mask)) sin_2phi = np.repeat(0.0, len(mask)) cos_2phi[mask] = (2.0 / (1.0 + tan_phi * tan_phi)) - 1.0 sin_2phi[mask] = 2.0 * tan_phi / (1.0 + tan_phi * tan_phi) elif mask: tan_phi = ( (np.cos(dec_l) * np.sin(dec_s) - np.sin(dec_l) * np.cos(dec_s) * np.cos(ra_s - ra_l)) / (np.cos(dec_s) * np.sin(ra_s - ra_l))) cos_2phi = (2.0 / (1.0 + tan_phi * tan_phi)) - 1.0 sin_2phi = (2.0 * tan_phi / (1.0 + tan_phi * tan_phi)) else: cos_2phi = -1 sin_2phi = 0 return cos_2phi, sin_2phi def critical_surface_density(z_l, z_s, cosmology, comoving=True, d_l=None, d_s=None): """The critical surface density for a given lens and source redshift. Parameters ---------- z_l : float or numpy array Redshift of lens. z_s : float or numpy array Redshift of source. cosmology : astropy.cosmology Cosmology to assume for calculations. comoving : boolean, optional Flag for using comoving instead of physical units. d_l : float or numpy array Comoving transverse distance to the lens. If not given, it is calculated from the redshift provided. d_s : float or numpy array Comoving transverse distance to the source. If not given, it is calculated from the redshift provided. Returns ------- float or numpy array Critical surface density for each lens-source pair. """ if d_l is None: d_l = cosmology.comoving_transverse_distance(z_l).to(u.Mpc).value if d_s is None: d_s = cosmology.comoving_transverse_distance(z_s).to(u.Mpc).value dist_term = (1e-6 * (d_s / (1 + z_s)) / (d_l / (1 + z_l)) / (np.where(d_s > d_l, d_s - d_l, 1) / (1 + z_s))) if np.isscalar(dist_term): if d_s <= d_l: dist_term = np.inf else: dist_term[d_s <= d_l] = np.inf if comoving: dist_term /= (1.0 + z_l)**2 return _sigma_crit_factor * dist_term def effective_critical_surface_density(z_l, z_s, n_s, cosmology, comoving=True): """The effective critical surface density for a given lens redshift and source redshift distribution. Parameters ---------- z_l : float or numpy array Redshift of lens. z_s : numpy array Potential redshifts of sources. n_s : numpy array Fraction of source galaxies in each redshift bin. Does not need to be normalized. cosmology : astropy.cosmology Cosmology to assume for calculations. comoving : boolean, optional Flag for using comoving instead of physical unit. Returns ------- sigma_crit_eff : float or numpy array Effective critical surface density for the lens redshift given the source redshift distribution. """ d_l = cosmology.comoving_transverse_distance(z_l).to(u.Mpc).value d_s = cosmology.comoving_transverse_distance(z_s).to(u.Mpc).value if not np.isscalar(z_l): z_l = np.repeat(z_l, len(z_s)).reshape((len(z_l), len(z_s))) d_l = np.repeat(d_l, len(z_s)).reshape(z_l.shape) z_s = np.tile(z_s, len(z_l)).reshape(z_l.shape) d_s = np.tile(d_s, len(z_l)).reshape(z_l.shape) n_s = np.tile(n_s, len(z_l)).reshape(z_l.shape) sigma_crit = critical_surface_density(z_l, z_s, cosmology=cosmology, comoving=comoving, d_l=d_l, d_s=d_s) if not np.isscalar(z_l): sigma_crit_eff = np.repeat(np.inf, len(z_l)) mask = np.average(sigma_crit**-1, axis=-1, weights=n_s) == 0 sigma_crit_eff[~mask] = np.average(sigma_crit**-1, axis=-1, weights=n_s)[~mask]**-1 return sigma_crit_eff else: if np.average(sigma_crit**-1, weights=n_s) > 0: return np.average(sigma_crit**-1, weights=n_s)**-1 else: return np.inf def lens_magnification_shear_bias(theta, alpha_l, z_l, z_s, camb_results, n_z=10, n_ell=200, bessel_function_zeros=100, k_max=1e3): r"""The lens magnification bias to the mean tangential shear. This function is based on equations (13) and (14) in Unruh et al. (2020). Parameters ---------- theta : float Angular separation :math:`\theta` from the lens sample in radians. alpha_l : float Local slope of the flux distribution of lenses near the flux limit. z_l : float Redshift of lens. z_s : float Redshift of source. camb_results : camb.results.CAMBdata CAMB results object that contains information on cosmology and the matter power spectrum. n_z : int, optional Number of redshift bins used in the integral. Larger numbers will be more accurate. n_ell : int, optional Number of :math:`\ell` bins used in the integral. Larger numbers will be more accurate. bessel_function_zeros : int, optional The calculation involves an integral over the second order Bessel function :math:`J_2 (\ell \theta)` from :math:`\ell = 0` to :math:`\ell = \infty`. In practice, this function replaces the upper bound with the bessel_function_zeros-th zero point of the Bessel function. Larger number should lead to more accurate results. However, in practice, this also requires larger `n_ell`. Particularly, `n_ell` should never fall below `bessel_function_zeros`. k_max : float, optional The maximum wavenumber beyond which the power spectrum is assumed to be 0. Returns ------- float Bias in the mean tangential shear due to lens magnification effects. """ camb_interp = camb_results.get_matter_power_interpolator( hubble_units=False, k_hunit=False) ell_min = 0 ell_max = np.amax(jn_zeros(2, bessel_function_zeros)) / theta z_min = 0 z_max = z_l z, w_z = np.polynomial.legendre.leggauss(n_z) z = (z_max - z_min) / 2.0 * z + (z_max + z_min) / 2.0 w_z = w_z * (z_max - z_min) / 2.0 ell, w_ell = np.polynomial.legendre.leggauss(n_ell) ell = (ell_max - ell_min) / 2.0 * ell + (ell_max + ell_min) / 2.0 w_ell = w_ell * (ell_max - ell_min) / 2.0 int_z = np.array([ (1 + z_i)**2 / (2 * np.pi) * camb_results.hubble_parameter(0) / camb_results.hubble_parameter(z_i) * camb_results.angular_diameter_distance2(z_i, z_l) * camb_results.angular_diameter_distance2(z_i, z_s) / camb_results.angular_diameter_distance(z_l) / camb_results.angular_diameter_distance(z_s) for z_i in z]) d_ang = np.array([ camb_results.angular_diameter_distance(z_i) for z_i in z]) z = np.tile(z, n_ell) int_z = np.tile(int_z, n_ell) d_ang = np.tile(d_ang, n_ell) w_z = np.tile(w_z, n_ell) int_ell = ell * jv(2, ell * theta) ell = np.repeat(ell, n_z) int_ell = np.repeat(int_ell, n_z) w_ell = np.repeat(w_ell, n_z) k = (ell + 0.5) / ((1 + z) * d_ang) int_z_ell = np.array([camb_interp.P(z[i], k[i]) for i in range(len(k))]) int_z_ell = np.where(k > k_max, 0, int_z_ell) gamma = np.sum(int_z * int_ell * int_z_ell * w_z * w_ell) gamma = ((gamma * u.Mpc**3) * 9 * camb_results.Params.H0**3 * u.km**3 / u.s**3 / u.Mpc**3 * (camb_results.Params.omch2 + camb_results.Params.ombh2)**2 / (camb_results.Params.H0 / 100)**4 / 4 / c.c**3) return 2 * (alpha_l - 1) * gamma ``` #### File: johannesulf/dsigma/setup.py ```python from setuptools import setup, find_packages from distutils.extension import Extension from distutils.command.sdist import sdist try: from Cython.Build import cythonize USE_CYTHON = True except ImportError: USE_CYTHON = False ext = 'pyx' if USE_CYTHON else 'c' extensions = [Extension( 'dsigma.precompute_engine', ['dsigma/precompute_engine.{}'.format(ext)], extra_compile_args=['-Ofast', '-march=native'])] if USE_CYTHON: extensions = cythonize(extensions) class sdist_with_cythonize(sdist): def run(self): cythonize(['dsigma/precompute_engine.pyx']) sdist.run(self) with open('README.md', 'r') as fstream: long_description = fstream.read() setup( name='dsigma', version='0.5.0', description=('A Galaxy-Galaxy Lensing Pipeline'), long_description=long_description, long_description_content_type='text/markdown', classifiers=[ 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Astronomy', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], keywords='astronomy, weak-lensing', url='https://github.com/johannesulf/dsigma', author='<NAME>, <NAME>', author_email='<EMAIL>', packages=find_packages(), install_requires=['numpy', 'astropy', 'scipy', 'scikit-learn', 'healpy'], python_requires='>=3.4', ext_modules=extensions, cmdclass={'sdist': sdist_with_cythonize} ) ```
{ "source": "JohannesVerherstraeten/pypipeline", "score": 2 }
#### File: cloningstrategy/clonecell/iclonecell.py ```python from typing import Sequence, TYPE_CHECKING, Optional from pypipeline.cell.compositecell.icompositecell import ICompositeCell if TYPE_CHECKING: from pypipeline.validation import BoolExplained from pypipeline.cell.icell import ICell from pypipeline.cellio import InternalInput, InternalOutput class ICloneCell(ICompositeCell): """ Clone cell interface. Controlling class in the IObserver-IObservable relation, as observer of the original cell. -> Relation should be created/deleted in the __init__ and delete() method. """ @classmethod def create(cls, original_cell: "ICell", name: str) -> "ICloneCell": """ Factory method to create a new clone. Args: original_cell: the original cell to be cloned. name: the name of the new clone cell. Returns: A new clone cell. Raises: InvalidInputException NotImplementedError: if the original cell doesn't support cloning. """ raise NotImplementedError # ------ Original cell ------ def get_original_cell(self) -> "ICell": """ Returns: The original cell, of which this cell is a clone. """ raise NotImplementedError def can_have_as_original_cell(self, original_cell: "ICell") -> "BoolExplained": """ Args: original_cell: original cell to validate. Returns: TrueExplained if the given cell is a valid original cell for this clone cell. FalseExplained otherwise. """ raise NotImplementedError def assert_has_proper_original_cell(self) -> None: """ Raises: InvalidStateException: if the original cell is invalid. """ raise NotImplementedError # ------ Inputs & Outputs ------ def get_clone_inputs(self) -> "Sequence[InternalInput]": """ Returns: The (internal) clone inputs of this clone cell. """ raise NotImplementedError def get_clone_input(self, name: str) -> "InternalInput": """ Args: name: the name of the clone input to get. Returns: The (internal) clone input with the given name. Raises: KeyError: if this cell has no clone input with the given name. """ raise NotImplementedError def get_clone_outputs(self) -> "Sequence[InternalOutput]": """ Returns: The (internal) clone outputs of this clone cell. """ raise NotImplementedError def get_clone_output(self, name: str) -> "InternalOutput": """ Args: name: the name of the clone output to get. Returns: The (internal) clone output with the given name. Raises: KeyError: if this cell has no clone output with the given name. """ raise NotImplementedError ``` #### File: scalablecell/strategy/noscalingstrategy.py ```python from typing import TYPE_CHECKING, Type from pypipeline.cell.compositecell.scalablecell.strategy.ascalingstrategy import AScalingStrategy from pypipeline.exceptions import ScalingNotSupportedException if TYPE_CHECKING: from pypipeline.cell.compositecell.scalablecell.scalablecelldeployment import ScalableCellDeployment from pypipeline.cell.compositecell.scalablecell.strategy.cloningstrategy.clonecell.iclonecell import ICloneCell class NoScalingStrategy(AScalingStrategy): """ No-Scaling strategy class. A scaling strategy determines how a scalable cell should be executed. ATM 2 strategies are implemented: - the CloningStrategy (default): allows to scale up using clones of the internal cell - the NoScalingStrategy: doesn't allow scaling and executes the scalable cell's internal cell in the mainthread, just like a Pipeline. Useful for debugging. """ def __init__(self, scalable_cell_deployment: "ScalableCellDeployment"): """ Args: scalable_cell_deployment: the scalable cell deployment where this scaling strategy belongs to. Raises: NotDeployableException – if the internal cell cannot be deployed. AlreadyDeployedException – if the internal cell is already deployed. NotDeployableException – if the internal cell cannot be deployed. Exception – any exception that the user may raise when overriding _on_deploy or _on_undeploy """ super(NoScalingStrategy, self).__init__(scalable_cell_deployment) self.get_internal_cell().deploy() @classmethod def create(cls, scalable_cell_deployment: "ScalableCellDeployment") -> "NoScalingStrategy": return NoScalingStrategy(scalable_cell_deployment) def delete(self) -> None: self.get_internal_cell().undeploy() super(NoScalingStrategy, self).delete() def _on_pull(self) -> None: self.logger.debug(f"{self}.pull()") # Just execute the internal cell in the main thread. output_queue = self.get_scalable_cell_deployment().get_output_queue() queue_idx = output_queue.acquire_queue_index() internal_cell = self.get_internal_cell() internal_cell.pull() # assumes scalable cells have no other outputs than output_ports: for output in self.get_scalable_cell_deployment().get_scalable_cell().get_output_ports(): output_incoming_connections = output.get_incoming_connections() assert len(output_incoming_connections) == 1 value = output_incoming_connections[0].pull() output_queue.set(output, queue_idx, value) output_queue.signal_queue_index_ready(queue_idx) def reset(self) -> None: self.get_internal_cell().reset() def add_clone(self, method: Type["ICloneCell"]) -> None: raise ScalingNotSupportedException(f"Scalable cell strategy 'NoScalingStrategy' doesn't allow scaling up.") def remove_clone(self, method: Type["ICloneCell"]) -> None: raise ScalingNotSupportedException(f"Scalable cell strategy 'NoScalingStrategy' doesn't allow scaling down.") ``` #### File: cellio/acellio/abstractio.py ```python from typing import TypeVar, Generic, Optional, Dict, TYPE_CHECKING, Any, Callable, Sequence from threading import RLock, Condition import logging import pypipeline from pypipeline.cell.icellobserver import IOCreatedEvent from pypipeline.cellio.icellio import IO from pypipeline.validation import BoolExplained, TrueExplained, FalseExplained, raise_if_not from pypipeline.exceptions import NoInputProvidedException, InvalidInputException, InvalidStateException, \ NotDeployedException, CannotBeDeletedException if TYPE_CHECKING: from pypipeline.cell import ICell from pypipeline.connection import IConnection from pypipeline.cellio.connectionendpoint import ConnectionEntryPoint, ConnectionExitPoint T = TypeVar('T') class AbstractIO(IO[T], Generic[T]): """ Abstract cell IO class. An IO is owned by its cell. An IO is the controlling class in the IO-ICell relation, as IO of the cell. -> Main mutators can be found in __init__ and delete() """ def __init__(self, cell: "ICell", name: str, validation_fn: Optional[Callable[[T], bool]] = None): """ Args: cell: the cell of which this IO will be part. name: the name of this IO. Should be unique within the cell. validation_fn: An optional validation function that will be used to validate every value that passes through this IO. """ self.logger = logging.getLogger(self.__class__.__name__) raise_if_not(self.can_have_as_name(name), InvalidInputException) self.__name = name # Main mutator in the IO-ICell relation, as IO of the cell. raise_if_not(self.can_have_as_cell(cell), InvalidInputException) cell._add_io(self) # Access to protected method on purpose # May raise exceptions self.__cell = cell raise_if_not(self.can_have_as_validation_fn(validation_fn), InvalidInputException) self.__validation_fn = validation_fn self.__state_lock = RLock() self.__value: T = None # type: ignore self.__value_is_set: bool = False self.__value_is_set_signal = Condition(self.__state_lock) self.__is_deployed: bool = False def _notify_observers_of_creation(self) -> None: """Should be called after every IO object has been fully created. """ event = IOCreatedEvent(self.get_cell(), debug_message=f"io created with name {self.__name}") self.get_cell().notify_observers(event) def _get_cell_pull_lock(self) -> "RLock": """ Returns: The pull lock which makes sure that the cell of this IO is not pulled concurrently. """ raise NotImplementedError def _get_state_lock(self): """ Returns: The lock which makes sure that this IO is not pulled concurrently. """ return self.__state_lock def _get_value_is_set_signal(self): """ Returns: A condition that gets signalled when a new value is available. """ return self.__value_is_set_signal def get_name(self) -> str: return self.__name @classmethod def can_have_as_name(cls, name: str) -> BoolExplained: if not isinstance(name, str): return FalseExplained(f"Name should be a string, got {name}") elif len(name) == 0: return FalseExplained(f"Name should not be an empty string") elif "." in name: return FalseExplained(f"Name should not contain `.`") return TrueExplained() def get_full_name(self) -> str: return f"{self.get_cell().get_full_name()}.{self.get_name()}" def assert_has_proper_name(self) -> None: raise_if_not(self.can_have_as_name(self.get_name()), InvalidStateException, f"{self} has invalid name: ") def get_cell(self) -> "ICell": return self.__cell def can_have_as_cell(self, cell: "ICell") -> BoolExplained: if not isinstance(cell, pypipeline.cell.icell.ICell): return FalseExplained(f"Cell should be instance of ICell, got {cell}") return TrueExplained() def assert_has_proper_cell(self) -> None: cell = self.get_cell() raise_if_not(self.can_have_as_cell(cell), InvalidStateException, f"{self} has invalid cell: ") if not cell.has_as_io(self): raise InvalidStateException(f"Inconsistent relation: {cell} doesn't have {self} as io") def get_validation_fn(self) -> Optional[Callable[[T], bool]]: return self.__validation_fn def can_have_as_validation_fn(self, validation_fn: Optional[Callable[[T], bool]]) -> BoolExplained: if validation_fn is None: return TrueExplained() if not isinstance(validation_fn, Callable): return FalseExplained(f"The validation function should be a callable that accepts one argument of type T, " f"and returns a boolean.") return TrueExplained() def assert_has_proper_validation_fn(self) -> None: validation_fn = self.get_validation_fn() raise_if_not(self.can_have_as_validation_fn(validation_fn), InvalidStateException, f"{self} has invalid validation function: ") def get_all_connections(self) -> "Sequence[IConnection[T]]": result = list(self.get_incoming_connections()) result.extend(self.get_outgoing_connections()) return result def get_incoming_connections(self) -> "Sequence[IConnection[T]]": raise NotImplementedError def has_as_incoming_connection(self, connection: "IConnection[T]") -> bool: raise NotImplementedError def get_nb_incoming_connections(self) -> int: raise NotImplementedError def get_outgoing_connections(self) -> "Sequence[IConnection[T]]": raise NotImplementedError def has_as_outgoing_connection(self, connection: "IConnection[T]") -> bool: raise NotImplementedError def get_nb_outgoing_connections(self) -> int: raise NotImplementedError def _get_connection_entry_point(self) -> Optional["ConnectionEntryPoint"]: raise NotImplementedError def _get_connection_exit_point(self) -> Optional["ConnectionExitPoint"]: raise NotImplementedError def _deploy(self) -> None: assert not self._is_deployed() for connection in self.get_all_connections(): if connection.get_source()._is_deployed() or connection.get_target()._is_deployed(): connection._deploy() # access to protected member on purpose self.__is_deployed = True def _undeploy(self) -> None: assert self._is_deployed() for connection in self.get_all_connections(): if connection.get_source()._is_deployed() and connection.get_target()._is_deployed(): connection._undeploy() # access to protected member on purpose self.__is_deployed = False def _is_deployed(self) -> bool: return self.__is_deployed def _assert_is_properly_deployed(self) -> None: for connection in self.get_all_connections(): connection._assert_is_properly_deployed() # access to protected member on purpose def pull(self) -> T: raise NotImplementedError def reset(self) -> None: self._clear_value() def get_value(self) -> T: with self._get_state_lock(): if not self.__value_is_set: raise NoInputProvidedException(f"{self}.get_value() called, but value has not yet been set.") return self.__value def _set_value(self, value: T) -> None: if not self.can_have_as_value(value): raise InvalidInputException(f"{self}: Invalid value: {value}") with self._get_state_lock(): self.logger.debug(f"{self}.set_value( {value} ) @ AbstractIO") self.__value = value self.__value_is_set = True self.__value_is_set_signal.notify() exit_point = self._get_connection_exit_point() if exit_point is not None: exit_point._notify_new_value() def _clear_value(self) -> None: with self._get_state_lock(): self.__value_is_set = False def value_is_set(self) -> bool: with self._get_state_lock(): return self.__value_is_set def _wait_for_value(self, interruption_frequency: Optional[float] = None) -> None: with self._get_state_lock(): while not self.__value_is_set_signal.wait(timeout=interruption_frequency): self.logger.warning(f"{self}.wait_for_value() waiting... @ AbstractIO level") if not self._is_deployed(): raise NotDeployedException(f"{self} got undeployed while someone was waiting for the value. ") def _acknowledge_value(self) -> None: self._clear_value() def can_have_as_value(self, value: T) -> bool: if self.__validation_fn is not None: return self.__validation_fn(value) return True def assert_has_proper_value(self) -> None: if self.value_is_set() and not self.can_have_as_value(self.get_value()): raise InvalidStateException(f"{self} has an invalid value: {self.get_value()}") def _get_sync_state(self) -> Dict[str, Any]: with self._get_state_lock(): state: Dict[str, Any] = dict() return state def _set_sync_state(self, state: Dict) -> None: pass def get_nb_available_pulls(self) -> Optional[int]: raise NotImplementedError def _is_optional_even_when_typing_says_otherwise(self) -> bool: if len(self.get_outgoing_connections()) == 0: return False is_optional = True for conn in self.get_outgoing_connections(): target = conn.get_target() if not target._is_optional_even_when_typing_says_otherwise(): is_optional = False break return is_optional def get_topology_description(self) -> Dict[str, Any]: result = { "io": str(self), "type": self.__class__.__name__, "name": self.get_name(), "id": self.get_full_name(), } return result def assert_is_valid(self) -> None: self.assert_has_proper_name() self.assert_has_proper_cell() self.assert_has_proper_validation_fn() self.assert_has_proper_value() self._assert_is_properly_deployed() def delete(self) -> None: if self._is_deployed(): raise CannotBeDeletedException(f"{self} cannot be deleted while it is deployed.") if self.get_nb_incoming_connections() > 0: raise CannotBeDeletedException(f"Cannot delete {self}, as it still has {self.get_nb_incoming_connections()}" f"incoming connections.") if self.get_nb_outgoing_connections() > 0: raise CannotBeDeletedException(f"Cannot delete {self}, as it still has {self.get_nb_outgoing_connections()}" f"outgoing connections.") # Main mutator in the IO-ICell relation, as owner of the IO. self.__cell._remove_io(self) # Access to protected method on purpose self.__cell = None def __getstate__(self) -> Dict: # called during pickling new_state = dict(self.__dict__) new_state["_AbstractIO__state_lock"] = None new_state["_AbstractIO__value_is_set_signal"] = None return new_state def __setstate__(self, state: Dict) -> None: # called during unpickling self.__dict__ = state self.__state_lock = RLock() self.__value_is_set_signal = Condition(self.__state_lock) def __str__(self) -> str: return f"{self.__class__.__name__}({self.get_full_name()})" ``` #### File: cellio/compositeio/internalinput.py ```python from typing import TypeVar, Generic, TYPE_CHECKING, Optional, Dict, Sequence from threading import BoundedSemaphore import pypipeline from pypipeline.cellio.acellio.ainput import AInput from pypipeline.cellio.icellio import IConnectionEntryPoint, IConnectionExitPoint from pypipeline.cellio.connectionendpoint import ConnectionExitPoint, ConnectionEntryPoint from pypipeline.validation import BoolExplained, FalseExplained, TrueExplained from pypipeline.exceptions import NotDeployedException if TYPE_CHECKING: from pypipeline.cell import ICell, ICompositeCell from pypipeline.connection import IConnection T = TypeVar('T') class InternalInput(AInput[T], IConnectionExitPoint[T], Generic[T]): """ InternalInput class. An internal input is a type of input that can only be created on a composite cell. It accepts no incoming connections and infinite outgoing (internal) connections. Every time an internal input is pulled, it blocks and wait until a new value is set. An IO is owned by its cell. An IO is the controlling class in the IO-ICell relation, as IO of the cell. An IConnectionExitPoint is the controlled class in the IConnection-IConnectionExitPoint relation, as the source of the connection. """ PULL_TIMEOUT: float = 5. def __init__(self, cell: "ICompositeCell", name: str): """ Args: cell: the cell of which this IO will be part. name: the name of this IO. Should be unique within the cell. """ super(InternalInput, self).__init__(cell, name) self.__exit_point: ConnectionExitPoint[T] = ConnectionExitPoint(self, max_outgoing_connections=99999) self.__value_is_acknowledged: BoundedSemaphore = BoundedSemaphore(1) self._notify_observers_of_creation() def can_have_as_cell(self, cell: "ICell") -> BoolExplained: super_result = super(InternalInput, self).can_have_as_cell(cell) if not super_result: return super_result if not isinstance(cell, pypipeline.cell.compositecell.icompositecell.ICompositeCell): return FalseExplained(f"An InternalInput can only be created on an instance of ICompositeCell") return TrueExplained() def set_value(self, value: T) -> None: self.logger.debug(f"{self}.set_value( {value} ) waiting for prev value to be acknowledged @ InternalInput") while not self.__value_is_acknowledged.acquire(timeout=self.PULL_TIMEOUT): self.logger.warning(f"{self}.set_value() waiting... @ InternalInput level") if not self._is_deployed(): raise NotDeployedException(f"{self} is set while not deployed") super(InternalInput, self)._set_value(value) def _clear_value(self) -> None: super(InternalInput, self)._clear_value() try: self.__value_is_acknowledged.release() except ValueError: # The value was not set... pass def clear_value(self) -> None: self._clear_value() def pull(self) -> T: self.logger.debug(f"{self}.pull() @ InternalInput level") if not self.value_is_set(): self._wait_for_value(interruption_frequency=self.PULL_TIMEOUT) self.logger.debug(f"{self}.pull() got value @ InternalInput level") value = self.get_value() self.__exit_point._notify_new_value() self._acknowledge_value() return value def is_provided(self) -> bool: # Has no more info on whether it will be provided or not. # (It will always be provided with a value, but this value may be None in case of unconnected scalable # cell inputs -> differentiate?) # -> It is required to be provided, otherwise a CloneCell would not be deployable. return True def get_incoming_connections(self) -> "Sequence[IConnection[T]]": return () def has_as_incoming_connection(self, connection: "IConnection[T]") -> bool: return False def get_nb_incoming_connections(self) -> int: return 0 def pull_as_connection(self, connection: "IConnection[T]") -> T: return self.__exit_point.pull_as_connection(connection) def all_outgoing_connections_have_pulled(self) -> bool: return self.__exit_point.have_all_outgoing_connections_pulled() def has_seen_value(self, connection: "IConnection[T]") -> bool: return self.__exit_point.has_seen_value(connection) def get_outgoing_connections(self) -> "Sequence[IConnection[T]]": return self.__exit_point.get_outgoing_connections() @classmethod def can_have_as_outgoing_connection(cls, connection: "IConnection[T]") -> BoolExplained: return ConnectionExitPoint.can_have_as_outgoing_connection(connection) def can_have_as_nb_outgoing_connections(self, number_of_outgoing_connections: int) -> BoolExplained: return self.__exit_point.can_have_as_nb_outgoing_connections(number_of_outgoing_connections) def _add_outgoing_connection(self, connection: "IConnection[T]") -> None: self.__exit_point._add_outgoing_connection(connection) def _remove_outgoing_connection(self, connection: "IConnection[T]") -> None: self.__exit_point._remove_outgoing_connection(connection) def get_max_nb_outgoing_connections(self) -> int: return self.__exit_point.get_max_nb_outgoing_connections() def get_nb_outgoing_connections(self) -> int: return self.__exit_point.get_nb_outgoing_connections() def has_as_outgoing_connection(self, connection: "IConnection[T]") -> bool: return self.__exit_point.has_as_outgoing_connection(connection) def has_outgoing_connection_to(self, target: "IConnectionEntryPoint[T]") -> bool: return self.__exit_point.has_outgoing_connection_to(target) def get_outgoing_connection_to(self, target: "IConnectionEntryPoint[T]") -> "IConnection[T]": return self.__exit_point.get_outgoing_connection_to(target) def assert_has_proper_outgoing_connections(self) -> None: self.__exit_point.assert_has_proper_outgoing_connections() def has_initial_value(self) -> bool: return self.__exit_point.has_initial_value() def get_nb_available_pulls(self) -> Optional[int]: raise Exception("Not supported by this class?") def _get_connection_entry_point(self) -> Optional[ConnectionEntryPoint]: return None def _get_connection_exit_point(self) -> ConnectionExitPoint: return self.__exit_point def assert_is_valid(self) -> None: super(InternalInput, self).assert_is_valid() self.__exit_point.assert_is_valid() def delete(self) -> None: super(InternalInput, self).delete() self.__exit_point.delete() def __getstate__(self) -> Dict: # called during pickling new_state = super(InternalInput, self).__getstate__() new_state["_InternalInput__value_is_acknowledged"] = None return new_state def __setstate__(self, state: Dict) -> None: # called during unpickling super(InternalInput, self).__setstate__(state) self.__value_is_acknowledged = BoundedSemaphore(1) ``` #### File: cellio/icellio/ioutput.py ```python from typing import TypeVar, Generic from pypipeline.cellio.icellio.io import IO T = TypeVar('T') class IOutput(IO[T], Generic[T]): def set_value(self, value: T) -> None: """ Provide a new value for this IO. The public version of IO._set_value(value) Args: value: the new value for this IO. Raises: TODO may raise exceptions """ raise NotImplementedError def all_outgoing_connections_have_pulled(self) -> bool: """ Returns: True if all outgoing connections have pulled, False otherwise. """ raise NotImplementedError ``` #### File: cellio/parameterio/runtimeparameter.py ```python from typing import TypeVar, Generic, TYPE_CHECKING, Dict, Any, Optional, Callable from pypipeline.cell.icellobserver import ParameterUpdateEvent from pypipeline.cellio.standardio import Input from pypipeline.exceptions import InvalidInputException, NoInputProvidedException, \ InvalidStateException if TYPE_CHECKING: from pypipeline.cell import ICell T = TypeVar('T') class RuntimeParameter(Input[T], Generic[T]): """ Runtime parameter class. A runtime parameter is a type of input that accepts 1 incoming connection and no outgoing connections. Every time a runtime parameter is pulled, it will pull the incoming connection, if available. If no incoming connection is present, it returns the default value. An IO is owned by its cell. An IO is the controlling class in the IO-ICell relation, as IO of the cell. An IConnectionEntryPoint is the controlled class in the IConnection-IConnectionEntryPoint relation, as the target of the connection. """ __DEFAULT_VALUE_KEY: str = "default_value" def __init__(self, cell: "ICell", name: str, validation_fn: Optional[Callable[[T], bool]] = None): """ Args: cell: the cell of which this IO will be part. name: the name of this IO. Should be unique within the cell. validation_fn: An optional validation function that will be used to validate every value that passes through this IO. """ super(RuntimeParameter, self).__init__(cell, name, validation_fn) self.__default_value: T = None # type: ignore self.__default_value_is_set: bool = False def set_default_value(self, value: T) -> None: """ Args: value: the new default value for this runtime parameter. This value will be used when pulling the runtime parameter if no incoming connection is available. """ if not self.can_have_as_value(value): raise InvalidInputException(f"{self}: Invalid value: {value}") with self._get_state_lock(): self.logger.debug(f"{self}.set_default_value( {value} ) @ RuntimeParameter") self.__default_value = value self.__default_value_is_set = True event = ParameterUpdateEvent(self.get_cell()) # TODO avoid indirection of cell self.get_cell().notify_observers(event) def get_default_value(self) -> T: """ Returns: The default value of this runtime parameter. This value will be used when pulling the runtime parameter if no incoming connection is available. """ with self._get_state_lock(): if not self.__default_value_is_set: raise NoInputProvidedException(f"{self}.get_default_value() called, but default value has not yet " f"been set.") return self.__default_value def default_value_is_set(self) -> bool: """ Returns: True if a default value is provided for this runtime parameter, False otherwise. """ with self._get_state_lock(): return self.__default_value_is_set def _clear_default_value(self) -> None: """ Returns: Clears the currently configured default value. """ with self._get_state_lock(): self.__default_value_is_set = False def assert_has_proper_default_value(self) -> None: """ Raises: InvalidStateException: if the configured default value is invalid. """ if self.default_value_is_set() and not self.can_have_as_value(self.get_default_value()): raise InvalidStateException(f"{self} has an invalid default value: {self.get_default_value()}") def pull(self) -> T: if self.get_nb_incoming_connections() == 0: return self.get_default_value() result = super(RuntimeParameter, self).pull() if result is None: return self.get_default_value() return result def set_value(self, value: T) -> None: """ Same as self.set_default_value(). Note: this method is not related to self._set_value(value) which is used by incoming connections to set the (not-default) value of this RuntimeParameter. """ self.set_default_value(value) def is_provided(self) -> bool: return super(RuntimeParameter, self).is_provided() or self.default_value_is_set() def _is_optional_even_when_typing_says_otherwise(self) -> bool: return True # A RuntimeParameter can handle None values being set: it will return the default value instead def _get_sync_state(self) -> Dict[str, Any]: with self._get_state_lock(): state: Dict[str, Any] = super(RuntimeParameter, self)._get_sync_state() state[self.__DEFAULT_VALUE_KEY] = self.get_default_value() if self.default_value_is_set() else None return state def _set_sync_state(self, state: Dict) -> None: with self._get_state_lock(): super(RuntimeParameter, self)._set_sync_state(state) if state[self.__DEFAULT_VALUE_KEY] is not None: self.set_default_value(state[self.__DEFAULT_VALUE_KEY]) def get_nb_available_pulls(self) -> Optional[int]: if self.get_nb_incoming_connections() == 0: return None return super(RuntimeParameter, self).get_nb_available_pulls() def assert_is_valid(self) -> None: super(RuntimeParameter, self).assert_is_valid() self.assert_has_proper_default_value() ``` #### File: pypipeline/pypipeline/validation.py ```python from typing import List, Union, Type, Callable from abc import ABC, abstractmethod class BoolExplained(ABC): """ Boolean including one or more reasons if False. Doesn't have a reason if True. Can be used just like a normal bool. """ def __bool__(self) -> bool: return self.value @property @abstractmethod def value(self) -> bool: raise NotImplementedError @property @abstractmethod def reasons(self) -> List[str]: raise NotImplementedError def get_reasons_str(self, pretty: bool = False) -> str: reasons = self.reasons if len(reasons) == 0: return "" elif len(reasons) == 1: return reasons[0] elif pretty: reasons_str = "" for reason in reasons: reasons_str += f"\n - {reason}" return reasons_str else: return str(reasons) def __str__(self) -> str: return f"{bool(self)}" + (f"(reasons: {self.get_reasons_str()})" if not self else "") def pretty(self) -> str: reasons = self.reasons if bool(self): return "True" assert len(reasons) > 0 if len(reasons) == 1: return f"False(reasons: {self.get_reasons_str(pretty=True)})" else: result = f"False(reasons: " result += self.get_reasons_str(pretty=True) result += "\n)" return result def __mul__(self, other: object) -> "BoolExplained": if isinstance(other, BoolExplained): if bool(self) and bool(other): return TrueExplained() else: return FalseExplained(self.reasons + other.reasons) elif other: return self else: raise ValueError(f"No reason given why `other` is False") class TrueExplained(BoolExplained): def __init__(self) -> None: pass @property def value(self) -> bool: return True @property def reasons(self) -> List[str]: return [] class FalseExplained(BoolExplained): def __init__(self, reasons: Union[str, List[str]]) -> None: if isinstance(reasons, str): reasons = [reasons] else: if len(reasons) == 0: raise ValueError(f"FalseExplained created without giving a reason") self.__reasons = reasons @property def value(self) -> bool: return False @property def reasons(self) -> List[str]: return self.__reasons def raise_if_not(bool_with_explanation: BoolExplained, exception_type: Type[Exception], message_prefix: str = "") -> None: """ Raises an exception if the given BoolExplained instance is False. The message of the exception will start with the given (optional) message prefix, followed by the reason of the FalseExplained. """ if not bool_with_explanation: raise exception_type(message_prefix + bool_with_explanation.get_reasons_str(pretty=True)) def assert_(validation_fn: Callable[[], BoolExplained], message_prefix: str = "") -> None: """ Asserts that the given validation function evaluates to a TrueExplained. The message of the assertion will start with the given (optional) message prefix, followed by the reason of the FalseExplained. """ assert validation_fn(), message_prefix + validation_fn().get_reasons_str(pretty=True) ``` #### File: JohannesVerherstraeten/pypipeline/setup.py ```python from typing import List from pathlib import Path from setuptools import setup from pkg_resources import parse_requirements _PATH_ROOT = Path(__file__).parent _PATH_REQUIREMENTS = _PATH_ROOT / 'requirements' def read(fname: str) -> str: return open(_PATH_ROOT / fname).read() def read_requirements(req_path: Path) -> List[str]: assert req_path.exists() with open(req_path, "r") as f: res = parse_requirements(f.read()) return [str(r) for r in res] # https://setuptools.readthedocs.io/en/latest/pkg_resources.html#requirements-parsing # For installing package extras: `pip install pypipeline[ray, tests]` # If you have the repo cloned locally: `pip install ".[ray, tests]"` extras = { 'docs': read_requirements(_PATH_REQUIREMENTS / "docs.txt"), 'ray': read_requirements(_PATH_REQUIREMENTS / "ray.txt"), 'tests': read_requirements(_PATH_REQUIREMENTS / "tests.txt"), 'lib_torch': read_requirements(_PATH_REQUIREMENTS / "lib_torch.txt"), 'serve': read_requirements(_PATH_REQUIREMENTS / "serve.txt") } extras['dev'] = extras['docs'] + extras['ray'] + extras['tests'] + extras['serve'] extras['all'] = extras['dev'] + extras['lib_torch'] setup( name="pypipeline", version="0.1.0", author="<NAME>", author_email="<EMAIL>", description="Encapsulate computations, combine them to algorithms, enable pipeline parallelism and scale up. ", keywords="pipeline pipelining parallelism parallelization scaling ray threading algorithm throughput building " "blocks", python_requires='>=3.7,<3.9', setup_requires=[], install_requires=[], extras_require=extras, url="https://github.com/JohannesVerherstraeten/pypipeline", packages=['pypipeline', 'pypipeline_lib', 'pypipeline_serve'], long_description=read('README.md'), classifiers=[ 'Environment :: Console', 'Natural Language :: English', # Project maturity "Development Status :: 3 - Alpha", # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Scientific/Engineering :: Information Analysis', # License 'License :: OSI Approved :: GNU Affero General Public License v3', 'Operating System :: OS Independent', # Supported Python versions 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], ) ``` #### File: t01_pypipeline_tests/t02_component_tests/test_acellio.py ```python import pytest from typing import Optional, List, Type from pypipeline.connection import Connection from pypipeline.cell import ASingleCell, ICompositeCell, Pipeline, ScalableCell, ICell from pypipeline.cellio import (IConnectionExitPoint, IConnectionEntryPoint, Input, Output, InputPort, OutputPort, RuntimeParameter, ConfigParameter, InternalInput, InternalOutput, IO) from pypipeline.exceptions import IndeterminableTopologyException, InvalidInputException single_io_types: List[Type[IO]] = [Input, Output, RuntimeParameter, ConfigParameter] composite_io_types = [InputPort, InternalInput, OutputPort, InternalOutput] class DummyCell1(ASingleCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(DummyCell1, self).__init__(parent_cell, name=name) def _on_pull(self) -> None: pass def supports_scaling(self) -> bool: raise NotImplementedError class DummyPipeline(Pipeline): def __init__(self): super(DummyPipeline, self).__init__(None, name="pipeline") class DummyScalableCell(ScalableCell): def __init__(self): super(DummyScalableCell, self).__init__(None, name="scalablecell") @pytest.fixture() def dummycell1() -> DummyCell1: return DummyCell1(None, "dummycell1") @pytest.fixture() def pipeline() -> DummyPipeline: return DummyPipeline() @pytest.fixture() def scalable_cell() -> DummyScalableCell: return DummyScalableCell() @pytest.fixture() def composite_cells(pipeline: DummyPipeline, scalable_cell) -> List[ICompositeCell]: return [pipeline, scalable_cell] @pytest.fixture() def single_cells(dummycell1: DummyCell1) -> List[ASingleCell]: return [dummycell1] @pytest.fixture() def all_cells(composite_cells: List[ICompositeCell], single_cells: List[ASingleCell]) -> List[ICell]: result: List[ICell] = [*composite_cells, *single_cells] return result def test_acellio_validation_name() -> None: for io_type in single_io_types: assert not io_type.can_have_as_name(None) assert not io_type.can_have_as_name("") assert not io_type.can_have_as_name("abc.") assert io_type.can_have_as_name("abc_de-fg(456)") # def test_acellio_validation_cell(all_cells: List[ICell]) -> None: # for io_type in single_io_types: # assert not io_type.can_have_as_cell(None) # for cell in all_cells: # assert io_type.can_have_as_cell(cell) def test_cellio_creation() -> None: for io_type in single_io_types: cell = DummyCell1(None, "dummy") io: IO = io_type(cell, "a_name") assert io.get_name() == "a_name" assert io.get_full_name() == cell.get_full_name() + ".a_name" assert io.get_cell() == cell io.assert_is_valid() def test_cell_creation_invalid_parent() -> None: for io_type in single_io_types: with pytest.raises(InvalidInputException): io_type(None, "a_name") def test_cell_creation_invalid_name() -> None: for io_type in single_io_types: cell = DummyCell1(None, "dummy") with pytest.raises(InvalidInputException): io_type(cell, "") class DummyCell2(ASingleCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(DummyCell2, self).__init__(parent_cell, name=name) self.input: Input[int] = Input(self, "input") self.output: Output[int] = Output(self, "output") self.output_with_initial_value: Output[int] = Output(self, "output_with_initial_value", initial_value=321) # Other input types: RuntimeParameter(self, "runtime_param") ConfigParameter(self, "config_param") def _on_pull(self) -> None: self.output.set_value(123) def supports_scaling(self) -> bool: raise NotImplementedError def get_nb_available_pulls(self) -> Optional[int]: return 456 class DummyCell3(ASingleCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(DummyCell3, self).__init__(parent_cell, name=name) self.input: Input[int] = Input(self, "input") self.output: Output[int] = Output(self, "output") # Other input types: RuntimeParameter(self, "runtime_param") ConfigParameter(self, "config_param") def _on_pull(self) -> None: self.output.set_value(789) def supports_scaling(self) -> bool: raise NotImplementedError def get_nb_available_pulls(self) -> Optional[int]: return 654 class DummyPipeline2(Pipeline): def __init__(self): super(DummyPipeline2, self).__init__(None, name="toplevel") self.cell2 = DummyCell2(self, "cell1") self.cell3 = DummyCell3(self, "cell2") self.input: InputPort[int] = InputPort(self, "input_port") self.output: OutputPort[int] = OutputPort(self, "output_port") # Other input types: Input(self, "input") RuntimeParameter(self, "runtime_param") ConfigParameter(self, "config_param") InternalInput(self, "internal_input") # other output types: Output(self, "output") InternalOutput(self, "internal_output") @pytest.fixture() def dummy_pipeline_2() -> DummyPipeline2: return DummyPipeline2() def test_acellio_add_connection(dummy_pipeline_2: DummyPipeline2) -> None: assert len(dummy_pipeline_2.cell3.input.get_incoming_connections()) == 0 assert len(dummy_pipeline_2.cell2.output.get_outgoing_connections()) == 0 dummy_pipeline_2.cell3.input.assert_has_proper_incoming_connections() dummy_pipeline_2.cell2.output.assert_has_proper_outgoing_connections() dummy_pipeline_2.cell2.assert_is_valid() dummy_pipeline_2.cell3.assert_is_valid() c = Connection(dummy_pipeline_2.cell2.output, dummy_pipeline_2.cell3.input) assert c in dummy_pipeline_2.cell3.input.get_incoming_connections() assert c in dummy_pipeline_2.cell2.output.get_outgoing_connections() assert dummy_pipeline_2.cell3.input.has_as_incoming_connection(c) assert dummy_pipeline_2.cell2.output.has_as_outgoing_connection(c) dummy_pipeline_2.cell3.input.assert_has_proper_incoming_connections() dummy_pipeline_2.cell2.output.assert_has_proper_outgoing_connections() assert c == dummy_pipeline_2.cell2.output.get_outgoing_connection_to(dummy_pipeline_2.cell3.input) assert c == dummy_pipeline_2.cell3.input.get_incoming_connection_with(dummy_pipeline_2.cell2.output) dummy_pipeline_2.cell2.assert_is_valid() dummy_pipeline_2.cell3.assert_is_valid() c.delete() assert len(dummy_pipeline_2.cell3.input.get_incoming_connections()) == 0 assert len(dummy_pipeline_2.cell2.output.get_outgoing_connections()) == 0 dummy_pipeline_2.cell3.input.assert_has_proper_incoming_connections() dummy_pipeline_2.cell2.output.assert_has_proper_outgoing_connections() dummy_pipeline_2.cell2.assert_is_valid() dummy_pipeline_2.cell3.assert_is_valid() # # TODO test pulling ``` #### File: t01_pypipeline_tests/t03_integration_tests/test_01_standard_pipeline_and_upscaling.py ```python import logging from typing import Optional, TYPE_CHECKING, Generator import time import random import ray import pytest from pypipeline.cell import ASingleCell, ScalableCell, Pipeline, RayCloneCell, ThreadCloneCell from pypipeline.cellio import Input, Output, OutputPort, InputPort from pypipeline.connection import Connection if TYPE_CHECKING: from pypipeline.cell import ICompositeCell @pytest.fixture def ray_init_and_shutdown() -> Generator: ray.shutdown() ray.init() yield None ray.shutdown() class CellA(ASingleCell): """ A source cell providing data. """ def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(CellA, self).__init__(parent_cell, name=name) self.output1: Output[float] = Output(self, "output1") self.output2: Output[int] = Output(self, "output2") self.counter: int = 1 def supports_scaling(self) -> bool: # This cell has internal state, so should not be scaled up return False def _on_pull(self) -> None: self.output1.set_value(self.counter / 10.) # typechecks! self.output2.set_value(self.counter) self.counter += 1 def _on_reset(self) -> None: super(CellA, self)._on_reset() self.counter = 1 class CellB(ASingleCell): """ Heavy computation cell. (see sleep) """ def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(CellB, self).__init__(parent_cell, name=name) self.input1: Input[float] = Input(self, "input1") self.input2: Input[int] = Input(self, "input2") self.output: Output[float] = Output(self, "output") def supports_scaling(self) -> bool: return False def _on_pull(self) -> None: value1: float = self.input1.pull() # typechecks! value2: int = self.input2.pull() result_sum = value1 + value2 time.sleep(random.random() * 0.10) # a heavy computation # print(f"[CellB]: log: {result_sum}") self.logger.debug(f"setting value: {result_sum}") self.output.set_value(result_sum) def test_without_upscaling() -> None: # print("=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=") # first test the ACell and BCell without parallelization or scaling: toplevel_pipeline = Pipeline(None, "toplevel") cell_a = CellA(toplevel_pipeline, "cell_a") cell_b = CellB(toplevel_pipeline, "cell_b") Connection(cell_a.output1, cell_b.input1) # typechecks Connection(cell_a.output2, cell_b.input2) # typechecks # No regulators, drivers or inference_processes needed, just pull the output you want. toplevel_pipeline.assert_is_valid() toplevel_pipeline.deploy() expected_outputs = [i/10. + i for i in range(1, 6)] for expected_output in expected_outputs: assert cell_b.output.pull() == expected_output toplevel_pipeline.assert_is_valid() toplevel_pipeline.undeploy() toplevel_pipeline.delete() # print("=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=") # now test the CellA and CellB in an upscaleable ScalableCell: # Note that the scalablecell workers may raise exceptions on exit. Todo gracefull thread exiting. class BScalableCell(ScalableCell): """ A ScalableCell enables pipeline parallelism and multiple clones running in parallel processes. """ def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(BScalableCell, self).__init__(parent_cell, name=name) self.cell_b = CellB(self, "cell_b") self.input_port_1: InputPort[float] = InputPort(self, "input1") self.input_port_2: InputPort[int] = InputPort(self, "input2") self.output_port: OutputPort[float] = OutputPort(self, "output") Connection(self.input_port_1, self.cell_b.input1) Connection(self.input_port_2, self.cell_b.input2) Connection(self.cell_b.output, self.output_port) class ToplevelPipeline(Pipeline): """ Note: this is totally equivalent to the following, only implemented as subclass of a Pipeline (which is a bit more structured and therefore the recommended way). toplevel_pipeline = Pipeline(None, "toplevel") cell_a = CellA(toplevel_pipeline, "cell_a") cell_b_scalable = BScalableCell(toplevel_pipeline, "cell_b_scalable") output_port: OutputPort[float] = OutputPort(toplevel_pipeline, "pipeline_output") Connection(cell_a.output1, cell_b_scalable.input_port_1) # typechecks Connection(cell_a.output2, cell_b_scalable.input_port_2) # typechecks Connection(cell_b_scalable.output_port, output_port) # typechecks """ def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(ToplevelPipeline, self).__init__(parent_cell, name=name) self.cell_a = CellA(parent_cell=self, name="cell_a") self.cell_b_scalable = BScalableCell(parent_cell=self, name="cell_b_scalable") self.output_port: OutputPort[float] = OutputPort(self, "pipeline_output") Connection(self.cell_a.output1, self.cell_b_scalable.input_port_1) # typechecks Connection(self.cell_a.output2, self.cell_b_scalable.input_port_2) # typechecks Connection(self.cell_b_scalable.output_port, self.output_port) # typechecks @pytest.mark.parametrize("do_reset", [ True, False ]) def test_with_upscaling(ray_init_and_shutdown: None, do_reset: bool) -> None: # Add 4 clone clones: 4 parallel processes executing the clone. # We set the queue capacity of the scalable-cell high enough, such that all 4 processes can write their result to this # queue and don't have to wait for us to pull a value out of this queue before they can start their new run. ab = ToplevelPipeline(None, "toplevel") ab.cell_b_scalable.config_queue_capacity.set_value(5) ab.cell_b_scalable.config_check_quit_interval.set_value(0.5) ab.assert_is_valid() ab.deploy() ab.assert_is_valid() expected_outputs = [i / 10. + i for i in range(1, 18)] actual_output = None for i, scaling_method in enumerate([ThreadCloneCell, RayCloneCell, ThreadCloneCell]): ab.cell_b_scalable.scale_up(4, scaling_method) ab.assert_is_valid() expected_outputs_this_iteration = expected_outputs[:6] if do_reset else expected_outputs[i*6: (i+1)*6] for expected_output in expected_outputs_this_iteration: ab.logger.info(f"Pulling for expected output {expected_output}...") ab.pull() previous_actual_output = actual_output actual_output = ab.output_port.get_value() ab.logger.info(f"Actual output: {actual_output}, expected output: {expected_output}") if not do_reset: # Downscaling while a scalablecell is active, may result in data loss. # However, the ordering of the results remains kept assert previous_actual_output is None or actual_output > previous_actual_output else: assert actual_output == expected_output, f"{actual_output} == {expected_output}" ab.logger.info(f"Start assert_is_valid") ab.assert_is_valid() ab.logger.info(f"Start scale_all_down") ab.cell_b_scalable.scale_all_down() if do_reset: ab.logger.info(f"Start reset") ab.reset() ab.undeploy() ab.delete() logging.info(f"Done") # # first pull will be slow, since the data must pass the whole pipeline # # (heavy computation duration is 0.5s) # # next pull will be fast, because of the extra 3 running processes # # # fifth pull will be slower again, but sometimes still less than 0.5s # # because when the first clone finished its first run, # # it immediately started a next run, before we executed the fifth # # pull (=pipeline parallelization). ``` #### File: t01_pypipeline_tests/t03_integration_tests/test_07_cloning_a_cell_without_io.py ```python from typing import Optional, TYPE_CHECKING, Generator import ray import time import pytest from pypipeline.cell import ASingleCell, ScalableCell, RayCloneCell if TYPE_CHECKING: from pypipeline.cell import ICompositeCell @pytest.fixture def ray_init_and_shutdown() -> Generator: ray.init() yield None ray.shutdown() class CellA(ASingleCell): """ A cell without any inputs """ def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(CellA, self).__init__(parent_cell, name=name) def supports_scaling(self) -> bool: return True def _on_pull(self) -> None: self.logger.warning(f"I'm executing :)") time.sleep(0.2) class AScalableCell(ScalableCell): """ A ScalableCell enables pipeline parallelism and multiple clones running in parallel processes. """ def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(AScalableCell, self).__init__(parent_cell, name=name) self.cell_a = CellA(self, "cell_a") def clone(self, new_parent: "Optional[ICompositeCell]") -> "AScalableCell": return AScalableCell(new_parent, self.get_name()) def test_cloning_cell_without_io(ray_init_and_shutdown: None) -> None: a = AScalableCell(None, "a") a.config_queue_capacity.set_value(8) a.assert_is_valid() a.deploy() # May be put before or after (or in between) the creations of the clone clones # a.scale_up(3, method=ThreadCloneCell) a.scale_up(3, method=RayCloneCell) a.assert_is_valid() for i in range(10): # TODO a bit of a silly test... print(i) a.pull() a.undeploy() a.delete() ``` #### File: t01_pypipeline_tests/t03_integration_tests/test_08_complex_pipeline.py ```python from typing import Optional, TYPE_CHECKING, Generator import ray import numpy as np from math import sin, pi import pytest from tqdm import tqdm from pypipeline.cell import ASingleCell, ScalableCell, RayCloneCell, ThreadCloneCell, Pipeline from pypipeline.cellio import Input, Output, InputPort, OutputPort from pypipeline.connection import Connection if TYPE_CHECKING: from pypipeline.cell import ICompositeCell NB_ITERATIONS = 1000 SQUARE_MATRIX_SIZE = 3 @pytest.fixture def ray_init_and_shutdown() -> Generator: ray.init() yield None ray.shutdown() class SourceCell1(ASingleCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(SourceCell1, self).__init__(parent_cell, name=name) self.output_counter: Output[int] = Output(self, "counter") self.output_sine: Output[float] = Output(self, "sine") self.counter = 1 def supports_scaling(self) -> bool: return False def _on_pull(self) -> None: self.output_counter.set_value(self.counter) self.output_sine.set_value(sin(self.counter * pi/2)) # self.logger.debug(f" ! Outputs: {self.counter}, {sin(self.counter * pi/2)}") self.counter += 1 class SourceCell2(ASingleCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(SourceCell2, self).__init__(parent_cell, name=name) self.output_matrix: Output[np.ndarray] = Output(self, "matrix") self.current_diagonal: np.ndarray = np.ones((SQUARE_MATRIX_SIZE, )) def supports_scaling(self) -> bool: return False def _on_pull(self) -> None: result = np.random.random((SQUARE_MATRIX_SIZE, SQUARE_MATRIX_SIZE)) result[np.where(np.eye(SQUARE_MATRIX_SIZE) > 0)] = self.current_diagonal self.output_matrix.set_value(result) # self.logger.debug(f" ! Outputs: {self.current_diagonal}") self.current_diagonal = self.current_diagonal + 1 class CenterCell1(ASingleCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(CenterCell1, self).__init__(parent_cell, name=name) self.input_counter: Input[int] = Input(self, "counter") self.input_sine: Input[float] = Input(self, "sine") self.output_multiplication: Output[float] = Output(self, "multiplication") def supports_scaling(self) -> bool: return True def _on_pull(self) -> None: counter = self.input_counter.pull() sine = self.input_sine.pull() multiple = counter * sine self.output_multiplication.set_value(multiple) # self.logger.debug(f" ! Inputs: {counter}, {sine}, Outputs: {multiple}") class ScalableCell1(ScalableCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(ScalableCell1, self).__init__(parent_cell, name=name) self.input_counter: InputPort[int] = InputPort(self, "counter_in") self.input_sine: InputPort[float] = InputPort(self, "sine") self.output_multiplication: OutputPort[float] = OutputPort(self, "multiplication") self.output_counter: OutputPort[int] = OutputPort(self, "counter_out") self.center_cell_1 = CenterCell1(self, "center_cell_1") Connection(self.input_counter, self.center_cell_1.input_counter) Connection(self.input_counter, self.output_counter) Connection(self.input_sine, self.center_cell_1.input_sine) Connection(self.center_cell_1.output_multiplication, self.output_multiplication) class CenterCell2(ASingleCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(CenterCell2, self).__init__(parent_cell, name=name) self.input_matrix: Input[np.ndarray] = Input(self, "matrix") self.input_sine: Input[float] = Input(self, "sine") self.output_matrix_multiple: Output[np.ndarray] = Output(self, "matrix_multiple") def supports_scaling(self) -> bool: return True def _on_pull(self) -> None: sine = self.input_sine.pull() matrix = self.input_matrix.pull() matrix_multiple: np.ndarray = matrix * sine self.output_matrix_multiple.set_value(matrix_multiple) # self.logger.debug(f" ! Inputs: {matrix}, {sine}, Outputs: {matrix_multiple}") class ScalableCell2(ScalableCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(ScalableCell2, self).__init__(parent_cell, name=name) self.input_matrix: InputPort[np.ndarray] = InputPort(self, "matrix") self.input_sine: InputPort[float] = InputPort(self, "sine") self.output_matrix_multiplication: OutputPort[np.ndarray] = OutputPort(self, "matrix_multiplication") self.center_cell_2 = CenterCell2(self, "center_cell_2") Connection(self.input_matrix, self.center_cell_2.input_matrix) Connection(self.input_sine, self.center_cell_2.input_sine) Connection(self.center_cell_2.output_matrix_multiple, self.output_matrix_multiplication) class SinkCell(ASingleCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(SinkCell, self).__init__(parent_cell, name=name) self.input_multiplication: Input[int] = Input(self, "multiplication") self.input_counter: Input[int] = Input(self, "counter") self.input_matrix_multiple: Input[np.ndarray] = Input(self, "matrix_multiple") self.output_combination: Output[np.ndarray] = Output(self, "combination") def supports_scaling(self) -> bool: return True def _on_pull(self) -> None: multiplication = self.input_multiplication.pull() counter = self.input_counter.pull() matrix_multiple = self.input_matrix_multiple.pull() combination: np.ndarray = (matrix_multiple + np.eye(matrix_multiple.shape[0]) * multiplication) / 2. combination /= counter # Should be just the sine signal again on the diagonal self.output_combination.set_value(combination) # self.logger.debug(f" ! Inputs: {multiplication}, {counter}, {matrix_multiple}, Outputs: {combination}") class SinkScalableCell(ScalableCell): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(SinkScalableCell, self).__init__(parent_cell, name=name) self.input_multiplication: InputPort[int] = InputPort(self, "multiplication") self.input_counter: InputPort[int] = InputPort(self, "counter") self.input_matrix_multiple: InputPort[np.ndarray] = InputPort(self, "matrix_multiple") self.output_combination: OutputPort[np.ndarray] = OutputPort(self, "combination") self.center_cell_3 = SinkCell(self, "center_cell_3") Connection(self.input_multiplication, self.center_cell_3.input_multiplication) Connection(self.input_counter, self.center_cell_3.input_counter) Connection(self.input_matrix_multiple, self.center_cell_3.input_matrix_multiple) Connection(self.center_cell_3.output_combination, self.output_combination) class ToplevelPipeline(Pipeline): def __init__(self, parent_cell: "Optional[ICompositeCell]", name: str): super(ToplevelPipeline, self).__init__(parent_cell, name=name) self.source_1 = SourceCell1(self, "source_1") self.source_2 = SourceCell2(self, "source_2") self.center_1 = ScalableCell1(self, "center_1_scalable") self.center_2 = ScalableCell2(self, "center_2_scalable") self.sink = SinkScalableCell(self, "sink_scalable") Connection(self.source_1.output_counter, self.center_1.input_counter) Connection(self.source_1.output_sine, self.center_1.input_sine) Connection(self.source_1.output_sine, self.center_2.input_sine) Connection(self.source_2.output_matrix, self.center_2.input_matrix) Connection(self.center_1.output_counter, self.sink.input_counter) Connection(self.center_1.output_multiplication, self.sink.input_multiplication) Connection(self.center_2.output_matrix_multiplication, self.sink.input_matrix_multiple) @pytest.fixture() def toplevel_pipeline() -> ToplevelPipeline: return ToplevelPipeline(None, "toplevel") def test_1(ray_init_and_shutdown: None, toplevel_pipeline: ToplevelPipeline) -> None: toplevel_pipeline.center_1.scale_up(3, ThreadCloneCell) toplevel_pipeline.center_2.scale_up(2, RayCloneCell) toplevel_pipeline.sink.scale_up(4, RayCloneCell) toplevel_pipeline.assert_is_valid() toplevel_pipeline.deploy() toplevel_pipeline.assert_is_valid() for i in tqdm(range(1, NB_ITERATIONS)): expected_result: np.ndarray = np.ones((SQUARE_MATRIX_SIZE, )) * sin(i * pi/2) toplevel_pipeline.pull() actual_result = toplevel_pipeline.sink.output_combination.get_value() toplevel_pipeline.logger.info(f"Expected result: {expected_result}") toplevel_pipeline.logger.info(f"Actual result: {actual_result.diagonal()}") assert np.isclose(actual_result.diagonal(), expected_result).all() toplevel_pipeline.undeploy() toplevel_pipeline.delete() ``` #### File: t01_pypipeline_tests/t03_integration_tests/test_09_scalablecell_exceptions.py ```python from typing import Optional, Generator, Type import time import ray import pytest import logging from pypipeline.cell import ASingleCell, ACompositeCell, ScalableCell, Pipeline, RayCloneCell, ThreadCloneCell, \ ACloneCell from pypipeline.cellio import Output, Input, InputPort, OutputPort from pypipeline.connection import Connection from pypipeline.exceptions import NonCriticalException class RandomNonCriticalException(NonCriticalException): pass class RandomCriticalException(Exception): pass class SourceCell(ASingleCell): def __init__(self, parent_cell: Optional[ACompositeCell], name: str): super(SourceCell, self).__init__(parent_cell, name) self.output_1: Output[int] = Output(self, "output_1") self.output_2: Output[int] = Output(self, "output_2") self.counter = 0 def _on_pull(self) -> None: self.logger.warning(f"{self} being pulled...") time.sleep(0.01) # if self.counter == 4: # raise SomeRandomException("some random error message") self.output_1.set_value(self.counter) self.output_2.set_value(self.counter) self.counter += 1 class SinkCell(ASingleCell): def __init__(self, parent_cell: Optional[ACompositeCell], name: str): super(SinkCell, self).__init__(parent_cell, name) self.input_1: Input[int] = Input(self, "input_1") self.input_2: Input[int] = Input(self, "input_2") self.output: Output[int] = Output(self, "output") self.counter = 0 def _on_pull(self) -> None: self.counter += 1 value_1 = self.input_1.pull() if self.counter == 3: raise RandomNonCriticalException("Non-critical errors shouldn't stop the pipeline") elif self.counter == 6: raise RandomCriticalException("Critical errors should stop the pipeline") value_2 = self.input_2.pull() time.sleep(0.02) self.output.set_value(value_1 + value_2) class ScalableSinkCell(ScalableCell): def __init__(self, parent_cell: Optional[ACompositeCell], name: str): super(ScalableSinkCell, self).__init__(parent_cell, name) self.sink_cell = SinkCell(self, "sink_cell") self.input_1: InputPort[int] = InputPort(self, "input_port_1") self.input_2: InputPort[int] = InputPort(self, "input_port_2") self.output: OutputPort[int] = OutputPort(self, "output_port") Connection(self.input_1, self.sink_cell.input_1) Connection(self.input_2, self.sink_cell.input_2) Connection(self.sink_cell.output, self.output) class TestPipeline(Pipeline): def __init__(self, parent_cell: Optional[ACompositeCell], name: str): super(TestPipeline, self).__init__(parent_cell, name) self.source = SourceCell(self, "source") self.sink = ScalableSinkCell(self, "scalable_sink") Connection(self.source.output_1, self.sink.input_1) Connection(self.source.output_2, self.sink.input_2) @pytest.fixture def ray_init_and_shutdown() -> Generator: ray.init() yield None ray.shutdown() @pytest.mark.parametrize("scaleup_method", [ThreadCloneCell, RayCloneCell]) def test_exceptions_in_clones(ray_init_and_shutdown, scaleup_method: Type[ACloneCell]): pipeline = TestPipeline(None, "pipeline") pipeline.sink.scale_up(2, method=scaleup_method) pipeline.deploy() nb_noncritical_exceptions = 0 for i in range(11): logging.warning(f"============= {i} =============") try: pipeline.pull() except RandomNonCriticalException as e: logging.warning(f"Got non-critical exception {e}") nb_noncritical_exceptions += 1 except RandomCriticalException as e: logging.warning(f"Got critical exception {e}") # In theory the pipeline can arrive here with only one non-critical exception, if only one of the # clones did most of/all the work... Usually it should be 2 assert nb_noncritical_exceptions == 1 or nb_noncritical_exceptions == 2 break else: logging.warning(f"Got result {pipeline.sink.output.get_value()}") assert pipeline.sink.output.get_value() == 2 * i pipeline.undeploy() ```
{ "source": "Johannes-Vitt/sonypiapi", "score": 3 }
#### File: Johannes-Vitt/sonypiapi/sonypyapi.py ```python import sys import json import urllib2 import collections url = "http://192.168.122.1:8080/sony/" camera_url = url+"camera" avContent_url = url+"avContent" def create_params_dict(method,params=[],id_=1,version="1.0"): params = collections.OrderedDict([ ("method", method), ("params", params), ("id", id_), ("version", version)]) return params def api_call(url,params): return urllib2.urlopen(url,json.dumps(params)) def cast_params(param_list): #first object on param list ist method name, second the first param for api #call api_call for getMethodTypes #cast type for every argument on the param list ## try: parameter_types = json.load(api_call(camera_url,list_of_method_types())) for i in parameter_types["results"]: if(i[0]==param_list[0]): if (i[1]!=None): for counter, to_type in enumerate(i[1]): param_list[counter+1] = cast(param_list[counter+1],to_type) ## except: ## parameter_types = json.load(api_call(avContent_url,list_of_method_types())) ## for i in parameter_types["results"]: ## if(param_list != []): ## if(i[0]==param_list[0]): ## if (i[1]!=None): ## for counter, to_tpye in enumerate(i[1]): ## param_list[counter+1] = cast(param_list[counter+1],to_type) return param_list def cast(value, to_type): if (to_type=="int"): return int(value) if (to_type=="bool"): return bool(value) if (to_type=="string"): return str(value) if (to_type=="int*"): help_int = [] for i in value: help_int.append(int(i)) return help_int if (to_type=="string*"): help_string = [] for i in value: help_string.append(str(i)) return help_string if (to_type=="bool*"): help_bool = [] for i in value: help_bool.append(bool(i)) return help_bool def list_of_method_types(): params_for_api_call = collections.OrderedDict([ ("method", "getMethodTypes"), ("params", ["1.0"]), ("id", 1), ("version", "1.0")]) return params_for_api_call def command_line_call(): if(len(sys.argv)==1): raw_params = ["getAvailableApiList"] else: raw_params = sys.argv[1:] clean_params = cast_params(raw_params) if(len(clean_params)>1): params_for_api_call = create_params_dict(clean_params[0],clean_params[1:]) else: params_for_api_call = create_params_dict(clean_params[0]) print api_call(camera_url,params_for_api_call).read() command_line_call() ```
{ "source": "JohannesWaltmann/advent_of_code_2021", "score": 4 }
#### File: advent_of_code_2021/day_04/day04.py ```python import numpy as np # Load draws test_draw = np.loadtxt('resources/test_input', dtype=str, max_rows=1, delimiter=',') val_draw = np.loadtxt('resources/val_input', dtype=str, max_rows=1, delimiter=',') # Load boards test_boards = np.loadtxt('resources/test_input', skiprows=2) val_boards = np.loadtxt('resources/val_input', skiprows=2) def task_01_bingo(boards, draws): """ Computes a bingo on one of the given boards based on a given series of drawn numbers. :param boards: Three dim np-array containing a set of bingo boards. :param draws: Np-array with the set of drawn numbers. :returns: The sum of all non-marked numbers on the winning board multiplied by the winning number. """ single_boards = np.array(np.split(boards, len(boards) / 5)) bool_mask = np.zeros_like(single_boards, dtype=bool) for draw in draws: # Take every drawn number bool_mask[single_boards == int(draw)] = True num_board = 0 for masked_board in bool_mask: # Flip the bool mask of each board to true if a drawn number is matched row_bingo = np.all(masked_board, axis=1) col_bingo = np.all(masked_board, axis=0) row_solved = np.any(row_bingo, axis=0) col_solved = np.any(col_bingo, axis=0) if row_solved or col_solved: # Compute the boardsum if a row or col is fully true winning_board = single_boards[num_board] winning_board[masked_board == True] = 0 return int(np.sum(winning_board) * int(draw)) num_board += 1 def task_02_bingo(boards, draws): """ Computes a bingo on one of the given boards based on a given series of drawn numbers. :param boards: Three dim np-array containing a set of bingo boards. :param draws: Np-array with the set of drawn numbers. :returns: The sum of all non-marked numbers on the last winning board multiplied by its winning number. """ single_boards = np.array(np.split(boards, len(boards) / 5)) bool_mask = np.zeros_like(single_boards, dtype=bool) # Extra variables to keep track of the current last winner last_draw, last_board = -1, np.zeros((5, 5)) last_marked = np.zeros_like(last_board, dtype=bool) for draw in draws: # Take every drawn number bool_mask[single_boards == int(draw)] = True num_board = 0 for masked_board in bool_mask: # Flip the bool mask of each board to true if a drawn number is matched row_bingo = np.all(masked_board, axis=1) col_bingo = np.all(masked_board, axis=0) row_solved = np.any(row_bingo, axis=0) col_solved = np.any(col_bingo, axis=0) if row_solved or col_solved: # Set the current winning board as last winning board last_board = np.copy(single_boards[num_board]) last_draw = draw last_marked = np.copy(masked_board) single_boards[num_board] = None bool_mask[num_board] = None num_board += 1 # Compute the board sum of the last winning board last_board[last_marked == True] = 0 return int(np.sum(last_board) * int(last_draw)) print(f"Task 01 test output: {task_01_bingo(test_boards, test_draw)}") print(f"Task 01 validation output: {task_01_bingo(val_boards, val_draw)}") print(f"Task 02 test output: {task_02_bingo(test_boards, test_draw)}") print(f"Task 02 validation output: {task_02_bingo(val_boards, val_draw)}") ``` #### File: advent_of_code_2021/day_08/day_08.py ```python test_input = [[num.strip().split(" ") for num in line.split("|")] for line in open('resources/test_input', 'r').readlines()] test_input_2 = [[num.strip().split(" ") for num in line.split("|")] for line in open('resources/test_input_2', 'r').readlines()] val_input = [[num.strip().split(' ') for num in line.split('|')] for line in open('resources/val_input', 'r').readlines()] print(test_input[0]) def find_digit_in_segments(display) -> int: """ Computes how many instances of a specific digit are located in the given input. :param display: The input of a seven segment split at '|' as delimiter. :return: Sum of the counted digits. """ num_digits = 0 # Check each row of the segment display for digit in display: # Check each single segment for segment in digit[1]: # Increment the output if the number read is either of [1, 4, 7, 8] if len(segment) == 2 or len(segment) == 3 or len(segment) == 4 or len(segment) == 7: num_digits += 1 return num_digits def compute_sum_output(display) -> int: """ Computes the digit representation for the output of every line and returns the sum of these outputs. Needs to determine the character->digit mapping new for each single line. :param display: Line wise input of the seven segment. Split at '|' as delimiter. :return: Sum of the output numbers per line. """ sum_output = 0 # Filter the obvious numbers from the display input for digit in display: known = {} for segment in digit[0]: if len(segment) == 2: known[1] = set(segment) elif len(segment) == 4: known[4] = set(segment) # Filter the numbers from the output nums = '' for _segment in digit[1]: if len(_segment) == 2: nums += '1' elif len(_segment) == 3: nums += '7' elif len(_segment) == 4: nums += '4' elif len(_segment) == 5: if set(_segment).issuperset(known[1]): nums += '3' elif len(set(_segment) & known[4]) == 3: nums += '5' else: nums += '2' elif len(_segment) == 6: if not set(_segment).issuperset(known[1]): nums += '6' elif set(_segment).issuperset(known[4]): nums += '9' else: nums += '0' elif len(_segment) == 7: nums += '8' sum_output += int(nums) return sum_output print(f'Solution test task 01: {find_digit_in_segments(test_input)}') print(f'Solution test 02 task 01: {find_digit_in_segments(test_input_2)}') print(f'Solution validation task 01: {find_digit_in_segments(val_input)}') print('----------------------------') print(f'Solution test task 02: {compute_sum_output(test_input)}') print(f'Solution test 2 task 02: {compute_sum_output(test_input_2)}') print(f'Solution validation task 02: {compute_sum_output(val_input)}') ``` #### File: advent_of_code_2021/day_12/day_12.py ```python from collections import defaultdict def count_paths_small_once(source_path: str) -> int: """ Counts the different possible paths through a cave system. Each valid path has to contain a start and an end point. A path may contain multiple entries of the came capital cave but only one instance per minor cave. :param source_path: File path to the routing info of a cave system. :returns: The sum of counted valid paths. Each path increments the sum by 1. """ # Create dictionary connections = defaultdict(list) for line in open(source_path, 'r'): # Write combinations of entry end destination point per path to the dictionary entry, destination = line.strip().split('-') connections[entry].append(destination) connections[destination].append(entry) next_cave = [['start']] valid_paths = 0 # As long as there are valid paths available while next_cave: # Take the next path current_path = next_cave.pop(0) # If the cave coming after the current one for follow_up in connections[current_path[-1]]: # If next cave is an end cave increment the path counter if follow_up == 'end': valid_paths += 1 # Else append it to the list of coming caves # Only when it is a capital cave or has not been visited yet elif not follow_up.islower() or follow_up not in current_path: next_cave.append(current_path + [follow_up]) return valid_paths def count_paths_one_small_double(source_path: str) -> int: """ Counts the different possible paths through a cave system. Each valid path has to contain a start and an end point. A path may contain multiple entries of the came capital cave and up to two instances per minor cave. :param source_path: File path to the routing info of a cave system. :returns: The sum of counted valid paths. Each path increments the sum by 1. """ # Create dictionary and fill with cave connections connections = defaultdict(list) for line in open(source_path, 'r'): entry, destination = line.strip().split('-') connections[entry].append(destination) connections[destination].append(entry) valid_paths = 0 _next = [['start']] # As long as paths are available while _next: # Take the next path as current current_path = _next.pop(0) # For each cave in the current path for coming in connections[current_path[-1]]: # Mark the cave as multi occurance of minor cave revisit = coming.islower() and coming in current_path if coming == 'end': valid_paths += 1 # If the path is not the starting cave and it is not a multi revisit of a minor cave elif coming != 'start' and not (current_path[0] == '*' and revisit): # Add it to the following caves of the current path _next.append((['*'] if revisit else []) + current_path + [coming]) return valid_paths # Output for task 01 print('Solution for first test task 01: ', count_paths_small_once('resources/test_1')) print('Solution for second test task 01: ', count_paths_small_once('resources/test_2')) print('Solution for validation task 01: ', count_paths_small_once('resources/val')) print('-------------------------------') # Output for task 02 print('Solution for first test task 02: ', count_paths_one_small_double('resources/test_3')) print('Solution for second test task 02: ', count_paths_one_small_double('resources/test_2')) print('Solution for validation task 02: ', count_paths_one_small_double('resources/val')) ```
{ "source": "johanneswd/weather-lights", "score": 3 }
#### File: johanneswd/weather-lights/weather-lights.py ```python from time import sleep try: import neopixel except ImportError: print "Could not import neopixel, running in simulation mode" import neopixel_sim as neopixel from adds_data import MetarCache airports = ['EGKB', 'EGHI', 'EGGP', 'EGGD', 'BIEG', 'EDDS'] # LED strip configuration: LED_COUNT = len(airports) # Number of LED pixels. LED_PIN = 18 # GPIO pin connected to the pixels (18 uses PWM!). #LED_PIN = 10 # GPIO pin connected to the pixels (10 uses SPI /dev/spidev0.0). LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz) LED_DMA = 5 # DMA channel to use for generating signal (try 5) LED_BRIGHTNESS = 32 # Set to 0 for darkest and 255 for brightest LED_INVERT = False # True to invert the signal (when using NPN transistor level shift) LED_CHANNEL = 0 # set to '1' for GPIOs 13, 19, 41, 45 or 53 LED_STRIP = neopixel.ws.WS2811_STRIP_RGB # Strip type and colour ordering colours = { 'LIFR' : neopixel.Color(191, 44, 214), # purple 'IFR' : neopixel.Color(226, 67, 27), # red 'MVFR' : neopixel.Color(46, 56, 209), # blue 'VFR' : neopixel.Color(41, 178, 45) # green } BLANK = neopixel.Color(0,0,0) def get_colour(airport_id, metars): metar = metars[airport_id] if metar is None: return BLANK if not metar.noaa_flight_category.valid: return BLANK condition = metar.noaa_flight_category.data print "%s is %s" % (airport_id, condition) if condition not in colours: return BLANK return colours[condition] def set_colours(strip, cache, airport_list): metars = cache.get_metars(airport_list) for airport, n in zip(airport_list, range(0, len(airport_list))): colour = get_colour(airport, metars) strip.setPixelColor(n, colour) strip.show() def main(poll_interval): strip = neopixel.Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL, LED_STRIP) strip.begin() cache = MetarCache() while True: set_colours(strip, cache, airports) sleep(poll_interval) if __name__=='__main__': main(5) ```
{ "source": "johannes-weidenfeller/qiskit-aqua", "score": 3 }
#### File: components/neural_networks/generative_network.py ```python from abc import ABC, abstractmethod class GenerativeNetwork(ABC): """ Base class for generative Quantum and Classical Neural Networks. This method should initialize the module, but raise an exception if a required component of the module is not available. """ @abstractmethod def __init__(self): super().__init__() self._num_parameters = 0 self._num_qubits = 0 self._bounds = list() @abstractmethod def set_seed(self, seed): """ Set seed. Args: seed (int): seed Raises: NotImplementedError: not implemented """ raise NotImplementedError() @abstractmethod def get_output(self, quantum_instance, params, shots): """ Apply quantum/classical neural network to given input and get the respective output Args: quantum_instance (QuantumInstance): Quantum Instance, used to run the generator circuit. params (numpy.ndarray): parameters which should be used to run the generator, if None use self._params shots (int): if not None use a number of shots that is different from the number set in quantum_instance Returns: Neural network output Raises: NotImplementedError: not implemented """ raise NotImplementedError() @abstractmethod def loss(self): """ Loss function used for optimization """ raise NotImplementedError() @abstractmethod def train(self, quantum_instance=None, shots=None): """ Perform one training step w.r.t to the generator's parameters Args: quantum_instance (QuantumInstance): used to run generator network. Ignored for a classical network. shots (int): Number of shots for hardware or qasm execution. Ignored for classical network Returns: dict: generator loss and updated parameters. Raises: NotImplementedError: not implemented """ raise NotImplementedError() ``` #### File: operators/converters/abelian_grouper.py ```python import warnings from typing import List, Tuple, Dict, cast, Optional import numpy as np import retworkx as rx from qiskit.aqua import AquaError from .converter_base import ConverterBase from ..list_ops.list_op import ListOp from ..list_ops.summed_op import SummedOp from ..operator_base import OperatorBase from ..primitive_ops.pauli_op import PauliOp from ..primitive_ops.pauli_sum_op import PauliSumOp from ..state_fns.operator_state_fn import OperatorStateFn class AbelianGrouper(ConverterBase): """The AbelianGrouper converts SummedOps into a sum of Abelian sums. Meaning, it will traverse the Operator, and when it finds a SummedOp, it will evaluate which of the summed sub-Operators commute with one another. It will then convert each of the groups of commuting Operators into their own SummedOps, and return the sum-of-commuting-SummedOps. This is particularly useful for cases where mutually commuting groups can be handled similarly, as in the case of Pauli Expectations, where commuting Paulis have the same diagonalizing circuit rotation, or Pauli Evolutions, where commuting Paulis can be diagonalized together. """ def __init__(self, traverse: bool = True) -> None: """ Args: traverse: Whether to convert only the Operator passed to ``convert``, or traverse down that Operator. """ self._traverse = traverse def convert(self, operator: OperatorBase) -> OperatorBase: """Check if operator is a SummedOp, in which case covert it into a sum of mutually commuting sums, or if the Operator contains sub-Operators and ``traverse`` is True, attempt to convert any sub-Operators. Args: operator: The Operator to attempt to convert. Returns: The converted Operator. """ # pylint: disable=cyclic-import,import-outside-toplevel from ..evolutions.evolved_op import EvolvedOp # TODO: implement direct way if isinstance(operator, PauliSumOp): operator = operator.to_pauli_op() if isinstance(operator, ListOp): if isinstance(operator, SummedOp) and all(isinstance(op, PauliOp) for op in operator.oplist): # For now, we only support graphs over Paulis. return self.group_subops(operator) elif self._traverse: return operator.traverse(self.convert) else: return operator elif isinstance(operator, OperatorStateFn) and self._traverse: return OperatorStateFn(self.convert(operator.primitive), is_measurement=operator.is_measurement, coeff=operator.coeff) elif isinstance(operator, EvolvedOp) and self._traverse: return EvolvedOp(self.convert(operator.primitive), coeff=operator.coeff) # type: ignore else: return operator @classmethod def group_subops(cls, list_op: ListOp, fast: Optional[bool] = None, use_nx: Optional[bool] = None) -> ListOp: """Given a ListOp, attempt to group into Abelian ListOps of the same type. Args: list_op: The Operator to group into Abelian groups fast: Ignored - parameter will be removed in future release use_nx: Ignored - parameter will be removed in future release Returns: The grouped Operator. Raises: AquaError: If any of list_op's sub-ops is not ``PauliOp``. """ if fast is not None or use_nx is not None: warnings.warn('Options `fast` and `use_nx` of `AbelianGrouper.group_subops` are ' 'no longer used and are now deprecated and will be removed no ' 'sooner than 3 months following the 0.8.0 release.') # TODO: implement direct way if isinstance(list_op, PauliSumOp): list_op = list_op.to_pauli_op() for op in list_op.oplist: if not isinstance(op, PauliOp): raise AquaError( 'Cannot determine Abelian groups if any Operator in list_op is not ' '`PauliOp`. E.g., {} ({})'.format(op, type(op))) edges = cls._commutation_graph(list_op) nodes = range(len(list_op)) graph = rx.PyGraph() graph.add_nodes_from(nodes) graph.add_edges_from_no_data(edges) # Keys in coloring_dict are nodes, values are colors coloring_dict = rx.graph_greedy_color(graph) groups = {} # type: Dict # sort items so that the output is consistent with all options (fast and use_nx) for idx, color in sorted(coloring_dict.items()): groups.setdefault(color, []).append(list_op[idx]) group_ops = [list_op.__class__(group, abelian=True) for group in groups.values()] if len(group_ops) == 1: return group_ops[0] * list_op.coeff # type: ignore return list_op.__class__(group_ops, coeff=list_op.coeff) # type: ignore @staticmethod def _commutation_graph(list_op: ListOp) -> List[Tuple[int, int]]: """Create edges (i, j) if i and j are not commutable. Note: This method is applicable to only PauliOps. Args: list_op: list_op Returns: A list of pairs of indices of the operators that are not commutable """ # convert a Pauli operator into int vector where {I: 0, X: 2, Y: 3, Z: 1} mat1 = np.array([op.primitive.z + 2 * op.primitive.x for op in list_op], dtype=np.int8) mat2 = mat1[:, None] # mat3[i, j] is True if i and j are commutable with TPB mat3 = (((mat1 * mat2) * (mat1 - mat2)) == 0).all(axis=2) # return [(i, j) if mat3[i, j] is False and i < j] return cast(List[Tuple[int, int]], list(zip(*np.where(np.triu(np.logical_not(mat3), k=1))))) ``` #### File: evolutions/trotterizations/qdrift.py ```python from typing import cast import numpy as np from qiskit.aqua import aqua_globals from .trotterization_base import TrotterizationBase from ...operator_base import OperatorBase from ...list_ops.summed_op import SummedOp from ...list_ops.composed_op import ComposedOp from ...primitive_ops.pauli_sum_op import PauliSumOp # pylint: disable=invalid-name class QDrift(TrotterizationBase): """ The QDrift Trotterization method, which selects each each term in the Trotterization randomly, with a probability proportional to its weight. Based on the work of <NAME> in https://arxiv.org/abs/1811.08017. """ def __init__(self, reps: int = 1) -> None: r""" Args: reps: The number of times to repeat the Trotterization circuit. """ super().__init__(reps=reps) def convert(self, operator: OperatorBase) -> OperatorBase: # TODO: implement direct way if isinstance(operator, PauliSumOp): operator = operator.to_pauli_op() if not isinstance(operator, SummedOp): raise TypeError('Trotterization converters can only convert SummedOps.') summed_op = cast(SummedOp, operator) # We artificially make the weights positive, TODO check approximation performance weights = np.abs([op.coeff for op in summed_op.oplist]) # type: ignore lambd = sum(weights) N = 2 * (lambd ** 2) * (summed_op.coeff ** 2) factor = lambd * summed_op.coeff / (N * self.reps) # The protocol calls for the removal of the individual coefficients, # and multiplication by a constant factor. scaled_ops = \ [(op * (factor / op.coeff)).exp_i() for op in summed_op.oplist] # type: ignore sampled_ops = aqua_globals.random.choice(scaled_ops, size=(int(N * self.reps),), # type: ignore p=weights / lambd) return ComposedOp(sampled_ops).reduce() ``` #### File: operators/legacy/op_converter.py ```python from typing import Union, Callable, cast import itertools import logging import sys import numpy as np from qiskit.quantum_info import Pauli from qiskit.tools.parallel import parallel_map from qiskit.tools.events import TextProgressBar from qiskit.aqua import AquaError, aqua_globals from .weighted_pauli_operator import WeightedPauliOperator from .matrix_operator import MatrixOperator from .tpb_grouped_weighted_pauli_operator import TPBGroupedWeightedPauliOperator logger = logging.getLogger(__name__) def _conversion(basis, matrix): pauli = Pauli.from_label(''.join(basis)) trace_value = np.sum(matrix.dot(pauli.to_spmatrix()).diagonal()) return trace_value, pauli def to_weighted_pauli_operator( operator: Union[WeightedPauliOperator, TPBGroupedWeightedPauliOperator, MatrixOperator]) \ -> WeightedPauliOperator: """ Converting a given operator to `WeightedPauliOperator` Args: operator: one of supported operator type Returns: The converted weighted pauli operator Raises: AquaError: Unsupported type to convert Warnings: Converting time from a MatrixOperator to a Pauli-type Operator grows exponentially. If you are converting a system with large number of qubits, it will take time. You can turn on DEBUG logging to check the progress. """ if operator.__class__ == WeightedPauliOperator: return cast(WeightedPauliOperator, operator) elif operator.__class__ == TPBGroupedWeightedPauliOperator: # destroy the grouping but keep z2 symmetries info op_tpb = cast(TPBGroupedWeightedPauliOperator, operator) return WeightedPauliOperator(paulis=op_tpb.paulis, z2_symmetries=op_tpb.z2_symmetries, name=op_tpb.name) elif operator.__class__ == MatrixOperator: op_m = cast(MatrixOperator, operator) if op_m.is_empty(): return WeightedPauliOperator(paulis=[]) if op_m.num_qubits > 10: logger.warning("Converting time from a MatrixOperator to a Pauli-type Operator grows " "exponentially. If you are converting a system with large number of " "qubits, it will take time. And now you are converting a %s-qubit " "Hamiltonian. You can turn on DEBUG logging to check the progress." "", op_m.num_qubits) num_qubits = op_m.num_qubits coeff = 2 ** (-num_qubits) paulis = [] possible_basis = 'IXYZ' if op_m.dia_matrix is not None: possible_basis = 'IZ' if logger.isEnabledFor(logging.DEBUG): logger.debug("Converting a MatrixOperator to a Pauli-type Operator:") TextProgressBar(sys.stderr) results = parallel_map(_conversion, list(itertools.product(possible_basis, repeat=num_qubits)), task_kwargs={"matrix": op_m._matrix}, num_processes=aqua_globals.num_processes) for trace_value, pauli in results: weight = trace_value * coeff if weight != 0.0 and np.abs(weight) > op_m.atol: paulis.append([weight, pauli]) return WeightedPauliOperator(paulis, z2_symmetries=operator.z2_symmetries, name=operator.name) else: raise AquaError("Unsupported type to convert to WeightedPauliOperator: " "{}".format(operator.__class__)) def to_matrix_operator( operator: Union[WeightedPauliOperator, TPBGroupedWeightedPauliOperator, MatrixOperator])\ -> MatrixOperator: """ Converting a given operator to `MatrixOperator` Args: operator: one of supported operator type Returns: the converted matrix operator Raises: AquaError: Unsupported type to convert """ if operator.__class__ == WeightedPauliOperator: op_w = cast(WeightedPauliOperator, operator) if op_w.is_empty(): return MatrixOperator(None) hamiltonian = 0 for weight, pauli in op_w.paulis: hamiltonian += weight * pauli.to_spmatrix() return MatrixOperator(matrix=hamiltonian, z2_symmetries=op_w.z2_symmetries, name=op_w.name) elif operator.__class__ == TPBGroupedWeightedPauliOperator: op_tpb = cast(TPBGroupedWeightedPauliOperator, operator) op = WeightedPauliOperator(paulis=op_tpb.paulis, z2_symmetries=op_tpb.z2_symmetries, name=op_tpb.name) return to_matrix_operator(op) elif operator.__class__ == MatrixOperator: return cast(MatrixOperator, operator) else: raise AquaError("Unsupported type to convert to MatrixOperator: " "{}".format(operator.__class__)) # pylint: disable=invalid-name def to_tpb_grouped_weighted_pauli_operator( operator: Union[WeightedPauliOperator, TPBGroupedWeightedPauliOperator, MatrixOperator], grouping_func: Callable, **kwargs: int) -> TPBGroupedWeightedPauliOperator: """ Args: operator: one of supported operator type grouping_func: a callable function that grouped the paulis in the operator. kwargs: other setting for `grouping_func` function Returns: the converted tensor-product-basis grouped weighted pauli operator Raises: AquaError: Unsupported type to convert """ if operator.__class__ == WeightedPauliOperator: return grouping_func(operator, **kwargs) elif operator.__class__ == TPBGroupedWeightedPauliOperator: # different tpb grouping approach is asked op_tpb = cast(TPBGroupedWeightedPauliOperator, operator) if grouping_func != op_tpb.grouping_func and kwargs != op_tpb.kwargs: return grouping_func(op_tpb, **kwargs) else: return op_tpb elif operator.__class__ == MatrixOperator: op = to_weighted_pauli_operator(operator) return grouping_func(op, **kwargs) else: raise AquaError("Unsupported type to convert to TPBGroupedWeightedPauliOperator: " "{}".format(operator.__class__)) ``` #### File: aqua/utils/dataset_helper.py ```python import operator from copy import deepcopy import numpy as np from sklearn.decomposition import PCA def get_num_classes(dataset): """ Check number of classes in a given dataset Args: dataset(dict): key is the class name and value is the data. Returns: int: number of classes """ return len(list(dataset.keys())) def get_feature_dimension(dataset): """ Check feature dimension of a given dataset Args: dataset(dict): key is the class name and value is the data. Returns: int: feature dimension, -1 denotes no data in the dataset. Raises: TypeError: invalid data set """ if not isinstance(dataset, dict): raise TypeError("Dataset is not formatted as a dict. Please check it.") feature_dim = -1 for v in dataset.values(): if not isinstance(v, np.ndarray): v = np.asarray(v) return v.shape[1] return feature_dim # pylint: disable=invalid-name def split_dataset_to_data_and_labels(dataset, class_names=None): """ Split dataset to data and labels numpy array If `class_names` is given, use the desired label to class name mapping, or create the mapping based on the keys in the dataset. Args: dataset (dict): {'A': numpy.ndarray, 'B': numpy.ndarray, ...} class_names (dict): class name of dataset, {class_name: label} Returns: Union(tuple(list, dict), list): List contains two arrays of numpy.ndarray type where the array at index 0 is data, an NxD array, and at index 1 it is labels, an Nx1 array, containing values in range 0 to K-1, where K is the number of classes. The dict is a map {str: int}, mapping class name to label. The tuple of list, dict is returned when `class_names` is not None, otherwise just the list is returned. Raises: KeyError: data set invalid """ data = [] labels = [] if class_names is None: sorted_classes_name = sorted(list(dataset.keys())) class_to_label = {k: idx for idx, k in enumerate(sorted_classes_name)} else: class_to_label = class_names sorted_label = sorted(class_to_label.items(), key=operator.itemgetter(1)) for class_name, _ in sorted_label: values = dataset[class_name] for value in values: data.append(value) try: labels.append(class_to_label[class_name]) except Exception as ex: # pylint: disable=broad-except raise KeyError('The dataset has different class names to ' 'the training data. error message: {}'.format(ex)) from ex data = np.asarray(data) labels = np.asarray(labels) if class_names is None: return [data, labels], class_to_label else: return [data, labels] def map_label_to_class_name(predicted_labels, label_to_class): """ Helper converts labels (numeric) to class name (string) Args: predicted_labels (numpy.ndarray): Nx1 array label_to_class (dict or list): a mapping form label (numeric) to class name (str) Returns: str: predicted class names of each datum """ if not isinstance(predicted_labels, np.ndarray): predicted_labels = np.asarray([predicted_labels]) predicted_class_names = [] for predicted_label in predicted_labels: predicted_class_names.append(label_to_class[predicted_label]) return predicted_class_names def reduce_dim_to_via_pca(x, dim): """ Reduce the data dimension via pca Args: x (numpy.ndarray): NxD array dim (int): the targeted dimension D' Returns: numpy.ndarray: NxD' array """ x_reduced = PCA(n_components=dim).fit_transform(x) return x_reduced def discretize_and_truncate(data, bounds, num_qubits, return_data_grid_elements=False, return_prob=False, prob_non_zero=True): """ Discretize & truncate classical data to enable digital encoding in qubit registers whereby the data grid is [[grid elements dim 0],..., [grid elements dim k]] Args: data (list or array or np.array): training data (int or float) of dimension k bounds (list or array or np.array): k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]] if univariate data: [min_0,max_0] num_qubits (list or array or np.array): k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [num_qubits_0,..., num_qubits_k-1] return_data_grid_elements (Bool): if True - return an array with the data grid elements return_prob (Bool): if True - return a normalized frequency count of the discretized and truncated data samples prob_non_zero (Bool): if True - set 0 values in the prob_data to 10^-1 to avoid potential problems when using the probabilities in loss functions - division by 0 Returns: array: discretized and truncated data array: data grid [[grid elements dim 0],..., [grid elements dim k]] array: grid elements, Product_j=0^k-1 2**num_qubits_j element vectors array: data probability, normalized frequency count sorted from smallest to biggest element """ # Truncate the data if np.ndim(bounds) == 1: bounds = np.reshape(bounds, (1, len(bounds))) data = data.reshape((len(data), len(num_qubits))) temp = [] for i, data_sample in enumerate(data): append = True for j, entry in enumerate(data_sample): if entry < bounds[j, 0]: append = False if entry > bounds[j, 1]: append = False if append: temp.append(list(data_sample)) data = np.array(temp) # Fit the data to the data element grid for j, prec in enumerate(num_qubits): data_row = data[:, j] # dim j of all data samples # prepare element grid for dim j elements_current_dim = np.linspace(bounds[j, 0], bounds[j, 1], (2 ** prec)) # find index for data sample in grid index_grid = np.searchsorted( elements_current_dim, data_row - (elements_current_dim[1] - elements_current_dim[0]) * 0.5) for k, index in enumerate(index_grid): data[k, j] = elements_current_dim[index] if j == 0: if len(num_qubits) > 1: data_grid = [elements_current_dim] else: data_grid = elements_current_dim grid_elements = elements_current_dim elif j == 1: temp = [] for grid_element in grid_elements: for element_current in elements_current_dim: temp.append([grid_element, element_current]) grid_elements = temp data_grid.append(elements_current_dim) else: temp = [] for grid_element in grid_elements: for element_current in elements_current_dim: temp.append(deepcopy(grid_element).append(element_current)) grid_elements = deepcopy(temp) data_grid.append(elements_current_dim) data_grid = np.array(data_grid) data = np.reshape(data, (len(data), len(data[0]))) if return_prob: if np.ndim(data) > 1: prob_data = np.zeros(int(np.prod(np.power(np.ones(len(data[0])) * 2, num_qubits)))) else: prob_data = np.zeros(int(np.prod(np.power(np.array([2]), num_qubits)))) for data_element in data: for i, element in enumerate(grid_elements): if all(data_element == element): prob_data[i] += 1 / len(data) if prob_non_zero: # add epsilon to avoid 0 entries which can be problematic in loss functions (division) prob_data = [1e-10 if x == 0 else x for x in prob_data] if return_data_grid_elements: return data, data_grid, grid_elements, prob_data else: return data, data_grid, prob_data else: if return_data_grid_elements: return data, data_grid, grid_elements else: return data, data_grid ``` #### File: circuit/library/raw_feature_vector.py ```python from typing import Set, List, Optional import numpy as np from qiskit.circuit import QuantumRegister, ParameterVector, ParameterExpression, Gate from qiskit.circuit.library import BlueprintCircuit class RawFeatureVector(BlueprintCircuit): """The raw feature vector circuit. This circuit acts as parameterized initialization for statevectors with ``feature_dimension`` dimensions, thus with ``log2(feature_dimension)`` qubits. As long as there are free parameters, this circuit holds a placeholder instruction and can not be decomposed. Once all parameters are bound, the placeholder is replaced by a state initialization and can be unrolled. In ML, this circuit can be used to load the training data into qubit amplitudes. It does not apply an kernel transformation. (Therefore, it is a "raw" feature vector.) Examples: .. code-block:: from qiskit.ml.circuit.library import RawFeatureVector circuit = RawFeatureVector(4) print(circuit.num_qubits) # prints: 2 print(circuit.draw(output='text')) # prints: # ┌──────┐ # q_0: ┤0 ├ # │ Raw │ # q_1: ┤1 ├ # └──────┘ print(circuit.ordered_parameters) # prints: [Parameter(p[0]), Parameter(p[1]), Parameter(p[2]), Parameter(p[3])] import numpy as np state = np.array([1, 0, 0, 1]) / np.sqrt(2) bound = circuit.assign_parameters(state) print(bound.draw()) # prints: # ┌──────────────────────────────────┐ # q_0: ┤0 ├ # │ initialize(0.70711,0,0,0.70711) │ # q_1: ┤1 ├ # └──────────────────────────────────┘ """ def __init__(self, feature_dimension: Optional[int]) -> None: """ Args: feature_dimension: The feature dimension and number of qubits. """ super().