metadata
dict
text
stringlengths
60
3.49M
{ "source": "JohnAD/flask-track-usage-mongoengine-demo", "score": 2 }
#### File: JohnAD/flask-track-usage-mongoengine-demo/app.py ```python from flask import ( Flask, render_template, g ) import mongoengine as me from flask_track_usage import TrackUsage from flask_track_usage.storage.mongo import MongoEngineStorage from flask_track_usage.summarization import sumUrl, sumUserAgent ######################### # # SETUP FLASK and JINJA2 # ######################### app = Flask(__name__) def datetimeformat(value, format='%Y-%m-%d %H:%M'): return value.strftime(format) app.jinja_env.filters['datetime'] = datetimeformat ######################### # # SETUP MONGOENGINE # ######################### me.connect("example_website") ######################### # # SETUP FLASK_TRACK_USAGE # ######################### app.config['TRACK_USAGE_USE_FREEGEOIP'] = False app.config['TRACK_USAGE_INCLUDE_OR_EXCLUDE_VIEWS'] = 'exclude' traffic_storage = MongoEngineStorage(hooks=[sumUrl, sumUserAgent]) t = TrackUsage(app, [traffic_storage]) ######################### # # PUBLIC ROUTES # ######################### @app.route('/') def index(): g.track_var["something"] = 99 return render_template('index.html') @app.route('/page1') def page_one(): g.track_var["something"] = 34 return render_template('other_page.html', page_number=1) @app.route('/page2') def page_two(): return render_template('other_page.html', page_number=2) ########################## # # ADMIN ROUTES # ########################## @t.exclude @app.route('/admin/last20.html') def last_twenty(): visits = traffic_storage.get_usage(limit=20) return render_template('last20.html', visits=visits) @t.exclude @app.route('/admin/last_url.html') def last_url(): stats = traffic_storage.get_sum(sumUrl, limit=30, target="http://127.0.0.1:5000/page1") return render_template('last_url.html', stats=stats) @t.exclude @app.route('/admin/last_useragent.html') def last_useragent(): stats = traffic_storage.get_sum(sumUserAgent, limit=40) return render_template('last_useragent.html', stats=stats) ```
{ "source": "JohnAD/NimLime", "score": 2 }
#### File: core/commands/hotkeys.py ```python import sublime from sublime_plugin import EventListener from NimLime.core import settings class HotkeySyncer(EventListener): """Synchronizes certain settings keys with view settings.""" setting_entries = ( ("doccontinue.enabled", True), ("doccontinue.autostop", True) ) def sync_on_change(self): view = sublime.active_window().active_view() self.sync(view) def sync(self, view): view_settings = view.settings() for key, default in self.setting_entries: value = settings.get(key, default) view_settings.set(key, value) def on_new(self, view): self.sync(view) def on_activated(self, view): self.sync(view) def on_clone(self, view): self.sync(view) def on_load(self, view): self.sync(view) ``` #### File: core/commands/nimcheck.py ```python import os.path import re import subprocess from collections import namedtuple import sublime from sublime_plugin import ApplicationCommand, EventListener from NimLime.core import configuration from NimLime.core.utils.error_handler import catch_errors from NimLime.core.utils.misc import ( busy_frames, display_process_error, get_next_method, loop_status_msg, run_process, send_self, trim_region, view_has_nim_syntax ) from NimLime.core.utils.mixins import NimLimeMixin, NimLimeOutputMixin # Constants ERROR_REGION_TAG = 'NimCheckError' WARN_REGION_TAG = 'NimCheckWarn' ERROR_REGION_MARK = 'dot' ERROR_REGION_STYLE = sublime.DRAW_OUTLINED ERROR_MSG_FORMAT = '({0},{1}): {2}: {3}'.format MAX_CONTEXT_LINES = 3 MESSAGE_REGEX = re.compile( (r""" ^ # File Name (?P<file_name> {ANYTHING}+) # Line and Column Number {SPACE}* \( (?P<line_number> {INTEGER}+) {SPACE}* {COMMA} {SPACE}+ (?P<column_number> {INTEGER}+) \) # Message Type and Content {SPACE}* (?P<message_type> {LETTER}+) {SPACE}* {COLON} {SPACE}* (?P<message> {ANYTHING}+) # Optional Context (?P<context> (\n {SPACE}+ {ANYTHING}+)*) """.format( SPACE = r'\s', INTEGER = r'\d', ANYTHING = r'.', COMMA = r',', LETTER = r'\w', COLON = r':', )), flags=re.MULTILINE | re.IGNORECASE | re.VERBOSE ) # ## Functions ## # NimCheckEntry = namedtuple( 'NimCheckEntry', [ 'file_name', 'line_number', 'column_number', 'message_type', 'message', 'entire', ] ) # Functions to run "nim check" def parse_nimcheck(output): entry_list = [] for match in MESSAGE_REGEX.finditer(output): entry = NimCheckEntry( file_name = match.group('file_name'), line_number = int(match.group('line_number')) - 1, column_number = int(match.group('column_number')) - 1, message_type = match.group('message_type'), message = match.group('message'), entire = match.group(0), ) entry_list.append(entry) return entry_list @send_self @catch_errors def run_nimcheck(file_path, callback, verbosity, disabled_hints, extra_args): this = yield verbosity_opt = '--verbosity:{}'.format(verbosity) hint_opts = ( '--hint[{}]:off'.format(x) for x in disabled_hints ) command = [configuration.nim_exe, 'check', verbosity_opt] command.extend(hint_opts) command.extend(extra_args) command.append(file_path) process, stdout, stderr, error = yield run_process( command, this.send, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=os.path.dirname(file_path) ) if error: display_process_error(error, 'Nim Check Failed', 'Nim') yield callback(None) entries = parse_nimcheck(stdout) sublime.status_message('run_nimcheck:Nim Check Finished.') yield callback(entries) # Functions to store "nim check" results class NimCheckViewEntries(EventListener): """Contains and cleans up regions created by the 'nim check' commands.""" entries = {} def on_close(self, view): self.entries.pop(view.id(), None) def store_nimcheck_entries(view, errors, warnings): view_id = view.id() entry_store = {} if errors is not None: for entry in errors: entry_store[entry.line_number] = entry if warnings is not None: for entry in warnings: entry_store[entry.line_number] = entry NimCheckViewEntries.entries[view_id] = entry_store def retrieve_nimcheck_entries(view): return NimCheckViewEntries.entries.get(view.id()) def remove_nimcheck_entries(view): view.erase_regions(ERROR_REGION_TAG) view.erase_regions(WARN_REGION_TAG) NimCheckViewEntries.entries.pop(view.id(), None) # Commands class NimClearErrors(NimLimeMixin, ApplicationCommand): """Clears error and warning marks generated by the Nim check commands.""" settings_selector = 'check.clear_errors' requires_nim_syntax = False def __init__(self, *args, **kwargs): ApplicationCommand.__init__(self, *args, **kwargs) NimLimeMixin.__init__(self, *args, **kwargs) @catch_errors def run(self, *args, **varargs): view = sublime.active_window().active_view() remove_nimcheck_entries(view) sublime.status_message('Cleared Nim Check Errors & Hints') class NimDisplayErrorInStatus(EventListener): """Displays errors/warnings in the status bar, when a region is clicked.""" def get_current_entry(self, view): selections = view.sel() if len(selections) > 1: return None entries = retrieve_nimcheck_entries(view) if entries is None: return None selected_point = selections[0].end() line_number = view.rowcol(selected_point)[0] return entries.get(line_number) def on_selection_modified(self, view): view = sublime.active_window().active_view() entry = self.get_current_entry(view) if entry is not None: message = "NimCheck: " + entry.message sublime.status_message(message) class NimCheckCurrentView(NimLimeOutputMixin, ApplicationCommand): """Checks the current Nim file for errors.""" requires_nim_syntax = True settings_selector = 'check.current_file' setting_entries = ( NimLimeOutputMixin.setting_entries, ('verbosity', '{0}.verbosity', 2), ('disabled_hints', '{0}.disabled_hints', []), ('extra_args', '{0}.extra_args', []), ('highlight_errors', '{0}.highlight_errors', True), ('highlight_warnings', '{0}.highlight_warnings', True), ('include_context', '{0}.list.include_context', True), ('list_errors', '{0}.list.show_errors', True), ('list_warnings', '{0}.list.show_warnings', True), ('move_cursor', '{0}.list.move_cursor', True) ) @send_self @catch_errors def run(self, *args, **varargs): this = yield window = sublime.active_window() view = window.active_view() view_name = os.path.split(view.file_name() or view.name())[1] remove_nimcheck_entries(view) frames = ['Running Nim Check' + f for f in busy_frames] stop_status_loop = loop_status_msg(frames, 0.15) # Save view text if view.is_dirty(): view.run_command('save') # Run 'nim check' on the current view and retrieve the output. # project_file = get_nim_project(window, view) or view.file_name() entries = yield run_nimcheck( file_path = view.file_name(), callback = this.send, verbosity = self.verbosity, disabled_hints = self.disabled_hints, extra_args = self.extra_args ) yield stop_status_loop(get_next_method(this)) if entries is None: sublime.status_message('Nim Check Failed.') yield sublime.status_message('run:Nim Check Finished.') self.highlight_and_list_entries(entries, window, view) if self.send_output: gen = (m[5] for m in entries if view_name == m[0]) content = '\n'.join(gen) self.write_to_output(content, view) yield def display_entries(self, view, quick_message_list, point_list, list_entries, highlight_entries): entries = [] region_list = [] while True: entry = yield if entry is None: yield entries, region_list entry_point = view.text_point( entry.line_number, entry.column_number ) if list_entries: quick_message = entry.entire.split('\n') if self.include_context: line_count = len(quick_message) del quick_message[MAX_CONTEXT_LINES:line_count] for i in range(line_count, MAX_CONTEXT_LINES): quick_message.append('') else: quick_message = quick_message[0] entries.append(entry) point_list.append(entry_point) quick_message_list.append(quick_message) # For highlighting if highlight_entries: message_region = trim_region(view, view.line(entry_point)) region_list.append(message_region) def highlight_and_list_entries(self, entries, window, view): """Highlight and list entries gathered from `nim check` output.""" view_name = os.path.split(view.file_name() or view.name())[1] # Instantiate entry list containers if self.list_errors or self.list_warnings: quick_message_list = [] point_list = [] error_entries = self.display_entries( view=view, quick_message_list=quick_message_list, point_list=point_list, list_entries=self.list_errors, highlight_entries=self.highlight_errors ) warn_entries = self.display_entries( view=view, quick_message_list=quick_message_list, point_list=point_list, list_entries=self.list_warnings, highlight_entries=self.highlight_warnings ) # Instantiate entry highlighting errors error_entries.send(None) warn_entries.send(None) for entry in entries: # makes it work when `--listFullPaths` is in user config # TODO: Make this more robust if/when multiple names are allowed, # PENDING https://github.com/nim-lang/Nim/pull/8614 file_name = entry.file_name file_name = os.path.basename(file_name) if file_name.lower() != view_name.lower(): continue # Determine whether the entry should be highlighted/listed if entry.message_type == 'Error': error_entries.send(entry) else: warn_entries.send(entry) error_entries, error_region_list = error_entries.send(None) warn_entries, warn_region_list = warn_entries.send(None) store_nimcheck_entries(view, warn_entries, error_entries) if error_region_list: view.add_regions( ERROR_REGION_TAG, error_region_list, 'invalid.illegal', ERROR_REGION_MARK, ERROR_REGION_STYLE ) if warn_region_list: view.add_regions( WARN_REGION_TAG, warn_region_list, 'invalid.deprecated', ERROR_REGION_MARK, ERROR_REGION_STYLE ) if self.list_errors or self.list_warnings: def _goto_error(choice): if choice != -1: chosen_point = point_list[choice] view.show(chosen_point) if self.move_cursor: view.sel().clear() view.sel().add(sublime.Region(chosen_point)) flag = 0 if self.include_context: flag = sublime.MONOSPACE_FONT window.show_quick_panel(quick_message_list, _goto_error, flag) class NimCheckOnSaveListener(NimCheckCurrentView, EventListener): """Runs the Nim Check command when the current file is saved.""" settings_selector = 'check.on_save' def on_post_save(self, view): view = sublime.active_window().active_view() if self.enabled and view_has_nim_syntax(view): self.run() ``` #### File: core/commands/project.py ```python import os from sublime_plugin import WindowCommand from NimLime.core.utils.error_handler import catch_errors from NimLime.core.utils.mixins import NimLimeMixin from NimLime.core.utils.project import _get_project_file, set_nim_project class SetProjectCommand(NimLimeMixin, WindowCommand): """Sets the main Nim file for the current Sublime Text project.""" enabled = True settings_selector = 'project' def __init__(self, *args, **kwargs): NimLimeMixin.__init__(self) WindowCommand.__init__(self, *args, **kwargs) @catch_errors def run(self): # Retrieve path of project st_project = _get_project_file(self.window.id()) if st_project is not None: active_view = self.window.active_view() filename = active_view.file_name() directory = os.path.dirname(st_project) relative_path = os.path.relpath(filename, directory) # Set input file name, extension = os.path.splitext(relative_path) if extension.lower() == '.nim': set_nim_project(st_project, relative_path) ``` #### File: core/utils/project.py ```python import json import os import platform import re import sublime # Based off of code from https://github.com/facelessuser/FavoriteFiles/ def _get_project_file(win_id): session_data = None # Construct the base settings paths auto_save_session_path = os.path.join( sublime.packages_path(), '..', 'Settings', 'Auto Save Session.sublime_session' ) regular_session_path = os.path.join( sublime.packages_path(), '..', 'Settings', 'Session.sublime_session' ) # Try loading the session data from one of the files for session_path in (auto_save_session_path, regular_session_path): try: with open(session_path) as session_file: session_data = json.load(session_file, strict=False) break except (IOError, ValueError): continue if session_data is None: return None # Find the window data corresponding with the given ID project = _find_project_in_data(session_data, win_id) or '' # Throw out empty project names if re.match('.*\\.sublime-project', project) or os.path.exists(project): return project return None def _find_project_in_data(session_data, win_id): # Iterates through the given session data, searching for the window # with the given ID, and returning the project path associated with the # window. for window in session_data.get('windows', ()): if window.get('window_id') == win_id and 'workspace_name' in window: project = window['workspace_name'] if platform.system() == 'Windows': project = os.path.normpath( project.lstrip('/').replace('/', ':/', 1) ) return project return None def set_nim_project(st_project, nim_path): """ Associate a nim project file with the current sublime project. :type st_project: str :type nim_path: str """ if st_project is not None: with open(st_project, 'r+') as project_file: data = json.loads(project_file.read()) data['settings']['nim-project'] = nim_path.replace('\\', '/') project_file.seek(0) project_file.truncate() project_file.write( json.dumps(data, indent=4) ) def get_nim_project(window, view): """ Given a window and view, return the Nim project associated with it. :type window: sublime.Window :type view: sublime.View :rtype: str """ st_project = _get_project_file(window.id()) result = view.file_name() if st_project is not None: with open(st_project) as project_file: data = json.loads(project_file.read()) try: path = data['settings']['nim-project'] # Get full path directory = os.path.dirname(st_project) path = path.replace('/', os.sep) result = os.path.join(directory, path) except IOError: pass return result ```
{ "source": "JohnAdriaan/uPHue", "score": 3 }
#### File: JohnAdriaan/uPHue/bridge.py ```python import os import socket import json import http.client as httplib from uPHue import * class Bridge(object): """ Interface to the Hue ZigBee bridge """ def __init__(self, ip=None, username=None, config_file_path=None): """ Initialization function. Parameters: ------------ ip : string IP address as dotted quad username : string, optional """ if config_file_path is not None: self.config_file_path = config_file_path else: self.config_file_path = os.path.join(os.getcwd(), '.python_hue') self.ip = ip self.username = username if username is not None: self.api = '/api/' + username self._name = None # self.minutes = 600 # these do not seem to be used anywhere? # self.seconds = 10 self.connect() @property def name(self): '''Get or set the name of the bridge [string]''' self._name = self.get('/config')['name'] return self._name @name.setter def name(self, value): self._name = value data = {'name': self._name} self.put('/config', data) def get(self, req): return self.request('GET', self.api + req) def put(self, req, data): return self.request('PUT', self.api + req, data) def post(self, req, data): return self.request('POST', self.api + req, data) def delete(self, req): return self.request('DELETE', self.api + req) def request(self, mode='GET', address=None, data=None): """ Utility function for HTTP GET/PUT requests for the API""" connection = httplib.HTTPConnection(self.ip, timeout=10) try: if mode == 'GET' or mode == 'DELETE': connection.request(mode, address) if mode == 'PUT' or mode == 'POST': connection.request(mode, address, json.dumps(data)) logger.debug("{0} {1} {2}".format(mode, address, str(data))) except socket.timeout: error = "{} Request to {}{} timed out.".format(mode, self.ip, address) logger.exception(error) raise PhueRequestTimeout(None, error) result = connection.getresponse() response = result.read() connection.close() response = response.decode('utf-8') logger.debug(response) return json.loads(response) def get_ip_address(self, set_result=False): """ Get the bridge ip address from the meethue.com nupnp api """ connection = httplib.HTTPSConnection('www.meethue.com') connection.request('GET', '/api/nupnp') logger.info('Connecting to meethue.com/api/nupnp') result = connection.getresponse() data = json.loads(str(result.read(), encoding='utf-8')) """ close connection after read() is done, to prevent issues with read() """ connection.close() ip = str(data[0]['internalipaddress']) if ip != '': if set_result: self.ip = ip return ip else: return False def register_app(self): """ Register this computer with the Hue bridge hardware and save the resulting access token """ registration_request = {"devicetype": "python_hue"} response = self.request('POST', '/api', registration_request) for line in response: for key in line: if 'success' in key: with open(self.config_file_path, 'w') as f: logger.info( 'Writing configuration file to ' + self.config_file_path) f.write(json.dumps({self.ip: line['success']})) logger.info('Reconnecting to the bridge') self.connect() if 'error' in key: error_type = line['error']['type'] if error_type == 101: raise PhueRegistrationException(error_type, 'The link button has not been pressed in the last 30 seconds.') if error_type == 7: raise PhueException(error_type, 'Unknown username') def connect(self): """ Connect to the Hue bridge """ logger.info('Attempting to connect to the bridge...') # If the ip and username were provided at class init if self.ip is not None and self.username is not None: logger.info('Using ip: ' + self.ip) logger.info('Using username: ' + self.username) return if self.ip is None or self.username is None: try: with open(self.config_file_path) as f: config = json.loads(f.read()) if self.ip is None: self.ip = list(config.keys())[0] logger.info('Using ip from config: ' + self.ip) else: logger.info('Using ip: ' + self.ip) if self.username is None: self.username = config[self.ip]['username'] self.api = '/api/' + self.username logger.info( 'Using username from config: ' + self.username) else: logger.info('Using username: ' + self.username) except Exception as e: logger.info( 'Error opening config file, will attempt bridge registration') self.register_app() def get_api(self): """ Returns the full api dictionary """ return self.get('') ``` #### File: JohnAdriaan/uPHue/schedule.py ```python from uPHue import * class Schedule(object): """ This is merely a container for `Schedule.Bridge`""" class Bridge(object): def __init__(self, bridge): self.bridge = bridge # Schedules ##### def get_schedule(self, schedule_id=None, parameter=None): if schedule_id is None: return self.bridge.get('/schedules') if parameter is None: return self.bridge.get('/schedules/' + str(schedule_id)) def create_schedule(self, name, time, light_id, data, description=' '): schedule = { 'name': name, 'localtime': time, 'description': description, 'command': { 'method': 'PUT', 'address': (self.bridge.api + '/lights/' + str(light_id) + '/state'), 'body': data } } return self.bridge.post('/schedules', schedule) def set_schedule_attributes(self, schedule_id, attributes): """ :param schedule_id: The ID of the schedule :param attributes: Dictionary with attributes and their new values """ return self.bridge.put('/schedules/' + str(schedule_id), data=attributes) def create_group_schedule(self, name, time, group_id, data, description=' '): schedule = { 'name': name, 'localtime': time, 'description': description, 'command': { 'method': 'PUT', 'address': (self.bridge.api + '/groups/' + str(group_id) + '/action'), 'body': data } } return self.bridge.post('/schedules', schedule) def delete_schedule(self, schedule_id): return self.bridge.delete('/schedules/' + str(schedule_id)) ```
{ "source": "JohnAgapeyev/7402-ass2", "score": 3 }
#### File: JohnAgapeyev/7402-ass2/main.py ```python import math import sys import enchant import time import itertools from multiprocessing import Pool def decryptMessage(key, message): # Determine the number of columns nCols = math.ceil(len(message) / key) # Determine the number of rows nRows = key # Determine the unused cells nUnused = (nCols * nRows) - len(message) # Each string in plaintext represents a column in the grid. plaintext = [''] * nCols # row and col point to the location of the next character in the ciphertext row = col = 0 for symbol in message: plaintext[col] += symbol col += 1 # point to next column # If it reaches the last column in the row, or at an unused cell, start processing the next row if (col == nCols) or (col == nCols - 1 and row >= nRows - nUnused): col = 0 row += 1 return ''.join(plaintext) def encryptMessage (key, message): # Each string in ciphertext represents a column in the grid. ciphertext = [''] * key # Iterate through each column in ciphertext. for col in range (key): pointer = col # process the complete length of the plaintext while pointer < len (message): # Place the character at pointer in message at the end of the # current column in the ciphertext list. ciphertext[col] += message[pointer] # move pointer over pointer += key # Convert the ciphertext list into a single string value and return it. return ''.join (ciphertext) def try_key(args): key, ciphertext = args count = 0 for word in decryptMessage(key, ciphertext).split(): if len(word) > 5 and dictionary.check(word): count += 1 return count if len(sys.argv) != 3: print('Usage: ./main.py <plaintext_filename> <keysize>') sys.exit(1) data = open(sys.argv[1]).read() keylen = int(sys.argv[2]) if keylen <= 0: print('Key size must be greater than zero') sys.exit(1) if keylen >= len(data): print('Key size must be smaller than the length of the plaintext') sys.exit(1) dictionary = enchant.Dict("en_US") ciphertext = encryptMessage(keylen, data) print("Length of the ciphertext: ", len(ciphertext)) res_list = Pool().map(try_key, zip(range(1, len(ciphertext)), itertools.repeat(ciphertext))) best_key = res_list.index(max(res_list)) + 1 print(decryptMessage(best_key, ciphertext)) print("Best key was", best_key) ```
{ "source": "JohnAgapeyev/7402-ass5", "score": 3 }
#### File: JohnAgapeyev/7402-ass5/feistel.py ```python import sys import secrets import random import matplotlib.pyplot as plt import numpy as np from Crypto.Cipher import AES from Crypto.Hash import HMAC from Crypto.Hash import SHA256 round_count = 8 #Master secret key #Keeping it fixed for simplicity, and to avoid having to pad/KDF the thing K = bytearray("yellow submarine", 'utf8') def pkcs7_pad(x): padding = 16 - ((len(x) % 16 != 0) * (len(x) % 16)) return x + bytes([padding]) * padding def pkcs7_strip(x): for i in range(x[-1]): if x[-(i + 1)] != x[-1]: raise ValueError('Input is not padded or padding is corrupt') return x[:-x[-1]] #This is completely arbitrary, and bad def easy(i, k, x): x = bytearray(x) for j in range(len(x)): x[j] = (x[j] * i) & 0xff x[j] = (x[j] << k[i]) & 0xff return x def rotate_byte(x, n): return ((x << n) | (x >> (8 - n))) & 0xff; #This is solidly amateur, but I obviously lack the capability to analyze/break it def medium(i, k, x): x = bytearray(x) random.Random(i).shuffle(x) #Since I know this will be 8 bytes, I can use it for bitslicing majority function for j in range(len(x)): for n in range(8): count = 0 for elem in x: count += (elem & (1 << j)) != 0 x[j] ^= (-(count >= 0) ^ x[j]) & (1 << n) x[j] = (x[j] + x[i]) & 0xff x[j] = rotate_byte(x[j], i) x[j] = x[j] ^ k[j] x[j] = rotate_byte(x[j], 3) x[j] = (x[j] + k[j+8]) & 0xff for kb in k: x[j] = rotate_byte(((x[j] ^ kb) + 0x3a) & 0xff, 7) random.Random(j).shuffle(x) random.Random(-i).shuffle(x) return x #This is actually secure, just a waste of time def hard(i, k, x): return bytearray(AES.new(k, AES.MODE_CTR, nonce=bytes([i])*8).encrypt(bytearray(x))) def easy_subkey(master): k = [] for i in range(round_count): x = bytearray([a ^ b for (a,b) in zip(master, [i]*16)]) k.append(x); return k def medium_subkey(master): k = [] for i in range(round_count): tmp_master = master for j in range(len(tmp_master)): random.Random(j).shuffle(tmp_master) tmp_master[j] = rotate_byte(tmp_master[j], tmp_master[i] % 8) tmp_master[j] = tmp_master[j] ^ 0xc3 random.Random(j).shuffle(tmp_master) tmp_master[j] = rotate_byte(tmp_master[len(tmp_master) - j - 1], random.Random(sum(tmp_master)).getrandbits(3)) tmp_master[j] = (tmp_master[j] + (i * 176)) & 0xff random.Random(i).shuffle(tmp_master) k.append(bytearray(tmp_master)); return k def hard_subkey(master): k = [] for i in range(round_count): h = HMAC.new(master, digestmod=SHA256) h.update(bytearray([i]*16)) k.append(bytearray(h.digest()[:16])) return k subkey_generator = hard_subkey round_function = hard def round(i, k, L, R): return R, [a ^ b for (a,b) in zip(L, round_function(i, k, R))] def process_block(B, rounds, subkeys): #Split the block L, R = B[:8], B[8:] for j in rounds: L, R = round(j, subkeys[j], L, R) return bytearray(R + L) def ecb_encrypt(plain, subkeys): #i is block num for i in range(len(plain) // 16): start_block = i * 16 end_block = start_block + 16 #Grab the block B = plain[start_block : end_block] B = process_block(B, range(round_count), subkeys) #Write the block back plain[start_block : end_block] = B return plain def ecb_decrypt(plain, subkeys): #i is block num for i in range(len(plain) // 16): start_block = i * 16 end_block = start_block + 16 #Grab the block B = plain[start_block : end_block] B = process_block(B, reversed(range(round_count)), subkeys) #Write the block back plain[start_block : end_block] = B plain = pkcs7_strip(plain) return plain def cbc_encrypt(plain, subkeys, iv=None): iv = iv if iv else bytearray(secrets.randbits(128).to_bytes(16, sys.byteorder)) plain = iv + plain prev = iv for i in range(1, len(plain) // 16): start_block = i * 16 end_block = start_block + 16 #Grab the block B = plain[start_block : end_block] #Xor the iv in B = [a ^ b for (a,b) in zip(B, prev)] B = process_block(B, range(round_count), subkeys) #Save the resulting block as the "new" iv prev = B #Write the block back plain[start_block : end_block] = B return plain, iv def cbc_decrypt(plain, subkeys): if len(plain) < 32: raise ValueError('Input is not padded or does not contain an IV') iv = plain[:16] prev = iv #i is block num for i in range(1, len(plain) // 16): start_block = i * 16 end_block = start_block + 16 #Grab the block PB = plain[start_block : end_block] B = process_block(PB, reversed(range(round_count)), subkeys) #Xor the iv in B = [a ^ b for (a,b) in zip(B, prev)] #Save the resulting block as the "new" iv prev = PB #Write the block back plain[start_block : end_block] = B plain = pkcs7_strip(plain) return plain[16:] def ctr_encrypt(plain, subkeys, iv=None): iv = iv if iv else secrets.randbits(128) plain = bytearray(iv.to_bytes(16, sys.byteorder)) + plain #i is block num for i in range(1, len(plain) // 16): start_block = i * 16 end_block = start_block + 16 #Grab the block B = plain[start_block : end_block] iv_block = bytearray((iv + i).to_bytes(16, sys.byteorder)) encrypted_block = process_block(iv_block, range(round_count), subkeys) #Xor the ciphertext in B = bytearray([a ^ b for (a,b) in zip(B, encrypted_block)]) #Write the block back plain[start_block : end_block] = B return plain, iv def ctr_decrypt(plain, subkeys): if len(plain) < 32: raise ValueError('Input is not padded or does not contain an IV') iv = int.from_bytes(plain[:16], byteorder=sys.byteorder, signed=False) #i is block num for i in range(1, len(plain) // 16): start_block = i * 16 end_block = start_block + 16 #Grab the block B = plain[start_block : end_block] iv_block = bytearray((iv + i).to_bytes(16, sys.byteorder)) encrypted_block = process_block(iv_block, range(round_count), subkeys) #Xor the ciphertext in B = bytearray([a ^ b for (a,b) in zip(B, encrypted_block)]) #Write the block back plain[start_block : end_block] = B plain = pkcs7_strip(plain) return plain[16:] encrypt_function = ctr_encrypt decrypt_function = ctr_decrypt def run_test(mode, data): original = data #this is the base test case K = bytearray("yellow submarine", 'utf8') k = subkey_generator(K) #if there is an iv use it to seed the next call encrypt = None iv = None if mode in ['ctr','cbc']: encrypt, iv = encrypt_function(bytearray(original), k) else: encrypt = encrypt_function(bytearray(original), k) #flip one bit in the key and reencrypt K = bytearray("yellow sucmarine", 'utf8') k = subkey_generator(K) encrypt_key1 = None if iv: encrypt_key1 = encrypt_function(bytearray(original), k, iv) else: encrypt_key1 = encrypt_function(bytearray(original), k) def m1_n_avg(base, compare): m1 = [] for index, byte in enumerate(base): if byte in compare: start = compare.index(byte) matching = 0 for i in range(index, len(base)): if base[i] == compare[i]: matching += 1 else: break m1.append(matching) aml1 = sum(m1)/len(m1) if m1 else 0 return m1, aml1 #how many preserved multi byte sequences are there m1, aml1 = m1_n_avg(original, encrypt) m2, aml2 = m1_n_avg(encrypt, encrypt_key1) return m1, aml1, m2, aml2 funcmap ={ "ecb":(ecb_encrypt, ecb_decrypt), "ctr":(ctr_encrypt, ctr_decrypt), "cbc":(cbc_encrypt, cbc_decrypt), "e":(easy_subkey, easy), "m":(medium_subkey, medium), "h":(hard_subkey, hard) } if __name__ == '__main__': def print_help(): print('''usage: ./feistel.py [function] [mode] [quality] [input filename] [output filename] function is 'e' for encrypt, 'd' for decrypt mode is 'ecb' for ecb, 'cbc' for cbc, and 'ctr' for ctr quality is 'e' for easy, 'm' for medium, 'h' for hard ./feistel.py t [input filename] runs automated tests to compare the different modes using a given file''') sys.exit(1) if len(sys.argv) == 1: print_help() if sys.argv[1] == 't' and len(sys.argv) == 3: data = pkcs7_pad(bytearray(open(sys.argv[2], 'rb').read())) ms = [] mks = [] ms2 = [] mks2 = [] names=[] for mode in ['ecb', 'ctr', 'cbc']: for diff in ['e', 'm', 'h']: encrypt_function, decrypt_function = funcmap[mode] subkey_generator, round_function = funcmap[diff] m1, aml1, m2, aml2 = run_test(mode, bytearray(data)) ms.append(len(m1)) mks.append(aml1) ms2.append(len(m2)) mks2.append(aml2) names.append(f'{mode}:{diff}') print(f''' __/{mode} {diff}\__ ==>diffusion<== matches: {len(m1)} average match len: {aml1} ==>confusion<== matches: {len(m2)} average match len: {aml2} ''') plt.style.use('dark_background') ind = np.arange(9) sp = plt.subplot(2,1,1) plt.title("Matches Per Mode") pm1 = plt.bar(ind, ms2, width=0.5, log=True, label='Diffusion') pm2 = plt.bar(ind+0.5, ms, width=0.5, log=True, label='Confusion') sp.set_xticks(ind+0.5) sp.set_xticklabels(names) plt.legend([pm1, pm2], ['Confusion', 'Diffusion']) sp2 = plt.subplot(2,1,2) plt.title("Average Match Length") pl1 = plt.bar(ind, mks2, width=0.5, log=True, label='Diffusion') pl2 = plt.bar(ind+0.5, mks, width=0.5, log=True, label='Confusion') sp2.set_xticks(ind+0.5) sp2.set_xticklabels(names) plt.legend([pl1, pl2], ['Confusion', 'Diffusion']) plt.show() sys.exit(0) if len(sys.argv[1:]) != 5: print_help() if sys.argv[2] in funcmap: encrypt_function, decrypt_function = funcmap[sys.argv[2]] else: print_help() if sys.argv[3] in funcmap: subkey_generator, round_function = funcmap[sys.argv[3]] else: print_help() k = subkey_generator(K) if sys.argv[1] == 'e': P = pkcs7_pad(bytearray(open(sys.argv[4], 'rb').read())) if sys.argv[2] in 'cbcctr': P = encrypt_function(P, k)[0] else: P = encrypt_function(P, k) with open(sys.argv[5], 'wb') as out: out.write(P) elif sys.argv[1] == 'd': P = bytearray(open(sys.argv[4], 'rb').read()) if len(P) % 16 != 0: raise ValueError('Ciphertext is not a valid length, it must be corrupted') P = decrypt_function(P, k) with open(sys.argv[5], 'wb') as out: out.write(P) else: print_help() ```
{ "source": "JohnAgapeyev/7402-lab2", "score": 3 }
#### File: JohnAgapeyev/7402-lab2/lab.py ```python def f(i, k, x): return ((2 * i * k)**x) % 15 L = 0b0010 R = 0b1000 print("Encryption plaintext {} {}".format(bin(L), bin(R))) #Round 1 encrypt X = f(1, 7, R) print("Post round 1 f() output {}".format(bin(X))); #Xor output X = L ^ X print("Post round 1 xor {} {}".format(bin(L), bin(R))); #Swap L = R R = X print("Post round 1 swap {} {}".format(bin(L), bin(R))); #Round 2 encrypt X = f(2, 7, R) print("Post round 2 f() output {}".format(bin(X))); #Xor output L ^= X print("Post round 2 xor {} {}".format(bin(L), bin(R))); #No swap on last round print("Encrypt Output {} {}".format(bin(L), bin(R))) print("Decryption") #Round 1 Decrypt X = f(2, 7, R) print("Post decrypt round 1 f() output {}".format(bin(X))); #Xor output X = L ^ X print("Post decrypt round 1 xor {} {}".format(bin(L), bin(R))); #Swap L = R R = X print("Post decrypt round 1 swap {} {}".format(bin(L), bin(R))); #Round 2 decrypt X = f(1, 7, R) print("Post decrypt round 2 f() output {}".format(bin(X))); #Xor output L ^= X print("Decrypt output {} {}".format(bin(L), bin(R))) ```
{ "source": "JohnAgapeyev/binary_diff", "score": 2 }
#### File: JohnAgapeyev/binary_diff/diff.py ```python import sys import os import getopt import csv import json import itertools import zipfile import tarfile import binwalk import collections from heapq import nsmallest from collections import defaultdict import tlsh import numpy as np import matplotlib.pyplot as plt from multiprocessing.dummy import Pool from sklearn.cluster import * from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler from sklearn.externals import joblib pool = Pool() def usage(): print("python3 ./diff.py [file directory] [metadata file]") def from_matrix_to_vector(i, j, N): if i <= j: return i * N - (i - 1) * i / 2 + j - i else: return j * N - (j - 1) * j / 2 + i - j def partition_hashes(hash_list, file_list): output = {} for h in hash_list: filename = file_list[hash_list.index(h)] quartile_range = int(h[8:10], 16) if quartile_range not in output: output[quartile_range] = [(filename, h)] else: output[quartile_range].append((filename, h)) return output #Values are from the TLSH paper def convert_dist_to_confidence(d): if d < 30: return 99.99819 elif d < 40: return 99.93 elif d < 50: return 99.48 elif d < 60: return 98.91 elif d < 70: return 98.16 elif d < 80: return 97.07 elif d < 90: return 95.51 elif d < 100: return 93.57 elif d < 150: return 75.67 elif d < 200: return 49.9 elif d < 250: return 30.94 elif d < 300: return 20.7 else: return 0 def lsh_json(data): filename = data[0] meta = [] print(filename) if not data[1] or data[1] == None: pass else: stuff = [d for d in data[1] if d['filename'] == os.path.basename(filename)] if stuff: if len(stuff) >= 1: stuff = stuff[0] [meta.extend([k,v]) for k,v in stuff.items()] [meta.extend([k,v]) for k,v in meta[3].items()] del meta[3] [meta.extend([k,v]) for k,v in meta[-1].items()] del meta[-3] [meta.extend([k,v]) for k,v in meta[-4].items()] del meta[-6] if os.path.getsize(filename) < 256: raise ValueError("{} must be at least 256 bytes".format(filename)) if tarfile.is_tarfile(filename): with tarfile.open(filename, 'r') as tar: for member in tar.getmembers(): if not member or member.size < 256: continue try: meta.append(tlsh.hash(tar.extractfile(member).read())) if use_binwalk: for module in binwalk.scan(tar.extractfile(member).read(), signature=True, quiet=True): for result in module.results: meta.append(str(result.file.path)) meta.append(str(result.offset)) meta.append(str(result.description)) except: continue elif zipfile.is_zipfile(filename): try: with zipfile.ZipFile(filename) as z: for member in z.infolist(): if not member or member.file_size < 256: continue try: with z.read(member) as zipdata: meta.append(tlsh.hash(zipdata)) if use_binwalk: for module in binwalk.scan(zipdata): for result in module.results: meta.append(str(result.file.path)) meta.append(str(result.offset)) meta.append(str(result.description)) except: continue except: pass if use_binwalk: for module in binwalk.scan(filename, signature=True, quiet=True): for result in module.results: meta.append(str(result.file.path)) meta.append(str(result.offset)) meta.append(str(result.description)) file_hash = tlsh.hash(open(filename, 'rb').read()) if not meta: return file_hash else: return tlsh.hash(str.encode(file_hash + ''.join(map(str, meta)))) def diff_hash(one, two): return tlsh.diff(one, two) def list_files(directory): f = [] for (dirpath, _, filenames) in os.walk(directory): for name in filenames: f.append(os.path.join(dirpath, name)) return f def parse_metadata(filename): contents = [] with open(filename, 'r') as csvfile: reader = csv.reader(csvfile) for row in reader: #Remove the md5 and sha1 hashes since they're useless to me contents.append(row[:-2]) return contents[1:] def parse_metadata_json(filename): with open(filename, 'r') as jsonfile: metadata = json.load(jsonfile) for obj in metadata: del obj['MD5'] del obj['SHA1'] del obj['SHA256'] del obj['SHA512'] obj['filename'] = obj['Properties'].pop('FileName') return metadata def flatten(d, parent_key='', sep='_'): items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(flatten(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def get_n_closest(n, filenames, adjacency): closest = {} for f in filenames: elem = adj[filenames.index(f)] smallest_dists = nsmallest(n + 1, elem) smallest_files = [] old_dist = 0 for d in smallest_dists: #Ignore the file listing itself if d == 0: continue elif d == old_dist: continue old_dist = d if smallest_dists.count(d) > 1: prev = 0 for i in range(smallest_dists.count(d)): dist_filename = smallest_dists.index(d, prev) smallest_files.append((d, filenames[dist_filename])) prev = dist_filename + 1 continue; #Filename indices are analagous to adjacency indices smallest_files.append((d, filenames[smallest_dists.index(d)])) closest[f] = smallest_files return closest def get_partition_entry(partition_hashes, new_hash): return partition_hashes[int(new_hash[8:10], 16)] def get_n_closest_partial(n, hash_partition, hash_list): closest = {} for h in hash_list: entry = get_partition_entry(hash_partition, h) elem = [] filename = "" for k,v in entry: d = diff_hash(h, v) if d > 0: elem.append((d, k)) else: filename = k elem.sort(key=lambda tup: tup[0]) smallest_files = [] for i in range(len(elem)): if i + 1 > n: break smallest_files.append(elem[i]) closest[filename] = smallest_files return closest try: opts, args = getopt.getopt(sys.argv[1:], "hd:m:bn:t", ["help", "directory", "metadata", "binwalk", "number", "test"]) except getopt.GetoptError as err: print(err) # will print something like "option -a not recognized" usage() exit(2) directory = "" meta = "" use_binwalk = False n = 10 use_existing = False for o, a in opts: if o in ("-d", "--directory"): directory = a elif o in ("-h", "--help"): usage() exit() elif o in ("-m", "--metadata"): meta = a elif o in ("-b", "--binwalk"): use_binwalk = True elif o in ("-n", "--number"): n = int(a) elif o in ("-t", "--test"): use_existing = True if not directory: print("Program must be provided a file directory path") exit(1) file_list = list_files(directory) hash_list = [] if meta: meta_contents = parse_metadata_json(meta) else: meta_contents = None hash_list = [lsh_json(x) for x in zip(file_list, itertools.repeat(meta_contents))] if use_existing: file_data = np.load(".tmp.npz") #See https://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez for why this syntax is needed clustered_files = file_data['clusters'][()] cluster_hashes = file_data['hash_list'] ms = joblib.load('.tmp2.pkl') adj = np.zeros((len(hash_list), len(cluster_hashes)), int) #Compare new file hashes against saved data to get distances for i in range(len(hash_list)): for j in range(len(cluster_hashes)): adj[i][j] = diff_hash(hash_list[i], cluster_hashes[j]); cluster_labels = ms.predict(adj) for f in file_list: #Label of the prediucted file cluster lab = cluster_labels[file_list.index(f)] if lab not in clustered_files: print("{} does not belong to any existing cluster".format(f)) continue clus = clustered_files[lab] print("Target file {} is in cluster {}".format(f, lab)) for c in clus: print(c) #Empty line to separate cluster print outs print() exit() else: adj = np.zeros((len(hash_list), len(hash_list)), int) for i in range(len(hash_list)): for j in range(len(hash_list)): d = diff_hash(hash_list[i], hash_list[j]); adj[i][j] = d adj[j][i] = d best_cluster_count = 0 best_silhouette_score = -1.0 def cl(data): i, adj = data print("Trying cluster count {}".format(i)) return metrics.silhouette_score(adj, MiniBatchKMeans(n_clusters=i).fit_predict(adj)) #Calculate the best cluster count in parallel silhouette_list = Pool().map(cl, zip(range(2, 16), itertools.repeat(adj))) best_cluster_count = silhouette_list.index(max(silhouette_list)) + 2 ms = MiniBatchKMeans(n_clusters=best_cluster_count) cluster_labels = ms.fit_predict(adj) clustered_files = {} for f in file_list: lab = cluster_labels[file_list.index(f)] if lab in clustered_files: clustered_files[lab].append(f) else: clustered_files[lab] = [f] print(clustered_files) np.savez(".tmp", clusters=clustered_files, hash_list=hash_list) joblib.dump(ms, '.tmp2.pkl') labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) plt.figure(1) plt.clf() colors = itertools.cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(adj[my_members, 0], adj[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show() ``` #### File: JohnAgapeyev/binary_diff/learn.py ```python import sys import os import getopt import math import itertools import collections import numpy as np import tensorflow as tf from PIL import Image from multiprocessing.dummy import Pool #os.system("rm -rf /tmp/cnn_model") def cnn_model_fn(features, labels, mode): input_layer = tf.reshape(features["x"], [-1, 256, 256, 1]) #Turns 1024x1024 to 1024x1024 #Would be 1020x1020 if padding wasn't used #Actually 256x256 conv1 = tf.layers.conv2d( inputs=input_layer, filters=32, kernel_size=5, padding='same', activation=tf.nn.relu ) #Turns 1024x1024 to 512x512 #Actually 256x256 to 128x128 pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2,2], strides=2) #Would turns 512x512 into 508x508, but doesn't due to padding #Actually 128x128 #conv2 = tf.layers.conv2d( #inputs=pool1, #filters=64, #kernel_size=5, #padding='same', #activation=tf.nn.relu #) #Turns 512x512 to 256x256 #Actually 64x64 #pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2,2], strides=2) #Turns 256x256 to 256x256 #Actually 64x64 #conv3 = tf.layers.conv2d( #inputs=pool2, #filters=128, #kernel_size=5, #padding='same', #activation=tf.nn.relu #) #Turns 256x256 to 128x128 #Actually 32x32 #pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2,2], strides=2) #pool3_flat = tf.reshape(pool1, [-1, 64*64*128]) pool3_flat = tf.reshape(pool1, [-1, 256*64*32]) #pool3_flat = tf.reshape(pool3, [-1, 32*32*128]) #pool3_flat = tf.reshape(pool2, [-1, 64*64*64]) dense = tf.layers.dense(inputs=pool3_flat, units=1024, activation=tf.nn.relu) dropout = tf.layers.dropout(inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN) logits = tf.layers.dense(inputs=dropout, units=3) #logits = tf.layers.dense(inputs=dense, units=3) predictions = { "classes": tf.argmax(input=logits, axis=1), "probabilities": tf.nn.softmax(logits, name="softmax_tensor") } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) labels = tf.squeeze(labels) print(logits.shape) print(labels.shape) loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) #loss = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits) #loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) eval_metric_ops = { "accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions["classes"]) } return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def get_all_files(directory): f = [] for (dirpath, _, filenames) in os.walk(directory): for name in filenames: f.append(os.path.join(dirpath, name)) return f def parser(record, label): keys_to_features = { "x": tf.VarLenFeature(tf.uint8), } #parsed = tf.parse_single_example(record, keys_to_features) record = tf.cast(record, tf.float16) print(record) print(label) # Perform additional preprocessing on the parsed data. #image = tf.image.decode_jpeg(parsed["image_data"]) #label = tf.cast(parsed["label"], tf.int32) return {"x": record}, label tf.enable_eager_execution() #ten = [] #lab = [] #for arg in get_all_files(sys.argv[1]): #if "Schneider" in arg: ##lab.append("Schneider") #lab.append(1) #elif "Siemens" in arg: ##lab.append("Siemens") #lab.append(2) #else: ##lab.append("None") #lab.append(0) #data = np.fromfile(arg, np.uint8) #file_width = math.ceil(math.sqrt(len(data))) #data.resize((file_width, file_width)) #t = tf.convert_to_tensor(data) #t = tf.expand_dims(t, -1) #t = tf.image.resize_images(t, (1024,1024), tf.image.ResizeMethod.NEAREST_NEIGHBOR) #ten.append(t) #dataset = tf.data.Dataset.from_tensors((ten, lab)) # #dataset = dataset.map(parser) # #dataset = dataset.shuffle(10000).batch(3) #it = dataset.make_one_shot_iterator() #for e in it: #print(e) #exit() #ten = [] #for arg in sys.argv: #data = np.fromfile(arg, np.uint8) #file_width = math.ceil(math.sqrt(len(data))) #data.resize((file_width, file_width)) #t = tf.convert_to_tensor(data) #t = tf.expand_dims(t, -1) #t = tf.image.resize_images(t, (1024,1024), tf.image.ResizeMethod.NEAREST_NEIGHBOR) #ten.append(t) #dataset = tf.data.Dataset.from_tensors(ten) #for e in dataset.make_one_shot_iterator(): #print(e) def data_input_fn(): ten = [] lab = [] for arg in get_all_files(sys.argv[1]): if "Schneider" in arg: #lab.append("Schneider") lab.append(1) elif "Siemens" in arg: #lab.append("Siemens") lab.append(2) else: #lab.append("None") lab.append(0) data = np.fromfile(arg, np.uint8) file_width = math.ceil(math.sqrt(len(data))) data.resize((file_width, file_width)) t = tf.convert_to_tensor(data) t = tf.expand_dims(t, -1) t = tf.image.resize_images(t, (256,256), tf.image.ResizeMethod.NEAREST_NEIGHBOR) ten.append(t) l = tf.convert_to_tensor(lab) l = tf.expand_dims(l, -1) #dataset = tf.data.Dataset.from_tensors((ten, lab)) dataset = tf.data.Dataset.from_tensors((ten, l)) dataset = dataset.map(parser) #dataset = dataset.shuffle(10000) dataset = dataset.batch(3) it = dataset.make_one_shot_iterator() features, labels = it.get_next() print(features, labels) return features, labels def eval_fn(): ten = [] lab = [] for arg in get_all_files(sys.argv[2]): if "Schneider" in arg: #lab.append("Schneider") lab.append(1) elif "Siemens" in arg: #lab.append("Siemens") lab.append(2) else: #lab.append("None") lab.append(0) data = np.fromfile(arg, np.uint8) file_width = math.ceil(math.sqrt(len(data))) data.resize((file_width, file_width)) t = tf.convert_to_tensor(data) t = tf.expand_dims(t, -1) t = tf.image.resize_images(t, (256,256), tf.image.ResizeMethod.NEAREST_NEIGHBOR) ten.append(t) l = tf.convert_to_tensor(lab) l = tf.expand_dims(l, -1) #dataset = tf.data.Dataset.from_tensors((ten, lab)) dataset = tf.data.Dataset.from_tensors((ten, l)) dataset = dataset.map(parser) #dataset = dataset.shuffle(10000) dataset = dataset.batch(3) it = dataset.make_one_shot_iterator() features, labels = it.get_next() return features, labels #classify = tf.estimator.Estimator(model_fn=cnn_model_fn, model_dir="/tmp/cnn_model") classify = tf.estimator.Estimator(model_fn=cnn_model_fn, model_dir="/home/john/cnn_model") tensors_to_log = {"probabilities": "softmax_tensor"} logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=50) #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) #sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) #train_input_fn = tf.estimator.inputs.numpy_input_fn( #x={"x": train_data}, #y=train_labels, #batch_size=100, #num_epochs=None, #shuffle=True) classify.train( input_fn=data_input_fn, steps=20000, hooks=[logging_hook]) #eval_input_fn = tf.estimator.inputs.numpy_input_fn( #x={"x": eval_data}, #y=eval_labels, #num_epochs=1, #shuffle=False) eval_results = classify.evaluate(input_fn=eval_fn) print(eval_results) ```
{ "source": "johnaheadley/core", "score": 2 }
#### File: scripts/dns/unbound_dhcpd.py ```python import os import sys sys.path.insert(0, "/usr/local/opnsense/site-python") import subprocess import time import tempfile from daemonize import Daemonize import watchers.dhcpd import params def unbound_control(commands, output_stream=None): """ execute (chrooted) unbound-control command :param commands: command list (parameters) :param output_stream: (optional)output stream :return: None """ if output_stream is None: output_stream = open(os.devnull, 'w') subprocess.check_call(['/usr/sbin/chroot', '-u', 'unbound', '-g', 'unbound', '/', '/usr/local/sbin/unbound-control', '-c', '/var/unbound/unbound.conf'] + commands, stdout=output_stream, stderr=subprocess.STDOUT) output_stream.seek(0) def unbound_known_addresses(): """ fetch known addresses :return: list """ result = list() with tempfile.NamedTemporaryFile() as output_stream: unbound_control(['list_local_data'], output_stream) for line in output_stream: parts = line.decode().split() if len(parts) > 4 and parts[3] == 'A': result.append(parts[4]) return result # parse input params app_params = {'pid': '/var/run/unbound_dhcpd.pid', 'domain': 'local', 'target': '/var/unbound/dhcpleases.conf', 'background': '1'} params.update_params(app_params) def main(): # cleanup interval (seconds) cleanup_interval = 60 # initiate lease watcher and setup cache dhcpdleases = watchers.dhcpd.DHCPDLease() cached_leases = dict() known_addresses = unbound_known_addresses() # start watching dhcp leases last_cleanup = time.time() while True: dhcpd_changed = False for lease in dhcpdleases.watch(): if 'ends' in lease and lease['ends'] > time.time() and 'client-hostname' in lease and 'address' in lease: cached_leases[lease['address']] = lease dhcpd_changed = True if time.time() - last_cleanup > cleanup_interval: # cleanup every x seconds last_cleanup = time.time() addresses = cached_leases.keys() for address in addresses: if cached_leases[address]['ends'] < time.time(): del cached_leases[address] dhcpd_changed = True if dhcpd_changed: # dump dns output to target with open(app_params['target'], 'w') as unbound_conf: for address in cached_leases: unbound_conf.write('local-data-ptr: "%s %s.%s"\n' % ( address, cached_leases[address]['client-hostname'], app_params['domain']) ) unbound_conf.write('local-data: "%s.%s IN A %s"\n' % ( cached_leases[address]['client-hostname'], app_params['domain'], address) ) # signal unbound for address in cached_leases: if address not in known_addresses: fqdn = '%s.%s' % (cached_leases[address]['client-hostname'], app_params['domain']) unbound_control(['local_data', address, 'PTR', fqdn]) unbound_control(['local_data', fqdn, 'IN A', address]) known_addresses.append(address) # wait for next cycle time.sleep(1) # startup if app_params['background'] == '1': daemon = Daemonize(app="unbound_dhcpd", pid=app_params['pid'], action=main) daemon.start() else: main() ```
{ "source": "johnahjohn/ml_iris_prediction", "score": 4 }
#### File: johnahjohn/ml_iris_prediction/stream_iristest.py ```python from pycaret.classification import load_model, predict_model import streamlit as st import pandas as pd import numpy as np model = load_model('knn_model') def predict(model, input_df): predictions_df = predict_model(estimator=model, data=input_df) predictions = predictions_df['Label'][0] return predictions def run(): from PIL import Image image = Image.open('iris1.jpg') image_office = Image.open('iris2.jpg') st.image(image,use_column_width=True) add_selectbox = st.sidebar.selectbox( "How would you like to predict?", ("Online", "Batch")) st.sidebar.info('This app is created to predict the species of iris flower') st.sidebar.success('https://www.pycaret.org') st.sidebar.image(image_office) st.title("Predicting iris species") if add_selectbox == 'Online': sepal_length=st.number_input('sepal_length' , min_value=0.1, max_value=8.0, value=0.1) sepal_width =st.number_input('sepal_width',min_value=0.0, max_value=6.0, value=0.1) petal_length = st.number_input('petal_length', min_value=0.0, max_value=8.0, value=0.1) petal_width = st.number_input('petal_width', min_value=0.0, max_value=4.5, value=0.1) output="" input_dict={'sepal_length':sepal_length,'sepal_width':sepal_width,'petal_length':petal_length,'petal_width':petal_width} input_df = pd.DataFrame([input_dict]) if st.button("Predict"): output = predict(model=model, input_df=input_df) output = str(output) st.success('The output is {}'.format(output)) if add_selectbox == 'Batch': file_upload = st.file_uploader("Upload csv file for predictions", type=["csv"]) if file_upload is not None: data = pd.read_csv(file_upload) predictions = predict_model(estimator=model,data=data) st.write(predictions) def main(): run() if __name__ == "__main__": main() ```
{ "source": "johnaho/Beacon8r", "score": 3 }
#### File: Beacon8r/MainUnit/plugNChug.py ```python import os # python 3X I believe. # MIT license and all that. part of Beacon8r code. @Beacon8r and @dj_ir0ngruve on twitter. # Apologies for potato code. Python's not my main language. Yes, this was developed on windows so separator slashes are wrong for linux. Ran out of time to test right now for cross platform. #Basically this takes any big list of names in a file named "biglistGenAccessPoints.txt", big list get it? #and chunks through them and spits out a complete Arduino folder/file set you can use to program an ESP8266 #It creates the new folders and files in: genDuinoFolder #Change these variables before running beaconpattern = r"FULLPATHTO\beacon8pattern.txt" # Top part of each file listaccesspoints = r"FULLPATHTO\biglistGenAccessPoints.txt" # The list of access points you want to chunk out genDuinoFolder = r"FULLPATHTO_FOLDER_YOU_WANT_RESULTS_IN" #Where you set the reformatted chunks to be created in. spliton = 2980 #Number of beacons to advertise per ESP8266. 2980 is near upper limit of space on chip I think. 130k / 1980 = roughly 44 ish ESP8266 folder/.ino file sets. Note that Folder name and *.ino file name I think have to be the same. #Note: 13-17 per ESP8266 should be used for stability of viewing on a phone's wifi list. #You can have around 4-5 total esp8266's near each other powered by portable usb batteries no big deal. #First year I put each esp8266 in a ziploc bag for a smaller project.. Kapton tape covering each unit is better. #Heat can get up to 140F not sure what that is real temperature. #Finally... You can broadcast Emoji's. Arduino ide is fine with emojis but I haven't been able to put emojis in list here and not have python crash. read_dataBP = 'blank' bcn8rPlaceName = "beacon8rCluster_" if not os.path.exists(genDuinoFolder): os.makedirs(genDuinoFolder) with open(beaconpattern) as f: read_dataBP = f.read() f.closed print(read_dataBP) def write_file (): with open(genDuinoFolder + "\\"+ currWkngName+ "\\"+ currWkngName +".ino", "w") as cf: cf.write(fileInProgress+ "\r\n}\r\n") cf.closed counter =0 programs =0 first = 0 currWkngName = bcn8rPlaceName + str(programs) fileInProgress = "" with open(listaccesspoints) as bl: for line in bl: counter += 1 if( counter %spliton == 0 or first ==0): if(len(fileInProgress) >0): #write fileInProgress to disk. if not os.path.exists(genDuinoFolder + "\\"+ currWkngName): os.makedirs(genDuinoFolder + "\\"+ currWkngName) #writeFile... write_file() programs +=1 first =1 currWkngName = bcn8rPlaceName + str(programs) print(currWkngName +" and "+ currWkngName + r".ino") # Create directory if doesn't exists if not os.path.exists(genDuinoFolder + "\\"+ currWkngName): os.makedirs(genDuinoFolder + "\\"+ currWkngName) #set stored first part of program fileInProgress = read_dataBP fileInProgress += ' snBcn("'+line[:-1] + '");\r' #removes \r\n at end of line then adds \r where needed. bl.closed write_file() print(counter) # How many things have you done? print(programs) # Oh why, the humanity, oh why!! #This is what I imagine python programmers reading my code to the end feel like: https://xkcd.com/1513/ ```
{ "source": "johnallanach/snippets", "score": 3 }
#### File: python/walkscore/get_coords.py ```python import requests def get_coords(address_to_fetch): url = 'https://nominatim.openstreetmap.org/search/' + address_to_fetch +'?format=json' response = requests.get(url).json() lat = response[0]["lat"] lon = response[0]["lon"] return lat, lon ``` #### File: python/walkscore/walkscore.py ```python import csv import os import random import requests import time import urllib from get_coords import get_coords from config import WALKSCORE_API def append_to_csv_file(filename, rows): with open(filename, 'a', encoding='utf-8', newline='') as file: writer = csv.writer(file) writer.writerows(rows) def get_address_score(input_address): address_to_fetch = urllib.parse.quote(input_address) try: lat, lon = get_coords(address_to_fetch) data_url = data_url = 'https://api.walkscore.com/score?format=json&address=' + address_to_fetch + '&lat=' + lat + '&lon=' + lon + '&transit=1&bike=1&wsapikey=' + WALKSCORE_API res = requests.get(url=data_url) response_data = res.json() status = response_data["status"] try: walkscore = response_data["walkscore"] except: walkscore = 'None' try: transitscore = response_data["transit"]['score'] except: transitscore = 'None' try: bikescore = response_data["bike"]['score'] except: bikescore = 'None' except: status = 1 walkscore = 'None' transitscore = 'None' bikescore = 'None' return walkscore, transitscore, bikescore, status def main(): #compile list of Guelph addresses address_list = [] working_directory = os.getcwd() file_path = working_directory + '\walkscore\data\guelphaddresses.csv' with open(file_path, encoding='utf-8') as file: addresses = csv.reader(file) next(addresses, None) for row in addresses: address = row[0] address_list.append(address) processed_address_list = [] #for i in range(0, len(address_list)): for i in range(0,100): address_to_process = random.choice(address_list) walkscore, transitscore, bikescore, status = get_address_score(address_to_process) if status == 1: entry = [address_to_process, walkscore, transitscore, bikescore] processed_address_list.append(entry) address_list.remove(address_to_process) #time.sleep(20) #throttle requests to not exceed 5000 API calls per day elif status == 40: time.sleep(3600) walkscore, transitscore, bikescore, status = get_address_score(address_to_process) entry = [address_to_process, walkscore, transitscore, bikescore] processed_address_list.append(entry) address_list.remove(address_to_process) append_to_csv_file('guelphaddresses_output.csv', processed_address_list) if __name__ == '__main__': main() """ HTTP Response Status Code Description 200 1 Walk Score successfully returned. 200 2 Score is being calculated and is not currently available. 404 30 Invalid latitude/longitude. 500 series 31 Walk Score API internal error. 200 40 Your WSAPIKEY is invalid. 200 41 Your daily API quota has been exceeded. 403 42 Your IP address has been blocked. """ ```
{ "source": "JohnAllerdyce/Sovryn-smart-contracts", "score": 2 }
#### File: scripts/deployment/deploy_multisig_keyholders.py ```python from brownie import * import json def main(): thisNetwork = network.show_active() if thisNetwork == "development": acct = accounts[0] # configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "testnet" or thisNetwork == "rsk-mainnet": acct = accounts.load("rskdeployer") else: raise Exception("network not supported") if thisNetwork == "rsk-mainnet": configFile = open('./scripts/contractInteraction/mainnet_contracts.json') elif thisNetwork == "testnet": configFile = open('./scripts/contractInteraction/testnet_contracts.json') contracts = json.load(configFile) timelockOwnerAddress = contracts['timelockOwner'] multiSigKeyHolders= acct.deploy(MultiSigKeyHolders) multiSigKeyHolders.transferOwnership(timelockOwnerAddress) ``` #### File: Sovryn-smart-contracts/tests/test_Protocol.py ```python import pytest def test_targetSetup(Constants, sovryn): sig1 = "testFunction1(address,uint256,bytes)" sig2 = "testFunction2(address[],uint256[],bytes[])" sigs = [sig1,sig2] targets = [Constants["ONE_ADDRESS"]] * len(sigs) sovryn.setTargets(sigs, targets) assert sovryn.getTarget(sig1) == Constants["ONE_ADDRESS"] assert sovryn.getTarget(sig2) == Constants["ONE_ADDRESS"] targets = [Constants["ZERO_ADDRESS"]] * len(sigs) sovryn.setTargets(sigs, targets) assert sovryn.getTarget(sig1) == Constants["ZERO_ADDRESS"] assert sovryn.getTarget(sig2) == Constants["ZERO_ADDRESS"] def test_replaceContract(Constants, sovryn, accounts, LoanSettings): sig = "setupLoanParams((bytes32,bool,address,address,address,uint256,uint256,uint256)[])" loanSettings = accounts[0].deploy(LoanSettings) sovryn.setTargets([sig], [Constants["ZERO_ADDRESS"]]) assert sovryn.getTarget(sig) == Constants["ZERO_ADDRESS"] sovryn.replaceContract(loanSettings.address) assert sovryn.getTarget(sig) == loanSettings.address def test_receivesEther(web3, sovryn, accounts): assert(web3.eth.getBalance(sovryn.address) == 0) web3.eth.sendTransaction({ "from": str(accounts[0]), "to": sovryn.address, "value": 10000, "gas": "5999" }) assert(web3.eth.getBalance(sovryn.address) == 10000) ```
{ "source": "John-alonso-debug/safe-transaction-service", "score": 2 }
#### File: safe_transaction_service/history/utils.py ```python import logging import time from typing import Any, Dict, List, Optional, Union from django.conf import settings from django.core.signals import request_finished from django.db import connection from django.http import HttpRequest from gunicorn import glogging from redis import Redis class IgnoreCheckUrl(logging.Filter): def filter(self, record): message = record.getMessage() return not ('GET /check/' in message and '200' in message) class CustomGunicornLogger(glogging.Logger): def setup(self, cfg): super().setup(cfg) # Add filters to Gunicorn logger logger = logging.getLogger("gunicorn.access") logger.addFilter(IgnoreCheckUrl()) class LoggingMiddleware: def __init__(self, get_response): self.get_response = get_response self.logger = logging.getLogger('LoggingMiddleware') def get_milliseconds_now(self): return int(time.time() * 1000) def __call__(self, request: HttpRequest): milliseconds = self.get_milliseconds_now() response = self.get_response(request) if request.resolver_match: route = request.resolver_match.route if request.resolver_match else request.path self.logger.info('MT::%s::%s::%s::%d::%s', request.method, route, self.get_milliseconds_now() - milliseconds, response.status_code, request.path) return response def close_gevent_db_connection(): """ Clean gevent db connections. Check `atomic block` to prevent breaking the tests (Django `TestCase` wraps tests inside an atomic block that rollbacks at the end of the test) https://github.com/jneight/django-db-geventpool#using-orm-when-not-serving-requests :return: """ if not connection.in_atomic_block: request_finished.send(sender="greenlet") def chunks(elements: List[Any], n: int): """ :param elements: List :param n: Number of elements per chunk :return: Yield successive n-sized chunks from l """ for i in range(0, len(elements), n): yield elements[i:i + n] def clean_receipt_log(receipt_log: Dict[str, Any]) -> Optional[Dict[str, Any]]: """ Clean receipt log and make them JSON compliant :param receipt_log: :return: """ parsed_log = {'address': receipt_log['address'], 'data': receipt_log['data'], 'topics': [topic.hex() for topic in receipt_log['topics']]} return parsed_log def get_redis() -> Redis: if not hasattr(get_redis, 'redis'): get_redis.redis = Redis.from_url(settings.REDIS_URL) return get_redis.redis def parse_boolean_query_param(value: Union[bool, str]) -> bool: if value in (True, 'True', 'true', '1'): return True else: return False ```
{ "source": "johnamcleod/agents", "score": 2 }
#### File: bandits/agents/utils.py ```python from __future__ import absolute_import from __future__ import division # Using Type Annotations. from __future__ import print_function from typing import Tuple import gin import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.bandits.policies import policy_utilities from tf_agents.bandits.specs import utils as bandit_spec_utils from tf_agents.typing import types from tf_agents.utils import nest_utils def sum_reward_weighted_observations(r: types.Tensor, x: types.Tensor) -> types.Tensor: """Calculates an update used by some Bandit algorithms. Given an observation `x` and corresponding reward `r`, the weigthed observations vector (denoted `b` here) should be updated as `b = b + r * x`. This function calculates the sum of weighted rewards for batched observations `x`. Args: r: a `Tensor` of shape [`batch_size`]. This is the rewards of the batched observations. x: a `Tensor` of shape [`batch_size`, `context_dim`]. This is the matrix with the (batched) observations. Returns: The update that needs to be added to `b`. Has the same shape as `b`. If the observation matrix `x` is empty, a zero vector is returned. """ batch_size = tf.shape(x)[0] return tf.reduce_sum(tf.reshape(r, [batch_size, 1]) * x, axis=0) @gin.configurable def build_laplacian_over_ordinal_integer_actions( action_spec: types.BoundedTensorSpec) -> types.Tensor: """Build the unnormalized Laplacian matrix over ordinal integer actions. Assuming integer actions, this functions builds the (unnormalized) Laplacian matrix of the graph implied over the action space. The graph vertices are the integers {0...action_spec.maximum - 1}. Two vertices are adjacent if they correspond to consecutive integer actions. The `action_spec` must specify a scalar int32 or int64 with minimum zero. Args: action_spec: a `BoundedTensorSpec`. Returns: The graph Laplacian matrix (float tensor) of size equal to the number of actions. The diagonal elements are equal to 2 and the off-diagonal elements are equal to -1. Raises: ValueError: if `action_spec` is not a bounded scalar int32 or int64 spec with minimum 0. """ num_actions = policy_utilities.get_num_actions_from_tensor_spec(action_spec) adjacency_matrix = np.zeros([num_actions, num_actions]) for i in range(num_actions - 1): adjacency_matrix[i, i + 1] = 1.0 adjacency_matrix[i + 1, i] = 1.0 laplacian_matrix = np.diag(np.sum(adjacency_matrix, axis=0)) - adjacency_matrix return laplacian_matrix def compute_pairwise_distances(input_vecs: types.Tensor) -> types.Tensor: """Compute the pairwise distances matrix. Given input embedding vectors, this utility computes the (squared) pairwise distances matrix. Args: input_vecs: a `Tensor`. Input embedding vectors (one per row). Returns: The (squared) pairwise distances matrix. A dense float `Tensor` of shape [`num_vectors`, `num_vectors`], where `num_vectors` is the number of input embedding vectors. """ r = tf.reduce_sum(input_vecs * input_vecs, axis=1, keepdims=True) pdistance_matrix = ( r - 2 * tf.matmul(input_vecs, input_vecs, transpose_b=True) + tf.transpose(r)) return tf.cast(pdistance_matrix, dtype=tf.float32) @gin.configurable def build_laplacian_nearest_neighbor_graph(input_vecs: types.Tensor, k: int = 1) -> types.Tensor: """Build the Laplacian matrix of a nearest neighbor graph. Given input embedding vectors, this utility returns the Laplacian matrix of the induced k-nearest-neighbor graph. Args: input_vecs: a `Tensor`. Input embedding vectors (one per row). Shaped `[num_vectors, ...]`. k : an integer. Number of nearest neighbors to use. Returns: The graph Laplacian matrix. A dense float `Tensor` of shape `[num_vectors, num_vectors]`, where `num_vectors` is the number of input embedding vectors (`Tensor`). """ num_actions = tf.shape(input_vecs)[0] pdistance_matrix = compute_pairwise_distances(input_vecs) sorted_indices = tf.argsort(values=pdistance_matrix) selected_indices = tf.reshape(sorted_indices[:, 1 : k + 1], [-1, 1]) rng = tf.tile( tf.expand_dims(tf.range(num_actions), axis=-1), [1, k]) rng = tf.reshape(rng, [-1, 1]) full_indices = tf.concat([rng, selected_indices], axis=1) adjacency_matrix = tf.zeros([num_actions, num_actions], dtype=tf.float32) adjacency_matrix = tf.tensor_scatter_nd_update( tensor=adjacency_matrix, indices=full_indices, updates=tf.ones([k * num_actions], dtype=tf.float32)) # Symmetrize it. adjacency_matrix = adjacency_matrix + tf.transpose(adjacency_matrix) adjacency_matrix = tf.minimum( adjacency_matrix, tf.ones_like(adjacency_matrix)) degree_matrix = tf.linalg.tensor_diag(tf.reduce_sum(adjacency_matrix, axis=1)) laplacian_matrix = degree_matrix - adjacency_matrix return laplacian_matrix def process_experience_for_neural_agents( experience: types.NestedTensor, accepts_per_arm_features: bool, training_data_spec: types.NestedTensorSpec ) -> Tuple[types.NestedTensor, types.Tensor, types.Tensor]: """Processes the experience and prepares it for the network of the agent. First the reward, the action, and the observation are flattened to have only one batch dimension. Then, if the experience includes chosen action features in the policy info, it gets copied in place of the per-arm observation. Args: experience: The experience coming from the replay buffer. accepts_per_arm_features: Whether the agent accepts per-arm features. training_data_spec: The data spec describing what the agent expects. Returns: A tuple of (observation, action, reward) tensors to be consumed by the train function of the neural agent. """ flattened_experience, _ = nest_utils.flatten_multi_batched_nested_tensors( experience, training_data_spec) observation = flattened_experience.observation action = flattened_experience.action reward = flattened_experience.reward if not accepts_per_arm_features: return observation, action, reward # The arm observation we train on needs to be copied from the respective # policy info field to the per arm observation field. Pretending there was # only one action, we fill the action field with zeros. chosen_arm_features = flattened_experience.policy_info.chosen_arm_features observation[bandit_spec_utils.PER_ARM_FEATURE_KEY] = tf.nest.map_structure( lambda t: tf.expand_dims(t, axis=1), chosen_arm_features) action = tf.zeros_like(action) if bandit_spec_utils.NUM_ACTIONS_FEATURE_KEY in observation: # This change is not crucial but since in training there will be only one # action per sample, it's good to follow the convention that the feature # value for `num_actions` be less than or equal to the maximum available # number of actions. observation[bandit_spec_utils.NUM_ACTIONS_FEATURE_KEY] = tf.ones_like( observation[bandit_spec_utils.NUM_ACTIONS_FEATURE_KEY]) return observation, action, reward ``` #### File: bandits/environments/classification_environment.py ```python from __future__ import absolute_import from __future__ import division # Using Type Annotations. from __future__ import print_function from typing import Optional, Text import gin import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import import tensorflow_probability as tfp from tf_agents.bandits.environments import bandit_tf_environment as bte from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step from tf_agents.typing import types from tf_agents.utils import eager_utils tfd = tfp.distributions def _batched_table_lookup(tbl, row, col): """Mapped 2D table lookup. Args: tbl: a `Tensor` of shape `[r, s, t]`. row: a `Tensor` of dtype `int32` with shape `[r]` and values in the range `[0, s - 1]`. col: a `Tensor` of dtype `int32` with shape `[r]` and values in the range `[0, t - 1]`. Returns: A `Tensor` `x` with shape `[r]` where `x[i] = tbl[i, row[i], col[i]`. """ assert_correct_shapes = tf.group( tf.assert_equal(tf.shape(row), tf.shape(col)), tf.assert_equal(tf.shape(row)[0], tf.shape(tbl)[0])) rng = tf.range(tf.shape(row)[0]) idx = tf.stack([rng, row, col], axis=-1) with tf.control_dependencies([assert_correct_shapes]): values = tf.gather_nd(tbl, idx) return values @gin.configurable class ClassificationBanditEnvironment(bte.BanditTFEnvironment): """An environment based on an arbitrary classification problem.""" def __init__(self, dataset: tf.data.Dataset, reward_distribution: types.Distribution, batch_size: types.Int, label_dtype_cast: Optional[tf.DType] = None, shuffle_buffer_size: Optional[types.Int] = None, repeat_dataset: Optional[bool] = True, prefetch_size: Optional[types.Int] = None, seed: Optional[types.Int] = None, name: Optional[Text] = 'classification'): """Initialize `ClassificationBanditEnvironment`. Args: dataset: a `tf.data.Dataset` consisting of two `Tensor`s, [inputs, labels] where inputs can be of any shape, while labels are integer class labels. The label tensor can be of any rank as long as it has 1 element. reward_distribution: a `tfd.Distribution` with event_shape `[num_classes, num_actions]`. Entry `[i, j]` is the reward for taking action `j` for an instance of class `i`. batch_size: if `dataset` is batched, this is the size of the batches. label_dtype_cast: if not None, casts dataset labels to this dtype. shuffle_buffer_size: If None, do not shuffle. Otherwise, a shuffle buffer of the specified size is used in the environment's `dataset`. repeat_dataset: Makes the environment iterate on the `dataset` once avoiding `OutOfRangeError: End of sequence` errors when the environment is stepped past the end of the `dataset`. prefetch_size: If None, do not prefetch. Otherwise, a prefetch buffer of the specified size is used in the environment's `dataset`. seed: Used to make results deterministic. name: The name of this environment instance. Raises: ValueError: if `reward_distribution` does not have an event shape with rank 2. """ # Computing `action_spec`. event_shape = reward_distribution.event_shape if len(event_shape) != 2: raise ValueError( 'reward_distribution must have event shape of rank 2; ' 'got event shape {}'.format(event_shape)) _, num_actions = event_shape action_spec = tensor_spec.BoundedTensorSpec(shape=(), dtype=tf.int32, minimum=0, maximum=num_actions - 1, name='action') output_shapes = tf.compat.v1.data.get_output_shapes(dataset) # Computing `time_step_spec`. if len(output_shapes) != 2: raise ValueError('Dataset must have exactly two outputs; got {}'.format( len(output_shapes))) context_shape = output_shapes[0] context_dtype, lbl_dtype = tf.compat.v1.data.get_output_types(dataset) if label_dtype_cast: lbl_dtype = label_dtype_cast observation_spec = tensor_spec.TensorSpec( shape=context_shape, dtype=context_dtype) time_step_spec = time_step.time_step_spec(observation_spec) super(ClassificationBanditEnvironment, self).