__init__() self._num_qubits = None # type: int self._parameters = None # type: List[ParameterExpression] if feature_dimension: self.feature_dimension = feature_dimension def _build(self): super()._build() # if the parameters are fully specified, use the initialize instruction if len(self.parameters) == 0: self.initialize(self._parameters, self.qubits) # pylint: disable=no-member # otherwise get a gate that acts as placeholder else: placeholder = Gate('Raw', self.num_qubits, self._parameters[:], label='Raw') self.append(placeholder, self.qubits) def _check_configuration(self, raise_on_failure=True): pass @property def num_qubits(self) -> int: """Returns the number of qubits in this circuit. Returns: The number of qubits. """ return self._num_qubits if self._num_qubits is not None else 0 @num_qubits.setter def num_qubits(self, num_qubits: int) -> None: """Set the number of qubits for the n-local circuit. Args: The new number of qubits. """ if self._num_qubits != num_qubits: # invalidate the circuit self._invalidate() self._num_qubits = num_qubits self._parameters = list(ParameterVector('p', length=self.feature_dimension)) self.add_register(QuantumRegister(self.num_qubits, 'q')) @property def feature_dimension(self) -> int: """Return the feature dimension. Returns: The feature dimension, which is ``2 ** num_qubits``. """ return 2 ** self.num_qubits @feature_dimension.setter def feature_dimension(self, feature_dimension: int) -> None: """Set the feature dimension. Args: feature_dimension: The new feature dimension. Must be a power of 2. Raises: ValueError: If ``feature_dimension`` is not a power of 2. """ num_qubits = np.log2(feature_dimension) if int(num_qubits) != num_qubits: raise ValueError('feature_dimension must be a power of 2!') if self._num_qubits is None or num_qubits != self._num_qubits: self._invalidate() self.num_qubits = int(num_qubits) def _invalidate(self): super()._invalidate() self._parameters = None self._num_qubits = None @property def parameters(self) -> Set[ParameterExpression]: """Return the free parameters in the RawFeatureVector. Returns: A set of the free parameters. """ return set(self.ordered_parameters) @property def ordered_parameters(self) -> List[ParameterExpression]: """Return the free parameters in the RawFeatureVector. Returns: A list of the free parameters. """ return list(param for param in self._parameters if isinstance(param, ParameterExpression)) def bind_parameters(self, value_dict): """Bind parameters.""" if not isinstance(value_dict, dict): value_dict = dict(zip(self.ordered_parameters, value_dict)) return super().bind_parameters(value_dict) def assign_parameters(self, param_dict, inplace=False): """Call the initialize instruction.""" if not isinstance(param_dict, dict): param_dict = dict(zip(self.ordered_parameters, param_dict)) if inplace: dest = self else: dest = RawFeatureVector(2 ** self.num_qubits) dest._build() dest._parameters = self._parameters.copy() # update the parameter list for i, param in enumerate(dest._parameters): if param in param_dict.keys(): dest._parameters[i] = param_dict[param] # if fully bound call the initialize instruction if len(dest.parameters) == 0: dest._data = [] # wipe the current data parameters = dest._parameters / np.linalg.norm(dest._parameters) dest.initialize(parameters, dest.qubits) # pylint: disable=no-member # else update the placeholder else: dest.data[0][0].params = dest._parameters return None if inplace else dest ``` #### File: aqua/operators/test_op_construction.py ```python import unittest from test.aqua import QiskitAquaTestCase import itertools import scipy from scipy.stats import unitary_group import numpy as np from ddt import ddt, data from qiskit import QiskitError from qiskit.aqua import AquaError from qiskit.circuit import QuantumCircuit, QuantumRegister, Instruction, Parameter, ParameterVector from qiskit.extensions.exceptions import ExtensionError from qiskit.quantum_info import Operator, Pauli, Statevector from qiskit.circuit.library import CZGate, ZGate from qiskit.aqua.operators import ( X, Y, Z, I, CX, T, H, Minus, PrimitiveOp, PauliOp, CircuitOp, MatrixOp, EvolvedOp, StateFn, CircuitStateFn, VectorStateFn, DictStateFn, OperatorStateFn, ListOp, ComposedOp, TensoredOp, SummedOp, OperatorBase, Zero ) from qiskit.aqua.operators import MatrixOperator # pylint: disable=invalid-name @ddt class TestOpConstruction(QiskitAquaTestCase): """Operator Construction tests.""" def test_pauli_primitives(self): """ from to file test """ newop = X ^ Y ^ Z ^ I self.assertEqual(newop.primitive, Pauli(label='XYZI')) kpower_op = (Y ^ 5) ^ (I ^ 3) self.assertEqual(kpower_op.primitive, Pauli(label='YYYYYIII')) kpower_op2 = (Y ^ I) ^ 4 self.assertEqual(kpower_op2.primitive, Pauli(label='YIYIYIYI')) # Check immutability self.assertEqual(X.primitive, Pauli(label='X')) self.assertEqual(Y.primitive, Pauli(label='Y')) self.assertEqual(Z.primitive, Pauli(label='Z')) self.assertEqual(I.primitive, Pauli(label='I')) def test_composed_eval(self): """ Test eval of ComposedOp """ self.assertAlmostEqual(Minus.eval('1'), -.5 ** .5) def test_evals(self): """ evals test """ # pylint: disable=no-member # TODO: Think about eval names self.assertEqual(Z.eval('0').eval('0'), 1) self.assertEqual(Z.eval('1').eval('0'), 0) self.assertEqual(Z.eval('0').eval('1'), 0) self.assertEqual(Z.eval('1').eval('1'), -1) self.assertEqual(X.eval('0').eval('0'), 0) self.assertEqual(X.eval('1').eval('0'), 1) self.assertEqual(X.eval('0').eval('1'), 1) self.assertEqual(X.eval('1').eval('1'), 0) self.assertEqual(Y.eval('0').eval('0'), 0) self.assertEqual(Y.eval('1').eval('0'), -1j) self.assertEqual(Y.eval('0').eval('1'), 1j) self.assertEqual(Y.eval('1').eval('1'), 0) with self.assertRaises(ValueError): Y.eval('11') with self.assertRaises(ValueError): (X ^ Y).eval('1111') with self.assertRaises(ValueError): Y.eval((X ^ X).to_matrix_op()) # Check that Pauli logic eval returns same as matrix logic self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('0').eval('0'), 1) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('1').eval('0'), 0) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('0').eval('1'), 0) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('1').eval('1'), -1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('0').eval('0'), 0) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('1').eval('0'), 1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('0').eval('1'), 1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('1').eval('1'), 0) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('0').eval('0'), 0) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('1').eval('0'), -1j) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('0').eval('1'), 1j) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('1').eval('1'), 0) pauli_op = Z ^ I ^ X ^ Y mat_op = PrimitiveOp(pauli_op.to_matrix()) full_basis = list(map(''.join, itertools.product('01', repeat=pauli_op.num_qubits))) for bstr1, bstr2 in itertools.product(full_basis, full_basis): # print('{} {} {} {}'.format(bstr1, bstr2, pauli_op.eval(bstr1, bstr2), # mat_op.eval(bstr1, bstr2))) np.testing.assert_array_almost_equal(pauli_op.eval(bstr1).eval(bstr2), mat_op.eval(bstr1).eval(bstr2)) gnarly_op = SummedOp([(H ^ I ^ Y).compose(X ^ X ^ Z).tensor(Z), PrimitiveOp(Operator.from_label('+r0I')), 3 * (X ^ CX ^ T)], coeff=3 + .2j) gnarly_mat_op = PrimitiveOp(gnarly_op.to_matrix()) full_basis = list(map(''.join, itertools.product('01', repeat=gnarly_op.num_qubits))) for bstr1, bstr2 in itertools.product(full_basis, full_basis): np.testing.assert_array_almost_equal(gnarly_op.eval(bstr1).eval(bstr2), gnarly_mat_op.eval(bstr1).eval(bstr2)) def test_circuit_construction(self): """ circuit construction test """ hadq2 = H ^ I cz = hadq2.compose(CX).compose(hadq2) qc = QuantumCircuit(2) qc.append(cz.primitive, qargs=range(2)) ref_cz_mat = PrimitiveOp(CZGate()).to_matrix() np.testing.assert_array_almost_equal(cz.to_matrix(), ref_cz_mat) def test_io_consistency(self): """ consistency test """ new_op = X ^ Y ^ I label = 'XYI' # label = new_op.primitive.to_label() self.assertEqual(str(new_op.primitive), label) np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), Operator.from_label(label).data) self.assertEqual(new_op.primitive, Pauli(label=label)) x_mat = X.primitive.to_matrix() y_mat = Y.primitive.to_matrix() i_mat = np.eye(2, 2) np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), np.kron(np.kron(x_mat, y_mat), i_mat)) hi = np.kron(H.to_matrix(), I.to_matrix()) hi2 = Operator.from_label('HI').data hi3 = (H ^ I).to_matrix() np.testing.assert_array_almost_equal(hi, hi2) np.testing.assert_array_almost_equal(hi2, hi3) xy = np.kron(X.to_matrix(), Y.to_matrix()) xy2 = Operator.from_label('XY').data xy3 = (X ^ Y).to_matrix() np.testing.assert_array_almost_equal(xy, xy2) np.testing.assert_array_almost_equal(xy2, xy3) # Check if numpy array instantiation is the same as from Operator matrix_op = Operator.from_label('+r') np.testing.assert_array_almost_equal(PrimitiveOp(matrix_op).to_matrix(), PrimitiveOp(matrix_op.data).to_matrix()) # Ditto list of lists np.testing.assert_array_almost_equal(PrimitiveOp(matrix_op.data.tolist()).to_matrix(), PrimitiveOp(matrix_op.data).to_matrix()) # TODO make sure this works once we resolve endianness mayhem # qc = QuantumCircuit(3) # qc.x(2) # qc.y(1) # from qiskit import BasicAer, QuantumCircuit, execute # unitary = execute(qc, BasicAer.get_backend('unitary_simulator')).result().get_unitary() # np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), unitary) def test_to_matrix(self): """to matrix text """ np.testing.assert_array_equal(X.to_matrix(), Operator.from_label('X').data) np.testing.assert_array_equal(Y.to_matrix(), Operator.from_label('Y').data) np.testing.assert_array_equal(Z.to_matrix(), Operator.from_label('Z').data) op1 = Y + H np.testing.assert_array_almost_equal(op1.to_matrix(), Y.to_matrix() + H.to_matrix()) op2 = op1 * .5 np.testing.assert_array_almost_equal(op2.to_matrix(), op1.to_matrix() * .5) op3 = (4 - .6j) * op2 np.testing.assert_array_almost_equal(op3.to_matrix(), op2.to_matrix() * (4 - .6j)) op4 = op3.tensor(X) np.testing.assert_array_almost_equal(op4.to_matrix(), np.kron(op3.to_matrix(), X.to_matrix())) op5 = op4.compose(H ^ I) np.testing.assert_array_almost_equal(op5.to_matrix(), np.dot(op4.to_matrix(), (H ^ I).to_matrix())) op6 = op5 + PrimitiveOp(Operator.from_label('+r').data) np.testing.assert_array_almost_equal( op6.to_matrix(), op5.to_matrix() + Operator.from_label('+r').data) param = Parameter("α") m = np.array([[0, -1j], [1j, 0]]) op7 = MatrixOp(m, param) np.testing.assert_array_equal(op7.to_matrix(), m * param) param = Parameter("β") op8 = PauliOp(primitive=Pauli(label="Y"), coeff=param) np.testing.assert_array_equal(op8.to_matrix(), m * param) param = Parameter("γ") qc = QuantumCircuit(1) qc.h(0) op9 = CircuitOp(qc, coeff=param) m = np.array([[1, 1], [1, -1]]) / np.sqrt(2) np.testing.assert_array_equal(op9.to_matrix(), m * param) def test_circuit_op_to_matrix(self): """ test CircuitOp.to_matrix """ qc = QuantumCircuit(1) qc.rz(1.0, 0) qcop = CircuitOp(qc) np.testing.assert_array_almost_equal( qcop.to_matrix(), scipy.linalg.expm(-0.5j * Z.to_matrix())) def test_matrix_to_instruction(self): """Test MatrixOp.to_instruction yields an Instruction object.""" matop = (H ^ 3).to_matrix_op() with self.subTest('assert to_instruction returns Instruction'): self.assertIsInstance(matop.to_instruction(), Instruction) matop = ((H ^ 3) + (Z ^ 3)).to_matrix_op() with self.subTest('matrix operator is not unitary'): with self.assertRaises(ExtensionError): matop.to_instruction() def test_adjoint(self): """ adjoint test """ gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) np.testing.assert_array_almost_equal(np.conj(np.transpose(gnarly_op.to_matrix())), gnarly_op.adjoint().to_matrix()) def test_primitive_strings(self): """ get primitives test """ self.assertEqual(X.primitive_strings(), {'Pauli'}) gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) self.assertEqual(gnarly_op.primitive_strings(), {'QuantumCircuit', 'Matrix'}) def test_to_pauli_op(self): """ Test to_pauli_op method """ gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) mat_op = gnarly_op.to_matrix_op() pauli_op = gnarly_op.to_pauli_op() self.assertIsInstance(pauli_op, SummedOp) for p in pauli_op: self.assertIsInstance(p, PauliOp) np.testing.assert_array_almost_equal(mat_op.to_matrix(), pauli_op.to_matrix()) def test_circuit_permute(self): r""" Test the CircuitOp's .permute method """ perm = range(7)[::-1] c_op = (((CX ^ 3) ^ X) @ (H ^ 7) @ (X ^ Y ^ Z ^ I ^ X ^ X ^ X) @ (Y ^ (CX ^ 3)) @ (X ^ Y ^ Z ^ I ^ X ^ X ^ X)) c_op_perm = c_op.permute(perm) self.assertNotEqual(c_op, c_op_perm) c_op_id = c_op_perm.permute(perm) self.assertEqual(c_op, c_op_id) def test_summed_op_reduce(self): """Test SummedOp""" sum_op = (X ^ X * 2) + (Y ^ Y) # type: PauliSumOp sum_op = sum_op.to_pauli_op() # type: SummedOp[PauliOp] with self.subTest('SummedOp test 1'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [2, 1]) sum_op = (X ^ X * 2) + (Y ^ Y) sum_op += Y ^ Y sum_op = sum_op.to_pauli_op() # type: SummedOp[PauliOp] with self.subTest('SummedOp test 2-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [2, 1, 1]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 2-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [2, 2]) sum_op = (X ^ X * 2) + (Y ^ Y) sum_op += (Y ^ Y) + (X ^ X * 2) sum_op = sum_op.to_pauli_op() # type: SummedOp[PauliOp] with self.subTest('SummedOp test 3-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'YY', 'XX']) self.assertListEqual([op.coeff for op in sum_op], [2, 1, 1, 2]) sum_op = sum_op.reduce().to_pauli_op() with self.subTest('SummedOp test 3-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) with self.subTest('SummedOp test 4-a'): self.assertEqual(sum_op.coeff, 2) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [2, 1]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 4-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) sum_op += Y ^ Y with self.subTest('SummedOp test 5-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2, 1]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 5-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 3]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) sum_op += ((X ^ X) * 2 + (Y ^ Y)).to_pauli_op() with self.subTest('SummedOp test 6-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2, 2, 1]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 6-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [6, 3]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) sum_op += sum_op with self.subTest('SummedOp test 7-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2, 4, 2]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 7-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [8, 4]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) + SummedOp([X ^ X * 2, Z ^ Z], 3) with self.subTest('SummedOp test 8-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'XX', 'ZZ']) self.assertListEqual([op.coeff for op in sum_op], [4, 2, 6, 3]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 8-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'ZZ']) self.assertListEqual([op.coeff for op in sum_op], [10, 2, 3]) def test_compose_op_of_different_dim(self): """ Test if smaller operator expands to correct dim when composed with bigger operator. Test if PrimitiveOps compose methods are consistent. """ # PauliOps of different dim xy_p = (X ^ Y) xyz_p = (X ^ Y ^ Z) pauli_op = xy_p @ xyz_p expected_result = (I ^ I ^ Z) self.assertEqual(pauli_op, expected_result) # MatrixOps of different dim xy_m = xy_p.to_matrix_op() xyz_m = xyz_p.to_matrix_op() matrix_op = xy_m @ xyz_m self.assertEqual(matrix_op, expected_result.to_matrix_op()) # CircuitOps of different dim xy_c = xy_p.to_circuit_op() xyz_c = xyz_p.to_circuit_op() circuit_op = xy_c @ xyz_c self.assertTrue(np.array_equal(pauli_op.to_matrix(), matrix_op.to_matrix())) self.assertTrue(np.allclose(pauli_op.to_matrix(), circuit_op.to_matrix(), rtol=1e-14)) self.assertTrue(np.allclose(matrix_op.to_matrix(), circuit_op.to_matrix(), rtol=1e-14)) def test_permute_on_primitive_op(self): """ Test if permute methods of PrimitiveOps are consistent and work as expected. """ indices = [1, 2, 4] # PauliOp pauli_op = (X ^ Y ^ Z) permuted_pauli_op = pauli_op.permute(indices) expected_pauli_op = (X ^ I ^ Y ^ Z ^ I) self.assertEqual(permuted_pauli_op, expected_pauli_op) # CircuitOp circuit_op = pauli_op.to_circuit_op() permuted_circuit_op = circuit_op.permute(indices) expected_circuit_op = expected_pauli_op.to_circuit_op() self.assertEqual(permuted_circuit_op.primitive.__str__(), expected_circuit_op.primitive.__str__()) # MatrixOp matrix_op = pauli_op.to_matrix_op() permuted_matrix_op = matrix_op.permute(indices) expected_matrix_op = expected_pauli_op.to_matrix_op() equal = np.allclose(permuted_matrix_op.to_matrix(), expected_matrix_op.to_matrix()) self.assertTrue(equal) def test_permute_on_list_op(self): """ Test if ListOp permute method is consistent with PrimitiveOps permute methods. """ op1 = (X ^ Y ^ Z).to_circuit_op() op2 = (Z ^ X ^ Y) # ComposedOp indices = [1, 2, 0] primitive_op = op1 @ op2 primitive_op_perm = primitive_op.permute(indices) # CircuitOp.permute composed_op = ComposedOp([op1, op2]) composed_op_perm = composed_op.permute(indices) # reduce the ListOp to PrimitiveOp to_primitive = composed_op_perm.oplist[0] @ composed_op_perm.oplist[1] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal) # TensoredOp indices = [3, 5, 4, 0, 2, 1] primitive_op = op1 ^ op2 primitive_op_perm = primitive_op.permute(indices) tensored_op = TensoredOp([op1, op2]) tensored_op_perm = tensored_op.permute(indices) # reduce the ListOp to PrimitiveOp composed_oplist = tensored_op_perm.oplist to_primitive = \ composed_oplist[0] @ (composed_oplist[1].oplist[0] ^ composed_oplist[1].oplist[1]) @ \ composed_oplist[2] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal) # SummedOp primitive_op = (X ^ Y ^ Z) summed_op = SummedOp([primitive_op]) indices = [1, 2, 0] primitive_op_perm = primitive_op.permute(indices) # PauliOp.permute summed_op_perm = summed_op.permute(indices) # reduce the ListOp to PrimitiveOp to_primitive = summed_op_perm.oplist[0] @ primitive_op @ summed_op_perm.oplist[2] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal) def test_expand_on_list_op(self): """ Test if expanded ListOp has expected num_qubits. """ add_qubits = 3 # ComposedOp composed_op = ComposedOp([(X ^ Y ^ Z), (H ^ T), (Z ^ X ^ Y ^ Z).to_matrix_op()]) expanded = composed_op._expand_dim(add_qubits) self.assertEqual(composed_op.num_qubits + add_qubits, expanded.num_qubits) # TensoredOp tensored_op = TensoredOp([(X ^ Y), (Z ^ I)]) expanded = tensored_op._expand_dim(add_qubits) self.assertEqual(tensored_op.num_qubits + add_qubits, expanded.num_qubits) # SummedOp summed_op = SummedOp([(X ^ Y), (Z ^ I ^ Z)]) expanded = summed_op._expand_dim(add_qubits) self.assertEqual(summed_op.num_qubits + add_qubits, expanded.num_qubits) def test_expand_on_state_fn(self): """ Test if expanded StateFn has expected num_qubits. """ num_qubits = 3 add_qubits = 2 # case CircuitStateFn, with primitive QuantumCircuit qc2 = QuantumCircuit(num_qubits) qc2.cx(0, 1) cfn = CircuitStateFn(qc2, is_measurement=True) cfn_exp = cfn._expand_dim(add_qubits) self.assertEqual(cfn_exp.num_qubits, add_qubits + num_qubits) # case OperatorStateFn, with OperatorBase primitive, in our case CircuitStateFn osfn = OperatorStateFn(cfn) osfn_exp = osfn._expand_dim(add_qubits) self.assertEqual(osfn_exp.num_qubits, add_qubits + num_qubits) # case DictStateFn dsfn = DictStateFn('1'*num_qubits, is_measurement=True) self.assertEqual(dsfn.num_qubits, num_qubits) dsfn_exp = dsfn._expand_dim(add_qubits) self.assertEqual(dsfn_exp.num_qubits, num_qubits + add_qubits) # case VectorStateFn vsfn = VectorStateFn(np.ones(2**num_qubits, dtype=complex)) self.assertEqual(vsfn.num_qubits, num_qubits) vsfn_exp = vsfn._expand_dim(add_qubits) self.assertEqual(vsfn_exp.num_qubits, num_qubits + add_qubits) def test_permute_on_state_fn(self): """ Test if StateFns permute are consistent. """ num_qubits = 4 dim = 2**num_qubits primitive_list = [1.0/(i+1) for i in range(dim)] primitive_dict = {format(i, 'b').zfill(num_qubits): 1.0/(i+1) for i in range(dim)} dict_fn = DictStateFn(primitive=primitive_dict, is_measurement=True) vec_fn = VectorStateFn(primitive=primitive_list, is_measurement=True) # check if dict_fn and vec_fn are equivalent equivalent = np.allclose(dict_fn.to_matrix(), vec_fn.to_matrix()) self.assertTrue(equivalent) # permute indices = [2, 3, 0, 1] permute_dict = dict_fn.permute(indices) permute_vect = vec_fn.permute(indices) equivalent = np.allclose(permute_dict.to_matrix(), permute_vect.to_matrix()) self.assertTrue(equivalent) def test_compose_consistency(self): """Test if PrimitiveOp @ ComposedOp is consistent with ComposedOp @ PrimitiveOp.""" # PauliOp op1 = (X ^ Y ^ Z) op2 = (X ^ Y ^ Z) op3 = (X ^ Y ^ Z).to_circuit_op() comp1 = op1 @ ComposedOp([op2, op3]) comp2 = ComposedOp([op3, op2]) @ op1 self.assertListEqual(comp1.oplist, list(reversed(comp2.oplist))) # CircitOp op1 = op1.to_circuit_op() op2 = op2.to_circuit_op() op3 = op3.to_matrix_op() comp1 = op1 @ ComposedOp([op2, op3]) comp2 = ComposedOp([op3, op2]) @ op1 self.assertListEqual(comp1.oplist, list(reversed(comp2.oplist))) # MatrixOp op1 = op1.to_matrix_op() op2 = op2.to_matrix_op() op3 = op3.to_pauli_op() comp1 = op1 @ ComposedOp([op2, op3]) comp2 = ComposedOp([op3, op2]) @ op1 self.assertListEqual(comp1.oplist, list(reversed(comp2.oplist))) def test_compose_with_indices(self): """ Test compose method using its permutation feature.""" pauli_op = (X ^ Y ^ Z) circuit_op = (T ^ H) matrix_op = (X ^ Y ^ H ^ T).to_matrix_op() evolved_op = EvolvedOp(matrix_op) # composition of PrimitiveOps num_qubits = 4 primitive_op = pauli_op @ circuit_op @ matrix_op composed_op = pauli_op @ circuit_op @ evolved_op self.assertEqual(primitive_op.num_qubits, num_qubits) self.assertEqual(composed_op.num_qubits, num_qubits) # with permutation num_qubits = 5 indices = [1, 4] permuted_primitive_op = evolved_op @ circuit_op.permute(indices) @ pauli_op @ matrix_op composed_primitive_op = \ evolved_op @ pauli_op.compose(circuit_op, permutation=indices, front=True) @ matrix_op self.assertTrue(np.allclose(permuted_primitive_op.to_matrix(), composed_primitive_op.to_matrix())) self.assertEqual(num_qubits, permuted_primitive_op.num_qubits) # ListOp num_qubits = 6 tensored_op = TensoredOp([pauli_op, circuit_op]) summed_op = pauli_op + circuit_op.permute([2, 1]) composed_op = circuit_op @ evolved_op @ matrix_op list_op = summed_op @ composed_op.compose(tensored_op, permutation=[1, 2, 3, 5, 4], front=True) self.assertEqual(num_qubits, list_op.num_qubits) num_qubits = 4 circuit_fn = CircuitStateFn(primitive=circuit_op.primitive, is_measurement=True) operator_fn = OperatorStateFn(primitive=circuit_op ^ circuit_op, is_measurement=True) no_perm_op = circuit_fn @ operator_fn self.assertEqual(no_perm_op.num_qubits, num_qubits) indices = [0, 4] perm_op = operator_fn.compose(circuit_fn, permutation=indices, front=True) self.assertEqual(perm_op.num_qubits, max(indices) + 1) # StateFn num_qubits = 3 dim = 2**num_qubits vec = [1.0/(i+1) for i in range(dim)] dic = {format(i, 'b').zfill(num_qubits): 1.0/(i+1) for i in range(dim)} is_measurement = True op_state_fn = OperatorStateFn(matrix_op, is_measurement=is_measurement) # num_qubit = 4 vec_state_fn = VectorStateFn(vec, is_measurement=is_measurement) # 3 dic_state_fn = DictStateFn(dic, is_measurement=is_measurement) # 3 circ_state_fn = CircuitStateFn(circuit_op.to_circuit(), is_measurement=is_measurement) # 2 composed_op = op_state_fn @ vec_state_fn @ dic_state_fn @ circ_state_fn self.assertEqual(composed_op.num_qubits, op_state_fn.num_qubits) # with permutation perm = [2, 4, 6] composed = \ op_state_fn @ dic_state_fn.compose(vec_state_fn, permutation=perm, front=True) @ \ circ_state_fn self.assertEqual(composed.num_qubits, max(perm) + 1) def test_summed_op_equals(self): """Test corner cases of SummedOp's equals function.""" with self.subTest('multiplicative factor'): self.assertEqual(2 * X, X + X) with self.subTest('commutative'): self.assertEqual(X + Z, Z + X) with self.subTest('circuit and paulis'): z = CircuitOp(ZGate()) self.assertEqual(Z + z, z + Z) with self.subTest('matrix op and paulis'): z = MatrixOp([[1, 0], [0, -1]]) self.assertEqual(Z + z, z + Z) with self.subTest('matrix multiplicative'): z = MatrixOp([[1, 0], [0, -1]]) self.assertEqual(2 * z, z + z) with self.subTest('parameter coefficients'): expr = Parameter('theta') z = MatrixOp([[1, 0], [0, -1]]) self.assertEqual(expr * z, expr * z) with self.subTest('different coefficient types'): expr = Parameter('theta') z = MatrixOp([[1, 0], [0, -1]]) self.assertNotEqual(expr * z, 2 * z) with self.subTest('additions aggregation'): z = MatrixOp([[1, 0], [0, -1]]) a = z + z + Z b = 2 * z + Z c = z + Z + z self.assertEqual(a, b) self.assertEqual(b, c) self.assertEqual(a, c) def test_circuit_compose_register_independent(self): """Test that CircuitOp uses combines circuits independent of the register. I.e. that is uses ``QuantumCircuit.compose`` over ``combine`` or ``extend``. """ op = Z ^ 2 qr = QuantumRegister(2, 'my_qr') circuit = QuantumCircuit(qr) composed = op.compose(CircuitOp(circuit)) self.assertEqual(composed.num_qubits, 2) def test_matrix_op_conversions(self): """Test to reveal QiskitError when to_instruction or to_circuit method is called on parametrized matrix op.""" m = np.array([[0, 0, 1, 0], [0, 0, 0, -1], [1, 0, 0, 0], [0, -1, 0, 0]]) matrix_op = MatrixOp(m, Parameter('beta')) for method in ['to_instruction', 'to_circuit']: with self.subTest(method): # QiskitError: multiplication of Operator with ParameterExpression isn't implemented self.assertRaises(QiskitError, getattr(matrix_op, method)) def test_list_op_to_circuit(self): """Test if unitary ListOps transpile to circuit. """ # generate unitary matrices of dimension 2,4,8, seed is fixed np.random.seed(233423) u2 = unitary_group.rvs(2) u4 = unitary_group.rvs(4) u8 = unitary_group.rvs(8) # pauli matrices as numpy.arrays x = np.array([[0.0, 1.0], [1.0, 0.0]]) y = np.array([[0.0, -1.0j], [1.0j, 0.0]]) z = np.array([[1.0, 0.0], [0.0, -1.0]]) # create MatrixOp and CircuitOp out of matrices op2 = MatrixOp(u2) op4 = MatrixOp(u4) op8 = MatrixOp(u8) c2 = op2.to_circuit_op() # algorithm using only matrix operations on numpy.arrays xu4 = np.kron(x, u4) zc2 = np.kron(z, u2) zc2y = np.kron(zc2, y) matrix = np.matmul(xu4, zc2y) matrix = np.matmul(matrix, u8) matrix = np.kron(matrix, u2) operator = Operator(matrix) # same algorithm as above, but using PrimitiveOps list_op = ((X ^ op4) @ (Z ^ c2 ^ Y) @ op8) ^ op2 circuit = list_op.to_circuit() # verify that ListOp.to_circuit() outputs correct quantum circuit self.assertTrue(operator.equiv(circuit), "ListOp.to_circuit() outputs wrong circuit!") def test_composed_op_to_circuit(self): """ Test if unitary ComposedOp transpile to circuit and represents expected operator. Test if to_circuit on non-unitary ListOp raises exception. """ x = np.array([[0.0, 1.0], [1.0, 0.0]]) # Pauli X as numpy array y = np.array([[0.0, -1.0j], [1.0j, 0.0]]) # Pauli Y as numpy array m1 = np.array([[0, 0, 1, 0], [0, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0]]) # non-unitary m2 = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [0, -1, 0, 0]]) # non-unitary m_op1 = MatrixOp(m1) m_op2 = MatrixOp(m2) pm1 = (X ^ Y) ^ m_op1 # non-unitary TensoredOp pm2 = (X ^ Y) ^ m_op2 # non-unitary TensoredOp self.assertRaises(ExtensionError, pm1.to_circuit) self.assertRaises(ExtensionError, pm2.to_circuit) summed_op = pm1 + pm2 # unitary SummedOp([TensoredOp, TensoredOp]) circuit = summed_op.to_circuit() # should transpile without any exception # same algorithm that leads to summed_op above, but using only arrays and matrix operations unitary = np.kron(np.kron(x, y), m1 + m2) self.assertTrue(Operator(unitary).equiv(circuit)) def test_op_to_circuit_with_parameters(self): """On parametrized SummedOp, to_matrix_op returns ListOp, instead of MatrixOp. To avoid the infinite recursion, AquaError is raised. """ m1 = np.array([[0, 0, 1, 0], [0, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0]]) # non-unitary m2 = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [0, -1, 0, 0]]) # non-unitary op1_with_param = MatrixOp(m1, Parameter('alpha')) # non-unitary op2_with_param = MatrixOp(m2, Parameter('beta')) # non-unitary summed_op_with_param = op1_with_param + op2_with_param # unitary self.assertRaises(AquaError, summed_op_with_param.to_circuit) # should raise Aqua error def test_permute_list_op_with_inconsistent_num_qubits(self): """Test if permute raises error if ListOp contains operators with different num_qubits.""" list_op = ListOp([X, X ^ X]) self.assertRaises(AquaError, list_op.permute, [0, 1]) @data(Z, CircuitOp(ZGate()), MatrixOp([[1, 0], [0, -1]])) def test_op_indent(self, op): """Test that indentation correctly adds INDENTATION at the beginning of each line""" initial_str = str(op) indented_str = op._indent(initial_str) starts_with_indent = indented_str.startswith(op.INDENTATION) self.assertTrue(starts_with_indent) indented_str_content = ( indented_str[len(op.INDENTATION):] ).split("\n{}".format(op.INDENTATION)) self.assertListEqual(indented_str_content, initial_str.split("\n")) def test_composed_op_immutable_under_eval(self): """Test ``ComposedOp.eval`` does not change the operator instance.""" op = 2 * ComposedOp([X]) _ = op.eval() # previous bug: after op.eval(), op was 2 * ComposedOp([2 * X]) self.assertEqual(op, 2 * ComposedOp([X])) def test_op_parameters(self): """Test that Parameters are stored correctly""" phi = Parameter('φ') theta = ParameterVector(name='θ', length=2) qc = QuantumCircuit(2) qc.rz(phi, 0) qc.rz(phi, 1) for i in range(2): qc.rx(theta[i], i) qc.h(0) qc.x(1) l = Parameter('λ') op = PrimitiveOp(qc, coeff=l) params = set([phi, l, *theta.params]) self.assertEqual(params, op.parameters) self.assertEqual(params, StateFn(op).parameters) self.assertEqual(params, StateFn(qc, coeff=l).parameters) def test_list_op_parameters(self): """Test that Parameters are stored correctly in a List Operator""" lam = Parameter('λ') phi = Parameter('φ') omega = Parameter('ω') mat_op = PrimitiveOp([[0, 1], [1, 0]], coeff=omega) qc = QuantumCircuit(1) qc.rx(phi, 0) qc_op = PrimitiveOp(qc) op1 = SummedOp([mat_op, qc_op]) params = [phi, omega] self.assertEqual(op1.parameters, set(params)) # check list nesting case op2 = PrimitiveOp([[1, 0], [0, -1]], coeff=lam) list_op = ListOp([op1, op2]) params.append(lam) self.assertEqual(list_op.parameters, set(params)) @data(VectorStateFn([1, 0]), DictStateFn({'0': 1}), CircuitStateFn(QuantumCircuit(1)), OperatorStateFn(I), OperatorStateFn(MatrixOp([[1, 0], [0, 1]])), OperatorStateFn(CircuitOp(QuantumCircuit(1)))) def test_statefn_eval(self, op): """Test calling eval on StateFn returns the statevector.""" expected = Statevector([1, 0]) self.assertEqual(op.eval().primitive, expected) def test_to_circuit_op(self): """Test to_circuit_op method.""" vector = np.array([2, 2]) vsfn = VectorStateFn([1, 1], coeff=2) dsfn = DictStateFn({'0': 1, '1': 1}, coeff=2) for sfn in [vsfn, dsfn]: np.testing.assert_array_almost_equal( sfn.to_circuit_op().eval().primitive.data, vector ) def test_invalid_primitive(self): """Test invalid MatrixOp construction""" msg = "MatrixOp can only be instantiated with " \ "['list', 'ndarray', 'spmatrix', 'Operator'], not " with self.assertRaises(TypeError) as cm: _ = MatrixOp('invalid') self.assertEqual(str(cm.exception), msg + "'str'") with self.assertRaises(TypeError) as cm: _ = MatrixOp(MatrixOperator(np.eye(2))) self.assertEqual(str(cm.exception), msg + "'MatrixOperator'") with self.assertRaises(TypeError) as cm: _ = MatrixOp(None) self.assertEqual(str(cm.exception), msg + "'NoneType'") with self.assertRaises(TypeError) as cm: _ = MatrixOp(2.0) self.assertEqual(str(cm.exception), msg + "'float'") def test_summedop_equals(self): """Test SummedOp.equals """ ops = [Z, CircuitOp(ZGate()), MatrixOp([[1, 0], [0, -1]]), Zero, Minus] sum_op = sum(ops + [ListOp(ops)]) self.assertEqual(sum_op, sum_op) self.assertEqual(sum_op + sum_op, 2 * sum_op) self.assertEqual(sum_op + sum_op + sum_op, 3 * sum_op) ops2 = [Z, CircuitOp(ZGate()), MatrixOp([[1, 0], [0, 1]]), Zero, Minus] sum_op2 = sum(ops2 + [ListOp(ops)]) self.assertNotEqual(sum_op, sum_op2) self.assertEqual(sum_op2, sum_op2) sum_op3 = sum(ops) self.assertNotEqual(sum_op, sum_op3) self.assertNotEqual(sum_op2, sum_op3) self.assertEqual(sum_op3, sum_op3) class TestOpMethods(QiskitAquaTestCase): """Basic method tests.""" def test_listop_num_qubits(self): """Test that ListOp.num_qubits checks that all operators have the same number of qubits.""" op = ListOp([X ^ Y, Y ^ Z]) with self.subTest('All operators have the same numbers of qubits'): self.assertEqual(op.num_qubits, 2) op = ListOp([X ^ Y, Y]) with self.subTest('Operators have different numbers of qubits'): with self.assertRaises(ValueError): op.num_qubits # pylint: disable=pointless-statement with self.assertRaises(ValueError): X @ op # pylint: disable=pointless-statement @ddt class TestListOpMethods(QiskitAquaTestCase): """Test ListOp accessing methods""" @data(ListOp, SummedOp, ComposedOp, TensoredOp) def test_indexing(self, list_op_type): """Test indexing and slicing""" coeff = 3 + .2j states_op = list_op_type([X, Y, Z, I], coeff=coeff) single_op = states_op[1] self.assertIsInstance(single_op, OperatorBase) self.assertNotIsInstance(single_op, ListOp) list_one_element = states_op[1:2] self.assertIsInstance(list_one_element, list_op_type) self.assertEqual(len(list_one_element), 1) self.assertEqual(list_one_element[0], Y) list_two_elements = states_op[::2] self.assertIsInstance(list_two_elements, list_op_type) self.assertEqual(len(list_two_elements), 2) self.assertEqual(list_two_elements[0], X) self.assertEqual(list_two_elements[1], Z) self.assertEqual(list_one_element.coeff, coeff) self.assertEqual(list_two_elements.coeff, coeff) class TestListOpComboFn(QiskitAquaTestCase): """Test combo fn is propagated.""" def setUp(self): super().setUp() self.combo_fn = lambda x: [x_i ** 2 for x_i in x] self.listop = ListOp([X], combo_fn=self.combo_fn) def assertComboFnPreserved(self, processed_op): """Assert the quadratic combo_fn is preserved.""" x = [1, 2, 3] self.assertListEqual(processed_op.combo_fn(x), self.combo_fn(x)) def test_at_conversion(self): """Test after conversion the combo_fn is preserved.""" for method in ['to_matrix_op', 'to_pauli_op', 'to_circuit_op']: with self.subTest(method): converted = getattr(self.listop, method)() self.assertComboFnPreserved(converted) def test_after_mul(self): """Test after multiplication the combo_fn is preserved.""" self.assertComboFnPreserved(2 * self.listop) def test_at_traverse(self): """Test after traversing the combo_fn is preserved.""" def traverse_fn(op): return -op traversed = self.listop.traverse(traverse_fn) self.assertComboFnPreserved(traversed) def test_after_adjoint(self): """Test after traversing the combo_fn is preserved.""" self.assertComboFnPreserved(self.listop.adjoint()) def test_after_reduce(self): """Test after reducing the combo_fn is preserved.""" self.assertComboFnPreserved(self.listop.reduce()) if __name__ == '__main__': unittest.main() ```
{ "source": "johanneswerner/EUKulele", "score": 3 }
#### File: EUKulele/scripts/query_busco.py ```python import pandas as pd import numpy as np import os import sys import argparse import chardet import glob import multiprocessing from joblib import Parallel, delayed __author__ = "<NAME>, <NAME>" __copyright__ = "EUKulele" __license__ = "MIT" __email__ = "<EMAIL>" level_hierarchy = ['supergroup','division','class','order','family','genus','species'] def evaluate_organism(organism, taxonomy, tax_table, create_fasta, write_transcript_file, busco_out, taxonomy_file_prefix, busco_threshold, output_dir, sample_name, fasta_file): organism_format = organism if organism == "": print("No organism found", flush=True) return pd.DataFrame(columns = ["Organism","TaxonomicLevel","BuscoCompleteness","NumberCovered", "CtTwoCopies","CtThreeCopies","CtFourCopies","CtFivePlusCopies", "PercentageDuplicated"]) if taxonomy == "species": organism_format = " ".join(str(organism).split(";")) full_taxonomy = tax_table.loc[[(organism_format in curr) for curr in list(tax_table[taxonomy])],:] if len(full_taxonomy.index) < 1: print("No taxonomy found for that organism " + str(organism) + " and taxonomic level " + str(taxonomy) + ".", flush=True) return pd.DataFrame(columns = ["Organism","TaxonomicLevel","BuscoCompleteness","NumberCovered", "CtTwoCopies","CtThreeCopies","CtFourCopies","CtFivePlusCopies", "PercentageDuplicated"]) curr_level = [ind for ind in range(len(level_hierarchy)) if level_hierarchy[ind] == taxonomy][0] max_level = len(level_hierarchy) - 1 success = 0 success_level = "" busco_scores = [] levels_out = [] percent_multiples = [] number_duplicated = [] number_tripled = [] number_quadrupled = [] number_higher_mult = [] number_covered = [] busco_out_file = pd.read_csv(busco_out, sep = "\t", comment = "#", names = ["BuscoID","Status","Sequence","Score","Length"]) select_inds = [ (busco_out_file.Status[curr] == "Complete") | (busco_out_file.Status[curr] == "Fragmented") | (busco_out_file.Status[curr] == "Duplicated") for curr in range(len(busco_out_file.index))] good_buscos = busco_out_file.loc[select_inds,:] good_busco_sequences = [curr.split(".")[0] for curr in list(good_buscos.Sequence)] if len(good_busco_sequences) == 0: print("No BUSCO matches were made",flush=True) return pd.DataFrame(columns = ["Organism","TaxonomicLevel","BuscoCompleteness","NumberCovered", "CtTwoCopies","CtThreeCopies","CtFourCopies","CtFivePlusCopies", "PercentageDuplicated"]) Covered_IDs = list(good_buscos.BuscoID) total_buscos = len(set(list(busco_out_file.BuscoID))) while (curr_level >= 0): #### GET THE CURRENT LEVEL OF TAXONOMY FROM THE TAX TABLE FILE #### curr_tax_list = set(list(full_taxonomy[level_hierarchy[curr_level]])) if len(curr_tax_list) > 1: print("More than 1 unique match found; using all matches: " + str(", ".join(curr_tax_list)), flush=True) curr_taxonomy = ";".join(curr_tax_list) if (curr_taxonomy == "") | (curr_taxonomy.lower() == "nan"): print("No taxonomy found at level " + level_hierarchy[curr_level], flush=True) continue #### CREATE A "MOCK TRANSCRIPTOME" BY PULLING BY TAXONOMIC LEVEL #### taxonomy_file = pd.read_csv(taxonomy_file_prefix + "_all_" + str(level_hierarchy[curr_level]) + "_counts.csv", sep=",",header=0) taxonomy_file = taxonomy_file.loc[[tax in curr_taxonomy for tax in list(taxonomy_file[level_hierarchy[curr_level].capitalize()])],:] transcripts_to_search = list(taxonomy_file["GroupedTranscripts"]) transcripts_to_search_sep = [] for transcript_name in transcripts_to_search: transcripts_to_search_sep.extend([curr.split(".")[0] for curr in transcript_name.split(";")]) set_transcripts_to_search = set(transcripts_to_search_sep) good_busco_sequences_list = list(good_busco_sequences) BUSCOs_covered_all = [Covered_IDs[curr] for curr in range(len(good_busco_sequences_list)) if \ good_busco_sequences_list[curr] in list(set_transcripts_to_search)] BUSCOs_covered = set(BUSCOs_covered_all) number_appearences = [BUSCOs_covered_all.count(curr_busco) for curr_busco in list(BUSCOs_covered)] multiples = [curr_appear for curr_appear in number_appearences if curr_appear >= 2] ## KEEP TRACK OF WHETHER DUPLICATES/TRIPLES/ETC. ARE COMMON ## number_covered.append(number_appearences) number_duplicated.append(number_appearences.count(2)) number_tripled.append(number_appearences.count(3)) number_quadrupled.append(number_appearences.count(4)) number_higher_mult.append(len([curr_appear for curr_appear in number_appearences if curr_appear > 4])) prop_duplicated = 0 if len(BUSCOs_covered) > 0: prop_duplicated = len(multiples) / len(BUSCOs_covered) * 100 percent_multiples.append(prop_duplicated) busco_completeness = len(BUSCOs_covered) / total_buscos * 100 busco_scores.append(busco_completeness) levels_out.append(level_hierarchy[curr_level]) if busco_completeness >= busco_threshold: success = 1 success_level = level_hierarchy[curr_level] curr_level = curr_level - 1 report_dir = os.path.join(output_dir, "busco_assessment", "output_by_level", taxonomy, "_".join(organism_format.replace("(", "_").replace(")", "_").replace("'","").split(" "))) os.system("mkdir -p " + report_dir) report_file = os.path.join(report_dir, sample_name + "_report.txt") reported = open(report_file,"w") reversed_scores = busco_scores reversed_scores.reverse() if success == 1: file_written = os.path.join(report_dir, level_hierarchy[curr_level] + "_" + sample_name + ".txt") if (write_transcript_file): with open(file_written, 'w') as filehandle: for transcript_name in transcripts_to_search_sep: filehandle.write(transcript_name + '\n') if (create_fasta): mock_file_name = os.path.join(report_dir, organism + "_" + level_hierarchy[curr_level] + "_" + sample_name + "_transcripts.fasta") os.system("grep -w -A 2 -f " + file_written + " " + fasta_file + " --no-group-separator > " + mock_file_name) reported.write("Taxonomy file successfully completed with BUSCO completeness " + str(busco_completeness) + "% at location " + str(file_written) + "\n This was at taxonomic level " + str(success_level) + ". \n The file containing the transcript names for the mock transcriptome corresponding to this " "taxonomic level is located here: " + str(file_written) + ".\n") reported.write("The BUSCO scores found at the various taxonomic levels (Supergroup to " + str(taxonomy) + ") were: " + " ".join([str(curr) for curr in reversed_scores])) else: reported.write("Sufficient BUSCO completeness not found at threshold " + str(busco_threshold) + "%. \n") reported.write("The BUSCO scores found at the various taxonomic levels (Supergroup to " + str(taxonomy) + ") were: " + " ".join([str(curr) for curr in reversed_scores]) + "\n") reported.close() reversed_levels = levels_out reversed_levels.reverse() return pd.DataFrame({"Organism":[organism] * len(levels_out),"TaxonomicLevel":reversed_levels, "BuscoCompleteness":busco_scores,"NumberCovered":number_covered,"CtTwoCopies":number_duplicated, "CtThreeCopies":number_tripled,"CtFourCopies":number_quadrupled,"CtFivePlusCopies":number_higher_mult, "PercentageDuplicated":percent_multiples}) def read_in_taxonomy(infile): with open(infile, 'rb') as f: result = chardet.detect(f.read()) tax_out = pd.read_csv(infile, sep='\t',encoding=result['encoding']) classes = ['supergroup','division','class','order','family','genus','species'] for c in tax_out.columns: if c.lower() in classes: if (np.issubdtype(tax_out[str(c)].dtypes, np.number)) | (np.issubdtype(tax_out[str(c)].dtypes, np.float_)): tax_out = tax_out.loc[:,~(tax_out.columns == c)] tax_out.columns = tax_out.columns.str.lower() tax_out = tax_out.set_index('source_id') return tax_out def queryBusco(args=None): """ Search through individual BUSCO outputs to find number of matches for each organism/taxonomic level. """ parser = argparse.ArgumentParser() parser.add_argument('--busco_out',default="busco", help = "The output from the BUSCO run on the full sample file.") parser.add_argument('--individual_or_summary','-i',default="summary",choices=["summary","individual"], help = "Not necessary if we are running in summary mode.") parser.add_argument('--organism_group', nargs = "+", default = [], help = "The focal name(s) of species/genus/order/class.") parser.add_argument('--taxonomic_level', nargs = "+", default = [], help = "The taxonomic level(s) of the specified focal name.") parser.add_argument('--fasta_file', help = "The fasta file from which we pull sequences for the mock transcriptome.") parser.add_argument('--taxonomy_file_prefix', help = "The taxonomy file we use to create the mock transcriptome.") parser.add_argument('--tax_table', help = "the taxonomy table to get the full classification of the organism, " + "as assessed by the database being used.") parser.add_argument('--sample_name', help = "The name of the original sample being assessed.") parser.add_argument('--download_busco',action='store_true', help = "If specified, we download BUSCO file from the url in the next argument.") parser.add_argument('--create_fasta',action='store_true', help = "If specified, we create a 'transcriptome fasta' when we query for the organisms.") parser.add_argument('--busco_url',default=0) parser.add_argument('--busco_location',default="busco", help = "Location to store the BUSCO tar reference.") parser.add_argument('--output_dir',default="output") parser.add_argument('--available_cpus',default=1) parser.add_argument('--busco_threshold',default=50) parser.add_argument('--write_transcript_file', default=False, action='store_true', help = "Whether to write an actual file with the subsetted transcriptome.") if args != None: args = parser.parse_args(args) else: args = parser.parse_args() organism = args.organism_group taxonomy = args.taxonomic_level tax_table = read_in_taxonomy(args.tax_table) if (args.individual_or_summary == "individual") & ((len(args.organism_group) == 0) | (len(args.taxonomic_level) == 0)): print("You specified individual mode, but then did not provide a taxonomic group and/or accompanying taxonomic level.", flush=True) sys.exit(1) if (len(args.organism_group) == 0) != (len(args.taxonomic_level) == 0): print("The number of organisms you specified is not equal to the number of taxonomic levels you specified. " + str(len(args.organism_group)) + " organisms were specified, while " + str(args.taxonomic_level) + " taxonomic levels were specified.",flush=True) sys.exit(1) if (args.individual_or_summary == "individual"): results_frame = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(evaluate_organism)(organism[curr], taxonomy[curr], tax_table, args.create_fasta, args.write_transcript_file, args.busco_out, args.taxonomy_file_prefix, float(args.busco_threshold), args.output_dir, args.sample_name, args.fasta_file) \ for curr in range(len(organism))) print(results_frame,flush=True) results_frame = pd.concat(results_frame) os.system("mkdir -p " + os.path.join(args.output_dir, "busco_assessment", args.sample_name, "individual")) results_frame.to_csv(path_or_buf = os.path.join(args.output_dir, "busco_assessment", args.sample_name, "individual", "summary_" + args.sample_name + ".tsv"), sep = "\t") else: for taxonomy in level_hierarchy: taxonomy_file = pd.read_csv(args.taxonomy_file_prefix + "_all_" + str(taxonomy) + "_counts.csv", sep=",",header=0) if len(taxonomy_file.index) > 0: curr_frame = taxonomy_file.nlargest(multiprocessing.cpu_count(), 'NumTranscripts') organisms = list(set(list(curr_frame[taxonomy.capitalize()]))) results_frame = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(evaluate_organism)(organism, taxonomy, tax_table, args.create_fasta, args.write_transcript_file, args.busco_out, args.taxonomy_file_prefix, args.busco_threshold, args.output_dir, args.sample_name, args.fasta_file) \ for organism in organisms) results_frame = pd.concat(results_frame) else: results_frame = pd.DataFrame(columns = ["Organism","TaxonomicLevel","BuscoCompleteness", "NumberCovered","CtTwoCopies", "CtThreeCopies","CtFourCopies","CtFivePlusCopies", "PercentageDuplicated"]) os.system("mkdir -p " + os.path.join(args.output_dir, "busco_assessment", args.sample_name, taxonomy + "_combined")) results_frame.to_csv(path_or_buf = os.path.join(args.output_dir, "busco_assessment", args.sample_name, taxonomy + "_combined", "summary_" + taxonomy + "_" + args.sample_name + ".tsv"), sep = "\t") return 0 if __name__ == "__main__": queryBusco() ``` #### File: src/EUKulele/manage_steps.py ```python import os import sys import subprocess import multiprocessing from joblib import Parallel, delayed import shutil import pathlib import pandas as pd import math import EUKulele from EUKulele.tax_placement import place_taxonomy from EUKulele.visualize_results import visualize_all_results from scripts.mag_stats import magStats MEM_AVAIL_GB = 0 while MEM_AVAIL_GB == 0: try: os.system("free -m > free.csv") MEM_AVAIL_GB = pd.read_csv("free.csv", sep = "\s+").free[0] / 10**3 except: pass # 25 GB memory per GB file size # add a parameter that changes between the requirement per file size (reducing to 10 GB for now) # also add a parameter to EUKulele that decides whether you use 100% of available memory and scales # MEM_AVAIL_GB by that amount (default to 75%) def calc_max_jobs(num_files, size_in_bytes = 2147483648, max_mem_per_proc = 10, perc_mem = 0.75): size_in_gb = size_in_bytes / (1024*1024*1024) if size_in_gb == 0: size_in_gb = 0.01 MAX_JOBS = math.floor(MEM_AVAIL_GB * perc_mem / (max_mem_per_proc * size_in_gb * num_files)) #48) if MAX_JOBS == 0: MAX_JOBS = 1 return MAX_JOBS MAX_JOBS = max(1, calc_max_jobs(1)) # For DIAMOND: The program can be expected to use roughly six times this number of memory (in GB). # So for the default value of -b2.0, the memory usage will be about 12 GB. # So we want alignment to have -b6.0 def manageEukulele(piece, mets_or_mags = "", samples = [], database_dir = "", output_dir = "", ref_fasta = "", alignment_choice = "diamond", rerun_rules = False, cutoff_file = "", sample_dir = "", nt_ext = "", pep_ext = "", consensus_cutoff = 0.75, tax_tab = "", prot_tab = "", use_salmon_counts = False, names_to_reads = "", alignment_res = "", filter_metric = "evalue", run_transdecoder = False, transdecoder_orf_size = 100, perc_mem = 0.75): """ This function diverts management tasks to the below helper functions. """ if piece == "setup_eukulele": setupEukulele(output_dir) elif piece == "setup_databases": createAlignmentDatabase(ref_fasta, rerun_rules, output_dir, alignment_choice, database_dir) elif piece == "get_samples": return getSamples(mets_or_mags, sample_dir, nt_ext, pep_ext) elif piece == "transdecode": if mets_or_mags == "mets": manageTrandecode(samples, output_dir, rerun_rules, sample_dir, mets_or_mags = "mets", transdecoder_orf_size = 100, nt_ext = "." + nt_ext.strip('.'), pep_ext = "." + pep_ext.strip('.'), run_transdecoder = run_transdecoder, perc_mem = perc_mem) elif piece == "align_to_db": return manageAlignment(alignment_choice, samples, filter_metric, output_dir, ref_fasta, mets_or_mags, database_dir, sample_dir, rerun_rules, nt_ext, pep_ext, core = "full", perc_mem = perc_mem) elif piece == "estimate_taxonomy": manageTaxEstimation(output_dir, mets_or_mags, tax_tab, cutoff_file, consensus_cutoff, prot_tab, use_salmon_counts, names_to_reads, alignment_res, rerun_rules, samples, sample_dir, pep_ext, nt_ext, perc_mem) elif piece == "visualize_taxonomy": manageTaxVisualization(output_dir, mets_or_mags, sample_dir, pep_ext, nt_ext, use_salmon_counts, rerun_rules) elif piece == "assign_taxonomy": manageTaxAssignment(samples, mets_or_mags, output_dir, sample_dir, pep_ext, core = False) elif piece == "core_align_to_db": alignment_res = manageAlignment(alignment_choice, samples, filter_metric, output_dir, ref_fasta, mets_or_mags, database_dir, sample_dir, rerun_rules, nt_ext, pep_ext, core = "core", perc_mem = perc_mem) alignment_res = [curr for curr in alignment_res if curr != ""] return alignment_res elif piece == "core_estimate_taxonomy": manageCoreTaxEstimation(output_dir, mets_or_mags, tax_tab, cutoff_file, consensus_cutoff, prot_tab, use_salmon_counts, names_to_reads, alignment_res, rerun_rules, samples, sample_dir, pep_ext, nt_ext, perc_mem) elif piece == "core_visualize_taxonomy": manageCoreTaxVisualization(output_dir, mets_or_mags, sample_dir, pep_ext, nt_ext, use_salmon_counts, rerun_rules, core = True) elif piece == "core_assign_taxonomy": manageTaxAssignment(samples, mets_or_mags, output_dir, sample_dir, pep_ext, core = True) else: print("Not a supported management function.") sys.exit(1) def getSamples(mets_or_mags, sample_dir, nt_ext, pep_ext): """ Get the names of the metagenomic or metatranscriptomic samples from the provided folder. """ if (mets_or_mags == "mets"): samples_nt = [".".join(curr.split(".")[0:-1]) for curr in os.listdir(sample_dir) if curr.split(".")[-1] == nt_ext] samples_pep = [".".join(curr.split(".")[0:-1]) for curr in os.listdir(sample_dir) if curr.split(".")[-1] == pep_ext] samples = list(set(samples_nt + samples_pep)) print(samples) if len(samples) == 0: print("No samples found in sample directory with specified nucleotide or peptide extension.") sys.exit(1) else: samples = [".".join(curr.split(".")[0:-1]) for curr in os.listdir(sample_dir) if curr.split(".")[-1] == pep_ext] if len(samples) == 0: print("No samples found in sample directory with specified peptide extension.") sys.exit(1) return samples def transdecodeToPeptide(sample_name, output_dir, rerun_rules, sample_dir, mets_or_mags = "mets", transdecoder_orf_size = 100, nt_ext = ".fasta", pep_ext = ".faa", run_transdecoder = False): """ Use TransDecoder to convert input nucleotide metatranscriptomic sequences to peptide sequences. """ if (not run_transdecoder): return 0 print("Running TransDecoder for sample " + str(sample_name) + "...", flush = True) os.system("mkdir -p " + os.path.join(output_dir, mets_or_mags, "transdecoder")) if (os.path.isfile(os.path.join(output_dir, mets_or_mags, sample_name + pep_ext))) & (not rerun_rules): print("TransDecoder file already detected for sample " + str(sample_name) + "; will not re-run step.", flush = True) return 0 elif (os.path.isfile(os.path.join(sample_dir, sample_name + pep_ext))) & (not rerun_rules): print("Protein files detected for sample in sample directory; " + "will not TransDecode.", flush = True) os.system("cp " + os.path.join(sample_dir, sample_name + pep_ext) + " " + os.path.join(output_dir, mets_or_mags, sample_name + pep_ext)) return 0 TD_log = open(os.path.join(output_dir,"log","transdecoder_longorfs_" + sample_name + ".log"), "w+") TD_err = open(os.path.join(output_dir,"log","transdecoder_longorfs_" + sample_name + ".err"), "w+") if (not os.path.isfile(os.path.join(sample_dir, sample_name + nt_ext))): print("File: " + os.path.join(sample_dir, sample_name + nt_ext) + " was called by TransDecoder and " "does not exist. Check for typos.") sys.exit(1) rc1 = subprocess.Popen(["TransDecoder.LongOrfs", "-t", os.path.join(sample_dir, sample_name + nt_ext), "-m", str(transdecoder_orf_size)], stdout = TD_log, stderr = TD_err).wait() TD_log.close() TD_err.close() TD_log = open(os.path.join(output_dir,"log","transdecoder_predict_" + sample_name + ".log"), "w+") TD_err = open(os.path.join(output_dir,"log","transdecoder_predict_" + sample_name + ".err"), "w+") rc2 = subprocess.Popen(["TransDecoder.Predict", "-t", os.path.join(sample_dir, sample_name + nt_ext), "--no_refine_starts"], stdout = TD_log, stderr = TD_err).wait() #rc2 = p2.returncode TD_log.close() TD_err.close() if (rc1 + rc2) != 0: print("TransDecoder did not complete successfully for sample " + str(sample_name) + ". Check <output_dir>/log/ folder for details.") sys.exit(1) merged_name = sample_name + nt_ext os.system("mkdir -p " + os.path.join(output_dir, mets_or_mags)) os.system("mkdir -p " + os.path.join(output_dir, mets_or_mags, "transdecoder")) os.replace(merged_name + ".transdecoder.pep", os.path.join(output_dir, mets_or_mags, sample_name + pep_ext)) os.replace(merged_name + ".transdecoder.cds", os.path.join(output_dir, mets_or_mags, "transdecoder", sample_name + ".fasta.transdecoder.cds")) os.replace(merged_name + ".transdecoder.gff3", os.path.join(output_dir, mets_or_mags, "transdecoder", sample_name + ".fasta.transdecoder.gff3")) os.replace(merged_name + ".transdecoder.bed", os.path.join(output_dir, mets_or_mags, "transdecoder", sample_name + ".fasta.transdecoder.bed")) #shutil.rmtree os.system("rm -rf " + merged_name + "*.transdecoder_dir*") return rc1 + rc2 def manageTrandecode(met_samples, output_dir, rerun_rules, sample_dir, mets_or_mags = "mets", transdecoder_orf_size = 100, nt_ext = "fasta", pep_ext = ".faa", run_transdecoder = False, perc_mem = 0.75): """ Now for some TransDecoding - a manager for TransDecoder steps. """ if (not run_transdecoder): return 0 print("Running TransDecoder for MET samples...", flush = True) MAX_JOBS = 1 MAX_JOBS_SAMPS = [calc_max_jobs(len(met_samples), pathlib.Path(os.path.join(sample_dir, sample + nt_ext)).stat().st_size, max_mem_per_proc = 48, perc_mem = perc_mem) \ for sample in met_samples \ if os.path.isfile(os.path.join(sample_dir, sample + nt_ext))] if len(MAX_JOBS_SAMPS) > 0: MAX_JOBS = min([calc_max_jobs(len(met_samples), pathlib.Path(os.path.join(sample_dir, sample + nt_ext)).stat().st_size, max_mem_per_proc = 48, perc_mem = perc_mem) \ for sample in met_samples \ if os.path.isfile(os.path.join(sample_dir, sample + nt_ext))]) n_jobs_align = min(multiprocessing.cpu_count(), len(met_samples), max(1,MAX_JOBS)) transdecoder_res = Parallel(n_jobs=n_jobs_align)(delayed(transdecodeToPeptide)(sample_name, output_dir, rerun_rules, sample_dir, mets_or_mags = "mets", transdecoder_orf_size = 100, nt_ext = nt_ext, pep_ext = pep_ext, run_transdecoder = run_transdecoder) for sample_name in met_samples) all_codes = sum(transdecoder_res) os.system("rm -f pipeliner*") if all_codes > 0: print("TransDecoder did not complete successfully; check log folder for details.") sys.exit(1) #rcodes = [os.remove(curr) for curr in glob.glob("pipeliner*")] def setupEukulele(output_dir): print("Setting things up...") os.system("mkdir -p " + output_dir) os.system("mkdir -p " + os.path.join(output_dir, "log")) ## Download software dependencies rc1 = os.system("install_dependencies.sh references_bins/ " + "1> " + os.path.join(output_dir, "log", "dependency_log.txt") + " 2> " + os.path.join(output_dir, "log", "dependency_err.txt")) sys.path.append("references_bins/") os.system("echo $PATH > path_test.txt") if rc1 != 0: print("Could not successfully install all external dependent software.\n" + "Check DIAMOND, BLAST, BUSCO, and TransDecoder installation.") return 1 return 0 def manageAlignment(alignment_choice, samples, filter_metric, output_dir, ref_fasta, mets_or_mags, database_dir, sample_dir, rerun_rules, nt_ext, pep_ext, core = "full", perc_mem = 0.75): """ Manage the multithreaded management of aligning to either BLAST or DIAMOND database. """ print("Aligning to reference database...") if mets_or_mags == "mets": fastas = [] for sample in samples: if os.path.isfile(os.path.join(output_dir, mets_or_mags, sample + "." + pep_ext)): fp = open(os.path.join(output_dir, mets_or_mags, sample + "." + pep_ext)) for i, line in enumerate(fp): if i == 2: chars = set(list(line)) if len(chars) <= 5: print("Peptide extension used, but this file, " + str(os.path.join(output_dir, mets_or_mags, sample + "." + pep_ext)) + ", does not appear to be a peptide file.") break elif i > 2: fastas.append(os.path.join(output_dir, mets_or_mags, sample + "." + pep_ext)) break fp.close() elif os.path.isfile(os.path.join(sample_dir, sample + "." + pep_ext)): fp = open(os.path.join(sample_dir, sample + "." + pep_ext)) for i, line in enumerate(fp): if i == 2: chars = set(list(line)) if len(chars) <= 5: print("Peptide extension used, but this file, " + str(os.path.join(sample_dir, sample + "." + pep_ext)) + ", does not appear to be a peptide file.") break elif i > 2: fastas.append(os.path.join(sample_dir, sample + "." + pep_ext)) break fastas.append(os.path.join(sample_dir, sample + "." + pep_ext)) else: fastas.append(os.path.join(sample_dir, sample + "." + nt_ext)) else: fastas = [os.path.join(sample_dir, sample + "." + pep_ext) for sample in samples] print(fastas) MAX_JOBS = 1 if len(fastas) > 0: MAX_JOBS = min([calc_max_jobs(len(fastas), pathlib.Path(sample).stat().st_size, max_mem_per_proc = 10, perc_mem = perc_mem) for sample in fastas]) n_jobs_align = min(multiprocessing.cpu_count(), len(samples), max(1,MAX_JOBS)) alignment_res = Parallel(n_jobs=n_jobs_align, prefer="threads")(delayed(alignToDatabase)(alignment_choice, sample_name, filter_metric, output_dir, ref_fasta, mets_or_mags, database_dir, sample_dir, rerun_rules, nt_ext, pep_ext, core = core) \ for sample_name in samples) #alignment_res = [] #for sample_name in samples: # alignment_res.append(alignToDatabase(alignment_choice, sample_name, filter_metric, output_dir, ref_fasta, # mets_or_mags, database_dir, sample_dir, rerun_rules, nt_ext, pep_ext)) if any([((curr == None) | (curr == 1)) for curr in alignment_res]): print("Alignment did not complete successfully.") sys.exit(1) return alignment_res def createAlignmentDatabase(ref_fasta, rerun_rules, output_dir, alignment_choice="diamond", database_dir=""): """ Creates a database from the provided reference fasta file and reference database, whether or not it has been autogenerated. """ rc2 = 0 output_log = os.path.join(output_dir, "log", "alignment_out.log") error_log = os.path.join(output_dir, "log", "alignment_err.log") if alignment_choice == "diamond": align_db = os.path.join(database_dir, "diamond", ref_fasta.strip('.fa') + '.dmnd') if (not os.path.isfile(align_db)) | (rerun_rules): ## DIAMOND database creation ## os.system("mkdir -p " + os.path.join(database_dir, "diamond")) db = os.path.join(database_dir, "diamond", ref_fasta.strip('.fa')) rc2 = os.system("diamond makedb --in " + os.path.join(database_dir, ref_fasta) + " --db " + db + " 1> " + output_log + " 2> " + error_log) else: print("Diamond database file already created; will not re-create database.", flush = True) else: db = os.path.join(database_dir, "blast", ref_fasta.strip('.fa'), "database") os.system("mkdir -p " + db) db_type = "prot" blast_version = 5 database = ref_fasta.strip('.') #os.system("cut -f 1 -d' ' " + os.path.join(database_dir, ref_fasta) + " > " + # os.path.join(database_dir, ref_fasta + "decoy.pep.fa")) #os.system("perl -i -pe 's/$/_$seen{$_}/ if ++$seen{$_}>1 and /^>/; ' " + # os.path.join(database_dir, ref_fasta + "decoy.pep.fa")) # os.system("sed -i $'s/ //g' " + os.path.join(database_dir, ref_fasta)) # makeblastdb -in tests/aux_data/mmetsp/sample_ref_MAG/reference.pep.fa -parse_seqids -title referencefa -dbtype prot -out tests/aux_data/mmetsp/sample_ref_MAG/blast/reference.pep/database rc2 = os.system("makeblastdb -in " + os.path.join(database_dir, ref_fasta) + " -parse_seqids -title " + database + " -dbtype " + db_type + " -out " + db + " 1> " + output_log + " 2> " + error_log) return rc2 def alignToDatabase(alignment_choice, sample_name, filter_metric, output_dir, ref_fasta, mets_or_mags, database_dir, sample_dir, rerun_rules, nt_ext, pep_ext, core = "full"): """ Align the samples against the created database. """ print("Aligning sample " + sample_name + "...") if alignment_choice == "diamond": os.system("mkdir -p " + os.path.join(output_dir, mets_or_mags + "_" + core, "diamond")) diamond_out = os.path.join(output_dir, mets_or_mags + "_" + core, "diamond", sample_name + ".diamond.out") if (os.path.isfile(diamond_out)): if (pathlib.Path(diamond_out).stat().st_size != 0) & (not rerun_rules): print("Diamond alignment file already detected; will not re-run step.") return diamond_out align_db = os.path.join(database_dir, "diamond", ref_fasta.strip('.fa') + '.dmnd') alignment_method = "blastp" if (mets_or_mags == "mets") & (core == "full"): if os.path.isfile(os.path.join(output_dir, mets_or_mags, sample_name + "." + pep_ext)): fasta = os.path.join(output_dir, mets_or_mags, sample_name + "." + pep_ext) elif os.path.isfile(os.path.join(sample_dir, sample_name + "." + pep_ext)): fasta = os.path.join(sample_dir, sample_name + "." + pep_ext) else: fasta = os.path.join(sample_dir, sample_name + "." + nt_ext) alignment_method = "blastx" elif core == "full": fasta = os.path.join(sample_dir, sample_name + "." + pep_ext) elif core == "core": # now concatenate the BUSCO output fasta = os.path.join(output_dir, sample_name + "_busco" + "." + pep_ext) os.system(" ".join(["concatenate_busco.sh", sample_name, fasta, output_dir])) if not os.path.isfile(fasta): print("No BUSCO matches found for sample: " + sample_name) return "" other = "--outfmt 6 -k 100 -e 1e-5" outfmt = 6 k = 100 e = 1e-5 bitscore = 50 pid_cutoff = 75 diamond_log = open(os.path.join(output_dir,"log",core + "_diamond_align_" + sample_name + ".log"), "w+") diamond_err = open(os.path.join(output_dir,"log",core + "_diamond_align_" + sample_name + ".err"), "w+") if filter_metric == "bitscore": rc1 = subprocess.Popen(["diamond", alignment_method, "--db", align_db, "-q", fasta, "-o", diamond_out, "--outfmt", str(outfmt), "-k", str(k), "--min-score", str(bitscore), '-b3.0'], stdout = diamond_log, stderr = diamond_err).wait() print("Diamond process exited for sample " + str(sample_name) + ".", flush = True) elif filter_metric == "pid": rc1 = subprocess.Popen(["diamond", alignment_method, "--db", align_db, "-q", fasta, "-o", diamond_out, "--outfmt", str(outfmt), "-k", str(k), "--id", str(pid_cutoff), '-b3.0'], stdout = diamond_log, stderr = diamond_err).wait() print("Diamond process exited for sample " + str(sample_name) + ".", flush = True) else: rc1 = subprocess.Popen(["diamond", alignment_method, "--db", align_db, "-q", fasta, "-o", diamond_out, "--outfmt", str(outfmt), "-k", str(k), "-e", str(e), '-b3.0'], stdout = diamond_log, stderr = diamond_err).wait() # For debugging. #, stdout=subprocess.PIPE, stderr=subprocess.PIPE) #stdout, stderr = p.communicate() #rc1 = p.returncode #print(stderr) #print(stdout) print("Diamond process exited for sample " + str(sample_name) + ".", flush = True) if rc1 != 0: print("Diamond did not complete successfully for sample",str(sample_name),"with rc code",str(rc1)) os.system("rm -f " + diamond_out) return 1 return diamond_out else: blast_out = os.path.join(output_dir, mets_or_mags + "_" + core, "blast", sample_name + ".blast.txt") os.system("mkdir -p " + os.path.join(output_dir, mets_or_mags + "_" + core, "blast")) if (os.path.isfile(blast_out)) & (not rerun_rules): print("BLAST alignment file already detected; will not re-run step.") return blast_out align_db = os.path.join(database_dir, "blast", ref_fasta.strip('.fa'), "database") alignment_method = "blastp" if mets_or_mags == "mets": if os.path.isfile(os.path.join(output_dir, mets_or_mags, sample_name + "." + pep_ext)): fasta = os.path.join(output_dir, mets_or_mags, sample_name + "." + pep_ext) elif os.path.isfile(os.path.join(sample_dir, sample_name + "." + pep_ext)): fasta = os.path.join(sample_dir, sample_name + "." + pep_ext) else: fasta = os.path.join(sample_dir, sample_name + "." + nt_ext) alignment_method = "blastx" elif core == "full": fasta = os.path.join(sample_dir, sample_name + "." + pep_ext) elif core == "core": # now concatenate the BUSCO output fasta = os.path.join(output_dir, sample_name + "_busco" + "." + pep_ext) os.system(" ".join(["concatenate_busco.sh", sample_name, fasta, output_dir])) if not os.path.isfile(fasta): print("No BUSCO matches found for sample: " + sample_name) return "" outfmt = 6 # tabular output format e = 1e-5 os.system("export BLASTDB=" + align_db) blast_log = open(os.path.join(output_dir,"log","blast_align_" + sample_name + ".log"), "w+") blast_err = open(os.path.join(output_dir,"log","blast_align_" + sample_name + ".err"), "w+") rc1 = subprocess.Popen([alignment_method, "-query", fasta, "-db", align_db, "-out", blast_out,"-outfmt",str(outfmt),"-evalue", str(e)], stdout = blast_log, stderr = blast_err).wait() if rc1 != 0: print("BLAST did not complete successfully.") return 1 return blast_out def manageTaxEstimation(output_dir, mets_or_mags, tax_tab, cutoff_file, consensus_cutoff, prot_tab, use_salmon_counts, names_to_reads, alignment_res, rerun_rules, samples, sample_dir, pep_ext, nt_ext, perc_mem): print("Performing taxonomic estimation steps...", flush=True) os.system("mkdir -p " + os.path.join(output_dir, "taxonomy_estimation")) outfiles = [os.path.join(output_dir, "taxonomy_estimation", samp + "-estimated-taxonomy.out") for samp in samples] if mets_or_mags == "mets": fastas = [] for sample in samples: if os.path.isfile(os.path.join(output_dir, mets_or_mags, sample + "." + pep_ext)): fastas.append(os.path.join(output_dir, mets_or_mags, sample + "." + pep_ext)) elif os.path.isfile(os.path.join(sample_dir, sample + "." + pep_ext)): fastas.append(os.path.join(sample_dir, sample + "." + pep_ext)) else: fastas.append(os.path.join(sample_dir, sample + "." + nt_ext)) else: fastas = [os.path.join(sample_dir, sample + "." + pep_ext) for sample in samples] MAX_JOBS = min([calc_max_jobs(len(fastas), pathlib.Path(sample).stat().st_size, max_mem_per_proc = 5, perc_mem = perc_mem) for sample in fastas]) n_jobs_align = min(multiprocessing.cpu_count(), len(alignment_res), max(1, MAX_JOBS)) for t in range(len(alignment_res)): #curr_out = place_taxonomy(tax_tab, cutoff_file, consensus_cutoff,\ # prot_tab, use_salmon_counts, names_to_reads,\ # alignment_res[t], outfiles[t], rerun_rules) try: sys.stdout = open(os.path.join(output_dir, "log", "tax_est_" + alignment_res[t].split("/")[-1].split(".")[0] + ".out"), "w") sys.stderr = open(os.path.join(output_dir, "log", "tax_est_" + alignment_res[t].split("/")[-1].split(".")[0] + ".err"), "w") curr_out = place_taxonomy(tax_tab, cutoff_file, consensus_cutoff,\ prot_tab, use_salmon_counts, names_to_reads,\ alignment_res[t], outfiles[t], rerun_rules) except: print("Taxonomic estimation did not complete successfully. Check log file for details.") sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ def manageCoreTaxEstimation(output_dir, mets_or_mags, tax_tab, cutoff_file, consensus_cutoff, prot_tab, use_salmon_counts, names_to_reads, alignment_res, rerun_rules, samples, sample_dir, pep_ext, nt_ext, perc_mem): print("Performing taxonomic estimation steps...", flush=True) os.system("mkdir -p " + os.path.join(output_dir, "core_taxonomy_estimation")) outfiles = [os.path.join(output_dir, "core_taxonomy_estimation", samp + "-estimated-taxonomy.out") for samp in samples] if mets_or_mags == "mets": fastas = [] for sample in samples: if os.path.isfile(os.path.join(output_dir, mets_or_mags, sample + "." + pep_ext)): fastas.append(os.path.join(output_dir, mets_or_mags, sample + "." + pep_ext)) elif os.path.isfile(os.path.join(sample_dir, sample + "." + pep_ext)): fastas.append(os.path.join(sample_dir, sample + "." + pep_ext)) else: fastas.append(os.path.join(sample_dir, sample + "." + nt_ext)) else: fastas = [os.path.join(sample_dir, sample + "." + pep_ext) for sample in samples] MAX_JOBS = min([calc_max_jobs(len(fastas), pathlib.Path(sample).stat().st_size, max_mem_per_proc = 10, perc_mem = perc_mem) for sample in fastas]) n_jobs_align = min(multiprocessing.cpu_count(), len(alignment_res), MAX_JOBS) for t in range(len(alignment_res)): try: sys.stdout = open(os.path.join(output_dir, "log", "core_tax_est_" + alignment_res[t].split("/")[-1].split(".")[0] + ".out"), "w") sys.stderr = open(os.path.join(output_dir, "log", "core_tax_est_" + alignment_res[t].split("/")[-1].split(".")[0] + ".err"), "w") curr_out = place_taxonomy(tax_tab, cutoff_file, consensus_cutoff,\ prot_tab, use_salmon_counts, names_to_reads,\ alignment_res[t], outfiles[t], rerun_rules) except: print("Taxonomic estimation for core genes did not complete successfully. Check log file for details.") sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ def manageTaxVisualization(output_dir, mets_or_mags, sample_dir, pep_ext, nt_ext, use_salmon_counts, rerun_rules): print("Performing taxonomic visualization steps...", flush=True) out_prefix = output_dir.split("/")[-1] sys.stdout = open(os.path.join(output_dir, "log", "tax_vis.out"), "w") sys.stderr = open(os.path.join(output_dir, "log", "tax_vis.err"), "w") visualize_all_results(out_prefix, output_dir, os.path.join(output_dir, "taxonomy_estimation"), sample_dir, pep_ext, nt_ext, use_salmon_counts, rerun_rules) sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ def manageCoreTaxVisualization(output_dir, mets_or_mags, sample_dir, pep_ext, nt_ext, use_salmon_counts, rerun_rules, core = False): print("Performing taxonomic visualization steps...", flush=True) out_prefix = output_dir.split("/")[-1] sys.stdout = open(os.path.join(output_dir, "log", "core_tax_vis.out"), "w") sys.stderr = open(os.path.join(output_dir, "log", "core_tax_vis.err"), "w") visualize_all_results(out_prefix = out_prefix, out_dir = output_dir, est_dir = os.path.join(output_dir, "core_taxonomy_estimation"), samples_dir = sample_dir, prot_extension = pep_ext, nucle_extension = nt_ext, use_counts = use_salmon_counts, rerun = rerun_rules, core = core) #except: # print("Taxonomic visualization of core genes did not complete successfully. Check log files for details.") sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ def manageTaxAssignment(samples, mets_or_mags, output_dir, sample_dir, pep_ext, core = False, perc_mem = 0.75): if mets_or_mags == "mags": print("Performing taxonomic assignment steps...", flush=True) MAX_JOBS = min([calc_max_jobs(len(samples), pathlib.Path(os.path.join(sample_dir, sample + "." + pep_ext)).stat().st_size, max_mem_per_proc = 10, perc_mem = perc_mem) for sample in samples]) n_jobs_viz = min(multiprocessing.cpu_count(), len(samples), max(1,MAX_JOBS)) try: if core: assign_res = Parallel(n_jobs=n_jobs_viz, prefer="threads")(delayed(assignTaxonomy)(samp, output_dir, "core_taxonomy_estimation", mets_or_mags, core = True) \ for samp in samples) else: assign_res = Parallel(n_jobs=n_jobs_viz, prefer="threads")(delayed(assignTaxonomy)(samp, output_dir, "taxonomy_estimation", mets_or_mags, core = False) \ for samp in samples) except: print("Taxonomic assignment did not complete successfully. Check log files for details.") sys.exit(1) if sum(assign_res) != 0: print("Taxonomic assignment did not complete successfully. Check log files for details.") sys.exit(1) def assignTaxonomy(sample_name, output_dir, est_dir, mets_or_mags, core = False): taxfile = os.path.join(output_dir, est_dir, sample_name + "-estimated-taxonomy.out") levels_directory = os.path.join(output_dir, "levels_mags") max_dir = os.path.join(output_dir, "max_level_mags") if core: levels_directory = os.path.join(output_dir, "core_levels_mags") max_dir = os.path.join(output_dir, "core_max_level_mags") error_log = os.path.join(output_dir, "log", "_".join(est_dir.split("_")[0:1]) + "_assign_" + sample_name + ".err") out_log = os.path.join(output_dir, "log", "_".join(est_dir.split("_")[0:1]) + "_assign_" + sample_name + ".out") sys.stdout = open(out_log, "w") sys.stderr = open(error_log, "w") try: rc = magStats(["--estimated-taxonomy-file",taxfile, "--out-prefix",sample_name,"--outdir", levels_directory,"--max-out-dir",max_dir]) except: print("Taxonomic assignment did not complete successfully for sample " + str(sample_name) + ". Check log for details.") sys.exit(1) sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ return rc ``` #### File: tests/code/test_mags_2.py ```python import pytest import sys from unittest import TestCase sys.path.insert(1, '..') sys.path.insert(1, '../src/EUKulele') import EUKulele from EUKulele.EUKulele_config import eukulele import yaml import os test_reference = "mmetsp" def test_individual(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out_E") os.system("rm -rf " + output_dir) reference_dir = os.path.join(base_dir, test_reference, "sample_ref") string_arguments = " ".join(["all", "--database", "mmetsp", "--sample_dir", sample_dir, "--mets_or_mags", "mags", "--out_dir", output_dir, "-i", '--organisms', 'Chromera', '--taxonomy_organisms', 'genus', "--reference_dir", reference_dir]) eukulele(string_arguments=string_arguments) samplenames = [curr.split(".")[0] for curr in os.listdir(sample_dir)] busco_out = os.path.join(output_dir, "busco_assessment", samplenames[0], "individual", "summary_" + samplenames[0] + ".tsv") assert os.path.isfile(busco_out) def test_error_input(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out_F") os.system("rm -rf " + output_dir) reference_dir = os.path.join(base_dir, test_reference, "sample_ref") string_arguments = " ".join(["--database", "mmetsp", "--sample_dir", sample_dir, "--mets_or_mags", "mmm", "--out_dir", output_dir, "-i", '--organisms', 'Chromera', '--taxonomy_organisms', 'genus', "--reference_dir", reference_dir]) error = 0 try: eukulele(string_arguments=string_arguments) except: error = 1 assert error == 1 def test_error_required_input(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out_G") os.system("rm -rf " + output_dir) reference_dir = os.path.join(base_dir, test_reference, "sample_ref") string_arguments = " ".join(["--database", "mmetsp", "--sample_dir", sample_dir, "--out_dir", output_dir, "-i", '--organisms', 'Chromera', '--taxonomy_organisms', 'genus', "--reference_dir", reference_dir]) error = 0 try: eukulele(string_arguments=string_arguments) except: error = 1 assert error == 1 def test_error_busco_no_orgs(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out_H") os.system("rm -rf " + output_dir) reference_dir = os.path.join(base_dir, test_reference, "sample_ref") string_arguments = " ".join(["--database", "mmetsp", "--sample_dir", sample_dir, "--mets_or_mags", "mags", "--out_dir", output_dir, "-i", "--reference_dir", reference_dir]) error = 0 try: eukulele(string_arguments=string_arguments) except: error = 1 assert error == 1 def test_error_n_extension(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out_I") os.system("rm -rf " + output_dir) reference_dir = os.path.join(base_dir, test_reference, "sample_ref") string_arguments = " ".join(["--database", "mmetsp", "--sample_dir", sample_dir, "--mets_or_mags", "mets", "--out_dir", output_dir, "-i", "--n_ext", ".hello", "--reference_dir", reference_dir]) error = 0 try: eukulele(string_arguments=string_arguments) except: error = 1 assert error == 1 def test_error_p_extension(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out_J") os.system("rm -rf " + output_dir) reference_dir = os.path.join(base_dir, test_reference, "sample_ref") string_arguments = " ".join(["--database", "mmetsp", "--sample_dir", sample_dir, "--mets_or_mags", "mags", "--out_dir", output_dir, "-i", "--p_ext", ".hello", "--reference_dir", reference_dir]) error = 0 try: eukulele(string_arguments=string_arguments) except: error = 1 assert error == 1 def test_error_busco(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out_K") os.system("rm -rf " + output_dir) reference_dir = os.path.join(base_dir, test_reference, "sample_ref") string_arguments = " ".join(["--database", "mmetsp", "--sample_dir", sample_dir, "--mets_or_mags", "mags", "--out_dir", output_dir, "-i", '--busco_file', os.path.join(base_dir, test_reference, "samples_MAGs", "busco_file_fake.tsv"), "--reference_dir", reference_dir]) error = 0 try: eukulele(string_arguments=string_arguments) except: error = 1 assert error == 1 def test_busco_file(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out_K") os.system("rm -rf " + output_dir) reference_dir = os.path.join(base_dir, test_reference, "sample_ref") string_arguments = " ".join(["--database", "mmetsp", "--sample_dir", sample_dir, "--mets_or_mags", "mags", "--out_dir", output_dir, "-i", '--busco_file', os.path.join(base_dir, test_reference, "samples_MAGs", "test_busco.tsv"), "--reference_dir", reference_dir]) error = 0 eukulele(string_arguments=string_arguments) samplenames = [curr.split(".")[0] for curr in os.listdir(sample_dir)] busco_out = os.path.join(output_dir, "busco_assessment", samplenames[0], "individual", "summary_" + samplenames[0] + ".tsv") out_prefix = samplenames[0] assert (os.path.isfile(busco_out)) def test_all(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') base_config = os.path.join(os.path.dirname(__file__), '..', 'aux_data', 'config.yaml') base_config_curr = os.path.join(os.path.dirname(__file__), '..', 'aux_data', 'config_O.yaml') os.system("cp " + base_config + " " + base_config_curr) with open(base_config_curr) as f: config = yaml.load(f, Loader=yaml.FullLoader) config["mets_or_mags"] = "mags" config["reference"] = os.path.join(base_dir, test_reference, "sample_ref") config["samples"] = os.path.join(base_dir, "real-world-samples", "MAGs") config["subroutine"] = "all" config["individual_or_summary"] = "summary" config["cutoff"] = os.path.join("tax-cutoffs.yaml") config["output"] = os.path.join(base_dir, "test_out_all_K") config["database"] = test_reference config["organisms"] = ["Chromera"] config["taxonomy_organisms"] = ["genus"] config["download_reference"] = 0 config["column"] = "SOURCE_ID" config["ref_fasta"] = "reference.pep.fa" config["protein_map"] = "prot-map.json" config["tax_table"] = "tax-table.txt" config_path = os.path.join(base_dir, 'test_configs') os.system("mkdir -p " + config_path) config_file = os.path.join(config_path, 'curr_config_busco_O.yaml') with open(config_file, 'w') as f: yaml.dump(config, f) eukulele(string_arguments=" ".join(["--config",config_file])) samplenames = [curr.split(".")[0] for curr in os.listdir(config["samples"])] busco_out = os.path.join(config["output"], "busco_assessment", samplenames[0], "species_combined", "summary_species_" + samplenames[0] + ".tsv") out_prefix = samplenames[0] mag_file = os.path.join(config["output"], "levels_mags", out_prefix + '.' + "species") assert (os.path.isfile(busco_out)) & (os.path.isfile(mag_file)) def test_tester(): base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') sample_dir = os.path.join(base_dir, test_reference, "samples_MAGs") output_dir = os.path.join(base_dir, "test_out") reference_dir = os.path.join(base_dir, test_reference, "sample_ref") os.system("rm -rf " + output_dir) string_arguments = " ".join(["setup", "--test", "--database", "mmetsp", "--sample_dir", sample_dir, "--mets_or_mags", "mags", "--out_dir", output_dir, "--ref_fasta", "reference.pep.fa", "--reference_dir", reference_dir]) eukulele(string_arguments=string_arguments) assert (not os.path.isdir(output_dir)) #def test_cleanup(): # base_dir = os.path.join(os.path.dirname(__file__), '..', 'aux_data') # config_path = os.path.join(os.path.dirname(__file__), '..', 'aux_data', 'test_configs') # base_configs = [os.path.join(config_path, 'curr_config_alignment.yaml'),\ # os.path.join(config_path, 'curr_config_setup.yaml')] # successful_test = True # for base_config in base_configs: # with open(base_config) as f: # config = yaml.load(f, Loader=yaml.FullLoader) # config["reference"] = os.path.join(base_dir, test_reference) # os.system("rm -rf " + os.path.join(config["output"])) # successful_test = successful_test & (not os.path.isdir(os.path.join(config["output"]))) # successful_test = True # assert successful_test ```
{ "source": "johanneswiesel/Stats-for-superhedging", "score": 2 }
#### File: Stats-for-superhedging/GARCH-Example/GARCH.py ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd import pylab import arch from scipy.optimize import minimize from Wasserstein_empirical import calculate_wasserstein import tensorflow as tf #Calculate AVAR-estimator directly def percentile(a,p): return np.sort(a, axis=0)[int(p*len(a))-1:] def avar(data, g, alpha): def avar_cpt(x): return np.mean(percentile(g(data)-x[0]*(data-1), alpha)) res = minimize(avar_cpt, x0=[0], method='BFGS').fun return(res) def simulate_garch(dates, garch_parameters, no_samples, starting_val=1): #simulates GARCH(1,1) with student-t distribution according to given dates, starting value 1 omega = garch_parameters[0] alpha = garch_parameters[1] beta = garch_parameters[2] nu = garch_parameters[3] n = dates.shape[0] epsilon = np.zeros((n, no_samples)) epsilon[0, :] = starting_val t_rand = np.sqrt((nu-2)/nu)*np.random.standard_t(df= nu, size=(n, no_samples)) for i in range(0, no_samples): sigma2 = np.zeros(n) for k in range(1, n): sigma2[k] = omega + alpha*(epsilon[k-1,i]**2) + beta*sigma2[k-1] epsilon[k, i] = t_rand[k,i] * np.sqrt(sigma2[k]) return(pd.DataFrame(data=epsilon, index=dates.index)) def estimate_garch(data, window): #estimate GARCH(1,1) model with running window, data Nx1 dimensional n = data.shape[0] garch_parameters = np.zeros((n, 4)) for i in range(0, n-window+1): print(i) model = arch.arch_model(data.values[i:i+window],mean='Zero', vol='GARCH', dist='StudentsT') model_fit = model.fit(disp='off') garch_parameters[window-1+i,0] = model_fit.params[0] garch_parameters[window-1+i,1] = model_fit.params[1] garch_parameters[window-1+i,2] = model_fit.params[2] garch_parameters[window-1+i,3] = model_fit.params[3] res = pd.DataFrame(data = garch_parameters, index = data.index) return(res) def monte_carlo_garch(data, garch_parameters, no_samples, no_mc, g, alpha): epsilon = np.zeros((no_mc, no_samples)) sigma2 = np.zeros((no_mc, no_samples)) N = data.shape[0] avar_out = pd.DataFrame(data=np.zeros((N, no_samples)), index=data.index) for i in range(0,N): print(i) epsilon[0,:] = 1 omega = garch_parameters.iloc[i,0] gamma = garch_parameters.iloc[i,1] beta = garch_parameters.iloc[i,2] nu = garch_parameters.iloc[i,3] if omega == 0 or gamma == 0 or beta == 0 or nu == 0: continue t_rand = np.random.standard_t(df= nu, size=(no_mc, no_samples)) for k in range(1, no_mc): sigma2[k, :] = omega + gamma*(epsilon[k-1, :]**2) + beta*sigma2[k-1, :] epsilon[k, :] = t_rand[k, :] * np.sqrt(sigma2[k,:]) returns = np.exp(epsilon/100) for j in range(0, no_samples): avar_out.iloc[i, j] = avar(returns[:, j],g,alpha) return(avar_out) if __name__ == '__main__': # Test with simulated real data - constant GARCH(1,1) model garch_params = [0.02, 0.1, 0.83, 5] N = 10**6 #Data points to calculate true value dates = pd.DataFrame(index=range(0,N)) garch_simulation = simulate_garch(dates, garch_params, 1) returns_garch_simulation = np.exp(garch_simulation/100) # Check model model = arch.arch_model(garch_simulation,mean='Zero', vol='GARCH', dist='StudentsT') model_fit = model.fit() #Concrete application def g(x): return(np.maximum(x-1,0)) alpha = 0.95 interval = 50 #Convention price S0=1 true_value = avar(returns_garch_simulation,g, alpha) # Rolling estimation n = 10**3 # length of simulated data dates_est = pd.DataFrame(index=range(0,n)) garch_samples_est = simulate_garch(dates_est, garch_params, 1) returns_garch_est = np.exp(garch_samples_est/100) # Plugin estimator on given data def avar_concrete(data): return (avar(data,g,alpha)) plugin_avar = returns_garch_est.rolling(interval).apply(avar_concrete) # Wasserstein estimator def g_wass(r): return tf.nn.relu(r-1) eps_const = 0.5 def wasserstein_concrete(data): return calculate_wasserstein(data, eps_const, alpha, g_wass) wasserstein_avar = returns_garch_est.rolling(interval).apply(wasserstein_concrete) # Monte Carlo GARCH(1,1) no_samples = 10**2 no_mc = 10**2 garch_params_est = estimate_garch(garch_samples_est, interval) garch_avar = monte_carlo_garch(dates_est, garch_params_est, no_samples, no_mc, g, alpha) # Adapt for plot garch_avar[garch_avar < 0 ] = 0 garch_avar[ garch_avar > 0.04] = 0.04 # Plot plt.figure(figsize=(16.000, 8.000), dpi=100) plt.plot(pd.DataFrame(data=np.repeat(true_value, plugin_avar.shape[0]), index=plugin_avar.index), label='True Value', linewidth = 3) plt.plot(plugin_avar, label='Plugin historical', linewidth=3) plt.plot(wasserstein_avar, label = 'Wasserstein historical', linewidth=3) plt.plot((garch_avar.mean(axis=1)).rolling(2).mean(), label = 'Plugin GARCH(1,1)') plt.legend() pylab.savefig('garch_fixed_par.pdf') ######################################################### # Test with simulated data - Changing GARCH(1,1) model garch_params = [0.02, 0.1, 0.8, 5] garch_params2 = [0.05, 0.14, 0.83, 20] N = 10**6 # Data points to calculate true value dates = pd.DataFrame(index=range(0,N)) garch_simulation2 = simulate_garch(dates, garch_params2, 1) returns_garch_simulation2 = np.exp(garch_simulation2/100) # Check model model2 = arch.arch_model(garch_simulation2,mean='Zero', vol='GARCH', dist='StudentsT') model_fit2 = model2.fit() # Concrete application def g(x): return(np.maximum(x-1,0)) alpha = 0.95 interval = 50 # Convention price S0=1 true_value2 = avar(returns_garch_simulation2,g, alpha) # Rolling estimation n = 10**3 # length of simulated data dates_est2 = pd.DataFrame(index=range(0,n)) garch_samples_est2 = simulate_garch(dates_est, garch_params, 1, starting_val=1) garch_samples_est_temp = simulate_garch(dates_est2, garch_params2, 1, starting_val=garch_samples_est2.iloc[n//3-1]) garch_samples_est2.iloc[n//3:2*n//3] = garch_samples_est_temp.iloc[0:n//3].values garch_samples_est_temp = simulate_garch(dates_est2, garch_params2, 1, starting_val=garch_samples_est2.iloc[2*n//3-1]) garch_samples_est2.iloc[2*n//3:] = garch_samples_est_temp.iloc[0:n//3+1].values returns_garch_est2 = np.exp(garch_samples_est2/100) # Plugin estimator on given data def avar_concrete(data): return (avar(data,g,alpha)) plugin_avar2 = returns_garch_est2.rolling(interval).apply(avar_concrete) # Wasserstein estimator def g_wass(r): return tf.nn.relu(r-1) eps_const = 0.5 def wasserstein_concrete(data): return (calculate_wasserstein(data, eps_const, alpha, g_wass)) wasserstein_avar2 = returns_garch_est2.rolling(interval).apply(wasserstein_concrete) # Monte Carlo GARCH(1,1) no_samples = 10**2 no_mc = 10**2 garch_params_est2 = estimate_garch(garch_samples_est2, interval) garch_avar2 = monte_carlo_garch(dates_est2, garch_params_est2, no_samples, no_mc, g, alpha) garch_avar2[garch_avar2 < 0 ] = 0 garch_avar2[ garch_avar2 > 0.1] = 0.1 # Plot plt.figure(figsize=(16.000, 8.000), dpi=100) true_value_mat = np.append(np.append(np.repeat(true_value,n//3), np.repeat(true_value2, n//3)),np.repeat(true_value,n//3+1)) plt.plot(pd.DataFrame(data = true_value_mat, index = plugin_avar.index), label = 'True value', linewidth =3) plt.plot(plugin_avar2, label = 'Plugin historical', linewidth = 3) plt.plot((garch_avar2.mean(axis=1)).rolling(2).mean(), label = 'Plugin GARCH(1,1)') plt.plot(wasserstein_avar2, label = 'Wasserstein historical', linewidth=3) plt.legend() pylab.savefig('garch_changing_par.pdf') ```
{ "source": "johanneswiesel/Wasserstein-correlation", "score": 3 }
#### File: johanneswiesel/Wasserstein-correlation/fig2.py ```python import numpy as np import matplotlib.pyplot as plt from collections import Counter from scipy.stats import pearsonr,spearmanr from scipy.spatial.distance import pdist, squareform from xicor.xicor import Xi import ot def distcorr(X, Y): X = np.atleast_1d(X) Y = np.atleast_1d(Y) if np.prod(X.shape) == len(X): X = X[:, None] if np.prod(Y.shape) == len(Y): Y = Y[:, None] X = np.atleast_2d(X) Y = np.atleast_2d(Y) n = X.shape[0] if Y.shape[0] != X.shape[0]: raise ValueError('Number of samples must match') a = squareform(pdist(X)) b = squareform(pdist(Y)) A = a - a.mean(axis=0)[None, :] - a.mean(axis=1)[:, None] + a.mean() B = b - b.mean(axis=0)[None, :] - b.mean(axis=1)[:, None] + b.mean() dcov2_xy = (A * B).sum()/float(n * n) dcov2_xx = (A * A).sum()/float(n * n) dcov2_yy = (B * B).sum()/float(n * n) dcor = np.sqrt(dcov2_xy)/np.sqrt(np.sqrt(dcov2_xx) * np.sqrt(dcov2_yy)) return dcor def adapW1_eot(x,y,N): x_new = N**(-1/3)*np.floor(N**(1/3)*x) y_new = N**(-1/3)*np.floor(N**(1/3)*y) x_val = np.array(list(Counter(x_new).keys())) x_freq = np.array(list(Counter(x_new).values())) W = np.zeros(len(x_val)) for i in range(0,len(x_val)): aux = y_new[x_new==x_val[i]] aux = aux.reshape((len(aux), 1)) c = np.abs(aux-y_new) w1 = np.ones(len(aux))/len(aux) w2 = np.ones(len(y))/len(y) W[i] = ot.sinkhorn2(w1,w2,c,0.01) c = np.abs(y_new.reshape((N,1))-y_new) denom = c.sum()/N**2 return np.dot(W, x_freq)/(N*denom) N = 1000 #no. of samples M = 30 #no. of draws lam = np.linspace(0,1, num = 100) Wcor = np.zeros(len(lam)) pcor = np.zeros(len(lam)) scor = np.zeros(len(lam)) dcor = np.zeros(len(lam)) ccor = np.zeros(len(lam)) Wcor_aux = np.zeros(M) pcor_aux = np.zeros(M) scor_aux = np.zeros(M) dcor_aux = np.zeros(M) ccor_aux = np.zeros(M) #Define function f(x) def func(x): return np.abs(x-0.5) #Compute estimators for i in range(0,len(lam)): for j in range(0, M): print(i,j) x = np.random.random_sample(N) y = lam[i]*func(x)+(1-lam[i])*np.random.random_sample(N) Wcor_aux[j] = adapW1_eot(x,y,N) pcor_aux[j] , _ = pearsonr(x, y) dcor_aux[j] = distcorr(x, y) ccor_aux[j] = Xi(x,y).correlation scor_aux[j], _ = spearmanr(x,y) Wcor[i] = np.mean(Wcor_aux) pcor[i] = np.mean(pcor_aux) dcor[i] = np.mean(dcor_aux) ccor[i] = np.mean(ccor_aux) scor[i] = np.mean(scor_aux) #Plot f = plt.figure(figsize=(11.69,8.27)) plt.plot(lam, Wcor, label="Wasserstein correlation") plt.plot(lam, pcor, label="Pearson's correlation") plt.plot(lam, scor, label="Spearman's correlation") plt.plot(lam, dcor, label="Distance correlation") plt.plot(lam, ccor, label="Chatterjee's correlation") plt.legend() plt.show() ```
{ "source": "JohannesWiesner/ci-calculator", "score": 3 }
#### File: JohannesWiesner/ci-calculator/create_icon.py ```python import matplotlib.pyplot as plt from matplotlib.figure import Figure import matplotlib import numpy as np from scipy.stats import norm from PIL import Image import os def callPlotWindow(): # convert matplotlib's intern 'C0' to rgba tuple default_blue_hex = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] default_blue_rgba = matplotlib.colors.to_rgba(default_blue_hex) def lighter(color, percent): # color = np.array(color) white = np.array([1,1,1,1]) vector = white-color return color + vector * percent plotdata = dict() plotdata['sd'] = 10 plotdata['mean'] = 50 my_dpi = 144 fig = plt.figure(figsize=(256/my_dpi, 256/my_dpi), dpi=my_dpi,frameon=False) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) # create x values for normal distribution x_normdist = np.concatenate(( np.linspace(plotdata["mean"] - 3 * plotdata["sd"], plotdata["mean"] - 2 * plotdata["sd"],endpoint=False), np.linspace(plotdata["mean"] - 2 * plotdata["sd"], plotdata["mean"] - 1 * plotdata["sd"],endpoint=False), np.linspace(plotdata["mean"] - 1 * plotdata["sd"], plotdata["mean"] + 1 * plotdata["sd"],endpoint=False), np.linspace(plotdata["mean"] + 1 * plotdata["sd"], plotdata["mean"] + 2 * plotdata["sd"],endpoint=False), np.linspace(plotdata["mean"] + 2 * plotdata["sd"], plotdata["mean"] + 3 * plotdata["sd"]) )) # plot normal distribution curve y_normdist = norm.pdf(x_normdist,plotdata["mean"],plotdata["sd"]) ax.plot(x_normdist,y_normdist) # create logical lists which are used for 'where'-argument in fill-between method average = (x_normdist >= (plotdata["mean"] - 1 * plotdata["sd"])) & (x_normdist <= (plotdata["mean"] + 1 * plotdata["sd"])) above_and_below_average = (x_normdist >= (plotdata["mean"] - 2 * plotdata["sd"])) & (x_normdist <= (plotdata["mean"] - 1 * plotdata["sd"])) | (x_normdist >= (plotdata["mean"] + 1 * plotdata["sd"])) & (x_normdist <= (plotdata["mean"] + 2 * plotdata["sd"])) far_above_and_below_average = (x_normdist >= (plotdata["mean"] - 3 * plotdata["sd"])) & (x_normdist <= (plotdata["mean"] - 2 * plotdata["sd"])) | (x_normdist >= (plotdata["mean"] + 2 * plotdata["sd"])) & (x_normdist <= (plotdata["mean"] + 3 * plotdata["sd"])) regions = [average, above_and_below_average, far_above_and_below_average ] colors = [ lighter(default_blue_rgba,0.25), lighter(default_blue_rgba,0.5), lighter(default_blue_rgba,0.75) ] # shade regions under curve, use different alpha channel values and labels for idx,region in enumerate(regions): plt.fill_between(x_normdist, y_normdist,color=colors[idx],where=regions[idx]) # save image as png plt.savefig('app_icon.png',dpi=my_dpi,transparent=True) # convert to .ico img = Image.open('app_icon.png') img.save('app_icon.ico',sizes=[(255,255)],dpi=my_dpi) # delete unneeded png os.remove('app_icon.png') if __name__ == "__main__": callPlotWindow() ```
{ "source": "JohannesWiesner/control_package", "score": 3 }
#### File: lib/network_control/energies.py ```python import numpy as np import scipy as sp def sim_state_eq( A, B, xi, U): """This function caclulates the trajectory for the network given our model if there are no constraints, and the target state is unknown, using the control equation precess x(t+1) = Ax(t) + BU(t). x(t) is the state vector, A is the adjacency matrix, U(t) is the time varying input as specified by the user, and B selects the control set (stimulating electrodes) Args: A : NxN state matrix (numpy array), where N is the number of nodes in your network (for example, a structural connectivity matrix constructed from DTI). A should be stable to prevent uncontrolled trajectories. B : NxN input matrix (numpy array), where N is the number of nodes. B selects where you want your input energy to be applied to. For example, if B is the Identity matrix, then input energy will be applied to all nodes in the network. If B is a matrix of zeros, but B(1,1) = 1. then energy will only be applied at the first node. xi : Nx1 initial state (numpy array) of your system where N is the number of nodes. xi MUST have N rows. U : NxT matrix of Energy (numpy array), where N is the number of nodes and T is the number of time points. For example, if you want to simulate the trajectory resulting from stimulation, U could have log(StimFreq)*StimAmp*StimDur as every element. You can also enter U's that vary with time Returns: x : x is the NxT trajectory (numpy array) that results from simulating x(t+1) = Ax(t) + Bu(t) the equation with the parameters above. @author JStiso June 2017 """ # Simulate trajectory T = np.size(U,1) N = np.size(A,0) # initialize x x = np.zeros((N, T)) xt = xi for t in range(T): x[:,t] = np.reshape(xt, N) # annoying python 1d array thing xt_1 = np.matmul(A,xt) + np.matmul(B,np.reshape(U[:,t],(N,1) ))# state equation xt = xt_1 return x def optimal_energy(A, T, B, x0, xf, rho, S): """This is a python adaptation of matlab code originally written by <NAME> and <NAME> compute optimal inputs/trajectories for a system to transition between two states <NAME> September 2017 Args: A: (NxN numpy array) Structural connectivity matrix B: (NxN numpy array) Input matrix: selects which nodes to put input into. Define so there is a 1 on the diagonal of elements you want to add input to, and 0 otherwise S: (NxN numpy array) Selects nodes whose distance you want to constrain, Define so that there is a 1 on the diagonal of elements you want to constrain, and a zero otherwise T: (float) Time horizon: how long you want to control for. Too large will give large error, too short will not give enough time for control rho: (float) weights energy and distance constraints. Small rho leads to larger energy Returns: X_opt: (TxN numpy array) The optimal trajectory through state space U_opt: (TxN numpy array) The optimal energy n_err: (float) the error associated with this calculation. Errors will be larger when B is not identity, and when A is large. Large T and rho will also tend to increase the error -------------- Change Log ------------- JStiso April 2018 Changed S to be an input, rather than something defined internally <NAME> January 2021 Changed the forward propagation of states to matrix exponential to avoid reliance on MATLAB toolboxes. Also changed definition of expanded input U to save time by avoiding having to resize the matrix. Also changed the initialization of U_opt for the same reason. JStiso 2021 Translated to Python """ n = np.shape(A)[1] # state vectors to float if they're bools if type(x0[0]) == np.bool_: x0 = x0.astype(float) if type(xf[0]) == np.bool_: xf = xf.astype(float) Sbar = np.eye(n) - S np.shape(np.dot(-B,B.T)/(2*rho)) Atilde = np.concatenate((np.concatenate((A, np.dot(-B,B.T)/(2*rho)), axis=1), np.concatenate((-2*S, -A.T), axis=1)), axis=0) M = sp.linalg.expm(Atilde*T) M11 = M[0:n,0:n] M12 = M[0:n,n:] M21 = M[n:,0:n] M22 = M[n:,n:] N = np.linalg.solve(Atilde,(M-np.eye(np.shape(Atilde)[0]))) c = np.dot(np.dot(N,np.concatenate((np.zeros((n,n)),S),axis = 0)),2*xf) c1 = c[0:n] c2 = c[n:] p0 = np.dot(np.linalg.pinv(np.concatenate((np.dot(S,M12),np.dot(Sbar,M22)), axis = 0)), (-np.dot(np.concatenate((np.dot(S,M11),np.dot(Sbar,M21)),axis=0),x0) - np.concatenate((np.dot(S,c1),np.dot(Sbar,c2)), axis=0) + np.concatenate((np.dot(S,xf),np.zeros((n,1))), axis=0))) n_err = np.linalg.norm(np.dot(np.concatenate((np.dot(S,M12),np.dot(Sbar,M22)), axis = 0),p0) - (-np.dot(np.concatenate((np.dot(S,M11),np.dot(Sbar,M21)),axis=0),x0) - np.concatenate((np.dot(S,c1),np.dot(Sbar,c2)), axis=0) + np.concatenate((np.dot(S,xf),np.zeros((n,1))), axis=0))) # norm(error) STEP = 0.001 t = np.arange(0,(T+STEP),STEP) U = np.dot(np.ones((np.size(t),1)),2*xf.T) # Discretize continuous-time input for convolution Atilde_d = sp.linalg.expm(Atilde*STEP) Btilde_d = np.linalg.solve(Atilde, np.dot((Atilde_d-np.eye(2*n)),np.concatenate((np.zeros((n,n)),S), axis=0))) # Propagate forward discretized model xp = np.zeros((2*n,np.size(t))) xp[:,0:1] = np.concatenate((x0,p0), axis=0) for i in np.arange(1,np.size(t)): xp[:,i] = np.dot(Atilde_d,xp[:,i-1]) + np.dot(Btilde_d,U[i-1,:].T) xp = xp.T U_opt = np.zeros((np.size(t),np.shape(B)[1])) for i in range(np.size(t)): U_opt[i,:] = -(1/(2*rho))*np.dot(B.T,xp[i,n:].T) X_opt = xp[:,0:n] return X_opt, U_opt, n_err def minimum_energy(A, T, B, x0, xf): """ This function computes the minimum energy required to transition between two states This is a python adaptation of code originally written by <NAME> Computes minimum control energy for state transition. Args: A: numpy array (N x N) System adjacency matrix B: numpy array (N x N) Control input matrix x0: numpy array (N x t) Initial state xf: numpy array (N x t) Final state T: float (1 x 1) Control horizon Returns: x: numpy array (N x t) State Trajectory u: numpy array (N x t) Control Input """ # System Size n = np.shape(A)[0] # state vectors to float if they're bools if type(x0[0]) == np.bool_: x0 = x0.astype(float) if type(xf[0]) == np.bool_: xf = xf.astype(float) # Compute Matrix Exponential AT = np.concatenate((np.concatenate((A, -.5*(B.dot(B.T))), axis=1), np.concatenate((np.zeros(np.shape(A)), -A.T), axis=1)), axis=0) E = sp.linalg.expm(AT*T) # Compute Costate Initial Condition E12 = E[0:n,n:] E11 = E[0:n,0:n] p0 = np.linalg.pinv(E12).dot(xf - E11.dot(x0)) # Compute Costate Initial Condition Error Induced by Inverse n_err = np.linalg.norm(E12.dot(p0) - (xf - E11.dot(x0))) # Prepare Simulation nStep=1000 t = np.linspace(0,T,nStep+1) v0 = np.concatenate((x0, p0), axis=0) # Initial Condition v = np.zeros((2*n,len(t))) # Trajectory Et = sp.linalg.expm(AT*T/(len(t)-1)) v[:,0] = v0.T # Simulate State and Costate Trajectories for i in np.arange(1,len(t)): v[:,i] = Et.dot(v[:,i-1]) x = v[0:n,:] u = -0.5*B.T.dot(v[np.arange(0,n)+n,:]) # transpose to be similar to opt_eng_cont u = u.T x = x.T return x, u, n_err def minimum_energy_fast(A, T, B, x0_mat, xf_mat): """ This function computes the minimum energy required to transition between all pairs of brain states encoded in (x0_mat,xf_mat) Args: A: numpy array (N x N) System adjacency matrix B: numpy array (N x N) Control input matrix x0_mat: numpy array (N x n_transitions) Initial states (see expand_states) xf_mat: numpy array (N x n_transitions) Final states (see expand_states) T: float (1 x 1) Control horizon Returns: E: numpy array (N x n_transitions) Regional energy for all state transition pairs. Notes, np.sum(E, axis=0) collapse over regions to yield energy associated with all transitions. np.sum(E, axis=0).reshape(n_states, n_states) collapse over regions and reshape into a state by state transition matrix. """ # System Size n_parcels = A.shape[0] if type(x0_mat[0][0]) == np.bool_: x0_mat = x0_mat.astype(float) if type(xf_mat[0][0]) == np.bool_: xf_mat = xf_mat.astype(float) # Number of integration steps nt = 1000 dt = T/nt # Numerical integration with Simpson's 1/3 rule # Integration step dE = sp.linalg.expm(A * dt) # Accumulation of expm(A * dt) dEA = np.eye(n_parcels) # Gramian G = np.zeros((n_parcels, n_parcels)) for i in np.arange(1, nt/2): # Add odd terms dEA = np.matmul(dEA, dE) p1 = np.matmul(dEA, B) # Add even terms dEA = np.matmul(dEA, dE) p2 = np.matmul(dEA, B) G = G + 4 * (np.matmul(p1, p1.transpose())) + 2 * (np.matmul(p2, p2.transpose())) # Add final odd term dEA = np.matmul(dEA, dE) p1 = np.matmul(dEA, B) G = G + 4 * (np.matmul(p1, p1.transpose())) # Divide by integration step E = sp.linalg.expm(A * T) G = (G + np.matmul(B, B.transpose()) + np.matmul(np.matmul(E, B), np.matmul(E, B).transpose())) * dt / 3 delx = xf_mat - np.matmul(E, x0_mat) E = np.multiply(np.matmul(np.linalg.pinv(G), delx), delx) return E ``` #### File: lib/network_control/metrics.py ```python import numpy as np from scipy.linalg import schur def node_strength(A): """ Returns strength of the nodes of a network. Args: A: np.array (n_parcels, n_parcels) Adjacency matrix from structural connectome Returns: s: np.array (n_parcels,) vector of strength values across nodes @author lindenmp """ s = np.sum(A, axis=0) return s def ave_control(A_norm): """ Returns values of AVERAGE CONTROLLABILITY for each node in a network, given the adjacency matrix for that network. Average controllability measures the ease by which input at that node can steer the system into many easily-reachable states. Args: A_norm: np.array (n_parcels, n_parcels) Normalized adjacency matrix from structural connectome (see matrix_normalization in utils for example) Returns: ac: np.array (n_parcels,) vector of average controllability values for each node @author lindenmp Reference: <NAME>, Cieslak, Telesford, Yu, Kahn, Medaglia, <NAME>, Grafton & Bassett, Nature Communications 6:8414, 2015. """ T, U = schur(A_norm, 'real') # Schur stability midMat = np.multiply(U, U).transpose() v = np.matrix(np.diag(T)).transpose() N = A_norm.shape[0] P = np.diag(1 - np.matmul(v, v.transpose())) P = np.tile(P.reshape([N, 1]), (1, N)) ac = sum(np.divide(midMat, P)) return ac def modal_control(A_norm): """ Returns values of MODAL CONTROLLABILITY for each node in a network, given the adjacency matrix for that network. Modal controllability indicates the ability of that node to steer the system into difficult-to-reach states, given input at that node. Args: A_norm: np.array (n_parcels, n_parcels) Normalized adjacency matrix from structural connectome (see matrix_normalization in utils for example) Returns: phi: np.array (n_parcels,) vector of modal controllability values for each node @author lindenmp Reference: <NAME>, Cieslak, Telesford, Yu, Kahn, Medaglia, Vettel, Miller, Grafton & Bassett, Nature Communications 6:8414, 2015. """ T, U = schur(A_norm, 'real') # Schur stability eigVals = np.diag(T) N = A_norm.shape[0] phi = np.zeros(N, dtype=float) for i in range(N): Al = U[i,] * U[i,] Ar = (1.0 - np.power(eigVals, 2)).transpose() phi[i] = np.matmul(Al, Ar) return phi ``` #### File: src/network_control/utils.py ```python import numpy as np import scipy as sp import scipy.linalg as la from scipy.linalg import svd from scipy.linalg import eig from numpy import matmul as mm from scipy.linalg import expm as expm from numpy import transpose as tp def rank_to_normal(data, c, n): # Standard quantile function data = (data - c) / (n - 2 * c + 1) return sp.stats.norm.ppf(data) def rank_int(data, c=3.0 / 8): if data.ndim > 1: do_reshape = True dims = data.shape data = data.flatten() else: do_reshape = False # Set seed np.random.seed(0) # Get rank, ties are averaged data = sp.stats.rankdata(data, method="average") # Convert rank to normal distribution transformed = rank_to_normal(data=data, c=c, n=len(data)) if do_reshape: transformed = transformed.reshape(dims) return transformed def matrix_normalization(A, version=None, c=1): ''' Args: A: np.array (n_parcels, n_parcels) adjacency matrix from structural connectome version: str options: 'continuous' or 'discrete'. default=None string variable that determines whether A is normalized for a continuous-time system or a discrete-time system. If normalizing for a continuous-time system, the identity matrix is subtracted. c: int normalization constant, default=1 Returns: A_norm: np.array (n_parcels, n_parcels) normalized adjacency matrix ''' if version == 'continuous': print("Normalizing A for a continuous-time system") elif version == 'discrete': print("Normalizing A for a discrete-time system") elif version == None: raise Exception("Time system not specified. " "Please nominate whether you are normalizing A for a continuous-time or a discrete-time system " "(see function help).") # singluar value decomposition u, s, vt = svd(A) # Matrix normalization for discrete-time systems A_norm = A / (c + s[0]) if version == 'continuous': # for continuous-time systems A_norm = A_norm - np.eye(A.shape[0]) return A_norm def get_p_val_string(p_val): if p_val == 0.0: p_str = "-log10($\mathit{:}$)>25".format('{p}') elif p_val < 0.001: p_str = '$\mathit{:}$ < 0.001'.format('{p}') elif p_val >= 0.001 and p_val < 0.05: p_str = '$\mathit{:}$ < 0.05'.format('{p}') else: p_str = "$\mathit{:}$ = {:.3f}".format('{p}', p_val) return p_str def expand_states(states): """ This function takes a list of integer values that designate a distinct set of binary brain states and returns a pair of matrices (x0_mat, xf_mat) that encode all possible pairwise transitions between those states Args: states: numpy array (N x 1) a vector of integers that designate which regions belong to which states. Note, regions cannot belong to more than one brain state. For example, assuming N = 12, if: states = np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]) then the first 4 regions belong to state 0, the next 4 to state 1, and the final 4 to state 2 Returns: x0_mat: boolean array (N, n_transitions) boolean array of initial states. In each column, True designates regions belonging to a given initial state xf_mat: boolean array (N, n_transitions) boolean array of target states. In each column, True designates regions belonging to a given target state """ unique, counts = np.unique(states, return_counts=True) n_parcels = len(states) n_states = len(unique) x0_mat = np.zeros((n_parcels, 1)).astype(bool) xf_mat = np.zeros((n_parcels, 1)).astype(bool) for i in np.arange(n_states): for j in np.arange(n_states): x0 = states == i xf = states == j x0_mat = np.append(x0_mat, x0.reshape(-1, 1), axis=1) xf_mat = np.append(xf_mat, xf.reshape(-1, 1), axis=1) x0_mat = x0_mat[:, 1:] xf_mat = xf_mat[:, 1:] return x0_mat, xf_mat ```
{ "source": "JohannesWiesner/demetrius", "score": 3 }