__init__( action_spec=action_spec, time_step_spec=time_step_spec, batch_size=batch_size, name=name) if shuffle_buffer_size: dataset = dataset.shuffle(buffer_size=shuffle_buffer_size, seed=seed, reshuffle_each_iteration=True) if repeat_dataset: dataset = dataset.repeat() dataset = dataset.batch(batch_size, drop_remainder=True) if prefetch_size: dataset = dataset.prefetch(prefetch_size) self._data_iterator = eager_utils.dataset_iterator(dataset) self._current_label = tf.compat.v2.Variable( tf.zeros(batch_size, dtype=lbl_dtype)) self._previous_label = tf.compat.v2.Variable( tf.zeros(batch_size, dtype=lbl_dtype)) self._reward_distribution = reward_distribution self._label_dtype = lbl_dtype reward_means = self._reward_distribution.mean() self._optimal_action_table = tf.argmax( reward_means, axis=1, output_type=self._action_spec.dtype) self._optimal_reward_table = tf.reduce_max(reward_means, axis=1) def _observe(self) -> types.NestedTensor: context, lbl = eager_utils.get_next(self._data_iterator) self._previous_label.assign(self._current_label) self._current_label.assign(tf.reshape( tf.cast(lbl, dtype=self._label_dtype), shape=[self._batch_size])) return tf.reshape( context, shape=[self._batch_size] + self._time_step_spec.observation.shape) def _apply_action(self, action: types.NestedTensor) -> types.NestedTensor: action = tf.reshape( action, shape=[self._batch_size] + self._action_spec.shape) reward_samples = self._reward_distribution.sample(tf.shape(action)) return _batched_table_lookup(reward_samples, self._current_label, action) def compute_optimal_action(self) -> types.NestedTensor: return tf.gather( params=self._optimal_action_table, indices=self._previous_label) def compute_optimal_reward(self) -> types.NestedTensor: return tf.gather( params=self._optimal_reward_table, indices=self._previous_label) ``` #### File: bandits/environments/movielens_per_arm_py_environment.py ```python from __future__ import absolute_import # Using Type Annotations. import random from typing import Optional, Text import gin import numpy as np from tf_agents.bandits.environments import bandit_py_environment from tf_agents.bandits.environments import dataset_utilities from tf_agents.bandits.specs import utils as bandit_spec_utils from tf_agents.specs import array_spec from tf_agents.trajectories import time_step as ts GLOBAL_KEY = bandit_spec_utils.GLOBAL_FEATURE_KEY PER_ARM_KEY = bandit_spec_utils.PER_ARM_FEATURE_KEY @gin.configurable class MovieLensPerArmPyEnvironment(bandit_py_environment.BanditPyEnvironment): """Implements the per-arm version of the MovieLens Bandit environment. This environment implements the MovieLens 100K dataset, available at: https://www.kaggle.com/prajitdatta/movielens-100k-dataset This dataset contains 100K ratings from 943 users on 1682 items. This csv list of: user id | item id | rating | timestamp. This environment computes a low-rank matrix factorization (using SVD) of the data matrix `A`, such that: `A ~= U * Sigma * V^T`. The environment uses the rows of `U` as global (or user) features, and the rows of `V` as per-arm (or movie) features. The reward of recommending movie `v` to user `u` is `u * Sigma * v^T`. """ def __init__(self, data_dir: Text, rank_k: int, batch_size: int = 1, num_actions: int = 50, name: Optional[Text] = 'movielens_per_arm'): """Initializes the Per-arm MovieLens Bandit environment. Args: data_dir: (string) Directory where the data lies (in text form). rank_k : (int) Which rank to use in the matrix factorization. This will also be the feature dimension of both the user and the movie features. batch_size: (int) Number of observations generated per call. num_actions: (int) How many movies to choose from per round. name: (string) The name of this environment instance. """ self._batch_size = batch_size self._context_dim = rank_k self._num_actions = num_actions # Compute the matrix factorization. self._data_matrix = dataset_utilities.load_movielens_data(data_dir) self._num_users, self._num_movies = self._data_matrix.shape # Compute the SVD. u, s, vh = np.linalg.svd(self._data_matrix, full_matrices=False) # Keep only the largest singular values. self._u_hat = u[:, :rank_k].astype(np.float32) self._s_hat = s[:rank_k].astype(np.float32) self._v_hat = np.transpose(vh[:rank_k]).astype(np.float32) self._approx_ratings_matrix = np.matmul(self._u_hat * self._s_hat, np.transpose(self._v_hat)) self._action_spec = array_spec.BoundedArraySpec( shape=(), dtype=np.int32, minimum=0, maximum=num_actions - 1, name='action') observation_spec = { GLOBAL_KEY: array_spec.ArraySpec(shape=[rank_k], dtype=np.float32), PER_ARM_KEY: array_spec.ArraySpec( shape=[num_actions, rank_k], dtype=np.float32), } self._time_step_spec = ts.time_step_spec(observation_spec) self._current_user_indices = np.zeros(batch_size, dtype=np.int32) self._previous_user_indices = np.zeros(batch_size, dtype=np.int32) self._current_movie_indices = np.zeros([batch_size, num_actions], dtype=np.int32) self._previous_movie_indices = np.zeros([batch_size, num_actions], dtype=np.int32) self._observation = { GLOBAL_KEY: np.zeros([batch_size, rank_k]), PER_ARM_KEY: np.zeros([batch_size, num_actions, rank_k]), } super(MovieLensPerArmPyEnvironment, self).__init__( observation_spec, self._action_spec, name=name) @property def batch_size(self): return self._batch_size @property def batched(self): return True def _observe(self): sampled_user_indices = np.random.randint( self._num_users, size=self._batch_size) self._previous_user_indices = self._current_user_indices self._current_user_indices = sampled_user_indices sampled_movie_indices = np.array([ random.sample(range(self._num_movies), self._num_actions) for _ in range(self._batch_size) ]) movie_index_vector = sampled_movie_indices.reshape(-1) flat_movie_list = self._v_hat[movie_index_vector] current_movies = flat_movie_list.reshape( [self._batch_size, self._num_actions, self._context_dim]) self._previous_movie_indices = self._current_movie_indices self._current_movie_indices = sampled_movie_indices batched_observations = { GLOBAL_KEY: self._u_hat[sampled_user_indices], PER_ARM_KEY: current_movies, } return batched_observations def _apply_action(self, action): chosen_arm_indices = self._current_movie_indices[range(self._batch_size), action] return self._approx_ratings_matrix[self._current_user_indices, chosen_arm_indices] def _rewards_for_all_actions(self): rewards_matrix = self._approx_ratings_matrix[ np.expand_dims(self._previous_user_indices, axis=-1), self._previous_movie_indices] return rewards_matrix def compute_optimal_action(self): return np.argmax(self._rewards_for_all_actions(), axis=-1) def compute_optimal_reward(self): return np.max(self._rewards_for_all_actions(), axis=-1) ``` #### File: tf_agents/replay_buffers/replay_buffer.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.utils import common from tensorflow.python.data.util import nest as data_nest # pylint:disable=g-direct-tensorflow-import # TF internal from tensorflow.python.util import deprecation # pylint:disable=g-direct-tensorflow-import # TF internal class ReplayBuffer(tf.Module): """Abstract base class for TF-Agents replay buffer. In eager mode, methods modify the buffer or return values directly. In graph mode, methods return ops that do so when executed. """ def __init__(self, data_spec, capacity, stateful_dataset=False): """Initializes the replay buffer. Args: data_spec: A spec or a list/tuple/nest of specs describing a single item that can be stored in this buffer capacity: number of elements that the replay buffer can hold. stateful_dataset: whether the dataset contains stateful ops or not. """ super(ReplayBuffer, self).__init__() common.check_tf1_allowed() self._data_spec = data_spec self._capacity = capacity self._stateful_dataset = stateful_dataset @property def data_spec(self): """Returns the spec for items in the replay buffer.""" return self._data_spec @property def capacity(self): """Returns the capacity of the replay buffer.""" return self._capacity @property def stateful_dataset(self): """Returns whether the dataset of the replay buffer has stateful ops.""" return self._stateful_dataset def num_frames(self): """Returns the number of frames in the replay buffer.""" return self._num_frames() def add_batch(self, items): """Adds a batch of items to the replay buffer. Args: items: An item or list/tuple/nest of items to be added to the replay buffer. `items` must match the data_spec of this class, with a batch_size dimension added to the beginning of each tensor/array. Returns: Adds `items` to the replay buffer. """ return self._add_batch(items) @deprecation.deprecated( date=None, instructions=( 'Use `as_dataset(..., single_deterministic_pass=False) instead.' )) def get_next(self, sample_batch_size=None, num_steps=None, time_stacked=True): """Returns an item or batch of items from the buffer. Args: sample_batch_size: (Optional.) An optional batch_size to specify the number of items to return. If None (default), a single item is returned which matches the data_spec of this class (without a batch dimension). Otherwise, a batch of sample_batch_size items is returned, where each tensor in items will have its first dimension equal to sample_batch_size and the rest of the dimensions match the corresponding data_spec. See examples below. num_steps: (Optional.) Optional way to specify that sub-episodes are desired. If None (default), in non-episodic replay buffers, a batch of single items is returned. In episodic buffers, full episodes are returned (note that sample_batch_size must be None in that case). Otherwise, a batch of sub-episodes is returned, where a sub-episode is a sequence of consecutive items in the replay_buffer. The returned tensors will have first dimension equal to sample_batch_size (if sample_batch_size is not None), subsequent dimension equal to num_steps, if time_stacked=True and remaining dimensions which match the data_spec of this class. See examples below. time_stacked: (Optional.) Boolean, when true and num_steps > 1 it returns the items stacked on the time dimension. See examples below for details. Examples of tensor shapes returned: (B = batch size, T = timestep, D = data spec) get_next(sample_batch_size=None, num_steps=None, time_stacked=True) return shape (non-episodic): [D] return shape (episodic): [T, D] (T = full length of the episode) get_next(sample_batch_size=B, num_steps=None, time_stacked=True) return shape (non-episodic): [B, D] return shape (episodic): Not supported get_next(sample_batch_size=B, num_steps=T, time_stacked=True) return shape: [B, T, D] get_next(sample_batch_size=None, num_steps=T, time_stacked=False) return shape: ([D], [D], ..) T tensors in the tuple get_next(sample_batch_size=B, num_steps=T, time_stacked=False) return shape: ([B, D], [B, D], ..) T tensors in the tuple Returns: A 2-tuple containing: - An item or sequence of (optionally batched and stacked) items. - Auxiliary info for the items (i.e. ids, probs). """ return self._get_next(sample_batch_size, num_steps, time_stacked) def as_dataset(self, sample_batch_size=None, num_steps=None, num_parallel_calls=None, sequence_preprocess_fn=None, single_deterministic_pass=False): """Creates and returns a dataset that returns entries from the buffer. A single entry from the dataset is the result of the following pipeline: * Sample sequences from the underlying data store * (optionally) Process them with `sequence_preprocess_fn`, * (optionally) Split them into subsequences of length `num_steps` * (optionally) Batch them into batches of size `sample_batch_size`. In practice, this pipeline is executed in parallel as much as possible if `num_parallel_calls != 1`. Some additional notes: If `num_steps is None`, different replay buffers will behave differently. For example, `TFUniformReplayBuffer` will return single time steps without a time dimension. In contrast, e.g., `EpisodicReplayBuffer` will return full sequences (since each sequence may be an episode of unknown length, the outermost shape dimension will be `None`). If `sample_batch_size is None`, no batching is performed; and there is no outer batch dimension in the returned Dataset entries. This setting is useful with variable episode lengths using e.g. `EpisodicReplayBuffer`, because it allows the user to get full episodes back, and use `tf.data` to build padded or truncated batches themselves. If `single_determinsitic_pass == True`, the replay buffer will make every attempt to ensure every time step is visited once and exactly once in a deterministic manner (though true determinism depends on the underlying data store). Additional work may be done to ensure minibatches do not have multiple rows from the same episode. In some cases, this may mean arguments like `num_parallel_calls` are ignored. Args: sample_batch_size: (Optional.) An optional batch_size to specify the number of items to return. If None (default), a single item is returned which matches the data_spec of this class (without a batch dimension). Otherwise, a batch of sample_batch_size items is returned, where each tensor in items will have its first dimension equal to sample_batch_size and the rest of the dimensions match the corresponding data_spec. num_steps: (Optional.) Optional way to specify that sub-episodes are desired. If None (default), a batch of single items is returned. Otherwise, a batch of sub-episodes is returned, where a sub-episode is a sequence of consecutive items in the replay_buffer. The returned tensors will have first dimension equal to sample_batch_size (if sample_batch_size is not None), subsequent dimension equal to num_steps, and remaining dimensions which match the data_spec of this class. num_parallel_calls: (Optional.) A `tf.int32` scalar `tf.Tensor`, representing the number elements to process in parallel. If not specified, elements will be processed sequentially. sequence_preprocess_fn: (Optional) fn for preprocessing the collected data before it is split into subsequences of length `num_steps`. Defined in `TFAgent.preprocess_sequence`. Defaults to pass through. single_deterministic_pass: Python boolean. If `True`, the dataset will return a single deterministic pass through its underlying data. **NOTE**: If the buffer is modified while a Dataset iterator is iterating over this data, the iterator may miss any new data or otherwise have subtly invalid data. Returns: A dataset of type tf.data.Dataset, elements of which are 2-tuples of: - An item or sequence of items or batch thereof - Auxiliary info for the items (i.e. ids, probs). Raises: NotImplementedError: If a non-default argument value is not supported. ValueError: If the data spec contains lists that must be converted to tuples. """ # data_tf.nest.flatten does not flatten python lists, nest.flatten does. if tf.nest.flatten(self._data_spec) != data_nest.flatten(self._data_spec): raise ValueError( 'Cannot perform gather; data spec contains lists and this conflicts ' 'with gathering operator. Convert any lists to tuples. ' 'For example, if your spec looks like [a, b, c], ' 'change it to (a, b, c). Spec structure is:\n {}'.format( tf.nest.map_structure(lambda spec: spec.dtype, self._data_spec))) if single_deterministic_pass: ds = self._single_deterministic_pass_dataset( sample_batch_size=sample_batch_size, num_steps=num_steps, sequence_preprocess_fn=sequence_preprocess_fn, num_parallel_calls=num_parallel_calls) else: ds = self._as_dataset( sample_batch_size=sample_batch_size, num_steps=num_steps, sequence_preprocess_fn=sequence_preprocess_fn, num_parallel_calls=num_parallel_calls) if self._stateful_dataset: options = tf.data.Options() if hasattr(options, 'experimental_allow_stateful'): options.experimental_allow_stateful = True ds = ds.with_options(options) return ds @deprecation.deprecated( date=None, instructions=( 'Use `as_dataset(..., single_deterministic_pass=True)` instead.' )) def gather_all(self): """Returns all the items in buffer. Returns: Returns all the items currently in the buffer. Returns a tensor of shape [B, T, ...] where B = batch size, T = timesteps, and the remaining shape is the shape spec of the items in the buffer. """ return self._gather_all() def clear(self): """Resets the contents of replay buffer. Returns: Clears the replay buffer contents. """ return self._clear() # Subclasses must implement these methods. @abc.abstractmethod def _num_frames(self): """Returns the number of frames in the replay buffer.""" raise NotImplementedError @abc.abstractmethod def _add_batch(self, items): """Adds a batch of items to the replay buffer.""" raise NotImplementedError @abc.abstractmethod def _get_next(self, sample_batch_size, num_steps, time_stacked): """Returns an item or batch of items from the buffer.""" raise NotImplementedError @abc.abstractmethod def _as_dataset(self, sample_batch_size, num_steps, sequence_preprocess_fn, num_parallel_calls): """Creates and returns a dataset that returns entries from the buffer.""" raise NotImplementedError @abc.abstractmethod def _single_deterministic_pass_dataset(self, sample_batch_size, num_steps, sequence_preprocess_fn, num_parallel_calls): """Creates and returns a dataset that returns entries from the buffer.""" raise NotImplementedError @abc.abstractmethod def _gather_all(self): """Returns all the items in buffer.""" raise NotImplementedError @abc.abstractmethod def _clear(self): """Clears the replay buffer.""" raise NotImplementedError ```
{ "source": "johnamcleod/trieste", "score": 3 }
#### File: docs/notebooks/multi_objective_ehvi.pct.py ```python import math import gpflow import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from util.plotting import plot_bo_points, plot_function_2d, plot_mobo_history, plot_mobo_points_in_obj_space # %% import trieste from trieste.acquisition.function import ExpectedHypervolumeImprovement from trieste.data import Dataset from trieste.models import create_model from trieste.models.model_interfaces import ModelStack from trieste.space import Box from trieste.utils.multi_objectives import VLMOP2 from trieste.utils.pareto import Pareto, get_reference_point from trieste.acquisition.rule import EfficientGlobalOptimization np.random.seed(1793) tf.random.set_seed(1793) # %% [markdown] # ## Describe the problem # # In this tutorial, we provide a multi-objective optimization example using the expected hypervolume improvement acquisition function. # We consider the VLMOP2 function --- a synthetic benchmark problem with two objectives. We start by defining the problem parameters. # %% vlmop2 = VLMOP2().objective() observer = trieste.utils.objectives.mk_observer(vlmop2) # %% mins = [-2, -2] maxs = [2, 2] search_space = Box(mins, maxs) num_objective = 2 # %% [markdown] # Let's randomly sample some initial data from the observer ... # %% num_initial_points = 20 initial_query_points = search_space.sample(num_initial_points) initial_data = observer(initial_query_points) # %% [markdown] # ... and visualise the data across the design space: each figure contains the contour lines of each objective function. # %% _, ax = plot_function_2d( vlmop2, mins, maxs, grid_density=100, contour=True, title=["Obj 1", "Obj 2"], figsize=(12, 6), colorbar=True, xlabel="$X_1$", ylabel="$X_2$", ) plot_bo_points(initial_query_points, ax=ax[0, 0], num_init=num_initial_points) plot_bo_points(initial_query_points, ax=ax[0, 1], num_init=num_initial_points) plt.show() # %% [markdown] # ... and in the objective space. The `plot_mobo_points_in_obj_space` will automatically search for non-dominated points and colours them in purple. # %% plot_mobo_points_in_obj_space(initial_data.observations) plt.show() # %% [markdown] # ## Modelling the two functions # # In this example we model the two objective functions individually with their own Gaussian process models, for problems where the objective functions are similar it may make sense to build a joint model. # # We use a model wrapper: `ModelStack` to stack these two independent GP into a single model working as a (independent) multi-output model. # %% def build_stacked_independent_objectives_model(data: Dataset, num_output) -> ModelStack: gprs =[] for idx in range(num_output): single_obj_data = Dataset(data.query_points, tf.gather(data.observations, [idx], axis=1)) variance = tf.math.reduce_variance(single_obj_data.observations) kernel = gpflow.kernels.Matern52(variance) gpr = gpflow.models.GPR((single_obj_data.query_points, single_obj_data.observations), kernel, noise_variance=1e-5) gpflow.utilities.set_trainable(gpr.likelihood, False) gprs.append((create_model({ "model": gpr, "optimizer": gpflow.optimizers.Scipy(), "optimizer_args": { "minimize_args": {"options": dict(maxiter=100)}}}), 1)) return ModelStack(*gprs) # %% model = build_stacked_independent_objectives_model(initial_data, num_objective) # %% [markdown] # ## Define the acquisition function # Here we utilize the [EHVI](https://link.springer.com/article/10.1007/s10898-019-00798-7): `ExpectedHypervolumeImprovement` acquisition function: # %% ehvi = ExpectedHypervolumeImprovement() rule = EfficientGlobalOptimization(builder=ehvi) # type: ignore # %% [markdown] # ## Run the optimization loop # # We can now run the optimization loop # %% num_steps = 30 bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space) result = bo.optimize(num_steps, initial_data, model, acquisition_rule=rule) # %% [markdown] # To conclude, we visualize the queried data across the design space. # We represent the initial points as crosses and the points obtained by our optimization loop as dots. # %% dataset = result.try_get_final_dataset() data_query_points = dataset.query_points data_observations = dataset.observations _, ax = plot_function_2d( vlmop2, mins, maxs, grid_density=100, contour=True, figsize=(12, 6), title=["Obj 1", "Obj 2"], xlabel="$X_1$", ylabel="$X_2$", colorbar=True, ) plot_bo_points(data_query_points, ax=ax[0, 0], num_init=num_initial_points) plot_bo_points(data_query_points, ax=ax[0, 1], num_init=num_initial_points) plt.show() # %% [markdown] # Visualize in objective space. Purple dots denote the non-dominated points. # %% plot_mobo_points_in_obj_space(data_observations, num_init=num_initial_points) plt.show() # %% [markdown] # We can also visualize how a performance metric evolved with respect to the number of BO iterations. # First, we need to define a performance metric. Many metrics have been considered for multi-objective optimization. Here, we use the log hypervolume difference, defined as the difference between the hypervolume of the actual Pareto front and the hypervolume of the approximate Pareto front based on the bo-obtained data. # %% [markdown] # # $$ # log_{10}\ \text{HV}_{\text{diff}} = log_{10}(\text{HV}_{\text{actual}} - \text{HV}_{\text{bo-obtained}}) # $$ # # %% [markdown] # First we need to calculate the $\text{HV}_{\text{actual}}$ based on the actual Pareto front. For some multi-objective synthetic functions like VLMOP2, the actual Pareto front has a clear definition, thus we could use `gen_pareto_optimal_points` to near uniformly sample on the actual Pareto front. And use these generated Pareto optimal points to (approximately) calculate the hypervolume of the actual Pareto frontier: # %% actual_pf = VLMOP2().gen_pareto_optimal_points(100) # gen 100 pf points ref_point = get_reference_point(data_observations) idea_hv = Pareto(tf.cast(actual_pf, dtype=data_observations.dtype)).hypervolume_indicator(ref_point) # %% [markdown] # Then we define the metric function: # %% def log_hv(observations): obs_hv = Pareto(observations).hypervolume_indicator(ref_point) return math.log10(idea_hv - obs_hv) # %% [markdown] # Finally, we can plot the convergence of our performance metric over the course of the optimization. # The blue vertical line in the figure denotes the time after which BO starts. # %% fig, ax = plot_mobo_history(data_observations, log_hv, num_init=num_initial_points) ax.set_xlabel("Iterations") ax.set_ylabel("log HV difference") plt.show() # %% [markdown] # ## LICENSE # # [Apache License 2.0](https://github.com/secondmind-labs/trieste/blob/develop/LICENSE) ``` #### File: tests/integration/test_multi_objective_bayesian_optimization.py ```python import gpflow import pytest import tensorflow as tf from tests.util.misc import random_seed from trieste.acquisition.function import ExpectedHypervolumeImprovement from trieste.acquisition.rule import AcquisitionRule, EfficientGlobalOptimization from trieste.bayesian_optimizer import BayesianOptimizer from trieste.data import Dataset from trieste.models import GaussianProcessRegression from trieste.models.model_interfaces import ModelStack from trieste.observer import OBJECTIVE from trieste.space import Box from trieste.utils.multi_objectives import VLMOP2 from trieste.utils.objectives import mk_observer from trieste.utils.pareto import Pareto, get_reference_point @random_seed @pytest.mark.parametrize( "num_steps, acquisition_rule", [ (20, EfficientGlobalOptimization(ExpectedHypervolumeImprovement().using(OBJECTIVE))), ], ) def test_multi_objective_optimizer_finds_pareto_front_of_the_VLMOP2_function( num_steps: int, acquisition_rule: AcquisitionRule ) -> None: search_space = Box([-2, -2], [2, 2]) def build_stacked_independent_objectives_model(data: Dataset) -> ModelStack: gprs = [] for idx in range(2): single_obj_data = Dataset( data.query_points, tf.gather(data.observations, [idx], axis=1) ) variance = tf.math.reduce_variance(single_obj_data.observations) kernel = gpflow.kernels.Matern52(variance, tf.constant([0.2, 0.2], tf.float64)) gpr = gpflow.models.GPR(single_obj_data.astuple(), kernel, noise_variance=1e-5) gpflow.utilities.set_trainable(gpr.likelihood, False) gprs.append((GaussianProcessRegression(gpr), 1)) return ModelStack(*gprs) observer = mk_observer(VLMOP2().objective(), OBJECTIVE) initial_query_points = search_space.sample(10) initial_data = observer(initial_query_points) model = build_stacked_independent_objectives_model(initial_data[OBJECTIVE]) dataset = ( BayesianOptimizer(observer, search_space) .optimize(num_steps, initial_data, {OBJECTIVE: model}, acquisition_rule) .try_get_final_datasets()[OBJECTIVE] ) # A small log hypervolume difference corresponds to a succesful optimization. ref_point = get_reference_point(dataset.observations) obs_hv = Pareto(dataset.observations).hypervolume_indicator(ref_point) ideal_pf = tf.cast(VLMOP2().gen_pareto_optimal_points(100), dtype=tf.float64) ideal_hv = Pareto(ideal_pf).hypervolume_indicator(ref_point) assert tf.math.log(ideal_hv - obs_hv) < -3.5 ``` #### File: unit/acquisition/test_optimizer.py ```python from __future__ import annotations import numpy.testing as npt import pytest import tensorflow as tf from tests.util.misc import quadratic, random_seed from trieste.acquisition import AcquisitionFunction from trieste.acquisition.optimizer import ( AcquisitionOptimizer, automatic_optimizer_selector, batchify, generate_random_search_optimizer, optimize_continuous, optimize_discrete, ) from trieste.space import Box, DiscreteSearchSpace from trieste.type import TensorType def _quadratic_sum(shift: list[float]) -> AcquisitionFunction: return lambda x: tf.reduce_sum(0.5 - quadratic(x - shift), axis=-2) @random_seed @pytest.mark.parametrize( "search_space, shift, expected_maximizer, optimizers", [ ( DiscreteSearchSpace(tf.constant([[-0.5], [0.2], [1.2], [1.7]])), [1.0], [[1.2]], [optimize_discrete, generate_random_search_optimizer()], ), # 1D ( # 2D DiscreteSearchSpace(tf.constant([[-0.5, -0.3], [-0.2, 0.3], [0.2, -0.3], [1.2, 0.4]])), [0.3, -0.4], [[0.2, -0.3]], [optimize_discrete, generate_random_search_optimizer()], ), ( Box([-1], [2]), [1.0], [[1.0]], [optimize_continuous, generate_random_search_optimizer(10_000)], ), # 1D ( Box([-1, -2], [1.5, 2.5]), [0.3, -0.4], [[0.3, -0.4]], [optimize_continuous, generate_random_search_optimizer(10_000)], ), # 2D ( Box([-1, -2], [1.5, 2.5]), [1.0, 4], [[1.0, 2.5]], [optimize_continuous, generate_random_search_optimizer(10_000)], ), # 2D with maximum outside search space ( Box([-1, -2, 1], [1.5, 2.5, 1.5]), [0.3, -0.4, 0.5], [[0.3, -0.4, 1.0]], [optimize_continuous, generate_random_search_optimizer(100_000)], ), # 3D ], ) def test_optimizer( search_space: DiscreteSearchSpace, shift: list[float], expected_maximizer: list[list[float]], optimizers: list[AcquisitionOptimizer], ) -> None: for optimizer in optimizers: maximizer = optimizer(search_space, _quadratic_sum(shift)) if optimizer is optimize_continuous: npt.assert_allclose(maximizer, expected_maximizer, rtol=1e-3) elif optimizer is optimize_discrete: npt.assert_allclose(maximizer, expected_maximizer, rtol=1e-4) else: npt.assert_allclose(maximizer, expected_maximizer, rtol=1e-1) def test_optimize_batch_raises_with_invalid_batch_size() -> None: batch_size_one_optimizer = optimize_continuous with pytest.raises(ValueError): batchify(batch_size_one_optimizer, -5) @random_seed @pytest.mark.parametrize("batch_size", [1, 2, 3, 5]) @pytest.mark.parametrize( "search_space, acquisition, maximizer", [ (Box([-1], [1]), _quadratic_sum([0.5]), ([[0.5]])), (Box([-1, -1, -1], [1, 1, 1]), _quadratic_sum([0.5, -0.5, 0.2]), ([[0.5, -0.5, 0.2]])), ], ) def test_optimize_batch( search_space: Box, acquisition: AcquisitionFunction, maximizer: TensorType, batch_size: int ) -> None: batch_size_one_optimizer = optimize_continuous batch_optimizer = batchify(batch_size_one_optimizer, batch_size) points = batch_optimizer(search_space, acquisition) assert points.shape == [batch_size] + search_space.lower.shape for point in points: print(point) npt.assert_allclose(tf.expand_dims(point, 0), maximizer, rtol=2e-4) @random_seed @pytest.mark.parametrize( "search_space, acquisition, maximizer", [ ( DiscreteSearchSpace(tf.constant([[-0.5], [0.2], [1.2], [1.7]])), _quadratic_sum([1.0]), [[1.2]], ), (Box([0], [1]), _quadratic_sum([0.5]), ([[0.5]])), (Box([-1, -1, -1], [1, 1, 1]), _quadratic_sum([0.5, -0.5, 0.2]), ([[0.5, -0.5, 0.2]])), ], ) def test_automatic_optimizer_selector( search_space: Box, acquisition: AcquisitionFunction, maximizer: TensorType, ) -> None: optimizer = automatic_optimizer_selector point = optimizer(search_space, acquisition) npt.assert_allclose(point, maximizer, rtol=2e-4) def test_generate_random_search_optimizer_raises_with_invalid_sample_size() -> None: with pytest.raises(ValueError): generate_random_search_optimizer(num_samples=-5) ``` #### File: tests/unit/test_space.py ```python from __future__ import annotations import copy import itertools from collections.abc import Container import numpy.testing as npt import pytest import tensorflow as tf from typing_extensions import Final from tests.util.misc import TF_DEBUGGING_ERROR_TYPES, ShapeLike, various_shapes from trieste.space import Box, DiscreteSearchSpace, SearchSpace class Integers(SearchSpace): def __init__(self, exclusive_limit: int): assert exclusive_limit > 0 self.limit: Final[int] = exclusive_limit def sample(self, num_samples: int) -> tf.Tensor: return tf.random.shuffle(tf.range(self.limit))[:num_samples] def __contains__(self, point: tf.Tensor) -> tf.Tensor: tf.debugging.assert_integer(point) return 0 <= point < self.limit def __mul__(self, other: Integers) -> Integers: return Integers(self.limit * other.limit) @pytest.mark.parametrize("exponent", [0, -2]) def test_search_space___pow___raises_for_non_positive_exponent(exponent: int) -> None: space = Integers(3) with pytest.raises(ValueError): space ** exponent def test_search_space___pow___multiplies_correct_number_of_search_spaces() -> None: assert (Integers(5) ** 7).limit == 5 ** 7 def _points_in_2D_search_space() -> tf.Tensor: return tf.constant([[-1.0, 0.4], [-1.0, 0.6], [0.0, 0.4], [0.0, 0.6], [1.0, 0.4], [1.0, 0.6]]) @pytest.mark.parametrize("shape", various_shapes(excluding_ranks=[2])) def test_discrete_search_space_raises_for_invalid_shapes(shape: ShapeLike) -> None: with pytest.raises(ValueError): DiscreteSearchSpace(tf.random.uniform(shape)) def test_discrete_search_space_points() -> None: space = DiscreteSearchSpace(_points_in_2D_search_space()) npt.assert_array_equal(space.points, _points_in_2D_search_space()) @pytest.mark.parametrize("point", list(_points_in_2D_search_space())) def test_discrete_search_space_contains_all_its_points(point: tf.Tensor) -> None: assert point in DiscreteSearchSpace(_points_in_2D_search_space()) @pytest.mark.parametrize( "point", [ tf.constant([-1.0, -0.4]), tf.constant([-1.0, 0.5]), tf.constant([-2.0, 0.4]), tf.constant([-2.0, 0.7]), ], ) def test_discrete_search_space_does_not_contain_other_points(point: tf.Tensor) -> None: assert point not in DiscreteSearchSpace(_points_in_2D_search_space()) @pytest.mark.parametrize( "points, test_point", [ (tf.constant([[0.0]]), tf.constant([0.0, 0.0])), (tf.constant([[0.0, 0.0]]), tf.constant(0.0)), (tf.constant([[0.0, 0.0]]), tf.constant([0.0])), (tf.constant([[0.0, 0.0]]), tf.constant([0.0, 0.0, 0.0])), ], ) def test_discrete_search_space_contains_raises_for_invalid_shapes( points: tf.Tensor, test_point: tf.Tensor ) -> None: space = DiscreteSearchSpace(points) with pytest.raises(ValueError): _ = test_point in space def _assert_correct_number_of_unique_constrained_samples( num_samples: int, search_space: SearchSpace, samples: tf.Tensor ) -> None: assert all(sample in search_space for sample in samples) assert len(samples) == num_samples unique_samples = set(tuple(sample.numpy().tolist()) for sample in samples) assert len(unique_samples) == len(samples) @pytest.mark.parametrize("num_samples", [0, 1, 3, 5, 6]) def test_discrete_search_space_sampling(num_samples: int) -> None: search_space = DiscreteSearchSpace(_points_in_2D_search_space()) samples = search_space.sample(num_samples) _assert_correct_number_of_unique_constrained_samples(num_samples, search_space, samples) @pytest.mark.parametrize("num_samples", [7, 8, 10]) def test_discrete_search_space_sampling_raises_when_too_many_samples_are_requested( num_samples: int, ) -> None: search_space = DiscreteSearchSpace(_points_in_2D_search_space()) with pytest.raises(ValueError, match="samples"): search_space.sample(num_samples) def test_discrete_search_space___mul___points_is_the_concatenation_of_original_points() -> None: dss1 = DiscreteSearchSpace(tf.constant([[-1.0, -1.4], [-1.5, -3.6], [-0.5, -0.6]])) dss2 = DiscreteSearchSpace(tf.constant([[1.0, 1.4], [1.5, 3.6]])) product = dss1 * dss2 all_expected_points = tf.constant( [ [-1.0, -1.4, 1.0, 1.4], [-1.0, -1.4, 1.5, 3.6], [-1.5, -3.6, 1.0, 1.4], [-1.5, -3.6, 1.5, 3.6], [-0.5, -0.6, 1.0, 1.4], [-0.5, -0.6, 1.5, 3.6], ] ) assert len(product.points) == len(all_expected_points) assert all(point in product for point in all_expected_points) def test_discrete_search_space___mul___for_empty_search_space() -> None: dss = DiscreteSearchSpace(tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])) empty = DiscreteSearchSpace(tf.zeros([0, 1])) npt.assert_array_equal((empty * dss).points, tf.zeros([0, 3])) npt.assert_array_equal((dss * empty).points, tf.zeros([0, 3])) def test_discrete_search_space___mul___for_identity_space() -> None: dss = DiscreteSearchSpace(tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])) identity = DiscreteSearchSpace(tf.zeros([1, 0])) npt.assert_array_equal((dss * identity).points, dss.points) npt.assert_array_equal((identity * dss).points, dss.points) def test_discrete_search_space___mul___raises_if_points_have_different_types() -> None: dss1 = DiscreteSearchSpace(_points_in_2D_search_space()) dss2 = DiscreteSearchSpace(tf.constant([[1.0, 1.4], [-1.5, 3.6]], tf.float64)) with pytest.raises(TypeError): _ = dss1 * dss2 def test_discrete_search_space_deepcopy() -> None: dss = DiscreteSearchSpace(_points_in_2D_search_space()) npt.assert_allclose(copy.deepcopy(dss).points, _points_in_2D_search_space()) @pytest.mark.parametrize( "lower, upper", [ pytest.param([0.0, 1.0], [1.0, 2.0], id="lists"), pytest.param((0.0, 1.0), (1.0, 2.0), id="tuples"), pytest.param(range(2), range(1, 3), id="ranges"), ], ) def test_box_converts_sequences_to_float64_tensors(lower, upper) -> None: box = Box(lower, upper) assert tf.as_dtype(box.lower.dtype) is tf.float64 assert tf.as_dtype(box.upper.dtype) is tf.float64 npt.assert_array_equal(box.lower, [0.0, 1.0]) npt.assert_array_equal(box.upper, [1.0, 2.0]) def _pairs_of_shapes( *, excluding_ranks: Container[int] = () ) -> frozenset[tuple[ShapeLike, ShapeLike]]: shapes = various_shapes(excluding_ranks=excluding_ranks) return frozenset(itertools.product(shapes, shapes)) @pytest.mark.parametrize( "lower_shape, upper_shape", _pairs_of_shapes(excluding_ranks={1}) | {((1,), (2,)), ((0,), (0,))} ) def test_box_raises_if_bounds_have_invalid_shape( lower_shape: ShapeLike, upper_shape: ShapeLike ) -> None: lower, upper = tf.zeros(lower_shape), tf.ones(upper_shape) with pytest.raises(ValueError): Box(lower, upper) @pytest.mark.parametrize( "lower_dtype, upper_dtype", [ (tf.uint32, tf.uint32), # same dtypes (tf.int8, tf.uint16), # different dtypes ... (tf.uint32, tf.float32), (tf.float32, tf.float64), (tf.float64, tf.bfloat16), ], ) def test_box_raises_if_bounds_have_invalid_dtypes( lower_dtype: tf.DType, upper_dtype: tf.DType ) -> None: lower, upper = tf.zeros([3], dtype=lower_dtype), tf.ones([3], dtype=upper_dtype) with pytest.raises(TF_DEBUGGING_ERROR_TYPES): Box(lower, upper) @pytest.mark.parametrize( "lower, upper", [ (tf.ones((3,)), tf.ones((3,))), # all equal (tf.ones((3,)) + 1, tf.ones((3,))), # lower all higher than upper ( # one lower higher than upper tf.constant([2.3, -0.1, 8.0]), tf.constant([3.0, -0.2, 8.0]), ), (tf.constant([2.3, -0.1, 8.0]), tf.constant([3.0, -0.1, 8.0])), # one lower equal to upper ], ) def test_box_raises_if_any_lower_bound_is_not_less_than_upper_bound( lower: tf.Tensor, upper: tf.Tensor ) -> None: with pytest.raises(TF_DEBUGGING_ERROR_TYPES): Box(lower, upper) def test_box_bounds_attributes() -> None: lower, upper = tf.zeros([2]), tf.ones([2]) box = Box(lower, upper) npt.assert_array_equal(box.lower, lower) npt.assert_array_equal(box.upper, upper) @pytest.mark.parametrize( "point", [ tf.constant([-1.0, 0.0, -2.0]), # lower bound tf.constant([2.0, 1.0, -0.5]), # upper bound tf.constant([0.5, 0.5, -1.5]), # approx centre tf.constant([-1.0, 0.0, -1.9]), # near the edge ], ) def test_box_contains_point(point: tf.Tensor) -> None: assert point in Box(tf.constant([-1.0, 0.0, -2.0]), tf.constant([2.0, 1.0, -0.5])) @pytest.mark.parametrize( "point", [ tf.constant([-1.1, 0.0, -2.0]), # just outside tf.constant([-0.5, -0.5, 1.5]), # negative of a contained point tf.constant([10.0, -10.0, 10.0]), # well outside ], ) def test_box_does_not_contain_point(point: tf.Tensor) -> None: assert point not in Box(tf.constant([-1.0, 0.0, -2.0]), tf.constant([2.0, 1.0, -0.5])) @pytest.mark.parametrize( "bound_shape, point_shape", ((bs, ps) for bs, ps in _pairs_of_shapes() if bs != ps and len(bs) == 1 and bs != (0,)), ) def test_box_contains_raises_on_point_of_different_shape( bound_shape: ShapeLike, point_shape: ShapeLike, ) -> None: box = Box(tf.zeros(bound_shape), tf.ones(bound_shape)) point = tf.zeros(point_shape) with pytest.raises(ValueError): _ = point in box @pytest.mark.parametrize("num_samples", [0, 1, 10]) def test_box_sampling(num_samples: int) -> None: box = Box(tf.zeros((3,)), tf.ones((3,))) samples = box.sample(num_samples) _assert_correct_number_of_unique_constrained_samples(num_samples, box, samples) @pytest.mark.parametrize("num_samples", [0, 1, 10]) def test_box_discretize_returns_search_space_with_only_points_contained_within_box( num_samples: int, ) -> None: box = Box(tf.zeros((3,)), tf.ones((3,))) dss = box.discretize(num_samples) samples = dss.sample(num_samples) assert all(sample in box for sample in samples) @pytest.mark.parametrize("num_samples", [0, 1, 10]) def test_box_discretize_returns_search_space_with_correct_number_of_points( num_samples: int, ) -> None: box = Box(tf.zeros((3,)), tf.ones((3,))) dss = box.discretize(num_samples) samples = dss.sample(num_samples) assert len(samples) == num_samples with pytest.raises(ValueError): dss.sample(num_samples + 1) def test_box___mul___bounds_are_the_concatenation_of_original_bounds() -> None: box1 = Box(tf.constant([0.0, 1.0]), tf.constant([2.0, 3.0])) box2 = Box(tf.constant([4.1, 5.1, 6.1]), tf.constant([7.2, 8.2, 9.2])) product = box1 * box2 npt.assert_allclose(product.lower, [0, 1, 4.1, 5.1, 6.1]) npt.assert_allclose(product.upper, [2, 3, 7.2, 8.2, 9.2]) def test_box___mul___raises_if_bounds_have_different_types() -> None: box1 = Box(tf.constant([0.0, 1.0]), tf.constant([2.0, 3.0])) box2 = Box(tf.constant([4.0, 5.0], tf.float64), tf.constant([6.0, 7.0], tf.float64)) with pytest.raises(TypeError): _ = box1 * box2 def test_box_deepcopy() -> None: box = Box(tf.constant([1.2, 3.4]), tf.constant([5.6, 7.8])) box_copy = copy.deepcopy(box) npt.assert_allclose(box.lower, box_copy.lower) npt.assert_allclose(box.upper, box_copy.upper) ``` #### File: trieste/acquisition/function.py ```python from __future__ import annotations from abc import ABC, abstractmethod from collections.abc import Mapping from itertools import product from math import inf from typing import Callable, Optional, Union import tensorflow as tf import tensorflow_probability as tfp from ..data import Dataset from ..models import ProbabilisticModel from ..space import SearchSpace from ..type import TensorType from ..utils import DEFAULTS from ..utils.pareto import Pareto, get_reference_point from .sampler import BatchReparametrizationSampler, GumbelSampler AcquisitionFunction = Callable[[TensorType], TensorType] """ Type alias for acquisition functions. An :const:`AcquisitionFunction` maps a set of `B` query points (each of dimension `D`) to a single value that describes how useful it would be evaluate all these points together (to our goal of optimizing the objective function). Thus, with leading dimensions, an :const:`AcquisitionFunction` takes input shape `[..., B, D]` and returns shape `[..., 1]`. Note that :const:`AcquisitionFunction`s which do not support batch optimization still expect inputs with a batch dimension, i.e. an input of shape `[..., 1, D]`. """ class AcquisitionFunctionBuilder(ABC): """An :class:`AcquisitionFunctionBuilder` builds an acquisition function.""" @abstractmethod def prepare_acquisition_function( self, datasets: Mapping[str, Dataset], models: Mapping[str, ProbabilisticModel] ) -> AcquisitionFunction: """ :param datasets: The data from the observer. :param models: The models over each dataset in ``datasets``. :return: An acquisition function. """ class SingleModelAcquisitionBuilder(ABC): """ Convenience acquisition function builder for an acquisition function (or component of a composite acquisition function) that requires only one model, dataset pair. """ def using(self, tag: str) -> AcquisitionFunctionBuilder: """ :param tag: The tag for the model, dataset pair to use to build this acquisition function. :return: An acquisition function builder that selects the model and dataset specified by ``tag``, as defined in :meth:`prepare_acquisition_function`. """ single_builder = self class _Anon(AcquisitionFunctionBuilder): def prepare_acquisition_function( self, datasets: Mapping[str, Dataset], models: Mapping[str, ProbabilisticModel] ) -> AcquisitionFunction: return single_builder.prepare_acquisition_function(datasets[tag], models[tag]) def __repr__(self) -> str: return f"{single_builder!r} using tag {tag!r}" return _Anon() @abstractmethod def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel ) -> AcquisitionFunction: """ :param dataset: The data to use to build the acquisition function. :param model: The model over the specified ``dataset``. :return: An acquisition function. """ class ExpectedImprovement(SingleModelAcquisitionBuilder): """ Builder for the expected improvement function where the "best" value is taken to be the minimum of the posterior mean at observed points. """ def __repr__(self) -> str: """""" return "ExpectedImprovement()" def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel ) -> AcquisitionFunction: """ :param dataset: The data from the observer. Must be populated. :param model: The model over the specified ``dataset``. :return: The expected improvement function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. :raise ValueError: If ``dataset`` is empty. """ if len(dataset.query_points) == 0: raise ValueError("Dataset must be populated.") mean, _ = model.predict(dataset.query_points) eta = tf.reduce_min(mean, axis=0) return expected_improvement(model, eta) def expected_improvement(model: ProbabilisticModel, eta: TensorType) -> AcquisitionFunction: r""" Return the Expected Improvement (EI) acquisition function for single-objective global optimization. Improvement is with respect to the current "best" observation ``eta``, where an improvement moves towards the objective function's minimum, and the expectation is calculated with respect to the ``model`` posterior. For model posterior :math:`f`, this is .. math:: x \mapsto \mathbb E \left[ \max (\eta - f(x), 0) \right] This function was introduced by Mockus et al, 1975. See :cite:`Jones:1998` for details. :param model: The model of the objective function. :param eta: The "best" observation. :return: The expected improvement function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. """ def acquisition(x: TensorType) -> TensorType: tf.debugging.assert_shapes( [(x, [..., 1, None])], message="This acquisition function only supports batch sizes of one.", ) mean, variance = model.predict(tf.squeeze(x, -2)) normal = tfp.distributions.Normal(mean, tf.sqrt(variance)) return (eta - mean) * normal.cdf(eta) + variance * normal.prob(eta) return acquisition class AugmentedExpectedImprovement(SingleModelAcquisitionBuilder): """ Builder for the augmented expected improvement function for optimization single-objective optimization problems with high levels of observation noise. """ def __repr__(self) -> str: """""" return "AugmentedExpectedImprovement()" def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel ) -> AcquisitionFunction: """ :param dataset: The data from the observer. Must be populated. :param model: The model over the specified ``dataset``. :return: The expected improvement function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. :raise ValueError: If ``dataset`` is empty. """ if len(dataset.query_points) == 0: raise ValueError("Dataset must be populated.") mean, _ = model.predict(dataset.query_points) eta = tf.reduce_min(mean, axis=0) return augmented_expected_improvement(model, eta) def augmented_expected_improvement( model: ProbabilisticModel, eta: TensorType ) -> AcquisitionFunction: r""" Return the Augmented Expected Improvement (AEI) acquisition function for single-objective global optimization under homoscedastic observation noise. Improvement is with respect to the current "best" observation ``eta``, where an improvement moves towards the objective function's minimum, and the expectation is calculated with respect to the ``model`` posterior. In contrast to standard EI, AEI has an additional multiplicative factor that penalizes evaluations made in areas of the space with very small posterior predictive variance. Thus, when applying standard EI to noisy optimisation problems, AEI avoids getting trapped and repeatedly querying the same point. For model posterior :math:`f`, this is .. math:: x \mapsto EI(x) * \left(1 - frac{\tau^2}{\sqrt{s^2(x)+\tau^2}}\right), where :math:`s^2(x)` is the predictive variance and :math:`\tau` is observation noise. This function was introduced by Huang et al, 2006. See :cite:`Huang:2006` for details. :param model: The model of the objective function. :param eta: The "best" observation. :return: The expected improvement function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. """ try: noise_variance = model.get_observation_noise() except NotImplementedError: raise ValueError( """ Augmented expected improvement only currently supports homoscedastic gpflow models with a likelihood.variance attribute. """ ) def acquisition(x: TensorType) -> TensorType: tf.debugging.assert_shapes( [(x, [..., 1, None])], message="This acquisition function only supports batch sizes of one.", ) mean, variance = model.predict(tf.squeeze(x, -2)) normal = tfp.distributions.Normal(mean, tf.sqrt(variance)) expected_improvement = (eta - mean) * normal.cdf(eta) + variance * normal.prob(eta) augmentation = 1 - (tf.math.sqrt(noise_variance)) / ( tf.math.sqrt(noise_variance + variance) ) return expected_improvement * augmentation return acquisition class MinValueEntropySearch(SingleModelAcquisitionBuilder): r""" Builder for the max-value entropy search acquisition function modified for objective minimisation. :class:`MinValueEntropySearch` estimates the information in the distribution of the objective minimum that would be gained by evaluating the objective at a given point. This implementation largely follows :cite:`wang2017max` and samples the objective minimum :math:`y^*` via a Gumbel sampler. """ def __init__(self, search_space: SearchSpace, num_samples: int = 10, grid_size: int = 5000): """ :param search_space: The global search space over which the optimisation is defined. :param num_samples: Number of samples to draw from the distribution over the minimum of the objective function. :param grid_size: Size of the grid with which to fit the Gumbel distribution. We recommend scaling this with search space dimension. """ self._search_space = search_space if num_samples <= 0: raise ValueError(f"num_samples must be positive, got {num_samples}") self._num_samples = num_samples if grid_size <= 0: raise ValueError(f"grid_size must be positive, got {grid_size}") self._grid_size = grid_size def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel ) -> AcquisitionFunction: """ :param dataset: The data from the observer. :param model: The model over the specified ``dataset``. :return: The max-value entropy search acquisition function modified for objective minimisation. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. """ if len(dataset.query_points) == 0: raise ValueError("Dataset must be populated.") gumbel_sampler = GumbelSampler(self._num_samples, model) query_points = self._search_space.sample(num_samples=self._grid_size) tf.debugging.assert_same_float_dtype([dataset.query_points, query_points]) query_points = tf.concat([dataset.query_points, query_points], 0) gumbel_samples = gumbel_sampler.sample(query_points) return min_value_entropy_search(model, gumbel_samples) def min_value_entropy_search(model: ProbabilisticModel, samples: TensorType) -> AcquisitionFunction: r""" Return the max-value entropy search acquisition function (adapted from :cite:`wang2017max`), modified for objective minimisation. This function calculates the information gain (or change in entropy) in the distribution over the objective minimum :math:`y^*`, if we were to evaluate the objective at a given point. :param model: The model of the objective function. :param samples: Samples from the distribution over :math:`y^*`. :return: The max-value entropy search acquisition function modified for objective minimisation. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. """ tf.debugging.assert_rank(samples, 2) if len(samples) == 0: raise ValueError("Gumbel samples must be populated.") def acquisition(x: TensorType) -> TensorType: tf.debugging.assert_shapes( [(x, [..., 1, None])], message="This acquisition function only supports batch sizes of one.", ) fmean, fvar = model.predict(tf.squeeze(x, -2)) fsd = tf.math.sqrt(fvar) fsd = tf.clip_by_value( fsd, 1.0e-8, fmean.dtype.max ) # clip below to improve numerical stability normal = tfp.distributions.Normal(tf.cast(0, fmean.dtype), tf.cast(1, fmean.dtype)) gamma = (tf.squeeze(samples) - fmean) / fsd minus_cdf = 1 - normal.cdf(gamma) minus_cdf = tf.clip_by_value( minus_cdf, 1.0e-8, 1 ) # clip below to improve numerical stability f_acqu_x = -gamma * normal.prob(gamma) / (2 * minus_cdf) - tf.math.log(minus_cdf) return tf.math.reduce_mean(f_acqu_x, axis=1, keepdims=True) return acquisition class NegativeLowerConfidenceBound(SingleModelAcquisitionBuilder): """ Builder for the negative of the lower confidence bound. The lower confidence bound is typically minimised, so the negative is suitable for maximisation. """ def __init__(self, beta: float = 1.96): """ :param beta: Weighting given to the variance contribution to the lower confidence bound. Must not be negative. """ self._beta = beta def __repr__(self) -> str: """""" return f"NegativeLowerConfidenceBound({self._beta!r})" def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel ) -> AcquisitionFunction: """ :param dataset: Unused. :param model: The model over the specified ``dataset``. :return: The negative lower confidence bound function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. :raise ValueError: If ``beta`` is negative. """ lcb = lower_confidence_bound(model, self._beta) return lambda at: -lcb(at) class NegativePredictiveMean(NegativeLowerConfidenceBound): """ Builder for the negative of the predictive mean. The predictive mean is minimised on minimising the objective function. The negative predictive mean is therefore maximised. """ def __init__(self): super().__init__(beta=0.0) def __repr__(self) -> str: """""" return "NegativePredictiveMean()" def lower_confidence_bound(model: ProbabilisticModel, beta: float) -> AcquisitionFunction: r""" The lower confidence bound (LCB) acquisition function for single-objective global optimization. .. math:: x^* \mapsto \mathbb{E} [f(x^*)|x, y] - \beta \sqrt{ \mathrm{Var}[f(x^*)|x, y] } See :cite:`Srinivas:2010` for details. :param model: The model of the objective function. :param beta: The weight to give to the standard deviation contribution of the LCB. Must not be negative. :return: The lower confidence bound function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. :raise ValueError: If ``beta`` is negative. """ if beta < 0: raise ValueError( f"Standard deviation scaling parameter beta must not be negative, got {beta}" ) def acquisition(x: TensorType) -> TensorType: tf.debugging.assert_shapes( [(x, [..., 1, None])], message="This acquisition function only supports batch sizes of one.", ) mean, variance = model.predict(tf.squeeze(x, -2)) return mean - beta * tf.sqrt(variance) return acquisition class ProbabilityOfFeasibility(SingleModelAcquisitionBuilder): r""" Builder for the :func:`probability_of_feasibility` acquisition function, defined in :cite:`gardner14` as .. math:: \int_{-\infty}^{\tau} p(c(\mathbf{x}) | \mathbf{x}, \mathcal{D}) \mathrm{d} c(\mathbf{x}) \qquad , where :math:`\tau` is a threshold. Values below the threshold are considered feasible by the constraint function. See also :cite:`schonlau1998global` for details. """ def __init__(self, threshold: float | TensorType): """ :param threshold: The (scalar) probability of feasibility threshold. :raise ValueError (or InvalidArgumentError): If ``threshold`` is not a scalar. """ tf.debugging.assert_scalar(threshold) super().__init__() self._threshold = threshold def __repr__(self) -> str: """""" return f"ProbabilityOfFeasibility({self._threshold!r})" @property def threshold(self) -> float | TensorType: """The probability of feasibility threshold.""" return self._threshold def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel ) -> AcquisitionFunction: """ :param dataset: Unused. :param model: The model over the specified ``dataset``. :return: The probability of feasibility function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. """ return probability_of_feasibility(model, self.threshold) def probability_of_feasibility( model: ProbabilisticModel, threshold: float | TensorType ) -> AcquisitionFunction: r""" The probability of feasibility acquisition function defined in :cite:`gardner14` as .. math:: \int_{-\infty}^{\tau} p(c(\mathbf{x}) | \mathbf{x}, \mathcal{D}) \mathrm{d} c(\mathbf{x}) \qquad , where :math:`\tau` is a threshold. Values below the threshold are considered feasible by the constraint function. :param model: The model of the objective function. :param threshold: The (scalar) probability of feasibility threshold. :return: The probability of feasibility function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. :raise ValueError: If ``threshold`` is not a scalar. """ tf.debugging.assert_scalar(threshold) def acquisition(x: TensorType) -> TensorType: tf.debugging.assert_shapes( [(x, [..., 1, None])], message="This acquisition function only supports batch sizes of one.", ) mean, var = model.predict(tf.squeeze(x, -2)) distr = tfp.distributions.Normal(mean, tf.sqrt(var)) return distr.cdf(tf.cast(threshold, x.dtype)) return acquisition class ExpectedConstrainedImprovement(AcquisitionFunctionBuilder): """ Builder for the *expected constrained improvement* acquisition function defined in :cite:`gardner14`. The acquisition function computes the expected improvement from the best feasible point, where feasible points are those that (probably) satisfy some constraint. Where there are no feasible points, this builder simply builds the constraint function. """ def __init__( self, objective_tag: str, constraint_builder: AcquisitionFunctionBuilder, min_feasibility_probability: float | TensorType = 0.5, ): """ :param objective_tag: The tag for the objective data and model. :param constraint_builder: The builder for the constraint function. :param min_feasibility_probability: The minimum probability of feasibility for a "best point" to be considered feasible. :raise ValueError (or InvalidArgumentError): If ``min_feasibility_probability`` is not a scalar in the unit interval :math:`[0, 1]`. """ tf.debugging.assert_scalar(min_feasibility_probability) if not 0 <= min_feasibility_probability <= 1: raise ValueError( f"Minimum feasibility probability must be between 0 and 1 inclusive," f" got {min_feasibility_probability}" ) self._objective_tag = objective_tag self._constraint_builder = constraint_builder self._min_feasibility_probability = min_feasibility_probability def __repr__(self) -> str: """""" return ( f"ExpectedConstrainedImprovement({self._objective_tag!r}, {self._constraint_builder!r}," f" {self._min_feasibility_probability!r})" ) def prepare_acquisition_function( self, datasets: Mapping[str, Dataset], models: Mapping[str, ProbabilisticModel] ) -> AcquisitionFunction: """ :param datasets: The data from the observer. :param models: The models over each dataset in ``datasets``. :return: The expected constrained improvement acquisition function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. :raise KeyError: If `objective_tag` is not found in ``datasets`` and ``models``. :raise ValueError: If the objective data is empty. """ objective_model = models[self._objective_tag] objective_dataset = datasets[self._objective_tag] if len(objective_dataset) == 0: raise ValueError( "Expected improvement is defined with respect to existing points in the objective" " data, but the objective data is empty." ) constraint_fn = self._constraint_builder.prepare_acquisition_function(datasets, models) pof = constraint_fn(objective_dataset.query_points[:, None, ...]) is_feasible = pof >= self._min_feasibility_probability if not tf.reduce_any(is_feasible): return constraint_fn mean, _ = objective_model.predict(objective_dataset.query_points) eta = tf.reduce_min(tf.boolean_mask(mean, is_feasible), axis=0) return lambda at: expected_improvement(objective_model, eta)(at) * constraint_fn(at) class ExpectedHypervolumeImprovement(SingleModelAcquisitionBuilder): """ Builder for the expected hypervolume improvement acquisition function. The implementation of the acquisition function largely follows :cite:`yang2019efficient` """ def __repr__(self) -> str: """""" return "ExpectedHypervolumeImprovement()" def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel ) -> AcquisitionFunction: """ :param dataset: The data from the observer. Must be populated. :param model: The model over the specified ``dataset``. :return: The expected hypervolume improvement acquisition function. """ tf.debugging.assert_positive(len(dataset), message="Dataset must be populated.") mean, _ = model.predict(dataset.query_points) _pf = Pareto(mean) _reference_pt = get_reference_point(_pf.front) return expected_hv_improvement(model, _pf, _reference_pt) def expected_hv_improvement( model: ProbabilisticModel, pareto: Pareto, reference_point: TensorType, ) -> AcquisitionFunction: r""" expected Hyper-volume (HV) calculating using Eq. 44 of :cite:`yang2019efficient` paper. The expected hypervolume improvement calculation in the non-dominated region can be decomposed into sub-calculations based on each partitioned cell. For easier calculation, this sub-calculation can be reformulated as a combination of two generalized expected improvements, corresponding to Psi (Eq. 44) and Nu (Eq. 45) function calculations, respectively. Note: 1. Since in Trieste we do not assume the use of a certain non-dominated region partition algorithm, we do not assume the last dimension of the partitioned cell has only one (lower) bound (i.e., minus infinity, which is used in the :cite:`yang2019efficient` paper). This is not as efficient as the original paper, but is applicable to different non-dominated partition algorithm. 2. As the Psi and nu function in the original paper are defined for maximization problems, we inverse our minimisation problem (to also be a maximisation), allowing use of the original notation and equations. :param model: The model of the objective function. :param pareto: Pareto class :param reference_point: The reference point for calculating hypervolume :return: The expected_hv_improvement acquisition function modified for objective minimisation. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. """ def acquisition(x: TensorType) -> TensorType: tf.debugging.assert_shapes( [(x, [..., 1, None])], message="This acquisition function only supports batch sizes of one.", ) normal = tfp.distributions.Normal( loc=tf.zeros(shape=1, dtype=x.dtype), scale=tf.ones(shape=1, dtype=x.dtype) ) def Psi(a: TensorType, b: TensorType, mean: TensorType, std: TensorType) -> TensorType: return std * normal.prob((b - mean) / std) + (mean - a) * ( 1 - normal.cdf((b - mean) / std) ) def nu(lb: TensorType, ub: TensorType, mean: TensorType, std: TensorType) -> TensorType: return (ub - lb) * (1 - normal.cdf((ub - mean) / std)) def ehvi_based_on_partitioned_cell( neg_pred_mean: TensorType, pred_std: TensorType ) -> TensorType: r""" Calculate the ehvi based on cell i. """ lb_points, ub_points = pareto.hypercell_bounds( tf.constant([-inf] * neg_pred_mean.shape[-1], dtype=x.dtype), reference_point ) neg_lb_points, neg_ub_points = -ub_points, -lb_points neg_ub_points = tf.minimum(neg_ub_points, 1e10) # clip to improve numerical stability psi_ub = Psi( neg_lb_points, neg_ub_points, neg_pred_mean, pred_std ) # [..., num_cells, out_dim] psi_lb = Psi( neg_lb_points, neg_lb_points, neg_pred_mean, pred_std ) # [..., num_cells, out_dim] psi_lb2ub = tf.maximum(psi_lb - psi_ub, 0.0) # [..., num_cells, out_dim] nu_contrib = nu(neg_lb_points, neg_ub_points, neg_pred_mean, pred_std) cross_index = tf.constant( list(product(*[[0, 1]] * reference_point.shape[-1])) ) # [2^d, indices_at_dim] stacked_factors = tf.concat( [tf.expand_dims(psi_lb2ub, -2), tf.expand_dims(nu_contrib, -2)], axis=-2 ) # Take the cross product of psi_diff and nu across all outcomes # [..., num_cells, 2(operation_num, refer Eq. 45), num_obj] factor_combinations = tf.linalg.diag_part( tf.gather(stacked_factors, cross_index, axis=-2) ) # [..., num_cells, 2^d, 2(operation_num), num_obj] return tf.reduce_sum(tf.reduce_prod(factor_combinations, axis=-1), axis=-1) candidate_mean, candidate_var = model.predict(tf.squeeze(x, -2)) candidate_std = tf.sqrt(candidate_var) neg_candidate_mean = -tf.expand_dims(candidate_mean, 1) # [..., 1, out_dim] candidate_std = tf.expand_dims(candidate_std, 1) # [..., 1, out_dim] ehvi_cells_based = ehvi_based_on_partitioned_cell(neg_candidate_mean, candidate_std) return tf.reduce_sum( ehvi_cells_based, axis=-1, keepdims=True, ) return acquisition class BatchMonteCarloExpectedImprovement(SingleModelAcquisitionBuilder): """ Expected improvement for batches of points (or :math:`q`-EI), approximated using Monte Carlo estimation with the reparametrization trick. See :cite:`Ginsbourger2010` for details. Improvement is measured with respect to the minimum predictive mean at observed query points. This is calculated in :class:`BatchMonteCarloExpectedImprovement` by assuming observations at new points are independent from those at known query points. This is faster, but is an approximation for noisy observers. """ def __init__(self, sample_size: int, *, jitter: float = DEFAULTS.JITTER): """ :param sample_size: The number of samples for each batch of points. :param jitter: The size of the jitter to use when stabilising the Cholesky decomposition of the covariance matrix. :raise ValueError (or InvalidArgumentError): If ``sample_size`` is not positive, or ``jitter`` is negative. """ tf.debugging.assert_positive(sample_size) tf.debugging.assert_greater_equal(jitter, 0.0) super().__init__() self._sample_size = sample_size self._jitter = jitter def __repr__(self) -> str: """""" return f"BatchMonteCarloExpectedImprovement({self._sample_size!r}, jitter={self._jitter!r})" def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel ) -> AcquisitionFunction: """ :param dataset: The data from the observer. Must be populated. :param model: The model over the specified ``dataset``. Must have event shape [1]. :return: The batch *expected improvement* acquisition function. :raise ValueError (or InvalidArgumentError): If ``dataset`` is not populated, or ``model`` does not have an event shape of [1]. """ tf.debugging.assert_positive(len(dataset)) mean, _ = model.predict(dataset.query_points) tf.debugging.assert_shapes( [(mean, ["_", 1])], message="Expected model with event shape [1]." ) eta = tf.reduce_min(mean, axis=0) sampler = BatchReparametrizationSampler(self._sample_size, model) def batch_ei(at: TensorType) -> TensorType: samples = tf.squeeze(sampler.sample(at, jitter=self._jitter), axis=-1) # [..., S, B] min_sample_per_batch = tf.reduce_min(samples, axis=-1) # [..., S] batch_improvement = tf.maximum(eta - min_sample_per_batch, 0.0) # [..., S] return tf.reduce_mean(batch_improvement, axis=-1, keepdims=True) # [..., 1] return batch_ei class GreedyAcquisitionFunctionBuilder(ABC): """ A :class:`GreedyAcquisitionFunctionBuilder` builds an acquisition function suitable for greedily building batches for batch Bayesian Optimization. :class:`GreedyAcquisitionFunctionBuilder` differs from :class:`AcquisitionFunctionBuilder` by requiring that a set of pending points is passed to the builder. Note that this acquisition function is typically called `B` times each Bayesian optimization step, when building batches of size `B`. """ @abstractmethod def prepare_acquisition_function( self, datasets: Mapping[str, Dataset], models: Mapping[str, ProbabilisticModel], pending_points: Optional[TensorType] = None, ) -> AcquisitionFunction: """ :param datasets: The data from the observer. :param models: The models over each dataset in ``datasets``. :param pending_points: Points already chosen to be in the current batch (of shape [M,D]), where M is the number of pending points and D is the search space dimension. :return: An acquisition function. """ class SingleModelGreedyAcquisitionBuilder(ABC): """ Convenience acquisition function builder for a greedy acquisition function (or component of a composite greedy acquisition function) that requires only one model, dataset pair. """ def using(self, tag: str) -> GreedyAcquisitionFunctionBuilder: """ :param tag: The tag for the model, dataset pair to use to build this acquisition function. :return: An acquisition function builder that selects the model and dataset specified by ``tag``, as defined in :meth:`prepare_acquisition_function`. """ single_builder = self class _Anon(GreedyAcquisitionFunctionBuilder): def prepare_acquisition_function( self, datasets: Mapping[str, Dataset], models: Mapping[str, ProbabilisticModel], pending_points: Optional[TensorType] = None, ) -> AcquisitionFunction: return single_builder.prepare_acquisition_function( datasets[tag], models[tag], pending_points=pending_points ) def __repr__(self) -> str: return f"{single_builder!r} using tag {tag!r}" return _Anon() @abstractmethod def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel, pending_points: Optional[TensorType] = None, ) -> AcquisitionFunction: """ :param dataset: The data to use to build the acquisition function. :param model: The model over the specified ``dataset``. :param pending_points: Points already chosen to be in the current batch (of shape [M,D]), where M is the number of pending points and D is the search space dimension. :return: An acquisition function. """ class LocalPenalizationAcquisitionFunction(SingleModelGreedyAcquisitionBuilder): r""" Builder of the acquisition function maker for greedily collecting batches by local penalization. The resulting :const:`AcquisitionFunctionMaker` takes in a set of pending points and returns a base acquisition function penalized around those points. An estimate of the objective function's Lipschitz constant is used to control the size of penalization. Local penalization allows us to perform batch Bayesian optimization with a standard (non-batch) acqusition function. All that we require is that the acquisition function takes strictly positive values. By iteratively building a batch of points though sequentially maximizing this acquisition function but down-weighted around locations close to the already chosen (pending) points, local penalization provides diverse batches of candidate points. Local penalization is applied to the acquisition function multiplicatively. However, to improve numerical stability, we perfom additive penalization in a log space. The Lipschitz constant and additional penalization parameters are estimated once when first preparing the acquisition function with no pending points. These estimates are reused for all subsequent function calls. """ def __init__( self, search_space: SearchSpace, num_samples: int = 500, penalizer: Callable[..., PenalizationFunction] = None, base_acquisition_function_builder: Optional[ Union[ExpectedImprovement, MinValueEntropySearch] ] = None, ): """ :param search_space: The global search space over which the optimisation is defined. :param num_samples: Size of the random sample over which the Lipschitz constant is estimated. We recommend scaling this with search space dimension. :param penalizer: The chosen penalization method (defaults to soft penalization). :param base_acquisition_function_builder: Base acquisition function to be penalized (defaults to expected improvement). Local penalization only supports strictly positive acquisition functions. """ self._search_space = search_space if num_samples <= 0: raise ValueError(f"num_samples must be positive, got {num_samples}") self._num_samples = num_samples self._lipschitz_penalizer = soft_local_penalizer if penalizer is None else penalizer if base_acquisition_function_builder is None: self._base_builder: SingleModelAcquisitionBuilder = ExpectedImprovement() elif isinstance( base_acquisition_function_builder, (ExpectedImprovement, MinValueEntropySearch) ): self._base_builder = base_acquisition_function_builder else: raise ValueError( f""" Local penalization can only be applied to strictly positive acquisition functions, we got {base_acquisition_function_builder}. """ ) self._lipschitz_constant = None self._eta = None self._base_acquisition_function: Optional[AcquisitionFunction] = None def prepare_acquisition_function( self, dataset: Dataset, model: ProbabilisticModel, pending_points: Optional[TensorType] = None, ) -> AcquisitionFunction: """ :param dataset: The data from the observer. :param model: The model over the specified ``dataset``. :param pending_points: The points we penalize with respect to. :return: The (log) expected improvement penalized with respect to the pending points. :raise ValueError: if the first call does not have pending_points=None. """ if len(dataset.query_points) == 0: raise ValueError("Dataset must be populated.") if ( pending_points is None ): # compute penalization params and base acquisition once per optimization step samples = self._search_space.sample(num_samples=self._num_samples) samples = tf.concat([dataset.query_points, samples], 0) def get_lipschitz_estimate( sampled_points, ) -> tf.Tensor: # use max norm of posterior mean gradients with tf.GradientTape() as g: g.watch(sampled_points) mean, _ = model.predict(sampled_points) grads = g.gradient(mean, sampled_points) grads_norm = tf.norm(grads, axis=1) max_grads_norm = tf.reduce_max(grads_norm) eta = tf.reduce_min(mean, axis=0) return max_grads_norm, eta lipschitz_constant, eta = get_lipschitz_estimate(samples) if ( lipschitz_constant < 1e-5 ): # threshold to improve numerical stability for 'flat' models lipschitz_constant = 10 self._lipschitz_constant = lipschitz_constant self._eta = eta if isinstance(self._base_builder, ExpectedImprovement): # reuse eta estimate self._base_acquisition_function = expected_improvement(model, self._eta) else: self._base_acquisition_function = self._base_builder.prepare_acquisition_function( dataset, model ) if (self._lipschitz_constant is None) or (self._base_acquisition_function is None): raise ValueError("Local penalization must be first called with no pending_points.") if pending_points is None: return self._base_acquisition_function # no penalization required if no pending_points. tf.debugging.assert_shapes( [(pending_points, ["N", len(self._search_space.upper)])], message="pending_points must be of shape [N,D]", ) penalization = self._lipschitz_penalizer( model, pending_points, self._lipschitz_constant, self._eta ) def penalized_acquisition(x: TensorType) -> TensorType: log_acq = tf.math.log(self._base_acquisition_function(x)) + tf.math.log(penalization(x)) return tf.math.exp(log_acq) return penalized_acquisition PenalizationFunction = Callable[[TensorType], TensorType] """ An :const:`PenalizationFunction` maps a query point (of dimension `D`) to a single value that described how heavily it should be penalized (a positive quantity). As penalization is applied multiplicatively to acquisition functions, small penalization outputs correspond to a stronger penalization effect. Thus, with leading dimensions, an :const:`PenalizationFunction` takes input shape `[..., 1, D]` and returns shape `[..., 1]`. """ def soft_local_penalizer( model: ProbabilisticModel, pending_points: TensorType, lipschitz_constant: TensorType, eta: TensorType, ) -> PenalizationFunction: r""" Return the soft local penalization function used for single-objective greedy batch Bayesian optimization in :cite:`Gonzalez:2016`. Soft penalization returns the probability that a candidate point does not belong in the exclusion zones of the pending points. For model posterior mean :math:`\mu`, model posterior variance :math:`\sigma^2`, current "best" function value :math:`\eta`, and an estimated Lipschitz constant :math:`L`,the penalization from a set of pending point :math:`x'` on a candidate point :math:`x` is given by .. math:: \phi(x, x') = \frac{1}{2}\textrm{erfc}(-z) where :math:`z = \frac{1}{\sqrt{2\sigma^2(x')}}(L||x'-x|| + \eta - \mu(x'))`. The penalization from a set of pending points is just product of the individual penalizations. See :cite:`Gonzalez:2016` for a full derivation. :param model: The model over the specified ``dataset``. :param pending_points: The points we penalize with respect to. :param lipschitz_constant: The estimated Lipschitz constant of the objective function. :param eta: The estimated global minima. :return: The local penalization function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. """ mean_pending, variance_pending = model.predict(pending_points) radius = tf.transpose((mean_pending - eta) / lipschitz_constant) scale = tf.transpose(tf.sqrt(variance_pending) / lipschitz_constant) def penalization_function(x: TensorType) -> TensorType: tf.debugging.assert_shapes( [(x, [..., 1, None])], message="This penalization function cannot be calculated for batches of points.", ) pairwise_distances = tf.norm( tf.expand_dims(x, 1) - tf.expand_dims(pending_points, 0), axis=-1 ) standardised_distances = (pairwise_distances - radius) / scale normal = tfp.distributions.Normal(tf.cast(0, x.dtype), tf.cast(1, x.dtype)) penalization = normal.cdf(standardised_distances) return tf.reduce_prod(penalization, axis=-1) return penalization_function def hard_local_penalizer( model: ProbabilisticModel, pending_points: TensorType, lipschitz_constant: TensorType, eta: TensorType, ) -> PenalizationFunction: r""" Return the hard local penalization function used for single-objective greedy batch Bayesian optimization in :cite:`Alvi:2019`. Hard penalization is a stronger penalizer than soft penalization and is sometimes more effective See :cite:`Alvi:2019` for details. Our implementation follows theirs, with the penalization from a set of pending points being the product of the individual penalizations. :param model: The model over the specified ``dataset``. :param pending_points: The points we penalize with respect to. :param lipschitz_constant: The estimated Lipschitz constant of the objective function. :param eta: The estimated global minima. :return: The local penalization function. This function will raise :exc:`ValueError` or :exc:`~tf.errors.InvalidArgumentError` if used with a batch size greater than one. """ mean_pending, variance_pending = model.predict(pending_points) radius = tf.transpose((mean_pending - eta) / lipschitz_constant) scale = tf.transpose(tf.sqrt(variance_pending) / lipschitz_constant) def penalization_function(x: TensorType) -> TensorType: tf.debugging.assert_shapes( [(x, [..., 1, None])], message="This penalization function cannot be calculated for batches of points.", ) pairwise_distances = tf.norm( tf.expand_dims(x, 1) - tf.expand_dims(pending_points, 0), axis=-1 ) p = -5 # following experiments of :cite:`Alvi:2019`. penalization = ((pairwise_distances / (radius + scale)) ** p + 1) ** (1 / p) return tf.reduce_prod(penalization, axis=-1) return penalization_function ``` #### File: trieste/utils/multi_objectives.py ```python from __future__ import annotations import math from abc import ABC, abstractmethod from collections.abc import Callable from functools import partial import tensorflow as tf from ..type import TensorType class MultiObjectiveTestProblem(ABC): """ Base class for synthetic multi-objective test functions. Prepares the synthetic function and generates pareto optimal points. The latter can be used as a reference of performance measure of certain multi-objective optimization algorithms. """ @property @abstractmethod def dim(self) -> int: """ The input dimensionality of the test function """ @property @abstractmethod def bounds(self) -> list[list[float]]: """ The input space bounds of the test function """ @abstractmethod def objective(self) -> Callable[[TensorType], TensorType]: """ Get the synthetic test function. :return: A callable synthetic function """ @abstractmethod def gen_pareto_optimal_points(self, n: int, seed=None) -> tf.Tensor: """ Generate `n` Pareto optimal points. :param n: The number of pareto optimal points to be generated. :param seed: An integer used to create a random seed for distributions that used to generate pareto optimal points. :return: The Pareto optimal points """ class VLMOP2(MultiObjectiveTestProblem): """ The VLMOP2 problem, typically evaluated over :math:`[-2, 2]^2`. The idea pareto fronts lies on -1/sqrt(2) - 1/sqrt(2) and x1=x2. See :cite:`van1999multiobjective` and :cite: fonseca1995multiobjective (the latter for discussion of pareto front property) for details. """ bounds = [[-2.0] * 2, [2.0] * 2] dim = 2 def objective(self): return vlmop2 def gen_pareto_optimal_points(self, n: int, seed=None): tf.debugging.assert_greater(n, 0) _x = tf.linspace([-1 / tf.sqrt(2.0)], [1 / tf.sqrt(2.0)], n) return vlmop2(tf.concat([_x, _x], axis=1)) def vlmop2(x: TensorType) -> TensorType: """ The VLMOP2 synthetic function. :param x: The points at which to evaluate the function, with shape [..., 2]. :return: The function values at ``x``, with shape [..., 2]. :raise ValueError (or InvalidArgumentError): If ``x`` has an invalid shape. """ tf.debugging.assert_shapes([(x, (..., 2))], message="vlmop2 only allow 2d input") transl = 1 / math.sqrt(2.0) y1 = 1 - tf.exp(-1 * tf.reduce_sum((x - transl) ** 2, axis=-1)) y2 = 1 - tf.exp(-1 * tf.reduce_sum((x + transl) ** 2, axis=-1)) return tf.stack([y1, y2], axis=-1) class DTLZ(MultiObjectiveTestProblem): """ DTLZ series multi-objective test problem. See :cite:deb2002scalable for details. """ def __init__(self, input_dim: int, num_objective: int): tf.debugging.assert_greater(input_dim, 0) tf.debugging.assert_greater(num_objective, 0) tf.debugging.assert_greater( input_dim, num_objective, f"input dimension {input_dim}" f" must be greater than function objective numbers {num_objective}", ) self._dim = input_dim self.M = num_objective self.k = self._dim - self.M + 1 self._bounds = [[0] * input_dim, [1] * input_dim] @property def dim(self): return self._dim @property def bounds(self): return self._bounds class DTLZ1(DTLZ): """ The DTLZ1 problem, the idea pareto fronts lie on a linear hyper-plane. See :cite:deb2002scalable for details. """ def objective(self): return partial(dtlz1, m=self.M, k=self.k, d=self.dim) def gen_pareto_optimal_points(self, n: int, seed=None): tf.debugging.assert_greater_equal(self.M, 2) rnd = tf.random.uniform([n, self.M - 1], minval=0, maxval=1, seed=seed) strnd = tf.sort(rnd, axis=-1) strnd = tf.concat([tf.zeros([n, 1]), strnd, tf.ones([n, 1])], axis=-1) return 0.5 * (strnd[..., 1:] - strnd[..., :-1]) def dtlz1(x: TensorType, m: int, k: int, d: int) -> TensorType: """ The DTLZ1 synthetic function. :param x: The points at which to evaluate the function, with shape [..., d]. :param m: The objective numbers. :param k: The input dimensionality for g. :param d: The dimensionality of the synthetic function. :return: The function values at ``x``, with shape [..., m]. :raise ValueError (or InvalidArgumentError): If ``x`` has an invalid shape. """ tf.debugging.assert_shapes( [(x, (..., d))], message=f"input x dim: {x.shape[-1]} is not align with pre-specified dim: {d}", ) tf.debugging.assert_greater(m, 0, message=f"positive objective numbers expected but found {m}") def g(xM): return 100 * ( k + tf.reduce_sum( (xM - 0.5) ** 2 - tf.cos(20 * math.pi * (xM - 0.5)), axis=-1, keepdims=True ) ) ta = tf.TensorArray(x.dtype, size=m) for i in range(m): xM = x[..., m - 1 :] y = 1 + g(xM) y *= 1 / 2 * tf.reduce_prod(x[..., : m - 1 - i], axis=-1, keepdims=True) if i > 0: y *= 1 - x[..., m - i - 1, tf.newaxis] ta = ta.write(i, y) return tf.squeeze(tf.concat(tf.split(ta.stack(), m, axis=0), axis=-1), axis=0) class DTLZ2(DTLZ): """ The DTLZ2 problem, the idea pareto fronts lie on (part of) a unit hyper sphere. See :cite:deb2002scalable for details. """ def objective(self): return partial(dtlz2, m=self.M, d=self.dim) def gen_pareto_optimal_points(self, n: int, seed=None): tf.debugging.assert_greater_equal(self.M, 2) rnd = tf.random.normal([n, self.M], seed=seed) samples = tf.abs(rnd / tf.norm(rnd, axis=-1, keepdims=True)) return samples def dtlz2(x: TensorType, m: int, d: int) -> TensorType: """ The DTLZ2 synthetic function. :param x: The points at which to evaluate the function, with shape [..., d]. :param m: The objective numbers. :param d: The dimensionality of the synthetic function. :return: The function values at ``x``, with shape [..., m]. :raise ValueError (or InvalidArgumentError): If ``x`` has an invalid shape. """ tf.debugging.assert_shapes( [(x, (..., d))], message=f"input x dim: {x.shape[-1]} is not align with pre-specified dim: {d}", ) tf.debugging.assert_greater(m, 0, message=f"positive objective numbers expected but found {m}") def g(xM): z = (xM - 0.5) ** 2 return tf.reduce_sum(z, axis=-1, keepdims=True) ta = tf.TensorArray(x.dtype, size=m) for i in tf.range(m): y = 1 + g(x[..., m - 1 :]) for j in tf.range(m - 1 - i): y *= tf.cos(math.pi / 2 * x[..., j, tf.newaxis]) if i > 0: y *= tf.sin(math.pi / 2 * x[..., m - 1 - i, tf.newaxis]) ta = ta.write(i, y) return tf.squeeze(tf.concat(tf.split(ta.stack(), m, axis=0), axis=-1), axis=0) ```
{ "source": "johnandrea/compare-trees", "score": 3 }