#### File: JohannesWiesner/demetrius/demetrius.py ```python import json import os import sys import shutil import pandas as pd import argparse from spinner import Spinner # TO-DO: Allow user to decide to save information for all found files. This list # should either be placed in the same directory as the destination directories or # separately in each of destination directory (showing only the source files for this # directory) # TO-DO: Let the user decide over the fashion of added indices (e.g. '_1' or ' (1)') # in _get_dst_dirs_df def _get_suffixes_tuple(which_suffixes='all'): '''Get a tuple of suffixes based on the attached .json file file or based on a user input. Parameters ---------- which_suffixes : str, list, tuple, optional If str and 'all', all suffixes from the .json file will be used for the search. If str and not 'all', a single file suffix is provided (e.g. '.png'.). If list, the strings represent file subsets of the .json file (e.g. ['video','bitmap']). If tuple, multiple file suffixes are provided (e.g. ('.png','.jpeg')). Default: 'all' Returns ------- suffixes : str,tuple of str Returns a single suffix or a tuple of file suffixes that should be used for the file search. ''' if isinstance(which_suffixes, str) and which_suffixes == 'all': suffixes_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'suffixes.json') with open(suffixes_path) as json_file: suffixes_dict = json.load(json_file) suffixes = tuple([suffix for suffixes in suffixes_dict.values() for suffix in suffixes]) elif isinstance(which_suffixes, list): suffixes_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'suffixes.json') with open(suffixes_path) as json_file: suffixes_dict = json.load(json_file) suffixes_dict = {key: suffixes_dict[key] for key in which_suffixes} suffixes = tuple([suffix for suffixes in suffixes_dict.values() for suffix in suffixes]) elif isinstance(which_suffixes, (str, tuple)): suffixes = which_suffixes return suffixes # FIXME: Is there a better test to check if files are broken? Currently # only os.path.exists is implemented but I still get files image files # that can't be open using IrfanView # FIXME: Currently, there's lot's of repetition because of the verbose # argument. Maybe it would be better to work with a decorator in the run() function # like from the halo package here? def _find_files(src_dir,suffixes,exclude_dirs=None,verbose=False): '''Search for files in a source directory based on one or multiple file suffixes. This function will only append a found file to the list if it exists (using os.path.exists) wich serves as a minimal test for checking if a file is broken. Parameters ---------- src_dir : str The source directory. suffixes : str, tuple of strs A single file suffix or tuple of file suffixes that should be searched for (e.g. '.jpeg' or ('.jpeg','.png')). exclude_dirs : str, list of str, None Name of single directory of list of directory names that should be ignored when searching for files. All of the specified directories and their children directories will be ignored (Default: None) verbose : bool If true, print spinning cursor Returns ------- filepath_list : list A list of all found filepaths ''' filepath_list = [] if verbose == True: with Spinner('Searching for files '): for (paths,dirs,files) in os.walk(src_dir): if exclude_dirs: dirs[:] = [d for d in dirs if d not in exclude_dirs] for file in files: filepath = os.path.join(paths,file) if filepath.lower().endswith(suffixes) and os.path.exists(filepath): filepath_list.append(filepath) if verbose == False: for (paths,dirs,files) in os.walk(src_dir): if exclude_dirs: dirs[:] = [d for d in dirs if d not in exclude_dirs] for file in files: filepath = os.path.join(paths,file) if filepath.lower().endswith(suffixes) and os.path.exists(filepath): filepath_list.append(filepath) if not filepath_list: sys.stdout.write('Did not find any files based on the given suffixes') sys.exit() return filepath_list def _get_dst_dirs_df(filepath_list,dst_dir): '''Create a pandas.DataFrame holding the source filepaths as one column and corresponding destination directories as another column. In case there are multiple source directories with the same name, the function will add indices to the destination directories to maintain unique folder names. Parameters ---------- filepath_list : list The list of all found files as returned from _find_files. dst_dir : str Path to the master destination directory. Returns ------- dst_dirs_df : pd.DataFrame A data frame that maps each filepath to its corresponding destination directory. ''' # create data frame with filepath as column dst_dirs_df = pd.DataFrame({'filepath':filepath_list}) # get path to parent directory for each source file dst_dirs_df['src_dir_path'] = dst_dirs_df['filepath'].map(os.path.dirname) # get only the name of the parent for each source file dst_dirs_df['src_dir_name'] = dst_dirs_df['src_dir_path'].map(os.path.basename) # create destination path directory def create_dst_dir_path(row): return os.path.join(dst_dir,row['src_dir_name']) dst_dirs_df['dst_dir_path'] = dst_dirs_df.apply(create_dst_dir_path,axis=1) # find literal duplicates and modify the respective destination directories for _,dir_name in dst_dirs_df.groupby('src_dir_name'): if not dir_name['src_dir_path'].nunique() == 1: for idx,(_,src_dir_path) in enumerate(dir_name.groupby('src_dir_path'),start=1): dst_dirs_df.loc[src_dir_path.index,'dst_dir_path'] = dst_dirs_df.loc[src_dir_path.index,'dst_dir_path'] + '_' + str(idx) # find pseudo duplicates and modify the respective destination directories dst_dirs_df['dst_dir_path_lower_case'] = dst_dirs_df['dst_dir_path'].map(str.lower) for _,dst_dir_path in dst_dirs_df.groupby('dst_dir_path_lower_case'): if dst_dir_path['src_dir_path'].nunique() != 1: for idx,(_,dir_name) in enumerate(dst_dir_path.groupby('src_dir_name'),start=1): dst_dirs_df.loc[dir_name.index,'dst_dir_path'] = dst_dirs_df.loc[dir_name.index,'dst_dir_path'] + ' (' + str(idx) + ')' return dst_dirs_df def _copy_files(dst_dirs_df,verbose=False): '''Copy files based on a list of source filepaths and a corresponding list of destination directories. Parameters ---------- dst_dirs_df : pd.DataFrame A dataframe that holds a column with the source filepaths and one column specifying the destination directories. verbose : boolean, optional If True, copy process is estimated based on total bytes copied so far and then printed to console (Default: False). Returns ------- None. ''' for dst_dir in set(dst_dirs_df['dst_dir_path']): os.makedirs(dst_dir) if verbose == True: dst_dirs_df['filesize'] = dst_dirs_df['filepath'].map(os.path.getsize) bytes_total = dst_dirs_df['filesize'].sum() bytes_copied = 0 for idx,(file,dst_dir) in enumerate(zip(dst_dirs_df['filepath'],dst_dirs_df['dst_dir_path'])): shutil.copy2(file,dst_dir) bytes_copied += dst_dirs_df['filesize'][idx] sys.stdout.write(f"Copied ~ {round(bytes_copied / bytes_total * 100,2)}% of files\r") elif verbose == False: for file,dst_dir in zip(dst_dirs_df['filepath'],dst_dirs_df['dst_dir_path']): shutil.copy2(file,dst_dir) def run(src_dir,dst_dir,which_suffixes='all',exclude_dirs=None,verbose=False): '''Find and copy files with their respective parent directories from a source directory to a destination directory Parameters ---------- src_dir : str Path to the source directory. dst_dir : str Path to the destination directory. which_suffixes : str, list, tuple, optional If str and 'all', all suffixes from the .json file will be used for the search. If str and not 'all', a single file suffix is provided (e.g. '.png'.). If list, the strings represent file subsets of the .json file (e.g. ['video','bitmap']). If tuple, multiple file suffixes are provided (e.g. ('.png','.jpeg')). (Default: 'all'). exclude_dirs : str, list of str, None Name of single directory of list of directory names that should be ignored when searching for files. All of the specified directories and their children directories will be ignored (Default: None). verbose: bool If True, prints user information to console (Default: False). Returns ------- None. ''' # get OS conform separator style src_dir = os.path.normpath(src_dir) dst_dir = os.path.normpath(dst_dir) # check if the input directories exist if not os.path.isdir(src_dir): raise NotADirectoryError('The specified source directory does not exist') if not os.path.isdir(dst_dir): raise NotADirectoryError('The specified destination directory does not exist') # get suffixes suffixes = _get_suffixes_tuple(which_suffixes) # find files if exclude_dirs and isinstance(exclude_dirs,str): exclude_dirs = list(exclude_dirs) filepath_list = _find_files(src_dir,suffixes,exclude_dirs,verbose) # get data frame with destination directories dst_dirs_df = _get_dst_dirs_df(filepath_list,dst_dir) # copy files _copy_files(dst_dirs_df,verbose) if __name__ == '__main__': parser = argparse.ArgumentParser(description = 'Find and copy files from \ a source directory to a \ destination directory \ while preserving the original \ parent directories.') # add required arguments source and destination directory parser.add_argument('-src','--source_directory',type=str,required=True,help='The source directory which should be searched for files') parser.add_argument('-dst','--destination_directory',type=str,required=True,help='The destination directory where the files should be copied to within their parent directories') # add a mutually exlusive group (user should either provide one or multiple file suffixes # themselves or they should choose from already provided categories (e.g. bitmap,video)) # if they neither provide --suffixes or --categories the default 'all' will be used suffix_arg_group = parser.add_mutually_exclusive_group() suffix_arg_group.add_argument('-sfx','--suffixes',type=str,nargs='+',help='File suffixes which should be used for the search. Mutually exlusive with -cat argument') suffix_arg_group.add_argument('-cat','--categories',type=str,nargs='+',choices=['bitmap','video'],help='Broader file categories (e.g. video or bitmap files) that define the final set of file suffixes. Mutually exclusive with -sfx argument') # add verbosity argument parser.add_argument('-v','--verbose',action='store_true',help='Show progress information on finding and copying files when demetrius is run') # add exclude dirs argument parser.add_argument('-e','--exclude',type=str,nargs='+',help='One or multiple names of directories that should be ignored when searching for files. All of the specified directories and their children directories will be ignored') # parse arguments args = parser.parse_args() if args.suffixes == None and args.categories == None: which_suffixes = 'all' elif args.categories: which_suffixes = args.categories elif args.suffixes: which_suffixes = tuple(args.suffixes) # run demetrius run(src_dir=args.source_directory, dst_dir=args.destination_directory, which_suffixes=which_suffixes, exclude_dirs=args.exclude, verbose=args.verbose) ```
{ "source": "JohannesWiesner/nct_tutorial", "score": 3 }
#### File: JohannesWiesner/nct_tutorial/app.py ```python import json import numpy as np import pandas as pd import networkx as nx import dash import dash_cytoscape as cyto import dash_html_components as html from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_table import itertools import operator import plotly.express as px from network_control.utils import matrix_normalization from network_control.energies import minimum_input,optimal_input from nct_utils import state_trajectory ############################################################################### ## Set Default Data ########################################################### ############################################################################### # set seed np.random.seed(28) # create a default adjacency matrix A = np.array([[0, 1, 2, 1, 0, 0, 0, 0, 0], [1, 0, 0, 3, 0, 0, 0, 0, 0], [2, 0, 0, 4, 0, 0, 0, 0, 0], [1, 3, 4, 0, 5, 0, 0, 0, 0], [0, 0, 0, 5, 0, 6, 0, 0, 0], [0, 0, 0, 0, 6, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1, 1], [0, 0, 0, 0, 0, 1, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 0]]) # create default (random) x0 and xf (between 0 and 1) states_df = pd.DataFrame({'x0':np.round(np.random.rand(len(A)),2),'xf':np.round(np.random.rand(len(A)),2)}) states_df.reset_index(inplace=True) ############################################################################### ## Dash App ################################################################### ############################################################################### ## Topology-Modification ###################################################### # FIXME: transform networkx coordinates into dash/plotly space # - Positions could however also be irrelevant here, because layout component # from dash can also decide automatically over node positions def from_A_to_elements(A): '''Create a lists of elements from a numpy adjaceny matrix that can be inter- preted by dash_cytoscape.Cytoscape. The following steps are implemented from https://community.plotly.com/t/converting-networkx-graph-object-into-cytoscape-format/23224/2 ''' # create graph object G = nx.Graph(A) # get node positions pos = nx.spring_layout(G) # convert networkx to cytoscape layout cy = nx.readwrite.json_graph.cytoscape_data(G) # Add the dictionary key 'label' to the node dict (this is a required attribute for dash) # Delete the key 'value' from node dict (not needed) # Delete the key 'name' from node dict (not needed) # Add the dictionary key 'controller' to the node dict and set to True for node_dict in cy['elements']['nodes']: for _,d in node_dict.items(): d['label'] = d.pop('value') del d['name'] d['controller'] = True d['constrain'] = True # NOTE: in cytoscape, all ids of the nodes must be strings, that's why # we convert the edge ids also to strings (but check if this is really # necessary) for edge_dict in cy['elements']['edges']: for _,d in edge_dict.items(): d['source'] = str(d['source']) d['target'] = str(d['target']) # Add the positions you got from as a value for data in the nodes portion of cy # NOTE: This might be not necessary, as positions can be automatically # determined in the layout attribute from cyto.Cytoscape (see FIXME above) for n,p in zip(cy['elements']['nodes'],pos.values()): n['pos'] = {'x':p[0],'y':p[1]} # Take the results and write them to a list elements = cy['elements']['nodes'] + cy['elements']['edges'] return elements # NOTE: What's that utils module? https://dash.plotly.com/cytoscape/reference def get_edge_dicts(elements): '''Extract all edge dictionaries from elements. Edge dicts are identfied by their 'weight' key''' edge_dicts = [] for d in elements: if 'weight' in d['data']: edge_dicts.append(d) return edge_dicts # NOTE: What's that utils module? https://dash.plotly.com/cytoscape/reference def get_node_dicts(elements): '''Extract all node dictionaries from elements. Node dicts are identified by not having a 'weight' key''' node_dicts = [] for d in elements: if not 'weight' in d['data']: node_dicts.append(d) return node_dicts def add_edges(selectedNodeData,edge_weight,elements): '''For each combination of selected nodes, check if this combination is connected by an edge. If not, create an edge dict for that combination and modify the elements list''' edge_dicts = get_edge_dicts(elements) edge_ids = [(d['data']['source'],d['data']['target']) for d in edge_dicts] # get a list of ids of all nodes that user has currently selected and that # should be connected by an edge. Sort the list alphanumerically (that ensures # that we get only get combinations of source and target ids where source id # is always the lower integer) node_ids = [d['id'] for d in selectedNodeData] node_ids.sort() # create all pair-wise combinations of the selected nodes source_and_target_ids = list(itertools.combinations(node_ids,2)) # for each source and target tuple, check if this edge already exists. If not, # create a new edge dict and add it to elements for (source,target) in source_and_target_ids: if not (source,target) in edge_ids: new_edge = {'data':{'weight':edge_weight,'source':source,'target':target}} elements.append(new_edge) return elements def drop_edges(selectedEdgeData,elements): '''Drop an input list of selected edges from cytoscape elements''' # get source and target ids for all currently selected edges source_and_target_ids = [(d['source'],d['target']) for d in selectedEdgeData] # iterate over all dictionaries in elements, identify edge dicts by their # 'weight' key and check again if this edge dict belongs to the currently selected # edges. If yes, add its index to list of to be dropped dictionaires. drop_these_dicts = [] for idx,d in enumerate(elements): if 'weight' in d['data']: if (d['data']['source'],d['data']['target']) in source_and_target_ids: drop_these_dicts.append(idx) # drop selected edge dictionaries from elements elements = [i for j,i in enumerate(elements) if j not in drop_these_dicts] return elements def get_edge_min_max(elements): '''Get minimum and maximum edge weights''' # get all edges from elements edge_dicts = get_edge_dicts(elements) # find minimum and maximum weights edge_weights = [d['data']['weight'] for d in edge_dicts] weights_max = max(edge_weights) weights_min = min(edge_weights) return weights_min,weights_max # FIXME: Delete this function if it's not necessary def set_edge_width(elements,edge_weight): '''Return the edge width for a single edge''' weights_min,weights_max = get_edge_min_max(elements) min_width = 1 # constant (selected by me) max_width = 10 # constant (selected by me) edge_width = min_width + ((max_width - min_width) / (weights_max - weights_min)) * (edge_weight - weights_min) return edge_width def set_edge_weights(selectedEdgeData,edge_weight,elements): '''Modify the weights of the selected edges''' # get source and target ids for all currently selected edges source_and_target_ids = [(d['source'],d['target']) for d in selectedEdgeData] # iterate over all dictionaries in elements, identify edge dicts by their # 'weight' key and check again if this edge dict belongs to the currently selected # edges. If yes, add its index to list of to be dropped dictionaires. modify_these_dicts = [] for idx,d in enumerate(elements): if 'weight' in d['data']: if (d['data']['source'],d['data']['target']) in source_and_target_ids: modify_these_dicts.append(idx) # drop selected edge dictionaries from elements for i in modify_these_dicts: elements[i]['data']['weight'] = edge_weight return elements ## Figure Plotting ########################################################### def from_elements_to_A(elements): '''Extract nodes and edges from current elements and convert them to adjacency matrix ''' # FIXME: This is inefficient, we iterate over the same list twice (see #8) edge_dicts = get_edge_dicts(elements) node_dicts = get_node_dicts((elements)) edges = [(d['data']['source'],d['data']['target'],d['data']['weight']) for d in edge_dicts] nodes = [d['data']['id'] for d in node_dicts] n_nodes = len(nodes) A = np.zeros((n_nodes,n_nodes)) for edge in edges: i = int(edge[0]) j = int(edge[1]) weight = edge[2] A[i,j] = weight A[j,i] = weight return A # FIXME: lots of repetitions to from_elements_to_S def from_elements_to_B(elements): '''Extract nodes from current elements, check which nodes are selected as controllers and get a corresponding control matrix B that can be fed to control_package functions. ''' # get a list of all nodes from current elements (get their ID and their # controller attribute) node_dicts = get_node_dicts(elements) nodes = [(d['data']['id'],d['data']['controller']) for d in node_dicts] # sort nodes by their ids and get controller attribute nodes.sort(key=operator.itemgetter(0)) c_attributes = [n[1] for n in nodes] # create B matrix B = np.zeros(shape=(len(nodes),len(nodes))) for idx,c in enumerate(c_attributes): if c == True: B[idx,idx] = 1 return B # FIXME: lots of repetitions to from_elements_to_B def from_elements_to_S(elements): '''Extract nodes from current elements, check which nodes are selected to be constrained and get a corresponding matrix S that can be fed to control_package functions. ''' # get a list of all nodes from current elements (get their ID and their # controller attribute) node_dicts = get_node_dicts(elements) nodes = [(d['data']['id'],d['data']['constrain']) for d in node_dicts] # sort nodes by their ids and get controller attribute nodes.sort(key=operator.itemgetter(0)) constrain_attributes = [n[1] for n in nodes] # create B matrix S = np.zeros(shape=(len(nodes),len(nodes))) for idx,constrain in enumerate(constrain_attributes): if constrain == True: S[idx,idx] = 1 return S def get_state_trajectory_fig(A,x0,T,c): '''Generate a plotly figure that plots a state trajectory using an input matrix, a source state, a time horizon and a normalization constant''' # simulate state trajectory x = state_trajectory(A=A,xi=x0,T=T) # create figure x_df = pd.DataFrame(x).reset_index().rename(columns={'index':'Node'}) x_df = x_df.melt(id_vars='Node',var_name='t',value_name='Value') fig = px.line(x_df,x='t',y='Value',color='Node') fig.update_layout(title='x(t+1) = Ax(t)',title_x=0.5) return fig # FIXME: Plotting speed could probably bee optimized, take a look in niplot module # TO-DO: n_err should also be visualized somewhere def get_minimum_energy_figure(A,T,B,x0,xf,c): # compute minimum energy x,u,n_err = minimum_input(A,T,B,x0,xf) # create figure (FIXME: could the following be shorted?) x_df = pd.DataFrame(x).reset_index().rename(columns={'index':'t'}) x_df = x_df.melt(id_vars='t',var_name='Node',value_name='Value') x_df['Type'] = 'x' u_df = pd.DataFrame(u).reset_index().rename(columns={'index':'t'}) u_df = u_df.melt(id_vars='t',var_name='Node',value_name='Value') u_df['Type'] = 'u' fig_df = pd.concat([x_df,u_df]) fig = px.line(fig_df,x='t',y='Value',color='Node',facet_row='Type') fig.update_layout(title='Minimum Control Energy',title_x=0.5) return fig # FIXME: Plotting speed could probably bee optimized, take a look in niplot module # TO-DO: n_err should also be visualized somewhere def get_optimal_energy_figure(A,T,B,x0,xf,rho,S,c): # compute optimal energy x,u,n_err = optimal_input(A,T,B,x0,xf,rho,S) # create figure (FIXME: could the following be shorted?) x_df = pd.DataFrame(x).reset_index().rename(columns={'index':'t'}) x_df = x_df.melt(id_vars='t',var_name='Node',value_name='Value') x_df['Type'] = 'x' u_df = pd.DataFrame(u).reset_index().rename(columns={'index':'t'}) u_df = u_df.melt(id_vars='t',var_name='Node',value_name='Value') u_df['Type'] = 'u' fig_df = pd.concat([x_df,u_df]) fig = px.line(fig_df,x='t',y='Value',color='Node',facet_row='Type') fig.update_layout(title='Optimal Control Energy',title_x=0.5) return fig ############################################################################### ## Dash App ################################################################### ############################################################################### # run dash and take in the list of elements app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP]) # create custom style sheet # show node labels # Style the border of the nodes depending on if they are controllers # and constrained stylesheet = [{'selector':'node','style':{'content':'data(label)'}}, {'selector': '[?controller][?constrain]','style':{'border-width':2,'border-color':'black','border-style':'solid'}}, {'selector':'[?controller][!constrain]','style':{'border-width':2,'border-color':'black','border-style':'dashed'}}, {'selector':'[!controller][?constrain]','style':{'border-width':2,'border-color':'black','border-style':'dotted'}}, {'selector':'[!controller][!constrain]','style':{}} ] app.layout = html.Div([ dbc.Row([ dbc.Col([ # cytoscape graph cyto.Cytoscape( id='cytoscape-compound', layout={'name':'cose'}, elements=from_A_to_elements(A), # initialize elements with a function call stylesheet=stylesheet, style={'width':'100%','height':'500px'}) ],width=6), dbc.Col([ # x0/xf data table dbc.Row([dash_table.DataTable(id='states-table', columns=[{'id':'index','name':'index','type':'numeric'}, {'id':'x0','name':'x0','type':'numeric','editable':True}, {'id':'xf','name':'xf','type':'numeric','editable':True}], data=states_df.to_dict('records'), editable=False)],justify='center'), dbc.Row([html.Button('Switch columns',id='switch-state-cols',n_clicks=0,style={'width':'100%'})],justify='center')], width=3), dbc.Col([ dbc.Row([dbc.Col([dcc.Input(id='c',type="number",debounce=True,placeholder='Normalization Constant (c)',value=1)])]), dbc.Row([dbc.Col([dcc.Input(id='T',type="number",debounce=True,placeholder='Time Horizon (T)',value=3)]),dbc.Col(html.Button('Plot Trajectories',id='plot-button',n_clicks=0))]), dbc.Row([dbc.Col([dcc.Input(id='rho',type="number",debounce=True,placeholder='rho',value=1)])]), dbc.Row([dbc.Col([html.Button('(Dis-)Connect Nodes',id='edge-button',n_clicks=0)])]), dbc.Row([dbc.Col([html.Button('(Un-)set controll',id='controll-button',n_clicks=0)])]), dbc.Row([dbc.Col([html.Button('(Un-)set constrain',id='constrain-button',n_clicks=0)])]), dbc.Row([dbc.Col([dcc.Input(id='edge-weight',type='number',debounce=True,placeholder='Edge Weight',value=1)]),dbc.Col([html.Button('Set Edge Weight',id='edge-weight-button',n_clicks=0)])])], width=3) ],align='end'), dbc.Row([ # figures dbc.Col([dcc.Graph(id='state-trajectory-fig',figure={})],width=4), dbc.Col([dcc.Graph(id='minimum-energy-fig',figure={})],width=4), dbc.Col([dcc.Graph(id='optimal-energy-fig',figure={})],width=4) ],className="g-0"), dbc.Row([ # debugging fields (can be deleted when not necessary anymore) dbc.Col([html.Label(children='Selected Nodes:'),html.Pre(id='selected-node-data-json-output')],width=3), dbc.Col([html.Label(children='Selected Edges:'),html.Pre(id='selected-edge-data-json-output')],width=3), dbc.Col([html.Label(children='Current Elements:'),html.Pre(id='current-elements')],width=3), dbc.Col([html.Label(children='Current Stylesheet:'),html.Pre(id='current-stylesheet')],width=3) ],className="g-0") ]) ## Just for debugging (can be deleted when not necessary anymore ############## @app.callback(Output('selected-node-data-json-output','children'), Input('cytoscape-compound','selectedNodeData'), prevent_initial_call=True) def displaySelectedNodeData(data): return json.dumps(data,indent=2) @app.callback(Output('selected-edge-data-json-output','children'), Input('cytoscape-compound','selectedEdgeData'), prevent_initial_call=True) def displaySelectedEdgeData(data): return json.dumps(data,indent=2) @app.callback(Output('current-elements','children'), Input('cytoscape-compound','elements'), prevent_initial_call=True) def displayCurrentElements(elements): return json.dumps(elements,indent=2) @app.callback(Output('current-stylesheet','children'), Input('cytoscape-compound','stylesheet'), prevent_initial_call=True) def displayCurrentStylesheet(elements): return json.dumps(elements,indent=2) ## Callback Functions ######################################################### @app.callback(Output('cytoscape-compound','elements'), Input('edge-button','n_clicks'), Input('controll-button','n_clicks'), Input('constrain-button','n_clicks'), Input('edge-weight-button','n_clicks'), State('edge-weight','value'), State('cytoscape-compound','selectedNodeData'), State('cytoscape-compound','selectedEdgeData'), State('cytoscape-compound','elements'), prevent_initial_call=True) def updateElements(edge_button,controll_button,constrain_button,edge_weight_button,edge_weight,selectedNodeData,selectedEdgeData,elements): print('UpdateElements was fired') # check which button was triggered ctx = dash.callback_context button_id = ctx.triggered[0]['prop_id'].split('.')[0] # add or delete edges if button_id == 'edge-button': # FIXME: Is that true? Couldn't we merge add_edges and drop_edges? # user must exclusively selecte either at least two nodes or one edge # but not both nodes and edges at the same time if len(selectedNodeData) > 0 and len(selectedEdgeData) > 0: return elements if len(selectedNodeData) >= 2 and len(selectedEdgeData) == 0: return add_edges(selectedNodeData,edge_weight,elements) if len(selectedNodeData) == 0 and len(selectedEdgeData) >= 1: return drop_edges(selectedEdgeData,elements) else: return elements # modify edge weights elif button_id == 'edge-weight-button': return set_edge_weights(selectedEdgeData,edge_weight,elements) # set or unset controll nodes elif button_id == 'controll-button': # get a list of ids of all nodes that user has currently selected and for # which controll state should be switched node_ids = [d['id'] for d in selectedNodeData] # identify node dicts in elements and toggle their 'controller' attribute # if they are part of the selected nodes node_dicts = get_node_dicts(elements) for d in node_dicts: if d['data']['id'] in node_ids: d['data']['controller'] = not d['data']['controller'] return elements elif button_id == 'constrain-button': # get a list of ids of all nodes that user has currently selected and for # which controll state should be switched node_ids = [d['id'] for d in selectedNodeData] # identify node dicts in elements and toggle their 'controller' attribute # if they are part of the selected nodes node_dicts = get_node_dicts(elements) for d in node_dicts: if d['data']['id'] in node_ids: d['data']['constrain'] = not d['data']['constrain'] return elements # TODO: This callback is currently always fired when elements are changed. # But it actually only needs to be fired when either the minimum or maximum # edge weights change @app.callback(Output('cytoscape-compound','stylesheet'), Input('cytoscape-compound','elements'), State('cytoscape-compound','stylesheet')) def updateEdgeStyle(elements,stylesheet): weights_min,weights_max = get_edge_min_max(elements) # add (or overwrite) edge style if not any([d['selector'] == 'edge' for d in stylesheet]): stylesheet.append({'selector':'edge','style':{'width':f"mapData(weight,{weights_min},{weights_max},1,5)"}}) else: edge_style_idx = [i for i,d in enumerate(stylesheet) if d['selector'] == 'edge'][0] stylesheet[edge_style_idx] = {'selector':'edge','style':{'width':f"mapData(weight,{weights_min},{weights_max},1,5)"}} return stylesheet @app.callback(Output('states-table','data'), Input('switch-state-cols','n_clicks'), State('states-table','derived_virtual_data'), prevent_initial_call=True) def switchStateColums(n_clicks,states_data): print(states_data) states_data_copy = states_data.copy() for d in states_data_copy: d['x0'],d['xf'] = d['xf'],d['x0'] return states_data_copy @app.callback(Output('state-trajectory-fig','figure'), Output('minimum-energy-fig','figure'), Output('optimal-energy-fig','figure'), Input('plot-button','n_clicks'), State('cytoscape-compound','elements'), State('T','value'), State('c','value'), State('rho','value'), State('states-table','derived_virtual_data'), prevent_initial_call=True) def updateFigures(n_clicks,elements,T,c,rho,states_data): # debugging print('UpdateFigures was fired') # digest data for network_control package A = from_elements_to_A(elements) B = from_elements_to_B(elements) S = from_elements_to_S(elements) # debugging print(f"This is A:\n{A}\n") print(f"This is B:\n{B}\n") print(f"This is S:\n{S}\n") # normalize A # FIXME: It should also be possible to not normalize the matrix (i.o. # to get an intuition for what happens when you not apply normalization) A = matrix_normalization(A,c) # FIXME: Currently we use reshape (-1,1), but this is a bug in network # control-package. When this is fixed, we don't need reshape anymore x0 = np.array([d['x0'] for d in states_data]).reshape(-1,1) xf = np.array([d['xf'] for d in states_data]).reshape(-1,1) # debugging print(f"This is x0:\n{x0}\n") print(f"This is xf:\n{xf}\n") fig_1 = get_state_trajectory_fig(A,x0=x0,T=T,c=c) fig_2 = get_minimum_energy_figure(A=A,T=T,B=B,x0=x0,xf=xf,c=c) fig_3 = get_optimal_energy_figure(A=A,T=T,B=B,x0=x0,xf=xf,rho=rho,S=S,c=c) return fig_1,fig_2,fig_3 if __name__ == '__main__': app.run_server(debug=True,use_reloader=False) ```
{ "source": "JohannesWiesner/nilearn", "score": 2 }
#### File: nilearn/datasets/atlas.py ```python import os import warnings import xml.etree.ElementTree from tempfile import mkdtemp import json import shutil import nibabel as nb import numpy as np from numpy.lib import recfunctions from sklearn.utils import Bunch from .utils import _get_dataset_dir, _fetch_files, _get_dataset_descr from .._utils import check_niimg from .._utils.compat import _basestring from ..image import new_img_like, get_data _TALAIRACH_LEVELS = ['hemisphere', 'lobe', 'gyrus', 'tissue', 'ba'] def fetch_atlas_craddock_2012(data_dir=None, url=None, resume=True, verbose=1): """Download and return file names for the Craddock 2012 parcellation The provided images are in MNI152 space. Parameters ---------- data_dir: string directory where data should be downloaded and unpacked. url: string url of file to download. resume: bool whether to resumed download of a partly-downloaded file. verbose: int verbosity level (0 means no message). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, keys are: scorr_mean, tcorr_mean, scorr_2level, tcorr_2level, random References ---------- Licence: Creative Commons Attribution Non-commercial Share Alike http://creativecommons.org/licenses/by-nc-sa/2.5/ Craddock, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. "A Whole Brain fMRI Atlas Generated via Spatially Constrained Spectral Clustering". Human Brain Mapping 33, no 8 (2012): 1914-1928. doi:10.1002/hbm.21333. See http://www.nitrc.org/projects/cluster_roi/ for more information on this parcellation. """ if url is None: url = "ftp://www.nitrc.org/home/groups/cluster_roi/htdocs" \ "/Parcellations/craddock_2011_parcellations.tar.gz" opts = {'uncompress': True} dataset_name = "craddock_2012" keys = ("scorr_mean", "tcorr_mean", "scorr_2level", "tcorr_2level", "random") filenames = [ ("scorr05_mean_all.nii.gz", url, opts), ("tcorr05_mean_all.nii.gz", url, opts), ("scorr05_2level_all.nii.gz", url, opts), ("tcorr05_2level_all.nii.gz", url, opts), ("random_all.nii.gz", url, opts) ] data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) sub_files = _fetch_files(data_dir, filenames, resume=resume, verbose=verbose) fdescr = _get_dataset_descr(dataset_name) params = dict([('description', fdescr)] + list(zip(keys, sub_files))) return Bunch(**params) def fetch_atlas_destrieux_2009(lateralized=True, data_dir=None, url=None, resume=True, verbose=1): """Download and load the Destrieux cortical atlas (dated 2009) Parameters ---------- lateralized: boolean, optional If True, returns an atlas with distinct regions for right and left hemispheres. data_dir: string, optional Path of the data directory. Use to forec data storage in a non- standard location. Default: None (meaning: default) url: string, optional Download URL of the dataset. Overwrite the default URL. Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, contains: - Cortical ROIs, lateralized or not (maps) - Labels of the ROIs (labels) References ---------- <NAME>, et al. "Automatically parcellating the human cerebral cortex." Cerebral cortex 14.1 (2004): 11-22. <NAME>., et al. "A sulcal depth-based anatomical parcellation of the cerebral cortex." NeuroImage 47 (2009): S151. """ if url is None: url = "https://www.nitrc.org/frs/download.php/7739/" url += "destrieux2009.tgz" opts = {'uncompress': True} lat = '_lateralized' if lateralized else '' files = [ ('destrieux2009_rois_labels' + lat + '.csv', url, opts), ('destrieux2009_rois' + lat + '.nii.gz', url, opts), ('destrieux2009.rst', url, opts) ] dataset_name = 'destrieux_2009' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) files_ = _fetch_files(data_dir, files, resume=resume, verbose=verbose) params = dict(maps=files_[1], labels=np.recfromcsv(files_[0])) with open(files_[2], 'r') as rst_file: params['description'] = rst_file.read() return Bunch(**params) def fetch_atlas_harvard_oxford(atlas_name, data_dir=None, symmetric_split=False, resume=True, verbose=1): """Load Harvard-Oxford parcellations from FSL. This function downloads Harvard Oxford atlas packaged from FSL 5.0 and stores atlases in NILEARN_DATA folder in home directory. This function can also load Harvard Oxford atlas from your local directory specified by your FSL installed path given in `data_dir` argument. See documentation for details. Parameters ---------- atlas_name: string Name of atlas to load. Can be: cort-maxprob-thr0-1mm, cort-maxprob-thr0-2mm, cort-maxprob-thr25-1mm, cort-maxprob-thr25-2mm, cort-maxprob-thr50-1mm, cort-maxprob-thr50-2mm, sub-maxprob-thr0-1mm, sub-maxprob-thr0-2mm, sub-maxprob-thr25-1mm, sub-maxprob-thr25-2mm, sub-maxprob-thr50-1mm, sub-maxprob-thr50-2mm, cort-prob-1mm, cort-prob-2mm, sub-prob-1mm, sub-prob-2mm data_dir: string, optional Path of data directory where data will be stored. Optionally, it can also be a FSL installation directory (which is dependent on your installation). Example, if FSL is installed in /usr/share/fsl/ then specifying as '/usr/share/' can get you Harvard Oxford atlas from your installed directory. Since we mimic same root directory as FSL to load it easily from your installation. symmetric_split: bool, optional, (default False). If True, lateralized atlases of cort or sub with maxprob will be returned. For subcortical types (sub-maxprob), we split every symmetric region in left and right parts. Effectively doubles the number of regions. NOTE Not implemented for full probabilistic atlas (*-prob-* atlases). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, keys are: - "maps": nibabel.Nifti1Image, 4D maps if a probabilistic atlas is requested and 3D labels if a maximum probabilistic atlas was requested. - "labels": string list, labels of the regions in the atlas. """ atlas_items = ("cort-maxprob-thr0-1mm", "cort-maxprob-thr0-2mm", "cort-maxprob-thr25-1mm", "cort-maxprob-thr25-2mm", "cort-maxprob-thr50-1mm", "cort-maxprob-thr50-2mm", "sub-maxprob-thr0-1mm", "sub-maxprob-thr0-2mm", "sub-maxprob-thr25-1mm", "sub-maxprob-thr25-2mm", "sub-maxprob-thr50-1mm", "sub-maxprob-thr50-2mm", "cort-prob-1mm", "cort-prob-2mm", "sub-prob-1mm", "sub-prob-2mm") if atlas_name not in atlas_items: raise ValueError("Invalid atlas name: {0}. Please chose an atlas " "among:\n{1}".format( atlas_name, '\n'.join(atlas_items))) url = 'http://www.nitrc.org/frs/download.php/9902/HarvardOxford.tgz' # For practical reasons, we mimic the FSL data directory here. dataset_name = 'fsl' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) opts = {'uncompress': True} root = os.path.join('data', 'atlases') if atlas_name[0] == 'c': if 'cort-maxprob' in atlas_name and symmetric_split: split_name = atlas_name.split('cort') atlas_name = 'cortl' + split_name[1] label_file = 'HarvardOxford-Cortical-Lateralized.xml' lateralized = True else: label_file = 'HarvardOxford-Cortical.xml' lateralized = False else: label_file = 'HarvardOxford-Subcortical.xml' lateralized = False label_file = os.path.join(root, label_file) atlas_file = os.path.join(root, 'HarvardOxford', 'HarvardOxford-' + atlas_name + '.nii.gz') atlas_img, label_file = _fetch_files( data_dir, [(atlas_file, url, opts), (label_file, url, opts)], resume=resume, verbose=verbose) names = {} from xml.etree import ElementTree names[0] = 'Background' for label in ElementTree.parse(label_file).findall('.//label'): names[int(label.get('index')) + 1] = label.text names = list(names.values()) if not symmetric_split: return Bunch(maps=atlas_img, labels=names) if atlas_name in ("cort-prob-1mm", "cort-prob-2mm", "sub-prob-1mm", "sub-prob-2mm"): raise ValueError("Region splitting not supported for probabilistic " "atlases") atlas_img = check_niimg(atlas_img) if lateralized: return Bunch(maps=atlas_img, labels=names) atlas = get_data(atlas_img) labels = np.unique(atlas) # Build a mask of both halves of the brain middle_ind = (atlas.shape[0] - 1) // 2 # Put zeros on the median plane atlas[middle_ind, ...] = 0 # Split every zone crossing the median plane into two parts. left_atlas = atlas.copy() left_atlas[middle_ind:, ...] = 0 right_atlas = atlas.copy() right_atlas[:middle_ind, ...] = 0 new_label = 0 new_atlas = atlas.copy() # Assumes that the background label is zero. new_names = [names[0]] for label, name in zip(labels[1:], names[1:]): new_label += 1 left_elements = (left_atlas == label).sum() right_elements = (right_atlas == label).sum() n_elements = float(left_elements + right_elements) if (left_elements / n_elements < 0.05 or right_elements / n_elements < 0.05): new_atlas[atlas == label] = new_label new_names.append(name) continue new_atlas[right_atlas == label] = new_label new_names.append(name + ', left part') new_label += 1 new_atlas[left_atlas == label] = new_label new_names.append(name + ', right part') atlas_img = new_img_like(atlas_img, new_atlas, atlas_img.affine) return Bunch(maps=atlas_img, labels=new_names) def fetch_atlas_msdl(data_dir=None, url=None, resume=True, verbose=1): """Download and load the MSDL brain atlas. Parameters ---------- data_dir: string, optional Path of the data directory. Used to force data storage in a specified location. Default: None url: string, optional Override download URL. Used for test only (or if you setup a mirror of the data). Returns ------- data: sklearn.datasets.base.Bunch Dictionary-like object, the interest attributes are : - 'maps': str, path to nifti file containing regions definition. - 'labels': string list containing the labels of the regions. - 'region_coords': tuple list (x, y, z) containing coordinates of each region in MNI space. - 'networks': string list containing names of the networks. - 'description': description about the atlas. References ---------- :Download: https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip :Paper to cite: `Multi-subject dictionary learning to segment an atlas of brain spontaneous activity <http://hal.inria.fr/inria-00588898/en>`_ <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Information Processing in Medical Imaging, 2011, pp. 562-573, Lecture Notes in Computer Science. :Other references: `Learning and comparing functional connectomes across subjects <http://hal.inria.fr/hal-00812911/en>`_. <NAME>, <NAME> NeuroImage, 2013. """ url = 'https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip' opts = {'uncompress': True} dataset_name = "msdl_atlas" files = [(os.path.join('MSDL_rois', 'msdl_rois_labels.csv'), url, opts), (os.path.join('MSDL_rois', 'msdl_rois.nii'), url, opts)] data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) files = _fetch_files(data_dir, files, resume=resume, verbose=verbose) csv_data = np.recfromcsv(files[0]) labels = [name.strip() for name in csv_data['name'].tolist()] labels = [label.decode("utf-8") for label in labels] with warnings.catch_warnings(): warnings.filterwarnings('ignore', module='numpy', category=FutureWarning) region_coords = csv_data[['x', 'y', 'z']].tolist() net_names = [net_name.strip() for net_name in csv_data['net_name'].tolist()] fdescr = _get_dataset_descr(dataset_name) return Bunch(maps=files[1], labels=labels, region_coords=region_coords, networks=net_names, description=fdescr) def fetch_coords_power_2011(): """Download and load the Power et al. brain atlas composed of 264 ROIs. Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, contains: - "rois": coordinates of 264 ROIs in MNI space References ---------- Power, <NAME>., et al. "Functional network organization of the human brain." Neuron 72.4 (2011): 665-678. """ dataset_name = 'power_2011' fdescr = _get_dataset_descr(dataset_name) package_directory = os.path.dirname(os.path.abspath(__file__)) csv = os.path.join(package_directory, "data", "power_2011.csv") params = dict(rois=np.recfromcsv(csv), description=fdescr) return Bunch(**params) def fetch_atlas_smith_2009(data_dir=None, mirror='origin', url=None, resume=True, verbose=1): """Download and load the Smith ICA and BrainMap atlas (dated 2009) Parameters ---------- data_dir: string, optional Path of the data directory. Used to force data storage in a non- standard location. Default: None (meaning: default) mirror: string, optional By default, the dataset is downloaded from the original website of the atlas. Specifying "nitrc" will force download from a mirror, with potentially higher bandwith. url: string, optional Download URL of the dataset. Overwrite the default URL. Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, contains: - 20-dimensional ICA, Resting-FMRI components: - all 20 components (rsn20) - 10 well-matched maps from these, as shown in PNAS paper (rsn10) - 20-dimensional ICA, BrainMap components: - all 20 components (bm20) - 10 well-matched maps from these, as shown in PNAS paper (bm10) - 70-dimensional ICA, Resting-FMRI components (rsn70) - 70-dimensional ICA, BrainMap components (bm70) References ---------- <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA (PNAS), 106(31):13040-13045, 2009. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 2011 Notes ----- For more information about this dataset's structure: http://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/ """ if url is None: if mirror == 'origin': url = "http://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/" elif mirror == 'nitrc': url = [ 'https://www.nitrc.org/frs/download.php/7730/', 'https://www.nitrc.org/frs/download.php/7729/', 'https://www.nitrc.org/frs/download.php/7731/', 'https://www.nitrc.org/frs/download.php/7726/', 'https://www.nitrc.org/frs/download.php/7728/', 'https://www.nitrc.org/frs/download.php/7727/', ] else: raise ValueError('Unknown mirror "%s". Mirror must be "origin" ' 'or "nitrc"' % str(mirror)) files = [ 'rsn20.nii.gz', 'PNAS_Smith09_rsn10.nii.gz', 'rsn70.nii.gz', 'bm20.nii.gz', 'PNAS_Smith09_bm10.nii.gz', 'bm70.nii.gz' ] if isinstance(url, _basestring): url = [url] * len(files) files = [(f, u + f, {}) for f, u in zip(files, url)] dataset_name = 'smith_2009' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) files_ = _fetch_files(data_dir, files, resume=resume, verbose=verbose) fdescr = _get_dataset_descr(dataset_name) keys = ['<KEY> params = dict(zip(keys, files_)) params['description'] = fdescr return Bunch(**params) def fetch_atlas_yeo_2011(data_dir=None, url=None, resume=True, verbose=1): """Download and return file names for the Yeo 2011 parcellation. The provided images are in MNI152 space. Parameters ---------- data_dir: string directory where data should be downloaded and unpacked. url: string url of file to download. resume: bool whether to resumed download of a partly-downloaded file. verbose: int verbosity level (0 means no message). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, keys are: - "thin_7", "thick_7": 7-region parcellations, fitted to resp. thin and thick template cortex segmentations. - "thin_17", "thick_17": 17-region parcellations. - "colors_7", "colors_17": colormaps (text files) for 7- and 17-region parcellation respectively. - "anat": anatomy image. Notes ----- For more information on this dataset's structure, see http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 Yeo BT, Krienen FM, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>., <NAME>, <NAME>, <NAME>, <NAME>. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125-65, 2011. Licence: unknown. """ if url is None: url = ('ftp://surfer.nmr.mgh.harvard.edu/pub/data/' 'Yeo_JNeurophysiol11_MNI152.zip') opts = {'uncompress': True} dataset_name = "yeo_2011" keys = ("thin_7", "thick_7", "thin_17", "thick_17", "colors_7", "colors_17", "anat") basenames = ( "Yeo2011_7Networks_MNI152_FreeSurferConformed1mm.nii.gz", "Yeo2011_7Networks_MNI152_FreeSurferConformed1mm_LiberalMask.nii.gz", "Yeo2011_17Networks_MNI152_FreeSurferConformed1mm.nii.gz", "Yeo2011_17Networks_MNI152_FreeSurferConformed1mm_LiberalMask.nii.gz", "Yeo2011_7Networks_ColorLUT.txt", "Yeo2011_17Networks_ColorLUT.txt", "FSL_MNI152_FreeSurferConformed_1mm.nii.gz") filenames = [(os.path.join("Yeo_JNeurophysiol11_MNI152", f), url, opts) for f in basenames] data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) sub_files = _fetch_files(data_dir, filenames, resume=resume, verbose=verbose) fdescr = _get_dataset_descr(dataset_name) params = dict([('description', fdescr)] + list(zip(keys, sub_files))) return Bunch(**params) def fetch_atlas_aal(version='SPM12', data_dir=None, url=None, resume=True, verbose=1): """Downloads and returns the AAL template for SPM 12. This atlas is the result of an automated anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute (MNI) (<NAME> al., 1998, Trans. Med. Imag. 17, 463-468, PubMed). Parameters ---------- version: string, optional The version of the AAL atlas. Must be SPM5, SPM8 or SPM12. Default is SPM12. data_dir: string directory where data should be downloaded and unpacked. url: string url of file to download. resume: bool whether to resumed download of a partly-downloaded file. verbose: int verbosity level (0 means no message). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, keys are: - "maps": str. path to nifti file containing regions. - "labels": list of the names of the regions Notes ----- For more information on this dataset's structure, see http://www.gin.cnrs.fr/AAL-217?lang=en Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. NeuroImage 2002. 15 :273-28 Licence: unknown. """ versions = ['SPM5', 'SPM8', 'SPM12'] if version not in versions: raise ValueError('The version of AAL requested "%s" does not exist.' 'Please choose one among %s.' % (version, str(versions))) if url is None: baseurl = "http://www.gin.cnrs.fr/AAL_files/aal_for_%s.tar.gz" url = baseurl % version opts = {'uncompress': True} dataset_name = "aal_" + version # keys and basenames would need to be handled for each spm_version # for now spm_version 12 is hardcoded. basenames = ("AAL.nii", "AAL.xml") filenames = [(os.path.join('aal', 'atlas', f), url, opts) for f in basenames] data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) atlas_img, labels_file = _fetch_files(data_dir, filenames, resume=resume, verbose=verbose) fdescr = _get_dataset_descr(dataset_name) # We return the labels contained in the xml file as a dictionary xml_tree = xml.etree.ElementTree.parse(labels_file) root = xml_tree.getroot() labels = [] indices = [] for label in root.getiterator('label'): indices.append(label.find('index').text) labels.append(label.find('name').text) params = {'description': fdescr, 'maps': atlas_img, 'labels': labels, 'indices': indices} return Bunch(**params) def fetch_atlas_basc_multiscale_2015(version='sym', data_dir=None, resume=True, verbose=1): """Downloads and loads multiscale functional brain parcellations This atlas includes group brain parcellations generated from resting-state functional magnetic resonance images from about 200 young healthy subjects. Multiple scales (number of networks) are available, among 7, 12, 20, 36, 64, 122, 197, 325, 444. The brain parcellations have been generated using a method called bootstrap analysis of stable clusters called as BASC, (Bellec et al., 2010) and the scales have been selected using a data-driven method called MSTEPS (Bellec, 2013). Note that two versions of the template are available, 'sym' or 'asym'. The 'asym' type contains brain images that have been registered in the asymmetric version of the MNI brain template (reflecting that the brain is asymmetric), while the 'sym' type contains images registered in the symmetric version of the MNI template. The symmetric template has been forced to be symmetric anatomically, and is therefore ideally suited to study homotopic functional connections in fMRI: finding homotopic regions simply consists of flipping the x-axis of the template. .. versionadded:: 0.2.3 Parameters ---------- version: str, optional Available versions are 'sym' or 'asym'. By default all scales of brain parcellations of version 'sym' will be returned. data_dir: str, optional directory where data should be downloaded and unpacked. url: str, optional url of file to download. resume: bool whether to resumed download of a partly-downloaded file. verbose: int verbosity level (0 means no message). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, Keys are: - "scale007", "scale012", "scale020", "scale036", "scale064", "scale122", "scale197", "scale325", "scale444": str, path to Nifti file of various scales of brain parcellations. - "description": details about the data release. References ---------- <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, Jul. 2010. Multi-level bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage 51 (3), 1126-1139. URL http://dx.doi.org/10.1016/j.neuroimage.2010.02.082 <NAME>. 2013. Mining the Hierarchy of Resting-State Brain Networks: Selection of Representative Clusters in a Multiscale Structure. Pattern Recognition in Neuroimaging (PRNI), 2013 pp. 54-57. Notes ----- For more information on this dataset's structure, see https://figshare.com/articles/basc/1285615 """ versions = ['sym', 'asym'] if version not in versions: raise ValueError('The version of Brain parcellations requested "%s" ' 'does not exist. Please choose one among them %s.' % (version, str(versions))) keys = ['scale007', 'scale012', 'scale020', 'scale036', 'scale064', 'scale122', 'scale197', 'scale325', 'scale444'] if version == 'sym': url = "https://ndownloader.figshare.com/files/1861819" elif version == 'asym': url = "https://ndownloader.figshare.com/files/1861820" opts = {'uncompress': True} dataset_name = "basc_multiscale_2015" data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) folder_name = 'template_cambridge_basc_multiscale_nii_' + version basenames = ['template_cambridge_basc_multiscale_' + version + '_' + key + '.nii.gz' for key in keys] filenames = [(os.path.join(folder_name, basename), url, opts) for basename in basenames] data = _fetch_files(data_dir, filenames, resume=resume, verbose=verbose) descr = _get_dataset_descr(dataset_name) params = dict(zip(keys, data)) params['description'] = descr return Bunch(**params) def fetch_coords_dosenbach_2010(ordered_regions=True): """Load the Dosenbach et al. 160 ROIs. These ROIs cover much of the cerebral cortex and cerebellum and are assigned to 6 networks. Parameters ---------- ordered_regions : bool, optional ROIs from same networks are grouped together and ordered with respect to their names and their locations (anterior to posterior). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, contains: - "rois": coordinates of 160 ROIs in MNI space - "labels": ROIs labels - "networks": networks names References ---------- <NAME>., <NAME>., et al. "Prediction of individual brain maturity using fMRI.", 2010, Science 329, 1358-1361. """ dataset_name = 'dosenbach_2010' fdescr = _get_dataset_descr(dataset_name) package_directory = os.path.dirname(os.path.abspath(__file__)) csv = os.path.join(package_directory, "data", "dosenbach_2010.csv") out_csv = np.recfromcsv(csv) if ordered_regions: out_csv = np.sort(out_csv, order=['network', 'name', 'y']) # We add the ROI number to its name, since names are not unique names = out_csv['name'] numbers = out_csv['number'] labels = np.array(['{0} {1}'.format(name, number) for (name, number) in zip(names, numbers)]) params = dict(rois=out_csv[['x', 'y', 'z']], labels=labels, networks=out_csv['network'], description=fdescr) return Bunch(**params) def fetch_coords_seitzman_2018(ordered_regions=True): """Load the Seitzman et al. 300 ROIs. These ROIs cover cortical, subcortical and cerebellar regions and are assigned to one of 13 networks (Auditory, CinguloOpercular, DefaultMode, DorsalAttention, FrontoParietal, MedialTemporalLobe, ParietoMedial, Reward, Salience, SomatomotorDorsal, SomatomotorLateral, VentralAttention, Visual) and have a regional label (cortexL, cortexR, cerebellum, thalamus, hippocampus, basalGanglia, amygdala, cortexMid). .. versionadded:: 0.5.1 Parameters ---------- ordered_regions : bool, optional ROIs from same networks are grouped together and ordered with respect to their locations (anterior to posterior). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, contains: - "rois": Coordinates of 300 ROIs in MNI space - "radius": Radius of each ROI in mm - "networks": Network names - "regions": Region names References ---------- <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., et al. (2018). A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. bioRxiv, 450452. http://doi.org/10.1101/450452 """ dataset_name = 'seitzman_2018' fdescr = _get_dataset_descr(dataset_name) package_directory = os.path.dirname(os.path.abspath(__file__)) roi_file = os.path.join(package_directory, "data", "seitzman_2018_ROIs_300inVol_MNI_allInfo.txt") anatomical_file = os.path.join(package_directory, "data", "seitzman_2018_ROIs_anatomicalLabels.txt") rois = np.recfromcsv(roi_file, delimiter=" ") rois = recfunctions.rename_fields(rois, {"netname": "network", "radiusmm": "radius"}) rois.network = rois.network.astype(str) # get integer regional labels and convert to text labels with mapping # from header line with open(anatomical_file, 'r') as fi: header = fi.readline() region_mapping = {} for r in header.strip().split(","): i, region = r.split("=") region_mapping[int(i)] = region anatomical = np.genfromtxt(anatomical_file, skip_header=1) anatomical_names = np.array([region_mapping[a] for a in anatomical]) rois = recfunctions.merge_arrays((rois, anatomical_names), asrecarray=True, flatten=True) rois.dtype.names = rois.dtype.names[:-1] + ("region",) if ordered_regions: rois = np.sort(rois, order=['network', 'y']) params = dict(rois=rois[['x', 'y', 'z']], radius=rois['radius'], networks=rois['network'].astype(str), regions=rois['region'], description=fdescr) return Bunch(**params) def fetch_atlas_allen_2011(data_dir=None, url=None, resume=True, verbose=1): """Download and return file names for the Allen and MIALAB ICA atlas (dated 2011). The provided images are in MNI152 space. Parameters ---------- data_dir: str, optional directory where data should be downloaded and unpacked. url: str, optional url of file to download. resume: bool whether to resumed download of a partly-downloaded file. verbose: int verbosity level (0 means no message). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, keys are: - "maps": T-maps of all 75 unthresholded components. - "rsn28": T-maps of 28 RSNs included in E. Allen et al. - "networks": string list containing the names for the 28 RSNs. - "rsn_indices": dict[rsn_name] -> list of int, indices in the "maps" file of the 28 RSNs. - "comps": The aggregate ICA Components. - "description": details about the data release. References ---------- <NAME>, et al, "A baseline for the multivariate comparison of resting state networks," Frontiers in Systems Neuroscience, vol. 5, p. 12, 2011. Notes ----- Licence: unknown See http://mialab.mrn.org/data/index.html for more information on this dataset. """ if url is None: url = "https://osf.io/hrcku/download" dataset_name = "allen_rsn_2011" keys = ("maps", "rsn28", "comps") opts = {'uncompress': True} files = ["ALL_HC_unthresholded_tmaps.nii.gz", "RSN_HC_unthresholded_tmaps.nii.gz", "rest_hcp_agg__component_ica_.nii.gz"] labels = [('Basal Ganglia', [21]), ('Auditory', [17]), ('Sensorimotor', [7, 23, 24, 38, 56, 29]), ('Visual', [46, 64, 67, 48, 39, 59]), ('Default-Mode', [50, 53, 25, 68]), ('Attentional', [34, 60, 52, 72, 71, 55]), ('Frontal', [42, 20, 47, 49])] networks = [[name] * len(idxs) for name, idxs in labels] filenames = [(os.path.join('allen_rsn_2011', f), url, opts) for f in files] data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) sub_files = _fetch_files(data_dir, filenames, resume=resume, verbose=verbose) fdescr = _get_dataset_descr(dataset_name) params = [('description', fdescr), ('rsn_indices', labels), ('networks', networks)] params.extend(list(zip(keys, sub_files))) return Bunch(**dict(params)) def fetch_atlas_surf_destrieux(data_dir=None, url=None, resume=True, verbose=1): """Download and load Destrieux et al, 2010 cortical atlas. This atlas returns 76 labels per hemisphere based on sulco-gryal pattnerns as distributed with Freesurfer in fsaverage5 surface space. .. versionadded:: 0.3 Parameters ---------- data_dir: str, optional Path of the data directory. Use to force data storage in a non- standard location. Default: None url: str, optional Download URL of the dataset. Overwrite the default URL. resume: bool, optional (default True) If True, try resuming download if possible. verbose: int, optional (default 1) Defines the level of verbosity of the output. Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, contains: - "labels": list Contains region labels - "map_left": numpy.ndarray Index into 'labels' for each vertex on the left hemisphere of the fsaverage5 surface - "map_right": numpy.ndarray Index into 'labels' for each vertex on the right hemisphere of the fsaverage5 surface - "description": str Details about the dataset References ---------- Destrieux et al. (2010), Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53, 1-15. """ if url is None: url = "https://www.nitrc.org/frs/download.php/" dataset_name = 'destrieux_surface' fdescr = _get_dataset_descr(dataset_name) data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) # Download annot files, fsaverage surfaces and sulcal information annot_file = '%s.aparc.a2009s.annot' annot_url = url + '%i/%s.aparc.a2009s.annot' annot_nids = {'lh annot': 9343, 'rh annot': 9342} annots = [] for hemi in [('lh', 'left'), ('rh', 'right')]: annot = _fetch_files(data_dir, [(annot_file % (hemi[1]), annot_url % (annot_nids['%s annot' % hemi[0]], hemi[0]), {'move': annot_file % (hemi[1])})], resume=resume, verbose=verbose)[0] annots.append(annot) annot_left = nb.freesurfer.read_annot(annots[0]) annot_right = nb.freesurfer.read_annot(annots[1]) return Bunch(labels=annot_left[2], map_left=annot_left[0], map_right=annot_right[0], description=fdescr) def _separate_talairach_levels(atlas_img, labels, verbose=1): """Separate the multiple annotation levels in talairach raw atlas. The Talairach atlas has five levels of annotation: hemisphere, lobe, gyrus, tissue, brodmann area. They are mixed up in the original atlas: each label in the atlas corresponds to a 5-tuple containing, for each of these levels, a value or the string '*' (meaning undefined, background). This function disentangles the levels, and stores each on an octet in an int64 image (the level with most labels, ba, has 72 labels). This way, any subset of these levels can be accessed by applying a bitwise mask. In the created image, the least significant octet contains the hemisphere, the next one the lobe, then gyrus, tissue, and ba. Background is 0. The labels contain [('level name', ['labels', 'for', 'this', 'level' ...]), ...], where the levels are in the order mentionned above. The label '*' is replaced by 'Background' for clarity. """ labels = np.asarray(labels) if verbose: print( 'Separating talairach atlas levels: {}'.format(_TALAIRACH_LEVELS)) levels = [] new_img = np.zeros(atlas_img.shape, dtype=np.int64) for pos, level in enumerate(_TALAIRACH_LEVELS): if verbose: print(level) level_img = np.zeros(atlas_img.shape, dtype=np.int64) level_labels = {'*': 0} for region_nb, region in enumerate(labels[:, pos]): level_labels.setdefault(region, len(level_labels)) level_img[get_data(atlas_img) == region_nb] = level_labels[ region] # shift this level to its own octet and add it to the new image level_img <<= 8 * pos new_img |= level_img # order the labels so that image values are indices in the list of # labels for each level level_labels = list(list( zip(*sorted(level_labels.items(), key=lambda t: t[1])))[0]) # rename '*' -> 'Background' level_labels[0] = 'Background' levels.append((level, level_labels)) new_img = new_img_like(atlas_img, data=new_img) return new_img, levels def _get_talairach_all_levels(data_dir=None, verbose=1): """Get the path to Talairach atlas and labels The atlas is downloaded and the files are created if necessary. The image contains all five levels of the atlas, each encoded on 8 bits (least significant octet contains the hemisphere, the next one the lobe, then gyrus, tissue, and ba). The labels json file contains [['level name', ['labels', 'for', 'this', 'level' ...]], ...], where the levels are in the order mentionned above. """ data_dir = _get_dataset_dir( 'talairach_atlas', data_dir=data_dir, verbose=verbose) img_file = os.path.join(data_dir, 'talairach.nii') labels_file = os.path.join(data_dir, 'talairach_labels.json') if os.path.isfile(img_file) and os.path.isfile(labels_file): return img_file, labels_file atlas_url = 'http://www.talairach.org/talairach.nii' temp_dir = mkdtemp() try: temp_file = _fetch_files( temp_dir, [('talairach.nii', atlas_url, {})], verbose=verbose)[0] atlas_img = nb.load(temp_file, mmap=False) atlas_img = check_niimg(atlas_img) finally: shutil.rmtree(temp_dir) labels = atlas_img.header.extensions[0].get_content() labels = labels.strip().decode('utf-8').split('\n') labels = [l.split('.') for l in labels] new_img, level_labels = _separate_talairach_levels( atlas_img, labels, verbose=verbose) new_img.to_filename(img_file) with open(labels_file, 'w') as fp: json.dump(level_labels, fp) return img_file, labels_file def fetch_atlas_talairach(level_name, data_dir=None, verbose=1): """Download the Talairach atlas. .. versionadded:: 0.4.0 Parameters ---------- level_name : {'hemisphere', 'lobe', 'gyrus', 'tissue', 'ba'} Which level of the atlas to use: the hemisphere, the lobe, the gyrus, the tissue type or the Brodmann area. data_dir : str, optional (default=None) Path of the data directory. Used to force data storage in a specified location. verbose : int verbosity level (0 means no message). Returns ------- sklearn.datasets.base.Bunch Dictionary-like object, contains: - maps: 3D Nifti image, values are indices in the list of labels. - labels: list of strings. Starts with 'Background'. - description: a short description of the atlas and some references. References ---------- http://talairach.org/about.html#Labels `Lancaster JL, <NAME>, <NAME>, <NAME>, Freitas CS, <NAME>, <NAME>, <NAME>, <NAME>, Fox PT, "Automated Talairach Atlas labels for functional brain mapping". Human Brain Mapping 10:120-131, 2000.` `Lancaster JL, <NAME>, <NAME>, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC. Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5, 238-242, 1997.` """ if level_name not in _TALAIRACH_LEVELS: raise ValueError('"level_name" should be one of {}'.format( _TALAIRACH_LEVELS)) position = _TALAIRACH_LEVELS.index(level_name) atlas_file, labels_file = _get_talairach_all_levels(data_dir, verbose) atlas_img = check_niimg(atlas_file) with open(labels_file) as fp: labels = json.load(fp)[position][1] level_data = (get_data(atlas_img) >> 8 * position) & 255 atlas_img = new_img_like(atlas_img, data=level_data) description = _get_dataset_descr( 'talairach_atlas').decode('utf-8').format(level_name) return Bunch(maps=atlas_img, labels=labels, description=description) def fetch_atlas_pauli_2017(version='prob', data_dir=None, verbose=1): """Download the Pauli et al. (2017) atlas with in total 12 subcortical nodes. Parameters ---------- version: str, optional (default='prob') Which version of the atlas should be download. This can be 'prob' for the probabilistic atlas or 'det' for the deterministic atlas. data_dir : str, optional (default=None) Path of the data directory. Used to force data storage in a specified location. verbose : int verbosity level (0 means no message). Returns ------- sklearn.datasets.base.Bunch Dictionary-like object, contains: - maps: 3D Nifti image, values are indices in the list of labels. - labels: list of strings. Starts with 'Background'. - description: a short description of the atlas and some references. References ---------- https://osf.io/r2hvk/ `<NAME>., <NAME>., & <NAME>. (2018). A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Scientific Data, 5, 180063-13. http://doi.org/10.1038/sdata.2018.63`` """ if version == 'prob': url_maps = 'https://osf.io/w8zq2/download' filename = 'pauli_2017_labels.nii.gz' elif version == 'labels': url_maps = 'https://osf.io/5mqfx/download' filename = 'pauli_2017_prob.nii.gz' else: raise NotImplementedError('{} is no valid version for '.format(version) + \ 'the Pauli atlas') url_labels = 'https://osf.io/6qrcb/download' dataset_name = 'pauli_2017' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) files = [(filename, url_maps, {'move':filename}), ('labels.txt', url_labels, {'move':'labels.txt'})] atlas_file, labels = _fetch_files(data_dir, files) labels = np.loadtxt(labels, dtype=str)[:, 1].tolist() fdescr = _get_dataset_descr(dataset_name) return Bunch(maps=atlas_file, labels=labels, description=fdescr) def fetch_atlas_schaefer_2018(n_rois=400, yeo_networks=7, resolution_mm=1, data_dir=None, base_url=None, resume=True, verbose=1): """Download and return file names for the Schaefer 2018 parcellation .. versionadded:: 0.5.1 The provided images are in MNI152 space. Parameters ---------- n_rois: int number of regions of interest {100, 200, 300, 400 (default), 500, 600, 700, 800, 900, 1000} yeo_networks: int ROI annotation according to yeo networks {7 (default), 17} resolution_mm: int Spatial resolution of atlas image in mm {1 (default), 2} data_dir: string directory where data should be downloaded and unpacked. base_url: string base_url of files to download (None results in default base_url). resume: bool whether to resumed download of a partly-downloaded file. verbose: int verbosity level (0 means no message). Returns ------- data: sklearn.datasets.base.Bunch Dictionary-like object, contains: - maps: 3D Nifti image, values are indices in the list of labels. - labels: ROI labels including Yeo-network annotation,list of strings. - description: A short description of the atlas and some references. References ---------- For more information on this dataset, see https://github.com/ThomasYeoLab/CBIG/tree/v0.14.3-Update_Yeo2011_Schaefer2018_labelname/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations <NAME>, <NAME>, <NAME>, Laumann TO, Zuo XN, <NAME>, <NAME>, Yeo BTT. Local-Global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI, Cerebral Cortex, 29:3095-3114, 2018. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, <NAME>, Hollinshead M, Roffman JL, Smoller JW, Zollei L., <NAME>R, <NAME>, <NAME>, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125-65, 2011. Licence: MIT. Notes ----- Release v0.14.3 of the Schaefer 2018 parcellation is used by default. Versions prior to v0.14.3 are known to contain erroneous region label names. For more details, see https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/Updates/Update_20190916_README.md """ valid_n_rois = list(range(100, 1100, 100)) valid_yeo_networks = [7, 17] valid_resolution_mm = [1, 2] if n_rois not in valid_n_rois: raise ValueError("Requested n_rois={} not available. Valid " "options: {}".format(n_rois, valid_n_rois)) if yeo_networks not in valid_yeo_networks: raise ValueError("Requested yeo_networks={} not available. Valid " "options: {}".format(yeo_networks,valid_yeo_networks)) if resolution_mm not in valid_resolution_mm: raise ValueError("Requested resolution_mm={} not available. Valid " "options: {}".format(resolution_mm, valid_resolution_mm) ) if base_url is None: base_url = ('https://raw.githubusercontent.com/ThomasYeoLab/CBIG/' 'v0.14.3-Update_Yeo2011_Schaefer2018_labelname/' 'stable_projects/brain_parcellation/' 'Schaefer2018_LocalGlobal/Parcellations/MNI/' ) files = [] labels_file_template = 'Schaefer2018_{}Parcels_{}Networks_order.txt' img_file_template = ('Schaefer2018_{}Parcels_' '{}Networks_order_FSLMNI152_{}mm.nii.gz') for f in [labels_file_template.format(n_rois, yeo_networks), img_file_template.format(n_rois, yeo_networks, resolution_mm)]: files.append((f, base_url + f, {})) dataset_name = 'schaefer_2018' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) labels_file, atlas_file = _fetch_files(data_dir, files, resume=resume, verbose=verbose) labels = np.genfromtxt(labels_file, usecols=1, dtype="S", delimiter="\t") fdescr = _get_dataset_descr(dataset_name) return Bunch(maps=atlas_file, labels=labels, description=fdescr) ```
{ "source": "johanneswilm/coveralls-python-action", "score": 3 }
#### File: coveralls-python-action/tests/test_entrypoint.py ```python import signal from unittest import mock import pytest from coveralls.api import CoverallsException import entrypoint def patch_os_envirion(environ): return mock.patch.dict("os.environ", environ, clear=True) def patch_coveralls_wear(): return mock.patch("entrypoint.Coveralls.wear") def patch_log(): return mock.patch("entrypoint.log") def patch_sys_argv(argv): return mock.patch("sys.argv", argv) def patch_requests_post(json_response=None): new_mock = mock.Mock() if json_response: new_mock.return_value.json.return_value = json_response return mock.patch("entrypoint.requests.post", new_mock) class TestEntryPoint: def test_main_no_token(self): """Argument `--github-token` is required.""" argv = ["src/entrypoint.py"] with patch_sys_argv(argv), pytest.raises(SystemExit) as ex_info: entrypoint.main() assert ex_info.value.args == (signal.SIGINT.value,) def test_main(self): argv = ["src/entrypoint.py", "--github-token", "TOKEN"] with patch_sys_argv(argv), mock.patch( "entrypoint.run_coveralls" ) as m_run_coveralls: entrypoint.main() assert m_run_coveralls.call_args_list == [ mock.call("TOKEN", False, False, False) ] def test_main_flag_name(self): argv = ["src/entrypoint.py", "--github-token", "TOKEN", "--flag-name", "FLAG"] with patch_sys_argv(argv), mock.patch( "entrypoint.run_coveralls" ) as m_run_coveralls: entrypoint.main() assert m_run_coveralls.call_args_list == [ mock.call("TOKEN", False, "FLAG", False) ] def test_main_base_path(self): argv = ["src/entrypoint.py", "--github-token", "TOKEN", "--base-path", "SRC"] with patch_sys_argv(argv), mock.patch( "entrypoint.run_coveralls" ) as m_run_coveralls: entrypoint.main() assert m_run_coveralls.call_args_list == [ mock.call("TOKEN", False, False, "SRC") ] def test_main_parallel_finished(self): argv = ["src/entrypoint.py", "--github-token", "TOKEN", "--parallel-finished"] with patch_sys_argv(argv), mock.patch( "entrypoint.post_webhook" ) as m_post_webhook: entrypoint.main() assert m_post_webhook.call_args_list == [mock.call("TOKEN")] def test_try_main(self): with mock.patch( "entrypoint.main", side_effect=Exception ) as m_main, pytest.raises(SystemExit) as ex_info: entrypoint.try_main() assert m_main.call_args_list == [mock.call()] assert ex_info.value.args == (entrypoint.ExitCode.FAILURE,) def test_run_coveralls_github_token(self): """Simple case when Coveralls.wear() returns some results.""" url = "https://coveralls.io/jobs/1234" with patch_coveralls_wear() as m_wear, patch_log() as m_log: m_wear.return_value = { "message": "Job ##12.34", "url": url, } entrypoint.run_coveralls(repo_token="TOKEN") assert m_wear.call_args_list == [mock.call()] assert m_log.method_calls == [ mock.call.info("Trying submitting coverage with service_name: github..."), mock.call.debug( "Patching os.environ with: " "{'COVERALLS_REPO_TOKEN': 'TOKEN', 'COVERALLS_PARALLEL': ''}" ), mock.call.debug(m_wear.return_value), mock.call.info(url), ] def test_run_coveralls_wear_error_once(self): """On Coveralls.wear() error we should try another `service_name`.""" url = "https://coveralls.io/jobs/1234" side_effect = ( CoverallsException("Error"), {"message": "Job ##12.34", "url": url}, ) with patch_coveralls_wear() as m_wear, patch_log() as m_log: m_wear.side_effect = side_effect entrypoint.run_coveralls(repo_token="TOKEN") assert m_wear.call_args_list == [mock.call(), mock.call()] assert m_log.method_calls == [ mock.call.info("Trying submitting coverage with service_name: github..."), mock.call.debug( "Patching os.environ with: " "{'COVERALLS_REPO_TOKEN': 'TOKEN', 'COVERALLS_PARALLEL': ''}" ), mock.call.warning("Failed submitting coverage with service_name: github"), mock.call.warning(side_effect[0]), mock.call.info( "Trying submitting coverage with service_name: github-actions..." ), mock.call.debug( "Patching os.environ with: " "{'COVERALLS_REPO_TOKEN': 'TOKEN', 'COVERALLS_PARALLEL': ''}" ), mock.call.debug(side_effect[1]), mock.call.info(url), ] def test_run_coveralls_wear_error_twice(self): """Exits with error code if Coveralls.wear() fails twice.""" side_effect = ( CoverallsException("Error 1"), CoverallsException("Error 2"), ) with patch_coveralls_wear() as m_wear, pytest.raises(SystemExit) as ex_info: m_wear.side_effect = side_effect entrypoint.run_coveralls(repo_token="TOKEN") assert ex_info.value.args == (entrypoint.ExitCode.FAILURE,) def test_post_webhook(self): """ Tests different uses cases: 1) default, no environment variable 2) `GITHUB_RUN_ID` is set """ repo_token = "TOKEN" json_response = {"done": True} # 1) default, no environment variable environ = {} with patch_requests_post(json_response) as m_post, patch_os_envirion(environ): entrypoint.post_webhook(repo_token) assert m_post.call_args_list == [ mock.call( "https://coveralls.io/webhook", json={ "repo_token": "TOKEN", "repo_name": None, "payload": {"build_num": None, "status": "done"}, }, ) ] # 2) `GITHUB_RUN_ID` and `GITHUB_REPOSITORY` are set environ = { "GITHUB_RUN_ID": "845347868344", "GITHUB_REPOSITORY": "AndreMiras/coveralls-python-action", } with patch_requests_post(json_response) as m_post, patch_os_envirion(environ): entrypoint.post_webhook(repo_token) assert m_post.call_args_list == [ mock.call( "https://coveralls.io/webhook", json={ "repo_token": "TOKEN", "repo_name": "AndreMiras/coveralls-python-action", "payload": { "build_num": "845347868344", "status": "done", }, }, ) ] def test_post_webhook_error(self): """Coveralls.io json error response should raise an exception.""" repo_token = "TOKEN" json_response = {"error": "Invalid repo token"} # 1) default, no environment variable environ = {} with patch_requests_post(json_response) as m_post, patch_os_envirion( environ ), pytest.raises(AssertionError) as ex_info: entrypoint.post_webhook(repo_token) assert m_post.call_args_list == [ mock.call( "https://coveralls.io/webhook", json={ "repo_token": "TOKEN", "repo_name": None, "payload": {"build_num": None, "status": "done"}, }, ) ] assert ex_info.value.args == (json_response,) @pytest.mark.parametrize( "value,expected", [ (False, False), ("false", False), ("f", False), ("0", False), ("no", False), ("n", False), (True, True), ("true", True), ("t", True), ("1", True), ("yes", True), ("y", True), ], ) def test_str_to_bool(self, value, expected): """Possible recognised values.""" assert entrypoint.str_to_bool(value) is expected @pytest.mark.parametrize("value", ["", "yesn't"]) def test_str_to_bool_value_error(self, value): """Other unrecognised string values raise a `ValueError`.""" with pytest.raises(ValueError) as ex_info: entrypoint.str_to_bool(value) assert ex_info.value.args == (f"{value} is not a valid boolean value",) @pytest.mark.parametrize("value", [None, 0]) def test_str_to_bool_attribute_error(self, value): """Other unrecognised non-string values raise an `AttributeError`.""" with pytest.raises(AttributeError) as ex_info: entrypoint.str_to_bool(value) assert ex_info.value.args[0].endswith(" object has no attribute 'lower'") ```
{ "source": "johanneswilm/django-binary-database-files", "score": 2 }
#### File: management/commands/database_files_dump.py ```python import os from optparse import make_option from django.core.management.base import BaseCommand, CommandError from binary_database_files.models import File class Command(BaseCommand): option_list = BaseCommand.option_list + ( # make_option('-w', '--overwrite', action='store_true', # dest='overwrite', default=False, # help='If given, overwrites any existing files.'), ) help = 'Dumps all files in the database referenced by FileFields ' + \ 'or ImageFields onto the filesystem in the directory specified by ' + \ 'MEDIA_ROOT.' def handle(self, *args, **options): File.dump_files(verbose=True) ```
{ "source": "johanneswilm/rapidsms", "score": 2 }
#### File: backends/vumi/views.py ```python import json import logging from django.http import HttpResponse from rapidsms.backends.vumi.forms import VumiForm from rapidsms.backends.http.views import BaseHttpBackendView logger = logging.getLogger(__name__) class VumiBackendView(BaseHttpBackendView): """ Backend view for handling inbound SMSes from Vumi (http://vumi.org/) """ http_method_names = ['post'] form_class = VumiForm def get_form_kwargs(self): """Load JSON POST data.""" kwargs = super(VumiBackendView, self).get_form_kwargs() try: kwargs['data'] = json.loads(self.request.body) except ValueError: logger.exception("Failed to parse JSON from Vumi.") return kwargs def form_valid(self, form): super(VumiBackendView, self).form_valid(form) # return 200 for Vumi return HttpResponse('') ``` #### File: handlers/handlers/keyword.py ```python import re from django.core.exceptions import ObjectDoesNotExist from ..exceptions import HandlerError from .base import BaseHandler class KeywordHandler(BaseHandler): """ This handler type can be subclassed to create simple keyword-based handlers. When a message is received, it is checked against the mandatory ``keyword`` attribute (a regular expression) for a prefix match. For example:: >>> class AbcHandler(KeywordHandler): ... keyword = "abc" ... ... def help(self): ... self.respond("Here is some help.") ... ... def handle(self, text): ... self.respond("You said: %s." % text) If the keyword is matched and followed by some text, the ``handle`` method is called:: >>> AbcHandler.test("abc waffles") ['You said: waffles.'] If *just* the keyword is matched, the ``help`` method is called:: >>> AbcHandler.test("abc") ['Here is some help.'] All other messages are silently ignored (as usual), to allow other apps or handlers to catch them. """ #: A string specifying a regular expression matched against the #: beginning of the message. Not case sensitive. keyword = None def help(self): """Called when the keyword matches but no text follows""" raise NotImplementedError def handle(self, text): """Called when the keyword matches and text follows :param text: The text that follows the keyword. Any whitespace between the keyword and the text is not included. """ raise NotImplementedError @classmethod def _keyword(cls): if hasattr(cls, "keyword") and cls.keyword: # The 'keyword' is inside non-grouping parentheses so that a # user could set the keyword to a regex - e.g. # keyword = r'one|two|three' prefix = r""" ^\s* # discard leading whitespace (?:{keyword}) # require the keyword or regex [\s,;:]* # consume any whitespace , ; or : ([^\s,;:].*)? # capture rest of line if any, starting # with the first non-whitespace $ # match all the way to the end """.format(keyword=cls.keyword) return re.compile(prefix, re.IGNORECASE|re.VERBOSE) raise HandlerError('KeywordHandler must define a keyword.') @classmethod def dispatch(cls, router, msg): keyword = cls._keyword() match = keyword.match(msg.text) if match is None: return False # spawn an instance of this handler, and stash # the low(er)-level router and message object inst = cls(router, msg) # if any non-whitespace content was send after the keyword, send # it along to the handle method. the instance can always find # the original text via self.msg if it really needs it. text = match.group(1) if text is not None and text.strip() != "": try: inst.handle(text) # special case: if an object was expected but not found, # return the (rather appropriate) "%s matching query does # not exist." message. this can, of course, be overridden by # catching the exception within the ``handle`` method. except ObjectDoesNotExist, err: return inst.respond_error( unicode(err)) # another special case: if something was miscast to an int # (it was probably a string from the ``text``), return a # more friendly (and internationalizable) error. except ValueError, err: p = r"^invalid literal for int\(\) with base (\d+?): '(.+?)'$" m = re.match(p, unicode(err)) # allow other valueerrors to propagate. if m is None: raise return inst.respond_error( "Not a valid number: %(string)s" % dict( string=m.group(2))) # if we received _just_ the keyword, with # no content, some help should be sent back else: inst.help() return True ``` #### File: contrib/registration/tests.py ```python from StringIO import StringIO from django.http import Http404, HttpRequest, HttpResponseRedirect, QueryDict from django.test import TestCase from mock import Mock, patch from rapidsms.models import Connection, Contact from rapidsms.tests.harness import CreateDataMixin, LoginMixin from rapidsms.tests.scripted import TestScript import rapidsms.contrib.registration.views as views RAPIDSMS_HANDLERS = [ "rapidsms.contrib.registration.handlers.language.LanguageHandler", "rapidsms.contrib.registration.handlers.register.RegisterHandler", ] class TestRegister(TestScript): handlers = RAPIDSMS_HANDLERS def testRegister(self): self.assertInteraction(""" 8005551212 > register as someuser 8005551212 < Thank you for registering, as someuser! """) def testLang(self): self.assertInteraction(""" 8005551212 > lang english 8005551212 < %s 8005551212 > register as someuser 8005551212 < Thank you for registering, as someuser! 8005551212 > lang english 8005551212 < I will speak to you in English. 8005551212 > lang klingon 8005551212 < Sorry, I don't speak "klingon". """ % ("You must JOIN or REGISTER yourself before you can set " + "your language preference.")) def testHelp(self): self.assertInteraction(""" 8005551212 > lang 8005551212 < To set your language, send LANGUAGE <CODE> 8005551212 > register 8005551212 < To register, send JOIN <NAME> """) class TestViews(TestCase, CreateDataMixin, LoginMixin): def setUp(self): # Make some contacts self.contacts = [self.create_contact() for i in range(2)] self.backend = self.create_backend() # Give the first one some connections for i in range(2): self.create_connection(data={'contact': self.contacts[0]}) def test_registration(self): # The registration view calls render with a context that has a # contacts_table that has the contacts in its data request = HttpRequest() request.GET = QueryDict('') self.login() request.user = self.user with patch('rapidsms.contrib.registration.views.render') as render: views.registration(request) context = render.call_args[0][2] table = context["contacts_table"] self.assertEqual(len(self.contacts), len(list(table.data.queryset))) def test_registration_render(self): # render actually works (django_tables2 and all) request = HttpRequest() request.GET = QueryDict('') self.login() request.user = self.user retval = views.registration(request) self.assertEqual(200, retval.status_code) def test_contact_existing_404(self): # Trying to edit a non-existing contact raises a 404 with self.assertRaises(Http404): views.contact(Mock(), pk=27) def test_contact_existing(self): # GET on contact form with valid pk renders template with that contact contact = self.contacts[0] connection = contact.default_connection with patch('rapidsms.contrib.registration.views.render') as render: request = Mock(method="GET") self.login() request.user = self.user views.contact(request, pk=contact.pk) context = render.call_args[0][2] self.assertEqual(contact.pk, context['contact'].pk) form = context['contact_form'] data = form.initial self.assertEqual(contact.name, data['name']) self.assertEqual(contact.pk, form.instance.pk) formset = context['connection_formset'] forms = formset.forms instances = [f.instance for f in forms] # Connection should be in there self.assertIn(connection, instances) # Should be 1 more form than we have connections self.assertEqual(len(forms), 1 + len(contact.connection_set.all())) def test_contact_get(self): # GET on contact form with no pk allows creating new one with patch('rapidsms.contrib.registration.views.render') as render: request = Mock(method="GET") self.login() request.user = self.user views.contact(request) context = render.call_args[0][2] # ModelForms create a new unsaved instance self.assertIsNotNone(context['contact_form'].instance) self.assertTrue(context['contact_form'].instance.is_anonymous) self.assertEqual(1, len(context['connection_formset'].forms)) def test_contact_update(self): # POST to contact view updates the contact and connections contact = self.contacts[0] data = { u'name': u'<NAME>', u'language': u'wxyz', u'submit': u'Save Contact', u'connection_set-0-id': u'2', u'connection_set-0-DELETE': u'', u'connection_set-0-backend': u'1', u'connection_set-0-contact': u'1', u'connection_set-0-identity': u'4567', u'connection_set-1-id': u'', u'connection_set-1-contact': u'1', u'connection_set-1-identity': u'', u'connection_set-1-backend': u'', u'connection_set-INITIAL_FORMS': u'1', u'connection_set-TOTAL_FORMS': u'2', u'connection_set-MAX_NUM_FORMS': u'10', } with patch('rapidsms.contrib.registration.views.render'): request = Mock(method="POST", POST=data) self.login() request.user = self.user retval = views.contact(request, pk=contact.pk) self.assertTrue(isinstance(retval, HttpResponseRedirect)) self.assertEqual(302, retval.status_code) new_contact = Contact.objects.get(pk=contact.pk) self.assertEqual(data['name'], new_contact.name) self.assertEqual(data['language'], new_contact.language) identities = [c.identity for c in contact.connection_set.all()] self.assertIn(data['connection_set-0-identity'], identities) def test_contact_update_add_connection(self): # POST to contact view can add a connection contact = self.contacts[0] data = { u'name': u'<NAME>', u'language': u'wxyz', u'submit': u'Save Contact', u'connection_set-0-id': u'2', u'connection_set-0-DELETE': u'', u'connection_set-0-backend': u'1', u'connection_set-0-contact': u'1', u'connection_set-0-identity': u'4567', u'connection_set-1-id': u'', u'connection_set-1-contact': u'1', u'connection_set-1-identity': u'987654', u'connection_set-1-backend': u'1', u'connection_set-INITIAL_FORMS': u'1', u'connection_set-TOTAL_FORMS': u'2', u'connection_set-MAX_NUM_FORMS': u'10', } identities = [c.identity for c in contact.connection_set.all()] self.assertNotIn(data['connection_set-1-identity'], identities) with patch('rapidsms.contrib.registration.views.render') as render: request = Mock(method="POST", POST=data) self.login() request.user = self.user retval = views.contact(request, pk=contact.pk) self.assertTrue(isinstance(retval, HttpResponseRedirect)) self.assertEqual(302, retval.status_code) render.assert_called() new_contact = Contact.objects.get(pk=contact.pk) self.assertEqual(data['name'], new_contact.name) self.assertEqual(data['language'], new_contact.language) identities = [c.identity for c in contact.connection_set.all()] self.assertIn(data['connection_set-1-identity'], identities) def test_contact_delete(self): # Submitting with Delete button deletes the contact contact = self.contacts[0] data = { u'name': u'<NAME>', u'language': u'wxyz', u'delete_contact': u"dontcare", u'connection_set-0-id': u'2', u'connection_set-0-DELETE': u'', u'connection_set-0-backend': u'1', u'connection_set-0-contact': u'1', u'connection_set-0-identity': u'4567', u'connection_set-1-id': u'', u'connection_set-1-contact': u'1', u'connection_set-1-identity': u'987654', u'connection_set-1-backend': u'1', u'connection_set-INITIAL_FORMS': u'1', u'connection_set-TOTAL_FORMS': u'2', u'connection_set-MAX_NUM_FORMS': u'10', } with patch('rapidsms.contrib.registration.views.render'): request = Mock(method="POST", POST=data) self.login() request.user = self.user retval = views.contact(request, pk=contact.pk) self.assertTrue(isinstance(retval, HttpResponseRedirect)) self.assertEqual(302, retval.status_code) self.assertFalse(Contact.objects.filter(pk=contact.pk).exists()) def test_contact_create(self): # POST with no existing contact creates a new one name = u'<NAME>' data = { u'name': name, u'language': u'wxyz', u'submit': u'Save Contact', u'connection_set-0-id': u'', u'connection_set-0-DELETE': u'', u'connection_set-0-backend': u'1', u'connection_set-0-contact': u'', u'connection_set-0-identity': u'4567', u'connection_set-1-id': u'', u'connection_set-1-contact': u'', u'connection_set-1-identity': u'', u'connection_set-1-backend': u'', u'connection_set-INITIAL_FORMS': u'0', u'connection_set-TOTAL_FORMS': u'2', u'connection_set-MAX_NUM_FORMS': u'10', } with patch('rapidsms.contrib.registration.views.render'): request = Mock(method="POST", POST=data) self.login() request.user = self.user retval = views.contact(request) self.assertTrue(isinstance(retval, HttpResponseRedirect)) self.assertEqual(302, retval.status_code) Contact.objects.get(name=name) def test_delete_connection(self): # POST can delete one of the connections contact = self.create_contact() # Give it two connections self.create_connection(data={'contact': contact}) self.create_connection(data={'contact': contact}) # Submit form filled out to delete a connection connections = contact.connection_set.all() data = { u'name': u'<NAME>', u'language': u'en', u'submit': u"Save Contact", u'connection_set-0-id': connections[0].pk, u'connection_set-0-identity': connections[0].identity, u'connection_set-0-backend': connections[0].backend.pk, u'connection_set-0-contact': contact.pk, u'connection_set-1-id': connections[1].pk, u'connection_set-1-identity': connections[1].identity, u'connection_set-1-backend': connections[1].backend.pk, u'connection_set-1-contact': contact.pk, u'connection_set-1-DELETE': u"connection_set-1-DELETE", u'connection_set-2-id': u'', u'connection_set-2-backend': u'', u'connection_set-2-identity': u'', u'connection_set-2-contact': u'', u'connection_set-TOTAL_FORMS': u'3', u'connection_set-MAX_NUM_FORMS': u'10', u'connection_set-INITIAL_FORMS': u'2', } old_pk = connections[1].pk with patch('rapidsms.contrib.registration.views.render'): request = Mock(method="POST", POST=data) self.login() request.user = self.user retval = views.contact(request, pk=contact.pk) self.assertTrue(isinstance(retval, HttpResponseRedirect)) self.assertEqual(302, retval.status_code) self.assertFalse(Connection.objects.filter(pk=old_pk).exists()) def test_add_connection(self): # POST can add a new connection contact = self.create_contact() # Give it ONE connection self.create_connection(data={'contact': contact}) # Submit form filled out to add another connection connections = contact.connection_set.all() data = { u'name': u'<NAME>', u'language': u'en', u'submit': u"Save Contact", u'connection_set-0-id': connections[0].pk, u'connection_set-0-identity': connections[0].identity, u'connection_set-0-backend': connections[0].backend.pk, u'connection_set-0-contact': contact.pk, u'connection_set-1-id': u'', u'connection_set-1-identity': 'identity', u'connection_set-1-backend': connections[0].backend.pk, u'connection_set-1-contact': contact.pk, u'connection_set-TOTAL_FORMS': u'2', u'connection_set-MAX_NUM_FORMS': u'10', u'connection_set-INITIAL_FORMS': u'1', } with patch('rapidsms.contrib.registration.views.render'): request = Mock(method="POST", POST=data) self.login() request.user = self.user retval = views.contact(request, pk=contact.pk) self.assertTrue(isinstance(retval, HttpResponseRedirect)) self.assertEqual(302, retval.status_code) self.assertEqual(2, Connection.objects.filter(contact=contact).count()) conn = Connection.objects.get(identity='identity', contact=contact) self.assertEqual(connections[0].backend, conn.backend) class TestBulkAdd(TestCase, CreateDataMixin, LoginMixin): def test_bulk_get(self): # Just make sure the page loads with patch('rapidsms.contrib.registration.views.render') as render: request = Mock(method="GET") views.contact_bulk_add(request) render.assert_called() def test_bulk_add(self): # We can upload a CSV file to create contacts & connections backend1 = self.create_backend() backend2 = self.create_backend() # Include a unicode name to make sure that works uname = u'Name 1 ḀḂḈ ᵺ' data = [ (uname, backend1.name, u'11111'), (u'Name 2', backend2.name, u'22222'), (u'Name 3', backend1.name, u'33333'), (u'Name 4', backend2.name, u'44444'), ] # Create test file testfile = u"\n".join([u",".join(parts) for parts in data]) + u"\n" testfile_data = testfile.encode('utf-8') with patch('rapidsms.contrib.registration.views.render') as render: request = Mock(method="POST", FILES={'bulk': StringIO(testfile_data)}) self.login() request.user = self.user retval = views.contact_bulk_add(request) if not isinstance(retval, HttpResponseRedirect): context = render.call_args[0][2] self.fail(context['bulk_form'].errors + context['csv_errors']) self.assertTrue(isinstance(retval, HttpResponseRedirect)) self.assertEqual(302, retval.status_code) contacts = Contact.objects.all() self.assertEqual(4, contacts.count()) names = [contact.name for contact in contacts] self.assertIn(uname, names) def test_bulk_add_no_lines(self): testfile = "" with patch('rapidsms.contrib.registration.views.render') as render: request = Mock(method="POST", FILES={'bulk': StringIO(testfile)}) self.login() request.user = self.user retval = views.contact_bulk_add(request) self.assertFalse(isinstance(retval, HttpResponseRedirect)) context = render.call_args[0][2] self.assertIn('csv_errors', context) self.assertEqual('No contacts found in file', context['csv_errors']) def test_bulk_add_bad_line(self): testfile = "Field 1, field 2\n" with patch('rapidsms.contrib.registration.views.render') as render: request = Mock(method="POST", FILES={'bulk': StringIO(testfile)}) self.login() request.user = self.user retval = views.contact_bulk_add(request) self.assertFalse(isinstance(retval, HttpResponseRedirect)) context = render.call_args[0][2] self.assertIn('csv_errors', context) self.assertEqual('Could not unpack line 1', context['csv_errors']) def test_bulk_add_bad_backend(self): testfile = "Field 1, no_such_backend, 123\n" with patch('rapidsms.contrib.registration.views.render') as render: request = Mock(method="POST", FILES={'bulk': StringIO(testfile)}) self.login() request.user = self.user retval = views.contact_bulk_add(request) self.assertFalse(isinstance(retval, HttpResponseRedirect)) context = render.call_args[0][2] self.assertIn('csv_errors', context) self.assertEqual("Could not find Backend. Line: 1", context['csv_errors']) ```
{ "source": "johannEze/PROV_ESDF", "score": 2 }
#### File: PROV_ESDF/tests/test_dot.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) import unittest # Skipping SVG tests if pydot is not installed from pkgutil import find_loader if find_loader("pydot") is not None: from prov.dot import prov_to_dot from prov.tests.test_model import AllTestsBase from prov.tests.utility import DocumentBaseTestCase class SVGDotOutputTest(DocumentBaseTestCase, AllTestsBase): """ One-way output SVG with prov.dot to exercise its code """ MIN_SVG_SIZE = 850 def do_tests(self, prov_doc, msg=None): dot = prov_to_dot(prov_doc) svg_content = dot.create(format="svg") # Very naive check of the returned SVG content as we have no way to check the graphical content self.assertGreater( len(svg_content), self.MIN_SVG_SIZE, "The size of the generated SVG content should be greater than %d bytes" % self.MIN_SVG_SIZE ) if __name__ == '__main__': unittest.main() ```
{ "source": "johannfaouzi/tslearn", "score": 3 }
#### File: docs/examples/plot_barycenters.py ```python import numpy import matplotlib.pyplot as plt from tslearn.barycenters import \ euclidean_barycenter, \ dtw_barycenter_averaging, \ dtw_barycenter_averaging_subgradient, \ softdtw_barycenter from tslearn.datasets import CachedDatasets # fetch the example data set numpy.random.seed(0) X_train, y_train, _, _ = CachedDatasets().load_dataset("Trace") X = X_train[y_train == 2] length_of_sequence = X.shape[1] def plot_helper(barycenter): # plot all points of the data set for series in X: plt.plot(series.ravel(), "k-", alpha=.2) # plot the given barycenter of them plt.plot(barycenter.ravel(), "r-", linewidth=2) # plot the four variants with the same number of iterations and a tolerance of # 1e-3 where applicable ax1 = plt.subplot(4, 1, 1) plt.title("Euclidean barycenter") plot_helper(euclidean_barycenter(X)) plt.subplot(4, 1, 2, sharex=ax1) plt.title("DBA (vectorized version of Petitjean's EM)") plot_helper(dtw_barycenter_averaging(X, max_iter=50, tol=1e-3)) plt.subplot(4, 1, 3, sharex=ax1) plt.title("DBA (subgradient descent approach)") plot_helper(dtw_barycenter_averaging_subgradient(X, max_iter=50, tol=1e-3)) plt.subplot(4, 1, 4, sharex=ax1) plt.title("Soft-DTW barycenter ($\gamma$=1.0)") plot_helper(softdtw_barycenter(X, gamma=1., max_iter=50, tol=1e-3)) # clip the axes for better readability ax1.set_xlim([0, length_of_sequence]) # show the plot(s) plt.tight_layout() plt.show() ```
{ "source": "johannfrias/billboard-charts", "score": 3 }
#### File: billboard-charts/tests/test_digital_albums.py ```python import json import os import unittest import billboard from utils import get_test_dir class TestCurrentDigitalAlbums(unittest.TestCase): """Checks that the ChartData object for the current Digital Albums chart has entries and instance variables that are valid and reasonable. Does not test whether the data is actually correct. """ def setUp(self): self.chart = billboard.ChartData('digital-albums') def test_date(self): self.assertIsNotNone(self.chart.date) def test_ranks(self): ranks = list(entry.rank for entry in self.chart) self.assertEqual(ranks, list(range(1, 26))) def test_entries_validity(self): self.assertEqual(len(self.chart), 25) for entry in self.chart: self.assertGreater(len(entry.title), 0) self.assertGreater(len(entry.artist), 0) self.assertTrue(1 <= entry.peakPos <= 100) self.assertTrue(0 <= entry.lastPos <= 100) self.assertGreaterEqual(entry.weeks, 0) # Redundant because of test_ranks self.assertTrue(1 <= entry.rank <= 25) self.assertIsInstance(entry.isNew, bool) def test_entries_consistency(self): for entry in self.chart: if entry.isNew: self.assertEqual(entry.lastPos, 0) def test_json(self): self.assertTrue(json.loads(self.chart.json())) for entry in self.chart: self.assertTrue(json.loads(entry.json())) class TestHistoricalDigitalAlbums(TestCurrentDigitalAlbums): """Checks that the ChartData object for a previous week's Digital Albums chart has entries and instance variables that are valid and reasonable. Also compares the chart data against a previously downloaded "reference" version. This comparison is done based on the string representation; it excludes attributes like peakPos and weeks, which can change over time. """ def setUp(self): self.chart = billboard.ChartData('digital-albums', date='2017-03-04') def test_date(self): self.assertEqual(self.chart.date, '2017-03-04') self.assertEqual(self.chart.previousDate, '2017-02-25') self.assertEqual(self.chart.nextDate, '2017-03-11') def test_entries_correctness(self): reference_path = os.path.join(get_test_dir(), '2017-03-04-digital-albums.txt') with open(reference_path) as reference: self.assertEqual(str(self.chart), reference.read()) ``` #### File: billboard-charts/tests/test_hot_100.py ```python import json import os import unittest import billboard from utils import get_test_dir class TestCurrentHot100(unittest.TestCase): """Checks that the ChartData object for the current Hot 100 chart has entries and instance variables that are valid and reasonable. Does not test whether the data is actually correct. """ def setUp(self): self.chart = billboard.ChartData('hot-100') def test_date(self): self.assertIsNotNone(self.chart.date) def test_ranks(self): ranks = list(entry.rank for entry in self.chart) self.assertEqual(ranks, list(range(1, 101))) def test_entries_validity(self): self.assertEqual(len(self.chart), 100) for entry in self.chart: self.assertGreater(len(entry.title), 0) self.assertGreater(len(entry.artist), 0) self.assertTrue(1 <= entry.peakPos <= 100) self.assertTrue(0 <= entry.lastPos <= 100) self.assertGreaterEqual(entry.weeks, 0) # Redundant because of test_ranks self.assertTrue(1 <= entry.rank <= 100) self.assertIsInstance(entry.isNew, bool) def test_entries_consistency(self): for entry in self.chart: if entry.isNew: self.assertEqual(entry.lastPos, 0) def test_json(self): self.assertTrue(json.loads(self.chart.json())) for entry in self.chart: self.assertTrue(json.loads(entry.json())) class TestHistoricalHot100(TestCurrentHot100): """Checks that the ChartData object for a previous week's Hot 100 chart has entries and instance variables that are valid and reasonable. Also compares the chart data against a previously downloaded "reference" version. This comparison is done based on the string representation; it excludes attributes like peakPos and weeks, which can change over time. """ def setUp(self): self.chart = billboard.ChartData('hot-100', date='2015-11-28') def test_date(self): self.assertEqual(self.chart.date, '2015-11-28') self.assertEqual(self.chart.previousDate, '2015-11-21') self.assertEqual(self.chart.nextDate, '2015-12-05') def test_entries_correctness(self): reference_path = os.path.join(get_test_dir(), '2015-11-28-hot-100.txt') with open(reference_path) as reference: self.assertEqual(str(self.chart), reference.read()) ``` #### File: billboard-charts/tests/test_misc.py ```python import billboard import unittest from nose.tools import raises from requests.exceptions import ConnectionError @raises(ConnectionError) def test_timeout(): """Checks that using a very small timeout prevents connection.""" billboard.ChartData('hot-100', timeout=1e-9) @raises(billboard.BillboardNotFoundException) def test_non_existent_chart(): """Checks that requesting a non-existent chart fails.""" billboard.ChartData('does-not-exist') ```
{ "source": "johanngan/special_relativity", "score": 3 }