#### File: johnandrea/compare-trees/diff.py ```python import sys import os import re import difflib import readgedcom show_debug = False # how much change for a structure/branch difference branch_name_threshold = 0.88 branch_date_threshold = 750 #days # how much change to report a person details difference report_name_threshold = 0.92 report_date_threshold = 400 #days def check_config( start_ok ): ok = start_ok def check_val( start_ok, wanted_type, x_name, x ): ok = start_ok if isinstance( x, wanted_type ): if x < 0: print( x_name, 'cannot be less than zero', file=sys.stderr ) ok = False else: print( x_name, 'must be a', wanted_type, file=sys.stderr ) ok = False return ok ok = check_val( ok, float, 'branch_name_threshold', branch_name_threshold ) ok = check_val( ok, float, 'report_name_threshold', report_name_threshold ) ok = check_val( ok, int, 'branch_date_threshold', branch_date_threshold ) ok = check_val( ok, int, 'report_date_threshold', report_date_threshold ) return ok def days_between( d1, d2 ): # expecting two dates as strings yyyymmdd # return the approximate number of days between # this is only for approximate comparisons, not date manipulations # Assuming dates are C.E. Gregorian def extract_parts( date ): # yyyymmdd # 01234567 return [ date[0:4], date[4:6], date[6:8] ] def total_days( date ): # [0]=year [1]=month [2]=day return int(date[0]) * 365 + int(date[1]) * 30 + int(date[2]) parts = [] for date in [d1, d2]: parts.append(extract_parts( date )) return abs( total_days(parts[0]) - total_days(parts[1]) ) def input_to_id( s ): # might have been given as just a number # convert to id style 'i58' result = '' if s: result = s.replace('@','').replace('i','').replace('I','') return 'i' + result def get_name( t, p ): result = trees[t][ikey][p]['name'][0]['value'] if readgedcom.UNKNOWN_NAME in result: result = 'unknown' else: # remove any suffix after the end slash result = re.sub( r'/[^/]*$', '', result ).replace('/','').strip() return result def get_best_date( t, p, date_name ): best = None if date_name in trees[t][ikey][p]['best-events']: best = trees[t][ikey][p]['best-events'][date_name] return best def get_full_date( t, p, date_name ): # return the yyyymmdd value for the person's dated event, or None result = None best = get_best_date( t, p, date_name ) if best is not None: if trees[t][ikey][p][date_name][best]['date']['is_known']: # get the minimum date if its a range. if not a range min and max are equal result = trees[t][ikey][p][date_name][best]['date']['min']['value'] return result def get_a_date( t, p, date_name ): # return the date as given in the input file (or an empty string), # which might contain before/after/etc or be a range # not appropriate for comparison result = '' best = get_best_date( t, p, date_name ) if best is not None: if trees[t][ikey][p][date_name][best]['date']['is_known']: result = trees[t][ikey][p][date_name][best]['date']['in'] return result def get_dates( t, p ): # for display purposes, not for comparison return [ get_a_date(t, p, 'birt'), get_a_date(t, p, 'deat') ] def show_indi( t, p ): # show an person's important details dates = get_dates(t,p) return get_name(t,p) + ' (' + dates[0] + '-' + dates[1] + ')' def get_other_partner( t, p, f ): # in any given family, return the partner of the given person result = None for partner in ['wife','husb']: if partner in trees[t][fkey][f]: partner_id = trees[t][fkey][f][partner][0] if partner_id != p: result = partner_id return result def list_all_partners( t, p ): # for the given person in all the families in which they are a partner # return [family-id] = the-other-partner-id # though partnerid might be unknown i.e. None result = dict() if 'fams' in trees[t][ikey][p]: for fam in trees[t][ikey][p]['fams']: result[fam] = get_other_partner( t, p, fam ) return result def show_person_header( t, p ): print( '' ) print( show_indi( t, p ) ) def get_name_match_value( n1, n2 ): return difflib.SequenceMatcher(None, n1, n2).ratio() def compare_a_person( p1, p2 ): def compare_person_dates( p1, title, date1, date2 ): if date1: if date2: if days_between( date1, date2 ) >= report_date_threshold: show_person_header(1,p1) print( title, 'difference', date1, ' vs ', date2 ) else: show_person_header(1,p1) print( title, 'not in second tree' ) else: if date2: show_person_header(1,p1) print( title, 'not in first tree' ) name1 = get_name( 1, p1 ) name2 = get_name( 2, p2 ) if get_name_match_value(name1,name2) < report_name_threshold: show_person_header(1,p1) print( 'Name difference:', name1, ' vs ', name2 ) for d in ['birt','deat']: # first check whats given in the input file d1 = get_a_date( 1, p1, d ) d2 = get_a_date( 2, p2, d ) if d1 != d2: # then look closer at the parsed values d1 = get_full_date( 1, p1, d ) d2 = get_full_date( 2, p2, d ) compare_person_dates(p1, d, d1, d2 ) def person_match_value( t1, p1, t2, p2 ): # should also check dates name1 = get_name( t1, p1 ) name2 = get_name( t2, p2 ) value = get_name_match_value( name1, name2 ) if show_debug: print( 'debug:sameness ', value, name1, ' vs ', name2 ) return value def is_same_person( t1, p1, t2, p2 ): return person_match_value( t1, p1, t2, p2 ) >= branch_name_threshold def follow_parents( p1, p2 ): if show_debug: print( 'debug:follow parents of', get_name(1,p1) ) def get_famc( t, p ): result = None if 'famc' in trees[t][ikey][p]: result = trees[t][ikey][p]['famc'][0] return result def get_partner( t, f, partner ): result = None if partner in trees[t][fkey][f]: result = trees[t][fkey][f][partner][0] return result fam1 = get_famc( 1, p1 ) fam2 = get_famc( 2, p2 ) if fam1: if fam2: # this is going the be trouble for same sex couples for partner in ['wife','husb']: partner1 = get_partner( 1, fam1, partner ) partner2 = get_partner( 2, fam2, partner ) if partner1: if partner2: if is_same_person( 1, partner1, 2, partner2 ): # now what, check details if show_debug: print( 'debug:matched parent', partner, get_name(1,partner1) ) follow_person( partner1, partner2 ) else: show_person_header( 1, p1 ) print( 'Parent(', partner, ') different from first to second' ) else: show_person_header( 1, p1 ) print( 'Parent(', partner, ') removed in second' ) else: if partner2: show_person_header( 1, p1 ) print( 'Parent(', partner, ') added in second' ) else: show_person_header( 1, p1 ) print( 'Parent(s) removed in second' ) else: if fam2: show_person_header( 1, p1 ) print( 'Parent(s) added in second' ) def max_in_matrix( m ): # should be a pythonic way to do this x = -1 for i in m: for j in m[i]: x = max( x, m[i][j] ) return x def follow_children( p1, partner1, f1, f2 ): global visited_fam if f1 in visited_fam: return visited_fam.append(f1) def match_children( p1, partner_name, children1, children2 ): # make a matrix of matches to try gettimg the closest pairings match_values = dict() for c1 in children1: match_values[c1] = dict() for c2 in children2: match_values[c1][c2] = person_match_value( 1, c1, 2, c2 ) matched1 = dict() matched2 = dict() best = max_in_matrix( match_values ) while best >= branch_name_threshold: # where did it occur # there might be a pythonic way to do this for c1 in children1: if c1 not in matched1: for c2 in children2: if c2 not in matched2: if match_values[c1][c2] >= best: match_values[c1][c2] = -1 matched1[c1] = c2 matched2[c2] = c1 best = max_in_matrix( match_values ) for c1 in children1: if c1 in matched1: follow_person( c1, matched1[c1] ) else: show_person_header( 1, p1 ) print( 'with', partner_name, 'didnt match child', get_name(1,c1), 'first to second' ) partner_name = get_name(1,partner1) if show_debug: print( 'debug:follow children', get_name(1,p1),' and ', partner_name ) children1 = trees[1][fkey][f1]['chil'] children2 = trees[2][fkey][f2]['chil'] if children1: if children2: match_children( p1, partner_name, children1, children2 ) else: show_person_header( 1, p1 ) print( 'All children with',partner_name,'removed in second' ) else: if children2: show_person_header( 1, p1 ) print( 'All children with',partner_name,'added in second' ) def follow_partners( p1, p2 ): if show_debug: print( 'debug:in follow partners', get_name(1,p1) ) def match_partners( p1, partners1, partners2 ): # make a matrix of tree1 people to tree2 people # in order to find the best matches match_values = dict() for fam1 in partners1: partner1 = partners1[fam1] match_values[fam1] = dict() for fam2 in partners2: partner2 = partners2[fam2] match_values[fam1][fam2] = person_match_value( 1, partner1, 2, partner2 ) # find the best match for each, # so long as it isn't a better match for someone else matched1 = dict() matched2 = dict() best = max_in_matrix( match_values ) while best >= branch_name_threshold: # where did it occur # there might be a pythonic way to do this for fam1 in partners1: if fam1 not in matched1: for fam2 in partners2: if fam2 not in matched2: if match_values[fam1][fam2] >= best: match_values[fam1][fam2] = -1 matched1[fam1] = fam2 matched2[fam2] = fam1 best = max_in_matrix( match_values ) for fam1 in partners1: partner1 = partners1[fam1] if fam1 in matched1: fam2 = matched1[fam1] follow_person( partner1, partners2[fam2] ) # now that families are known, do children within the family follow_children( p1, partner1, fam1, fam2 ) else: show_person_header( 1, p1 ) print( 'Didnt match partner', get_name(1,partner1), 'first to second' ) # check all the partners that person 1 might share with person 2 partners1 = list_all_partners( 1, p1 ) partners2 = list_all_partners( 2, p2 ) if partners1: if partners2: match_partners( p1, partners1, partners2 ) else: show_person_header( 1, p1 ) print( 'Partner(s) removed in second' ) else: if partners2: show_person_header( 1, p1 ) print( 'Partner(s) added in second' ) def follow_person( p1, p2 ): global visited if p1 in visited: return visited.append( p1 ) if show_debug: print( 'debug:following person', show_indi( 1, p1 ) ) compare_a_person( p1, p2 ) follow_parents( p1, p2 ) follow_partners( p1, p2 ) def show_usage(): print( '' ) print( 'Arguments: tree1file person1xref tree2file person2xref' ) print( 'Output report to stdout' ) if len(sys.argv) != 5: show_usage() sys.exit(1) ikey = readgedcom.PARSED_INDI fkey = readgedcom.PARSED_FAM # the tree data will be globals trees = [] starts = [] file_names = [] # add an initial zero'th element so that the rest of the program uses 1 and 2 trees.append(0) starts.append(0) file_names.append(0) # params 1,2 then 3,4 for i in [1,3]: file_names.append( sys.argv[i] ) starts.append( input_to_id( sys.argv[i+1] ) ) ok = True for i in [1,2]: if os.path.isfile( file_names[i] ): trees.append( readgedcom.read_file( file_names[i] ) ) else: print( 'Data file does not exist:', file_names[i], file=sys.stderr ) ok = False if file_names[1] == file_names[2]: print( 'Identical files', file=sys.stderr ) ok = False if not ok: sys.exit(1) print( 'Starting points' ) for i in [1,2]: if isinstance( trees[i], dict ) and ikey in trees[i]: if starts[i] in trees[i][ikey]: print( i, '=', show_indi( i, starts[i] ) ) else: print( 'Given key', starts[i], 'not in tree', i, file_names[i], file=sys.stderr ) ok = False else: print( 'Tree', i, 'not fully parsed data', file=sys.stderr ) ok = False ok = check_config( ok ) if not ok: sys.exit(1) # match the trees # prevent double visitations of the same person visited = [] visited_fam = [] follow_person( starts[1], starts[2] ) ```
{ "source": "johnandrea/draw-dna-matches", "score": 3 }
#### File: johnandrea/draw-dna-matches/draw-dna-matches.py ```python import sys import re import readgedcom # Output DNA matches in a tree view in Graphviz DOT format. # Given a GEDCOM with people having an event of type defined below # and an optional note containing the cM value. # The person for whom the matches are compared should have a note or value # beginning with 'Me,' # # Might hot handle the situation where the closest shared family between # two people doesn't exist in the data. # # This code is released under the MIT License: https://opensource.org/licenses/MIT # Copyright (c) 2022 <NAME> # v2.1 # This is the name of the event of value EVENT_NAME = 'dnamatch' # within the event, 'note' or 'value' EVENT_ITEM = 'note' # lines to ancestors line_colors = ['orchid', 'tomato', 'lightseagreen'] line_colors.extend( ['gold', 'royalblue', 'coral'] ) line_colors.extend( ['yellowgreen', 'chocolate', 'salmon'] ) # box containing a match person box_color = 'lightgreen' # multiple marriage outline multi_marr_color = 'orange' def remove_numeric_comma( s ): """ Given 1,234 1,234,567 and similar, remove the comma. Does the same for all such patterns in the string. Assuming anglo style numbers rather than euro style of 1.234,99 """ comma_pattern = re.compile( r'\d,\d' ) result = s # global replace count not working on this expression, # use a loop as a workaround while comma_pattern.search( result ): result = re.sub( r'^(.*\d),(\d.*)$', r'\1\2', result ) return result def extract_dna_cm( note ): """ Return the numeric cM value from the note which is either just a number or a number followed by "cM" or "cm" """ a_number = re.compile( r'[0-9]' ) all_numbers = re.compile( r'^[0-9]+$' ) cm_count = re.compile( r'([0-9]+)\s*cm\W' ) s = note.strip() result = '' if a_number.search( s ): s = remove_numeric_comma( s ) if all_numbers.search( s ): result = s else: # append a space for a simpler regexp of the word ending match = cm_count.search( s.lower() + ' ' ) if match: result = match.group(1) return result def get_name( individual ): """ Return the name for the individual in the passed data section. """ name = individual['name'][0]['value'] # the standard unknown code is not good for svg output if '?' in name and '[' in name and ']' in name: name = 'unknown' return name.replace( '/', '' ).replace('"','&quot;').replace("'","&rsquo;") def check_for_dna_event( individual ): """ Does the person in data section contain the desired dna event. Return a list with found or not. """ result = [ False, '' ] if 'even' in individual: for event in individual['even']: if event['type'].lower() == EVENT_NAME.lower(): if EVENT_ITEM in event: result[0] = True result[1] = event[EVENT_ITEM].strip() break return result def get_ancestor_families( indi, individuals, families ): """ See the nested function. """ def all_ancestor_families_of( gen, start, indi ): """ Return a dict of all the ancestors of the given individual. Format is collection of [fam_id] = number of genertions from start """ result = dict() if 'famc' in individuals[indi]: fam = individuals[indi]['famc'][0] result[fam] = gen for parent in ['wife','husb']: if parent in families[fam]: parent_id = families[fam][parent][0] # prevent a loop if parent_id != start: result.update( all_ancestor_families_of( gen+1, start, parent_id ) ) return result return all_ancestor_families_of( 1, indi, indi ) def find_ancestor_path( start, end_fam, individuals, families, path ): """ Return a list of the family ids from the start person to the end family. The list is in order of generations, i.e. the end family will be at the end of the list. Assuming that there are no loops in the families. Returned is a list of [ found-flag, [ famid, famid, ..., end-famid ] ] """ if 'famc' in individuals[start]: fam = individuals[start]['famc'][0] for parent in ['wife','husb']: if parent in families[fam]: parent_id = families[fam][parent][0] path.append( fam ) if fam == end_fam: return [ True, path ] # Try the next generation found = find_ancestor_path( parent_id, end_fam, individuals, families, path ) if found[0]: return found # This family doesn't lead to that ancestor path.pop() return [ False, path ] def does_fam_have_match( matches, family ): # Does the family contain a person which is a match result = False for parent in ['husb','wife']: if parent in family: if family[parent][0] in matches: result = True break return result def make_dot_id( xref ): return xref.lower().replace('@','').replace('i','').replace('f','').replace('.','') def make_fam_dot_id( xref ): return 'f' + make_dot_id( str(xref) ) def make_indi_dot_id( xref ): return 'i' + make_dot_id( str(xref) ) def begin_dot(): """ Start of the DOT output file """ print( 'digraph family {' ) print( 'rankdir=LR;') def end_dot(): """ End of the DOT output file """ print( '}' ) def dot_labels( individuals, families, matches, my_ancestors, fam_with_matches, people_in_paths ): """ Output a label for each person who appears in the graphs. """ def output_label( dot_id, s, extra ): print( dot_id, '[label=' + s.replace("'",'.') + extra + '];' ) def output_plain_family_label( fam, multiplied_marr ): text = '' sep = '' for parent in ['wife','husb']: if parent in families[fam]: parent_id = families[fam][parent][0] text += sep + get_name( individuals[parent_id] ) sep = '\\n+ ' options = '' if multiplied_marr: options = ', color=' + multi_marr_color output_label( make_fam_dot_id(fam), '"'+ text +'"', options ) def output_match_family_label( fam, multiplied_marr ): text = '<\n<table cellpadding="2" cellborder="0" cellspacing="0" border="0">' sep = '' for parent in ['wife','husb']: if parent in families[fam]: parent_id = families[fam][parent][0] # add padding name = ' ' + sep + get_name( individuals[parent_id] ) + ' ' tr = '\n<tr><td' if parent_id in matches: td = tr + ' bgcolor="' + box_color + '">' text += td + name + '</td></tr>' text += td + matches[parent_id]['note'] + '</td></tr>' else: text += tr + ' border="1">' + name + '</td></tr>' sep = '+ ' text += '\n</table>\n>' options = ', shape="none"' if multiplied_marr: options += ', color=' + multi_marr_color output_label( make_fam_dot_id(fam), text, options ) def output_indi_label( indi ): # note the escaped newlines text = get_name( individuals[indi] ) + '\\n' + matches[indi]['note'] options = ', shape="record", style=filled, color=' + box_color output_label( make_indi_dot_id(indi), '"'+ text +'"', options ) def find_families_of_multiple_marriages(): results = [] person_in_fams = dict() for indi in people_in_paths: person_in_fams[indi] = [] key = 'fams' if key in individuals[indi]: for fam in individuals[indi][key]: if fam in fam_with_matches: person_in_fams[indi].append( fam ) for indi in person_in_fams: if len( person_in_fams[indi] ) > 1: for fam in person_in_fams[indi]: if fam not in results: results.append( fam ) return results multiple_marriages = find_families_of_multiple_marriages() already_used = [] # names of the dna people for indi in matches: if indi not in already_used: already_used.append( indi ) if indi not in people_in_paths: output_indi_label( indi ) for fam in matches[indi]['path']: if fam not in already_used: already_used.append( fam ) multiple_marr = fam in multiple_marriages if fam_with_matches[fam]: output_match_family_label( fam, multiple_marr ) else: output_plain_family_label( fam, multiple_marr ) # and for me for shared_fam in my_ancestors: for fam in my_ancestors[shared_fam]: if fam not in already_used: already_used.append( fam ) multiple_marr = fam in multiple_marriages if fam_with_matches[fam]: output_match_family_label( fam, multiple_marr ) else: output_plain_family_label( fam, multiple_marr ) def dot_connect( me, matches, my_paths, people_in_paths ): """ Output the links from one family to the next. """ # if this many or more incoming edges, set a color on the edges n_to_color = 3 # keep the routes from one family to the next # each one only once routes = dict() for indi in matches: # again, don't draw a person if they are in someone else's path if matches[indi]['path'] and indi not in people_in_paths: previous = make_indi_dot_id( indi ) for ancestor in matches[indi]['path']: target = make_fam_dot_id( ancestor ) route = (previous, target) routes[route] = ancestor previous = target for shared_fam in my_paths: # ok to route from me to first fam because it will be saved only once previous = make_indi_dot_id( me ) for ancestor in my_paths[shared_fam]: target = make_fam_dot_id( ancestor ) route = (previous, target) routes[route] = ancestor previous = target # count the number of connections into each family # so that the multiply connected can be coloured counts = dict() for route in routes: ancestor = routes[route] if ancestor not in counts: counts[ancestor] = 0 counts[ancestor] += 1 # assign the same color to the connection lines for the families # with multiple connections # and # loop through the colors to give a different color as each family matches ancestor_color = dict() n_colors = len( line_colors ) c = n_colors + 1 for ancestor in counts: if counts[ancestor] >= n_to_color: c = c + 1 if c >= n_colors: c = 0 ancestor_color[ancestor] = line_colors[c] # output the routes for route in routes: ancestor = routes[route] extra = '' if ancestor in ancestor_color: extra = ' [color=' + ancestor_color[ancestor] + ']' print( route[0] + ' -> ' + route[1] + extra + ';' ) # these are keys into the parsed sections of the returned data structure i_key = readgedcom.PARSED_INDI f_key = readgedcom.PARSED_FAM opts = dict() opts['display-gedcom-warnings'] = False data = readgedcom.read_file( sys.argv[1], opts ) # people who have the dna event # matched[indi] = { note: the event text, shared: closest shared ancestor ) matched = dict() # the id of the base dna match person me = None for indi in data[i_key]: result = check_for_dna_event( data[i_key][indi] ) if result[0]: matched[indi] = dict() if result[1].lower().startswith( 'me,' ): matched[indi]['note'] = 'me' me = indi else: matched[indi]['note'] = extract_dna_cm( result[1] ) + ' cM' if not me: print( 'Didnt find base person', file=sys.stderr ) sys.exit() ancestors = dict() for indi in matched: ancestors[indi] = get_ancestor_families( indi, data[i_key], data[f_key] ) # how many generations do I have max_gen = max( ancestors[me].values() ) # For each of the dna matched people, # find the youngest ancestor which matches with me. # # Both people exist in the same tree so there must be a similar ancestor # unless the dna match is noise. In this case the shared ancestor will be None. # # Finding shared ancestor person rather than shared ancestor family # in order to skip half-cousins. Then in the display show only the people # rather than families. for indi in matched: if indi == me: continue found_match = None found_gen = max_gen + 1 for ancestor_fam in ancestors[indi]: if ancestor_fam in ancestors[me]: my_generation = ancestors[me][ancestor_fam] if my_generation < found_gen: found_gen = my_generation found_match = ancestor_fam # the closest shared family matched[indi]['shared'] = found_match # Find the path from each match to the closest shared family. # Assuming only one such path for each matched person # Adding the list in matched[indi]['path'] for indi in matched: matched[indi]['path'] = [] if indi == me: continue top_ancestor_fam = matched[indi]['shared'] if top_ancestor_fam: family_path = find_ancestor_path( indi, top_ancestor_fam, data[i_key], data[f_key], [] ) if family_path[0]: matched[indi]['path'] = family_path[1] # Find the paths from me to each of those shared ancestors my_paths = dict() shared_ancestors = dict() for indi in matched: if indi == me: continue shared_ancestors[matched[indi]['shared']] = True for ancestor_fam in shared_ancestors: family_path = find_ancestor_path( me, ancestor_fam, data[i_key], data[f_key], [] ) if family_path[0]: my_paths[ancestor_fam] = family_path[1] # Find families along those paths which contain a matched person # value for each family is true or false. families_with_matches = dict() for indi in matched: if indi == me: continue for fam in matched[indi]['path']: if fam not in families_with_matches: families_with_matches[fam] = does_fam_have_match( matched, data[f_key][fam] ) for ancestor_fam in my_paths: for fam in my_paths[ancestor_fam]: if fam not in families_with_matches: families_with_matches[fam] = does_fam_have_match( matched, data[f_key][fam] ) # Find the people who are in the families in the paths all_people_in_paths = [] for fam in families_with_matches: for parent in ['husb','wife']: if parent in data[f_key][fam]: all_people_in_paths.append( data[f_key][fam][parent][0] ) # Output to stdout begin_dot() dot_labels( data[i_key], data[f_key], matched, my_paths, families_with_matches, all_people_in_paths ) dot_connect( me, matched, my_paths, all_people_in_paths ) end_dot() ```
{ "source": "johnandrea/ns-covid-counts", "score": 3 }
#### File: common/tests/test-non-numbers.py ```python import sys from word2number import w2n def fix_number( given ): result = None if given == 'null': result = given elif given == '': result = 'null' else: try: result = w2n.word_to_num( given ) except ValueError: print( 'non-numeric found:', given, file=sys.stderr ) return result def run_test( s ): x = fix_number( s ) print( s, '=>', x ) run_test( '5' ) run_test( 'five' ) run_test( 'zero' ) run_test( '' ) run_test( 'null' ) run_test( 'nothing' ) run_test( 'twenty-two' ) ```
{ "source": "johnandrea/readgedcom", "score": 3 }
#### File: playground/dates/t2.py ```python import datetime import arrow # datetime fails on MS-Windows 7 -native library can't handle unix epoch and before def fill( n, s ): return s + ' ' * max( 0, n-len(s) ) def run_test( y, m, d ): out = fill( 10, str(y) + '-' + str(m) + '-' + str(d) ) out += ' | ' try: x = datetime.date( y, m, d ) out += fill( 10, str( x ) ) except: out += fill( 10, 'err' ) out += ' | ' try: x = arrow.get( y, m, d ) out += fill( 10, str( x.date() ) ) except: out += fill( 10, 'err' ) print( out ) out = fill( 10, 'yyy-mm-dd' ) out += ' | ' out += fill( 10, 'datetime' ) out += ' | ' out += fill( 10, 'arrow' ) print( out ) run_test( 2020, 7, 9 ) run_test( 1970, 1, 2 ) run_test( 1970, 1, 1 ) run_test( 1969, 12, 31 ) run_test( 1960, 11, 30 ) run_test( 1909, 1, 2 ) run_test( 1808, 3, 4 ) run_test( 1707, 5, 6 ) run_test( 1606, 8, 9 ) ``` #### File: playground/dates/t3.py ```python import sys import dateparser import arrow def fill( n, s ): return s + ' ' * max( 0, n-len(s) ) def run_test( s ): out = fill( 15, s ) out += ' | ' try: x = dateparser.parse( s ) out += fill( 10, str( x.date() ) ) except: #e = sys.exc_info()[0] e = 'err' out += fill( 10, str(e) ) out += ' | ' try: x = arrow.get( s ) out += fill( 10, str( x.date() ) ) except: #e = sys.exc_info()[0] e = 'err' out += fill( 10, str(e) ) print( out ) out = fill( 15, 'date' ) out += ' | ' out += fill( 10, 'dateparser' ) out += ' | ' out += fill( 10, 'arrow' ) print( out ) run_test( '10 mar 1982' ) run_test( '1982 mar 10' ) run_test( '1970 jan 1' ) run_test( '1969 dec 31' ) run_test( '3 oct 1860' ) run_test( '3-oct-1860' ) run_test( '1860-oct-3' ) run_test( '1860-10-3' ) run_test( '3-10-1860' ) run_test( 'wrong-1907' ) run_test( '1907-wrong' ) run_test( '1907 wrong' ) run_test( 'wrong 1907' ) ```
{ "source": "JohnAndrewTaylor/Algorithms", "score": 4 }
#### File: Algorithms/Graphs/utilData.py ```python import heapq class Stack: def __init__(self): self.stack = [] def push(self,a): self.stack.append(a) def pop(self): return self.stack.pop() def isEmpty(self): return not self.stack class Queue: def __init__(self): self.queue = [] def push(self,a): self.queue.insert(0,a) def pop(self): return self.queue.pop() def isEmpty(self): return not self.queue class PriorityQueue: def __init__(self): self.pq = [] def push(self, a, order): heapq.heappush(self.pq, (order, a)) def pop(self): _, a = heapq.heappop(self.pq) return a def isEmpty(self): return not self.pq ``` #### File: Algorithms/Graphs/utilGraph.py ```python class Graph: def __init__(self, vertices, edges): self.vertexList = [] self.edgeList = [] for v in vertices: self.vertexList.append(Vertex(v)) for e in edges: self.edgeList.append(Edge(e)) # Initialize vertex neighbors dictionary # Uses vertex label to return a list of tuples # Tuple: neighboring vertex, weight of connecting edge self.neighborsDict = {} for v in self.vertexList: neighbors = [] for e in self.edgeList: if (e.getStart().getLabel() == v.getLabel()): neighbors.append((e.getEnd(), e.getWeight())) if (e.getEnd().getLabel() == v.getLabel()): neighbors.append((e.getStart(), e.getWeight())) self.neighborsDict[v.getLabel()] = neighbors def __str__(self): return "Vertices: %s ||| Edges: %s" % (self.vertexList, self.edgeList) def __repr__(self): return self.__str__() def getEdges(self): return self.edgeList def getVertices(self): return self.vertexList def getNeighbors(self, v): return self.neighborsDict.get(v.getLabel()) class Edge(Graph): def __init__(self, tupleEdge): self.startVertex = Vertex(tupleEdge[0]) self.endVertex = Vertex(tupleEdge[1]) if len(tupleEdge) == 3: self.weight = tupleEdge[2] else: self.weight = 1 def __str__(self): return "{(%s,%s) weight:%s}" % (self.startVertex.getLabel(),self.endVertex.getLabel(),self.getWeight()) def __repr__(self): return self.__str__() def __eq__(self, e): return (self.startVertex.getLabel() == e.getStart().getLabel()) & (self.endVertex.getLabel() == e.getEnd().getLabel()) def getTuple(self): return (self.startVertex, self.endVertex) def getStart(self): return self.startVertex def getEnd(self): return self.endVertex def getWeight(self): return self.weight class Vertex(Graph): def __init__(self, label): self.vertexLabel = label def __str__(self): return "%s" % (self.vertexLabel) def __repr__(self): return self.__str__() def __eq__(self, v): return self.vertexLabel == v.getLabel() def getLabel(self): return self.vertexLabel ```
{ "source": "JohnAndrewTaylor/flowsa", "score": 3 }
#### File: flowsa/data_source_scripts/StatCan_IWS_MI.py ```python import pandas as pd import io import zipfile import pycountry from flowsa.common import * def sc_call(url, sc_response, args): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param sc_response: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ # Convert response to dataframe # read all files in the stat canada zip with zipfile.ZipFile(io.BytesIO(sc_response.content), "r") as f: # read in file names for name in f.namelist(): # if filename does not contain "MetaData", then create dataframe if "MetaData" not in name: data = f.open(name) df = pd.read_csv(data, header=0) return df def sc_parse(dataframe_list, args): """ Functions to being parsing and formatting data into flowbyactivity format :param dataframe_list: list of dataframes to concat and format :param args: arguments as specified in flowbyactivity.py ('year' and 'source') :return: dataframe parsed and partially formatted to flowbyactivity specifications """ # concat dataframes df = pd.concat(dataframe_list, sort=False) # drop columns df = df.drop(columns=['COORDINATE', 'DECIMALS', 'DGUID', 'SYMBOL', 'TERMINATED', 'UOM_ID', 'SCALAR_ID', 'VECTOR']) # rename columns df = df.rename(columns={'GEO': 'Location', 'North American Industry Classification System (NAICS)': 'Description', 'REF_DATE': 'Year', 'STATUS': 'Spread', 'VALUE': "FlowAmount", 'Water use parameter': 'FlowName'}) # extract NAICS as activity column. rename activity based on flowname df['Activity'] = df['Description'].str.extract('.*\[(.*)\].*') df.loc[df['Description'] == 'Total, all industries', 'Activity'] = '31-33' # todo: change these activity names df.loc[df['Description'] == 'Other manufacturing industries', 'Activity'] = 'Other' df['FlowName'] = df['FlowName'].str.strip() df.loc[df['FlowName'] == 'Water intake', 'ActivityConsumedBy'] = df['Activity'] df.loc[df['FlowName'].isin(['Water discharge', "Water recirculation"]), 'ActivityProducedBy'] = df['Activity'] # create "unit" column df["Unit"] = "million " + df["UOM"] + "/year" # drop columns used to create unit and activity columns df = df.drop(columns=['SCALAR_FACTOR', 'UOM', 'Activity']) # Modify the assigned RSD letter values to numeric value df.loc[df['Spread'] == 'A', 'Spread'] = 2.5 # given range: 0.01 - 4.99% df.loc[df['Spread'] == 'B', 'Spread'] = 7.5 # given range: 5 - 9.99% df.loc[df['Spread'] == 'C', 'Spread'] = 12.5 # given range: 10 - 14.99% df.loc[df['Spread'] == 'D', 'Spread'] = 20 # given range: 15 - 24.99% df.loc[df['Spread'] == 'E', 'Spread'] = 37.5 # given range:25 - 49.99% df.loc[df['Spread'] == 'F', 'Spread'] = 75 # given range: > 49.99% df.loc[df['Spread'] == 'x', 'Spread'] = withdrawn_keyword # hard code data df['Class'] = 'Water' df['SourceName'] = 'StatCan_IWS_MI' # temp hardcode canada iso code df['Location'] = call_country_code('Canada') df['Year'] = df['Year'].astype(str) df['LocationSystem'] = "ISO" df["MeasureofSpread"] = 'RSD' df["DataReliability"] = '3' df["DataCollection"] = '4' # subset based on year df = df[df['Year'] == args['year']] return df def convert_statcan_data_to_US_water_use(df, attr): """ Use Canadian GDP data to convert 3 digit canadian water use to us water use: - canadian gdp - us gdp :param df: :param attr: :return: """ import flowsa from flowsa.values_from_literature import get_Canadian_to_USD_exchange_rate from flowsa.flowbyfunctions import assign_fips_location_system, aggregator from flowsa.common import fba_default_grouping_fields from flowsa.dataclean import harmonize_units from flowsa.common import US_FIPS, load_bea_crosswalk # load Canadian GDP data gdp = flowsa.getFlowByActivity(datasource='StatCan_GDP', year=attr['allocation_source_year'], flowclass='Money') gdp = harmonize_units(gdp) # drop 31-33 gdp = gdp[gdp['ActivityProducedBy'] != '31-33'] gdp = gdp.rename(columns={"FlowAmount": "CanDollar"}) # merge df df_m = pd.merge(df, gdp[['CanDollar', 'ActivityProducedBy']], how='left', left_on='ActivityConsumedBy', right_on='ActivityProducedBy') df_m['CanDollar'] = df_m['CanDollar'].fillna(0) df_m = df_m.drop(columns=["ActivityProducedBy_y"]) df_m = df_m.rename(columns={"ActivityProducedBy_x": "ActivityProducedBy"}) df_m = df_m[df_m['CanDollar'] != 0] exchange_rate = get_Canadian_to_USD_exchange_rate(str(attr['allocation_source_year'])) exchange_rate = float(exchange_rate) # convert to mgal/USD df_m.loc[:, 'FlowAmount'] = df_m['FlowAmount'] / (df_m['CanDollar'] / exchange_rate) df_m.loc[:, 'Unit'] = 'Mgal/USD' df_m = df_m.drop(columns=["CanDollar"]) # convert Location to US df_m.loc[:, 'Location'] = US_FIPS df_m = assign_fips_location_system(df_m, str(attr['allocation_source_year'])) # load us gdp # load Canadian GDP data us_gdp_load = flowsa.getFlowByActivity(datasource='BEA_GDP_GrossOutput', year=attr['allocation_source_year'], flowclass='Money') us_gdp_load = harmonize_units(us_gdp_load) # load bea crosswalk cw_load = load_bea_crosswalk() cw = cw_load[['BEA_2012_Detail_Code', 'NAICS_2012_Code']].drop_duplicates() cw = cw[cw['NAICS_2012_Code'].apply(lambda x: len(str(x)) == 3)].drop_duplicates().reset_index(drop=True) # merge us_gdp = pd.merge(us_gdp_load, cw, how='left', left_on='ActivityProducedBy', right_on='BEA_2012_Detail_Code') us_gdp = us_gdp.drop(columns=['ActivityProducedBy', 'BEA_2012_Detail_Code']) # rename columns us_gdp = us_gdp.rename(columns={'NAICS_2012_Code': 'ActivityProducedBy'}) # agg by naics us_gdp = aggregator(us_gdp, fba_default_grouping_fields) us_gdp = us_gdp.rename(columns={'FlowAmount': 'us_gdp'}) # determine annual us water use df_m2 = pd.merge(df_m, us_gdp[['ActivityProducedBy', 'us_gdp']], how='left', left_on='ActivityConsumedBy', right_on='ActivityProducedBy') df_m2.loc[:, 'FlowAmount'] = df_m2['FlowAmount'] * (df_m2['us_gdp']) df_m2.loc[:, 'Unit'] = 'Mgal' df_m2 = df_m2.rename(columns={'ActivityProducedBy_x': 'ActivityProducedBy'}) df_m2 = df_m2.drop(columns=['ActivityProducedBy_y', 'us_gdp']) return df_m2 # def disaggregate_statcan_to_naics_6(df): # """ # # :param df: # :return: # """ # # return df ``` #### File: flowsa/flowsa/flowbyfunctions.py ```python from flowsa.common import * from flowsa.common import fbs_activity_fields from flowsa.dataclean import clean_df, replace_strings_with_NoneType, replace_NoneType_with_empty_cells def create_geoscale_list(df, geoscale, year='2015'): """ Create a list of FIPS associated with given geoscale :param df: FlowBySector of FlowByActivity df :param geoscale: 'national', 'state', or 'county' :return: list of relevant FIPS """ # filter by geoscale depends on Location System fips = [] if geoscale == "national": fips.append(US_FIPS) elif df['LocationSystem'].str.contains('FIPS').any(): # all_FIPS = read_stored_FIPS() if geoscale == "state": state_FIPS = get_state_FIPS(year) fips = list(state_FIPS['FIPS']) elif geoscale == "county": county_FIPS = get_county_FIPS(year) fips = list(county_FIPS['FIPS']) return fips def filter_by_geoscale(df, geoscale): """ Filter flowbyactivity by FIPS at the given scale :param df: Either flowbyactivity or flowbysector :param geoscale: string, either 'national', 'state', or 'county' :return: filtered flowbyactivity or flowbysector """ fips = create_geoscale_list(df, geoscale) df = df[df['Location'].isin(fips)].reset_index(drop=True) if len(df) == 0: log.error("No flows found in the " + " flow dataset at the " + geoscale + " scale") else: return df def agg_by_geoscale(df, from_scale, to_scale, groupbycols): """ :param df: flowbyactivity or flowbysector df :param from_scale: :param to_scale: :param groupbycolumns: flowbyactivity or flowbysector default groupby columns :return: """ # use from scale to filter by these values df = filter_by_geoscale(df, from_scale).reset_index(drop=True) df = update_geoscale(df, to_scale) fba_agg = aggregator(df, groupbycols) return fba_agg def weighted_average(df, data_col, weight_col, by_col): """ Generates a weighted average result based on passed columns Parameters ---------- df : DataFrame Dataframe prior to aggregating from which a weighted average is calculated data_col : str Name of column to be averaged. weight_col : str Name of column to serve as the weighting. by_col : list List of columns on which the dataframe is aggregated. Returns ------- result : series Series reflecting the weighted average values for the data_col, at length consistent with the aggregated dataframe, to be reapplied to the data_col in the aggregated dataframe. """ df = df.assign(_data_times_weight=df[data_col] * df[weight_col]) df = df.assign(_weight_where_notnull=df[weight_col] * pd.notnull(df[data_col])) g = df.groupby(by_col) result = g['_data_times_weight'].sum() / g['_weight_where_notnull'].sum() del df['_data_times_weight'], df['_weight_where_notnull'] return result def aggregator(df, groupbycols): """ Aggregates flowbyactivity or flowbysector df by given groupbycols :param df: Either flowbyactivity or flowbysector :param groupbycols: Either flowbyactivity or flowbysector columns :return: """ # reset index df = df.reset_index(drop=True) # tmp replace null values with empty cells df = replace_NoneType_with_empty_cells(df) # drop columns with flowamount = 0 df = df[df['FlowAmount'] != 0] # list of column headers, that if exist in df, should be aggregated using the weighted avg fxn possible_column_headers = ('Spread', 'Min', 'Max', 'DataReliability', 'TemporalCorrelation', 'GeographicalCorrelation', 'TechnologicalCorrelation', 'DataCollection') # list of column headers that do exist in the df being aggregated column_headers = [e for e in possible_column_headers if e in df.columns.values.tolist()] df_dfg = df.groupby(groupbycols).agg({'FlowAmount': ['sum']}) # run through other columns creating weighted average for e in column_headers: df_dfg[e] = weighted_average(df, e, 'FlowAmount', groupbycols) df_dfg = df_dfg.reset_index() df_dfg.columns = df_dfg.columns.droplevel(level=1) # if datatypes are strings, ensure that Null values remain NoneType df_dfg = replace_strings_with_NoneType(df_dfg) return df_dfg def sector_ratios(df, sectorcolumn): """ Determine ratios of the less aggregated sectors within a more aggregated sector :param df: A df with sector columns :param sectorcolumn: 'SectorConsumedBy' or 'SectorProducedBy' :return: """ # drop any null rows (can occur when activities are ranges) df = df[~df[sectorcolumn].isnull()] # find the longest length sector length = max(df[sectorcolumn].apply(lambda x: len(str(x))).unique()) # for loop in reverse order longest length naics minus 1 to 2 # appends missing naics levels to df sector_ratios = [] for i in range(length, 3, -1): # subset df to sectors with length = i and length = i + 1 df_subset = df.loc[df[sectorcolumn].apply(lambda x: len(x) == i)] # create column for sector grouping df_subset = df_subset.assign(Sector_group=df_subset[sectorcolumn].apply(lambda x: x[0:i-1])) # subset df to create denominator df_denom = df_subset[['FlowAmount', 'Location', 'Sector_group']] df_denom = df_denom.groupby(['Location', 'Sector_group'], as_index=False)[["FlowAmount"]].agg("sum") df_denom = df_denom.rename(columns={"FlowAmount": "Denominator"}) # merge the denominator column with fba_w_sector df ratio_df = df_subset.merge(df_denom, how='left') # calculate ratio ratio_df.loc[:, 'FlowAmountRatio'] = ratio_df['FlowAmount'] / ratio_df['Denominator'] ratio_df = ratio_df.drop(columns=['Denominator', 'Sector_group']).reset_index() sector_ratios.append(ratio_df) # concat list of dataframes (info on each page) df_w_ratios = pd.concat(sector_ratios, sort=True).reset_index(drop=True) return df_w_ratios def sector_aggregation(df_load, group_cols): """ Function that checks if a sector length exists, and if not, sums the less aggregated sector :param df: Either a flowbyactivity df with sectors or a flowbysector df :param group_cols: columns by which to aggregate :return: """ # determine if activities are sector-like, if aggregating a df with a 'SourceName' sector_like_activities = False if 'SourceName' in df_load.columns: # load source catalog cat = load_source_catalog() # for s in pd.unique(flowbyactivity_df['SourceName']): s = pd.unique(df_load['SourceName'])[0] # load catalog info for source src_info = cat[s] sector_like_activities = src_info['sector-like_activities'] # ensure None values are not strings df = replace_NoneType_with_empty_cells(df_load) # if activities are source like, drop from df and group calls, add back in as copies of sector columns # columns to keep if sector_like_activities: group_cols = [e for e in group_cols if e not in ('ActivityProducedBy', 'ActivityConsumedBy')] # subset df df_cols = [e for e in df.columns if e not in ('ActivityProducedBy', 'ActivityConsumedBy')] df = df[df_cols] # find the longest length sector length = df[[fbs_activity_fields[0], fbs_activity_fields[1]]].apply( lambda x: x.str.len()).max().max() length = int(length) # for loop in reverse order longest length naics minus 1 to 2 # appends missing naics levels to df for i in range(length - 1, 1, -1): # subset df to sectors with length = i and length = i + 1 df_subset = df.loc[df[fbs_activity_fields[0]].apply(lambda x: i + 1 >= len(x) >= i) | df[fbs_activity_fields[1]].apply(lambda x: i + 1 >= len(x) >= i)] # create a list of i digit sectors in df subset sector_subset = df_subset[ ['Location', fbs_activity_fields[0], fbs_activity_fields[1]]].drop_duplicates().reset_index( drop=True) df_sectors = sector_subset.copy() df_sectors.loc[:, 'SectorProducedBy'] = df_sectors['SectorProducedBy'].apply(lambda x: x[0:i]) df_sectors.loc[:, 'SectorConsumedBy'] = df_sectors['SectorConsumedBy'].apply(lambda x: x[0:i]) sector_list = df_sectors.drop_duplicates().values.tolist() # create a list of sectors that are exactly i digits long # where either sector column is i digits in length df_existing_1 = sector_subset.loc[(sector_subset['SectorProducedBy'].apply(lambda x: len(x) == i)) | (sector_subset['SectorConsumedBy'].apply(lambda x: len(x) == i))] # where both sector columns are i digits in length df_existing_2 = sector_subset.loc[(sector_subset['SectorProducedBy'].apply(lambda x: len(x) == i)) & (sector_subset['SectorConsumedBy'].apply(lambda x: len(x) == i))] # concat existing dfs df_existing = pd.concat([df_existing_1, df_existing_2], sort=False) existing_sectors = df_existing.drop_duplicates().dropna().values.tolist() # list of sectors of length i that are not in sector list missing_sectors = [e for e in sector_list if e not in existing_sectors] if len(missing_sectors) != 0: # new df of sectors that start with missing sectors. drop last digit of the sector and sum flows # set conditions agg_sectors_list = [] for q, r, s in missing_sectors: c1 = df_subset['Location'] == q c2 = df_subset[fbs_activity_fields[0]].apply(lambda x: x[0:i] == r) #.str.startswith(y) c3 = df_subset[fbs_activity_fields[1]].apply(lambda x: x[0:i] == s) #.str.startswith(z) # subset data agg_sectors_list.append(df_subset.loc[c1 & c2 & c3]) agg_sectors = pd.concat(agg_sectors_list, sort=False) agg_sectors = agg_sectors.loc[ (agg_sectors[fbs_activity_fields[0]].apply(lambda x: len(x) > i)) | (agg_sectors[fbs_activity_fields[1]].apply(lambda x: len(x) > i))] agg_sectors.loc[:, fbs_activity_fields[0]] = agg_sectors[fbs_activity_fields[0]].apply( lambda x: x[0:i]) agg_sectors.loc[:, fbs_activity_fields[1]] = agg_sectors[fbs_activity_fields[1]].apply( lambda x: x[0:i]) # aggregate the new sector flow amounts agg_sectors = aggregator(agg_sectors, group_cols) # append to df agg_sectors = replace_NoneType_with_empty_cells(agg_sectors) df = df.append(agg_sectors, sort=False).reset_index(drop=True) # manually modify non-NAICS codes that might exist in sector df.loc[:, 'SectorConsumedBy'] = np.where(df['SectorConsumedBy'].isin(['F0', 'F01']), 'F010', df['SectorConsumedBy']) # domestic/household df.loc[:, 'SectorProducedBy'] = np.where(df['SectorProducedBy'].isin(['F0', 'F01']), 'F010', df['SectorProducedBy']) # domestic/household # drop any duplicates created by modifying sector codes df = df.drop_duplicates() # if activities are source-like, set col values as copies of the sector columns if sector_like_activities: df = df.assign(ActivityProducedBy=df['SectorProducedBy']) df = df.assign(ActivityConsumedBy=df['SectorConsumedBy']) # reindex columns df = df.reindex(df_load.columns, axis=1) # replace null values df = replace_strings_with_NoneType(df) return df def sector_disaggregation(df, group_cols): """ function to disaggregate sectors if there is only one naics at a lower level works for lower than naics 4 :param df_load: A FBS df :param group_cols: :return: A FBS df with missing naics5 and naics6 """ # ensure None values are not strings df = replace_NoneType_with_empty_cells(df) # load naics 2 to naics 6 crosswalk cw_load = load_sector_length_crosswalk() # for loop min length to 6 digits, where min length cannot be less than 2 length = df[[fbs_activity_fields[0], fbs_activity_fields[1]]].apply( lambda x: x.str.len()).min().min() if length < 2: length = 2 # appends missing naics levels to df for i in range(length, 6): sector_merge = 'NAICS_' + str(i) sector_add = 'NAICS_' + str(i+1) # subset the df by naics length cw = cw_load[[sector_merge, sector_add]] # only keep the rows where there is only one value in sector_add for a value in sector_merge cw = cw.drop_duplicates(subset=[sector_merge], keep=False).reset_index(drop=True) sector_list = cw[sector_merge].values.tolist() # subset df to sectors with length = i and length = i + 1 df_subset = df.loc[df[fbs_activity_fields[0]].apply(lambda x: i + 1 >= len(x) >= i) | df[fbs_activity_fields[1]].apply(lambda x: i + 1 >= len(x) >= i)] # create new columns that are length i df_subset = df_subset.assign(SectorProduced_tmp=df_subset[fbs_activity_fields[0]].apply(lambda x: x[0:i])) df_subset = df_subset.assign(SectorConsumed_tmp=df_subset[fbs_activity_fields[1]].apply(lambda x: x[0:i])) # subset the df to the rows where the tmp sector columns are in naics list df_subset_1 = df_subset.loc[(df_subset['SectorProduced_tmp'].isin(sector_list)) & (df_subset['SectorConsumed_tmp'] == "")] df_subset_2 = df_subset.loc[(df_subset['SectorProduced_tmp'] == "") & (df_subset['SectorConsumed_tmp'].isin(sector_list))] df_subset_3 = df_subset.loc[(df_subset['SectorProduced_tmp'].isin(sector_list)) & (df_subset['SectorConsumed_tmp'].isin(sector_list))] # concat existing dfs df_subset = pd.concat([df_subset_1, df_subset_2, df_subset_3], sort=False) # drop all rows with duplicate temp values, as a less aggregated naics exists # list of column headers, that if exist in df, should be aggregated using the weighted avg fxn possible_column_headers = ('Flowable', 'FlowName', 'Unit', 'Context', 'Compartment', 'Location', 'Year', 'SectorProduced_tmp', 'SectorConsumed_tmp') # list of column headers that do exist in the df being subset cols_to_drop = [e for e in possible_column_headers if e in df_subset.columns.values.tolist()] df_subset = df_subset.drop_duplicates(subset=cols_to_drop, keep=False).reset_index(drop=True) # merge the naics cw new_naics = pd.merge(df_subset, cw[[sector_merge, sector_add]], how='left', left_on=['SectorProduced_tmp'], right_on=[sector_merge]) new_naics = new_naics.rename(columns={sector_add: "SPB"}) new_naics = new_naics.drop(columns=[sector_merge]) new_naics = pd.merge(new_naics, cw[[sector_merge, sector_add]], how='left', left_on=['SectorConsumed_tmp'], right_on=[sector_merge]) new_naics = new_naics.rename(columns={sector_add: "SCB"}) new_naics = new_naics.drop(columns=[sector_merge]) # drop columns and rename new sector columns new_naics = new_naics.drop(columns=["SectorProducedBy", "SectorConsumedBy", "SectorProduced_tmp", "SectorConsumed_tmp"]) new_naics = new_naics.rename(columns={"SPB": "SectorProducedBy", "SCB": "SectorConsumedBy"}) # append new naics to df new_naics['SectorConsumedBy'] = new_naics['SectorConsumedBy'].replace({np.nan: ""}) new_naics['SectorProducedBy'] = new_naics['SectorProducedBy'].replace({np.nan: ""}) new_naics = replace_NoneType_with_empty_cells(new_naics) df = pd.concat([df, new_naics], sort=True) # replace blank strings with None df = replace_strings_with_NoneType(df) return df def assign_fips_location_system(df, year_of_data): """ Add location system based on year of data. County level FIPS change over the years. :param df: df with FIPS location system :param year_of_data: year of data pulled :return: """ if '2015' <= year_of_data: df.loc[:, 'LocationSystem'] = 'FIPS_2015' elif '2013' <= year_of_data < '2015': df.loc[:, 'LocationSystem'] = 'FIPS_2013' elif '2010' <= year_of_data < '2013': df.loc[:, 'LocationSystem'] = 'FIPS_2010' elif year_of_data < '2010': log.warning( "Missing FIPS codes from crosswalk for " + year_of_data + ". Temporarily assigning to FIPS_2010") df.loc[:, 'LocationSystem'] = 'FIPS_2010' return df def collapse_fbs_sectors(fbs): """ Collapses the Sector Produced/Consumed into a single column named "Sector" uses :param fbs: a standard FlowBySector (format) :return: """ # ensure correct datatypes and order fbs = clean_df(fbs, flow_by_sector_fields, fbs_fill_na_dict) # collapse the FBS sector columns into one column based on FlowType fbs.loc[fbs["FlowType"] == 'TECHNOSPHERE_FLOW', 'Sector'] = fbs["SectorConsumedBy"] fbs.loc[fbs["FlowType"] == 'WASTE_FLOW', 'Sector'] = fbs["SectorProducedBy"] fbs.loc[(fbs["FlowType"] == 'WASTE_FLOW') & (fbs['SectorProducedBy'].isnull()), 'Sector'] = fbs["SectorConsumedBy"] fbs.loc[(fbs["FlowType"] == 'ELEMENTARY_FLOW') & (fbs['SectorProducedBy'].isnull()), 'Sector'] = fbs["SectorConsumedBy"] fbs.loc[(fbs["FlowType"] == 'ELEMENTARY_FLOW') & (fbs['SectorConsumedBy'].isnull()), 'Sector'] = fbs["SectorProducedBy"] fbs.loc[(fbs["FlowType"] == 'ELEMENTARY_FLOW') & (fbs['SectorConsumedBy'].isin(['F010', 'F0100', 'F01000'])) & (fbs['SectorProducedBy'].isin(['22', '221', '2213', '22131', '221310'])), 'Sector'] = fbs["SectorConsumedBy"] # drop sector consumed/produced by columns fbs_collapsed = fbs.drop(columns=['SectorProducedBy', 'SectorConsumedBy']) # aggregate fbs_collapsed = aggregator(fbs_collapsed, fbs_collapsed_default_grouping_fields) # sort dataframe fbs_collapsed = clean_df(fbs_collapsed, flow_by_sector_collapsed_fields, fbs_collapsed_fill_na_dict) fbs_collapsed = fbs_collapsed.sort_values(['Sector', 'Flowable', 'Context', 'Location']).reset_index(drop=True) return fbs_collapsed def return_activity_from_scale(df, provided_from_scale): """ Determine the 'from scale' used for aggregation/df subsetting for each activity combo in a df :param df: flowbyactivity df :param activity_df: a df with the activityproducedby, activityconsumedby columns and a column 'exists' denoting if data is available at specified geoscale :param provided_from_scale: The scale to use specified in method yaml :return: """ # determine the unique combinations of activityproduced/consumedby unique_activities = unique_activity_names(df) # filter by geoscale fips = create_geoscale_list(df, provided_from_scale) df_sub = df[df['Location'].isin(fips)] # determine unique activities after subsetting by geoscale unique_activities_sub = unique_activity_names(df_sub) # return df of the difference between unique_activities and unique_activities2 df_missing = dataframe_difference(unique_activities, unique_activities_sub, which='left_only') # return df of the similarities between unique_activities and unique_activities2 df_existing = dataframe_difference(unique_activities, unique_activities_sub, which='both') df_existing = df_existing.drop(columns='_merge') df_existing['activity_from_scale'] = provided_from_scale # for loop through geoscales until find data for each activity combo if provided_from_scale == 'national': geoscales = ['state', 'county'] elif provided_from_scale == 'state': geoscales = ['county'] elif provided_from_scale == 'county': log.info('No data - skipping') if len(df_missing) > 0: for i in geoscales: # filter by geoscale fips_i = create_geoscale_list(df, i) df_i = df[df['Location'].isin(fips_i)] # determine unique activities after subsetting by geoscale unique_activities_i = unique_activity_names(df_i) # return df of the difference between unique_activities subset and unique_activities for geoscale df_missing_i = dataframe_difference(unique_activities_sub, unique_activities_i, which='right_only') df_missing_i = df_missing_i.drop(columns='_merge') df_missing_i['activity_from_scale'] = i # return df of the similarities between unique_activities and unique_activities2 df_existing_i = dataframe_difference(unique_activities_sub, unique_activities_i, which='both') # append unique activities and df with defined activity_from_scale unique_activities_sub = unique_activities_sub.append(df_missing_i[[fba_activity_fields[0], fba_activity_fields[1]]]) df_existing = df_existing.append(df_missing_i) df_missing = dataframe_difference(df_missing[[fba_activity_fields[0], fba_activity_fields[1]]], df_existing_i[[fba_activity_fields[0], fba_activity_fields[1]]], which=None) return df_existing def subset_df_by_geoscale(df, activity_from_scale, activity_to_scale): """ Subset a df by geoscale or agg to create data specified in method yaml :param flow_subset: :param activity_from_scale: :param activity_to_scale: :return: """ # method of subset dependent on LocationSystem if df['LocationSystem'].str.contains('FIPS').any(): df = df[df['LocationSystem'].str.contains('FIPS')].reset_index(drop=True) # determine 'activity_from_scale' for use in df geoscale subset, by activity modified_from_scale = return_activity_from_scale(df, activity_from_scale) # add 'activity_from_scale' column to df df2 = pd.merge(df, modified_from_scale) # list of unique 'from' geoscales unique_geoscales = modified_from_scale['activity_from_scale'].drop_duplicates().values.tolist() if len(unique_geoscales) > 1: log.info('Dataframe has a mix of geographic levels: ' + ', '.join(unique_geoscales)) # to scale if fips_number_key[activity_from_scale] > fips_number_key[activity_to_scale]: to_scale = activity_to_scale else: to_scale = activity_from_scale df_subset_list = [] # subset df based on activity 'from' scale for i in unique_geoscales: df3 = df2[df2['activity_from_scale'] == i] # if desired geoscale doesn't exist, aggregate existing data # if df is less aggregated than allocation df, aggregate fba activity to allocation geoscale if fips_number_key[i] > fips_number_key[to_scale]: log.info("Aggregating subset from " + i + " to " + to_scale) df_sub = agg_by_geoscale(df3, i, to_scale, fba_default_grouping_fields) # else filter relevant rows else: log.info("Subsetting " + i + " data") df_sub = filter_by_geoscale(df3, i) df_subset_list.append(df_sub) df_subset = pd.concat(df_subset_list, ignore_index=True) # only keep cols associated with FBA df_subset = clean_df(df_subset, flow_by_activity_fields, fba_fill_na_dict, drop_description=False) # right now, the only other location system is for Statistics Canada data else: df_subset = df.copy() return df_subset def unique_activity_names(fba_df): """ Determine the unique activity names in a df :param fba_df: a flowbyactivity df :return: df with ActivityProducedBy and ActivityConsumedBy columns """ activities = fba_df[[fba_activity_fields[0], fba_activity_fields[1]]] unique_activities = activities.drop_duplicates().reset_index(drop=True) return unique_activities def dataframe_difference(df1, df2, which=None): """ Find rows which are different between two DataFrames :param df1: :param df2: :param which: 'both', 'right_only', 'left_only' :return: """ comparison_df = df1.merge(df2, indicator=True, how='outer') if which is None: diff_df = comparison_df[comparison_df['_merge'] != 'both'] else: diff_df = comparison_df[comparison_df['_merge'] == which] return diff_df def estimate_suppressed_data(df, sector_column, naics_level): """ Estimate data suppression, by equally allocating parent NAICS values to child NAICS :param df: :param sector_column: :param naics_level: numeric, indicate at what NAICS length to base estimated suppresed data off (2 - 5) :return: """ # exclude nonsectors df = replace_NoneType_with_empty_cells(df) # find the longest length sector max_length = max(df[sector_column].apply(lambda x: len(str(x))).unique()) # loop through starting at naics_level, use most detailed level possible to save time for i in range(naics_level, max_length): # create df of i length df_x = df.loc[df[sector_column].apply(lambda x: len(x) == i)] # create df of i + 1 length df_y = df.loc[df[sector_column].apply(lambda x: len(x) == i + 1)] # create temp sector columns in df y, that are i digits in length df_y = df_y.assign(s_tmp=df_y[sector_column].apply(lambda x: x[0:i])) # create list of location and temp activity combos that contain a 0 missing_sectors_df = df_y[df_y['FlowAmount'] == 0] missing_sectors_list = missing_sectors_df[['Location', 's_tmp']].drop_duplicates().values.tolist() # subset the y df if len(missing_sectors_list) != 0: # new df of sectors that start with missing sectors. drop last digit of the sector and sum flows # set conditions suppressed_list = [] for q, r, in missing_sectors_list: c1 = df_y['Location'] == q c2 = df_y['s_tmp'] == r # subset data suppressed_list.append(df_y.loc[c1 & c2]) suppressed_sectors = pd.concat(suppressed_list, sort=False, ignore_index=True) # add column of existing allocated data for length of i suppressed_sectors['alloc_flow'] = suppressed_sectors.groupby(['Location', 's_tmp'])['FlowAmount'].transform('sum') # subset further so only keep rows of 0 value suppressed_sectors_sub = suppressed_sectors[suppressed_sectors['FlowAmount'] == 0] # add count suppressed_sectors_sub = \ suppressed_sectors_sub.assign(sector_count= suppressed_sectors_sub.groupby(['Location', 's_tmp'])['s_tmp'].transform('count')) # merge suppressed sector subset with df x df_m = pd.merge(df_x, suppressed_sectors_sub[['Class', 'Compartment', 'FlowType', 'FlowName', 'Location', 'LocationSystem', 'Unit', 'Year', sector_column, 's_tmp', 'alloc_flow', 'sector_count']], left_on=['Class', 'Compartment', 'FlowType', 'FlowName', 'Location', 'LocationSystem', 'Unit', 'Year', sector_column], right_on=['Class', 'Compartment', 'FlowType', 'FlowName', 'Location', 'LocationSystem', 'Unit', 'Year', 's_tmp'], how='right') # calculate estimated flows by subtracting the flow amount already allocated from total flow of \ # sector one level up and divide by number of sectors with suppresed data df_m.loc[:, 'FlowAmount'] = (df_m['FlowAmount'] - df_m['alloc_flow']) / df_m['sector_count'] # only keep the suppressed sector subset activity columns df_m = df_m.drop(columns=[sector_column + '_x', 's_tmp', 'alloc_flow', 'sector_count']) df_m = df_m.rename(columns={sector_column + '_y': sector_column}) # reset activity columns #todo: modify so next 2 lines only run if activities are sector-like df_m = df_m.assign(ActivityProducedBy=df_m['SectorProducedBy']) df_m = df_m.assign(ActivityConsumedBy=df_m['SectorConsumedBy']) # drop the existing rows with suppressed data and append the new estimates from fba df modified_df = pd.merge(df, df_m[['FlowName', 'Location', sector_column]], indicator=True, how='outer').query('_merge=="left_only"').drop('_merge', axis=1) df = pd.concat([modified_df, df_m], ignore_index=True) df_w_estimated_data = replace_strings_with_NoneType(df) return df_w_estimated_data def collapse_activity_fields(df): """ The 'activityconsumedby' and 'activityproducedby' columns from the allocation dataset do not always align with the water use dataframe. Generalize the allocation activity column. :param fba_df: :return: """ df = replace_strings_with_NoneType(df) activity_consumed_list = df['ActivityConsumedBy'].drop_duplicates().values.tolist() activity_produced_list = df['ActivityProducedBy'].drop_duplicates().values.tolist() # if an activity field column is all 'none', drop the column and rename renaming activity columns to generalize if all(v is None for v in activity_consumed_list): df = df.drop(columns=['ActivityConsumedBy', 'SectorConsumedBy']) df = df.rename(columns={'ActivityProducedBy': 'Activity', 'SectorProducedBy': 'Sector'}) elif all(v is None for v in activity_produced_list): df = df.drop(columns=['ActivityProducedBy', 'SectorProducedBy']) df = df.rename(columns={'ActivityConsumedBy': 'Activity', 'SectorConsumedBy': 'Sector'}) else: log.error('Cannot generalize dataframe') # drop other columns df = df.drop(columns=['ProducedBySectorType', 'ConsumedBySectorType']) return df def allocate_by_sector(df_w_sectors, source_name, allocation_source, allocation_method, group_cols, **kwargs): """ Create an allocation ratio for df :param df_w_sectors: df with column of sectors :param source_name: the name of the FBA df being allocated :param allocation_source: The name of the FBA allocation dataframe :param allocation_method: currently written for 'proportional' :param group_cols: columns on which to base aggregation and disaggregation :return: df with FlowAmountRatio for each sector """ # first determine if there is a special case with how the allocation ratios are created if allocation_method == 'proportional-flagged': # if the allocation method is flagged, subset sectors that are flagged/notflagged, where nonflagged sectors \ # have flowamountratio=1 if kwargs != {}: if 'flowSubsetMapped' in kwargs: fsm = kwargs['flowSubsetMapped'] flagged = fsm[fsm['disaggregate_flag'] == 1] #todo: change col to be generalized, not SEctorConsumedBy specific flagged_names = flagged['SectorConsumedBy'].tolist() nonflagged = fsm[fsm['disaggregate_flag'] == 0] nonflagged_names = nonflagged['SectorConsumedBy'].tolist() # subset the original df so rows of data that run through the proportioanl allocation process are # sectors included in the flagged list df_w_sectors_nonflagged = df_w_sectors.loc[ (df_w_sectors[fbs_activity_fields[0]].isin(nonflagged_names)) | (df_w_sectors[fbs_activity_fields[1]].isin(nonflagged_names)) ].reset_index(drop=True) df_w_sectors_nonflagged = df_w_sectors_nonflagged.assign(FlowAmountRatio=1) df_w_sectors = df_w_sectors.loc[(df_w_sectors[fbs_activity_fields[0]].isin(flagged_names)) | (df_w_sectors[fbs_activity_fields[1]].isin(flagged_names)) ].reset_index(drop=True) else: log.error('The proportional-flagged allocation method requires a column "disaggregate_flag" in the' 'flow_subset_mapped df') # run sector aggregation fxn to determine total flowamount for each level of sector if len(df_w_sectors) == 0: allocation_df = df_w_sectors_nonflagged.copy() else: df1 = sector_aggregation(df_w_sectors, group_cols) # run sector disaggregation to capture one-to-one naics4/5/6 relationships df2 = sector_disaggregation(df1, group_cols) # if statements for method of allocation # either 'proportional' or 'proportional-flagged' allocation_df = [] if allocation_method == 'proportional' or allocation_method == 'proportional-flagged': allocation_df = proportional_allocation_by_location(df2) else: log.error('Must create function for specified method of allocation') if allocation_method == 'proportional-flagged': # drop rows where values are not in flagged names allocation_df = allocation_df.loc[(allocation_df[fbs_activity_fields[0]].isin(flagged_names)) | (allocation_df[fbs_activity_fields[1]].isin(flagged_names)) ].reset_index(drop=True) # concat the flagged and nonflagged dfs allocation_df = pd.concat([allocation_df, df_w_sectors_nonflagged], ignore_index=True).sort_values(['SectorProducedBy', 'SectorConsumedBy']) return allocation_df def proportional_allocation_by_location(df): """ Creates a proportional allocation based on all the most aggregated sectors within a location Ensure that sectors are at 2 digit level - can run sector_aggregation() prior to using this function :param df: :param sectorcolumn: :return: """ # tmp drop NoneType df = replace_NoneType_with_empty_cells(df) # find the shortest length sector denom_df = df.loc[(df['SectorProducedBy'].apply(lambda x: len(x) == 2)) | (df['SectorConsumedBy'].apply(lambda x: len(x) == 2))] denom_df = denom_df.assign(Denominator=denom_df['FlowAmount'].groupby( denom_df['Location']).transform('sum')) denom_df_2 = denom_df[['Location', 'LocationSystem', 'Year', 'Denominator']].drop_duplicates() # merge the denominator column with fba_w_sector df allocation_df = df.merge(denom_df_2, how='left') # calculate ratio allocation_df.loc[:, 'FlowAmountRatio'] = allocation_df['FlowAmount'] / allocation_df[ 'Denominator'] allocation_df = allocation_df.drop(columns=['Denominator']).reset_index() # add nonetypes allocation_df = replace_strings_with_NoneType(allocation_df) return allocation_df def proportional_allocation_by_location_and_activity(df, sectorcolumn): """ Creates a proportional allocation within each aggregated sector within a location :param df: :param sectorcolumn: :return: """ # tmp replace NoneTypes with empty cells df = replace_NoneType_with_empty_cells(df) # denominator summed from highest level of sector grouped by location short_length = min(df[sectorcolumn].apply(lambda x: len(str(x))).unique()) # want to create denominator based on short_length denom_df = df.loc[df[sectorcolumn].apply(lambda x: len(x) == short_length)].reset_index(drop=True) grouping_cols = [e for e in ['FlowName', 'Location', 'Activity', 'ActivityConsumedBy', 'ActivityProducedBy'] if e in denom_df.columns.values.tolist()] denom_df.loc[:, 'Denominator'] = denom_df.groupby(grouping_cols)['HelperFlow'].transform('sum') # list of column headers, that if exist in df, should be aggregated using the weighted avg fxn possible_column_headers = ('Location', 'LocationSystem', 'Year', 'Activity', 'ActivityConsumedBy', 'ActivityProducedBy') # list of column headers that do exist in the df being aggregated column_headers = [e for e in possible_column_headers if e in denom_df.columns.values.tolist()] merge_headers = column_headers.copy() column_headers.append('Denominator') # create subset of denominator values based on Locations and Activities denom_df_2 = denom_df[column_headers].drop_duplicates().reset_index(drop=True) # merge the denominator column with fba_w_sector df allocation_df = df.merge(denom_df_2, how='left', left_on=merge_headers, right_on=merge_headers) # calculate ratio allocation_df.loc[:, 'FlowAmountRatio'] = allocation_df['HelperFlow'] / allocation_df['Denominator'] allocation_df = allocation_df.drop(columns=['Denominator']).reset_index(drop=True) # fill empty cols with NoneType allocation_df = replace_strings_with_NoneType(allocation_df) # fill na values with 0 allocation_df['HelperFlow'] = allocation_df['HelperFlow'].fillna(0) return allocation_df # def proportional_allocation_by_location_and_sector(df, sectorcolumn): # """ # Creates a proportional allocation within each aggregated sector within a location # :param df: # :param sectorcolumn: # :return: # """ # from flowsa.common import load_source_catalog # # cat = load_source_catalog() # src_info = cat[pd.unique(df['SourceName'])[0]] # # load source catalog to determine the level of sector aggregation associated with a crosswalk # level_of_aggregation = src_info['sector_aggregation_level'] # # # denominator summed from highest level of sector grouped by location # short_length = min(df[sectorcolumn].apply(lambda x: len(str(x))).unique()) # # want to create denominator based on short_length - 1, unless short_length = 2 # denom_df = df.loc[df[sectorcolumn].apply(lambda x: len(x) == short_length)] # if (level_of_aggregation == 'disaggregated') & (short_length != 2): # short_length = short_length - 1 # denom_df.loc[:, 'sec_tmp'] = denom_df[sectorcolumn].apply(lambda x: x[0:short_length]) # denom_df.loc[:, 'Denominator'] = denom_df.groupby(['Location', 'sec_tmp'])['FlowAmount'].transform('sum') # else: # short_length == 2:] # denom_df.loc[:, 'Denominator'] = denom_df['FlowAmount'] # denom_df.loc[:, 'sec_tmp'] = denom_df[sectorcolumn] # # if short_length == 2: # # denom_df.loc[:, 'Denominator'] = denom_df['FlowAmount'] # # denom_df.loc[:, 'sec_tmp'] = denom_df[sectorcolumn] # # else: # # short_length = short_length - 1 # # denom_df.loc[:, 'sec_tmp'] = denom_df[sectorcolumn].apply(lambda x: x[0:short_length]) # # denom_df.loc[:, 'Denominator'] = denom_df.groupby(['Location', 'sec_tmp'])['FlowAmount'].transform('sum') # # denom_df_2 = denom_df[['Location', 'LocationSystem', 'Year', 'sec_tmp', 'Denominator']].drop_duplicates() # # merge the denominator column with fba_w_sector df # df.loc[:, 'sec_tmp'] = df[sectorcolumn].apply(lambda x: x[0:short_length]) # allocation_df = df.merge(denom_df_2, how='left', left_on=['Location', 'LocationSystem', 'Year', 'sec_tmp'], # right_on=['Location', 'LocationSystem', 'Year', 'sec_tmp']) # # calculate ratio # allocation_df.loc[:, 'FlowAmountRatio'] = allocation_df['FlowAmount'] / allocation_df[ # 'Denominator'] # allocation_df = allocation_df.drop(columns=['Denominator', 'sec_tmp']).reset_index(drop=True) # # return allocation_df ``` #### File: flowsa/flowsa/flowbysector.py ```python import sys import argparse import yaml import pandas as pd from esupy.processed_data_mgmt import write_df_to_file import flowsa from flowsa.common import log, flowbysectormethodpath, flow_by_sector_fields, \ fips_number_key, flow_by_activity_fields, load_source_catalog, \ flowbysectoractivitysetspath, flow_by_sector_fields_w_activity,\ set_fb_meta, paths, fba_activity_fields, \ fbs_activity_fields, fba_fill_na_dict, fbs_fill_na_dict, fbs_default_grouping_fields, \ fbs_grouping_fields_w_activities from flowsa.fbs_allocation import direct_allocation_method, function_allocation_method, \ dataset_allocation_method from flowsa.mapping import add_sectors_to_flowbyactivity, map_elementary_flows, \ get_sector_list from flowsa.flowbyfunctions import agg_by_geoscale, sector_aggregation, \ aggregator, subset_df_by_geoscale, sector_disaggregation from flowsa.dataclean import clean_df, harmonize_FBS_columns, reset_fbs_dq_scores from flowsa.datachecks import check_if_losing_sector_data,\ check_for_differences_between_fba_load_and_fbs_output, \ compare_fba_load_and_fbs_output_totals, compare_geographic_totals,\ replace_naics_w_naics_from_another_year # import specific functions from flowsa.data_source_scripts.BEA import subset_BEA_Use from flowsa.data_source_scripts.Blackhurst_IO import convert_blackhurst_data_to_gal_per_year,\ convert_blackhurst_data_to_gal_per_employee from flowsa.data_source_scripts.BLS_QCEW import clean_bls_qcew_fba,\ clean_bls_qcew_fba_for_employment_sat_table, \ bls_clean_allocation_fba_w_sec from flowsa.data_source_scripts.EIA_CBECS_Land import cbecs_land_fba_cleanup from flowsa.data_source_scripts.EIA_MECS import mecs_energy_fba_cleanup,\ eia_mecs_energy_clean_allocation_fba_w_sec, \ mecs_land_fba_cleanup, mecs_land_fba_cleanup_for_land_2012_fbs,\ mecs_land_clean_allocation_mapped_fba_w_sec from flowsa.data_source_scripts.EPA_NEI import clean_NEI_fba, clean_NEI_fba_no_pesticides from flowsa.data_source_scripts.StatCan_IWS_MI import convert_statcan_data_to_US_water_use from flowsa.data_source_scripts.stewiFBS import stewicombo_to_sector, stewi_to_sector from flowsa.data_source_scripts.USDA_CoA_Cropland import \ disaggregate_coa_cropland_to_6_digit_naics,\ coa_irrigated_cropland_fba_cleanup, coa_nonirrigated_cropland_fba_cleanup from flowsa.data_source_scripts.USDA_ERS_MLU import allocate_usda_ers_mlu_land_in_urban_areas,\ allocate_usda_ers_mlu_other_land,\ allocate_usda_ers_mlu_land_in_rural_transportation_areas from flowsa.data_source_scripts.USDA_IWMS import disaggregate_iwms_to_6_digit_naics from flowsa.data_source_scripts.USGS_NWIS_WU import usgs_fba_data_cleanup,\ usgs_fba_w_sectors_data_cleanup def parse_args(): """Make year and source script parameters""" ap = argparse.ArgumentParser() ap.add_argument("-m", "--method", required=True, help="Method for flow by sector file. " "A valid method config file must exist with this name.") args = vars(ap.parse_args()) return args def load_method(method_name): """ Loads a flowbysector method from a YAML :param method_name: :return: """ sfile = flowbysectormethodpath + method_name + '.yaml' try: with open(sfile, 'r') as f: method = yaml.safe_load(f) except IOError: log.error("FlowBySector method file not found.") return method def load_source_dataframe(k, v): """ Load the source dataframe. Data can be a FlowbyActivity or FlowBySector parquet stored in flowsa, or a FlowBySector formatted dataframe from another package. :param k: The datasource name :param v: The datasource parameters :return: """ if v['data_format'] == 'FBA': # if yaml specifies a geoscale to load, use parameter to filter dataframe if 'source_fba_load_scale' in v: geo_level = v['source_fba_load_scale'] else: geo_level = None log.info("Retrieving flowbyactivity for datasource " + k + " in year " + str(v['year'])) flows_df = flowsa.getFlowByActivity(datasource=k, year=v['year'], flowclass=v['class'], geographic_level=geo_level) elif v['data_format'] == 'FBS': log.info("Retrieving flowbysector for datasource " + k) flows_df = flowsa.getFlowBySector(k) elif v['data_format'] == 'FBS_outside_flowsa': log.info("Retrieving flowbysector for datasource " + k) flows_df = getattr(sys.modules[__name__], v["FBS_datapull_fxn"])(v) else: log.error("Data format not specified in method file for datasource " + k) return flows_df def main(**kwargs): """ Creates a flowbysector dataset :param method_name: Name of method corresponding to flowbysector method yaml name :return: flowbysector """ if len(kwargs) == 0: kwargs = parse_args() method_name = kwargs['method'] # assign arguments log.info("Initiating flowbysector creation for " + method_name) # call on method method = load_method(method_name) # create dictionary of data and allocation datasets fb = method['source_names'] # Create empty list for storing fbs files fbs_list = [] for k, v in fb.items(): # pull fba data for allocation flows = load_source_dataframe(k, v) if v['data_format'] == 'FBA': # ensure correct datatypes and that all fields exist flows = clean_df(flows, flow_by_activity_fields, fba_fill_na_dict, drop_description=False) # clean up fba, if specified in yaml if v["clean_fba_df_fxn"] != 'None': log.info("Cleaning up " + k + " FlowByActivity") flows = getattr(sys.modules[__name__], v["clean_fba_df_fxn"])(flows) # if activity_sets are specified in a file, call them here if 'activity_set_file' in v: aset_names = pd.read_csv(flowbysectoractivitysetspath + v['activity_set_file'], dtype=str) else: aset_names = None # create dictionary of allocation datasets for different activities activities = v['activity_sets'] # subset activity data and allocate to sector for aset, attr in activities.items(): # subset by named activities if 'activity_set_file' in v: names = aset_names[aset_names['activity_set'] == aset]['name'] else: names = attr['names'] log.info("Preparing to handle " + aset + " in " + k) log.debug("Preparing to handle subset of activities: " + ', '.join(map(str, names))) # subset fba data by activity # if activities are sector-like, check sectors are valid if load_source_catalog()[k]['sector-like_activities']: flows = replace_naics_w_naics_from_another_year(flows, method['target_sector_source']) flows_subset =\ flows[(flows[fba_activity_fields[0]].isin(names)) | (flows[fba_activity_fields[1]].isin(names))].reset_index(drop=True) # extract relevant geoscale data or aggregate existing data flows_subset_geo = subset_df_by_geoscale(flows_subset, v['geoscale_to_use'], attr['allocation_from_scale']) # if loading data subnational geoscale, check for data loss if attr['allocation_from_scale'] != 'national': compare_geographic_totals(flows_subset_geo, flows_subset, k, method_name, aset) # Add sectors to df activity, depending on level of specified sector aggregation log.info("Adding sectors to " + k) flow_subset_wsec =\ add_sectors_to_flowbyactivity(flows_subset_geo, sectorsourcename=method['target_sector_source'], allocationmethod=attr['allocation_method']) # clean up fba with sectors, if specified in yaml if v["clean_fba_w_sec_df_fxn"] != 'None': log.info("Cleaning up " + k + " FlowByActivity with sectors") flow_subset_wsec = getattr(sys.modules[__name__], v["clean_fba_w_sec_df_fxn"])(flow_subset_wsec, attr=attr) # map df to elementary flows log.info("Mapping flows in " + k + ' to federal elementary flow list') if 'fedefl_mapping' in v: mapping_files = v['fedefl_mapping'] else: mapping_files = k flow_subset_mapped = map_elementary_flows(flow_subset_wsec, mapping_files) # clean up mapped fba with sectors, if specified in yaml if "clean_mapped_fba_w_sec_df_fxn" in v: log.info("Cleaning up " + k + " FlowByActivity with sectors") flow_subset_mapped =\ getattr(sys.modules[__name__], v["clean_mapped_fba_w_sec_df_fxn"])\ (flow_subset_mapped, attr, method) # rename SourceName to MetaSources flow_subset_mapped = flow_subset_mapped.