#### File: specrel/tests/test_geom.py ```python import unittest import specrel.geom as geom from specrel.graphics.basegraph import STPlotter class _MockSTPlotter(STPlotter): """Mock plotter for draw() methods. Just tabulates the objects it's told to draw, but doesn't actually draw anything. """ def __init__(self): # Tuples with all the given object info self.points = [] self.segments = [] self.polygons = [] self.tlim = [None, None] self.xlim = [None, None] def draw_point(self, point, tag, **kwargs): self.points.append((tuple(point), tag, kwargs)) def draw_line_segment(self, point1, point2, tag, **kwargs): self.segments.append((tuple(point1), tuple(point2), tag, kwargs)) def draw_shaded_polygon(self, vertices, tag, **kwargs): self.polygons.append(([tuple(v) for v in vertices], tag, kwargs)) def set_lims(self, tlim, xlim): self.tlim = tlim self.xlim = xlim # Only for interactive mode; doesn't matter here, but abstract method must # be overridden def show(self): pass # For testing stored draw objects within numerical precision @staticmethod def points_equal(testcase, p1, p2): for x, y in zip(p1[0], p2[0]): testcase.assertAlmostEqual(x, y) testcase.assertEqual(p1[1:], p2[1:]) @staticmethod def segments_equal(testcase, s1, s2): for x, y in zip(s1[0] + s1[1], s2[0] + s2[1]): testcase.assertAlmostEqual(x, y) testcase.assertEqual(s1[2:], s2[2:]) @staticmethod def polygons_equal(testcase, p1, p2): for v1, v2 in zip(p1[0], p2[0]): for x, y in zip(v1, v2): testcase.assertAlmostEqual(x, y) testcase.assertEqual(p1[1:], p2[1:]) class STVectorInitTests(unittest.TestCase): """Instance initialization.""" def test_init_from_timepos(self): stvec = geom.STVector(2, 3) self.assertEqual(stvec.t, 2) self.assertEqual(stvec.x, 3) def test_init_from_iterable(self): stvec = geom.STVector((2, 3)) self.assertEqual(stvec.t, 2) self.assertEqual(stvec.x, 3) def test_copy_ctor(self): stvec = geom.STVector(2, 3, tag='test', precision=4, draw_options={'color': 'red'}) stvec_cpy = geom.STVector(stvec) self.assertEqual(stvec.t, stvec_cpy.t) self.assertEqual(stvec.x, stvec_cpy.x) self.assertEqual(stvec.tag, 'test') self.assertEqual(stvec.precision, stvec_cpy.precision) self.assertEqual(stvec.draw_options, {'color': 'red'}) def test_copy_ctor_with_override(self): stvec = geom.STVector(2, 3, precision=4) stvec_cpy = geom.STVector(stvec, precision=6, tag='test') self.assertEqual(stvec_cpy.precision, 6) self.assertEqual(stvec_cpy.tag, 'test') def test_init_invalid_nargs(self): self.assertRaises(TypeError, geom.STVector, 2, 3, 4) class STVectorOverloadTests(unittest.TestCase): """Overloaded operators and special methods.""" def test_getitem(self): stvec = geom.STVector(2, 3) self.assertEqual(stvec[0], 2) self.assertEqual(stvec[1], 3) def test_str(self): self.assertEqual(str(geom.STVector(2, 3)), 'STVector(2, 3)') def test_str_within_precision(self): self.assertEqual(str(geom.STVector(2.001, 2.999, precision=3)), 'STVector(2.001, 2.999)') self.assertEqual(str(geom.STVector(2.0001, 2.9999, precision=3)), 'STVector(2.0, 3.0)') def test_iter(self): for cmp, answer in zip(geom.STVector(2, 3), [2, 3]): self.assertEqual(cmp, answer) def test_eq(self): self.assertEqual(geom.STVector(2, 3), (2, 3)) def test_eq_within_precision(self): self.assertEqual(geom.STVector(2, 3, precision=3), (2.0001, 3)) self.assertNotEqual(geom.STVector(2, 3, precision=3), (2.001, 3)) def test_neg(self): self.assertEqual(-geom.STVector(2, 3), geom.STVector(-2, -3)) def test_add(self): self.assertEqual(geom.STVector(2, 3) + geom.STVector(3, 3), (5, 6)) def test_abs(self): self.assertEqual(abs(geom.STVector(2, 3)), 5) class STVectorCoreTests(unittest.TestCase): """Actual core functionality as spacetime objects.""" def test_lorentz_transform(self): stvec = geom.STVector(2, 3) stvec.lorentz_transform(3/5) self.assertAlmostEqual(stvec.t, 1/4) self.assertAlmostEqual(stvec.x, 9/4) def test_lorentz_transform_origin_1_1(self): stvec = geom.STVector(3, 4) stvec.lorentz_transform(3/5, origin=(1, 1)) self.assertAlmostEqual(stvec.t, 1/4 + 1) self.assertAlmostEqual(stvec.x, 9/4 + 1) def test_draw_in_bounds(self): p = _MockSTPlotter() geom.STVector(3, 4, tag='test', draw_options={'color': 'red'}).draw(p) self.assertEqual(len(p.points), 1) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 0) self.assertEqual(p.points[0], ((3, 4), 'test', {'color': 'red'})) self.assertEqual(p.tlim, (3, 3)) self.assertEqual(p.xlim, (4, 4)) def test_draw_out_of_bounds(self): p = _MockSTPlotter() geom.STVector(3, 4).draw(p, tlim=(4, 5)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 0) def test_auto_draw_lims(self): self.assertEqual(geom.STVector(2, 3)._auto_draw_lims(), ((2, 2), (3, 3))) def test_in_bounds(self): stvec = geom.STVector(2, 3) self.assertTrue(stvec._in_bounds((0, 3), (2, 4))) self.assertFalse(stvec._in_bounds((3, 4), (1, 2))) def test_in_bounds_within_precision(self): stvec1 = geom.STVector(2.0001, 3.0001, precision=3) self.assertTrue(stvec1._in_bounds((0, 2), (2, 3))) stvec2 = geom.STVector(2.001, 3.001, precision=3) self.assertFalse(stvec2._in_bounds((0, 2), (2, 3))) def test_in_bounds_exact_equality(self): self.assertTrue(geom.STVector(2, 3)._in_bounds((2, 2), (3, 3))) # Tests specifically for the gamma_factor() static method def test_gamma_factor_stationary(self): self.assertEqual(geom.STVector.gamma_factor(0), 1) def test_gamma_factor_at_c(self): self.assertRaises(ZeroDivisionError, geom.STVector.gamma_factor, 1) def test_gamma_factor_ftl(self): self.assertIsInstance(geom.STVector.gamma_factor(2), complex) def test_gamma_factor_three_fifths(self): self.assertAlmostEqual(geom.STVector.gamma_factor(3/5), 5/4) class test_lorentz_transformed(unittest.TestCase): def setUp(self): self.original = geom.STVector(2, 3) self.transformed = geom.lorentz_transformed(self.original, 3/5) def test_transformed_values(self): self.assertAlmostEqual(self.transformed[0], 1/4) self.assertAlmostEqual(self.transformed[1], 9/4) def test_deep_copied(self): # Check that the original wasn't mutated self.assertNotAlmostEqual(self.original[0], self.transformed[0]) self.assertNotAlmostEqual(self.original[1], self.transformed[1]) class CollectionTests(unittest.TestCase): def setUp(self): group = geom.PointGroup([(0, 1), (2, 3)]) line = geom.Line((0, 1), (2, 3)) ribbon = geom.Ribbon(geom.Line((0, 1), (2, 3)), geom.Line((0, 1), (0, 0))) self.collection = geom.Collection([group, line, ribbon]) def test_init(self): self.assertEqual(self.collection[0][0], (0, 1)) self.assertEqual(self.collection[0][1], (2, 3)) self.assertEqual(self.collection[1].direction(), (0, 1)) self.assertEqual(self.collection[1].point(), (2, 3)) self.assertEqual(self.collection[2][0].direction(), (0, 1)) self.assertEqual(self.collection[2][0].point(), (2, 3)) self.assertEqual(self.collection[2][1].direction(), (0, 1)) self.assertEqual(self.collection[2][1].point(), (0, 0)) def test_append(self): self.collection.append(geom.STVector(5, 5)) self.assertEqual(len(self.collection), 4) self.assertEqual(self.collection[3], (5, 5)) def test_append_nontransformable(self): self.assertRaises(ValueError, self.collection.append, 1) def test_lorentz_transform(self): v = 3/5 group_transformed = geom.lorentz_transformed( geom.PointGroup([(0, 1), (2, 3)]), v) line_transformed = geom.lorentz_transformed( geom.Line((0, 1), (2, 3)), v) ribbon_transformed = geom.lorentz_transformed( geom.Ribbon(geom.Line((0, 1), (2, 3)), geom.Line((0, 1), (0, 0))), v) self.collection.lorentz_transform(v) self.assertAlmostEqual(self.collection[0][0], group_transformed[0]) self.assertAlmostEqual(self.collection[0][1], group_transformed[1]) self.assertAlmostEqual(self.collection[1].direction(), line_transformed.direction()) self.assertAlmostEqual(self.collection[1].point(), line_transformed.point()) self.assertAlmostEqual(self.collection[2][0].direction(), ribbon_transformed[0].direction()) self.assertAlmostEqual(self.collection[2][0].point(), ribbon_transformed[0].point()) self.assertAlmostEqual(self.collection[2][1].direction(), ribbon_transformed[1].direction()) self.assertAlmostEqual(self.collection[2][1].point(), ribbon_transformed[1].point()) def test_draw(self): p = _MockSTPlotter() self.collection.draw(p, tlim=(-5, 5), xlim=(-5, 5)) self.assertEqual(len(p.points), 2) p.points_equal(self, p.points[0], ((0, 1), None, {})) p.points_equal(self, p.points[1], ((2, 3), None, {})) self.assertEqual(len(p.segments), 3) p.segments_equal(self, p.segments[0], ((2, -5), (2, 5), None, {})) self.assertEqual(len(p.polygons), 1) p.polygons_equal(self, p.polygons[0], ([(0, -5), (0, 5), (2, 5), (2, -5)], None, {})) p.segments_equal(self, p.segments[1], ((2, -5), (2, 5), None, {'color': geom.geomrc['ribbon.default_edgecolor'], 'zorder': 1})) p.segments_equal(self, p.segments[2], ((0, -5), (0, 5), None, {'color': geom.geomrc['ribbon.default_edgecolor'], 'zorder': 1})) self.assertEqual(p.tlim, (-5, 5)) self.assertEqual(p.xlim, (-5, 5)) def test_auto_draw_lims(self): self.assertEqual(self.collection._auto_draw_lims(), ((0, 2), (-1, 4))) class PointGroupTests(unittest.TestCase): def setUp(self): self.group = geom.PointGroup([(0, 0), (0, 1), (1, 0)], tag='test') def test_init(self): self.assertEqual(self.group[0].t, 0) self.assertEqual(self.group[0].x, 0) self.assertEqual(self.group[1].t, 0) self.assertEqual(self.group[1].x, 1) self.assertEqual(self.group[2].t, 1) self.assertEqual(self.group[2].x, 0) self.assertEqual(self.group.mode, geom.PointGroup.POINT) def test_draw(self): p = _MockSTPlotter() self.group.draw(p) self.assertEqual(len(p.points), 3) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 0) self.assertEqual(p.points[0], ((0, 0), None, {})) self.assertEqual(p.points[1], ((0, 1), None, {})) self.assertEqual(p.points[2], ((1, 0), None, {})) self.assertEqual(p.tlim, (0, 1)) self.assertEqual(p.xlim, (0, 1)) def test_draw_connect(self): self.group.mode = geom.PointGroup.CONNECT p = _MockSTPlotter() self.group.draw(p) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 2) self.assertEqual(len(p.polygons), 0) p.segments_equal(self, p.segments[0], ((0, 0), (0, 1), 'test', {})) p.segments_equal(self, p.segments[1], ((0, 1), (1, 0), 'test', {})) self.assertEqual(p.tlim, (0, 1)) self.assertEqual(p.xlim, (0, 1)) def test_draw_polygon(self): self.group.mode = geom.PointGroup.POLYGON p = _MockSTPlotter() self.group.draw(p) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 1) p.polygons_equal(self, p.polygons[0], ([(0, 0), (0, 1), (1, 0)], 'test', {})) self.assertEqual(p.tlim, (0, 1)) self.assertEqual(p.xlim, (0, 1)) class LineInitTests(unittest.TestCase): """Instance initialization.""" def test_init(self): line = geom.Line((0, 1), (2, 3), precision=7, tag='test', draw_options={'color': 'red'}) self.assertEqual(line.direction().t, 0) self.assertEqual(line.direction().x, 1) self.assertEqual(line.point().t, 2) self.assertEqual(line.point().x, 3) self.assertEqual(line.precision(), 7) self.assertEqual(line.tag, 'test') self.assertEqual(line.draw_options, {'color': 'red'}) def test_init_error_on_zero_direction(self): self.assertRaises(ValueError, geom.Line, (0, 0), (2, 3)) def test_init_with_override(self): line = geom.Line(geom.STVector(0, 1, precision=7), geom.STVector(2, 3, precision=7), precision=5, tag='test') self.assertEqual(line.precision(), 5) self.assertEqual(line.tag, 'test') class LineOverloadTests(unittest.TestCase): """Overloaded operators and special methods.""" def test_str(self): self.assertEqual(str(geom.Line((0, 1), (2, 3))), 'Line( [t, x] = [2, 3] + k*[0, 1] )') def test_str_within_precision(self): self.assertEqual(str( geom.Line((0.001, 1.001), (2.001, 2.999), precision=3)), 'Line( [t, x] = [2.001, 2.999] + k*[0.001, 1.001] )') self.assertEqual(str( geom.Line((0.0001, 1.0001), (2.0001, 2.9999), precision=3)), 'Line( [t, x] = [2.0, 3.0] + k*[0.0, 1.0] )') def test_eq_same(self): self.assertEqual(geom.Line((1, 1), (2, 3)), geom.Line((1, 1), (2, 3))) def test_eq_diff_params(self): self.assertEqual(geom.Line((1, 1), (2, 3)), geom.Line((2, 2), (1, 2))) def test_eq_within_precision(self): self.assertEqual(geom.Line((1.0001, 1), (2, 3), precision=3), geom.Line((1, 1), (2, 3))) self.assertNotEqual(geom.Line((1.001, 1), (2, 3), precision=3), geom.Line((1, 1), (2, 3))) def test_cannot_append(self): self.assertRaises(TypeError, geom.Line((0, 1), (2, 3)).append, geom.STVector(1, 1)) class LineCoreTests(unittest.TestCase): """Actual core functionality as spacetime objects.""" def test_lorentz_transform_origin_1_1(self): line = geom.Line((2, 3), (3, 4)) line.lorentz_transform(3/5, origin=(1, 1)) self.assertAlmostEqual(line.direction().t, 1/4) self.assertAlmostEqual(line.direction().x, 9/4) self.assertAlmostEqual(line.point().t, 1/4 + 1) self.assertAlmostEqual(line.point().x, 9/4 + 1) def test_draw_in_bounds(self): line = geom.Line((1, 1), (2, 3)) p = _MockSTPlotter() line.draw(p, tlim=(-1, 2), xlim=(0, 2)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 1) self.assertEqual(len(p.polygons), 0) p.segments_equal(self, p.segments[0], ((-1, 0), (1, 2), None, {})) self.assertEqual(p.tlim, (-1, 2)) self.assertEqual(p.xlim, (0, 2)) def test_draw_out_of_bounds(self): line = geom.Line((1, 1), (2, 3)) p = _MockSTPlotter() line.draw(p, tlim=(2, 3), xlim=(0, 1)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 0) def test_auto_draw_lims(self): line = geom.Line((1, -1), (2, 3)) self.assertEqual(line._auto_draw_lims(), ((1, 3), (2, 4))) def test_slope_nonvertical(self): self.assertEqual(geom.Line((1, 2), (2, 3)).slope(), 0.5) def test_slope_vertical(self): self.assertIsNone(geom.Line((1, 0), (2, 3)).slope()) class LineIntersectTests(unittest.TestCase): """Line intersection logic.""" def test_boundary_intersections_diag(self): line = geom.Line((1, 1), (0.5, 0)) tlim = (0, 1) xlim = (0, 1) self.assertEqual(line._boundary_intersections(tlim, xlim), [(0, -0.5), (0.5, 0), (1, 0.5), (1.5, 1)]) def test_boundary_intersections_horz(self): line = geom.Line((0, 1), (0.5, 0)) tlim = (0, 1) xlim = (0, 1) self.assertEqual(line._boundary_intersections(tlim, xlim), [(0.5, 0), (0.5, 1)]) def test_boundary_intersections_corner(self): line = geom.Line((1, -1), (1, 0)) tlim = (0, 1) xlim = (0, 1) self.assertEqual(line._boundary_intersections(tlim, xlim), [(0, 1), (1, 0)]) def test_intersect_is_symmetric(self): line1 = geom.Line((1, 1), (0, 0)) line2 = geom.Line((1, -1), (0, 2)) self.assertEqual(line1.intersect(line2), line2.intersect(line1)) def test_intersect_point_slanted_lines(self): line1 = geom.Line((1, 1), (0, 0)) line2 = geom.Line((1, -1), (0, 2)) self.assertEqual(line1.intersect(line2), (1, 1)) def test_intersect_point_one_vertical(self): vertline = geom.Line((1, 0), (0, 0)) otherline = geom.Line((1, -1), (0, 2)) self.assertEqual(otherline.intersect(vertline), (2, 0)) def test_intersect_point_one_horizontal(self): horzline = geom.Line((0, 1), (0, 0)) otherline = geom.Line((1, -1), (2, 0)) self.assertEqual(otherline.intersect(horzline), (0, 2)) def test_intersect_point_vertical_and_horizontal(self): vertline = geom.Line((1, 0), (0, 1)) horzline = geom.Line((0, 1), (1, 0)) self.assertEqual(vertline.intersect(horzline), (1, 1)) def test_intersect_parallel(self): self.assertIsNone( geom.Line((1, 1), (0, 0)).intersect(geom.Line((2, 2), (0, 1)))) def test_intersect_equal_lines_diff_direction_diff_point(self): line1 = geom.Line((1, 1), (2, 3)) line2 = geom.Line((2, 2), (3, 4)) intersection = line1.intersect(line2) self.assertIsInstance(intersection, geom.Line) self.assertEqual(intersection.direction(), line1.direction()) self.assertEqual(intersection.point(), line1.point()) class RayOverloadTests(unittest.TestCase): """Overloaded operators and special methods.""" def test_str(self): self.assertEqual(str(geom.Ray((0, 1), (2, 3))), 'Ray( [t, x] = [2, 3] + k*[0, 1] where k >= 0 )') def test_eq(self): self.assertEqual(geom.Ray((1, 1), (2, 3)), geom.Ray((1, 1), (2, 3))) def test_eq_scaled_dir(self): self.assertEqual(geom.Ray((1, 1), (2, 3)), geom.Ray((2, 2), (2, 3))) def test_neq_diff_point(self): self.assertNotEqual(geom.Ray((1, 1), (2, 3)), geom.Ray((1, 1), (1, 2))) def test_neq_opp_dir(self): self.assertNotEqual(geom.Ray((1, 1), (2, 3)), geom.Ray((-1, -1), (2, 3))) class RayCoreTests(unittest.TestCase): """Actual core functionality as spacetime objects.""" def test_draw_endpoint_out_of_bounds(self): ray = geom.Ray((-1, -1), (2, 3)) p = _MockSTPlotter() ray.draw(p, tlim=(-1, 2), xlim=(0, 2)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 1) self.assertEqual(len(p.polygons), 0) p.segments_equal(self, p.segments[0], ((-1, 0), (1, 2), None, {})) def test_draw_endpoint_in_bounds(self): ray = geom.Ray((1, 1), (0, 1)) p = _MockSTPlotter() ray.draw(p, tlim=(-1, 2), xlim=(0, 2)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 1) self.assertEqual(len(p.polygons), 0) p.segments_equal(self, p.segments[0], ((0, 1), (1, 2), None, {})) def test_draw_totally_out_of_bounds(self): ray = geom.Ray((1, 1), (2, 3)) p = _MockSTPlotter() ray.draw(p, tlim=(-1, 2), xlim=(0, 2)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 0) def test_auto_draw_lims(self): ray = geom.Ray((1, -1), (2, 3)) self.assertEqual(ray._auto_draw_lims(), ((2, 3), (2, 3))) class RayIntersectTests(unittest.TestCase): """Ray-line intersection logic.""" def test_boundary_intersections_exterior_endpoint(self): ray = geom.Ray((0, 1), (0.5, -1)) tlim = (0, 1) xlim = (0, 1) self.assertEqual(ray._boundary_intersections(tlim, xlim), [(0.5, -1), (0.5, 0), (0.5, 1)]) def test_boundary_intersections_interior_endpoint(self): ray = geom.Ray((0, 1), (0.5, 0.5)) tlim = (0, 1) xlim = (0, 1) self.assertEqual(ray._boundary_intersections(tlim, xlim), [(0.5, 0.5), (0.5, 1)]) def test_intersect_parallel(self): ray = geom.Ray((1, 1), (0, 0)) line = geom.Line((2, 2), (0, 1)) self.assertIsNone(ray.intersect(line)) def test_intersect_equal_lines_diff_direction_diff_point(self): ray = geom.Ray((1, 1), (2, 3)) line = geom.Line((2, 2), (3, 4)) intersection = ray.intersect(line) self.assertIsInstance(intersection, geom.Ray) self.assertEqual(intersection.direction(), ray.direction()) self.assertEqual(intersection.point(), ray.point()) def test_actual_intersection_full_crossing(self): ray = geom.Ray((1, 0), (0, 1)) line = geom.Line((0, 1), (1, 0)) self.assertEqual(ray.intersect(line), (1, 1)) def test_actual_intersection_tangent(self): ray = geom.Ray((1, 0), (1, 1)) line = geom.Line((0, 1), (1, 0)) self.assertEqual(ray.intersect(line), (1, 1)) def test_ghost_intersection(self): ray = geom.Ray((1, 0), (2, 1)) line = geom.Line((0, 1), (1, 0)) self.assertIsNone(ray.intersect(line)) class RibbonBasicTests(unittest.TestCase): """Basic functionality tests.""" def test_init(self): ribbon = geom.Ribbon(geom.Line((0, 1), (2, 3)), geom.Line((0, 1), (0, 0)), tag='test', draw_options={'color': 'red'}) self.assertEqual(ribbon[0].direction().t, 0) self.assertEqual(ribbon[0].direction().x, 1) self.assertEqual(ribbon[0].point().t, 2) self.assertEqual(ribbon[0].point().x, 3) self.assertEqual(ribbon[1].direction().t, 0) self.assertEqual(ribbon[1].direction().x, 1) self.assertEqual(ribbon[1].point().t, 0) self.assertEqual(ribbon[1].point().x, 0) self.assertEqual(ribbon.tag, 'test') self.assertEqual(ribbon.draw_options, {'color': 'red'}) def test_init_not_parallel(self): self.assertRaises(ValueError, geom.Ribbon, geom.Line((0, 1), (2, 3)), geom.Line((1, 1), (2, 3))) def test_cannot_append(self): self.assertRaises(TypeError, geom.Line((0, 1), (2, 3)).append, geom.STVector(1, 1)) def test_draw(self): p = _MockSTPlotter() ribbon = geom.Ribbon(geom.Line((0, 1), (2, 3)), geom.Line((0, 1), (0, 0)), tag='test', draw_options={'facecolor': 'red', 'label': 'test2'}) ribbon.draw(p, tlim=(-2, 3), xlim=(0, 1)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 2) self.assertEqual(len(p.polygons), 1) p.polygons_equal(self, p.polygons[0], ([(0, 0), (0, 1), (2, 1), (2, 0)], 'test', {'facecolor': 'red', 'label': 'test2'})) p.segments_equal(self, p.segments[0], ((2, 0), (2, 1), None, {'color': geom.geomrc['ribbon.default_edgecolor'], 'zorder': 1})) p.segments_equal(self, p.segments[1], ((0, 0), (0, 1), None, {'color': geom.geomrc['ribbon.default_edgecolor'], 'zorder': 1})) self.assertEqual(p.tlim, (-2, 3)) self.assertEqual(p.xlim, (0, 1)) def test_draw_no_edges(self): p = _MockSTPlotter() ribbon = geom.Ribbon(geom.Line((0, 1), (2, 3)), geom.Line((0, 1), (0, 0)), draw_options={'edgecolor': 'None'}) ribbon.draw(p, tlim=(-2, 3), xlim=(0, 1)) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 1) def test_draw_out_of_bounds(self): p = _MockSTPlotter() ribbon = geom.Ribbon(geom.Line((0, 1), (2, 3)), geom.Line((0, 1), (0, 0))) ribbon.draw(p, tlim=(4, 5), xlim=(0, 1)) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 0) class RibbonBoundaryTests(unittest.TestCase): """Tests for bounds checking logic.""" def test_point_inside(self): ribbon = geom.Ribbon(geom.Line((1, 1), (0, 2)), geom.Line((1, 1), (0, 0))) self.assertTrue(ribbon._point_inside((0, 1))) def test_point_not_inside(self): ribbon = geom.Ribbon(geom.Line((1, 1), (0, 2)), geom.Line((1, 1), (0, 0))) self.assertFalse(ribbon._point_inside((0, 3))) def test_point_on_boundary(self): ribbon = geom.Ribbon( geom.Line((1, 1), (0, 2)), geom.Line((1, 1), (0, 0)) ) self.assertTrue(ribbon._point_inside((0, 2))) class RibbonGetVerticesTests(unittest.TestCase): def test_get_vertices_flat_lines(self): ribbon = geom.Ribbon( geom.Line((0, 1), (1, 0)), geom.Line((0, 1), (2, 0)), ) self.assertEqual(ribbon._get_vertices((0, 3), (0, 3)), [ (1, 0), (1, 3), (2, 3), (2, 0) ] ) def test_get_vertices_exact_boundary(self): ribbon = geom.Ribbon( geom.Line((0, 1), (1, 0)), geom.Line((0, 1), (3, 0)), ) self.assertEqual(ribbon._get_vertices((0, 3), (0, 3)), [ (1, 0), (1, 3), (3, 3), (3, 0) ] ) def test_get_vertices_lines_straddle_corner(self): ribbon = geom.Ribbon( geom.Line((1, 1), (1, 0)), geom.Line((1, 1), (0, 1)), ) self.assertEqual(ribbon._get_vertices((0, 2), (0, 2)), [ (0, 0), (0, 1), (1, 2), (2, 2), (2, 1), (1, 0) ] ) def test_get_vertices_line_on_corner(self): ribbon = geom.Ribbon( geom.Line((1, 1), (1, 0)), geom.Line((1, 1), (0, 2)), ) self.assertEqual(ribbon._get_vertices((0, 2), (0, 2)), [ (0, 0), (0, 2), (2, 2), (2, 1), (1, 0) ] ) def test_get_vertices_one_line_out_of_bounds(self): ribbon = geom.Ribbon( geom.Line((1, 1), (1, 0)), geom.Line((1, 1), (0, 3)), ) self.assertEqual(ribbon._get_vertices((0, 2), (0, 2)), [ (0, 0), (0, 2), (2, 2), (2, 1), (1, 0) ] ) def test_get_vertices_both_lines_out_of_bounds(self): ribbon = geom.Ribbon( geom.Line((1, 1), (3, 0)), geom.Line((1, 1), (0, 3)), ) self.assertEqual(ribbon._get_vertices((0, 2), (0, 2)), [ (0, 0), (0, 2), (2, 2), (2, 0) ] ) class HalfRibbonBasicTests(unittest.TestCase): """Basic functionality tests.""" def test_init_error_on_antiparallel(self): self.assertRaises(ValueError, geom.HalfRibbon, geom.Ray((0, 1), (0, 0)), geom.Ray((0, -1), (2, 3))) def test_draw_endpoints_out_of_bounds(self): p = _MockSTPlotter() h = geom.HalfRibbon(geom.Ray((0, 1), (2, -3)), geom.Ray((0, 1), (0, -1)), draw_options={'edgecolor': 'None'}) h.draw(p, tlim=(-2, 3), xlim=(0, 1)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 1) p.polygons_equal(self, p.polygons[0], ([(0, 0), (0, 1), (2, 1), (2, 0)], None, {})) def test_draw_totally_out_of_bounds(self): p = _MockSTPlotter() h = geom.HalfRibbon(geom.Ray((0, 1), (2, 3)), geom.Ray((0, 1), (0, 2))) h.draw(p, tlim=(-2, 3), xlim=(0, 1)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 0) def test_draw_endpoints_both_in_bounds(self): p = _MockSTPlotter() h = geom.HalfRibbon(geom.Ray((0, 1), (2, 0.5)), geom.Ray((0, 1), (0, 0.25)), draw_options={'edgecolor': 'None'}) h.draw(p, tlim=(-2, 3), xlim=(0, 1)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 1) p.polygons_equal(self, p.polygons[0], ([(0, 0.25), (0, 1), (2, 1), (2, 0.5)], None, {})) def test_draw_endpoints_one_endpoint_out_of_bounds(self): p = _MockSTPlotter() h = geom.HalfRibbon(geom.Ray((0, 1), (2, 0.5)), geom.Ray((0, 1), (0, -0.5)), draw_options={'edgecolor': 'None'}) h.draw(p, tlim=(-2, 3), xlim=(0, 1)) self.assertEqual(len(p.points), 0) self.assertEqual(len(p.segments), 0) self.assertEqual(len(p.polygons), 1) p.polygons_equal(self, p.polygons[0], ([(0, 0), (0, 1), (2, 1), (2, 0.5), (1, 0)], None, {})) ```
{ "source": "johanngerberding/cookiecutter-data-science", "score": 2 }
#### File: src/config/config.py ```python import os import warnings from dotenv import find_dotenv, load_dotenv from yacs.config import CfgNode as ConfigurationNode from pathlib import Path # Please configure your own settings here # # YACS overwrite these settings using YAML __C = ConfigurationNode() ### EXAMPLE ### """ # data augmentation parameters with albumentations library __C.DATASET.AUGMENTATION = ConfigurationNode() __C.DATASET.AUGMENTATION.BLURRING_PROB = 0.25 __C.DATASET.AUGMENTATION.GAUSS_NOISE_PROB = 0.25 __C.DATASET.AUGMENTATION.GAUSS_VAR_LIMIT =(10.0, 40.0) __C.DATASET.AUGMENTATION.BLUR_LIMIT = 7 ... # model backbone configs __C.MODEL.BACKBONE = ConfigurationNode() __C.MODEL.BACKBONE.NAME = 'mobilenet_v2' __C.MODEL.BACKBONE.RGB = True __C.MODEL.BACKBONE.PRETRAINED_PATH = 'C:/data-science/kaggle/bengali.ai/models/mobilenet_v2-b0353104.pth' # model head configs __C.MODEL.HEAD = ConfigurationNode() __C.MODEL.HEAD.NAME = 'simple_head_module' __C.MODEL.HEAD.ACTIVATION = 'leaky_relu' __C.MODEL.HEAD.OUTPUT_DIMS = [168, 11, 7] __C.MODEL.HEAD.INPUT_DIM = 1280 # mobilenet_v2 __C.MODEL.HEAD.HIDDEN_DIMS = [512, 256] __C.MODEL.HEAD.BATCH_NORM = True __C.MODEL.HEAD.DROPOUT = 0.4 """ def get_cfg_defaults(): """ Get a yacs CfgNode object with default values for my_project. """ # Return a clone so that the defaults will not be altered # This is for the "local variable" use pattern recommended by the YACS repo. # It will be subsequently overwritten with local YAML. return __C.clone() def combine_cfgs(path_cfg_data: Path=None, path_cfg_override: Path=None): """ An internal facing routine thaat combined CFG in the order provided. :param path_output: path to output files :param path_cfg_data: path to path_cfg_data files :param path_cfg_override: path to path_cfg_override actual :return: cfg_base incorporating the overwrite. """ if path_cfg_data is not None: path_cfg_data=Path(path_cfg_data) if path_cfg_override is not None: path_cfg_override=Path(path_cfg_override) # Path order of precedence is: # Priority 1, 2, 3, 4 respectively # .env > other CFG YAML > data.yaml > default.yaml # Load default lowest tier one: # Priority 4: cfg_base = get_cfg_defaults() # Merge from the path_data # Priority 3: if path_cfg_data is not None and path_cfg_data.exists(): cfg_base.merge_from_file(path_cfg_data.absolute()) # Merge from other cfg_path files to further reduce effort # Priority 2: if path_cfg_override is not None and path_cfg_override.exists(): cfg_base.merge_from_file(path_cfg_override.absolute()) # Merge from .env # Priority 1: list_cfg = update_cfg_using_dotenv() if list_cfg is not []: cfg_base.merge_from_list(list_cfg) return cfg_base def update_cfg_using_dotenv() -> list: """ In case when there are dotenvs, try to return list of them. # It is returning a list of hard overwrite. :return: empty list or overwriting information """ # If .env not found, bail if find_dotenv() == '': warnings.warn(".env files not found. YACS config file merging aborted.") return [] # Load env. load_dotenv(find_dotenv(), verbose=True) # Load variables list_key_env = { "DATASET.TRAIN_DATA_PATH", "DATASET.VAL_DATA_PATH", "MODEL.BACKBONE.PRETRAINED_PATH", "MODEL.SOLVER.LOSS.LABELS_WEIGHTS_PATH" } # Instantiate return list. path_overwrite_keys = [] # Go through the list of key to be overwritten. for key in list_key_env: # Get value from the env. value = os.getenv("path_overwrite_keys") # If it is none, skip. As some keys are only needed during training and others during the prediction stage. if value is None: continue # Otherwise, adding the key and the value to the dictionary. path_overwrite_keys.append(key) path_overwrite_keys.append(value) return path_overwrite_keys ```
{ "source": "JohannGillium/modern_english_ed", "score": 3 }
#### File: modern_english_ed/Python/xslt_handler.py ```python import lxml.etree as etree class xslt: def __init__(self, book, xml_path, xslt_path, path_output): #Dans le constructeur d'une classe, on declare tous les attributs des objets qui peupleront cette classe self.book = book self.xml_path = xml_path self.xslt_path = xslt_path self.path_output = path_output def transform(self): # parser = etree.XMLParser(recover=True) # doc = etree.parse(self.xml_path, parser) parser = etree.XMLParser(no_network=False) doc = etree.parse(self.xml_path, parser) # parser.error_log xslt_root = etree.fromstring(open(self.xslt_path).read()) transform = etree.XSLT(xslt_root) result_tree = transform(doc) output_file = open(self.path_output, "w") output_file.write(str(result_tree)) def process_xml(book, xml_path, xslt_path, path_output): param_stylesheet = xslt(book, xml_path, xslt_path, path_output) param_stylesheet.transform() ```
{ "source": "johanngoltz/helpling-scraper", "score": 3 }
#### File: johanngoltz/helpling-scraper/client.py ```python from typing import List, Dict import requests from sgqlc.endpoint.http import HTTPEndpoint from sgqlc.operation import Operation from tabulate import tabulate import helpling_schema CandidateList = List[helpling_schema.DecoratedPotentialCandidateEdge] BASE_URL = "https://www.helpling.de/api/" DEFAULT_SEARCH_PARAMETERS = { "time": "14:00null", "date": "30/11/2019", "repeat": "true", "frequency": "week", "duration": 12600, "ironing": False, "pets": False, "materials_required": False, "workday_flexibility": False, "provider_type": "", "notes": "" } gql_endpoint = HTTPEndpoint(BASE_URL + "v2/rr", base_headers={ # CloudFlare blocks the default user agent. Pretend to be IE 6. "User-Agent": "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" }) def create_bid(postcode: int, **kwargs) -> str: """ Query the helpling API to create a new bid. Then, set the given parameters (or default values configured in ``DEFAULT_SEARCH_PARAMETERS``) to it. This is the first step to scraping offers for a region. :param postcode: The postcode for which to request a new bid :param kwargs: The parameters to set for the search. :return: The bidCode of the created bid """ response = requests.post(BASE_URL + "v1/bids", {"bid[postcode]": postcode, "bid[checkout_version]": 1}) bid_id = response.json().get("data").get("code") if bid_id is None: raise Exception("Bid for postcode " + str(postcode) + " could not be created: " + response.text) print("Create bid for " + str(postcode) + " (" + bid_id + "): OK") op = Operation(helpling_schema.Mutation) op.transition_bid_to_provider_selection(**{**DEFAULT_SEARCH_PARAMETERS, **kwargs, "bid_code": bid_id}) result = gql_endpoint(op).get("data").get("transitionBidToProviderSelection") if result.get("success") is False: raise Exception("Bid " + bid_id + " could not be parametrized: " + result.get("errors")) print("Parametrize bid " + bid_id + ": OK") return bid_id def get_candidates_for_bid(bid_id: str) -> List[helpling_schema.DecoratedPotentialCandidateEdge]: """ Query the API for all (i.e. the first 1000) candidates for a given bid. The bid must have been parametrized already. Note that not all fields are actually requested from the backend. :param bid_id: Id of an already-parametrized bid :return: First 1000 candidates available for the bid """ op = Operation(helpling_schema.Query) candidates = op.customer_bid(code=bid_id).potential_candidates(first=1000) candidates.edges.node.price_per_hour() provider = candidates.edges.node.provider provider.__fields__("id", "firstname", "shortname", "default_profile_image", "pets", "windows", "ironing", "ratings_received_count", "verification_level", "documents", "performed_cleanings_count", "language_skills", "instabook_enabled") provider.avg_rating.total() provider.experience.__fields__() provider.distance_to_bid(bid_code=bid_id) data = gql_endpoint(op) return (op + data).customer_bid.potential_candidates.edges def get_bid(bid_id: str) -> helpling_schema.CustomerBid: """ Get basic information on the given bid. :param bid_id: Id of a bid, parametrized or not. :return: """ op = Operation(helpling_schema.Query) op.customer_bid(code=bid_id).__fields__("code", "duration", "start_time") data = gql_endpoint(op) return (op + data).customer_bid def get_candidates(postcodes: List[int], parameters: Dict = None) -> List[CandidateList]: """ Find potential candidates for a list of postcodes. :param postcodes: :param parameters: see DEFAULT_SEARCH_PARAMETERS """ parameters = parameters or {} for postcode in postcodes: yield get_candidates_for_bid(create_bid(postcode, **parameters)) if __name__ == "__main__": for c in get_candidates([90425], {"date": "30/11/2019"}): as_dicts = [{"price_per_hour": c.node.price_per_hour, **c.node.provider.__dict__} for c in c] for d in as_dicts: d.pop("__selection_list__") d.pop("__fields_cache__") d.pop("__json_data__") print(tabulate(as_dicts)) ```
{ "source": "JohannGordillo/Computacion-Distribuida", "score": 4 }
#### File: Practicas/Practica 1/bfs_secuencial.py ```python class GraphNode(object): """Implementación simple para el nodo de una gráfica""" def __init__(self, val: int) -> None: """Constructor para el nodo Args: val (int): El elemento dentro del nodo """ self.neighbors = list() self.visited = False self.val = val def connect(self, *nodes) -> None: """Conecta al nodo N con los nodos dados y a cada uno de estos nodos con N Args: nodes (List[GraphNode]): Una lista de nodos """ for n in nodes: if n is not self and n not in self.neighbors: self.neighbors.append(n) n.connect(self) def __str__(self) -> str: """Regresa la representación en cadena del nodo Regresa: str: La representación en cadena del nodo """ return f"({self.val})" def bfs(root: GraphNode) -> None: """Algoritmo de búsqueda por amplitud Complejidad en Tiempo: O(|V| + |E|) Complejidad en Espacio: O(n) Args: root (GraphNode): El nodo raíz """ root.visited = True queue = [root] while queue: n = queue.pop(0) print(n, end=" ") for m in n.neighbors: if not m.visited: m.visited = True queue.append(m) def main() -> None: """Función principal Ejecuta BFS con un grafo de ejemplo""" # Ejemplo: # # (1)------(2)-----(6) # \ \ / # \ \ / # (3) (4) # \ / \ # \ / \ # \ / \ # (5)-----(7) G(V, E) # # BFS: (1)--(2)--(3)--(4)--(6)--(5)--(7) # Creamos 7 nodos. n1, n2, n3, n4, n5, n6, n7 = [GraphNode(x) for x in range(1, 8)] # Conectamos los nodos. # Como al hacer n.connect(m) se aplica a la vez m.connect(n), # no es necesario volver a hacer m.connect(n). n1.connect(n2, n3) n2.connect(n4, n6) n3.connect(n5) n4.connect(n5, n6, n7) n5.connect(n7) # Tomamos como raíz a n1 y hacemos BFS. bfs(n1) if __name__ == "__main__": main() ``` #### File: Practica 2/Canales/Canal.py ```python import simpy class Canal(object): """Implementación de un canal.""" def __init__(self, env, capacity=simpy.core.Infinity): self.env = env self.capacity = capacity self.channels = list() self.output_channel = None def send(self, msg, neighbors): """Envía un mensaje a los canales de salida de los vecinos.""" if self.output_channel is None: raise RuntimeError("No hay canales de salida.") events = list() l = len(self.channels) for i in range(l): if i in neighbors: events.append(self.channels[i].put(msg)) return self.env.all_of(events) def create_input_channel(self): """Creamos un objeto Store en el que recibiremos mensajes.""" channel = simpy.Store(self.env, capacity=self.capacity) self.channels.append(channel) self.output_channel = channel return channel def get_output_channel(self): """Regresa el objeto Store en el cual recibiremos los mensajes.""" return self.output_channel ``` #### File: Practicas/Practica 2/NodoSpanning.py ```python import simpy from Canales.Canal import Canal from Nodo import Nodo class NodoSpanning(Nodo): """Implementa la interfaz de Nodo para el algoritmo para conocer a los vecinos de mis vecinos.""" def __init__(self, id: int, neighbors: list, input_channel: simpy.Store, output_channel: simpy.Store): """Constructor para el nodo.""" self.id = id self.neighbors = neighbors self.input_channel = input_channel self.output_channel = output_channel def span(self, env: simpy.Environment): """Función para que un nodo colabore en la construcción de un árbol generador.""" # Solo el nodo raiz (id = 0) envía el primer msj if self.id == 0: self.parent = self.id self.expected_msg = len(self.neighbors) data = ("GO", self.id, None) print(f'El nodo {self.id} inicializa sus variables en la ronda {env.now}') yield env.timeout(1) self.output_channel.send(data, self.neighbors) # Los nodos no distinguidos tendrán padre vacío al inicio. else: self.parent = None # Hacemos que el conjunto de hijos sea vacío para todos. self.children = set() while True: # Esperamos a que nos llegue el mensaje. msg_type, sender, val_set = yield self.input_channel.get() print(f'El nodo {self.id} recibió el mensaje {msg_type}({val_set}) de {sender} en la ronda {env.now}') yield env.timeout(1) # Cuando recibimos un mensaje GO(). if msg_type == "GO": if self.parent is None: self.parent = sender self.expected_msg = len(self.neighbors) - 1 if self.expected_msg == 0: data = ("BACK", self.id, self.id) self.output_channel.send(data, [sender]) else: data = ("GO", self.id, None) receivers = [k for k in self.neighbors if k != sender] self.output_channel.send(data, receivers) else: data = ("BACK", self.id, None) self.output_channel.send(data, [sender]) # Cuando recibimos un mensaje BACK(val_set). elif msg_type == "BACK": self.expected_msg -= 1 if val_set is not None: self.children.add(sender) if self.expected_msg == 0: if self.parent != self.id: data = ("BACK", self.id, self.id) self.output_channel.send(data, [self.parent]) # Si el tipo de mensaje no existe, lanzamos excepción. else: raise Exception("El tipo de mensaje no existe.") if __name__ == "__main__": # Tomemos como ejemplo la siguiente gráfica: example = '''Para la siguiente gráfica: (6) (1) / | / \ / | / \ / | (0)-----(2)-----(3)--(4) \ | \ | \ | (5) ''' # Creamos los nodos. graph = list() adjacencies = [[1, 2], [0, 2], [0, 1, 3], [2, 4, 5, 6], [3, 5, 6], [3, 4], [3, 4]] order = len(adjacencies) # Inicializamos el ambiente y el canal. env = simpy.Environment() pipe = Canal(env) # Llenado de la gráfica. for i in range(order): input_channel = pipe.create_input_channel() neighbors = adjacencies[i] n = NodoSpanning(i, neighbors, input_channel, pipe) graph.append(n) # Y le decimos al ambiente que lo procese. for n in graph: env.process(n.span(env)) # Imprimimos la gráfica de ejemplo. print(example) env.run(until=30) # Inicializamos el árbol resultante. tree = list() # Llenado del árbol generador. for n in graph: # Llenado del árbol generador. if len(n.children) > 0: for c in n.children: tree.append([n.id, c]) print(f"\nFinalmente, las aristas del árbol generador son:\n{tree}\n") result = '''Visualmente, se ve como sigue: (6) (1) / / / / / (0)-----(2)-----(3)--(4) \ \ \ (5) ''' print(result) ``` #### File: Practicas/Practica 3/NodoBFS.py ```python import simpy from Nodo import Nodo from Canales.CanalRecorridos import CanalRecorridos # La unidad de tiempo. TICK = 1 class NodoBFS(Nodo): """Implementa la interfaz de Nodo para el algoritmo BFS.""" def __init__(self, id_nodo: int, vecinos: set, canal_entrada: simpy.Store, canal_salida: simpy.Store): """Constructor para el nodo.""" self.id_nodo = id_nodo self.vecinos = vecinos self.canal_entrada = canal_entrada self.canal_salida = canal_salida self.padre = id_nodo self.distancia = float('inf') def bfs(self, env: simpy.Store): """Implementación del algoritmo BFS.""" if self.id_nodo == 0: self.distancia = 0 data = (self.distancia, self.id_nodo) yield env.timeout(TICK) self.canal_salida.envia(data, self.vecinos) while True: # Esperamos a que nos llegue el mensaje. d, sender = yield self.canal_entrada.get() if d + 1 < self.distancia: self.distancia = d + 1 self.padre = sender data = (self.distancia, self.id_nodo) yield env.timeout(TICK) self.canal_salida.envia(data, self.vecinos) if __name__ == "__main__": # Creamos el ambiente y el objeto Canal. env = simpy.Environment() bc_pipe = CanalRecorridos(env) # Adyacencias. adyacencias = [{1, 3, 4, 6}, {0, 3, 5, 7}, {3, 5, 6}, {0, 1, 2}, {0}, {1, 2}, {0, 2}, {1}] # La lista que representa la gráfica. grafica = [] # Creamos los nodos for i in range(0, len(adyacencias)): grafica.append(NodoBFS(i, adyacencias[i], bc_pipe.crea_canal_de_entrada(), bc_pipe)) # Le decimos al ambiente lo que va a procesar. for nodo in grafica: env.process(nodo.bfs(env)) # Y lo corremos. env.run(until=50) # Probamos que efectivamente se hizo un BFS. padres_esperados = [0, 0, 3, 0, 0, 1, 0, 1] distancias_esperadas = [0, 1, 2, 1, 1, 2, 1, 2] # Para cada nodo verificamos que su lista de identifiers sea la esperada. for i in range(len(grafica)): n = grafica[i] assert n.padre == padres_esperados[i], ('El nodo %d tiene mal padre' % n.id_nodo) assert n.distancia == distancias_esperadas[i], ('El nodo %d tiene distancia equivocada' % n.id_nodo) ``` #### File: Practicas/Practica 4/Test.py ```python from Canales.CanalRecorridos import * from NodoConsenso import * class TestPractica2: ''' Clase para las pruebas unitarias de la práctica 2. ''' # Las aristas de adyacencias de la gráfica. adyacencias = [[1, 2, 3, 4, 5, 6], [0, 2, 3, 4, 5, 6], [0, 1, 3, 4, 5, 6], [0, 1, 2, 4, 5, 6], [0, 1, 2, 3, 5, 6], [0, 1, 2, 3, 4, 6], [0, 1, 2, 3, 4, 5]] def test_ejercicio_uno(self): ''' Método que prueba el algoritmo de consenso. ''' # Creamos el ambiente y el objeto Canal env = simpy.Environment() bc_pipe = CanalRecorridos(env) # La lista que representa la gráfica grafica = [] # Creamos los nodos for i in range(0, len(self.adyacencias)): grafica.append(NodoConsenso(i, self.adyacencias[i], bc_pipe.crea_canal_de_entrada(), bc_pipe)) # Le decimos al ambiente lo que va a procesar ... f = 2 # El número de fallos for nodo in grafica: env.process(nodo.consenso(env, f)) # ...y lo corremos env.run() nodos_fallidos = 0 lider_elegido = None for i in range(0, len(grafica)): nodo = grafica[i] if nodo.fallare: nodos_fallidos += 1 else: lider_elegido = nodo.lider if lider_elegido is None else lider_elegido assert lider_elegido == nodo.lider assert nodo.lider == next(item for item in nodo.V if item is not None) assert nodos_fallidos == f ```
{ "source": "JohannGordillo/RSA-Cryptosystem", "score": 3 }
#### File: RSA-Cryptosystem/rsa/main.py ```python from rsa.gui import FileBrowser from rsa import rsa import platform import os # Genera un marco de símbolos "=". genera_marco = (lambda: print("=" * 80)) # Operación para limpiar la consola. if platform.system() == "Windows": clear_op = "cls" else: clear_op = "clear" clean_console = (lambda: os.system(clear_op)) def select_file(): """Permite al usuario seleccionar un archivo con ayuda de una interfaz gráfica. >> Argumentos: Ninguno. >> Regresa: La ruta del archivo. """ fb = FileBrowser() fb.search_path() return fb.get_path() def print_menu(): """Imprime el menú de selección.""" clean_console() genera_marco() print("Menú de Selección".center(80, ' ')) genera_marco() print("1) Cifrar un mensaje.\n") print("2) Descifrar un mensaje.\n") print("3) Salir.") genera_marco() def main(): """Funcion principal del programa.""" while True: print_menu() op = int(input("\nSeleccione una opcion: ")) # Cifrado. if op == 1: # Permitimos al usuario seleccionar el archivo. src = select_file() # Leemos el archivo. with open(src) as f: msg = f.read() # Generamos dos primos aleatorios distintos de entre 50 y 60 dígitos. p = rsa.generate_prime_number(50, 60) q = p while q == p: q = rsa.generate_prime_number(50, 60) # Obtenemos las claves pública y privada. public_key, private_key = rsa.generate_keys(p, q) # Cadena con el texto cifrado. ciphertext = ' '.join([str(c) for c in rsa.encrypt(public_key, msg)]) print(f"Su llave pública es: {public_key}\nSu llave privada es: {private_key}") # Escribimos el texto cifrado en un archivo salida.txt # Se crea en el directorio actual. with open("salida.txt", "w+") as out: out.write(ciphertext) print(f"\nEl archivo salida.txt se ha creado en {os.getcwd()}") input("\nPresione <ENTER> para continuar... ") clean_console() # Descifrado. elif op == 2: # Permitimos al usuario seleccionar el archivo. src = select_file() # Leemos el archivo con el texto encriptado. with open(src) as f: text = f.read() # Obtenemos la llave pública. print(">> Ingrese la llave pública [n, e] (ejemplo: 567 785): ") n, e = map(int, input().split()) public_key = (n, e) # Obtenemos la llave privada. print("\n>> Ingrese la llave privada: ") private_key = int(input()) keys = (public_key, private_key) # Lista de enteros asociados al texto cifrado. ciphertext = [int(c) for c in text.split()] # Obtenemos el mensaje descifrado como una cadena. msg = rsa.decrypt(ciphertext, keys) print(f"\nSu texto descifrado es:\n{msg}") input("\nPresione <ENTER> para continuar... ") clean_console() # Salir del programa. elif op == 3: clean_console() print("Hasta luego! Gracias por utilizar el programa :D") break # Opción inválida. else: print("Opción no válida.") input("\nPresione <ENTER> para continuar... ") clean_console() ```
{ "source": "JohannHospice/quico", "score": 2 }
#### File: quico/src/quico.py ```python import argparse import subprocess def main(): args, unknown_joined = parse_known_args() build_cmd = CommandBuilder(['docker', 'build']) build_cmd.append_with_option('-f', args.file) build_cmd.append_with_option('-t', args.tag) build_cmd.append(args.directory) run_cmd = CommandBuilder(['docker', 'run']) run_cmd.append_with_option('--network', args.network) for volume in args.volume if args.volume else []: run_cmd.append_with_option('-v', volume) run_cmd.append_with_option('-p', args.publish) run_cmd.append_with_option('-ti', args.tag) run_cmd.append(unknown_joined) try : read_proc('build', build_cmd.build()) read_proc('run', run_cmd.build()) except Exception as e: print(e) def parse_known_args(): parser = argparse.ArgumentParser(description='Quico ou quick-container permet de compiler puis lancer rapidement un conteneur docker.') parser.add_argument('directory', help='Dossier ou compiler l\'image docker.') parser.add_argument('-t', '--tag', required=True) parser.add_argument('-n', '--network', help="Réseau ou lancer le conteneur docker", default='bridge', required=False) parser.add_argument('-f', '--file', help="Chemin vers le Dockerfile à compiler", default='Dockerfile', required=False) parser.add_argument('-p', '--publish', required=False) parser.add_argument('-v', '--volume', action='append', required=False) args, unknown = parser.parse_known_args() unknown_joined = ' '.join(unknown) return args, unknown_joined def read_proc(title, cmd): print(f"+{title}: start ({cmd})") try: subprocess.check_call(cmd, shell=True) except: raise Exception(f"+{title}: raised error") class CommandBuilder: cmd = [] def __init__(self, cmd): self.cmd = cmd def append_with_option(self, option, value): if value: self.cmd.append(option) self.cmd.append(value) return self def append(self, text): self.cmd.append(text) return self def build(self): return " ".join(self.cmd) if __name__ == '__main__': main() ```
{ "source": "johannilsson/bakery", "score": 2 }
#### File: bakery/bakery/bakery.py ```python from __future__ import with_statement __author__ = '<NAME>' __version__ = '0.4.dev' __license__ = 'MIT' import sys import pystache import os import shutil import errno import fnmatch import markdown import codecs import re import yaml import hashlib import threading import time import socket import filecmp import typogrify import math import copy from unicodedata import normalize from functools import partial # Workaround for the "print is a keyword/function" Python 2/3 dilemma # and a fallback for mod_wsgi (resticts stdout/err attribute access) # From Bottle. try: _stdout, _stderr = sys.stdout.write, sys.stderr.write except IOError: _stdout = lambda x: sys.stdout.write(x) _stderr = lambda x: sys.stderr.write(x) def mkdir_p(path): """ Create intermediate directories as required. """ try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST: pass else: raise # Helper to slugify paths. # http://flask.pocoo.org/snippets/5/ _punct_re = re.compile(r'[\t !"#$%&\'()*\-<=>?@\[\\\]^_`{|},.]+') def slugify(text, delim=u'-'): """Generates an slightly worse ASCII-only slug.""" if type(text) == str: text = unicode(text) result = [] for word in _punct_re.split(text.lower()): word = normalize('NFKD', word).encode('ascii', 'ignore') if word: result.append(word) return unicode(delim.join(result)) class TemplateView(pystache.TemplateSpec): pass class Config(object): """ Configuration for the site to build. """ paths = { 'assets': u'assets', 'layouts': u'layouts', 'media': u'media', 'pages': u'pages', } def __init__(self, path=None, **config): c = None if path is not None: with codecs.open(path, 'r', encoding='utf-8') as f: content = f.read() c = yaml.load(content) if c is not None: c.update(config) else: c = config if config.get('no_compress'): c['compress'] = False self.site_context = c.get('site_context', {}) self.media = c.get('media', {}) self.compress = c.get('compress', False) self.source_dir = c.get('source_dir', None) self.build_dir = c.get('build_dir', None) self.production = c.get('production', False) self.pagination = c.get('pagination', {}) self.site_context.update({'production': self.production}) if self.source_dir is None: self.source_dir = os.getcwd() if self.build_dir is None: self.build_dir = os.getcwd() + '/_out' class Loader(object): """ Content and context loader for resources. """ def __init__(self, source=''): self.source = source def load(self, path): """ Return content and context from path. Return a tuple consisting of the content as a string and a dict representing the context extracted from a yaml front matter if present in the content. """ context = {} with codecs.open(self.source + path, 'r', encoding='utf-8') as f: content = f.read() result = re.search(r'^(---\s*\n.*?\n?)^(---\s*$\n?)', content, re.DOTALL|re.MULTILINE) if result: front_matter = result.group(1) context = yaml.load(front_matter) content = content[result.end(0):len(content)] return content, context class Resource(object): """ Base resource """ def __init__(self, config, source): self.config = config self.source = source def _clean_source(self): """ Clears the first directory from the destination path. """ i = self.source.find(os.sep) + 1 if i == 1: i = self.source[i:].find(os.sep) + 1 return self.source[i:] @property def destination(self): return self._clean_source() # Alias url to destination url = destination @property def belongs_to(self): return os.path.basename(os.path.dirname(self.destination)) @property def belongs_to_parent(self): root, last = os.path.split(os.path.dirname(self.destination)) parent = os.path.basename(root) if parent == "": parent = None return parent @property def order(self): return self.destination class PageResource(Resource): def __init__(self, config, source, context=None): super(PageResource, self).__init__(config, source) if not context: context = {} self.context = context self.id = hashlib.md5(self.source).hexdigest() self.layout_path = u'default.html' self.page_layout_path = None self.pager = None self.content = None self.rendered_content = None self.rendered_page = None l = Loader(source=config.source_dir) content, context = l.load(self.source) self.context.update(context) self.page_content = content if 'layout' in self.context: self.layout_path = self.context['layout'] if 'page_layout' in self.context: self.page_layout_path = self.context['page_layout'] if 'title_slug' not in self.context: self.context['title_slug'] = slugify(self.title, delim=u'-') def __repr__(self): return '<PageResource {0}>'.format(self.title) def is_markdown(self): ext = os.path.splitext(self.source)[1] return ext == '.md' @property def layout(self): return self.config.source_dir + os.sep + self.config.paths['layouts'] + os.sep + self.layout_path @property def page_layout(self): return self.config.source_dir + os.sep + self.config.paths['layouts'] + os.sep + self.page_layout_path @property def title(self): return self.context.get('title', u'') @property def destination(self): root, ext = os.path.splitext(self._clean_source()) return root + u'.html' url = destination @property def order(self): if 'order' in self.context: return self.context.get('order') return self.destination def should_build(self): """ Check if this resource should be built out to a html doc. """ return self.context.get('build', True) def build(self): """ Build this resource using the passed renderer and optional context. """ if self.pager is not None: self.context.update({u'pager': self.pager.to_dict()}) dst = self.config.build_dir + os.sep + self.destination dst_dir = os.path.dirname(dst) if not os.path.exists(dst_dir): mkdir_p(dst_dir) with codecs.open(dst, 'w', encoding='utf-8') as f: f.write(self.rendered_page) def render(self, renderer, site_context): view = TemplateView() if self.page_layout_path: view.template_rel_path = self.page_layout else: view.template = self.page_content part = renderer.render(view, self.context, site=site_context) if self.is_markdown(): part = markdown.markdown(part) part = typogrify.typogrify(part) page_context = {u'content': part} self.rendered_content = part page_context.update(self.context) view = TemplateView() view.template_rel_path = self.layout page = renderer.render(view, self.context, page=page_context, site=site_context) self.rendered_page = page class MediaResource(Resource): """ A media resource This is a special type of resource that group images into collections based on the directory they placed in. """ def __init__(self, config, source): super(MediaResource, self).__init__(config, source) self.source = self.source.replace(self.config.source_dir, '', 1) def __repr__(self): return '<MediaResource {0}>'.format(self.source) def get_image_url(self, size_name): root, ext = os.path.splitext(self.destination) path = slugify(root + u'-' + size_name) + ext return path def create_image(self, name, size): try: import Image except ImportError: raise Exception('Image configuration requires PIL to be installed.') path = self.get_image_url(name) if path.startswith(os.sep): path = path[1:] src = os.sep.join([self.config.source_dir, self.source]) dst = os.sep.join([self.config.build_dir, path]) dst_dir = os.path.dirname(dst) if not os.path.isdir(dst_dir): mkdir_p(dst_dir) if not os.path.isfile(dst): try: img = Image.open(src) img.thumbnail(( size.get('width'), size.get('height') ), Image.ANTIALIAS) img.save(dst) except Exception, e: _stderr('! Error while processing media "{0}", {1}\n'.format(src, e)) return False return True def build_original(self): """ Build this resource with the original media. """ src = os.sep.join([self.config.source_dir, self.source]) dst = os.sep.join([self.config.build_dir, self.destination]) dst_dir = os.path.dirname(dst) if not os.path.isdir(dst_dir): mkdir_p(dst_dir) shutil.copy2(src, dst) return True def build(self): """ Build this resource. """ if 'image' not in self.config.media: return self.build_original() for size_name, sizes in self.config.media['image'].items(): if not self.create_image(size_name, sizes): return False setattr(self, '%s_image_url' % size_name, partial(self.get_image_url, size_name=size_name)) return True class ResourceTree(dict): def __init__(self, nodes, **kwargs): dict.__init__(self, **kwargs) self.build(self, None, nodes) self[u'all'] = self.all() def build(self, tree, parent, nodes): if parent is not None: parent = parent.belongs_to children = [n for n in nodes if n.belongs_to_parent == parent] for child in children: if child.belongs_to not in tree: tree[child.belongs_to] = {u'list': []} if child not in tree[child.belongs_to][u'list']: tree[child.belongs_to][u'list'].append(child) # This key handling... must be able to simplify... tree[child.belongs_to][u'list'] = sorted( tree[child.belongs_to][u'list'], key=lambda r: r.order, reverse=False) self.build(tree[child.belongs_to], child, nodes) def all(self): a = self._all(self, []) return sorted(a, key=lambda r: r.order, reverse=False) def _all(self, d, l): for k, v in d.iteritems(): if k == 'list': for a in v: l.append(a) if isinstance(v, dict): self._all(v, l) return l class Pager(object): """ Page the provided list of resources. """ def __init__(self, page, all_resources, config): self.page = page self.config = config self.per_page = config.get('per_page', 20) self.total_pages = self.total_pages(all_resources, self.per_page) start_index = 0 if self.total_pages > 0: start_index = (self.per_page * (self.page - 1)) stop_index = self.page * self.per_page if self.page == self.total_pages: stop_index = len(all_resources) self.belongs_to, path_tail = os.path.split(all_resources[0].destination) self.belongs_to += '/' if not self.belongs_to.endswith('/') else '' self.total_resources = len(all_resources) self.resources = all_resources[start_index:stop_index] self.previous_page = self.page - 1 if self.page != 1 else None self.previous_page_path = self.path(self.previous_page) self.next_page = self.page + 1 if self.page != self.total_pages else None self.next_page_path = self.path(self.next_page) def __repr__(self): return '<Page %s of %s>' % (self.page, self.total_pages) def to_dict(self): return { 'total_resources': self.total_resources, 'total_pages': self.total_pages, 'page': self.page, 'resources': self.resources, 'previous_page': self.previous_page, 'previous_page_path': self.previous_page_path, 'next_page': self.next_page, 'next_page_path': self.next_page_path } def pageurl(self, page): path = self.config.get('url', 'page-{0}') return path.format(page) def path(self, page): if page is None or page < 1: return None if page == 1: return self.belongs_to return self.belongs_to + self.pageurl(page) @staticmethod def total_pages(all_resources, per_page): """ Calculate total number of pages. """ return int(math.ceil(float(len(all_resources)) / float(per_page))) class Paginator(object): def __init__(self, site): self.site = site def paginate(self, config): name, c = config to_paginate = [r for r in self.site.resources if fnmatch.fnmatch( r.destination, c.get('pattern') )] self._paginate(to_paginate, config) def _paginate(self, resources, config): name, c = config per_page = c.get('per_page', 20) num_pages = Pager.total_pages(resources, per_page) for idx, r in enumerate(resources): #if r.destination.endswith('index.html'): if idx == 0: for page_num in range(1, num_pages + 1): pager = Pager(page_num, resources, c) if page_num > 1: # Create new destination r_copy = copy.deepcopy(r) r_copy.pager = pager path_head, path_tail = os.path.split(r_copy.source) r_copy.source = path_head + u'/' + pager.pageurl(page_num) + u'/' + path_tail self.site.resources.append(r_copy) else: r.pager = pager class Site(object): """ Represent a Site to be built. """ def __init__(self, config): self.config = config self.resources = list() self.context = self.config.site_context if self.config.site_context else dict() self.articles = list() self.media = list() self.renderer = pystache.Renderer( search_dirs=[ self.config.source_dir + os.sep + self.config.paths['layouts'], ], file_extension='html', file_encoding='utf-8', string_encoding='utf-8' ) def _new_resource(self, path): """ Internal factory for creating a resource from path. """ source_path = path.replace(self.config.source_dir, '', 1) if source_path.startswith(u'/_') or source_path.startswith(u'_'): return None if source_path.endswith('.md'): a = PageResource(self.config, source=source_path) if 'articles' not in self.context: self.context['articles'] = {} self.articles.append(a) return a elif path.endswith('.html'): r = PageResource(self.config, source=source_path) return r def read_directories(self): """ Scan directories for resources. """ page_includes = [ '*.html', '*.md', '*.txt', ] excludes = [ os.path.basename(self.config.build_dir), self.config.paths['layouts'], self.config.paths['media'] ] for root, dirs, files in os.walk(self.config.source_dir, topdown=True): dirs[:] = [d for d in dirs if d not in excludes] for pat in page_includes: for f in fnmatch.filter(files, pat): r = self._new_resource(os.path.join(root, f)) if r: # Add resources on the top, this forces childs to be rendered before their parents. self.resources.insert(0, r) # TODO: Do these things in the loop above instead... for root, dirs, files in os.walk( os.path.join(self.config.source_dir, self.config.paths['media']), topdown=True): files[:] = [f for f in files if not f.startswith(u'.')] for f in files: m = MediaResource(self.config, os.path.join(root, f)) self.media.append(m) self.articles.sort(key=lambda r: len(r.destination)) self.context['articles'] = ResourceTree(self.articles) paginator = Paginator(self) for c in self.config.pagination.items(): paginator.paginate(c) def _build_media(self): failed = [] for m in self.media: if not m.build(): failed.append(m) # Remove all resources that we failed to build from media. self.media = list(set(self.media).difference(set(failed))) #self.media.sort(key=lambda r: len(r.destination)) self.media = sorted(self.media, key=lambda r: r.destination, reverse=True) self.context[u'media'] = ResourceTree(self.media) def _build_static(self): """ Create directories needed for the structure. This step is done before most of the resources is moved to the build directory. It involves creation of directories for the structure and copying of assets. """ modified_files = [] # Create assets directory mkdir_p(os.path.join(self.config.build_dir, self.config.paths['assets'])) for root, dirs, files in os.walk( os.path.join(self.config.source_dir, self.config.paths['assets']), topdown=True): for d in dirs: src = os.path.join(root, d) dst = os.path.join(self.config.build_dir, self.config.paths['assets'], d) if not os.path.exists(dst): mkdir_p(dst) shutil.copystat(src, dst) # Ignore files starting with dot. files[:] = [f for f in files if not f.startswith('.')] for f in files: srcname = os.path.join(root, f) dstname = srcname.replace(self.config.source_dir, self.config.build_dir, 1) # Copy file if does not exists in build dir or if it has changed. if not os.path.exists(dstname) \ or os.path.exists(dstname) \ and os.stat(srcname).st_mtime != os.stat(dstname).st_mtime: shutil.copy2(srcname, dstname) modified_files.append(dstname) # Compare the asset directory with source to build and remove files # and directories that does not match. # Adapt this be a more generic comparison so we can diff all # resources. asset_dir = os.path.join(self.config.build_dir, self.config.paths['assets']) for root, dirs, files in os.walk(asset_dir, topdown=True): for d in dirs: compare = filecmp.dircmp( os.path.join(self.config.source_dir, self.config.paths['assets'], d), os.path.join(root, d) ) for diff in compare.right_only: p = os.path.join(asset_dir, d, diff) if os.path.isdir(p): try: shutil.rmtree(p) except OSError, e: _stderr('** Could not remove directory {0} {1}\n'.format(p, e)) else: try: os.remove(p) except OSError, e: _stderr('** Could not remove file {0} {1}\n'.format(p, e)) # If compression is enabled run it. if self.config.compress: import yuicompressor _stdout('** With compressing\n') for root, dirs, files in os.walk(self.config.build_dir + os.sep + self.config.paths['assets'], topdown=True): for pat in self.config.compress: for f in fnmatch.filter(files, pat): if not f.endswith('min.js') or not f.endswith('min.css'): _stdout('>> {0}\n'.format(f)) yuicompressor.run( os.path.join(root, f), "-o", os.path.join(root, f) ) def build(self): """ Build this site and it resources. """ _stdout('** Building site\n') # We start fresh on each build. self.context = self.config.site_context if self.config.site_context else dict() self.resources = list() self.articles = list() self.media = list() if not os.path.exists(self.config.build_dir): mkdir_p(self.config.build_dir) self.read_directories() self._build_media() self._build_static() _stdout('** Render resources\n') for r in self.resources: _stdout('>> {0}\n'.format(r.destination)) r.render(self.renderer, self.context) _stdout('** Building resources\n') for r in self.resources: if r.should_build(): _stdout('>> {0}\n'.format(r.destination)) r.build() def find_resource(self, resource_id): """ Return an instance based on the id. """ for r in self.resources: if r.id == resource_id: return r return None class ResourceMonitor(threading.Thread): """ Monitor resources for changes. Example usage. >>> def onchange(paths): ... print 'changed', paths ... >>> ResourceMonitor(['.'], onchange).start() """ def __init__(self, paths, onchange): threading.Thread.__init__(self) self.daemon = True self.paths = paths self.onchange = onchange self.modified_paths = {} def diff(self, path): """ Check for modifications returns a dict of paths and times of change. """ modified_paths = {} for root, dirs, files in os.walk(path, topdown=True): for f in files: path = os.path.join(root, f) try: modified = os.stat(path).st_mtime except Exception, e: continue if path not in self.modified_paths or self.modified_paths[path] != modified: modified_paths[path] = modified return modified_paths def _diffall(self): """ Run diff through all paths. """ modified_paths = {} for p in self.paths: modified_paths.update(self.diff(p)) return modified_paths def run(self): """ Starts monitoring, onchange is called if an resource is modified. """ self.modified_paths = self._diffall() while True: modified_paths = self._diffall() if modified_paths: self.modified_paths.update(modified_paths) self.onchange(modified_paths) time.sleep(0.5) def bootstrap(): for p in Config.paths: mkdir_p(p) _stdout('+ ' + p + "\n") _stdout('"If you can see it, I can shoot it." - Cordero (Skeleton Man)' + "\n") def build(config_path, **config): c = Config(config_path, **config) _stdout('Building to %s\n' % (c.build_dir)) # TODO: Add a clean target... #try: # shutil.rmtree(c.build_dir) #except OSError, e: # pass site = Site(c) site.build() def serve(config_path, port=8000, **config): c = Config(config_path, **config) c.source_dir = os.path.abspath(c.source_dir) c.build_dir = os.path.abspath(c.build_dir) site = Site(c) site.build() mkdir_p(c.build_dir) import SimpleHTTPServer import SocketServer class Server(SocketServer.ForkingMixIn, SocketServer.TCPServer): allow_reuse_address = True class RequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): pass try: server = Server(('', port), RequestHandler) except socket.error, e: _stderr('Could not start webserver. Are you running another one on the same port?') return def rebuild(modified_paths): _stdout('Rebuilding\n') for p in modified_paths: _stdout('Changed {0}\n'.format(p)) # TODO: Pass the modified paths site.build() paths = [os.path.join(c.source_dir, p) for p in c.paths] monitor = ResourceMonitor(paths, rebuild) monitor.start() # Run server from our build directory. os.chdir(c.build_dir) _stdout('Running webserver at 0.0.0.0:%s for %s\n' % (port, c.build_dir)) _stdout('Type control-c to exit\n') try: server.serve_forever() except KeyboardInterrupt: pass def main(): from optparse import OptionParser _cmd_parser = OptionParser(usage="usage: %prog [options]", version="%prog {0}".format(__version__)) _opt = _cmd_parser.add_option _opt("-c", "--config", action="store", help="path to yaml configuration [default: %default].", default="config.yaml") _opt("-s", "--serve", action="store_true", help="start a webserver.") _opt("-p", "--port", action="store", help="set port for webserver [default: %default].", default=8000, dest="port") _opt("--bootstrap", action="store_true", help="create a new site here.") _opt("--build", action="store_true", help="build this site.") _opt("--debug", action="store_true", help="set debug mode.") _opt("--no-compress", action="store_true", help="do not compress css and js.", dest="no_compress", default=False) _cmd_options, _cmd_args = _cmd_parser.parse_args() opt, args, parser = _cmd_options, _cmd_args, _cmd_parser sys.path.insert(0, '.') sys.modules.setdefault('bakery', sys.modules['__main__']) if opt.bootstrap: bootstrap() sys.exit(0) elif opt.serve: try: port = int(opt.port) except ValueError, e: _stderr('Invalid value for port: {0}'.format(e)) sys.exit(1) serve(opt.config, port, no_compress=opt.no_compress) elif opt.build: build(opt.config, no_compress=opt.no_compress) sys.exit(0) else: parser.print_help() _stderr('\nError: No options specified.\n') sys.exit(1) if __name__ == '__main__': main() ```
{ "source": "johannkm/dagster-okteto", "score": 3 }
#### File: airline_demo/airline_demo/unzip_file_handle.py ```python import zipfile from dagster import FileHandle, String, solid @solid( description='''Unzip a file that is resident in an archive file as a member. This solid operates on FileHandles, meaning that their physical is dependent on what system storage is operating in the pipeline. The physical file could be on local disk, or it could be in s3. If on s3, this solid will download that file to local disk, perform the unzip, upload that file back to s3, and then return that file handle for downstream use in the computations. ''', required_resource_keys={'file_manager'}, ) def unzip_file_handle( context, archive_file_handle: FileHandle, archive_member: String ) -> FileHandle: with context.resources.file_manager.read(archive_file_handle) as local_obj: with zipfile.ZipFile(local_obj) as zip_file: # boto requires a file object with seek(), but zip_file.open() would return a # stream without seek(), so stage on the local filesystem first local_extracted_path = zip_file.extract(archive_member) with open(local_extracted_path, 'rb') as local_extracted_file: return context.resources.file_manager.write(local_extracted_file) ``` #### File: overview_tests/repositories_workspaces_tests/test_repository_definition.py ```python from docs_snippets.overview.repositories_workspaces.lazy_repository_definition import ( my_lazy_repository, ) from docs_snippets.overview.repositories_workspaces.repository_definition import ( addition_pipeline, my_repository, subtraction_pipeline, ) from dagster import execute_pipeline def test_pipelines(): result = execute_pipeline(addition_pipeline) assert result.success assert result.result_for_solid('add').output_value() == 3 result = execute_pipeline(subtraction_pipeline) assert result.success assert result.result_for_solid('subtract').output_value() == -1 def test_my_repository(): assert my_repository assert len(my_repository.get_all_pipelines()) == 2 assert len(my_repository.schedule_defs) == 1 def test_my_lazy_repository(): assert my_lazy_repository assert len(my_lazy_repository.get_all_pipelines()) == 2 assert len(my_lazy_repository.schedule_defs) == 1 ``` #### File: simple_lakehouse/simple_lakehouse/lakehouse_def.py ```python import os from typing import Tuple import pandas as pd from lakehouse import AssetStorage, Lakehouse, asset_storage from dagster import ModeDefinition, StringSource class LocalFileSystem: def __init__(self, config): self._root = config['root'] def get_fs_path(self, path: Tuple[str, ...]) -> str: rpath = os.path.join(self._root, *(path[:-1]), path[-1] + '.csv') return os.path.abspath(rpath) @asset_storage(config_schema={'root': StringSource}) def pandas_df_local_filesystem_storage(init_context): local_fs = LocalFileSystem(init_context.resource_config) class Storage(AssetStorage): def save(self, obj: pd.DataFrame, path: Tuple[str, ...], _resources) -> None: '''This saves the dataframe as a CSV.''' fpath = local_fs.get_fs_path(path) obj.to_csv(fpath) def load(self, _python_type, path: Tuple[str, ...], _resources): '''This reads a dataframe from a CSV.''' fpath = local_fs.get_fs_path(path) return pd.read_csv(fpath) return Storage() def make_simple_lakehouse(): dev_mode = ModeDefinition( name='dev', resource_defs={'filesystem': pandas_df_local_filesystem_storage.configured({'root': '.'}),}, ) return Lakehouse(mode_defs=[dev_mode]) simple_lakehouse = make_simple_lakehouse() ``` #### File: automation/docs/cli.py ```python import os import shutil import click from .check_library_docs import validate_library_readmes from .repo import DagsterDocsRepo, DagsterRepo CLI_HELP = '''This CLI is used for validating and updating Dagster docs. ''' DEFAULT_DOCS_DIR = '/tmp/dagster-docs' @click.group(help=CLI_HELP) def cli(): pass @cli.command() @click.option('-v', '--docs-version', type=click.STRING, required=True) @click.option('-d', '--docs-dir', type=click.STRING, required=False, default=DEFAULT_DOCS_DIR) def build(docs_version, docs_dir): ddr = DagsterDocsRepo(docs_dir) dr = DagsterRepo() ddr.check_new_version_dir(docs_version) ddr.remove_existing_docs_files() # Build and copy new docs files into dagster-docs dr.build_docs(docs_version) copytree(dr.out_path, docs_dir) dr.commit(docs_version) ddr.commit(docs_version) @cli.command() def validate_libraries(): validate_library_readmes() def copytree(src, dst): '''https://stackoverflow.com/a/12514470/11295366''' for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d) else: shutil.copy2(s, d) def main(): click_cli = click.CommandCollection(sources=[cli], help=CLI_HELP) click_cli() if __name__ == '__main__': main() ``` #### File: core/storage/init.py ```python from collections import namedtuple from dagster import check from dagster.core.definitions import ( IntermediateStorageDefinition, ModeDefinition, PipelineDefinition, SystemStorageDefinition, ) from dagster.core.instance import DagsterInstance from dagster.core.storage.pipeline_run import PipelineRun from dagster.core.storage.type_storage import TypeStoragePluginRegistry from dagster.core.system_config.objects import EnvironmentConfig class InitSystemStorageContext( namedtuple( 'InitSystemStorageContext', ( 'pipeline_def mode_def system_storage_def pipeline_run instance environment_config ' 'type_storage_plugin_registry resources system_storage_config' ), ) ): '''System storage-specific initialization context. Attributes: pipeline_def (PipelineDefinition): The definition of the pipeline in context. mode_def (ModeDefinition): The definition of the mode in contxt. system_storage_def (SystemStorageDefinition): The definition of the system storage to be constructed. pipeline_run (PipelineRun): The pipeline run in context. instance (DagsterInstance): The instance. environment_config (EnvironmentConfig): The environment config. type_storage_plugin_registry (TypeStoragePluginRegistry): Registry containing custom type storage plugins. resources (Any): Resources available in context. system_storage_config (Dict[str, Any]): The system storage-specific configuration data provided by the environment config. The schema for this data is defined by the ``config_field`` argument to :py:class:`SystemStorageDefinition`. ''' def __new__( cls, pipeline_def, mode_def, system_storage_def, pipeline_run, instance, environment_config, type_storage_plugin_registry, resources, system_storage_config, ): return super(InitSystemStorageContext, cls).__new__( cls, pipeline_def=check.inst_param(pipeline_def, 'pipeline_def', PipelineDefinition), mode_def=check.inst_param(mode_def, 'mode_def', ModeDefinition), system_storage_def=check.inst_param( system_storage_def, 'system_storage_def', SystemStorageDefinition ), pipeline_run=check.inst_param(pipeline_run, 'pipeline_run', PipelineRun), instance=check.inst_param(instance, 'instance', DagsterInstance), environment_config=check.inst_param( environment_config, 'environment_config', EnvironmentConfig ), type_storage_plugin_registry=check.inst_param( type_storage_plugin_registry, 'type_storage_plugin_registry', TypeStoragePluginRegistry, ), resources=check.not_none_param(resources, 'resources'), system_storage_config=check.dict_param( system_storage_config, system_storage_config, key_type=str ), ) class InitIntermediateStorageContext( namedtuple( 'InitIntermediateStorageContext', ( 'pipeline_def mode_def intermediate_storage_def pipeline_run instance environment_config ' 'type_storage_plugin_registry resources intermediate_storage_config' ), ) ): '''Intermediate storage-specific initialization context. Attributes: pipeline_def (PipelineDefinition): The definition of the pipeline in context. mode_def (ModeDefinition): The definition of the mode in contxt. intermediate_storage_def (IntermediateStorageDefinition): The definition of the intermediate storage to be constructed. pipeline_run (PipelineRun): The pipeline run in context. instance (DagsterInstance): The instance. environment_config (EnvironmentConfig): The environment config. type_storage_plugin_registry (TypeStoragePluginRegistry): Registry containing custom type storage plugins. resources (Any): Resources available in context. intermediate_storage_config (Dict[str, Any]): The intermediate storage-specific configuration data provided by the environment config. The schema for this data is defined by the ``config_field`` argument to :py:class:`IntermediateStorageDefinition`. ''' def __new__( cls, pipeline_def, mode_def, intermediate_storage_def, pipeline_run, instance, environment_config, type_storage_plugin_registry, resources, intermediate_storage_config, ): return super(InitIntermediateStorageContext, cls).__new__( cls, pipeline_def=check.inst_param(pipeline_def, 'pipeline_def', PipelineDefinition), mode_def=check.inst_param(mode_def, 'mode_def', ModeDefinition), intermediate_storage_def=check.inst_param( intermediate_storage_def, 'intermediate_storage_def', IntermediateStorageDefinition ), pipeline_run=check.inst_param(pipeline_run, 'pipeline_run', PipelineRun), instance=check.inst_param(instance, 'instance', DagsterInstance), environment_config=check.inst_param( environment_config, 'environment_config', EnvironmentConfig ), type_storage_plugin_registry=check.inst_param( type_storage_plugin_registry, 'type_storage_plugin_registry', TypeStoragePluginRegistry, ), resources=check.not_none_param(resources, 'resources'), intermediate_storage_config=check.dict_param( intermediate_storage_config, intermediate_storage_config, key_type=str ), ) ``` #### File: dagster_tests/api_tests/utils.py ```python from dagster import file_relative_path from dagster.core.code_pointer import FileCodePointer from dagster.core.definitions.reconstructable import ReconstructableRepository from dagster.core.host_representation.handle import PipelineHandle, RepositoryLocationHandle from dagster.core.host_representation.repository_location import ( GrpcServerRepositoryLocation, InProcessRepositoryLocation, PythonEnvRepositoryLocation, ) from dagster.grpc.types import LoadableTargetOrigin def get_bar_repo_repository_location_handle(): return RepositoryLocationHandle.create_out_of_process_location( location_name='bar_repo_location', repository_code_pointer_dict={ 'bar_repo': FileCodePointer( file_relative_path(__file__, 'api_tests_repo.py'), 'bar_repo' ) }, ) def get_bar_repo_grpc_repository_location_handle(): return RepositoryLocationHandle.create_process_bound_grpc_server_location( loadable_target_origin=LoadableTargetOrigin( attribute='bar_repo', python_file=file_relative_path(__file__, 'api_tests_repo.py'), ), location_name='bar_repo', ) def get_bar_repo_handle(): return ( PythonEnvRepositoryLocation(get_bar_repo_repository_location_handle()) .get_repository('bar_repo') .handle ) def get_bar_grpc_repo_handle(): return ( GrpcServerRepositoryLocation(get_bar_repo_grpc_repository_location_handle()) .get_repository('bar_repo') .handle ) def get_foo_pipeline_handle(): return PipelineHandle('foo', get_bar_repo_handle()) def get_foo_grpc_pipeline_handle(): return PipelineHandle('foo', get_bar_grpc_repo_handle()) def legacy_get_bar_repo_handle(): recon_repo = ReconstructableRepository.from_legacy_repository_yaml( file_relative_path(__file__, 'repository_file.yaml') ) return InProcessRepositoryLocation(recon_repo).get_repository('bar_repo').handle def legacy_get_foo_pipeline_handle(): return PipelineHandle('foo', legacy_get_bar_repo_handle()) ``` #### File: core_tests/definitions_tests/test_logger_definition.py ```python import logging from dagster import ( Enum, EnumValue, Field, Int, ModeDefinition, configured, execute_pipeline, logger, pipeline, ) from dagster.core.log_manager import coerce_valid_log_level def assert_pipeline_runs_with_logger(logger_def, logger_config): @pipeline(mode_defs=[ModeDefinition(logger_defs={'test_logger': logger_def})]) def pass_pipeline(): pass # give us an opportunity to try an empty dict here config_value = {'config': logger_config} if logger_config else {} result = execute_pipeline(pass_pipeline, {'loggers': {'test_logger': config_value}}) assert result.success def test_dagster_type_logger_decorator_config(): @logger(Int) def dagster_type_logger_config(_): raise Exception('not called') assert dagster_type_logger_config.config_schema.config_type.given_name == 'Int' @logger(int) def python_type_logger_config(_): raise Exception('not called') assert python_type_logger_config.config_schema.config_type.given_name == 'Int' def test_logger_using_configured(): it = {'ran': False} @logger(config_schema=Field(str)) def test_logger(init_context): assert init_context.logger_config == 'secret testing value!!' it['ran'] = True logger_ = logging.Logger('test', level=coerce_valid_log_level('INFO')) return logger_ test_logger_configured = configured(test_logger)('secret testing value!!') assert_pipeline_runs_with_logger(test_logger_configured, {}) assert it['ran'] def test_logger_with_enum_in_schema_using_configured(): from enum import Enum as PythonEnum class TestPythonEnum(PythonEnum): VALUE_ONE = 0 OTHER = 1 DagsterEnumType = Enum( 'TestEnum', [ EnumValue('VALUE_ONE', TestPythonEnum.VALUE_ONE), EnumValue('OTHER', TestPythonEnum.OTHER), ], ) it = {} @logger(config_schema={'enum': DagsterEnumType}) def test_logger(init_context): assert init_context.logger_config['enum'] == TestPythonEnum.OTHER it['ran test_logger'] = True logger_ = logging.Logger('test', level=coerce_valid_log_level('INFO')) return logger_ @configured(test_logger, {'enum': DagsterEnumType}) def pick_different_enum_value(config): it['ran pick_different_enum_value'] = True return {'enum': 'OTHER' if config['enum'] == TestPythonEnum.VALUE_ONE else 'VALUE_ONE'} assert_pipeline_runs_with_logger(pick_different_enum_value, {'enum': 'VALUE_ONE'}) assert it['ran test_logger'] assert it['ran pick_different_enum_value'] ``` #### File: runtime_types_tests/config_schema_tests/test_config_schema.py ```python import re import pytest from dagster import String from dagster.core.errors import DagsterInvalidDefinitionError from dagster.core.types.config_schema import ( dagster_type_loader, input_hydration_config, output_materialization_config, ) def test_dagster_type_loader_one(): @dagster_type_loader(String) def _foo(_, hello): return hello def test_dagster_type_loader_missing_context(): with pytest.raises(DagsterInvalidDefinitionError): @dagster_type_loader(String) def _foo(hello): return hello def test_dagster_type_loader_missing_variable(): with pytest.raises(DagsterInvalidDefinitionError): @dagster_type_loader(String) def _foo(_): return 1 def test_input_hydration_config_backcompat_args(): with pytest.warns( UserWarning, match=re.escape( '"input_hydration_config" is deprecated and will be removed in 0.10.0, use ' '"dagster_type_loader" instead.' ), ): @input_hydration_config(config_cls=String) def _foo(_, hello): return hello def test_output_materialization_config_backcompat_args(): with pytest.warns( UserWarning, match=re.escape( '"output_materialization_config" is deprecated and will be removed in 0.10.0, use ' '"dagster_type_materializer" instead.' ), ): @output_materialization_config(config_cls=String) def _foo(_, _a, _b): pass ``` #### File: general_tests/grpc_tests/test_heartbeat.py ```python import time from dagster.grpc.server import GrpcServerProcess from dagster.grpc.types import LoadableTargetOrigin from dagster.utils import file_relative_path def test_heartbeat(): loadable_target_origin = LoadableTargetOrigin( attribute='bar_repo', python_file=file_relative_path(__file__, 'grpc_repo.py'), ) server = GrpcServerProcess( loadable_target_origin=loadable_target_origin, max_workers=2, heartbeat=True, heartbeat_timeout=1, ) with server.create_ephemeral_client() as client: client.heartbeat() assert server.server_process.poll() is None time.sleep(2) assert server.server_process.poll() is not None ``` #### File: general_tests/grpc_tests/test_server.py ```python import threading import time from dagster.grpc.client import ephemeral_grpc_api_client def _stream_events_target(results, api_client): for result in api_client.streaming_ping(sequence_length=100000, echo='foo'): results.append(result) def test_streaming_terminate(): with ephemeral_grpc_api_client() as api_client: streaming_results = [] stream_events_result_thread = threading.Thread( target=_stream_events_target, args=[streaming_results, api_client] ) stream_events_result_thread.daemon = True stream_events_result_thread.start() while not streaming_results: time.sleep(0.001) res = api_client.shutdown_server() assert res.success assert res.serializable_error_info is None stream_events_result_thread.join() assert len(streaming_results) == 100000 api_client._server_process.wait() # pylint: disable=protected-access assert api_client._server_process.poll() == 0 # pylint: disable=protected-access ``` #### File: dagster_airflow/operators/kubernetes_operator.py ```python import sys import time from airflow.contrib.kubernetes import kube_client, pod_generator, pod_launcher from airflow.exceptions import AirflowException from airflow.utils.state import State from dagster_airflow.vendor.kubernetes_pod_operator import KubernetesPodOperator from dagster_graphql.client.query import RAW_EXECUTE_PLAN_MUTATION from dagster_graphql.client.util import construct_execute_plan_variables, parse_raw_log_lines from dagster import __version__ as dagster_version from dagster import check, seven from dagster.core.events import EngineEventData from dagster.core.instance import AIRFLOW_EXECUTION_DATE_STR, DagsterInstance from dagster.utils.error import serializable_error_info_from_exc_info from .util import ( airflow_tags_for_ts, check_events_for_failures, check_events_for_skips, get_aws_environment, ) # For retries on log retrieval LOG_RETRIEVAL_MAX_ATTEMPTS = 5 LOG_RETRIEVAL_WAITS_BETWEEN_ATTEMPTS_SEC = 5 class DagsterKubernetesPodOperator(KubernetesPodOperator): '''Dagster operator for Apache Airflow. Wraps a modified KubernetesPodOperator. ''' # py2 compat # pylint: disable=keyword-arg-before-vararg def __init__(self, operator_parameters, *args): kwargs = operator_parameters.op_kwargs self.pipeline_name = operator_parameters.pipeline_name self.pipeline_snapshot = operator_parameters.pipeline_snapshot self.execution_plan_snapshot = operator_parameters.execution_plan_snapshot self.parent_pipeline_snapshot = operator_parameters.parent_pipeline_snapshot kwargs['name'] = 'dagster.{pipeline_name}.{task_id}'.format( pipeline_name=self.pipeline_name, task_id=operator_parameters.task_id ).replace( '_', '-' # underscores are not permissible DNS names ) self.run_config = operator_parameters.run_config self.mode = operator_parameters.mode self.step_keys = operator_parameters.step_keys self.recon_repo = operator_parameters.recon_repo self._run_id = None # self.instance might be None in, for instance, a unit test setting where the operator # was being directly instantiated without passing through make_airflow_dag self.instance = ( DagsterInstance.from_ref(operator_parameters.instance_ref) if operator_parameters.instance_ref else None ) # Add AWS creds self.env_vars = kwargs.get('env_vars', {}) for k, v in get_aws_environment().items(): self.env_vars.setdefault(k, v) kwargs.setdefault('labels', {}) kwargs['labels'].setdefault('dagster_pipeline', self.pipeline_name) kwargs['labels'].setdefault('app.kubernetes.io/name', 'dagster') kwargs['labels'].setdefault('app.kubernetes.io/instance', self.pipeline_name) kwargs['labels'].setdefault('app.kubernetes.io/version', dagster_version) kwargs['labels'].setdefault('app.kubernetes.io/component', 'pipeline-execution') kwargs['labels'].setdefault('app.kubernetes.io/part-of', 'dagster-airflow') kwargs['labels'].setdefault('app.kubernetes.io/managed-by', 'dagster-airflow') # The xcom mechanism for the pod operator is very unlike that of the Docker operator, so # we disable it if 'xcom_push' in kwargs: self.log.warning( 'xcom_push cannot be enabled with the DagsterKubernetesPodOperator, disabling' ) kwargs['xcom_push'] = False super(DagsterKubernetesPodOperator, self).__init__( task_id=operator_parameters.task_id, dag=operator_parameters.dag, *args, **kwargs ) @property def run_id(self): return getattr(self, '_run_id', '') def query(self, airflow_ts): check.opt_str_param(airflow_ts, 'airflow_ts') variables = construct_execute_plan_variables( self.recon_repo, self.mode, self.run_config, self.pipeline_name, self.run_id, self.step_keys, ) tags = airflow_tags_for_ts(airflow_ts) variables['executionParams']['executionMetadata']['tags'] = tags self.log.info( 'Executing GraphQL query: {query}\n'.format(query=RAW_EXECUTE_PLAN_MUTATION) + 'with variables:\n' + seven.json.dumps(variables, indent=2) ) return [ 'dagster-graphql', '-v', '{}'.format(seven.json.dumps(variables)), '-t', '{}'.format(RAW_EXECUTE_PLAN_MUTATION), ] def execute(self, context): try: from dagster_graphql.client.mutations import ( DagsterGraphQLClientError, handle_execution_errors, handle_execute_plan_result_raw, ) except ImportError: raise AirflowException( 'To use the DagsterKubernetesPodOperator, dagster and dagster_graphql must be' ' installed in your Airflow environment.' ) if 'run_id' in self.params: self._run_id = self.params['run_id'] elif 'dag_run' in context and context['dag_run'] is not None: self._run_id = context['dag_run'].run_id # return to original execute code: try: client = kube_client.get_kube_client( in_cluster=self.in_cluster, cluster_context=self.cluster_context, config_file=self.config_file, ) gen = pod_generator.PodGenerator() for mount in self.volume_mounts: gen.add_mount(mount) for volume in self.volumes: gen.add_volume(volume) pod = gen.make_pod( namespace=self.namespace, image=self.image, pod_id=self.name, cmds=self.cmds, arguments=self.query(context.get('ts')), labels=self.labels, ) pod.service_account_name = self.service_account_name pod.secrets = self.secrets pod.envs = self.env_vars pod.image_pull_policy = self.image_pull_policy pod.image_pull_secrets = self.image_pull_secrets pod.annotations = self.annotations pod.resources = self.resources pod.affinity = self.affinity pod.node_selectors = self.node_selectors pod.hostnetwork = self.hostnetwork pod.tolerations = self.tolerations pod.configmaps = self.configmaps pod.security_context = self.security_context launcher = pod_launcher.PodLauncher(kube_client=client, extract_xcom=self.xcom_push) try: if self.instance: tags = ( {AIRFLOW_EXECUTION_DATE_STR: context.get('ts')} if 'ts' in context else {} ) run = self.instance.register_managed_run( pipeline_name=self.pipeline_name, run_id=self.run_id, run_config=self.run_config, mode=self.mode, solids_to_execute=None, step_keys_to_execute=None, tags=tags, root_run_id=None, parent_run_id=None, pipeline_snapshot=self.pipeline_snapshot, execution_plan_snapshot=self.execution_plan_snapshot, parent_pipeline_snapshot=self.parent_pipeline_snapshot, ) # we won't use the "result", which is the pod's xcom json file (final_state, _) = launcher.run_pod( pod, startup_timeout=self.startup_timeout_seconds, get_logs=self.get_logs ) # fetch the last line independently of whether logs were read # unbelievably, if you set tail_lines=1, the returned json has its double quotes # turned into unparseable single quotes res = None num_attempts = 0 while not res and num_attempts < LOG_RETRIEVAL_MAX_ATTEMPTS: raw_res = client.read_namespaced_pod_log( name=pod.name, namespace=pod.namespace, container='base' ) res = parse_raw_log_lines(raw_res.split('\n')) time.sleep(LOG_RETRIEVAL_WAITS_BETWEEN_ATTEMPTS_SEC) num_attempts += 1 try: handle_execution_errors(res, 'executePlan') except DagsterGraphQLClientError as err: self.instance.report_engine_event( str(err), run, EngineEventData.engine_error( serializable_error_info_from_exc_info(sys.exc_info()) ), self.__class__, ) raise events = handle_execute_plan_result_raw(res) if self.instance: for event in events: self.instance.handle_new_event(event) events = [e.dagster_event for e in events] check_events_for_failures(events) check_events_for_skips(events) return events finally: self._run_id = None if self.is_delete_operator_pod: launcher.delete_pod(pod) if final_state != State.SUCCESS: raise AirflowException('Pod returned a failure: {state}'.format(state=final_state)) # note the lack of returning the default xcom except AirflowException as ex: raise AirflowException('Pod Launching failed: {error}'.format(error=ex)) ``` #### File: dagster-airflow/dagster_airflow_tests/test_compile.py ```python from dagster_airflow.compile import coalesce_execution_steps from dagster_test.toys.composition import composition from dagster.core.definitions.executable import InMemoryExecutablePipeline from dagster.core.execution.plan.plan import ExecutionPlan from dagster.core.system_config.objects import EnvironmentConfig def test_compile(): environment_config = EnvironmentConfig.build( composition, {'solids': {'add_four': {'inputs': {'num': {'value': 1}}}}}, ) plan = ExecutionPlan.build(InMemoryExecutablePipeline(composition), environment_config) res = coalesce_execution_steps(plan) assert set(res.keys()) == { 'add_four.add_two.add_one', 'add_four.add_two.add_one_2', 'add_four.add_two_2.add_one', 'add_four.add_two_2.add_one_2', 'div_four.div_two', 'div_four.div_two_2', 'int_to_float', } ``` #### File: dagster_aws/s3/solids.py ```python from dagster import ( AssetMaterialization, EventMetadataEntry, Field, FileHandle, InputDefinition, Output, OutputDefinition, StringSource, check, dagster_type_loader, solid, ) from dagster.core.types.dagster_type import PythonObjectDagsterType from .file_manager import S3FileHandle def dict_with_fields(name, fields): check.str_param(name, 'name') check.dict_param(fields, 'fields', key_type=str) field_names = set(fields.keys()) @dagster_type_loader(fields) def _input_schema(_context, value): check.dict_param(value, 'value') check.param_invariant(set(value.keys()) == field_names, 'value') return value class _DictWithSchema(PythonObjectDagsterType): def __init__(self): super(_DictWithSchema, self).__init__(python_type=dict, name=name, loader=_input_schema) return _DictWithSchema() S3Coordinate = dict_with_fields( 'S3Coordinate', fields={ 'bucket': Field(StringSource, description='S3 bucket name'), 'key': Field(StringSource, description='S3 key name'), }, ) def last_key(key): if '/' not in key: return key comps = key.split('/') return comps[-1] @solid( config_schema={ 'Bucket': Field( StringSource, description='The name of the bucket to upload to.', is_required=True ), 'Key': Field( StringSource, description='The name of the key to upload to.', is_required=True ), }, input_defs=[InputDefinition('file_handle', FileHandle, description='The file to upload.')], output_defs=[OutputDefinition(name='s3_file_handle', dagster_type=S3FileHandle)], description='''Take a file handle and upload it to s3. Returns an S3FileHandle.''', required_resource_keys={'s3'}, ) def file_handle_to_s3(context, file_handle): bucket = context.solid_config['Bucket'] key = context.solid_config['Key'] with context.file_manager.read(file_handle, 'rb') as fileobj: context.resources.s3.upload_fileobj(fileobj, bucket, key) s3_file_handle = S3FileHandle(bucket, key) yield AssetMaterialization( asset_key=s3_file_handle.s3_path, metadata_entries=[EventMetadataEntry.path(s3_file_handle.s3_path, label=last_key(key))], ) yield Output(value=s3_file_handle, output_name='s3_file_handle') ``` #### File: dagstermill/dagstermill/serialize.py ```python from dagster import check, seven from dagster.core.types.dagster_type import DagsterType, DagsterTypeKind PICKLE_PROTOCOL = 2 def is_json_serializable(value): try: seven.json.dumps(value) return True except TypeError: return False def read_value(dagster_type, value): check.inst_param(dagster_type, 'dagster_type', DagsterType) check.dict_param(value, 'value') check.invariant( list(value.keys()) in [['value'], ['file']], 'Malformed value received with keys: {bad_keys}, expected [\'value\'] or [\'file\']'.format( bad_keys='[{keys}]'.format( keys=', '.join(['\'{key}\''.format(key=key) for key in value.keys()]) ) ), ) if 'value' in value: return value['value'] else: return dagster_type.serialization_strategy.deserialize_from_file(value['file']) def write_value(dagster_type, value, target_file): check.inst_param(dagster_type, 'dagster_type', DagsterType) if dagster_type.kind == DagsterTypeKind.SCALAR or ( dagster_type.kind == DagsterTypeKind.ANY and is_json_serializable(value) ): return {'value': value} else: dagster_type.serialization_strategy.serialize_to_file(value, target_file) return {'file': target_file} ``` #### File: lakehouse/lakehouse/computation.py ```python from collections import namedtuple from dagster import check class AssetDependency(namedtuple('_AssetDependency', 'asset in_memory_type')): '''An asset dependency describes how the contents of another asset are provided to a Computation's compute_fn. Attributes: asset (Asset): The asset that we depend on. in_memory_type (Type): The type, e.g. pandas.DataFrame, that the asset's contents should be hydrated into to be passed as the compute_fn. ''' class Computation(namedtuple('_Computation', 'compute_fn deps output_in_memory_type')): '''A description of the computation responsible for producing an asset. E.g. a SQL select statement or python code that trains an ML model. The computation is agnostic to the physical details of where it's stored and how it's saved to and loaded from that storage. The Lakehouse that the asset resides in is responsible for those. Attributes: compute_fn (Callable): A python function with no side effects that produces an in-memory representation of the asset's contents from in-memory representation of the asset' inputs. deps (Dict[str, AssetDependency]): The assets that the compute_fn depends on to produce the asset's contents, keyed by their arg names in the compute_fn definition. output_in_memory_type (Type): The python type that the compute_fn will return. ''' def __new__(cls, compute_fn, deps, output_in_memory_type): return super(Computation, cls).__new__( cls, compute_fn=check.callable_param(compute_fn, 'compute_fn'), deps=check.dict_param(deps, 'deps', key_type=str, value_type=AssetDependency), output_in_memory_type=check.inst_param( output_in_memory_type, 'output_in_memory_type', type ), ) ```
{ "source": "JohannKT/cti-stix-validator", "score": 2 }
#### File: test/v20/bundle_tests.py ```python import copy import json import pytest from . import ValidatorTest from ... import ValidationError VALID_BUNDLE = u""" { "type": "bundle", "id": "bundle--44af6c39-c09b-49c5-9de2-394224b04982", "spec_version": "2.0", "objects": [ { "type": "identity", "id": "identity--8ae20dde-83d4-4218-88fd-41ef0dabf9d1", "created": "2016-08-22T14:09:00.123Z", "modified": "2016-08-22T14:09:00.123Z", "name": "mitre.org", "identity_class": "organization" } ] } """ class BundleTestCases(ValidatorTest): valid_bundle = json.loads(VALID_BUNDLE) def test_wellformed_bundle(self): self.assertTrueWithOptions(self.valid_bundle) def test_bundle_object_categories(self): bundle = copy.deepcopy(self.valid_bundle) bundle['identities'] = bundle['objects'] del bundle['objects'] self.assertFalseWithOptions(bundle) def test_bundle_created(self): bundle = copy.deepcopy(self.valid_bundle) bundle['created'] = "2016-08-22T14:09:00.123456Z" self.assertFalseWithOptions(bundle) def test_bundle_version(self): bundle = copy.deepcopy(self.valid_bundle) bundle['version'] = 1 self.assertFalseWithOptions(bundle) def test_bundle_duplicate_ids(self): bundle = copy.deepcopy(self.valid_bundle) bundle['objects'].append(bundle['objects'][0].copy()) self.assertFalseWithOptions(bundle) bundle['objects'][1]['modified'] = "2017-06-22T14:09:00.123Z" self.assertTrueWithOptions(bundle) def test_silent_and_verbose(self): bundle = json.loads(VALID_BUNDLE) with pytest.raises(ValueError) as exc: self.assertFalseWithOptions(bundle, silent=True, verbose=True) assert 'silent or verbose, but not both' in str(exc) def test_bundle_sdo_missing_type(self): bundle = copy.deepcopy(self.valid_bundle) del bundle['objects'][0]['type'] with pytest.raises(ValidationError): self.assertFalseWithOptions(bundle) ``` #### File: stix2validator/v21/errors.py ```python from collections import deque from jsonschema import exceptions as schema_exceptions from ..errors import (NoJSONFileFoundError, PatternError, SchemaError, # noqa SchemaInvalidError, ValidationError, pretty_error) from .enums import CHECK_CODES class JSONError(schema_exceptions.ValidationError): """Wrapper for errors thrown by iter_errors() in the jsonschema module. Makes errors generated by our functions look like those from jsonschema. """ def __init__(self, msg=None, instance_id=None, check_code=None): if check_code is not None: # Get code number code from name code = list(CHECK_CODES.keys())[list(CHECK_CODES.values()).index(check_code)] msg = '{%s} %s' % (code, msg) super(JSONError, self).__init__(msg, path=deque([instance_id])) ```
{ "source": "JohannKT/cti-taxii-server", "score": 2 }
#### File: medallion/backends/base.py ```python class Backend(object): def server_discovery(self): """ Fill: Returns the discovery information (api_roots, etc) for this server Args: -none- Returns: discovery information """ raise NotImplementedError() def get_collections(self, api_root): """ Fill: implement the get_collections TAXII endpoint by obtaining the collection metadata for this api_root Args: api_root (str): the name of the api_root. Returns: metadata for all collections at this api root """ raise NotImplementedError() def get_collection(self, api_root, collection_id): """ Fill: implement the get_collection TAXII service by obtaining the collection metadata for collection Args: api_root (str): the name of the api_root. collection_id (str): the id of the collection Returns: collection metadata """ raise NotImplementedError() def get_object_manifest(self, api_root, collection_id, filter_args, allowed_filters): """ Fill: implement the get_object_manifest TAXII endpoint by obtaining the metadata for the selected objects Args: api_root (str): the name of the api_root. collection_id (str): the id of the collection filter_args (str): query string from URL containing filter args allowed_filters (list): STIX properties which are allowed in the filter for this endpoint Returns: metadata for the objects """ raise NotImplementedError() def get_api_root_information(self, api_root): """ Fill: implement the get_api_root_information TAXII endpoint by obtaining api_root metadata Args: api_root (str): the name of the api_root. Returns: metadata for the api root """ raise NotImplementedError() def get_status(self, api_root, status_id): """ Fill: implement the get_status TAXII endpoint by obtaining the status of an add_objects request Args: api_root (str): the name of the api_root. status_id (str): the id of the add_objects request Returns: status of the request (including): how many objects were successful saved how many objects failed to be saved how many objects are pending """ raise NotImplementedError() def get_objects(self, api_root, collection_id, filter_args, allowed_filters): """ Fill: implement the get_objects TAXII endpoint by obtaining the data from a collection Args: api_root (str): the name of the api_root. collection_id (str): the id of the collection filter_args (str): query string from URL containing filter args allowed_filters (list): STIX properties which are allowed in the filter for this endpoint Returns: data from the collection that satisfies the filter """ raise NotImplementedError() def add_objects(self, api_root, collection_id, objs): """ Fill: implement the add_objects TAXII endpoint by save data into a collection Args: api_root (str): the name of the api_root. collection_id (str): the id of the collection objs (list): objects to insert into the collection Returns: status of the request (including): how many objects were successful saved how many objects failed to be saved how many objects are pending METADATA ABOUT EACH SUCCESSFUL OBJECT SAVED MUST BE AVAILABLE VIA THE get_object_manifest API CALL THIS CAN BE IMPLEMENTED AS A SEPARATE STORE, OTHERWISE IT NEEDS TO BE GENERATABLE DYNAMICALLY """ raise NotImplementedError() def get_object(self, api_root, collection_id, object_id, filter_args, allowed_filters): """ Fill: implement the get_object TAXII endpoint by obtaining the data from a collection related to the object_id Args: api_root (str): the name of the api_root. collection_id (str): the id of the collection object_id (str): the id of the requested object filter_args (str): query string from URL containing filter args allowed_filters (list): STIX properties which are allowed in the filter for this endpoint Returns: data from the collection that satisfies the filter """ raise NotImplementedError() ```
{ "source": "johann-lau/2048", "score": 4 }
#### File: johann-lau/2048/2048.py ```python from enum import Enum import random class Direction(Enum): W = UP = 1 D = RIGHT = 2 S = DOWN = 3 A = LEFT = 4 class Game2048: def __init__(self): self.score = 0 # Incremented at line 45 self.grid = [[None, None, None, None], [None, None, None, None], [None, None, None, None], [None, None, None, None]] self.spawn_random() # Two random tiles at initialization self.spawn_random() def pretty_print(self): # Returns a beautified string for monospace printing. flattened_grid = [j for i in self.grid for j in i if j != None] box_length = len(str(max(flattened_grid))) # String length of maximum value in self.grid box_length = max(box_length, 4) # At least 4 desc = f"Score: {self.score}\n" for i in self.grid: desc += "|".join([f"{j: ^{box_length}}" if j else " " * box_length for j in i]) + "\n" return desc[:-1] def spawn_random(self): # Adds a random tile 2 or 4. new = random.choice([2, 4]) empties = [[i, j] for i in range(0, 4) for j in range(0, 4) if not self.grid[i][j]] chosen = random.choice(empties) self.grid[chosen[0]][chosen[1]] = new def input_left(self): # Handles input to the left. Other directions are done through reflection. for i in range(4): # Let's say self.grid[0] is [4, None, 4, 8] for j in range(3): # Loop through first three items [4, None, 4] if self.grid[i][j]: righters = list(filter(lambda x: x, self.grid[i][(j+1):])) # Values to the right excluding Nones if righters: dir_r = righters[0] # First value directly to the right excluding Nones if self.grid[i][j] == dir_r: self.grid[i][j] *= 2 # After all iterations should give [8, None, 4, 8] self.score += self.grid[i][j] self.grid[i][righters.index(dir_r) + j + 1] = None # Index of dir_r in i: righters.index(dir_r) + j + 1 # After all iterations should give [8, None, None, 8] self.grid[i] = list(filter(lambda x: x, self.grid[i])) # Remove Nones self.grid[i].extend([None] * (4 - len(self.grid[i]))) def twod_flip(self): # ORIGINAL AFTER # a | b | c | d a | e | i | m # e | f | g | h b | f | j | n # i | j | k | l c | g | k | o # m | n | o | p d | h | l | p new_grid = [] for j in range(4): # Note that this is iterating through the x-axis new_grid.append([self.grid[i][j] for i in range(4)]) self.grid = new_grid def input(self, direction): # Handle user inputs if direction == Direction.LEFT: self.input_left() elif direction == Direction.RIGHT: for i in range(4): self.grid[i].reverse() self.input_left() for i in range(4): self.grid[i].reverse() else: self.twod_flip() if direction == Direction.DOWN: for i in range(4): self.grid[i].reverse() self.input_left() if direction == Direction.DOWN: for i in range(4): self.grid[i].reverse() self.twod_flip() game.spawn_random() game = Game2048() inp = "" print(game.pretty_print() + "\n\n") inp = input("Direction (WASD, or Q to quit): ").lower() while inp != "q": if inp in ['w', 'a', 's', 'd']: game.input(eval(f"Direction.{inp.upper()}")) print(game.pretty_print()) inp = input("Direction (WASD, or Q to quit): ").lower() ```
{ "source": "johann-lau/googlesearch", "score": 3 }
#### File: googlesearch/googlesearch/googlesearch.py ```python import urllib.request import math import re from bs4 import BeautifulSoup from pprint import pprint from threading import Thread from collections import deque from time import sleep class GoogleSearch: USER_AGENT = "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 58.0.3029.81 Safari/537.36" SEARCH_URL = "https://google.com/search" RESULT_SELECTOR = "h3.r a" TOTAL_SELECTOR = "#resultStats" RESULTS_PER_PAGE = 10 DEFAULT_HEADERS = [ ('User-Agent', USER_AGENT), ("Accept-Language", "en-US,en;q=0.5"), ] def search(self, query, num_results = 10, prefetch_pages = True, prefetch_threads = 10): searchResults = [] pages = int(math.ceil(num_results / float(GoogleSearch.RESULTS_PER_PAGE))); fetcher_threads = deque([]) total = None; for i in range(pages) : start = i * GoogleSearch.RESULTS_PER_PAGE opener = urllib.request.build_opener() opener.addheaders = GoogleSearch.DEFAULT_HEADERS response = opener.open(GoogleSearch.SEARCH_URL + "?q="+ urllib.request.quote(query) + ("" if start == 0 else ("&start=" + str(start)))) soup = BeautifulSoup(response.read(), "lxml") response.close() if total is None: totalText = soup.select(GoogleSearch.TOTAL_SELECTOR)[0].children.next().encode('utf-8') total = long(re.sub("[', ]", "", re.search("(([0-9]+[', ])*[0-9]+)", totalText).group(1))) results = self.parseResults(soup.select(GoogleSearch.RESULT_SELECTOR)) if len(searchResults) + len(results) > num_results: del results[num_results - len(searchResults):] searchResults += results if prefetch_pages: for result in results: while True: running = 0 for thread in fetcher_threads: if thread.is_alive(): running += 1 if running < prefetch_threads: break sleep(1) fetcher_thread = Thread(target=result.getText) fetcher_thread.start() fetcher_threads.append(fetcher_thread) for thread in fetcher_threads: thread.join() return SearchResponse(searchResults, total); def parseResults(self, results): searchResults = []; for result in results: url = result["href"]; title = result.text searchResults.append(SearchResult(title, url)) return searchResults class SearchResponse: def __init__(self, results, total): self.results = results; self.total = total; class SearchResult: def __init__(self, title, url): self.title = title self.url = url self.__text = None self.__markup = None def getText(self): if self.__text is None: soup = BeautifulSoup(self.getMarkup(), "lxml") for junk in soup(["script", "style"]): junk.extract() self.__text = soup.get_text() return self.__text def getMarkup(self): if self.__markup is None: opener = urllib.request.build_opener() opener.addheaders = GoogleSearch.DEFAULT_HEADERS response = opener.open(self.url); self.__markup = response.read() return self.__markup def __str__(self): return str(self.__dict__) def __unicode__(self): return unicode(self.__str__()) def __repr__(self): return self.__str__() if __name__ == "__main__": import sys search = GoogleSearch() i=1 query = " ".join(sys.argv[1:]) if len(query) == 0: query = "python" count = 10 print ("Fetching first " + str(count) + " results for \"" + query + "\"...") response = search.search(query, count) print ("TOTAL: " + str(response.total) + " RESULTS") for result in response.results: print("RESULT #" +str (i) + ": "+ (result._SearchResult__text if result._SearchResult__text is not None else "[None]") + "\n\n") i+=1 ```
{ "source": "JohannLiebert1130/Flask_simple_blog", "score": 3 }
#### File: Flask_simple_blog/src/app.py ```python from src.common.database import Database from src.models.blog import Blog from src.models.post import Post from src.models.user import User from flask import Flask, render_template, request, session, make_response app = Flask(__name__) # '__main__' app.secret_key = "Johann" @app.route('/') def home_template(): return render_template('home.html') @app.route('/login') def login_template(): return render_template('login.html') @app.route('/register') def register_template(): return render_template('register.html') @app.before_first_request def initialize_database(): Database.initialize() @app.route('/auth/login', methods=['POST']) def login_user(): email = request.form['email'] password = request.form['password'] if User.login_valid(email, password): User.login(email) else: session['email'] = None return render_template("profile.html", email=session['email']) @app.route('/auth/register', methods=['POST']) def register_user(): email = request.form['email'] password = request.form['password'] User.register(email, password) return render_template("profile.html", email=session['email']) @app.route('/blogs/<string:user_id>') @app.route('/blogs') def user_blogs(user_id=None): if user_id is not None: user = User.get_by_id(user_id) else: user = User.get_by_email(session['email']) blogs = user.get_blogs() return render_template("user_blogs.html", blogs=blogs, email=user.email) @app.route('/blogs/new', methods=['POST', 'GET']) def create_new_blog(): if request.method == 'GET': return render_template('new_blog.html') else: title = request.form['title'] description = request.form['description'] user = User.get_by_email(session['email']) new_blog = Blog(user.email, title, description, user._id) new_blog.save_to_mongo() return make_response(user_blogs(user._id)) @app.route('/posts/<string:blog_id>') def blog_posts(blog_id): blog = Blog.from_mongo(blog_id) posts = blog.get_posts() return render_template('posts.html', posts=posts, blog_title=blog.title, blog_id=blog._id) @app.route('/posts/new/<string:blog_id>', methods=['POST', 'GET']) def create_new_post(blog_id): if request.method == 'GET': return render_template('new_post.html', blog_id=blog_id) else: title = request.form['title'] content = request.form['content'] user = User.get_by_email(session['email']) new_post = Post(blog_id, title, content, user.email) new_post.save_to_mongo() return make_response(blog_posts(blog_id)) if __name__ == '__main__': app.run(port=4995, debug=True) ```
{ "source": "johannlilly/tf-quant-finance", "score": 3 }
#### File: tf_quant_finance/math/piecewise.py ```python import numpy as np import tensorflow.compat.v2 as tf class PiecewiseConstantFunc(object): """Creates a piecewise constant function.""" def __init__(self, jump_locations, values, dtype=None, name=None): r"""Initializes jumps of the piecewise constant function. Sets jump locations and values for a piecewise constant function. `jump_locations` split real line into intervals `[-inf, jump_locations[..., 0]], .., [jump_locations[..., i], jump_locations[..., i + 1]], ..., [jump_locations[..., -1], inf]` so that the piecewise constant function takes corresponding `values` on the intervals, i.e., ``` f(x) = \sum_i values[..., i] * I_{x \in [jump_locations[..., i -1], jump_locations[..., i])} ``` #### Example. Simple scalar-valued piecewise constant function. ```python dtype = np.float64 jump_locations = [0.1, 10] values = [3, 4, 5] piecewise_func = piecewise.PiecewiseConstantFunc(jump_locations, values, dtype=dtype) # Locations at which to evaluate the function assuming it is # left-continuous. x = np.array([0., 0.1, 2., 11.]) value = piecewise_func(x) # Expected values: [3, 3, 4, 5] integral = piecewise_func.integrate(x, x + 1) # Expected integrals: [3.9, 4, 4, 5] ``` #### Example. Matrix-valued piecewise constant function. ```python dtype = np.float64 jump_locations = [0.1, 10] # The function takes values [[1, 2], [3, 4]] on (-inf, 0.1), # [[5, 6], [7, 8]] on (0.1, 0.5), and [[9, 10], [11, 12]] on (0.5, +inf). values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]] piecewise_func = piecewise.PiecewiseConstantFunc( jump_locations, values, dtype=dtype) # Locations at which to evaluate the function assuming it is # left-continuous. x = np.array([0., 0.1, 2, 11]) value = piecewise_func(x) # Expected values: [[[1, 2], [3, 4]], [[1, 2], [3, 4]], # [[5, 6], [7, 8]], [[9, 10], [11, 12]]] integral = piecewise_func.integrate(x, x + 1) # Expected integrals: [[[4.6, 5.6], [6.6, 7.6]], # [[5, 6], [7, 8]], # [[5, 6], [7, 8]], # [[9, 10], [11, 12]]] ``` Args: jump_locations: A real `Tensor` of shape `batch_shape + [num_jump_points]`. The locations where the function changes its values. Note that the values are expected to be ordered along the last dimension. Repeated values are allowed but it is up to the user to ensure that the corresponding `values` are also repeated. values: A `Tensor` of the same `dtype` as `jump_locations` and shape `batch_shape + [num_jump_points + 1] + event_shape`. Defines `values[batch_rank * slice(None), i]` on intervals `(jump_locations[..., i - 1], jump_locations[..., i])`. Here `event_shape` allows for array-valued piecewise constant functions and `batch_rank = len(batch_shape)`. dtype: Optional dtype for `jump_locations` and `values`. Default value: `None` which maps to the default dtype inferred by TensorFlow. name: Python `str` name prefixed to ops created by this class. Default value: `None` which is mapped to the default name `PiecewiseConstantFunc`. Raises: ValueError: If `jump_locations` and `values` have different batch shapes or, in case of static shapes, if the event shape of `values` is different from `num_jump_points + 1`. """ self._name = name or 'PiecewiseConstantFunc' # Add a property that indicates that the class instance is a # piecewise constant function self.is_piecewise_constant = True with tf.compat.v1.name_scope(self._name, values=[jump_locations, values]): self._jump_locations = tf.convert_to_tensor(jump_locations, dtype=dtype, name='jump_locations') self._values = tf.convert_to_tensor(values, dtype=dtype, name='values') shape_values = self._values.shape.as_list() shape_jump_locations = self._jump_locations.shape.as_list() batch_rank = len(shape_jump_locations[:-1]) self._batch_rank = batch_rank if shape_values[:batch_rank] != shape_jump_locations[:-1]: raise ValueError('Batch shapes of `values` and `jump_locations` should ' 'be the same but are {0} and {1}'.format( shape_values[:-1], shape_jump_locations[:-1])) if shape_values[batch_rank] - 1 != shape_jump_locations[-1]: raise ValueError('Event shape of `values` should have one more ' 'element than the event shape of `jump_locations` ' 'but are {0} and {1}'.format( shape_values[-1], shape_jump_locations[-1])) def values(self): """The value of the piecewise constant function between jump locations.""" return self._values def jump_locations(self): """The jump locations of the piecewise constant function.""" return self._jump_locations def name(self): """The name to give to the ops created by this class.""" return self._name def __call__(self, x, left_continuous=True, name=None): """Computes value of the piecewise constant function. Returns a value of the piecewise function with jump locations and values given by the initializer. Args: x: A real `Tensor` of shape `batch_shape + [num_points]`. Points at which the function has to be evaluated. left_continuous: Python `bool`. Whether the function is left- or right- continuous, i.e., at the `jump_locations[..., i]` left-continuity means that the function has the same value `values[batch_rank * slice(None), i]`, whereas for right-continuity, the value is `values[batch_rank * slice(None), i + 1]`. Default value: `True` which means that the function is left-continuous. name: Python `str` name prefixed to ops created by this method. Default value: `None` which is mapped to the default name `self.name() + _call`. Returns: A `Tensor` of the same `dtype` as `x` and shape `batch_shape + [num_points] + event_shape` containing values of the piecewise constant function. Raises: ValueError: If `batch_shape` of `x` is incompatible with the batch shape of `self.jump_locations()`. """ with tf.compat.v1.name_scope(name, self._name + '_call', [x]): x = tf.convert_to_tensor(x, dtype=self._jump_locations.dtype, name='x') batch_shape = self._jump_locations.shape.as_list()[:-1] x = _try_broadcast_to(x, batch_shape, name='x') side = 'left' if left_continuous else 'right' return _piecewise_constant_function( x, self._jump_locations, self._values, self._batch_rank, side=side) def integrate(self, x1, x2, name=None): """Integrates the piecewise constant function between end points. Returns a value of the integral on the interval `[x1, x2]` of a piecewise constant function with jump locations and values given by the initializer. Args: x1: A real `Tensor` of shape `batch_shape + [num_points]`. Left end points at which the function has to be integrated. x2: A `Tensor` of the same shape and `dtype` as `x1`. Right end points at which the function has to be integrated. name: Python `str` name prefixed to ops created by this method. Default value: `None` which is mapped to the default name `self.name() + `_integrate``. Returns: A `Tensor` of the same `dtype` as `x` and shape `batch_shape + [num_points] + event_shape` containing values of the integral of the piecewise constant function between `[x1, x2]`. Raises: ValueError: If `batch_shape` of `x1` and `x2` are incompatible with the batch shape of `self.jump_locations()`. """ with tf.compat.v1.name_scope(name, self._name + '_integrate', [x1, x2]): x1 = tf.convert_to_tensor(x1, dtype=self._jump_locations.dtype, name='x1') x2 = tf.convert_to_tensor(x2, dtype=self._jump_locations.dtype, name='x2') batch_shape = self._jump_locations.shape.as_list()[:-1] x1 = _try_broadcast_to(x1, batch_shape, name='x1') x2 = _try_broadcast_to(x2, batch_shape, name='x1') return _piecewise_constant_integrate( x1, x2, self._jump_locations, self._values, self._batch_rank) def find_interval_index(query_xs, interval_lower_xs, last_interval_is_closed=False, dtype=None, name=None): """Function to find the index of the interval where query points lies. Given a list of adjacent half-open intervals [x_0, x_1), [x_1, x_2), ..., [x_{n-1}, x_n), [x_n, inf), described by a list [x_0, x_1, ..., x_{n-1}, x_n]. Return the index where the input query points lie. If x >= x_n, n is returned, and if x < x_0, -1 is returned. If `last_interval_is_closed` is set to `True`, the last interval [x_{n-1}, x_n] is interpreted as closed (including x_n). #### Example ```python interval_lower_xs = [0.25, 0.5, 1.0, 2.0, 3.0] query_xs = [0.25, 3.0, 5.0, 0.0, 0.5, 0.8] result = find_interval_index(query_xs, interval_lower_xs) # result == [0, 4, 4, -1, 1, 1] ``` Args: query_xs: Rank 1 real `Tensor` of any size, the list of x coordinates for which the interval index is to be found. The values must be strictly increasing. interval_lower_xs: Rank 1 `Tensor` of the same shape and dtype as `query_xs`. The values x_0, ..., x_n that define the interval starts. last_interval_is_closed: If set to `True`, the last interval is interpreted as closed. dtype: Optional `tf.Dtype`. If supplied, the dtype for `query_xs` and `interval_lower_xs`. Default value: None which maps to the default dtype inferred by TensorFlow (float32). name: Optional name of the operation. Returns: A tensor that matches the shape of `query_xs` with dtype=int32 containing the indices of the intervals containing query points. `-1` means the query point lies before all intervals and `n-1` means that the point lies in the last half-open interval (if `last_interval_is_closed` is `False`) or that the point lies to the right of all intervals (if `last_interval_is_closed` is `True`). """ with tf.compat.v1.name_scope( name, default_name='find_interval_index', values=[query_xs, interval_lower_xs, last_interval_is_closed]): # TODO(b/138988951): add ability to validate that intervals are increasing. # TODO(b/138988951): validate that if last_interval_is_closed, input size # must be > 1. query_xs = tf.convert_to_tensor(query_xs, dtype=dtype) interval_lower_xs = tf.convert_to_tensor(interval_lower_xs, dtype=dtype) # Result assuming that last interval is half-open. indices = tf.searchsorted(interval_lower_xs, query_xs, side='right') - 1 # Handling the branch if the last interval is closed. last_index = tf.shape(interval_lower_xs)[-1] - 1 last_x = tf.gather(interval_lower_xs, [last_index], axis=-1) # should_cap is a tensor true where a cell is true iff indices is the last # index at that cell and the query x <= the right boundary of the last # interval. should_cap = tf.logical_and( tf.equal(indices, last_index), tf.less_equal(query_xs, last_x)) # cap to last_index if the query x is not in the last interval, otherwise, # cap to last_index - 1. caps = last_index - tf.cast(should_cap, dtype=tf.dtypes.int32) return tf.compat.v1.where(last_interval_is_closed, tf.minimum(indices, caps), indices) def _piecewise_constant_function(x, jump_locations, values, batch_rank, side='left'): """Computes value of the piecewise constant function.""" # Initializer already verified that `jump_locations` and `values` have the # same shape batch_shape = jump_locations.shape.as_list()[:-1] # Check that the batch shape of `x` is the same as of `jump_locations` and # `values` batch_shape_x = x.shape.as_list()[:batch_rank] if batch_shape_x != batch_shape: raise ValueError('Batch shape of `x` is {1} but should be {0}'.format( batch_shape, batch_shape_x)) if x.shape.as_list()[:batch_rank]: no_batch_shape = False else: no_batch_shape = True x = tf.expand_dims(x, 0) # Expand batch size to one if there is no batch shape if not batch_shape: jump_locations = tf.expand_dims(jump_locations, 0) values = tf.expand_dims(values, 0) indices = tf.searchsorted(jump_locations, x, side=side) index_matrix = _prepare_index_matrix( indices.shape.as_list()[:-1], indices.shape.as_list()[-1], indices.dtype) indices_nd = tf.concat( [index_matrix, tf.expand_dims(indices, -1)], -1) res = tf.gather_nd(values, indices_nd) if no_batch_shape: return tf.squeeze(res, 0) else: return res def _piecewise_constant_integrate(x1, x2, jump_locations, values, batch_rank): """Integrates piecewise constant function between `x1` and `x2`.""" # Initializer already verified that `jump_locations` and `values` have the # same shape. # Expand batch size to one if there is no batch shape. if x1.shape.as_list()[:batch_rank]: no_batch_shape = False else: no_batch_shape = True x1 = tf.expand_dims(x1, 0) x2 = tf.expand_dims(x2, 0) if not jump_locations.shape.as_list()[:-1]: jump_locations = tf.expand_dims(jump_locations, 0) values = tf.expand_dims(values, 0) batch_rank += 1 # Compute the index matrix that is later used for `tf.gather_nd`. index_matrix = _prepare_index_matrix( x1.shape.as_list()[:-1], x1.shape.as_list()[-1], tf.int32) # Compute integral values at the jump locations starting from the first jump # location. event_shape = values.shape[(batch_rank+1):] num_data_points = values.shape.as_list()[batch_rank] diff = jump_locations[..., 1:] - jump_locations[..., :-1] # Broadcast `diff` to the shape of # `batch_shape + [num_data_points - 2] + [1] * sample_rank`. for _ in event_shape: diff = tf.expand_dims(diff, -1) slice_indices = batch_rank * [slice(None)] slice_indices += [slice(1, num_data_points - 1)] integrals = tf.cumsum(values[slice_indices] * diff, batch_rank) # Pad integrals with zero values on left and right. batch_shape = integrals.shape.as_list()[:batch_rank] zeros = tf.zeros(batch_shape + [1] + event_shape, dtype=integrals.dtype) integrals = tf.concat([zeros, integrals, zeros], axis=batch_rank) # Get jump locations and values and the integration end points value1, jump_location1, indices_nd1 = _get_indices_and_values( x1, index_matrix, jump_locations, values, 'left', batch_rank) value2, jump_location2, indices_nd2 = _get_indices_and_values( x2, index_matrix, jump_locations, values, 'right', batch_rank) integrals1 = tf.gather_nd(integrals, indices_nd1) integrals2 = tf.gather_nd(integrals, indices_nd2) # Broadcast `x1`, `x2`, `jump_location1`, `jump_location2` to the shape # `batch_shape + [num_points] + [1] * sample_rank`. for _ in event_shape: x1 = tf.expand_dims(x1, -1) x2 = tf.expand_dims(x2, -1) jump_location1 = tf.expand_dims(jump_location1, -1) jump_location2 = tf.expand_dims(jump_location2, -1) # Compute the value of the integral. res = ((jump_location1 - x1) * value1 + (x2 - jump_location2) * value2 + integrals2 - integrals1) if no_batch_shape: return tf.squeeze(res, 0) else: return res def _get_indices_and_values(x, index_matrix, jump_locations, values, side, batch_rank): """Computes values and jump locations of the piecewise constant function. Given `jump_locations` and the `values` on the corresponding segments of the piecewise constant function, the function identifies the nearest jump to `x` from the right or left (which is determined by the `side` argument) and the corresponding value of the piecewise constant function at `x` Args: x: A real `Tensor` of shape `batch_shape + [num_points]`. Points at which the function has to be evaluated. index_matrix: An `int32` `Tensor` of shape `batch_shape + [num_points] + [len(batch_shape)]` such that if `batch_shape = [i1, .., in]`, then for all `j1, ..., jn, l`, `index_matrix[j1,..,jn, l] = [j1, ..., jn]`. jump_locations: A `Tensor` of the same `dtype` as `x` and shape `batch_shape + [num_jump_points]`. The locations where the function changes its values. Note that the values are expected to be ordered along the last dimension. values: A `Tensor` of the same `dtype` as `x` and shape `batch_shape + [num_jump_points + 1]`. Defines `values[..., i]` on `jump_locations[..., i - 1], jump_locations[..., i]`. side: A Python string. Whether the function is left- or right- continuous. The corresponding values for side should be `left` and `right`. batch_rank: A Python scalar stating the batch rank of `x`. Returns: A tuple of three `Tensor` of the same `dtype` as `x` and shapes `batch_shape + [num_points] + event_shape`, `batch_shape + [num_points]`, and `batch_shape + [num_points] + [2 * len(batch_shape)]`. The `Tensor`s correspond to the values, jump locations at `x`, and the corresponding indices used to obtain jump locations via `tf.gather_nd`. """ indices = tf.searchsorted(jump_locations, x, side=side) num_data_points = tf.shape(values)[batch_rank] - 2 if side == 'right': indices_jump = indices - 1 indices_jump = tf.maximum(indices_jump, 0) else: indices_jump = tf.minimum(indices, num_data_points) indices_nd = tf.concat( [index_matrix, tf.expand_dims(indices, -1)], -1) indices_jump_nd = tf.concat( [index_matrix, tf.expand_dims(indices_jump, -1)], -1) value = tf.gather_nd(values, indices_nd) jump_location = tf.gather_nd(jump_locations, indices_jump_nd) return value, jump_location, indices_jump_nd def _prepare_index_matrix(batch_shape, num_points, dtype): """Prepares index matrix for index argument of `tf.gather_nd`.""" batch_shape_reverse = batch_shape.copy() batch_shape_reverse.reverse() index_matrix = tf.constant( np.flip(np.transpose(np.indices(batch_shape_reverse)), -1), dtype=dtype) batch_rank = len(batch_shape) # Broadcast index matrix to the shape of # `batch_shape + [num_points] + [batch_rank]`. broadcasted_shape = batch_shape + [num_points] + [batch_rank] index_matrix = tf.expand_dims(index_matrix, -2) + tf.zeros( tf.TensorShape(broadcasted_shape), dtype=dtype) return index_matrix def _try_broadcast_to(x, batch_shape, name): """Broadcasts batch shape of `x` to a `batch_shape` if possible.""" batch_shape_x = x.shape.as_list()[:-1] if batch_shape_x != batch_shape: try: np.broadcast_to(np.zeros(batch_shape_x), batch_shape) except ValueError: raise ValueError('Batch shapes of `{2}` should be broadcastable with {0} ' 'but it is {1} instead'.format( batch_shape, batch_shape_x, name)) return tf.broadcast_to(x, batch_shape + x.shape[-1:]) return x def convert_to_tensor_or_func(x, dtype=None, name=None): """Returns either a `PiecewiseConstantFunc` or x converted to a `Tensor`. Converts the input argument into a `Tensor` unless the input is of type `PiecewiseConstantFunc` when the input is returned unchanged. This function helps pricing models to preprocess inputs that can be either constant or time dependent as represented by a PiecewiseConstantFunc. Example: class GeometricBrownianMotion(object) def __init__(self, mu, sigma): self._mu, self._mu_is_constant = piecewise.convert_to_tensor_or_func( mu) self._sigma, self._sigma_is_constant = piecewise.convert_to_tensor_or_func(sigma) Args: x: Either a 'Tensor' or 'PiecewiseConstantFunc'. dtype: The default dtype to use when converting values to `Tensor`s. Default value: `None` which means that default dtypes inferred by TensorFlow are used. name: Python string. The name to give to the ops created by this class. Default value: `None` which maps to the default name 'PiecewiseConstantFunc_tensor_or_func'. Returns: A tuple (y, flag) where y is either a Tensor or PiecewiseConstantFunc and flag which is False if x is of type PiecewiseConstantFunc and True otherwise. """ name = name or ('PiecewiseConstantFunc_tensor_or_func') if isinstance(x, PiecewiseConstantFunc): return x, False return tf.convert_to_tensor(x, dtype=dtype, name=name), True ```
{ "source": "JohannLULW/get_time", "score": 3 }
#### File: get_time/get_datetime/__init__.py ```python import datetime def get_date_year(): current_time = datetime.datetime.now() return current_time.year def get_date_month(): current_time = datetime.datetime.now() return current_time.month def get_date_day(): current_time = datetime.datetime.now() return current_time.day def get_date_DM(character): current_time = datetime.datetime.now() str(current_time.day) + character + str(current_time.month) def get_date_MD(character): current_time = datetime.datetime.now() str(current_time.month) + character + str(current_time.day) def get_date_DMY(character): current_time = datetime.datetime.now() return str(current_time.day) + character + str(current_time.month) + character + str(current_time.year) def get_date_MDY(character): current_time = datetime.datetime.now() return str(current_time.month) + character + str(current_time.day) + character + str(current_time.year) def get_time_hour(): current_time = datetime.datetime.now() return current_time.hour def get_time_minute(): current_time = datetime.datetime.now() return current_time.minute def get_time_second(): current_time = datetime.datetime.now() return current_time.second def get_time_HM(character): current_time = datetime.datetime.now() return str(current_time.hour) + character + str(current_time.minute) def get_time_HMS(character): current_time = datetime.datetime.now() return str(current_time.hour) + character + str(current_time.minute) + character + str(current_time.second) ```
{ "source": "johannmartin/shapash", "score": 2 }
#### File: shapash/explainer/smart_predictor.py ```python from shapash.utils.check import check_consistency_model_features, check_consistency_model_label from shapash.utils.check import check_model, check_preprocessing, check_preprocessing_options from shapash.utils.check import check_label_dict, check_mask_params, check_ypred, check_contribution_object,\ check_features_name from .smart_state import SmartState from .multi_decorator import MultiDecorator import pandas as pd from shapash.utils.transform import adapt_contributions from shapash.utils.shap_backend import check_explainer, shap_contributions from shapash.manipulation.select_lines import keep_right_contributions from shapash.utils.model import predict_proba from shapash.utils.io import save_pickle from shapash.utils.transform import apply_preprocessing, apply_postprocessing from shapash.manipulation.filters import hide_contributions from shapash.manipulation.filters import cap_contributions from shapash.manipulation.filters import sign_contributions from shapash.manipulation.filters import cutoff_contributions from shapash.manipulation.filters import combine_masks from shapash.manipulation.mask import init_mask from shapash.manipulation.mask import compute_masked_contributions from shapash.manipulation.summarize import summarize from shapash.decomposition.contributions import rank_contributions, assign_contributions class SmartPredictor : """ The SmartPredictor class is an object lighter than SmartExplainer Object with additionnal consistency checks. The SmartPredictor object is provided to deploy the summary of local explanation for the operational needs. Switching from SmartExplainer to SmartPredictor, allows users to reproduce the same results automatically on datasets with right structure. SmartPredictor is designed to make new results understandable: - It checks consistency of all parameters - It applies preprocessing and postprocessing - It computes models contributions - It makes predictions - It summarizes local explainability This class allows the user to automatically summarize the results of his model on new datasets (prediction, preprocessing and postprocessing linking, explainability). The SmartPredictor has several methods described below. The SmartPredictor Attributes : features_dict: dict Dictionary mapping technical feature names to domain names. model: model object model used to check the different values of target estimate predict_proba explainer: explainer object explainer must be a shap object (TreeExplainer, LinearExplainer, KernelExplainer) columns_dict: dict Dictionary mapping integer column number (in the same order of the trained dataset) to technical feature names. features_types: dict Dictionary mapping features with the right types needed. label_dict: dict (optional) Dictionary mapping integer labels to domain names (classification - target values). preprocessing: category_encoders, ColumnTransformer, list or dict (optional) The processing apply to the original data. postprocessing: dict (optional) Dictionary of postprocessing modifications to apply in x_pred dataframe. _case: string String that informs if the model used is for classification or regression problem. _classes: list, None List of labels if the model used is for classification problem, None otherwise. mask_params: dict (optional) Dictionary that specify how to summarize the explainability. How to declare a new SmartPredictor object? Example ------- >>> predictor = SmartPredictor(features_dict=my_features_dict, >>> model=my_model, >>> explainer=my_explainer, >>> columns_dict=my_columns_dict, >>> features_types=my_features_type_dict, >>> label_dict=my_label_dict, >>> preprocessing=my_preprocess, >>> postprocessing=my_postprocess) or the most common syntax >>> predictor = xpl.to_smartpredictor() xpl, explainer: object SmartExplainer instance to point to. """ def __init__(self, features_dict, model, columns_dict, explainer, features_types, label_dict=None, preprocessing=None, postprocessing=None, mask_params = {"features_to_hide": None, "threshold": None, "positive": None, "max_contrib": None } ): params_dict = [features_dict, features_types, label_dict, columns_dict, postprocessing] for params in params_dict: if params is not None and isinstance(params, dict) == False: raise ValueError( """ {0} must be a dict. """.format(str(params)) ) self.model = model self._case, self._classes = self.check_model() self.explainer = self.check_explainer(explainer) check_preprocessing_options(preprocessing) self.preprocessing = preprocessing self.check_preprocessing() self.features_dict = features_dict self.features_types = features_types self.label_dict = label_dict self.check_label_dict() self.columns_dict = columns_dict self.mask_params = mask_params self.check_mask_params() self.postprocessing = postprocessing check_consistency_model_features(self.features_dict, self.model, self.columns_dict, self.features_types, self.mask_params, self.preprocessing, self.postprocessing) check_consistency_model_label(self.columns_dict, self.label_dict) def check_model(self): """ Check if model has a predict_proba method is a one column dataframe of integer or float and if y_pred index matches x_pred index Returns ------- string: 'regression' or 'classification' according to the attributes of the model """ _case, _classes = check_model(self.model) return _case, _classes def check_preprocessing(self): """ Check that all transformation of the preprocessing are supported. """ return check_preprocessing(self.preprocessing) def check_label_dict(self): """ Check if label_dict and model _classes match """ if self._case != "regression": return check_label_dict(self.label_dict, self._case, self._classes) def check_mask_params(self): """ Check if mask_params given respect the expected format. """ return check_mask_params(self.mask_params) def add_input(self, x=None, ypred=None, contributions=None): """ The add_input method is the first step to add a dataset for prediction and explainability. add_input applies to x parameter : - consistencies checks - preprocessing and postprocessing specified during the initialisation - features reordering with the right order for the model If you don't specify ypred or contributions, add_input compute them. It's possible to not specified one parameter if it has already been defined before. For example, if the user want to specified an ypred without reinitialize the dataset x already defined. If the user declare a new input x, all the parameters stored will be cleaned. Example -------- >>> predictor.add_input(x=xtest_df) >>> predictor.add_input(ypred=ytest_df) Parameters ---------- x: dict, pandas.DataFrame (optional) Raw dataset used by the model to perform the prediction (not preprocessed). ypred: pandas.DataFrame (optional) User-specified prediction values. contributions: pandas.DataFrame (regression) or list (classification) (optional) local contributions aggregated if the preprocessing part requires it (e.g. one-hot encoding). """ if x is not None: x = self.check_dataset_features(self.check_dataset_type(x)) self.data = self.clean_data(x) self.data["x_postprocessed"] = self.apply_postprocessing() try : self.data["x_preprocessed"] = self.apply_preprocessing() except BaseException : raise ValueError( """ Preprocessing has failed. The preprocessing specified or the dataset doesn't match. """ ) else: if not hasattr(self,"data"): raise ValueError ("No dataset x specified.") if ypred is not None: self.data["ypred_init"] = self.check_ypred(ypred) if contributions is not None: self.data["ypred"], self.data["contributions"] = self.compute_contributions(contributions=contributions) else: self.data["ypred"], self.data["contributions"] = self.compute_contributions() def check_dataset_type(self, x=None): """ Check if dataset x given respect the expected format. Parameters ---------- x: dict, pandas.DataFrame (optional) Raw dataset used by the model to perform the prediction (not preprocessed). Returns ------- x: pandas.DataFrame Raw dataset used by the model to perform the prediction (not preprocessed). """ if not (type(x) in [pd.DataFrame, dict]): raise ValueError( """ x must be a dict or a pandas.DataFrame. """ ) else : x = self.convert_dict_dataset(x) return x def convert_dict_dataset(self, x): """ Convert a dict to a dataframe if the dataset specified is a dict. Parameters ---------- x: dict Raw dataset used by the model to perform the prediction (not preprocessed). Returns ------- x: pandas.DataFrame Raw dataset used by the model to perform the prediction (not preprocessed). """ if type(x) == dict: if not all([column in self.features_types.keys() for column in x.keys()]): raise ValueError(""" All features from dataset x must be in the features_types dict initialized. """) try: x = pd.DataFrame.from_dict(x, orient="index").T for feature, type_feature in self.features_types.items(): x[feature] = x[feature].astype(type_feature) except BaseException: raise ValueError( """ The structure of the given dict x isn't at the right format. """ ) return x def check_dataset_features(self, x): """ Check if the features of the dataset x has the expected types before using preprocessing and model. Parameters ---------- x: pandas.DataFrame (optional) Raw dataset used by the model to perform the prediction (not preprocessed). """ assert all(column in self.columns_dict.values() for column in x.columns) if not all([type(key) == int for key in self.columns_dict.keys()]): raise ValueError("columns_dict must have only integers keys for features order.") features_order = [] for order in range(min(self.columns_dict.keys()), max(self.columns_dict.keys()) + 1): features_order.append(self.columns_dict[order]) x = x[features_order] assert all(column in self.features_types.keys() for column in x.columns) if not all([str(x[feature].dtypes) == self.features_types[feature] for feature in x.columns]): raise ValueError("Types of features in x doesn't match with the expected one in features_types.") return x def check_ypred(self, ypred=None): """ Check that ypred given has the right shape and expected value. Parameters ---------- ypred: pandas.DataFrame (optional) User-specified prediction values. """ return check_ypred(self.data["x"],ypred) def choose_state(self, contributions): """ Select implementation of the smart predictor. Typically check if it is a multi-class problem, in which case the implementation should be adapted to lists of contributions. Parameters ---------- contributions : object Local contributions. Could also be a list of local contributions. Returns ------- object SmartState or SmartMultiState, depending on the nature of the input. """ if isinstance(contributions, list): return MultiDecorator(SmartState()) else: return SmartState() def adapt_contributions(self, contributions): """ If _case is "classification" and contributions a np.array or pd.DataFrame this function transform contributions matrix in a list of 2 contributions matrices: Opposite contributions and contributions matrices. Parameters ---------- contributions : pandas.DataFrame, np.ndarray or list Returns ------- pandas.DataFrame, np.ndarray or list contributions object modified """ return adapt_contributions(self._case, contributions) def validate_contributions(self, contributions): """ Check len of list if _case is "classification" Check contributions object type if _case is "regression" Check type of contributions and transform into (list of) pd.Dataframe if necessary Parameters ---------- contributions : pandas.DataFrame, np.ndarray or list Returns ------- pandas.DataFrame or list """ check_contribution_object(self._case, self._classes, contributions) return self.state.validate_contributions(contributions, self.data["x_preprocessed"]) def check_contributions(self, contributions): """ Check if contributions and prediction set match in terms of shape and index. """ if not self.state.check_contributions(contributions, self.data["x"], features_names=False): raise ValueError( """ Prediction set and contributions should have exactly the same number of lines and number of columns. the order of the columns must be the same Please check x, contributions and preprocessing arguments. """ ) def clean_data(self, x): """ Clean data stored if x is defined and not None. Parameters ---------- x: pandas.DataFrame Raw dataset used by the model to perform the prediction (not preprocessed). Returns ------- dict of data stored """ return {"x" : x, "ypred_init": None, "ypred" : None, "contributions" : None, "x_preprocessed": None, "x_postprocessed": None } def check_explainer(self, explainer): """ Check if explainer class correspond to a shap explainer object """ return check_explainer(explainer) def predict_proba(self): """ The predict_proba compute the probabilities predicted for each x row defined in add_input. Returns ------- pandas.DataFrame A dataset with all probabilities of each label if there is no ypred data or a dataset with ypred and the associated probability. Example -------- >>> predictor.add_input(x=xtest_df) >>> predictor.predict_proba() """ return predict_proba(self.model, self.data["x_preprocessed"], self._classes) def compute_contributions(self, contributions=None): """ The compute_contributions compute the contributions associated to data ypred specified. Need a data ypred specified in an add_input to display detail_contributions. Parameters ------- contributions : object (optional) Local contributions, or list of local contributions. Returns ------- pandas.DataFrame Data with contributions associated to the ypred specified. pandas.DataFrame ypred data with right probabilities associated. """ if not hasattr(self, "data"): raise ValueError("add_input method must be called at least once.") if self.data["x"] is None: raise ValueError( """ x must be specified in an add_input method to apply detail_contributions. """ ) if self.data["ypred_init"] is None: self.predict() if contributions is None: contributions, explainer = shap_contributions(self.model, self.data["x_preprocessed"], self.explainer) adapt_contrib = self.adapt_contributions(contributions) self.state = self.choose_state(adapt_contrib) contributions = self.validate_contributions(adapt_contrib) contributions = self.apply_preprocessing_for_contributions(contributions, self.preprocessing ) self.check_contributions(contributions) proba_values = self.predict_proba() if self._case == "classification" else None y_pred, match_contrib = keep_right_contributions(self.data["ypred_init"], contributions, self._case, self._classes, self.label_dict, proba_values) return y_pred, match_contrib def detail_contributions(self, contributions=None): """ The detail_contributions method associates the right contributions with the right data predicted. (with ypred specified in add_input or computed automatically) Parameters ------- contributions : object (optional) Local contributions, or list of local contributions. Returns ------- pandas.DataFrame A Dataset with ypred and the right associated contributions. Example -------- >>> predictor.add_input(x=xtest_df) >>> predictor.detail_contributions() """ y_pred, detail_contrib = self.compute_contributions(contributions=contributions) return pd.concat([y_pred, detail_contrib], axis=1) def apply_preprocessing_for_contributions(self, contributions, preprocessing=None): """ Reconstruct contributions for original features, taken into account a preprocessing. Parameters ---------- contributions : object Local contributions, or list of local contributions. preprocessing : object Encoder taken from scikit-learn or category_encoders Returns ------- object Reconstructed local contributions in the original space. Can be a list. """ if preprocessing: return self.state.inverse_transform_contributions( contributions, preprocessing ) else: return contributions def save(self, path): """ Save method allows users to save SmartPredictor object on disk using a pickle file. Save method can be useful: you don't have to recompile to display results later. Load_smartpredictor method allow to load your SmartPredictor object saved. (See example below) Parameters ---------- path : str File path to store the pickle file Example -------- >>> predictor.save('path_to_pkl/predictor.pkl') >>> from shapash.utils.load_smartpredictor import load_smartpredictor >>> predictor_load = load_smartpredictor('path_to_pkl/predictor.pkl') """ dict_to_save = {} for att in self.__dict__.keys(): if (isinstance(getattr(self, att), (list, dict, pd.DataFrame, pd.Series, type(None))) or att == "model" or att == "explainer" or att == "preprocessing") and not att == "data" : dict_to_save.update({att: getattr(self, att)}) save_pickle(dict_to_save, path) def apply_preprocessing(self): """ Apply preprocessing on new dataset input specified. """ return apply_preprocessing(self.data["x"], self.model, self.preprocessing) def filter(self): """ The filter method is an important method which allows to summarize the local explainability by using the user defined mask_params parameters which correspond to its use case. """ mask = [init_mask(self.summary['contrib_sorted'], True)] if self.mask_params["features_to_hide"] is not None: mask.append( hide_contributions( self.summary['var_dict'], features_list=self.check_features_name(self.mask_params["features_to_hide"]) ) ) if self.mask_params["threshold"] is not None: mask.append( cap_contributions( self.summary['contrib_sorted'], threshold=self.mask_params["threshold"] ) ) if self.mask_params["positive"] is not None: mask.append( sign_contributions( self.summary['contrib_sorted'], positive=self.mask_params["positive"] ) ) self.mask = combine_masks(mask) if self.mask_params["max_contrib"] is not None: self.mask = cutoff_contributions(mask=self.mask, k=self.mask_params["max_contrib"]) self.masked_contributions = compute_masked_contributions( self.summary['contrib_sorted'], self.mask ) def summarize(self): """ The summarize method allows to display the summary of local explainability. This method can be configured with modify_mask method to summarize the explainability to suit needs. If the user doesn't use modify_mask, the summarize method uses the mask_params parameters specified during the initialisation of the SmartPredictor. In classification case, The summarize method summarizes the explainability which corresponds to : - the predicted values specified by the user or automatically computed (with add_input method) - the right probabilities from predict_proba associated to the right predicted values - the right contributions ranked and filtered as specify with modify_mask method Returns ------- pandas.DataFrame - selected explanation of each row for classification case Examples -------- >>> summary_df = predictor.summarize() >>> summary_df pred proba feature_1 value_1 contribution_1 feature_2 value_2 contribution_2 0 0 0.756416 Sex 1.0 0.322308 Pclass 3.0 0.155069 1 3 0.628911 Sex 2.0 0.585475 Pclass 1.0 0.370504 2 0 0.543308 Sex 2.0 -0.486667 Pclass 3.0 0.255072 >>> predictor.modify_mask(max_contrib=1) >>> summary_df = predictor.summarize() >>> summary_df pred proba feature_1 value_1 contribution_1 0 0 0.756416 Sex 1.0 0.322308 1 3 0.628911 Sex 2.0 0.585475 2 0 0.543308 Sex 2.0 -0.486667 """ # data is needed : add_input() method must be called at least once if not hasattr(self, "data"): raise ValueError("You have to specify dataset x and y_pred arguments. Please use add_input() method.") self.summary = assign_contributions( rank_contributions( self.data["contributions"], self.data["x_postprocessed"] ) ) # Apply filter method with mask_params attributes parameters self.filter() # Summarize information self.data['summary'] = summarize(self.summary['contrib_sorted'], self.summary['var_dict'], self.summary['x_sorted'], self.mask, self.columns_dict, self.features_dict) # Matching with y_pred return pd.concat([self.data["ypred"], self.data['summary']], axis=1) def modify_mask( self, features_to_hide=None, threshold=None, positive=None, max_contrib=None ): """ This method allows the users to modify the mask_params values. Each parameter is optional, modify_mask method modifies only the values specified in parameters. This method has to be used to configure the summary displayed with summarize method. Parameters ---------- features_to_hide : list, optional (default: None) List of strings, containing features to hide. threshold : float, optional (default: None) Absolute threshold below which any contribution is hidden. positive: bool, optional (default: None) If True, hide negative values. False, hide positive values If None, hide nothing. max_contrib : int, optional (default: None) Maximum number of contributions to show. Examples -------- >>> predictor.modify_mask(max_contrib=1) >>> summary_df = predictor.summarize() >>> summary_df pred proba feature_1 value_1 contribution_1 0 0 0.756416 Sex 1.0 0.322308 1 3 0.628911 Sex 2.0 0.585475 2 0 0.543308 Sex 2.0 -0.486667 """ Attributes = {"features_to_hide": features_to_hide, "threshold": threshold, "positive": positive, "max_contrib": max_contrib} for label, attribute in Attributes.items() : if attribute is not None: self.mask_params[label] = attribute def predict(self): """ The predict method compute the predicted values for each x row defined in add_input. Returns ------- pandas.DataFrame A dataset with predicted values for each x row. Example -------- >>> predictor.add_input(x=xtest_df) >>> predictor.predict() """ if not hasattr(self, "data"): raise ValueError("add_input method must be called at least once.") if self.data["x_preprocessed"] is None: raise ValueError( """ x must be specified in an add_input method to apply predict. """ ) if hasattr(self.model, 'predict'): self.data["ypred_init"] = pd.DataFrame( self.model.predict(self.data["x_preprocessed"]), columns=['ypred'], index=self.data["x_preprocessed"].index) else: raise ValueError("model has no predict method") return self.data["ypred_init"] def apply_postprocessing(self): """ Modifies x Dataframe according to postprocessing modifications, if exists. Parameters ---------- postprocessing: Dict Dictionnary of postprocessing modifications to apply in x. Returns ------- pandas.Dataframe Returns x_pred if postprocessing is empty, modified dataframe otherwise. """ if self.postprocessing: return apply_postprocessing(self.data["x"], self.postprocessing) else: return self.data["x"] def check_features_name(self, features): """ Convert a list of feature names (string) or features ids into features ids. Features names can be part of columns_dict or features_dict. Parameters ---------- features : List List of ints (columns ids) or of strings (business names) Returns ------- list of ints Columns ids compatible with var_dict """ return check_features_name(self.columns_dict, self.features_dict, features) ``` #### File: webapp/utils/utils.py ```python import pandas as pd import numpy as np from math import log10, floor def round_to_1(x): """ round float to 1 significant figure Parameters ---------- x : float number to round Returns ------- int """ if x == 0: return 0 else: return round(x, -int(floor(log10(abs(x))))) def check_row(data, index): """ Identify the row number of datatable for a specific index Parameters ---------- data : dash_table.DataTable.data data display in datatable index : int or str index from the dataset to identify Returns ------- int: row number corresponding to index """ df = pd.DataFrame.from_records(data, index='_index_') if np.issubdtype(type(df.index[0]), np.dtype(int).type): index = int(index) row = df.index.get_loc(index) if index in list(df.index) else None return row def split_filter_part(filter_part): """ Transform dash.datatable filter part into pandas.DataFrame filter (source code : Dash documentation) Parameters ---------- filter_part : str filter apply on a column of the datatable Returns ------- tuple : column, operator, value of the filter part """ operators = [['ge ', '>='], ['le ', '<='], ['lt ', '<'], ['gt ', '>'], ['ne ', '!='], ['eq ', '='], ['contains '], ['datestartswith ']] for operator_type in operators: for operator in operator_type: if operator in filter_part: name_part, value_part = filter_part.split(operator, 1) name = name_part[name_part.find('{') + 1: name_part.rfind('}')] value_part = value_part.strip() v0 = value_part[0] if v0 == value_part[-1] and v0 in ("'", '"', '`'): value = value_part[1: -1].replace('\\' + v0, v0) else: try: value = float(value_part) except ValueError: value = value_part # word operators need spaces after them in the filter string, # but we don't want these later return name, operator_type[0].strip(), value return [None] * 3 def apply_filter(df, filter_query): """ Apply a filter query from dash.datable to a pandas.DataFrame (source code : Dash documentation) Parameters ---------- df : pandas.DataFrame dataFrame to be filtered filter_query : dcc.datatable.filter_query query from dcc.datatable to apply to the DataFrame Returns ------- pandas.DataFrame """ filtering_expressions = filter_query.split(' && ') for filter_part in filtering_expressions: col_name, operator, filter_value = split_filter_part(filter_part) if operator in ('eq', 'ne', 'lt', 'le', 'gt', 'ge'): # these operators match pandas series operator method names df = df.loc[getattr(df[col_name], operator)(filter_value)] elif operator == 'contains': df = df.loc[df[col_name].str.contains(filter_value)] elif operator == 'datestartswith': # this is a simplification of the front-end filtering logic, # only works with complete fields in standard format df = df.loc[df[col_name].str.startswith(filter_value)] return df ``` #### File: unit_tests/explainer/test_smart_predictor.py ```python import unittest from shapash.explainer.smart_predictor import SmartPredictor from shapash.explainer.smart_explainer import SmartExplainer from shapash.explainer.smart_state import SmartState from shapash.explainer.multi_decorator import MultiDecorator import os from os import path from pathlib import Path import pandas as pd import numpy as np import catboost as cb from catboost import Pool import category_encoders as ce from unittest.mock import patch import types from sklearn.compose import ColumnTransformer import sklearn.preprocessing as skp import shap def init_sme_to_pickle_test(): """ Init sme to pickle test TODO: Docstring Returns ------- [type] [description] """ current = Path(path.abspath(__file__)).parent.parent.parent pkl_file = path.join(current, 'data/predictor.pkl') xpl = SmartExplainer(features_dict={}) y_pred = pd.DataFrame(data=np.array([1, 2]), columns=['pred']) dataframe_x = pd.DataFrame([[1, 2, 4], [1, 2, 3]]) clf = cb.CatBoostClassifier(n_estimators=1).fit(dataframe_x, y_pred) xpl.compile(x=dataframe_x, y_pred=y_pred, model=clf) predictor = xpl.to_smartpredictor() return pkl_file, predictor class TestSmartPredictor(unittest.TestCase): """ Unit test Smart Predictor class """ def setUp(self): df = pd.DataFrame(range(0, 5), columns=['id']) df['y'] = df['id'].apply(lambda x: 1 if x < 2 else 0) df['x1'] = np.random.randint(1, 123, df.shape[0]) df['x2'] = ["S", "M", "S", "D", "M"] df = df.set_index('id') encoder = ce.OrdinalEncoder(cols=["x2"], handle_unknown="None") encoder_fitted = encoder.fit(df) df_encoded = encoder_fitted.transform(df) clf = cb.CatBoostClassifier(n_estimators=1).fit(df_encoded[['x1', 'x2']], df_encoded['y']) clf_explainer = shap.TreeExplainer(clf) columns_dict = {0: "x1", 1: "x2"} label_dict = {0: "Yes", 1: "No"} postprocessing = {"x2": { "type": "transcoding", "rule": {"S": "single", "M": "married", "D": "divorced"}}} features_dict = {"x1": "age", "x2": "family_situation"} features_types = {features: str(df[features].dtypes) for features in df[['x1', 'x2']]} self.df_1 = df self.preprocessing_1 = encoder_fitted self.df_encoded_1 = df_encoded self.clf_1 = clf self.clf_explainer_1 = clf_explainer self.columns_dict_1 = columns_dict self.label_dict_1 = label_dict self.postprocessing_1 = postprocessing self.features_dict_1 = features_dict self.features_types_1 = features_types self.predictor_1 = SmartPredictor(features_dict, clf, columns_dict, clf_explainer, features_types, label_dict, encoder_fitted, postprocessing) df['x2'] = np.random.randint(1, 100, df.shape[0]) encoder = ce.OrdinalEncoder(cols=["x2"], handle_unknown="None") encoder_fitted = encoder.fit(df[["x1", "x2"]]) df_encoded = encoder_fitted.transform(df[["x1", "x2"]]) clf = cb.CatBoostClassifier(n_estimators=1).fit(df[['x1', 'x2']], df['y']) clf_explainer = shap.TreeExplainer(clf) features_dict = {"x1": "age", "x2": "weight"} features_types = {features: str(df[features].dtypes) for features in df[["x1", "x2"]].columns} self.df_2 = df self.preprocessing_2 = encoder_fitted self.df_encoded_2 = df_encoded self.clf_2 = clf self.clf_explainer_2 = clf_explainer self.columns_dict_2 = columns_dict self.label_dict_2 = label_dict self.postprocessing_2 = postprocessing self.features_dict_2 = features_dict self.features_types_2 = features_types self.predictor_2 = SmartPredictor(features_dict, clf, columns_dict, clf_explainer, features_types, label_dict, encoder_fitted, postprocessing) df['x1'] = [25, 39, 50, 43, 67] df['x2'] = [90, 78, 84, 85, 53] columns_dict = {0: "x1", 1: "x2"} label_dict = {0: "No", 1: "Yes"} features_dict = {"x1": "age", "x2": "weight"} features_types = {features: str(df[features].dtypes) for features in df[['x1', 'x2']].columns} clf = cb.CatBoostRegressor(n_estimators=1).fit(df[['x1', 'x2']], df['y']) clf_explainer = shap.TreeExplainer(clf) self.df_3 = df self.preprocessing_3 = None self.df_encoded_3 = df self.clf_3 = clf self.clf_explainer_3 = clf_explainer self.columns_dict_3 = columns_dict self.label_dict_3 = label_dict self.postprocessing_3 = None self.features_dict_3 = features_dict self.features_types_3 = features_types self.predictor_3 = SmartPredictor(features_dict, clf, columns_dict, clf_explainer, features_types, label_dict) def predict_proba(self, arg1, arg2): """ predict_proba method """ matrx = np.array( [[0.2, 0.8], [0.3, 0.7], [0.4, 0.6]] ) return matrx def predict(self, arg1, arg2): """ predict method """ matrx = np.array( [12, 3, 7] ) return matrx def test_init_1(self): """ Test init smart predictor """ predictor_1 = SmartPredictor(self.features_dict_1, self.clf_1, self.columns_dict_1, self.clf_explainer_1, self.features_types_1, self.label_dict_1, self.preprocessing_1, self.postprocessing_1) assert hasattr(predictor_1, 'model') assert hasattr(predictor_1, 'explainer') assert hasattr(predictor_1, 'features_dict') assert hasattr(predictor_1, 'label_dict') assert hasattr(predictor_1, '_case') assert hasattr(predictor_1, '_classes') assert hasattr(predictor_1, 'columns_dict') assert hasattr(predictor_1, 'features_types') assert hasattr(predictor_1, 'preprocessing') assert hasattr(predictor_1, 'postprocessing') assert hasattr(predictor_1, 'mask_params') assert predictor_1.model == self.clf_1 assert predictor_1.explainer == self.clf_explainer_1 assert predictor_1.features_dict == self.features_dict_1 assert predictor_1.label_dict == self.label_dict_1 assert predictor_1._case == "classification" assert predictor_1._classes == [0,1] assert predictor_1.columns_dict == self.columns_dict_1 assert predictor_1.preprocessing == self.preprocessing_1 assert predictor_1.postprocessing == self.postprocessing_1 mask_params = {'features_to_hide': None, 'threshold': None, 'positive': True, 'max_contrib': 1 } predictor_1.mask_params = mask_params assert predictor_1.mask_params == mask_params def add_input_1(self): """ Test add_input method from smart predictor """ ypred = self.df_1['y'] shap_values = self.clf_1.get_feature_importance(Pool(self.df_encoded_1), type="ShapValues") predictor_1 = self.predictor_1 predictor_1.add_input(x=self.df_1[["x1", "x2"]], contributions=shap_values[:, :-1]) predictor_1_contrib = predictor_1.data["contributions"] assert all(attribute in predictor_1.data.keys() for attribute in ["x", "x_preprocessed", "contributions", "ypred"]) assert predictor_1.data["x"].shape == predictor_1.data["x_preprocessed"].shape assert all(feature in predictor_1.data["x"].columns for feature in predictor_1.data["x_preprocessed"].columns) assert predictor_1_contrib.shape == predictor_1.data["x"].shape predictor_1.add_input(ypred=ypred) assert "ypred" in predictor_1.data.keys() assert predictor_1.data["ypred"].shape[0] == predictor_1.data["x"].shape[0] assert all(predictor_1.data["ypred"].index == predictor_1.data["x"].index) @patch('shapash.explainer.smart_predictor.SmartState') def test_choose_state_1(self, mock_smart_state): """ Unit test choose state 1 Parameters ---------- mock_smart_state : [type] [description] """ predictor_1 = self.predictor_1 predictor_1.choose_state('contributions') mock_smart_state.assert_called() @patch('shapash.explainer.smart_predictor.MultiDecorator') def test_choose_state_2(self, mock_multi_decorator): """ Unit test choose state 2 Parameters ---------- mock_multi_decorator : [type] [description] """ predictor_1 = self.predictor_1 predictor_1.choose_state('contributions') predictor_1.choose_state([1, 2, 3]) mock_multi_decorator.assert_called() @patch('shapash.explainer.smart_predictor.SmartPredictor.choose_state') def test_validate_contributions_1(self, choose_state): """ Unit test validate contributions 1 """ choose_state.return_value = MultiDecorator(SmartState()) predictor_1 = self.predictor_1 contributions = [ np.array([[2, 1], [8, 4]]), np.array([[5, 5], [0, 0]]) ] predictor_1.state = predictor_1.choose_state(contributions) predictor_1.data = {"x": None, "ypred": None, "contributions": None} predictor_1.data["x_preprocessed"] = pd.DataFrame( [[1, 2], [3, 4]], columns=['Col1', 'Col2'], index=['Id1', 'Id2'] ) expected_output = [ pd.DataFrame( [[2, 1], [8, 4]], columns=['Col1', 'Col2'], index=['Id1', 'Id2'] ), pd.DataFrame( [[5, 5], [0, 0]], columns=['Col1', 'Col2'], index=['Id1', 'Id2'] ) ] output = predictor_1.validate_contributions(contributions) assert len(expected_output) == len(output) test_list = [pd.testing.assert_frame_equal(e, m) for e, m in zip(expected_output, output)] assert all(x is None for x in test_list) @patch('shapash.explainer.smart_predictor.SmartPredictor.choose_state') def test_check_contributions(self, choose_state): """ Unit test check_shape_contributions 1 """ choose_state.return_value = MultiDecorator(SmartState()) shap_values = self.clf_2.get_feature_importance(Pool(self.df_encoded_2), type="ShapValues") predictor_1 = self.predictor_2 predictor_1.data = {"x": None, "ypred": None, "contributions": None, "x_preprocessed": None} predictor_1.data["x"] = self.df_2[["x1", "x2"]] predictor_1.data["x_preprocessed"] = self.df_2[["x1", "x2"]] predictor_1.data["ypred"] = self.df_2["y"] adapt_contrib = [np.array([[-0.04395604, 0.13186813], [-0.04395604, 0.13186813], [-0.0021978, 0.01318681], [-0.0021978, 0.01318681], [-0.04395604, 0.13186813]]), np.array([[0.04395604, -0.13186813], [0.04395604, -0.13186813], [0.0021978, -0.01318681], [0.0021978, -0.01318681], [0.04395604, -0.13186813]])] contributions = list() for element in adapt_contrib: contributions.append(pd.DataFrame(element, columns=["x1", "x2"])) predictor_1.state = predictor_1.choose_state(adapt_contrib) predictor_1.check_contributions(contributions) with self.assertRaises(ValueError): predictor_1.check_contributions(shap_values[:, :-1]) def test_check_model_1(self): """ Unit test check model 1 """ predictor_1 = self.predictor_1 model = lambda: None model.n_features_in_ = 2 model.predict = types.MethodType(self.predict, model) predictor_1.model = model _case, _classes = predictor_1.check_model() assert _case == 'regression' assert _classes is None def test_check_model_2(self): """ Unit test check model 2 """ predictor_1 = self.predictor_1 model = lambda: None model._classes = np.array([1, 2]) model.n_features_in_ = 2 model.predict = types.MethodType(self.predict, model) model.predict_proba = types.MethodType(self.predict_proba, model) predictor_1.model = model _case, _classes = predictor_1.check_model() assert _case == 'classification' self.assertListEqual(_classes, [1, 2]) @patch('shapash.explainer.smart_predictor.SmartPredictor.check_model') @patch('shapash.explainer.smart_predictor.SmartPredictor.check_explainer') @patch('shapash.utils.check.check_preprocessing_options') @patch('shapash.utils.check.check_consistency_model_features') @patch('shapash.utils.check.check_consistency_model_label') def test_check_preprocessing_1(self, check_consistency_model_label, check_consistency_model_features, check_preprocessing_options, check_explainer, check_model): """ Test check preprocessing on multiple preprocessing """ train = pd.DataFrame({'Onehot1': ['A', 'B', 'A', 'B'], 'Onehot2': ['C', 'D', 'C', 'D'], 'Binary1': ['E', 'F', 'E', 'F'], 'Binary2': ['G', 'H', 'G', 'H'], 'Ordinal1': ['I', 'J', 'I', 'J'], 'Ordinal2': ['K', 'L', 'K', 'L'], 'BaseN1': ['M', 'N', 'M', 'N'], 'BaseN2': ['O', 'P', 'O', 'P'], 'Target1': ['Q', 'R', 'Q', 'R'], 'Target2': ['S', 'T', 'S', 'T'], 'other': ['other', np.nan, 'other', 'other']}) features_dict = None columns_dict = {i:features for i,features in enumerate(train.columns)} features_types = {features: str(train[features].dtypes) for features in train.columns} label_dict = None enc_ordinal_all = ce.OrdinalEncoder(cols=['Onehot1', 'Onehot2', 'Binary1', 'Binary2', 'Ordinal1', 'Ordinal2', 'BaseN1', 'BaseN2', 'Target1', 'Target2', 'other']).fit(train) train_ordinal_all = enc_ordinal_all.transform(train) y = pd.DataFrame({'y_class': [0, 0, 0, 1]}) model = cb.CatBoostClassifier(n_estimators=1).fit(train_ordinal_all, y) clf_explainer = shap.TreeExplainer(model) check_preprocessing_options.return_value = True check_consistency_model_features.return_value = True check_consistency_model_label.return_value = True check_explainer.return_value = clf_explainer check_model.return_value = "classification", [0, 1] predictor_1 = SmartPredictor(features_dict, model, columns_dict, clf_explainer, features_types, label_dict) y = pd.DataFrame(data=[0, 1, 0, 0], columns=['y']) enc_onehot = ce.OneHotEncoder(cols=['Onehot1', 'Onehot2']).fit(train) train_onehot = enc_onehot.transform(train) enc_binary = ce.BinaryEncoder(cols=['Binary1', 'Binary2']).fit(train_onehot) train_binary = enc_binary.transform(train_onehot) enc_ordinal = ce.OrdinalEncoder(cols=['Ordinal1', 'Ordinal2']).fit(train_binary) train_ordinal = enc_ordinal.transform(train_binary) enc_basen = ce.BaseNEncoder(cols=['BaseN1', 'BaseN2']).fit(train_ordinal) train_basen = enc_basen.transform(train_ordinal) enc_target = ce.TargetEncoder(cols=['Target1', 'Target2']).fit(train_basen, y) input_dict1 = dict() input_dict1['col'] = 'Onehot2' input_dict1['mapping'] = pd.Series(data=['C', 'D', np.nan], index=['C', 'D', 'missing']) input_dict1['data_type'] = 'object' input_dict2 = dict() input_dict2['col'] = 'Binary2' input_dict2['mapping'] = pd.Series(data=['G', 'H', np.nan], index=['G', 'H', 'missing']) input_dict2['data_type'] = 'object' input_dict = dict() input_dict['col'] = 'state' input_dict['mapping'] = pd.Series(data=['US', 'FR-1', 'FR-2'], index=['US', 'FR', 'FR']) input_dict['data_type'] = 'object' input_dict3 = dict() input_dict3['col'] = 'Ordinal2' input_dict3['mapping'] = pd.Series(data=['K', 'L', np.nan], index=['K', 'L', 'missing']) input_dict3['data_type'] = 'object' list_dict = [input_dict2, input_dict3] y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('onehot', skp.OneHotEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) wrong_prepro = skp.OneHotEncoder().fit(train, y) predictor_1.preprocessing = [enc_onehot, enc_binary, enc_ordinal, enc_basen, enc_target, input_dict1, list_dict] predictor_1.check_preprocessing() for preprocessing in [enc_onehot, enc_binary, enc_ordinal, enc_basen, enc_target]: predictor_1.preprocessing = preprocessing predictor_1.check_preprocessing() predictor_1.preprocessing = input_dict2 predictor_1.check_preprocessing() predictor_1.preprocessing = enc predictor_1.check_preprocessing() predictor_1.preprocessing = None predictor_1.check_preprocessing() with self.assertRaises(Exception): predictor_1.preprocessing = wrong_prepro predictor_1.check_preprocessing() def test_check_label_dict_1(self): """ Unit test check label dict 1 """ predictor_1 = self.predictor_1 predictor_1.check_label_dict() def test_check_label_dict_2(self): """ Unit test check label dict 2 """ predictor_1 = self.predictor_1 predictor_1.label_dict = None predictor_1._case = 'regression' predictor_1.check_label_dict() @patch('shapash.explainer.smart_predictor.SmartPredictor.check_model') @patch('shapash.explainer.smart_predictor.SmartPredictor.check_explainer') @patch('shapash.utils.check.check_preprocessing_options') @patch('shapash.utils.check.check_consistency_model_features') @patch('shapash.utils.check.check_consistency_model_label') def test_check_mask_params(self, check_consistency_model_label, check_consistency_model_features, check_preprocessing_options, check_explainer, check_model): """ Unit test check mask params """ train = pd.DataFrame({'Onehot1': ['A', 'B', 'A', 'B'], 'Onehot2': ['C', 'D', 'C', 'D'], 'Binary1': ['E', 'F', 'E', 'F'], 'Binary2': ['G', 'H', 'G', 'H'], 'Ordinal1': ['I', 'J', 'I', 'J'], 'Ordinal2': ['K', 'L', 'K', 'L'], 'BaseN1': ['M', 'N', 'M', 'N'], 'BaseN2': ['O', 'P', 'O', 'P'], 'Target1': ['Q', 'R', 'Q', 'R'], 'Target2': ['S', 'T', 'S', 'T'], 'other': ['other', np.nan, 'other', 'other']}) features_dict = None columns_dict = {i: features for i, features in enumerate(train.columns)} features_types = {features: str(train[features].dtypes) for features in train.columns} label_dict = None enc_ordinal = ce.OrdinalEncoder(cols=['Onehot1', 'Onehot2', 'Binary1', 'Binary2', 'Ordinal1', 'Ordinal2', 'BaseN1', 'BaseN2', 'Target1', 'Target2', 'other']).fit(train) train_ordinal = enc_ordinal.transform(train) y = pd.DataFrame({'y_class': [0, 0, 0, 1]}) model = cb.CatBoostClassifier(n_estimators=1).fit(train_ordinal, y) clf_explainer = shap.TreeExplainer(model) check_preprocessing_options.return_value = True check_consistency_model_features.return_value = True check_consistency_model_label.return_value = True check_explainer.return_value = clf_explainer check_model.return_value = "classification", [0, 1] wrong_mask_params_1 = list() wrong_mask_params_2 = None wrong_mask_params_3 = { "features_to_hide": None, "threshold": None, "positive": None } wright_mask_params = { "features_to_hide": None, "threshold": None, "positive": True, "max_contrib": 5 } with self.assertRaises(ValueError): predictor_1 = SmartPredictor(features_dict, model, columns_dict, clf_explainer, features_types, label_dict, mask_params=wrong_mask_params_1) predictor_1 = SmartPredictor(features_dict, model, columns_dict, clf_explainer, features_types, label_dict, mask_params=wrong_mask_params_2) predictor_1 = SmartPredictor(features_dict, model, columns_dict, clf_explainer, features_types, label_dict, mask_params=wrong_mask_params_3) predictor_1 = SmartPredictor(features_dict, model, columns_dict, clf_explainer, features_types, label_dict, mask_params=wright_mask_params) def test_check_ypred_1(self): """ Unit test check y pred """ predictor_1 = self.predictor_1 predictor_1.data = {"x": None, "ypred": None, "contributions": None} predictor_1.data["x"] = self.df_1[["x1","x2"]] y_pred = None predictor_1.check_ypred(ypred=y_pred) def test_check_ypred_2(self): """ Unit test check y pred 2 """ y_pred = pd.DataFrame( data=np.array(['1', 0, 0, 1, 0]), columns=['Y'] ) predictor_1 = self.predictor_1 predictor_1.data = {"x": None, "ypred": None, "contributions": None} predictor_1.data["x"] = self.df_1 with self.assertRaises(ValueError): predictor_1.check_ypred(y_pred) def test_check_ypred_3(self): """ Unit test check y pred 3 """ predictor_1 = self.predictor_1 predictor_1.data = {"x": None, "ypred": None, "contributions": None} predictor_1.data["x"] = self.df_1[["x1","x2"]] y_pred = pd.DataFrame( data=np.array([0]), columns=['Y'] ) with self.assertRaises(ValueError): predictor_1.check_ypred(y_pred) def test_check_y_pred_4(self): """ Unit test check y pred 4 """ predictor_1 = self.predictor_1 predictor_1.data = {"x": None, "ypred": None, "contributions": None} y_pred = [0, 1, 0, 1, 0] with self.assertRaises(ValueError): predictor_1.check_ypred(ypred=y_pred) def test_check_ypred_5(self): """ Unit test check y pred 5 """ predictor_1 = self.predictor_1 predictor_1.data = {"x": None, "ypred": None, "contributions": None} predictor_1.data["x"] = self.df_1[["x1","x2"]] y_pred = pd.Series( data=np.array(['0']) ) with self.assertRaises(ValueError): predictor_1.check_ypred(y_pred) def test_predict_proba_1(self): """ Unit test of predict_proba method. """ predictor_1 = self.predictor_1 clf = cb.CatBoostRegressor(n_estimators=1).fit(self.df_encoded_1[['x1', 'x2']], self.df_encoded_1['y']) clf_explainer = shap.TreeExplainer(clf) predictor_1.model = clf predictor_1.explainer = clf_explainer predictor_1._case = "regression" predictor_1._classes = None with self.assertRaises(AttributeError): predictor_1.predict_proba() predictor_1 = self.predictor_1 with self.assertRaises(AttributeError): predictor_1.predict_proba() predictor_1.data = {"x": None, "ypred": None, "contributions": None} with self.assertRaises(KeyError): predictor_1.predict_proba() def test_predict_proba_2(self): """ Unit test of predict_proba method. """ clf = cb.CatBoostClassifier(n_estimators=1).fit(self.df_2[['x1', 'x2']], self.df_2['y']) predictor_1 = self.predictor_2 predictor_1.model = clf predictor_1.explainer = shap.TreeExplainer(clf) predictor_1.preprocessing = None predictor_1.data = {"x": None, "ypred": None, "contributions": None, "x_preprocessed":None} predictor_1.data["x"] = self.df_2[["x1", "x2"]] predictor_1.data["x_preprocessed"] = self.df_2[["x1", "x2"]] prediction = predictor_1.predict_proba() assert prediction.shape[0] == predictor_1.data["x"].shape[0] predictor_1.data["ypred"] = pd.DataFrame(self.df_2["y"]) prediction = predictor_1.predict_proba() assert prediction.shape[0] == predictor_1.data["x"].shape[0] def test_detail_contributions_1(self): """ Unit test of detail_contributions method. """ predictor_1 = self.predictor_1 with self.assertRaises(ValueError): predictor_1.detail_contributions() predictor_1.data = {"x": None, "ypred": None, "contributions": None} with self.assertRaises(ValueError): predictor_1.detail_contributions() predictor_1.data["x_preprocessed"] = self.df_1[["x1", "x2"]] with self.assertRaises(ValueError): predictor_1.detail_contributions() def test_detail_contributions_2(self): """ Unit test 2 of detail_contributions method. """ clf = cb.CatBoostRegressor(n_estimators=1).fit(self.df_2[['x1', 'x2']], self.df_2['y']) predictor_1 = self.predictor_2 predictor_1.model = clf predictor_1.explainer = shap.TreeExplainer(clf) predictor_1.preprocessing = None predictor_1._case = "regression" predictor_1._classes = None predictor_1.data = {"x": None, "ypred": None, "contributions": None, "x_preprocessed": None} predictor_1.data["x"] = self.df_2[["x1", "x2"]] predictor_1.data["x_preprocessed"] = self.df_2[["x1", "x2"]] predictor_1.data["ypred_init"] = pd.DataFrame(self.df_2["y"]) contributions = predictor_1.detail_contributions() assert contributions.shape[0] == predictor_1.data["x"].shape[0] assert all(contributions.index == predictor_1.data["x"].index) assert contributions.shape[1] == predictor_1.data["x"].shape[1] + 1 clf = cb.CatBoostClassifier(n_estimators=1).fit(self.df_2[['x1', 'x2']], self.df_2['y']) clf_explainer = shap.TreeExplainer(clf) predictor_1 = self.predictor_2 predictor_1.preprocessing = None predictor_1.model = clf predictor_1.explainer = clf_explainer predictor_1._case = "classification" predictor_1._classes = [0, 1] false_y = pd.DataFrame({"y_false": [2, 2, 1, 1, 1]}) predictor_1.data = {"x": None, "ypred": None, "contributions": None} predictor_1.data["x_preprocessed"] = self.df_2[["x1", "x2"]] predictor_1.data["x"] = self.df_2[["x1", "x2"]] predictor_1.data["ypred_init"] = false_y with self.assertRaises(ValueError): predictor_1.detail_contributions() predictor_1.data["ypred_init"] = pd.DataFrame(self.df_2["y"]) contributions = predictor_1.detail_contributions() assert contributions.shape[0] == predictor_1.data["x"].shape[0] assert all(contributions.index == predictor_1.data["x"].index) assert contributions.shape[1] == predictor_1.data["x"].shape[1] + 2 def test_save_1(self): """ Unit test save 1 """ pkl_file, predictor = init_sme_to_pickle_test() predictor.save(pkl_file) assert path.exists(pkl_file) os.remove(pkl_file) @patch('shapash.explainer.smart_predictor.SmartPredictor.check_model') @patch('shapash.explainer.smart_predictor.SmartPredictor.check_explainer') @patch('shapash.utils.check.check_preprocessing_options') @patch('shapash.utils.check.check_consistency_model_features') @patch('shapash.utils.check.check_consistency_model_label') def test_apply_preprocessing_1(self,check_consistency_model_label, check_consistency_model_features, check_preprocessing_options, check_explainer, check_model ): """ Unit test for apply preprocessing method """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'num1': [0, 1], 'num2': [0, 2]}) enc = ColumnTransformer(transformers=[('power', skp.QuantileTransformer(n_quantiles=2), ['num1', 'num2'])], remainder='passthrough') enc.fit(train, y) train_preprocessed = pd.DataFrame(enc.transform(train), index=train.index) clf = cb.CatBoostClassifier(n_estimators=1).fit(train_preprocessed, y) features_types = {features: str(train[features].dtypes) for features in train.columns} clf_explainer = shap.TreeExplainer(clf) columns_dict = {0: "num1", 1: "num2"} label_dict = {0: "Yes", 1: "No"} features_dict = {"num1": "city", "num2": "state"} check_preprocessing_options.return_value = True check_consistency_model_features.return_value = True check_consistency_model_label.return_value = True check_explainer.return_value = clf_explainer check_model.return_value = "classification", [0, 1] predictor_1 = SmartPredictor(features_dict, clf, columns_dict, clf_explainer, features_types, label_dict, enc) predictor_1.data = {"x":None} predictor_1.data["x"] = train predictor_1.data["x_preprocessed"] = predictor_1.apply_preprocessing() output_preprocessed = predictor_1.data["x_preprocessed"] assert output_preprocessed.shape == train_preprocessed.shape assert [column in clf.feature_names_ for column in output_preprocessed.columns] assert all(train.index == output_preprocessed.index) assert all([str(type_result) == str(train_preprocessed.dtypes[index]) for index, type_result in enumerate(output_preprocessed.dtypes)]) def test_summarize_1(self): """ Unit test 1 summarize method """ clf = cb.CatBoostRegressor(n_estimators=1).fit(self.df_3[['x1', 'x2']], self.df_3['y']) clf_explainer = shap.TreeExplainer(clf) predictor_1 = self.predictor_3 predictor_1.model = clf predictor_1.explainer = clf_explainer predictor_1.data = {"x": None, "x_preprocessed": None, "x_postprocessed": None, "ypred": None, "contributions": None} predictor_1.data["x"] = self.df_3[['x1', 'x2']] predictor_1.data["x_postprocessed"] = self.df_3[['x1', 'x2']] predictor_1.data["x_preprocessed"] = self.df_3[['x1', 'x2']] predictor_1.data["ypred"] = self.df_3["y"] contribution = pd.DataFrame([[0.0, 0.094286], [0.0, -0.023571], [0.0, -0.023571], [0.0, -0.023571], [0.0, -0.023571]], columns=["x1", "x2"]) predictor_1.data["contributions"] = contribution output = predictor_1.summarize() print(output) expected_output = pd.DataFrame({ "y": [1, 1, 0, 0, 0], "feature_1": ["weight", "weight", "weight", "weight", "weight"], "value_1": ["90", "78", "84", "85", "53"], "contribution_1": ["0.0942857", "-0.0235714", "-0.0235714", "-0.0235714", "-0.0235714"], "feature_2": ["age", "age", "age", "age", "age"], "value_2": ["25", "39", "50", "43", "67"], "contribution_2": ["0", "0", "0", "0", "0"] }, dtype=object) expected_output["y"] = expected_output["y"].astype(int) feature_expected = [column for column in expected_output.columns if column.startswith("feature_")] feature_output = [column for column in output.columns if column.startswith("feature_")] value_expected = [column for column in expected_output.columns if column.startswith("value_")] value_output = [column for column in output.columns if column.startswith("value_")] contribution_expected = [column for column in expected_output.columns if column.startswith("contribution_")] contribution_output = [column for column in output.columns if column.startswith("contribution_")] assert expected_output.shape == output.shape assert len(feature_expected) == len(feature_output) assert len(value_expected) == len(value_output) assert len(contribution_expected) == len(contribution_output) def test_summarize_2(self): """ Unit test 2 summarize method """ predictor_1 = self.predictor_3 predictor_1._case = "classification" predictor_1._classes = [0, 1] clf = cb.CatBoostClassifier(n_estimators=1).fit(self.df_3[['x1', 'x2']], self.df_3['y']) clf_explainer = shap.TreeExplainer(clf) predictor_1.model = clf predictor_1.explainer = clf_explainer with self.assertRaises(ValueError): predictor_1.summarize() predictor_1.data = {"x": None, "x_preprocessed": None, "x_postprocessed": None, "ypred": None, "contributions": None} predictor_1.data["x"] = self.df_3[["x1", "x2"]] predictor_1.data["x_preprocessed"] = self.df_3[["x1", "x2"]] predictor_1.data["x_postprocessed"] = self.df_3[["x1", "x2"]] predictor_1.data["ypred"] = pd.DataFrame( {"y": ["Yes", "Yes", "No", "No", "No"], "proba": [0.519221, 0.468791, 0.531209, 0.531209, 0.531209]} ) predictor_1.data["contributions"] = pd.DataFrame( {"x1": [0, 0, -0, -0, -0], "x2": [0.161538, -0.0403846, 0.0403846, 0.0403846, 0.0403846]} ) output = predictor_1.summarize() expected_output = pd.DataFrame({ "y": ["Yes", "Yes", "No", "No", "No"], "proba": [0.519221, 0.468791, 0.531209, 0.531209, 0.531209], "feature_1": ["weight", "weight", "weight", "weight", "weight"], "value_1": ["90", "78", "84", "85", "53"], "contribution_1": ["0.161538", "-0.0403846", "0.0403846", "0.0403846", "0.0403846"], "feature_2": ["age", "age", "age", "age", "age"], "value_2": ["25", "39", "50", "43", "67"], "contribution_2": ["0", "0", "0", "0", "0"] }, dtype=object) expected_output["proba"] = expected_output["proba"].astype(float) feature_expected = [column for column in expected_output.columns if column.startswith("feature_")] feature_output = [column for column in output.columns if column.startswith("feature_")] value_expected = [column for column in expected_output.columns if column.startswith("value_")] value_output = [column for column in output.columns if column.startswith("value_")] contribution_expected = [column for column in expected_output.columns if column.startswith("contribution_")] contribution_output = [column for column in output.columns if column.startswith("contribution_")] assert expected_output.shape == output.shape assert len(feature_expected) == len(feature_output) assert len(value_expected) == len(value_output) assert len(contribution_expected) == len(contribution_output) assert all(output.columns == expected_output.columns) def test_summarize_3(self): """ Unit test 3 summarize method """ predictor_1 = self.predictor_3 predictor_1.mask_params = {"features_to_hide": None, "threshold": None, "positive": None, "max_contrib": 1 } predictor_1.data = {"x": None, "x_preprocessed": None, "x_postprocessed": None, "ypred": None, "contributions": None} predictor_1.data["x"] = self.df_3[["x1", "x2"]] predictor_1.data["x_preprocessed"] = self.df_3[["x1", "x2"]] predictor_1.data["x_postprocessed"] = self.df_3[["x1", "x2"]] predictor_1.data["ypred"] = pd.DataFrame( {"y": ["Yes", "Yes", "No", "No", "No"], "proba": [0.519221, 0.468791, 0.531209, 0.531209, 0.531209]} ) predictor_1.data["contributions"] = pd.DataFrame( {"x1": [0, 0, -0, -0, -0], "x2": [0.161538, -0.0403846, 0.0403846, 0.0403846, 0.0403846]} ) output = predictor_1.summarize() expected_output = pd.DataFrame({ "y": ["Yes", "Yes", "No", "No", "No"], "proba": [0.519221, 0.468791, 0.531209, 0.531209, 0.531209], "feature_1": ["weight", "weight", "weight", "weight", "weight"], "value_1": ["90", "78", "84", "85", "53"], "contribution_1": ["0.161538", "-0.0403846", "0.0403846", "0.0403846", "0.0403846"], "feature_2": ["age", "age", "age", "age", "age"], "value_2": ["25", "39", "50", "43", "67"], "contribution_2": ["0", "0", "0", "0", "0"] }, dtype=object) expected_output["proba"] = expected_output["proba"].astype(float) feature_expected = [column for column in expected_output.columns if column.startswith("feature_")] feature_output = [column for column in output.columns if column.startswith("feature_")] value_expected = [column for column in expected_output.columns if column.startswith("value_")] value_output = [column for column in output.columns if column.startswith("value_")] contribution_expected = [column for column in expected_output.columns if column.startswith("contribution_")] contribution_output = [column for column in output.columns if column.startswith("contribution_")] assert not expected_output.shape == output.shape assert not len(feature_expected) == len(feature_output) assert not len(value_expected) == len(value_output) assert not len(contribution_expected) == len(contribution_output) assert not len(output.columns) == len(expected_output.columns) predictor_1.mask_params = {"features_to_hide": None, "threshold": None, "positive": None, "max_contrib": None} def test_modfiy_mask(self): """ Unit test modify_mask method """ predictor_1 = self.predictor_2 assert all([value is None for value in predictor_1.mask_params.values()]) predictor_1.modify_mask(max_contrib=1) assert not all([value is None for value in predictor_1.mask_params.values()]) assert predictor_1.mask_params["max_contrib"] == 1 assert predictor_1.mask_params["positive"] == None predictor_1.modify_mask(max_contrib=2) def test_apply_postprocessing_1(self): """ Unit test apply_postprocessing 1 """ predictor_1 = self.predictor_3 predictor_1.data = {"x": None, "ypred": None, "contributions": None} predictor_1.data["x"] = pd.DataFrame( [[1, 2], [3, 4]], columns=['Col1', 'Col2'], index=['Id1', 'Id2'] ) assert np.array_equal(predictor_1.data["x"], predictor_1.apply_postprocessing()) def test_apply_postprocessing_2(self): """ Unit test apply_postprocessing 2 """ postprocessing = {'x1': {'type': 'suffix', 'rule': ' t'}, 'x2': {'type': 'prefix', 'rule': 'test'}} predictor_1 = self.predictor_3 predictor_1.postprocessing = postprocessing predictor_1.data = {"x": None, "ypred": None, "contributions": None} predictor_1.data["x"] = pd.DataFrame( [[1, 2], [3, 4]], columns=['x1', 'x2'], index=['Id1', 'Id2'] ) expected_output = pd.DataFrame( data=[['1 t', 'test2'], ['3 t', 'test4']], columns=['x1', 'x2'], index=['Id1', 'Id2'] ) output = predictor_1.apply_postprocessing() assert np.array_equal(output, expected_output) def test_convert_dict_dataset(self): """ Unit test convert_dict_dataset """ predictor_1 = self.predictor_1 x = predictor_1.convert_dict_dataset(x={"x1": 1, "x2": "M"}) assert all([str(x[feature].dtypes) == predictor_1.features_types[feature] for feature in predictor_1.features_types.keys()]) with self.assertRaises(ValueError): predictor_1.convert_dict_dataset(x={"x1":"M", "x2":"M"}) predictor_1.convert_dict_dataset(x={"x1": 1, "x2": "M", "x3": "M"}) @patch('shapash.explainer.smart_predictor.SmartPredictor.convert_dict_dataset') def test_check_dataset_type(self, convert_dict_dataset): """ Unit test check_dataset_type """ convert_dict_dataset.return_value = pd.DataFrame({"x1": [1], "x2": ["M"]}) predictor_1 = self.predictor_1 with self.assertRaises(ValueError): predictor_1.check_dataset_type(x=1) predictor_1.check_dataset_type(x=["x1", "x2"]) predictor_1.check_dataset_type(x=("x1", "x2")) predictor_1.check_dataset_type(x=pd.DataFrame({"x1": [1], "x2": ["M"]})) predictor_1.check_dataset_type(x={"x1": 1, "x2": "M"}) def test_check_dataset_features(self): """ Unit test check_dataset_features """ predictor_1 = self.predictor_1 with self.assertRaises(AssertionError): predictor_1.check_dataset_features(x=pd.DataFrame({"x1": [1], "x2": ["M"], "x3": ["M"]})) with self.assertRaises(ValueError): predictor_1.check_dataset_features(x=pd.DataFrame({"x1": [1], "x2": [1]})) predictor_1.check_dataset_features(x=pd.DataFrame({"x1": ["M"], "x2": ["M"]})) x = predictor_1.check_dataset_features(x=pd.DataFrame({"x2": ["M"], "x1": [1]})) assert all([str(x[feature].dtypes) == predictor_1.features_types[feature] for feature in predictor_1.features_types.keys()]) features_order = [] for order in range(min(predictor_1.columns_dict.keys()), max(predictor_1.columns_dict.keys()) + 1): features_order.append(predictor_1.columns_dict[order]) assert all(x.columns == features_order) predictor_1.check_dataset_features(x=pd.DataFrame({"x1": [1], "x2": ["M"]})) ``` #### File: unit_tests/utils/test_check.py ```python import unittest import pandas as pd import numpy as np import category_encoders as ce from shapash.utils.check import check_preprocessing, check_model, check_label_dict,\ check_mask_params, check_ypred, check_contribution_object,\ check_preprocessing_options, check_postprocessing, \ check_consistency_model_features, check_consistency_model_label from sklearn.compose import ColumnTransformer import sklearn.preprocessing as skp import types import sklearn.ensemble as ske import sklearn.svm as svm import sklearn.linear_model as skl import xgboost as xgb import lightgbm as lgb import catboost as cb class TestCheck(unittest.TestCase): def setUp(self): self.modellist = [ lgb.LGBMRegressor(n_estimators=1), lgb.LGBMClassifier(n_estimators=1), xgb.XGBRegressor(n_estimators=1), xgb.XGBRegressor(n_estimators=1), cb.CatBoostRegressor(n_estimators=1), cb.CatBoostClassifier(n_estimators=1), ske.GradientBoostingRegressor(n_estimators=1), ske.GradientBoostingClassifier(n_estimators=1), ske.ExtraTreesRegressor(n_estimators=1), ske.ExtraTreesClassifier(n_estimators=1), ske.RandomForestRegressor(n_estimators=1), ske.RandomForestClassifier(n_estimators=1), skl.LogisticRegression(), skl.LinearRegression(), svm.SVR(kernel='linear'), svm.SVC(kernel='linear') ] def test_check_preprocessing_1(self): """ Test check preprocessing on multiple preprocessing """ train = pd.DataFrame({'Onehot1': ['A', 'B', 'A', 'B'], 'Onehot2': ['C', 'D', 'C', 'D'], 'Binary1': ['E', 'F', 'E', 'F'], 'Binary2': ['G', 'H', 'G', 'H'], 'Ordinal1': ['I', 'J', 'I', 'J'], 'Ordinal2': ['K', 'L', 'K', 'L'], 'BaseN1': ['M', 'N', 'M', 'N'], 'BaseN2': ['O', 'P', 'O', 'P'], 'Target1': ['Q', 'R', 'Q', 'R'], 'Target2': ['S', 'T', 'S', 'T'], 'other': ['other', np.nan, 'other', 'other']}) y = pd.DataFrame(data=[0, 1, 0, 0], columns=['y']) enc_onehot = ce.OneHotEncoder(cols=['Onehot1', 'Onehot2']).fit(train) train_onehot = enc_onehot.transform(train) enc_binary = ce.BinaryEncoder(cols=['Binary1', 'Binary2']).fit(train_onehot) train_binary = enc_binary.transform(train_onehot) enc_ordinal = ce.OrdinalEncoder(cols=['Ordinal1', 'Ordinal2']).fit(train_binary) train_ordinal = enc_ordinal.transform(train_binary) enc_basen = ce.BaseNEncoder(cols=['BaseN1', 'BaseN2']).fit(train_ordinal) train_basen = enc_basen.transform(train_ordinal) enc_target = ce.TargetEncoder(cols=['Target1', 'Target2']).fit(train_basen, y) input_dict1 = dict() input_dict1['col'] = 'Onehot2' input_dict1['mapping'] = pd.Series(data=['C', 'D', np.nan], index=['C', 'D', 'missing']) input_dict1['data_type'] = 'object' input_dict2 = dict() input_dict2['col'] = 'Binary2' input_dict2['mapping'] = pd.Series(data=['G', 'H', np.nan], index=['G', 'H', 'missing']) input_dict2['data_type'] = 'object' input_dict = dict() input_dict['col'] = 'state' input_dict['mapping'] = pd.Series(data=['US', 'FR-1', 'FR-2'], index=['US', 'FR', 'FR']) input_dict['data_type'] = 'object' input_dict3 = dict() input_dict3['col'] = 'Ordinal2' input_dict3['mapping'] = pd.Series(data=['K', 'L', np.nan], index=['K', 'L', 'missing']) input_dict3['data_type'] = 'object' list_dict = [input_dict2, input_dict3] y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('onehot', skp.OneHotEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) wrong_prepro = skp.OneHotEncoder().fit(train, y) check_preprocessing([enc_onehot, enc_binary, enc_ordinal, enc_basen, enc_target, input_dict1, list_dict]) for preprocessing in [enc_onehot, enc_binary, enc_ordinal, enc_basen, enc_target]: check_preprocessing(preprocessing) check_preprocessing(input_dict2) check_preprocessing(enc) check_preprocessing(None) with self.assertRaises(Exception): check_preprocessing(wrong_prepro) def test_check_model_1(self): """ Unit test check model 1 """ model = lambda: None model.predict = types.MethodType(self.predict, model) _case, _classes = check_model(model) assert _case == 'regression' assert _classes is None def predict_proba(self, arg1, arg2): """ predict_proba method """ matrx = np.array( [[0.2, 0.8], [0.3, 0.7], [0.4, 0.6]] ) return matrx def predict(self, arg1, arg2): """ predict method """ matrx = np.array( [12, 3, 7] ) return matrx def test_check_model_2(self): """ Unit test check model 2 """ model = lambda: None model._classes = np.array([1, 2]) model.predict = types.MethodType(self.predict, model) model.predict_proba = types.MethodType(self.predict_proba, model) _case, _classes = check_model(model) assert _case == 'classification' self.assertListEqual(_classes, [1, 2]) def test_check_label_dict_1(self): """ Unit test check label dict 1 """ label_dict={1: 'Yes', 0: 'No'} _classes = [0, 1] _case = 'classification' check_label_dict(label_dict, _case, _classes) def test_check_label_dict_2(self): """ Unit test check label dict 2 """ label_dict = {} _case = 'regression' check_label_dict(label_dict, _case) def test_check_mask_params(self): """ Unit test check mask params """ wrong_mask_params_1 = list() wrong_mask_params_2 = None wrong_mask_params_3 = { "features_to_hide": None, "threshold": None, "positive": None } wright_mask_params = { "features_to_hide": None, "threshold": None, "positive": True, "max_contrib": 5 } with self.assertRaises(ValueError): check_mask_params(wrong_mask_params_1) check_mask_params(wrong_mask_params_2) check_mask_params(wrong_mask_params_3) check_mask_params(wright_mask_params) def test_check_ypred_1(self): """ Unit test check y pred """ y_pred = None check_ypred(ypred=y_pred) def test_check_ypred_2(self): """ Unit test check y pred 2 """ x_pred = pd.DataFrame( data=np.array([[1, 2], [3, 4]]), columns=['Col1', 'Col2'] ) y_pred = pd.DataFrame( data=np.array(['1', 0]), columns=['Y'] ) with self.assertRaises(ValueError): check_ypred(x_pred, y_pred) def test_check_ypred_3(self): """ Unit test check y pred 3 """ x_pred = pd.DataFrame( data=np.array([[1, 2], [3, 4]]), columns=['Col1', 'Col2'] ) y_pred = pd.DataFrame( data=np.array([0]), columns=['Y'] ) with self.assertRaises(ValueError): check_ypred(x_pred, y_pred) def test_check_y_pred_4(self): """ Unit test check y pred 4 """ y_pred = [0, 1] with self.assertRaises(ValueError): check_ypred(ypred=y_pred) def test_check_y_pred_5(self): """ Unit test check y pred 5 """ x_pred = pd.DataFrame( data=np.array([[1, 2], [3, 4]]), columns=['Col1', 'Col2'] ) y_pred = pd.Series( data=np.array(['0']) ) with self.assertRaises(ValueError): check_ypred(x_pred, y_pred) def test_check_contribution_object_1(self): """ Unit test check_contribution_object 1 """ contributions_1 = [ np.array([[2, 1], [8, 4]]), np.array([[5, 5], [0, 0]]) ] contributions_2 = np.array([[2, 1], [8, 4]]) model = lambda: None model._classes = np.array([1, 3]) model.predict = types.MethodType(self.predict, model) model.predict_proba = types.MethodType(self.predict_proba, model) _case = "classification" _classes = list(model._classes) check_contribution_object(_case, _classes, contributions_1) assert len(contributions_1) == len(_classes) assert isinstance(contributions_1, list) check_contribution_object("regression", None, contributions_2) assert isinstance(contributions_2, np.ndarray) with self.assertRaises(ValueError): check_contribution_object(_case, _classes, contributions_2) check_mask_params("regression", None, contributions_1) def test_check_consistency_model_features_1(self): """ Test check_consistency_model_features 1 """ train = pd.DataFrame({'Onehot1': ['A', 'B', 'A', 'B'], 'Onehot2': ['C', 'D', 'C', 'D'], 'Binary1': ['E', 'F', 'E', 'F'], 'Binary2': ['G', 'H', 'G', 'H'], 'Ordinal1': ['I', 'J', 'I', 'J'], 'Ordinal2': ['K', 'L', 'K', 'L'], 'BaseN1': ['M', 'N', 'M', 'N'], 'BaseN2': ['O', 'P', 'O', 'P'], 'Target1': ['Q', 'R', 'Q', 'R'], 'Target2': ['S', 'T', 'S', 'T'], 'other': ['other', np.nan, 'other', 'other']}) features_dict = None columns_dict = {i:features for i,features in enumerate(train.columns)} features_types = {features: str(train[features].dtypes) for features in train.columns} label_dict = None mask_params = None enc_ordinal_all = ce.OrdinalEncoder(cols=['Onehot1', 'Onehot2', 'Binary1', 'Binary2', 'Ordinal1', 'Ordinal2', 'BaseN1', 'BaseN2', 'Target1', 'Target2', 'other']).fit(train) train_ordinal_all = enc_ordinal_all.transform(train) preprocessing = enc_ordinal_all y = pd.DataFrame({'y_class': [0, 0, 0, 1]}) model = cb.CatBoostClassifier(n_estimators=1).fit(train_ordinal_all, y) check_consistency_model_features(features_dict, model, columns_dict, features_types, mask_params, preprocessing) def test_check_consistency_model_features_2(self): """ Test check_consistency_model_features 2 """ train = pd.DataFrame({'Onehot1': ['A', 'B', 'A', 'B'], 'Onehot2': ['C', 'D', 'C', 'D'], 'Binary1': ['E', 'F', 'E', 'F'], 'Binary2': ['G', 'H', 'G', 'H'], 'Ordinal1': ['I', 'J', 'I', 'J'], 'Ordinal2': ['K', 'L', 'K', 'L'], 'BaseN1': ['M', 'N', 'M', 'N'], 'BaseN2': ['O', 'P', 'O', 'P'], 'Target1': ['Q', 'R', 'Q', 'R'], 'Target2': ['S', 'T', 'S', 'T'], 'other': ['other', np.nan, 'other', 'other']}) features_dict = None columns_dict = {i: features for i, features in enumerate(train.columns)} features_types = {features: str(train[features].dtypes) for features in train.columns} mask_params = { "features_to_hide": 'Binary3', "threshold": None, "positive": True, "max_contrib": 5 } enc_ordinal_all = ce.OrdinalEncoder(cols=['Onehot1', 'Onehot2', 'Binary1', 'Binary2', 'Ordinal1', 'Ordinal2', 'BaseN1', 'BaseN2', 'Target1', 'Target2', 'other']).fit(train) train_ordinal_all = enc_ordinal_all.transform(train) preprocessing = enc_ordinal_all y = pd.DataFrame({'y_class': [0, 0, 0, 1]}) model = cb.CatBoostClassifier(n_estimators=1).fit(train_ordinal_all, y) with self.assertRaises(ValueError): check_consistency_model_features(features_dict, model, columns_dict, features_types, mask_params, preprocessing) def test_check_preprocessing_options_1(self): """ Unit test 1 for check_preprocessing_options """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'num1': [0, 1], 'num2': [0, 2], 'other': ['A', 'B']}) enc = ColumnTransformer(transformers=[('power', skp.QuantileTransformer(n_quantiles=2), ['num1', 'num2'])], remainder='drop') enc.fit(train, y) with self.assertRaises(ValueError): check_preprocessing_options(enc) enc = ColumnTransformer(transformers=[('power', skp.QuantileTransformer(n_quantiles=2), ['num1', 'num2'])], remainder='passthrough') enc.fit(train, y) check_preprocessing_options(enc) def test_check_consistency_model_features_4(self): """ Test check_consistency_model_features 1 """ train = pd.DataFrame({'Onehot1': ['A', 'B', 'A', 'B'], 'Onehot2': ['C', 'D', 'C', 'D'], 'Binary1': ['E', 'F', 'E', 'F'], 'Binary2': ['G', 'H', 'G', 'H'], 'Ordinal1': ['I', 'J', 'I', 'J'], 'Ordinal2': ['K', 'L', 'K', 'L'], 'BaseN1': ['M', 'N', 'M', 'N'], 'BaseN2': ['O', 'P', 'O', 'P'], 'Target1': ['Q', 'R', 'Q', 'R'], 'Target2': ['S', 'T', 'S', 'T'], 'other': ['other', np.nan, 'other', 'other']}) features_dict = None columns_dict = {i:features for i,features in enumerate(train.columns)} features_types = {features: str(train[features].dtypes) for features in train.columns} label_dict = None mask_params = None enc_ordinal_all = ce.OrdinalEncoder(cols=['Onehot1', 'Onehot2', 'Binary1', 'Binary2', 'Ordinal1', 'Ordinal2', 'BaseN1', 'BaseN2', 'Target1', 'Target2', 'other']).fit(train) train_ordinal_all = enc_ordinal_all.transform(train) preprocessing = enc_ordinal_all y = pd.DataFrame({'y_class': [0, 0, 0, 1]}) for model in self.modellist: print(type(model)) model.fit(train_ordinal_all, y) check_consistency_model_features(features_dict, model, columns_dict, features_types, mask_params, preprocessing) def test_check_consistency_model_label_1(self): """ Test check_consistency_model_label 1 """ columns_dict = {0: "x1", 1: "x2"} label_dict = {0: "Yes", 1: "No"} check_consistency_model_label(columns_dict, label_dict) def test_check_consistency_model_label_2(self): """ Test check_consistency_model_label 2 """ columns_dict = {0: "x1", 1: "x2"} label_dict = {0: "Yes", 2: "No"} with self.assertRaises(ValueError): check_consistency_model_label(columns_dict, label_dict) def test_check_postprocessing_1(self): """ Unit test check_consistency_postprocessing """ x = pd.DataFrame( [[1, 2], [3, 4]], columns=['Col1', 'Col2'], index=['Id1', 'Id2'] ) columns_dict = {0: 'Col1', 1: 'Col2'} features_types = {features: str(x[features].dtypes) for features in x.columns} postprocessing1 = {0: {'Error': 'suffix', 'rule': ' t'}} postprocessing2 = {0: {'type': 'Error', 'rule': ' t'}} postprocessing3 = {0: {'type': 'suffix', 'Error': ' t'}} postprocessing4 = {0: {'type': 'suffix', 'rule': ' '}} postprocessing5 = {0: {'type': 'case', 'rule': 'lower'}} postprocessing6 = {0: {'type': 'case', 'rule': 'Error'}} with self.assertRaises(ValueError): check_postprocessing(features_types, postprocessing1) check_postprocessing(features_types, postprocessing2) check_postprocessing(features_types, postprocessing3) check_postprocessing(features_types, postprocessing4) check_postprocessing(features_types, postprocessing5) check_postprocessing(features_types, postprocessing6) ```
{ "source": "JohannMG/OM2MC-Python", "score": 2 }
#### File: JohannMG/OM2MC-Python/dex-sample.py ```python import mailchimp omUser = 'userlogin' omPass = '<PASSWORD>' mailchimpList = 'xxxxxxxxxx' # Edit the merge tags for all Mailchimp additions here: def mailchimp_merge_tags(): return { 'METER' : 'Opinion Meter' } # Edit the location merge tag for Mailchimp additions here: def GET_Mailchimp_Location_Tag(): return "LOC" # surveryID : Name to go into above location Merge Tag Mailchimp_Location_Ids = { 00010 : "Baltimore", 00004 : "Baltimore", 48654 : "Gatlinburg", 54458 : "Gatlinburg", 78954 : "BION", 13248 : "Orlando", 96345 : "Orlando" } #other vars to look for AND how to look for it # <Mailchimp Merge Tag> : {strings, to, find, it} #case insensitive def getMailchimpOtherMergeVars(): return { 'ZIPPOSTAL': ['zip', 'zipcode', 'postal'], } def get_mailchimp_api(): return mailchimp.Mailchimp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-us1') def getLocationName(id): try: name = Mailchimp_Location_Ids[id] return name except: name = "" return "" ```
{ "source": "JohannOberleitner/pdesolver", "score": 2 }