\ rename(columns={'SourceName': 'MetaSources'}) # if allocation method is "direct", then no need to create alloc ratios, # else need to use allocation # dataframe to create sector allocation ratios if attr['allocation_method'] == 'direct': fbs = direct_allocation_method(flow_subset_mapped, k, names, method) # if allocation method for an activity set requires a specific # function due to the complicated nature # of the allocation, call on function here elif attr['allocation_method'] == 'allocation_function': fbs = function_allocation_method(flow_subset_mapped, names, attr, fbs_list) else: fbs =\ dataset_allocation_method(flow_subset_mapped, attr, names, method, k, v, aset, method_name, aset_names) # drop rows where flowamount = 0 (although this includes dropping suppressed data) fbs = fbs[fbs['FlowAmount'] != 0].reset_index(drop=True) # define grouping columns dependent on sectors being activity-like or not if load_source_catalog()[k]['sector-like_activities'] is False: groupingcols = fbs_grouping_fields_w_activities groupingdict = flow_by_sector_fields_w_activity else: groupingcols = fbs_default_grouping_fields groupingdict = flow_by_sector_fields # clean df fbs = clean_df(fbs, groupingdict, fbs_fill_na_dict) # aggregate df geographically, if necessary log.info("Aggregating flowbysector to " + method['target_geoscale'] + " level") # determine from scale if fips_number_key[v['geoscale_to_use']] <\ fips_number_key[attr['allocation_from_scale']]: from_scale = v['geoscale_to_use'] else: from_scale = attr['allocation_from_scale'] fbs_geo_agg = agg_by_geoscale(fbs, from_scale, method['target_geoscale'], groupingcols) # aggregate data to every sector level log.info("Aggregating flowbysector to all sector levels") fbs_sec_agg = sector_aggregation(fbs_geo_agg, groupingcols) # add missing naics5/6 when only one naics5/6 associated with a naics4 fbs_agg = sector_disaggregation(fbs_sec_agg, groupingdict) # check if any sector information is lost before reaching # the target sector length, if so, # allocate values equally to disaggregated sectors log.debug('Checking for data at ' + method['target_sector_level']) fbs_agg_2 = check_if_losing_sector_data(fbs_agg, method['target_sector_level']) # compare flowbysector with flowbyactivity # todo: modify fxn to work if activities are sector like in df being allocated if load_source_catalog()[k]['sector-like_activities'] is False: check_for_differences_between_fba_load_and_fbs_output( flow_subset_mapped, fbs_agg_2, aset, k, method_name) # return sector level specified in method yaml # load the crosswalk linking sector lengths sector_list = get_sector_list(method['target_sector_level']) # subset df, necessary because not all of the sectors are # NAICS and can get duplicate rows fbs_1 = fbs_agg_2.loc[(fbs_agg_2[fbs_activity_fields[0]].isin(sector_list)) & (fbs_agg_2[fbs_activity_fields[1]].isin(sector_list))].\ reset_index(drop=True) fbs_2 = fbs_agg_2.loc[(fbs_agg_2[fbs_activity_fields[0]].isin(sector_list)) & (fbs_agg_2[fbs_activity_fields[1]].isnull())].\ reset_index(drop=True) fbs_3 = fbs_agg_2.loc[(fbs_agg_2[fbs_activity_fields[0]].isnull()) & (fbs_agg_2[fbs_activity_fields[1]].isin(sector_list))].\ reset_index(drop=True) fbs_sector_subset = pd.concat([fbs_1, fbs_2, fbs_3]) # drop activity columns fbs_sector_subset = fbs_sector_subset.drop(['ActivityProducedBy', 'ActivityConsumedBy'], axis=1, errors='ignore') # save comparison of FBA total to FBS total for an activity set compare_fba_load_and_fbs_output_totals(flows_subset_geo, fbs_sector_subset, aset, k, method_name, attr, method, mapping_files) log.info("Completed flowbysector for " + aset) fbs_list.append(fbs_sector_subset) else: # if the loaded flow dt is already in FBS format, append directly to list of FBS log.info("Append " + k + " to FBS list") # ensure correct field datatypes and add any missing fields flows = clean_df(flows, flow_by_sector_fields, fbs_fill_na_dict) fbs_list.append(flows) # create single df of all activities log.info("Concat data for all activities") fbss = pd.concat(fbs_list, ignore_index=True, sort=False) log.info("Clean final dataframe") # add missing fields, ensure correct data type, add missing columns, reorder columns fbss = clean_df(fbss, flow_by_sector_fields, fbs_fill_na_dict) # prior to aggregating, replace MetaSources string with all sources # that share context/flowable/sector values fbss = harmonize_FBS_columns(fbss) # aggregate df as activities might have data for the same specified sector length fbss = aggregator(fbss, fbs_default_grouping_fields) # sort df log.info("Sort and store dataframe") # ensure correct data types/order of columns fbss = clean_df(fbss, flow_by_sector_fields, fbs_fill_na_dict) fbss = fbss.sort_values( ['SectorProducedBy', 'SectorConsumedBy', 'Flowable', 'Context']).reset_index(drop=True) # tmp reset data quality scores fbss = reset_fbs_dq_scores(fbss) # save parquet file meta = set_fb_meta(method_name, "FlowBySector") write_df_to_file(fbss,paths,meta) if __name__ == '__main__': main() ``` #### File: scripts/FlowByActivity_Crosswalks/write_Crosswalk_BLM_PLS.py ```python import pandas as pd from flowsa.common import datapath from scripts.common_scripts import unique_activity_names, order_crosswalk def assign_naics(df): """manually assign each ERS activity to a NAICS_2012 code""" df.loc[df['Activity'] == 'Asphalt Competitive Leases', 'Sector'] = '212399' # All Other Nonmetallic Mineral Mining df.loc[df['Activity'] == 'Class III Reinstatement Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Coal Licenses, Exploration Licenses', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Coal Licenses, Licenses To Mine', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Combined Hydrocarbon Leases', 'Sector'] = '211112' # Natural Gas Liquid Extraction df.loc[df['Activity'] == 'Competitive General Services Administration (GSA) Oil and Gas Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Competitive National Petroleum Reserve-Alaska Leases, Public Domain', 'Sector'] = '211111' # Crude Petroleum and Natural Gas Extraction df.loc[df['Activity'] == 'Competitive Naval Oil Shale Reserve Leases, Public Domain', 'Sector'] = '211111' # Crude Petroleum and Natural Gas Extraction df.loc[df['Activity'] == 'Competitive Protective Leases, Public Domain and Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Competitive Reform Act Leases, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Competitive Reform Act Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction # todo: added 1/13 - check on results df.loc[df['Activity'] == 'EPAct Competitive Geothermal Leases, Public Domain and Acquired Lands', 'Sector'] = '221116' # Power generation, geothermal df.loc[df['Activity'] == 'Exchange Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Federal Coal Leases, Competitive Nonregional Lease-by-Application Leases', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Federal Coal Leases, Competitive Pre-Federal Coal Leasing Amendment Act (FCLAA) Leases', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Federal Coal Leases, Competitive Regional Emergency/Bypass Leases', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Federal Coal Leases, Competitive Regional Leases', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Federal Coal Leases, Exchange Leases', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Federal Coal Leases, Preference Right Leases', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Geothermal Leases, Public Domain and Acquired Lands', 'Sector'] = '221116' # Power generation, geothermal df.loc[df['Activity'] == 'Gilsonite Leases, Gilsonite Competitive Leases', 'Sector'] = '212399' # Gilsonite mining and/or beneficiating df.loc[df['Activity'] == 'Gilsonite Leases, Gilsonite Fringe Acreage Noncompetitive Leases', 'Sector'] = '212399' # Gilsonite mining and/or beneficiating df.loc[df['Activity'] == 'Gilsonite Leases, Gilsonite Preference Right Leases', 'Sector'] = '212399' # Gilsonite mining and/or beneficiating df.loc[df['Activity'] == 'Hardrock - Acquired Lands Leases, Hardrock Preference Right Leases', 'Sector'] = '2122' # Metal Ore Mining df = df.append(pd.DataFrame([['BLM_PLS', 'Hardrock - Acquired Lands Leases, Hardrock Preference Right Leases', '2123']], # Nonmetallic Mineral Mining and Quarrying columns=['ActivitySourceName', 'Activity', 'Sector'] ), ignore_index=True, sort=True) # todo: check definition df.loc[df['Activity'] == 'Logical Mining Units', 'Sector'] = '21211' # Coal Mining df.loc[df['Activity'] == 'Noncompetitive Pre-Reform Act Future Interest Leases, Public Domain and Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Competitive Pre-Reform Act Future Interest Leases, Public Domain and Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction #todo: added 1/13 - check on output df.loc[df['Activity'] == 'Noncompetitive Reform Act Future Interest Leases, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Noncompetitive Reform Act Future Interest Leases, Public Domain and Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Noncompetitive Reform Act Leases, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Noncompetitive Reform Act Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil Shale Leases, Oil Shale R, D&D Leases', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil Shale RD&D Leases', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil and Gas Pre-Reform Act Leases, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil and Gas Pre-Reform Act Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil and Gas Pre-Reform Act Over-the-Counter Leases, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil and Gas Pre-Reform Act Over-the-Counter Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil and Gas Special Act - Federal Farm Mortgage Corporation Act of 1934, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil and Gas Special Act - Rights-of-Way of 1930, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Oil and Gas Special Act - Texas Relinquishment Act of 1919, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Phosphate Leases, Phosphate Competitive Leases', 'Sector'] = '212392' # Phosphate Rock Mining df.loc[df['Activity'] == 'Phosphate Leases, Phosphate Fringe Acreage Noncompetitive Leases', 'Sector'] = '212392' # Phosphate Rock Mining df.loc[df['Activity'] == 'Phosphate Leases, Phosphate Preference Right Leases', 'Sector'] = '212392' # Phosphate Rock Mining df.loc[df['Activity'] == 'Phosphate Use Permits', 'Sector'] = '212392' # Phosphate Rock Mining df.loc[df['Activity'] == 'Potassium Leases, Potassium Competitive Leases', 'Sector'] = '212391' # Potash, Soda, and Borate Mineral Mining df.loc[df['Activity'] == 'Potassium Leases, Potassium Fringe Acreage Noncompetitive Leases', 'Sector'] = '212391' # Potash, Soda, and Borate Mineral Mining df.loc[df['Activity'] == 'Potassium Leases, Potassium Preference Right Leases', 'Sector'] = '212391' # Potash, Soda, and Borate Mineral Mining df.loc[df['Activity'] == 'Pre-EPAct Competitive Geothermal Leases, Public Domain and Acquired Lands', 'Sector'] = '221116' # Power generation, geothermal df.loc[df['Activity'] == 'Pre-Reform Act Simultaneous Leases, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Pre-Reform Act Simultaneous Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction #todo: added 1/13 check if needed df.loc[df['Activity'] == 'Private Leases, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Reform Act Leases, Acquired Lands', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Renewal Leases, Public Domain', 'Sector'] = '21111' # Oil and Gas Extraction df.loc[df['Activity'] == 'Sodium Leases, Sodium Competitive Leases', 'Sector'] = '212391' # Potash, Soda, and Borate Mineral Mining df.loc[df['Activity'] == 'Sodium Leases, Sodium Fringe Acreage Noncompetitive Leases', 'Sector'] = '212391' # Potash, Soda, and Borate Mineral Mining df.loc[df['Activity'] == 'Sodium Leases, Sodium Preference Right Leases', 'Sector'] = '212391' # Potash, Soda, and Borate Mineral Mining df.loc[df['Activity'] == 'Sodium Use Permit', 'Sector'] = '212391' # Potash, Soda, and Borate Mineral Mining # todo: look over data - check next activity is double counting #df.loc[df['Activity'] == 'Summary: Pre-Reform Act Simultaneous Leases, Public Domain and Acquired Lands', 'Sector'] = '' return df if __name__ == '__main__': # select years to pull unique activity names years = ['2007', '2011', '2012'] # assign flowclass flowcass = ['Land'] # assign datasource datasource = 'BLM_PLS' # df of unique ers activity names df = unique_activity_names(flowcass, years, datasource) # add manual naics 2012 assignments df = assign_naics(df) # assign sector source name df['SectorSourceName'] = 'NAICS_2012_Code' # drop any rows where naics12 is 'nan' (because level of detail not needed or to prevent double counting) df.dropna(subset=["Sector"], inplace=True) # assign sector type df['SectorType'] = "I" # sort df df = order_crosswalk(df) # save as csv df.to_csv(datapath + "activitytosectormapping/" + "Crosswalk_" + datasource + "_toNAICS.csv", index=False) ``` #### File: scripts/FlowByActivity_Crosswalks/write_Crosswalk_Census_AHS.py ```python from flowsa.common import datapath from scripts.common_scripts import unique_activity_names, order_crosswalk def assign_naics(df): """manually assign each ERS activity to a NAICS_2012 code""" # assign sector source name df['SectorSourceName'] = 'NAICS_2012_Code' df.loc[df['Activity'] == 'Asphalt Competitive Leases', 'Sector'] = '' df.loc[df['Activity'] == 'Class III Reinstatement Leases, Public Domain', 'Sector'] = '' df.loc[df['Activity'] == 'Coal Licenses, Exploration Licenses', 'Sector'] = '' return df if __name__ == '__main__': # select years to pull unique activity names years = ['2011', '2013', '2015', '2017'] # assign flowclass flowcass = ['Land'] # datasource datasource = 'Census_AHS' # df of unique ers activity names df = unique_activity_names(flowcass, years, datasource) # add manual naics 2012 assignments df = assign_naics(df) # drop any rows where naics12 is 'nan' (because level of detail not needed or to prevent double counting) df.dropna(subset=["Sector"], inplace=True) # assign sector type df['SectorType'] = None # sort df df = order_crosswalk(df) # save as csv df.to_csv(datapath + "activitytosectormapping/" + "Crosswalk_" + datasource + "_toNAICS.csv", index=False) ``` #### File: scripts/FlowByActivity_Crosswalks/write_Crosswalk_USGS_NWIS_WU.py ```python import pandas as pd from flowsa.common import datapath from scripts.common_scripts import unique_activity_names, order_crosswalk def assign_naics(df): """manually assign each ERS activity to a NAICS_2012 code""" df.loc[df['Activity'] == 'Aquaculture', 'Sector'] = '1125' # df.loc[df['Activity'] == 'Commercial', 'Sector'] = '' df.loc[df['Activity'] == 'Domestic', 'Sector'] = 'F01000' df.loc[df['Activity'] == 'Hydroelectric Power', 'Sector'] = '221111' df.loc[df['Activity'] == 'Industrial', 'Sector'] = '1133' df = df.append(pd.DataFrame([['Industrial', '23']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '31']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '32']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '33']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '48839']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '5111']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '51222']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '51223']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '54171']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '56291']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Industrial', '81149']], columns=['Activity', 'Sector']), sort=True) df.loc[df['Activity'] == 'Irrigation', 'Sector'] = '111' df = df.append(pd.DataFrame([['Irrigation', '112']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Irrigation', '71391']], columns=['Activity', 'Sector']), sort=True) df.loc[df['Activity'] == 'Irrigation Crop', 'Sector'] = '111' df = df.append(pd.DataFrame([['Irrigation Crop', '112']], columns=['Activity', 'Sector']), sort=True) df.loc[df['Activity'] == 'Irrigation Golf Courses', 'Sector'] = '71391' df.loc[df['Activity'] == 'Irrigation Total', 'Sector'] = '111' df = df.append(pd.DataFrame([['Irrigation Total', '71391']], columns=['Activity', 'Sector']), sort=True) df.loc[df['Activity'] == 'Livestock', 'Sector'] = '1121' df = df.append(pd.DataFrame([['Livestock', '1122']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Livestock', '1123']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Livestock', '1124']], columns=['Activity', 'Sector']), sort=True) df = df.append(pd.DataFrame([['Livestock', '1129']], columns=['Activity', 'Sector']), sort=True) df.loc[df['Activity'] == 'Mining', 'Sector'] = '21' df = df.append(pd.DataFrame([['Mining', '54136']], columns=['Activity', 'Sector']), sort=True) df.loc[df['Activity'] == 'Public', 'Sector'] = '221310' df.loc[df['Activity'] == 'Public Supply', 'Sector'] = '221310' df = df.append(pd.DataFrame([['Thermoelectric Power', '2211']], columns=['Activity', 'Sector']), sort=True) df.loc[df['Activity'] == 'Thermoelectric Power Closed-loop cooling', 'Sector'] = '221100A' df.loc[df['Activity'] == 'Thermoelectric Power Once-through cooling', 'Sector'] = '221100B' # df.loc[df['Activity'] == 'Total', 'Sector'] = '' # df.loc[df['Activity'] == 'Total Groundwater', 'Sector'] = '' # df.loc[df['Activity'] == 'Total Surface', 'Sector'] = '' # assign sector source name df['SectorSourceName'] = 'NAICS_2012_Code' return df if __name__ == '__main__': # select years to pull unique activity names years = ['2010', '2015'] # flowclass flowclass = ['Water'] # datasource datasource = 'USGS_NWIS_WU' # df of unique ers activity names df = unique_activity_names(flowclass, years, datasource) # add manual naics 2012 assignments df = assign_naics(df) # drop any rows where naics12 is 'nan' (because level of detail not needed or to prevent double counting) df.dropna(subset=["Sector"], inplace=True) # assign sector type df['SectorType'] = 'I' # assign sector type df['ActivitySourceName'] = 'USGS_NWIS_WU' # sort df df = order_crosswalk(df) # save as csv df.to_csv(datapath + "activitytosectormapping/" + "Crosswalk_" + datasource + "_toNAICS.csv", index=False) ```
{ "source": "JohNan/homeassistant-volkswagencarnet", "score": 2 }
#### File: custom_components/volkswagencarnet/sensor.py ```python import logging from . import DATA_KEY, VolkswagenEntity, DOMAIN from .const import DATA _LOGGER = logging.getLogger(__name__) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Volkswagen sensors.""" if discovery_info is None: return async_add_entities([VolkswagenSensor(hass.data[DATA_KEY], *discovery_info)]) async def async_setup_entry(hass, entry, async_add_devices): data = hass.data[DOMAIN][entry.entry_id][DATA] coordinator = data.coordinator if coordinator.data is not None: async_add_devices( VolkswagenSensor(data, coordinator.vin, instrument.component, instrument.attr) for instrument in (instrument for instrument in data.instruments if instrument.component == 'sensor') ) return True class VolkswagenSensor(VolkswagenEntity): """Representation of a Volkswagen Carnet Sensor.""" @property def state(self): """Return the state of the sensor.""" _LOGGER.debug("Getting state of %s" % self.instrument.attr) return self.instrument.state @property def unit_of_measurement(self): """Return the unit of measurement.""" return self.instrument.unit ```
{ "source": "JohNan/homeassistant-wellbeing", "score": 2 }
#### File: custom_components/wellbeing/api.py ```python import json from datetime import datetime, timedelta import asyncio import logging import socket from enum import Enum from typing import Union import aiohttp import async_timeout from custom_components.wellbeing.const import SENSOR, FAN, BINARY_SENSOR from homeassistant.components.binary_sensor import DEVICE_CLASS_CONNECTIVITY from homeassistant.const import TEMP_CELSIUS, PERCENTAGE, DEVICE_CLASS_TEMPERATURE, DEVICE_CLASS_CO2, \ DEVICE_CLASS_HUMIDITY, CONCENTRATION_PARTS_PER_MILLION, CONCENTRATION_PARTS_PER_BILLION TIMEOUT = 10 RETRIES = 3 BASE_URL = "https://api.delta.electrolux.com/api" TOKEN_URL = "https://electrolux-wellbeing-client.vercel.app/api/mu<PASSWORD>" LOGIN_URL = f"{BASE_URL}/Users/Login" APPLIANCES_URL = f"{BASE_URL}/Domains/Appliances" APPLIANCE_INFO_URL = f"{BASE_URL}/AppliancesInfo" APPLIANCE_DATA_URL = f"{BASE_URL}/Appliances" FILTER_TYPE = { 48: "Particle filter", 64: "Breeze 360 filter", 96: "Breeze 360 filter", 99: "Breeze 360 filter", 192: "Odor filter", 0: "Filter" } _LOGGER: logging.Logger = logging.getLogger(__package__) HEADERS = {"Content-type": "application/json; charset=UTF-8"} class Mode(str, Enum): OFF = "PowerOff" AUTO = "Auto" MANUAL = "Manual" UNDEFINED = "Undefined" class ApplianceEntity: entity_type: int = None def __init__(self, name, attr, device_class=None) -> None: self.attr = attr self.name = name self.device_class = device_class self._state = None def setup(self, data): self._state = data[self.attr] return self def clear_state(self): self._state = None @property def state(self): return self._state class ApplianceSensor(ApplianceEntity): entity_type: int = SENSOR def __init__(self, name, attr, unit="", device_class=None) -> None: super().__init__(name, attr, device_class) self.unit = unit class ApplianceFan(ApplianceEntity): entity_type: int = FAN def __init__(self, name, attr) -> None: super().__init__(name, attr) class ApplianceBinary(ApplianceEntity): entity_type: int = BINARY_SENSOR def __init__(self, name, attr, device_class=None) -> None: super().__init__(name, attr, device_class) @property def state(self): return self._state in ['enabled', True, 'Connected'] class Appliance: serialNumber: str brand: str device: str firmware: str mode: Mode entities: [] def __init__(self, name, pnc_id, model) -> None: self.model = model self.pnc_id = pnc_id self.name = name @staticmethod def _create_entities(data): a7_entities = [ ApplianceSensor( name="eCO2", attr='ECO2', unit=CONCENTRATION_PARTS_PER_MILLION, device_class=DEVICE_CLASS_CO2 ), ApplianceSensor( name=f"{FILTER_TYPE[data.get('FilterType_1', 0)]} Life", attr='FilterLife_1', unit=PERCENTAGE ), ApplianceSensor( name=f"{FILTER_TYPE[data.get('FilterType_2', 0)]} Life", attr='FilterLife_2', unit=PERCENTAGE ), ApplianceSensor( name='State', attr='State' ), ApplianceBinary( name='PM Sensor State', attr='PMSensState' ) ] a9_entities = [ ApplianceSensor( name=f"{FILTER_TYPE.get(data.get('FilterType', 0), 'Filter')} Life", attr='FilterLife', unit=PERCENTAGE ), ApplianceSensor( name="CO2", attr='CO2', unit=CONCENTRATION_PARTS_PER_MILLION, device_class=DEVICE_CLASS_CO2 ), ] common_entities = [ ApplianceFan( name="Fan Speed", attr='Fanspeed' ), ApplianceSensor( name="Temperature", attr='Temp', unit=TEMP_CELSIUS, device_class=DEVICE_CLASS_TEMPERATURE ), ApplianceSensor( name="TVOC", attr='TVOC', unit=CONCENTRATION_PARTS_PER_BILLION ), ApplianceSensor( name="PM1", attr='PM1' ), ApplianceSensor( name="PM2.5", attr='PM2_5' ), ApplianceSensor( name="PM10", attr='PM10' ), ApplianceSensor( name="Humidity", attr='Humidity', unit=PERCENTAGE, device_class=DEVICE_CLASS_HUMIDITY ), ApplianceSensor( name="Mode", attr='Workmode' ), ApplianceBinary( name="Ionizer", attr='Ionizer' ), ApplianceBinary( name="UI Light", attr='UILight' ), ApplianceBinary( name="Connection State", attr='connectionState', device_class=DEVICE_CLASS_CONNECTIVITY ), ApplianceBinary( name="Status", attr='status' ), ApplianceBinary( name="Safety Lock", attr='SafetyLock' ) ] return common_entities + a9_entities + a7_entities def get_entity(self, entity_type, entity_attr): return next( entity for entity in self.entities if entity.attr == entity_attr and entity.entity_type == entity_type ) def clear_mode(self): self.mode = Mode.UNDEFINED def setup(self, data): self.firmware = data.get('FrmVer_NIU') self.mode = Mode(data.get('Workmode')) self.entities = [ entity.setup(data) for entity in Appliance._create_entities(data) if entity.attr in data ] @property def speed_range(self): if self.model == "WELLA7": return 1, 5 if self.model == "PUREA9": return 1, 9 return 0 class Appliances: def __init__(self, appliances) -> None: self.appliances = appliances def get_appliance(self, pnc_id): return self.appliances.get(pnc_id, None) class WellbeingApiClient: def __init__(self, username: str, password: str, session: aiohttp.ClientSession) -> None: """Sample API Client.""" self._username = username self._password = password self._session = session self._access_token = None self._token = None self._current_access_token = None self._token_expires = datetime.now() self.appliances = None async def _get_token(self) -> dict: return await self.api_wrapper("get", TOKEN_URL) async def _login(self, access_token: str) -> dict: credentials = { "Username": self._username, "Password": self._password } headers = { "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "Accept": "application/json" } return await self.api_wrapper("post", LOGIN_URL, credentials, headers) async def _get_appliances(self, access_token: str) -> dict: headers = { "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "Accept": "application/json" } return await self.api_wrapper("get", APPLIANCES_URL, headers=headers) async def _get_appliance_info(self, access_token: str, pnc_id: str) -> dict: headers = { "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "Accept": "application/json" } url = f"{APPLIANCE_INFO_URL}/{pnc_id}" return await self.api_wrapper("get", url, headers=headers) async def _get_appliance_data(self, access_token: str, pnc_id: str) -> dict: headers = { "Authorization": f"Bearer {access_token}" } return await self.api_wrapper("get", f"{APPLIANCE_DATA_URL}/{pnc_id}", headers=headers) async def async_login(self) -> bool: if self._current_access_token is not None and self._token_expires > datetime.now(): return True _LOGGER.debug("Current token is not set or expired") self._token = None self._current_access_token = None access_token = await self._get_token() if 'accessToken' not in access_token: self._access_token = None self._current_access_token = None _LOGGER.debug("AccessToken 1 is missing") return False token = await self._login(access_token['accessToken']) if 'accessToken' not in token: self._current_access_token = None _LOGGER.debug("AccessToken 2 is missing") return False self._token_expires = datetime.now() + timedelta(seconds=token['expiresIn']) self._current_access_token = token['accessToken'] return True async def async_get_data(self) -> Appliances: """Get data from the API.""" n = 0 while not await self.async_login() and n < RETRIES: _LOGGER.debug(f"Re-trying login. Attempt {n + 1} / {RETRIES}") n += 1 if self._current_access_token is None: raise Exception("Unable to login") access_token = self._current_access_token appliances = await self._get_appliances(access_token) _LOGGER.debug(f"Fetched data: {appliances}") found_appliances = {} for appliance in (appliance for appliance in appliances if 'pncId' in appliance): app = Appliance(appliance['applianceName'], appliance['pncId'], appliance['modelName']) appliance_info = await self._get_appliance_info(access_token, appliance['pncId']) _LOGGER.debug(f"Fetched data: {appliance_info}") app.brand = appliance_info['brand'] app.serialNumber = appliance_info['serialNumber'] app.device = appliance_info['device'] if app.device != 'AIR_PURIFIER': continue appliance_data = await self._get_appliance_data(access_token, appliance['pncId']) _LOGGER.debug(f"{appliance_data.get('applianceData', {}).get('applianceName', 'N/A')}: {appliance_data}") data = appliance_data.get('twin', {}).get('properties', {}).get('reported', {}) data['connectionState'] = appliance_data.get('twin', {}).get('connectionState') data['status'] = appliance_data.get('twin', {}).get('connectionState') app.setup(data) found_appliances[app.pnc_id] = app return Appliances(found_appliances) async def set_fan_speed(self, pnc_id: str, level: int): data = { "Fanspeed": level } result = await self._send_command(self._current_access_token, pnc_id, data) _LOGGER.debug(f"Set Fan Speed: {result}") async def set_work_mode(self, pnc_id: str, mode: Mode): data = { "WorkMode": mode } result = await self._send_command(self._current_access_token, pnc_id, data) _LOGGER.debug(f"Set Fan Speed: {result}") async def _send_command(self, access_token: str, pnc_id: str, command: dict) -> None: """Get data from the API.""" headers = { "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "Accept": "application/json" } await self.api_wrapper("put", f"{APPLIANCE_DATA_URL}/{pnc_id}/Commands", data=command, headers=headers) async def api_wrapper(self, method: str, url: str, data: dict = {}, headers: dict = {}) -> dict: """Get information from the API.""" try: async with async_timeout.timeout(TIMEOUT): if method == "get": response = await self._session.get(url, headers=headers) return await response.json() elif method == "put": response = await self._session.put(url, headers=headers, json=data) return await response.json() elif method == "patch": await self._session.patch(url, headers=headers, json=data) elif method == "post": response = await self._session.post(url, headers=headers, json=data) return await response.json() except asyncio.TimeoutError as exception: _LOGGER.error( "Timeout error fetching information from %s - %s", url, exception, ) except (KeyError, TypeError) as exception: _LOGGER.error( "Error parsing information from %s - %s", url, exception, ) except (aiohttp.ClientError, socket.gaierror) as exception: _LOGGER.error( "Error fetching information from %s - %s", url, exception, ) except Exception as exception: # pylint: disable=broad-except _LOGGER.error("Something really wrong happened! - %s", exception) ```
{ "source": "JohnAnih/BMW-used-car-prediction", "score": 3 }
#### File: app/frontend/utils.py ```python from collections import OrderedDict import dash_bootstrap_components as dbc import dash_html_components as html def get_results(mileage: int, transmission: str, fuel_type: str, car_year: int, mpg: int, tax: int, engine_class: str, model_type: str, prediction: str): features = OrderedDict({ "Mileage:": mileage, "Transmission:": transmission, "Fuel Type:": fuel_type, "Car Year:": car_year, "MPG:": mpg, "Tax:": tax, "Engine Class:": engine_class, "Car Model:": model_type, }) results = [html.H3("You entered the following details:", className="h3-additional-style", style={"margin-bottom": "2%"}), ] for feature, user_input in features.items(): results.append(html.B(feature),) results.append(html.P(f"{user_input}"),) results.append(dbc.Badge(f"Estimated price: ${prediction}", className="price-style"),) return results def show_errror_msg(): return "You must fill in all questions to make a predictions" ```
{ "source": "JohNan/pyplaato", "score": 3 }
#### File: pyplaato/models/keg.py ```python from datetime import datetime from enum import Enum import dateutil.parser from .device import PlaatoDevice, PlaatoDeviceType from .pins import PinsBase from ..const import UNIT_TEMP_CELSIUS, UNIT_TEMP_FAHRENHEIT, UNIT_PERCENTAGE, \ METRIC, UNIT_OZ, UNIT_ML class PlaatoKeg(PlaatoDevice): """Class for holding a Plaato Keg""" device_type = PlaatoDeviceType.Keg def __init__(self, attrs): self.beer_left_unit = attrs.get(self.Pins.BEER_LEFT_UNIT, None) self.volume_unit = attrs.get(self.Pins.VOLUME_UNIT, None) self.mass_unit = attrs.get(self.Pins.MASS_UNIT, None) self.measure_unit = attrs.get(self.Pins.MEASURE_UNIT, None) self.og = attrs.get(self.Pins.OG, None) self.fg = attrs.get(self.Pins.FG, None) self.__mode = attrs.get(self.Pins.MODE, None) self.__firmware_version = attrs.get(self.Pins.FIRMWARE_VERSION, None) self.__leak_detection = attrs.get(self.Pins.LEAK_DETECTION, None) self.__abv = attrs.get(self.Pins.ABV, None) self.__name = attrs.get(self.Pins.BEER_NAME, "Beer") self.__percent_beer_left = attrs.get(self.Pins.PERCENT_BEER_LEFT, None) self.__pouring = attrs.get(self.Pins.POURING, False) self.__beer_left = attrs.get(self.Pins.BEER_LEFT, None) self.__temperature = attrs.get(self.Pins.TEMPERATURE, None) self.__unit_type = attrs.get(self.Pins.UNIT_TYPE, None) self.__last_pour = attrs.get(self.Pins.LAST_POUR, None) self.__date = attrs.get(self.Pins.DATE, None) def __repr__(self): return f"{self.__class__.__name__} -> " \ f"Bear Left: {self.beer_left}, " \ f"Temp: {self.temperature}, " \ f"Pouring: {self.pouring}" @property def date(self) -> float: if self.__date is not None and not self.__date: date = dateutil.parser.parse(self.__date) return datetime.timestamp(date) return super().date @property def temperature(self): if self.__temperature is not None: return round(float(self.__temperature), 1) @property def temperature_unit(self): if self.__unit_type == METRIC: return UNIT_TEMP_CELSIUS return UNIT_TEMP_FAHRENHEIT @property def beer_left(self): if self.__beer_left is not None: return round(float(self.__beer_left), 2) @property def percent_beer_left(self): if self.__percent_beer_left is not None: return round(self.__percent_beer_left, 2) @property def last_pour(self): if self.__last_pour is not None: return round(float(self.__last_pour), 2) @property def last_pour_unit(self): if self.__unit_type == METRIC: return UNIT_ML return UNIT_OZ @property def abv(self): if self.__abv is not None and not self.__abv: return round(float(self.__abv), 2) @property def pouring(self): """ 0 = Not Pouring 255 = Pouring :return: True if 255 = Pouring else False """ return self.__pouring == "255" @property def leak_detection(self): """ 1 = Leaking 0 = Not Leaking :return: True if 1 = Leaking else False """ return self.__leak_detection == "1" @property def mode(self): """ 1 = Beer 2 = Co2 """ return "Beer" if self.__mode == "1" else "Co2" @property def name(self) -> str: return self.__name @property def firmware_version(self) -> str: return self.__firmware_version def get_sensor_name(self, pin: PinsBase) -> str: names = { self.Pins.PERCENT_BEER_LEFT: "Percent Beer Left", self.Pins.POURING: "Pouring", self.Pins.BEER_LEFT: "Beer Left", self.Pins.TEMPERATURE: "Temperature", self.Pins.LAST_POUR: "Last Pour Amount", self.Pins.OG: "Original Gravity", self.Pins.FG: "Final Gravity", self.Pins.ABV: "Alcohol by Volume", self.Pins.LEAK_DETECTION: "Leaking", self.Pins.MODE: "Mode", self.Pins.DATE: "Keg Date", self.Pins.BEER_NAME: "Beer Name" } return names.get(pin, pin.name) @property def sensors(self) -> dict: return { self.Pins.PERCENT_BEER_LEFT: self.percent_beer_left, self.Pins.BEER_LEFT: self.beer_left, self.Pins.TEMPERATURE: self.temperature, self.Pins.LAST_POUR: self.last_pour } @property def binary_sensors(self) -> dict: return { self.Pins.LEAK_DETECTION: self.leak_detection, self.Pins.POURING: self.pouring, } @property def attributes(self) -> dict: return { self.get_sensor_name(self.Pins.BEER_NAME): self.name, self.get_sensor_name(self.Pins.DATE): datetime.fromtimestamp(self.date).strftime('%x'), self.get_sensor_name(self.Pins.MODE): self.mode, self.get_sensor_name(self.Pins.OG): self.og, self.get_sensor_name(self.Pins.FG): self.fg, self.get_sensor_name(self.Pins.ABV): self.abv } def get_unit_of_measurement(self, pin: PinsBase): if pin == self.Pins.BEER_LEFT: return self.beer_left_unit if pin == self.Pins.TEMPERATURE: return self.temperature_unit if pin == self.Pins.LAST_POUR: return self.last_pour_unit if pin == self.Pins.ABV or pin == self.Pins.PERCENT_BEER_LEFT: return UNIT_PERCENTAGE return "" # noinspection PyTypeChecker @staticmethod def pins(): return list(PlaatoKeg.Pins) class Pins(PinsBase, Enum): BEER_NAME = "v64" PERCENT_BEER_LEFT = "v48" POURING = "v49" BEER_LEFT = "v51" BEER_LEFT_UNIT = "v74" TEMPERATURE = "v56" UNIT_TYPE = "v71" MEASURE_UNIT = "v75" MASS_UNIT = "v73" VOLUME_UNIT = "v82" LAST_POUR = "v59" DATE = "v67" OG = "v65" FG = "v66" ABV = "v68" FIRMWARE_VERSION = "v93" LEAK_DETECTION = "v83" MODE = "v88" ```
{ "source": "johnanthonyjose/fvcore", "score": 3 }
#### File: tests/param_scheduler/test_scheduler_exponential.py ```python import unittest from fvcore.common.param_scheduler import ExponentialParamScheduler class TestExponentialScheduler(unittest.TestCase): _num_epochs = 10 def _get_valid_config(self): return {"start_value": 2.0, "decay": 0.1} def _get_valid_intermediate_values(self): return [1.5887, 1.2619, 1.0024, 0.7962, 0.6325, 0.5024, 0.3991, 0.3170, 0.2518] def test_scheduler(self): config = self._get_valid_config() scheduler = ExponentialParamScheduler(**config) schedule = [ round(scheduler(epoch_num / self._num_epochs), 4) for epoch_num in range(self._num_epochs) ] expected_schedule = [ config["start_value"] ] + self._get_valid_intermediate_values() self.assertEqual(schedule, expected_schedule) ```
{ "source": "johnanthonyowens/ctds", "score": 3 }
#### File: ctds/tests/test_cursor_rowlist.py ```python import ctds from .base import TestExternalDatabase class TestCursorRowList(TestExternalDatabase): def test___doc__(self): self.assertEqual( ctds.RowList.__doc__, '''\ A :ref:`sequence <python:sequence>` object which buffers result set rows in a lightweight manner. Python objects wrapping the columnar data are only created when the data is actually accessed. ''' ) def test_indexerror(self): with self.connect() as connection: with connection.cursor() as cursor: cursor.execute( ''' DECLARE @{0} TABLE(i INT); INSERT INTO @{0}(i) VALUES (1),(2),(3),(4),(5),(6); SELECT * FROM @{0}; '''.format(self.test_indexerror.__name__) ) rows = cursor.fetchall() for index in (6, 7): try: rows[index] except IndexError as ex: self.assertEqual('index is out of range', str(ex)) else: self.fail('IndexError was not raised for index {0}'.format(index)) # pragma: nocover def test_rowlist(self): with self.connect() as connection: with connection.cursor() as cursor: cursor.execute( ''' DECLARE @{0} TABLE(i INT); INSERT INTO @{0}(i) VALUES (1),(2),(3),(4),(5),(6); SELECT * FROM @{0}; '''.format(self.test_rowlist.__name__) ) description = cursor.description rows = cursor.fetchall() # The rowlist should be accessible after closing the cursor # and connection. self.assertTrue(isinstance(rows, ctds.RowList)) self.assertEqual(len(rows), 6) self.assertTrue(rows.description is description) for index, row in enumerate(rows): # The row object should always be the same instance. self.assertTrue(isinstance(row, ctds.Row)) self.assertEqual(id(row), id(rows[index])) ```
{ "source": "JohnAntonios/slackthespot", "score": 2 }
#### File: JohnAntonios/slackthespot/app.py ```python from time import time, sleep from pathlib import Path from dotenv import load_dotenv, set_key from os import getenv from slack import WebClient from slack.errors import SlackApiError from json import dumps from tekore.scope import every from tekore.util import prompt_for_user_token, refresh_user_token from tekore import Spotify from tekore.sender import PersistentSender env_path = Path('.') / '.env' load_dotenv(dotenv_path=env_path) redirect_uri = 'http://localhost/oauth_code' spotify_client_id = getenv("SPOTIFY_CLIENT_ID") spotify_client_secret = getenv("SPOTIFY_CLIENT_SECRET") spotify_refresh_token = getenv("SPOTIFY_CURRENT_USER_TOKEN") token = None if spotify_refresh_token: token = refresh_user_token( spotify_client_id, spotify_client_secret, spotify_refresh_token ) else: # This only needs to be done once, or when you would like to switch the Spotify user to connect to. token = prompt_for_user_token( spotify_client_id, spotify_client_secret, redirect_uri, every ) set_key(env_path, "SPOTIFY_CURRENT_USER_TOKEN", token.refresh_token, "n") spotify = Spotify(token, sender=PersistentSender()) def set_status_message(spotifyInst): track = spotifyInst.playback_currently_playing() if track is None: return False if track.is_playing == False: return False track_name = track.item.name track_artists = ', '.join([artist.name for artist in track.item.artists]) message = f"'{track.item.name}' - {track_artists} github.com/JohnAntonios/slackthespot" # Slack has a limit of 100 characters for the status message. if len(message) > 100: # Omitting the artist names message = f"'{track.item.name}' github.com/JohnAntonios/slackthespot" # Remove the github link, if message is still to long if len(message) > 100: message = track.item.name # If its still too long, then rip if len(message) > 100: message = "The current song is too long to show in Slack" return message slack_token = input("Slack Token: ") client = WebClient(token=slack_token) def do_it(): print("Keep this terminal window open!") status_message = set_status_message(spotify) if status_message != False: try: new_status = dumps({ "status_text": status_message, "status_emoji": ":musical_note:" }) res = client.users_profile_set(profile=new_status) if res.status_code == 200 or res is not None: print(f"Success! {status_message}") except SlackApiError as e: print("something broke") else: print("Not playing anything on Spotify or Paused or Buffering a track") start_time = time() while True: do_it() sleep(60.0 - ((time() - start_time) % 60.0)) ```
{ "source": "johnantonn/cord-19", "score": 4 }
#### File: cord-19/preprocessing/JSONProcessor.py ```python class JSONProcessor: """ Class that contains methods to process json data. """ def convert_dictionaries_to_list(self, json_input, dictionaries_to_convert): """ Function that converts dictionaries inside the given json to list of dictionaries. Args: json_input (dict): The input json dictionaries_to_convert (list): A list with all the dictionaries to convert along with the required information Returns: (dict): The converted json """ for dictionary_to_convert in dictionaries_to_convert: dict_data = json_input[dictionary_to_convert["external_key"]] if type(dict_data) != dict: continue internal_key = dictionary_to_convert["internal_key"] list_of_dicts = list() for key, value in dict_data.items(): value[internal_key] = key list_of_dicts.append(value) json_input[dictionary_to_convert["external_key"]] = list_of_dicts return json_input def convert_list_to_dictionaries(self, json_input, lists_to_convert): """ Function that converts lists of objects to dictionaries and adds them to new key-value. Args: json_input (dict): The input json lists_to_convert: A list with all the lists to make them dictionaries Returns: (dict): The converted json """ for list_to_convert in lists_to_convert: list_data = json_input[list_to_convert["external_key"]] if type(list_data) != list: continue internal_key = list_to_convert["internal_key"] new_external_key = list_to_convert["new_external_key"] dictionary = dict() for i in range(len(list_data)): dictionary[new_external_key + str(i)] = list_data[i] json_input[list_to_convert["new_external_key"]] = dictionary return json_input ```
{ "source": "johnaparker/fields", "score": 2 }
#### File: tests/drude/compare.py ```python import numpy as np import matplotlib.pyplot as plt import h5py from subprocess import call def L2_norm(y1,y2): return np.linalg.norm(y1-y2) def sup_norm(y1,y2): i = np.argmax(np.abs(y1-y2)) return np.abs(y1-y2)[i], wav[-i] freq = np.linspace(1/30, 3/30, 200) omega = 2*np.pi*freq wav = 1/freq # qbox result with h5py.File("scat.h5", 'r') as f: inc = f["sources/tfsf/flux"][...] scat = f["monitors/box_monitor/scat/flux"][...] omega_0 = f['materials/material_0/omega_0'][...] gamma = f['materials/material_0/gamma'][...] eps_inf = f['materials/material_0/eps_inf'][...] scat_qbox = scat/inc plt.plot(wav, scat_qbox, label = "qbox") # meep result with h5py.File("meep/test2.h5", 'r') as f: inc = f["inc"][...]/40 scat = f["box_scat"][...] scat_meep = scat/inc plt.plot(wav, scat_meep, label = "meep") # mie theory result filename = "eps.txt" eps = eps_inf - omega_0**2/(omega**2 - 1j*omega*gamma) print(gamma.shape) to_file = np.array([wav[::-1], eps.real[::-1], np.abs(eps.imag[::-1])]) np.savetxt(filename, to_file.T) call(['../../bench/mie-theory-cylinder/a.out'], stdin=open('cyl.in')) theory = np.loadtxt("mie.out").T plt.plot(theory[0], theory[1], label="exact") # print L2 errors print("L2 norm (meep): {0:.2f}".format(L2_norm(theory[1], scat_meep[::-1]))) print("sup norm (meep): {0:.2f} at {1:.2f}".format(*sup_norm(theory[1], scat_meep[::-1]))) print("L2 norm (qbox): {0:.2f}".format(L2_norm(theory[1], scat_qbox[::-1]))) print("sup norm (qbox): {0:.2f} at {1:.2f}".format(*sup_norm(theory[1], scat_qbox[::-1]))) plt.legend() plt.show() ``` #### File: dynamics/simple/animation.py ```python import h5py import numpy as np import matplotlib.pyplot as plt import my_pytools.my_matplotlib.colors as colors import matplotlib.animation as animation filename = "metal_sphere" filename = "metal_ellipse" filename = "dielectric_block" filename = "metal_block" filename = "out" with h5py.File('{}.h5'.format(filename), 'r') as f: d = f["monitors/volume_monitor/monitor_0/Ez"][...] Er = d['real'] Ei = d['imag'] I = Er**2 + Ei**2 I = I.squeeze() vmax = np.max(I) vmin = 0 plt.gca().set_aspect('equal') im = plt.pcolormesh(I.T, cmap=colors.cmap['parula'], vmax = vmax, vmin = vmin) def updatefig(frame): d = f["monitors/volume_monitor/monitor_{0}/Ez".format(frame)][...] Er = d['real'] Ei = d['imag'] I = Er**2 + Ei**2 I = I.squeeze() im.set_array(np.ravel(I.T)) return im, writer = animation.FFMpegWriter(fps=30, bitrate=4000) ani = animation.FuncAnimation(plt.gcf(), updatefig, np.arange(0,100), interval=30, blit=False) # ani.save("{}.mp4".format(filename), writer=writer) plt.show() ```
{ "source": "johnaparker/johnaparker.github.io", "score": 2 }
#### File: johnaparker.github.io/_code/test.py ```python import numpy as np import miepy from topics.photonic_clusters.create_lattice import hexagonal_lattice_particles import matplotlib.pyplot as plt from numpipe import scheduler, pbar import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D from my_pytools.my_matplotlib.layout import alpha_labels from scipy import constants from scipy.integrate import trapz from my_pytools.my_matplotlib.plots import colorbar mpl.rc('font', size=12, family='arial') mpl.rc('mathtext', default='regular') job = scheduler() nm = 1e-9 um = 1e-6 Ag = miepy.materials.Ag() radius = 75*nm width = 2500*nm wavelengths = np.linspace(470*nm, 880*nm, 1000) energy = constants.h*constants.c/constants.e/wavelengths separation = 600*nm source = miepy.sources.gaussian_beam(width=width, polarization=[1,1j], power=1) source = miepy.sources.plane_wave(polarization=[1,1j], amplitude=1e7) lmax = 2 water = miepy.materials.water() @job.cache def fields(): pos = lattice[:]*600*nm # pos -= np.average(pos, axis=0)[np.newaxis] xmax = 100*nm pos = [[-xmax,-xmax,0], [xmax,xmax,0]] cluster = miepy.sphere_cluster(position=pos, radius=75*nm, material=Ag, source=source, wavelength=800*nm, lmax=lmax, medium=water) xmax = 500*nm x = np.linspace(-xmax, xmax, 250) y = np.linspace(-xmax, xmax, 250) X, Y = np.meshgrid(x, y) Z = np.zeros_like(X) E = cluster.E_field(X, Y, Z) Esrc = cluster.E_source(X, Y, Z) # enhance = np.linalg.norm(E, axis=0)/np.linalg.norm(Esrc, axis=0) enhance = np.linalg.norm(E, axis=0)**2 return dict(enhance=enhance, X=X, Y=Y, E=E) lattice = hexagonal_lattice_particles(37) pos = 600*nm*lattice @job.plots def vis(): from my_pytools.my_matplotlib.colors import cmap cmap = cmap['parula'] fig, ax = plt.subplots(figsize=(6,6)) vm = 13 var = job.load(fields) vmax = np.max(var.enhance)/3 vmin = np.min(var.enhance)*80 for j in range(len(lattice)): circle = plt.Circle(pos[j,:2]/nm, 90, color='C3', fill=False, lw=2) # ax.add_patch(circle) im = ax.pcolormesh(var.X/nm, var.Y/nm, var.enhance, rasterized=True, cmap=cmap, vmax=vmax, vmin=vmin) skip = 15 idx = np.s_[::skip,::skip] ax.quiver(var.X[idx]/nm, var.Y[idx]/nm, var.E.real[0][idx], var.E.real[1][idx], pivot='mid') # im = ax.contourf(var.X/nm, var.Y/nm, var.enhance, rasterized=True, cmap=cmap, vmax=vmax) # plt.colorbar(im, ax=ax, label='field enhancement') ax.set_aspect('equal') ax.axis('off') ax.set_xlim([-500,500]) plt.tight_layout(pad=0) plt.savefig('temp.png', bbox_inches=0) job.run() ```
{ "source": "johnaparker/meep_ext", "score": 2 }
#### File: meep_ext/templates/separation_forces.py ```python import numpy as np from scipy import constants import matplotlib.pyplot as plt import matplotlib as mpl import meep import meep_ext import pinboard job = pinboard.pinboard() ### transformation optics nb = 1.33 scale = nb nm = 1e-9*scale um = 1e-6*scale ### geometry radius = 75*nm gold = meep_ext.material.Au(multiplier=1/scale**2) # gold = meep.Medium(index=3.5/scale) ### source wavelength = 550*nm/scale fcen = 1/wavelength src_time = meep.GaussianSource(frequency=1.3*scale/um, fwidth=4.0*scale/um) polarization = meep.Ex # used in convergence check 'decay_by' source = lambda sim: meep_ext.rhc_polarized_plane_wave(sim, src_time) ### monitor info pml_monitor_gap = 50*nm particle_monitor_gap = 50*nm ### grid resolution = 1/(10*nm) pml = meep.PML(100*nm) @job.cache def norm_sim(): """perform normalization simulation""" L = 2*radius + 2*pml_monitor_gap + 2*particle_monitor_gap + 2*pml.thickness cell = meep.Vector3(L,L,L) norm = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=[], resolution=resolution) norm.init_fields() source(norm) flux_inc = meep_ext.add_flux_plane(norm, fcen, 0, 1, [0,0,0], [2*radius, 2*radius, 0]) norm.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, polarization, pt=meep.Vector3(0,0,0), decay_by=1e-3)) return {'area': (2*radius)**2, 'norm': np.asarray(meep.get_fluxes(flux_inc))} @job.cache def sim(separation): """perform scattering simulation""" L = separation + 2*radius + 2*pml_monitor_gap + 2*particle_monitor_gap + 2*pml.thickness cell = meep.Vector3(L,L,L) p1 = meep.Vector3(-separation/2, 0, 0) p2 = meep.Vector3(separation/2, 0, 0) geometry = [meep.Sphere(center=p1, radius=radius, material=gold), meep.Sphere(center=p2, radius=radius, material=gold)] scat = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=geometry, resolution=resolution) scat.init_fields() source(scat) L = 2*radius + 2*particle_monitor_gap Fx = meep_ext.add_force_box(scat, fcen, 0, 1, p2, [L,L,L], meep.X) Fy = meep_ext.add_force_box(scat, fcen, 0, 1, p2, [L,L,L], meep.Y) Fz = meep_ext.add_force_box(scat, fcen, 0, 1, p2, [L,L,L], meep.Z) # scat.run(until_after_sources=8*um) scat.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, polarization, pt=p2-meep.Vector3(0,0,L/2), decay_by=1e-4)) return {'Fx': np.array(meep.get_forces(Fx))[0], 'Fy': np.array(meep.get_forces(Fy))[0], 'Fz': np.array(meep.get_forces(Fz))[0]} @job.at_end def vis(): ### forces fig, ax = plt.subplots() force = np.zeros([3,len(separations)]) for i,separation in enumerate(separations): var = job.load(sim, f'p{i}') force[0,i] = var.Fx force[1,i] = var.Fy force[2,i] = var.Fz norm = job.load(norm_sim) ax.axhline(0, linestyle='--', color='black') ax.plot(separations/nm, force[0]/norm.norm*norm.area*constants.epsilon_0/2, 'o', color='C0', label='Fx (FDTD)') ax.plot(separations/nm, force[1]/norm.norm*norm.area*constants.epsilon_0/2, 'o', color='C1', label='Fy (FDTD)') ax.plot(separations/nm, force[2]/norm.norm*norm.area*constants.epsilon_0/2, 'o', color='C2', label='Fz (FDTD)') import miepy eps = meep_ext.get_eps(gold)(wavelength) Au = miepy.constant_material(eps*scale**2) water = miepy.constant_material(nb**2) source = miepy.sources.rhc_polarized_plane_wave() seps = np.linspace(300*nm/scale, 900*nm/scale, 100) force = np.zeros([3,len(seps)]) for i,sep in enumerate(seps): spheres = miepy.spheres([[-sep/2,0,0],[sep/2,0,0]], radius/scale, Au) sol = miepy.gmt(spheres, source, wavelength, 2, medium=water) F = sol.force_on_particle(1) force[:,i] = F.squeeze() ax.plot(seps*scale/nm, force[0], color='C0', label='Fx (GMT)') ax.plot(seps*scale/nm, force[1], color='C1', label='Fy (GMT)') ax.plot(seps*scale/nm, force[2], color='C2', label='Fz (GMT)') ax.set(xlabel='separation (nm)', ylabel='force') ax.legend() plt.show() separations = np.linspace(300*nm, 900*nm, 10) for i,separation in enumerate(separations): job.add_instance(sim, f'p{i}', separation=separation) job.execute() ``` #### File: meep_ext/templates/wavelength_forces.py ```python import numpy as np from scipy import constants import matplotlib.pyplot as plt import matplotlib.animation as animation import matplotlib as mpl import meep import meep_ext import pinboard job = pinboard.pinboard() ### transformation optics nb = 1.33 scale = nb nm = 1e-9*scale um = 1e-6*scale ### geometry radius = 75*nm gold = meep_ext.material.Au(multiplier=1/scale**2) # gold = meep.Medium(index=3.5/scale) sep = 400*nm p1 = meep.Vector3(-sep/2, 0, 0) p2 = meep.Vector3(sep/2, 0, 0) geometry = [meep.Sphere(center=p1, radius=radius, material=gold), meep.Sphere(center=p2, radius=radius, material=gold)] ### source fcen, df = meep_ext.freq_data(scale/(400*nm), scale/(1000*nm)) nfreq = 40 src_time = meep.GaussianSource(frequency=1.3*scale/um, fwidth=4.0*scale/um) polarization = meep.Ex # used in convergence check 'decay_by' source = lambda sim: meep_ext.rhc_polarized_plane_wave(sim, src_time) ### monitor info particle_monitor_gap = 50*nm pml_monitor_gap = 50*nm ### grid resolution = 1/(7.5*nm) pml = meep.PML(100*nm) lx = sep + 2*radius + 2*particle_monitor_gap + 2*pml_monitor_gap + 2*pml.thickness ly = lz = 2*radius + 2*particle_monitor_gap + 2*pml_monitor_gap + 2*pml.thickness cell = meep.Vector3(lx,ly,lz) Nx, Ny, Nz = map(round, cell*resolution) @job.cache def dimer_fields(): """capture the Ex fields in the xz plane""" sim = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=geometry, resolution=resolution) sim.init_fields() source(sim) while sim.fields.time() < 3*um: sim.fields.step() if sim.fields.t % 10 == 0: yield {'E': sim.get_array(meep.Vector3(0,0,0), meep.Vector3(cell[0], 0, cell[2]), polarization)} @job.cache def dimer_norm(): """perform normalization simulation""" norm = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=[], resolution=resolution) norm.init_fields() source(norm) flux_inc = meep_ext.add_flux_plane(norm, fcen, df, nfreq, [0,0,0], [2*radius, 2*radius, 0]) norm.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, polarization, pt=meep.Vector3(0,0,0), decay_by=1e-3)) return {'frequency': np.array(meep.get_flux_freqs(flux_inc)), 'area': (2*radius)**2, 'incident': np.asarray(meep.get_fluxes(flux_inc))} @job.cache def dimer_scat(): """perform scattering simulation""" scat = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=geometry, resolution=resolution) scat.init_fields() source(scat) L = 2*radius + 2*particle_monitor_gap Fx = meep_ext.add_force_box(scat, fcen, df, nfreq, p2, [L,L,L], meep.X) Fy = meep_ext.add_force_box(scat, fcen, df, nfreq, p2, [L,L,L], meep.Y) Fz = meep_ext.add_force_box(scat, fcen, df, nfreq, p2, [L,L,L], meep.Z) # scat.run(until_after_sources=8*um) scat.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, polarization, pt=p2-meep.Vector3(0,0,L/2), decay_by=1e-4)) return {'Fx': np.array(meep.get_forces(Fx)), 'Fy': np.array(meep.get_forces(Fy)), 'Fz': np.array(meep.get_forces(Fz)), 'frequency': np.array(meep.get_force_freqs(Fx))} @job.at_end def vis(): nm = 1e-9 ### forces fig, axes = plt.subplots(nrows=2, figsize=(7,6), sharex=True, gridspec_kw=dict(height_ratios=[2,1], hspace=0.05)) norm = job.load(dimer_norm) scat = job.load(dimer_scat) for ax in axes: ax.plot((1/nm)/norm.frequency, scat.Fx/norm.incident*norm.area*constants.epsilon_0/2*1e25, 'o', color='C0', label='Fx (FDTD)') ax.plot((1/nm)/norm.frequency, scat.Fy/norm.incident*norm.area*constants.epsilon_0/2*1e25, 'o', color='C1', label='Fy (FDTD)') ax.plot((1/nm)/norm.frequency, scat.Fz/norm.incident*norm.area*constants.epsilon_0/2*1e25, 'o', color='C2', label='Fz (FDTD)') import miepy wavelengths = np.linspace(400*nm, 1000*nm, 100) eps = meep_ext.get_eps(gold)(wavelengths) Au = miepy.data_material(wavelengths, eps*scale**2) water = miepy.constant_material(nb**2) # Au = miepy.constant_material(3.5**2) spheres = miepy.spheres([[-sep/2/scale,0,0],[sep/2/scale,0,0]], radius/scale, Au) source = miepy.sources.rhc_polarized_plane_wave() sol = miepy.gmt(spheres, source, wavelengths, 2, medium=water) F = sol.force_on_particle(1) for ax in axes: ax.axhline(0, linestyle='--', color='black') ax.plot(wavelengths/nm, F[0]*1e25, color='C0', label='Fx (GMT)') ax.plot(wavelengths/nm, F[1]*1e25, color='C1', label='Fy (GMT)') ax.plot(wavelengths/nm, F[2]*1e25, color='C2', label='Fz (GMT)') axes[0].legend() axes[0].set(ylabel='force') axes[1].set(xlabel='wavelength (nm)', ylabel='force', ylim=[-0.035,0.01]) ### field animation fig, ax = plt.subplots() x = np.linspace(0, cell[0]/nm, Nx) z = np.linspace(0, cell[1]/nm, Nz) X,Z = np.meshgrid(x,z, indexing='ij') var = job.load(dimer_fields) idx = np.s_[10:-10,10:-10] E = var.E[:,10:-10,10:-10] # E = var.E vmax = np.max(np.abs(E))/2 im = ax.pcolormesh(X[idx], Z[idx], E[0], cmap='RdBu', animated=True, vmax=vmax, vmin=-vmax) ax.set_aspect('equal') def update(i): im.set_array(np.ravel(E[i][:-1,:-1])) return [im] ani = animation.FuncAnimation(fig, update, range(E.shape[0]), interval=50, blit=True) plt.show() job.execute() ```
{ "source": "johnaparker/MiePy", "score": 2 }
#### File: benchmarks/parallel/main.py ```python import numpy as np import matplotlib.pyplot as plt import miepy from tqdm import tqdm from functools import partial from scipy.sparse.linalg import bicg, bicgstab from miepy.interactions import solve_linear_system from timer import time_function nm = 1e-9 Ag = miepy.materials.Ag() radius = 75*nm source = miepy.sources.plane_wave.from_string(polarization='rhc') separation = 250*nm def tests(Nmax, step=1): Nparticles = np.arange(1, Nmax+1, step) names = ['build', 'solve', 'flux', 'force'] ftimer = {name: np.zeros_like(Nparticles, dtype=float) for name in names} for i,N in enumerate(Nparticles): print(N, Nmax) positions = [[n*separation, 0, 0] for n in range(N)] mie = miepy.sphere_cluster(position=positions, radius=radius, material=Ag, source=source, wavelength=600*nm, lmax=2) ftimer['force'][i] = time_function(mie.force) ftimer['flux'][i] = time_function(mie.cross_sections) ftimer['build'][i] = time_function(partial(miepy.interactions.sphere_aggregate_tmatrix, mie.position, mie.mie_scat, mie.material_data.k_b)) A = miepy.interactions.sphere_aggregate_tmatrix(mie.position, mie.mie_scat, k=mie.material_data.k_b) ftimer['solve'][i] = time_function(partial(solve_linear_system, A, mie.p_src, method=miepy.solver.bicgstab)) return ftimer, Nparticles import h5py import os OMP = os.environ['OMP_NUM_THREADS'] ftimer, Nparticles = tests(300, step=10) with h5py.File(f'out_{OMP}.h5', 'w') as f: for name, time in ftimer.items(): f[name] = time f.attrs['Nparticles'] = Nparticles ``` #### File: examples/fdtd_compare/cylinder_grid_scattering.py ```python import numpy as np from scipy import constants import matplotlib.pyplot as plt import matplotlib.animation as animation import matplotlib as mpl import meep import meep_ext from numpipe import scheduler, pbar import miepy job = scheduler() nm = 1e-9 um = 1e-6 ### Parameters radius = 75*nm height = 110*nm material = meep_ext.material.Au() x = np.linspace(-220*nm, 220*nm, 3) y = np.linspace(-220*nm, 220*nm, 3) z = np.linspace(-40*nm, 40*nm, 9) X, Y = np.meshgrid(x, y) x = X.flatten() y = Y.flatten() theta = np.linspace(0, np.pi/2, 9) phi = np.linspace(0, 2*np.pi, 9) geometry = [] for i in range(9): axis = meep.Vector3(np.sin(theta[i])*np.cos(phi[i]), np.sin(theta[i])*np.sin(phi[i]), np.cos(theta[i])) geometry.append(meep.Cylinder(center=meep.Vector3(x[i],y[i],z[i]), radius=radius, height=height, material=material, axis=axis)) box = [2*radius + 2*np.max(x)]*2 + [2*radius + 2*np.max(z)] resolution = 1/(8*nm) medium = meep.Medium(index=1) fcen, df = meep_ext.freq_data(1/(400*nm), 1/(1000*nm)) nfreq = 40 polarization = 'x' src_time = meep.GaussianSource(frequency=1.3/um, fwidth=4.0/um) if polarization == 'x': source = lambda sim: meep_ext.x_polarized_plane_wave(sim, src_time) decay = meep.Ex else: source = lambda sim: meep_ext.y_polarized_plane_wave(sim, src_time) decay = meep.Ey ### monitor info particle_monitor_gap = 50*nm pml_monitor_gap = 50*nm norm_file_ext = 'norm_box' monitor_size = [box[0] + 2*particle_monitor_gap, box[1] + 2*particle_monitor_gap, box[2] + 2*particle_monitor_gap] ### grid pml = meep.PML(15/resolution) lx = box[0] + 2*particle_monitor_gap + 2*pml_monitor_gap + 2*pml.thickness ly = box[1] + 2*particle_monitor_gap + 2*pml_monitor_gap + 2*pml.thickness lz = box[2] + 2*particle_monitor_gap + 2*pml_monitor_gap + 2*pml.thickness cell = meep.Vector3(lx,ly,lz) Nx, Ny, Nz = map(round, cell*resolution) @job.cache def norm_sim(): """perform normalization simulation""" norm = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=[], default_material=medium, resolution=resolution) norm.init_fields() source(norm) flux_box_inc = meep_ext.add_flux_box(norm, fcen, df, nfreq, [0,0,0], monitor_size) flux_inc = meep_ext.add_flux_plane(norm, fcen, df, nfreq, [0,0,0], [box[0], box[1], 0]) norm.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, decay, pt=meep.Vector3(0,0,monitor_size[2]/2), decay_by=1e-3)) norm.save_flux(norm_file_ext, flux_box_inc) return {'frequency': np.array(meep.get_flux_freqs(flux_inc)), 'area': box[0]*box[1], 'incident': np.asarray(meep.get_fluxes(flux_inc))} @job.cache def scat_sim(): """perform scattering simulation""" scat = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=geometry, default_material=medium, resolution=resolution) scat.init_fields() source(scat) flux_box_absorb = meep_ext.add_flux_box(scat, fcen, df, nfreq, [0,0,0], monitor_size) flux_box_scat = meep_ext.add_flux_box(scat, fcen, df, nfreq, [0,0,0], monitor_size) scat.load_minus_flux(norm_file_ext, flux_box_scat) scat.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, decay, pt=meep.Vector3(0,0,monitor_size[2]/2), decay_by=1e-5)) return {'scattering': np.array(meep.get_fluxes(flux_box_scat)),'absorption': -np.array(meep.get_fluxes(flux_box_absorb)), 'frequency': np.array(meep.get_flux_freqs(flux_box_scat))} @job.plots def vis(): fig, ax = plt.subplots() norm = job.load(norm_sim) scat = job.load(scat_sim) ax.plot((1/nm)/norm.frequency, scat.scattering/norm.incident*norm.area, 'o', color='C0', label='scattering (FDTD)') ax.plot((1/nm)/norm.frequency, scat.absorption/norm.incident*norm.area, 'o', color='C1', label='absorption (FDTD)') ax.plot((1/nm)/norm.frequency, (scat.scattering + scat.absorption)/norm.incident*norm.area, 'o', color='C2', label='extinction (FDTD)') wavelengths = np.linspace(400*nm, 1000*nm, 100) eps = meep_ext.get_eps(material)(wavelengths) Au = miepy.data_material(wavelengths, eps) # Au = miepy.constant_material(3.5**2) C, A, E = [np.zeros_like(wavelengths) for i in range(3)] particles = [] for i in range(9): orientation = miepy.quaternion.from_spherical_coords(theta[i], phi[i]) particles.append(miepy.cylinder(position=[x[i], y[i], z[i]], radius=radius, height=height, material=Au, orientation=orientation)) for i, wavelength in enumerate(pbar(wavelengths)): sol = miepy.cluster(particles=particles, source=miepy.sources.plane_wave([1,0]), wavelength=wavelength, lmax=3) C[i], A[i], E[i] = sol.cross_sections() ax.axhline(0, linestyle='--', color='black') ax.plot(wavelengths/nm, C, color='C0', label='scattering (GMT)') ax.plot(wavelengths/nm, A, color='C1', label='absorption (GMT)') ax.plot(wavelengths/nm, E, color='C2', label='extinction (GMT)') ax.legend() ax.set(xlabel='wavelength (nm)', ylabel='cross-section') plt.show() job.run() ``` #### File: examples/tests/cruzan.py ```python import numpy as np import miepy from sympy.physics.wigner import wigner_3j, gaunt from scipy import special import math from functools import lru_cache # w = miepy.vsh.wigner_3j(1,1,1, 1,-1,0) # print(w) # w = wigner_3j(1,1,1,1,-1,0) # print(w) # from IPython import embed; embed() @lru_cache(None) def gaunt(m,n,u,v,p): """gaunt coefficient""" f = lambda n: special.gamma(n+1) numerator = f(n+m)*f(v+u)*f(p-m-u) denominator = f(n-m)*f(v-u)*f(p+m+u) factor = (-1)**(m+u)*(2*p+1)*(numerator/denominator)**0.5 w1 = miepy.vsh.wigner_3j(n,v,p,0,0,0) w2 = miepy.vsh.wigner_3j(n,v,p,m,u,-m-u) return factor*w1*w2 @lru_cache(None) def b_func(m,n,u,v,p): """b function""" f = lambda n: special.gamma(n+1) numerator = f(n+m)*f(v+u)*f(p-m-u+1) denominator = f(n-m)*f(v-u)*f(p+m+u+1) factor = (-1)**(m+u)*(2*p+3)*(numerator/denominator)**0.5 w1 = miepy.vsh.wigner_3j(n,v,p,0,0,0) w2 = miepy.vsh.wigner_3j(n,v,p+1,m,u,-m-u) return factor*w1*w2 # g = gaunt(1,2,0,1,1) # print(g) # g = miepy.vsh.a_func(1,2,0,1,1) # print(g) # from IPython import embed; embed() def A_translation(m, n, u, v, r, theta, phi, k): m *= -1 f = lambda n: special.gamma(n+1) numerator = (2*v+1)*f(n-m)*f(v-u) denominator = 2*n*(n+1)*f(n+m)*f(v+u) factor = (-1)**m * numerator/denominator*np.exp(1j*(u+m)*phi) qmax = min(n, v, (n+v - abs(m+u))//2) sum_term = 0 for q in range(0, qmax+1): p = n + v - 2*q aq = gaunt(m,n,u,v,p) A = 1j**p*(n*(n+1) + v*(v+1) - p*(p+1))*aq Pnm = miepy.vsh.associated_legendre(p,u+m) sum_term += A*miepy.vsh.spherical_hn(p, k*r)*Pnm(np.cos(theta)) return factor*sum_term def B_translation(m, n, u, v, r, theta, phi, k): m *= -1 f = lambda n: special.gamma(n+1) numerator = (2*v+1)*f(n-m)*f(v-u) denominator = 2*n*(n+1)*f(n+m)*f(v+u) factor = (-1)**(m+1) * numerator/denominator*np.exp(1j*(u+m)*phi) qmax = min(n, v, (n+v+1 - abs(m+u))//2) sum_term = 0 for q in range(1, qmax+1): p = n + v - 2*q bq = b_func(m,n,u,v,p) A = 1j**(p+1)*(((p+1)**2 - (n-v)**2)*((n+v+1)**2 - (p+1)**2))**0.5*bq Pnm = miepy.vsh.associated_legendre(p+1,u+m) sum_term += A*miepy.vsh.spherical_hn(p+1, k*r)*Pnm(np.cos(theta)) return factor*sum_term A = A_translation(8,10,-9,12, 2, 0.5, 0.5, 1) B = B_translation(8,10,-9,12, 2, 0.5, 0.5, 1) print(f'A: {A:.10e}' , f'B: {B:.10e}', '', sep='\n') A = A_translation(0,10,0,10, 2, 0.5, 0.5, 1) B = B_translation(0,10,0,10, 2, 0.5, 0.5, 1) print(f'A: {A:.10e}' , f'B: {B:.10e}', '', sep='\n') A = A_translation(-2, 11, 3, 9, 2, 0.5, 0.5, 1) B = B_translation(-2, 11, 3, 9, 2, 0.5, 0.5, 1) print(f'A: {A:.10e}' , f'B: {B:.10e}', '', sep='\n') A = A_translation(-2, 6, -2, 10, 2, 0.5, 0.5, 1) B = B_translation(-2, 6, -2, 10, 2, 0.5, 0.5, 1) print(f'A: {A:.10e}' , f'B: {B:.10e}', '', sep='\n') # A = A_translation(0, 1, 1, 1, 2, 0.5, 0.5, 1) # print(A) # A = miepy.vsh.A_translation(0, 1, 1, 1, 2, 0.5, 0.5, 1) # print(A) from IPython import embed; embed() ``` #### File: MiePy/miepy/coordinates.py ```python import miepy import numpy as np def sph_to_cart(r, theta, phi, origin=None): """convert spherical coordinates (r, theta, phi) centered at origin to cartesian coordinates (x, y, z)""" if origin is None: origin = np.zeros(3, dtype=float) x = origin[0] + r*np.sin(theta)*np.cos(phi) y = origin[1] + r*np.sin(theta)*np.sin(phi) z = origin[2] + r*np.cos(theta) return x,y,z def cart_to_sph(x, y, z, origin=None): """convert cartesian coordinates (x, y, z) to spherical coordinates (r, theta, phi) centered at origin""" if origin is None: origin = np.zeros(3, dtype=float) x0,y0,z0 = origin r = ((x - x0)**2 + (y - y0)**2 + (z - z0)**2)**0.5 theta = np.arccos((z - z0)/r) phi = np.arctan2(y - y0, x - x0) return r, theta, phi def cyl_to_cart(r, phi, z, origin=None): """convert cylindrical coordinates (r, phi, z) centered at origin to cartesian coordinates (x, y, z)""" if origin is None: origin = np.zeros(3, dtype=float) x = origin[0] + r*np.cos(phi) y = origin[1] + r*np.sin(phi) return x, y, z + origin[2] def cart_to_cyl(x, y, z, origin=None): """convert cartesian coordinates (x, y, z) to cylindrical coordinates (r, phi, z) centered at origin""" if origin is None: origin = np.zeros(3, dtype=float) x0,y0,z0 = origin r = ((x - x0)**2 + (y - y0)**2)**0.5 phi = np.arctan2(y - y0, x - x0) return r, phi, z - z0 #TODO: if theta is scalar, or phi is scalar... same with other functions here #TODO: implement origin def sph_basis_vectors(theta, phi, origin=None): """obtain the spherical basis vectors (r_hat, theta_hat, phi_hat) for given theta, phi""" if origin is None: origin = np.zeros(3, dtype=float) r_hat = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)]) theta_hat = np.array([np.cos(theta)*np.cos(phi), np.cos(theta)*np.sin(phi), -1*np.sin(theta)]) phi_hat = np.array([-1*np.sin(phi), np.cos(phi), np.zeros_like(phi)]) return r_hat, theta_hat, phi_hat #TODO: implement origin def vec_cart_to_sph(F, theta, phi, origin=None): """convert a vector field F from cartesian to spherical coordinates Arguments: F[3,...] vector field values theta theta coordinates phi phi coordinates """ if origin is None: origin = np.zeros(3, dtype=float) Fsph = np.zeros_like(F) r_hat, theta_hat, phi_hat = sph_basis_vectors(theta, phi) Fsph[0] = np.sum(F*r_hat, axis=0) Fsph[1] = np.sum(F*theta_hat, axis=0) Fsph[2] = np.sum(F*phi_hat, axis=0) return Fsph #TODO: implement origin def vec_sph_to_cart(F, theta, phi, origin=None): """convert a vector field F from spherical to cartesian coordinates Arguments: F[3,...] vector field values theta theta coordinates phi phi coordinates """ if origin is None: origin = np.zeros(3, dtype=float) Fcart = np.zeros_like(F) r_hat, theta_hat, phi_hat = sph_basis_vectors(theta, phi) for i in range(3): Fcart[i] = F[0]*r_hat[i] + F[1]*theta_hat[i] + F[2]*phi_hat[i] return Fcart def sphere_mesh(sampling): """ Obtain a THETA,PHI mesh for discretizing the surface of the sphere, consistent with the format required by the project and decompose functions Returns (THETA,PHI) meshgrids Arguments: sampling number of points to sample between 0 and pi """ phi = np.linspace(0, 2*np.pi, 2*sampling) tau = np.linspace(-1, 1, sampling) theta = np.arccos(tau) THETA,PHI = np.meshgrid(theta, phi, indexing='ij') return THETA, PHI def cart_sphere_mesh(radius, origin, sampling): """Given a radius, origin and sampling, return the X,Y,Z,THETA,PHI,tau,phi coordinates of a discretized sphere""" r = np.array([radius]) tau = np.linspace(-1,1, sampling) theta = np.arccos(tau) phi = np.linspace(0, 2*np.pi, 2*sampling) R, THETA, PHI = np.meshgrid(r,theta,phi, indexing='ij') X = origin[0] + R*np.sin(THETA)*np.cos(PHI) Y = origin[1] + R*np.sin(THETA)*np.sin(PHI) Z = origin[2] + R*np.cos(THETA) return map(np.squeeze, (X,Y,Z,THETA,PHI,tau,phi)) def rotate(x, y, z, quat, origin=None): """Rotate the points (x, y, z) around an origin using a quaternion""" if origin is None: origin = np.zeros(3, dtype=float) R = miepy.quaternion.as_rotation_matrix(quat) p = np.asarray(translate(x, y, z, -origin)) p_rotated = np.einsum('ij,j...->i...', R, p) p_final = translate(*p_rotated, origin) return p_final def rotate_sph(theta, phi, quat): """Rotate the spherical coordinates (theta, phi) to rotated spherical coordinates""" q1 = miepy.quaternion.from_spherical_coords(theta, phi) q2 = quat*q1 theta_r, phi_r = np.moveaxis(miepy.quaternion.as_spherical_coords(q2), -1, 0) theta_r = np.asarray(theta_r) phi_r = np.asarray(phi_r) # Final step: if theta = 0, then above conversion turns phi -> phi_r/2, so this is corrected idx = (theta == 0) phi_r[idx] *= 2 return theta_r, phi_r def rotate_vec(F, quat): """Rotate the vector F using a quaternion""" R = miepy.quaternion.as_rotation_matrix(quat) F_rotated = np.einsum('ij,j...