#### File: sources/experiments/calc_central_charge2.py ```python import time from enum import Enum import matplotlib.pyplot as plt from sources.experiments.charges_generators import make_central_charge from sources.experiments.fdm_helper import plotSurface from sources.pdesolver.finite_differences_method.FiniteDifferencesSolver_V2 import GridConfiguration, \ ConstantGridValueProvider, FiniteDifferencesMethod4, FunctionGridValueProvider from sources.pdesolver.finite_differences_method.boundaryconditions import RectangularBoundaryCondition from sources.pdesolver.finite_differences_method.charge_distribution import ChargeDistribution from sources.pdesolver.finite_differences_method.geometry import Geometry from sources.pdesolver.finite_differences_method.rectangle import Rectangle from sources.pdesolver.formula_parser.lexer import Lexer from sources.pdesolver.formula_parser.parser import Parser, NumberExpression, UnaryOperatorExpression, \ BinaryOperatorExpression, VariableExpression, FunctionCallExpression, InnerExpression from sources.pdesolver.formula_parser.visitor import Visitor from sources.pdesolver.pde.PDE import PDEExpressionType, PDE def solvePDE(geometry, charges, gridConfig): g = geometry boundaryCondition = RectangularBoundaryCondition(geometry) start = time.time() fdm = FiniteDifferencesMethod4(g, boundaryCondition, gridConfig, charges) fdm.solve() resulting_matrix = fdm.values duration = time.time() - start print('Total duration for solving the PDE lasted {0} sec'.format(duration)) return resulting_matrix # class SimpleExpressionEvaluator(Visitor): # # def __init__(self, variables, functions={}): # self.values = [] # self.variables = variables # self.functions = functions # self.result = None # # def get_result(self): # if self.result is None: # self.result = self.values.pop() # return self.result # # def visit_number(self, number_expr): # self.values.append(number_expr.get_value()) # # def visit_function_call(self, function_call_expr): # parameter_values = [] # for parameter in function_call_expr.get_parameter_expr_list(): # parameter.accept(self) # parameter_values.append(self.values.pop()) # # function_name = function_call_expr.get_function_name() # if function_name in self.functions: # fn = self.functions[function_name] # function_result = fn(parameter_values) # self.values.append(function_result) # else: # raise Exception("Function not provided for evaluation:" + function_name) # # def visit_variable(self, variable_expr): # name = variable_expr.get_name() # if name in self.variables: # self.values.append(self.variables[name]) # else: # raise Exception("Variable has no value:"+name) # # def visit_child_expression(self, child_expr): # child_expr.get_child().accept(self) # # def visit_binary_operator(self, binary_expr): # symbol = binary_expr.get_symbol() # # binary_expr.get_left_child_expr().accept(self) # binary_expr.get_right_child_expr().accept(self) # # right_value = self.values.pop() # left_value = self.values.pop() # # if symbol == '+': # self.values.append(left_value + right_value) # elif symbol == '-': # self.values.append(left_value - right_value) # elif symbol == '*': # self.values.append(left_value * right_value) # elif symbol == '/': # self.values.append(left_value / right_value) # else: # raise Exception('Unsupported operator symbol:'+symbol) # # def visit_unary_operator(self, unary_expr): # symbol = unary_expr.get_symbol() # unary_expr.get_child_expr().accept(self) # # child_value = self.values.pop() # # if symbol == '+': # self.values.append(child_value) # elif symbol == '-': # self.values.append(-child_value) # else: # raise Exception('Unsupported operator symbol:' + symbol) # class ExpressionType(Enum): # NUMBER = 0, # COMPLICATED= 1 # class SimpleExpressionOptimizerVisitor(Visitor): # def __init__(self): # self.values = [] # self.valueTypes = [] # self.result = None # # def get_result(self): # if self.result is None: # assert len(self.values) == 1 and len(self.valueTypes) == 1 # valueType = self.valueTypes.pop() # if valueType == ExpressionType.NUMBER: # self.result = NumberExpression(self.values.pop()) # else: # self.result = self.values.pop() # return self.result # # def visit_variable(self, variable_expr): # self.valueTypes.append(ExpressionType.COMPLICATED) # self.values.append(variable_expr) # # def visit_number(self, number_expr): # self.valueTypes.append(ExpressionType.NUMBER) # self.values.append(number_expr.get_value()) # # def visit_child_expression(self, child_expr): # child_expr.get_child().accept(self) # # def visit_binary_operator(self, binary_expr): # symbol = binary_expr.get_symbol() # # binary_expr.get_left_child_expr().accept(self) # binary_expr.get_right_child_expr().accept(self) # # right_value = self.values.pop() # right_value_type = self.valueTypes.pop() # left_value = self.values.pop() # left_value_type = self.valueTypes.pop() # # if left_value_type == ExpressionType.NUMBER and right_value_type == ExpressionType.NUMBER: # self.values.append(self.calc_binary_operators_on_numbers(left_value, right_value, symbol)) # self.valueTypes.append(ExpressionType.NUMBER) # elif left_value_type == ExpressionType.COMPLICATED or right_value_type == ExpressionType.COMPLICATED: # self.values.append(self.calc_binary_operators_on_function_and_number(left_value, left_value_type, right_value, right_value_type, symbol)) # self.valueTypes.append(ExpressionType.COMPLICATED) # else: # raise Exception('Unsupported combination:' + symbol) # # def calc_binary_operators_on_numbers(self, left_value, right_value, symbol): # if symbol == '+': # return left_value + right_value # elif symbol == '-': # return left_value - right_value # elif symbol == '*': # return left_value * right_value # elif symbol == '/': # return left_value / right_value # else: # raise Exception('Unsupported operator symbol:' + symbol) # # def calc_binary_operators_on_function_and_number(self, first, first_type, second, second_type, symbol): # if symbol == '*': # if first_type == ExpressionType.NUMBER and first == 1.0: # return second # elif second_type == ExpressionType.NUMBER and second == 1.0: # return first # elif first_type == ExpressionType.NUMBER and first == -1.0: # return UnaryOperatorExpression(second, '-') # elif second_type == ExpressionType.NUMBER and second == -1.0: # return UnaryOperatorExpression(first, '-') # elif symbol == '+': # if type(second) is UnaryOperatorExpression and second.symbol == '-': # return BinaryOperatorExpression(first, second.get_child_expr(), '-') # # # TODO: + operator # # return BinaryOperatorExpression(first, second, symbol) # # def visit_function_call(self, function_call_expr): # self.values.append(function_call_expr) # self.valueTypes.append(ExpressionType.COMPLICATED) # # def visit_unary_operator(self, unary_expr): # symbol = unary_expr.get_symbol() # unary_expr.get_child_expr().accept(self) # # child_value = self.values.pop() # child_value_type = self.valueTypes.pop() # # if symbol == '+': # self.values.append(child_value) # self.valueTypes.append(child_value_type ) # elif symbol == '-': # # check for duplicated negation: # if type(child_value) is UnaryOperatorExpression and child_value.symbol =='-': # self.values.append(child_value.get_child_expr()) # self.valueTypes.append(child_value_type) # elif child_value_type == ExpressionType.NUMBER: # self.values.append(-child_value ) # self.valueTypes.append(child_value_type) # else: # self.values.append(UnaryOperatorExpression(child_value, '-')) # self.valueTypes.append(ExpressionType.COMPLICATED) # else: # raise Exception('Unsupported operator symbol:' + symbol) # class Function2DOffsets: # def __init__(self, parameter_expr_list): # assert len(parameter_expr_list)==2 # evaluator_x = self.evaluateParameterExpression(parameter_expr_list[0], 'i') # evaluator_y = self.evaluateParameterExpression(parameter_expr_list[1], 'j') # self.x = evaluator_x # self.y = evaluator_y # # def evaluateParameterExpression(self, parameter_expr, positional_variable_name): # variables = {positional_variable_name:0.0} # evaluator = SimpleExpressionEvaluator(variables) # parameter_expr.accept(evaluator) # return evaluator.get_result() # # def __eq__(self, another): # return self.x == another.x and self.y == another.y # # def __hash__(self): # return hash(self.x) * hash(self.y) # # def __repr__(self): # return 'i+{0} j+{1}'.format(self.x, self.y) # # def __str__(self): # return 'i+{0} j+{1}'.format(self.x, self.y) # class FunctionCall: # def __init__(self, offset): # self.offset = offset # self.prefactorExpr = NumberExpression(1.0) # self.simpleExpression = True # # def get_offset(self): # return self.offset # # def get_prefactor(self): # return self.prefactorExpr # # def negate(self): # self.prefactorExpr = UnaryOperatorExpression(self.prefactorExpr, '-') # # def multiplyPrefactor(self, expr): # self.prefactorExpr = BinaryOperatorExpression(expr, self.prefactorExpr, '*') # self.simpleExpression = False # # def __str__(self): # return '({0})u({1})'.format(str(self.prefactorExpr), self.offset) # # def __repr__(self): # return '({0})u({1})'.format(repr(self.prefactorExpr), self.offset) # # def add(self, expr): # self.prefactorExpr = BinaryOperatorExpression(self.prefactorExpr, expr, '+') # # def makeFunction(self, functionDict): # def evaluatorFn(col, row): # evaluator = SimpleExpressionEvaluator(variables={'i':col, 'j':row}, functions=functionDict) # self.prefactorExpr.accept(evaluator) # return evaluator.get_result() # # return evaluatorFn # class FiniteDifferencesVisitor(Visitor): # # def __init__(self): # self.solution_function_name = 'u' # self.values = [] # # def get_solution_function_name(self): # return self.solution_function_name # # def set_solution_function_name(self, new_function_name): # self.solution_function_name = new_function_name # # # 1. sammle alle Funktionen mit u(...) # # in Listen # # u(...) mit denselben Parametern sind identisch # # 2. sammle deren Parameterwerte in einem eigenen Objekt # # 3. und Werte deren Vorfaktoren # # 4. summiere die Vorfaktoren # # # # # def visit_function_call(self, expr): # if expr.get_function_name() == self.solution_function_name: # parameter_list = expr.get_parameter_expr_list() # # offets_for_function_call are eg: (i,j+1) # offsets_for_function_call = Function2DOffsets(parameter_list) # function_call = FunctionCall(offsets_for_function_call) # # self.values.append([function_call]) # else: # self.values.append([expr]) # # def visit_child_expression(self, child_expr): # child_expr.get_child().accept(self) # # def visit_binary_operator(self, binary_expr): # symbol = binary_expr.get_symbol() # # binary_expr.get_left_child_expr().accept(self) # binary_expr.get_right_child_expr().accept(self) # # right_function_calls = self.values.pop() # left_function_calls = self.values.pop() # # if symbol == '+': # left_function_calls.extend(right_function_calls) # self.values.append(left_function_calls) # elif symbol == '-': # for fn in right_function_calls: # fn.negate() # left_function_calls.extend(right_function_calls) # self.values.append(left_function_calls) # elif symbol == '*': # if len(left_function_calls) == 1: # for fn in right_function_calls: # fn.multiplyPrefactor(left_function_calls[0]) # self.values.append(right_function_calls) # else: # raise Exception("More than 1 element in left_function_calls") # else: # raise Exception("Not supported operator:"+symbol) # # def visit_unary_operator(self, unary_expr): # unary_expr.get_child_expr().accept(self) # child_function_calls = self.values.pop() # # for fn in child_function_calls: # fn.negate() # # self.values.append(child_function_calls) # # def combineExpressions(self): # simplified = {} # for functionCall in self.values[0]: # if functionCall.offset in simplified: # simplified[functionCall.offset].add(functionCall.prefactorExpr) # else: # simplified[functionCall.offset] = functionCall # self.values = list(simplified.values()) # # def simplifyExpressions(self): # for functionCall in self.values: # simplifier = SimpleExpressionOptimizerVisitor() # functionCall.prefactorExpr.accept(simplifier) # functionCall.prefactorExpr = simplifier.get_result() # # # def make_grid_config(self, eps): # gridConfig = GridConfiguration() # for functionCall in self.values: # if type(functionCall.prefactorExpr) is NumberExpression: # gridConfig.add(ConstantGridValueProvider(functionCall.prefactorExpr.value), # int(functionCall.offset.x), int(functionCall.offset.y)) # else: # gridConfig.add(FunctionGridValueProvider(functionCall.makeFunction(eps)), # int(functionCall.offset.x), int(functionCall.offset.y)) # return gridConfig # # class Sign(Enum): # Plus=1, # Minus=2 # class VectorCalculusExpressionVisitor(Visitor): # # def __init__(self, vectorVariableNames, dimension): # self.vectorVariableNames = vectorVariableNames # self.dimension = dimension # self.rewritten_expressions = [] # self.rewritten_expressions_count = [] # self.visitor_i_plus = RewriteFiniteDifferencesVisitor('i', sign=Sign.Plus) # self.visitor_j_plus = RewriteFiniteDifferencesVisitor('j', sign=Sign.Plus) # self.visitor_k_plus = RewriteFiniteDifferencesVisitor('k', sign=Sign.Plus) # self.visitor_i_minus = RewriteFiniteDifferencesVisitor('i', sign=Sign.Minus) # self.visitor_j_minus = RewriteFiniteDifferencesVisitor('j', sign=Sign.Minus) # self.visitor_k_minus = RewriteFiniteDifferencesVisitor('k', sign=Sign.Minus) # # def get_result(self): # return self.rewritten_expressions.pop() # # def getVectorCoordinateNames(self, vectorVariableName): # # at time being ignore all variable names # if self.dimension == 2: # return ['i', 'j'] # elif self.dimension == 3: # return ['i', 'j', 'k'] # else: # raise Exception('Vectors of dimension 1 or dimension > 3 not supported!') # # def visit_number(self, number_expr): # self.rewritten_expressions.append(number_expr) # self.rewritten_expressions_count.append(1) # # def visit_variable(self, variable_expr): # if variable_expr.get_name() in self.vectorVariableNames: # for coordinateName in self.getVectorCoordinateNames(variable_expr.get_name()): # self.rewritten_expressions.append(VariableExpression(coordinateName)) # self.rewritten_expressions_count.append(self.dimension) # else: # self.rewritten_expressions.append(variable_expr) # self.rewritten_expressions_count.append(1) # # def visit_binary_operator(self, binary_expr): # symbol = binary_expr.get_symbol() # # binary_expr.get_left_child_expr().accept(self) # binary_expr.get_right_child_expr().accept(self) # # right_expr = self.rewritten_expressions.pop() # left_expr = self.rewritten_expressions.pop() # # self.rewritten_expressions.append(BinaryOperatorExpression(left_expr, right_expr, symbol)) # # def visit_function_call(self, function_call_expr): # rewritten_argument_list = [] # for parameter in function_call_expr.get_parameter_expr_list(): # parameter.accept(self) # count = self.rewritten_expressions_count.pop() # for i in range(count): # rewritten_argument_list.insert(0, self.rewritten_expressions.pop()) # # if function_call_expr.get_function_name() == 'grad': # self.visit_grad(rewritten_argument_list.pop()) # # elif function_call_expr.get_function_name() == 'div': # self.visit_div(rewritten_argument_list.pop()) # elif function_call_expr.get_function_name() == 'rot': # raise Exception("rot not implemented") # else: # new_function_call_expr = FunctionCallExpression(function_call_expr.get_function_name(),rewritten_argument_list ) # self.rewritten_expressions.append(new_function_call_expr) # self.rewritten_expressions_count.append(1) # # def apply_finite_differences(self, operand_expr, visitor_plus, visitor_minus): # expr = operand_expr # expr.accept(visitor_plus) # left_expr = visitor_plus.get_result() # expr.accept(visitor_minus) # right_expr = visitor_minus.get_result() # return BinaryOperatorExpression(left_expr, right_expr, '-') # # def visit_div(self, operand_expr): # # TODO: split on all u functions and combine them # # TODO: do for eps as well # # #expr_coord_i = operand_expr.get_parameter_expr_list()[0] # expr_coord_i = operand_expr # expr_i = self.apply_finite_differences(expr_coord_i, self.visitor_i_plus, self.visitor_i_minus) # # expr_coord_j = operand_expr # expr_j = self.apply_finite_differences(expr_coord_j, self.visitor_j_plus, self.visitor_j_minus) # # # # expr_coord_k = operand.get_parameter_expr_list()[2] # # expr = BinaryOperatorExpression(expr_i, expr_j, '+') # # self.rewritten_expressions.append(expr) # self.rewritten_expressions_count.append(1) # # def visit_grad(self, operand_expr): # # expr_i = self.apply_finite_differences(operand_expr, self.visitor_i_plus, self.visitor_i_minus) # expr_j = self.apply_finite_differences(operand_expr, self.visitor_j_plus, self.visitor_j_minus) # # expr = FunctionCallExpression('gradHelper', [expr_i, expr_j]) # # self.rewritten_expressions.append(expr) # self.rewritten_expressions_count.append(1) # # # u(i,j) -> (u(i+1/2,j) - u(i-1/2,j)) + (u(i,j+1/2) - u(i,j-1/2) # class RewriteFiniteDifferencesVisitor(Visitor): # # def __init__(self, variableName, sign): # self.variableName = variableName # self.sign = sign # self.rewritten_expressions = [] # # def get_result(self): # return self.rewritten_expressions.pop() # # def visit_variable(self, variable_expr): # if variable_expr.get_name() == self.variableName: # if self.sign == Sign.Plus: # expr = BinaryOperatorExpression(variable_expr, # BinaryOperatorExpression(NumberExpression(1.0), NumberExpression(2.0), '/'),'+') # elif self.sign == Sign.Minus: # expr = BinaryOperatorExpression(variable_expr, # BinaryOperatorExpression(NumberExpression(1.0), NumberExpression(2.0), # '/'), '-') # else: # raise Exception("Invalid Sign") # self.rewritten_expressions.append(expr) # else: # self.rewritten_expressions.append(variable_expr) # # def visit_function_call(self, function_call_expr): # rewritten_argument_list = [] # # if function_call_expr.get_function_name() == 'gradHelper': # for i,parameter in enumerate(function_call_expr.get_parameter_expr_list()): # if i==0 and self.variableName == 'i': # parameter.accept(self) # paramExpr = self.rewritten_expressions.pop() # elif i==1 and self.variableName == 'j': # parameter.accept(self) # paramExpr = self.rewritten_expressions.pop() # elif i == 2 and self.variableName == 'k': # parameter.accept(self) # paramExpr = self.rewritten_expressions.pop() # else: # pass # # self.rewritten_expressions.append(paramExpr) # else: # # for parameter in function_call_expr.get_parameter_expr_list(): # parameter.accept(self) # rewritten_argument_list.append(self.rewritten_expressions.pop()) # # new_function_call_expr = FunctionCallExpression(function_call_expr.get_function_name(), # rewritten_argument_list) # self.rewritten_expressions.append(new_function_call_expr) # # def visit_binary_operator(self, binary_expr): # symbol = binary_expr.get_symbol() # # binary_expr.get_left_child_expr().accept(self) # binary_expr.get_right_child_expr().accept(self) # # right_expr = self.rewritten_expressions.pop() # left_expr = self.rewritten_expressions.pop() # # self.rewritten_expressions.append(BinaryOperatorExpression(left_expr, right_expr, symbol)) # # def visit_unary_operator(self, unary_expr): # symbol = unary_expr.get_symbol() # unary_expr.get_child_expr().accept(self) # # child_expr = self.rewritten_expressions.pop() # self.rewritten_expressions.append(UnaryOperatorExpression(child_expr, symbol)) # # def visit_number(self, number_expr): # self.rewritten_expressions.append(number_expr) # # def visit_child_expression(self, child_expr): # child_expr.accept(self) # new_child = self.rewritten_expressions.pop() # self.rewritten_expressions.append(InnerExpression(new_child)) # class PDEExpressionType(Enum): # NONE = 0 # FINITE_DIFFERENCES = 1, # VECTOR_CALCULUS = 2 # # class PDE: # # def __init__(self, gridWidth, gridHeight): # self.gridWidth = gridWidth # self.gridHeight = gridHeight # self.delta = 1.0 # self.rect = Rectangle(0, 0, gridWidth, gridHeight) # self.geometry = Geometry(self.rect, self.delta) # self.boundaryCondition = RectangularBoundaryCondition(self.geometry) # self.auxiliaryFunctions = {} # # def setEquationExpression(self, expressionType, expressionString): # self.expressionType = expressionType # lexer = Lexer(expressionString) # l = list(lexer.parse()) # parser = Parser(l) # self.expression = parser.parse() # # def setVectorVariable(self, vectorVariableName, dimension=2): # if self.expressionType != PDEExpressionType.VECTOR_CALCULUS: # raise Exception("Expression type must be set to VECTOR_EXPRESSION") # # self.vectorVariableName = vectorVariableName # self.dimension = dimension # # def setAuxiliaryFunctions(self, functionDictionary): # self.auxiliaryFunctions = functionDictionary # # def configureGrid(self): # if self.expressionType == PDEExpressionType.NONE: # raise Exception("Expression not set") # # if self.expressionType == PDEExpressionType.VECTOR_CALCULUS: # finiteDifferencesExpression = self.evaluateVectorCalculusExpression(self.expression) # self.configureFiniteDifferences(finiteDifferencesExpression) # else: # self.configureFiniteDifferences(self.expression) # # def evaluateVectorCalculusExpression(self, vectorCalculusExpression): # visitor = VectorCalculusExpressionVisitor([self.vectorVariableName], self.dimension) # vectorCalculusExpression.accept(visitor) # finiteDifferencesExpression = visitor.get_result() # return finiteDifferencesExpression # # def configureFiniteDifferences(self, finiteDifferencesExpression): # visitor = FiniteDifferencesVisitor() # finiteDifferencesExpression.accept(visitor) # visitor.combineExpressions() # visitor.simplifyExpressions() # self.gridConfig = visitor.make_grid_config(self.auxiliaryFunctions) # # # # TODO: replace charges -> rightSide # def solve(self, charges): # # start = time.time() # # fdm = FiniteDifferencesMethod4(self.geometry, self.boundaryCondition, self.gridConfig, charges) # fdm.solve() # # resulting_matrix = fdm.values # # self.duration = time.time() - start # #print('Total duration for solving the PDE lasted {0} sec'.format(duration)) # return resulting_matrix def eps(params): col = params[0] #i row = params[1] #j if (col > 10 and col < 54 and row > 10 and row < 54): # and (col < 28 or col > 36) and (row < 28 or row > 36): if col > 15 and row > 15 and col < 49 and row < 48: if col > 25 and row > 25 and col < 39 and row < 39: return 10.0 else: return 3.0 else: return 20.0 else: return 1.0 def setupPDE_finite_differences(): # 1. Finite Differences without aux function eps pde = PDE(64.0, 64.0) pde.setEquationExpression(PDEExpressionType.FINITE_DIFFERENCES, '(u(i+1,j)-u(i,j)) - (u(i,j)-u(i-1,j)) + (u(i,j+1)-u(i,j)) - (u(i,j)-u(i,j-1))') pde.configureGrid() return pde def setupPDE_finite_differences_with_eps(): # 2. Finite Differences with aux function eps pde = PDE(64.0, 64.0) pde.setEquationExpression(PDEExpressionType.FINITE_DIFFERENCES, 'eps(i+1/2,j)*(u(i+1,j)-u(i,j)) - eps(i-1/2,j)*(u(i,j)-u(i-1,j)) + ' + \ 'eps(i,j+1/2)*(u(i,j+1)-u(i,j)) - eps(i,j-1/2)*(u(i,j)-u(i,j-1))') pde.setAuxiliaryFunctions({'eps':eps}) pde.configureGrid() return pde def setupPDE_vector_calculus(): # 3. Equation as vector calculus without aux function eps pde = PDE(64.0, 64.0) pde.setEquationExpression(PDEExpressionType.VECTOR_CALCULUS, "div(grad( u(r) ))") pde.setVectorVariable("r", dimension=2) pde.configureGrid() return pde def setupPDE_vector_calculus_with_eps(): # 4. Equation as vector calculus with aux function eps pde = PDE(64.0, 64.0) pde.setEquationExpression(PDEExpressionType.VECTOR_CALCULUS, "div(eps(r) * grad( u(r) ))") pde.setVectorVariable("r", dimension=2) pde.setAuxiliaryFunctions({'eps': eps}) pde.configureGrid() return pde if __name__ == '__main__': pdeNr = 4 pde = None if pdeNr == 1: pde = setupPDE_finite_differences() elif pdeNr == 2: pde = setupPDE_finite_differences_with_eps() elif pdeNr == 3: pde = setupPDE_vector_calculus() elif pdeNr == 4: pde = setupPDE_vector_calculus_with_eps() else: raise Exception("Invalid pdeNr:"+pdeNr) charges = make_central_charge(pde.geometry) resulting_matrix = pde.solve(charges) showGraph = 1 if showGraph: plotSurface(pde.geometry.X, pde.geometry.Y, resulting_matrix) plt.show() ``` #### File: experiments/data_generation/trainings_data.py ```python import json import numpy as np import datetime from sources.experiments.ellipsis_data_support.make_ellipsis import create_ellipsis_grid from sources.pdesolver.finite_differences_method.charge_distribution import ChargeDistribution def make_permeability_matrix_one(gridWidth, gridHeight, innerGridWidth, innerGridHeight, majorSemiAxis, minorSemiAxis, permeability, angle): eps_data = create_ellipsis_grid(gridWidth, gridHeight, innerGridWidth, innerGridHeight, majorSemiAxis,\ minorSemiAxis, permeability, angle) return eps_data def encode_ndarray(array, columns, rows): return array.tolist() #resulting_array = [] #current_array = [] #i = 0 #for value in np.nditer(array): # if i==0: # current_array = [] # resulting_array.append(current_array) # current_array.append(value.item(0)) # i += 1 # if i == columns: # i = 0 #return resulting_array def as_ndarray(array): return np.asarray(array, dtype=float) def encode_TrainingsSet(obj): if isinstance(obj, TrainingsSet): return '' else: type_name = obj.__class__.__name__ raise TypeError(f"Object of type '{type_name}' is not JSON serializable") def as_TrainingsSet(json_data): if '__TrainingsSet__' in json_data: return TrainingsSetDecoder().decode(json_data) return json_data class TrainingsSetEncoder(json.JSONEncoder): def default(self, data): if isinstance(data, TrainingsSet): return data.encode() elif isinstance(data, TrainingsSetGeometry): return data.encode() elif isinstance(data, ChargeDistribution): return data.chargesList else: super().default(self, data) class TrainingsSetDecoder: def decode(self, json_data): count = json_data["count"] items = json_data["items"] label = json_data["label"] geometry = json_data["geometry"] chargesList = json_data["charges"] timestamp = json_data["createdAt"] trainingsSet = self.init_data(TrainingsSetGeometry(geometry), chargesList, count, label, timestamp) trainingsSet.decode(items) return trainingsSet def init_data(self, geometry, chargesList, count, label, timestamp): semiMajorAxis = [None] * count semiMinorAxis = [None] * count permittivities = [None] * count angles = [None] * count return TrainingsSet(geometry, chargesList, semiMajorAxis, semiMinorAxis, permittivities, angles, label=label, timestamp=timestamp) class TrainingsSetGeometry: def __init__(self, *args, **kwargs): self.gridWidth = (kwargs['gridWidth'] if 'gridWidth' in kwargs else args[0][0]) self.gridHeight = (kwargs['gridHeight'] if 'gridHeight' in kwargs else args[0][1]) self.innerGridWidth = (kwargs['innerGridWidth'] if 'innerGridWidth' in kwargs else args[0][2]) self.innerGridHeight = (kwargs['innerGridHeight'] if 'innerGridHeight' in kwargs else args[0][3]) def encode(self): return [self.gridWidth, self.gridHeight, self.innerGridWidth, self.innerGridHeight ] class TrainingsElement: def __init__(self, trainingsSet, index): self.trainingsSet = trainingsSet self.index = index def get_semiMajorAxis(self): return self.trainingsSet.semiMajorAxises[self.index] def set_semiMajorAxis(self, value): self.trainingsSet.semiMajorAxises[self.index] = value def get_semiMinorAxis(self): return self.trainingsSet.semiMinorAxises[self.index] def set_semiMinorAxis(self, value): self.trainingsSet.semiMinorAxises[self.index] = value def get_permittivity(self): return self.trainingsSet.permittivities[self.index] def set_permittivity(self, value): self.trainingsSet.permittivities[self.index] = value def get_angle(self): return self.trainingsSet.angles[self.index] def set_angle(self, value): self.trainingsSet.angles[self.index] = value def calc_permittivity_matrix(self, gridWidth, gridHeight, innerGridWidth, innerGridHeight): self.trainingsSet.permittivity_matrix[self.index] = make_permeability_matrix_one(gridWidth, gridHeight, innerGridWidth, innerGridHeight, majorSemiAxis=self.get_semiMajorAxis(), minorSemiAxis=self.get_semiMinorAxis(), permeability=self.get_permittivity(), angle=self.get_angle()) def is_permittivity_matrix_calculated(self): return self.trainingsSet.permittivity_matrix[self.index] != None def get_permittivity_matrix(self): return self.trainingsSet.permittivity_matrix[self.index] class TrainingsSet: def __init__(self, geometry, chargesList, semiMajorAxises, semiMinorAxises, permittivities, angles, label=None, timestamp=None): self.geometry = geometry self.chargesList = chargesList self.semiMajorAxises = semiMajorAxises self.semiMinorAxises = semiMinorAxises self.permittivities = permittivities self.angles = angles c = len(permittivities) self.permittivity_matrix = [None] * len(permittivities) self.label = label self.timestamp = timestamp or datetime.datetime.utcnow() def count(self): return len(self.permittivities) def __iter__(self): self.index = 0 return self def __next__(self): if self.index < len(self.angles): element = TrainingsElement(self, self.index) self.index += 1 return element else: raise StopIteration def get_element(self, index): return TrainingsElement(self, index) def encode(self): items = [] for item in self: items.append({'index':item.index+1, 'semiMajorAxis':item.get_semiMajorAxis(), 'semiMinorAxis':item.get_semiMinorAxis(), 'eps':item.get_permittivity(), 'permittivity_matrix':encode_ndarray(item.get_permittivity_matrix(), int(self.geometry.gridWidth), int(self.geometry.gridHeight)), 'angle':item.get_angle() }) return { '__TrainingsSet__':True, 'label':self.label, 'createdAt':str(self.timestamp), 'geometry':self.geometry, 'charges':self.chargesList, 'count': self.count(), 'items':items } def decode(self, itemsArray): for item in self: itemInArray = itemsArray[item.index] item.set_semiMajorAxis(itemInArray["semiMajorAxis"]) item.set_semiMinorAxis(itemInArray["semiMinorAxis"]) item.set_permittivity(itemInArray["eps"]) item.set_angle(itemInArray["angle"]) self.permittivity_matrix[item.index] = as_ndarray(itemInArray["permittivity_matrix"]) ``` #### File: sources/experiments/render_results.py ```python import sys import json import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import BoundaryNorm from matplotlib.ticker import MaxNLocator from matplotlib.widgets import Button from sources.experiments.data_generation.results_data import as_ResultsSet from sources.experiments.data_generation.trainings_data import as_TrainingsSet from sources.experiments.ellipsis_data_support.make_ellipsis import plot_ellipsis class UICallback(object): def __init__(self, permittivity_axes, initial_data, figure1, figure2, current_index): if figure1[1] != None: self.figure1 = figure1 self.figure1_axes = figure1[0] self.figure1_results = figure1[1] #self.ndValues = np.array(self.figure1_results.resultValues[current_index]) x = np.linspace(0.0, 64.0, 64) y = np.linspace(0.0, 64.0, 64) #x = np.linspace(0.0, 32.0, 32) #y = np.linspace(0.0, 32.0, 32) self.figure1_X, self.figure1_Y = np.meshgrid(x,y) else: self.figure1 = None if figure2[1] != None: self.figure2 = figure2 self.figure2_axes = figure2[0] self.figure2_results = figure2[1] else: self.figure2 = None self.permittivity_axes = permittivity_axes self.initial_data = initial_data self.current_index = current_index self.count = self.figure1_results.count() self.colorbar = 0 self.cmap = plt.get_cmap('PiYG') def next(self, event): if self.current_index+1 < self.count: self.update(self.current_index + 1) def prev(self, event): if self.current_index - 1 >= 0: self.update(self.current_index - 1) def plotSurface_subplot(self, axes, x, y, values): axes.set_zlim(-5.0, 40.0) surf = axes.plot_surface(x, y, values, cmap=cm.coolwarm, linewidth=0, antialiased=False) def redraw_figure(self, results_axes, ndValues, x, y): results_axes.cla() self.plotSurface_subplot(results_axes, x, y, ndValues) def update(self, new_index): self.current_index = new_index self.redraw_permittivity() self.redraw_figure1() self.redraw_figure2() plt.draw() def redraw_permittivity(self): self.permittivity_axes.cla() pdata = self.initial_data.get_element(self.current_index) #permittivity_title = 'id = {0}, eps = {1}, \naxisMaj = {2}, axisMin = {3},\n angle={4:6.4f} '.format( # self.current_index, pdata['permittivities'][self.current_index], pdata['majorSemiAxis'][self.current_index], # pdata['minorSemiAxis'][self.current_index], pdata['angles'][self.current_index]) #print(permittivity_title) plot_ellipsis(self.permittivity_axes, pdata.get_permittivity_matrix(), 'permittivity') def redraw_figure1(self): if self.figure1 != None: self.figure1_values = np.array(self.figure1_results.resultValues[self.current_index]) self.redraw_figure(self.figure1_axes, self.figure1_values, self.figure1_X, self.figure1_Y) def redraw_figure2(self): if self.figure2 != None: self.figure2_values = np.array(self.figure2_results.resultValues[self.current_index]) self.redraw_figure(self.figure2_axes, self.figure2_values, self.figure1_X, self.figure1_Y) # def redraw_permittivity(self): # self.permittivity_axes.cla() # pdata = self.permittivity_data[0] # permittivity_title = 'id = {0}, eps = {1}, \naxisMaj = {2}, axisMin = {3},\n angle={4:6.4f} '.format( # self.current_index, pdata['permittivities'][self.current_index], # pdata['majorSemiAxis'][self.current_index], pdata['minorSemiAxis'][self.current_index], # pdata['angles'][self.current_index]) # print(permittivity_title) # plot_ellipsis(self.permittivity_axes, self.permittivity_data[1][self.current_index], permittivity_title) # plt.draw() # # def redraw_errors(self, fdm): # self.error_axes.cla() # if self.colorbar != 0: # self.colorbar.remove() # self.colorbar = 0 # levels = MaxNLocator(nbins=20).tick_values(fdm.minValue - 2.0, fdm.maxValue + 2.0) # norm = BoundaryNorm(levels, ncolors=self.cmap.N, clip=True) # im = self.error_axes.pcolormesh(fdm.geometry.X, fdm.geometry.Y, fdm.error, norm=norm, cmap=self.cmap) # self.error_axes.set_title('Errors', fontsize=9) # self.colorbar = fig.colorbar(im, ax=self.error_axes) def loadResultsFile(file): if file == None: return None file = open(file, mode='r') results = json.load(file, object_hook=as_ResultsSet) return results def loadPermittivities(file): if file == None: return None file = open(file, mode='r') results = json.load(file, object_hook=as_TrainingsSet) return results def parseArguments(argv): supportedOptions = "hp:" supportLongOptions = [] usage = 'render_results.py <inputfile1> <inputfile2> ... <trainingsDataFile>' inputFile1 = None inputFile2 = None permittivityFile = None if len(argv) == 0: print(usage) sys.exit(2) if len(argv) >= 1: inputFile1 = argv[0] if len(argv) >= 2: if len(argv) == 3: inputFile2 = argv[1] permittivityFile = argv[-1] return permittivityFile, inputFile1, inputFile2 if __name__ == '__main__': permittivity_file, inputFileName1, inputFileName2 = parseArguments(sys.argv[1:]) print(inputFileName1, inputFileName2) resultsFile1 = loadResultsFile(inputFileName1) resultsFile2 = loadResultsFile(inputFileName2) initial_data = loadPermittivities(permittivity_file) fig = plt.figure() permittivity_axes = fig.add_subplot(1, 3, 1) results1_axes = fig.add_subplot(1, 3, 2, projection='3d') results2_axes = fig.add_subplot(1, 3, 3, projection='3d') callback = UICallback(permittivity_axes, initial_data, (results1_axes, resultsFile1), (results2_axes, resultsFile2), 0) callback.update(0) axnext = plt.axes([0.81, 0.0, 0.1, 0.075]) bnext = Button(axnext, 'Next') bnext.on_clicked(callback.next) axprev = plt.axes([0.7, 0.0, 0.1, 0.075]) bprev = Button(axprev, 'Prev') bprev.on_clicked(callback.prev) plt.show() ``` #### File: pdesolver/finite_differences_method/geometry.py ```python import numpy as np class Geometry: def __init__(self, rect, delta): self.delta = delta self.rect = rect numX = (int)(self.rect.width/delta) #+1 numY = (int)(self.rect.height/delta) #+1 self.x = np.linspace(self.rect.x1, self.rect.x2, numX, dtype=np.double) self.y = np.linspace(self.rect.y1, self.rect.y2, numY, dtype=np.double) self.X, self.Y = np.meshgrid(self.x, self.y) self.numX = len(self.X[0]) self.numY = len(self.X) def indexFromCoords(self, x, y): i = (int)((x - self.rect.x1) / self.delta) j = (int)((y - self.rect.y1) / self.delta) # because numpy's meshgrid returns the arrays in different order change this here: return (j,i) def coordFromHorizontalIndex(self, column): return self.x + column * self.delta def coordFromVerticalIndex(self, row): return self.y + row * self.delta def coordFromIndices(self, column, row): return self.coordFromHorizontalIndex(self, column), self.coordFromVerticalIndex(self, row) ```
{ "source": "johann-petrak/farm-tools", "score": 2 }
#### File: farm-tools/farm_tools/farm_head_coral.py ```python import os import torch import importlib from torch import nn from transformers import AutoModelForSequenceClassification from farm.modeling.prediction_head import PredictionHead from farm_tools.farm_coral.dataset import levels_from_labelbatch from farm_tools.farm_coral.losses import coral_loss from farm_tools.utils import init_logger from farm_tools.farm_utils import OurFeedForwardBlock logger = init_logger("FARM-CORAL-head") class CoralLoss: def __init__(self, num_labels, reduction="mean"): self.reduction = reduction self.num_labels = num_labels if reduction == "none": self.reduction = None def __call__(self, logits, target): # logger.info(f"logits={logits}") # logger.info(f"target={target}") levels = levels_from_labelbatch(target, self.num_labels) theloss = coral_loss(logits, levels, importance_weights=None, reduction=self.reduction) # logger.info(f"Running MyLoss.forward on {logits.shape}/{target.shape}, returning {theloss.shape}") return theloss class CoralOrdinalRegressionHead(PredictionHead): def __init__( self, layer_dims=None, hd_dim=768, label_list=None, loss_reduction="none", nonlinearity="ReLU", dropoutrate=None, task_name="text_classification", **kwargs, ): """ """ # TODO: why does the original text classification head a # label list attribute? logger.info(f"Initializing Coral Head: layer_dims={layer_dims}, hd_dim={hd_dim}, label_list={label_list}") super().__init__() assert isinstance(label_list, list) assert len(label_list) > 1 if layer_dims is None or len(layer_dims) == 0: self.coral_weights = nn.Linear(hd_dim, 1, bias=False) else: self.nonlinearity = nonlinearity mod = importlib.import_module("torch.nn") nonlin = getattr(mod, nonlinearity) self.coral_weights = nn.Sequential( OurFeedForwardBlock(layer_dims, dropoutrate=dropoutrate, nonlinearity=nonlin), nn.Linear(layer_dims[-1], 1, bias=False) ) self.label_list = label_list self.num_labels = len(label_list) self.layer_dims = layer_dims self.hd_dim = hd_dim self.nonlinearity = nonlinearity self.dropoutrate = dropoutrate self.coral_bias = torch.nn.Parameter( torch.arange(self.num_labels - 1, 0, -1).float() / (self.num_labels-1)) self.ph_output_type = "per_sequence" self.model_type = "text_classification" self.task_name = task_name #used for connecting with the right output of the processor self.loss_fct = CoralLoss( num_labels=self.num_labels, reduction=loss_reduction, ) if "label_list" in kwargs: logger.warning(f"Ignoring label list from kwargs: {kwargs['label_list']}") # TODO: maybe check if equal to the one we pass? # self.label_list = kwargs["label_list"] self.generate_config() logger.info(f"Generated config: {self.config}") logger.info(f"Created CoralOrdinalRegressionHead, ignored kwargs={kwargs}") logger.info(f"Created head:\n{self}") @classmethod def load(cls, pretrained_model_name_or_path, revision=None, **kwargs): """ Load a prediction head from a saved FARM or transformers model. `pretrained_model_name_or_path` can be one of the following: a) Local path to a FARM prediction head config (e.g. my-bert/prediction_head_0_config.json) b) Local path to a Transformers model (e.g. my-bert) c) Name of a public model from https://huggingface.co/models (e.g. distilbert-base-uncased-distilled-squad) :param pretrained_model_name_or_path: local path of a saved model or name of a publicly available model. Exemplary public name: - deepset/bert-base-german-cased-hatespeech-GermEval18Coarse See https://huggingface.co/models for full list :param revision: The version of model to use from the HuggingFace model hub. Can be tag name, branch name, or commit hash. :type revision: str """ logger.info(f"Running HEAD.load for {pretrained_model_name_or_path}") if os.path.exists(pretrained_model_name_or_path) \ and "config.json" in pretrained_model_name_or_path \ and "prediction_head" in pretrained_model_name_or_path: # a) FARM style head = super(CoralOrdinalRegressionHead, cls).load(pretrained_model_name_or_path) else: # b) transformers style # load all weights from model full_model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path, revision=revision, **kwargs) # init empty head head = cls(label_list=full_model.label_list) # transfer weights for head from full model head.feed_forward.feed_forward[0].load_state_dict(full_model.classifier.state_dict()) # add label list head.label_list = list(full_model.config.id2label.values()) del full_model return head def forward(self, X): logits = self.coral_weights(X) + self.coral_bias #logger.info(f"Running forward on {X.shape}, returning {logits.shape}") #logger.info(f"forward got logits={logits}") return logits def logits_to_loss(self, logits, **kwargs): # after forward: gets logits as (batchsize, outputs) plus kwargs: # input_ids, padding_mask, setment_ids (all batchsize,inputdim size) # text_classification_ids (batchsize, 1) # returns batchsize losses label_ids = kwargs.get(self.label_tensor_name) label_ids = label_ids ret = self.loss_fct(logits, label_ids.view(-1)) # logger.info(f"Running logits_to_loss on {logits.shape}/kwargs={kwargs}, returning {ret.shape}") return ret def logits_to_probs(self, logits, return_class_probs, **kwargs): probs = torch.sigmoid(logits) if return_class_probs: probs = probs else: probs = torch.max(probs, dim=1)[0] probs = probs.cpu().numpy() # logger.info(f"Running logits_to_probs on {logits.shape}/{return_class_probs}/kwargs={kwargs}, returning {probs.shape}") return probs def logits_to_preds(self, logits, **kwargs): # this gets batchsize,1 logits logits = logits.cpu().numpy() # logger.info(f"LOGITS={logits}") probas = torch.sigmoid(torch.tensor(logits)) # logger.info(f"PROBAS={probas}") predict_levels = probas > 0.5 pred_ids = torch.sum(predict_levels, dim=1) # logger.info(f"PRED_IDS={pred_ids}") preds = [self.label_list[int(x)] for x in pred_ids] # logger.info(f"Running logits_to_preds on {logits.shape}/kwargs={kwargs}, returning {preds}") return preds def prepare_labels(self, **kwargs): label_ids = kwargs.get(self.label_tensor_name) label_ids = label_ids.cpu().numpy() # This is the standard doc classification case try: labels = [self.label_list[int(x)] for x in label_ids] # This case is triggered in Natural Questions where each example can have multiple labels except TypeError: labels = [self.label_list[int(x[0])] for x in label_ids] # logger.info(f"Running prepare_labels on kwargs={kwargs}, returning {labels}") return labels def formatted_preds(self, logits=None, preds=None, samples=None, return_class_probs=False, **kwargs): """ Like QuestionAnsweringHead.formatted_preds(), this fn can operate on either logits or preds. This is needed since at inference, the order of operations is very different depending on whether we are performing aggregation or not (compare Inferencer._get_predictions() vs Inferencer._get_predictions_and_aggregate())""" assert (logits is not None) or (preds is not None) # When this method is used along side a QAHead at inference (e.g. Natural Questions), preds is the input and # there is currently no good way of generating probs if logits is not None: preds = self.logits_to_preds(logits) probs = self.logits_to_probs(logits, return_class_probs) else: probs = [None] * len(preds) # TODO this block has to do with the difference in Basket and Sample structure between SQuAD and NQ try: contexts = [sample.clear_text["text"] for sample in samples] # This case covers Natural Questions where the sample is in a QA style except KeyError: contexts = [sample.clear_text["question_text"] + " | " + sample.clear_text["passage_text"] for sample in samples] contexts_b = [sample.clear_text["text_b"] for sample in samples if "text_b" in sample.clear_text] if len(contexts_b) != 0: contexts = ["|".join([a, b]) for a,b in zip(contexts, contexts_b)] res = {"task": "text_classification", "task_name": self.task_name, "predictions": []} for pred, prob, context in zip(preds, probs, contexts): if not return_class_probs: pred_dict = { "start": None, "end": None, "context": f"{context}", "label": f"{pred}", "probability": prob, } else: pred_dict = { "start": None, "end": None, "context": f"{context}", "label": "class_probabilities", "probability": prob, } res["predictions"].append(pred_dict) return res ```
{ "source": "johann-petrak/nlp-ml", "score": 4 }
#### File: nlp-ml/nlpml/destination.py ```python from abc import ABC, abstractmethod import json class SerialDestination(ABC): """ Base class for all implementations of something that needs serial writing. """ def __init__(self): self.data = None @abstractmethod def write(self, item): """ Write the next item to the destination. :param item: the data to write :return: """ pass def close(self): """ Close the destination if necessary, otherwise do nothing. :return: """ pass def get_data(self): """ Returns the data from the destination if this is an in-memory destination. For other kinds of destination, this could return None or whatever makes sense. :return: """ return self.data def set_data(self, data): """ This can be used to set the data in the original instance if a copy of the instance was used in a different process to create the data. :param data: the data to set :return: """ self.data = data def size(self): """ Returns the number of items written to that destination. :return: number of items """ class SdJsonLinesFile(SerialDestination): """ A destination which writes each item as json to a line in a destination file. """ def __init__(self, file): """ Destination for writing items to a line of JSON each in a file. :param file: the file to write to. """ self.file = file self.fh = open(file, "wt", encoding="utf8") self.n = 0 def write(self, item): self.fh.write(json.dumps(item)) self.n += 1 self.fh.write("\n") def size(self): return self.n class SdList(SerialDestination): """ A destination for lists """ def __init__(self, thelist): if not isinstance(thelist, list): raise Exception("Must be a list") self.data = thelist def write(self, item): import sys self.data.append(item) def size(self): return len(self.n) class SdMap(SerialDestination): """ A destination for maps/dictionaries. For these, the destination needs to receive the tuple (id, item) from the processor! """ def __init__(self, themap): if not isinstance(themap, map): raise Exception("Must be a map") self.data = themap def write(self, item): if not isinstance(item, tuple) or not len(item) == 2: raise Exception("write must get a tuple (id, item) instead of item!") self.data[item[0]] = item[1] def size(self): return len(self.data) ```
{ "source": "johann-petrak/python-matchtext", "score": 2 }
#### File: python-matchtext/matchtext/utils.py ```python def thisorthat(this, that): """ If this is None takes that otherwise takes this. :param this: :param that: :return: """ if this is None: return that else: return this ``` #### File: python-matchtext/tests/test_stringmatcher.py ```python from matchtext.stringmatcher import StringMatcher import sys def test_sm_find1(): sm = StringMatcher() for i, e in enumerate(["this", "word", "words", "thisis", "his"]): sm.add(e, data=i, append=False) assert sm["this"] == 0 assert sm["his"] == 4 assert sm.get("this") == 0 assert sm.get("asasas", "x") == "x" assert sm.get("asaasa") is None t1 = "this is a word" ms1 = sm.find(t1, all=True, skip=True) assert len(ms1) == 2 m1 = ms1[0] assert m1.entrydata == 0 assert m1.start == 0 assert m1.end == 4 assert m1.match == "this" assert m1.matcherdata is None m2 = ms1[1] assert m2.entrydata == 1 assert m2.match == "word" assert m2.start == 10 def test_sm_find2(): sm = StringMatcher() for i, e in enumerate(["this", "word", "words", "thisis", "his"]): sm.add(e, data=i, append=False) t1 = "this is a word" ms1 = sm.find(t1, all=True, skip=False) assert len(ms1) == 3 m1 = ms1[0] assert m1.entrydata == 0 assert m1.start == 0 assert m1.end == 4 assert m1.match == "this" assert m1.matcherdata is None m2 = ms1[1] assert m2.entrydata == 4 assert m2.match == "his" assert m2.start == 1 m3 = ms1[2] assert m3.entrydata == 1 assert m3.match == "word" assert m3.start == 10 def test_sm_find3(): sm = StringMatcher() for i, e in enumerate(["this", "word", "words", "thisis", "his"]): sm.add(e, data=i, append=False) t1 = "thisis a word" ms1 = sm.find(t1, all=True, skip=False) assert len(ms1) == 4 m1 = ms1[0] assert m1.entrydata == 0 assert m1.start == 0 assert m1.end == 4 assert m1.match == "this" assert m1.matcherdata is None m2 = ms1[1] assert m2.entrydata == 3 assert m2.match == "thisis" assert m2.start == 0 m3 = ms1[2] assert m3.entrydata == 4 assert m3.match == "his" assert m3.start == 1 m4 = ms1[3] assert m4.entrydata == 1 assert m4.match == "word" assert m4.start == 9 def test_sm_find4(): sm = StringMatcher() for i, e in enumerate(["this", "word", "words", "thisis", "his"]): sm.add(e, data=i, append=False) t1 = "thisis a word" ms1 = sm.find(t1, all=False, skip=True) assert len(ms1) == 2 m1 = ms1[0] assert m1.entrydata == 3 assert m1.match == "thisis" assert m1.start == 0 m2 = ms1[1] assert m2.entrydata == 1 assert m2.match == "word" assert m2.start == 9 def test_sm_find5(): sm = StringMatcher() for i, e in enumerate(["this", "word", "words", "thisis", "his", "word"]): sm.add(e, data=i, append=True) t1 = "thisis a word" ms1 = sm.find(t1, all=False, skip=True) assert len(ms1) == 2 m1 = ms1[0] assert m1.entrydata == [3] assert m1.match == "thisis" assert m1.start == 0 m2 = ms1[1] assert m2.entrydata == [1, 5] assert m2.match == "word" assert m2.start == 9 def test_sm_find6(): def f_ign(x): return x in "io" sm = StringMatcher(ignorefunc=f_ign) for i, e in enumerate(["this", "word", "words", "thisis", "his", "word"]): sm.add(e, data=i, append=True) #print(f"!!!!!!!!!!!DEBUG: nodes: ", file=sys.stderr) #sm._root.print_node() #print(file=sys.stderr) # In the following "thoss" should match because o gets ignored and and i got ignored for "thisis" so # we really match "thss" t1 = "thoss a wiiiiiiiird" ms1 = sm.find(t1, all=False, skip=True) assert len(ms1) == 2 m1 = ms1[0] assert m1.entrydata == [3] assert m1.match == "thoss" assert m1.start == 0 assert m1.end == 5 m2 = ms1[1] assert m2.entrydata == [1, 5] assert m2.match == "wiiiiiiiird" assert m2.start == 8 assert m2.end == 19 def test_sm_replace1(): sm = StringMatcher() for i, e in enumerate(["this", "word", "words", "thisis", "his"]): sm.add(e, data=i, append=False) t1 = "thisis a word" rep = sm.replace(t1) assert rep == "3 a 1" ``` #### File: python-matchtext/tests/test_tokenmatcher.py ```python from matchtext.tokenmatcher import TokenMatcher, Node ENTRIES = ["Some", "word", "to", "add", ["some", "word"], ["some", "word"]] def test_tm_find1(): tm = TokenMatcher() for i, e in enumerate(ENTRIES): tm.add(e, data=i, append=False) t1 = ["This", "contains", "Some", "text"] ms1 = tm.find(t1, all=False, skip=True) assert len(ms1) == 1 m1 = ms1[0] assert m1.entrydata == 0 assert m1.start == 2 assert m1.end == 3 assert m1.matcherdata is None def test_tm_find2(): tm = TokenMatcher(mapfunc=str.lower, matcherdata="x") for i, e in enumerate(ENTRIES): tm.add(e, data=i, append=True) t1 = ["this", "contains", "some", "word", "of", "text", "to", "add"] ms = tm.find(t1, all=True, skip=False) # print("Matches:", ms) assert len(ms) == 5 m = ms[0] assert m.entrydata == [0] assert m.start == 2 assert m.end == 3 assert m.matcherdata == "x" m = ms[1] assert m.match == ["some", "word"] assert m.entrydata == [4, 5] assert m.start == 2 assert m.end == 4 assert m.matcherdata == "x" m = ms[2] assert m.match == ["word"] assert m.entrydata == [1] assert m.start == 3 assert m.end == 4 assert m.matcherdata == "x" def test_tm_replace1(): tm = TokenMatcher(mapfunc=str.lower) for i, e in enumerate(ENTRIES): tm.add(e, data=i, append=False) t1 = ["this", "contains", "some", "word", "of", "text", "to", "add"] rep = tm.replace(t1) assert rep == ['this', 'contains', 5, 'of', 'text', 2, 3] def test_tm_replace2(): tm = TokenMatcher(mapfunc=str.lower) for i, e in enumerate(ENTRIES): tm.add(e, data=i, append=False) t1 = ["THIS", "CONTAINS", "SOME", "WORD", "OF", "TEXT", "TO", "ADD"] rep = tm.replace(t1, replacer=lambda x: x.match) assert rep == ['THIS', 'CONTAINS', 'some', 'word', 'OF', 'TEXT', 'to', 'add'] assert t1 == ["THIS", "CONTAINS", "SOME", "WORD", "OF", "TEXT", "TO", "ADD"] def test_tm_find3(): tm = TokenMatcher() for i, e in enumerate(ENTRIES): tm.add(e, data=i, append=False) t1 = ["This", "contains", "Some", "text"] def mm(*args): return args ms1 = tm.find(t1, all=False, skip=True, matchmaker=mm) assert len(ms1) == 1 m1 = ms1[0] assert m1 == (2, 3, ["Some"], 0, None) def test_tm_find4(): """ Test finding 2 longest matches :return: """ tm = TokenMatcher() for i, e in enumerate([["some", "word"], ["some", "word"]]): tm.add(e, data=i, append=True) t1 = ["this", "contains", "some", "word", "yes"] ms1 = tm.find(t1, all=True, skip=False) assert len(ms1) == 1 m1 = ms1[0] assert m1.start == 2 assert m1.end == 4 assert m1.match == ["some", "word"] assert m1.entrydata == [0,1] def test_tm_find5(): """ Test finding 2 longest matches :return: """ tm = TokenMatcher() for i, e in enumerate([["some", "word"], ["some", "word"], "word"]): tm.add(e, data=i, append=True) t1 = ["this", "contains", "some", "word", "yes"] ms1 = tm.find(t1, all=True, skip=False) assert len(ms1) == 2 m1 = ms1[0] assert m1.start == 2 assert m1.end == 4 assert m1.match == ["some", "word"] assert m1.entrydata == [0, 1] m2 = ms1[1] assert m2.match == ["word"] def test_tm_replace3(): tm = TokenMatcher() tm.add(["this", "and", "that"], "ENTRY1") tm.add(["she", "and", "he"], "ENTRY2") tm.add(["other", "stuff"], "ENTRY3") tokens = ["because", "this", "and", "that", "should", "also"] ms1 = tm.find(tokens) assert len(ms1) == 1 m1 = ms1[0] assert m1.match == ["this", "and", "that"] # note: the ignored token is NOT part of the result match! assert m1.start == 1 assert m1.end == 4 assert tokens[1:4] == ["this", "and", "that"] # note: but the range fits the original tokens! assert tm.replace(["and", "also"]) == ["and", "also"] assert tm.replace(tokens) == ['because', 'ENTRY1', 'should', 'also'] assert tm.replace(["other", "stuff"]) == ['ENTRY3'] assert tm.replace(["and", "other", "stuff"]) == ['and', 'ENTRY3'] assert tm.replace(["word1", "word2", "other", "word3"]) == ['word1', 'word2', 'other', 'word3'] assert tm.replace(["word1", "word2", "stuff", "word3"]) == ['word1', 'word2', 'stuff', 'word3'] assert tm.replace(["word1", "word2", "and", "word3"]) == ['word1', 'word2', 'and', 'word3'] assert tm.replace(["this", "and", "that", "other", "stuff"]) == ['ENTRY1', 'ENTRY3'] def test_tm_find6(): """ Test ignoring tokens :return: """ def ign1(x): return x in ["and"] tm = TokenMatcher(ignorefunc=ign1) tm.add(["this", "and", "that"], "ENTRY1") tm.add(["she", "and", "he"], "ENTRY2") tm.add(["other", "stuff"], "ENTRY3") tokens = ["because", "this", "and", "that", "should", "also"] ms1 = tm.find(tokens) assert len(ms1) == 1 m1 = ms1[0] assert m1.match == ["this", "that"] # note: the ignored token is NOT part of the result match! assert m1.start == 1 assert m1.end == 4 assert tokens[m1.start:m1.end] == ["this", "and", "that"] # note: but the range fits the original tokens! assert tm.replace(tokens) == ['because', 'ENTRY1', 'should', 'also'] def test_tm_replace4(): def ign1(x): return x in ["and"] tm = TokenMatcher(ignorefunc=ign1) tm.add(["this", "and", "that"], "ENTRY1") tm.add(["she", "and", "he"], "ENTRY2") tm.add(["other", "stuff"], "ENTRY3") assert tm.replace(["and", "also"]) == ["and", "also"] assert tm.replace(["because", "this", "and", "that", "should", "also"]) == ['because', 'ENTRY1', 'should', 'also'] assert tm.replace(["other", "stuff"]) == ['ENTRY3'] assert tm.replace(["and", "other", "stuff"]) == ['and', 'ENTRY3'] assert tm.replace(["word1", "word2", "other", "word3"]) == ['word1', 'word2', 'other', 'word3'] assert tm.replace(["word1", "word2", "stuff", "word3"]) == ['word1', 'word2', 'stuff', 'word3'] assert tm.replace(["word1", "word2", "and", "word3"]) == ['word1', 'word2', 'and', 'word3'] assert tm.replace(["this", "and", "that", "other", "stuff"]) == ['ENTRY1', 'ENTRY3'] def test_tmp_repr1(): tm = TokenMatcher() tm.add(["this", "and", "that"], "ENTRY1") tm.add(["she", "and", "he"], "ENTRY2") tm.add(["other", "stuff"], "ENTRY3") assert Node.dict_repr(tm.nodes) == """[('this', Node(is_match=None,data=None,nodes=[('and', Node(is_match=None,data=None,nodes=[('that', Node(is_match=True,data=ENTRY1,nodes=None))]))])), ('she', Node(is_match=None,data=None,nodes=[('and', Node(is_match=None,data=None,nodes=[('he', Node(is_match=True,data=ENTRY2,nodes=None))]))])), ('other', Node(is_match=None,data=None,nodes=[('stuff', Node(is_match=True,data=ENTRY3,nodes=None))]))]""" ```
{ "source": "johann-petrak/python-sparsevectors", "score": 2 }
#### File: johann-petrak/python-sparsevectors/sparsevector.py ```python import os def __bootstrap__(): global __bootstrap__, __loader__, __file__ import sys, pkg_resources, imp __file__ = pkg_resources.resource_filename(__name__,'sparsevectors.cpython-35m-x86_64-linux-gnu.so') __loader__ = None; del __bootstrap__, __loader__ imp.load_dynamic(__name__,__file__) os.environ['PYTHON_EGG_CACHE'] = '~/' __bootstrap__() ``` #### File: python-sparsevectors/tests/tests1.py ```python from __future__ import print_function from sparsevectors import SparseVector import unittest class SparseVectorTestsBasics(unittest.TestCase): def test_sv_basics1(self): v1 = SparseVector() e1 = v1[0] self.assertEqual(e1, 0.0) self.assertNotIn(0, v1) class SparseVectorTestsDot(unittest.TestCase): def test_sv_dot1(self): v1 = SparseVector() v1[2] = 2.0 v2 = SparseVector() v2[2] = 3.0 self.assertEqual(type(v1[2]), float) d1 = v1.dot(v2) self.assertEqual(d1, 6.0) def test_sv_dot2(self): v1 = SparseVector() v2 = SparseVector() v2[2] = 3.0 d1 = v1.dot(v2) self.assertEqual(d1, 0.0) def test_sv_dot3(self): v1 = SparseVector() v1[1] = 2.0 v2 = SparseVector() v2[2] = 3.0 self.assertEqual(type(v1[2]), float) d1 = v1.dot(v2) self.assertEqual(d1,0.0) def test_sv_dot4(self): v1 = SparseVector({1: 1.0, 2: 2.0}) v2 = SparseVector({2: 3.0, 4: 5.0}) d1 = v1.dot(v2) self.assertEqual(d1,6.0) def test_sv_dot5(self): v1 = SparseVector() v2 = SparseVector() d1 = v1.dot(v2) self.assertEqual(d1,0.0) class SparseVectorTestsIaddc(unittest.TestCase): def test_sv_iaddc1(self): v1 = SparseVector({1: 1.0, 2: 2.0}) v2 = SparseVector({2: 3.0, 4: 5.0}) v1.iaddc(v2) self.assertEqual(len(v1), 3) self.assertEqual(len(v2), 2) self.assertEqual(v1[1], 1.0) self.assertEqual(v1[2], 5.0) self.assertEqual(v1[4], 5.0) def test_sv_iaddc2(self): v1 = SparseVector() v2 = SparseVector() v2[2] = 2.0 v1.iaddc(v2) self.assertEqual(len(v1), 1) self.assertEqual(len(v2), 1) self.assertEqual(v1[2], 2.0) def test_sv_iaddc3(self): v1 = SparseVector() v2 = SparseVector() v1.iaddc(v2) self.assertEqual(len(v1), 0) self.assertEqual(len(v2), 0) if __name__ == "__main__": unittest.main() ```
{ "source": "johannrichard/hypothesis-zotero", "score": 2 }
#### File: johannrichard/hypothesis-zotero/hypothesis_zotero.py ```python import json import os from tkinter import * import h_annot from pyzotero import zotero ZOTERO_API_UPDATE_LIMIT = 50 def save_transfer_settings(settings_path): """Save the currently entered transfer settings from the application form to settings_path.""" try: with open(settings_path, "w") as outfile: settings = {"library_id": libraryid_w.get(), "zot_api_key":zot_api_key_w.get(), "hyp_username":hyp_username_w.get(), "hyp_api_key":hyp_api_key_w.get(), "num2grab":number_to_grab_w.get()} json.dump(settings, outfile) progress_indicator.set("Transfer settings saved!") return True except FileNotFoundError: try: os.mkdir(os.path.split(settings_path)[0]) save_transfer_settings(settings_path) except PermissionError: progress_indicator.set("No permission to save to home folder.") return False def load_transfer_settings(settings_path): """Load the settings used to transfer annotations from Hypothesis into Zotero into the application form.""" try: with open(settings_path) as infile: settings = json.load(infile) libraryid_w.insert(0, settings["library_id"]) zot_api_key_w.insert(0,settings["zot_api_key"]) hyp_username_w.insert(0,settings["hyp_username"]) hyp_api_key_w.insert(0,settings["hyp_api_key"]) number_to_grab_w.delete(0,END) number_to_grab_w.insert(0,settings["num2grab"]) return True except FileNotFoundError: return False def format_converted_note(annotation): """Format an annotation so that it translates properly into Zotero note markup.""" annotated_text = extract_exact(annotation) annotation_text = annotation["text"] return """<p style="color: green; text-align: center;">{}</p> <br> <p>{}</p>""".format(annotated_text, annotation_text) def extract_exact(annotation): try: annotation["target"][0]["selector"] except KeyError as e: print(annotation) return "<text not available>" for selector in annotation["target"][0]["selector"]: try: return selector["exact"] except KeyError: continue return None def extract_note_tags(notes): tags = set() for note in notes: for tag in note['data']['tags']: tags.add(tag['tag']) return tags def grab(): grab_button.config(state=DISABLED) progress_indicator.set("In progress...") root.update() library_id = libraryid_w.get() zot_api_key = zot_api_key_w.get() hyp_username = hyp_username_w.get() hyp_api_key = hyp_api_key_w.get() zot = zotero.Zotero(library_id, 'user', zot_api_key) num2grab = number_to_grab_w.get() items = zot.top(limit=num2grab) progress_indicator.set("Zotero library downloaded") root.update() for entry_i in enumerate(items): progress_indicator.set("Processing notes...({} of {})".format(entry_i[0]+1,len(items))) root.update() entry = entry_i[1] entry_children = zot.children(entry['key']) notes = [note for note in entry_children if note['data']['itemType'] == 'note'] tags = extract_note_tags(notes) try: entry_annotations = json.loads(h_annot.api.search(hyp_api_key, url=entry['data']['url'], user=hyp_username))["rows"] note_imports = [] for annotation in entry_annotations: if annotation["id"] in tags: continue else: template = zot.item_template("note") template['tags'] = (annotation['tags'].copy() + [{"tag": annotation["id"], "type":1}] + [{"tag": "hyp-annotation", "type":1}]) template['note'] = format_converted_note(annotation) note_imports.append(template) #TODO: Fix this so it doesn't break if you have more than 50 annotations on a document zot.create_items(note_imports,entry["key"]) except: # TODO: Output error details continue progress_indicator.set("Done!") grab_button.config(state=NORMAL) root = Tk() root.title("Zotero Hypothesis Importer") frame = Frame(root, width=100, height=100) frame.pack() # Add widgets to get auth info for API calls libraryid_label = Label(frame, text="Library ID:") libraryid_w = Entry(frame, width=25) zot_api_key_label = Label(frame, text="Zotero API Key:") zot_api_key_w = Entry(frame, width=25) hyp_username_label = Label(frame, text="Hypothesis Username:") hyp_username_w = Entry(frame, width=25) hyp_api_key_label = Label(frame, text="Hypothesis API Key:") hyp_api_key_w = Entry(frame, width=25) number_to_grab_label = Label(frame,text="Grab last N items:") number_to_grab_w = Entry(frame, width=25) number_to_grab_w.insert(0,"50") # Lay out widgets on application window libraryid_label.grid(row=1) libraryid_w.grid(row=1,column=1) zot_api_key_label.grid(row=2) zot_api_key_w.grid(row=2,column=1) hyp_username_label.grid(row=3) hyp_username_w.grid(row=3,column=1) hyp_api_key_label.grid(row=4) hyp_api_key_w.grid(row=4,column=1) number_to_grab_label.grid(row=5) number_to_grab_w.grid(row=5,column=1) grab_button = Button(frame, text="Grab", command=grab) grab_button.grid(row=6) # Button to save transfer settings save_button = Button(frame, text="Save Settings", command=lambda: save_transfer_settings( os.path.expanduser("c") )) save_button.grid(row=6,column=1) # Add progress indicators progress_indicator = StringVar() progress_indicator.set("Waiting...") grab_zotero_library_label = Label(frame, text="Progress:") grab_zotero_library_i = Label(frame, textvariable=progress_indicator) grab_zotero_library_label.grid(row=7) grab_zotero_library_i.grid(row=7,column=1) load_transfer_settings(os.path.expanduser("~/.hypzot/transfer_settings.json")) root.mainloop() ```
{ "source": "johannscanaval/toblackboard", "score": 3 }
#### File: toblackboard/GUI Forms/App GUI.py ```python from appJar import gui import forms_app as api app = gui() app.addLabel("title", "Hola") app.setLabelBg("title", "red") app.addLabelEntry("Nombre de la columna") def press(button): if button == "Salir": app.stop() else: ruta_forms=app.openBox(title="Por favor, ingresa el archivo de salida de Microsoft Forms", dirName=None, fileTypes=None, asFile=False, parent=None, multiple=False, mode='r') ruta_sicua=app.openBox(title="Por favor, ingresa el archivo del Centro de Calificaciones", dirName=None, fileTypes=None, asFile=False, parent=None, multiple=False, mode='r') column_name = app.getEntry("Nombre de la columna") api.pasar(ruta_sicua, ruta_forms, column_name) app.infoBox("Información", "Aparentemente, todo se hizo", parent=None) app.addButtons(["Ingresar archivos", "Salir"], press) app.go() ``` #### File: toblackboard/GUI version Nearpod/App GUI.py ```python from appJar import gui import nearpod_app as api app = gui() app.addLabel("title", "Hola") app.setLabelBg("title", "red") app.addLabelEntry("Nombre de la columna") def press(button): if button == "Salir": app.stop() else: ruta_nearpod=app.openBox(title="Por favor, ingresa el archivo de salida de Nearpod", dirName=None, fileTypes=None, asFile=False, parent=None, multiple=False, mode='r') ruta_sicua=app.openBox(title="Por favor, ingresa el archivo del Centro de Calificaciones", dirName=None, fileTypes=None, asFile=False, parent=None, multiple=False, mode='r') column_name = app.getEntry("Nombre de la columna") api.pasar(ruta_sicua, ruta_nearpod, column_name) app.infoBox("Información", "Aparentemente, todo se hizo", parent=None) app.addButtons(["Ingresar archivos", "Salir"], press) app.go() ```
{ "source": "johannsdg/johann_web_basic", "score": 2 }
#### File: johann_web_basic/johann_web_basic/main.py ```python import secrets import logzero import requests from flask import abort, jsonify, render_template, request from flask_bootstrap import Bootstrap from werkzeug.middleware.proxy_fix import ProxyFix from johann_web_basic import app from johann_web_basic.scenarios import scenarios_bp logger = logzero.setup_logger(__name__) app.secret_key = secrets.token_hex(16) # WTF CSRF app.config["BOOTSTRAP_SERVE_LOCAL"] = True logger.debug(app.config) bootstrap = Bootstrap(app) logger.debug(bootstrap) app.register_blueprint(scenarios_bp) app.wsgi_app = ProxyFix(app.wsgi_app) logger.debug(ProxyFix) @app.route("/") @app.route("/index") @app.route("/about") def index(): return render_template("about.html") @app.route("/johann/scores/<scenario_name>/status_alt") def get_score_status_alt(scenario_name): try: url = f"http://johann_conductor:5000/scores/{scenario_name}/status_alt" r = requests.get(url) if not r.ok: msg = f"Failed to get status_alt for score '{scenario_name}': {r.reason}" logger.warn(msg) abort(r.status_code) else: resp_json = r.json() # logger.debug(resp_json) except Exception as e: msg = f"Exception getting status_alt for score '{scenario_name}': {str(e)}" logger.warning(msg, exc_info=True) abort(502) return jsonify(resp_json) @app.route("/johann/read_score/<scenario_name>") def read_score(scenario_name): try: query_string = request.query_string.decode() url = f"http://johann_conductor:5000/read_score/{scenario_name}?{query_string}" logger.debug(f"read_score() request URL: {url}") r = requests.get(url) if not r.ok: msg = f"Failed to read score '{scenario_name}': {r.reason}" logger.warn(msg) abort(r.status_code) else: resp_json = r.json() # logger.debug(scenario_json) except Exception as e: msg = f"Exception reading score '{scenario_name}': {str(e)}" logger.warning(msg, exc_info=True) abort(502) return jsonify(resp_json) @app.errorhandler(404) def handle_404(_): return render_template("404.html"), 404 @app.errorhandler(500) def handle_500(_): return render_template("500.html"), 500 @app.errorhandler(502) def handle_502(_): return render_template("502.html"), 502 if __name__ == "__main__": # Only for debugging while developing, i.e., `make dev` app.run(host="0.0.0.0", debug=True, port=80) # nosec ```
{ "source": "JohannSuarez/fastapi_backend", "score": 2 }
#### File: blog/config/database.py ```python from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from blog import Config addr: str = Config.sql_address() name: str = Config.sql_name() password: str = Config.sql_pass() db: str = Config.sql_db() ''' MARIADB_DATABASE_URL = f"mariadb+mariadbconnector://{name}:{password}@{addr}:3306/{db}" engine = create_engine( MARIADB_DATABASE_URL, ) ''' # SQLite DB SQLITE_DATABASE_URL = "sqlite:///./app.db" engine = create_engine( SQLITE_DATABASE_URL, connect_args={"check_same_thread": False}, ) SessionLocal = sessionmaker( autocommit=False, autoflush=False, bind=engine, ) Base = declarative_base() def get_db(): db = SessionLocal() try: yield db finally: db.close() def create_tables(): Base.metadata.create_all(bind=engine) ``` #### File: fastapi_backend/blog/__init__.py ```python from pathlib import Path import sys from threading import Lock from typing import Any, Dict from dotenv import dotenv_values class ThreadSafeMeta(type): """ Thread safe implementation of Singleton. """ _instances: Dict[Any, Any] = {} _lock: Lock = Lock() def __call__(cls, *args, **kwargs): """ Possible changes to the value of the __init__ do not affect the returned instance. """ with cls._lock: if cls not in cls._instances: instance = super().__call__(*args, **kwargs) cls._instances[cls] = instance return cls._instances[cls] class Config(metaclass=ThreadSafeMeta): """ Global program configuration, usess the dotenv package to load runtime configuration from a .env file, once and only once into this object, this object can be used through-out the code base. """ try: __config: Dict[str, Any] = dotenv_values('.env') __sql_addr = str(__config["SQL_ADDR"]) __sql_name = str(__config["SQL_NAME"]) __sql_pass = str(__config["SQL_PASS"]) __sql_db = str(__config["SQL_DB"]) __sql_table = str(__config["SQL_TABLE"]) except KeyError as error: sys.stderr.write(f'Dotenv config error: {error} is missing \n') sys.exit(1) @classmethod def sql_address(cls) -> str: """ @description: getter for config """ return cls.__sql_addr @classmethod def sql_name(cls) -> str: """ @description: getter for config """ return cls.__sql_name @classmethod def sql_pass(cls) -> str: """ @description: getter for config """ return cls.__sql_pass @classmethod def sql_db(cls) -> str: """ @description: getter for config """ return cls.__sql_db @classmethod def sql_table(cls) -> str: """ @description: getter for config """ return cls.__sql_table ``` #### File: blog/old_files/db.py ```python from os.path import join, dirname from dotenv import load_dotenv from typing import Union, Any import mysql.connector from mysql.connector.connection_cext import CMySQLConnection, CMySQLCursor ''' Class that wraps around mysql.connector. The interface has all the methods needed to fetch data from the databse. ''' dotenv_path = join(dirname(__file__), '.env') load_dotenv(dotenv_path) class DBInterface(): def __init__(self, db_address: str, db_username: str, db_password: str, db_name: str, db_table: str ) -> None: self._db_address: str = db_address # IP Address self._db_username: str = db_username # User's Name self._db_password: str = <PASSWORD> self._db_name: str = db_name # Name of the database in the server. self._db_table: str = db_table # The table within the database. self._connection: Union[None, CMySQLConnection] = None self._cursor: Union[None, CMySQLCursor] = None self._connect_db() def _connect_db(self) -> None: self.connection = mysql.connector.connect( host=self._db_address, user=self._db_username, password=self._db_password ) self.cursor = self.connection.cursor() self.cursor.execute(f"USE {self._db_name}") def fetch_tables(self) -> Union[list, None]: if self.cursor: self.cursor.execute("SHOW DATABASES") return self.cursor.fetchall() def list_table_data(self) -> Any: if self.cursor: try: self.cursor.execute(f"SELECT * FROM {self._db_table}") return self.cursor.fetchall() except Exception as error: print(f"Caught Exception in db.py's list_table_data - {error}") # return ( self.cursor.fetchall() ) ``` #### File: blog/old_files/sqlalchem.py ```python from . import Config from sqlalchemy import create_engine, text def sql_alch_test(): sqldb_name: str = Config.sql_name() sqldb_addr: str = Config.sql_address() sqldb_pass: str = Config.sql_pass() engine = create_engine(f"mysql+pymysql://{sqldb_name}:{sqldb_pass}@{sqldb_addr}:3306"); with engine.connect() as conn: result = conn.execute(text("select 'hello world'")) print(result.all()) ``` #### File: blog/services/main.py ```python from sqlalchemy.orm import Session class DBSessionMixin: def __init__(self, db: Session): self.db = db class AppService(DBSessionMixin): pass class AppCRUD(DBSessionMixin): pass ``` #### File: blog/utils/request_exceptions.py ```python from fastapi.encoders import jsonable_encoder from fastapi.exceptions import RequestValidationError from starlette.exceptions import HTTPException from starlette.requests import Request from starlette.responses import JSONResponse from starlette.status import HTTP_422_UNPROCESSABLE_ENTITY async def http_exception_handler( request: Request, exc: HTTPException ) -> JSONResponse: return JSONResponse({"detail": exc.detail}, status_code=exc.status_code) async def request_validation_exception_handler( request: Request, exc: RequestValidationError ) -> JSONResponse: return JSONResponse ( status_code=HTTP_422_UNPROCESSABLE_ENTITY, content={"detail": jsonable_encoder(exc.errors())} ) ```
{ "source": "JohannSuarez/tokenspice", "score": 2 }
#### File: agents/test/test_DataconsumerAgent.py ```python import pytest from assets.agents.PoolAgent import PoolAgent from assets.agents.DataconsumerAgent import DataconsumerAgent from assets.agents.PublisherAgent import PublisherAgent from engine.AgentBase import AgentBase from engine.AgentDict import AgentDict from util.constants import S_PER_HOUR class MockSS: def __init__(self): #seconds per tick self.time_step: int = S_PER_HOUR self.pool_weight_DT: float = 1.0 self.pool_weight_OCEAN: float = 1.0 class MockState: def __init__(self): self.agents = AgentDict({}) self.ss = MockSS() def addAgent(self, agent): self.agents[agent.name] = agent class MockAgent(AgentBase): def takeStep(self, state): pass def test_doBuyAndConsumeDT(alice_pool): state = MockState() agent = DataconsumerAgent("agent1",USD=0.0,OCEAN=1000.0) assert agent._s_since_buy == 0 assert agent._s_between_buys > 0 assert not agent._doBuyAndConsumeDT(state) agent._s_since_buy += agent._s_between_buys assert not state.agents.filterToPool().values() assert not agent._doBuyAndConsumeDT(state) #still no, since no pools state.agents["pool1"] = PoolAgent("pool1", alice_pool) assert state.agents.filterToPool().values() #have pools assert agent._candPoolAgents(state) #have useful pools assert agent._doBuyAndConsumeDT(state) def test_buyAndConsumeDT(alice_info): state = MockState() publisher_agent = MockAgent("agent1", USD=0.0, OCEAN=0.0) publisher_agent._wallet = alice_info.agent_wallet state.addAgent(publisher_agent) OCEAN_before = 1000.0 consumer_agent = DataconsumerAgent("consumer1", USD=0.0, OCEAN=OCEAN_before) consumer_agent._s_since_buy += consumer_agent._s_between_buys state.addAgent(consumer_agent) pool_agent = PoolAgent("pool1", alice_info.pool) state.addAgent(pool_agent) assert state.agents.filterToPool().values() #have pools assert consumer_agent._candPoolAgents(state) #have useful pools assert consumer_agent._doBuyAndConsumeDT(state) # buyAndConsumeDT dt = state.agents["pool1"].datatoken assert consumer_agent.OCEAN() == OCEAN_before assert consumer_agent.DT(dt) == 0.0 OCEAN_spend = consumer_agent._buyAndConsumeDT(state) OCEAN_after = consumer_agent.OCEAN() OCEAN_gained = OCEAN_spend * (1.0 + consumer_agent.profit_margin_on_consume) assert OCEAN_after == (OCEAN_before - OCEAN_spend + OCEAN_gained) assert consumer_agent.DT(dt) == 0.0 #bought 1.0, then consumed it # consumeDT assert state.agents.agentByAddress(pool_agent.controller_address) ``` #### File: engine/test/test_SimEngine.py ```python from enforce_typing import enforce_types import os import shutil from engine import AgentBase from engine import SimEngine, SimStateBase, SimStrategyBase, KPIsBase PATH1 = '/tmp/test_outpath1' # ================================================================== # testing stubs class SimStrategy(SimStrategyBase.SimStrategyBase): pass class KPIs(KPIsBase.KPIsBase): def takeStep(self, state): pass @staticmethod def tick(): pass class SimpleAgent(AgentBase.AgentBase): def takeStep(self, state): pass class SimState(SimStateBase.SimStateBase): def __init__(self): super().__init__() self.ss = SimStrategy() self.kpis = KPIs(time_step=3) # ================================================================== # actual tests @enforce_types def setUp(): # possible cleanup from prev run if os.path.exists(PATH1): shutil.rmtree(PATH1) @enforce_types def testRunLonger(): _testRunLonger(15) @enforce_types def _testRunLonger(max_ticks): state = SimState() state.ss.setMaxTicks(max_ticks) engine = SimEngine.SimEngine(state, PATH1) engine.run() @enforce_types def testRunEngine(): state = SimState() state.ss.setMaxTicks(3) engine = SimEngine.SimEngine(state, PATH1) engine.run() assert os.path.exists(PATH1) assert engine.state.tick == 3 n_agents = engine.state.numAgents() @enforce_types def tearDown(): if os.path.exists(PATH1): shutil.rmtree(PATH1) ``` #### File: engine/test/test_SimStateBase.py ```python from enforce_typing import enforce_types from engine import SimStateBase, SimStrategyBase, KPIsBase from engine import AgentBase from util.constants import S_PER_DAY # ================================================================== # testing stubs class SimStrategy(SimStrategyBase.SimStrategyBase): pass class KPIs(KPIsBase.KPIsBase): def takeStep(self, state): pass @staticmethod def tick(): pass class SimpleAgent(AgentBase.AgentBase): def takeStep(self, state): pass class SimState(SimStateBase.SimStateBase): def __init__(self): super().__init__() self.ss = SimStrategy() self.kpis = KPIs(time_step=3) # FIXME: BUG: it's creating a dict of dict of dict... self.addAgent(SimpleAgent("agent1", 0.0, 0.0)) self.addAgent(SimpleAgent("agent2", 0.0, 0.0)) # ================================================================== # actual tests @enforce_types def test1(): state = SimState() assert state.tick == 0 assert state.numAgents() == 2 assert isinstance(state.kpis, KPIs) state.takeStep() assert id(state.getAgent("agent1")) == id(state.agents["agent1"]) assert len(state.allAgents()) == 2 assert state.numAgents() == 2 agent3 = SimpleAgent("agent3", 0.0, 0.0) state.addAgent(agent3) assert state.numAgents() == 3 ``` #### File: web3tools/test/test_account.py ```python from web3tools import account def test_Account(): private_key_str = '0x9c75ed156c45b5a365bde30dc8871e9c6d2b5dc08a7b47572e0354afb859cb15' account1 = account.Account(private_key=private_key_str) account2 = account.Account(private_key=private_key_str) assert account1.private_key == account2.private_key assert account1.address == account2.address assert account1.keysStr() == account2.keysStr() def test_randomPrivateKey(): private_key1 = account.randomPrivateKey() assert len(private_key1) == 32 private_key2 = account.randomPrivateKey() assert len(private_key2) == 32 assert private_key1 != private_key2 def test_privateKeyToAddress(): private_key1 = account.randomPrivateKey() address1 = account.Account(private_key=private_key1).address address2 = account.privateKeyToAddress(private_key1) assert address1 == address2 ```
{ "source": "johann-su/cov_charts", "score": 2 }
#### File: covid_charts/bot/bot.py ```python import logging from typing import Dict, List, Callable, Optional from telegram.utils.request import Request from telegram import Update, Bot from telegram.ext import Updater, CallbackContext, PicklePersistence LOGGER = logging.getLogger(__name__) def log_error(update: Update, context): LOGGER.fatal(context.error, exc_info=True) def run(token: str, handlers: List[Callable]): bot = Bot(token, request=Request( con_pool_size=10, connect_timeout=40)) updater = Updater(bot=bot, use_context=True, persistence=PicklePersistence(filename='bot_data')) for handler in handlers: updater.dispatcher.add_handler(handler) updater.dispatcher.add_error_handler(log_error) updater.start_polling() updater.idle() ``` #### File: covid_charts/bot/setup_conv.py ```python import re from telegram import Update, KeyboardButton, ReplyKeyboardMarkup, ReplyKeyboardRemove, ParseMode from telegram.ext import CallbackContext from covid_charts.bot.state import States from covid_charts.bot.utils import is_sender_admin from covid_charts.vars import choices_state, choices_county def chart_type(update: Update, context: CallbackContext) -> str: if is_sender_admin(update.message, context.bot): chart_buttons = ReplyKeyboardMarkup([ [KeyboardButton("line", callback_data='line'), KeyboardButton("bar", callback_data='bar')], [KeyboardButton("geo", callback_data='geo')], ], one_time_keyboard=True) update.message.reply_text( 'Das wichtigste zuerst: Welches Chart gefällt dir am besten?', reply_markup=chart_buttons ) return States.TF else: update.message.reply_text( "Du bist nicht der Admin der Gruppe und kannst daher keine Commands an den Bot senden.\nDu kannst mich zu deinen Kontakten hinzufügen https://t.me/CovGermanyBot um alle Funktionen nutzen zu können") def timeframe(update: Update, context: CallbackContext) -> str: regex = r'(line|bar|geo)' # set data from prev step if re.match(regex, update.message.text): context.user_data['chart'] = update.message.text update.message.reply_text(f"{context.user_data['chart']} charts? 👍\n\nAls nächstes brauche ich einen Zeitraum für den du Infos haben möchtest\.\n`7D` \= eine Woche, `4W` \= ein Monat, `52W` \= ein Jahr usw\.", reply_markup=ReplyKeyboardRemove(), parse_mode=ParseMode.MARKDOWN_V2) return States.REGION else: update.message.reply_text("Huch 🤔\nDamit kann ich nichts anfangen\n\nBitte wähle ein Chart aus der Liste") return States.CHART_TYPE def region(update: Update, context: CallbackContext) -> str: regex = r'[0-9][0-9]?[0-9]?(D|W)' # set data from prev step if re.match(regex, update.message.text): context.user_data['tf'] = update.message.text update.message.reply_text( "Welche Region möchtest du sehen? Die `Bundesrepublik Deutschland`, `Sachsen` oder doch lieber nur `Dresden`?\n\n**Wenn du ein geo chart haben möchtest kannst du nicht daten auf Landkreisebene anfordern\!**", parse_mode=ParseMode.MARKDOWN_V2) return States.DATA else: update.message.reply_text( "Huch 🤔\nDamit kann ich nichts anfangen\n\nZur Erinnerung: Das Format war `7D` \= eine Woche, `4W` \= ein Monat, `52W` \= ein Jahr usw\.", parse_mode=ParseMode.MARKDOWN_V2) return States.TIMEFRAME def data(update: Update, context: CallbackContext) -> str: if update.message.text in choices_county or update.message.text in choices_state or update.message.text == 'Bundesrepublik Deutschland': context.user_data['region'] = update.message.text update.message.reply_text("Letzte Frage: Welche Daten möchtest du sehen?\nIch kann dir Infos über die Infektionen und Tote geben\.\n\n`cases` \= Infektionen, `deaths` \= Tote\, `incidence` \= 7\-Tage\-Inzidenz\.\n**Tipp:** Du kannst auch mehrere Werte sehen indem du die Werte mit einem Komma trennst", parse_mode=ParseMode.MARKDOWN_V2) return States.FINISHED else: valid_choices = choices_county.append(choices_State) valid_choices = choices_county.append('Bundesrepublik Deutschland') suggestion = difflib.get_close_matches(update.message.text, valid_choices) print(suggestion) update.message.reply_text(f"Huch 🤔\nDamit kann ich nichts anfangen\n\nMeintest du vlt. {suggestion}?") return States.REGION def finished(update: Update, context: CallbackContext) -> None: regex = r'(cases|deaths|incidence),? ?(cases|deaths|incidence)?' if re.match(regex, update.message.text): context.user_data['data'] = update.message.text.replace(' ', '').split(',') update.message.reply_text("Das war alles 👍. Ich merke mir deine Einstellungen, aber du kannst sie jederzeit mit /setup wieder ändern.") return States.END else: update.message.reply_text( "Huch 🤔\nDamit kann ich nichts anfangen\n\nZur Erinnerung: Die Daten können `cases`, `deaths` und `incidence` sein und müssen mit einem , getrennt werden") return States.DATA def cancel_setup(update: Update, context: CallbackContext) -> None: update.message.reply_text("Du hast das Setup abgebrochen. Bis zum nächsten mal 👋") return States.END ``` #### File: covid_charts/bot/utils.py ```python def is_sender_admin(message, bot): user = message.from_user if message.chat.type != 'private': # get chat member and user group info chatmember = bot.get_chat_member(message.chat.id, user.id) if(chatmember.status == 'administrator' or chatmember.status == 'creator'): return True else: return False else: return True ```
{ "source": "johann-su/K-nstliche-Intelligenz---12.-klassarbeit", "score": 2 }
#### File: Reinforcement Learning/Flappy Birds/Q-Learning_Test.py ```python import flappy import numpy as np import sys from collections import defaultdict import pickle rewardAlive = 1 rewardKill = -10000 alpha = 0.1 gamma = 1 # Q[state] = (Nicht springen, springen) with open("/Users/johann/github/Artificial_intelligence/Reinforcement Learning/Flappy Birds/Q/Q.pickle", "rb") as file: Q = defaultdict(lambda: [0, 0], pickle.load(file)) def paramsToState(params): playerVelY = params['playerVelY'] playery = params["playery"] if int(params['upperPipes'][0]['x']) < 40: index = 1 else: index = 0 upperPipeX = round(int(params["upperPipes"][index]['x']) / 3) * 3 upperPipeY = int(params["upperPipes"][index]['y']) yDiff = round((playery - upperPipeY) / 3) * 3 return str(playerVelY) + "_" + str(yDiff) + "_" + str(upperPipeX) oldState = None oldAction = None gameCounter = 0 gameScores = [] def onGameover(gameInfo): global oldState global oldAction global gameCounter global gameScores gameScores.append(gameInfo['score']) if gameCounter % 100 == 0: print(str(gameCounter) + " - " + str(np.mean(gameScores[-100:]))) # Q updaten für die vorherige Aktion # -> Die vorherige Aktion war nicht erfolgreich! prevReward = Q[oldState] index = None if oldAction == False: index = 0 else: index = 1 prevReward[index] = (1 - alpha) * prevReward[index] + \ alpha * rewardKill Q[oldState] = prevReward oldState = None oldAction = None #if gameCounter % 50000 == 0: # with open("Q/" + str(gameCounter) + ".pickle", "wb") as file: # pickle.dump(dict(Q), file) gameCounter+=1 def shouldEmulateKeyPress(params): global oldState global oldAction state = paramsToState(params) estReward = Q[state] # Q updaten für die vorherige Aktion # -> Die vorherige Aktion war erfolgreich! prevReward = Q[oldState] index = None if oldAction == False: index = 0 else: index = 1 prevReward[index] = (1 - alpha) * prevReward[index] + \ alpha * (rewardAlive + gamma * max(estReward)) Q[oldState] = prevReward oldState = state if estReward[0] >= estReward[1]: oldAction = False return False else: oldAction = True return True flappy.main(shouldEmulateKeyPress, onGameover) ``` #### File: Reinforcement Learning/gym/CartPole_v1_PER.py ```python import gym import random import numpy as np import tensorflow as tf from collections import deque print("Gym:", gym.__version__) print("Tensorflow:", tf.__version__) env_name = "CartPole-v1" env = gym.make(env_name) print("Observation space:", env.observation_space) print("Action space:", env.action_space) class QNetwork(): def __init__(self, state_dim, action_size, tau=0.01): tf.reset_default_graph() self.state_in = tf.placeholder(tf.float32, shape=[None, *state_dim]) self.action_in = tf.placeholder(tf.int32, shape=[None]) self.q_target_in = tf.placeholder(tf.float32, shape=[None]) self.importance_in = tf.placeholder(tf.float32, shape=[None]) action_one_hot = tf.one_hot(self.action_in, depth=action_size) self.q_state_local = self.build_model(action_size, "local") self.q_state_target = self.build_model(action_size, "target") self.q_state_action = tf.reduce_sum(tf.multiply(self.q_state_local, action_one_hot), axis=1) self.error = self.q_state_action - self.q_target_in self.loss = tf.reduce_mean(tf.multiply(tf.square(self.error), self.importance_in)) self.optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(self.loss) self.local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="local") self.target_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="target") self.updater = tf.group([tf.assign(t, t + tau*(l-t)) for t,l in zip(self.target_vars, self.local_vars)]) def build_model(self, action_size, scope): with tf.variable_scope(scope): hidden1 = tf.layers.dense(self.state_in, 100, activation=tf.nn.relu) q_state = tf.layers.dense(hidden1, action_size, activation=None) return q_state def update_model(self, session, state, action, q_target, importance): feed = {self.state_in: state, self.action_in: action, self.q_target_in: q_target, self.importance_in: importance} error, _, _ = session.run([self.error, self.optimizer, self.updater], feed_dict=feed) return error def get_q_state(self, session, state, use_target=False): q_state_op = self.q_state_target if use_target else self.q_state_local q_state = session.run(q_state_op, feed_dict={self.state_in: state}) return q_state class PrioritizedReplayBuffer(): def __init__(self, maxlen): self.buffer = deque(maxlen=maxlen) self.priorities = deque(maxlen=maxlen) def add(self, experience): self.buffer.append(experience) self.priorities.append(max(self.priorities, default=1)) def get_probabilities(self, priority_scale): scaled_priorities = np.array(self.priorities) ** priority_scale sample_probabilities = scaled_priorities / sum(scaled_priorities) return sample_probabilities def get_importance(self, probabilities): importance = 1/len(self.buffer) * 1/probabilities importance_normalized = importance / max(importance) return importance_normalized def sample(self, batch_size, priority_scale=1.0): sample_size = min(len(self.buffer), batch_size) sample_probs = self.get_probabilities(priority_scale) sample_indices = random.choices(range(len(self.buffer)), k=sample_size, weights=sample_probs) samples = np.array(self.buffer)[sample_indices] importance = self.get_importance(sample_probs[sample_indices]) return map(list, zip(*samples)), importance, sample_indices def set_priorities(self, indices, errors, offset=0.1): for i,e in zip(indices, errors): self.priorities[i] = abs(e) + offset class DoubleDQNAgent(): def __init__(self, env): self.state_dim = env.observation_space.shape self.action_size = env.action_space.n self.q_network = QNetwork(self.state_dim, self.action_size) self.replay_buffer = PrioritizedReplayBuffer(maxlen=100000) self.gamma = 0.97 self.eps = 1.0 self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def get_action(self, state): q_state = self.q_network.get_q_state(self.sess, [state]) action_greedy = np.argmax(q_state) action_random = np.random.randint(self.action_size) action = action_random if random.random() < self.eps else action_greedy return action def train(self, state, action, next_state, reward, done, use_DDQN=True, a=0.0): self.replay_buffer.add((state, action, next_state, reward, done)) (states, actions, next_states, rewards, dones), importance, indices = self.replay_buffer.sample(50, priority_scale=a) next_actions = np.argmax(self.q_network.get_q_state(self.sess, next_states, use_target=False), axis=1) q_next_states = self.q_network.get_q_state(self.sess, next_states, use_target=use_DDQN) q_next_states[dones] = np.zeros([self.action_size]) q_next_states_next_actions = q_next_states[np.arange(next_actions.shape[0]), next_actions] q_targets = rewards + self.gamma * q_next_states_next_actions errors = self.q_network.update_model(self.sess, states, actions, q_targets, importance**(1-self.eps)) self.replay_buffer.set_priorities(indices, errors) if done: self.eps = max(0.1, 0.99*self.eps) def __del__(self): self.sess.close() num_runs = 10 run_rewards = [] for n in range(num_runs): print("Run {}".format(n)) ep_rewards = [] agent = None agent = DoubleDQNAgent(env) num_episodes = 20000 for ep in range(num_episodes): state = env.reset() total_reward = 0 done = False step = 0 while not done: step += 1 action = agent.get_action(state) next_state, reward, done, info = env.step(action) agent.train(state, action, next_state, reward, done, a=(n%2==0)*0.7) env.render() total_reward += reward state = next_state if done: print("score: " + str(step)) ep_rewards.append(total_reward) #print("Episode: {}, total_reward: {:.2f}".format(ep, total_reward)) run_rewards.append(ep_rewards) import matplotlib.pyplot as plt for n, ep_rewards in enumerate(run_rewards): x = range(len(ep_rewards)) cumsum = np.cumsum(ep_rewards) avgs = [cumsum[ep]/(ep+1) if ep<100 else (cumsum[ep]-cumsum[ep-100])/100 for ep in x] col = "r" if (n%2==0) else "b" plt.plot(x, avgs, color=col, label=n) plt.title("Prioritized Replay performance") plt.xlabel("Episode") plt.ylabel("Last 100 episode average rewards") plt.legend() ```
{ "source": "johannvk/ProjectEuler", "score": 3 }
#### File: johannvk/ProjectEuler/Prob_11.py ```python import numpy as np #with open('Data_prob_11.txt', 'r') as f: data_grid = np.loadtxt('Data_prob_11.txt', dtype='int64', ndmin=2) def find_sum_ndarray_rowwise(ndarray, row, col): ret_value = 1 for i in range(4): ret_value*=ndarray[row, col+i] return ret_value def find_sum_ndarray_colwise(ndarray, row, col): ret_value = 1 for i in range(4): ret_value *= ndarray[row + i, col] return ret_value def sum_ndarray_right_diagonal(data, row, col): ret_value = 1 for i in range(4): ret_value *= data[row - i, col + i] return ret_value def sum_ndarray_left_diagonal(data, row, col): ret_value = 1 for i in range(4): # print(data[row + i, col + i]) ret_value *= data[row + i, col + i] return ret_value def find_largest_set_4(): max_value = 0 pos_row = (0, 0) pos_col = (0, 0) pos_ldiag = (0, 0) pos_rdiag = (0, 0) max_row_value = 0 max_col_value = 0 max_rdiag_value = 0 max_ldiag_value = 0 # horizontal and vertical directions for i in range(0, 20): for j in range(0, 17): temp_value1 = find_sum_ndarray_rowwise(data_grid, i, j) if temp_value1 > max_row_value: max_row_value = temp_value1 pos_row = (i, j) temp_value2 = find_sum_ndarray_colwise(data_grid, j, i) if temp_value2 > max_col_value: pos_col = (i, j) max_col_value = temp_value1 # right-diagonal for i in range(3, 20): for j in range(0, 17): temp_value1 = sum_ndarray_right_diagonal(data_grid, i, j) if temp_value1 > max_rdiag_value: max_rdiag_value = temp_value1 pos_rdiag = (i, j) # left-diagonal for i in range(0, 17): for j in range(0, 17): temp_value2 = sum_ndarray_left_diagonal(data_grid, i, j) if temp_value2 > max_ldiag_value: max_ldiag_value = temp_value2 pos_ldiag = (i, (j+20)) max_value = max(max_row_value, max_col_value, max_rdiag_value, max_ldiag_value) return max_value, [pos_row, pos_col, pos_rdiag, pos_ldiag], [max_row_value, max_col_value, max_rdiag_value, max_ldiag_value] largest_sum, list_pos, list_max_values = find_largest_set_4() print("Largest sum:", largest_sum) print("List of pos: ", list_pos) print("List of values: ", list_max_values) ``` #### File: johannvk/ProjectEuler/Prob_17.py ```python one_to_twenty_dict = {1: "one", 2: "two", 3: "three", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine", 10: "ten", 11: "eleven", 12: "twelve", 13: "thirteen", 14: "fourteen", 15: "fifteen", 16: "sixteen", 17: "seventeen", 18: "eighteen", 19: "nineteen"} tens_dict = {2: "twenty", 3: "thirty", 4: "forty", 5: "fifty", 6: "sixty", 7: "seventy", 8: "eighty", 9: "ninety"} hundred = "hundred" thousand = "thousand" def integer_to_string(num): if num == 1000: return "onethousand" if num < 100: return integer_under_hundred_to_string(num) ret_string = "" ret_string += (integer_under_hundred_to_string(num//100) + "hundred") if num % 100 != 0: ret_string += "and" + integer_under_hundred_to_string(num % 100) return ret_string def integer_under_hundred_to_string(num): ret_string = "" if num < 20: ret_string = one_to_twenty_dict[num] return ret_string ret_string = tens_dict[(num//10)] if num % 10 != 0: ret_string += one_to_twenty_dict[(num % 10)] return ret_string number_string = "" for i in range(1, 1001): number_string += integer_to_string(i) print(len(number_string)) ``` #### File: johannvk/ProjectEuler/Prob_24.py ```python import numpy as np def permutation_value(num_list, max_num): return sum([num_list[i]*max_num**(len(num_list)-1-i) for i in range(len(num_list))]) def permutation_update(in_list): pass init_array = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) init_array.astype('int64') #ULØST! ``` #### File: johannvk/ProjectEuler/Prob_39_unsolved.py ```python import operator # Integer Right Triangles # Implementing stupid brute force trials: def brute_force_triangle_check(max_perim): for p in range(3, max_perim + 1): for a in range(1, p - 2): b = 0.5*(p - a) c = 0.5*(p - a) def is_perfect_square(num): return (int(num**(1/2)))**2 == num # perimeter_length_solutions = {} # # # def len_hyp(a, b): # return (a**2 + b**2)**(1/2) # # # def check_right_triangle(kat1, kat2, hyp): # return kat1**2 + kat2**2 - hyp**2 == 0 # # # base_pairs = [] # triangle_perimeter = 125 # # # Real part of the imaginary number # a = 2 # # # while a**2 + a < triangle_perimeter - 2: # # Complex part of the imaginary number # b = 1 # while b < a: # if (a, b) not in base_pairs and (b, a) not in base_pairs: # base_pairs.append((a, b)) # base_pairs.append((b, a)) # perim = (a**2 - b**2) + 2*a*b + (len_hyp(a, b)) # if perim in perimeter_length_solutions.keys(): # perimeter_length_solutions[perim] += 1 # else: # perimeter_length_solutions[perim] = 1 # # b += 1 # # # Ønsker å implementere skalering av triplettene som dannes ved multiplisere (a + ib) med seg selv. # # a += 1 # # # max_key = max(perimeter_length_solutions.keys(), key=lambda k: perimeter_length_solutions[k]) # # print("The perimeter value with the most amount of solutions was: {}\nWith {} solutions" # .format(max_key, perimeter_length_solutions[max_key])) ```
{ "source": "johannwalder/content-reputation", "score": 3 }
#### File: content-reputation/models/content_type.py ```python from sqlalchemy import Column, String, Integer from sqlalchemy.orm import relationship from base import Base class ContentType(Base): """Contains the different content types (web page, file)""" __tablename__ = 'content_type' title = Column(String(80), unique=True) contentratings = relationship('ContentRating',backref='contentType',lazy='dynamic') def serialize(self): return { 'id': self.id, 'title': self.title } def __init__(self, id, title): self.id = id self.title = title def __repr__(self): return '<ContentType: Type: %s>' % (self.title) ```
{ "source": "johanofverstedt/sdt", "score": 2 }
#### File: johanofverstedt/sdt/sdt.py ```python import numpy as np import scipy as sp import scipy.spatial as spatial from scipy.spatial import cKDTree import scipy.ndimage as ndimage import scipy.ndimage.morphology import time # Module parameters MB_TEMP_SIZE = 64.0 # det_sdt - Computes the determinstic SDT for a given image # --------------------------------------------------------- # A - numpy array of arbitrary dimension # bool (sets) / integer typed (multisets) # p - the uncertainty factor (see SDT paper) # k - number of nearest neighbours to consider (if k is not None, # m must be None) # m - the probability mass to capture (if m is not None, # k must be None) # dmax - the maximum distance; a value of 0 means that # the diameter of the domain of image A will be used # spacing - the pixel size (scalar or vector with the same # number of elements as dimensions in A) # processors - the number of processors used in the tree # lookup stage def det_sdt(A, p, k, m = None, dmax=0, spacing=None, processors=1): # Exactly one of k and m must be none assert((k is None or m is None) and not (k is None and m is None)) if m is not None: k = compute_k(p, m) input_shape = A.shape if spacing is None: spacing_vec = np.ones([A.ndim]) else: spacing_vec = spacing.reshape([A.ndim]) # If no dmax is specified, use the diameter of the image grid if dmax <= 0: dmax = _grid_diameter(input_shape, spacing_vec) if A.dtype == np.dtype('bool'): A = A.astype('int8') assert(issubclass(A.dtype.type, np.integer)) pnts_multiplicities = A.reshape([A.size]) grid_points = _array_grid(A, indexing = 'ij', spacing=spacing) G = np.reshape(grid_points, [A.size, A.ndim]) pnts = point_set_to_multiset(G, pnts_multiplicities) # If we have an empty set, just return if pnts.shape[0] == 0: return np.full(input_shape, fill_value=dmax, dtype='float32') # If we have a singleton set, just return the distances to this point if pnts.shape[0] == 1: return (np.sqrt(np.sum(np.square(G - pnts), axis=-1)) * (1.0-p) + p * dmax).reshape(input_shape) # If we have fewer than k points, reduce k if pnts.shape[0] < k: k = pnts.shape[0] tree = cKDTree(pnts) prob = np.array([np.power(p, (i-1)) * (1-p) for i in range(1, k+1)]) subset_size = int((MB_TEMP_SIZE * 1024.0 * 1024.0) / (k*8)) subsets = int(np.ceil(A.size / float(subset_size))) drem = dmax * np.power(p, k) res = np.full(shape=[A.size], fill_value=drem, dtype = 'float32') # To save on required working memory, we only do the k-NN search # and subsequent computation of the distances aggregate distances # on subsets of the points, which are then written to the result # array. for ss_ind in range(subsets): start_index = ss_ind * subset_size end_index = min(start_index + subset_size, A.size) res[start_index:end_index] += _knn_query(tree, G[start_index:end_index, :], k, dmax, prob, processors) return res.reshape(A.shape) """ # Computes the sum pooling of an image subject to the neighborhood # corresponding to a downsampling factor, and then downsample # the image. def sum_pool(A, pool_size, stride, padding_mode='valid'): if stride is None: stride = pool_size # Create the convolution kernel kernel = np.ones([pool_size]*A.ndim) # Perform the convolution B = ndimage.convolve(A, kernel, mode='constant', cval = 0) # Create a slicer object depending on the chosen padding mode if padding_mode == 'zero': slicer = tuple(slice(0, A.shape[i], stride) for i in range(A.ndim)) elif padding_mode == 'valid': slicer = tuple(slice(0, A.shape[i] - A.shape[i] % stride, stride) for i in range(A.ndim)) else: raise ValueError('padding_mode must be either \'zero\' or \'valid\'') # Slice and return the output return B[slicer] """ # Computes the sum pooling of an image subject to the neighborhood # corresponding to a downsampling factor, and then downsample # the image. def sum_pool(A, pool_size, stride, padding_mode='valid'): if stride is None: stride = pool_size if A.dtype == np.dtype('bool'): A = A.astype(dtype='int32') # Create the convolution kernel kernel = np.ones([pool_size]*A.ndim) # Perform the convolution origin = int(pool_size/2) - (1 - (pool_size % 2)) B = ndimage.convolve(A, kernel, mode='constant', cval = 0, origin = origin) # Create a slicer object depending on the chosen padding mode if padding_mode == 'zero': slicer = tuple(slice(0, A.shape[i], stride) for i in range(A.ndim)) elif padding_mode == 'valid': slicer = tuple(slice(0, A.shape[i] - A.shape[i] % stride, stride) for i in range(A.ndim)) else: raise ValueError('padding_mode must be either \'zero\' or \'valid\'') # Slice and return the output return B[slicer] # Computes the sum pooling of an image subject to the neighborhood # corresponding to a downsampling factor, and then downsample # the image. def or_pool(A, pool_size, stride, padding_mode='valid'): return sum_pool(A, pool_size, stride, padding_mode) > 0 def compute_k(p, m): if np.isclose(p, 0.0): return 1 else: return int(np.ceil(np.log(1-m)/np.log(p))) def det_sdt_multiset_naive(A, p, k, dmax=0, spacing=None): if spacing is None: spacing_vec = np.ones([A.ndim]) else: spacing_vec = spacing.reshape([A.ndim]) # If no dmax is specified, use the diameter of the image grid if dmax <= 0: dmax = _grid_diameter(A.shape, spacing_vec)#np.sqrt(np.sum([np.power((A.shape[i]*spacing_vec[i])-1, 2.0) for i in range(A.ndim)])) pnt_tup = np.nonzero(A) pnts_multiplicities = A[pnt_tup].astype(dtype='int32') total_pnts_count = np.sum(pnts_multiplicities) if k > total_pnts_count: k = total_pnts_count G = np.reshape(_array_grid(A, indexing = 'xy', spacing=spacing), [A.size, A.ndim]) pnts = point_set_to_multiset(np.transpose(pnt_tup) * (spacing_vec), pnts_multiplicities) prob = np.array([np.power(p, (i-1)) * (1-p) for i in range(1, k+1)]) res = np.zeros([A.size]) for i in range(A.size): grid_p = G[i, :] dists = np.zeros([total_pnts_count]) #print(total_pnts_count) #print(np.sum(pnts_multiplicities)) #print(pnts.shape[0]) for j in range(total_pnts_count): obj_p = pnts[j, :] d = np.sqrt(np.sum(np.square(obj_p-grid_p))) dists[j] = d dists=np.sort(dists) res[i] = np.sum(prob * dists[:k]) drem = dmax * np.power(p, k) res = res + drem return res.reshape(A.shape) # Helper functions def _array_grid(A, indexing = 'ij', spacing=None): if spacing is None: spacing = np.ones([A.ndim]) ranges = [spacing[i] * np.arange(0, A.shape[i]) for i in range(A.ndim)] ax = range(1, A.ndim+1) + [0] return np.transpose(np.meshgrid(*ranges, indexing = indexing), axes=ax) #return np.transpose(np.meshgrid(*ranges, indexing = indexing)) def _grid_diameter(Sz, spacing=None): n = len(Sz) if spacing is None: spacing = np.ones([n]) assert(spacing.size == n) return np.sqrt(np.sum([np.square((Sz[i]-1)*spacing[i]) for i in range(n)])).astype('float32') def _knn_query(T, pnts, k, dmax, probabilities, processors): d,_ = T.query(pnts, k=k, distance_upper_bound=dmax, n_jobs=processors) np.clip(d, a_min=None, a_max=dmax, out = d) dp = d.dot(probabilities) return dp def point_set_to_multiset(pnts, multiplicities): return np.repeat(pnts, repeats=multiplicities, axis=0) # Test cases def test_empty_set_2d(): A = np.zeros([3, 4], dtype='int32') dmax = _grid_diameter(A.shape, spacing=np.array([1.0, 1.0])) D = det_sdt(A, 0.5, k = None, m = 0.99, dmax = 0, spacing = None, processors = 1) assert(np.all(D == dmax)) def test_singleton_set_2d(): A = np.zeros([4, 5], dtype='int32') A[1, 2] = 1 dmax = _grid_diameter(A.shape, spacing=np.array([1.0, 1.0])) D = det_sdt(A, 0.5, k = None, m = 0.99, dmax = 0, spacing = None, processors = 1) print(D) #assert(np.all(D == dmax)) def test_empty_set_3d(): A = np.zeros([3, 4, 5], dtype='int32') dmax = _grid_diameter(A.shape, spacing=np.array([1.0, 1.0, 1.0])) D = det_sdt(A, 0.5, k = None, m = 0.99, dmax = 0, spacing = None, processors = 1) assert(np.all(D == dmax)) def test_singleton_set_3d(): A = np.zeros([4, 5, 6], dtype='int32') A[1, 2, 2] = 1 dmax = _grid_diameter(A.shape, spacing=np.array([1.0, 1.0, 1.0])) D = det_sdt(A, 0.5, k = None, m = 0.99, dmax = 0, spacing = None, processors = 1) print(D) #assert(np.all(D == dmax)) def main(): # run test-cases test_empty_set_2d() test_singleton_set_2d() #return sz = 1024 np.random.seed(1024) #B = np.random.rand(sz, sz) >= 0.75 shp = (256, 256, 124) dim = len(shp) B = np.random.rand(*shp) >= 0.75 print(B) start1 = time.time() res_dt = sp.ndimage.morphology.distance_transform_edt(-B) end1 = time.time() start2 = time.time() print(end1-start1) dmax = 0 downsampling = 4 spacing = float(downsampling) C = sum_pool(B, downsampling, downsampling, 'zero') slicer = tuple(slice(int(C.shape[i]/2)-5, int(C.shape[i]/2)+5, 1) for i in range(C.ndim)) slicer2 = tuple(slice(int(C.shape[i]/2)-5, int(C.shape[i]/2)+5, 1) for i in range(C.ndim)) print('C') print(C[slicer]) p = 0.9 m = 0.999 k = compute_k(p, m) processors = 2 spacing_vec = np.full([dim], fill_value=spacing) start2 = time.time() res = det_sdt(C, p, k = None, m = m, dmax = dmax, spacing = spacing_vec, processors = processors) end2 = time.time() print('res') print(res[slicer]) print(end2-start2) return start3 = time.time() res2 = det_sdt(B, p, k, dmax=dmax, spacing=np.ones([dim]), processors=processors) end3 = time.time() res2 = res2[int(downsampling / 2)::downsampling, int(downsampling / 2)::downsampling, int(downsampling / 2)::downsampling] #end2 = time.time() #print res.shape #print res2.shape #return print('res2') print(res2[slicer2]) print(end3-start3) if __name__ == '__main__': main() ```
{ "source": "johanoren/IncrementalNumbers_Fusion360", "score": 3 }
#### File: fontTools/misc/py23.py ```python from __future__ import print_function, division, absolute_import try: basestring except NameError: basestring = str try: unicode except NameError: unicode = str try: unichr bytechr = chr byteord = ord except: unichr = chr def bytechr(n): return bytes([n]) def byteord(c): return c if isinstance(c, int) else ord(c) try: from StringIO import StringIO except ImportError: from io import BytesIO as StringIO def strjoin(iterable, joiner=''): return tostr(joiner).join(iterable) def tobytes(s, encoding='ascii', errors='strict'): if not isinstance(s, bytes): return s.encode(encoding, errors) else: return s def tounicode(s, encoding='ascii', errors='strict'): if not isinstance(s, unicode): return s.decode(encoding, errors) else: return s if str == bytes: class Tag(str): def tobytes(self): if isinstance(self, bytes): return self else: return self.encode('latin1') tostr = tobytes bytesjoin = strjoin else: class Tag(str): @staticmethod def transcode(blob): if not isinstance(blob, str): blob = blob.decode('latin-1') return blob def __new__(self, content): return str.__new__(self, self.transcode(content)) def __ne__(self, other): return not self.__eq__(other) def __eq__(self, other): return str.__eq__(self, self.transcode(other)) def __hash__(self): return str.__hash__(self) def tobytes(self): return self.encode('latin-1') tostr = tounicode def bytesjoin(iterable, joiner=b''): return tobytes(joiner).join(tobytes(item) for item in iterable) ``` #### File: fontTools/misc/xmlReader.py ```python from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * from fontTools import ttLib from fontTools.misc.textTools import safeEval from fontTools.ttLib.tables.DefaultTable import DefaultTable import os class TTXParseError(Exception): pass BUFSIZE = 0x4000 class XMLReader(object): def __init__(self, fileName, ttFont, progress=None, quiet=False): self.ttFont = ttFont self.fileName = fileName self.progress = progress self.quiet = quiet self.root = None self.contentStack = [] self.stackSize = 0 def read(self): if self.progress: import stat self.progress.set(0, os.stat(self.fileName)[stat.ST_SIZE] // 100 or 1) file = open(self.fileName) self._parseFile(file) file.close() def _parseFile(self, file): from xml.parsers.expat import ParserCreate parser = ParserCreate() parser.StartElementHandler = self._startElementHandler parser.EndElementHandler = self._endElementHandler parser.CharacterDataHandler = self._characterDataHandler pos = 0 while True: chunk = file.read(BUFSIZE) if not chunk: parser.Parse(chunk, 1) break pos = pos + len(chunk) if self.progress: self.progress.set(pos // 100) parser.Parse(chunk, 0) def _startElementHandler(self, name, attrs): stackSize = self.stackSize self.stackSize = stackSize + 1 if not stackSize: if name != "ttFont": raise TTXParseError("illegal root tag: %s" % name) sfntVersion = attrs.get("sfntVersion") if sfntVersion is not None: if len(sfntVersion) != 4: sfntVersion = safeEval('"' + sfntVersion + '"') self.ttFont.sfntVersion = sfntVersion self.contentStack.append([]) elif stackSize == 1: subFile = attrs.get("src") if subFile is not None: subFile = os.path.join(os.path.dirname(self.fileName), subFile) subReader = XMLReader(subFile, self.ttFont, self.progress, self.quiet) subReader.read() self.contentStack.append([]) return tag = ttLib.xmlToTag(name) msg = "Parsing '%s' table..." % tag if self.progress: self.progress.setlabel(msg) elif self.ttFont.verbose: ttLib.debugmsg(msg) else: if not self.quiet: print(msg) if tag == "GlyphOrder": tableClass = ttLib.GlyphOrder elif "ERROR" in attrs or ('raw' in attrs and safeEval(attrs['raw'])): tableClass = DefaultTable else: tableClass = ttLib.getTableClass(tag) if tableClass is None: tableClass = DefaultTable if tag == 'loca' and tag in self.ttFont: # Special-case the 'loca' table as we need the # original if the 'glyf' table isn't recompiled. self.currentTable = self.ttFont[tag] else: self.currentTable = tableClass(tag) self.ttFont[tag] = self.currentTable self.contentStack.append([]) elif stackSize == 2: self.contentStack.append([]) self.root = (name, attrs, self.contentStack[-1]) else: l = [] self.contentStack[-1].append((name, attrs, l)) self.contentStack.append(l) def _characterDataHandler(self, data): if self.stackSize > 1: self.contentStack[-1].append(data) def _endElementHandler(self, name): self.stackSize = self.stackSize - 1 del self.contentStack[-1] if self.stackSize == 1: self.root = None elif self.stackSize == 2: name, attrs, content = self.root self.currentTable.fromXML(name, attrs, content, self.ttFont) self.root = None class ProgressPrinter(object): def __init__(self, title, maxval=100): print(title) def set(self, val, maxval=None): pass def increment(self, val=1): pass def setLabel(self, text): print(text) ``` #### File: ttLib/tables/_f_p_g_m.py ```python from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * from . import DefaultTable from . import ttProgram class table__f_p_g_m(DefaultTable.DefaultTable): def decompile(self, data, ttFont): program = ttProgram.Program() program.fromBytecode(data) self.program = program def compile(self, ttFont): return self.program.getBytecode() def toXML(self, writer, ttFont): self.program.toXML(writer, ttFont) writer.newline() def fromXML(self, name, attrs, content, ttFont): program = ttProgram.Program() program.fromXML(name, attrs, content, ttFont) self.program = program def __len__(self): return len(self.program) ```
{ "source": "JohanOstlund/plex_assistant", "score": 2 }
#### File: custom_components/plex_assistant/helpers.py ```python import re import time import uuid import pychromecast from rapidfuzz import fuzz, process from gtts import gTTS from json import JSONDecodeError, loads from homeassistant.components.plex.services import get_plex_server from homeassistant.exceptions import HomeAssistantError, ServiceNotFound from homeassistant.core import Context from pychromecast.controllers.plex import PlexController from .const import DOMAIN, _LOGGER def fuzzy(media, lib, scorer=fuzz.QRatio): if isinstance(lib, list) and len(lib) > 0: return process.extractOne(media, lib, scorer=scorer) or ["", 0] return ["", 0] def process_config_item(options, option_type): option = options.get(option_type) if not option: return {} try: option = loads("{" + option + "}") for i in option.keys(): _LOGGER.debug(f"{option_type} {i}: {option[i]}") except (TypeError, AttributeError, KeyError, JSONDecodeError): _LOGGER.warning(f"There is a formatting error in the {option_type.replace('_', ' ')} config.") option = {} return option async def get_server(hass, config, server_name): try: await hass.helpers.discovery.async_discover(None, None, "plex", config) return get_plex_server(hass, server_name)._plex_server except HomeAssistantError as error: server_name_str = ", the server_name is correct," if server_name else "" _LOGGER.warning( f"Plex Assistant: {error.args[0]}. Ensure that you've setup the HA " f"Plex integration{server_name_str} and the server is reachable. " ) def get_devices(hass, pa): for entity in list(hass.data["media_player"].entities): info = str(entity.device_info.get("identifiers", "")) if entity.device_info else "" dev_type = [x for x in ["cast", "sonos", "plex", ""] if x in info][0] if not dev_type: continue try: name = hass.states.get(entity.entity_id).attributes.get("friendly_name") except AttributeError: continue pa.devices[name] = {"entity_id": entity.entity_id, "device_type": dev_type} def run_start_script(hass, pa, command, start_script, device, default_device): if device[0] in start_script.keys(): start = hass.data["script"].get_entity(start_script[device[0]]) start.script.run(context=Context()) get_devices(hass, pa) return fuzzy(command["device"] or default_device, list(pa.devices.keys())) return device async def listeners(hass): def ifttt_webhook_callback(event): if event.data["service"] == "plex_assistant.command": _LOGGER.debug("IFTTT Call: %s", event.data["command"]) hass.services.call(DOMAIN, "command", {"command": event.data["command"]}) listener = hass.bus.async_listen("ifttt_webhook_received", ifttt_webhook_callback) try: await hass.services.async_call("conversation", "process", {"text": "tell plex to initialize_plex_intent"}) except ServiceNotFound: pass return listener def media_service(hass, entity_id, call, payload=None): args = {"entity_id": entity_id} if call == "play_media": args = {**args, **{"media_content_type": "video", "media_content_id": payload}} elif call == "media_seek": args = {**args, **{"seek_position": payload}} hass.services.call("media_player", call, args) def jump(hass, device, amount): if device["device_type"] == "plex": media_service(hass, device["entity_id"], "media_pause") time.sleep(0.5) offset = hass.states.get(device["entity_id"]).attributes.get("media_position", 0) + amount media_service(hass, device["entity_id"], "media_seek", offset) if device["device_type"] == "plex": media_service(hass, device["entity_id"], "media_play") def cast_next_prev(hass, zeroconf, plex_c, device, direction): entity = hass.data["media_player"].get_entity(device["entity_id"]) cast, browser = pychromecast.get_listed_chromecasts( uuids=[uuid.UUID(entity._cast_info.uuid)], zeroconf_instance=zeroconf ) pychromecast.discovery.stop_discovery(browser) cast[0].register_handler(plex_c) cast[0].wait() if direction == "next": plex_c.next() else: plex_c.previous() def remote_control(hass, zeroconf, control, device, jump_amount): plex_c = PlexController() if control == "jump_forward": jump(hass, device, jump_amount[0]) elif control == "jump_back": jump(hass, device, -jump_amount[1]) elif control == "next_track" and device["device_type"] == "cast": cast_next_prev(hass, zeroconf, plex_c, device, "next") elif control == "previous_track" and device["device_type"] == "cast": cast_next_prev(hass, zeroconf, plex_c, device, "previous") else: media_service(hass, device["entity_id"], f"media_{control}") def seek_to_offset(hass, offset, entity): if offset < 1: return timeout = 0 while not hass.states.is_state(entity, "playing") and timeout < 100: time.sleep(0.10) timeout += 1 timeout = 0 if hass.states.is_state(entity, "playing"): media_service(hass, entity, "media_pause") while not hass.states.is_state(entity, "paused") and timeout < 100: time.sleep(0.10) timeout += 1 if hass.states.is_state(entity, "paused"): if hass.states.get(entity).attributes.get("media_position", 0) < 9: media_service(hass, entity, "media_seek", offset) media_service(hass, entity, "media_play") def no_device_error(localize, device=None): device = f': "{device.title()}".' if device else "." _LOGGER.warning(f"{localize['cast_device'].capitalize()} {localize['not_found']}{device}") def media_error(command, localize): error = "".join( f"{localize[keyword]['keywords'][0]} " for keyword in ["latest", "unwatched", "ondeck"] if command[keyword] ) if command["media"]: media = command["media"] media = media if isinstance(media, str) else getattr(media, "title", str(media)) error += f"{media.capitalize()} " elif command["library"]: error += f"{localize[command['library']+'s'][0]} " for keyword in ["season", "episode"]: if command[keyword]: error += f"{localize[keyword]['keywords'][0]} {command[keyword]} " error += f"{localize['not_found']}." return error.capitalize() def play_tts_error(hass, tts_dir, device, error, lang): tts = gTTS(error, lang=lang) tts.save(tts_dir + "error.mp3") hass.services.call( "media_player", "play_media", { "entity_id": device, "media_content_type": "audio/mp3", "media_content_id": "/local/plex_assist_tts/error.mp3", }, ) def filter_media(pa, command, media, library): offset = 0 if library == "playlist": media = pa.server.playlist(media) if media else pa.server.playlists() elif media or library: media = pa.library.search(title=media or None, libtype=library or None) if isinstance(media, list) and len(media) == 1: media = media[0] if command["episode"]: media = media.episode(season=int(command["season"] or 1), episode=int(command["episode"])) elif command["season"]: media = media.season(season=int(command["season"])) if command["ondeck"]: title, libtype = [command["media"], command["library"]] if getattr(media, "onDeck", None): media = media.onDeck() elif title or libtype: search_result = pa.library.search(title=title or None, libtype=libtype or None, limit=1)[0] if getattr(search_result, "onDeck", None): media = search_result.onDeck() else: media = pa.library.sectionByID(search_result.librarySectionID).onDeck() else: media = pa.library.sectionByID(pa.tv_id).onDeck() + pa.library.sectionByID(pa.movie_id).onDeck() media.sort(key=lambda x: getattr(x, "addedAt", None), reverse=False) if command["unwatched"]: if isinstance(media, list) or (not media and not library): media = media[:200] if isinstance(media, list) else pa.library.recentlyAdded() media = [x for x in media if getattr(x, "viewCount", 0) == 0] elif getattr(media, "unwatched", None): media = media.unwatched()[:200] if command["latest"] and not command["unwatched"]: if library and not media and pa.section_id[library]: media = pa.library.sectionByID(pa.section_id[library]).recentlyAdded()[:200] elif not media: media = pa.library.sectionByID(pa.tv_id).recentlyAdded() media += pa.library.sectionByID(pa.mov_id).recentlyAdded() media.sort(key=lambda x: getattr(x, "addedAt", None), reverse=True) media = media[:200] elif command["latest"]: if getattr(media, "type", None) in ["show", "season"]: media = media.episodes()[-1] elif isinstance(media, list): media = media[:200] media.sort(key=lambda x: getattr(x, "addedAt", None), reverse=True) if not command["random"] and media: pos = getattr(media[0], "viewOffset", 0) if isinstance(media, list) else getattr(media, "viewOffset", 0) offset = (pos / 1000) - 5 if pos > 15 else 0 if getattr(media, "TYPE", None) == "show": unwatched = media.unwatched()[:30] media = unwatched if unwatched and not command["random"] else media.episodes()[:30] elif getattr(media, "TYPE", None) == "episode": episodes = media.show().episodes() episodes = episodes[episodes.index(media) : episodes.index(media) + 30] media = pa.server.createPlayQueue(episodes, shuffle=int(command["random"])) elif getattr(media, "TYPE", None) in ["artist", "album"]: tracks = media.tracks() media = pa.server.createPlayQueue(tracks, shuffle=int(command["random"])) elif getattr(media, "TYPE", None) == "track": tracks = media.album().tracks() tracks = tracks[tracks.index(media) :] media = pa.server.createPlayQueue(tracks, shuffle=int(command["random"])) if getattr(media, "TYPE", None) != "playqueue" and media: media = pa.server.createPlayQueue(media, shuffle=int(command["random"])) return [media, 0 if media and media.items[0].listType == "audio" else offset] def roman_numeral_test(media, lib): regex = re.compile(r"\b(\d|(10))\b") replacements = { "1": "I", "2": "II", "3": "III", "4": "IV", "5": "V", "6": "VI", "7": "VII", "8": "VIII", "9": "IX", "10": "X", } if len(re.findall(regex, media)) > 0: replaced = re.sub(regex, lambda m: replacements[m.group(1)], media) return fuzzy(replaced, lib, fuzz.WRatio) return ["", 0] def find_media(pa, command): result = "" lib = "" if getattr(command["media"], "type", None) in ["artist", "album", "track"]: return [command["media"], command["media"].type] if command["library"]: lib_titles = pa.media[f"{command['library']}_titles"] if command["media"]: result = fuzzy(command["media"], lib_titles, fuzz.WRatio) roman_test = roman_numeral_test(command["media"], lib_titles) result = result[0] if result[1] > roman_test[1] else roman_test[0] elif command["media"]: item = {} score = {} for category in ["show", "movie", "artist", "album", "track", "playlist"]: lib_titles = pa.media[f"{category}_titles"] standard = fuzzy(command["media"], lib_titles, fuzz.WRatio) if lib_titles else ["", 0] roman = roman_numeral_test(command["media"], lib_titles) if lib_titles else ["", 0] winner = standard if standard[1] > roman[1] else roman item[category] = winner[0] score[category] = winner[1] winning_category = max(score, key=score.get) result = item[winning_category] lib = winning_category return [result, lib or command["library"]] ```
{ "source": "johanot/certmgr", "score": 2 }