->i...', R, F) return F_rotated def translate(x, y, z, dr): """Translate the points (x, y, z) by dr""" xp = x + dr[0] yp = y + dr[1] zp = z + dr[2] return np.asarray([xp, yp, zp]) ``` #### File: miepy/mie_single/scattering.py ```python import numpy as np import miepy import scipy.constants as constants from miepy.special_functions import riccati_1,riccati_2,vector_spherical_harmonics def scattering_per_multipole(an, bn, k): """Scattering cross-section per multipole. Returns scat[Nfreq,2,lmax]. an[N] an scattering coefficients bn[N] bn scattering coefficients k[N] wavenumbers """ Nfreq, lmax = an.shape flux = np.zeros([Nfreq,2,lmax]) nvals = np.arange(1, lmax+1) flux[:,0,:] = 2*np.pi*(2*nvals+1)*np.abs(an)**2/k[:,np.newaxis]**2 flux[:,1,:] = 2*np.pi*(2*nvals+1)*np.abs(bn)**2/k[:,np.newaxis]**2 return flux def extinction_per_multipole(an, bn, k): """Extinction cross-section per multipole. Returns extinct[Nfreq,2,lmax]. an[N] an scattering coefficients bn[N] bn scattering coefficients k[N] wavenumbers """ Nfreq, lmax = an.shape flux = np.zeros([Nfreq,2,lmax]) nvals = np.arange(1, lmax+1) flux[:,0,:] = 2*np.pi*(2*nvals+1)*np.real(an)/k[:,np.newaxis]**2 flux[:,1,:] = 2*np.pi*(2*nvals+1)*np.real(bn)/k[:,np.newaxis]**2 return flux def absorbption_per_multipole(an, bn, k): """Absorbption cross-section per multipole. Returns absorb[Nfreq,2,lmax]. an[N] an scattering coefficients bn[N] bn scattering coefficients k[N] wavenumbers """ return extinction_per_multipole(an, bn, k) - scattering_per_multipole(an, bn, k) def cross_sections(an, bn, k): """Return the 3 cross-sections, (Scattering, Absorbption, Extinction) an[N] an scattering coefficients bn[N] bn scattering coefficients k[N] wavenumbers """ scat_flux = scattering_per_multipole(an, bn, k) extinct_flux = extinction_per_multipole(an, bn, k) abs_flux = extinct_flux - scat_flux return miepy.flux.cross_sections(*[np.sum(arr, axis=(1,2)) for arr in [scat_flux, abs_flux, extinct_flux]]) def multipole_label(T,L): """Get multipole label. T = 0 (electric), 1(magnetic) L = 0,1,2... (order) """ first = ['e', 'm'][T] if L <= 3: last = ['D', 'Q', 'O', 'H'][L] else: last = " (L = {L})".format(L=L) return first + last def scattered_E(an, bn, k): """For a given an, bn, k, return the scattered electric field function E(r,theta,phi) an[L] an coefficients an[L] bn coefficients k wavenumber in the medium """ lmax = an.shape[0] def E_func(r, theta, phi): E = np.zeros(shape = [3] + list(r.shape), dtype=complex) for L in range(1,lmax+1): En = 1j**L*(2*L+1)/(L*(L+1)) VSH = vector_spherical_harmonics(L,3) E += En*(1j*an[L-1]*VSH.N_e1n(k)(r,theta,phi) \ - bn[L-1]*VSH.M_o1n(k)(r,theta,phi)) return -E return E_func def interior_E(cn, dn, k): """For a given cn, dn, k, return the interior electric field function E(r,theta,phi) for a sphere cn[L] cn coefficients dn[L] dn coefficients k wavenumber inside the sphere """ lmax = cn.shape[0] def E_func(r, theta, phi): E = np.zeros(shape = [3] + list(r.shape), dtype=complex) for L in range(1,lmax+1): En = 1j**L*(2*L+1)/(L*(L+1)) VSH = vector_spherical_harmonics(L,1) E += En*(cn[L-1]*VSH.M_o1n(k)(r,theta,phi) \ - 1j*dn[L-1]*VSH.N_e1n(k)(r,theta,phi)) return -E return E_func def scattered_H(an, bn, k, n_b, mu_b): """For a given an, bn, k, return the scattered electric field function H(r,theta,phi) an[L] an coefficients an[L] bn coefficients k wavenumber in the medium n_b index of refraction of the medium mu_b permeability of the medium """ lmax = an.shape[0] def H_func(r, theta, phi): H = np.zeros(shape = [3] + list(r.shape), dtype=complex) for L in range(1,lmax+1): En = 1j**L*(2*L+1)/(L*(L+1)) VSH = vector_spherical_harmonics(L,3) H += n_b*En/mu_b*(1j*bn[L-1]*VSH.N_o1n(k)(r,theta,phi) \ + an[L-1]*VSH.M_e1n(k)(r,theta,phi)) return -H return H_func def interior_H(cn, dn, k, n, mu): """For a given cn, dn, k, return the interior electric field function H(r,theta,phi) for a sphere cn[L] cn coefficients dn[L] dn coefficients k wavenumber inside the sphere n index of refraction of the sphere mu permeability of the sphere """ lmax = cn.shape[0] def H_func(r, theta, phi): H = np.zeros(shape = [3] + list(r.shape), dtype=complex) for L in range(1,lmax+1): En = 1j**L*(2*L+1)/(L*(L+1)) VSH = vector_spherical_harmonics(L,1) H += -n*En/mu*(dn[L-1]*VSH.M_e1n(k)(r,theta,phi) \ + 1j*cn[L-1]*VSH.N_o1n(k)(r,theta,phi)) return -H return H_func ``` #### File: miepy/particles/core_shell.py ```python import miepy from .particle_base import particle class core_shell(particle): def __init__(self, position, core_radius, shell_thickness, core_material, shell_material): """A sphere object Arguments: position[3] x,y,z position of particle radius sphere radius material particle material (miepy.material object) """ super().__init__(position, None, core_material) self.core_radius = core_radius self.shell_thickness = shell_thickness self.core_material = core_material self.shell_material = shell_material def __repr__(self): return f'''{self.__class__.__name__}: position = {self.position} m radius = {self.radius:.2e} m material = {self.material}''' def is_inside(self, pos): pass def compute_tmatrix(self, lmax, wavelength, eps_m, **kwargs): self.tmatrix = miepy.tmatrix.tmatrix_core_shell(self.core_radius, self.shell_thickness, wavelength, self.core_material.eps(wavelength), self.shell_material.eps(wavelength), eps_m, lmax) self.tmatrix_fixed = self.tmatrix return self.tmatrix def enclosed_radius(self): return self.core_radius + self.shell_thickness def _dict_key(self, wavelength): return (core_shell, self.core_radius, self.shell_thickness, self.core_material.eps(wavelength).item(), self.core_material.mu(wavelength).item(), self.shell_material.eps(wavelength).item(), self.shell_material.mu(wavelength).item()) ``` #### File: miepy/particles/particle_base.py ```python import numpy as np import miepy #TODO: lmax per particle #TODO: position and orientation should be properties class particle: def __init__(self, position, orientation, material): """A particle consists of a position, orientation, material, and a lazily evaluated T-matrix Arguments: position[3] x,y,z position of particle orientation particle orientation material particle material (miepy.material object) """ self._position = np.asarray(position, dtype=float) if orientation is None: self._orientation = miepy.quaternion.one else: self._orientation = orientation self.material = material self.tmatrix_fixed = None self.tmatrix = None if self.material is not None and self.material.name == 'metal': self.conducting = True else: self.conducting = False @property def position(self): return self._position @position.setter def position(self, p): self.position[...] = p @property def orientation(self): return self._orientation @orientation.setter def orientation(self, n): self._orientation = n self._rotate_fixed_tmatrix() def is_inside(self, pos): """Return true if pos is inside the particle""" pass def enclosed_radius(self): """Return the radius of the smallest circumscribing sphere""" pass def compute_tmatrix(self, lmax, wavelength, eps_m, **kwargs): """Compute the T-matrix of the particle Arguments: lmax maximum number of multipoles wavelength incident wavelength eps_m permitvittiy of the medium kwargs additional kwargs to pass """ pass def _rotate_fixed_tmatrix(self): if self.tmatrix_fixed is not None: self.tmatrix = miepy.tmatrix.rotate_tmatrix(self.tmatrix_fixed, self.orientation) def _dict_key(self, wavelength): raise NotImplementedError('particle must implement _dict_key') ``` #### File: miepy/particles/sphere.py ```python import miepy from .particle_base import particle class sphere(particle): def __init__(self, position, radius, material): """A sphere object Arguments: position[3] x,y,z position of particle radius sphere radius material particle material (miepy.material object) """ super().__init__(position, None, material) self.radius = radius def __repr__(self): return f'''{self.__class__.__name__}: position = {self.position} m radius = {self.radius:.2e} m material = {self.material}''' def is_inside(self, pos): pass def compute_tmatrix(self, lmax, wavelength, eps_m, **kwargs): self.tmatrix = miepy.tmatrix.tmatrix_sphere(self.radius, wavelength, self.material.eps(wavelength), eps_m, lmax, conducting=self.conducting) self.tmatrix_fixed = self.tmatrix return self.tmatrix def enclosed_radius(self): return self.radius def _rotate_fixed_tmatrix(self): self.tmatrix = self.tmatrix_fixed def _dict_key(self, wavelength): return (sphere, self.radius, self.material.eps(wavelength).item(), self.material.mu(wavelength).item()) ``` #### File: miepy/sources/plane_waves.py ```python import numpy as np import miepy from miepy.vsh.special import pi_func, tau_func from miepy.sources import polarized_propagating_source class plane_wave(polarized_propagating_source): def __init__(self, polarization, amplitude=1, phase=0, theta=0, phi=0, standing=False): """ Create a plane-wave source. Default arguments provide a unit-amplitude, zero-propagating wave Arguments: polarization[2] (TM, TE) values representing the polarization theta theta spherical angle of k-vector phi phi spherical angle of k-vector amplitude electric field amplitude E0 phase phase factor """ polarized_propagating_source.__init__(self, polarization=polarization, amplitude=amplitude, phase=phase, origin=None, theta=theta, phi=phi, standing=standing) def __repr__(self): return f'plane_wave(polarization={self.polarization}, amplitude={self.amplitude}, theta={self.theta}, phi={self.phi})' @classmethod def from_string(cls, polarization, direction='z', amplitude=1, phase=0, standing=False): """Create a plane wave from string values for the polarization and direction Arguments: polarization x, y, or z direction x, y, z, -x, -y, or -z amplitude electric field amplitude E0 phase phase factor """ if direction in ['z', '+z']: theta = 0 phi = 0 elif direction == '-z': theta = np.pi phi = 0 elif direction in ['x', '+x']: theta = np.pi/2 phi = 0 elif direction == '-x': theta = np.pi/2 phi = np.pi elif direction in ['y', '+y']: theta = np.pi/2 phi = np.pi/2 elif direction == '-y': theta = np.pi/2 phi = 3*np.pi/2 else: raise ValueError("'{direction}' is not a valid direction of propagation. Use one of ['x', 'y', 'z', '-x', '-y', '-z']".format(direction=direction)) if polarization == direction[-1]: raise ValueError('polarization cannot be the same as the direction of propagation') if polarization == 'x': if direction[-1] == 'z': pol = [1, 0] else: pol = [0, -1] elif polarization == 'y': if direction[-1] == 'x': pol = [0, 1] else: pol = [0, 1] elif polarization == 'z': pol = [-1, 0] elif polarization == 'rhc': pol = [1, 1j] elif polarization == 'lhc': pol = [1, -1j] else: raise ValueError("'{polarization}' is not a valid polarization. Use one of ['x', 'y', 'z', 'rhc', 'lhc']".format(polarization=polarization)) return cls(polarization=pol, theta=theta, phi=phi, amplitude=amplitude, phase=phase, standing=standing) def E_field(self, x1, x2, x3, k, far=False, spherical=False): if spherical: x1, x2, x3 = miepy.coordinates.sph_to_cart(x1, x2, x3) amp = self.amplitude*np.exp(1j*k*(self.k_hat[0]*x1 + self.k_hat[1]*x2 + self.k_hat[2]*x3))*np.exp(1j*self.phase) pol = self.n_tm*self.polarization[0] + self.n_te*self.polarization[1] E = np.einsum('i...,...->i...', pol, amp) if spherical: E = miepy.coordinates.cart_to_sph(*E) return E def H_field(self, x1, x2, x3, k, far=False, spherical=False): if spherical: x1, x2, x3 = miepy.coordinates.sph_to_cart(x1, x2, x3) amp = self.amplitude*np.exp(1j*k*(self.k_hat[0]*x1 + self.k_hat[1]*x2 + self.k_hat[2]*x3))*np.exp(1j*self.phase) pol = self.n_te*self.polarization[0] - self.n_tm*self.polarization[1] H = np.einsum('i...,...->i...', pol, amp) if spherical: H = miepy.coordinates.cart_to_sph(*H) return H def structure(self, position, k, lmax): position = np.asarray(position) Nparticles = len(position) rmax = miepy.vsh.lmax_to_rmax(lmax) p_src = np.empty([Nparticles, 2, rmax], dtype=complex) for j in range(Nparticles): phase = k*(self.k_hat[0]*position[j,0] + self.k_hat[1]*position[j,1] + self.k_hat[2]*position[j, 2]) + self.phase for i,n,m in miepy.mode_indices(lmax): pi_value = pi_func(n, m, self.theta) tau_value = tau_func(n, m, self.theta) Emn = np.abs(miepy.vsh.Emn(m, n)) factor = self.amplitude*np.exp(1j*(phase - m*self.phi))*Emn p_src[j,0,i] = factor*(tau_value*self.polarization[0] - 1j*pi_value*self.polarization[1]) p_src[j,1,i] = factor*(pi_value*self.polarization[0] - 1j*tau_value*self.polarization[1]) return p_src def angular_spectrum(self, theta, phi, k): if theta == self.theta and phi == self.phi: return np.inf else: return 0 #TODO: implement origin def E_angular(self, theta, phi, k, radius=None, origin=None): return self.angular_spectrum(theta, phi, j) #TODO: implement origin def H_angular(self, theta, phi, k, radius=None, origin=None): return self.angular_spectrum(theta, phi, j) def reflect(self, interface, medium, wavelength): theta = np.pi - self.theta phi = self.phi k = 2*np.pi*medium.index(wavelength)/wavelength phase = self.phase - 2*k*self.k_hat[2]*interface.z r_parallel, r_perp = interface.reflection_coefficients(self.theta, wavelength, medium) a_theta = r_parallel*self.polarization[0] a_phi = r_perp*self.polarization[1] polarization = [a_theta, a_phi] amplitude = np.linalg.norm(polarization)*self.amplitude if amplitude == 0: polarization = self.polarization return plane_wave(polarization=polarization, theta=theta, phi=phi, amplitude=amplitude, phase=phase) def transmit(self, interface, medium, wavelength): m = interface.get_relative_index(wavelength, medium) theta = np.arcsin(np.sin(self.theta)/m) phi = self.phi phase = self.phase t_parallel, t_perp = interface.transmission_coefficients(self.theta, wavelength, medium) a_theta = t_parallel*self.polarization[0] a_phi = t_perp*self.polarization[1] polarization = [a_theta, a_phi] amplitude = np.linalg.norm(polarization)*self.amplitude if amplitude == 0: polarization = self.polarization return plane_wave(polarization=polarization, theta=theta, phi=phi, amplitude=amplitude, phase=phase) ``` #### File: miepy/sources/vsh_sources.py ```python import numpy as np import miepy from miepy.sources import source class vsh_source(source): def __init__(self, n, m, ftype='electric', center=None, mode=None, amplitude=1, phase=0): """ Arguments: n n value of VSH mode m m value of VSH mode ftype 'electric' or 'magnetic' dipole (default: electric) center center position of vsh_source mode type of vsh_mode (default: incident) amplitude amplitude of the source (default: 1) phase additional phase factor (default: 0) """ self.n = n self.m = m self.ftype = ftype self.mode = mode if mode is None: self.mode = miepy.vsh_mode.incident if self.ftype == 'electric': self.N, self.M = miepy.vsh.VSH(self.n, self.m, self.mode) self.N_far, self.M_far = miepy.vsh.VSH_far(self.n, self.m, self.mode) elif self.ftype == 'magnetic': self.M, self.N = miepy.vsh.VSH(self.n, self.m, self.mode) self.M_far, self.N_far = miepy.vsh.VSH_far(self.n, self.m, self.mode) else: raise ValueError("ftype must be either 'electric' or 'magnetic'") if center is None: self.center = np.array([0,0,0], dtype=float) else: self.center = np.asarray(center, dtype=float) self.amplitude = amplitude self.phase = phase def E_field(self, x1, x2, x3, k, far=False, spherical=False): factor = self.amplitude*np.exp(1j*self.phase) if not spherical: x1, x2, x3 = miepy.coordinates.cart_to_sph(x1, x2, x3, origin=self.center) if far: E = self.N_far(x1, x2, x3, k) else: E = self.N(x1, x2, x3, k) if not spherical: return factor*miepy.coordinates.vec_sph_to_cart(E, x2, x3) else: return factor*E def H_field(self, x1, x2, x3, k, far=False, spherical=False): factor = self.amplitude*np.exp(1j*self.phase) if not spherical: x1, x2, x3 = miepy.coordinates.cart_to_sph(x1, x2, x3, origin=self.center) if far: E = self.M_far(x1, x2, x3, k) else: E = self.M(x1, x2, x3, k) if not spherical: return factor*miepy.coordinates.vec_sph_to_cart(E, x2, x3) else: return factor*E def structure(self, position, k, lmax): position = np.asarray(position) Nparticles = len(position) rmax = miepy.vsh.lmax_to_rmax(lmax) p_src = np.zeros([Nparticles, 2, rmax], dtype=complex) factor = self.amplitude*np.exp(1j*self.phase) for i in range(Nparticles): dr = position[i] - self.center if not np.any(dr): for r,n,m in miepy.mode_indices(lmax): if n == self.n and m == self.m: Emn = miepy.vsh.Emn(m, n) p_src[i,0,r] = 1/(-1j*Emn) else: rad, theta, phi = miepy.coordinates.cart_to_sph(*dr) for r,n,m in miepy.mode_indices(lmax): Emn = miepy.vsh.Emn(self.m, self.n) Euv = miepy.vsh.Emn(m, n) A, B = miepy.cpp.vsh_translation.vsh_translation(m, n, self.m, self.n, rad, theta, phi, k, self.mode) p_src[i,0,r] = A/(-1j*Emn) p_src[i,1,r] = B/(-1j*Emn) if self.ftype == 'magnetic': p_src = p_src[:, ::-1] return factor*p_src def H_angular(self, theta, phi, k, radius=None, origin=None): if radius is None: radius = 1e6*2*np.pi/k return self.H_field(radius, radius, theta, phi, far=True, spherical=True)[1:] def E_angular(self, theta, phi, k, radius=None, origin=None): if radius is None: radius = 1e6*2*np.pi/k return self.E_field(radius, radius, theta, phi, far=True, spherical=True)[1:] def angular_spectrum(self, theta, phi, k): return self.E_angular(theta, phi, k) ``` #### File: miepy/tmatrix/axisymmetric_file.py ```python def axisymmetric_file(geometry_type, geometry_parameters, Nrank, wavelength, index, index_m, kb=None, conducting=False, Nparam=1, use_ds=True, complex_plane=True, eps_z_re_im=0.95, Nint=200): """Create input file for axisymmetric particles Arguments: geometry_type (int) choose from 1 (spheroid), 2 (cylinder), 3 (rounded oblate cylinder) geometry_parameters (list) geometric parameters ([radius along symmetry axius, radius along other axes]) Nrank (int) maximum number of multipoles wavelength (float) wavelength of incident light index (complex) index of refraction of the particle index_m (float) index of refraction of the medium kb (float) parameter of chirality (default: None [no chirality]) conducting (bool) if True, particle is conducting (default: False) Nparam (int) number of smooth curves used in approximate surface (default: 1) use_ds (bool) if True, use discrete sources (default: True) complex_plane (bool) if True, distribute discrete sources in complex plane (default: True) eps_z_re_im (float) parameter used to distribute discrete sources (default: 0.95) Nint (int) number of points used in integration (default: 200) """ geometry_xy = geometry_parameters[0]/wavelength geometry_z = geometry_parameters[1]/wavelength wavelength = 1 if kb is None: chiral = False kb = 1 else: chiral = True file_str_template = """OptProp {wavelength} {index_m.real} ({index.real}, {index.imag}) Variables: - wavelength - wavelength of the incident light in vacuo. - ind_refMed - refractive index of the ambient medium. - ind_refRel - relative refractive index of the particle. MatProp .{conducting}. .{chiral}. {kb} Variables: - perfectcond - if perfectcond = t, the particle is perfectly conducting. - chiral - if chiral = t, the particle is optical active (chiral). - kb - parameter of chirality. GeomProp .false. '../GEOMFILES/prolate.fem' {geometry_type} 2 {geometry_xy} {geometry_z} {Nparam} 1.0 1.0 .false. Variables: - FileGeom - if FileGeom = t, the particle geometry is supplied by the input file FileFEM. - FileFEM - name of the file containing the particle geometry. - TypeGeom - parameter specifying the type of the particle geometry. - Nsurf - number of surface parameters. - surf(1) - surface parameter. - ... - surf(Nsurf - Nparam - number of smooth curves forming the generatrix curve. - anorm - characteristic length of the particle which is used to normalize the differential scattering cross sections. - Rcirc - characteristic length of the particle for computing Nrank. - miror - if miror = t, the particle is mirror symmetric. NOTE: FOR CHIRAL PARTICLES AND DISTRIBUTED SOURCES SET miror = f. ConvTest .false. .false. Variables: - DoConvTest - if DoConvTest = t, the interactive convergence tests over Nint and Nrank are performed. - MishConvTest - if MishConvTest = t, estimates of Nint and Nrank are computed with the convergence criterion proposed by Mishchenko. NOTE: IF THE PARTICLE IS OPTICAL ACTIVE (chiral = t) OR THE PARTICLE GEOMETRY IS SUPPLIED BY THE FILE FileFEM (FileGeom = t), THE CODE SETS MishConvTest = f. IN FACT, MISHCHENKOS CONVERGENCE TEST WILL BE PERFORMED IF (DS = f AND DoConvTest = t AND chiral = f AND FileGeom = f), OR (DS = t AND autGenDS = t AND DoConvTest = t AND chiral = f AND FileGeom = f). Sources .{use_ds}. .true. Variables: - DS - if DS = t, distributed sources are used for T-matrix calculation. - autGenDS - if autGenDS = t, the coordinates of the distributed sources are generated by the code. NOTE: IF THE PARTICLE GEOMETRY IS READ FROM FILE (FileGeom = t), THE CODE SETS autgenDS = f. SourcePosAut .{complex_plane}. {eps_z_re_im} Variables: - ComplexPlane - if ComplexPlane = t, the distributed sources are placed in the complex plane. - EpsZReIm - parameter controlling the distribution of the discrete sources. NOTE: THESE VARIABLES MUST BE PROVIDED IF (DS = t AND autgenDS = t). NintNrank {Nint} {Nrank} Variables: - Nint - number of integration points in computing integrals over the generatrix curve. - Nrank - maximum expansion order. NOTE: THESE VARIABLES MUST BE PROVIDED IF ((DoConvTest = f) OR (DS = t AND autgenDS = f)). Errors 5.e-2 5.e-2 1.e-2 4 50 Variables: - epsNint - error tolerance for the integration test. - epsNrank - error tolerance for the expansion order test. - epsMrank - error tolerance for the azimuthal order test. - dNint - number of division points for the integration test and Mishchenkos convergence test. - dNintMrank - number of division points for azimuthal mode calculation. Tmat '../TMATFILES/tmatrix.dat' Variable: - FileTmat - name of the file to which the T matrix is written. PrintProgress .false. Variable: - PrnProgress - if PrnProgress = t, the progress of calculation is printed. """ return file_str_template.format(geometry_type=geometry_type, geometry_xy=geometry_xy, geometry_z=geometry_z, Nrank=Nrank, wavelength=wavelength, index=index/index_m, index_m=index_m, chiral=str(chiral).lower(), kb=kb, conducting=str(conducting).lower(), Nparam=Nparam, use_ds=str(use_ds).lower(), complex_plane=str(complex_plane).lower(), eps_z_re_im=eps_z_re_im, Nint=Nint) ``` #### File: miepy/tmatrix/common.py ```python import miepy import numpy as np from .get_tmatrix import nfmds_solver, tmatrix_solvers def tmatrix_sphere(radius, wavelength, eps, eps_m, lmax, conducting=False): """Compute the T-matrix of a sphere, using regular Mie theory Arguments: radius sphere radius wavelength incident wavelength eps particle permittivity eps_m medium permittivity lmax maximum number of multipoles conducting if True, calculate for conducting sphere (default: False) """ rmax = miepy.vsh.lmax_to_rmax(lmax) tmatrix = np.zeros([2,rmax,2,rmax], dtype=complex) k_medium = 2*np.pi*eps_m**0.5/wavelength for i, n, m in miepy.mode_indices(lmax): an, bn = miepy.mie_single.mie_sphere_scattering_coefficients(radius, n, eps, 1, eps_m, 1, k_medium, conducting=conducting) tmatrix[0,i,0,i] = an tmatrix[1,i,1,i] = bn return tmatrix def tmatrix_core_shell(radius, thickness, wavelength, eps_core, eps_shell, eps_m, lmax): """Compute the T-matrix of a core-shell, using regular Mie theory Arguments: radius core radius wavelength incident wavelength eps_core particle permittivity eps_shell shell permittivity eps_m medium permittivity lmax maximum number of multipoles """ rmax = miepy.vsh.lmax_to_rmax(lmax) tmatrix = np.zeros([2,rmax,2,rmax], dtype=complex) k_medium = 2*np.pi*eps_m**0.5/wavelength particle = miepy.single_mie_core_shell(radius, radius + thickness, material_in=miepy.dielectric(eps=eps_core), material_out=miepy.dielectric(eps=eps_shell), medium=miepy.dielectric(eps=eps_m), lmax=lmax, wavelength=wavelength) particle.solve() for i, n, m in miepy.mode_indices(lmax): tmatrix[0,i,0,i] = -1j*particle.an[0,n-1] tmatrix[1,i,1,i] = -1j*particle.bn[0,n-1] return tmatrix def tmatrix_spheroid(axis_xy, axis_z, wavelength, eps, eps_m, lmax, extended_precision=False, **kwargs): """Compute the T-matrix of a spheroid Arguments: axis_xy length of semiaxes perpendicular to the axis of symmetry axis_z length of semiaxis along axis of symmetry wavelength incident wavelength eps particle permittivity eps_m medium permittivity lmax maximum number of multipoles extended_precision (bool) whether to use extended precision (default: False) kwargs additional keywords passed to axisymmetric_file function """ complex_plane = True if axis_xy > axis_z else False parameters = dict(geometry_type=1, geometry_parameters=[axis_z, axis_xy], wavelength=wavelength, index=eps**.5, index_m=eps_m**0.5, complex_plane=complex_plane, Nparam=1) parameters.update(kwargs) return nfmds_solver(lmax, parameters, extended_precision=extended_precision) def tmatrix_cylinder(radius, height, wavelength, eps, eps_m, lmax, rounded=False, extended_precision=False, **kwargs): """Compute the T-matrix of a cylinder, with sharp or rounded (if oblate) edges Arguments: radius radius of cylinder height height of cylinder wavelength incident wavelength eps particle permittivity eps_m medium permittivity lmax maximum number of multipoles rounded (bool) if True, and cylinder is oblate, the cylinder's edges are rounded (default: False) extended_precision (bool) whether to use extended precision (default: False) kwargs additional keywords passed to axisymmetric_file function """ complex_plane = True if 2*radius > height else False geometry_type = 3 if rounded else 2 if height >= 2*radius and rounded: raise ValueError('prolate cylinders (height >= diameter) cannot be rounded') parameters = dict(geometry_type=geometry_type, geometry_parameters=[height/2, radius], wavelength=wavelength, index=eps**0.5, index_m=eps_m**0.5, complex_plane=complex_plane, Nparam=3) parameters.update(kwargs) return nfmds_solver(lmax, parameters, extended_precision=extended_precision) def tmatrix_ellipsoid(rx, ry, rz, wavelength, eps, eps_m, lmax, extended_precision=False, **kwargs): """Compute the T-matrix of a spheroid Arguments: rx,ry,rz radii of the 3 axes wavelength incident wavelength eps particle permittivity eps_m medium permittivity lmax maximum number of multipoles extended_precision (bool) whether to use extended precision (default: False) kwargs additional keywords passed to axisymmetric_file function """ parameters = dict(geometry_type=1, geometry_parameters=[rx, ry, rz], wavelength=wavelength, index=eps**0.5, index_m=eps_m**0.5, Nparam=1, Mrank=lmax, R_symmetry=0) parameters.update(kwargs) return nfmds_solver(lmax, parameters, solver=tmatrix_solvers.non_axisymmetric, extended_precision=extended_precision) def tmatrix_ellipsoid(rx, ry, rz, wavelength, eps, eps_m, lmax, extended_precision=False, **kwargs): """Compute the T-matrix of a spheroid Arguments: rx,ry,rz radii of the 3 axes wavelength incident wavelength eps particle permittivity eps_m medium permittivity lmax maximum number of multipoles extended_precision (bool) whether to use extended precision (default: False) kwargs additional keywords passed to axisymmetric_file function """ parameters = dict(geometry_type=1, geometry_parameters=[rx, ry, rz], wavelength=wavelength, index=eps**0.5, index_m=eps_m**0.5, Nparam=1, Mrank=lmax, R_symmetry=0) parameters.update(kwargs) return nfmds_solver(lmax, parameters, solver=tmatrix_solvers.non_axisymmetric, extended_precision=extended_precision) def tmatrix_square_prism(side, height, wavelength, eps, eps_m, lmax, extended_precision=False, **kwargs): """Compute the T-matrix of a spheroid Arguments: width side width of the prism height height of the prism eps particle permittivity eps_m medium permittivity lmax maximum number of multipoles extended_precision (bool) whether to use extended precision (default: False) kwargs additional keywords passed to axisymmetric_file function """ parameters = dict(geometry_type=2, geometry_parameters=[side/2, height/2], wavelength=wavelength, index=eps**0.5, index_m=eps_m**0.5, Nparam=6, Mrank=lmax, R_symmetry=0) parameters.update(kwargs) return nfmds_solver(lmax, parameters, solver=tmatrix_solvers.non_axisymmetric, extended_precision=extended_precision) def tmatrix_regular_prism(N, side, height, wavelength, eps, eps_m, lmax, extended_precision=False, **kwargs): """Compute the T-matrix of a spheroid Arguments: N number of vertices width side width of the prism height height of the prism eps particle permittivity eps_m medium permittivity lmax maximum number of multipoles extended_precision (bool) whether to use extended precision (default: False) kwargs additional keywords passed to axisymmetric_file function """ parameters = dict(geometry_type=3, geometry_parameters=[side/2, height/2], wavelength=wavelength, index=eps**0.5, index_m=eps_m**0.5, Nparam=2, Mrank=lmax, R_symmetry=N) parameters.update(kwargs) return nfmds_solver(lmax, parameters, solver=tmatrix_solvers.non_axisymmetric, extended_precision=extended_precision) def tmatrix_sphere_cluster(pos, radii, lmax, lmax_cluster, wavelength, eps, eps_m, extended_precision=False, **kwargs): parameters = dict(pos=pos, radii=radii, Nrank_particles=lmax, wavelength=wavelength, index=eps**0.5, index_m=eps_m**0.5) parameters.update(kwargs) return nfmds_solver(lmax_cluster, parameters, solver=tmatrix_solvers.sphere_cluster, extended_precision=extended_precision) ``` #### File: miepy/vsh/cluster_coefficients.py ```python import numpy as np import miepy.coordinates as coordinates from miepy import vsh #TODO: equations for rmax, r, lmax (here and elsewhere) should be a function call #TODO: iteration over (n,m,r) could be simplified through a generator call (see all interactions) def cluster_coefficients(positions, p_scat, k, origin, lmax=None): """Solve for the cluster scattering coefficients of N particles around an origin Arguments: positions[N,3] particle positions p_scat[N,2,rmax] scattering coefficients k medium wavenumber origin position around which to calculate the cluster coefficients lmax (optional) compute scattering for up to lmax terms (default: lmax of input p/q) """ Nparticles = positions.shape[0] rmax_in = p_scat.shape[-1] lmax_in = vsh.rmax_to_lmax(rmax_in) if lmax is None: lmax = lmax_in rmax = vsh.lmax_to_rmax(lmax) p_cluster = np.zeros([2,rmax], dtype=complex) for i in range(Nparticles): if np.all(positions[i] == origin): p_cluster[0,:rmax_in] += p_scat[i,0,:rmax_in] p_cluster[1,:rmax_in] += p_scat[i,1,:rmax_in] continue rij = origin - positions[i] rad, theta, phi = coordinates.cart_to_sph(*rij) for r,n,m in vsh.mode_indices(lmax): for rp,v,u in vsh.mode_indices(lmax_in): a = p_scat[i,0,rp] b = p_scat[i,1,rp] A, B = vsh.vsh_translation(m, n, u, v, rad, theta, phi, k, vsh.vsh_mode.incident) p_cluster[0,r] += a*A + b*B p_cluster[1,r] += a*B + b*A return p_cluster ``` #### File: miepy/vsh/vsh_rotation.py ```python import numpy as np import miepy def vsh_rotation_matrix(n, quat): """Rotation matrix for a given multipole order Arguments: n multipole order quat quaternion representing the rotation Returns: Rotation matrix R[2n+1,2n+1], such that p' = R*p """ import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") import spherical l = 2*n + 1 R = spherical.wigner_D(quat.components, n, n).reshape((l,l)) m = np.arange(-n, n+1) R *= np.power(-1.0, np.subtract.outer(m, m)) return np.conj(R) def rotate_expansion_coefficients(p_exp, quat): """Rotate a set of expansion coefficients to a new reference frame Arguments: p_exp[2,rmax] expansion coefficients quat quaternion representing the rotation Returns: The rotated expansion coefficients, p_rot[2,rmax] """ p_rot = np.empty_like(p_exp) rmax = p_exp.shape[-1] lmax = miepy.vsh.rmax_to_lmax(rmax) for n in range(1,lmax+1): R = vsh_rotation_matrix(n, quat) rmax = miepy.vsh.lmax_to_rmax(n) idx = np.s_[rmax-(2*n+1):rmax] if p_rot.ndim == 3: p_rot[...,idx] = np.einsum('ab,Npb->Npa', R, p_exp[...,idx]) else: p_rot[:,idx] = np.einsum('ab,pb->pa', R, p_exp[:,idx]) return p_rot ``` #### File: johnaparker/MiePy/setup.py ```python import os import re import sys import platform import subprocess from setuptools import setup, find_packages, Extension from distutils.command.build import build from setuptools.command.build_ext import build_ext from setuptools import Command from distutils.version import LooseVersion NAME = 'miepy' DESCRIPTION = "Solve Maxwell's equations for a cluster of particles using the generalized multiparticle Mie theory (GMMT)" URL = '' EMAIL = '<EMAIL>' AUTHOR = '<NAME>' KEYWORDS = 'electrodynamics mie scattering' REQUIRES_PYTHON = '>=3.6.0' VERSION = '0.5.0' LICENSE = 'GPLv3' REQUIRED = [ 'numpy', 'scipy', 'matplotlib', 'tqdm', 'sympy', 'pandas', 'pyyaml', 'numpy_quaternion', 'spherical', 'vpython', ] def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() class CMakeExtension(Extension): def __init__(self, name, sourcedir=''): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) def unzip_material_database(): import zipfile path = 'miepy/materials/database.zip' with zipfile.ZipFile(path, 'r') as zip_ref: zip_ref.extractall('miepy/materials') def build_nfmds(build_direc, lib_dir): import pathlib if platform.system() == "Windows": build_direc = build_direc.replace('\\', r'/') lib_dir = lib_dir.replace('\\', r'/') src_dir = 'miepy/tmatrix/nfmds' obj_dir = '../../../{direc}/nfmds'.format(direc=build_direc) exe_dir = '../../../{direc}/miepy/bin'.format(direc=lib_dir) exe_dir = '../../bin' exe_dir_root = 'miepy/bin' obj_dir_root = '{build_direc}/nfmds'.format(build_direc=build_direc) pathlib.Path(exe_dir_root).mkdir(exist_ok=True) pathlib.Path(obj_dir_root).mkdir(exist_ok=True) command = ['make', 'objdir={obj_dir}'.format(obj_dir=obj_dir), 'exedir={exe_dir}'.format(exe_dir=exe_dir)] subprocess.check_call(' '.join(command), cwd=src_dir, shell=True) class builder(build): def run(self): if not os.path.isdir('miepy/materials/database'): unzip_material_database() if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) build_nfmds(self.build_temp, self.build_lib) super().run() class builder_ext(build_ext): def run(self): try: out = subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError("CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) if platform.system() == "Windows": cmake_version = LooseVersion(re.search(r'version\s*([\d.]+)', out.decode()).group(1)) if cmake_version < '3.1.0': raise RuntimeError("CMake >= 3.1.0 is required on Windows") for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir, '-DPYTHON_EXECUTABLE=' + sys.executable] cfg = 'Debug' if self.debug else 'Release' build_args = ['--config', cfg] if platform.system() == "Windows": cmake_args += ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}'.format(cfg.upper(), extdir)] if sys.maxsize > 2**32: cmake_args += ['-A', 'x64'] build_args += ['--', '/m'] else: cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg] build_args += ['--', '-j2'] env = os.environ.copy() env['CXXFLAGS'] = '{} -DVERSION_INFO=\\"{}\\"'.format(env.get('CXXFLAGS', ''), self.distribution.get_version()) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp) setup( name=NAME, version=VERSION, author=AUTHOR, author_email=EMAIL, description=DESCRIPTION, license=LICENSE, keywords=KEYWORDS, url=URL, packages=find_packages(), long_description=read('README.md'), long_description_content_type='text/markdown', install_requires=REQUIRED, python_requires=REQUIRES_PYTHON, include_package_data = True, ext_modules=[CMakeExtension('miepy/cpp', './cpp')], cmdclass={ 'build': builder, 'build_ext': builder_ext, }, classifiers=[ 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', 'Programming Language :: Python', 'Programming Language :: C++', 'Programming Language :: Fortran', 'Operating System :: Unix', 'Operating System :: POSIX', 'Operating System :: MacOS', 'Operating System :: Microsoft :: Windows', 'Development Status :: 3 - Alpha', 'Topic :: Scientific/Engineering :: Physics', 'Intended Audience :: Science/Research', ], zip_safe=False, ) ``` #### File: MiePy/tests/test_decomposition.py ```python import numpy as np import miepy import pytest def test_vsh_source_decomposition(): """verify the decomposition of the vsh_source""" x, y, z = (-.1, .1, .1) k = 2*np.pi lmax = 7 p = np.array([[0.1,0,-.1]]) R, THETA, PHI = miepy.coordinates.cart_to_sph(x - p[0,0], y - p[0,1], z - p[0,2]) source = miepy.sources.vsh_source(2, 2, ftype='electric', center=(0.3,.2,.1)) E1 = source.E_field(x, y, z, k) p_src = source.structure(p, k, lmax)[0] Efunc = miepy.vsh.expand_E(p_src, k, miepy.vsh_mode.incident) E2 = Efunc(R, THETA, PHI) E2 = miepy.coordinates.vec_sph_to_cart(E2, THETA, PHI) assert np.allclose(E1[:2], E2[:2], atol=0, rtol=1e-7), 'x,y components equal (electric mode)' assert np.allclose(E1[2], 0, atol=1e-15), 'z components of E1 goes to zero (electric mode)' assert np.allclose(E2[2], 0, atol=1e-7), 'z component of E2 goes to zero (electric mode)' source = miepy.sources.vsh_source(2, 2, ftype='magnetic', center=(0.3,.2,.1)) E1 = source.E_field(x, y, z, k) p_src = source.structure(p, k, lmax)[0] Efunc = miepy.vsh.expand_E(p_src, k, miepy.vsh_mode.incident) E2 = Efunc(R, THETA, PHI) E2 = miepy.coordinates.vec_sph_to_cart(E2, THETA, PHI) assert np.allclose(E1[2], E2[2], atol=0, rtol=1e-7), 'z components equal (magnetic mode)' assert np.allclose(E1[:2], 0, atol=1e-15), 'x,yz components of E1 go to zero (magnetic mode)' assert np.allclose(E2[:2], 0, atol=1e-7), 'x,y component of E2 go to zero (magnetic mode)' ``` #### File: MiePy/tests/test_ellipsoid.py ```python import miepy import numpy as np nm = 1e-9 rx = ry = 40*nm rz = 70*nm material = miepy.materials.Ag() wavelength = 700*nm lmax = 3 def test_ellipsoid_equal_spheroid_z_oriented(): """An (rx, ry, rz) ellipsoid should equal a z-oriented (rxy, rz) spheroid""" e = miepy.spheroid([0,0,0], rx, rz, material) T1 = e.compute_tmatrix(lmax, wavelength, 1.0) e = miepy.ellipsoid([0,0,0], rx, ry, rz, material) T2 = e.compute_tmatrix(lmax, wavelength, 1.0) assert np.allclose(T1, T2, atol=2e-5) def test_ellipsoid_equal_spheroid_x_oriented(): """An (rz, rx, ry) ellipsoid should equal an x-oriented (rxy, rz) spheroid""" q = miepy.quaternion.from_spherical_coords(np.pi/2, 0) e = miepy.spheroid([0,0,0], rx, rz, material, orientation=q) T1 = e.compute_tmatrix(lmax, wavelength, 1.0) e = miepy.ellipsoid([0,0,0], rz, rx, ry, material) T2 = e.compute_tmatrix(lmax, wavelength, 1.0) assert np.allclose(T1, T2, atol=5e-5) def test_ellipsoid_equal_spheroid_y_oriented(): """An (rx, rz, ry) ellipsoid should equal a y-oriented (rxy, rz) spheroid""" q = miepy.quaternion.from_spherical_coords(np.pi/2, np.pi/2) e = miepy.spheroid([0,0,0], rx, rz, material, orientation=q) T1 = e.compute_tmatrix(lmax, wavelength, 1.0) e = miepy.ellipsoid([0,0,0], rx, rz, ry, material) T2 = e.compute_tmatrix(lmax, wavelength, 1.0) assert np.allclose(T1, T2, atol=5e-5) ``` #### File: MiePy/tests/test_far_field.py ```python import numpy as np import miepy nm = 1e-9 dimer = miepy.sphere_cluster(position=[[-100*nm,0,0], [100*nm, 0, 0]], radius=75*nm, material=miepy.constant_material(3.6**2), source=miepy.sources.plane_wave.from_string(polarization='y'), wavelength=600*nm, lmax=2) theta = np.linspace(0, np.pi, 5) phi = np.linspace(0, 2*np.pi, 5) THETA, PHI = np.meshgrid(theta, phi) R = 1e6 X, Y, Z = miepy.coordinates.sph_to_cart(R, THETA, PHI) E_exact = dimer.E_field(R, THETA, PHI, source=False, interior=False, spherical=True) def test_far_field_convergence(): """far-field E and H field should agree with exact field in the large radius limit""" E_far = dimer.E_field(R, THETA, PHI, far=True, source=False, interior=False, spherical=True) np.testing.assert_allclose(E_exact, E_far, rtol=0, atol=1e-16) def test_far_field_cluster_coefficient(): """far-fields calculated from the cluster coefficients should be the same as the sum-over particle coefficients""" dimer.solve_cluster_coefficients(lmax=4) E_func = miepy.vsh.expand_E_far(dimer.p_cluster, dimer.material_data.k_b) E_far = E_func(R, THETA, PHI) np.testing.assert_allclose(E_exact, E_far, rtol=0, atol=1e-15) def test_far_field_directly(): """far-field function compared directly to total field function for n=2, m=-1""" x = 1e6 n = 2 m = -1 Nfunc, Mfunc = miepy.vsh.VSH(n, m) rad, theta, phi = 1e6, 0.9, -0.6 k = 1 N = Nfunc(rad, theta, phi, k) M = Mfunc(rad, theta, phi, k) tau = miepy.vsh.special.tau_func(n, m, theta) pi = miepy.vsh.special.pi_func(n, m, theta) E_theta_1 = 1j*N[1] factor = np.exp(1j*k*rad)/(k*rad) E_theta_2 = 1j*factor*(-1j)**n*tau*np.exp(1j*m*phi) np.testing.assert_allclose(E_theta_1, E_theta_2, rtol=0, atol=1e-12) E_theta_1 = 1j*M[1] factor = np.exp(1j*k*rad)/(k*rad) E_theta_2 = 1j*factor*(-1j)**n*pi*np.exp(1j*m*phi) np.testing.assert_allclose(E_theta_1, E_theta_2, rtol=0, atol=1e-12) ``` #### File: MiePy/tests/test_fields.py ```python import numpy as np import miepy nm = 1e-9 def test_boundary_conditions(): """verifies the continunity of tangential components of E and H at the surface of a particle""" radius = 50*nm cluster = miepy.sphere_cluster(position=[[0,0,0]], radius=radius, material=miepy.materials. Ag(), lmax=2, wavelength=600*nm, source=miepy.sources.plane_wave.from_string(polarization='y'), medium=miepy.constant_material(1.2**2)) theta = 0.3 phi = 0.3 eps = .1*nm E_out = cluster.E_field(radius + eps, theta, phi, spherical=True) E_in = cluster.E_field(radius - eps, theta, phi, spherical=True) H_out = cluster.H_field(radius + eps, theta, phi, spherical=True) H_in = cluster.H_field(radius - eps, theta, phi, spherical=True) assert np.allclose(E_out[1:], E_in[1:], atol=4e-2, rtol=0) assert np.allclose(H_out[1:], H_in[1:], atol=4e-2, rtol=0) ``` #### File: MiePy/tests/test_interface.py ```python import numpy as np import miepy import pytest nm = 1e-9 wavelength = 600*nm k = 2*np.pi/wavelength radius = 75*nm medium = miepy.materials.water() material = miepy.materials.Ag() width = 200*nm polarization = [1,0] zpos = 400*nm @pytest.mark.parametrize("s1,s2,rtol", [ (miepy.sources.gaussian_beam(width=width, polarization=polarization, center=[0,0,-zpos]), miepy.sources.gaussian_beam(width=width, polarization=polarization), 0), (miepy.sources.plane_wave(polarization=polarization), miepy.sources.plane_wave(polarization=polarization), 1e-4) ]) def test_interface_z_translation(s1, s2, rtol): """ Moving the source and particle is identical to moving the interface (cross-section comparison) """ interface = miepy.interface(miepy.constant_material(index=1.7)) cluster = miepy.sphere_cluster(position=[0,0,-zpos], radius=radius, material=material, medium=medium, lmax=2, source=s1, interface=interface, wavelength=wavelength) C1 = np.array(cluster.cross_sections()) interface = miepy.interface(miepy.constant_material(index=1.7), z=zpos) cluster = miepy.sphere_cluster(position=[0,0,0], radius=radius, material=material, medium=medium, lmax=2, source=s2, interface=interface, wavelength=wavelength) C2 = np.array(cluster.cross_sections()) assert np.allclose(C1, C2, atol=0, rtol=rtol) @pytest.mark.parametrize("source,rtol", [ (miepy.sources.gaussian_beam(width=width, polarization=polarization), 1e-15), (miepy.sources.plane_wave(polarization=polarization), 0) ]) def test_index_matched_interface(source, rtol): """ An interface that is index-matched with the medium is identical to not having an interface (cross-section comparison) """ interface = miepy.interface(medium, z=zpos) cluster = miepy.sphere_cluster(position=[0,0,0], radius=radius, material=material, medium=medium, lmax=2, source=source, interface=interface, wavelength=wavelength) C1 = np.array(cluster.cross_sections()) cluster = miepy.sphere_cluster(position=[0,0,0], radius=radius, material=material, medium=medium, lmax=2, source=source, wavelength=wavelength) C2 = np.array(cluster.cross_sections()) assert np.allclose(C1, C2, atol=0, rtol=1e-15) ``` #### File: MiePy/tests/test_near_to_far.py ```python import numpy as np import miepy import pytest ### parameters nm = 1e-9 wav = 600*nm k = 2*np.pi/wav width = 100*nm polarization = [1,1j] ### angular grid radius = 150.3*wav theta = np.linspace(0., np.pi, 4) phi = np.linspace(0, 2*np.pi, 5)[:-1] THETA, PHI = np.meshgrid(theta, phi, indexing='ij') X, Y, Z = miepy.coordinates.sph_to_cart(radius, THETA, PHI) @pytest.mark.parametrize("source,atol,rtol", [ (miepy.sources.gaussian_beam(width=width, polarization=polarization), 0, 2e-2), (miepy.sources.hermite_gaussian_beam(2, 0, width=width, polarization=polarization), 0, 2e-2), (miepy.sources.laguerre_gaussian_beam(1, 1, width=width, polarization=polarization), 1, 5e-2), ]) def test_source_electric_field_near_to_far(source, atol, rtol): """ Compare E-field of source in far field using near and far field expressions Expressions are expected to converge in the limit r -> infinity """ E1 = source.E_field(X, Y, Z, k, sampling=300) E1 = miepy.coordinates.vec_cart_to_sph(E1, THETA, PHI)[1:] E2 = source.E_angular(THETA, PHI, k, radius=radius) assert np.allclose(E1, E2, atol=atol, rtol=rtol) @pytest.mark.parametrize("source,atol,rtol", [ (miepy.sources.gaussian_beam(width=width, polarization=polarization), 0, 2e-2), (miepy.sources.hermite_gaussian_beam(2, 0, width=width, polarization=polarization), 0, 2e-2), (miepy.sources.laguerre_gaussian_beam(1, 1, width=width, polarization=polarization), 1, 5e-2), ]) def test_source_magnetic_field_near_to_far(source, atol, rtol): """ Compare H-field of source in far field using near and far field expressions Expressions are expected to converge in the limit r -> infinity """ H1 = source.H_field(X, Y, Z, k, sampling=300) H1 = miepy.coordinates.vec_cart_to_sph(H1, THETA, PHI)[1:] H2 = source.H_angular(THETA, PHI, k, radius=radius) assert np.allclose(H1, H2, atol=atol, rtol=rtol) def test_cluster_field_near_to_far(): """ Compare scattered E/H-field of a cluster in far field using near and far field expressions Expressions are expected to converge in the limit r -> infinity """ x = np.linspace(-600*nm, 600*nm, 3) y = np.linspace(-600*nm, 600*nm, 3) cluster = miepy.sphere_cluster(position=[[xv, yv, 0] for xv in x for yv in y], radius=100*nm, material=miepy.constant_material(index=2), wavelength=wav, source=miepy.sources.plane_wave([1,1]), lmax=3) theta = np.linspace(0, np.pi, 5) phi = np.linspace(0, 2*np.pi, 5) THETA, PHI = np.meshgrid(theta, phi) radius = np.ones_like(THETA) E1 = cluster.E_field(radius, THETA, PHI, spherical=True, source=False) E2 = cluster.E_angular(THETA, PHI, radius=radius, source=False) H1 = cluster.H_field(radius, THETA, PHI, spherical=True, source=False) H2 = cluster.H_angular(THETA, PHI, radius=radius, source=False) assert np.allclose(E1[0], 0, atol=1e-10), 'radial component of E goes to 0' assert np.allclose(E1[1:], E2, atol=0, rtol=1e-6), 'E converges' assert np.allclose(H1[0], 0, atol=1e-10), 'radial component of H goes to 0' assert np.allclose(H1[1:], H2, atol=0, rtol=1e-6), 'H converges' ``` #### File: MiePy/tests/test_single_gmt.py ```python import numpy as np import miepy from tqdm import tqdm nm = 1e-9 # wavelength from 400nm to 1000nm wavelengths = np.linspace(400*nm,1000*nm,10) # create a material with n = 3.7 (eps = n^2) at all wavelengths dielectric = miepy.constant_material(3.7**2 + .1j) # calculate scattering coefficients radius = 100*nm # 100 nm radius # water medium medium = miepy.materials. water() # Single Mie Theory lmax = 5 # Use up to 5 multipoles sphere = miepy.single_mie_sphere(radius, dielectric, wavelengths, lmax, medium=medium) S,A,E = sphere.cross_sections() Fz = sphere.radiation_force() # Generalized Mie Theory (GMT) source = miepy.sources.plane_wave.from_string(polarization='x') scat = np.zeros_like(wavelengths) absorb = np.zeros_like(wavelengths) extinct = np.zeros_like(wavelengths) force = np.zeros((3,) + wavelengths.shape) for i,wavelength in enumerate(wavelengths): system = miepy.sphere_cluster(position=[0,0,0], radius=radius, material=dielectric, source=source, wavelength=wavelength, lmax=lmax, medium=medium) scat[i],absorb[i],extinct[i] = system.cross_sections() force[:,i] = system.force_on_particle(0) def test_scattering(): """compare scattering cross-section of GMT and single Mie theory""" L2 = np.linalg.norm(scat - S)/scat.shape[0] avg = np.average(np.abs(S) + np.abs(scat))/2 assert np.all(L2 < 1e-15*avg) def test_absoprtion(): """compare absoprtion cross-section of GMT and single Mie theory""" L2 = np.linalg.norm(absorb - A)/scat.shape[0] avg = np.average(np.abs(A) + np.abs(absorb))/2 assert np.all(L2 < 2e-15*avg) def test_force(): """compare radiation force of GMT and single Mie theory""" L2 = np.linalg.norm(force[2] - Fz)/Fz.shape[0] avg = np.average(np.abs(force[2]) + np.abs(Fz))/2 assert np.all(L2 < 1e-6*avg) if __name__ == '__main__': import matplotlib.pyplot as plt plt.figure() plt.plot(wavelengths/nm, scat, color='C0', label='GMT scattering') plt.plot(wavelengths/nm, S, 'o', color='C0', label="Single Mie theory", linewidth=2) plt.plot(wavelengths/nm, absorb, color='C1', label='GMT absorption') plt.plot(wavelengths/nm, A, 'o', color='C1', label="Single Mie theory", linewidth=2) plt.plot(wavelengths/nm, extinct, color='C2', label='GMT extinction') plt.plot(wavelengths/nm, E, 'o', color='C2', label="Single Mie theory", linewidth=2) plt.xlabel("wavelength (nm)") plt.ylabel("Scattering cross-section") plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.legend() plt.figure() plt.plot(wavelengths/nm, force[2], color='C1', label='GMT force') plt.plot(wavelengths/nm, Fz, 'o', color='C1', label="Single Mie theory", linewidth=2) plt.xlabel("wavelength (nm)") plt.ylabel("force") plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.legend() plt.show() ```
{ "source": "johnaparker/numpipe", "score": 3 }
#### File: numpipe/examples/basics.py ```python from numpipe import scheduler, once import numpy as np import matplotlib.pyplot as plt ### Setup job = scheduler() ### Fast, shared code goes here x = np.linspace(0,1,10) ### Slow, sim-only code goes here and relevant data is written to file @job.cache def sim1(): """compute the square of x""" y = x**2 return {'y': y} @job.cache def sim2(): """compute the cube of x""" z = x**3 return {'z': z} @job.cache def sim3(): """construct a time-series""" for i in range(5): z = x*i + 1 yield {'time_series': z, 'time': i} yield once(xavg=np.average(x)) @job.cache def sim4(param): """sim depends on parameter""" x = np.array([1,2,3]) return {'y': param*x} @job.cache def sim5(): pass job.add(sim4, 'A', param=2) job.add(sim4, 'A', param=3) job.add(sim4, 'A', param=4) job.add(sim4, 'B', param=4) @job.plots def vis(): """visualize the data""" cache = job.load(sim1) plt.plot(x, cache.y) cache = job.load(sim2) plt.plot(x, cache.z) for name, cache in job.load(sim4): print(f'{name} instance has y = {cache.y} with param = {cache.args.param}') # with job.load(sim4, defer=True) as cache: plt.show() ### execute if __name__ == '__main__': job.run() ``` #### File: numpipe/examples/dependency.py ```python from numpipe import scheduler from time import sleep job = scheduler() @job.cache() def A(): sleep(1) return dict(x=2) @job.cache(depends=A) def B(): sleep(1) return dict(x=2) @job.cache(depends=A) def C(i): sleep(1) return dict(x=2) @job.cache(depends=C) def D(): sleep(1) return dict(x=2) job.add(C, i=0) job.add(C, i=1).depends(B) if __name__ == '__main__': job.run() ``` #### File: numpipe/examples/exception.py ```python from numpipe import scheduler from time import sleep ### Setup job = scheduler() N = 10 T = .5 @job.cache() def first(): for i in range(N): sleep(T/N) return {} @job.cache def second(): x = 1/0 return {} @job.cache() def third(): for i in range(N): sleep(T/N) return {} if __name__ == '__main__': job.run() ``` #### File: numpipe/examples/progress.py ```python import numpipe from numpipe import pbar from time import sleep ### Setup job = numpipe.scheduler() import numpy as np N = 100 T = 5 @job.cache def progress(i): progress = 0 for j in pbar(range(N)): if i in (2,5,8) and j == 40: raise RuntimeError sleep(T/N) yield dict() for i in range(10): job.add(progress, i=i) ### execute if __name__ == '__main__': job.run() ``` #### File: numpipe/numpipe/notify.py ```python import socket from datetime import datetime from time import time, sleep from numpipe import config import matplotlib.pyplot as plt import matplotlib as mpl DEFAULT_DELAY = config.get_config()['notifications']['delay_default'] def get_bot_token(): """get bot token from config file""" return config.get_config()['notifications']['telegram']['token'] def get_chat_id(): """get chat ID from config file""" return config.get_config()['notifications']['telegram']['chat_id'] def notifications_active(): """check whether notifications can be sent based on the config file""" return get_bot_token() and get_chat_id() def generate_time_str(time): """convert time (in seconds) to a text string""" hours = int(time // 60**2) minutes = int((time - hours*60**2) // 60) seconds = int((time - hours*60**2 - minutes*60) // 1) ret = '' if hours: unit = 'hr' if hours == 1 else 'hrs' ret += f'{hours} {unit} ' if minutes: unit = 'min' if minutes == 1 else 'mins' ret += f'{minutes} {unit} ' if not (hours and minutes): unit = 'sec' if seconds == 1 else 'secs' ret += f'{seconds} {unit}' return ret.strip() def check_idle_matplotlib(delay=DEFAULT_DELAY, check_every=.5): """ Check if the user is idle based on matplotlib plot interactions (mouse move, key press, window interactions) Arguments: delay time (in seconds) to check before declaring idle check_every time (in seconds) between interaction checks """ nfigures_before = len(plt.get_fignums()) if not nfigures_before: raise RuntimeError('cannot check for user idleness if there are no figures') mouse_moved = False key_pressed = False def on_mouse_movement(event): nonlocal mouse_moved mouse_moved = True def on_key_press(event): nonlocal key_pressed key_pressed = True fig = plt.figure(nfigures_before) cid = fig.canvas.mpl_connect('motion_notify_event', on_mouse_movement) cid = fig.canvas.mpl_connect('key_press_event', on_key_press) t_start = time() while time() - t_start < 1: sleep(.01) if not plt.get_fignums(): return backend = mpl.get_backend() qt_backends = ('Qt4Agg', 'Qt5Agg') if backend in qt_backends: x0 = fig.canvas.manager.window.x() y0 = fig.canvas.manager.window.y() w0 = fig.canvas.manager.window.size() t_start = time() while time() - t_start < delay: sleep(check_every) if len(plt.get_fignums()) != nfigures_before: return False if mouse_moved: return False if key_pressed: return False if backend in qt_backends: if not fig.canvas.manager.window.isActiveWindow(): return False x = fig.canvas.manager.window.x() y = fig.canvas.manager.window.y() w = fig.canvas.manager.window.size() if x != x0 or y != y0: return False if w != w0: return False return True def send_message(message): """send a text message""" from telegram import Bot, ParseMode bot = Bot(token=get_bot_token()) bot.send_message(chat_id=get_chat_id(), text=message, parse_mode=ParseMode.MARKDOWN) def send_message_from(message, filename): """send a text message with """ from telegram import Bot, ParseMode host = socket.gethostname() message = f'*{message}*' + f'\n_{host}:{filename}_' bot = Bot(token=get_bot_token()) bot.send_message(chat_id=get_chat_id(), text=message, parse_mode=ParseMode.MARKDOWN) def send_finish_message(filename, njobs, time, num_exceptions): """send a text message summarizing the jobs that ran Arguments: filename name of the python file njobs number of jobs ran time runtime of the jobs num_exceptions number of jobs that threw exceptions """ host = socket.gethostname() time_str = generate_time_str(time) tab = ' ' if num_exceptions: status = f'{num_exceptions}/{njobs} failures' else: status = 'success' date = datetime.now().strftime("%H:%M %d-%m-%Y") text = f'''`Simulation finished: {tab}filename___{filename}.py {tab}status_____{status} {tab}host_______{host} {tab}njobs______{njobs} {tab}runtime____{time_str} {tab}date_______{date}` ''' send_message(text) def send_images(filename, exempt=[]): """send images (from matplotlib) Arguments: filename name of the python file (without .py extension) exempt (optional) a list of figure numbers to not send """ if not plt.get_fignums(): return from telegram import Bot, ChatAction, InputMediaPhoto from io import BytesIO bot = Bot(token=get_bot_token()) chat_id = get_chat_id() send_action = lambda: bot.send_chat_action(chat_id=chat_id, action=ChatAction.UPLOAD_PHOTO) send_action() media = [] num_figs = 0 t_start = time() for i in plt.get_fignums(): fig = plt.figure(i) if fig.number in exempt: continue caption = f'{filename}-fig{i}' bio = BytesIO() bio.name = f'fig{i}.png' fig.savefig(bio, format='png') bio.seek(0) media.append(InputMediaPhoto(bio, caption=caption)) plt.close(fig) num_figs += 1 if num_figs == 10: num_figs = 0 bot.send_media_group(chat_id, media=media) media = [] if time() - t_start > 7: send_action() t_start = time() if num_figs: bot.send_media_group(chat_id, media=media) def send_videos(anims): """send a set of animations Arguments: anims list of lists of the animations (each embedded list must share the same figure) """ if not anims: return from telegram import Bot import tempfile plt.close('all') bot = Bot(token=get_bot_token()) chat_id = get_chat_id() with tempfile.TemporaryDirectory() as direc: for i,anim_list in enumerate(anims): plt.close(anim_list[0]._fig) filepath = f'{direc}/vid{i}.mp4' send_animation(bot, chat_id, anim_list, filepath) bot.send_video(chat_id, video=open(filepath, 'rb')) def send_animation(bot, chat_id, anim_list, filepath, *args, **kwargs): """send a single animation for a given bot and chat_id Arguments: bot telegram bot chat_id telgram chat id anim_list list of animations (belonging to the same figure) filepath filepath the animation will be saved to *args additional arguments to pass to anim.save **kwargs additional key-word arguments to pass to anim.save """ from telegram import ChatAction anim = anim_list[0] send_action = lambda: bot.send_chat_action(chat_id=chat_id, action=ChatAction.UPLOAD_VIDEO) store_func = anim._func t_start = time() send_action() def wrapper(*args): nonlocal t_start if time() - t_start > 7: send_action() t_start = time() return store_func(*args) anim._func = wrapper anim.save(filepath, extra_anim=anim_list[1:], *args, **kwargs) anim._func = store_func def send_notifications(notifications, delay=DEFAULT_DELAY, check_idle=True, idle=False): """send a collection of notifications Arguments: notifications list of functions to call that send notifications (no arguments) delay time (in seconds) to check if the user is idle before notifying check_idle whether or not to check if the user is idle (default: True) idle whether or not the user is idle now (default: False) """ if not notifications_active(): return if check_idle: idle = check_idle_matplotlib(delay=delay) if idle: for notification in notifications: notification() ``` #### File: numpipe/numpipe/parser.py ```python import argparse from numpipe import config notifications_default_delay = config.get_config()['notifications']['delay_default'] processes_default = None if config.get_config()['execution']['parallel_default'] else 1 mininterval = config.get_config()['progress']['mininterval'] def run_parser(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest="action") display_parser = subparsers.add_parser('display', help='display available functions and descriptions') display_parser = subparsers.add_parser('clean', help='remove all h5files that are no longer cache functions') slurm_parse = subparsers.add_parser('slurm', help='run on a system with the Slurm Workload Manager') for p in [parser, slurm_parse]: p.add_argument('-r', '--rerun', nargs='*', type=str, default=None, help='re-run specific cached functions by name') p.add_argument('-f', '--force', action='store_true', help='force over-write any existing cached data') p.add_argument('-d', '--delete', nargs='*', type=str, default=None, help='delete specified cached data') p.add_argument('-e', '--exclude', nargs='+', type=str, default=[], help='exclude cached function from being re-run') p.add_argument('--at-end', action='store_true', default=False, help="only run at_end functions") p.add_argument('--no-at-end', action='store_true', default=False, help="don't run at_end functions") p.add_argument('-p', '--processes', nargs='?', default=processes_default, type=int, help='number of processes to use in parallel execution (default: cpu_count)') p.add_argument('-ct', '--cache_time', type=float, default=300, help='time (in seconds) until data cached data is flushed to file') p.add_argument('--no-deps', action='store_true', default=False, help='do not rerun functions that depend on other reran functions') p.add_argument('--mininterval', type=float, default=mininterval, help='time (in seconds) for progress bar mininterval argument') p.add_argument('--notify', action='store_true', default=False, help='send notifications without delay') p.add_argument('--notify-message', type=str, default=None, help='send a custom message with other notifications') p.add_argument('--notify-delay', type=float, default=notifications_default_delay, help='time (in seconds) before notifications will be sent') p.add_argument('--theme', default='normal', type=str, help='matplotlib plot theme') p.add_argument('--figures', nargs='+', type=int, help='which figure numbers to display') p.add_argument('--save', nargs='?', default='', type=str, help='save figures and animations') p.add_argument('--save-format', nargs='+', default=['png'], type=str, help='file format for figures') p.add_argument('--save-figs', nargs='?', default='', type=str, help='save figures') p.add_argument('--save-anims', nargs='?', default='', type=str, help='save animations') # p.add_argument('--theme', choices=['classic', 'dark'], default='classic', help='matplotlib plot theme') parser.add_argument('--debug', action='store_true', default=False, help='run in debug mode (single process)') slurm_parse.add_argument('-t', '--time', type=str, default='36', help='maximum run-time for the Slurm job, formated as {hours}:{minutes}:{seconds} (minutes and seconds optional)') slurm_parse.add_argument('-m', '--memory', type=float, default=2, help='maximum memory per cpu for the Slurm job in GB') slurm_parse.add_argument('--batch', action='store_true', help='submit the Slurm job in batches') slurm_parse.add_argument('--no-submit', action='store_true', help="don't submit the Slurm job after creating sbatch files") return parser.parse_args() ``` #### File: numpipe/numpipe/utility.py ```python from functools import wraps import traceback import numpy as np class once(dict): """identical to dict; used to yield something only once""" pass class Bunch: """convert a dictionary into a class with data members equal to the dictionary keys""" def __init__(self, adict): self.__dict__.update(adict) def __getitem__(self, key): return self.__dict__[key] def __setitem__(self, key, value): self.__dict__[key] = value def doublewrap(func): """ a decorator decorator, can be used as @decorator(...) or @decorator """ @wraps(func) def new_func(*args, **kwargs): if len(args) == 2 and len(kwargs) == 0 and callable(args[1]): return func(*args) else: return lambda f: func(args[0], f, *args[1:], **kwargs) return new_func def doublewrap_1(func): """ a decorator decorator, can be used as @decorator(...) or @decorator """ @wraps(func) def new_func(*args, **kwargs): if len(args) == 1 and len(kwargs) == 0 and callable(args[1]): return func(*args) else: return lambda f: func(args[0], f, *args[1:], **kwargs) return new_func def yield_traceback(func): """decorator to properly yield the traceback of a function in a parallel environment""" def new_func(*args, **kwargs): try: return f(*args, **kwargs) except: raise Exception("".join(traceback.format_exception(*sys.exc_info()))) return new_func class first_argument: # current_iteration = {} def __init__(self, name, num_iterations=None): self.name = name self.num_iterations = num_iterations if num_iterations is not None: current_iteration[name] = Value('i', 0) def iterations(self): def gen(): for i in range(self.num_iterations): yield current_iteration[self.name].value current_iteration[self.name].value += 1 return gen() def flatten_along(arr, axis=None): """flatten an array along a give axis / axes""" if axis is None: return arr.flatten() else: if np.isscalar(axis): arr = np.moveaxis(arr, axis, 0) else: axis = sorted(axis) for i,ax in enumerate(axis): arr = np.moveaxis(arr, ax, i) shape = arr.shape[len(axis):] arr = arr.reshape((-1,) + shape) return arr ```
{ "source": "johnaparker/Qpost", "score": 3 }
#### File: Qpost/qpost/materials.py ```python import h5py import numpy as np import qpost.vec as vec class simple_material: def __init__(self, eps, mu, conduc, material_type = "simple", name = None): self.eps = eps self.mu = mu self.conduc = conduc def perimitivitty(self, freq): """Return the complex permitvitty at freq""" omega = 2*np.pi*freq return self.eps + 1j*self.conduc/omega class debye: def __init__(self, eps_inf, delta_epsilon, tau, material_type = "debye", name = None): self.eps_inf = eps_inf self.delta_epsilon = delta_epsilon self.tau = tau self.material_type = material_type self.name = name def perimitivitty(self, freq): """Return the complex permitvitty at freq""" omega = 2*np.pi*freq return self.eps_inf + np.sum(self.delta_epsilon[:,np.newaxis]/(1 - 1j*omega*self.tau[:,np.newaxis]), axis=0) class drude: def __init__(self, eps_inf, omega_0, gamma, material_type = "drude", name = None): self.eps_inf = eps_inf self.omega_0 = omega_0 self.gamma = gamma self.material_type = material_type self.name = name def perimitivitty(self, freq): """Return the complex permitvitty at freq""" omega = 2*np.pi*freq return self.eps_inf - np.sum(self.omega_0[:,np.newaxis]**2/(omega**2 + 1j*omega*self.gamma[:,np.newaxis]), axis=0) class lorentz: def __init__(self, eps_inf, delta_epsilon, omega_0, gamma, material_type = "lorentz", name = None): self.eps_inf = eps_inf self.delta_epsilon = delta_epsilon self.omega_0 = omega_0 self.gamma = gamma self.material_type = material_type self.name = name def perimitivitty(self, freq): """Return the complex permitvitty at freq""" omega = 2*np.pi*freq return self.eps_inf - np.sum(self.delta_epsilon[:,np.newaxis]*self.omega_0[:,np.newaxis]**2/(self.omega_0[:,np.newaxis]**2 - omega**2 - 2j*omega*self.gamma[:,np.newaxis]), axis=0) def load_material(filename, material_name): """Load a material from a file of name material_name""" kwargs = {} path = "materials/{0}".format(material_name) with h5py.File(filename, 'r') as f: g = f[path] for item in g: kwargs[item] = g[item][...] mat_type = kwargs["material_type"].tolist().decode() mat_map = {"simple": simple_material, "lorentz": lorentz, "drude": drude, "debye": debye } return mat_map[mat_type](**kwargs) def load_all_materials(filename): """Load all materials in file. Returns a dictionary""" materials = {} with h5py.File(filename, 'r') as f: g = f["materials"] for material_name in g: materials[material_name] = load_material(filename, material_name) return materials ``` #### File: Qpost/qpost/objects.py ```python import h5py import numpy as np import qpost class object: def __init__(self, filename, group_name, name): self.filename = filename self.group_name = group_name self.name = name self.path = "/objects/{0}/{1}".format(group_name, name) self.position = qpost.vec.load_vec(filename, self.path, "position") self.theta = qpost.vec.load_scalar(filename, self.path, "theta") with h5py.File(filename, 'r') as f: ref = f[self.path + "/material"][...].tolist() material_path = f[ref].name material_name = material_path[material_path.rfind("/")+1:] self.material = qpost.materials.load_material(filename, material_name) class cylinder(object): def __init__(self, filename, name): super().__init__(filename, "cylinders", name) with h5py.File(filename, 'r') as f: self.radius = f[self.path]["radius"][...] class ellipse(object): def __init__(self, filename, name): super().__init__(filename, "ellipses", name) with h5py.File(filename, 'r') as f: self.rx = f[self.path]["rx"][...] self.ry = f[self.path]["ry"][...] class block(object): def __init__(self, filename, name): super().__init__(filename, "blocks", name) with h5py.File(filename, 'r') as f: self.dimensions = f[self.path]["dimensions"][...] ``` #### File: Qpost/qpost/sources.py ```python import numpy as np import h5py import qpost.vec as vec class source: def __init__(self, filename, group_name, source_name): self.filename = filename self.group_name = group_name self.path = "/sources/{0}/{1}".format(group_name, source_name) class point_source(source): def __init__(self, filename, name): super().__init__(filename, "point", name) self.position = vec.load_vec(filename, self.path, "position") class line_source(source): def __init__(self, filename, name): super().__init__(filename, "line", name) self.surface = vec.load_surface(filename, self.path) class tfsf: def __init__(self, filename): self.path = "/sources/tfsf" self.volume = vec.load_volume(filename, self.path) with h5py.File(filename, 'r') as f: g = f[self.path] try: self.frequency = g["dft_frequency"][...] self.flux = g["flux"][...] except KeyError: self.frequency = None self.flux = None ``` #### File: Qpost/qpost/vec.py ```python import h5py import numpy as np def load_scalar(filename, path, scalar_name): with h5py.File(filename, 'r') as f: return f[path][scalar_name][...] def load_vec(filename, path, vec_name): with h5py.File(filename, 'r') as f: return f[path][vec_name][...] def load_surface(filename, path): D = {} with h5py.File(filename, 'r') as f: D["p1"] = f[path]["p1"][...] D["p2"] = f[path]["p2"][...] return D def load_volume(filename, path): return load_surface(filename, path) def load_cylinder_surface(filename, path): D = {} with h5py.File(filename, 'r') as f: D["center"] = f[path]["center"][...] D["radius"] = f[path]["radius"][...] return D def load_grid(filename): D = {} with h5py.File(filename, 'r') as f: g = f['grid'] for dset_name in g: dset = g[dset_name] D[dset_name] = dset[...] return D ``` #### File: qpost/viz/material.py ```python import matplotlib.pyplot as plt import numpy as np import qpost def plot_materials(h5file): materials = qpost.materials.load_all_materials(h5file) f_min, f_max = qpost.monitors.get_freq_range(h5file) freq = np.linspace(f_min, f_max, 1000) for name,material in materials.items(): eps = material.perimitivitty(freq) plt.figure() plt.plot(freq, eps.real, label = r'Re($\varepsilon_r$)') plt.plot(freq, eps.imag, label = r'Im($\varepsilon_r$)') plt.title(name) plt.xlabel("frequency") plt.ylabel("permitvitty") plt.legend() plt.show() ```
{ "source": "johnaparker/stoked", "score": 2 }