#### File: ct/client/reporter_test.py ```python import unittest import sys from collections import defaultdict from ct.client import reporter from ct.client.db import cert_desc from ct.client.db import sqlite_cert_db from ct.client.db import sqlite_connection as sqlitecon from ct.crypto import cert from ct.proto import certificate_pb2 from ct.proto import client_pb2 from ct.test import test_config import gflags STRICT_DER = cert.Certificate.from_der_file( test_config.get_test_file_path('google_cert.der'), False).to_der() NON_STRICT_DER = cert.Certificate.from_pem_file( test_config.get_test_file_path('invalid_ip.pem'), False).to_der() CHAIN_FILE = test_config.get_test_file_path('google_chain.pem') CHAIN_DERS = [c.to_der() for c in cert.certs_from_pem_file(CHAIN_FILE)] SELF_SIGNED_ROOT_DER = cert.Certificate.from_pem_file( test_config.get_test_file_path('subrigo_net.pem'), False).to_der() def readable_dn(dn_attribs): return ",".join(["%s=%s" % (attr.type, attr.value) for attr in dn_attribs]) class CertificateReportTest(unittest.TestCase): class CertificateReportBase(reporter.CertificateReport): def __init__(self): super(CertificateReportTest.CertificateReportBase, self).__init__() def report(self): super(CertificateReportTest.CertificateReportBase, self).report() return self._certs def reset(self): self._certs = {} def _batch_scanned_callback(self, result): for desc, log_index in result: self._certs[log_index] = desc def setUp(self): self.cert_db = sqlite_cert_db.SQLiteCertDB( sqlitecon.SQLiteConnectionManager(":memory:", keepalive=True)) def test_scan_der_cert(self): report = self.CertificateReportBase() report.scan_der_certs([(0, STRICT_DER, [], client_pb2.X509_ENTRY)]) results = report.report() self.assertEqual(len(results), 1) def test_scan_der_cert_broken_cert(self): report = self.CertificateReportBase() report.scan_der_certs([(0, "asdf", [], client_pb2.X509_ENTRY)]) results = report.report() self.assertEqual(len(results), 1) self.assertFalse(results[0].subject) def test_scan_der_cert_check_non_strict(self): report = self.CertificateReportBase() report.scan_der_certs([(0, NON_STRICT_DER, [], client_pb2.X509_ENTRY)]) results = report.report() self.assertEqual(len(results), 1) self.assertTrue(results[0].subject) def test_entry_type_propogated(self): report = self.CertificateReportBase() report.scan_der_certs([(0, STRICT_DER, [], client_pb2.PRECERT_ENTRY), (1, STRICT_DER, [], client_pb2.X509_ENTRY)]) results = report.report() self.assertEqual(len(results), 2) self.assertEquals(results[0].entry_type, client_pb2.PRECERT_ENTRY) self.assertEquals(results[1].entry_type, client_pb2.X509_ENTRY) def test_issuer_and_root_issuer_populated_from_chain(self): self.assertEqual(3, len(CHAIN_DERS)) report = self.CertificateReportBase() report.scan_der_certs([(0, CHAIN_DERS[0], CHAIN_DERS[1:], client_pb2.X509_ENTRY)]) results = report.report() self.assertEqual(len(results), 1) issuer_cert = cert_desc.from_cert(cert.Certificate(CHAIN_DERS[1])) root_cert = cert_desc.from_cert(cert.Certificate(CHAIN_DERS[2])) self.assertEqual(readable_dn(results[0].issuer), 'C=US,O=Google Inc,CN=Google Internet Authority') self.assertEqual(readable_dn(results[0].root_issuer), 'C=US,O=Equifax,OU=Equifax Secure Certificate Authority') def test_chain_containing_only_root_handled(self): report = self.CertificateReportBase() report.scan_der_certs([(0, SELF_SIGNED_ROOT_DER, [], client_pb2.X509_ENTRY)]) results = report.report() self.assertEqual(len(results), 1) self.assertEquals(results[0].entry_type, client_pb2.X509_ENTRY) def test_issuer_public_key_populated_from_chain(self): # Verify the test data is what is expected for this unit test. self.assertEqual(3, len(CHAIN_DERS)) self.assertEqual( cert.Certificate(CHAIN_DERS[1]).key_hash(hashfunc="sha256").encode('hex'), 'b6b95432abae57fe020cb2b74f4f9f9173c8c708afc9e732ace23279047c6d05') report = self.CertificateReportBase() report.scan_der_certs([(0, CHAIN_DERS[0], CHAIN_DERS[1:], client_pb2.X509_ENTRY)]) results = report.report() self.assertEqual(len(results), 1) self.assertEqual(results[0].issuer_pk_sha256_hash.encode('hex'), 'b6b95432abae57fe020cb2b74f4f9f9173c8c708afc9e732ace23279047c6d05') if __name__ == '__main__': sys.argv = gflags.FLAGS(sys.argv) unittest.main() ``` #### File: utilities/log_list/openssl_generator.py ```python def _log_id(log): # Use log URL as its ID because it should be unique and is probably # shorter and more readable in a comma-separated list than the log # description. return log["url"].replace(",", "") def _openssl_list(items): ''' Strip commas from any items used in a list in the OpenSSL CONF format, becayse they would be interpreted as delimiters. ''' return ", ".join(x.replace(",", "") for x in items) def _enabled_logs_conf(logs): return "enabled_logs = %s\n" % ( _openssl_list(_log_id(log) for log in logs) ) def _log_conf(log): return ( "[%(id)s]\n" "description = %(description)s\n" "key = %(key)s\n" % { "id": _log_id(log), "description": log["description"], "key": log["key"], }) def generate_openssl_conf(json_log_list, output_path): '''Given a log list read from JSON, writes an OpenSSL log list to a file''' with open(output_path, "w") as output: logs = json_log_list["logs"] log_confs = (_log_conf(log) for log in logs) output.write(_enabled_logs_conf(logs) + "\n") output.write("\n".join(log_confs)) ```
{ "source": "johanovic/django-rated", "score": 2 }
#### File: django-rated/rated/decorators.py ```python from functools import partial, wraps from .settings import DEFAULT_REALM from .utils import BACKEND def rate_limit(func=None, realm=None): '''Apply rate limiting directly to any view-like function.''' if realm is None: realm = DEFAULT_REALM if func is None: return partial(rate_limit, realm=realm) @wraps(func) def _inner(request, *args, **kwargs): source = BACKEND.source_for_request(request) if BACKEND.check_realm(source, realm): return BACKEND.make_limit_response(realm) return func(request, *args, **kwargs) return _inner def rate_limit_method(func=None, realm=None): '''Rate limit a view-like method''' if func is None: return partial(rate_limit_method, realm=realm) @wraps(func) def _inner(self, request, *args, **kwargs): source = BACKEND.source_for_request(request) if BACKEND.check_realm(source, realm): return BACKEND.make_limit_response(realm) return func(self, request, *args, **kwargs) return _inner ```
{ "source": "johanpel/j2a", "score": 2 }
#### File: j2a/experiments/battery.py ```python import numpy as np def gen_schema(file, num_values_max=1024, value_max=np.iinfo(np.uint64).max, num_values_min=1, value_min=0): import pyarrow as pa output_schema = pa.schema([ pa.field("voltage", pa.list_( pa.field("item", pa.uint64(), False).with_metadata( {"illex_MIN": str(value_min), "illex_MAX": str(value_max)}) ), False).with_metadata( {"illex_MIN_LENGTH": str(num_values_min), "illex_MAX_LENGTH": str(num_values_max)} ) ]) pa.output_stream(file).write(output_schema.serialize()) ```
{ "source": "JohanpG/tf-object-counting", "score": 4 }
#### File: JohanpG/tf-object-counting/ShowCamera.py ```python import cv2 def show_webcam(mirror=False): cam = cv2.VideoCapture(0) while True: ret_val, img = cam.read() if mirror: img = cv2.flip(img, 1) cv2.imshow('my webcam', img) if cv2.waitKey(1) == 27: break # esc to quit cv2.destroyAllWindows() def main(): show_webcam(mirror=True) if __name__ == '__main__': main() ```
{ "source": "johanrhodin/aiorabbit", "score": 2 }
#### File: aiorabbit/aiorabbit/__init__.py ```python import asyncio import contextlib import logging import typing from aiorabbit import exceptions from aiorabbit.__version__ import version DEFAULT_LOCALE = 'en-US' DEFAULT_PRODUCT = 'aiorabbit/{}'.format(version) DEFAULT_URL = 'amqp://guest:guest@localhost:5672/%2f' LOGGER = logging.getLogger('aiorabbit') @contextlib.asynccontextmanager async def connect(url: str = DEFAULT_URL, locale: str = DEFAULT_LOCALE, product: str = DEFAULT_PRODUCT, loop: typing.Optional[asyncio.AbstractEventLoop] = None): """Asynchronous :ref:`context-manager <python:typecontextmanager>` that connects to RabbitMQ, returning a connected :class:`~aiorabbit.client.Client` as the target. .. code-block:: python3 :caption: Example Usage async with aiorabbit.connect(RABBITMQ_URL) as client: await client.exchange_declare('test', 'topic') :param url: The URL to connect to RabbitMQ with :param locale: The locale for the connection, default `en-US` :param product: The product name for the connection, default `aiorabbit` :param loop: Optional :mod:`asyncio` event loop to use """ from aiorabbit import client rmq_client = client.Client(url, locale, product, loop) await rmq_client.connect() try: yield rmq_client finally: if not rmq_client.is_closed: await rmq_client.close() __all__ = [ 'client', 'connect', 'DEFAULT_PRODUCT', 'DEFAULT_LOCALE', 'DEFAULT_URL', 'exceptions', 'message', 'types', 'version' ] ``` #### File: aiorabbit/aiorabbit/state.py ```python import asyncio import inspect import logging import time import typing from aiorabbit import exceptions STATE_UNINITIALIZED = 0x00 STATE_EXCEPTION = 0x01 class StateManager: """Base Class used to implement state management""" STATE_MAP: dict = { STATE_UNINITIALIZED: 'Uninitialized', STATE_EXCEPTION: 'Exception Raised' } STATE_TRANSITIONS: dict = { STATE_UNINITIALIZED: [STATE_EXCEPTION] } def __init__(self, loop: asyncio.AbstractEventLoop): self._logger = logging.getLogger( dict(inspect.getmembers(self))['__module__']) self._exception: typing.Optional[Exception] = None self._loop: asyncio.AbstractEventLoop = loop self._loop.set_exception_handler(self._on_exception) self._state: int = STATE_UNINITIALIZED self._state_start: float = self._loop.time() self._waits: dict = {} @property def exception(self) -> typing.Optional[Exception]: """If an exception was set with the state, return the value""" return self._exception @property def state(self) -> str: """Return the current state as descriptive string""" return self.state_description(self._state) def state_description(self, state: int) -> str: """Return a state description for a given state""" return self.STATE_MAP[state] @property def time_in_state(self) -> float: """Return how long the current state has been active""" return self._loop.time() - self._state_start def _clear_waits(self, wait_id: int) -> None: for state in self._waits.keys(): if wait_id in self._waits[state].keys(): del self._waits[state][wait_id] def _on_exception(self, _loop: asyncio.AbstractEventLoop, context: typing.Dict[str, typing.Any]) -> None: self._logger.debug('Exception on IOLoop: %r', context) self._set_state(STATE_EXCEPTION, context.get('exception')) def _reset_state(self, value: int) -> None: self._logger.debug( 'Reset state %r while state is %r - %r', self.state_description(value), self.state, self._waits) self._state = value self._state_start = self._loop.time() self._exc = None self._waits = {} def _set_state(self, value: int, exc: typing.Optional[Exception] = None) -> None: self._logger.debug( 'Set state to %i: %s while state is %i: %s - %r [%r]', value, self.state_description(value), self._state, self.state, self._waits, exc) if value == self._state and exc == self._exception: return elif value != STATE_EXCEPTION \ and value not in self.STATE_TRANSITIONS[self._state]: raise exceptions.StateTransitionError( 'Invalid state transition from {!r} to {!r}'.format( self.state, self.state_description(value))) self._logger.debug( 'Transition to %i: %s from %i: %s after %.4f seconds', value, self.state_description(value), self._state, self.state, self.time_in_state) self._exception = exc self._state = value self._state_start = self._loop.time() if self._state in self._waits: [self._loop.call_soon(event.set) for event in self._waits[self._state].values()] async def _wait_on_state(self, *args) -> int: """Wait on a specific state value to transition""" wait_id, waits = time.monotonic_ns(), [] self._logger.debug( 'Waiter %i waiting on (%s) while in %i: %s', wait_id, ' || '.join( '{}: {}'.format(s, self.state_description(s)) for s in args), self._state, self.state) for state in args: if state not in self._waits: self._waits[state] = {} self._waits[state][wait_id] = asyncio.Event() waits.append((state, self._waits[state][wait_id])) while not self._exception: for state, event in waits: if event.is_set(): self._logger.debug( 'Waiter %r wait on %i: %s has finished [%r]', wait_id, state, self.state_description(state), self._exception) self._clear_waits(wait_id) return state await asyncio.sleep(0.001) self._clear_waits(wait_id) exc = self._exception self._exception = None raise exc ``` #### File: aiorabbit/tests/test_basic.py ```python import uuid from pamqp import body, commands, header from aiorabbit import exceptions, message from . import testing class BasicAckTestCase(testing.ClientTestCase): @testing.async_test async def test_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.basic_ack('foo') with self.assertRaises(TypeError): await self.client.basic_ack(1, 1) class BasicCancelTestCase(testing.ClientTestCase): @testing.async_test async def test_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.basic_cancel(1) class BasicConsumeTestCase(testing.ClientTestCase): def setUp(self) -> None: super().setUp() self.queue = self.uuid4() self.exchange = 'amq.topic' self.routing_key = self.uuid4() self.body = uuid.uuid4().bytes async def on_message(self, msg): self.assertEqual(msg.exchange, self.exchange) self.assertEqual(msg.routing_key, self.routing_key) self.assertEqual(msg.body, self.body) await self.client.basic_ack(msg.delivery_tag) self.test_finished.set() @testing.async_test async def test_consume(self): await self.connect() await self.client.queue_declare(self.queue) await self.client.queue_bind(self.queue, self.exchange, '#') ctag = await self.client.basic_consume( self.queue, callback=self.on_message) await self.client.publish(self.exchange, self.routing_key, self.body) await self.test_finished.wait() await self.client.basic_cancel(ctag) @testing.async_test async def test_consume_large_message(self): self.body = '-'.join([ self.uuid4() for _i in range(0, 100000)]).encode('utf-8') await self.connect() await self.client.queue_declare(self.queue) await self.client.queue_bind(self.queue, self.exchange, '#') ctag = await self.client.basic_consume( self.queue, callback=self.on_message) await self.client.publish(self.exchange, self.routing_key, self.body) await self.test_finished.wait() await self.client.basic_cancel(ctag) @testing.async_test async def test_consume_message_pending(self): await self.connect() await self.client.queue_declare(self.queue) await self.client.queue_bind(self.queue, self.exchange, '#') await self.client.publish(self.exchange, self.routing_key, self.body) ctag = await self.client.basic_consume( self.queue, callback=self.on_message) await self.test_finished.wait() await self.client.basic_cancel(ctag) @testing.async_test async def test_consume_sync_callback(self): def on_message(msg): self.assertEqual(msg.exchange, self.exchange) self.assertEqual(msg.routing_key, self.routing_key) self.assertEqual(msg.body, self.body) self.test_finished.set() await self.connect() await self.client.queue_declare(self.queue) await self.client.queue_bind(self.queue, self.exchange, '#') await self.client.publish(self.exchange, self.routing_key, self.body) ctag = await self.client.basic_consume(self.queue, callback=on_message) await self.test_finished.wait() await self.client.basic_cancel(ctag) @testing.async_test async def test_not_found(self): await self.connect() with self.assertRaises(exceptions.NotFound): await self.client.basic_consume('foo', callback=lambda x: x) @testing.async_test async def test_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.basic_consume(1, callback=lambda x: x) with self.assertRaises(TypeError): await self.client.basic_consume('foo', 1, callback=lambda x: x) with self.assertRaises(TypeError): await self.client.basic_consume( 'foo', False, 1, callback=lambda x: x) with self.assertRaises(TypeError): await self.client.basic_consume( 'foo', False, False, 1, callback=lambda x: x) with self.assertRaises(TypeError): await self.client.basic_consume( 'foo', False, False, False, 1, callback=lambda x: x) with self.assertRaises(TypeError): await self.client.basic_consume('foo', callback=True) with self.assertRaises(ValueError): await self.client.basic_consume('foo') with self.assertRaises(TypeError): await self.client.basic_consume( 'foo', callback=lambda x: x, consumer_tag=1) class BasicGetTestCase(testing.ClientTestCase): @testing.async_test async def test_basic_get(self): queue = self.uuid4() exchange = 'amq.direct' routing_key = '#' msg_body = uuid.uuid4().bytes await self.connect() msg_count, consumer_count = await self.client.queue_declare(queue) self.assertEqual(msg_count, 0) self.assertEqual(consumer_count, 0) result = await self.client.basic_get(queue) self.assertIsNone(result) await self.client.queue_bind(queue, exchange, routing_key) await self.client.publish(exchange, routing_key, msg_body) result = await self.client.basic_get(queue) self.assertIsInstance(result, message.Message) self.assertEqual(result.body, msg_body) self.assertEqual(result.message_count, 0) await self.client.basic_ack(result.delivery_tag) await self.client.queue_delete(queue) @testing.async_test async def test_basic_getok_message_count(self): queue = self.uuid4() exchange = 'amq.direct' routing_key = '#' msg_body = uuid.uuid4().bytes await self.connect() await self.client.queue_declare(queue) result = await self.client.basic_get(queue) self.assertIsNone(result) await self.client.queue_bind(queue, exchange, routing_key) await self.client.publish(exchange, routing_key, msg_body) await self.client.publish(exchange, routing_key, uuid.uuid4().bytes) await self.client.publish(exchange, routing_key, uuid.uuid4().bytes) result = await self.client.basic_get(queue) self.assertIsInstance(result, message.Message) self.assertEqual(result.body, msg_body) self.assertEqual(result.message_count, 2) await self.client.basic_ack(result.delivery_tag) result = await self.client.basic_get(queue) self.assertIsInstance(result, message.Message) self.assertEqual(result.message_count, 1) await self.client.basic_nack(result.delivery_tag, requeue=False) result = await self.client.basic_get(queue) self.assertIsInstance(result, message.Message) self.assertEqual(result.message_count, 0) await self.client.basic_reject(result.delivery_tag) await self.client.queue_delete(queue) @testing.async_test async def test_basic_get_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.basic_get(1) with self.assertRaises(TypeError): await self.client.basic_get('foo', 1) class BasicNackTestCase(testing.ClientTestCase): @testing.async_test async def test_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.basic_nack('foo') with self.assertRaises(TypeError): await self.client.basic_nack(1, 1) with self.assertRaises(TypeError): await self.client.basic_nack(1, False, 1) class BasicPublishTestCase(testing.ClientTestCase): @testing.async_test async def test_basic_publish_raises(self): with self.assertRaises(NotImplementedError): await self.client.basic_publish() class BasicQosTestCase(testing.ClientTestCase): @testing.async_test async def test_basic_qos_raises(self): self.raises = self.assertRaises(NotImplementedError) with self.raises: await self.client.basic_qos() class BasicRecoverTestCase(testing.ClientTestCase): @testing.async_test async def test_basic_recover(self): await self.connect() await self.client.basic_recover(True) @testing.async_test async def test_basic_recover_false_raises(self): await self.connect() with self.assertRaises(exceptions.NotImplemented): await self.client.basic_recover(False) @testing.async_test async def test_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.basic_recover(1) class BasicRejectTestCase(testing.ClientTestCase): @testing.async_test async def test_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.basic_reject('foo') with self.assertRaises(TypeError): await self.client.basic_reject(1, 1) class BasicReturnTestCase(testing.ClientTestCase): def setUp(self) -> None: super().setUp() self.exchange = 'amq.topic' self.routing_key = self.uuid4() self.body = uuid.uuid4().bytes @testing.async_test async def test_basic_return(self): async def on_return(msg: message.Message) -> None: self.assertEqual(msg.reply_code, 404) self.assertEqual(msg.reply_text, 'Not Found') self.assertEqual(msg.exchange, self.exchange) self.assertEqual(msg.body, self.body) self.test_finished.set() self.client.register_basic_return_callback(on_return) await self.connect() await self.client.publish(self.exchange, self.routing_key, self.body) # Fake the Basic.Return self.client._on_frame(self.client._channel, commands.Basic.Return( 404, 'Not Found', self.exchange, self.routing_key)) self.client._on_frame(self.client._channel, header.ContentHeader( 0, len(self.body), commands.Basic.Properties())) self.client._on_frame( self.client._channel, body.ContentBody(self.body)) await self.test_finished.wait() ``` #### File: aiorabbit/tests/test_exchange.py ```python import uuid from aiorabbit import exceptions from . import testing class ExchangeDeclareTestCase(testing.ClientTestCase): @testing.async_test async def test_exchange_declare(self): name = str(uuid.uuid4().hex) await self.connect() await self.client.exchange_declare(name, 'direct', durable=True) await self.client.exchange_declare(name, 'direct', passive=True) @testing.async_test async def test_exchange_declare_passive_raises(self): await self.connect() with self.assertRaises(exceptions.NotFound): await self.client.exchange_declare( str(uuid.uuid4().hex), 'direct', passive=True) class ExchangeTestCase(testing.ClientTestCase): @testing.async_test async def test_exchange_declare(self): await self.connect() await self.client.exchange_declare(self.uuid4(), 'direct') @testing.async_test async def test_exchange_declare_invalid_exchange_type(self): await self.connect() with self.assertRaises(exceptions.CommandInvalid): await self.client.exchange_declare(self.uuid4(), self.uuid4()) self.assertEqual(self.client.state, 'Channel Open') # Ensure a command will properly work after the error await self.client.exchange_declare(self.uuid4(), 'direct') @testing.async_test async def test_exchange_declare_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.exchange_declare(1) with self.assertRaises(TypeError): await self.client.exchange_declare(self.uuid4(), 1) with self.assertRaises(TypeError): await self.client.exchange_declare(self.uuid4(), passive='1') with self.assertRaises(TypeError): await self.client.exchange_declare(self.uuid4(), durable='1') with self.assertRaises(TypeError): await self.client.exchange_declare(self.uuid4(), auto_delete='1') with self.assertRaises(TypeError): await self.client.exchange_declare(self.uuid4(), internal='1') with self.assertRaises(TypeError): await self.client.exchange_declare(self.uuid4(), arguments='1') @testing.async_test async def test_exchange_bind_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.exchange_bind(1, self.uuid4(), self.uuid4()) with self.assertRaises(TypeError): await self.client.exchange_bind(self.uuid4(), 1, self.uuid4()) with self.assertRaises(TypeError): await self.client.exchange_bind(self.uuid4(), self.uuid4(), 1) with self.assertRaises(TypeError): await self.client.exchange_bind( self.uuid4(), self.uuid4(), self.uuid4(), self.uuid4()) @testing.async_test async def test_exchange_bind_raises_exchange_not_found(self): await self.connect() self.assertEqual(self.client._channel, 1) with self.assertRaises(exceptions.NotFound): await self.client.exchange_bind( self.uuid4(), self.uuid4(), self.uuid4()) self.assertEqual(self.client._channel, 2) # Ensure a command will properly work after the error await self.client.exchange_declare(self.uuid4(), 'direct') @testing.async_test async def test_exchange_bind(self): await self.connect() exchange_1 = self.uuid4() exchange_2 = self.uuid4() await self.client.exchange_declare(exchange_1, 'topic') await self.client.exchange_declare(exchange_2, 'topic') await self.client.exchange_bind(exchange_1, exchange_2, '#') await self.client.exchange_unbind(exchange_1, exchange_2, '#') await self.client.exchange_delete(exchange_2) await self.client.exchange_delete(exchange_1) @testing.async_test async def test_exchange_delete_invalid_exchange_name(self): await self.connect() self.assertEqual(self.client._channel, 1) with self.assertRaises(TypeError): await self.client.exchange_delete(327687) @testing.async_test async def test_exchange_unbind_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.exchange_unbind(1, self.uuid4(), self.uuid4()) with self.assertRaises(TypeError): await self.client.exchange_unbind(self.uuid4(), 1, self.uuid4()) with self.assertRaises(TypeError): await self.client.exchange_unbind(self.uuid4(), self.uuid4(), 1) with self.assertRaises(TypeError): await self.client.exchange_unbind( self.uuid4(), self.uuid4(), self.uuid4(), self.uuid4()) @testing.async_test async def test_exchange_unbind_invalid_exchange(self): await self.connect() self.assertEqual(self.client._channel, 1) await self.client.exchange_unbind( self.uuid4(), self.uuid4(), self.uuid4()) self.assertEqual(self.client._channel, 1) ``` #### File: aiorabbit/tests/test_integration.py ```python import asyncio import logging import os from unittest import mock from pamqp import commands import aiorabbit from aiorabbit import client, exceptions from tests import testing LOGGER = logging.getLogger(__name__) class ContextManagerTestCase(testing.AsyncTestCase): @testing.async_test async def test_context_manager_open(self): async with aiorabbit.connect( os.environ['RABBITMQ_URI'], loop=self.loop) as client_: await client_.confirm_select() self.assertEqual(client_._state, client.STATE_CONFIRM_SELECTOK_RECEIVED) self.assertEqual(client_._state, client.STATE_CLOSED) @testing.async_test async def test_context_manager_exception(self): async with aiorabbit.connect( os.environ['RABBITMQ_URI'], loop=self.loop) as client_: await client_.confirm_select() with self.assertRaises(RuntimeError): await client_.confirm_select() self.assertEqual(client_._state, client.STATE_CLOSED) @testing.async_test async def test_context_manager_remote_close(self): async with aiorabbit.connect( os.environ['RABBITMQ_URI'], loop=self.loop) as client_: LOGGER.debug('Sending admin shutdown frame') client_._on_frame( 0, commands.Connection.Close(200, 'Admin Shutdown')) while not client_.is_closed: await asyncio.sleep(0.1) self.assertEqual(client_._state, client.STATE_CLOSED) @testing.async_test async def test_context_manager_already_closed_on_exit(self): async with aiorabbit.connect( os.environ['RABBITMQ_URI'], loop=self.loop) as client_: self.assertFalse(client_.is_closed) client_._state = client.STATE_CLOSED self.assertTrue(client_.is_closed) async with aiorabbit.connect( os.environ['RABBITMQ_URI'], loop=self.loop) as client_: self.assertFalse(client_.is_closed) self.assertTrue(client_.is_closed) class IntegrationTestCase(testing.ClientTestCase): @testing.async_test async def test_channel_recycling(self): await self.connect() self.assertEqual(self.client._channel, 1) await self.close() await self.connect() self.assertEqual(self.client._channel, 1) await self.close() @testing.async_test async def test_double_close(self): await self.connect() await self.close() await self.close() @testing.async_test async def test_confirm_select(self): await self.connect() await self.client.confirm_select() self.assert_state(client.STATE_CONFIRM_SELECTOK_RECEIVED) await self.close() @testing.async_test async def test_connect_timeout(self): with mock.patch.object(self.loop, 'create_connection') as create_conn: create_conn.side_effect = asyncio.TimeoutError() with self.assertRaises(asyncio.TimeoutError): await self.connect() @testing.async_test async def test_client_close_error(self): await self.connect() with mock.patch.object(self.client, 'close') as close: close.side_effect = RuntimeError('Faux Exception') with self.assertRaises(RuntimeError): await self.close() @testing.async_test async def test_update_secret_raises(self): await self.connect() with self.assertRaises(exceptions.CommandInvalid): self.client._write_frames( commands.Connection.UpdateSecret('foo', 'bar')) await self.client._wait_on_state( client.STATE_UPDATE_SECRETOK_RECEIVED) class ReconnectPublisherConfirmsTestCase(testing.ClientTestCase): @testing.async_test async def test_confirm_select_already_invoked_on_reconnect(self): await self.connect() await self.client.confirm_select() self.assertTrue(self.client._publisher_confirms) with self.assertRaises(exceptions.CommandInvalid): await self.client.exchange_declare(self.uuid4(), self.uuid4()) self.assertTrue(self.client._publisher_confirms) class QosPrefetchTestCase(testing.ClientTestCase): @testing.async_test async def test_basic_qos(self): await self.connect() await self.client.qos_prefetch(100, False) await self.client.qos_prefetch(125, True) @testing.async_test async def test_validation_errors(self): await self.connect() with self.assertRaises(TypeError): await self.client.qos_prefetch('foo') with self.assertRaises(TypeError): await self.client.qos_prefetch(0, 'foo') class ConsumeTestCase(testing.ClientTestCase): def setUp(self) -> None: super().setUp() self.queue = self.uuid4() self.exchange = 'amq.topic' async def rmq_setup(self): await self.connect() await self.client.queue_declare(self.queue) await self.client.queue_bind(self.queue, self.exchange, '#') await self.client.qos_prefetch(1, True) messages = [self.uuid4().encode('utf-8') for _offset in range(0, 5)] for message in messages: await self.client.publish(self.exchange, self.queue, message) msgs, _consumers = await self.client.queue_declare(self.queue) while msgs < len(messages): await asyncio.sleep(0.5) msgs, consumers = await self.client.queue_declare(self.queue) return messages @testing.async_test async def test_consume(self): messages = await self.rmq_setup() async for message in self.client.consume(self.queue): messages.remove(message.body) await self.client.basic_ack(message.delivery_tag) if not messages: break msgs, _consumers = await self.client.queue_declare(self.queue) self.assertEqual(msgs, 0) class ContextManagerConsumeTestCase(ConsumeTestCase): @testing.async_test async def test_consume(self): messages = await self.rmq_setup() async with aiorabbit.connect(self.rabbitmq_url) as rabbitmq: async for message in rabbitmq.consume(self.queue): messages.remove(message.body) await rabbitmq.basic_ack(message.delivery_tag) if not messages: break msgs, _consumers = await self.client.queue_declare(self.queue) self.assertEqual(msgs, 0) @testing.async_test async def test_emulated_heartbeat_timeout_while_consuming(self): messages = await self.rmq_setup() async def consume_messages(): async with aiorabbit.connect(self.rabbitmq_url) as rabbitmq: async for message in rabbitmq.consume(self.queue): messages.remove(message.body) await rabbitmq.basic_ack(message.delivery_tag) if not messages: rabbitmq._on_remote_close(599, 'Test Close') with self.assertRaises(exceptions.ConnectionClosedException): await consume_messages() msgs, _consumers = await self.client.queue_declare(self.queue) self.assertEqual(msgs, 0) @testing.async_test async def test_disconnected_while_consuming(self): messages = await self.rmq_setup() async def consume_messages(): async with aiorabbit.connect(self.rabbitmq_url) as rabbitmq: async for message in rabbitmq.consume(self.queue): messages.remove(message.body) await rabbitmq.basic_ack(message.delivery_tag) if not messages: rabbitmq._on_disconnected(None) with self.assertRaises(exceptions.ConnectionClosedException): await consume_messages() msgs, _consumers = await self.client.queue_declare(self.queue) self.assertEqual(msgs, 0) ```
{ "source": "johanrhodin/rabbitmq-website", "score": 3 }
#### File: rabbitmq-website/code/render.py ```python from lxml import etree import re import os import os.path import markdown import codecs import sys reload(sys) sys.setdefaultencoding('utf8') try: from mod_python import apache except ImportError: class StubApache: def __init__(self): self.HTTP_NOT_FOUND = 404 self.HTTP_INTERNAL_SERVER_ERROR = 500 self.OK = 0 apache = StubApache() SITE_DIR='define_me_before_use' def preprocess_markdown(fpath): contents = open(fpath).read() ## Markdown will treat the whole file as markdown, whereas ## we want to only transform the body text. title = re.search("^#\s*(\S.*\S)\s*$", contents, re.M) contents = contents[0:title.start()] + contents[title.end():] title = title.group(1) entities = open(os.path.join(SITE_DIR, 'rabbit.ent')).read() entities = '\n'.join(entities.split('\n')[1:]) nosyntax = re.search("NOSYNTAX", title) if nosyntax: title = re.sub("NOSYNTAX", "", title) suppressRHS = re.search("SUPPRESS-RHS", title) if suppressRHS: title = re.sub("SUPPRESS-RHS", "", title) pre = """<?xml-stylesheet type="text/xml" href="page.xsl"?> <!DOCTYPE html [ %s <!ENTITY nbsp "&#160;"> ]> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:xi="http://www.w3.org/2003/XInclude">""" % entities head = """<head> <title>%s</title> </head> <body%s> """ % (title, suppressRHS and ' suppress-rhs="true"' or '') post = """</body> </html> """ if nosyntax: args = ["tables"] else: args = ["codehilite(css_class=highlight)", "tables"] processed = markdown.markdown(contents, args) # Unfortunately we can't stop markdown escaping entities. Unescape them. processed = re.sub(r'&amp;([a-z0-9-_.:]+);', r'&\1;', processed) tutorial = re.search(r'tutorials/(tutorial-[a-z]*)-[a-z]*.md$', fpath) if tutorial is not None: tutorial_head = """<div id="left-content" class="tutorial">""" tutorial_foot = """</div><div id="right-nav" class="{0}"> <xi:include href="site/tutorials/tutorials-menu.xml.inc"/> </div>""".format(tutorial.group(1)) processed = tutorial_head + processed + tutorial_foot utf8_parser = etree.XMLParser(encoding='utf-8') s = (pre + head + processed + post).encode("utf-8") return etree.fromstring(s, parser = utf8_parser).getroottree() def parse(fpath): class MissingFeedResolver(etree.Resolver): def resolve(self, url, id, context): if not '://' in url and not os.path.exists(url): print "Ignoring missing file ", url return self.resolve_empty(context) return None # Defer to other resolvers # TODO cache the blog feed and revert to no_network = True parser = etree.XMLParser(ns_clean = True, no_network = False) parser.resolvers.add(MissingFeedResolver()) try: return etree.parse(fpath, parser) except Exception as e: print "\n\nException rendering {0}".format(fpath) raise e MARKUPS={'.xml': parse, '.md': preprocess_markdown} class Error404(Exception): pass class Error500(Exception): pass def render_page(page_name, site_mode, version = None): """ look for the xml file with this name. if found, look inside the xml file for a stylesheet processing instruction, apply the transformation and return the transformed document. """ # Simple security check to prevent walking the filesystem if page_name.find("../") != -1: raise Error404 match = re.match('/(.*?)(\.html)?$', page_name) if match: page_name = match.group(1) page_id = match.group(1) else: raise Error404 if page_name == '': page_name = 'index' xml_doc = read_file(page_name) xml_doc.xinclude() query = '/processing-instruction(\'xml-stylesheet\')' xslt_file_name = xml_doc.xpath(query)[0].get('href') xslt_doc = parse(os.path.join(SITE_DIR, xslt_file_name)) params = {'page-name': "'/%s.html'" % page_name, 'site-mode': "'%s'" % site_mode, 'page-id': "'%s'" % page_id} transform = etree.XSLT(xslt_doc) xhtml_doc = transform(xml_doc, **params) if version: xslt_rebase = parse(os.path.join(SITE_DIR, 'rebase.xsl')) param = {'link-prefix': "'%s'" % version} transform = etree.XSLT(xslt_rebase) result = transform(xhtml_doc, **param) else: result = xhtml_doc return str(result) def read_file(page_name): for ext in MARKUPS: preprocess = MARKUPS[ext] file_name = page_name + ext fpath = os.path.join(SITE_DIR, file_name) if os.path.exists(fpath): return preprocess(fpath) raise Error404, page_name def handler(req, site_mode): req.content_type = "text/html; charset=utf-8" uri = getattr(req, "path", req.uri) try: req.write(render_page(uri, site_mode)) except Error404: req.status = apache.HTTP_NOT_FOUND req.write(render_page('/404', site_mode)) except Error500: req.status = apache.HTTP_INTERNAL_SERVER_ERROR req.write(render_page('/500', site_mode)) return apache.OK ```
{ "source": "johanribeiro/notion-to-ics", "score": 3 }
#### File: johanribeiro/notion-to-ics/timezone_builder.py ```python from datetime import datetime, timedelta import pytz from icalendar import Timezone, TimezoneStandard class TimezoneBuilder: __tzid: str def __init__(self, tzid): self.__tzid = tzid @property def tzid(self): return self.__tzid def to_icalendar(self): timezone = Timezone() standard = TimezoneStandard() tzinfo = pytz.timezone(self.__tzid) offset = self.__get_tz_offset(datetime.now(tzinfo)) standard.add("dtstart", datetime(2000, 1, 1)) standard.add("tzoffsetfrom", offset) standard.add("tzoffsetto", offset) timezone.add("tzid", self.tzid.upper()) timezone.add_component(standard) return timezone def __get_tz_offset(self, dt): offset = dt.strftime("%z") has_signal = offset[0] == "-" or offset[0] == "+" multiplier = 1 start = 0 pos = 2 if has_signal: start = 1 pos = 3 if offset[0] == "-": multiplier = -1 hours = int(offset[start:pos]) minutes = int(offset[pos:]) return timedelta(minutes=minutes * multiplier, hours=hours * multiplier) ```
{ "source": "JohanRodhe/scarf", "score": 2 }
#### File: scarf/tests/conftest.py ```python import pytest import os @pytest.fixture def pbmc_reader(scope="module"): from ..readers import CrH5Reader fn = os.path.join('scarf', 'tests', 'datasets', '1K_pbmc_citeseq.h5') return CrH5Reader(fn, 'rna') ```
{ "source": "JohanRuuskanen/FedApp", "score": 2 }
#### File: deploy_istio/validate/deploy_test.py ```python import os import yaml CLUSTER_1 = "cluster-1" CLUSTER_2 = "cluster-2" CLUSTER_ROOT = "/home/ubuntu/run_on_gateway/clusters" def deploy_test(clusters): for cluster in clusters: print("====== {} ======".format(cluster)) os.system("kubectl --context={} create namespace sample".format(cluster)) os.system("kubectl --context={} label namespace sample istio-injection=enabled".format(cluster)) os.system("kubectl --context={} -n sample create secret generic gitlab-auth".format(cluster) \ + " --from-file=.dockerconfigjson=/home/ubuntu/.docker/config.json" \ + " --type=kubernetes.io/dockerconfigjson") os.system("kubectl --context={} apply -n sample -f src/helloworld.yaml".format(cluster)) os.system("kubectl --context={} apply -n sample -f src/sleep.yaml".format(cluster)) if __name__ == '__main__': clusters = [dir for dir in os.listdir(CLUSTER_ROOT) if "cluster-" in dir] clusters.sort() deploy_test(clusters) ``` #### File: deploy_istio/validate/remove_test.py ```python import os CLUSTER_ROOT = "/home/ubuntu/run_on_gateway/clusters" def remove_test(clusters): for cluster in clusters: os.system("kubectl --context={} -n sample delete -f src/sleep.yaml".format(cluster)) os.system("kubectl --context={} -n sample delete -f src/helloworld.yaml".format(cluster)) os.system("kubectl --context={} -n sample delete secret gitlab-auth".format(cluster)) os.system("kubectl --context={} delete namespace sample".format(cluster)) if __name__ == '__main__': clusters = [dir for dir in os.listdir(CLUSTER_ROOT) if "cluster-" in dir] clusters.sort() remove_test(clusters) ``` #### File: run_on_gateway/deploy_monitoring/remove_deployment.py ```python import os import time import subprocess ROOT = "/home/ubuntu/run_on_gateway/clusters" def remove_prom_operator(clusters): for cluster in clusters: print("For %s" % cluster) os.system("helm --kube-context=%s --namespace monitoring uninstall po" % cluster) os.system("kubectl --context=%s delete crd prometheuses.monitoring.coreos.com" % cluster) os.system("kubectl --context=%s delete crd prometheusrules.monitoring.coreos.com" % cluster) os.system("kubectl --context=%s delete crd servicemonitors.monitoring.coreos.com" % cluster) os.system("kubectl --context=%s delete crd podmonitors.monitoring.coreos.com" % cluster) os.system("kubectl --context=%s delete crd probes.monitoring.coreos.com" % cluster) os.system("kubectl --context=%s delete crd alertmanagers.monitoring.coreos.com" % cluster) os.system("kubectl --context=%s delete crd alertmanagerconfigs.monitoring.coreos.com" % cluster) os.system("kubectl --context=%s delete crd thanosrulers.monitoring.coreos.com" % cluster) os.system("kubectl --context=%s delete namespace monitoring" % cluster) print("\n") if __name__ == '__main__': clusters = [dir for dir in os.listdir(ROOT) if "cluster-" in dir] clusters.sort() print("Removing the cluster prom-operators") remove_prom_operator(clusters) print("Removing local grafana") os.system("docker rm -f grafana") print("\n") ``` #### File: run_on_gateway/netem/network_mapping.py ```python import sys import os import shutil import argparse import numpy as np import subprocess import csv DELAY_MATRIX = "/home/ubuntu/run_on_gateway/chaos_netem/matrix.csv" def read_map(networks): dim = len(networks) default_matrix = np.zeros((dim, dim)) delay_matrix = [] try: with open(DELAY_MATRIX, "r") as file: reader = csv.reader(file, quoting=csv.QUOTE_NONNUMERIC) # change contents to floats for row in reader: # each row is a list delay_matrix.append(row) delay_matrix = np.array(delay_matrix) if np.shape(delay_matrix) != np.shape(default_matrix): print("Wrong matrix dimension, use defualt") delay_matrix = default_matrix for i in range(dim): if delay_matrix[i][i] != 0: print("Wrong matrix, use defualt") delay_matrix = default_matrix break except FileNotFoundError: print("No delay matrix found, use default") delay_matrix = default_matrix return delay_matrix if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('networks', metavar='N', nargs='+', help='net work lists') args = parser.parse_args() networks = args.networks # Filter out networks not related to the clusters, e.g. docker0. This could be # made smarter if filtering on the IP's instead, to only choose networks with # IP's 10.0.i.0 where i > 0 networks = [n for n in networks if n.find("ens") == 0 and n != "ens3"] matrix = read_map(networks) # Restore print("If old config exist, restore to default first") for dst in range(len(networks)): subprocess.run(["tc", "qdisc", "del", "dev", networks[dst], "root"]) for dst in range(len(networks)): subprocess.run(["tc", "qdisc", "add", "dev", networks[dst], "handle", "1:", "root", "htb", "r2q", "1700"]) subprocess.run(["tc", "class", "add", "dev", networks[dst], "parent", "1:", "classid", "1:1", "htb", "rate", "10Gbps", "ceil", "10Gbps"]) flow = 11 for src in range(len(networks)): if matrix[src][dst] == 0: pass else: src_address = "10.0."+str(src+1)+".0/24" delay = str(matrix[src][dst]) + "ms" print("Add delay of {} from {} ({}) to {}".format(delay, networks[src], src_address, networks[dst])) classid = "1:"+str(flow) handle_nbr = str((flow-10)*10)+":" subprocess.run(["tc", "class", "add", "dev", networks[dst], "parent", "1:1", "classid", classid, "htb", "rate", "10Gbps"]) subprocess.run(["tc", "qdisc", "add", "dev", networks[dst], "parent", classid, "handle", handle_nbr, "netem", "delay", delay]) subprocess.run(["tc", "filter", "add", "dev", networks[dst], "parent", "1:", "protocol", 'ip', "prio", "1", "u32", "match", "ip", "src", src_address, "flowid", classid]) flow += 1 ```
{ "source": "johans1jo/wunderground_scraper", "score": 3 }
#### File: johans1jo/wunderground_scraper/main.py ```python import os import re from numpy.lib.function_base import iterable from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.chrome.options import Options import pandas as pd from dateutil import parser, rrule from datetime import datetime, time, date from tqdm import tqdm import time def getWundergroundData(station, day, month, year): """ Function to return a data frame of hour-level weather data for a single Wunderground PWS station. Args: station (string): Station code from the Wunderground website day (int): Day of month for which data is requested month (int): Month for which data is requested year (int): Year for which data is requested returns: Pandas Dataframe with weather data for specified station and date. """ url = "https://www.wunderground.com/history/daily/np/kathmandu/{station}/date/{year}-{month}-{day}" full_url = url.format(station=station, day=day, month=month, year=year) chrome_options = Options() chrome_options.add_argument("--headless") driver = webdriver.Chrome("/usr/bin/chromedriver", options=chrome_options) driver.get(full_url) tables = WebDriverWait(driver,20).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, "table"))) for table in tables: dataframe = pd.read_html(table.get_attribute('outerHTML')) # Adding date to the data date_insert = "{year}-{month}-{day}".format(day=day, month=month, year=year) dataframe[0].insert(0, "Date", date_insert) return dataframe[0][:24] def getDates(start_date, end_date): """Generates a list of dates. Args: start_date (string): yyyy-mm-dd end_date (string): yyyy-mm-dd returns: list withh dates as strings """ # Generate a list of all of the dates we want data for start = parser.parse(start_date) end = parser.parse(end_date) dates = list(rrule.rrule(rrule.DAILY, dtstart=start, until=end)) return dates def weatherStaionToCSV(data, station): """Saves data from one weather station to a Comma Separated Values file (CSV file) Args: data (2D list): a list with weather stations and their data station (string): the station in question """ # Combine all of the individual days and output to CSV for analysis. outname = '{}_raw_weather.csv'.format(station) outdir = './data/' if not os.path.exists(outdir): os.mkdir(outdir) fullname = os.path.join(outdir, outname) pd.concat(data[station]).to_csv(fullname) def weatherStaionToEXCEL(data, station): """Saves data from one weather station to an Excel file for use in Unscrambler Args: data (2D list): a list with weather stations and their data station (string): the station in question """ # Combine all of the individual days and output to CSV for analysis. outname = '{}_raw_weather.csv'.format(station) outdir = './data/' if not os.path.exists(outdir): os.mkdir(outdir) fullname = os.path.join(outdir, outname) pd.concat(data[station]).to_excel(fullname) def scrapeDataToCSV(station, dates): """A function to scrape all data corresponding to "dates" and save the result Args: station (string): the station in question dates (list of stirings): a list of dates """ # Set a backoff time in seconds if a request fails backoff_time = 10 data = {} # Gather data for each station in turn and save to CSV. print("Working on {}".format(station)) data[station] = [] for date in tqdm(dates): # Print period status update messages if date.day % 10 == 0: print("\nWorking on date: {} for station {}".format(date, station)) done = False while done == False: try: weather_data = getWundergroundData(station, date.day, date.month, date.year) #print(weather_data) done = True except ConnectionError as e: # May get rate limited by Wunderground.com, backoff if so. print("Got connection error on {}".format(date)) print("Will retry in {} seconds".format(backoff_time)) time.sleep(10) # Add each processed date to the overall data data[station].append(weather_data) #print(data) weatherStaionToCSV(data, station) weatherStaionToEXCEL(data, station) def processData(station): """Prosessing the data to make it suitable to further analysis. Args: station (string): the station in question """ csv_name = '{}_raw_weather.csv'.format(station) # Loading CSV data_raw = pd.read_csv('data/' + csv_name) # Changing column names to something nice cols = {'Date' : 'Date', 'Temperature' : 'Temperature [F]', 'Dew Point' : 'Dew Point [F]', 'Humidity' : 'Humidity [%]', 'Wind' : 'Wind Direction', 'Wind Speed' : 'Wind Speed [mph]', 'Wind Gust' : 'Wind Gust [mph]', 'Pressure' : 'Pressure [in]', 'Precip.' : 'Precipitation [inch]'} data_raw.rename(columns = cols, inplace=True) # Converting the data from string with unit to only a float number data_raw['Time'] = data_raw['Time'].str.split(expand = True)[:][0]#.astype(float) data_raw['Time'] = data_raw['Time'].str.replace(':', '.') data_raw['Temperature [F]'] = data_raw['Temperature [F]'].str.split(expand = True)[:][0]#.astype(float) data_raw['Dew Point [F]'] = data_raw['Dew Point [F]'].str.split(expand = True)[:][0]#.astype(float) data_raw['Humidity [%]'] = data_raw['Humidity [%]'].str.split(expand = True)[:][0]#.astype(float) data_raw['Wind Speed [mph]'] = data_raw['Wind Speed [mph]'].str.split(expand = True)[:][0]#.astype(float) data_raw['Wind Gust [mph]'] = data_raw['Wind Gust [mph]'].str.split(expand = True)[:][0]#.astype(float) data_raw['Pressure [in]'] = data_raw['Pressure [in]'].str.split(expand = True)[:][0].str.replace('.', ',')#.astype(float) data_raw['Pressure [in]'] = data_raw['Pressure [in]'].str.replace('.', ',') data_raw['Precipitation [inch]'] = data_raw['Precipitation [inch]'].str.split(expand = True)[:][0]#.astype(float) # Katmandu has no presipitation sensor; droppping the column data_raw = data_raw.drop('Precipitation [inch]', axis = 1) # Updating CSV with prosecced data data_raw.to_csv('data/{}_processed_weather.csv'.format(station)) data_raw.to_excel('data/{}_processed_weather.xlsx'.format(station)) def oneHotEncode(station): """One HHot encodes the string variables that Wunderground returns. """ csv_name = '{}_processed_weather.csv'.format(station) # Loading CSV data_raw = pd.read_csv('data/' + csv_name) one_hot = pd.get_dummies(data_raw['Wind Direction']) data_raw = data_raw.drop('Wind Direction', axis = 1) data_raw = data_raw.join(one_hot) # Possible conditions : # ['Cloudy', 'Drizzle', 'Fair', 'Fog', 'Heavy Rain', 'Heavy T-Storm', 'Light Rain', 'Light Rain with Thunder', 'Mostly Cloudy', 'Partly Cloudy', 'Rain', 'T-Storm', 'Thunder'] generalized_conditions = [] for item in data_raw['Condition']: if type(item) != str: generalized_conditions.append("Other") elif "rain" in item.lower() or "drizzle" in item.lower() or "misty" in item.lower() or "storm" in item.lower() or "thunder" in item.lower(): generalized_conditions.append("Rain") elif "cloudy" in item.lower() or "fog" in item.lower(): generalized_conditions.append("Cloudy") elif "fair" in item.lower(): generalized_conditions.append("Sun") else: generalized_conditions.append("Other") one_hot = pd.get_dummies(generalized_conditions) data_raw = data_raw.drop('Condition', axis = 1) data_raw = data_raw.join(one_hot) # Updating CSV with prosecced data data_raw.to_csv('data/{}_onehot_weather.csv'.format(station)) data_raw.to_excel('data/{}_onehot_weather.xlsx'.format(station)) def main(): start_date = "2019-01-01" end_date = "2019-12-28" station = 'VNKT' # Khatmandu dates = getDates(start_date, end_date) #scrapeDataToCSV(station, dates) processData(station) oneHotEncode(station) if __name__== "__main__": main() ```
{ "source": "JohanSamir/rainbow_extend", "score": 3 }
#### File: lifting_veil/agents/opt_utils.py ```python import gin import optax from absl import logging @gin.configurable def create_opt(name='adamw', learning_rate=6.25e-5, beta1=0.9, beta2=0.999, eps=1.5e-4, weight_decay=0.0, centered=False): """Create an optimizer for training. Currently, only the Adam and RMSProp optimizers are supported. Args: name: str, name of the optimizer to create. learning_rate: float, learning rate to use in the optimizer. beta1: float, beta1 parameter for the optimizer. beta2: float, beta2 parameter for the optimizer. eps: float, epsilon parameter for the optimizer. centered: bool, centered parameter for RMSProp. Returns: A flax optimizer. """ if name == 'adam': logging.info('Creating AdamW optimizer with settings lr=%f, beta1=%f, ' 'beta2=%f, eps=%f, weight decay=%f', learning_rate, beta1, beta2, eps, weight_decay) return optax.adam(learning_rate, b1=beta1, b2=beta2, eps=eps) elif name == 'rmsprop': logging.info('Creating RMSProp optimizer with settings lr=%f, beta2=%f, ' 'eps=%f', learning_rate, beta2, eps) return optax.rmsprop(learning_rate, decay=beta2, eps=eps, centered=centered) else: raise ValueError('Unsupported optimizer {}'.format(name)) ``` #### File: rainbow_extend/lifting_veil/utils.py ```python from agents.dqn_agent_new import * from agents.rainbow_agent_new import * import numpy as np import itertools agents = { 'dqn': JaxDQNAgentNew, 'rainbow': JaxRainbowAgentNew, # 'quantile': JaxQuantileAgentNew, # 'implicit': JaxImplicitQuantileAgentNew, } inits = { 'orthogonal': { 'function': jax.nn.initializers.orthogonal }, 'zeros': { 'function': jax.nn.initializers.zeros }, 'ones': { 'function': jax.nn.initializers.ones }, 'xavier_uni': { 'function': jax.nn.initializers.variance_scaling, 'scale': 1, 'mode': 'fan_avg', 'distribution': 'uniform' }, 'xavier_nor': { 'function': jax.nn.initializers.variance_scaling, 'scale': 1, 'mode': 'fan_avg', 'distribution': 'truncated_normal' }, 'lecun_uni': { 'function': jax.nn.initializers.variance_scaling, 'scale': 1, 'mode': 'fan_in', 'distribution': 'uniform' }, 'lecun_nor': { 'function': jax.nn.initializers.variance_scaling, 'scale': 1, 'mode': 'fan_in', 'distribution': 'truncated_normal' }, 'he_uni': { 'function': jax.nn.initializers.variance_scaling, 'scale': 2, 'mode': 'fan_in', 'distribution': 'uniform' }, 'he_nor': { 'function': jax.nn.initializers.variance_scaling, 'scale': 2, 'mode': 'fan_in', 'distribution': 'truncated_normal' }, 'variance_baseline': { 'function': jax.nn.initializers.variance_scaling, 'scale': 1.0 / np.sqrt(3.0), 'mode': 'fan_in', 'distribution': 'uniform' }, 'variance_0.1': { 'function': jax.nn.initializers.variance_scaling, 'scale': 0.1, 'mode': 'fan_in', 'distribution': 'uniform' }, 'variance_0.3': { 'function': jax.nn.initializers.variance_scaling, 'scale': 0.3, 'mode': 'fan_in', 'distribution': 'uniform' }, 'variance_0.8': { 'function': jax.nn.initializers.variance_scaling, 'scale': 0.8, 'mode': 'fan_in', 'distribution': 'uniform' }, 'variance_3': { 'function': jax.nn.initializers.variance_scaling, 'scale': 3, 'mode': 'fan_in', 'distribution': 'uniform' }, 'variance_5': { 'function': jax.nn.initializers.variance_scaling, 'scale': 5, 'mode': 'fan_in', 'distribution': 'uniform' }, 'variance_10': { 'function': jax.nn.initializers.variance_scaling, 'scale': 10, 'mode': 'fan_in', 'distribution': 'uniform' } } activations = ['non_activation', 'relu', 'relu6', 'sigmoid', 'softplus', 'soft_sign', 'silu', 'swish', 'log_sigmoid', 'hard_sigmoid', 'hard_silu', 'hard_swish', 'hard_tanh', 'elu', 'celu', 'selu', 'gelu', 'glu'] normalizations = ['non_normalization', 'BatchNorm', 'LayerNorm'] learning_rates = [10, 5, 2, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001] batch_sizes = [32, 64, 128, 256, 512] epsilons = [1, 0.5, 0.3125, 0.03125, 0.003125, 0.0003125, 0.00003125, 0.000003125] widths = [32, 64, 128, 256, 512, 1024] depths = [1, 2, 3, 4] update_periods = [1 ,2 ,3, 4, 8, 10, 12] target_update_periods = [10, 25, 50, 100, 200, 400, 800, 1600] gammas = [0.1, 0.5, 0.9, 0.99, 0.995, 0.999] min_replay_historys = [125, 250, 375, 500, 625, 750, 875, 1000] num_atoms = [11, 21, 31, 41, 51, 61] update_horizon = [1, 2, 3, 4, 5, 8, 10] noisy_net = [True, False] clip_rewards = ["True", "False"] experiments = { "epsilon": epsilons, "learning_rate": learning_rates, "width": widths, "depth": depths, "normalization": normalizations, "init": inits, "activation": activations, "update_period": update_periods, "target_update_period": target_update_periods, "gamma": gammas, "min_replay_history": min_replay_historys, "num_atoms": num_atoms, "update_horizon": update_horizon, "clip_rewards": clip_rewards, } groups = { "effective_horizon" : [update_periods, gammas], "constancy_of_parameters" : [inits, update_periods, noisy_net], "network_starting point" : [inits, activations, depths, normalizations], "network_architecture" : [depths, widths, normalizations], #"algorithmic_parameters" : [update_period", "gamma], #"distribution_parameterization" : [update_period", "gamma], "optimizer_parameters" : [learning_rates, epsilons, batch_sizes] #"bellman_updates" : ["update_period", "gamma"] } def get_init_bidings(agent_name, init, seed=None): initializer = inits[init]['function'].__name__ if init == 'zeros' or init == 'ones': gin_bindings = [f"{agent_name}.seed={seed}", f"{agent_name}.initzer = @{initializer}"] elif init == "orthogonal": gin_bindings = [f"{agent_name}.seed={seed}", f"{agent_name}.initzer = @{initializer}()", f"{initializer}.scale = 1"] else: mode = '"'+inits[init]['mode']+'"' scale = inits[init]['scale'] distribution = '"'+inits[init]['distribution']+'"' gin_bindings = [f"{agent_name}.seed={seed}", f"{agent_name}.initzer = @{initializer}()", f"{initializer}.scale = {scale}", f"{initializer}.mode = {mode}", f"{initializer}.distribution = {distribution}" ] return gin_bindings def get_gin_bindings(exp, agent_name, initial_seed, value, test): if exp == "epsilon": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"create_opt.eps = {value}"] elif exp == "learning_rate": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"create_opt.learning_rate = {value}"] elif exp == "width": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.neurons = {value}"] elif exp == "depth": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.hidden_layer = {value}"] elif exp == "normalization": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.normalization = '{value}'"] elif exp == "init": gin_bindings = get_init_bidings(agent_name, value, initial_seed) elif exp == "activation": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.layer_funct = '{value}'"] elif exp == "update_period": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.update_period = {value}"] elif exp == "target_update_period": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.target_update_period = {value}"] elif exp == "gamma": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.gamma = {value}"] elif exp == "min_replay_history": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.min_replay_history = {value}"] elif exp == "num_atoms": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.num_atoms = {value}"] elif exp == "update_horizon": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"{agent_name}.update_horizon = {value}"] elif exp == "clip_rewards": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"Runner.clip_rewards = {value}"] elif exp == "batch_size": gin_bindings = [f"{agent_name}.seed={initial_seed}", f"OutOfGraphPrioritizedReplayBuffer.batch_size = {value}"] else: print("Error! Check the kind of experiment") if test: gin_bindings.extend(["Runner.num_iterations=4", "Runner.training_steps=200"]) return gin_bindings def sample_group(grp, num=1): total = list(itertools.product(*[exp for exp in groups[grp]])) total = np.array(total) indices = np.random.choice(len(total), num, replace=False) sample = total[indices] return sample ```
{ "source": "johanseaxis/acap-native-sdk-examples", "score": 3 }
#### File: env/training/train.py ```python import argparse import tensorflow as tf from model import create_model from utils import SimpleCOCODataGenerator as DataGenerator def train(image_dir, annotation_path): """ Initiates a model and and trains it using a data generator. The model is then saved to the output path. Args: image_dir (str): Path to the directory holding the dataset images. annotation_path (str): Path to the dataset annotation json-file. """ person_car_indicator = create_model() person_car_indicator.compile(optimizer='adam', metrics=['binary_accuracy'], loss=['bce', 'bce']) person_car_indicator.summary() data_generator = DataGenerator(image_dir, annotation_path, batch_size=16) person_car_indicator.fit(data_generator, epochs=10) tf.saved_model.save(person_car_indicator, 'models/saved_model') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Train a basic model.') parser.add_argument('-i', '--images', type=str, required=True, help='path to the directory containing training \ images') parser.add_argument('-a', '--annotations', type=str, required=True, help='path to the .json-file containing COCO instance \ annotations') args = parser.parse_args() train(args.images, args.annotations) ```
{ "source": "johansetiawan/telebot", "score": 3 }
#### File: johansetiawan/telebot/bot_local.py ```python from dotenv import load_dotenv import os ## for chatbot functionalities import telebot from string import Template import emoji from gtts import gTTS ## for data analysis import pandas as pd import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') # SETUP: TELEGRAM BOT API TOKEN load_dotenv() TOKEN = os.environ['TOKEN'] bot = telebot.TeleBot(TOKEN) # -------------------- CHECKPOINT 1 -------------------- @bot.message_handler(commands=['start', 'help']) def send_welcome(message): # TO DO: chat_id, full_name, message_text chat_id = message.from_user.id first_name = message.from_user.first_name last_name = message.from_user.last_name full_name = f'{first_name} {last_name}' if last_name is not None else first_name # TO DO: subtitute text with variable with open('template_text/welcome.txt', mode='r', encoding='utf-8') as f: content = f.read() temp = Template(content) welcome = temp.substitute(FULL_NAME = full_name) bot.send_message( chat_id, welcome, parse_mode='Markdown' ) @bot.message_handler(commands=['about']) def send_about(message): # TO DO: chat_id chat_id = message.from_user.id # TO DO: subtitute text with static values with open('template_text/about.txt', mode='r', encoding='utf-8') as f: content = f.read() temp = Template(content) about = temp.substitute( STUDENT_NAME = "<NAME>", BATCH_ACADEMY = "Phoenix Day Online", GITHUB_REPO_LINK = "https://github.com/johansetiawan/telebot" ) bot.send_message( chat_id, about, parse_mode='Markdown' ) # -------------------- CHECKPOINT 2 -------------------- # TO DO: read data and convert data type df = pd.read_csv("data_input/facebook_ads_v2.csv", parse_dates=["reporting_date"]) # Convert the dtypes of gender, interest 1 to 3 from object to category to lower the memory usage df[['gender', 'interest1', 'interest2', 'interest3']] = df[['gender', 'interest1', 'interest2', 'interest3']].astype('category') # TO DO: get unique values of campaign_id df['campaign_id'] = df['campaign_id'].astype('str') unique_campaign = df['campaign_id'].unique() @bot.message_handler(commands=['summary']) def ask_id_summary(message): # TO DO: chat_id (SAME AS CHECKPOINT 1) chat_id = message.from_user.id markup = telebot.types.ReplyKeyboardMarkup(one_time_keyboard=True) for i in unique_campaign: markup.add(i) sent = bot.send_message(chat_id, 'Choose campaign to be summarized:', reply_markup=markup) bot.register_next_step_handler(sent, send_summary) def send_summary(message): # TO DO: chat_id (SAME AS CHECKPOINT 1) chat_id = message.from_user.id selected_campaign_id = message.text if selected_campaign_id in unique_campaign: # TO DO: find the range date df_campaign = df[df['campaign_id'] == selected_campaign_id] start_date = df_campaign['reporting_date'].min().strftime(format='%d %b %Y') end_date = df_campaign['reporting_date'].max().strftime(format='%d %b %Y') # TO DO: perform calculation total_spent = df_campaign['spent'].sum().astype('int64') total_conversion = df_campaign['total_conversion'].sum().astype('int64') cpc = (total_spent/total_conversion).round(1) # TO DO: subtitute text with variables with open('template_text/summary.txt', mode='r', encoding='utf-8') as f: content = f.read() temp = Template(content) summary = temp.substitute( CAMPAIGN_ID = selected_campaign_id, START_DATE = start_date, END_DATE = end_date, TOTAL_SPENT = f"${total_spent:,}", TOTAL_CONVERSION = f"{total_conversion:,}", CPC = f"${cpc:,.1f}" ) bot.send_message(chat_id, summary) else: bot.send_message(chat_id, 'Campaign ID not found. Please try again!') ask_id_summary(message) # -------------------- CHECKPOINT 3 -------------------- @bot.message_handler(commands=['plot']) def ask_id_plot(message): # TO DO: chat_id (SAME AS CHECKPOINT 1) chat_id = message.from_user.id markup = telebot.types.ReplyKeyboardMarkup(one_time_keyboard=True) for i in unique_campaign: markup.add(i) sent = bot.send_message(chat_id, 'Choose campaign to be visualized:', reply_markup=markup) bot.register_next_step_handler(sent, send_plot) def send_plot(message): # TO DO: chat_id (SAME AS CHECKPOINT 1) chat_id = message.from_user.id selected_campaign_id = message.text if selected_campaign_id in unique_campaign: # TO DO: prepare data for visualization df_campaign = df[df['campaign_id'] == selected_campaign_id] df_plot = df_campaign.groupby('age')[['spent', 'approved_conversion']].sum() df_plot['cpc'] = df_plot['spent']/df_plot['approved_conversion'] # TO DO: visualization # prepare 3 subplots vertically fig, axes = plt.subplots(3, sharex=True, dpi=300) # create frameless plot for ax in axes: ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(False) # first subplot: total spent per age group axes[0].bar(x=df_plot.index, height=df_plot['spent'], color="#AE2024") axes[0].set_ylabel("Total Spent", fontsize=8) # second subplot: total approved conversion per age group axes[1].bar(x=df_plot.index, height=df_plot['approved_conversion'], color="#000000") axes[1].set_ylabel("Total Approved\n Conversion", fontsize=8) # third subplot: average CPC per age group axes[2].bar(x=df_plot.index, height=df_plot['cpc'], color="#AE2024") axes[2].set_ylabel("Average CPC", fontsize=8) # set the label and title for plots plt.xlabel("Age Group") axes[0].set_title( f'''Average CPC, Total Spent, and Total Approved Conversion across Age Group for Campaign ID: {selected_campaign_id}''') # create output folder if not os.path.exists('output'): os.makedirs('output') # save plot plt.savefig('output/plot.png', bbox_inches='tight') # send plot bot.send_chat_action(chat_id, 'upload_photo') with open('output/plot.png', 'rb') as img: bot.send_photo(chat_id, img) # (EXTRA CHALLENGE) Voice Message plot_info = list(zip( ['total spent', 'total approved conversion', 'average cpc'], df_plot.idxmax(), df_plot.idxmin())) plot_text = f'This is your requested plot for Campaign ID {selected_campaign_id}.\n' for col, maxi, mini in plot_info: text = f"Age group with the highest {col} is {maxi}, while the lowest is {mini}.\n" plot_text += text # save voice message speech = gTTS(text = plot_text) speech.save('output/plot_info.ogg') # send voice message with open('output/plot_info.ogg', 'rb') as f: bot.send_voice(chat_id, f) else: bot.send_message(chat_id, 'Campaign ID not found. Please try again!') ask_id_plot(message) # -------------------- CHECKPOINT 4 -------------------- @bot.message_handler(func=lambda message: True) def echo_all(message): # TO DO: emoji with open('template_text/default.txt', mode='r', encoding='utf-8') as f: temp = Template(f.read()) default = temp.substitute(EMOJI = emoji.emojize(':hear_no_evil:', use_aliases=True)) bot.reply_to(message, default) if __name__ == "__main__": bot.polling() ```
{ "source": "johansettlin/Flask-MonitoringDashboard-Tutorial", "score": 2 }
#### File: johansettlin/Flask-MonitoringDashboard-Tutorial/app.py ```python from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Flask-Monitoring-Dashboard tutorial' @app.route('/endpoint1') def endpoint1(): time.sleep(0.20) return 'Endpoint1', 400 @app.route('/endpoint2') def endpoint2(): time.sleep(5) return 'Endpoint2' ```
{ "source": "johansettlin/thesis-work", "score": 2 }
#### File: johansettlin/thesis-work/filter.py ```python from gremlin_python.process.anonymous_traversal import traversal from gremlin_python.process.graph_traversal import __ from gremlin_python.process.traversal import Cardinality, T from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection from graph_api import * def exchangePattern1(g): ## BAD PATTERN ## p = g.V().match(__.as_("cred").where(__.out("instanceOf").hasLabel("Credentials")),\ __.as_("cred").out("identities").where(__.out("instanceOf").hasLabel("Identity")).as_("id"),\ __.not_(__.as_("cred").out().\ where(__.out("instanceOf").hasLabel("Data").out().as_("id"))))\ .select("cred", "id").toList() ## REWRITE PATTERN for a in p: removeAssociation(g, a['cred'], a['id'], "identities") data = addNewObject(g, "Data", "data") addNewAssociation(g, a['cred'], data, "EncryptionCredentials") addNewAssociation(g, data, a['id'], "ReadPrivileges") success = validatePatternExchange(g) if(success): activateDefense(g, data, "authenticated") def getExchangePatterns1(): return [exchangePattern1] ``` #### File: johansettlin/thesis-work/graphModels.py ```python from gremlin_python.process.anonymous_traversal import traversal from gremlin_python.process.traversal import Cardinality, T from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection import scad import requests import csv import json import re from os import getcwd def drop_all(g): # Delete all vertices g.V().drop().iterate() ########### MAL layer ############## def mal(g): # Add the root asset which is a starting point for schemantic queries root = g.addV("root").next() # Add the main building blocks of MAL assets = g.addV("assets").next() attackSteps = g.addV("attackSteps").next() defenses = g.addV("defenses").next() associations = g.addV("associations").next() # Add root edges g.V(root.id).addE("attackSteps").to(attackSteps).iterate() g.V(root.id).addE("assets").to(assets).iterate() g.V(root.id).addE("defenses").to(defenses).iterate() g.V(root.id).addE("associations").to(associations).iterate() #### Add DSL and instance properties #### #DSL properties for attack steps a_type = g.addV("type").next() g.V(attackSteps.id).addE("DSLProperties").to(a_type).iterate() #Instance properties for attack steps ttc5 = g.addV("TTC-5%").next() ttc50 = g.addV("TTC-50%").next() ttc95 = g.addV("TTC-95%").next() g.V(attackSteps.id).addE("instanceProperties").to(ttc5).iterate() g.V(attackSteps.id).addE("instanceProperties").to(ttc50).iterate() g.V(attackSteps.id).addE("instanceProperties").to(ttc95).iterate() #DSL Porperties for associations role = g.addV("role").next() cardi_begin = g.addV("carinality_begin").next() g.V(associations.id).addE("DSLProperties").to(role).iterate() g.V(associations.id).addE("DSLProperties").to(cardi_begin).iterate() #Instance Properties for assets tag = g.addV("tag").next() name = g.addV("name").next() g.V(assets.id).addE("instanceProperties").to(tag).iterate() g.V(assets.id).addE("instanceProperties").to(name).iterate() #Instance properties for defenses active = g.addV("active").next() g.V(defenses.id).addE("instanceProperties").to(active).iterate() def readMALSpec(url): #url = "https://raw.githubusercontent.com/mal-lang/coreLang/master/src/main/mal/coreLang.mal" #url = "https://raw.githubusercontent.com/mal-lang/coreLang/master/src/main/mal/coreLang.mal" directory = getcwd() filename = 'mal.txt' r = requests.get(url) f = open(filename,'w') f.write(r.text) f.close() with open(filename) as infile, open('output.txt', 'w') as outfile: for line in infile: if not line.strip(): continue # skip the empty line outfile.write(line) # non-empty line. Write it to output spec = open('output.txt', "r") content = spec.readlines() asso = False assocs = [] assets = [] currentAsset = {"name": "", "attackSteps":[], "defenses": [], "extends": "", "abstract": False} for line in content: words = line.split() if(asso == False): if(len(words) >= 2): if(words[0] == "asset"): if(currentAsset["name"] != ""): assets.append(currentAsset) #the asset extends another asset if(len(words) >= 4 and words[2] == "extends"): currentAsset = {"name": "", "attackSteps":[], "defenses": [], "extends": "", "abstract": False} currentAsset["name"] = words[1] print(words[1], " extends ", words[3]) currentAsset['extends'] = words[3] else: currentAsset = {"name": "", "attackSteps":[], "defenses": [], "extends": "", "abstract": False} currentAsset["name"] = words[1] ## Create a new asset if(words[1] == "asset"): if(currentAsset["name"] != ""): assets.append(currentAsset) currentAsset = {"name": "", "attackSteps":[], "defenses": [], "extends": "", "abstract": False} currentAsset["name"] = words[2] if(words[0] == "abstract"): print("asset ", words[2], " is abstarct") currentAsset["abstract"] = True #All defenses and attack steps until a new asset is # present belongs to the prev asset # Needs more functionality for E, !E, @hidden etc.. if(words[0] == "|"): #Attack step of type OR currentAsset["attackSteps"].append({"name": words[1], "type": "OR"}) if(words[0] == "&"): #Attack step of type AND currentAsset["attackSteps"].append({"name": words[1], "type": "AND"}) if(words[0] == "#"): #Defense currentAsset["defenses"].append({"name": words[1]}) #spec.close() ## no more assets, just associations if(words[0] == "associations"): asso = True assets.append(currentAsset) else: if(len(words) >= 2): for d in assets: if(d["name"] == words[0]): line = ''.join(words) lineContent = re.split('\[|\]|<--|-->', line) # print(lineContent) assoc = {} assoc["linkName"] = lineContent[3] assoc["asset1"] = lineContent[0] assoc["asset2"] = lineContent[6] assoc["role1"] = lineContent[1] assoc["role2"] = lineContent[5] assoc["cardinality1"] = lineContent[2] assoc["cardinality2"] = lineContent[4] assocs.append(assoc) break if(asso == False): assets.append(currentAsset) return assets, assocs ########### DSL Layer ############### #Adds an assets in the DSL layer def addAssets(g, assets): #Create all the assets for x in assets: for asset in x: #create the asset with the name as label a = g.addV(asset["name"]).next() rootA = g.V().hasLabel("root").out("assets").next() #The asset is an instance of the asset node in the MAL layer g.V(a.id).addE("instanceOf").to(rootA).iterate() #Add defenses addDefenses(g, a, asset["defenses"]) #Add attack steps addAttackSteps(g, a, asset["attackSteps"]) #Add functionality for extends and abtract type assets for x in assets: for asset in x: #check if the asset extends another asset if(asset['extends'] != ""): a = g.V().hasLabel(asset['name']).next() #print("a", a.id) extendedAsset = g.V().hasLabel(asset['extends']).next() #print("ea", extendedAsset.id) #add an extends edgen between the assets g.V(a.id).addE("extends").to(extendedAsset).iterate() #check if the asset is abstarct if(asset['abstract']): g.V().hasLabel(asset['name']).property('type', 'abstract').next() def addAssociations(g, assocs): for x in assocs: for a in x: role1 = a['role1'].strip("[]") role2 = a['role2'].strip("[]") #add two new assocs vertices containing information about both sides a1 = g.addV(a["linkName"]).property("role", role1).property("cardinality_begin", a["cardinality1"]).next() a2 = g.addV(a["linkName"]).property("role", role2).property("cardinality_begin", a["cardinality2"]).next() #add instanceOf edges to associations in the MAL Layer rootAs = g.V().hasLabel("root").out("associations").next() g.V(a1.id).addE("instanceOf").to(rootAs).iterate() g.V(a2.id).addE("instanceOf").to(rootAs).iterate() #Add association edges from the asset to its role and target edges g.V().hasLabel(a["asset1"]).addE("associations").to(a1).iterate() g.V().hasLabel(a["asset2"]).addE("associations").to(a2).iterate() asset2 = g.V().hasLabel(a["asset2"]).next() g.V(a1.id).addE("targetType").to(asset2).iterate() asset1 = g.V().hasLabel(a["asset1"]).next() g.V(a2.id).addE("targetType").to(asset1).iterate() # Adds defenses to an asset in DSL layer def addDefenses(g, asset, defenses): # g : Graph traversal source to access the database # asset : is a vertex in the DSL layer representing # the asset the defenses should relate to # # defenses : list of dictionaries {"name" : "nameOfDefense"} for defense in defenses: #Add a new vertex representing the defense d = g.addV(defense["name"]).next() #Add an edge (defense relation) from the asset having the defense g.V(asset.id).addE("defenses").to(d).iterate() # Adds attack steps to an asset on the DSL layer def addAttackSteps(g, asset, attackSteps): # g : Graph traversal source to access the database # asset : is a vertex in the DSL layer representing # the asset the defenses should relate to # # attackSteps : list of dictionaries {"name" : "nameOfAttackStep", "type": "type"} for step in attackSteps: a = g.addV(step["name"]).property("type", step["type"]).next() rootAt = g.V().hasLabel("root").out("attackSteps").next() g.V(a.id).addE("instanceOf").to(rootAt).iterate() g.V(asset.id).addE("attackSteps").to(a).iterate() ###################### Instance Layer ############################# def readCSV(file): # initializing the titles and rows list fields = [] rows = [] headerInfo = [] # reading csv file with open(file, 'r') as csvfile: # creating a csv reader object csvreader = csv.reader(csvfile) # extracting field names through first row headerInfo.append(next(csvreader)) headerInfo.append(next(csvreader)) headerInfo.append(next(csvreader)) headerInfo.append(next(csvreader)) fields = next(csvreader) # extracting each data row one by one for row in csvreader: rows.append(row) return rows #Add attack steps with TTC values and set active defenses def getActiveDefenses(file, oid, metaConcept): assets = scad.open(file) #Get the meta concept activeDefenses = [] for o in assets['eom_etree'].findall('objects'): if (o.get('id') == oid): for evidence in o.findall('evidenceAttributes'): if evidence.findall('evidenceDistribution'): defense = evidence.get("metaConcept")[0].lower() + evidence.get("metaConcept")[1:] #might fix to handle probability, on, off etc activeDefenses.append(defense) return activeDefenses def addInstanceDefenses(g, vertex, oid, metaConcept, file): #get the defenses in the DSL layer associated to the object type defenses = g.V().hasLabel("root").out("assets").in_("instanceOf").hasLabel(metaConcept).out("defenses").project("id", "label").by(T.id).by(T.label).toList() activeDefenses = getActiveDefenses(file, oid, metaConcept) for defense in defenses: # check if the defense is active in the oem file if(defense['label'] in activeDefenses): #create an active defense vertex d = g.addV().property('active', 1).next() #The instance object has an edge to the defense g.V(vertex.id).addE("defense").to(d).iterate() #The defense is an instance of a defence in the DSL layer metaD = g.V(defense['id']).next() g.V(d.id).addE("instanceOf").to(metaD).iterate() else: #create an inactive defense vertex d = g.addV().property('active', 0).next() #The instance object has an edge to the defense g.V(vertex.id).addE("defense").to(d).iterate() #The defense is an instance of a defence in the DSL layer mD = g.V(defense['id']).next() g.V(d.id).addE("instanceOf").to(mD).iterate() # Gets the TTC value for an attack step, if there is none return 0 def getTTC(oid, name, attackStep, simulation): #TTC values is on index 6,7,8 and id of the object id is on index 1 #and the name of the attack step is on index 5 #print(name, attackStep) for row in simulation: if((row[1] == oid) and (row[5].lower() == attackStep.lower())): return row[6], row[7], row[8] return 0, 0, 0 def addInstanceAttackSteps(g, vertex, metaConcept, oid , name , simulation): #for each attack step get the TTC values from the simulation and create the #attack step vertex #get the attack steps from the DSL layer as a list attackSteps = g.V().hasLabel("root").out("assets").in_("instanceOf").hasLabel(metaConcept).out("attackSteps").project("id", "label").by(T.id).by(T.label).toList() for attackStep in attackSteps: TTC5, TTC50, TTC95 = getTTC(oid, name, attackStep['label'], simulation) #Add the attack step as a vertex in the instance layer with the ttc values aStep = g.addV().property('TTC-5%', TTC5).property('TTC-50%', TTC50).property('TTC-95%', TTC95).next() #connect to the model #add an edge between the object and the attack step g.V(vertex.id).addE("attackStep").to(aStep).next() #the attack step is an instance of the attack step in the DSL layer attackStep = g.V(attackStep['id']).next() g.V(aStep.id).addE("instanceOf").to(attackStep).iterate() def xmlToModel(g, file, csv): eom = scad.open(file) assets = scad.get_assets(eom) simulation = readCSV(csv) for o in assets['objects']: if(not (o['metaConcept'] == 'Attacker')): #add the instance object, need to keep the securiCAD id for the associations vertex = g.addV().property('name', o['name']).property('id', o['id']).next() #Check if there is any tags present if('attributesJsonString' in o): for k, v in json.loads(o['attributesJsonString']).items(): g.V(vertex.id).property(k,v).next() #the object vertex is an instance of a DSL asset metaAs = g.V().hasLabel("root").out("assets").in_("instanceOf").hasLabel(o['metaConcept']).next() g.V(vertex.id).addE("instanceOf").to(metaAs).iterate() addInstanceAttackSteps(g, vertex, o['metaConcept'], o['exportedId'], o['name'] , simulation) addInstanceDefenses(g, vertex, o['id'], o['metaConcept'], file) #assumes that associations in the instance model is correct in respect to the DSL for a in assets['assocs']: if( '.attacker' not in a['targetProperty'] ): #getLinkName(g.V().has('id', a['sourceObject']), a['targetProperty'], a['sourceProperty']) target = g.V().has('id', a['targetObject']).next() g.V().has('id', a['sourceObject']).addE(a['sourceProperty']).to(target).iterate() source = g.V().has('id', a['sourceObject']).next() g.V().has('id', a['targetObject']).addE(a['targetProperty']).to(source).iterate() return eom def addVertex(g, className, name, defenses): #Need to check rules in the MAL language return g.addV(className) def addEdge(g, associationName, fromAssetId, toAssetId): return g.addE(associationName) #Creation of the example graph provided in Chapter. 2 representing a band. def exampleModel(g): #drop the old graph drop_all(g) #Creation of all the vertecies johan = g.addV("Person").property("Name", "Johan").property("Gender", "Male").next() noomi = g.addV("Person").property("Name", "Noomi").property("Gender", "Female").next() band = g.addV("Band").property("Name", "Soulmates").property("Genre", "Indie").property("Founded", "2019").next() piano = g.addV("Instrument").property("Type", "Piano").next() guitar = g.addV("Instrument").property("Type", "Guitar").next() festival = g.addV("Festival").property("Location", "Stockholm").next() #Creation of all the edges g.addE("member").property("weight", 0.5).from_(johan).to(band).iterate() g.addE("member").property("weight", 0.5).from_(noomi).to(band).iterate() g.addE("plays").property("weight", 0.8).from_(johan).to(piano).iterate() g.addE("plays").property("weight", 0.5).from_(noomi).to(guitar).iterate() g.addE("played_at").property("weight", 0.8).from_(band).to(festival).iterate() ``` #### File: johansettlin/thesis-work/patterns.py ```python from gremlin_python.process.graph_traversal import __ from gremlin_python.process.traversal import P, T from graph_api import * #Caller for pw-reuse pattern def passwordReuse(g): ap = passwordReuseAP(g) passwordReuseEP(g, ap) #An anti pattern (AP) returns a list of affected vertices (or edges) def passwordReuseAP(g): ap = g.V().match(\ __.as_("credential").out("instanceOf").hasLabel("Credentials"),\ __.as_("credential").out().where(__.out("instanceOf").hasLabel("Identity")).as_("Identity")).\ select("credential", "Identity").toList() #__.as_("Identity").out().where(__.out("instanceOf").hasLabel("Application")).count().is_(P.gte(2))).\ #print("Pattern: ",ap) return ep #Exchange Patterns is a set of funtion calls to the graph_api def passwordReuseEP(g, ap): for p in ap: changes = {"objects": [], "associations": []} #Do something with the vertecies in ap ## (1) add new objects obj1, valid = addObject(g, "idx", "Identity") ## (2) add new assocs assoc1, valid = addAssociation(g, obj1, p['Identity'], "CanAssume") ## (3) set properties /remove or assets activateDefense(g, obj1, "twoFactorAuthentication") ``` #### File: johansettlin/thesis-work/proertyGraphToXML.py ```python from gremlin_python.process.graph_traversal import __ from gremlin_python.process.traversal import P, T import scad from graph_api import * def convertPropertyGraphToSecuriCAD(g,s): scad.delete_all_objects_and_assocs(s) addObjectsToEOM(g, s) addAssociationsToEOM(g, s) scad.to_file(s, "newModelAgain.sCAD") ## Adds all objects from the property graph to the XML def addObjectsToEOM(g, s): objects = g.V().hasLabel("root").out("assets").in_("instanceOf").in_("instanceOf").toList() counter = 1000000000 for o in objects: obj = {} obj['id'] = str(o.id) obj['metaConcept'] = g.V(o.id).out("instanceOf").label().next() obj['name'] = g.V(o.id).values("name").next() obj['tag'] = g.V(o.id).valueMap().next() obj['exportedId'] = str(counter) scad.add_object(s, obj) counter = counter + 1 #add active defenses defenses = g.V(o.id).out("defense").has('active', 1).out("instanceOf").label().toList() unactiveDefenses = g.V(o.id).out("defense").has('active', 0).out("instanceOf").label().toList() asset = g.V(o.id).out("instanceOf").label().next() defensList = [] for d in defenses: name = d.capitalize() scad.set_activated_defense(s, str(o.id),name) #add attacksteps addAttackSteps(g, s) ## Adds all associations from the property graph to the XML def addAssociationsToEOM(g,s): counter = -1000000000 #assoc = {'id': counter, 'targetId': , 'sourceId': , 'targetRole': , 'sourceRole':} objects = g.V().hasLabel("root").out("assets").in_("instanceOf").in_("instanceOf").toList() for o in objects: assocs = g.V(o.id).match(__.as_('sourceId')\ .out()\ .where(__.out("instanceOf").out("instanceOf").hasLabel("assets"))\ .as_("targetId"))\ .select("sourceId", "targetId").toList() for a in assocs: #print(g.V(a["sourceId"]).properties('name').next(), g.V(a["targetId"]).properties('name').next()) if(assocExits(s, a["sourceId"], a["targetId"])): continue else: #Get roles #print(g.V(a["targetId"].id).properties('name').next(), g.V(a["sourceId"].id).properties('name').next()) sourceRole = getRoleInAssociation(g, a["targetId"], a["sourceId"]) targetRole = getRoleInAssociation(g, a["sourceId"], a["targetId"]) association = {'id': str(counter), 'targetId': str(a["targetId"].id), 'sourceId': str(a["sourceId"].id), 'targetRole': targetRole, 'sourceRole': sourceRole} scad.add_association(s, association) counter = counter -1 #checks if a association exits between two objects def assocExits(s, obj1, obj2): assets = scad.get_assets(s) for a in assets['assocs']: if((a['sourceObject'] == str(obj1.id) and a['targetObject'] == str(obj2.id)) or (a['sourceObject'] == str(obj2.id) and a['targetObject'] == str(obj1.id))): #association exits return True return False #gets all attack steps and adds them to the objects def addAttackSteps(g, s): attacksteps = g.V().hasLabel("root").out("attackSteps").in_("instanceOf").project("name", "metaConcept").by(__.label()).by(__.in_("attackSteps").label()).toList() j = [] for x in attacksteps: lis = [x['metaConcept'], x['name']] j.append(lis) scad.add_attacksteps(s, j) ```
{ "source": "johansi/nnlib", "score": 3 }
#### File: nnlib/tools/heatmap_to_points.py ```python from .helper import * try: import cv2 except ModuleNotFoundError : printing("UNALBE TO IMPORT OpenCV", print_types.WARNING) import numpy as np from numba import njit import numba import pdb from scipy.interpolate import splprep, splev def heatmap_to_multiple_points(pred, thres=0.5, max_points=100, cut_off_area=0.5): mask = (pred > thres).astype(np.uint8) if int(cv2.__version__[0]) < 4: _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) else: contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if (len(contours) == 0) or (len(contours) > max_points): return None nut_points = np.zeros((len(contours),3)) for i in range(len(contours)): nut_points[i,0:2] = np.mean(contours[i][:,0,:], axis=0) nut_points[i,2] = cv2.contourArea(contours[i]) if len(contours) > 0: cut_off = nut_points[:,2].mean()*cut_off_area nut_points = nut_points[nut_points[:,2] > cut_off] return nut_points[:,0:2] def heatmap_to_max_confidence_point(heatmap, thres=0.5): center_point = None if heatmap.max() > thres: center_point = np.flip(np.unravel_index(heatmap.argmax(), heatmap.shape)) return center_point def heatmap_to_circle_HoughCircles(mask, cp): radius = get_radius(mask,cp[0],cp[1], add_factor=0.0) if not is_valid_radius(radius,cp,mask.shape): return None radius_range = 40 mind_circle_center_dist = 100 param1 = 100 param2 = 30 circle = np.squeeze(cv2.HoughCircles(image=np.round(mask*255).astype(np.uint8), method=cv2.HOUGH_GRADIENT, dp=1, minDist=mind_circle_center_dist,param1=param1, param2=param2,minRadius=radius-radius_range, maxRadius=radius+radius_range).astype(np.int)) return circle @njit def check_validity(circle_points): zero_counter = 0 len_c = int(len(circle_points)*0.3) for idx in range(len(circle_points)): if (circle_points[idx,0] == 0) and (circle_points[idx,1] == 0): zero_counter += 1 if zero_counter == len_c: return False else: zero_counter = 0 return True def heatmap_to_circle(mask, cp=None): #pdb.set_trace() #radius = get_radius(mask,cp[0],cp[1]) radius = mask.shape[0] #if not is_valid_radius(radius,cp,mask.shape): #return None if cp is None: thresholded_mask = mask>0.5 if len(np.unique(thresholded_mask)) == 1: return None cp = np.flip(np.mean(np.array(np.where(thresholded_mask>0.5)).T, axis=0).astype(np.int)) scan_points = get_scan_points(10,cp[0],cp[1],mask.shape[0],radius) circle_points = get_circle_points(scan_points,cp[0],cp[1],mask) if not check_validity(circle_points): return None len_points = circle_points circle_filter = circle_points[np.logical_and(circle_points[:,0] > 0, circle_points[:,1] > 0)] try: tck, u = splprep([circle_filter[:,0], circle_filter[:,1]], s=0) new_points = splev(np.linspace(0,1,len(len_points)), tck) new_points = np.array(new_points).T except: return None return new_points @njit def get_radius(mask,p0,p1, add_factor=0.1): radiuss = np.zeros(4,dtype=numba.int64) # detect circle radius m_north = np.flip(mask[:p1+1,p0]) m_east = mask[p1,p0:] m_south = mask[p1:,p0] m_west = np.flip(mask[p1,:p0+1]) radiuss[0] = np.argsort(m_north)[-1:][0] radiuss[1] = np.argsort(m_east)[-1:][0] radiuss[2] = np.argsort(m_south)[-1:][0] radiuss[3] = np.argsort(m_west)[-1:][0] radius = np.median(radiuss) return int(radius + round(radius*add_factor)) def is_valid_radius(radius,cp,shape): return (((cp[0] + radius) < shape[1]) and ((cp[1] + radius) < shape[0]) and ((cp[0] - radius) >= 0) and ((cp[1] - radius) >= 0)) @njit def get_scan_points(step,cp0,cp1,shape,radius): angles = np.arange(0,360,step) scan_points = np.zeros((len(angles),2), dtype=numba.int64) for i in range(len(angles)): x = round(radius*np.sin(np.deg2rad(angles[i]))+cp0) y = round(radius*np.sin(np.deg2rad(90-angles[i]))+cp1) scan_points[i,0] = x scan_points[i,1] = y return scan_points @njit def line(r0, c0, r1, c1): steep = 0 r = r0 c = c0 dr = abs(r1 - r0) dc = abs(c1 - c0) sr=0 sc=0 d=0 i=0 rr = np.zeros(max(dc, dr) + 1, dtype=np.intp) cc = np.zeros(max(dc, dr) + 1, dtype=np.intp) if (c1 - c) > 0: sc = 1 else: sc = -1 if (r1 - r) > 0: sr = 1 else: sr = -1 if dr > dc: steep = 1 c, r = r, c dc, dr = dr, dc sc, sr = sr, sc d = (2 * dr) - dc for i in range(dc): if steep: rr[i] = c cc[i] = r else: rr[i] = r cc[i] = c while d >= 0: r = r + sr d = d - (2 * dc) c = c + sc d = d + (2 * dr) rr[dc] = r1 cc[dc] = c1 return rr, cc @njit def get_circle_points(scan_points,cp0,cp1,mask): circle_points = np.zeros((len(scan_points),2)) point_diffs = np.zeros(len(scan_points)-1) shape = mask.shape[0] p_idx = 0 for i in range(len(scan_points)): #pdb.set_trace() p = scan_points[i] l = line(cp0,cp1,p[0],p[1]) discrete_line = np.zeros((len(l[0]),2),dtype=np.int64) discrete_line[:,0] = l[0] discrete_line[:,1] = l[1] x_cond = np.where(np.logical_or(discrete_line[:,0] < 0, discrete_line[:,0] > shape-1))[0] y_cond = np.where(np.logical_or(discrete_line[:,1] < 0, discrete_line[:,1] > shape-1))[0] idx_x = len(discrete_line) if len(x_cond) == 0 else x_cond[0] idx_y = len(discrete_line) if len(y_cond) == 0 else y_cond[0] discrete_line = discrete_line[:min(idx_x,idx_y)] intens = np.zeros(len(discrete_line)) for lp in range(len(discrete_line)): intens[lp] = mask[discrete_line[lp,1],discrete_line[lp,0]] circle_point_idx = np.argsort(intens)[-1] circle_point = discrete_line[circle_point_idx] # return None detected circle if confidence for circle is below 0.3 if mask[circle_point[1], circle_point[0]] < 0.3: #return None continue # return None detected circle if detected circle point is 3x far away, as mean of all circle points #pdb.set_trace() if i > 0: if (circle_points[i-1][0] != 0) and (circle_points[i-1][1] != 0): point_diff = np.sqrt(np.sum((circle_points[i-1] - circle_point)**2)) if p_idx > 0: if (point_diffs[0:p_idx].mean()*3) < point_diff: #return None continue point_diffs[p_idx] = point_diff p_idx += 1 circle_points[i] = circle_point return circle_points ``` #### File: nnlib/tools/inference.py ```python import os import numpy as np from .image_tools import * import pdb import time import PIL import cv2 from .helper import * try: import pycuda.autoinit import tensorrt as trt import pycuda.driver as cuda TRT_LOGGER = trt.Logger(trt.Logger.WARNING) except: printing("UNALBE TO IMPORT TENSORRT", print_types.WARNING) try: import torch from torchvision import transforms except: printing("UNALBE TO IMPORT PYTORCH", print_types.WARNING) def predict_classification(runtime, image, size, class_types): times= {} if type(image) == PIL.Image.Image: image = np.asarray(image) t_resize = time.time() image = cv2.resize(image, (size, size)) times["resize"] = round((time.time() - t_resize)*1000) t_prediction = time.time() prediction = runtime.inference(image) times["prediction"] = round((time.time() - t_prediction)*1000) #t_img_points = time.time() #img_points = get_image_points(prediction, heatmap_types) #times["classification"] = round((time.time() - t_img_points)*1000) return image, prediction, times def predict_heatmap_image(runtime, image, size, heatmap_types, enhance=False):#dist_image,y_pos_dist times = {} if type(image) == PIL.Image.Image: image = np.asarray(image) t_resize = time.time() image = cv2.resize(image, (size, size)) times["resize"] = round((time.time() - t_resize)*1000) if enhance: t_enhance = time.time() image = image_enhance(image) times["enhance"] = round((time.time() - t_enhance)*1000) t_prediction = time.time() prediction = np.squeeze(runtime.inference(image)) times["prediction"] = round((time.time() - t_prediction)*1000) t_img_points = time.time() img_points = get_image_points(prediction, heatmap_types) times["img_points"] = round((time.time() - t_img_points)*1000) return image, prediction, img_points, times class PYTORCH_CONTEXT: def __init__(self, model, state_dict_file, norm_stats_mean=None, norm_stats_std=None, batch_norm=False, device="cpu", model_key=None, convert_out_to_np=False): self.device = device self.model = model.to(self.device) checkpoint = torch.load(state_dict_file, map_location=torch.device(self.device)) checkpoint = checkpoint if model_key is None else checkpoint["model"] self.model.load_state_dict(checkpoint) self.model = self.model.eval() self.batch_norm = batch_norm self.convert_out_to_np = convert_out_to_np if batch_norm: self.normalize = transforms.Normalize(norm_stats_mean,norm_stats_std) self.to_tensor = transforms.ToTensor() def inference(self, inputs): inputs = [inputs] if type(inputs) != list else inputs for idx in range(len(inputs)): if (type(inputs[idx]) == np.ndarray) and self.batch_norm: inputs[idx] = PIL.Image.fromarray(inputs[idx]) if self.batch_norm: for idx in range(len(inputs)): inputs[idx] = self.normalize(self.to_tensor(inputs[idx]))[None].to(self.device) else: for idx in range(len(inputs)): inputs[idx] = inputs[idx].to(self.device) with torch.no_grad(): out = self.model(*inputs) if self.convert_out_to_np: return np.array(out.cpu()) else: return out class TENSOR_RT_CONTEXT: def __init__(self, onnxfile, input_names, output_names, norm_stats_mean=None, norm_stats_std=None, fp16=True, max_workspace_size=3<<28, batch_norm=True): #print("CREATE TENSOR_RT_CONTEXT") trt.init_libnvinfer_plugins(None, "") self._fp16 = fp16 self.norm_stats_mean = norm_stats_mean self.norm_stats_std = norm_stats_std self._max_workspace_size = max_workspace_size self.input_names = input_names self.output_names = output_names self.engine_path = onnxfile.parent/(onnxfile.stem+".engine") self.batch_norm = batch_norm if os.path.exists(self.engine_path): #print("ENINGE EXISTS") self.load_tensorrt_engine() else: if trt.__version__[0] == "8": self.onnx_to_tensorrt_8(onnxfile) else: self.onnx_to_tensorrt_7(onnxfile) self.create_execution_context() def create_execution_context(self): # Determine dimensions and create page-locked memory buffers (i.e. won't be swapped to disk) to hold host inputs/outputs. self.host_inputs = [] self.host_outputs = [] self.device_inputs = [] self.device_outputs = [] self.bindings = [] for name in self.input_names: idx = self.engine.get_binding_index(name) host_input = cuda.pagelocked_empty(trt.volume(self.engine.get_binding_shape(idx)), dtype=np.float32) device_input = cuda.mem_alloc(host_input.nbytes) self.bindings.append(int(device_input)) self.host_inputs.append(host_input) self.device_inputs.append(device_input) for name in self.output_names: idx = self.engine.get_binding_index(name) host_output = cuda.pagelocked_empty(trt.volume(self.engine.get_binding_shape(idx)), dtype=np.float32) device_output = cuda.mem_alloc(host_output.nbytes) self.bindings.append(int(device_output)) self.host_outputs.append(host_output) self.device_outputs.append(device_output) # Create a stream in which to copy inputs/outputs and run inference. self.stream = cuda.Stream() # create execution context self.context = self.engine.create_execution_context() def inference(self, inputs): inputs = [inputs] if type(inputs) != list else inputs for idx in range(len(inputs)): if self.batch_norm: inputs[idx] = batch_and_normalize(inputs[idx], mean=self.norm_stats_mean, std=self.norm_stats_std) np.copyto(self.host_inputs[idx], inputs[idx].ravel()) cuda.memcpy_htod_async(self.device_inputs[idx], self.host_inputs[idx], self.stream) self.context.execute_async(batch_size= 1, bindings=self.bindings, stream_handle=self.stream.handle) for idx in range(len(self.host_outputs)): cuda.memcpy_dtoh_async(self.host_outputs[idx], self.device_outputs[idx], self.stream) self.stream.synchronize() outs = [] for idx in range(len(self.output_names)): binding_idx = self.engine.get_binding_index(self.output_names[idx]) outs.append(np.reshape(self.host_outputs[idx],self.engine.get_binding_shape(binding_idx))) return tuple(outs) if len(outs) > 1 else outs def load_tensorrt_engine(self): with open(self.engine_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: self.engine = runtime.deserialize_cuda_engine(f.read()) def onnx_to_tensorrt_8(self,onnx_file): builder = trt.Builder(TRT_LOGGER) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) parser = trt.OnnxParser(network, TRT_LOGGER) config = builder.create_builder_config() success = parser.parse_from_file(str(onnx_file)) for idx in range(parser.num_errors): print(parser.get_error(idx)) config = builder.create_builder_config() if self._fp16: config.set_flag(trt.BuilderFlag.FP16) builder.max_batch_size = 1 serialized_engine = builder.build_serialized_network(network, config) with open(self.engine_path, "wb") as f: f.write(serialized_engine) with trt.Runtime(TRT_LOGGER) as runtime: self.engine = runtime.deserialize_cuda_engine(serialized_engine) def onnx_to_tensorrt_7(self,onnx_file): EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) builder = trt.Builder(TRT_LOGGER) network = builder.create_network(EXPLICIT_BATCH) parser = trt.OnnxParser(network,TRT_LOGGER) model = open(onnx_file, 'rb') parser.parse(model.read()) for error in range(parser.num_errors): print(parser.get_error(error)) builder.max_batch_size = 1 builder.fp16_mode = self._fp16 builder.max_workspace_size = self._max_workspace_size self.engine = builder.build_cuda_engine(network) with open(self.engine_path, "wb") as f: f.write(self.engine.serialize()) ``` #### File: nnlib/training/unet.py ```python from collections import OrderedDict import torch import torch.nn as nn from torch.nn.utils import weight_norm import pdb __all__ = ["UNet","res34_downsample", "downsample_none", "downsample_maxpool", "downsample_stride", "upsample_none", "upsample_upsample", "upsample_conv"] res34_downsample = [3,4,6,3] downsample_none = 0 downsample_maxpool = 1 downsample_stride = 2 upsample_none = 0 upsample_upsample = 1 upsample_conv = 2 def init_default(m, func=nn.init.kaiming_normal_): "Initialize `m` weights with `func` and set `bias` to 0." if func: if hasattr(m, 'weight'): func(m.weight) if hasattr(m, 'bias') and hasattr(m.bias, 'data'): m.bias.data.fill_(0.) return m def conv_2d(ni, nf, kernel_size, bias=True, stride=1, padding=0, dilation=1, transpose=False): conv_func = nn.Conv2d if not transpose else nn.ConvTranspose2d conv = conv_func(ni, nf, kernel_size, bias=bias, padding=padding,stride=stride, dilation=dilation) #conv = init_default(conv) #conv = weight_norm(conv) return conv class AttentionBlock(nn.Module): def __init__(self, in_channels_encoder, in_channels_decoder, features): super(AttentionBlock, self).__init__() self.conv_encoder = nn.Sequential( nn.BatchNorm2d(in_channels_encoder), nn.ReLU(), conv_2d(in_channels_encoder, features, 3, padding=1), nn.MaxPool2d(2, 2), ) self.conv_decoder = nn.Sequential( nn.BatchNorm2d(in_channels_decoder), nn.ReLU(), conv_2d(in_channels_decoder, features, 3, padding=1), ) self.conv_attn = nn.Sequential( nn.BatchNorm2d(features), nn.ReLU(), conv_2d(features, 1, 1), ) def forward(self, decoder, encoder): out = self.conv_encoder(encoder) + self.conv_decoder(decoder) out = self.conv_attn(out) return out * decoder class ASPP(nn.Module): def __init__(self, in_channels, features, downsampling, rate=[6, 12, 18]): super(ASPP, self).__init__() if downsampling == downsample_stride: self.down = nn.Sequential( conv_2d(in_channels, in_channels, 3, stride=2, padding=0), nn.BatchNorm2d(features), nn.ReLU(inplace=True), ) elif downsampling == downsample_maxpool: self.down = nn.MaxPool2d(kernel_size=2, stride=2) self.aspp_block1 = nn.Sequential( conv_2d( in_channels, features, 3, stride=1, padding=rate[0], dilation=rate[0] ), nn.ReLU(inplace=True), nn.BatchNorm2d(features), ) self.aspp_block2 = nn.Sequential( conv_2d( in_channels, features, 3, stride=1, padding=rate[1], dilation=rate[1] ), nn.ReLU(inplace=True), nn.BatchNorm2d(features), ) self.aspp_block3 = nn.Sequential( conv_2d( in_channels, features, 3, stride=1, padding=rate[2], dilation=rate[2] ), nn.ReLU(inplace=True), nn.BatchNorm2d(features), ) self.output = conv_2d(len(rate) * features, features, 1) self._init_weights() self.downsampling=downsampling def forward(self, x): if self.downsampling != downsample_none: x = self.down(x) x1 = self.aspp_block1(x) x2 = self.aspp_block2(x) x3 = self.aspp_block3(x) out = torch.cat([x1, x2, x3], dim=1) return self.output(out) def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class Squeeze_Excite_Block(nn.Module): def __init__(self, channel, reduction=16): super(Squeeze_Excite_Block, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid(), ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) def _layerBlocks(in_channels, features, downsample_method=downsample_maxpool, blocksize=1, squeeze_excite=None, resblock=False, bn_relu_at_first=False, bn_relu_at_end=False): layers = OrderedDict([]) for idx in range(blocksize): downsample = downsample_method if idx == 0 else downsample_none in_channels = in_channels if idx == 0 else features layers["block_"+str(idx)] = Block(in_channels,features,downsample,squeeze_excite,resblock,bn_relu_at_first, bn_relu_at_end) return nn.Sequential(layers) class UpSample(nn.Module): def __init__(self, in_channels, features, upsample_method=upsample_conv, bias=True): super(UpSample, self).__init__() if upsample_method == upsample_upsample: self.up = nn.Upsample(scale_factor=2, mode='bilinear') else: self.up = conv_2d(in_channels, features, kernel_size=2, stride=2, bias=bias, transpose=True) def forward(self, x): return self.up(x) class ConvLayer(nn.Module): def __init__(self, in_channels, features,kernel_size=3,padding=1,stride=1, bn_relu=True,bias=True): super(ConvLayer, self).__init__() layers = OrderedDict([]) layers["conv"] = conv_2d(in_channels,features,kernel_size,padding=padding,stride=stride,bias=bias) if bn_relu: layers["bn_relu"] = nn.Sequential(nn.BatchNorm2d(num_features=features),nn.ReLU(inplace=True)) self.layer = nn.Sequential(layers) def forward(self, x): return self.layer(x) class Block(nn.Module): def __init__(self, in_channels, features, downsample=downsample_none, do_squeeze_excite=False, resblock=False, bn_relu_at_first=False, bn_relu_at_end=False): super(Block, self).__init__() layers = OrderedDict([]) if bn_relu_at_first: self.bn_relu = nn.Sequential(nn.BatchNorm2d(num_features=in_channels),nn.ReLU(inplace=True)) if downsample == downsample_maxpool: self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) if (downsample == downsample_none) or (downsample == downsample_maxpool): layers["conv1"] = ConvLayer(in_channels,features) elif downsample == downsample_stride: layers["conv1"] = ConvLayer(in_channels,features, kernel_size=2, padding=0,stride=2) layers["conv2"] = ConvLayer(features,features, bn_relu=bn_relu_at_end) if do_squeeze_excite: layers["squeeze_excite"] = Squeeze_Excite_Block(features) self.block = nn.Sequential(layers) if resblock: params_skip_conn = (1,1) if (downsample == downsample_none) or (downsample == downsample_maxpool) else (1,2) self.skip_conn = nn.Sequential(conv_2d(in_channels,features,kernel_size=3,padding=params_skip_conn[0], stride=params_skip_conn[1],bias=True),nn.BatchNorm2d(num_features=features)) self.resblock = resblock self.downsample = downsample self.bn_relu_at_first = bn_relu_at_first def forward(self, x): if self.bn_relu_at_first: x = self.bn_relu(x) if self.downsample == downsample_maxpool: x = self.maxpool(x) out = self.block(x) if self.resblock: out = self.skip_conn(x)+out return out class UNet(nn.Module): def __init__(self, in_channels=3, out_channels=1, init_features=32, block_sizes_down=[1,1,1,1], blocksize_bottleneck=1, block_sizes_up=[1,1,1,1], downsample_method=downsample_maxpool, upsample_method=upsample_conv, resblock=False, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=False, bn_relu_at_end=False): super(UNet, self).__init__() features = init_features self.squeeze_excite = squeeze_excite # ENCODER self.encoder1 = _layerBlocks(in_channels,features,downsample_none,block_sizes_down[0],squeeze_excite, resblock, False, bn_relu_at_end) self.encoder2 = _layerBlocks(features,features*2,downsample_method,block_sizes_down[1],squeeze_excite, resblock, bn_relu_at_first, bn_relu_at_end) self.encoder3 = _layerBlocks(features*2,features*4,downsample_method,block_sizes_down[2],squeeze_excite, resblock, bn_relu_at_first, bn_relu_at_end) self.encoder4 = _layerBlocks(features*4,features*8,downsample_method,block_sizes_down[3],squeeze_excite, resblock, bn_relu_at_first, bn_relu_at_end) # BOTTLENECK if aspp: self.bottleneck = ASPP(features*8, features*16, downsample_method) else: self.bottleneck = _layerBlocks(features*8,features*16,downsample_method,blocksize_bottleneck,False,resblock) # DECODER if attention: self.attn1 = AttentionBlock(features*8, features*16, features * 16) self.upsample4 = UpSample(features * 16, features * 8, upsample_method) smaple_factor = 8 if upsample_method==upsample_conv else 16 self.decoder4 = _layerBlocks((features * smaple_factor) * 2,features*smaple_factor,downsample_none, block_sizes_up[3], False, resblock, bn_relu_at_first, bn_relu_at_end) if attention: self.attn2 = AttentionBlock(features*4, features*8, features * 8) self.upsample3 = UpSample(features * 8, features * 4, upsample_method) smaple_factor = 4 if upsample_method==upsample_conv else 8 self.decoder3 = _layerBlocks((features * smaple_factor) * 2,features*smaple_factor,downsample_none, block_sizes_up[2], False, resblock, bn_relu_at_first, bn_relu_at_end) if attention: self.attn3 = AttentionBlock(features*2, features*4, features * 4) self.upsample2 = UpSample(features * 4, features * 2, upsample_method) smaple_factor = 2 if upsample_method==upsample_conv else 4 self.decoder2 = _layerBlocks((features * smaple_factor) * 2,features*smaple_factor,downsample_none, block_sizes_up[1], False, resblock, bn_relu_at_first, bn_relu_at_end) if attention: self.attn4 = AttentionBlock(features, features*2, features * 2) self.upsample1 = UpSample(features * 2, features, upsample_method) smaple_factor = 1 if upsample_method==upsample_conv else 2 self.decoder1 = _layerBlocks((features * smaple_factor) * 2,features*smaple_factor,downsample_none, block_sizes_up[0], False, resblock, bn_relu_at_first, bn_relu_at_end) if aspp: smaple_factor = 1 if upsample_method==upsample_conv else 2 self.out_aspp = ASPP(features*smaple_factor, features*smaple_factor, downsample_none) smaple_factor = 1 if upsample_method==upsample_conv else 2 self.out_conv = conv_2d(features*smaple_factor, out_channels, 1) self.aspp = aspp self.attention = attention def forward(self, x): enc1 = self.encoder1(x) enc2 = self.encoder2(enc1) enc3 = self.encoder3(enc2) enc4 = self.encoder4(enc3) bottle = self.bottleneck(enc4) if self.attention: bottle = self.attn1(bottle,enc4) dec4 = self.upsample4(bottle) dec4 = torch.cat((dec4, enc4), dim=1) dec4 = self.decoder4(dec4) if self.attention: dec4 = self.attn2(dec4,enc3) dec3 = self.upsample3(dec4) dec3 = torch.cat((dec3, enc3), dim=1) dec3 = self.decoder3(dec3) if self.attention: dec3 = self.attn3(dec3,enc2) dec2 = self.upsample2(dec3) dec2 = torch.cat((dec2, enc2), dim=1) dec2 = self.decoder2(dec2) if self.attention: dec2 = self.attn4(dec2,enc1) dec1 = self.upsample1(dec2) dec1 = torch.cat((dec1, enc1), dim=1) dec1 = self.decoder1(dec1) if self.aspp: dec1 = self.out_aspp(dec1) return torch.sigmoid(self.out_conv(dec1)) ```
{ "source": "JohanSmet/lsim", "score": 3 }