#### File: johnaparker/stoked/setup.py ```python import os from setuptools import setup, find_packages def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() NAME = 'stoked' DESCRIPTION = "Simulation and visualization of Stokesian dynamics for N interacting particles" URL = '' EMAIL = '<EMAIL>' AUTHOR = '<NAME>' KEYWORDS = 'stokesian dynamics brownian' # REQUIRES_PYTHON = '>=3.6.0' VERSION = '0.3.5' LICENSE = 'MIT' REQUIRED = [ 'numpy', 'scipy', 'matplotlib', 'tqdm', 'numpy_quaternion', ] setup( name=NAME, version=VERSION, author=AUTHOR, author_email=EMAIL, description=DESCRIPTION, license=LICENSE, keywords=KEYWORDS, url=URL, packages=find_packages(), long_description=read('README.md'), long_description_content_type='text/markdown', install_requires=REQUIRED, classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Operating System :: POSIX', 'Operating System :: MacOS', 'Development Status :: 3 - Alpha', 'Topic :: Scientific/Engineering :: Physics', 'Intended Audience :: Science/Research', ], zip_safe=False, ) ``` #### File: stoked/stoked/collisions.py ```python import numpy as np from stoked import interactions from stoked.forces import pairwise_central_force def collisions_sphere(radius, kn): def F(r): nonlocal radius if np.isscalar(radius): Nparticles = len(r) radius = np.full(Nparticles, radius, dtype=float) T1 = np.add.outer(radius, radius) overlap = T1 - r overlap[overlap<0] = 0 return kn*overlap**1.5 return pairwise_central_force(F) class collisions_sphere_interface(interactions): """ Collision between spheres and a planar surface using the force model F = kn*overlap^1.5 """ def __init__(self, radii, kn, zpos=0): """ Arguments: radii particle radii kn force constant zpos z-position of the plane (default: 0) """ self.radii = radii self.kn = kn self.zpos = zpos def force(self): Nparticles = len(self.position) if np.isscalar(self.radii): rad = np.full(Nparticles, self.radii, dtype=float) else: rad = np.asarray(self.radii, dtype=float) F = np.zeros_like(self.position) dz = self.position[:,2] - self.zpos overlap = dz - rad idx = overlap < 0 F[idx,2] = np.sign(dz[idx])*self.kn*np.sqrt(-overlap[idx])**3 return F def torque(self): return np.zeros_like(self.position) ``` #### File: stoked/stoked/forces.py ```python import numpy as np from stoked import interactions class pairwise_force(interactions): """ Pair-wise interaction force """ def __init__(self, force_func): """ Arguments: force_func force function of the form F(r[dim]) -> [dim] """ self.force_func = force_func def force(self): Nparticles = len(self.position) r_ij = self.position[:,np.newaxis] - self.position[np.newaxis] # N x N x 3 with np.errstate(divide='ignore'): F_ij = self.force_func(r_ij) # N x N x 3 np.einsum('iix->ix', F_ij)[...] = 0 F_i = np.sum(F_ij, axis=1) return F_i def torque(self): T_i = np.zeros_like(self.position) return T_i def __add__(self, other): def new_func(r): return self.force_func(r) + other.force_func(r) return pairwise_force(new_func) class pairwise_central_force(interactions): def __init__(self, force_func): """ Arguments: force_func force function of the form F(r[dim]) -> [dim] """ self.force_func = force_func def force(self): Nparticles = len(self.position) r_ij = self.position[:,np.newaxis] - self.position[np.newaxis] # N x N x 3 r = np.linalg.norm(r_ij, axis=-1) with np.errstate(divide='ignore'): F = self.force_func(r) r_inv = 1/r F_ij = np.einsum('ij,ijx,ij->ijx', F, r_ij, r_inv) np.einsum('iix->ix', F_ij)[...] = 0 F_i = np.sum(F_ij, axis=1) return F_i def torque(self): T_i = np.zeros_like(self.position) return T_i def __add__(self, other): def new_func(r): return self.force_func(r) + other.force_func(r) return pairwise_central_force(new_func) def pairwise_potential(potential_func): pass # def F(rvec): # eps = 1e-15*np.ones_like(rvec) # U1 = potential_func(rvec) # U2 = potential_func(rvec + eps) # = -(U2 - U1)/eps # return pairwise_force(F) def pairwise_central_potential(): pass ``` #### File: stoked/stoked/hydrodynamics.py ```python import numpy as np class interface: """A no-slip interface""" def __init__(self, z=0): """ Arguments: z z-position of the interface """ self.z = z def levi_civita(): """return the levi-civita symbol""" eijk = np.zeros((3, 3, 3), dtype=float) eijk[0, 1, 2] = eijk[1, 2, 0] = eijk[2, 0, 1] = 1 eijk[0, 2, 1] = eijk[2, 1, 0] = eijk[1, 0, 2] = -1 return eijk def particle_wall_self_mobility(position, interface, viscosity, radius): """ Construct the particle wall self-mobility matrix for a single particle Arguments: position[3] position of particle interface interface object viscosity dynamic viscosity µ of surrounding fluid radius particle radius """ M = np.zeros([2, 2, 3, 3], dtype=float) h = (position[2] - interface.z)/radius gamma_T = 6*np.pi*viscosity*radius gamma_R = 6*np.pi*viscosity*radius**3 a = 1/(16*gamma_T)*(9/h - 2/h**3 + 1/h**5) b = 1/(8*gamma_T)*(9/h - 4/h**3 + 1/h**5) M[0,0] = np.diag([a,a,b]) a = 15/(64*gamma_R)*(1/h**3) b = 3/(32*gamma_R)*(1/h**3) M[1,1] = np.diag([a,a,b]) return M def grand_mobility_matrix(position, drag_T, drag_R, viscosity): """ Construct the grand mobility matrix for a given cluster Arguments: position[N,3] position of N particles drag_T[N,3,3] 3 by 3 translational drag tensors of N particles drag_R[N,3,3] 3 by 3 rotational drag tensors of N particles viscosity dynamic viscosity µ of surrounding fluid """ Nparticles = len(position) M = np.zeros([2, 3*Nparticles, 2, 3*Nparticles], dtype=float) ### block-diagonal components for i in range(Nparticles): idx = np.s_[0,3*i:3*i+3,0,3*i:3*i+3] M[idx] = drag_T[i] idx = np.s_[1,3*i:3*i+3,1,3*i:3*i+3] M[idx] = drag_R[i] ### Off block-diagonal components factor = 1/(8*np.pi*viscosity) eps = levi_civita() for i in range(Nparticles): for j in range(i+1, Nparticles): r_ijx = position[i] - position[j] r_ij = np.linalg.norm(r_ijx) I = np.identity(3, dtype=float) T = np.outer(r_ijx, r_ijx)/r_ij**2 K = np.einsum('ijk,k->ij', eps, r_ijx)/r_ij ### TT coupling idx = np.s_[0,3*i:3*i+3,0,3*j:3*j+3] M[idx] = factor/r_ij*(I + T) idx2 = np.s_[0,3*j:3*j+3,0,3*i:3*i+3] M[idx2] = M[idx] ### RR coupling idx = np.s_[1,3*i:3*i+3,1,3*j:3*j+3] M[idx] = factor/(2*r_ij**3)*(3*T - I) idx2 = np.s_[1,3*j:3*j+3,1,3*i:3*i+3] M[idx2] = M[idx] ### RT coupling idx = np.s_[1,3*i:3*i+3,0,3*j:3*j+3] M[idx] = -factor/r_ij**2*(K) idx2 = np.s_[1,3*j:3*j+3,0,3*i:3*i+3] M[idx2] = -M[idx] ### TR coupling idx3 = np.s_[0,3*i:3*i+3,1,3*j:3*j+3] M[idx3] = -M[idx] idx4 = np.s_[0,3*j:3*j+3,1,3*i:3*i+3] M[idx4] = -M[idx2] return M.reshape([6*Nparticles, 6*Nparticles]) ``` #### File: stoked/stoked/inertia.py ```python import numpy as np from abc import ABCMeta, abstractmethod class inertia: """ Abstract base class for drag coeffecients """ __metaclass__ = ABCMeta def __init__(self, density, isotropic=False): """ Arguments: density mass density of the object isotropic (bool) True if the moment of inertia is isotropic """ self.density = density self.isotropic = isotropic @abstractmethod def _mass(self): raise NotImplementedError('mass has not been implemented for this type of particle') @abstractmethod def _moment(self): raise NotImplementedError('moment has not been implemented for this type of particle') @property def mass(self): """particle mass""" return self._mass() @property def moment(self): """particle moment of inertia""" return self._moment() class inertia_sphere(inertia): """ Inertia values for a sphere """ def __init__(self, radius, density): """ Arguments: radii[N,3] ellipsoid radii density mass density of the object """ super().__init__(density, isotropic=True) self.radius = np.asarray(radius, dtype=float) def _mass(self): return 4/3*np.pi*self.radius**3*self.density def _moment(self): M = self.mass return 2/5*M*self.radius**2 class inertia_ellipsoid(inertia): """ Inertia values for an ellipsoid """ def __init__(self, radii, density): """ Arguments: radii[N,3] ellipsoid radii density mass density of the object """ super().__init__(density, isotropic=True) self.radii = np.atleast_2d(np.asarray(radii, dtype=float)) def _mass(self): V = 4/3*np.pi*np.product(self.radii, axis=1) return V*self.density def _moment(self): M = self.mass Ix = 1/5*M*(self.radii[:,1]**2 + self.radii[:,2]**2) Iy = 1/5*M*(self.radii[:,0]**2 + self.radii[:,2]**2) Iz = 1/5*M*(self.radii[:,0]**2 + self.radii[:,1]**2) return np.array([Ix, Iy, Iz]).T ``` #### File: stoked/integrators/predictor_corrector_integrator.py ```python from . import integrator import numpy as np class predictor_corrector_integrator(integrator): def __init__(self, grand_mobility_interval=10): super().__init__(grand_mobility_interval) def bd_step(self): r0 = np.copy(self.solver.position) o0 = np.copy(self.solver.orientation) F = self.solve_forces() Fr = self.random_force() F += Fr v1 = self.alpha_T*F self.solver.velocity = v1 self.solver.position += self.dt*v1 if self.solver.rotating: T = self.solve_torques() w1 = self.alpha_R*T w1_q = np.array([np.quaternion(*omega) for omega in w1]) w0 = np.copy(self.solver.angular_velocity) o0 = np.copy(self.solver.orientation) self.solver.angular_velocity = w1 self.solver.orientation = (1 + w1_q*self.dt/2)*self.solver.orientation self.solver.time += self.dt self.perform_constraints() self.pre_step() F = self.solve_forces() F += Fr v2 = self.alpha_T*F self.solver.velocity = (v1 + v2)/2 self.solver.position = r0 + self.dt*self.solver.velocity if self.solver.rotating: T = self.solve_torques() w2 = self.alpha_R*T w2_q = np.array([np.quaternion(*omega) for omega in w1]) w_q = (w1_q + w2_q)/2 self.solver.angular_velocity = (w1 + w2)/2 self.solver.orientation = (1 + w1_q*self.dt/2)*o0 self.solver.time -= self.dt ``` #### File: stoked/stoked/utility.py ```python import numpy as np import quaternion from scipy.integrate import cumtrapz def quaternion_to_angles(quat, reference=None): """ Convert a quaternion array to an angle representation Arguments: quat [T,...] quaternion trajectory of T time-steps reference reference frame (as quaternion) around which to compute angles (default: z-axis) """ if reference is not None: quat = np.invert(reference)*quat ### calculates differntial angle at each time-step, and cumtrapz to obtain angle quat_s = np.roll(quat, 1, axis=0) Q = quat*np.invert(quat_s) axis_angle = quaternion.as_rotation_vector(Q) d_angle = axis_angle[...,2] d_angle[0] = 0 # first entry is unphysical, so set to 0 ### obtain the initial angles; multiply phi by 2 if theta = 0 for proper conversion theta, phi = np.moveaxis(quaternion.as_spherical_coords(quat[0]), -1, 0) idx = (theta == 0) phi[idx] *= 2 angle = phi + cumtrapz(d_angle, axis=0, initial=0) return angle ``` #### File: stoked/vis/animate_3d.py ```python import numpy as np import matplotlib as mpl from itertools import cycle import quaternion import stoked from collections.abc import Iterable import matplotlib.colors as mcolors from stoked.vis._internal import patches from multiprocessing import Process def sphere_patches(radius): import vpython return patches(vpython.sphere, dict(radius=radius)) def ellipsoid_patches(rx, ry, rz): import vpython return patches(vpython.ellipsoid, dict(length=2*rz, height=2*ry, width=2*rx, axis=vpython.vec(0,0,1))) def trajectory_animation_3d(trajectory, patches, wait=False, repeat=True, colors=None, opacity=1, trail=None, axes=False, axes_length=1, grid=False): p = Process(target=_trajectory_animation_3d, kwargs=dict( trajectory=trajectory, patches=patches, wait=wait, repeat=repeat, colors=colors, opacity=opacity, trail=trail, axes=axes, axes_length=axes_length, grid=grid )) p.start() def _trajectory_animation_3d(trajectory, patches, wait=False, repeat=True, colors=None, opacity=1, trail=None, axes=False, axes_length=1, grid=False): """Create a 3D trajectory animation with VPython Arguments: trajectory trajectory data for T steps, N particles patches patches object to represent particle geometry colors list of colors to cycle through trail length of particle trail (default: no trail) axes include x,y,z axes for each particle (default: False) axes_length length of axes, if set (default: 1) """ import vpython vec = vpython.vector if not isinstance(trajectory, stoked.trajectory): trajectory = stoked.trajectory(trajectory) coordinates = trajectory.position Nsteps = coordinates.shape[0] Nparticles = coordinates.shape[1] if trajectory.orientation is not None: orientations = trajectory.orientation else: orientations = np.full((Nsteps,Nparticles), quaternion.one) if not isinstance(patches.patches_type, Iterable): patches_type = [patches.patches_type]*Nparticles else: patches_type = patches.patches_type patches_args = [dict() for i in range(Nparticles)] for key, value in patches.args.items(): if not isinstance(value, Iterable): for i in range(Nparticles): patches_args[i][key] = value else: for i in range(Nparticles): patches_args[i][key] = value[i] if colors is None: colors = mcolors.TABLEAU_COLORS elif isinstance(colors, str): colors = [colors] elif not isinstance(colors, Iterable): colors = [colors] color_cycle = cycle(colors) make_trail = False if trail is None else True scene = vpython.canvas(background=vec(1,1,1)) objs = [] arrows = [] trails = [] for i in range(Nparticles): color = vec(*mpl.colors.to_rgb(next(color_cycle))) pos = vec(*coordinates[0,i]) particle = patches_type[i](pos=pos, color=color, opacity=opacity, **patches_args[i]) objs.append(particle) if make_trail: def my_center(num): def center(): return objs[num].pos + objs[num].axis/2 return center trails.append(vpython.attach_trail(my_center(i), color=color, retain=trail)) if axes: arrow_x = vpython.arrow(pos=pos, axis=vec(1,0,0), scale=axes_length, color=vec(0,0,0), shaftwidth=5) arrow_y = vpython.arrow(pos=pos, axis=vec(0,1,0), scale=axes_length, color=vec(0,0,0), shaftwidth=5) arrow_z = vpython.arrow(pos=pos, axis=vec(0,0,1), scale=axes_length, color=vpython.color.red, shaftwidth=5) arrows.append([arrow_x, arrow_y, arrow_z]) for i,obj in enumerate(objs): rot = quaternion.as_rotation_matrix(orientations[0,i]) a = obj.axis print(a) print(rot[:,2]) b = vec(*rot[:,2]) a /= vpython.mag(a) b /= vpython.mag(b) axis = vpython.cross(a,b) angle = vpython.acos(vpython.dot(a,b)) obj.rotate(angle=angle, axis=axis, origin=obj.pos) # obj.pos -= obj.axis/2 if axes: for j,arrow in enumerate(arrows[i]): arrow.pos = vec(*coordinates[0,i]) arrow.axis = vec(*rot[:,j])*arrow.scale if grid: vpython.arrow(pos=vpython.vector(0,0,0), axis=vpython.vector(300,0,0), shaftwidth=2, color=vpython.color.black) vpython.arrow(pos=vpython.vector(0,0,0), axis=vpython.vector(0,300,0), shaftwidth=2, color=vpython.color.black) vpython.arrow(pos=vpython.vector(0,0,0), axis=vpython.vector(0,0,300), shaftwidth=2, color=vpython.color.black) trange = range(coordinates.shape[0]) if repeat: trange = cycle(trange) for t in trange: if t == 0: if wait: scene.waitfor('click') for trail in trails: trail.clear() for i,obj in enumerate(objs): rot = quaternion.as_rotation_matrix(orientations[t,i]) a = obj.axis b = vec(*rot[:,2]) a /= vpython.mag(a) b /= vpython.mag(b) axis = vpython.cross(a,b) angle = vpython.acos(vpython.dot(a,b)) obj.rotate(angle=angle, axis=axis, origin=obj.pos) if patches_type[i] in (vpython.cylinder, vpython.arrow, vpython.cone, vpython.pyramid): obj.pos = vec(*coordinates[t,i]) - obj.axis/2 else: obj.pos = vec(*coordinates[t,i]) if axes: for j,arrow in enumerate(arrows[i]): arrow.pos = vec(*coordinates[t,i]) arrow.axis = vec(*rot[:,j])*arrow.scale vpython.rate(30) if __name__ == '__main__': coordinates = np.zeros([100, 2, 3]) coordinates[:,0,0] = np.linspace(10, 100, 100) coordinates[:,1,0] = -np.linspace(10, 100, 100) patches = sphere_patches([5,10]) trajectory_animation_3d(coordinates, patches, opacity=.5, colors='C0', trail=100, wait=True) ``` #### File: stoked/tests/harmonic_potential.py ```python from stoked import brownian_dynamics, trajectory_animation, drag_sphere from functools import partial import matplotlib.pyplot as plt from tqdm import tqdm import numpy as np from scipy.constants import k as kb no_force = None def harmonic_force(t, rvec, orientation, k=1): return -k*rvec position = [0,0,0] drag = drag_sphere(1/(6*np.pi), 1) temperature = .05 dt = 10 Nsteps = 10000 fig, ax = plt.subplots() ax.set_aspect('equal') for Fext in [no_force, harmonic_force]: history = np.zeros([Nsteps,3], dtype=float) if Fext is no_force: sim = brownian_dynamics(position=position, drag=drag, temperature=temperature, dt=dt, force=Fext) else: sim = brownian_dynamics(position=position, drag=drag, temperature=temperature, dt=dt, force=partial(Fext, k=0.01)) for i in tqdm(range(Nsteps)): history[i] = sim.position.squeeze() sim.step() ax.plot(history[:,0], history[:,1], lw=.5) ax.legend() if Fext is harmonic_force: fig, ax = plt.subplots() ax.hexbin(history[:,0], history[:,1]) ax.set_aspect('equal') fig, ax = plt.subplots() rad = np.linalg.norm(history, axis=1) hist, edges = np.histogram(rad, bins=100) rad = edges[1:] counts = hist/(4*np.pi*rad**2) E = -kb*temperature*np.log(counts) E -= E[6] ax.plot(rad, E) ax.plot(rad, 0.5*.01*rad**2, 'o', ms=3) fig, ax = plt.subplots() anim = trajectory_animation(history.reshape([Nsteps,1,3]), radii=1e-11, projection='z', interval=30) plt.show() ``` #### File: stoked/tests/uniform_force.py ```python import stoked from stoked import brownian_dynamics, drag_sphere from functools import partial import matplotlib.pyplot as plt from tqdm import tqdm import numpy as np def uniform_force(t, rvec, orient, Fx): F = np.zeros_like(rvec) F[:,0] = Fx return F def test_uniform_motion(): position = [[0,0,0]] drag = drag_sphere(100e-9, 1) temperature = 300 dt = 1e-6 Fx = 10e-12 Nsteps = 50000 history = np.zeros([Nsteps,3], dtype=float) velocity = np.zeros([Nsteps,3], dtype=float) sim = brownian_dynamics(position=position, drag=drag, temperature=temperature, dt=dt, force=partial(uniform_force, Fx=Fx), inertia=stoked.inertia_sphere(100e-9, 10490)) for i in tqdm(range(Nsteps)): history[i] = sim.position.squeeze() velocity[i] = sim.velocity.squeeze() sim.step() fig, ax = plt.subplots() ax.set_aspect('equal') ax.plot(history[:,0], history[:,1], lw=.5) fig, ax = plt.subplots() ax.hist(velocity[:,0], bins=100) v_drift_theory = Fx/(drag.drag_T) v_drift_sim = np.average(velocity[:,0]) print(v_drift_theory, v_drift_sim) plt.show() test_uniform_motion() ```
{ "source": "johnapo/Python-Scripts", "score": 4 }
#### File: johnapo/Python-Scripts/JApo_MemoryUtilization.py ```python import random import copy import matplotlib.pyplot as plt """ printMemory prints the contents of the physical memory """ def printMemory(): ctr = 0 block = 1 # print(memory) # Debugging while(ctr < len(memory)): if(memory[ctr] > 0): for i in range(memory[ctr]): print(block) block += 1 else: for i in range(abs(memory[ctr])): print("-") ctr = ctr + abs(memory[ctr]) return """ firstFit runs the First-Fit memory allocation algorithm """ def firstFit(requestSize): full = False allocated = False ctrSearches = 0 index = 0 # print("Start of First-Fit, size is ", requestSize) # Debugging while(index < len(memory) and not allocated): ctrSearches += 1 if(memory[index] < 0 and abs(memory[index]) >= requestSize): # Allocate memory allocated = insSpecificLoc(index, requestSize) else: index += abs(memory[index]) # Keep iterating through array if(not allocated): full = True # stop inserting memory because its full ffSearches[requestSize - minR] += ctrSearches # print("End of First-Fit") # Debugging # print(memory) return full """ bestFit runs the Best-Fit memory allocation algorithm """ def bestFit(requestSize): allocated = False full = False bestHole = len(memory) ctrSearches = 0 insIndex = -1 index = 0 # print("Start of Best-Fit") # Debugging while(index < len(memory)): # Search entire length of memory for best hole to allocate memory ctrSearches += 1 if(memory[index] < 0): # Find empty holes if(abs(memory[index]) >= requestSize): # Find empty holes with big enough size if(abs(memory[index]) < bestHole): # Compare to current best hole size bestHole = abs(memory[index]) insIndex = index index += abs(memory[index]) # Keep iterating through array if(insIndex > -1): allocated = insSpecificLoc(insIndex, requestSize) if(not allocated): full = True # stop inserting memory because its full bfSearches[requestSize - minR] += ctrSearches # print("End of Best-Fit") # Debugging return full """ worstFit runs the Worst-Fit memory allocation algorithm """ def worstFit(requestSize): allocated = False full = False worstHole = 0 ctrSearches = 0 insIndex = -1 index = 0 # print("Start of Worst-Fit") # Debugging while(index < len(memory)): # Search entire length of memory for best hole to allocate memory ctrSearches += 1 if(memory[index] < 0): # Find empty holes if(abs(memory[index]) >= requestSize): # Find empty holes with big enough size if(abs(memory[index]) > worstHole): # Compare to current best hole size worstHole = abs(memory[index]) insIndex = index index += abs(memory[index]) # Keep iterating through array if(insIndex > -1): allocated = insSpecificLoc(insIndex, requestSize) if(allocated == False): full = True # stop inserting memory because its full wfSearches[requestSize - minR] += ctrSearches # print("End of Worst-Fit") # Debugging return full """ checkAllocation returns the number of allocated spaces of memory """ def checkAllocation(): allocMem = 0 for i in range(len(memory)): if(memory[i]>0): allocMem = allocMem + memory[i] return allocMem """ checkBlocks returns the number of blocks allocated """ def checkBlocks(): allocBlocks = 0 for i in range(len(memory)): if(memory[i]>0): allocBlocks += 1 return allocBlocks """ checkBlockInd takes a block number and finds its index in memory to be used in freeBlock() """ def checkBlockInd(blockNum): blockCtr = 1 retInd = 0 for i in range(len(memory)): if(memory[i] > 0 and blockCtr == blockNum): retInd = i else: blockCtr += 1 return retInd """ insertRequest inserts initial requests into the block of memory """ def insertRequest(loc, size): filled = False index = 0 while(index < len(memory) and not filled): if(memory[index] < 0 and (index <= loc) and (abs(memory[index]) + index >= loc + size)): next = abs(memory[index]) + index memory[index] = index - loc memory[loc] = size memory[loc + size] = (loc + size) - next filled = True else: index += abs(memory[index]) return filled """ insSpecificLoc inserts requests from each memory allocation algorithm """ def insSpecificLoc(loc, size): filled = False holeSize = abs(memory[loc]) if(memory[loc] < 0 and abs(memory[loc]) > size): # Allocating memory into a space with extra memory filled = True memory[loc] = size # Allocate first part of space to hold data memory[loc + size] = -(holeSize - size) # Reallocate rest of space to be empty space elif(memory[loc] < 0 and abs(memory[loc]) == size): # Allocating memory into a space the exact same size filled = True memory[loc] = size else: # Do Nothing filled = False return filled """ freeBlock frees a block of allocated memory """ def freeBlock(blockIndex): freed = False prev = -1 cur = 0 index = 0 # Find the block while(not freed and cur < len(memory)): if(blockIndex == 1): # Special case if(memory[cur] > 0): # No free memory before this allocated block if(memory[memory[cur]] > 0): # No free memory after this block memory[cur] = -memory[cur] # Set it to be free else: # Free memory after block and coalesce memory[cur] = -memory[cur] + memory[memory[cur]] else: # Free memory prior to allocated block prev = 0 cur = abs(memory[cur]) if((memory[cur] + cur < len(memory)) and memory[memory[cur]] > 0): # No free memory after this block memory[prev] = memory[prev] - memory[cur] # Set it to be free elif(memory[cur] + cur < len(memory)): # Free memory after block and coalesce memory[prev] = memory[prev] - memory[cur] + memory[memory[cur]] else: memory[prev] = memory[prev] - memory[cur] # set it to be free freed = True else: # blockIndex != 1 while(index < blockIndex): # Search for the right set of blocks prev = cur if(memory[cur] > 0): index += 1 else: # Hole -- do nothing if(index < blockIndex): cur = cur + abs(memory[cur]) if(memory[prev] > 0): # No free memory before this allocated block if((memory[cur] + cur < len(memory)) and memory[memory[cur]] > 0): # No free memory after this block memory[cur] = -memory[cur] # Set it to be free elif(memory[cur] + cur < len(memory)): # Free memory after block and coalesce memory[cur] = -memory[cur] + memory[memory[cur]] else: memory[prev] = memory[prev] - memory[cur] # Set it to be free else: # Free memory prior to allocated block if((memory[cur] + cur < len(memory)) and memory[memory[cur]] > 0): # No free memory after this block memory[prev] = memory[prev] - memory[cur] # Set it to be free elif(memory[cur] + cur < len(memory)): # Free memory after block and coalesce memory[prev] = memory[prev] - memory[cur] + memory[memory[cur]] else: memory[prev] = memory[prev] - memory[cur] # Set it to be free freed = True print("Block %s freed." % (blockIndex)) printMemory() return freed """ plotPoints graphs the outcomes of 3 memory allocation algorithms: First-Fit, Best-Fit, and Worst-Fit """ def plotPoints(rSize): # Plot results for Memory Utilization fig, ax = plt.subplots() ax.set(xlabel="d", ylabel="Memory Utilization", title="Average Memory Utilization using Same Memory & Same Requests") ax.plot(rSize, ffUtil, label="First-Fit") ax.plot(rSize, bfUtil, label="Best-Fit") ax.plot(rSize, wfUtil, label="Worst-Fit") ax.legend() fig.savefig("UtilizationGraph.png") plt.show() # Plot results for Search Times fig, ax = plt.subplots() ax.set(xlabel="d", ylabel="Search Times", title="Average Search Times using Same Memory & Same Requests") ax.plot(rSize, ffSearches, label="First-Fit") ax.plot(rSize, bfSearches, label="Best-Fit") ax.plot(rSize, wfSearches, label="Worst-Fit") ax.legend() fig.savefig("TimeGraph.png") plt.show() return """ Main is the primary method that does everything include starting the simulation """ def main(): global memory # Keeps track of the memory utilization per request size of each memory allocation algorithm global ffUtil global bfUtil global wfUtil # Instatiate vars ffUtil = [] bfUtil = [] wfUtil = [] # Keeps track of the number of holes examined by each memory allocation algorithm global ffSearches global bfSearches global wfSearches # Instatiate vars ffSearches = [] bfSearches = [] wfSearches = [] # global firstFitBlocks = [] # Number of blocks allocated in first fit # global bestFitBlocks = [] # Number of blocks allocated in best fit # global worstFitBlocks = [] # Number of blocks allocated in worst fit global minR minR = 2 # Minimum d value, hard-coded for simulation maxR = 10 # Maximum d value, hard-coded for simulation n = 0 # input var s = -1 # size var while (n < 1): n = int(input("Enter the physical memory size, n > 0: ")) # Manually entering physical memory size memory = [0] * n memory[0] = -n printMemory() d = int(input("Enter the average request size, d: ")) # Manually entering avg request siZe v = int(input("Enter the request size standard deviation, v: ")) # Manually entering std dev # Fill memory randomly to achieve ~50% utilNum = float(0.0) while(utilNum < 0.25): while(s < 0 or s >= n): s = int(random.gauss(d, v)) filled = False while(not filled): loc = random.randint(0 , n-1) filled = insertRequest(loc, s) utilNum += float(s) / len(memory) printMemory() origUtil = checkAllocation() # Start of simulation rSize = [] z = range(minR, maxR) # Testing different average request sizes; hard-coded for this simulation origMem = copy.deepcopy(memory) for i in z: print("Size d is ", i) rSize.append(i) # This is x-axis for graphing purposes # Initialize this iteration's current utilization of memory ffUtil.append(origUtil) bfUtil.append(origUtil) wfUtil.append(origUtil) # Initialize this iteration's current search amount ffSearches.append(0) bfSearches.append(0) wfSearches.append(0) # Flag when request cannot be met ffDone = False bfDone = False wfDone = False memory = copy.deepcopy(origMem) while (ffDone == False): # Loops through First-Fit simulation until insert request cannot be met # randNum = random.gauss(i, v) # random sized request for more variability # ffDone = firstFit(randNum) ffDone = firstFit(i) # Free random block blocks = checkBlocks() randFree = random.randint(1, blocks) freeBlock(randFree) ffUtil[i - minR] = checkAllocation() memory = copy.deepcopy(origMem) # Reset memory to original values while(bfDone == False): # Loops through Best-Fit simulation until insert request cannot be met # randNum = random.gauss(i, v) # random sized request for more variability # bfDone = bestFit(randNum) bfDone = bestFit(i) # Free random block blocks = checkBlocks() randFree = random.randint(1, blocks) freeBlock(randFree) bfUtil[i - minR] = checkAllocation() memory = copy.deepcopy(origMem) # Reset memory to original values while(wfDone == False): # Loops through Worst-Fit simulation until insert request cannot be met # randNum = random.gauss(i, v) # random sized request for more variability # wfDone = worstFit(randNum) wfDone = worstFit(i) # free random block blocks = checkBlocks() randFree = random.randint(1, blocks) freeBlock(randFree) wfUtil[i - minR] = checkAllocation() # Change utilization number from spaces of allocated memory to ratio of allocated : total ffUtil[i-minR] = ffUtil[i-minR] / len(memory) bfUtil[i-minR] = bfUtil[i-minR] / len(memory) wfUtil[i-minR] = wfUtil[i-minR] / len(memory) plotPoints(rSize) # Print out data for debugging and exporting purposes print("First-Fit Utilization") print(ffUtil) print("Best-Fit Utilization") print(bfUtil) print("Worst-Fit Utilization") print(wfUtil) print("First-Fit Searches/Time") print(ffSearches) print("Best-Fit Searches/Time") print(bfSearches) print("Worst-Fit Searches/Time") print(wfSearches) return """ Required script to run program """ if __name__ == "__main__": #execute only if run as a script main() ```
{ "source": "John-Appleseed/fix", "score": 2 }
#### File: tests/rules/test_brew_unknown_command.py ```python import pytest from thefuck.rules.brew_unknown_command import match, get_new_command from thefuck.rules.brew_unknown_command import brew_commands from tests.utils import Command @pytest.fixture def brew_unknown_cmd(): return '''Error: Unknown command: inst''' @pytest.fixture def brew_unknown_cmd2(): return '''Error: Unknown command: instaa''' def test_match(brew_unknown_cmd): assert match(Command('brew inst', stderr=brew_unknown_cmd), None) for command in brew_commands: assert not match(Command('brew ' + command), None) def test_get_new_command(brew_unknown_cmd, brew_unknown_cmd2): assert get_new_command(Command('brew inst', stderr=brew_unknown_cmd), None) == 'brew list' assert get_new_command(Command('brew instaa', stderr=brew_unknown_cmd2), None) == 'brew install' ``` #### File: tests/rules/test_ssh_known_host.py ```python import os import pytest from mock import Mock from thefuck.rules.ssh_known_hosts import match, get_new_command,\ side_effect from tests.utils import Command @pytest.fixture def ssh_error(tmpdir): path = os.path.join(str(tmpdir), 'known_hosts') def reset(path): with open(path, 'w') as fh: lines = [ '123.234.567.890 asdjkasjdakjsd\n' '98.765.432.321 ejioweojwejrosj\n' '111.222.333.444 qwepoiwqepoiss\n' ] fh.writelines(lines) def known_hosts(path): with open(path, 'r') as fh: return fh.readlines() reset(path) errormsg = u"""@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! Someone could be eavesdropping on you right now (man-in-the-middle attack)! It is also possible that a host key has just been changed. The fingerprint for the RSA key sent by the remote host is b6:cb:07:34:c0:a0:94:d3:0d:69:83:31:f4:c5:20:9b. Please contact your system administrator. Add correct host key in {0} to get rid of this message. Offending RSA key in {0}:2 RSA host key for {1} has changed and you have requested strict checking. Host key verification failed.""".format(path, '98.765.432.321') return errormsg, path, reset, known_hosts def test_match(ssh_error): errormsg, _, _, _ = ssh_error assert match(Command('ssh', stderr=errormsg), None) assert match(Command('ssh', stderr=errormsg), None) assert match(Command('scp something something', stderr=errormsg), None) assert match(Command('scp something something', stderr=errormsg), None) assert not match(Command(stderr=errormsg), None) assert not match(Command('notssh', stderr=errormsg), None) assert not match(Command('ssh'), None) def test_side_effect(ssh_error): errormsg, path, reset, known_hosts = ssh_error command = Command('ssh user@host', stderr=errormsg) side_effect(command, None) expected = ['123.234.567.890 asdjkasjdakjsd\n', '111.222.333.444 qwepoiwqepoiss\n'] assert known_hosts(path) == expected def test_get_new_command(ssh_error, monkeypatch): errormsg, _, _, _ = ssh_error assert get_new_command(Command('ssh user@host', stderr=errormsg), None) == 'ssh user@host' ```
{ "source": "johnarban/ads-tools", "score": 3 }
#### File: johnarban/ads-tools/ads_lib_pull.py ```python import os import ads # if you don't want bibtexabs, pip install abs, # otherwise pip install git+git://github.com/andycasey/ads@master # this script currently has bibtexabs hardcoded in two places # a simple find/replace should be safe to change it to bibtex import requests # pip install requests import math import argparse # code source: # https://github.com/adsabs/ads-examples/blob/master/library_csv/lib_2_csv.py def get_config(token=None): """ Load ADS developer key from file :return: str @andycasey """ # global token if token is None: try: with open(os.path.expanduser("~/.ads/dev_key")) as f: # ~/.ads/dev_key should contain your ADS API token token = f.read().strip() except IOError: print( "The script assumes you have your ADS developer token in the" "folder: {}".format() ) return { "url": "https://api.adsabs.harvard.edu/v1/biblib", "headers": { "Authorization": "Bearer:{}".format(token), "Content-Type": "application/json", }, } def get_libraries(): """ Get a list of all my libraries and their meta-data :return: list @andycasey """ config = get_config() r = requests.get("{}/libraries".format(config["url"]), headers=config["headers"]) # Collect a list of all of our libraries, this will include the number # of documents, the name, description, id, and other meta data try: data = r.json()["libraries"] return data except ValueError: raise ValueError(r.text) def get_library(library_id, num_documents, start=0, rows=25): """ Get the content of a library when you know its id. As we paginate the requests from the private library end point for document retrieval, we have to repeat requests until we have all documents. :param library_id: identifier of the library :type library_id: :param num_documents: number of documents in the library :type num_documents: int :param start: start with a given row :type start: int :param rows: number of rows to request :type rows: int :return: list @andycasey CHANGES: @astrojthe3 - Dec 4 2020 added start keyword, to start at arbitrary row """ config = get_config() # start = 0 num_documents -= start # rows = 25 num_paginates = int(math.ceil(num_documents / (1.0 * rows))) documents = [] for i in range(num_paginates): print("Pagination {} out of {}: rows:".format(i + 1, num_paginates)) r = requests.get( "{}/libraries/{id}?start={start}&rows={rows}".format( config["url"], id=library_id, start=start, rows=rows ), headers=config["headers"], ) # Get all the documents that are inside the library try: data = r.json()["documents"] except ValueError: raise ValueError(r.text) documents.extend(data) start += rows return documents if __name__ == "__main__": parser = argparse.ArgumentParser( description="Create/update a bibliography file\n for an ADS Library" ) parser.add_argument( "-l", "--library_id", help="""ID of ADS Library: https://ui.adsabs.harvard.edu/user/libraries/[library_id]. If not passed, it should either be hardcoded or in the file library.id. library.id is created when the script is first run""", ) parser.add_argument( "-t", "--token", default=None, help="ADS developer token otherwise defaults to ~/.ads/dev_key", ) parser.add_argument( "-r", "--refresh", action="store_true", help="create a new bibtex file and bibcode list even if one exists. This will overwrite any changes you've made", ) parser.add_argument( "--list", "--list-libaries", action="store_true", help="List your library names and IDs", ) parser.add_argument( "-b", "--bibcodes", help="name of file to store bibcodes", default="bibcodes", dest="bibcodes", ) parser.add_argument( "-f", "--bibfile", help="name of bibtex (.bib) file", default="library.bib", dest="bibfile", ) parser.add_argument( "--bib-format", choices=["bibtex", "bibtexabs"], help="""[[DISABLED]] Format for bibtex file. bibtexabs only works if using the git version of the abs module""", default="bibtex", ) parser.add_argument( "--api-rows", type=int, help="number of rows retreived with each api call to download the library", default=25, ) parser.add_argument("--debug", action="store_true") args = parser.parse_args() library_id = args.library_id bibcodefile = args.bibcodes bibfile = args.bibfile # get the saved library ID # if one isn't passed if os.path.isfile("library.id"): with open("library.id", "r") as f: lib_config = f.read() if library_id is None: library_id = lib_config # if bibcodefile is None: # bibcodefile = lib_config[1] # if bibfile is None: # bibfile = lib_config[2] token = args.token refresh = args.refresh rows = args.api_rows if args.debug: print(bibcodefile) print(bibfile) print(token) print(refresh) print(rows) if args.list: libraries = get_libraries() n = max([len(n["name"]) for n in libraries]) print(("{:>%s} {}" % n).format("NAME", "ADS ID")) print("-" * 72) for item in libraries: print(("{:>%s} {}" % n).format(item["name"], item["id"])) # id I have no library_id # exit with a message elif library_id is None: print("Please provide library ID, or hardcode one") print("run with the --list flag to list available libraries") else: config = get_config(token) # if there is no token it will fail thnx # to @andycasey's much better coding which # actually catches exceptions # we need to get the number of entries in the library # that is stored in metadata r = requests.get( "{}/libraries/{id}".format(config["url"], id=library_id), headers=config["headers"], ) metadata = r.json()["metadata"] # if we are running for the first time # then there is no file of bibcodes to compare to # so we will just download the whole library if (not os.path.isfile(bibcodefile)) or refresh: print( 'Creating new bib file for ADS Library "{}", id: {}'.format( metadata["name"], metadata["id"] ) ) library = get_library( library_id=metadata["id"], num_documents=metadata["num_documents"], rows=rows, ) print("New bib file has {} items".format(len(library))) bibtex = ads.ExportQuery(library, format=args.bib_format).execute() with open("library.id", "w") as f: f.write(library_id) # f.write(bibcodefile) # f.write(bibfile) with open(bibcodefile, "w") as f: f.writelines("{}\n".format(bc) for bc in library) with open(bibfile, "w") as f: f.write(bibtex) # if there is a file of bibcodes we # need to compare with it. Unfortunately, # we have to download the entire library # for this too. A savvy person could do some # table manipulation server side via the API # to offload some of the work, but that might # be even slower, than downloading elif os.path.isfile(bibcodefile): print("bibcode file {} already exists".format(bibcodefile)) with open(bibcodefile, "r") as f: current = [i.strip() for i in f.readlines()] print("Contains {} items".format(len(current))) library = get_library( library_id=metadata["id"], num_documents=metadata["num_documents"], rows=rows, ) # get the exclusive join of the sets new = list(set(current) ^ set(library)) if len(new) > 0: print("Adding {} new items".format(len(new))) bibtex = ads.ExportQuery(new, format=args.bib_format).execute() with open(bibcodefile, "a") as f: f.writelines("{}\n".format(bc) for bc in new) with open(bibfile, "a") as f: f.write("\n\n\n\n\n") f.write(bibtex) ```
{ "source": "johnarban/arban", "score": 3 }
#### File: johnarban/arban/error_prop.py ```python import numpy as np def err_div(x, y, ex, ey): Q = x / y dQ = np.abs(Q) * np.sqrt((ex / x) ** 2 + (ey / y) ** 2) return Q, dQ def err_multiply(x, y, ex, ey): Q = x * y dQ = np.abs(Q) * np.sqrt( (ex/x)**2 + (ey/y)**2 ) return Q, dQ def err_add(x, y, ex, ey): Q = x + y dQ = np.sqrt(ex**2 + ey**2) return Q, dQ def err_power_1(x, p, ex): """error propogation for x^p where p is a constant """ Q = x ** p dQ = np.abs(p * x**(p-1) * ex) return Q, dQ def err_power_2(x, p, ex, ep): """error propogation for x^p where x & p have errors """ Q = x ** p dQ_sq = Q**2 * ( (p * ex / x)**2 + (np.log(x) * ep)**2 ) return Q, dQ_sq**0.5 def log_err(x, dx): return dx / (np.log(10) * x) def log_errorbar(x, dx): logxerr = log_err(x,dx) logxupp = np.log10(x) + logxerr logxlow = np.log10(x) - logxerr xupp = 10**logxupp - x xlow = x - 10**logxlow return xupp, xlow # 1st moment error is v * sqrt(2) sigma_w / w # 2nd moment error ``` #### File: arban/utils_module/stats.py ```python def minmax(arr, axis=None): return np.nanmin(arr, axis=axis), np.nanmax(arr, axis=axis) def weighted_generic_moment(x, k, w=None): x = np.asarray(x, dtype=np.float64) if w is not None: w = np.asarray(w, dtype=np.float64) else: w = np.ones_like(x) return np.sum(x ** k * w) / np.sum(w) def weighted_mean(x, w): return np.sum(x * w) / np.sum(w) def weighted_std(x, w): x = np.asarray(x, dtype=np.float64) w = np.asarray(w, dtype=np.float64) SS = np.sum(w * (x - weighted_mean(x, w)) ** 2) / np.sum(w) # quantile(x, w, 0.5) return np.sqrt(SS) def weighted_percentile(x, w, percentile, p=0): k = np.isfinite(x + w) clean_x = np.asarray(x[k], dtype=np.float64) clean_w = np.asarray(w[k], dtype=np.float64) srt = np.argsort(clean_x) sorted_w = clean_w[srt] sorted_x = clean_x[srt] Sn = np.cumsum(sorted_w) Pn = (Sn - 0.5 * sorted_w) / Sn[-1] return np.interp(np.asarray(percentile) / 100.0, Pn, sorted_x) def weighted_median(x, w): return weighted_percentile(x, w, 50) def weighted_mad(x, w, stddev=True): x = np.asarray(x, dtype=np.float64) w = np.asarray(w, dtype=np.float64) if stddev: return 1.4826 * weighted_median(np.abs(x - weighted_median(x, w)), w) else: return weighted_median(np.abs(x - weighted_median(x, w)), w) def mavg(arr, n=2, axis=-1): """ returns the moving average of an array. returned array is shorter by (n-1) applied along last axis by default """ return np.mean(rolling_window(arr, n), axis=axis) def mgeo(arr, n=2, axis=-1): """rolling geometric mean Arguments: arr {no.array} -- array Keyword Arguments: n {int} -- window size (default: {2}) axis {int} -- axis to roll over (default: {-1}) Returns: [type] -- [description] """ return stats.gmean(rolling_window(arr, n), axis=axis) def pdf(values, bins=None, range=None): """ ** Normalized differential area function. ** (statistical) probability denisty function normalized so that the integral is 1 and. The integral over a range is the probability of the value is within that range. Returns array of size len(bins)-1 Plot versus bins[:-1] """ if hasattr(bins, "__getitem__") and (range is None): range = (np.nanmin(bins), np.nanmax(bins)) else: range = None h, x = np.histogram(values, bins=bins, range=range, density=False) # From the definition of Pr(x) = dF(x)/dx this # is the correct form. It returns the correct # probabilities when tested pdf = h / (np.sum(h, dtype=float) * np.diff(x)) return pdf, bin_center(x) def pdf2(values, bins=None, range=None): """ N * PDF(x) The ~ PDF normalized so that the integral is equal to the total amount of a quantity. The integral over a range is the total amount within that range. Returns array of size len(bins)-1 Plot versus bins[:-1] """ if hasattr(bins, "__getitem__") and (range is None): range = (np.nanmin(bins), np.nanmax(bins)) else: range = None pdf, x = np.histogram(values, bins=bins, range=range, density=False) pdf = pdf.astype(float) / np.diff(x) return pdf, bin_center(x) def edf(data, pdf=False): y = np.arange(len(data), dtype=float) x = np.sort(data).astype(float) return y, x def cdf(values, bins): """ CDF(x) (statistical) cumulative distribution function Integral on [-inf, b] is the fraction below b. CDF is invariant to binning. This assumes you are using the entire range in the binning. Returns array of size len(bins) Plot versus bins[:-1] """ if hasattr(bins, "__getitem__"): range = (np.nanmin(bins), np.nanmax(bins)) else: range = None h, bins = np.histogram(values, bins=bins, range=range, density=False) # returns int # cumulative fraction below bin_k c = np.cumsum(h / np.sum(h, dtype=float)) # append 0 to beginning because P(X < min(x)) = 0 return np.append(0, c), bins def cdf2(values, bins): """ # # Exclusively for area_function which needs to be unnormalized (statistical) cumulative distribution function Value at b is total amount below b. CDF is invariante to binning Plot versus bins[:-1] Not normalized to 1 """ if hasattr(bins, "__getitem__"): range = (np.nanmin(bins), np.nanmax(bins)) else: range = None h, bins = np.histogram(values, bins=bins, range=range, density=False) c = np.cumsum(h).astype(float) return np.append(0.0, c), bins def area_function(extmap, bins, scale=1): """ Complimentary CDF for cdf2 (not normalized to 1) Value at b is total amount above b. """ c, bins = cdf2(extmap, bins) return scale * (c.max() - c), bins def diff_area_function(extmap, bins, scale=1): """ See pdf2 """ s, bins = area_function(extmap, bins) dsdx = -np.diff(s) / np.diff(bins) return dsdx * scale, bin_center(bins) def log_diff_area_function(extmap, bins): """ See pdf2 """ s, bins = diff_area_function(extmap, bins) g = s > 0 dlnsdlnx = np.diff(np.log(s[g])) / np.diff(np.log(bins[g])) return dlnsdlnx, bin_center(bins[g]) def mass_function(values, bins, scale=1, aktomassd=183): """ M(>Ak), mass weighted complimentary cdf """ if hasattr(bins, "__getitem__"): range = (np.nanmin(bins), np.nanmax(bins)) else: range = None if scale != 1: aktomassd = scale h, bins = np.histogram( values, bins=bins, range=range, density=False, weights=values * aktomassd * scale, ) c = np.cumsum(h).astype(float) return c.max() - c, bins def ortho_dist(x, y, m, b): """ get the orthogonal distance from a point to a line """ ortho_dist = (y - m * x - b) / np.sqrt(1 + m ** 2) return ortho_dist def mad(X, stddev=True, axis=None): if stddev: return 1.4826 * np.nanmedian(np.abs(X - np.nanmedian(X, axis=axis)), axis=axis) else: return np.nanmedian(np.abs(X - np.nanmedian(X, axis=axis)), axis=axis) def mean_mad(X, stddev=True, axis=None): if stddev: return 1.4826 * np.nanmedian(np.abs(X - np.nanmeam(X, axis=axis)), axis=axis) else: return np.nanmedian(np.abs(X - np.nanmean(X, axis=axis)), axis=axis) def rms(X, axis=None): return np.sqrt(np.nanmean(X ** 2, axis=axis)) def standardize(X, remove_mean=True, remove_std=True): if remove_mean: mean = np.nanmean(X) else: mean = 0 if remove_std: std = np.nanstd(X) else: std = 1 return (X - mean) / std def pdf_pareto(t, a, k, xmax=None): """PDF of Pareto distribution Parameters ---------- t : input array a : power-law power (a = alpha-1 from real Pareto) array k : minimum value for power law array xmax : max value for, optional, by default None Returns ------- PDF(t|a,k,xmax) numpy array """ if xmax is None: out = ((a - 1) / k) * (t / k) ** (-a) out[(t < k)] = 0 return out else: out = ((a - 1) / (k ** (1 - a) - xmax ** (1 - a))) * t ** (-a) out[(t <= k) | (t > xmax)] = 0 return out def cdf_pareto(t, a, k, xmax=None): """CDF of Pareto distribution Parameters ---------- t : input array a : power-law power (a = alpha-1 from real Pareto) array k : minimum value for power law array xmax : max value for, optional, by default None Returns ------- CDF(t|a,k,xmax) numpy array """ if xmax is None: out = 1 - (k / t) ** (a - 1) out[t < k] = 0 return out else: out = (1 - (t / k) ** (1 - a)) / (1 - (xmax / k) ** (1 - a)) out[t <= k] = 0 out[t > xmax] = 1 return out from scipy.spatial.distance import cdist def mahalanobis(X,X2=None): """mahalanobis distance for data X = np.array([x1,x2,x3,...]) Parameters ---------- X : np.array (M x N) M x N array, with M varialbes, and N observations. print(X) should look like # [[x1, x2, x3, x4...xn], # [y1, y2, y3, y4...yn]. # [z1, z2, z3, z4...zn], # ..] # as if X = np.array([x, y, z, ...]) Returns ------- md: np.array the square of maholanobis distance it follows a chi2 distribution for normally distributed data """ # let scipy do all the lifting # but this is a nice way anyways # C = np.cov(X.T) # P, D, T = eigen_decomp(C) # mu = np.mean(X, axis=1) # X = (X - mu) # wX = X @ np.linalg.inv(T.T) #whitened data # md = np.linalg.norm(wX, axis=1)**2 #norm spannign [xi,yi,zi] # #wXT = np.linalg.inv(T) @ X.T # #md = wX @ wX.T # #md = np.sqrt(md.diagonal()) # #md is distributed as chi2 with d.o.f. = # independent axes if X2 is None: return cdist(X,np.atleast_2d(X.mean(axis=0)),metric='mahalanobis')[:,0]**2 else: C = np.cov(X.T) P, D, T = eigen_decomp(C) mu = np.mean(X2, axis=1) wX = (X2-mu) @ np.linalg.inv(T.T) md = np.linalg.norm(wX, axis=1)** 2 return md ```
{ "source": "JohnAresHao/examination", "score": 2 }
#### File: examination/competition/rank_views.py ```python from account.models import Profile from competition.models import CompetitionKindInfo from utils.response import json_response from utils.decorators import check_login from utils.redis.rrank import get_user_rank, get_rank from utils.errors import UserError, CompetitionError @check_login def get_my_rank(request): uid = request.GET.get('uid', '') kind_id = request.GET.get('kind_id', '') try: profile = Profile.objects.get(uid=uid) except Profile.DoesNotExist: return json_response(*UserError.UserNotFound) try: kind_info = CompetitionKindInfo.objects.get(kind_id=kind_id) except CompetitionKindInfo.DoesNotExist: return json_response(*CompetitionError.CompetitionNotFound) return json_response(200, 'OK', { 'time': get_user_rank(kind_id, uid).get('time', 0), 'score': get_user_rank(kind_id, uid).get('score', 0), 'rank': get_rank(kind_id, uid) }) ``` #### File: examination/utils/processors.py ```python import re from django.utils.deprecation import MiddlewareMixin class ConstExtendIntField(int): def __new__(cls, flag, version=''): obj = int.__new__(cls, flag) obj.version = version return obj class UserAgentDetectionMiddleware(MiddlewareMixin): def process_request(self, request): ua = request.META.get('HTTP_USER_AGENT', '').lower() # ####### Device、OS ####### # Windows request.Windows = 'windows nt' in ua # Linux request.Linux = 'linux x86_64' in ua # iMac、iPhone、iPad、iPod request.iMac, request.iPhone, request.iPad, request.iPod = 'macintosh' in ua, 'iphone' in ua, 'ipad' in ua, 'ipod' in ua # PC request.PC = request.Windows or request.Linux or request.iMac # iOS request.iOS = request.iPhone or request.iPad or request.iMac or request.iPod # Android and Version adr = re.findall(r'android ([\d.]+)', ua) request.Android = ConstExtendIntField(True, adr[0]) if adr else ConstExtendIntField('android' in ua, '') # ####### APP ####### # Weixin/Wechat and Version wx = re.findall(r'micromessenger[\s/]([\d.]+)', ua) request.weixin = request.wechat = ConstExtendIntField(True, wx[0]) if wx else ConstExtendIntField(False, '') return None ``` #### File: utils/redis/rprofile.py ```python import json from utils.jsonencoder import JsonEncoder from utils.redis.connect import r from utils.redis.constants import (REDIS_USER_INFO, USER_LOGIN_VCODE, USER_PASSWORD_RESET, USER_SIGN_VCODE, USERINFO_HAS_ENTERED, USER_HAS_SENT_EMAIL, USER_HAS_SENT_REGEMAIL) def set_profile(data={}): if isinstance(data, dict): uid = data.get('uid', '') key = REDIS_USER_INFO % uid data = json.dumps(data, cls=JsonEncoder) r.set(key, data) def delete_profile(uid): r.delete(REDIS_USER_INFO % uid) def get_profile(uid): ret = r.get(REDIS_USER_INFO % uid).decode('utf-8') if r.get(REDIS_USER_INFO % uid) else '{}' return json.loads(ret) def enter_userinfo(kind_id, uid): key = USERINFO_HAS_ENTERED % (kind_id, uid) r.set(key, 1) def get_enter_userinfo(kind_id, uid): key = USERINFO_HAS_ENTERED % (kind_id, uid) return r.get(key) def set_vcode(sign, value): key = USER_LOGIN_VCODE % sign r.setex(key, 180, value) def get_vcode(sign): key = USER_LOGIN_VCODE % sign return r.get(key) def set_signcode(sign, value): key = USER_SIGN_VCODE % sign r.setex(key, 1800, value) def get_signcode(sign): key = USER_SIGN_VCODE % sign return r.get(key) def set_passwd(sign, passwd): key = USER_PASSWORD_RESET % sign r.setex(key, 1860, passwd) def get_passwd(sign): key = USER_PASSWORD_RESET % sign return r.get(key) def set_has_sentemail(email): r.setex(USER_HAS_SENT_EMAIL % email, 1800, 1) def get_has_sentemail(email): return r.get(USER_HAS_SENT_EMAIL % email) def set_has_sentregemail(email): r.setex(USER_HAS_SENT_REGEMAIL % email, 60, 1) def get_has_sentregemail(email): return r.get(USER_HAS_SENT_REGEMAIL % email) ``` #### File: utils/redis/rrank.py ```python import json from utils.jsonencoder import JsonEncoder from utils.redis.connect import r from utils.redis.constants import REDIS_RANK, REDIS_RANK_USER_INFO from utils.redis.rprofile import get_profile def add_to_rank(uid, kind_id, score, time): key = REDIS_RANK % kind_id pre_score = int(r.zscore(key, uid)) if r.zscore(key, uid) else 0 rank_socre = score * 100000000 + (86400000 - time) if pre_score == 0 or (pre_score != 0 and rank_socre > pre_score): r.zadd(key, rank_socre, uid) user_info = get_profile(uid) ret = { 'nickname': user_info.get('nickname', ''), 'numid': user_info.get('numid', ''), 'avatar': user_info.get('avatar', ''), 'score': score, 'time': time } r.hset(REDIS_RANK_USER_INFO % kind_id, uid, json.dumps(ret, cls=JsonEncoder)) def get_rank(kind_id, uid): key = REDIS_RANK % kind_id rank = r.zrevrank(key, uid) return (int(rank) + 1) if rank is not None else None def get_user_rank(kind_id, uid): key = REDIS_RANK_USER_INFO % kind_id ret = r.hget(key, uid) return json.loads(ret.decode('utf-8')) if ret else {} def get_rank_data(kind_id, start=0, end=-1): ranks = r.zrevrange(REDIS_RANK % kind_id, start, end) if not ranks: return [], [] ret = r.hmget(REDIS_RANK_USER_INFO % kind_id, ranks) ret = [json.loads(i.decode('utf-8') if i else '{}') for i in ret] return ranks, ret ```
{ "source": "johnarevalo/gmu-mmimdb", "score": 2 }
#### File: gmu-mmimdb/generators/moe.py ```python import os import sys import json import numpy conf_file = sys.argv[1] if len(sys.argv) > 1 else None with open(conf_file) as f: conf = json.load(f) num_jobs = int(sys.argv[2]) if len(sys.argv) > 2 else 25 dir_json = sys.argv[3] if len(sys.argv) > 3 else 'json/' rng = numpy.random.RandomState(conf['rng_seed']) model_name = conf['model_name'] if not os.path.exists(dir_json): os.makedirs(dir_json) def random_init_string(sparse=False): if rng.randint(2) and sparse: sparse_init = rng.randint(10, 30) return "sparse_init: " + str(sparse_init) irange = 10. ** rng.uniform(-2.3, -1.) return "irange: " + str(irange) def opt_param(max_val=1.0, min_val=0.): if rng.randint(2): return 0 return rng.uniform(min_val, max_val) for job_id in range(num_jobs): conf['model_name'] = '%s_%02i' % (model_name, job_id) if os.path.isfile(conf['model_name']): print('%s already exists, skipping...' % (conf['model_name'])) continue conf['init_ranges'] = [10. ** rng.uniform(-3, -1.) for _ in range(5)] # Regularization params # http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf if rng.randint(2): conf['max_norms'] = [rng.uniform(5., 20.) for _ in range(5)] conf['hidden_size'] = [64, 128, 256, 512][rng.randint(4)] conf['dropout'] = rng.uniform(0.3, 0.7) conf['learning_rate'] = 10. ** rng.uniform(-3., -1.) with open(os.path.join(dir_json, conf['model_name'] + '.json'), 'w') as f: json.dump(conf, f, indent=4) ```
{ "source": "johnarleyburns/lambda-refarch-mapreduce", "score": 2 }
#### File: src/python/lambdautils.py ```python import boto3 import botocore import os class LambdaManager(object): def __init__ (self, l, s3, region, codepath, job_id, fname, handler, lmem=1536): self.awslambda = l; self.region = "us-east-1" if region is None else region self.s3 = s3 self.codefile = codepath self.job_id = job_id self.function_name = fname self.handler = handler self.role = os.environ.get('serverless_mapreduce_role') self.memory = lmem self.timeout = 300 self.function_arn = None # set after creation # TracingConfig parameter switches X-Ray tracing on/off. # Change value to 'Mode':'PassThrough' to switch it off def create_lambda_function(self): runtime = 'python2.7'; response = self.awslambda.create_function( FunctionName = self.function_name, Code = { "ZipFile": open(self.codefile, 'rb').read() }, Handler = self.handler, Role = self.role, Runtime = runtime, Description = self.function_name, MemorySize = self.memory, Timeout = self.timeout, TracingConfig={'Mode':'PassThrough'} ) self.function_arn = response['FunctionArn'] print(response) def update_function(self): ''' Update lambda function ''' response = self.awslambda.update_function_code( FunctionName = self.function_name, ZipFile=open(self.codefile, 'rb').read(), Publish=True ) updated_arn = response['FunctionArn'] # parse arn and remove the release number (:n) arn = ":".join(updated_arn.split(':')[:-1]) self.function_arn = arn print(response) def update_code_or_create_on_noexist(self): ''' Update if the function exists, else create function ''' try: self.create_lambda_function() except botocore.exceptions.ClientError as e: # parse (Function already exist) self.update_function() def add_lambda_permission(self, sId, bucket): resp = self.awslambda.add_permission( Action = 'lambda:InvokeFunction', FunctionName = self.function_name, Principal = 's3.amazonaws.com', StatementId = '%s' % sId, SourceArn = 'arn:aws:s3:::' + bucket ) print(resp) def create_s3_eventsource_notification(self, bucket, prefix=None): if not prefix: prefix = self.job_id +"/task"; self.s3.put_bucket_notification_configuration( Bucket = bucket, NotificationConfiguration = { 'LambdaFunctionConfigurations': [ { 'Events': [ 's3:ObjectCreated:*'], 'LambdaFunctionArn': self.function_arn, 'Filter' : { 'Key': { 'FilterRules' : [ { 'Name' : 'prefix', 'Value' : prefix }, ] } } } ], #'TopicConfigurations' : [], #'QueueConfigurations' : [] } ) def delete_function(self): self.awslambda.delete_function(FunctionName=self.function_name) @classmethod def cleanup_logs(cls, func_name): ''' Delete all Lambda log group and log streams for a given function ''' log_client = boto3.client('logs') #response = log_client.describe_log_streams(logGroupName='/aws/lambda/' + func_name) response = log_client.delete_log_group(logGroupName='/aws/lambda/' + func_name) return response def compute_batch_size(keys, lambda_memory, concurrent_lambdas): max_mem_for_data = 0.6 * lambda_memory * 1000 * 1000; size = 0.0 for key in keys: if isinstance(key, dict): size += key['Size'] else: size += key.size avg_object_size = size/len(keys) print("Dataset size: %s, nKeys: %s, avg: %s" %(size, len(keys), avg_object_size)) if avg_object_size < max_mem_for_data and len(keys) < concurrent_lambdas: b_size = 1 else: b_size = int(round(max_mem_for_data/avg_object_size)) return b_size def batch_creator(all_keys, batch_size): ''' ''' # TODO: Create optimal batch sizes based on key size & number of keys batches = [] batch = [] for i in range(len(all_keys)): batch.append(all_keys[i]); if (len(batch) >= batch_size): batches.append(batch) batch = [] if len(batch): batches.append(batch) return batches ``` #### File: src/python/reducer.py ```python import boto3 import json import random import resource from io import StringIO import urllib2 import time # create an S3 & Dynamo session s3 = boto3.resource('s3') s3_client = boto3.client('s3') # constants TASK_MAPPER_PREFIX = "task/mapper/"; TASK_REDUCER_PREFIX = "task/reducer/"; def write_to_s3(bucket, key, data, metadata): # Write to S3 Bucket s3.Bucket(bucket).put_object(Key=key, Body=data, Metadata=metadata) def lambda_handler(event, context): start_time = time.time() job_bucket = event['jobBucket'] bucket = event['bucket'] reducer_keys = event['keys'] job_id = event['jobId'] r_id = event['reducerId'] step_id = event['stepId'] n_reducers = event['nReducers'] # aggr results = {} line_count = 0 # INPUT JSON => OUTPUT JSON # Download and process all keys for key in reducer_keys: response = s3_client.get_object(Bucket=job_bucket, Key=key) contents = response['Body'].read() try: for srcIp, val in json.loads(contents).iteritems(): line_count +=1 if srcIp not in results: results[srcIp] = 0 results[srcIp] += float(val) except Exception, e: print(e) time_in_secs = (time.time() - start_time) #timeTaken = time_in_secs * 1000000000 # in 10^9 #s3DownloadTime = 0 #totalProcessingTime = 0 pret = [len(reducer_keys), line_count, time_in_secs] print("Reducer ouputput", pret) if n_reducers == 1: # Last reducer file, final result fname = "%s/result" % job_id else: fname = "%s/%s%s/%s" % (job_id, TASK_REDUCER_PREFIX, step_id, r_id) metadata = { "linecount": '%s' % line_count, "processingtime": '%s' % time_in_secs, "memoryUsage": '%s' % resource.getrusage(resource.RUSAGE_SELF).ru_maxrss } write_to_s3(job_bucket, fname, json.dumps(results), metadata) return pret ''' ev = { "bucket": "-useast-1", "jobBucket": "-useast-1", "jobId": "py-biglambda-1node-3", "nReducers": 1, "keys": ["py-biglambda-1node-3/task/mapper/1"], "reducerId": 1, "stepId" : 1 } lambda_handler(ev, {}); ''' ```
{ "source": "johnarn/price_observer_bot", "score": 2 }
#### File: PyInstaller/building/imphook.py ```python import glob, sys, weakref import os.path from .. import log as logging from ..compat import ( expand_path, importlib_load_source, FileNotFoundError, UserDict,) from .imphookapi import PostGraphAPI from .utils import format_binaries_and_datas logger = logging.getLogger(__name__) # Note that the "UserDict" superclass is old-style under Python 2.7! Avoid # calling the super() method for this subclass. class ModuleHookCache(UserDict): """ Cache of lazily loadable hook script objects. This cache is implemented as a `dict` subclass mapping from the fully-qualified names of all modules with at least one hook script to lists of `ModuleHook` instances encapsulating these scripts. As a `dict` subclass, all cached module names and hook scripts are accessible via standard dictionary operations. Attributes ---------- module_graph : ModuleGraph Current module graph. _hook_module_name_prefix : str String prefixing the names of all in-memory modules lazily loaded from cached hook scripts. See also the `hook_module_name_prefix` parameter passed to the `ModuleHook.__init__()` method. """ _cache_id_next = 0 """ 0-based identifier unique to the next `ModuleHookCache` to be instantiated. This identifier is incremented on each instantiation of a new `ModuleHookCache` to isolate in-memory modules of lazily loaded hook scripts in that cache to the same cache-specific namespace, preventing edge-case collisions with existing in-memory modules in other caches. """ def __init__(self, module_graph, hook_dirs): """ Cache all hook scripts in the passed directories. **Order of caching is significant** with respect to hooks for the same module, as the values of this dictionary are lists. Hooks for the same module will be run in the order in which they are cached. Previously cached hooks are always preserved rather than overidden. By default, official hooks are cached _before_ user-defined hooks. For modules with both official and user-defined hooks, this implies that the former take priority over and hence will be loaded _before_ the latter. Parameters ---------- module_graph : ModuleGraph Current module graph. hook_dirs : list List of the absolute or relative paths of all directories containing **hook scripts** (i.e., Python scripts with filenames matching `hook-{module_name}.py`, where `{module_name}` is the module hooked by that script) to be cached. """ UserDict.__init__(self) # To avoid circular references and hence increased memory consumption, # a weak rather than strong reference is stored to the passed graph. # Since this graph is guaranteed to live longer than this cache, this is # guaranteed to be safe. self.module_graph = weakref.proxy(module_graph) # String unique to this cache prefixing the names of all in-memory # modules lazily loaded from cached hook scripts, privatized for safety. self._hook_module_name_prefix = '__PyInstaller_hooks_{}_'.format( ModuleHookCache._cache_id_next) ModuleHookCache._cache_id_next += 1 # Cache all hook scripts in the passed directories. self._cache_hook_dirs(hook_dirs) def _cache_hook_dirs(self, hook_dirs): """ Cache all hook scripts in the passed directories. Parameters ---------- hook_dirs : list List of the absolute or relative paths of all directories containing hook scripts to be cached. """ for hook_dir in hook_dirs: # Canonicalize this directory's path and validate its existence. hook_dir = os.path.abspath(expand_path(hook_dir)) if not os.path.isdir(hook_dir): raise FileNotFoundError( 'Hook directory "{}" not found.'.format(hook_dir)) # For each hook script in this directory... hook_filenames = glob.glob(os.path.join(hook_dir, 'hook-*.py')) for hook_filename in hook_filenames: # Fully-qualified name of this hook's corresponding module, # constructed by removing the "hook-" prefix and ".py" suffix. module_name = os.path.basename(hook_filename)[5:-3] # Lazily loadable hook object. module_hook = ModuleHook( module_graph=self.module_graph, module_name=module_name, hook_filename=hook_filename, hook_module_name_prefix=self._hook_module_name_prefix, ) # Add this hook to this module's list of hooks. module_hooks = self.setdefault(module_name, []) module_hooks.append(module_hook) def remove_modules(self, *module_names): """ Remove the passed modules and all hook scripts cached for these modules from this cache. Parameters ---------- module_names : list List of all fully-qualified module names to be removed. """ for module_name in module_names: # Unload this module's hook script modules from memory. Since these # are top-level pure-Python modules cached only in the "sys.modules" # dictionary, popping these modules from this dictionary suffices # to garbage collect these modules. module_hooks = self.get(module_name, []) for module_hook in module_hooks: sys.modules.pop(module_hook.hook_module_name, None) # Remove this module and its hook script objects from this cache. self.pop(module_name, None) # Dictionary mapping the names of magic attributes required by the "ModuleHook" # class to 2-tuples "(default_type, sanitizer_func)", where: # # * "default_type" is the type to which that attribute will be initialized when # that hook is lazily loaded. # * "sanitizer_func" is the callable sanitizing the original value of that # attribute defined by that hook into a safer value consumable by "ModuleHook" # callers if any or "None" if the original value requires no sanitization. # # To avoid subtleties in the ModuleHook.__getattr__() method, this dictionary is # declared as a module rather than a class attribute. If declared as a class # attribute and then undefined (...for whatever reason), attempting to access # this attribute from that method would produce infinite recursion. _MAGIC_MODULE_HOOK_ATTRS = { # Collections in which order is insignificant. This includes: # # * "datas", sanitized from hook-style 2-tuple lists defined by hooks into # TOC-style 2-tuple sets consumable by "ModuleHook" callers. # * "binaries", sanitized in the same way. 'datas': (set, format_binaries_and_datas), 'binaries': (set, format_binaries_and_datas), 'excludedimports': (set, None), # Collections in which order is significant. This includes: # # * "hiddenimports", as order of importation is significant. On module # importation, hook scripts are loaded and hook functions declared by # these scripts are called. As these scripts and functions can have side # effects dependent on module importation order, module importation itself # can have side effects dependent on this order! 'hiddenimports': (list, None), } class ModuleHook(object): """ Cached object encapsulating a lazy loadable hook script. This object exposes public attributes (e.g., `datas`) of the underlying hook script as attributes of the same name of this object. On the first access of any such attribute, this hook script is lazily loaded into an in-memory private module reused on subsequent accesses. These dynamic attributes are referred to as "magic." All other static attributes of this object (e.g., `hook_module_name`) are referred to as "non-magic." Attributes (Magic) ---------- datas : set Set of `TOC`-style 2-tuples `(target_file, source_file)` for all external non-executable files required by the module being hooked, converted from the `datas` list of hook-style 2-tuples `(source_dir_or_glob, target_dir)` defined by this hook script. binaries : set Set of `TOC`-style 2-tuples `(target_file, source_file)` for all external executable files required by the module being hooked, converted from the `binaries` list of hook-style 2-tuples `(source_dir_or_glob, target_dir)` defined by this hook script. excludedimports : set Set of the fully-qualified names of all modules imported by the module being hooked to be ignored rather than imported from that module, converted from the `excludedimports` list defined by this hook script. These modules will only be "locally" rather than "globally" ignored. These modules will remain importable from all modules other than the module being hooked. hiddenimports : set Set of the fully-qualified names of all modules imported by the module being hooked that are _not_ automatically detectable by PyInstaller (usually due to being dynamically imported in that module), converted from the `hiddenimports` list defined by this hook script. Attributes (Non-magic) ---------- module_graph : ModuleGraph Current module graph. module_name : str Name of the module hooked by this hook script. hook_filename : str Absolute or relative path of this hook script. hook_module_name : str Name of the in-memory module of this hook script's interpreted contents. _hook_module : module In-memory module of this hook script's interpreted contents, lazily loaded on the first call to the `_load_hook_module()` method _or_ `None` if this method has yet to be accessed. """ ## Magic def __init__(self, module_graph, module_name, hook_filename, hook_module_name_prefix): """ Initialize this metadata. Parameters ---------- module_graph : ModuleGraph Current module graph. module_name : str Name of the module hooked by this hook script. hook_filename : str Absolute or relative path of this hook script. hook_module_name_prefix : str String prefixing the name of the in-memory module for this hook script. To avoid namespace clashes with similar modules created by other `ModuleHook` objects in other `ModuleHookCache` containers, this string _must_ be unique to the `ModuleHookCache` container containing this `ModuleHook` object. If this string is non-unique, an existing in-memory module will be erroneously reused when lazily loading this hook script, thus erroneously resanitizing previously sanitized hook script attributes (e.g., `datas`) with the `format_binaries_and_datas()` helper. """ # Note that the passed module graph is already a weak reference, # avoiding circular reference issues. See ModuleHookCache.__init__(). assert isinstance(module_graph, weakref.ProxyTypes) self.module_graph = module_graph self.module_name = module_name self.hook_filename = hook_filename # Name of the in-memory module fabricated to refer to this hook script. self.hook_module_name = ( hook_module_name_prefix + self.module_name.replace('.', '_')) # Attributes subsequently defined by the _load_hook_module() method. self._hook_module = None def __getattr__(self, attr_name): ''' Get the magic attribute with the passed name (e.g., `datas`) from this lazily loaded hook script if any _or_ raise `AttributeError` otherwise. This special method is called only for attributes _not_ already defined by this object. This includes undefined attributes and the first attempt to access magic attributes. This special method is _not_ called for subsequent attempts to access magic attributes. The first attempt to access magic attributes defines corresponding instance variables accessible via the `self.__dict__` instance dictionary (e.g., as `self.datas`) without calling this method. This approach also allows magic attributes to be deleted from this object _without_ defining the `__delattr__()` special method. See Also ---------- Class docstring for supported magic attributes. ''' # If this is a magic attribute, initialize this attribute by lazy # loading this hook script and then return this attribute. To avoid # recursion, the superclass method rather than getattr() is called. if attr_name in _MAGIC_MODULE_HOOK_ATTRS: self._load_hook_module() return super(ModuleHook, self).__getattr__(attr_name) # Else, this is an undefined attribute. Raise an exception. else: raise AttributeError(attr_name) def __setattr__(self, attr_name, attr_value): ''' Set the attribute with the passed name to the passed value. If this is a magic attribute, this hook script will be lazily loaded before setting this attribute. Unlike `__getattr__()`, this special method is called to set _any_ attribute -- including magic, non-magic, and undefined attributes. See Also ---------- Class docstring for supported magic attributes. ''' # If this is a magic attribute, initialize this attribute by lazy # loading this hook script before overwriting this attribute. if attr_name in _MAGIC_MODULE_HOOK_ATTRS: self._load_hook_module() # Set this attribute to the passed value. To avoid recursion, the # superclass method rather than setattr() is called. return super(ModuleHook, self).__setattr__(attr_name, attr_value) ## Loading def _load_hook_module(self): """ Lazily load this hook script into an in-memory private module. This method (and, indeed, this class) preserves all attributes and functions defined by this hook script as is, ensuring sane behaviour in hook functions _not_ expecting unplanned external modification. Instead, this method copies public attributes defined by this hook script (e.g., `binaries`) into private attributes of this object, which the special `__getattr__()` and `__setattr__()` methods safely expose to external callers. For public attributes _not_ defined by this hook script, the corresponding private attributes will be assigned sane defaults. For some public attributes defined by this hook script, the corresponding private attributes will be transformed into objects more readily and safely consumed elsewhere by external callers. See Also ---------- Class docstring for supported attributes. """ # If this hook script module has already been loaded, noop. if self._hook_module is not None: return # Load and execute the hook script. Even if mechanisms from the import # machinery are used, this does not import the hook as the module. logger.info( 'Loading module hook "%s"...', os.path.basename(self.hook_filename)) self._hook_module = importlib_load_source( self.hook_module_name, self.hook_filename) # Copy hook script attributes into magic attributes exposed as instance # variables of the current "ModuleHook" instance. for attr_name, (default_type, sanitizer_func) in ( _MAGIC_MODULE_HOOK_ATTRS.items()): # Unsanitized value of this attribute. attr_value = getattr(self._hook_module, attr_name, None) # If this attribute is undefined, expose a sane default instead. if attr_value is None: attr_value = default_type() # Else if this attribute requires sanitization, do so. elif sanitizer_func is not None: attr_value = sanitizer_func(attr_value) # Else, expose the unsanitized value of this attribute. # Expose this attribute as an instance variable of the same name. setattr(self, attr_name, attr_value) ## Hooks def post_graph(self): """ Call the **post-graph hook** (i.e., `hook()` function) defined by this hook script if any. This method is intended to be called _after_ the module graph for this application is constructed. """ # Lazily load this hook script into an in-memory module. self._load_hook_module() # Call this hook script's hook() function, which modifies attributes # accessed by subsequent methods and hence must be called first. self._process_hook_func() # Order is insignificant here. self._process_hidden_imports() self._process_excluded_imports() def _process_hook_func(self): """ Call this hook's `hook()` function if defined. """ # If this hook script defines no hook() function, noop. if not hasattr(self._hook_module, 'hook'): return # Call this hook() function. hook_api = PostGraphAPI( module_name=self.module_name, module_graph=self.module_graph) self._hook_module.hook(hook_api) # Update all magic attributes modified by the prior call. self.datas.update(set(hook_api._added_datas)) self.binaries.update(set(hook_api._added_binaries)) self.hiddenimports.extend(hook_api._added_imports) #FIXME: Deleted imports should be appended to #"self.excludedimports" rather than handled here. However, see the #_process_excluded_imports() FIXME below for a sensible alternative. for deleted_module_name in hook_api._deleted_imports: # Remove the graph link between the hooked module and item. # This removes the 'item' node from the graph if no other # links go to it (no other modules import it) self.module_graph.removeReference( hook_api.node, deleted_module_name) def _process_hidden_imports(self): """ Add all imports listed in this hook script's `hiddenimports` attribute to the module graph as if directly imported by this hooked module. These imports are typically _not_ implicitly detectable by PyInstaller and hence must be explicitly defined by hook scripts. """ # For each hidden import required by the module being hooked... for import_module_name in self.hiddenimports: try: # Graph node for this module. Do not implicitly create namespace # packages for non-existent packages. caller = self.module_graph.findNode( self.module_name, create_nspkg=False) # Manually import this hidden import from this module. self.module_graph.import_hook(import_module_name, caller) # If this hidden import is unimportable, print a non-fatal warning. # Hidden imports often become desynchronized from upstream packages # and hence are only "soft" recommendations. except ImportError: logger.warning('Hidden import "%s" not found!', import_module_name) #FIXME: This is pretty... intense. Attempting to cleanly "undo" prior module #graph operations is a recipe for subtle edge cases and difficult-to-debug #issues. It would be both safer and simpler to prevent these imports from #being added to the graph in the first place. To do so: # #* Remove the _process_excluded_imports() method below. #* Remove the PostGraphAPI.del_imports() method, which cannot reasonably be # supported by the following solution, appears to be currently broken, and # (in any case) is not called anywhere in the PyInstaller codebase. #* Override the ModuleGraph._safe_import_hook() superclass method with a new # PyiModuleGraph._safe_import_hook() subclass method resembling: # # def _safe_import_hook( # self, target_module_name, source_module, fromlist, # level=DEFAULT_IMPORT_LEVEL, attr=None): # # if source_module.identifier in self._module_hook_cache: # for module_hook in self._module_hook_cache[ # source_module.identifier]: # if target_module_name in module_hook.excludedimports: # return [] # # return super(PyiModuleGraph, self)._safe_import_hook( # target_module_name, source_module, fromlist, # level=level, attr=attr) def _process_excluded_imports(self): """ 'excludedimports' is a list of Python module names that PyInstaller should not detect as dependency of this module name. So remove all import-edges from the current module (and it's submodules) to the given `excludedimports` (end their submodules). """ def find_all_package_nodes(name): mods = [name] name += '.' for subnode in self.module_graph.nodes(): if subnode.identifier.startswith(name): mods.append(subnode.identifier) return mods # If this hook excludes no imports, noop. if not self.excludedimports: return # Collect all submodules of this module. hooked_mods = find_all_package_nodes(self.module_name) # Collect all dependencies and their submodules # TODO: Optimize this by using a pattern and walking the graph # only once. for item in set(self.excludedimports): excluded_node = self.module_graph.findNode(item, create_nspkg=False) if excluded_node is None: logger.info("Import to be excluded not found: %r", item) continue logger.info("Excluding import %r", item) imports_to_remove = set(find_all_package_nodes(item)) # Remove references between module nodes, as though they would # not be imported from 'name'. # Note: Doing this in a nested loop is less efficient than # collecting all import to remove first, but log messages # are easier to understand since related to the "Excluding ..." # message above. for src in hooked_mods: # modules, this `src` does import references = set( node.identifier for node in self.module_graph.getReferences(src)) # Remove all of these imports which are also in # "imports_to_remove". for dest in imports_to_remove & references: self.module_graph.removeReference(src, dest) logger.info( " Removing import of %s from module %s", dest, src) #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #FIXME: This class has been obsoleted by "ModuleHookCache" and will be removed. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! class HooksCache(dict): """ Dictionary mapping from the fully-qualified names of each module hooked by at least one hook script to lists of the absolute paths of these scripts. This `dict` subclass caches the list of all hooks applicable to each module, permitting Pythonic mapping, iteration, addition, and removal of such hooks. Each dictionary key is a fully-qualified module name. Each dictionary value is a list of the absolute paths of all hook scripts specific to that module, including both official PyInstaller hooks and unofficial user-defined hooks. See Also ---------- `_load_file_list()` For details on hook priority. """ def __init__(self, hooks_dir): """ Initialize this dictionary. Parameters ---------- hook_dir : str Absolute or relative path of the directory containing hooks with which to populate this cache. By default, this is the absolute path of the `PyInstaller/hooks` directory containing official hooks. """ super(dict, self).__init__() self._load_file_list(hooks_dir) def _load_file_list(self, hooks_dir): """ Cache all hooks in the passed directory. **Order of caching is significant** with respect to hooks for the same module, as the values of this dictionary are ordered lists. Hooks for the same module will be run in the order in which they are cached. Previously cached hooks are always preserved (rather than overidden). Specifically, any hook in the passed directory having the same module name as that of a previously cached hook will be appended to the list of hooks for that module name. By default, official hooks are cached _before_ user-defined hooks. For modules with both official and user-defined hooks, this implies that the former take priority over and will be run _before_ the latter. Parameters ---------- hooks_dir : str Absolute or relative path of the directory containing additional hooks to be cached. For convenience, tilde and variable expansion will be applied to this path (e.g., a leading `~` will be replaced by the absolute path of the corresponding home directory). """ # Perform tilde and variable expansion and validate the result. hooks_dir = expand_path(hooks_dir) if not os.path.isdir(hooks_dir): logger.error('Hook directory %r not found', os.path.abspath(hooks_dir)) return # For each hook in the passed directory... hook_files = glob.glob(os.path.join(hooks_dir, 'hook-*.py')) for hook_file in hook_files: # Absolute path of this hook's script. hook_file = os.path.abspath(hook_file) # Fully-qualified name of this hook's corresponding module, # constructed by removing the "hook-" prefix and ".py" suffix. module_name = os.path.basename(hook_file)[5:-3] # If this module already has cached hooks, append this hook's path # to the existing list of such paths. if module_name in self: self[module_name].append(hook_file) # Else, default to a new list containing only this hook's path. else: self[module_name] = [hook_file] def add_custom_paths(self, hooks_dirs): """ Cache all hooks in the list of passed directories. Parameters ---------- hooks_dirs : list List of the absolute or relative paths of all directories containing additional hooks to be cached. """ for hooks_dir in hooks_dirs: self._load_file_list(hooks_dir) def remove(self, module_names): """ Remove all key-value pairs whose key is a fully-qualified module name in the passed list from this dictionary. Parameters ---------- module_names : list List of all fully-qualified module names to be removed. """ for module_name in set(module_names): # Eliminate duplicate entries. if module_name in self: del self[module_name] class AdditionalFilesCache(object): """ Cache for storing what binaries and datas were pushed by what modules when import hooks were processed. """ def __init__(self): self._binaries = {} self._datas = {} def add(self, modname, binaries, datas): self._binaries[modname] = binaries or [] self._datas[modname] = datas or [] def __contains__(self, name): return name in self._binaries or name in self._datas def binaries(self, modname): """ Return list of binaries for given module name. """ return self._binaries[modname] def datas(self, modname): """ Return list of datas for given module name. """ return self._datas[modname] #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #FIXME: This class has been obsoleted by "ModuleHook" and will be removed. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! class ImportHook(object): """ Class encapsulating processing of hook attributes like hiddenimports, etc. """ def __init__(self, modname, hook_filename): """ :param hook_filename: File name where to load hook from. """ logger.info('Processing hook %s' % os.path.basename(hook_filename)) self._name = modname self._filename = hook_filename # _module represents the code of 'hook-modname.py' # Load hook from file and parse and interpret it's content. hook_modname = 'PyInstaller_hooks_' + modname.replace('.', '_') self._module = importlib_load_source(hook_modname, self._filename) # Public import hook attributes for further processing. self.binaries = set() self.datas = set() # Internal methods for processing. def _process_hook_function(self, mod_graph): """ Call the hook function hook(mod). Function hook(mod) has to be called first because this function could update other attributes - datas, hiddenimports, etc. """ # Process a `hook(hook_api)` function. hook_api = PostGraphAPI(self._name, mod_graph) self._module.hook(hook_api) self.datas.update(set(hook_api._added_datas)) self.binaries.update(set(hook_api._added_binaries)) for item in hook_api._added_imports: self._process_one_hiddenimport(item, mod_graph) for item in hook_api._deleted_imports: # Remove the graph link between the hooked module and item. # This removes the 'item' node from the graph if no other # links go to it (no other modules import it) mod_graph.removeReference(hook_api.node, item) def _process_hiddenimports(self, mod_graph): """ 'hiddenimports' is a list of Python module names that PyInstaller is not able detect. """ # push hidden imports into the graph, as if imported from self._name for item in self._module.hiddenimports: self._process_one_hiddenimport(item, mod_graph) def _process_one_hiddenimport(self, item, mod_graph): try: # Do not try to first find out if a module by that name already exist. # Rely on modulegraph to handle that properly. # Do not automatically create namespace packages if they do not exist. caller = mod_graph.findNode(self._name, create_nspkg=False) mod_graph.import_hook(item, caller=caller) except ImportError: # Print warning if a module from hiddenimport could not be found. # modulegraph raises ImporError when a module is not found. # Import hook with non-existing hiddenimport is probably a stale hook # that was not updated for a long time. logger.warning("Hidden import '%s' not found (probably old hook)", item) def _process_excludedimports(self, mod_graph): """ 'excludedimports' is a list of Python module names that PyInstaller should not detect as dependency of this module name. So remove all import-edges from the current module (and it's submodules) to the given `excludedimports` (end their submodules). """ def find_all_package_nodes(name): mods = [name] name += '.' for subnode in mod_graph.nodes(): if subnode.identifier.startswith(name): mods.append(subnode.identifier) return mods # Collect all submodules of this module. hooked_mods = find_all_package_nodes(self._name) # Collect all dependencies and their submodules # TODO: Optimize this by using a pattern and walking the graph # only once. for item in set(self._module.excludedimports): excluded_node = mod_graph.findNode(item, create_nspkg=False) if excluded_node is None: logger.info("Import to be excluded not found: %r", item) continue logger.info("Excluding import %r", item) imports_to_remove = set(find_all_package_nodes(item)) # Remove references between module nodes, as though they would # not be imported from 'name'. # Note: Doing this in a nested loop is less efficient than # collecting all import to remove first, but log messages # are easier to understand since related to the "Excluding ..." # message above. for src in hooked_mods: # modules, this `src` does import references = set(n.identifier for n in mod_graph.getReferences(src)) # Remove all of these imports which are also in `imports_to_remove` for dest in imports_to_remove & references: mod_graph.removeReference(src, dest) logger.warning(" From %s removing import %s", src, dest) def _process_datas(self, mod_graph): """ 'datas' is a list of globs of files or directories to bundle as datafiles. For each glob, a destination directory is specified. """ # Find all files and interpret glob statements. self.datas.update(set(format_binaries_and_datas(self._module.datas))) def _process_binaries(self, mod_graph): """ 'binaries' is a list of files to bundle as binaries. Binaries are special that PyInstaller will check if they might depend on other dlls (dynamic libraries). """ self.binaries.update(set(format_binaries_and_datas(self._module.binaries))) # Public methods def update_dependencies(self, mod_graph): """ Update module dependency graph with import hook attributes (hiddenimports, etc.) :param mod_graph: PyiModuleGraph object to be updated. """ if hasattr(self._module, 'hook'): self._process_hook_function(mod_graph) if hasattr(self._module, 'hiddenimports'): self._process_hiddenimports(mod_graph) if hasattr(self._module, 'excludedimports'): self._process_excludedimports(mod_graph) if hasattr(self._module, 'datas'): self._process_datas(mod_graph) if hasattr(self._module, 'binaries'): self._process_binaries(mod_graph) ```
{ "source": "johnashu/dataplicity-lomond", "score": 3 }
#### File: lomond/examples/chat.py ```python from __future__ import print_function from __future__ import unicode_literals import logging logging.basicConfig(format='%(message)s', level=logging.DEBUG) from threading import Thread from six.moves import input from lomond import WebSocket def get_input(text=''): i = input(text) if isinstance(i, bytes): return i.decode('utf-8', errors='replace') return i name = get_input("your name: ") ws = WebSocket('wss://ws.willmcgugan.com/chat/') def run(): for event in ws: print(event) if event.name == 'connected': ws.send_text("<{} connected>".format(name)) elif event.name == 'text': print(event.text) Thread(target=run).start() while True: try: ws.send_text("[{}] {}".format(name, get_input())) except KeyboardInterrupt: ws.close() break ``` #### File: dataplicity-lomond/lomond/extension.py ```python from __future__ import unicode_literals def parse_extension(extension): """Parse a single extension in to an extension token and a dict of options. """ # Naive http header parser, works for current extensions tokens = [token.strip() for token in extension.split(';')] extension_token = tokens[0] options = {} for token in tokens[1:]: key, sep, value = token.partition('=') value = value.strip().strip('"') options[key.strip()] = value return extension_token, options ``` #### File: dataplicity-lomond/lomond/response.py ```python from __future__ import unicode_literals from collections import defaultdict import six LWS = (' ', '\t', '\n', '\r') class Response(object): """A HTTP response. :param bytes header_data: Raw response. """ def __init__(self, header_data): self.raw = header_data lines = iter(header_data.split(b'\r\n')) status_line = next(lines, b'') tokens = iter(status_line.split(None, 2)) self.http_ver = next(tokens, b'').decode('ascii', 'replace') try: self.status_code = int(next(tokens, b'')) except ValueError: self.status_code = None self.status = next(tokens, b'').decode('ascii', 'replace') headers = defaultdict(list) header = None for _line in lines: line = _line.decode('ascii', 'replace') if not line.strip(): continue if line.startswith(LWS): if header: headers[header].append(' ') headers[header].append(line.lstrip()) else: header, _colon, value = line.partition(':') header = header.lower().strip() if header in headers: headers[header].append(',') headers[header].append(value) self.headers = { header: ''.join(value).strip() for header, value in headers.items() } def __repr__(self): return "<response {} {} {}>".format( self.http_ver, self.status_code, self.status ) def get(self, name, default=None): """Get a header. :param str name: Name of the header to retrieve. :param default: Default value if header is not present. :rtype: str """ assert isinstance(name, six.text_type), "must be unicode" return self.headers.get(name.lower(), default) def get_list(self, name): """Extract a list from a header. :param bytes name: Name of the header to retrieve. :rtype: str :returns: A list of strings in the header. """ value = self.get(name, '') if not value.strip(): return [] parts = [part.strip() for part in value.split(',')] return parts ``` #### File: dataplicity-lomond/lomond/selectors.py ```python from __future__ import unicode_literals import select class SelectorBase(object): """Abstraction for a kernel object that waits for socket data.""" def __init__(self, socket): """Construct with an open socket.""" self._socket = socket def wait(self, max_bytes, timeout=0.0): """Block until socket is readable or a timeout occurs. Return a tuple of <readable>, <max bytes>. """ if hasattr(self._socket, 'pending') and self._socket.pending(): return True, self._socket.pending() readable = self.wait_readable(timeout=timeout) return readable, max_bytes def wait_readable(self, timeout=0.0): """Block until socket is readable or a timeout occurs, return `True` if the socket is readable, or `False` if the timeout occurred. """ def close(self): """Close the selector (not the socket).""" class SelectSelector(SelectorBase): # pragma: no cover """Select Selector for use on Windows.""" def __repr__(self): return '<SelectSelector>' def wait_readable(self, timeout=0.0): rlist, _wlist, _xlist = ( select.select([self._socket.fileno()], [], [], timeout) ) return bool(rlist) class KQueueSelector(SelectorBase): # pragma: no cover """KQueue selector for MacOS & BSD""" def __init__(self, socket): super(KQueueSelector, self).__init__(socket) self._queue = select.kqueue() self._events = [ select.kevent( self._socket.fileno(), filter=select.KQ_FILTER_READ ) ] def __repr__(self): return '<KQueueSelector>' def wait_readable(self, timeout=0.0): events = self._queue.control( self._events, 1, timeout ) return bool(events) def close(self): self._queue.close() class PollSelector(SelectorBase): """Poll selector for *nix""" def __init__(self, socket): super(PollSelector, self).__init__(socket) self._poll = select.poll() events = ( select.POLLIN | select.POLLPRI | select.POLLERR | select.POLLHUP ) self._poll.register(socket.fileno(), events) def __repr__(self): return '<PollSelector>' def wait_readable(self, timeout=0.0): events = self._poll.poll(timeout * 1000.0) return bool(events) # Pick the appropriate selector for the given platform if hasattr(select, 'kqueue'): PlatformSelector = KQueueSelector elif hasattr(select, 'poll'): PlatformSelector = PollSelector else: PlatformSelector = SelectSelector ``` #### File: dataplicity-lomond/tests/test_compression.py ```python from __future__ import unicode_literals import pytest from lomond.compression import CompressionParameterError, Deflate from lomond.frame import Frame def test_deflate_repr(): deflate = Deflate(15, 8, False, False) assert repr(deflate) == 'Deflate(decompress_wbits=15, compress_wbits=8, reset_decompress=False, reset_compress=False)' def test_get_wbits(): with pytest.raises(CompressionParameterError): Deflate.get_wbits({'foo': 'nan'}, 'foo') with pytest.raises(CompressionParameterError): Deflate.get_wbits({'foo': '100'}, 'foo') with pytest.raises(CompressionParameterError): Deflate.get_wbits({'foo': '7'}, 'foo') with pytest.raises(CompressionParameterError): Deflate.get_wbits({'foo': '16'}, 'foo') assert Deflate.get_wbits({'foo': '8'}, 'foo') == 8 def test_compression(): data = [ b'Hello ', b'World!', b'foo', b'bar', b'baz' ] deflate = Deflate(15, 8, True, True) for raw in data: compressed_data = deflate.compress(raw) frames = [Frame(1, compressed_data, fin=1)] assert deflate.decompress(frames) == raw ``` #### File: dataplicity-lomond/tests/test_parser.py ```python import types import pytest from lomond.parser import ParseError, Parser def test_parser_reset_is_a_generator(): parser = Parser() assert isinstance(parser.parse(), types.GeneratorType) def test_max_bytes(): class TestParser(Parser): def parse(self): data = yield self.read_until(b'\r\n\r\n', max_bytes=100) yield data test_data = [b'foo'] * 100 test_parser = TestParser() with pytest.raises(ParseError): for data in test_data: for _data in test_parser.feed(data): print(_data) def test_eof(): class TestParser(Parser): def parse(self): data = yield self.read_until(b'\r\n\r\n', max_bytes=100) yield data test_parser = TestParser() test_data = [b'foo', b''] assert not test_parser.is_eof with pytest.raises(ParseError): for data in test_data: for _token in test_parser.feed(data): print(_token) assert test_parser.is_eof test_parser.feed(b'more') with pytest.raises(ParseError): for data in test_parser.feed('foo'): print(data) ``` #### File: dataplicity-lomond/tests/test_persist.py ```python from lomond.persist import persist from lomond import events class FakeEvent(object): def wait(self, wait_for=None): return True class FakeWebSocket(object): def connect(self, poll=None, ping_rate=None, ping_timeout=None): yield events.Connecting('ws://localhost:1234/') yield events.ConnectFail('test') def persist_testing_helper(mocker, validate_function, websocket_connect=None): # ok. First, we start off by calling .spy on our fake function, so that # we could verify that it was called mocker.spy(FakeEvent, 'wait') # now, we patch the import path to threading.Event and replace it with # our own FakeEvent. Therefore, whenever persist.py will try to import # threading.Event, it will actually import FakeEvent mocker.patch('lomond.persist.threading.Event', FakeEvent) # great, now a simple websocket imposter websocket = FakeWebSocket() if websocket_connect: websocket.connect = websocket_connect yielded_events = list(persist(websocket)) # the sole fact that we ended up in this line means that the event # method was called, but we can nevertheless check it assert FakeEvent.wait.call_count == 1 # and now we can validate the events. validate_function(yielded_events) def test_persist_with_nonexisting_server(mocker): def validate_events(_events): # the server doesn't exist, so we expect 3 entries: assert len(_events) == 3 # 0/ Connecting assert isinstance(_events[0], events.Connecting) # 1/ a ConnectFail - because the server doesn't exist .. assert isinstance(_events[1], events.ConnectFail) # 2/ and a BackOff which means that we are ready to start a new # iteration. assert isinstance(_events[2], events.BackOff) persist_testing_helper(mocker, validate_events) def test_emulate_ready_event(mocker): def successful_connect(poll=None, ping_rate=None, ping_timeout=None): yield events.Connecting('ws://localhost:1234') yield events.Ready(None, None, None) def validate_events(_events): assert len(_events) == 3 assert isinstance(_events[0], events.Connecting) assert isinstance(_events[1], events.Ready) assert isinstance(_events[2], events.BackOff) persist_testing_helper(mocker, validate_events, successful_connect) ``` #### File: dataplicity-lomond/tests/test_session.py ```python import socket import pytest from freezegun import freeze_time from lomond import errors, events from lomond import constants from lomond.session import WebsocketSession, _ForceDisconnect, _SocketFail from lomond.websocket import WebSocket @pytest.fixture() def session(monkeypatch): monkeypatch.setattr( 'os.urandom', b'\xaa'.__mul__ ) # ^^ the above line will be significant in the test where we want # to validate the headers being sent to the socket. Namely, the # websocket key which is based on os.urandom. Obviously, we can't # have an actual random call here because the test wouldn't be # deterministic, hence this sequence of bytes. return WebsocketSession(WebSocket('wss://example.com/')) class FakeSocket(object): def __init__(self, *args, **kwargs): self.buffer = b'' self._sendall = kwargs.get('sendall', None) def setsockopt(self, *args): pass def settimeout(self, *args): pass def connect(self, *args): raise socket.error('fail') def fileno(self): return 999 def recv(self, *args, **kwargs): raise socket.error('fail') def recv_into(self, *args, **kwargs): raise socket.error('fail') def shutdown(self, *args, **kwargs): pass def close(self): return def sendall(self, data): self.buffer += data if callable(self._sendall): self._sendall(data) def pending(self): return 0 class FakeWebSocket(object): sent_close_time = -100 def send_pong(self, data): raise errors.WebSocketClosed('sorry') class FakeSelector(object): def __init__(self, socket): pass def wait(self, max_bytes, timeout): return True, max_bytes def wait_readable(self, timeout): return True def close(self): pass class FakeBrokenSelector(object): def __init__(self, socket): pass def wait_readable(self, timeout): raise IOError('broke') def close(self): pass def test_write_without_sock_fails(session): with pytest.raises(errors.WebSocketUnavailable) as e: session.write(b'\x01') assert str(e.value) == 'not connected' def test_write_with_closed_websocket_fails(session): session.websocket.state.closed = True session._sock = FakeSocket() with pytest.raises(errors.WebSocketClosed) as e: session.write(b'\x01') assert str(e.value) == 'data not sent' def test_write_with_closing_websocket_fails(session): session.websocket.state.closing = True session._sock = FakeSocket() with pytest.raises(errors.WebSocketClosing) as e: session.write(b'\x01') assert str(e.value) == 'data not sent' def test_socket_error_propagates(session): def sendall(data): raise socket.error('just testing errors') session._sock = FakeSocket() session._sock.sendall = sendall with pytest.raises(errors.TransportFail) as e: session.write(b'\x01') assert str(e.value) == 'socket fail; just testing errors' def test_non_network_error_propagates(session): def sendall(data): raise ValueError('some random exception') session._sock = FakeSocket() session._sock.sendall = sendall with pytest.raises(errors.TransportFail) as e: session.write(b'\x01') assert str(e.value) == 'socket error; some random exception' def test_repr(session): assert repr(session) == "<ws-session 'wss://example.com/'>" def test_close_socket(session, mocker): session._sock = FakeSocket() mocker.spy(FakeSocket, 'shutdown') mocker.spy(FakeSocket, 'close') session._close_socket() assert FakeSocket.shutdown.call_count == 1 assert FakeSocket.close.call_count == 1 def test_send_request(session): session._sock = FakeSocket() session._send_request() assert session._sock.buffer == ( b'GET / HTTP/1.1\r\n' b'Host: example.com:443\r\n' b'Upgrade: websocket\r\n' b'Connection: Upgrade\r\n' b'Sec-WebSocket-Key: qqqqqqqqqqqqqqqqqqqqqg==\r\n' b'Sec-WebSocket-Version: 13\r\n' b'User-Agent: ' + constants.USER_AGENT.encode('utf-8') + b'\r\n' b'\r\n' ) def test_run_with_socket_open_error(session): def connect_which_raises_error(): raise ValueError('fail') session._connect = connect_which_raises_error _events = list(session.run()) assert len(_events) == 2 assert isinstance(_events[0], events.Connecting) assert _events[0].url == 'wss://example.com/' assert isinstance(_events[1], events.ConnectFail) assert str(_events[1]) == "ConnectFail(reason='fail')" def test_run_with_send_request_raising_transport_error(session): # _send_request can raise TransportFail inside write() call # in order to do that, the socket has to be opened and raise # either socket.error or Exception during sendall() call. # let's do just that. First of all, the method in question: def sendall_which_raises_error(data): raise socket.error('error during sendall') # here's where the plot thickens. socket connection is established # during self._connect, so we have to substitude this method so that # it returns our FakeSocket object. def return_fake_socket(): return FakeSocket(sendall=sendall_which_raises_error), None session._connect = return_fake_socket _events = list(session.run()) assert isinstance(_events[-1], events.ConnectFail) assert str(_events[-1]) == ( "ConnectFail(reason='request failed; socket fail; error during sendall')" ) def test_that_on_ping_responds_with_pong(session, mocker): # we don't actually care that much for the whole stack underneath, # we only want to check whether a certain method was called.. send_pong = mocker.patch( 'lomond.websocket.WebSocket.send_pong' ) session._send_pong(events.Ping(b'\x00')) assert send_pong.called_with(b'\x00') def test_error_on_close_socket(caplog, session): def close_which_raises_error(): raise ValueError('a problem occurred') session._sock = FakeSocket() session._sock.close = close_which_raises_error session._close_socket() import logging assert caplog.record_tuples[-1] == ( 'lomond', logging.WARNING, 'error closing socket; a problem occurred' ) def test_check_poll(session): session._on_ready() assert session._check_poll(60, 61) assert not session._check_poll(60, 59) def test_check_auto_ping(session, mocker): session._on_ready() mocker.patch.object(session.websocket, 'send_ping') assert session.websocket.send_ping.call_count == 0 session._check_auto_ping(10, 12) assert session.websocket.send_ping.call_count == 1 session._check_auto_ping(10, 15) assert session.websocket.send_ping.call_count == 1 def test_check_ping_timeout(session, mocker): session._on_ready() assert not session._check_ping_timeout(10, 5) assert session._check_ping_timeout(10, 11) def test_recv_no_sock(session): session._sock = None assert session._recv(1) == b'' def test_on_pong(session): session._on_ready() session._on_pong(events.Pong(b'foo')) assert session.session_time - session._last_pong < 0.01 def test_context_manager(): ws = WebSocket('ws://example.com/') session = WebsocketSession(ws) session._selector_cls = FakeSelector session._on_ready() with ws: for event in ws: pass def test_connect_sock_fail_socket(monkeypatch, session): def fail_socket(*args): raise socket.error('foo') monkeypatch.setattr('socket.socket', fail_socket) with pytest.raises(_SocketFail): session._connect_sock('google.com', 80) def test_connect_sock_fail_connect(monkeypatch, session): monkeypatch.setattr('socket.socket', lambda *args: FakeSocket()) with pytest.raises(_SocketFail): session._connect_sock('google.com', 80) def test_sock_recv(session): session._sock = FakeSocket() with pytest.raises(_SocketFail): session._recv(128) def test_send_pong(session): session.websocket = FakeWebSocket() session._send_pong(events.Ping(b'foo')) def test_check_close_timeout(session): session._on_ready() session.websocket = FakeWebSocket() session.websocket.sent_close_time = 10 session._check_close_timeout(10, 19) with pytest.raises(_ForceDisconnect): session._check_close_timeout(10, 21) ```
{ "source": "johnashu/docker_command", "score": 2 }
#### File: johnashu/docker_command/containers.py ```python from client_config import client cons = client.containers def container_manage(container, stop=False): # GET container = cons.get(container) # ATTRS attrs = container.attrs["Config"]["Image"] # Logs logs = container.logs() # stop if stop: container.stop() def start_log_stream(container): for line in container.logs(stream=True): print(line) def stop_all_containers(con_lst): for con in con_lst: con.stop() def remove_containers(obj, lst, force=False): for i in lst: r = obj.remove(i.id, force=force) print(r) if __name__ == "__main__": # cons.run("ubuntu", "echo hello world") # run containers in the background: # cons.run("bfirsh/reticulate-splines", detach=True) # LIst con_lst = cons.list() print(con_lst) remove_containers(cons, con_lst, force=True) # start_log_stream(con_lst[0]) # stop_all_containers(con_lst) ``` #### File: johnashu/docker_command/networks.py ```python from client_config import client net = client.networks def display_networks(obj, lst): for i in lst: r = obj.get(i.id) name = r.name print(name) if __name__ == "__main__": # volumes lst = net.list() print(lst) net.prune() display_networks(net, lst) ``` #### File: johnashu/docker_command/nodes.py ```python from client_config import client node = client.nodes def display_nodes(obj, lst): for i in lst: r = obj.get(i.id) name = r.name print(s) if __name__ == "__main__": # volumes lst = node.list() print(lst) node.prune() display_nodes(node, lst) ``` #### File: johnashu/docker_command/swarm.py ```python from client_config import client ser = client.services def display_services(obj, lst): for i in lst: r = obj.get(i.id) name = r.name print(name) if __name__ == "__main__": # volumes lst = ser.list() print(lst) ser.prune() display_services(ser, lst) ``` #### File: johnashu/docker_command/volumes.py ```python from client_config import client vol = client.volumes def remove_volumes(obj, lst, force=False): for i in lst: r = obj.get(i.id) s = r.remove(force=force) print(s) if __name__ == "__main__": # volumes lst = vol.list() print(lst) vol.prune() remove_volumes(vol, lst, force=True) ```
{ "source": "johnashu/Hex-Dec-Binary-Ascii-Convertor", "score": 3 }
#### File: johnashu/Hex-Dec-Binary-Ascii-Convertor/binary_to_ascii.py ```python import re bin_display = """ # 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 = 0 (OFF) # 128 64 32 16 8 4 2 1 = 1 (ON) """ input_data = '0100100001100101011011 00011011000110111100100000010011010111100100100000010011100110000101101101011001010010000001001001011100110010000001001010 01101111011010000110111000101110001000000100100100100000010011000110111101110110011001010010000001010000011100100110111101100111011100100110000101101101 011011010110100101101110011001110010000001101001011011100010000001010000010110010101010001001000010011110100111000100001' # "010001000100000101000100" # Reads DAD binary_string = input_data.replace(' ', '') h = {'0': '0', '1': '1', '2': '2', '3': '3', '4': '4', '5': '5', '6': '6', '7': '7', '8': '8', '9': '9', 'A': '10', 'B': '11', 'C': '12', 'D': '13', 'E': '14', 'F': '15'} b = {'0000': '0', '0001': '1', '0010': '2', '0011': '3', '0100': '4', '0101': '5', '0110': '6', '0111': '7', '1000': '8', '1001': '9', '1010': 'A', '1011': 'B', '1100': 'C', '1101': 'D', '1110': 'E', '1111': 'F'} match = re.match('^[_0-1]$', binary_string) binary_lst = [128, 64, 32, 16, 8, 4, 2, 1] def n(): print("\n") def nl(): banner = '#' * 50 print(banner) nl() def bin2hex(binary): """ Converts Binary to HExaDEcimal""" binary_split1 = (binary[0:4]) binary_split2 = (binary[4:8]) hex1 = b[binary_split1] hex2 = b[binary_split2] return str(hex1) + str(hex2) def split_string(string, length): """ function to split a string into differnt lengths or chunks""" return [string[max(i - length, 0):i] for i in range(len(string), 0, -length)][::-1] def hex2integer(hex_string_input): """ convert from hex string to integers""" hex1 = h[hex_string_input[0]] hex2 = h[hex_string_input[1]] return [str(hex1), str(hex2)] def hex_int_to_dec(hex1, hex2): """ calculates a 2 digit hexadecimal to normal decimal """ current_digit = int(hex1) current_digit1 = int(hex2) power = 1 power1 = 0 hex_iter = [] if hex1: mul_dig = current_digit * (16 ** power) hex_iter.append(mul_dig) if hex2: mul_dig = current_digit1 * (16 ** power1) hex_iter.append(mul_dig) return sum(hex_iter) def decimal2ascii(decimal_num): """ converts a decimal number to an ASCII character """ return chr(decimal_num) def run_the_show(): rtn_bin_split = split_string(binary_string, 8) hex_string = [(bin2hex(item)) for item in rtn_bin_split] hex_integers = [hex2integer(item) for item in hex_string] hex_full_dec = [hex_int_to_dec(item[0], item[1]) for item in hex_integers] ascii_msg = [decimal2ascii(item) for item in hex_full_dec] print(''.join(map(str, ascii_msg))) run_the_show() nl() ```
{ "source": "johnashu/Object-Oriented-Programming", "score": 3 }
#### File: johnashu/Object-Oriented-Programming/server.py ```python import socket import select class Server: def __init__(self): self.server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.server.bind(('localhost', 2000)) self.socket_list = [self.server] self.addresses = ['localhost'] self.commands = [""] self.running = True self.server.listen(10) def listen(self): while self.running: read, write, error = select.select(self.socket_list, [], self.socket_list, 0) for sock in read: if sock == self.server and self.running: try: conn, address = self.server.accept() conn.settimeout(10) self.socket_list.append(conn) self.addresses.append(address[0]) self.commands.append("") except: self.shutdown() break elif self.running: try: packet = sock.recv(60) print('packet received') if not packet: self.close_conn(sock) index = self.socket_list.index(sock) self.commands[index] += packet if '\n' in self.commands[index]: print('handle') except: self.close_conn(sock) def close_conn(self, conn): print('close client conn') def shutdown(self): print('shutdown server') if __name__ == "__main__": Server().listen() ```
{ "source": "johnashu/password_generator", "score": 4 }
#### File: johnashu/password_generator/password_generator.py ```python import random from includes.config import * def remove_duplicates(elem: str, allowed: str) -> str: result = "" for x in allowed: if x != elem: result += x return result def gen_unique(length: int) -> str: allowed = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ012345678900123456789001234567890!@#$%^&*()?|}{_+/\.=-!@#$%^&*()?|}{_+/\.=-!@#$%^&*()?|}{_+/\.=-" pw = "" for _ in range(length): item = random.choice(allowed) pw += item allowed = remove_duplicates(item, allowed) return pw def passwd(length: int, user: str) -> str: """ Generates a Random Password based on an inputted integer. allowed It will create x number of lists of x length, It will then choose a random password from the list """ unique = gen_unique(length) unique_list = [gen_unique(length) for i in unique] password = random.choice(unique_list) assert length == len(password) return f"\nUsername: {user}\nPassword: " + "".join(password) + "\n" if __name__ == "__main__": users = ("<EMAIL>",) for u in users: log.info(passwd(25, u)) ```
{ "source": "johnashu/pyhmy", "score": 3 }
#### File: pyhmy/pyhmy/blockchain.py ```python from .rpc.request import ( rpc_request ) from .exceptions import ( InvalidRPCReplyError ) _default_endpoint = 'http://localhost:9500' _default_timeout = 30 ############################# # Node / network level RPCs # ############################# def get_bad_blocks(endpoint=_default_endpoint, timeout=_default_timeout) -> list: """ [WIP] Get list of bad blocks in memory of specific node Known issues with RPC not returning correctly Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- list of bad blocks in node memory Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#0ba3c7b6-6aa9-46b8-9c84-f8782e935951 """ method = 'hmyv2_getCurrentBadBlocks' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def chain_id(endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Chain id of the chain Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int that represents the chain id Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/343dbe89b3c105f8104ab877769070ba6fdd0133/rpc/blockchain.go#L44 """ method = 'hmyv2_chainId' try: data = rpc_request(method, endpoint=endpoint, timeout=timeout) return data['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_node_metadata(endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Get config for the node Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- dict with the following keys: blskey: :obj:`list` of BLS keys on the node version: :obj:`str` representing the Harmony binary version network: :obj:`str` the Network name that the node is on (Mainnet or Testnet) chain-config: :obj:`dict` with the following keys (more are added over time): chain-id: :obj:`int` Chain ID of the network cross-tx-epoch: :obj:`int` Epoch at which cross shard transactions were enabled cross-link-epoch: :obj:`int` Epoch at which cross links were enabled staking-epoch: :obj:`int` Epoch at which staking was enabled prestaking-epoch: :obj:`int` Epoch at which staking features without election were allowed quick-unlock-epoch: :obj:`int` Epoch at which undelegations unlocked in one epoch eip155-epoch: :obj:`int` Epoch at with EIP155 was enabled s3-epoch: :obj:`int` Epoch at which Mainnet V0 was launched receipt-log-epoch: :obj:`int` Epoch at which receipt logs were enabled eth-compatible-chain-id: :obj:`int` EVM network compatible chain ID eth-compatible-epoch: :obj:`int` Epoch at which EVM compatibility was launched eth-compatible-shard-0-chain-id: :obj:`int` EVM network compatible chain ID on shard 0 five-seconds-epoch: :obj:`int` Epoch at which five second finality was enabled and block rewards adjusted to 17.5 ONE/block istanbul-epoch: :obj:`int` Epoch at which Ethereum's Istanbul upgrade was added to Harmony no-early-unlock-epoch: :obj:`int` Epoch at which early unlock of tokens was disabled (https://github.com/harmony-one/harmony/pull/3605) redelegation-epoch: :obj:`int` Epoch at which redelegation was enabled (staking) sixty-percent-epoch: :obj:`int` Epoch when internal voting power reduced from 68% to 60% two-seconds-epoch: :obj:`int` Epoch at which two second finality was enabled and block rewards adjusted to 7 ONE/block is-leader: :obj:`bool` Whether the node is currently leader or not shard-id: :obj:`int` Shard that the node is on current-epoch: :obj:`int` Current epoch blocks-per-epoch: :obj:`int` Number of blocks per epoch (only available on Shard 0) role: :obj:`str` Node type(Validator or ExplorerNode) dns-zone: :obj:`str`: Name of the DNS zone is-archival: :obj:`bool` Whether the node is currently in state pruning mode or not node-unix-start-time: :obj:`int` Start time of node un Unix time p2p-connectivity: :obj:`dict` with the following keys: connected: :obj:`int` Number of connected peers not-connected: :obj:`int` Number of peers which are known but not connected total-known-peers: :obj:`int` Number of peers which are known peerid: :obj:`str` PeerID, the pubkey for communication consensus: :obj:`dict` with following keys: blocknum: :obj:`int` Current block number of the consensus finality: :obj:`int` The finality time in milliseconds of previous consensus mode: :obj:`str` Current consensus mode phase: :obj:`str` Current consensus phase viewChangeId: :obj:`int` Current view changing ID viewId: :obj:`int` Current view ID sync-peers: dictionary of connected sync peers for each shard Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#03c39b56-8dfc-48ce-bdad-f85776dd8aec https://github.com/harmony-one/harmony/blob/v1.10.2/internal/params/config.go#L233 for chain-config dict https://github.com/harmony-one/harmony/blob/9f320436ff30d9babd957bc5f2e15a1818c86584/node/api.go#L110 for consensus dict """ method = 'hmyv2_getNodeMetadata' try: metadata = rpc_request(method, endpoint=endpoint, timeout=timeout) return metadata['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_peer_info(endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Get peer info for the node Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- if has peers, dict with the following keys: blocked-peers: :obj:`list` list of blocked peers by peer ID connected-peers: :obj:`list` list of connected peers by topic peers: :obj:`list` list of connected peer IDs topic: :obj:`list` topic of the connection, for example: 'harmony/0.0.1/client/beacon' 'harmony/0.0.1/node/beacon' peerid: :obj:`str` Peer ID of the node Raises ------ InvalidRPCReplyError If received unknown result from endpoint See also -------- get_node_metadata """ method = 'hmyv2_getPeerInfo' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def protocol_version(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get the current Harmony protocol version this node supports Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int The current Harmony protocol version this node supports Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#cab9fcc2-e3cd-4bc9-b62a-13e4e046e2fd """ method = 'hmyv2_protocolVersion' try: value = rpc_request(method, endpoint=endpoint, timeout=timeout) return value['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_num_peers(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get number of peers connected to the node Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Number of connected peers Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#09287e0b-5b61-4d18-a0f1-3afcfc3369c1 """ method = 'net_peerCount' try: # Number of peers represented as a hex string return int(rpc_request(method, endpoint=endpoint, timeout=timeout)['result'], 16) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_version(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get version of the EVM network (https://chainid.network/) Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Version if the network Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#09287e0b-5b61-4d18-a0f1-3afcfc3369c1 """ method = 'net_version' try: return int(rpc_request(method, endpoint=endpoint, timeout=timeout)['result'], 16) # this is hexadecimal except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def in_sync(endpoint=_default_endpoint, timeout=_default_timeout) -> bool: """ Whether the shard chain is in sync or syncing (not out of sync) Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- bool, True if in sync Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/1a8494c069dc3f708fdf690456713a2411465199/rpc/blockchain.go#L690 """ method = 'hmyv2_inSync' try: return bool(rpc_request(method, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def beacon_in_sync(endpoint=_default_endpoint, timeout=_default_timeout) -> bool: """ Whether the beacon chain is in sync or syncing (not out of sync) Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- bool, True if sync Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/1a8494c069dc3f708fdf690456713a2411465199/rpc/blockchain.go#L695 """ method = 'hmyv2_beaconInSync' try: return bool(rpc_request(method, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_staking_epoch(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get epoch number when blockchain switches to EPoS election Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Epoch at which blockchain switches to EPoS election Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference --------- https://github.com/harmony-one/harmony/blob/v1.10.2/internal/params/config.go#L233 See also ------ get_node_metadata """ method = 'hmyv2_getNodeMetadata' try: data = rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] return int(data['chain-config']['staking-epoch']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_prestaking_epoch(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get epoch number when blockchain switches to allow staking features without election Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Epoch at which blockchain switches to allow staking features without election Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/v1.10.2/internal/params/config.go#L233 See also ------ get_node_metadata """ method = 'hmyv2_getNodeMetadata' try: data = rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] return int(data['chain-config']['prestaking-epoch']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e ######################## # Sharding information # ######################## def get_shard(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get shard ID of the node Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Shard ID of node Raises ------ InvalidRPCReplyError If received unknown result from endpoint See also -------- get_node_metadata """ method = 'hmyv2_getNodeMetadata' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result']['shard-id'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_sharding_structure(endpoint=_default_endpoint, timeout=_default_timeout) -> list: """ Get network sharding structure Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- list of dictionaries of shards; each shard has the following keys shardID: :obj:`int` ID of the shard current: :obj:`bool` True if the endpoint passed is the same shard as this one http: :obj:`str` Link to the HTTP(s) API endpoint wss: :obj:`str` Link to the Web socket endpoint Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#9669d49e-43c1-47d9-a3fd-e7786e5879df """ method = 'hmyv2_getShardingStructure' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e ############################# # Current status of network # ############################# def get_leader_address(endpoint=_default_endpoint, timeout=_default_timeout) -> str: """ Get current leader one address Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- str One address of current leader Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#8b08d18c-017b-4b44-a3c3-356f9c12dacd """ method = 'hmyv2_getLeader' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def is_last_block(block_num, endpoint=_default_endpoint, timeout=_default_timeout) -> bool: """ If the block at block_num is the last block Parameters ---------- block_num: :obj:`int` Block number to fetch endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- bool: True if the block is last epoch block, False otherwise Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/1a8494c069dc3f708fdf690456713a2411465199/rpc/blockchain.go#L286 """ params = [ block_num, ] method = 'hmyv2_isLastBlock' try: return bool(rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def epoch_last_block(epoch, endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Returns the number of the last block in the epoch Parameters ---------- epoch: :obj:`int` Epoch for which the last block is to be fetched endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int: Number of the last block in the epoch Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/1a8494c069dc3f708fdf690456713a2411465199/rpc/blockchain.go#L294 """ params = [ epoch, ] method = 'hmyv2_epochLastBlock' try: return int(rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_circulating_supply(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get current circulation supply of tokens in ONE Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- str Current circulation supply (with decimal point) Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#8398e818-ac2d-4ad8-a3b4-a00927395044 """ method = 'hmyv2_getCirculatingSupply' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_total_supply(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get total number of pre-mined tokens Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- str Total number of pre-mined tokens, or None if no such tokens Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#3dcea518-9e9a-4a20-84f4-c7a0817b2196 """ method = 'hmyv2_getTotalSupply' try: rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_number(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get current block number Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Current block number Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#2602b6c4-a579-4b7c-bce8-85331e0db1a7 """ method = 'hmyv2_blockNumber' try: return int(rpc_request(method, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_current_epoch(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get current epoch number Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Current epoch number Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#9b8e98b0-46d1-4fa0-aaa6-317ff1ddba59 """ method = 'hmyv2_getEpoch' try: return int(rpc_request(method, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_last_cross_links(endpoint=_default_endpoint, timeout=_default_timeout) -> list: """ Get last cross shard links Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- list of dictionaries, one for each shard except the one at the endpoint; each representing the last block on the beacon-chain hash: :obj:`str` Parent block hash block-number: :obj:`int` Block number view-id: :obj:`int` View ID signature: :obj:`str` Hex representation of aggregated signature signature-bitmap: :obj:`str` Hex representation of aggregated signature bitmap shard-id: :obj:`str` (other) shard ID epoch-number: :obj:`int` Block epoch Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#4994cdf9-38c4-4b1d-90a8-290ddaa3040e """ method = 'hmyv2_getLastCrossLinks' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_gas_price(endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get network gas price Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Network gas price Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#1d53fd59-a89f-436c-a171-aec9d9623f48 """ method = 'hmyv2_gasPrice' try: return int(rpc_request(method, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e ############## # Block RPCs # ############## def get_latest_header(endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Get block header of latest block Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- dict with the following keys: blockHash: :obj:`str` Block hash blockNumber: :obj:`int` Block number shardID: :obj:`int` Shard ID leader: :obj:`str` Wallet address of leader that proposed this block if prestaking, otherwise sha256 hash of leader's public bls key viewID: :obj:`int` View ID of the block epoch: :obj:`int` Epoch of block timestamp: :obj:`str` Timestamp that the block was finalized in human readable format unixtime: :obj:`int` Timestamp that the block was finalized in Unix time lastCommitSig: :obj:`str` Hex representation of aggregated signatures of the previous block lastCommitBitmap: :obj:`str` Hex representation of aggregated signature bitmap of the previous block crossLinks: list of dicts describing the cross shard links, each dict to have the following keys: block-number: :obj:`int` Number of the cross link block epoch-number: :obj:`int` Epoch of the cross link block hash: :obj:`str` Hash of the cross link block shard-id: :obj:`int` Shard ID for the cross link (besides the shard at endpoint) signature: :obj:`str` Aggregated signature of the cross link block siganture-bitmap: :obj:`str` Aggregated signature bitmap of the cross link block view-id: :obj:`int` View ID of the cross link block Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#73fc9b97-b048-4b85-8a93-4d2bf1da54a6 """ method = 'hmyv2_latestHeader' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_header_by_number(block_num, endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Get block header of block at block_num Parameters ---------- block_num: :obj:`int` Number of the block whose header is requested endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- See get_latest_header for header structure Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#01148e4f-72bb-426d-a123-718a161eaec0 """ method = 'hmyv2_getHeaderByNumber' params = [ block_num ] try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_latest_chain_headers(endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Get block header of latest block for beacon chain & shard chain Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- dict with two keys: beacon-chain-header: :obj:`dict` with the following keys, applicable to the beacon chain (cross shard links) shard-chain-header: :obj:`dict` with the following keys, applicable to the shard chain difficulty: legacy epoch: :obj:`int` Epoch of the block extraData: legacy gasLimit: legacy gasUsed: legacy hash: :obj:`int` Hash of the block logsBloom: legacy miner: legacy mixHash: legacy nonce: legacy number: :obj:`int` Block number parentHash: legacy receiptsRoot: legacy sha3Uncles: legacy shardID :obj:`int` Shard ID stateRoot: legacy timestamp: legacy transactionsRoot: legacy viewID: View ID Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#7625493d-16bf-4611-8009-9635d063b4c0 """ method = 'hmyv2_getLatestChainHeaders' try: return rpc_request(method, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_by_number(block_num, full_tx=False, include_tx=False, include_staking_tx=False, include_signers=False, endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Get block by number Parameters ---------- block_num: :obj:`int` Block number to fetch full_tx: :obj:`bool`, optional Include full transactions data for the block include_tx: :obj:`bool`, optional Include regular transactions for the block include_staking_tx: :obj:`bool`, optional Include staking transactions for the block include_signers: :obj:`bool`, optional Include list of signers for the block endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- dict with the following keys difficulty: legacy epoch: :obj:`int` Epoch number of block extraData: :obj:`str` Hex representation of extra data in the block gasLimit: :obj:`int` Maximum gas that can be used for transactions in the block gasUsed: :obj:`int` Gas that was actually used for transactions in the block hash: :obj:`str` Block hash logsBloom: :obj:`str` Bloom logs miner: :obj:`str` Wallet address of the leader that proposed this block mixHash: legacy nonce: legacy number: :obj:`int` Block number parentHash: :obj:`str` Hash of parent block receiptsRoot: :obj:`str` Hash of transaction receipt root signers: :obj:`list` List of signers (only if include_signers is set to True) size: :obj:`int` Block size in bytes stakingTransactions: :obj:`list` if full_tx is True: List of dictionaries, each containing a staking transaction (see account.get_staking_transaction_history) if full_tx is False: List of staking transaction hashes stateRoot: :obj:`str` Hash of state root timestamp: :obj:`int` Unix timestamp of the block transactions: :obj:`list` if full_tx is True: List of dictionaries, each containing a transaction (see account.get_transaction_history) if full_tx is False: List of transaction hashes transactionsRoot: :obj:`str` Hash of transactions root uncles: :obj:`str` legacy viewID: :obj:`int` View ID transactionsInEthHash: :obj:`str` Transactions in ethereum hash Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#52f8a4ce-d357-46f1-83fd-d100989a8243 """ params = [ block_num, { 'inclTx': include_tx, 'fullTx': full_tx, 'inclStaking': include_staking_tx, 'withSigners': include_signers, }, ] method = 'hmyv2_getBlockByNumber' try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_by_hash(block_hash, full_tx=False, include_tx=False, include_staking_tx=False, include_signers=False, endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Get block by hash Parameters ---------- block_hash: :obj:`str` Block hash to fetch full_tx: :obj:`bool`, optional Include full transactions data for the block include_tx: :obj:`bool`, optional Include regular transactions for the block include_staking_tx: :obj:`bool`, optional Include staking transactions for the block endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- See get_block_by_number for block structure Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#6a49ec47-1f74-4732-9f04-e5d76160bd5c """ params = [ block_hash, { 'inclTx': include_tx, 'fullTx': full_tx, 'inclStaking': include_staking_tx, 'withSigners': include_signers, }, ] method = 'hmyv2_getBlockByHash' try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_transaction_count_by_number(block_num, endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get transaction count for specific block number Parameters ---------- block_num: :obj:`int` Block number to get transaction count for endpoint: :obj:`str`, optional Endpoint to send request to include_full_tx: :obj:`bool`, optional Include list of full transactions data for each block timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Number of transactions in the block Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#26c5adfb-d757-4595-9eb7-c6efef63df32 """ params = [ block_num ] method = 'hmyv2_getBlockTransactionCountByNumber' try: return int(rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_transaction_count_by_hash(block_hash, endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get transaction count for specific block hash Parameters ---------- block_hash: :obj:`str` Block hash to get transaction count endpoint: :obj:`str`, optional Endpoint to send request to include_full_tx: :obj:`bool`, optional Include list of full transactions data for each block timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Number of transactions in the block Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#66c68844-0208-49bb-a83b-08722bc113eb """ params = [ block_hash ] method = 'hmyv2_getBlockTransactionCountByHash' try: return int(rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_staking_transaction_count_by_number(block_num, endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get staking transaction count for specific block number Parameters ---------- block_num: :obj:`int` Block number to get transaction count for endpoint: :obj:`str`, optional Endpoint to send request to include_full_tx: :obj:`bool`, optional Include list of full transactions data for each block timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Number of staking transactions in the block Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/1a8494c069dc3f708fdf690456713a2411465199/rpc/transaction.go#L494 """ params = [ block_num ] method = 'hmyv2_getBlockStakingTransactionCountByNumber' try: return int(rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_staking_transaction_count_by_hash(block_hash, endpoint=_default_endpoint, timeout=_default_timeout) -> int: """ Get staking transaction count for specific block hash Parameters ---------- block_hash: :obj:`str` Block hash to get transaction count endpoint: :obj:`str`, optional Endpoint to send request to include_full_tx: :obj:`bool`, optional Include list of full transactions data for each block timeout: :obj:`int`, optional Timeout in seconds Returns ------- int Number of transactions in the block Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/1a8494c069dc3f708fdf690456713a2411465199/rpc/transaction.go#L523 """ params = [ block_hash ] method = 'hmyv2_getBlockStakingTransactionCountByHash' try: return int(rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_blocks(start_block, end_block, full_tx=False, include_tx=False, include_staking_tx=False, include_signers=False, endpoint=_default_endpoint, timeout=_default_timeout ) -> list: """ Get list of blocks from a range Parameters ---------- start_block: :obj:`int` First block to fetch (inclusive) end_block: :obj:`int` Last block to fetch (inclusive) full_tx: :obj:`bool`, optional Include full transactions data for the block include_tx: :obj:`bool`, optional Include regular transactions for the block include_staking_tx: :obj:`bool`, optional Include staking transactions for the block include_signers: :obj:`bool`, optional Include list of signers for the block endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- list of blocks, see get_block_by_number for block structure Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#ab9bdc59-e482-436c-ab2f-10df215cd0bd """ params = [ start_block, end_block, { 'withSigners': include_signers, 'fullTx': full_tx, 'inclStaking': include_staking_tx, 'inclTx': include_tx }, ] method = 'hmyv2_getBlocks' try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_signers(block_num, endpoint=_default_endpoint, timeout=_default_timeout) -> list: """ Get list of block signers for specific block number Parameters ---------- block_num: :obj:`int` Block number to get signers for endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- list List of one addresses that signed the block Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#1e4b5f41-9db6-4dea-92fb-4408db78e622 """ params = [ block_num ] method = 'hmyv2_getBlockSigners' try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_block_signers_keys(block_num, endpoint=_default_endpoint, timeout=_default_timeout) -> list: """ Get list of block signer public bls keys for specific block number Parameters ---------- block_num: :obj:`int` Block number to get signer keys for endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- list List of bls public keys that signed the block Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#9f9c8298-1a4e-4901-beac-f34b59ed02f1 """ params = [ block_num ] method = 'hmyv2_getBlockSignerKeys' try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def is_block_signer(block_num, address, endpoint=_default_endpoint, timeout=_default_timeout) -> bool: """ Determine if the account at address is a signer for the block at block_num Parameters ---------- block_num: :obj:`int` Block number to check address: :obj:`str` Address to check endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- bool: True if the address was a signer for block_num, False otherwise Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/1a8494c069dc3f708fdf690456713a2411465199/rpc/blockchain.go#L368 """ params = [ block_num, address ] method = 'hmyv2_isBlockSigner' try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_signed_blocks(address, endpoint=_default_endpoint, timeout=_default_timeout) -> bool: """ The number of blocks a particular validator signed for last blocksPeriod (1 epoch) Parameters ---------- address: :obj:`str` Address to check endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- int: Number of blocks signed by account at address for last blocksPeriod Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://github.com/harmony-one/harmony/blob/1a8494c069dc3f708fdf690456713a2411465199/rpc/blockchain.go#L406 """ params = [ address ] method = 'hmyv2_getSignedBlocks' try: return int(rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result']) except (KeyError, TypeError) as e: raise InvalidRPCReplyError(method, endpoint) from e def get_validators(epoch, endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ Get list of validators for specific epoch number Parameters ---------- epoch: :obj:`int` Epoch to get list of validators for endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- dict with the following keys shardID: :obj:`int` ID of the shard validators: :obj:`list` of dictionaries, each with the following keys address: :obj:`str` address of the validator balance: :obj:`int` balance of the validator in ATTO Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#4dfe91ad-71fa-4c7d-83f3-d1c86a804da5 """ params = [ epoch ] method = 'hmyv2_getValidators' try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e def get_validator_keys(epoch, endpoint=_default_endpoint, timeout=_default_timeout) -> list: """ Get list of validator public bls keys for specific epoch number Parameters ---------- epoch: :obj:`int` Epoch to get list of validator keys for endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- list List of bls public keys in the validator committee Raises ------ InvalidRPCReplyError If received unknown result from endpoint API Reference ------------- https://api.hmny.io/#1439b580-fa3c-4d44-a79d-303390997a8c """ params = [ epoch ] method = 'hmyv2_getValidatorKeys' try: return rpc_request(method, params=params, endpoint=endpoint, timeout=timeout)['result'] except KeyError as e: raise InvalidRPCReplyError(method, endpoint) from e ``` #### File: pyhmy/pyhmy/validator.py ```python import json from eth_account.datastructures import ( SignedTransaction ) from decimal import ( Decimal, InvalidOperation ) from .account import ( get_balance, is_valid_address ) from .numbers import ( convert_one_to_atto ) from .exceptions import ( InvalidValidatorError, RPCError, RequestsError, RequestsTimeoutError ) from .staking import ( get_all_validator_addresses, get_validator_information ) from .staking_structures import ( Directive ) from .staking_signing import ( sign_staking_transaction ) _default_endpoint = 'http://localhost:9500' _default_timeout = 30 # TODO: Add unit testing class Validator: name_char_limit = 140 identity_char_limit = 140 website_char_limit = 140 security_contact_char_limit = 140 details_char_limit = 280 min_required_delegation = convert_one_to_atto(10000) # in ATTO def __init__(self, address): if not isinstance(address, str): raise InvalidValidatorError(1, 'given ONE address was not a string') if not is_valid_address(address): raise InvalidValidatorError(1, f'{address} is not valid ONE address') self._address = address self._bls_keys = [] self._name = None self._identity = None self._website = None self._details = None self._security_contact = None self._min_self_delegation = None self._max_total_delegation = None self._inital_delegation = None self._rate = None self._max_change_rate = None self._max_rate = None def _sanitize_input(self, data, check_str=False) -> str: """ If data is None, return '' else return data Raises ------ InvalidValidatorError if check_str is True and str is not passed """ if check_str: if not isinstance(data, str): raise InvalidValidatorError(3, f'Expected data to be string to avoid floating point precision issues but got {data}') return '' if not data else str(data) def __str__(self) -> str: """ Returns JSON string representation of Validator fields """ info = self.export() for key, value in info.items(): if isinstance(value, Decimal): info[key] = str(value) return json.dumps(info) def __repr__(self) -> str: return f'<Validator: {hex(id(self))}>' def get_address(self) -> str: """ Get validator address Returns ------- str Validator address """ return self._address def add_bls_key(self, key) -> bool: """ Add BLS public key to validator BLS keys if not already in list Returns ------- bool If adding BLS key succeeded """ key = self._sanitize_input(key) if key not in self._bls_keys: self._bls_keys.append(key) return True return False def remove_bls_key(self, key) -> bool: """ Remove BLS public key from validator BLS keys if exists Returns ------- bool If removing BLS key succeeded """ key = self._sanitize_input(key) if key in self._bls_keys: self._bls_keys.remove(key) return True return False def get_bls_keys(self) -> list: """ Get list of validator BLS keys Returns ------- list List of validator BLS keys (strings) """ return self._bls_keys def set_name(self, name): """ Set validator name Parameters ---------- name: str Name of validator Raises ------ InvalidValidatorError If input is invalid """ name = self._sanitize_input(name) if len(name) > self.name_char_limit: raise InvalidValidatorError(3, f'Name must be less than {self.name_char_limit} characters') self._name = name def get_name(self) -> str: """ Get validator name Returns ------- str Validator name """ return self._name def set_identity(self, identity): """ Set validator identity Parameters ---------- identity: str Identity of validator Raises ------ InvalidValidatorError If input is invalid """ identity = self._sanitize_input(identity) if len(identity) > self.identity_char_limit: raise InvalidValidatorError(3, f'Identity must be less than {self.identity_char_limit} characters') self._identity = identity def get_identity(self) -> str: """ Get validator identity Returns ------- str Validator identity """ return self._identity def set_website(self, website): """ Set validator website Parameters ---------- website: str Website of validator Raises ------ InvalidValidatorError If input is invalid """ website = self._sanitize_input(website) if len(website) > self.website_char_limit: raise InvalidValidatorError(3, f'Website must be less than {self.website_char_limit} characters') self._website = website def get_website(self) -> str: """ Get validator website Returns ------- str Validator website """ return self._website def set_security_contact(self, contact): """ Set validator security contact Parameters ---------- contact: str Security contact of validator Raises ------ InvalidValidatorError If input is invalid """ contact = self._sanitize_input(contact) if len(contact) > self.security_contact_char_limit: raise InvalidValidatorError(3, f'Security contact must be less than {self.security_contact_char_limit} characters') self._security_contact = contact def get_security_contact(self) -> str: """ Get validator security contact Returns ------- str Validator security contact """ return self._security_contact def set_details(self, details): """ Set validator details Parameters ---------- details: str Details of validator Raises ------ InvalidValidatorError If input is invalid """ details = self._sanitize_input(details) if len(details) > self.details_char_limit: raise InvalidValidatorError(3, f'Details must be less than {self.details_char_limit} characters') self._details = details def get_details(self) -> str: """ Get validator details Returns ------- str Validator details """ return self._details def set_min_self_delegation(self, delegation): """ Set validator min self delegation Parameters ---------- delegation: int Minimum self delegation of validator in ATTO Raises ------ InvalidValidatorError If input is invalid """ delegation = self._sanitize_input(delegation) try: delegation = Decimal(delegation) except (TypeError, InvalidOperation) as e: raise InvalidValidatorError(3, 'Min self delegation must be a number') from e if delegation < self.min_required_delegation: raise InvalidValidatorError(3, f'Min self delegation must be greater than {self.min_required_delegation} ATTO') self._min_self_delegation = delegation def get_min_self_delegation(self) -> Decimal: """ Get validator min self delegation Returns ------- Decimal Validator min self delegation in ATTO """ return self._min_self_delegation def set_max_total_delegation(self, max_delegation): """ Set validator max total delegation Parameters ---------- max_delegation: int Maximum total delegation of validator in ATTO Raises ------ InvalidValidatorError If input is invalid """ max_delegation = self._sanitize_input(max_delegation) try: max_delegation = Decimal(max_delegation) except (TypeError, InvalidOperation) as e: raise InvalidValidatorError(3, 'Max total delegation must be a number') from e if self._min_self_delegation: if max_delegation < self._min_self_delegation: raise InvalidValidatorError(3, f'Max total delegation must be greater than min self delegation: ' '{self._min_self_delegation}') else: raise InvalidValidatorError(4, 'Min self delegation must be set before max total delegation') self._max_total_delegation = max_delegation def get_max_total_delegation(self) -> Decimal: """ Get validator max total delegation Returns ------- Decimal Validator max total delegation in ATTO """ return self._max_total_delegation def set_amount(self, amount): """ Set validator initial delegation amount Parameters ---------- amount: str Initial delegation amount of validator in ATTO Raises ------ InvalidValidatorError If input is invalid """ amount = self._sanitize_input(amount) try: amount = Decimal(amount) except (TypeError, InvalidOperation) as e: raise InvalidValidatorError(3, 'Amount must be a number') from e if self._min_self_delegation: if amount < self._min_self_delegation: raise InvalidValidatorError(3, 'Amount must be greater than min self delegation: ' f'{self._min_self_delegation}') else: raise InvalidValidatorError(4, 'Min self delegation must be set before amount') if self._max_total_delegation: if amount > self._max_total_delegation: raise InvalidValidatorError(3, 'Amount must be less than max total delegation: ' f'{self._max_total_delegation}') else: raise InvalidValidatorError(4, 'Max total delegation must be set before amount') self._inital_delegation = amount def get_amount(self) -> Decimal: """ Get validator initial delegation amount Returns ------- Decimal Intended initial delegation amount in ATTO """ return self._inital_delegation def set_max_rate(self, rate): """ Set validator max commission rate Parameters ---------- rate: str (to avoid precision troubles) Max commission rate of validator Raises ------ InvalidValidatorError If input is invalid """ rate = self._sanitize_input(rate, True) try: rate = Decimal(rate) except (TypeError, InvalidOperation) as e: raise InvalidValidatorError(3, 'Max rate must be a number') from e if rate < 0 or rate > 1: raise InvalidValidatorError(3, 'Max rate must be between 0 and 1') self._max_rate = rate def get_max_rate(self) -> Decimal: """ Get validator max commission rate Returns ------- Decimal Validator max rate """ return self._max_rate def set_max_change_rate(self, rate): """ Set validator max commission change rate Parameters ---------- rate: str (to avoid precision troubles) Max commission change rate of validator Raises ------ InvalidValidatorError If input is invalid """ rate = self._sanitize_input(rate, True) try: rate = Decimal(rate) except (TypeError, InvalidOperation) as e: raise InvalidValidatorError(3, 'Max change rate must be a number') from e if rate < 0: raise InvalidValidatorError(3, 'Max change rate must be greater than or equal to 0') if self._max_rate: if rate > self._max_rate: raise InvalidValidatorError(3, f'Max change rate must be less than or equal to max rate: {self._max_rate}') else: raise InvalidValidatorError(4, 'Max rate must be set before max change rate') self._max_change_rate = rate def get_max_change_rate(self) -> Decimal: """ Get validator max commission change rate Returns ------- Decimal (to avoid precision troubles) Validator max change rate """ return self._max_change_rate def set_rate(self, rate): """ Set validator commission rate Parameters ---------- rate: str (to avoid precision troubles) Commission rate of validator Raises ------ InvalidValidatorError If input is invalid """ rate = self._sanitize_input(rate, True) try: rate = Decimal(rate) except (TypeError, InvalidOperation) as e: raise InvalidValidatorError(3, 'Rate must be a number') from e if rate < 0: raise InvalidValidatorError(3, 'Rate must be greater than or equal to 0') if self._max_rate: if rate > self._max_rate: raise InvalidValidatorError(3, f'Rate must be less than or equal to max rate: {self._max_rate}') else: raise InvalidValidatorError(4, 'Max rate must be set before rate') self._rate = rate def get_rate(self) -> Decimal: """ Get validator commission rate Returns ------- Decimal Validator rate """ return self._rate def does_validator_exist(self, endpoint=_default_endpoint, timeout=_default_timeout) -> bool: """ Check if validator exists on blockchain Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- bool Does validator exist on chain Raises ------ RPCError, RequestsError, RequestsTimeoutError If unable to get list of validators on chain """ all_validators = get_all_validator_addresses(endpoint, timeout) if self._address in all_validators: return True return False def load(self, info): """ Import validator information Parameters ---------- info: dict Validator information with dictionary Will ignore any extra fields in the input dictionary Example input: { "name": "", "website": "", "security-contact": "", "identity": "", "details": "", "amount": 0, "min-self-delegation": 0, "max-total-delegation": 0, "rate": '0', "max-rate": '0', "max-change-rate": '0', "bls-public-keys": [ "" ] } Raises ------ InvalidValidatorError If input value is invalid """ try: self.set_name(info['name']) self.set_identity(info['identity']) self.set_website(info['website']) self.set_details(info['details']) self.set_security_contact(info['security-contact']) self.set_min_self_delegation(info['min-self-delegation']) self.set_max_total_delegation(info['max-total-delegation']) self.set_amount(info['amount']) self.set_max_rate(info['max-rate']) self.set_max_change_rate(info['max-change-rate']) self.set_rate(info['rate']) self._bls_keys = [] for key in info['bls-public-keys']: self.add_bls_key(key) except KeyError as e: raise InvalidValidatorError(3, 'Info has missing key') from e def load_from_blockchain(self, endpoint=_default_endpoint, timeout=_default_timeout): """ Import validator information from blockchain with given address Parameters ---------- endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Raises ------ InvalidValidatorError If any error occur getting & importing validator information from the blockchain """ try: if not self.does_validator_exist(endpoint, timeout): raise InvalidValidatorError(5, f'Validator does not exist on chain according to {endpoint}') except (RPCError, RequestsError, RequestsTimeoutError) as e: raise InvalidValidatorError(5, 'Error requesting validator information') from e try: validator_info = get_validator_information(self._address, endpoint, timeout) except (RPCError, RequestsError, RequestsTimeoutError) as e: raise InvalidValidatorError(5, 'Error requesting validator information') from e # Skip additional sanity checks when importing from chain try: info = validator_info['validator'] self._name = info['name'] self._identity = info['identity'] self._website = info['website'] self._details = info['details'] self._security_contact = info['security-contact'] self._min_self_delegation = info['min-self-delegation'] self._max_total_delegation = info['max-total-delegation'] self._inital_delegation = self._min_self_delegation # Since validator exists, set initial delegation to 0 self._max_rate = Decimal(info['max-rate']) self._max_change_rate = Decimal(info['max-change-rate']) self._rate = Decimal(info['rate']) self._bls_keys = info[ 'bls-public-keys' ] except KeyError as e: raise InvalidValidatorError(5, 'Error importing validator information from RPC result') from e def export(self) -> dict: """ Export validator information as dict Returns ------- dict Dictionary representation of validator """ info = { "validator-addr": self._address, "name": self._name, "website": self._website, "security-contact": self._security_contact, "identity": self._identity, "details": self._details, "amount": self._inital_delegation, "min-self-delegation": self._min_self_delegation, "max-total-delegation": self._max_total_delegation, "rate": self._rate, "max-rate": self._max_rate, "max-change-rate": self._max_change_rate, "bls-public-keys": self._bls_keys } return info def sign_create_validator_transaction(self, nonce, gas_price, gas_limit, private_key, chain_id=None) -> SignedTransaction: """ Create but not post a transaction to Create the Validator using private_key Returns ------- SignedTransaction object, the hash of which can be used to send the transaction using transaction.send_raw_transaction Raises ------ rlp.exceptions.ObjectSerializationError for malformed inputs API Reference ------------- https://github.com/harmony-one/sdk/blob/99a827782fabcd5f91f025af0d8de228956d42b4/packages/harmony-staking/src/stakingTransaction.ts#L413 """ info = self.export().copy() info['directive'] = Directive.CreateValidator info['validatorAddress'] = info.pop('validator-addr') # change the key info['nonce'] = nonce info['gasPrice'] = gas_price info['gasLimit'] = gas_limit if chain_id: info['chainId'] = chain_id return sign_staking_transaction(info, private_key) def sign_edit_validator_transaction(self, nonce, gas_price, gas_limit, rate, bls_key_to_add, bls_key_to_remove, private_key, chain_id=None) -> SignedTransaction: """ Create but not post a transaction to Edit the Validator using private_key Returns ------- SignedTransaction object, the hash of which can be used to send the transaction using transaction.send_raw_transaction Raises ------ rlp.exceptions.ObjectSerializationError for malformed inputs API Reference ------------- https://github.com/harmony-one/sdk/blob/99a827782fabcd5f91f025af0d8de228956d42b4/packages/harmony-staking/src/stakingTransaction.ts#L460 """ self.set_rate(rate) self.add_bls_key(bls_key_to_add) self.remove_bls_key(bls_key_to_remove) info = self.export().copy() info['directive'] = Directive.EditValidator info['validatorAddress'] = info.pop('validator-addr') # change the key info['nonce'] = nonce info['gasPrice'] = gas_price info['gasLimit'] = gas_limit _ = info.pop('max-rate') # not needed _ = info.pop('max-change-rate') # not needed _ = info.pop('bls-public-keys') # remove this list _ = info.pop('amount') # also unused info['bls-key-to-remove'] = bls_key_to_remove info['bls-key-to-add'] = bls_key_to_add if chain_id: info['chainId'] = chain_id return sign_staking_transaction(info, private_key) ``` #### File: tests/sdk-pyhmy/test_blockchain.py ```python import pytest import requests from pyhmy import ( blockchain ) from pyhmy.rpc import ( exceptions ) test_epoch_number = 0 genesis_block_number = 0 test_block_number = 1 test_block_hash = None fake_shard = 'http://example.com' def _test_blockchain_rpc(fn, *args, **kwargs): if not callable(fn): pytest.fail(f'Invalid function: {fn}') try: response = fn(*args, **kwargs) except Exception as e: if isinstance(e, exceptions.RPCError) and 'does not exist/is not available' in str(e): pytest.skip(f'{str(e)}') pytest.fail(f'Unexpected error: {e.