#### File: src/bench/bench_utils.py ```python count_check = 0 count_failure = 0 def CHECK(was, expected, op_str): global count_check, count_failure count_check = count_check + 1 if was != expected: count_failure = count_failure + 1 print("FAILURE: {} = {} (expected {})".format(op_str, was, expected)) def print_stats(): global count_check, count_failure print("======================================================") if count_failure == 0: print("All tests passed ({} checks executed)".format(count_check)) else: print("{} out of {} checks failed!".format(count_failure, count_check)) def instantiate_circuit(lsim, name): circuit_desc = lsim.user_library().circuit_by_name(name) circuit = circuit_desc.instantiate(lsim.sim()) lsim.sim().init() return circuit def run_thruth_table(lsim, circuit_name, truth_table): print ("* Testing {}".format(circuit_name)) circuit = instantiate_circuit(lsim, circuit_name) for test in truth_table: for v in test[0].items(): circuit.write_port(v[0], v[1]) lsim.sim().run_until_stable(5) for v in test[1].items(): CHECK(circuit.read_port(v[0]), v[1], "{}: {}".format(circuit_name, test[0])) ```
{ "source": "johanso-au/HaloBot", "score": 3 }
#### File: johanso-au/HaloBot/halobot.py ```python import socket import json import random import time DEBUG = False with open('config.json') as configFile: botSettings = json.load(configFile) # Set all the variables necessary to connect to Twitch IRC HOST = "irc.chat.twitch.tv" NICK = "TwitchAccountUsername" PASS = str(botSettings['OAUTH']) PORT = 6667 CHANNEL = "#twitchchannelnamehere" readbuffer = "" MODT = False botRun = True userlist = [] greetings = ["hai", "Hey", "Welcome", "o hai", "hello"] # Function for converting to UTF-8 (Required by Python 3 version of Socket) def ConvertSend(command): s.sendall(command.encode('utf-8')) # Function for sending a message def sendMessage(message): ConvertSend("PRIVMSG " + CHANNEL + " :" + message + "\r\n") if DEBUG: print(NICK + ": " + message) # Connecting to Twitch IRC by passing credentials and joining a certain channel s = socket.socket() s.connect((HOST, PORT)) ConvertSend("PASS " + PASS + "\r\n") ConvertSend("NICK " + NICK + "\r\n") ConvertSend("JOIN " + CHANNEL + "\r\n") # Main Loop - Receive, decode, parse. while True: received = s.recv(1024) readbuffer = readbuffer + received.decode('utf-8') temp = readbuffer.split("\r\n") readbuffer = temp.pop() if DEBUG: print("Temp: " + str(temp)) for line in temp: # Splits the given string so we can work with it better parts = line.split(":") if DEBUG: print("Parts: " + str(parts)) # Checks whether the message is PING because its a method of Twitch to check if you're afk if "PING" in parts[0]: ConvertSend("PONG %s\r\n" % line[1]) print("PONG") elif "QUIT" not in parts[1] and "JOIN" not in parts[1] and "PART" not in parts[1]: try: # Sets the message variable to the actual message sent message = parts[2] except: message = "" # Sets the username variable to the actual username usernamesplit = parts[1].split("!") username = usernamesplit[0] # Only works after twitch is done announcing stuff (MODT = Message of the day) if MODT: print(username + ": " + message + "\r\n") # 'On' Command. if username == "twitchusername" and message == "!halobotstart": botRun = True sendMessage("I got you, fam.") if botRun: # You can add all your plain commands here # 'Off' Command - username is a user who can control with a command. if username == "twitchusername" and message == "!halobotstop": botRun = False sendMessage("Fine, I didn't want to do your job anyway.") if username not in userlist: userlist.append(username) time.sleep(1) sendMessage(random.choice(greetings) + " @" + username) for l in parts: if "End of /NAMES list" in l: MODT = True ```
{ "source": "johansoula/malware_playground", "score": 3 }
#### File: johansoula/malware_playground/virusshare_fetch.py ```python import re import requests import sys import os def virusshare_fetch(fname, i): url = "http://virusshare.com/hashes/VirusShare_%s.md5" % i r = requests.get(url, stream = True) if r.status_code != 200: return False with open(fname, 'aw') as fd: chunk_size = 8192 for chunk in r.iter_content(chunk_size): fd.write(chunk) fd.close return True def virusshare_fetch_all(fname): for i in range(0, 99999): print i if not virusshare_fetch(fname, "%05d" % i): break virusshare_fetch_all("virusshare_hashlist.csv") ```
{ "source": "johanssone/nlbaas2octavia-lb-replicator", "score": 3 }
#### File: nlbaas2octavia_lb_replicator/common/utils.py ```python def _remove_empty(lb_dict): """Recursively Removes blank str values from the dictionary" Removes keys from dictionary and sub objs such as dictionaries and list of dictionaries, if the value is an empty string. :param lb_dict: dict """ for key, val in lb_dict.items(): if isinstance(val, dict): _remove_empty(val) if isinstance(val, list): for x in val: if isinstance(x, dict): _remove_empty(x) if val in ['', u'']: lb_dict.pop(key) ```
{ "source": "johanste/carbonite", "score": 3 }
#### File: carbonite/carbon/__init__.py ```python from typing import Tuple import cv2 class CameraStream: def __init__(self, *, camera_no:int=0, buffer_frames=1024): self._video_capture = cv2.VideoCapture(camera_no) self.last_frame = None self.buffer_frames = buffer_frames self.frame_buf = [None] * buffer_frames self.frame_buf_no = 0 self.frames_per_second = self._video_capture.get(cv2.CAP_PROP_FPS) def get_frame(self, frame_no): return self.frame_buf[frame_no] def frames(self): while True: ret, frame = self._video_capture.read() frame_buf_no = (self.frame_buf_no + 1) % self.buffer_frames self.frame_buf_no = frame_buf_no self.frame_buf[frame_buf_no] = frame if ret: yield frame_buf_no, frame def __enter__(self): return self def __exit__(self, *args, **kwargs): self._video_capture.release() self._video_capture = None class Session: def __init__(self, *configurations): self._detectors = [] self._handlers = {} self._closed = True for configuration in configurations: try: self._detectors.append(configuration.create_detector()) except AttributeError: configuration.session = self self._detectors.append(configuration) def close(self): print('Closing') self._closed = True def open(self): ... def emit(self, event): try: self._handlers[type(event)](event) except KeyError: print(f'No handler for {type(event)}') def handler(self, event_type: type): """Used as a decorator for functions that want to handle a specific event type :param event_type type: The type of event to handle """ def wrapped(func): self._handlers[event_type] = func return func return wrapped def analyze_frame(self, frame_no, frame): events = [] for analyzer in self._detectors: for detected_event in analyzer.analyze_frame(self, frame_no, frame): events.append(detected_event) return events def analyze(self, stream): self._closed = False for frame_no, frame in stream.frames(): if self._closed: return self.analyze_frame(frame_no, frame) ```
{ "source": "johansten/rtxp-py", "score": 2 }
#### File: rtxp/core/dsa.py ```python from ecdsa import curves, SigningKey from ecdsa.util import sigencode_der from rtxp.core import hashes from rtxp.core import utils def sign(signing_hash, root_key, **kw): """ Signs hash with root_key. """ number = utils.bytes_to_int(signing_hash) r, s = root_key.sign_number(number, **kw) r, s = _get_canonical_signature(r, s) return sigencode_der(r, s, None) def get_root_key(seed): """ Gets the root key from the seed. """ # :TODO: add support for more than key #0 # see https://github.com/ripple/ripple-lib/blob/develop/src/js/ripple/seed.js def generate_key(seed): i = 0 res = 0 while True: res = from_bytes(hashes.sha512half(seed + to_bytes(i, 4))) i += 1 if curves.SECP256k1.order >= res: break return res private_generator = generate_key(seed) public_generator = curves.SECP256k1.generator * private_generator # use public + private generators to generate a secret sequence = 0 # public_compressed = _get_compressed_point(public_generator) secret = generate_key(public_compressed + to_bytes(sequence, 4)) secret += private_generator secret %= curves.SECP256k1.order # use secret to generate a secp256k1 key return SigningKey.from_secret_exponent(secret, curves.SECP256k1) def get_public_key_from_root(root_key): return _get_compressed_point(root_key.privkey.public_key.point, pad=True) def get_public_key(seed): return get_public_key_from_root(get_root_key(seed)) #------------------------------------------------------------------------------- def to_bytes(value, size): return utils.int_to_bytes(value, size=size) def from_bytes(value): return utils.bytes_to_int(value) def _get_compressed_point(point, pad=False): """ Returns the compressed ecc point. """ header = '\x03' if point.y() & 1 else '\x02' bytes = to_bytes( point.x(), curves.SECP256k1.order.bit_length() // 8 if pad else None ) return ''.join([header, bytes]) def _get_canonical_signature(r, s): """ returns a canonical signature. """ N = curves.SECP256k1.order if not N / 2 >= s: s = N - s return r, s ``` #### File: rtxp/core/hashes.py ```python import hashlib def sha512half(s): return hashlib.sha512(s).digest()[0:32] def hash160(s): h = hashlib.sha256(s).digest() m = hashlib.new('ripemd160') m.update(h) t = m.digest() return t def sha256hash(s): s = s if s else ' ' hash1 = hashlib.sha256(s).digest() hash2 = hashlib.sha256(hash1).digest() return hash2 ``` #### File: rtxp/core/serialize.py ```python from decimal import Decimal import utils #------------------------------------------------------------------------------- FIELD_MAP = { 'Account': (8, 1), 'Amount': (6, 1), 'ClearFlag': (2, 34), 'Destination': (8, 3), 'DestinationTag': (2, 14), 'Fee': (6, 8), 'Flags': (2, 2), 'InflationDest': (8, 9), #stellar 'InvoiceID': (5, 17), 'LastLedgerSequence': (2, 27), 'LimitAmount': (6, 3), 'Memo': (14, 10), 'MemoData': (7, 13), 'MemoFormat': (7, 14), 'Memos': (15, 9), 'MemoType': (7, 12), 'OfferSequence': (2, 25), 'Paths': (18, 1), 'RegularKey': (8, 8), 'SendMax': (6, 9), 'Sequence': (2, 4), 'SetAuthKey': (8, 10), #stellar 'SetFlag': (2, 33), 'SigningPubKey': (7, 3), 'SourceTag': (2, 3), 'TakerGets': (6, 5), 'TakerPays': (6, 4), 'TransactionType': (1, 2), 'TransferRate': (2, 11), 'TxnSignature': (7, 4), } TRANSACTION_TYPES = { 'AccountMerge': 4, #stellar 'AccountSet': 3, 'OfferCancel': 8, 'OfferCreate': 7, 'Payment': 0, 'SetRegularKey': 5, 'TrustSet': 20 } #------------------------------------------------------------------------------- class Serializer(object): def __init__(self, native_currency, account_from_human): self.native_currency = native_currency self.account_from_human = account_from_human def serialize_kv_pair(self, key, value): blob = '' if key == 'TransactionType': value = TRANSACTION_TYPES[value] type_id, field_id = FIELD_MAP[key] tag = ((type_id << 4 if type_id < 16 else 0) | (field_id if field_id < 16 else 0)) blob += chr(tag) if type_id >= 16: blob += chr(type_id) if field_id >= 16: blob += chr(field_id) if type_id in self.serializer_dict: blob += self.serializer_dict[type_id](self, value) return blob def serialize_json(self, tx_json): def comparator(a, b): return 1 if FIELD_MAP[a] > FIELD_MAP[b] else -1 blob = '' keys = sorted(tx_json.keys(), cmp=comparator) for key in keys: value = tx_json[key] blob += self.serialize_kv_pair(key, value) return blob def parse_non_native_amount(self, string): amount = Decimal(string).normalize() parts = amount.as_tuple() exponent = parts.exponent value = ''.join(map(str, parts.digits)) exponent += len(value) value = value.ljust(16, '0') exponent -= 16 value = int(value) if value == 0: exponent = -99 return parts.sign, value, exponent def serialize_non_native_amount(self, amount): negative, value, exponent = self.parse_non_native_amount(amount) hi = 1 << 31 if value: if not negative: hi |= 1 << 30 hi |= ((97 + exponent) & 0xff) << 22 value |= hi << 32 return self.serialize_int64(value) def serialize_currency(self, currency): if currency == self.native_currency: data = 20 * chr(0) else: data = 12 * chr(0) + currency + 5 * chr(0) return data def serialize_native_amount(self, amount): amount = int(amount) pos = True if amount > 0 else False amount &= (1 << 62) - 1 if pos: amount |= 1 << 62 return self.serialize_int64(amount) def serialize_account_id(self, human): return self.account_from_human(human) def serialize_amount(self, value): if type(value) == int: amount = value # tx fee in provided as an int else: amount = value.to_json() if type(amount) == dict: blob = self.serialize_non_native_amount(amount['value']) blob += self.serialize_currency(amount['currency']) blob += self.serialize_account_id(amount['issuer']) else: blob = self.serialize_native_amount(amount) return blob def serialize_account(self, value): return chr(20) + self.serialize_account_id(value) def serialize_path(self, path): FLAG_ACCOUNT = 0x01 FLAG_CURRENCY = 0x10 FLAG_ISSUER = 0x20 blob = '' for entry in path: flags = 0 if 'account' in entry: flags |= FLAG_ACCOUNT if 'currency' in entry: flags |= FLAG_CURRENCY if 'issuer' in entry: flags |= FLAG_ISSUER if entry['type'] != flags: #raise hell pass flags = entry['type'] blob += chr(flags) if flags & FLAG_ACCOUNT: blob += self.serialize_account_id(entry['account']) if flags & FLAG_CURRENCY: blob += self.serialize_currency(entry['currency']) if flags & FLAG_ISSUER: blob += self.serialize_account_id(entry['issuer']) return blob def serialize_pathset(self, pathset): PATH_BOUNDARY = chr(0xff) PATH_END = chr(0x00) blobs = [ self.serialize_path(path) for path in pathset ] return PATH_BOUNDARY.join(blobs) + PATH_END def serialize_int16(self, value): return utils.int_to_bytes(value, size=2) def serialize_int32(self, value): return utils.int_to_bytes(value, size=4) def serialize_int64(self, value): return utils.int_to_bytes(value, size=8) def serialize_hash256(self, value): return value.decode('hex') def serialize_vl(self, value): value = value.decode('hex') return chr(len(value)) + value def serialize_array(self, array): blob = '' for t in array: key, value = t.items()[0] blob += self.serialize_kv_pair(key, value) blob += chr((15 << 4) | 1) return blob def serialize_object(self, tx_json): def comparator(a, b): return 1 if FIELD_MAP[a] > FIELD_MAP[b] else -1 blob = '' keys = sorted(tx_json.keys(), cmp=comparator) for key in keys: value = tx_json[key] blob += self.serialize_kv_pair(key, value) blob += chr((14 << 4) | 1) return blob serializer_dict = { 1: serialize_int16, 2: serialize_int32, 5: serialize_hash256, 6: serialize_amount, 7: serialize_vl, 8: serialize_account, 14: serialize_object, 15: serialize_array, 18: serialize_pathset, } #------------------------------------------------------------------------------- ``` #### File: rtxp/stellar/server.py ```python import rtxp.core.server class Server(rtxp.core.server.Server): def __init__(self, url, callback): super(Server, self).__init__(url, callback) def clear_subscriptions(self): self.subscriptions = { 'streams': [], 'accounts': [], 'accounts_rt': [], 'books': [] } ``` #### File: rtxp-py/tests/test_amount.py ```python import unittest from rtxp import stellar class AmountTest(unittest.TestCase): def test_str_currency(self): amount = stellar.Amount(1) self.assertEqual('STR', amount.currency) amount = stellar.Amount(10, 'USD') self.assertNotEqual('STR', amount.currency) def test_value_normalization(self): amount = stellar.Amount('1') self.assertEqual('1', amount.value) amount = stellar.Amount('1.') self.assertEqual('1', amount.value) amount = stellar.Amount('1.000') self.assertEqual('1', amount.value) def test_json_import_str(self): amount = stellar.Amount.from_json('1000000') self.assertEqual('STR', amount.currency) self.assertEqual('1', amount.value) def test_json_import_usd(self): amount = stellar.Amount.from_json({ 'value': 100, 'currency': 'USD', 'issuer': 'issuer' }) self.assertEqual('100', amount.value) self.assertEqual('USD', amount.currency) def test_json_export_str(self): res = stellar.Amount(1).to_json() self.assertEqual(res, '1000000') def test_json_export_usd(self): res = stellar.Amount(1, 'USD', 'issuer').to_json() self.assertEqual(res, { 'value': '1', 'currency': 'USD', 'issuer': 'issuer' }) ``` #### File: rtxp-py/tests/test_remote.py ```python import unittest from mock import MagicMock as Mock from rtxp import stellar class DummyPromise(object): def __init__(self): pass def then(self, ok, not_ok): self.success = ok self.failure = not_ok return self def fulfill(self, res): if hasattr(self, 'success'): self.callback = self.success self.value = res def reject(self, err): if hasattr(self, 'failure'): self.callback = self.failure self.value = err def get(self): if hasattr(self, 'callback'): return self.callback(self.value) else: return self.value class RemotePromiseTest(unittest.TestCase): def setUp(self): self.remote = stellar.Remote(None, server=Mock) self.server = self.remote.server def test_promise_ok(self): self.server.request.return_value = DummyPromise() p = self.remote.get_account_currencies('account', async=True) p.fulfill({'result':'ok'}) self.assertEqual(p.get(), 'ok') def test_promise_not_ok(self): self.server.request.return_value = DummyPromise() p = self.remote.get_account_currencies('account', async=True) p.reject("failure") self.assertRaises(Exception, p.get) def test_get_fee(self): self.server.fee_promise = DummyPromise() p = self.remote.get_fee(async=True) p.fulfill(10) self.assertEqual(p.get(), 10) class RemoteParamTest(unittest.TestCase): def setUp(self): self.remote = stellar.Remote(None, server=Mock) self.server = self.remote.server def test_cancel(self): res = self.remote.cancel("promise") self.server.cancel.assert_called_with( "promise" ) def test_add_callback(self): self.remote.add_callback("tx_type", "callback") self.server.add_callback.assert_called_with( "tx_type", "callback" ) def test_account_currencies_params(self): self.remote.get_account_currencies('account') self.server.request.assert_called_with( 'account_currencies', account='account' ) def test_account_info_params(self): self.remote.get_account_info('account') self.server.request.assert_called_with( 'account_info', account='account' ) def test_account_lines_params(self): self.remote.get_account_lines('account') self.server.request.assert_called_with( 'account_lines', account='account' ) def test_account_offers_params(self): self.remote.get_account_offers('account') self.server.request.assert_called_with( 'account_offers', account='account' ) def test_account_tx_params(self): self.remote.get_account_tx('account') self.server.request.assert_called_with( 'account_tx', account='account' ) def test_book_offers_params(self): self.remote.get_book_offers('taker_gets', 'taker_pays') self.server.request.assert_called_with( 'book_offers', taker_gets='taker_gets', taker_pays='taker_pays', ) def test_create_find_path(self): self.remote.create_find_path('source', 'dest', 'dest_amount', None) self.server.request.assert_called_with( 'find_path', subcommand='create', source_account='source', destination_account='dest', destination_amount='dest_amount' ) def test_close_find_path(self): self.remote.close_find_path() self.server.request.assert_called_with( 'find_path', subcommand='close' ) def test_ledger_params(self): self.remote.get_ledger(ledger_index='index') self.server.request.assert_called_with( 'ledger', ledger_index='index' ) def test_static_path_params(self): self.remote.get_static_path( 'source', 'dest', 'dest_amount' ) self.server.request.assert_called_with( 'static_path_find', source_account='source', destination_account='dest', destination_amount='dest_amount' ) def test_transaction_entry_params(self): self.remote.get_transaction_entry('hash', 'index') self.server.request.assert_called_with( 'transaction_entry', tx_hash='hash', ledger_index='index' ) def test_tx_params(self): self.remote.get_tx('tx') self.server.request.assert_called_with( 'tx', transaction='tx' ) def test_tx_history_params(self): self.remote.get_tx_history('start') self.server.request.assert_called_with( 'tx_history', start='start' ) def test_submit_params(self): self.remote.submit_transaction('blob') self.server.request.assert_called_with( 'submit', tx_blob='blob' ) def test_subscribe_params(self): self.remote.subscribe(streams=['stream1', 'stream2']) self.server.subscribe.assert_called_with( streams=['stream1', 'stream2'] ) def test_unsubscribe_params(self): self.remote.unsubscribe(streams=['stream1', 'stream2']) self.server.unsubscribe.assert_called_with( streams=['stream1', 'stream2'] ) ```
{ "source": "johan-uden/CMSIS_5", "score": 2 }
#### File: Tests/buildutils/dscmd.py ```python import os from buildcmd import BuildCmd from datetime import datetime import mmap class DsCmd(BuildCmd): def __init__(self, project, config): BuildCmd.__init__(self) self._project = project self._config = config workspace = os.getenv('WORKSPACE') if workspace: self._workspace = os.path.join(workspace, "eclipse") else: self._workspace = os.getenv('DSMDK_WORKSPACE') if not self._workspace: raise RuntimeError("No DS-MDK workspace found, set either DSMDK_WORKSPACE or WORKSPACE in environment!") def getCommand(self): return "eclipsec.exe" def getArguments(self): return [ "-nosplash", "-application", "org.eclipse.cdt.managedbuilder.core.headlessbuild", "-data", self._workspace, "-import", os.path.dirname(os.path.abspath(self._project)), "-cleanBuild", self._config ] def isSuccess(self): return self._result == 0 ``` #### File: Tests/buildutils/fvpcmd.py ```python from buildcmd import BuildCmd class FvpCmd(BuildCmd): def __init__(self, model, app, **args): BuildCmd.__init__(self) self._model = model self._app = app self._args = args def getCommand(self): return self._model def getArguments(self): args = [] if 'limit' in self._args: args += [ "--cyclelimit", self._args['limit'] ] if 'config' in self._args: args += [ "-f", self._args['config'] ] if 'target' in self._args: for a in self._app: args += [ "-a", "{0}={1}".format(self._args['target'], a ) ] else: args += [ self._app[0] ] return args ```
{ "source": "Johanu/MDAnalysis_scripts", "score": 2 }
#### File: Johanu/MDAnalysis_scripts/coil_COMdistance.py ```python from __future__ import division import matplotlib.pyplot as plt import MDAnalysis as md import numpy as np def calculate_dists(gro_file, xtc_file): u = md.Universe(gro_file, xtc_file) select_group1 = u.selectAtoms("backbone and (resnum 50 or resnum 51)") select_group2 = u.selectAtoms("backbone and (resnum 149 or resnum 150)") select_group3 = u.selectAtoms("backbone and (resnum 50 or resnum 51 or resnum 149 or resnum 150)") select_group4 = u.selectAtoms("backbone and (resnum 25 or resnum 124)") for i in select_group1: print "Loop1 ", i for i in select_group2: print "Loop2 ", i for i in select_group4: print "ASP ", i COM_distance = [] COM_distance_ASP = [] COM_distance_ASP1 = [] COM_distance_ASP2 = [] max_dist = 0 index = 0 min_dist = 100 index_min = 0 max_dist_1 = 0 index_1 = 0 min_dist_1 = 100 index_min_1 = 0 max_dist_2 = 0 index_2 = 0 min_dist_2 = 100 index_min_2 = 0 max_dist_3 = 0 index_3 = 0 min_dist_3 = 100 index_min_3 = 0 #group1_COM = select_group1.centerOfMass() #group2_COM = select_group2.centerOfMass() #print group1_COM #print group2_COM #print np.sqrt(np.dot(group1_COM-group2_COM, group1_COM-group2_COM)) #print np.linalg.norm(group1_COM - group2_COM) for i in u.trajectory: group1_COM = select_group1.centerOfMass() group2_COM = select_group2.centerOfMass() dist = np.linalg.norm(group1_COM - group2_COM) COM_distance.append(dist) if dist > max_dist: max_dist = dist index = i.frame if dist < min_dist: min_dist = dist index_min = i.frame group3_COM = select_group3.centerOfMass() group4_COM = select_group4.centerOfMass() dist1 = np.linalg.norm(group3_COM - group4_COM) COM_distance_ASP.append(dist1) if dist1 > max_dist_1: max_dist_1 = dist1 index_1 = i.frame if dist1 < min_dist_1: min_dist_1 = dist1 index_min_1 = i.frame dist2 = np.linalg.norm(group1_COM - group4_COM) dist3 = np.linalg.norm(group2_COM - group4_COM) COM_distance_ASP1.append(dist2) COM_distance_ASP2.append(dist3) if dist2 > max_dist_2: max_dist_2 = dist2 index_2 = i.frame if dist2 < min_dist_2: min_dist_2 = dist2 index_min_2 = i.frame if dist3 > max_dist_3: max_dist_3 = dist3 index_3 = i.frame if dist3 < min_dist_3: min_dist_3 = dist3 index_min_3 = i.frame print 'Max interloop distance: ', max_dist, index print 'Min interloop distance: ', min_dist, index_min print 'Max loops-ASP distance: ', max_dist_1, index_1 print 'Min loops-ASP distance: ', min_dist_1, index_min_1 print 'Max loop1-ASP distance: ', max_dist_2, index_2 print 'Min loop1-ASP distance: ', min_dist_2, index_min_2 print 'Max loop2-ASP distance: ', max_dist_3, index_3 print 'Min loop2-ASP distance: ', min_dist_3, index_min_3 return COM_distance, COM_distance_ASP, COM_distance_ASP1, COM_distance_ASP2 coil_distance, ASP_distance, ASP_distance1, ASP_distance2 = calculate_dists('structure.pdb', 'equ.dcd') x_vals = [x / 10 for x in range(0, len(coil_distance))] plt.plot(x_vals, coil_distance, linewidth=0.5) #leg = plt.legend(ncol=3, loc=9, fancybox=True) #leg.get_frame().set_alpha(0.5) plt.xlabel('Time / ns') plt.ylabel(ur'Loop COM distance / $\AA$') plt.axhline(y=9.84, linewidth=1, color = 'red') plt.axhline(y=11.11, linewidth=1, color = 'green') plt.savefig('coil_COMdistance.png', dpi=300) plt.close() plt.plot(x_vals, ASP_distance, linewidth=0.5) plt.plot(x_vals, ASP_distance1, linewidth=0.5) plt.plot(x_vals, ASP_distance2, linewidth=0.5) print 'Loop1 average: ', np.average(ASP_distance1[500:]), np.std(ASP_distance1[500:]) print 'Loop2 average: ', np.average(ASP_distance2[500:]), np.std(ASP_distance2[500:]) plt.xlabel('Time / ns') plt.ylabel(ur'Loop COM distance / $\AA$') plt.axhline(y=21.29, linewidth=1, color = '#C45AEC', label='PR20') plt.axhline(y=15.18, linewidth=1, color = '#C45AEC') plt.axhline(y=20.36, linewidth=1, color = '#EAC117', label='PR') plt.axhline(y=15.11, linewidth=1, color = '#EAC117') plt.axhline(y=np.average(ASP_distance1), linewidth=1, color = 'green', label='Loop1 average') plt.axhline(y=np.average(ASP_distance2), linewidth=1, color = 'red', label='Loop2 average') leg = plt.legend(fancybox=True, loc=2, framealpha=0.5) #leg.get_frame().set_alpha(0.5) plt.savefig('ASP_COMdistance.png', dpi=300) plt.close() ``` #### File: Johanu/MDAnalysis_scripts/SPRs_scatter.py ```python from __future__ import division import matplotlib.pyplot as plt import numpy as np import MDAnalysis as md from matplotlib.mlab import griddata from matplotlib.colors import LogNorm import pylab def calculate_dists(gro_file, xtc_file, ligand_name): u = md.Universe(gro_file, xtc_file) select_ligand = u.selectAtoms("resname " + ligand_name) select_res31 = u.selectAtoms("backbone and resnum 31") COM_distance_x = [] COM_distance_y = [] COM_distance_z = [] print gro_file[:-4], select_ligand for i in u.trajectory: ligand_COM = select_ligand.centerOfMass() res31_COM = select_res31.centerOfMass() #COM_distance.append(res31_COM[2] - ligand_COM[2]) COM_distance_x.append(ligand_COM[0] - res31_COM[0]) COM_distance_y.append(ligand_COM[1] - res31_COM[1]) COM_distance_z.append(ligand_COM[2] - res31_COM[2]) return [COM_distance_x, COM_distance_y, COM_distance_z] S31N = calculate_dists('./mutants/2HSP/2HSP_S31N/ligands/2HSP_S31N_SPRP/minim_new.gro', './mutants/2HSP/2HSP_S31N/ligands/2HSP_S31N_SPRP/equil_new.xtc', 'SPR') V27A = calculate_dists('./mutants/2HSP/2HSP_V27A/ligands/2HSP_V27A_SPRP/minim_new.gro', './mutants/2HSP/2HSP_V27A/ligands/2HSP_V27A_SPRP/equil_new.xtc', 'SPR') SPRP = calculate_dists('./WT_2HSP/ligands/WT_2HSP_SPRP/minim_new.gro', './WT_2HSP/ligands/WT_2HSP_SPRP/equil_new.xtc', 'SPR') SPRC = calculate_dists('./WT_2HSP/ligands/WT_2HSP_SPRC/minim.gro', './WT_2HSP/ligands/WT_2HSP_SPRC/equil.xtc', 'SPRC') SPRN = calculate_dists('./WT_2HSP/ligands/WT_2HSP_SPRN/minim.gro', './WT_2HSP/ligands/WT_2HSP_SPRN/equil.xtc', 'SPRN') #x_vals = [x / 100 for x in range(0, len(SPRP))] #x_S31N = [x / 100 for x in range(0, len(S31N))] #plt.plot(x_vals, SPRN, label='SPRN WT') data = [[], [], []] for i, val in enumerate(SPRP[0]): data[0].append(SPRP[0][i]) data[0].append(S31N[0][i]) data[0].append(V27A[0][i]) data[0].append(SPRC[0][i]) data[0].append(SPRN[0][i]) data[1].append(SPRP[1][i]) data[1].append(S31N[1][i]) data[1].append(V27A[1][i]) data[1].append(SPRC[1][i]) data[1].append(SPRN[1][i]) plt.scatter(data[0], data[1], marker='o', c='b', s=5, zorder=10, norm=True) #leg.get_frame().set_alpha(0.5) plt.xlabel('Time / ns') plt.ylabel(ur'Z difference to resnum 31 COM / $\AA$') # plt.show() plt.savefig('SPRs_scatter.png', dpi=300) plt.close() #H, xedges, yedges, img = plt.hist2d(data[0], data[1], norm=LogNorm()) #extent = [yedges[0], yedges[-1], xedges[0], xedges[-1]] #fig = plt.figure() #ax = fig.add_subplot(1, 1, 1) #im = ax.imshow(H, cmap=plt.cm.jet, interpolation='spline36', norm=LogNorm(), extent=extent) #fig.colorbar(im, ax=ax) #plt.savefig('SPRs_hist.png', dpi=300) #plt.close() plt.hist2d(data[0], data[1], bins=40) plt.colorbar() plt.savefig('SPRs_hist2.png', dpi=300) plt.close() ```
{ "source": "johanvandegriff/midi", "score": 3 }
#### File: johanvandegriff/midi/midi2.py ```python from pygame import midi import time import os """ this code is for a custom midi device that my brother made here's a video of the wiring process: https://www.youtube.com/watch?v=jEtFtwcCJcM reference for the device's code: https://learn.adafruit.com/grand-central-usb-midi-controller-in-circuitpython/code-usb-midi-in-circuitpython references I used to make this code: https://stackoverflow.com/questions/1554896/getting-input-from-midi-devices-live-python https://www.pygame.org/docs/ref/midi.html """ midi.init() print(midi.get_count()) for id in range(midi.get_count()): interf, name, is_input, is_output, is_opened = midi.get_device_info(id) #s = "id: {}".format(id) s = interf.decode("utf-8") + " " + name.decode("utf-8") if is_input == 1: s += " input" if is_output == 1: s += " output" if is_opened == 1: s += " (opened)" print(id, s) #input_id = midi.get_default_input_id() #input_id = 5 print("Enter the number above corresponding to the input of the mixer device") input_id = int(input()) input_device = midi.Input(input_id) #output_id = midi.get_default_input_id() #output_id = 4 print("Enter the number above corresponding to the output of the mixer device") output_id = int(input()) output_device = midi.Output(output_id) output_device.note_off(1) output_device.note_off(2) output_device.note_off(3) output_device.note_off(4) output_device.note_off(5) def process_data(isButton, channel, value): if isButton: if value: print("button {} pressed".format(channel)) output_device.note_on(channel+1, 100) os.system("/home/user/nextcloud/bin/m-keys {} &".format(channel+1)) else: print("button {} released".format(channel)) output_device.note_off(channel+1) else: #isButton = false, it is a slider print("slider {} value: {}".format(channel, value)) while True: while not input_device.poll(): time.sleep(0.05) data = input_device.read(1) print(data[0][0]) button_or_slider, channel, value, _ = data[0][0] if button_or_slider == 176: #slider value process_data(False, channel, value) elif button_or_slider == 144: #button pressed process_data(True, channel, True) elif button_or_slider == 128: #button released process_data(True, channel, False) #[[[176, 4, 79, 0], 0]] slider 4 value: 79 #[[[144, 3, 127, 0], 0]] button 3 pressed #[[[128, 3, 127, 0], 1]] button 3 released ```
{ "source": "johanvandegriff/network-scenery", "score": 3 }
#### File: johanvandegriff/network-scenery/networkScanner.py ```python import subprocess, datetime # this function will return a list of lists describing the list of devices in the network # format: [IP, MAC, NAME/MANUFACTURER] # find out interface by running ifconfig and determining which interface is being used, like eth0 or wlp3s0 def scan(interface): # use subprocess.run to run the command cliOutput = subprocess.run(['sudo', 'arp-scan', '--localnet', '--interface=' + interface], stdout=subprocess.PIPE) # extract the output from the subprocess strOutput = cliOutput.stdout.decode() # generate a list of lists in the specified format and return it #return strOutput return [i.split('\t') for i in strOutput.split('\n')][2:-4] def scanDict(interfaces): ts = datetime.datetime.now().timestamp() #seconds since the epoch (floating point) data = {} for interface, network in interfaces.items(): data[network] = scan(interface) result = [] for network, lines in data.items(): for item in lines: if len(item) < 3: continue ip = item[0] mac = item[1] device = item[2] dup = False for other in result: if mac == other['MAC']: dup = True continue if dup: continue result.append({ "IP": ip, "MAC": mac, "device": device, "network": network, "time": ts }) return result if __name__ == "__main__": from sense_hat import SenseHat sense = SenseHat() s = scan("wlan1") print(len(s)) print(s[0:3]) sense.clear() sense.set_pixel(2, 2, (0, min(len(s), 255), 0)) ``` #### File: johanvandegriff/network-scenery/old_dashboard.py ```python from flask import Flask, request, render_template, url_for, jsonify import os, re, sys from sense_hat import SenseHat import json from pymongo import MongoClient ROOT = "/home/pi/Nextcloud/NetworkVisualizer/network-scenery/" with open(ROOT + '/secret.json') as f: key = json.load(f)['mongodb'] client = MongoClient(key) db = client.networkviz sense = SenseHat() app = Flask(__name__) def getMacFromIP(ip): device = db.scans.find_one({'IP': ip}) if device is None: return None else: return device['MAC'] @app.route("/") def main(): sense.clear() sense.set_pixel(0,0,(197, 8, 255)) #1 puple sense.set_pixel(0,1,(197, 8, 255)) #1 puple sense.set_pixel(1,0,(197, 8, 255)) #1 puple sense.set_pixel(1,1,(197, 8, 255)) #1 puple sense.set_pixel(0,2,(255, 243, 8)) #2 yellow sense.set_pixel(0,3,(255, 243, 8)) #2 yellow sense.set_pixel(1,2,(255, 243, 8)) #2 yellow sense.set_pixel(1,3,(255, 243, 8)) #2 yellow sense.set_pixel(0,4,(82, 255, 8)) #3 green sense.set_pixel(0,5,(82, 255, 8)) #3 green sense.set_pixel(1,4,(82, 255, 8)) #3 green sense.set_pixel(1,5,(82, 255, 8)) #3 green sense.set_pixel(0,6,(3, 45, 255)) #4 blue sense.set_pixel(0,7,(3, 45, 255)) #4 blue sense.set_pixel(1,6,(3, 45, 255)) #4 blue sense.set_pixel(1,7,(3, 45, 255)) #4 blue table = "" for doc in db.scans.find({}): table += "<tr>" table += "<td>" + doc["IP"] + "</td>\n" table += "<td>" + doc["MAC"] + "</td>\n" table += "<td>" + doc["device"] + "</td>\n" table+= "</tr>" ip = request.remote_addr return render_template("index.html", data=table, ip=ip, mac=getMacFromIP(ip)) @app.route("/profile") def test(): sense.set_pixel(0,0,(82, 255, 8)) #1 green sense.set_pixel(0,1,(82, 255, 8)) #1 green sense.set_pixel(1,0,(82, 255, 8)) #1 green sense.set_pixel(1,1,(82, 255, 8)) #1 green sense.set_pixel(0,2,(3, 45, 255)) #2 blue sense.set_pixel(0,3,(3, 45, 255)) #2 blue sense.set_pixel(1,2,(3, 45, 255)) #2 blue sense.set_pixel(1,3,(3, 45, 255)) #2 blue sense.set_pixel(0,4,(197, 8, 255)) #3 puple sense.set_pixel(0,5,(197, 8, 255)) #3 puple sense.set_pixel(1,4,(197, 8, 255)) #3 puple sense.set_pixel(1,5,(197, 8, 255)) #3 puple sense.set_pixel(0,6,(255, 243, 8)) #4 yellow sense.set_pixel(0,7,(255, 243, 8)) #4 yellow sense.set_pixel(1,6,(255, 243, 8)) #4 yellow sense.set_pixel(1,7,(255, 243, 8)) #4 yellow ip = request.remote_addr return render_template("profile.html", ip=ip, mac=getMacFromIP(ip)) @app.route("/get_my_ip", methods=["GET"]) def get_my_ip(): return jsonify({'ip': request.remote_addr}), 200 if __name__ == "__main__": # app.run() app.run(host= '0.0.0.0') # for local testing ```
{ "source": "johanvandegriff/quest", "score": 3 }
#### File: quest/old/dbl.py ```python import itertools def doublerange(xlen, ylen=0): if ylen == 0 and xlen.__class__ in [tuple, list]: return doublerange(xlen[0], xlen[1]) return itertools.product(range(xlen), range(ylen)) def get23(): return 2,3 for x, y in doublerange(2,3): print x, y print print get23() print for x, y in doublerange(get23()): print x, y ``` #### File: johanvandegriff/quest/old.py ```python def rescale(a, b, x): sign=0 if x>(a-1)/2: sign= 1 if x<(a-1)/2: sign=-1 return(2*b*x+b-a-b*sign)/(2*a) #... def add(self, doors): self.doors = [mine or add for mine, add in zip(self.doors, doors.doors)] # self.doors[0] = self.doors[0] or doors.doors[0] # self.doors[1] = self.doors[1] or doors.doors[1] # self.doors[2] = self.doors[2] or doors.doors[2] # self.doors[3] = self.doors[3] or doors.doors[3] #... class Level: 'Contains a 2-D list of rooms' # def __init__(self, width, length, minRoomWidth, maxRoomWidth, minRoomLength, maxRoomLength): def __init__(self, type, name, width, length, roomWidth, roomLength): # def __init__(self, arg0, arg1=0, arg2=0, arg3=0, arg4=0): # type = arg0 # if type == DEFAULT_LEVEL: width, length, roomWidth, roomLength = arg1, arg2, arg3, arg4 # if type == CUSTOM_LEVEL: # level = arg1 # width = len(level[0]) # length = len(level) # return log(7, ' ===== new Level '+str(width)+'x'+str(length)+' =====') log(7, ' type (unused)', type) log(7, ' name', name) self.name = name self.width = width self.length = length self.level = [] for y in range(length): # make a 2-D list of rooms row = [] for x in range(width): # roomWidth = random.randint(minRoomWidth, maxRoomWidth) # roomLength = random.randint(minRoomLength, maxRoomLength) room = Room(roomWidth, roomLength) # room = Room(roomWidth+random.randint(0,5), roomLength+random.randint(0,5)) row.append(room) self.level.append(row) #... dx = [-1, 0, 1, 1, 1, 0, -1, -1] dy = [ 1, 1, 1, 0, -1, -1, -1, 0] for i in range(8): if key == options[i][2]: return self.move(dx[i], dy[i], creatures) # if key == options[0][2]: return self.move(-1, 1, creatures) # if key == options[1][2]: return self.move( 0, 1, creatures) # if key == options[2][2]: return self.move( 1, 1, creatures) # if key == options[3][2]: return self.move( 1, 0, creatures) # if key == options[4][2]: return self.move( 1,-1, creatures) # if key == options[5][2]: return self.move( 0,-1, creatures) # if key == options[6][2]: return self.move(-1,-1, creatures) # if key == options[7][2]: return self.move(-1, 0, creatures) #... miniWin.addch(2+y*3,5+x*5, char) #if doors.getTop() and y>0: miniWin.addch(roomDispY-1+y*3,3+x*5, '|') #if doors.getBottom() and y<levelLength-1: miniWin.addch(roomDispY+1+y*3,3+x*5, '|') #if doors.getLeft() and x>0: miniWin.addch(roomDispY+y*3,1+x*5, '-') #if doors.getRight() and x<levelWidth-1: miniWin.addch(roomDispY+y*3,5+x*5, '-') #... upX = random.randrange(self.width) upY = random.randrange(self.length) downX = upX downY = upY while upX==downX and upY==downY: downX = random.randrange(self.width) downY = random.randrange(self.length) #... def findStairs(self, up): char = DOWN_STAIRS_ID if up: char = UP_STAIRS_ID return self.findChar(char) #... def findStairs(self, location, upStairs): #TODO remove this z = location.getZ() level = self.getLevel(z) levelX, levelY, roomX, roomY = level.findStairs(upStairs) location.setLevelXY(levelX, levelY) location.setRoomXY(roomX, roomY) return location def loadLevel(self, i, upStairs): #TODO remove this level = self.getLevel(i) levelWidth, levelLength = level.getWL() levelX, levelY, roomX, roomY = level.findStairs(upStairs) room, roomWidth, roomLength = level.loadRoom(levelX, levelY) return level, levelWidth, levelLength, levelX, levelY, room, roomWidth, roomLength, roomX, roomY #... def getLevelXY(self): return self.levelX, self.levelY def setLevelXY(self, levelX, levelY): self.levelX = levelX self.levelY = levelY def getRoomXY(self): return self.roomX, self.roomY def setRoomXY(self, roomX, roomY): self.roomX = roomX self.roomY = roomY def getZ(self): return self.z #... def setZ(self, z): difference = z - self.z self.z = z if difference > 0: self.loadLevel(True) if difference < 0: self.loadLevel(False) def move(self, dx, dy, creatures): if dx==0 and dy==0: return False level = self.getLevel() levelWidth, levelLength = level.getWL() room = self.getRoom() roomWidth, roomLength = room.getWL() x2=self.roomX+dx y2=self.roomY+dy if x2<-1 or x2>roomWidth or \ y2<-1 or y2>roomLength: return False terrain = room.getTile(self.roomX, self.roomY).getTerrain() newTerrain = room.getTile(limit(x2, 0, roomWidth-1), limit(y2, 0, roomLength-1)).getTerrain() if newTerrain in solid: # if self.getName() != 'player': #uncomment to walk through walls return False #if moving diagonally and standing on a door or attempting to move on to one if dx != 0 and dy != 0 and DOOR_ID in [terrain, newTerrain]: return False enemy = creatures.findAt(self.z, self.levelX, self.levelY, x2, y2) if not enemy == None: #if self.attack(enemy): return True enemy.getStats().takeDamage(1) #TODO different amounts of damage, only attack enemies return True self.setRoomXY(x2, y2) if self.roomX<0 and self.levelX>0: self.levelX-=1 oldRoomLength = roomLength room, roomWidth, roomLength = level.loadRoom(self.levelX, self.levelY) self.roomX=roomWidth-1 if not roomLength == oldRoomLength: self.roomY = int(roomLength/2) elif self.roomX>roomWidth-1 and self.levelX<levelWidth-1: self.levelX+=1 oldRoomLength = roomLength room, roomWidth, roomLength = level.loadRoom(self.levelX, self.levelY) self.roomX=0 if not roomLength == oldRoomLength: self.roomY = int(roomLength/2) elif self.roomY<0 and self.levelY>0: self.levelY-=1 oldRoomWidth = roomWidth room, roomWidth, roomLength = level.loadRoom(self.levelX, self.levelY) if not roomWidth == oldRoomWidth: self.roomX = int(roomWidth/2) self.roomY=roomLength-1 elif self.roomY>roomLength-1 and self.levelY<levelLength-1: self.levelY+=1 oldRoomWidth = roomWidth room, roomWidth, roomLength = level.loadRoom(self.levelX, self.levelY) if not roomWidth == oldRoomWidth: self.roomX = int(roomWidth/2) self.roomY=0 self.roomX = limit(self.roomX, 0, roomWidth-1) self.roomY = limit(self.roomY, 0, roomLength-1) return True #... def doublerange(arg0, arg1=0): if arg1 == 0 and arg0.__class__ in [tuple, list]: xlen = arg0[0] ylen = arg0[1] else: xlen = arg0 ylen = arg1 return itertools.product(range(xlen), range(ylen)) #... def removeDead(self): # Bring out your dead! # i=0 # while i < len(self.creatures)-1: # if not self.creatures[i].getStats().isAlive(): # self.creatures.pop(i) # else: # i += 1 #rebuild the list, excluding creatures that return false for isAlive() self.creatures = [creature for creature in self.creatures if creature.getStats().isAlive()] #... def findAt(self, location): for creature in self.creatures: if location == creature.getLocation(): return creature return None #... log(4, ' Level layout:') for y in range(self.length): line = '' for x in range(self.width): if (x==self.upX and y==self.upY) or (x==self.downX and y==self.downY): line += '2' else: line += str(minimap.getMiniroom(x,y).getMiddle()) log(4,' '+line+' y:'+str(y)) log(4, '') #... def getStartingLocation(self): level = self.getLevel(0) levelX, levelY, roomX, roomY = level.findChar(UP_STA$ location = Location(0, levelX, levelY, roomX, roomY) return location #... def randomLevel(name): levelWidth = random.randint(4,6) levelheight = random.randint(3,5) roomWidth = randSkip(7,17) roomLength = randSkip(7,15) level = Level(name, DEFAULT_LEVEL, levelWidth, levelhe$ return level class Location: 'The location of a creature' def __init__(self, z, levelX, levelY, roomX, roomY): self.z = z self.setLevelXY(levelX, levelY) self.setRoomXY(roomX, roomY) def getZ(self): return self.z def setZ(self, z): self.z = z def changeZ(self, amount): self.z += amount def getLevelXY(self): return self.levelX, self.levelY def setLevelXY(self, levelX, levelY): self.levelX = levelX self.levelY = levelY def changeLevelX(self, amount): self.levelX += amount def changeLevelY(self, amount): self.levelY += amount def getRoomXY(self): return self.roomX, self.roomY def setRoomXY(self, roomX, roomY): self.roomX = roomX self.roomY = roomY def changeRoomX(self, amount): self.roomX += amount def changeRoomY(self, amount): self.roomY += amount #... #TODO change stats to a dictionary class Stats: #TODO add a lot of stats including difficulty/experience levels 'All the stats of a creature, including health and attributes but not location.' def __init__(self, health, maxHealth): self.health = health self.maxHealth = maxHealth self.healthTimer = 0 def getHealth(self): return self.health def getMaxHealth(self): return self.maxHealth def changeMaxHealth(self, amount): self.maxHealth += amount if self.maxHealth < 0: self.maxHealth = 0 self.health = limit(self.health, 0, self.maxHealth) def takeDamage(self, amount): #TODO apply armor self.changeHealth(-amount) def changeHealth(self, amount): self.health += amount self.health = limit(self.health, 0, self.maxHealth) def isAlive(self): return self.health > 0 def display(self, screen, y, x): i = int(self.health * (len(healthColors)-1.0) / self.maxHealth) screen.addstr(y,x, 'HP:') screen.addstr(y,x+3, str(self.health)+'/'+str(self.maxHealth), curses.color_pair(healthColors[i])) def act(self): self.healthTimer -= 1 if self.healthTimer < 1: self.healthTimer = 10 self.changeHealth(1) #... class Doors: 'Stores info about which of the 4 directions are active' def __init__(self, left, right, top, bottom): self.doors = [left, right, top, bottom] def getIndex(self, i): return self.doors[i] def setIndex(self, i, value): self.doors[i] = value def getLeft(self): return self.doors[0] def getRight(self): return self.doors[1] def getTop(self): return self.doors[2] def getBottom(self): return self.doors[3] def setLeft(self, left): self.doors[0] = left def setRight(self, right): self.doors[1] = right def setTop(self, top): self.doors[2] = top def setBottom(self, bottom): self.doors[3] = bottom def getInverse(self): #swap left with right and top with bottom return Doors(self.doors[1], self.doors[0], self.doors[3], self.doors[2]) def add(self, doors): self.doors = [mine or add for mine, add in zip(self.doors, doors.doors)] #... class Miniroom: def __init__(self, shown, middle, color, doors, visible): self.shown = shown self.middle = middle self.color = color self.doors = doors #openings in the wall self.visible = visible #visible walls def isShown(self): return self.shown def getMiddle(self): return self.middle def setMiddle(self, middle): self.middle = middle def getColor(self): return self.color def setColor(self, color): self.color = color def getDoors(self): return self.doors def getVisibleWalls(self): return self.visible #... template = ( #template defines the smallest room ( 8, 6, 9), ( 7, 1, 7), (10, 6,11)) self.room = [] for y in range(self.length): #construct the room row by row row = [] for x in range(self.width): templateX = (x > 0) + (x == self.width - 1) #use template to find out which terrain to use templateY = (y > 0) + (y == self.length - 1) terrainID = template[templateY][templateX] row.append(Tile(terrainID, 0, [], True)) self.room.append(row) self.fillCorners(corners, hallwayWidth) def fillCorners(self, corners, hW): #... def jsondefault(o): if isinstance(o, set): return list(o) return o.__dict__ def jsonLog(priority, obj): log(priority, repr(json.dumps(obj, indent=4, default=jsondefault))) def jsonWrite(obj, filename): # jsonLog(1, obj) # return with open(filename, 'w') as f: f.write(json.dumps(obj, default=jsondefault)) def jsonRead(filename): with open(filename, 'r') as f: #... #TODO use *args for Level.__init__() # def __init__(self, type, name, args*arg0=0, arg1=0, arg2=0, arg3=0): #TODO use *args for Level.__init__() # def __init__(self, type, name, width, length, roomWidth, roomLength): # log(7, ' == == = new Level == == =') # log(7, ' type', type) #... #... z = plpos['z'] levelX = plpos['levelX'] levelY = plpos['levelY'] roomX = plpos['roomX'] roomY = plpos['roomY'] #... #Disabled since it does not work on weirdly-shaped rooms """for x in range(self.width): #top row topTile = self.room[0][x] #get the tile if not topTile.isShown(): shown.setTop(False) #if the tile is hidden, the wall is considered not visible elif topTile.getTerrain() == DOOR_ID: shown.setTop(True); break #otherwise if the wall has a door, the wall is visible and it overrides hidden tiles for x in range(self.width): # bottom row bottomTile = self.room[self.length-1][x] if not bottomTile.isShown(): shown.setBottom(False) elif bottomTile.getTerrain() == DOOR_ID: shown.setBottom(True); break for y in range(self.length): #left row leftTile = self.room[y][0] if not leftTile.isShown(): shown.setLeft(False) elif leftTile.getTerrain() == DOOR_ID: shown.setLeft(True); break for y in range(self.length): # right row rightTile = self.room[y][self.width-1] if not rightTile.isShown(): shown.setRight(False) elif rightTile.getTerrain() == DOOR_ID: shown.setRight(True); break """ #... class Tile: 'Contains the terrain and a list of items.' def __init__(self, terrainID, color, items, shown): #TODO make terrain an item self.terrainID = terrainID self.color = color self.items = items self.shown = shown #terrain is the material that is seen def getTopID(self): if len(self.items) == 0: return self.terrainID return self.items[-1].getID() def getTopColor(self): if len(self.items) == 0: return self.color return self.items[-1].getColor() def setTerrain(self, ID): self.terrainID = ID def getTerrain(self): return self.terrainID def setColor(self, color): self.color = color def getColor(self): return self.color def setItems(self, items): self.items = items def getItems(self): return self.items def addItem(self, item): self.items.append(item) def popItem(self): return self.items.pop() def show(self): self.shown = True def hide(self): self.shown = False def isShown(self): return self.shown #TODO Tile.isShown() might need to be on each creature #... def addDoors(self, doors): self.doors = addCards(self.doors, doors) #combine the current doors and the new doors info for x, y in doublerange(self.width, self.length): #add the doors to the actual room #TODO door creation is incorrect if doors[WEST] and abs(y - (self.length - 1) / 2.0) < 1 and x == 0 \ or doors[EAST] and abs(y - (self.length - 1) / 2.0) < 1 and x == self.width - 1 \ or doors[NORTH] and abs(x - (self.width - 1) / 2.0) < 1 and y == 0 \ or doors[SOUTH] and abs(x - (self.width - 1) / 2.0) < 1 and y == self.length - 1: #TODO improve door creation $ tile = self.getTile(x, y) tile.ID = DOOR_ID tile.color = DOOR_COLOR #... z = pos['z'] levelX = pos['levelX'] levelY = pos['levelY'] roomX = pos['roomX'] roomY = pos['roomY'] #... def findAt(self, z, levelX, levelY, roomX, roomY): #TODO replace findAt() with findAtPos() for creature in self.creatures: pos = creature.getPos() if pos['z'] != z: continue if pos['levelX'] != levelX: continue if pos['levelY'] != levelY: continue if pos['roomX'] != roomX: continue if pos['roomY'] != roomY: continue return creature return None #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... #... ```
{ "source": "johanvandegriff/Stoichiometry", "score": 3 }
#### File: Stoichiometry/elements/compile_data.py ```python import os, json def jsonFormat(o): return json.dumps(o, sort_keys=True, indent=4, separators=(',', ': ')) dataDir = "data" files = os.listdir(dataDir) #print files elements = {} #structure {'H': {'propertyName':'value'}} for filename in files: # print filename filepath = os.path.join(dataDir, filename) with open(filepath, 'r') as f: lines = f.read().splitlines() i = 1 numfields = int(lines[0]) symbolIndex = -1 titles = [] for j in range(i, i + numfields): titles.append(lines[j]) if lines[j] == "symbol": symbolIndex = j-i if symbolIndex == -1: print "no 'symbol' column" print " file: " + str(filepath) print " titles: " + str(titles) print " numfields: " + str(numfields) quit() i += numfields while i+numfields < len(lines): fields = [] for j in range(i, i + numfields): fields.append(lines[j]) if j-i == symbolIndex: symbol = lines[j] # print symbol for j in range(numfields): if j != symbolIndex: value = fields[j] if not value == "": try: value = int(value) except ValueError: try: value = float(value.replace(",", ".")) except ValueError: pass if not symbol in elements: elements[symbol] = {} if titles[j] in elements[symbol]: prevValue = elements[symbol][titles[j]] if value != prevValue: print 'conflicting data! (new value not equal to previous)' print " file: " + str(filepath) print ' symbol: ' + str(symbol) print ' title: ' + str(titles[j]) print ' prevValue: ' + str(prevValue) print ' value: ' + str(value) quit() elements[symbol][titles[j]] = value i += numfields #print jsonFormat(elements) print jsonFormat(elements['K']) print jsonFormat(elements['Kr']) ```
{ "source": "JohanvandenHeuvel/AggregationOfLocalExplanations", "score": 3 }
#### File: AggregationOfLocalExplanations/models/model.py ```python from torchvision import transforms, models import torch import torch.nn as nn from models.resnet import resnet34, resnet18 from models.simple_model import MNIST_Net, Cifar_Net def get_model(model_name, device="cpu"): """ loads the given model """ if model_name == "Inceptionv3": net = models.inception_v3(pretrained=True) elif model_name == "Resnet34": net = resnet34(pretrained=True) elif model_name == "Resnet18": net = resnet18(pretrained=True) elif model_name == 'Resnet18_cifar10': net = resnet18(pretrained=True) # cifar10 has only 10 classes, while resnet has 1000 by default net.fc = nn.Linear(512, 10) net.load_state_dict(torch.load("cifar10.pt", map_location=device)) elif model_name == "VGG-19": net = models.vgg19(pretrained=True) elif model_name == "mnist_model": net = MNIST_Net() net.load_model() elif model_name == "cifar10_model": net = Cifar_Net() net.load_model() else: raise ValueError net.to(device) net.eval() return net ``` #### File: AggregationOfLocalExplanations/models/simple_model.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import transforms, models from torchvision.models import resnet18 from models.train import train # from scripts.load_data import get_data from models.resnet import resnet34, resnet18 class MNIST_Net(nn.Module): """ Simple CNN models for MNIST dataset """ def __init__(self, model_name="mnist_net", device="cpu"): super(MNIST_Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) self.model_name = model_name self.device = device def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def save_model(self, path=None): if path is None: path = self.model_name path = path + ".pt" torch.save(self.state_dict(), path) print("models saved") def load_model(self, path=None): try: if path is None: path = self.model_name self.load_state_dict(torch.load(path + '.pt')) print("models loaded") except: transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081))] ) trainset = torchvision.datasets.MNIST( root="./data", train=True, download=True, transform=transform ) trainloader = torch.utils.data.DataLoader( trainset, batch_size=64, shuffle=True, num_workers=2 ) train(self, trainloader) class Cifar_Net(nn.Module): """ Simple CNN models for CIFAR10 """ def __init__(self, model_name="cifar_net"): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) self.model_name = model_name def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def save_model(self, path=None): if path is None: path = self.model_name path = path + ".pt" torch.save(self.state_dict(), path) print("models saved") def load_model(self, path=None): try: if path is None: path = self.model_name self.load_state_dict(torch.load(path + '.pt')) print("models loaded") except: transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081))] ) trainset = torchvision.datasets.CIFAR10( root="./data", train=True, download=True, transform=transform ) trainloader = torch.utils.data.DataLoader( trainset, batch_size=64, shuffle=True, num_workers=2 ) train(self, trainloader) # if __name__ == "__main__": # net = Cifar_Net() # trainloader, testloader, classes = get_data() # train(net, trainloader) ```
{ "source": "johanvdw/Fiona", "score": 3 }
#### File: Fiona/fiona/collection.py ```python import os import sys from fiona.ogrext import Iterator, ItemsIterator, KeysIterator from fiona.ogrext import Session, WritingSession from fiona.ogrext import calc_gdal_version_num, get_gdal_version_num, get_gdal_release_name from fiona.errors import DriverError, SchemaError, CRSError from fiona._drivers import driver_count, GDALEnv from six import string_types class Collection(object): """A file-like interface to features in the form of GeoJSON-like mappings.""" def __init__( self, path, mode='r', driver=None, schema=None, crs=None, encoding=None, layer=None, vsi=None, archive=None, **kwargs): """The required ``path`` is the absolute or relative path to a file, such as '/data/test_uk.shp'. In ``mode`` 'r', data can be read only. In ``mode`` 'a', data can be appended to a file. In ``mode`` 'w', data overwrites the existing contents of a file. In ``mode`` 'w', an OGR ``driver`` name and a ``schema`` are required. A Proj4 ``crs`` string is recommended. In 'w' mode, kwargs will be mapped to OGR layer creation options. """ if not isinstance(path, string_types): raise TypeError("invalid path: %r" % path) if not isinstance(mode, string_types) or mode not in ('r', 'w', 'a'): raise TypeError("invalid mode: %r" % mode) if driver and not isinstance(driver, string_types): raise TypeError("invalid driver: %r" % driver) if schema and not hasattr(schema, 'get'): raise TypeError("invalid schema: %r" % schema) if crs and not isinstance(crs, (dict,) + string_types): raise TypeError("invalid crs: %r" % crs) if encoding and not isinstance(encoding, string_types): raise TypeError("invalid encoding: %r" % encoding) if layer and not isinstance(layer, tuple(list(string_types) + [int])): raise TypeError("invalid name: %r" % layer) if vsi: if not isinstance(vsi, string_types) or vsi not in ('zip', 'tar', 'gzip'): raise TypeError("invalid vsi: %r" % vsi) if archive and not isinstance(archive, string_types): raise TypeError("invalid archive: %r" % archive) # Check GDAL version against drivers if (driver == "GPKG" and get_gdal_version_num() < calc_gdal_version_num(1, 11, 0)): raise DriverError( "GPKG driver requires GDAL 1.11.0, " "fiona was compiled against: {}".format(get_gdal_release_name())) self.session = None self.iterator = None self._len = 0 self._bounds = None self._driver = None self._schema = None self._crs = None self._crs_wkt = None self.env = None self.path = vsi_path(path, vsi, archive) if mode == 'w': if layer and not isinstance(layer, string_types): raise ValueError("in 'r' mode, layer names must be strings") if driver == 'GeoJSON': if layer is not None: raise ValueError("the GeoJSON format does not have layers") self.name = 'OgrGeoJSON' # TODO: raise ValueError as above for other single-layer formats. else: self.name = layer or os.path.basename(os.path.splitext(path)[0]) else: if layer in (0, None): self.name = 0 else: self.name = layer or os.path.basename(os.path.splitext(path)[0]) self.mode = mode if self.mode == 'w': if driver == 'Shapefile': driver = 'ESRI Shapefile' if not driver: raise DriverError("no driver") elif driver not in supported_drivers: raise DriverError( "unsupported driver: %r" % driver) elif self.mode not in supported_drivers[driver]: raise DriverError( "unsupported mode: %r" % self.mode) self._driver = driver if not schema: raise SchemaError("no schema") elif 'properties' not in schema: raise SchemaError("schema lacks: properties") elif 'geometry' not in schema: raise SchemaError("schema lacks: geometry") self._schema = schema if crs: if 'init' in crs or 'proj' in crs or 'epsg' in crs.lower(): self._crs = crs else: raise CRSError("crs lacks init or proj parameter") if driver_count == 0: # create a local manager and enter self.env = GDALEnv(True) else: self.env = GDALEnv(False) self.env.__enter__() if self.mode == "r": self.encoding = encoding self.session = Session() self.session.start(self) # If encoding param is None, we'll use what the session # suggests. self.encoding = encoding or self.session.get_fileencoding().lower() elif self.mode in ("a", "w"): self.encoding = encoding self.session = WritingSession() self.session.start(self, **kwargs) self.encoding = encoding or self.session.get_fileencoding().lower() if self.session: self.guard_driver_mode() def __repr__(self): return "<%s Collection '%s', mode '%s' at %s>" % ( self.closed and "closed" or "open", self.path + ":" + str(self.name), self.mode, hex(id(self))) def guard_driver_mode(self): driver = self.session.get_driver() if driver not in supported_drivers: raise DriverError("unsupported driver: %r" % driver) if self.mode not in supported_drivers[driver]: raise DriverError("unsupported mode: %r" % self.mode) @property def driver(self): """Returns the name of the proper OGR driver.""" if not self._driver and self.mode in ("a", "r") and self.session: self._driver = self.session.get_driver() return self._driver @property def schema(self): """Returns a mapping describing the data schema. The mapping has 'geometry' and 'properties' items. The former is a string such as 'Point' and the latter is an ordered mapping that follows the order of fields in the data file. """ if not self._schema and self.mode in ("a", "r") and self.session: self._schema = self.session.get_schema() return self._schema @property def crs(self): """Returns a Proj4 string.""" if self._crs is None and self.mode in ("a", "r") and self.session: self._crs = self.session.get_crs() return self._crs @property def crs_wkt(self): """Returns a WKT string.""" if self._crs_wkt is None and self.mode in ("a", "r") and self.session: self._crs_wkt = self.session.get_crs_wkt() return self._crs_wkt @property def meta(self): """Returns a mapping with the driver, schema, and crs properties.""" return { 'driver': self.driver, 'schema': self.schema, 'crs': self.crs } def filter(self, *args, **kwds): """Returns an iterator over records, but filtered by a test for spatial intersection with the provided ``bbox``, a (minx, miny, maxx, maxy) tuple or a geometry ``mask``. Positional arguments ``stop`` or ``start, stop[, step]`` allows iteration to skip over items or stop at a specific item. """ if self.closed: raise ValueError("I/O operation on closed collection") elif self.mode != 'r': raise IOError("collection not open for reading") if args: s = slice(*args) start = s.start stop = s.stop step = s.step else: start = stop = step = None bbox = kwds.get('bbox') mask = kwds.get('mask') if bbox and mask: raise ValueError("mask and bbox can not be set together") self.iterator = Iterator( self, start, stop, step, bbox, mask) return self.iterator def items(self, *args, **kwds): """Returns an iterator over FID, record pairs, optionally filtered by a test for spatial intersection with the provided ``bbox``, a (minx, miny, maxx, maxy) tuple or a geometry ``mask``. Positional arguments ``stop`` or ``start, stop[, step]`` allows iteration to skip over items or stop at a specific item. """ if self.closed: raise ValueError("I/O operation on closed collection") elif self.mode != 'r': raise IOError("collection not open for reading") if args: s = slice(*args) start = s.start stop = s.stop step = s.step else: start = stop = step = None bbox = kwds.get('bbox') mask = kwds.get('mask') if bbox and mask: raise ValueError("mask and bbox can not be set together") self.iterator = ItemsIterator( self, start, stop, step, bbox, mask) return self.iterator def keys(self, *args, **kwds): """Returns an iterator over FIDs, optionally filtered by a test for spatial intersection with the provided ``bbox``, a (minx, miny, maxx, maxy) tuple or a geometry ``mask``. Positional arguments ``stop`` or ``start, stop[, step]`` allows iteration to skip over items or stop at a specific item. """ if self.closed: raise ValueError("I/O operation on closed collection") elif self.mode != 'r': raise IOError("collection not open for reading") if args: s = slice(*args) start = s.start stop = s.stop step = s.step else: start = stop = step = None bbox = kwds.get('bbox') mask = kwds.get('mask') if bbox and mask: raise ValueError("mask and bbox can not be set together") self.iterator = KeysIterator( self, start, stop, step, bbox, mask) return self.iterator def __contains__(self, fid): return self.session.has_feature(fid) values = filter def __iter__(self): """Returns an iterator over records.""" return self.filter() def __next__(self): """Returns next record from iterator.""" if not self.iterator: iter(self) return next(self.iterator) next = __next__ def __getitem__(self, item): return self.session.__getitem__(item) def writerecords(self, records): """Stages multiple records for writing to disk.""" if self.closed: raise ValueError("I/O operation on closed collection") if self.mode not in ('a', 'w'): raise IOError("collection not open for writing") self.session.writerecs(records, self) self._len = self.session.get_length() self._bounds = self.session.get_extent() def write(self, record): """Stages a record for writing to disk.""" self.writerecords([record]) def validate_record(self, record): """Compares the record to the collection's schema. Returns ``True`` if the record matches, else ``False``. """ # Currently we only compare keys of properties, not the types of # values. return set(record['properties'].keys() ) == set(self.schema['properties'].keys() ) and self.validate_record_geometry(record) def validate_record_geometry(self, record): """Compares the record's geometry to the collection's schema. Returns ``True`` if the record matches, else ``False``. """ # Shapefiles welcome mixes of line/multis and polygon/multis. # OGR reports these mixed files as type "Polygon" or "LineString" # but will return either these or their multi counterparts when # reading features. if (self.driver == "ESRI Shapefile" and "Point" not in record['geometry']['type']): return record['geometry']['type'].lstrip( "Multi") == self.schema['geometry'].lstrip("3D ").lstrip( "Multi") else: return (record['geometry']['type'] == self.schema['geometry'].lstrip("3D ")) def __len__(self): if self._len <= 0 and self.session is not None: self._len = self.session.get_length() return self._len @property def bounds(self): """Returns (minx, miny, maxx, maxy).""" if self._bounds is None and self.session is not None: self._bounds = self.session.get_extent() return self._bounds def flush(self): """Flush the buffer.""" if self.session is not None and self.session.get_length() > 0: self.session.sync(self) new_len = self.session.get_length() self._len = new_len > self._len and new_len or self._len self._bounds = self.session.get_extent() def close(self): """In append or write mode, flushes data to disk, then ends access.""" if self.session is not None: if self.mode in ('a', 'w'): self.flush() self.session.stop() self.session = None self.iterator = None if self.env: self.env.__exit__() @property def closed(self): """``False`` if data can be accessed, otherwise ``True``.""" return self.session is None def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def __del__(self): # Note: you can't count on this being called. Call close() explicitly # or use the context manager protocol ("with"). self.__exit__(None, None, None) def vsi_path(path, vsi=None, archive=None): # If a VSF and archive file are specified, we convert the path to # an OGR VSI path (see cpl_vsi.h). if vsi: if archive: result = "/vsi%s/%s%s" % (vsi, archive, path) else: result = "/vsi%s/%s" % (vsi, path) else: result = path return result # Here is the list of available drivers as (name, modes) tuples. Currently, # we only expose the defaults (excepting FileGDB). We also don't expose # the CSV or GeoJSON drivers. Use Python's csv and json modules instead. # Might still exclude a few more of these after making a pass through the # entries for each at http://www.gdal.org/ogr/ogr_formats.html to screen # out the multi-layer formats. supported_drivers = dict([ #OGR Vector Formats #Format Name Code Creation Georeferencing Compiled by default #Aeronav FAA files AeronavFAA No Yes Yes ("AeronavFAA", "r"), #ESRI ArcObjects ArcObjects No Yes No, needs ESRI ArcObjects #Arc/Info Binary Coverage AVCBin No Yes Yes # multi-layer # ("AVCBin", "r"), #Arc/Info .E00 (ASCII) Coverage AVCE00 No Yes Yes # multi-layer # ("AVCE00", "r"), #Arc/Info Generate ARCGEN No No Yes ("ARCGEN", "r"), #Atlas BNA BNA Yes No Yes ("BNA", "raw"), #AutoCAD DWG DWG No No No #AutoCAD DXF DXF Yes No Yes ("DXF", "raw"), #Comma Separated Value (.csv) CSV Yes No Yes #CouchDB / GeoCouch CouchDB Yes Yes No, needs libcurl #DODS/OPeNDAP DODS No Yes No, needs libdap #EDIGEO EDIGEO No Yes Yes # multi-layer? Hard to tell from the OGR docs # ("EDIGEO", "r"), #ElasticSearch ElasticSearch Yes (write-only) - No, needs libcurl #ESRI FileGDB FileGDB Yes Yes No, needs FileGDB API library # multi-layer ("FileGDB", "raw"), #ESRI Personal GeoDatabase PGeo No Yes No, needs ODBC library #ESRI ArcSDE SDE No Yes No, needs ESRI SDE #ESRI Shapefile ESRI Shapefile Yes Yes Yes ("ESRI Shapefile", "raw"), #FMEObjects Gateway FMEObjects Gateway No Yes No, needs FME #GeoJSON GeoJSON Yes Yes Yes ("GeoJSON", "rw"), #Géoconcept Export Geoconcept Yes Yes Yes # multi-layers # ("Geoconcept", "raw"), #Geomedia .mdb Geomedia No No No, needs ODBC library #GeoPackage GPKG Yes Yes No, needs libsqlite3 ("GPKG", "rw"), #GeoRSS GeoRSS Yes Yes Yes (read support needs libexpat) #Google Fusion Tables GFT Yes Yes No, needs libcurl #GML GML Yes Yes Yes (read support needs Xerces or libexpat) #GMT GMT Yes Yes Yes ("GMT", "raw"), #GPSBabel GPSBabel Yes Yes Yes (needs GPSBabel and GPX driver) #GPX GPX Yes Yes Yes (read support needs libexpat) ("GPX", "raw"), #GRASS GRASS No Yes No, needs libgrass #GPSTrackMaker (.gtm, .gtz) GPSTrackMaker Yes Yes Yes ("GPSTrackMaker", "raw"), #Hydrographic Transfer Format HTF No Yes Yes # TODO: Fiona is not ready for multi-layer formats: ("HTF", "r"), #Idrisi Vector (.VCT) Idrisi No Yes Yes ("Idrisi", "r"), #Informix DataBlade IDB Yes Yes No, needs Informix DataBlade #INTERLIS "Interlis 1" and "Interlis 2" Yes Yes No, needs Xerces (INTERLIS model reading needs ili2c.jar) #INGRES INGRES Yes No No, needs INGRESS #KML KML Yes Yes Yes (read support needs libexpat) #LIBKML LIBKML Yes Yes No, needs libkml #Mapinfo File MapInfo File Yes Yes Yes ("MapInfo File", "raw"), #Microstation DGN DGN Yes No Yes ("DGN", "raw"), #Access MDB (PGeo and Geomedia capable) MDB No Yes No, needs JDK/JRE #Memory Memory Yes Yes Yes #MySQL MySQL No Yes No, needs MySQL library #NAS - ALKIS NAS No Yes No, needs Xerces #Oracle Spatial OCI Yes Yes No, needs OCI library #ODBC ODBC No Yes No, needs ODBC library #MS SQL Spatial MSSQLSpatial Yes Yes No, needs ODBC library #Open Document Spreadsheet ODS Yes No No, needs libexpat #OGDI Vectors (VPF, VMAP, DCW) OGDI No Yes No, needs OGDI library #OpenAir OpenAir No Yes Yes # multi-layer # ("OpenAir", "r"), #PCI Geomatics Database File PCIDSK No No Yes, using internal PCIDSK SDK (from GDAL 1.7.0) ("PCIDSK", "r"), #PDS PDS No Yes Yes ("PDS", "r"), #PGDump PostgreSQL SQL dump Yes Yes Yes #PostgreSQL/PostGIS PostgreSQL/PostGIS Yes Yes No, needs PostgreSQL client library (libpq) #EPIInfo .REC REC No No Yes #S-57 (ENC) S57 No Yes Yes # multi-layer # ("S57", "r"), #SDTS SDTS No Yes Yes # multi-layer # ("SDTS", "r"), #SEG-P1 / UKOOA P1/90 SEGUKOOA No Yes Yes # multi-layers # ("SEGUKOOA", "r"), #SEG-Y SEGY No No Yes ("SEGY", "r"), #Norwegian SOSI Standard SOSI No Yes No, needs FYBA library #SQLite/SpatiaLite SQLite Yes Yes No, needs libsqlite3 or libspatialite #SUA SUA No Yes Yes ("SUA", "r"), #SVG SVG No Yes No, needs libexpat #UK .NTF UK. NTF No Yes Yes # multi-layer # ("UK. NTF", "r"), #U.S. Census TIGER/Line TIGER No Yes Yes # multi-layer # ("TIGER", "r"), #VFK data VFK No Yes Yes # multi-layer # ("VFK", "r"), #VRT - Virtual Datasource VRT No Yes Yes # multi-layer # ("VRT", "r"), #OGC WFS (Web Feature Service) WFS Yes Yes No, needs libcurl #MS Excel format XLS No No No, needs libfreexl #Office Open XML spreadsheet XLSX Yes No No, needs libexpat #X-Plane/Flighgear aeronautical data XPLANE No Yes Yes # multi-layer # ("XPLANE", "r") ]) ``` #### File: Fiona/tests/test_multiconxn.py ```python import logging import os import shutil import sys import tempfile import unittest import fiona from fiona.odict import OrderedDict logging.basicConfig(stream=sys.stderr, level=logging.DEBUG) class ReadAccess(unittest.TestCase): # To check that we'll be able to get multiple 'r' connections to layers # in a single file. def setUp(self): self.c = fiona.open("docs/data/test_uk.shp", "r", layer="test_uk") def tearDown(self): self.c.close() def test_meta(self): with fiona.open("docs/data/test_uk.shp", "r", layer="test_uk") as c2: self.assertEqual(len(self.c), len(c2)) self.assertEqual(sorted(self.c.schema.items()), sorted(c2.schema.items())) def test_meta(self): f1 = next(self.c) with fiona.open("docs/data/test_uk.shp", "r", layer="test_uk") as c2: f2 = next(c2) self.assertEqual(f1, f2) class ReadWriteAccess(unittest.TestCase): # To check that we'll be able to read from a file that we're # writing to. def setUp(self): self.tempdir = tempfile.mkdtemp() self.c = fiona.open( os.path.join(self.tempdir, "multi_write_test.shp"), "w", driver="ESRI Shapefile", schema={ 'geometry': 'Point', 'properties': [('title', 'str:80'), ('date', 'date')]}, crs={'init': "epsg:4326", 'no_defs': True}, encoding='utf-8') self.f = { 'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates': (0.0, 0.1)}, 'properties': OrderedDict([('title', 'point one'), ('date', '2012-01-29')])} self.c.writerecords([self.f]) self.c.flush() def tearDown(self): self.c.close() shutil.rmtree(self.tempdir) def test_meta(self): c2 = fiona.open(os.path.join(self.tempdir, "multi_write_test.shp"), "r") self.assertEqual(len(self.c), len(c2)) self.assertEqual(sorted(self.c.schema.items()), sorted(c2.schema.items())) def test_read(self): c2 = fiona.open(os.path.join(self.tempdir, "multi_write_test.shp"), "r") f2 = next(c2) del f2['id'] self.assertEqual(self.f, f2) def test_read_after_close(self): c2 = fiona.open(os.path.join(self.tempdir, "multi_write_test.shp"), "r") self.c.close() f2 = next(c2) del f2['id'] self.assertEqual(self.f, f2) class LayerCreation(unittest.TestCase): def setUp(self): self.tempdir = tempfile.mkdtemp() self.dir = os.path.join(self.tempdir, 'layer_creation') if os.path.exists(self.dir): shutil.rmtree(self.dir) os.mkdir(self.dir) self.c = fiona.open( self.dir, 'w', layer='write_test', driver='ESRI Shapefile', schema={ 'geometry': 'Point', 'properties': [('title', 'str:80'), ('date', 'date')]}, crs={'init': "epsg:4326", 'no_defs': True}, encoding='utf-8') self.f = { 'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates': (0.0, 0.1)}, 'properties': OrderedDict([('title', 'point one'), ('date', '2012-01-29')])} self.c.writerecords([self.f]) self.c.flush() def tearDown(self): self.c.close() shutil.rmtree(self.tempdir) def test_meta(self): c2 = fiona.open(os.path.join(self.dir, "write_test.shp"), "r") self.assertEqual(len(self.c), len(c2)) self.assertEqual(sorted(self.c.schema.items()), sorted(c2.schema.items())) def test_read(self): c2 = fiona.open(os.path.join(self.dir, "write_test.shp"), "r") f2 = next(c2) del f2['id'] self.assertEqual(self.f, f2) def test_read_after_close(self): c2 = fiona.open(os.path.join(self.dir, "write_test.shp"), "r") self.c.close() f2 = next(c2) del f2['id'] self.assertEqual(self.f, f2) ``` #### File: Fiona/tests/test_revolvingdoor.py ```python import logging import os.path import shutil import subprocess import sys import tempfile import unittest import fiona logging.basicConfig(stream=sys.stderr, level=logging.DEBUG) log = logging.getLogger('fiona.tests') class RevolvingDoorTest(unittest.TestCase): def setUp(self): self.tempdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tempdir) def test_write_revolving_door(self): with fiona.open('docs/data/test_uk.shp') as src: meta = src.meta features = list(src) shpname = os.path.join(self.tempdir, 'foo.shp') with fiona.open(shpname, 'w', **meta) as dst: dst.writerecords(features) with fiona.open(shpname) as src: pass ``` #### File: Fiona/tests/test_unicode.py ```python import logging import os import shutil import sys import tempfile import unittest import six import fiona logging.basicConfig(stream=sys.stderr, level=logging.DEBUG) class UnicodePathTest(unittest.TestCase): def setUp(self): tempdir = tempfile.mkdtemp() self.dir = os.path.join(tempdir, 'français') shutil.copytree('docs/data/', self.dir) def tearDown(self): shutil.rmtree(os.path.dirname(self.dir)) def test_unicode_path(self): path = self.dir + '/test_uk.shp' if sys.version_info < (3,): path = path.decode('utf-8') with fiona.open(path) as c: assert len(c) == 48 def test_unicode_path_layer(self): path = self.dir layer = 'test_uk' if sys.version_info < (3,): path = path.decode('utf-8') layer = layer.decode('utf-8') with fiona.open(path, layer=layer) as c: assert len(c) == 48 def test_utf8_path(self): path = self.dir + '/test_uk.shp' if sys.version_info < (3,): with fiona.open(path) as c: assert len(c) == 48 ```
{ "source": "johanvdw/niche_vlaanderen", "score": 3 }
#### File: niche_vlaanderen/niche_vlaanderen/acidity.py ```python from pkg_resources import resource_filename import numpy as np import pandas as pd from .codetables import validate_tables_acidity, check_codes_used class Acidity(object): ''' ''' nodata = 255 # uint8 data type def __init__(self, ct_acidity=None, ct_soil_mlw_class=None, ct_soil_codes=None, lnk_acidity=None, ct_seepage=None): if ct_acidity is None: ct_acidity = resource_filename( "niche_vlaanderen", "system_tables/acidity.csv") if ct_soil_mlw_class is None: ct_soil_mlw_class = resource_filename( "niche_vlaanderen", "system_tables/soil_mlw_class.csv") if ct_soil_codes is None: ct_soil_codes = resource_filename( "niche_vlaanderen", "system_tables/soil_codes.csv") if lnk_acidity is None: lnk_acidity = resource_filename( "niche_vlaanderen", "system_tables/lnk_acidity.csv") if ct_seepage is None: ct_seepage = resource_filename( "niche_vlaanderen", "system_tables/seepage.csv") self._ct_acidity = pd.read_csv(ct_acidity) self._ct_soil_mlw = pd.read_csv(ct_soil_mlw_class) self._ct_soil_codes = pd.read_csv(ct_soil_codes) self._lnk_acidity = pd.read_csv(lnk_acidity) self._ct_seepage = pd.read_csv(ct_seepage) inner = all(v is None for v in self.__init__.__code__.co_varnames[1:]) validate_tables_acidity(ct_acidity=self._ct_acidity, ct_soil_mlw_class=self._ct_soil_mlw, ct_soil_codes=self._ct_soil_codes, lnk_acidity=self._lnk_acidity, ct_seepage=self._ct_seepage, inner=inner) self._ct_soil_codes = self._ct_soil_codes.set_index("soil_code") def _calculate_soil_mlw(self, soil_code, mlw): check_codes_used("soil_code", soil_code, self._ct_soil_codes.index) # determine soil_group for soil_code orig_shape = mlw.shape soil_code = soil_code.flatten() mlw = mlw.flatten() soil_group = self._ct_soil_codes.soil_group.reindex(soil_code)\ .values.astype("int8") # the function above gives 0 for no data soil_group[soil_group == 0] = -99 result = np.full(soil_code.shape, -99) for sel_group, subtable in self._ct_soil_mlw.groupby(["soil_group"]): subtable = subtable.copy().reset_index(drop=True) index = np.digitize(mlw, subtable.mlw_max, right=True) selection = (soil_group == sel_group) result[selection] = \ subtable.soil_mlw_class.reindex(index)[selection] result[mlw == -99] = -99 result = result.reshape(orig_shape) return result def _get_acidity(self, rainwater, minerality, inundation, seepage, soil_mlw_class): orig_shape = inundation.shape check_codes_used("rainwater", rainwater, {0, 1}) check_codes_used("minerality", minerality, self._lnk_acidity["mineral_richness"]) check_codes_used("inundation", inundation, self._lnk_acidity["inundation"]) check_codes_used("seepage", seepage, self._ct_seepage["seepage"]) rainwater = rainwater.flatten() minerality = minerality.flatten() inundation = inundation.flatten() seepage = seepage.flatten() soil_mlw_class = soil_mlw_class.flatten() result = np.full(soil_mlw_class.shape, self.nodata, dtype="uint8") for labels, subtable in self._lnk_acidity.groupby( ["rainwater", "mineral_richness", "inundation", "seepage", "soil_mlw_class"]): sel_rainwater, sel_mr, sel_inundation, \ sel_seepage, sel_soil_mlw_class = labels subtable = subtable.copy().reset_index(drop=True) selection = ((rainwater == sel_rainwater) & (minerality == sel_mr) & (inundation == sel_inundation) & (seepage == sel_seepage) & (soil_mlw_class == sel_soil_mlw_class)) result[(selection)] = subtable.acidity[0] result = result.reshape(orig_shape) return result def _get_seepage(self, seepage): """Classify seepage values """ orig_shape = seepage.shape seepage = seepage.flatten() index = np.digitize(seepage, self._ct_seepage.seepage_max, right=True) seepage_class = self._ct_seepage.seepage.reindex(index) seepage_class[(np.isnan(seepage) | (seepage == -99))] return seepage_class.values.reshape(orig_shape) def calculate(self, soil_class, mlw, inundation, seepage, minerality, rainwater): soil_mlw = self._calculate_soil_mlw(soil_class, mlw) seepage = self._get_seepage(seepage) acidity = self._get_acidity(rainwater, minerality, inundation, seepage, soil_mlw) return acidity ``` #### File: niche_vlaanderen/niche_vlaanderen/cli.py ```python import click import niche_vlaanderen from pkg_resources import resource_filename @click.command() @click.pass_context @click.option('--example', is_flag=True, help='prints an example configuration file') @click.option('--version', is_flag=True, help='prints the version number') @click.argument('config', required=False, type=click.Path(exists=True)) def cli(ctx, config, example, version): """Command line interface to the NICHE vegetation model """ if example: ex = resource_filename( "niche_vlaanderen", "system_tables/example.yaml") with open(ex) as f: print(f.read()) if config is not None: n = niche_vlaanderen.Niche() n.run_config_file(config, overwrite_ct=True) click.echo(n) if config is None and not example: # we should really find a neater way to show --help here by default. print("No config file added. Use --help for more info") if version: print("niche_vlaanderen version: " + niche_vlaanderen.__version__) ``` #### File: niche_vlaanderen/tests/test_acidity.py ```python from unittest import TestCase import rasterio import numpy as np import niche_vlaanderen import pytest from niche_vlaanderen.exception import NicheException def raster_to_numpy(filename): """Read a GDAL grid as numpy array Notes ------ No-data values are -99 for integer types and np.nan for real types. """ with rasterio.open(filename) as ds: data = ds.read(1) nodata = ds.nodatavals[0] print(nodata) # create a mask for no-data values, taking into account the data-types if data.dtype == 'float32': data[np.isclose(data, nodata)] = np.nan else: data[np.isclose(data, nodata)] = -99 return data class testAcidity(TestCase): def test_get_soil_mlw(self): mlw = np.array([50, 66]) soil_code = np.array([14, 7]) a = niche_vlaanderen.Acidity() result = a._calculate_soil_mlw(soil_code, mlw) np.testing.assert_equal(np.array([1, 9]), result) def test_get_soil_mlw_borders(self): mlw = np.array([79, 80, 100, 110, 111]) soil_code = np.array([14, 14, 14, 14, 14]) a = niche_vlaanderen.Acidity() result = a._calculate_soil_mlw(soil_code, mlw) expected = np.array([1, 1, 2, 2, 3]) np.testing.assert_equal(expected, result) def test_acidity_partial(self): rainwater = np.array([0]) minerality = np.array([1]) inundation = np.array([1]) seepage = np.array([1]) soil_mlw = np.array([1]) a = niche_vlaanderen.Acidity() result = a._get_acidity(rainwater, minerality, inundation, seepage, soil_mlw) np.testing.assert_equal(np.array([3]), result) def test_seepage_code(self): seepage = np.array([5, 0.3, 0.05, -0.04, -0.2, -5]) a = niche_vlaanderen.Acidity() result = a._get_seepage(seepage) expected = np.array([1, 1, 1, 1, 2, 3]) np.testing.assert_equal(expected, result) def test_acidity(self): rainwater = np.array([0]) minerality = np.array([0]) soilcode = np.array([14]) inundation = np.array([1]) seepage = np.array([20]) mlw = np.array([50]) a = niche_vlaanderen.Acidity() result = a.calculate(soilcode, mlw, inundation, seepage, minerality, rainwater) np.testing.assert_equal(3, result) def test_acidity_testcase(self): a = niche_vlaanderen.Acidity() inputdir = "testcase/zwarte_beek/input/" soil_code = raster_to_numpy(inputdir + "soil_code.asc") soil_code_r = soil_code soil_code_r[soil_code > 0] = np.round(soil_code / 10000)[soil_code > 0] mlw = raster_to_numpy(inputdir + "mlw.asc") inundation = \ raster_to_numpy(inputdir + "inundation.asc") rainwater = raster_to_numpy(inputdir + "nullgrid.asc") seepage = raster_to_numpy(inputdir + "seepage.asc") minerality = raster_to_numpy(inputdir + "minerality.asc") acidity = raster_to_numpy("testcase/zwarte_beek/abiotic/acidity.asc") acidity[np.isnan(acidity)] = 255 acidity[acidity == -99] = 255 result = a.calculate(soil_code_r, mlw, inundation, seepage, minerality, rainwater) np.testing.assert_equal(acidity, result) def test_acidity_invalidsoil(self): a = niche_vlaanderen.Acidity() rainwater = np.array([0]) minerality = np.array([0]) soilcode = np.array([-1]) inundation = np.array([1]) seepage = np.array([20]) mlw = np.array([50]) a = niche_vlaanderen.Acidity() with pytest.raises(NicheException): a.calculate(soilcode, mlw, inundation, seepage, minerality, rainwater) def test_acidity_invalidminerality(self): a = niche_vlaanderen.Acidity() rainwater = np.array([0]) minerality = np.array([500]) soilcode = np.array([14]) inundation = np.array([1]) seepage = np.array([20]) mlw = np.array([50]) with pytest.raises(NicheException): a.calculate(soilcode, mlw, inundation, seepage, minerality, rainwater) ``` #### File: niche_vlaanderen/tests/test_nutrient_level.py ```python from unittest import TestCase import numpy as np import rasterio import niche_vlaanderen def raster_to_numpy(filename): '''Read a GDAL grid as numpy array Notes ------ No-data values are -99 for integer types and np.nan for real types. ''' with rasterio.open(filename) as ds: data = ds.read(1) nodata = ds.nodatavals[0] # create a mask for no-data values, taking into account the data-types if data.dtype == 'float32': data[data == nodata] = np.nan else: data[data == nodata] = -99 return data class TestNutrientLevel(TestCase): def test_nitrogen_mineralisation(self): soil_code = np.array([14]) msw = np.array([33]) nl = niche_vlaanderen.NutrientLevel() result = nl._calculate_mineralisation(soil_code, msw) np.testing.assert_equal(np.array([75]), result) def test_borders(self): soil_code = np.array([7, 7, 7, 7, 7]) msw = np.array([4, 5, 7, 10, 11]) nl = niche_vlaanderen.NutrientLevel() result_nm = nl._calculate_mineralisation(soil_code, msw) expected_nm = np.array([50, 50, 55, 55, 76]) np.testing.assert_equal(expected_nm, result_nm) nuls = np.array([0, 0, 0, 0, 0]) # we want to check the boundaries ]156, 293] nitrogen_sum = np.array([155, 156, 200, 293, 294]) # so we substract the nitrogen_sum from the expected mineralisation nitrogen_animal = nitrogen_sum - expected_nm management = np.array([2, 2, 2, 2, 2]) result = nl.calculate(soil_code=soil_code, msw=msw, management=management, nitrogen_animal=nitrogen_animal, nitrogen_atmospheric=nuls, nitrogen_fertilizer=nuls, inundation=nuls) expected = np.array([2, 2, 3, 3, 4]) np.testing.assert_equal(expected, result) def test__get(self): management = np.array([2]) soil_code = np.array([14]) nitrogen = np.array([445]) inundation = np.array([1]) nl = niche_vlaanderen.NutrientLevel() result = nl._calculate(management, soil_code, nitrogen, inundation) np.testing.assert_equal(np.array(5), result) def test_calculate(self): nl = niche_vlaanderen.NutrientLevel() management = np.array([2]) soil_code = np.array([14]) msw = np.array([33]) nitrogen_deposition = np.array([20]) nitrogen_animal = np.array([350]) nitrogen_fertilizer = np.array([0]) inundation = np.array([1]) result = nl.calculate(soil_code, msw, nitrogen_deposition, nitrogen_animal, nitrogen_fertilizer, management, inundation) np.testing.assert_equal(np.array([5]), result) def test_nutrient_level_testcase(self): nl = niche_vlaanderen.NutrientLevel() soil_code = raster_to_numpy("testcase/zwarte_beek/input/soil_code.asc") soil_code_r = soil_code soil_code_r[soil_code > 0] = np.round(soil_code / 10000)[soil_code > 0] input_dir = "testcase/zwarte_beek/input/" msw = raster_to_numpy(input_dir + "msw.asc") nitrogen_deposition = \ raster_to_numpy(input_dir + "nitrogen_atmospheric.asc") nitrogen_animal = raster_to_numpy(input_dir + "nullgrid.asc") nitrogen_fertilizer = raster_to_numpy(input_dir + "nullgrid.asc") inundation = raster_to_numpy(input_dir + "inundation.asc") management = raster_to_numpy(input_dir + "management.asc") nutrient_level = \ raster_to_numpy("testcase/zwarte_beek/abiotic/nutrient_level.asc") # convert nodata value from -99 to 255 ( nutrient_level[nutrient_level == -99] = 255 result = nl.calculate(soil_code_r, msw, nitrogen_deposition, nitrogen_animal, nitrogen_fertilizer, management, inundation) np.testing.assert_equal(nutrient_level, result) ```
{ "source": "johanvdw/rasterio", "score": 3 }
#### File: rasterio/rasterio/crs.py ```python from rasterio._base import is_geographic_crs, is_projected_crs from rasterio.five import string_types def to_string(crs): """Turn a parameter mapping into a more conventional PROJ.4 string. Mapping keys are tested against the ``all_proj_keys`` list. Values of ``True`` are omitted, leaving the key bare: {'no_defs': True} -> "+no_defs" and items where the value is otherwise not a str, int, or float are omitted. """ items = [] for k, v in sorted(filter( lambda x: x[0] in all_proj_keys and x[1] is not False and ( isinstance(x[1], (bool, int, float)) or isinstance(x[1], string_types)), crs.items() )): items.append( "+" + "=".join( map(str, filter( lambda y: (y or y == 0) and y is not True, (k, v)))) ) return " ".join(items) def from_string(prjs): """Turn a PROJ.4 string into a mapping of parameters. Bare parameters like "+no_defs" are given a value of ``True``. All keys are checked against the ``all_proj_keys`` list. """ parts = [o.lstrip('+') for o in prjs.strip().split()] def parse(v): if v in ('True', 'true'): return True elif v in ('False', 'false'): return False else: try: return int(v) except ValueError: pass try: return float(v) except ValueError: return v items = map( lambda kv: len(kv) == 2 and (kv[0], parse(kv[1])) or (kv[0], True), (p.split('=') for p in parts) ) return dict((k,v) for k, v in items if k in all_proj_keys) def from_epsg(code): """Given an integer code, returns an EPSG-like mapping. Note: the input code is not validated against an EPSG database. """ if int(code) <= 0: raise ValueError("EPSG codes are positive integers") return {'init': "epsg:%s" % code, 'no_defs': True} # Below is the big list of PROJ4 parameters from # http://trac.osgeo.org/proj/wiki/GenParms. # It is parsed into a list of paramter keys ``all_proj_keys``. _param_data = """ +a Semimajor radius of the ellipsoid axis +alpha ? Used with Oblique Mercator and possibly a few others +axis Axis orientation (new in 4.8.0) +b Semiminor radius of the ellipsoid axis +datum Datum name (see `proj -ld`) +ellps Ellipsoid name (see `proj -le`) +init Initialize from a named CRS +k Scaling factor (old name) +k_0 Scaling factor (new name) +lat_0 Latitude of origin +lat_1 Latitude of first standard parallel +lat_2 Latitude of second standard parallel +lat_ts Latitude of true scale +lon_0 Central meridian +lonc ? Longitude used with Oblique Mercator and possibly a few others +lon_wrap Center longitude to use for wrapping (see below) +nadgrids Filename of NTv2 grid file to use for datum transforms (see below) +no_defs Don't use the /usr/share/proj/proj_def.dat defaults file +over Allow longitude output outside -180 to 180 range, disables wrapping (see below) +pm Alternate prime meridian (typically a city name, see below) +proj Projection name (see `proj -l`) +south Denotes southern hemisphere UTM zone +to_meter Multiplier to convert map units to 1.0m +towgs84 3 or 7 term datum transform parameters (see below) +units meters, US survey feet, etc. +vto_meter vertical conversion to meters. +vunits vertical units. +x_0 False easting +y_0 False northing +zone UTM zone +a Semimajor radius of the ellipsoid axis +alpha ? Used with Oblique Mercator and possibly a few others +azi +b Semiminor radius of the ellipsoid axis +belgium +beta +czech +e Eccentricity of the ellipsoid = sqrt(1 - b^2/a^2) = sqrt( f*(2-f) ) +ellps Ellipsoid name (see `proj -le`) +es Eccentricity of the ellipsoid squared +f Flattening of the ellipsoid (often presented as an inverse, e.g. 1/298) +gamma +geoc +guam +h +k Scaling factor (old name) +K +k_0 Scaling factor (new name) +lat_0 Latitude of origin +lat_1 Latitude of first standard parallel +lat_2 Latitude of second standard parallel +lat_b +lat_t +lat_ts Latitude of true scale +lon_0 Central meridian +lon_1 +lon_2 +lonc ? Longitude used with Oblique Mercator and possibly a few others +lsat +m +M +n +no_cut +no_off +no_rot +ns +o_alpha +o_lat_1 +o_lat_2 +o_lat_c +o_lat_p +o_lon_1 +o_lon_2 +o_lon_c +o_lon_p +o_proj +over +p +path +proj Projection name (see `proj -l`) +q +R +R_a +R_A Compute radius such that the area of the sphere is the same as the area of the ellipsoid +rf Reciprocal of the ellipsoid flattening term (e.g. 298) +R_g +R_h +R_lat_a +R_lat_g +rot +R_V +s +south Denotes southern hemisphere UTM zone +sym +t +theta +tilt +to_meter Multiplier to convert map units to 1.0m +units meters, US survey feet, etc. +vopt +W +westo +x_0 False easting +y_0 False northing +zone UTM zone """ _lines = filter(lambda x: len(x) > 1, _param_data.split("\n")) all_proj_keys = list( set(line.split()[0].lstrip("+").strip() for line in _lines) ) + ['no_mayo'] ``` #### File: rasterio/tests/test_rio_helpers.py ```python from rasterio.rio import helpers def test_resolve_files_inout__output(): assert helpers.resolve_inout(input='in', output='out') == ('out', ['in']) def test_resolve_files_inout__input(): assert helpers.resolve_inout(input='in') == (None, ['in']) def test_resolve_files_inout__inout_files(): assert helpers.resolve_inout(files=('a', 'b', 'c')) == ('c', ['a', 'b']) def test_resolve_files_inout__inout_files_output_o(): assert helpers.resolve_inout( files=('a', 'b', 'c'), output='out') == ('out', ['a', 'b', 'c']) ``` #### File: rasterio/tests/test_sampling.py ```python import rasterio def test_sampling(): with rasterio.open('tests/data/RGB.byte.tif') as src: data = next(src.sample([(220650.0, 2719200.0)])) assert list(data) == [18, 25, 14] def test_sampling_beyond_bounds(): with rasterio.open('tests/data/RGB.byte.tif') as src: data = next(src.sample([(-10, 2719200.0)])) assert list(data) == [0, 0, 0] def test_sampling_indexes(): with rasterio.open('tests/data/RGB.byte.tif') as src: data = next(src.sample([(220650.0, 2719200.0)], indexes=[2])) assert list(data) == [25] ```
{ "source": "johanvdw/scikit-gstat", "score": 3 }
#### File: scikit-gstat/skgstat/binning.py ```python import numpy as np from sklearn.cluster import KMeans, AgglomerativeClustering from scipy.optimize import minimize, OptimizeWarning from skgstat.util import shannon_entropy def even_width_lags(distances, n, maxlag): """Even lag edges Calculate the lag edges for a given amount of bins using the same lag step width for all bins. .. versionchanged:: 0.3.8 Function returns `None` as second value to indicate that The number of lag classes was not changed Parameters ---------- distances : numpy.array Flat numpy array representing the upper triangle of the distance matrix. n : integer Amount of lag classes to find maxlag : integer, float Limit the last lag class to this separating distance. Returns ------- bin_edges : numpy.ndarray The **upper** bin edges of the lag classes """ # maxlags larger than the maximum separating distance will be ignored if maxlag is None or maxlag > np.nanmax(distances): maxlag = np.nanmax(distances) return np.linspace(0, maxlag, n + 1)[1:], None def uniform_count_lags(distances, n, maxlag): """Uniform lag counts Calculate the lag edges for a given amount of bins with the same amount of observations in each lag class. The lag step width will be variable. .. versionchanged:: 0.3.8 Function returns `None` as second value to indicate that The number of lag classes was not changed Parameters ---------- distances : numpy.array Flat numpy array representing the upper triangle of the distance matrix. n : integer Amount of lag classes to find maxlag : integer, float Limit the last lag class to this separating distance. Returns ------- bin_edges : numpy.ndarray The **upper** bin edges of the lag classes """ # maxlags larger than the maximum separating distance will be ignored if maxlag is None or maxlag > np.nanmax(distances): maxlag = np.nanmax(distances) # filter for distances < maxlag d = distances[np.where(distances <= maxlag)] return np.fromiter( (np.nanpercentile(d, (i / n) * 100) for i in range(1, n + 1)), dtype=float ), None def auto_derived_lags(distances, method_name, maxlag): """Derive bins automatically .. versionadded:: 0.3.8 Uses `histogram_bin_edges <numpy.histogram_bin_edges>` to derive the lag classes automatically. Supports any method supported by `histogram_bin_edges <numpy.histogram_bin_edges>`. It is recommended to use `'sturges'`, `'doane'` or `'fd'`. Parameters ---------- distances : numpy.array Flat numpy array representing the upper triangle of the distance matrix. maxlag : integer, float Limit the last lag class to this separating distance. method_name : str Any method supported by `histogram_bin_edges <numpy.histogram_bin_edges>` Returns ------- bin_edges : numpy.ndarray The **upper** bin edges of the lag classes See Also -------- numpy.histogram_bin_edges """ # maxlags larger than maximum separating distance will be ignored if maxlag is None or maxlag > np.nanmax(distances): maxlag = np.nanmax(distances) # filter for distances < maxlag d = distances[np.where(distances <= maxlag)] # calculate the edges edges = np.histogram_bin_edges(d, bins=method_name)[1:] return edges, len(edges) def kmeans(distances, n, maxlag, binning_random_state=42, **kwargs): """KMeans binning .. versionadded:: 0.3.9 Clustering of pairwise separating distances between locations up to maxlag. The lag class edges are formed equidistant from each cluster center. Note: this does not necessarily result in equidistance lag classes. Parameters ---------- distances : numpy.array Flat numpy array representing the upper triangle of the distance matrix. n : integer Amount of lag classes to find maxlag : integer, float Limit the last lag class to this separating distance. Returns ------- bin_edges : numpy.ndarray The **upper** bin edges of the lag classes Note ---- The `KMeans <sklearn.cluster.KMeans>` that is used under the hood is not a deterministic algorithm, as the starting cluster centroids are seeded randomly. This can yield slightly different results on reach run. Thus, for this application, the random_state on KMeans is fixed to a specific value. You can change the seed by passing another seed to `Variogram <skgstat.Variogram>` as `binning_random_state`. """ # maxlags larger than maximum separating distance will be ignored if maxlag is None or maxlag > np.nanmax(distances): maxlag = np.nanmax(distances) # filter for distances < maxlag d = distances[np.where(distances <= maxlag)] # cluster the filtered distances km = KMeans(n_clusters=n, random_state=binning_random_state).fit(d.reshape(-1, 1)) # get the centers _centers = np.sort(km.cluster_centers_.flatten()) # build the upper edges bounds = zip([0] + list(_centers)[:-1], _centers) edges = np.fromiter(((low + up) / 2 for low, up in bounds), dtype=float) return edges, None def ward(distances, n, maxlag, **kwargs): """Agglomerative binning .. versionadded:: 0.3.9 Clustering of pairwise separating distances between locations up to maxlag. The lag class edges are formed equidistant from each cluster center. Note: this does not necessarily result in equidistance lag classes. The clustering is done by merging pairs of clusters that minimize the variance for the merged clusters, unitl `n` clusters are found. Parameters ---------- distances : numpy.array Flat numpy array representing the upper triangle of the distance matrix. n : integer Amount of lag classes to find maxlag : integer, float Limit the last lag class to this separating distance. Returns ------- bin_edges : numpy.ndarray The **upper** bin edges of the lag classes """ # maxlags larger than maximum separating distance will be ignored if maxlag is None or maxlag > np.nanmax(distances): maxlag = np.nanmax(distances) # filter for distances < maxlag d = distances[np.where(distances <= maxlag)] # cluster the filtered distances w = AgglomerativeClustering(linkage='ward', n_clusters=n).fit(d.reshape(-1, 1)) # get the aggregation function if kwargs.get('binning_agg_func', False) == 'median': agg = np.median else: agg = np.mean # get the centers _centers = np.sort([agg(d[np.where(w.labels_ == i)[0]]) for i in np.unique(w.labels_)]) # build the upper edges bounds = zip([0] + list(_centers)[:-1], _centers) edges = np.fromiter(((low + up) / 2 for low, up in bounds), dtype=float) return edges, None def stable_entropy_lags(distances, n, maxlag, **kwargs): """Stable lags .. versionadded: 0.4.0 Optimizes the lag class edges for `n` lag classes. The algorithm minimizes the difference between Shannon Entropy for each lag class. Consequently, the final lag classes should be of comparable uncertainty. Parameters ---------- distances : numpy.array Flat numpy array representing the upper triangle of the distance matrix. n : integer Amount of lag classes to find maxlag : integer, float Limit the last lag class to this separating distance. Keyword Arguments ----------------- binning_maxiter : int Maximum iterations before the optimization is stopped, if the lag edges do not converge. binning_entropy_bins : int, str Binning method for calculating the shannon entropy on each iteration. Returns ------- bin_edges : numpy.ndarray The **upper** bin edges of the lag classes """ # maxlags larger than maximum separating distance will be ignored if maxlag is None or maxlag > np.nanmax(distances): maxlag = np.nanmax(distances) # filter for distances < maxlag d = distances[np.where(distances <= maxlag)] # create a global binning and initial guess bins = np.histogram_bin_edges(d, bins=kwargs.get('binning_entropy_bins', 'sqrt')) initial_guess = np.linspace(0, np.nanmax(d), n + 1)[1:] # define the loss function def loss(edges): # get the shannon entropy for the current binning h = np.ones(len(edges) - 1) * 9999 for i, bnd in enumerate(zip(edges, edges[1:])): l, u = bnd x = d[np.where((d >= l) & (d < u))[0]] if len(x) == 0: continue else: h[i] = shannon_entropy(x, bins) # return the absolute differences between the bins return np.sum(np.abs(np.diff(h))) # minimize the loss function opt = dict(maxiter=kwargs.get('binning_maxiter', 5000)) res = minimize(loss, initial_guess, method='Nelder-Mead', options=opt) if res.success: return res.x, None else: # pragma: no cover raise OptimizeWarning("Failed to find optimal lag classes.") ```