__class__} {e}') return response @pytest.mark.run(order=1) def test_get_node_metadata(setup_blockchain): metadata = _test_blockchain_rpc(blockchain.get_node_metadata) assert isinstance(metadata, dict) @pytest.mark.run(order=2) def test_get_sharding_structure(setup_blockchain): sharding_structure = _test_blockchain_rpc(blockchain.get_sharding_structure) assert isinstance(sharding_structure, list) assert len(sharding_structure) > 0 @pytest.mark.run(order=3) def test_get_leader_address(setup_blockchain): leader = _test_blockchain_rpc(blockchain.get_leader_address) assert isinstance(leader, str) assert 'one1' in leader @pytest.mark.run(order=4) def test_get_block_number(setup_blockchain): current_block_number = _test_blockchain_rpc(blockchain.get_block_number) assert isinstance(current_block_number, int) @pytest.mark.run(order=5) def test_get_current_epoch(setup_blockchain): current_epoch = _test_blockchain_rpc(blockchain.get_current_epoch) assert isinstance(current_epoch, int) @pytest.mark.run(order=6) def tset_get_gas_price(setup_blockchain): gas = _test_blockchain_rpc(blockchain.get_gas_price) assert isinstance(gas, int) @pytest.mark.run(order=7) def test_get_num_peers(setup_blockchain): peers = _test_blockchain_rpc(blockchain.get_num_peers) assert isinstance(peers, int) @pytest.mark.run(order=8) def test_get_latest_header(setup_blockchain): header = _test_blockchain_rpc(blockchain.get_latest_header) assert isinstance(header, dict) @pytest.mark.run(order=9) def test_get_latest_chain_headers(setup_blockchain): header_pair = _test_blockchain_rpc(blockchain.get_latest_chain_headers) assert isinstance(header_pair, dict) @pytest.mark.run(order=10) def test_get_block_by_number(setup_blockchain): global test_block_hash block = _test_blockchain_rpc(blockchain.get_block_by_number, test_block_number) assert isinstance(block, dict) assert 'hash' in block.keys() test_block_hash = block['hash'] @pytest.mark.run(order=11) def test_get_block_by_hash(setup_blockchain): if not test_block_hash: pytest.skip('Failed to get reference block hash') block = _test_blockchain_rpc(blockchain.get_block_by_hash, test_block_hash) assert isinstance(block, dict) @pytest.mark.run(order=12) def test_get_block_transaction_count_by_number(setup_blockchain): tx_count = _test_blockchain_rpc(blockchain.get_block_transaction_count_by_number, test_block_number) assert isinstance(tx_count, int) @pytest.mark.run(order=13) def test_get_block_transaction_count_by_hash(setup_blockchain): if not test_block_hash: pytest.skip('Failed to get reference block hash') tx_count = _test_blockchain_rpc(blockchain.get_block_transaction_count_by_hash, test_block_hash) assert isinstance(tx_count, int) @pytest.mark.run(order=14) def test_get_blocks(setup_blockchain): blocks = _test_blockchain_rpc(blockchain.get_blocks, genesis_block_number, test_block_number) assert isinstance(blocks, list) assert len(blocks) == (test_block_number - genesis_block_number + 1) @pytest.mark.run(order=15) def test_get_block_signers(setup_blockchain): block_signers = _test_blockchain_rpc(blockchain.get_block_signers, test_block_number) assert isinstance(block_signers, list) assert len(block_signers) > 0 @pytest.mark.run(order=16) def test_get_validators(setup_blockchain): validators = _test_blockchain_rpc(blockchain.get_validators, test_epoch_number) assert isinstance(validators, dict) assert 'validators' in validators.keys() assert len(validators['validators']) > 0 @pytest.mark.run(order=17) def test_get_shard(setup_blockchain): shard = _test_blockchain_rpc(blockchain.get_shard) assert isinstance(shard, int) assert shard == 0 @pytest.mark.run(order=18) def test_get_staking_epoch(setup_blockchain): staking_epoch = _test_blockchain_rpc(blockchain.get_staking_epoch) assert isinstance(staking_epoch, int) @pytest.mark.run(order=19) def test_get_prestaking_epoch(setup_blockchain): prestaking_epoch = _test_blockchain_rpc(blockchain.get_prestaking_epoch) assert isinstance(prestaking_epoch, int) @pytest.mark.run(order=20) def test_get_bad_blocks(setup_blockchain): # TODO: Remove skip when RPC is fixed pytest.skip("Known error with hmyv2_getCurrentBadBlocks") bad_blocks = _test_blockchain_rpc(blockchain.get_bad_blocks) assert isinstance(bad_blocks, list) @pytest.mark.run(order=21) def test_get_validator_keys(setup_blockchain): keys = _test_blockchain_rpc(blockchain.get_validator_keys, test_epoch_number) assert isinstance(keys, list) assert len(keys) > 0 @pytest.mark.run(order=22) def test_get_block_signers_keys(setup_blockchain): keys = _test_blockchain_rpc(blockchain.get_block_signers_keys, test_block_number) assert isinstance(keys, list) assert len(keys) > 0 @pytest.mark.run(order=23) def test_chain_id(setup_blockchain): chain_id = _test_blockchain_rpc(blockchain.chain_id) assert isinstance(chain_id, int) @pytest.mark.run(order=24) def test_get_peer_info(setup_blockchain): peer_info = _test_blockchain_rpc(blockchain.get_peer_info) assert isinstance(peer_info, dict) @pytest.mark.run(order=25) def test_protocol_version(setup_blockchain): protocol_version = _test_blockchain_rpc(blockchain.protocol_version) assert isinstance(protocol_version, int) @pytest.mark.run(order=26) def test_is_last_block(setup_blockchain): is_last_block = _test_blockchain_rpc(blockchain.is_last_block, 0) assert isinstance(is_last_block, bool) assert not is_last_block @pytest.mark.run(order=27) def test_epoch_last_block(setup_blockchain): epoch_last_block = _test_blockchain_rpc(blockchain.epoch_last_block, 0) assert isinstance(epoch_last_block, int) @pytest.mark.run(order=28) def test_get_circulating_supply(setup_blockchain): circulating_supply = _test_blockchain_rpc(blockchain.get_circulating_supply) assert isinstance(circulating_supply, str) @pytest.mark.run(order=29) def test_get_total_supply(setup_blockchain): total_supply = _test_blockchain_rpc(blockchain.get_total_supply) assert isinstance(total_supply, str) or total_supply == None @pytest.mark.run(order=30) def test_get_last_cross_links(setup_blockchain): last_cross_links = _test_blockchain_rpc(blockchain.get_last_cross_links) assert isinstance(last_cross_links, list) @pytest.mark.run(order=31) def test_get_gas_price(setup_blockchain): gas_price = _test_blockchain_rpc(blockchain.get_gas_price) assert isinstance(gas_price, int) @pytest.mark.run(order=32) def test_get_version(setup_blockchain): version = _test_blockchain_rpc(blockchain.get_version) assert isinstance(version, int) @pytest.mark.run(order=33) def test_get_header_by_number(setup_blockchain): header_pair = _test_blockchain_rpc(blockchain.get_header_by_number, 0) assert isinstance(header_pair, dict) @pytest.mark.run(order=34) def test_get_block_staking_transaction_count_by_number(setup_blockchain): tx_count = _test_blockchain_rpc(blockchain.get_block_staking_transaction_count_by_number, test_block_number) assert isinstance(tx_count, int) @pytest.mark.run(order=35) def test_get_block_staking_transaction_count_by_hash(setup_blockchain): if not test_block_hash: pytest.skip('Failed to get reference block hash') tx_count = _test_blockchain_rpc(blockchain.get_block_staking_transaction_count_by_hash, test_block_hash) assert isinstance(tx_count, int) @pytest.mark.run(order=36) def test_is_block_signer(setup_blockchain): is_signer = _test_blockchain_rpc(blockchain.is_block_signer, test_block_number, '0x0') assert isinstance(is_signer, bool) @pytest.mark.run(order=37) def test_get_signed_blocks(setup_blockchain): signed_blocks = _test_blockchain_rpc(blockchain.get_signed_blocks, '0x0') assert isinstance(signed_blocks, int) @pytest.mark.run(order=38) def test_in_sync(setup_blockchain): in_sync = _test_blockchain_rpc(blockchain.in_sync) assert isinstance(in_sync, bool) @pytest.mark.run(order=38) def test_beacon_in_sync(setup_blockchain): beacon_in_sync = _test_blockchain_rpc(blockchain.beacon_in_sync) assert isinstance(beacon_in_sync, bool) def test_errors(): with pytest.raises(exceptions.RPCError): blockchain.chain_id(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_node_metadata(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_peer_info(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.protocol_version(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_shard(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_staking_epoch(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_prestaking_epoch(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_sharding_structure(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_leader_address(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.is_last_block(0, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.epoch_last_block(0, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_circulating_supply(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_total_supply(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_number(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_current_epoch(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_last_cross_links(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_gas_price(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_num_peers(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_version(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_latest_header(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_header_by_number(0, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_latest_chain_headers(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_by_number(0, endpoint=fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_by_hash('', endpoint=fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_transaction_count_by_number(0, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_transaction_count_by_hash('', fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_staking_transaction_count_by_number(0, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_staking_transaction_count_by_hash('', fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_blocks(0, 1, endpoint=fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_signers(0, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_block_signers_keys(0, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.is_block_signer(0, '', fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_signed_blocks('', fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_validators(1, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.get_validator_keys(0, fake_shard) with pytest.raises(exceptions.RPCError): blockchain.in_sync(fake_shard) with pytest.raises(exceptions.RPCError): blockchain.beacon_in_sync(fake_shard) ``` #### File: tests/sdk-pyhmy/test_staking.py ```python import pytest import requests from pyhmy import ( staking ) from pyhmy.rpc import ( exceptions ) explorer_endpoint = 'http://localhost:9599' test_validator_address = 'one18tvf56zqjkjnak686lwutcp5mqfnvee35xjnhc' fake_shard = 'http://example.com' def _test_staking_rpc(fn, *args, **kwargs): if not callable(fn): pytest.fail(f'Invalid function: {fn}') try: response = fn(*args, **kwargs) except Exception as e: if isinstance(e, exceptions.RPCError) and 'does not exist/is not available' in str(e): pytest.skip(f'{str(e)}') pytest.fail(f'Unexpected error: {e.__class__} {e}') return response @pytest.mark.run(order=1) def test_get_all_validator_addresses(setup_blockchain): validator_addresses = _test_staking_rpc(staking.get_all_validator_addresses) assert isinstance(validator_addresses, list) assert len(validator_addresses) > 0 assert test_validator_address in validator_addresses @pytest.mark.run(order=2) def test_get_validator_information(setup_blockchain): info = _test_staking_rpc(staking.get_validator_information, test_validator_address) assert isinstance(info, dict) @pytest.mark.run(order=3) def test_get_all_validator_information(setup_blockchain): all_validator_information = _test_staking_rpc(staking.get_all_validator_information) assert isinstance(all_validator_information, list) assert len(all_validator_information) > 0 @pytest.mark.run(order=4) def test_get_delegations_by_delegator(setup_blockchain): delegations = _test_staking_rpc(staking.get_delegations_by_delegator, test_validator_address) assert isinstance(delegations, list) assert len(delegations) > 0 @pytest.mark.run(order=5) def test_get_delegations_by_validator(setup_blockchain): delegations = _test_staking_rpc(staking.get_delegations_by_validator, test_validator_address) assert isinstance(delegations, list) assert len(delegations) > 0 @pytest.mark.run(order=6) def test_get_current_utility_metrics(setup_blockchain): metrics = _test_staking_rpc(staking.get_current_utility_metrics) assert isinstance(metrics, dict) @pytest.mark.run(order=7) def test_get_staking_network_info(setup_blockchain): info = _test_staking_rpc(staking.get_staking_network_info) assert isinstance(info, dict) @pytest.mark.run(order=8) def test_get_super_committees(setup_blockchain): committee = _test_staking_rpc(staking.get_super_committees) assert isinstance(committee, dict) @pytest.mark.run(order=9) def test_get_raw_median_stake_snapshot(setup_blockchain): median_stake = _test_staking_rpc(staking.get_raw_median_stake_snapshot) assert isinstance(median_stake, dict) @pytest.mark.run(order=10) def test_get_validator_information_by_block(setup_blockchain): # Apparently validator information not created until block after create-validator transaction is accepted, so +1 block info = _test_staking_rpc(staking.get_validator_information_by_block_number, test_validator_address, setup_blockchain + 1, endpoint=explorer_endpoint) assert isinstance(info, dict) @pytest.mark.run(order=11) def test_get_validator_information_by_block(setup_blockchain): # Apparently validator information not created until block after create-validator transaction is accepted, so +1 block info = _test_staking_rpc(staking.get_all_validator_information_by_block_number, setup_blockchain + 1, endpoint=explorer_endpoint) assert isinstance(info, list) @pytest.mark.run(order=12) def test_get_delegations_by_delegator_by_block(setup_blockchain): delegations = _test_staking_rpc(staking.get_delegations_by_delegator_by_block_number, test_validator_address, setup_blockchain + 1, endpoint=explorer_endpoint) assert isinstance(delegations, list) @pytest.mark.run(order=13) def test_get_elected_validator_addresses(setup_blockchain): validator_addresses = _test_staking_rpc(staking.get_elected_validator_addresses) assert isinstance(validator_addresses, list) assert len(validator_addresses) > 0 @pytest.mark.run(order=14) def test_get_validators(setup_blockchain): validators = _test_staking_rpc(staking.get_validators, 2) assert isinstance(validators, dict) assert len(validators['validators']) > 0 @pytest.mark.run(order=15) def test_get_validator_keys(setup_blockchain): validators = _test_staking_rpc(staking.get_validator_keys, 2) assert isinstance(validators, list) @pytest.mark.run(order=16) def test_get_validator_self_delegation(setup_blockchain): self_delegation = _test_staking_rpc(staking.get_validator_self_delegation, test_validator_address) assert isinstance(self_delegation, int) assert self_delegation > 0 @pytest.mark.run(order=17) def test_get_validator_total_delegation(setup_blockchain): total_delegation = _test_staking_rpc(staking.get_validator_total_delegation, test_validator_address) assert isinstance(total_delegation, int) assert total_delegation > 0 @pytest.mark.run(order=18) def test_get_all_delegation_information(setup_blockchain): delegation_information = _test_staking_rpc(staking.get_all_delegation_information, 0) assert isinstance(delegation_information, list) assert len(delegation_information) > 0 @pytest.mark.run(order=19) def test_get_delegation_by_delegator_and_validator(setup_blockchain): delegation_information = _test_staking_rpc(staking.get_delegation_by_delegator_and_validator, test_validator_address, test_validator_address) assert isinstance(delegation_information, dict) @pytest.mark.run(order=20) def test_get_available_redelegation_balance(setup_blockchain): redelgation_balance = _test_staking_rpc(staking.get_available_redelegation_balance, test_validator_address) assert isinstance(redelgation_balance, int) assert redelgation_balance == 0 @pytest.mark.run(order=21) def test_get_total_staking(setup_blockchain): total_staking = _test_staking_rpc(staking.get_total_staking) assert isinstance(total_staking, int) assert total_staking > 0 @pytest.mark.run(order=22) def test_errors(): with pytest.raises(exceptions.RPCError): staking.get_all_validator_addresses(fake_shard) with pytest.raises(exceptions.RPCError): staking.get_validator_information('', fake_shard) with pytest.raises(exceptions.RPCError): staking.get_elected_validator_addresses(fake_shard) with pytest.raises(exceptions.RPCError): staking.get_validators(1, fake_shard) with pytest.raises(exceptions.RPCError): staking.get_validator_keys(1, fake_shard) with pytest.raises(exceptions.RPCError): staking.get_validator_information_by_block_number('', 1, fake_shard) with pytest.raises(exceptions.RPCError): staking.get_all_validator_information(-1, fake_shard) with pytest.raises(exceptions.RPCError): staking.get_validator_self_delegation('', fake_shard) with pytest.raises(exceptions.RPCError): staking.get_validator_total_delegation('', fake_shard) with pytest.raises(exceptions.RPCError): staking.get_all_validator_information_by_block_number(1, 1, fake_shard) with pytest.raises(exceptions.RPCError): staking.get_all_delegation_information(1, fake_shard) with pytest.raises(exceptions.RPCError): staking.get_delegations_by_delegator('', fake_shard) with pytest.raises(exceptions.RPCError): staking.get_delegations_by_delegator_by_block_number('', 1, fake_shard) with pytest.raises(exceptions.RPCError): staking.get_delegation_by_delegator_and_validator('', '', fake_shard) with pytest.raises(exceptions.RPCError): staking.get_available_redelegation_balance('', fake_shard) with pytest.raises(exceptions.RPCError): staking.get_delegations_by_validator('', fake_shard) with pytest.raises(exceptions.RPCError): staking.get_current_utility_metrics(fake_shard) with pytest.raises(exceptions.RPCError): staking.get_staking_network_info(fake_shard) with pytest.raises(exceptions.RPCError): staking.get_super_committees(fake_shard) with pytest.raises(exceptions.RPCError): staking.get_total_staking(fake_shard) with pytest.raises(exceptions.RPCError): staking.get_raw_median_stake_snapshot(fake_shard) ``` #### File: tests/sdk-pyhmy/test_validator.py ```python import pytest import requests from decimal import ( Decimal ) from pyhmy import ( validator ) from pyhmy.rpc import ( exceptions ) from pyhmy.numbers import ( convert_one_to_atto ) from pyhmy.exceptions import ( InvalidValidatorError ) import sys test_epoch_number = 0 genesis_block_number = 0 test_block_number = 1 test_validator_object = None test_validator_loaded = False @pytest.mark.run(order=0) def test_instantiate_validator(setup_blockchain): global test_validator_object test_validator_object = validator.Validator('one1a0x3d6xpmr6f8wsyaxd9v36pytvp48zckswvv9') assert isinstance(test_validator_object, validator.Validator) @pytest.mark.run(order=1) def test_load_validator(setup_blockchain): if not test_validator_object: pytest.skip('Validator not instantiated yet') info = { 'name': 'Alice', 'identity': 'alice', 'website': 'alice.harmony.one', 'details': "Don't mess with me!!!", 'security-contact': 'Bob', 'min-self-delegation': convert_one_to_atto(10000), 'amount': convert_one_to_atto(10001), 'max-rate': '0.9', 'max-change-rate': '0.05', 'rate': '0.01', 'bls-public-keys': ['0xb9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b62247608611'], 'max-total-delegation': convert_one_to_atto(40000) } test_validator_object.load(info) global test_validator_loaded test_validator_loaded = True """ TypeScript signature source const description: Description = new Description('Alice', 'alice', 'alice.harmony.one', 'Bob', "Don't mess with me!!!") const commissionRates: CommissionRate = new CommissionRate(new Decimal('0.01'), new Decimal('0.9'), new Decimal('0.05')) const stakeMsg: CreateValidator = new CreateValidator( 'one1a0x3d6xpmr6f8wsyaxd9v36pytvp48zckswvv9', description, commissionRates, numberToHex(new Unit('10000').asOne().toWei()), // minSelfDelegation numberToHex(new Unit('40000').asOne().toWei()), // maxTotalDelegation [ '0xb9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b62247608611' ], numberToHex(new Unit('10001').asOne().toWei()) // amount ) const stakingTx: StakingTransaction = new StakingTransaction( Directive.DirectiveCreateValidator, stakeMsg, 2, // nonce numberToHex(new Unit('1').asOne().toWei()), // gasPrice 100, // gasLimit null, // chainId ); const signed = stakingTx.rlpSign('4edef2c24995d15b0e25cbd152fb0e2c05d3b79b9c2afd134e6f59f91bf99e48') console.log( 'Signed transaction' ) console.log(signed) """ @pytest.mark.run(order=2) def test_create_validator_sign(setup_blockchain): if not (test_validator_object or test_validator_loaded): pytest.skip('Validator not ready yet') signed_hash = test_validator_object.sign_create_validator_transaction( 2, int(convert_one_to_atto(1)), 100, '4edef2c24995d15b0e25cbd152fb0e2c05d3b79b9c2afd134e6f59f91bf99e48', None).rawTransaction.hex() assert signed_hash == '0xf9010580f8bf94ebcd16e8c1d8f493ba04e99a56474122d81a9c58f83885416c69636585616c69636591616c6963652e6861726d6f6e792e6f6e6583426f6295446f6e2774206d6573732077697468206d65212121dcc8872386f26fc10000c9880c7d713b49da0000c887b1a2bc2ec500008a021e19e0c9bab24000008a0878678326eac9000000f1b0b9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b622476086118a021e27c1806e59a4000024a047c6d444971d4d3c48e8b255aa0e543ebb47b60f761582694e5af5330445aba5a04db1ffea9cca9f9e56e8f782c689db680992903acfd9c06f4593f7fd9a781bd7' """ Signature matched from TypeScript import { CreateValidator, EditValidator, Delegate, Undelegate, CollectRewards, Directive, Description, CommissionRate, Decimal, StakingTransaction, } from '@harmony-js/staking' const { numberToHex, Unit } = require('@harmony-js/utils'); const description: Description = new Description('Alice', 'alice', 'alice.harmony.one', 'Bob', "Don't mess with me!!!") const commissionRates: CommissionRate = new CommissionRate(new Decimal('0.01'), new Decimal('0.9'), new Decimal('0.05')) const stakeMsg: EditValidator = new EditValidator( 'one1a0x3d6xpmr6f8wsyaxd9v36pytvp48zckswvv9', description, new Decimal('0.06'), numberToHex(new Unit('10000').asOne().toWei()), // minSelfDelegation numberToHex(new Unit('40000').asOne().toWei()), // maxTotalDelegation '0xb9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b62247608611', // remove key '0xb9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b62247608612' // add key ) const stakingTx: StakingTransaction = new StakingTransaction( Directive.DirectiveEditValidator, stakeMsg, 2, // nonce numberToHex(new Unit('1').asOne().toWei()), // gasPrice 100, // gasLimit 2, // chainId ); const signed = stakingTx.rlpSign('<KEY>') console.log( 'Signed transaction' ) console.log(signed) """ @pytest.mark.run(order=3) def test_edit_validator_sign(setup_blockchain): if not (test_validator_object or test_validator_loaded): pytest.skip('Validator not ready yet') signed_hash = test_validator_object.sign_edit_validator_transaction( 2, int(convert_one_to_atto(1)), 100, '0.06', '0xb9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b62247608612', # add key "0xb9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b62247608611", # remove key '4edef2c24995d15b0e25cbd152fb0e2c05d3b79b9c2afd134e6f59f91bf99e48', 2).rawTransaction.hex() assert signed_hash == '0xf9012101f8d094ebcd16e8c1d8f493ba04e99a56474122d81a9c58f83885416c69636585616c69636591616c6963652e6861726d6f6e792e6f6e6583426f6295446f6e2774206d6573732077697468206d65212121c887d529ae9e8600008a021e19e0c9bab24000008a0878678326eac9000000b0b9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b62247608611b0b9486167ab9087ab818dc4ce026edb5bf216863364c32e42df2af03c5ced1ad181e7d12f0e6dd5307a73b6224760861202880de0b6b3a76400006428a0656d6741687ec1e42d1699274584a1777964e939b0ef11f3ff0e161859da21a2a03fc51e067f9fb6c96bee5ceccad4104f5b4b334a86a36a2f53d10b9a8e4a268a' @pytest.mark.run(order=4) def test_invalid_validator(setup_blockchain): if not (test_validator_object or test_validator_loaded): pytest.skip('Validator not ready yet') with pytest.raises(InvalidValidatorError): info = { 'name': 'Alice', } test_validator_object.load(info) with pytest.raises(InvalidValidatorError): test_validator_object.set_name('a'*141) with pytest.raises(InvalidValidatorError): test_validator_object.set_identity('a'*141) with pytest.raises(InvalidValidatorError): test_validator_object.set_website('a'*141) with pytest.raises(InvalidValidatorError): test_validator_object.set_security_contact('a'*141) with pytest.raises(InvalidValidatorError): test_validator_object.set_details('a'*281) with pytest.raises(InvalidValidatorError): test_validator_object.set_min_self_delegation(1) with pytest.raises(InvalidValidatorError): test_validator_object.set_max_total_delegation(1) with pytest.raises(InvalidValidatorError): test_validator_object.set_amount(1) with pytest.raises(InvalidValidatorError): test_validator_object.set_max_rate('2.0') with pytest.raises(InvalidValidatorError): test_validator_object.set_max_change_rate('-2.0') with pytest.raises(InvalidValidatorError): test_validator_object.set_rate('-2.0') @pytest.mark.run(order=5) def test_validator_getters(setup_blockchain): if not (test_validator_object or test_validator_loaded): pytest.skip('Validator not ready yet') assert test_validator_object.get_address() == 'one1a0x3d6xpmr6f8wsyaxd9v36pytvp48zckswvv9' assert test_validator_object.add_bls_key('5') assert test_validator_object.remove_bls_key('5') assert test_validator_object.get_name() == 'Alice' assert test_validator_object.get_identity() == 'alice' assert test_validator_object.get_website() == 'alice.harmony.one' assert test_validator_object.get_security_contact() == 'Bob' assert test_validator_object.get_details() == "Don't mess with me!!!" assert isinstance(test_validator_object.get_min_self_delegation(), Decimal) assert isinstance(test_validator_object.get_max_total_delegation(), Decimal) assert isinstance(test_validator_object.get_amount(), Decimal) assert isinstance(test_validator_object.get_max_rate(), Decimal) assert isinstance(test_validator_object.get_max_change_rate(), Decimal) assert isinstance(test_validator_object.get_rate(), Decimal) assert len(test_validator_object.get_bls_keys()) > 0 @pytest.mark.run(order=6) def test_validator_load_from_blockchain(setup_blockchain): test_validator_object2 = validator.Validator('one109r0tns7av5sjew7a7fkekg4fs3pw0h76pp45e') test_validator_object2.load_from_blockchain() ``` #### File: tests/util-pyhmy/test_util.py ```python import shutil import os import decimal import json import subprocess from pathlib import Path import pytest from pyhmy import util TEMP_DIR = "/tmp/pyhmy-testing/test-util" @pytest.fixture(scope="session", autouse=True) def setup(): shutil.rmtree(TEMP_DIR, ignore_errors=True) os.makedirs(TEMP_DIR, exist_ok=True) def test_json_load(): dec = util.json_load('1.1', parse_float=decimal.Decimal) assert isinstance(dec, decimal.Decimal) assert float(dec) == 1.1 ref_dict = { 'test': 'val', 'arr': [ 1, 2, 3 ] } loaded_dict = util.json_load(json.dumps(ref_dict)) assert str(ref_dict) == str(loaded_dict) def test_chain_id_to_int(): assert util.chain_id_to_int(2) == 2 assert util.chain_id_to_int('HmyMainnet') == 1 def test_get_gopath(): assert isinstance(util.get_gopath(), str) def test_get_goversion(): assert isinstance(util.get_goversion(), str) def test_convert_one_to_hex(): assert util.convert_one_to_hex('0xebcd16e8c1d8f493ba04e99a56474122d81a9c58') == '0xeBCD16e8c1D8f493bA04E99a56474122D81A9c58' assert util.convert_one_to_hex('one1a0x3d6xpmr6f8wsyaxd9v36pytvp48zckswvv9') == '0xeBCD16e8c1D8f493bA04E99a56474122D81A9c58' def test_get_bls_build_variables(): assert isinstance(util.get_bls_build_variables(), dict) def test_is_active_shard(): assert isinstance(util.is_active_shard(''), bool) ```
{ "source": "johnashu/Various-Sorting-and-SEarching-Algorithms", "score": 4 }
#### File: Various-Sorting-and-SEarching-Algorithms/search/linear.py ```python a = [1, 5, 6, 7, 8, 9, 0, 'john', 56, 74, 456, 3, 6, 42, 53] def maf_linear(a, x): """ Step 1: Set i to 1 Step 2: if i > n then go to step 7 Step 3: if A[i] = x then go to step 6 Step 4: Set i to i + 1 Step 5: Go to Step 2 Step 6: Print Element x Found at index i and go to step 8 Step 7: Print element not found Step 8: Exit """ e = "Item Not Found" for i in a: if i == x: print('Item found at index:', a.index(i)) return a.index(i) elif i != a: print(e) v = 'john' normal = maf_linear(a, v) print("Results from for Loop", normal) def maf_lin_com(a, x): """ comprehensive linear search""" e = "Item Not Found" return [a.index(i) for i in a if i == x] print("Results from List Comprehension:", maf_lin_com(a, v) ) ``` #### File: Various-Sorting-and-SEarching-Algorithms/search/strassen_matrix_multiplication.py ```python a = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]] b = [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]] def create_matrix(p, q): # create a matrix filled with 0s matrix = [[0 for row in range(p)] for col in range(q)] return matrix def mul_matrix(a, b): # multiply matrix a and b if len(a[0]) != len(b): return else: p_matrix = create_matrix(len(a), len(b[0])) for i in range(len(a)): for j in range(len(b[0])): for k in range(len(b)): p_matrix[i][j] += a[i][k] * b[k][j] return p_matrix def quart_split(matrix): # split down into 1/4 a = matrix b = matrix c = matrix d = matrix while(len(a) > len(matrix) / 2): a = a[:len(a) // 2] b = b[:len(b) // 2] c = c[len(c) // 2:] d = d[len(d) // 2:] while(len(a[0]) > len(matrix[0]) // 2): for i in range(len(a[0]) // 2): a[i] = a[i][:len(a[i]) // 2] b[i] = b[i][len(b[i]) // 2:] c[i] = c[i][:len(c[i]) // 2] d[i] = d[i][len(d[i]) // 2:] return a, b, c, d def add_matrix(a, b): if type(a) == int: d = a + b else: d = [] for i in range(len(a)): c = [] for j in range(len(a[0])): c.append(a[i][j] + b[i][j]) d.append(c) return d def sub_matrix(a, b): if type(a) == int: d = a - b else: d = [] for i in range(len(a)): c = [] for j in range(len(a[0])): c.append(a[i][j] - b[i][j]) d.append(c) return d def strassen(a, b, q): # base case: 1x1 matrix if q == 1: d = [[0]] d[0][0] = a[0][0] * b[0][0] return d else: # split matrices into quarters a11, a12, a21, a22 = quart_split(a) b11, b12, b21, b22 = quart_split(b) # p1 = (a11+a22) * (b11+b22) p1 = strassen(add_matrix(a11, a22), add_matrix(b11, b22), q / 2) # p2 = (a21+a22) * b11 p2 = strassen(add_matrix(a21, a22), b11, q / 2) # p3 = a11 * (b12-b22) p3 = strassen(a11, sub_matrix(b12, b22), q / 2) # p4 = a22 * (b12-b11) p4 = strassen(a22, sub_matrix(b21, b11), q / 2) # p5 = (a11+a12) * b22 p5 = strassen(add_matrix(a11, a12), b22, q / 2) # p6 = (a21-a11) * (b11+b12) p6 = strassen(sub_matrix(a21, a11), add_matrix(b11, b12), q / 2) # p7 = (a12-a22) * (b21+b22) p7 = strassen(sub_matrix(a12, a22), add_matrix(b21, b22), q / 2) # c11 = p1 + p4 - p5 + p7 c11 = add_matrix(sub_matrix(add_matrix(p1, p4), p5), p7) # c12 = p3 + p5 c12 = add_matrix(p3, p5) # c21 = p2 + p4 c21 = add_matrix(p2, p4) # c22 = p1 + p3 - p2 + p6 c22 = add_matrix(sub_matrix(add_matrix(p1, p3), p2), p6) c = create_matrix(len(c11) * 2, len(c11) * 2) for i in range(len(c11)): for j in range(len(c11)): c[i][j] = c11[i][j] c[i][j + len(c11)] = c12[i][j] c[i + len(c11)][j] = c21[i][j] c[i + len(c11)][j + len(c11)] = c22[i][j] return c print("Strassen Outputs:", strassen(a, b, 4)) print("Should be:", mul_matrix(a, b)) ```
{ "source": "JohnAspro/TelecomsExercise", "score": 3 }
#### File: TelecomsExercise/IntroToTele/testEx.py ```python import os import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from mpl_toolkits import mplot3d from scipy import signal from matplotlib.ticker import StrMethodFormatter # School ID = 03118942 # F=9+4+2=15=>1+5=6 myFreq=6000 A=4 # Βοηθιτικες Συναρτησεις def PlotYLim(Max, Min): plt.ylim([Min,Max]) def plotSignals(time1, signal1, color1, legend1, PlotTitle, numberOfSignals=1, time2=None, signal2=None, color2=None, legend2=None): if numberOfSignals==1: plt.plot(time1, signal1, color1) plt.legend(legend1) elif numberOfSignals==2: plt.plot(time1, signal1, color1, time2, signal2, '.', color2) plt.legend([legend1, legend2]) else: return None plt.xlabel('Seconds') plt.ylabel('Volts') plt.title(PlotTitle) plt.grid() plt.show() #---------------|ΑΣΚΗΣΗ 2|------------------- #(A) fs1=30*myFreq #180kHz fs2=50*myFreq #300kHz def mid_riser(signal): for i in range(len(signal)): if signal[i]>0xb0111: signal[i]=7 elif signal[i]<-0xb1000: signal[i]=-8 else: if (signal[i] - round(signal[i]) > 0) and (signal[i] > 0): signal[i] = round(signal[i]) + 1 elif (signal[i] - round(signal[i]) < 0) and (signal[i] < 0): signal[i] = round(signal[i]) - 1 else: signal[i] = round(signal[i]) return signal # grayCodeBinary = [0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000] def grayCodeMap(signal): grayCode4bit = [0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8] for i in range(len(signal)): signal[i] = grayCode4bit[int(signal[i])+8] return signal def calcError(QuantifiedSamples, accualSignalSamples, numOfSamples): i=0 s=0 while i < numOfSamples: s+=accualSignalSamples[i]-QuantifiedSamples[i] i+=1 return s/numOfSamples def calcAverageSigPower(signal, numOfSamples): i=0 s=0 while i < numOfSamples: s += signal[i]**2 return s/numOfSamples def calcSNR(StartingSignal, numOfSamples): numOfBitsPerSample = 4 maxSigVoltage = 7 return ((2**(2*numOfBitsPerSample))*(3*calcAverageSigPower(StartingSignal, numOfSamples)/maxSigVoltage**2)) #(a) # t1 = np.linspace(0, 4/myFreq, 4*int(fs1/myFreq)) t1 = np.arange(0, 4/myFreq, 1/fs1) triangle1 = signal.sawtooth(2 * np.pi * myFreq * t1, 0.5)*4 trigCopy = signal.sawtooth(2 * np.pi * myFreq * t1, 0.5) x = mid_riser(triangle1) # y = grayCodeMap(x) fig, ax = plt.subplots() ax.yaxis.set_major_formatter(StrMethodFormatter("{x:04b}")) ax.yaxis.set_ticks(np.arange(-4, 15, 1)) plotSignals(t1, 4*trigCopy, 'o', 'Fs1', 'Quantified Triangle sampled Fs1') plotSignals(t1, x, 'o', 'Fs1', 'Quantified Triangle sampled Fs1') plt.show() print(calcError(mid_riser(triangle1), trigCopy, 10)) print(calcError(mid_riser(triangle1), trigCopy, 20)) # print(calcSNR(4*triangle1, 10)) # print(calcSNR(4*triangle1, 20)) ```
{ "source": "JohnataDavi/2d-game-python", "score": 3 }
#### File: JohnataDavi/2d-game-python/killer.py ```python import pygame class Killer(pygame.sprite.Sprite): def __init__(self, group, window_size): super().__init__(group) self.WINDOW_SIZE = window_size self.image = pygame.image.load("data/images/piru.png").convert_alpha() self.image = pygame.transform.scale(self.image, [100, 100]) self.rect = self.image.get_rect() self.rect[0] = 30 self.speed = 0 self.acceleration = .2 def update(self): keys = pygame.key.get_pressed() if keys[pygame.K_w]: self.speed -= self.acceleration elif keys[pygame.K_s]: self.speed += self.acceleration else: self.speed *= .95 self.rect[1] += self.speed if self.rect[1] < -16: self.rect[1] = -16 self.speed = 0 elif self.rect[1] > self.WINDOW_SIZE[1] - 95: self.rect[1] = self.WINDOW_SIZE[1] - 95 self.speed = 0 ```
{ "source": "johnatanDM/silenceUs", "score": 3 }
#### File: johnatanDM/silenceUs/main.py ```python import discord import os token = os.getenv("tokenSilenceUs") class MyClient(discord.Client): async def on_ready(self): print('Logged on as', self.user) servers = len(self.guilds) activity=discord.Activity(type=discord.ActivityType.watching, name=f"{servers} servidores lotados de impostores") await self.change_presence(activity=activity) async def on_message(self, message): # don't respond to ourselves if message.author == self.user: return if message.content == '!help' or '!ajuda': msg = ''' Olá estou aqui para lhe ajudar em suas jogatinas de Among Us! Tenha certeza ''' if message.content == '!playing' or message.content == '!p': #Improvement: Verify if the bot has mute permission! if message.author.voice and message.author.voice.channel: channel = message.author.voice.channel for member in channel.members: await member.edit(mute = True) await message.channel.send('Shhhhhhhhh!') else: await message.channel.send("You are not connected to a voice channel") return if message.content == '!meeting' or message.content == '!m': if message.author.voice and message.author.voice.channel: channel = message.author.voice.channel for member in channel.members: await member.edit(mute = False) await message.channel.send('You can speak now!') else: await message.channel.send("You are not connected to a voice channel") return client = MyClient() client.run(token) ```
{ "source": "JohnatanLicar/GameCalcPy", "score": 4 }
#### File: JohnatanLicar/GameCalcPy/game.py ```python from calcular import Calcular def start(pontos): pontos: int = 0 jogar(pontos) def jogar(pontos: int): dificuldade: int = int(input('Qual o nivel de dificuldade [1, 2, 3 e 4]: ')) calc: Calcular = Calcular(dificuldade) calc.mostra_calc resultado: int = int(input('Resultado: ')) if calc.resposta(resultado): print('Resposta correta!') pontos += 1 else: print('Resposta incorreta!') pontos -= 1 print(f'Você tem {pontos} Ponto(s)') continuar: int = int(input('Deseja continuar? [1 - Sim / 0 - Não]: ')) if continuar: jogar(pontos) else: print('obrigado por participar, Volte sempre!') if __name__ == "__main__": start(0) ```
{ "source": "johnataylor/simplegraph", "score": 3 }
#### File: simplegraph/simplegraph/graph.py ```python class GraphValue: def __init__(self, value, is_ref=False): self.value = value self.is_ref = is_ref def __hash__(self): return hash((self.value, self.is_ref)) def __eq__(self, other): return (self.value, self.is_ref) == (other.value, other.is_ref) def __str__(self): return str(self.value) if not self.is_ref else '<' + str(self.value) + '>' class Triple: def __init__(self, s, p, o): self.s = s self.p = p self.o = o class Graph: def __init__(self): self._spo = {} self._pos = {} self._osp = {} self.count = 0 def __len__(self): return self.count def merge(self, graph): for t in graph.triples(): self.add(t.s, t.p, t.o) def add(self, s, p, o): Graph.__add_to_index(self._spo, s, p, o) Graph.__add_to_index(self._pos, p, o, s) if Graph.__add_to_index(self._osp, o, s, p): self.count += 1 def remove(self, s, p, o): pass @staticmethod def __add_to_index(index, x, y, z): if x not in index: index[x] = {y:{z}} return True if y not in index[x]: index[x][y] = {z} return True s = index[x][y] before = len(s) s.add(z) after = len(s) return after > before def triples(self): for s in self._spo: for p in self._spo[s]: for o in self._spo[s][p]: yield Triple(s, p, o) def get_by_subject(self, s): if s in self._spo: for p in self._spo[s]: for o in self._spo[s][p]: yield Triple(s, p, o) def get_by_subject_predicate(self, s, p): if s in self._spo and p in self._spo[s]: for o in self._spo[s][p]: yield Triple(s, p, o) def get_by_predicate(self, p): if p in self._pos: for o in self._pos[p]: for s in self._pos[p][o]: yield Triple(s, p, o) def get_by_predicate_object(self, p, o): if p in self._pos and o in self._pos[p]: for s in self._pos[p][o]: yield Triple(s, p, o) def get_by_object(self, o): if o in self._osp: for s in self._osp[o]: for p in self._osp[o][s]: yield Triple(s, p, o) def get_by_object_subject(self, o, s): if o in self._osp and s in self._osp[o]: for p in self._osp[o][s]: yield Triple(s, p, o) def contains(self, t): if t.s in self._spo: tpo = self._spo[t.s] if t.p in tpo: to = tpo[t.p] return t.o in to return False def contains_graph(self, g): for t in g.triples(): if not self.contains(t): return False return True def equals(self, g): if len(self) != len(g): return False return self.contains_graph(g) def print_triple(t): print('<' + str(t.s) + '> <' + str(t.p) + '> ' + str(t.o)) def print_graph(graph): for t in graph.triples(): print_triple(t) ``` #### File: simplegraph/tests/data.py ```python from simplegraph import Graph, GraphValue def graph_a0(): g = Graph() g.add('a0', 'p', GraphValue('o0')) g.add('a0', 'p', GraphValue('o1')) g.add('a0', 'p', GraphValue('o2')) g.add('a0', 'q', GraphValue('o0')) g.add('a0', 'q', GraphValue('o1')) g.add('a0', 'q', GraphValue('o2')) return g def graph_a1(): g = Graph() g.add('a1', 'p', GraphValue('o0')) g.add('a1', 'p', GraphValue('o1')) g.add('a1', 'p', GraphValue('o2')) g.add('a1', 'q', GraphValue('o0')) g.add('a1', 'q', GraphValue('o1')) g.add('a1', 'q', GraphValue('o2')) return g def graph_a2(): g = Graph() g.add('a2', 'p', GraphValue('o0')) g.add('a2', 'p', GraphValue('o1')) g.add('a2', 'p', GraphValue('o2')) g.add('a2', 'q', GraphValue('o0')) g.add('a2', 'q', GraphValue('o1')) g.add('a2', 'q', GraphValue('o2')) return g ```
{ "source": "johnathandavis/dotnet-codebuild-corebuilder", "score": 2 }
#### File: dotnet-codebuild-corebuilder/corebuild/build-all-dotnet.py ```python import os import glob import subprocess CB_BASE_DIR = os.environ['CODEBUILD_SRC_DIR'] BUILD_SCRIPT_LOCATION = '/corebuild/build_project.sh' def find_build_projects(): csprojs = [] for filename in glob.iglob('**/*.csproj'): csprojs.append(filename) print('Found csproj "' + filename + "'") build_dirs = [] for csproj in csprojs: builddir = os.path.dirname(os.path.abspath(csproj)) if 'Test' in builddir: print('Skipping "' + builddir + '" because it appears to be a test project.') else: build_dirs.append(builddir) print('Adding build directory to list: "' + builddir + '"') return build_dirs def build_project(project_dir): build_process = subprocess.Popen(BUILD_SCRIPT_LOCATION, cwd=project_dir) build_process.communicate() code = build_process.returncode if code != 0: raise Exception("Non-zero response code from dotnet build.") build_projects = find_build_projects() print('Starting build process for ' + str(len(build_projects)) + ' project(s).') for bp in build_projects: project_name = os.path.basename(bp) print('Building project "' + project_name + '"...') build_project(bp) ```
{ "source": "johnathan-dev/discord-bot-template", "score": 3 }
#### File: discord-bot-template/cogs/Misc.py ```python # Discord libraries import discord from discord.ext import commands from discord.ext.commands import cooldown, command, BucketType from datetime import datetime # Allows asynchronous I/O import asyncio # Allows access to .json files import json class Misc(commands.Cog): def __init__(self, client): self.client = client @commands.Cog.listener() async def on_ready(self): print("Misc commands are ready") # Responds with the bot's latency @command() @cooldown(1, 5, BucketType.guild) async def ping(self, ctx): print(f"{ctx.author} in {ctx.message.guild.name} ({ctx.guild.id}) pinged the bot | {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") await ctx.send(f"Pong: {round(self.client.latency * 1000)}ms") # Responds with a help embed @command() @cooldown(1, 10, BucketType.guild) async def help(self, ctx): embed = discord.Embed(title="Help", colour=discord.Colour(0xd99e1f), description="----------") embed.set_author(name="Bot") embed.add_field(name="**Fun Stuff**", value="------------", inline=False) embed.add_field(name="*8ball*", value="Takes in a question a returns an answer.") embed.add_field(name="*dice*", value="Returns a number 1-6. If no range is specified or the range is too big, it will default to 1-6.") embed.add_field(name="*fact*", value="Returns a cool fact.") embed.add_field(name="*getpfp*", value="Returns the avatar of a specified user. If no user is specified, It will return the avatar of the user who called the command.") embed.add_field(name="​", value="​", inline=False) embed.add_field(name="**Moderation**", value="------------", inline=False) embed.add_field(name="*clear*", value="Clears a specified amount of messages. If no amount is specified, 5 messages will be cleared.") embed.add_field(name="*kick*", value="Kicks a specified user.") embed.add_field(name="*ban*", value="Bans a specified user.") embed.add_field(name="​", value="​", inline=False) embed.add_field(name="**Games**", value="------------", inline=False) embed.add_field(name="*rps*", value="Plays rock paper scissors with the bot.") embed.add_field(name="​", value="​", inline=False) embed.add_field(name="**Misc**", value="------------", inline=False) embed.add_field(name="*help*", value="I think you can figure this one out") embed.add_field(name="*info*", value="Returns information about the bot, the guild, and the user that called the command.") embed.add_field(name="*changeprefix*", value="Changes prefix. You need the **changeprefix** role to do this.") await ctx.message.author.send(embed=embed) await ctx.send(f"Check your dms, {ctx.message.author} :wink:") # Responds with an info embed @command() @cooldown(1, 5, BucketType.guild) async def info(self, ctx): print(f"{ctx.author} in {ctx.message.guild.name} ({ctx.guild.id}) requested info | {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") try: embed = discord.Embed(title="Info", colour=discord.Colour(0xffaaaa), description="Information about the bot, the guild, and the user that called the command") embed.set_author(name="Bot") embed.add_field(name="__***Bot info***__", value="------------", inline=False) embed.add_field(name="Name:", value=f"```{self.client.user}```") embed.add_field(name="ID:", value=f"```{self.client.user.id}```") embed.add_field(name="Servers:", value=f"```{len(self.client.guilds)}```") embed.add_field(name="Latency:", value=f"```{round(self.client.latency*1000)}```") embed.add_field(name="*Guild info*", value="------------", inline=False) embed.add_field(name="Name:", value=f"```{ctx.guild.name}```") embed.add_field(name="ID:", value=f"```{ctx.guild.id}```") embed.add_field(name="Member count:", value=f"```{ctx.guild.member_count}```") embed.add_field(name="*Member info*", value="------------", inline=False) embed.add_field(name="Name:", value=f"```{ctx.message.author}```") embed.add_field(name="ID:", value=f"```{ctx.message.author.id}```") embed.add_field(name="Nick:", value=f"```{ctx.message.author.nick}```") embed.add_field(name="Account created:", value=f"```{ctx.message.author.created_at}```") except: await ctx.send("There was an error. Make sure you're not in a dm") return await ctx.send(embed=embed) #------------------------------------------------ Errors Section ------------------------------------------------ @commands.Cog.listener() async def on_command_error(self, ctx, error): try: print(f"There was an error in {ctx.message.guild} caused by {ctx.message.author} | {error}") if isinstance(error, commands.CommandOnCooldown): await ctx.send(f"This command is on a cooldown. Please wait {round(error.retry_after)} seconds") elif isinstance(error, commands.BadArgument): await ctx.send(f"Error: Improper arguments") elif isinstance(error, commands.MissingPermissions): await ctx.send(f"Error: You or the bot don't have the proper permissions to do carry out that command") elif isinstance(error, commands.CommandNotFound): pass elif isinstance(error, commands.DiscordException): await ctx.send(f"Error: There was an error") else: await ctx.send(f"There was an unknown error.") except: print(f"There was an error in {ctx.message.guild} caused by {ctx.message.author} | {error}") def setup(client): client.add_cog(Misc(client)) ```
{ "source": "johnathaningle/CityYouthMatrix", "score": 2 }
#### File: apps/accounts/admin.py ```python from django import forms from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .forms import UserCreationForm from .models import ( Address, Driver, Family, FamilyAddress, FamilyMember, User, ) class UserAdmin(UserAdmin): list_display = ('email', 'first_name', 'last_name', 'contact_number', 'is_superuser') fieldsets = ( (('Personal info'), {'fields': ('first_name', 'last_name', 'email', 'contact_number')}), (None, {'fields': ('password',)}), (('Permissions'), { 'fields': ('is_active', 'is_staff', 'is_superuser'), }), (('Important dates'), {'fields': ('last_login', 'date_joined')}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('email', '<PASSWORD>', '<PASSWORD>'), }), ) add_form = UserCreationForm class DriverAdmin(admin.ModelAdmin): list_filter = ('is_verified',) list_select_related = True def get_queryset(self, request): return super(DriverAdmin, self).get_queryset(request).select_related('user') class FamilyMemberInline(admin.TabularInline): model = FamilyMember class FamilyAddressInline(admin.TabularInline): model = FamilyAddress class FamilyAdmin(admin.ModelAdmin): list_display = ('user', 'family_name', 'adults', 'children') list_select_related = True inlines = [ FamilyMemberInline, FamilyAddressInline, ] def family_name(self, obj): return obj.user.last_name def adults(self, obj): return obj.familymember_set.filter(member_type='A').count() def children(self, obj): return obj.familymember_set.filter(member_type='C').count() class FamilyAddressAdmin(admin.ModelAdmin): list_display = ('user', 'family', '__str__') list_select_related = True def user(self, obj): return obj.family.user.email class FamilyMemberAdmin(admin.ModelAdmin): list_display = ('user', 'family', 'full_name', 'member_type') list_filter = ('family', 'member_type',) list_select_related = True def user(self, obj): return obj.family.user.email admin.site.register(User, UserAdmin) admin.site.register(Driver, DriverAdmin) admin.site.register(Family, FamilyAdmin) admin.site.register(FamilyAddress, FamilyAddressAdmin) admin.site.register(FamilyMember, FamilyMemberAdmin) ``` #### File: apps/trips/models.py ```python from django.db import models from django.db.models import F from django.utils import timezone from smart_selects.db_fields import ChainedForeignKey, ChainedManyToManyField from cityyouthmatrix.apps.accounts.models import Address class ActivityPartner(models.Model): """ An organization hosting the extra-curricular event and learning experience.  The location/destination information for a CYM-sponsored activity The location stores the address for activity-partner or CYM location. """ name = models.CharField(max_length=100, unique=True) is_active = models.BooleanField(default=True, help_text='Is the activity partner still active') def __str__(self): return self.name class EventAddress(Address): pass class Event(models.Model): """Every event takes place at an activity partner's location """ class EventSeasons(models.TextChoices): SPRING = "Spring", ("Spring") SUMMER = "Summer", ("Summer") FALL = "Fall", ("Fall") WINTER = "Winter", ("Winter") name = models.CharField(max_length=200) activity_partner = models.ForeignKey( ActivityPartner, null=True, blank=True, on_delete=models.DO_NOTHING, limit_choices_to={'is_active': True} ) event_datetime = models.DateTimeField(help_text='The start date and time of the event') address = models.ForeignKey(EventAddress, on_delete=models.CASCADE) season = models.CharField(max_length=6, choices=EventSeasons.choices) def __str__(self): return f"{str(self.activity_partner) + ' - ' if self.activity_partner else ''}{self.name}" class Trip(models.Model): event = models.ForeignKey(Event, on_delete=models.CASCADE) family = models.ForeignKey('accounts.Family', on_delete=models.CASCADE) passengers = ChainedManyToManyField( 'accounts.FamilyMember', chained_field='family', chained_model_field='family', horizontal=False ) pickup_address = ChainedForeignKey( 'accounts.FamilyAddress', chained_field='family', chained_model_field='family', related_name='+', on_delete=models.DO_NOTHING, ) pickup_location = models.CharField(max_length=100, blank=True, help_text='Specific pickup location at the address (front, side, etc)') pickup_datetime = models.DateTimeField(null=True, db_index=True, help_text='Date and time to pickup') pickup_completed = models.BooleanField(default=False, help_text='Was the family picked up and dropped off at the event') pickup_completed_datetime = models.DateTimeField(null=True, help_text='Date and time the family was dropped off at the event') pickup_driver = models.ForeignKey( 'accounts.Driver', related_name='pickup_driver', on_delete=models.DO_NOTHING, limit_choices_to={'is_verified': True}, null=True, blank=True, ) pickup_driver_notes = models.CharField(max_length=500, blank=True, help_text='Notes about the pickup from the driver') pickup_family_notes = models.CharField(max_length=500, blank=True, help_text='Notes about the pickup from the family') return_address = ChainedForeignKey( 'accounts.FamilyAddress', chained_field='family', chained_model_field='family', related_name='+', on_delete=models.DO_NOTHING, ) return_datetime = models.DateTimeField(null=True, db_index=True, help_text='Date and time to return') return_completed = models.BooleanField(default=False, help_text='Was the family picked up and dropped off at the return address') return_completed_datetime = models.DateTimeField(null=True, help_text='Date and time the family was dropped off at the return address') return_driver = models.ForeignKey( 'accounts.Driver', related_name='return_driver', on_delete=models.DO_NOTHING, limit_choices_to={'is_verified': True}, null=True, blank=True, ) return_driver_notes = models.CharField(max_length=500, blank=True, help_text='Notes about the return from the driver') return_family_notes = models.CharField(max_length=500, blank=True, help_text='Notes about the return from the family') is_cancelled = models.BooleanField(default=False, help_text='Was the trip cancelled') cancelled_datetime = models.DateTimeField(null=True, help_text='Date and time the trip was cancelled') car_seat_required = models.BooleanField(default=False) booster_seat_required = models.BooleanField(default=False) special_needs = models.CharField(max_length=300, blank=True, help_text='Any special needs of the family') next_required_datetime = models.DateTimeField(null=True, db_index=True, help_text='Internal field for sorting') class Meta(object): unique_together = ('event', 'family') ordering = [F('next_required_datetime').asc(nulls_last=True)] def __str__(self): return f'{self.family} {self.event.name} Trip' def save(self, *args, **kwargs): if self.is_cancelled and self.cancelled_datetime is None: self.cancelled_datetime = timezone.now() if not self.is_cancelled and self.cancelled_datetime is not None: self.cancelled_datetime = None if self.pickup_completed and self.pickup_completed_datetime is None: self.pickup_completed_datetime = timezone.now() if self.return_completed and self.return_completed_datetime is None: self.return_completed_datetime = timezone.now() if self.is_cancelled: self.next_required_datetime = None elif self.pickup_completed: self.next_required_datetime = self.return_datetime elif self.return_completed: self.next_required_datetime = None else: self.next_required_datetime = self.pickup_datetime super(Trip, self).save(*args, **kwargs) @property def is_available(self): return ( not self.is_cancelled and (self.pickup_driver is None or self.return_driver is None) and not self.return_completed ) @property def pickup_duration(self): if self.pickup_datetime is None or self.pickup_completed_datetime is None: return None return (self.pickup_completed_datetime - self.pickup_datetime).minutes @property def return_duration(self): if self.return_datetime is None or self.return_completed_datetime is None: return None return (self.return_completed_datetime - self.return_datetime).minutes ```
{ "source": "johnathanlouie/PyAeonDB", "score": 3 }
#### File: PyAeonDB/PyAeonDB/PyAeonDB.py ```python from typing import List, Set, Dict, Tuple import csv import os import json import time import datetime Table = List[str] Index = Dict[str, List[int]] Fuzzy = Dict[str, List[str]] ROOT_PATH = "C:/Arcology/AeonDB" TABLE_DIR = "C:/Arcology/AeonDB/%s" TABLE_PATH = "C:/Arcology/AeonDB/%s/table.txt" INDEX_PATH = "C:/Arcology/AeonDB/%s/index.txt" FUZZY_PATH = "C:/Arcology/AeonDB/%s/fuzzy.txt" FUZZY2_PATH = "C:/Arcology/AeonDB/%s/fuzzy2.txt" g_tables: Dict[str, Table] = dict() g_indices: Dict[str, Index] = dict() g_fuzzyDict: Dict[str, Fuzzy] = dict() g_fuzzyDict2: Dict[str, Fuzzy] = dict() def readTable(tableName: str) -> Table: os.makedirs(TABLE_DIR % tableName, exist_ok=True) return json.load(open(TABLE_PATH % tableName)) def writeTable(tableName: str, table: Table) -> None: os.makedirs(TABLE_DIR % tableName, exist_ok=True) json.dump(table, open(TABLE_PATH % tableName, 'w+')) return None def readIndex(tableName: str) -> Index: os.makedirs(TABLE_DIR % tableName, exist_ok=True) return json.load(open(INDEX_PATH % tableName)) def writeIndex(tableName: str, index: Index) -> None: os.makedirs(TABLE_DIR % tableName, exist_ok=True) json.dump(index, open(INDEX_PATH % tableName, 'w+')) return None def readFuzzy(tableName: str) -> Fuzzy: os.makedirs(TABLE_DIR % tableName, exist_ok=True) return json.load(open(FUZZY_PATH % tableName)) def writeFuzzy(tableName: str, fuzzy: Fuzzy) -> None: os.makedirs(TABLE_DIR % tableName, exist_ok=True) json.dump(fuzzy, open(FUZZY_PATH % tableName, 'w+')) return None def readFuzzy2(tableName: str) -> Fuzzy: os.makedirs(TABLE_DIR % tableName, exist_ok=True) return json.load(open(FUZZY2_PATH % tableName)) def writeFuzzy2(tableName: str, fuzzy: Fuzzy) -> None: os.makedirs(TABLE_DIR % tableName, exist_ok=True) json.dump(fuzzy, open(FUZZY2_PATH % tableName, 'w+')) return None def listTables() -> List[str]: os.makedirs(ROOT_PATH, exist_ok=True) return os.listdir(ROOT_PATH) def timestamp() -> str: return datetime.datetime.fromtimestamp(time.time()).strftime("%m/%d/%Y %H:%M:%S") g_cmdHelpMap = { "createtable" : "createTable {tableDesc}", "getrows" : "getRows {tableName} {key} {count}", "importtable" : "importTable {tableName} {CSV filespec}", "listtables" : "listTables", "indextable" : "indexTable {tableName}", "find" : "find {tableName} {term1 term2 term3...}", "fuzzysearch" : "fuzzySearch {tableName} {term1 term2 term3...}", "quit" : "quit" } def printHelp() -> None: for help in g_cmdHelpMap.values(): print(help) return def toBigrams(s: str) -> Set[str]: ngrams = set() if len(s) < 2: ngrams.add(s) return ngrams for i in range(len(s) - 1): ngrams.add(s[i:i+2]) return ngrams def dicesCoefficient(a: Set[str], b: Set[str]) -> float: return float(2 * len(a.intersection(b))) / float(len(a) + len(b)) def preprocess(s: str) -> str: s = s.replace("~", " ") s = s.replace("`", " ") s = s.replace("!", " ") s = s.replace("@", " ") s = s.replace("#", " ") s = s.replace("$", " ") s = s.replace("%", " ") s = s.replace("^", " ") s = s.replace("&", " ") s = s.replace("*", " ") s = s.replace("(", " ") s = s.replace(")", " ") s = s.replace("-", " ") s = s.replace("_", " ") s = s.replace("+", " ") s = s.replace("=", " ") s = s.replace("{", " ") s = s.replace("}", " ") s = s.replace("[", " ") s = s.replace("]", " ") s = s.replace("|", " ") s = s.replace("\\", " ") s = s.replace(";", " ") s = s.replace(":", " ") s = s.replace('"', " ") s = s.replace("'", " ") s = s.replace("<", " ") s = s.replace(">", " ") s = s.replace(",", " ") s = s.replace(".", " ") s = s.replace("/", " ") s = s.replace("?", " ") s = s.replace("1", " ") s = s.replace("2", " ") s = s.replace("3", " ") s = s.replace("4", " ") s = s.replace("5", " ") s = s.replace("6", " ") s = s.replace("7", " ") s = s.replace("8", " ") s = s.replace("9", " ") s = s.replace("0", " ") return s def createIndex(table: Table) -> Tuple[Index, Fuzzy, Fuzzy]: startTime = time.time() index: Index = dict() fuzzy1: Fuzzy = dict() fuzzy2: Fuzzy = dict() fuzzy3: Dict[str, Set[str]] = dict() for rowId in range(len(table)): row = table[rowId] row = preprocess(row).lower() terms = set(row.split()) if "" in terms: terms.remove("") for term in terms: if term not in index: index.update({term: list()}) rowIds = index.get(term) if rowId not in rowIds: rowIds.append(rowId) if term not in fuzzy3: atLeastOneBigram = set() bigrams = toBigrams(term) fuzzy3.update({term: bigrams}) for bigram in bigrams: if bigram not in fuzzy2: fuzzy2.update({bigram: list()}) bigramList = fuzzy2.get(bigram) bigramList.append(term) atLeastOneBigram.update(bigramList) related = list() for term2 in atLeastOneBigram: if term == term2: related.append(term2) elif dicesCoefficient(fuzzy3.get(term), fuzzy3.get(term2)) > 0.6: related.append(term2) fuzzy1.get(term2).append(term) fuzzy1.update({term: related}) print("Indexed row %d of %d." % (rowId, len(table))) print("Indexing Time: " + str(time.time() - startTime)) return index, fuzzy1, fuzzy2 def importCsv(filename: str) -> Table: table = [" ".join(row) for row in csv.reader(open(filename))] table.pop(0) return table def expandQuery(term: str, index: Index, fuzzy: Fuzzy, fuzzy2: Fuzzy) -> Set[int]: rowIds = set() relateds = set() if term not in fuzzy: possiblyRelateds = set() bigrams = toBigrams(term) for bigram in bigrams: if bigram in fuzzy2: possiblyRelateds.update(fuzzy2.get(bigram)) for pRelated in possiblyRelateds: if dicesCoefficient(toBigrams(pRelated), bigrams) > 0.6: relateds.add(pRelated) else: relateds = fuzzy.get(term) for related in relateds: rowIds.update(index.get(related)) return rowIds def find(keyTerms: Set[str], table: Table, index: Index, fuzzy: Fuzzy, fuzzy2: Fuzzy, isFuzzy: bool) -> Table: lowKeyTerms = {term.lower() for term in keyTerms} rowIds = set() results = list() first = lowKeyTerms.pop() if isFuzzy: rowIds.update(expandQuery(first, index, fuzzy, fuzzy2)) elif first in index: rowIds.update(index.get(first)) else: return results for word in lowKeyTerms: if isFuzzy: rowIds.intersection_update(expandQuery(word, index, fuzzy, fuzzy2)) elif word in index: rowIds.intersection_update(index.get(word)) else: return results for i in rowIds: results.append(table[i]) return results def loadAllTables() -> None: tableNames = listTables() for tableName in tableNames: print("%s Log.info: Table %s: Backup volume offline. Waiting for new volume." % (timestamp(), tableName)) try: table = readTable(tableName) g_tables.update({tableName: table}) print("%s Log.info: Table %s: Recovered %d rows." % (timestamp(), tableName, len(table))) except OSError: print("%s Log.info: Table %s: Could not read file." % (timestamp(), tableName)) except json.JSONDecodeError: print("%s Log.info: Table %s: File is corrupted." % (timestamp(), tableName)) try: index = readIndex(tableName) g_indices.update({tableName: index}) print("%s Log.info: Index %s: Recovered %d terms." % (timestamp(), tableName, len(index))) except OSError: print("%s Log.info: Index %s: Could not read file." % (timestamp(), tableName)) except json.JSONDecodeError: print("%s Log.info: Index %s: File is corrupted." % (timestamp(), tableName)) try: fuzzy = readFuzzy(tableName) g_fuzzyDict.update({tableName: fuzzy}) print("%s Log.info: Fuzzy %s: Recovered %d terms." % (timestamp(), tableName, len(fuzzy))) except OSError: print("%s Log.info: Fuzzy %s: Could not read file." % (timestamp(), tableName)) except json.JSONDecodeError: print("%s Log.info: Fuzzy %s: File is corrupted." % (timestamp(), tableName)) try: fuzzy2 = readFuzzy2(tableName) g_fuzzyDict2.update({tableName: fuzzy2}) print("%s Log.info: Fuzzy2 %s: Recovered %d terms." % (timestamp(), tableName, len(fuzzy2))) except OSError: print("%s Log.info: Fuzzy2 %s: Could not read file." % (timestamp(), tableName)) except json.JSONDecodeError: print("%s Log.info: Fuzzy2 %s: File is corrupted." % (timestamp(), tableName)) print("AeonDB ready. %d tables available." % len(tableNames)) return None def prompt() -> List[str]: args = input(" : ").split() args[0] = args[0].lower() return args def main() -> None: print("%s AeonDB 1.0 beta 65" % timestamp()) print(u"%s Copyright © 2011-2018 by Kronosaur Productions LLC. All Rights Reserved." % timestamp()) loadAllTables() args = prompt() while args[0] != "quit": # createtable if args[0] == "createtable": if len(args) < 2: print(g_cmdHelpMap.get(args[0])) else: print("Not implemented for demo.") # getrows elif args[0] == "getrows": if len(args) < 4: print(g_cmdHelpMap.get(args[0])) else: print("Not implemented for demo.") # importtable elif args[0] == "importtable": if len(args) < 3: print(g_cmdHelpMap.get(args[0])) else: csvName = args[2] csvName = csvName.replace('"', "") csvName = csvName.replace("'", "") csvName = csvName.replace("/", "\\") try: tableObj = importCsv(csvName) print("Imported %d rows to table %s." % (len(tableObj), args[1])) g_tables.update({args[1] : tableObj}) print("Saving table %s to file." % args[1]) writeTable(args[1], tableObj) except: print("Failed to import table. Check URI.") # listtables elif args[0] == "listtables": if len(args) < 1: print(g_cmdHelpMap.get(args[0])) else: for x in listTables(): print(x) # indextable elif args[0] == "indextable": if len(args) < 2: print(g_cmdHelpMap.get(args[0])) else: if args[1] in g_tables: tableIndex, tableFuzzy1, tableFuzzy2 = createIndex(g_tables.get(args[1])) g_indices.update({args[1] : tableIndex}) g_fuzzyDict.update({args[1] : tableFuzzy1}) g_fuzzyDict2.update({args[1] : tableFuzzy2}) try: print("Saving index %s." % args[1]) writeIndex(args[1], tableIndex) print("Saving fuzzy %s." % args[1]) writeFuzzy(args[1], tableFuzzy1) print("Saving fuzzy2 %s." % args[1]) writeFuzzy2(args[1], tableFuzzy2) except: print("Failed to write index to file.") else: print("Table %s does not exist." % args[1]) # find elif args[0] == "find": if len(args) < 3: print(g_cmdHelpMap.get(args[0])) else: if args[1] not in g_tables: print("Table %s does not exist." % args[1]) elif args[1] not in g_indices: print("Index %s does not exist." % args[1]) elif args[1] not in g_fuzzyDict: print("Fuzzy1 %s does not exist." % args[1]) elif args[1] not in g_fuzzyDict2: print("Fuzzy2 %s does not exist." % args[1]) else: results = find(set(args[2:]), g_tables.get(args[1]), g_indices.get(args[1]), g_fuzzyDict.get(args[1]), g_fuzzyDict2.get(args[1]), False) for row in results: print(row) print("Found %d rows." % len(results)) # fuzzysearch elif args[0] == "fuzzysearch": if len(args) < 3: print(g_cmdHelpMap.get(args[0])) else: if args[1] not in g_tables: print("Table %s does not exist." % args[1]) elif args[1] not in g_indices: print("Index %s does not exist." % args[1]) elif args[1] not in g_fuzzyDict: print("Fuzzy1 %s does not exist." % args[1]) elif args[1] not in g_fuzzyDict2: print("Fuzzy2 %s does not exist." % args[1]) else: results = find(set(args[2:]), g_tables.get(args[1]), g_indices.get(args[1]), g_fuzzyDict.get(args[1]), g_fuzzyDict2.get(args[1]), True) for row in results: print(row) print("Found %d rows." % len(results)) # Bad commands else: printHelp() # Next loop args = prompt() return None main() ```
{ "source": "johnathanMorales/facturas29", "score": 3 }
#### File: facturas29/facturas/models.py ```python from django.db import models from django.contrib.auth.models import User # Create your models here. class factura (models.Model): """Create anulation factura request""" billNumber = models.CharField(max_length=10, unique=True) reason = models.CharField(max_length=50, blank=False) comment = models.CharField(max_length=250, blank=False) created = models.DateTimeField(auto_now_add=True) user = models.ForeignKey(User, on_delete=models.CASCADE) profile = models.ForeignKey('users.Profile', on_delete=models.CASCADE) def __str__(self): """Return billnumber.""" return 'Factura: {} ID: {}'.format(self.billNumber, self.id) ```
{ "source": "johnathanvidu/ass", "score": 2 }
#### File: johnathanvidu/ass/run.py ```python import os import sys import glob import json import shutil import logging import subprocess # logging logger = logging.getLogger() level = logging.DEBUG logger.setLevel(level) handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('- %(message)s | %(asctime)s') handler.setFormatter(formatter) logger.addHandler(handler) class Track: def __init__(self, uid, track_name, lang, default, matching): self.uid = uid self.track_name = track_name self.lang = lang self.default = default self.matching = matching def __str__(self): return f'track {self.track_name} id {self.uid} lang {self.lang} matching correct lang requested {self.matching}' def scan_tracks(jmkv, audio_lang, subs_lang): result = {} tracks = jmkv['tracks'] for track in tracks: type = track['type'] properties = track['properties'] matching = False if type == 'audio' and properties['language'] == audio_lang: matching = True if type == 'subtitles' and properties['language'] == subs_lang: matching = True if type not in result: result[type] = [] uid = properties['number'] track_name = properties['track_name'] if 'track_name' in properties else '' lang = properties['language'] default = properties['default_track'] result[type].append(Track(uid, track_name, lang, default, matching)) return result def set_default_audio(mkv, audio): logger.info('guessing correct audio track') correct_found = False edits = [] for atrack in audio: logger.debug(atrack) if not atrack.matching: edits = edits + ['--edit', f'track:{int(atrack.uid)}', '--set', 'flag-default=0'] continue track_name = atrack.track_name.lower() if 'commentary' in track_name: continue if 'song' in track_name or 'sing' in track_name: continue correct_found = True edits = edits + ['--edit', f'track:{int(atrack.uid)}', '--set', 'flag-default=1'] logger.info(f'setting default audio track on {track_name} uid {atrack.uid}') if not correct_found: logger.warn('did not find suitable audio track, doing nothing...') return logger.info('mkvpropedit out') proc = subprocess.run(['mkvpropedit', mkv] + edits) logger.debug(' '.join(proc.args)) def set_default_subtitles(mkv, subtitles): logger.info('guessing correct subtitles track') correct_found = False edits = [] for strack in subtitles: logger.debug(strack) if not strack.matching: edits = edits + ['--edit', f'track:{int(strack.uid)}', '--set', 'flag-default=0'] continue track_name = strack.track_name.lower() if 'commentary' in track_name: edits = edits + ['--edit', f'track:{int(strack.uid)}', '--set', 'flag-default=0'] continue if 'song' in track_name: edits = edits + ['--edit', f'track:{int(strack.uid)}', '--set', 'flag-default=0'] continue if 'sing' in track_name: edits = edits + ['--edit', f'track:{int(strack.uid)}', '--set', 'flag-default=0'] continue correct_found = True edits = edits + ['--edit', f'track:{int(strack.uid)}', '--set', 'flag-default=1'] logger.info(f'setting default subtitles track on {track_name} uid {strack.uid}') if not correct_found: logger.warn('did not find suitable subtitles track, doing nothing...') return logger.info('mkvpropedit out') #proc = subprocess.run(['mkvpropedit', mkv, '--edit', f'track:{int(strack.uid)}', '--set', 'flag-default=1']) proc = subprocess.run(['mkvpropedit', mkv] + edits) logger.debug(' '.join(proc.args)) # main logger.info('looking for mkvtoolnix...') if shutil.which('mkvmerge') and shutil.which('mkvpropedit'): logger.info('mkvtoolnix found') else: logger.error('mkvtoolnix must be installed') sys.exit(1) logger.info(f'scanning current folder: {os.getcwd()}') mkvs = glob.glob(f'{os.getcwd()}/*.mkv') for mkv in mkvs: mkvmerge_proc = subprocess.run(['mkvmerge', '-J', mkv], stdout=subprocess.PIPE) jmkv = json.loads(mkvmerge_proc.stdout) tracks = scan_tracks(jmkv, 'jpn', 'eng') logger.info(f'editing {mkv}...') audio = tracks['audio'] set_default_audio(mkv, audio) subs = tracks['subtitles'] set_default_subtitles(mkv, subs) logger.info('ass is done') sys.exit(0) ```
{ "source": "johnathanvidu/tlushim", "score": 3 }
#### File: tlushim/tlushim/__main__.py ```python import sys import datetime import argparse import tlushim_log from argparse import RawTextHelpFormatter from application import Application def main(args=None): parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter) user_input_grp = parser.add_argument_group('user input') user_input_grp.add_argument('-m', '--month', help='Provide specific month in format mm', default=datetime.datetime.now().strftime('%m')) user_input_grp.add_argument('-y', '--year', help='Provide specific year in format yyyy', default=datetime.datetime.now().strftime('%Y')) config_grp = parser.add_argument_group('configuration') config_grp.add_argument('-c', '--configure', help='Start with configuration wizard', action='store_true') logging_grp = parser.add_argument_group('logging') logging_grp.add_argument('-v', '--verbose', help='Verbose logging', action='store_true') logging_grp.add_argument('-d', '--debug', help='Debug log level', action='store_true') namespace = parser.parse_args(args) root_logger = tlushim_log.configure_logging(namespace) sys.exit(calculate_exit_code(lambda: Application(namespace).run(), root_logger)) def calculate_exit_code(app_lambda, logger): try: app_lambda() exit_code = 0 except BaseException as e: exit_code = 1 logger.error(e.message) return exit_code if __name__ == "__main__": main() ```
{ "source": "johnatspreadstreet/Morph-RESTful-HTTP-Utility-API", "score": 3 }
#### File: apis/db/models.py ```python from sqlalchemy import Table, Column, Integer, Text from sqlalchemy.orm import mapper from apis.db.database import metadata, db_session class BlogPost(object): query = db_session.query_property() def __init__(self, id=None, title=None, post=None): self.id = id self.title = title self.post = post blog_posts = Table('blog_posts', metadata, Column('id', Integer, primary_key=True), Column('title', Text), Column('post', Text) ) mapper(BlogPost, blog_posts) ``` #### File: apis/strings/scratch.py ```python def splitter(string): split = string.split(' ') return split print(splitter('this is a very messy string')) ```
{ "source": "johnattan/BrainyAnt2.0", "score": 3 }
#### File: johnattan/BrainyAnt2.0/userControl.py ```python import RPi.GPIO as gpio def move_forward(speed): if speed > 0: init() print('Moving FORWARD with speed = {}'.format(speed)) gpio.output(17, True) gpio.output(22, False) gpio.output(23, True) gpio.output(24, False) else: gpio.cleanup() def move_left(speed): if speed > 0: init() print('Moving LEFT with speed = {}'.format(speed)) gpio.output(17, False) gpio.output(22, True) gpio.output(23, True) gpio.output(24, False) else: gpio.cleanup() def move_right(speed): if speed > 0: init() print('Moving RIGHT with speed = {}'.format(speed)) gpio.output(17, True) gpio.output(22, False) gpio.output(23, False) gpio.output(24, True) else: gpio.cleanup() def move_back(speed): if speed > 0: init() print('Moving BACK with speed = {}'.format(speed)) gpio.output(17, False) gpio.output(22, True) gpio.output(23, False) gpio.output(24, True) else: gpio.cleanup() def init(): gpio.setmode(gpio.BCM) gpio.setup(17, gpio.OUT) gpio.setup(22, gpio.OUT) gpio.setup(23, gpio.OUT) gpio.setup(24, gpio.OUT) ```
{ "source": "john-aws/elastic-load-balancing-tools", "score": 3 }
#### File: application-load-balancer-serverless-app/whatismyip/whatismyip.py ```python import time import json import os TEMPLATE = './whatismyip_template.html' def lambda_handler(event, context): print '==event==' print event with open(TEMPLATE, 'rw') as template: template_html = template.read() response = { "statusCode": 200, "headers": { "Content-Type": "text/html;" }, "isBase64Encoded": False } if event['headers']['user-agent'] == 'ELB-HealthChecker/2.0': print('HealthCheck Request') data = 'Response to HealthCheck' response['body'] = data return response sourceip_list = event['headers']['x-forwarded-for'].split(',') if sourceip_list: sourceip = str(sourceip_list[0]) data = "<h3>Your IP is {}</h3>".format(sourceip) if event['queryStringParameters'] == {"output":"text"}: response['body']=sourceip return response if event['queryStringParameters'] == {"output":"json"}: response['body'] = json.dumps({"Source IP":sourceip}) return response else: data = '<h3>No source IP found</h3>' response_html = template_html.replace("<!--whatismyip-->", data) return response_html print type(template_html) response_html = template_html.replace("<!--whatismyip-->", data) response['body'] = response_html print response return response ```
{ "source": "John-AZ1/app4flask", "score": 3 }
#### File: John-AZ1/app4flask/Timetable.py ```python import mechanicalsoup import re from Day import Day from Session import Session def get_timetable(school, user, password): # App4 Timetable Url with school identifier url = "http://{}.app4.ws/portal/timetable.php".format(school) # Creates a browser. Then opens the Timetable Url which leads to a login page br = mechanicalsoup.StatefulBrowser() br.open(url) # Log in using user and password br.select_form(nr=0) br["txtLoginUserID"] = user br["txtLoginPassword"] = password br.submit_selected() # With Permission reopens the Timetable page br.open(url) # Makes a soup of the pages html page = br.get_current_page() # Gets everyday's html daysRaw = page.find_all('td', {"width": '18%'}) # Empty Container to be populated with day objects timetable = [] for day in daysRaw: # Variables with Day args day_name = day.find_all("td", {"class": re.compile("^ttdark")})[0].string.extract() day_id = daysRaw.index(day)+1 # Appends a Day Object and Passes an empty list to be populated bt Session Objects, day_name and day_id timetable.append(Day([], day_name, day_id)) # List with all day's sessions html sessions = day.find_all("td", {"class": re.compile("^tt")}) # Iterates through all sessions appending a Session object to each Day object for session in sessions: # If session is a session continue if len(session.find_all("td")) > 0: # Variables with Session args session_number = int(session.find_all("td")[0].string.extract()) session_code = session.find_all("td")[1].find_all("span")[0].string.extract() # List of teacher, room and time session_periph = session.find_all("td")[1].find_all("span")[1].get_text("|").split("|") # Appends a Session Object to current day (i.e, days[-1]) # Checks if it is not an empty session (e.g, Lunch, Community Service) if len(session_periph) > 2: timetable[-1].append( Session( session_number, session_code, session_periph[0], str(session_periph[1]).strip(), session_periph[2] ) ) # If it is an empty session do not pass a teacher or room else: timetable[-1].append( Session( session_number, session_code, session_periph[0], None, None ) ) return timetable def write_db(timetable, db): # Clears database so it can be written over db.purge() # Appends a Day object passsing day_name, day_id and sessions for day in timetable: sessions = [] for session in day: sessions.append( { 'number': session.number, 'code': session.code, 'teacher': session.teacher, 'room': session.room, 'time': session.time } ) db.insert({ 'day_name': day.day_name, 'day_id': day.day_id, 'sessions': sessions }) { 'number': session.number, 'code': session.code, 'teacher': session.teacher, 'room': session.room, 'time': session.time } def read_db(db): # Clears timetable so it can be overwritten timetable = [] # Loops over timetable every day and for day in db.all(): # Creates a local empty lsit to be populated with database session sessions = [] # Appends a Session to current day passing session number, code, teacher, room, time for session in day['sessions']: sessions.append(Session( session['number'], session['code'], session['teacher'], session['room'], session['time'] )) # Appends a Day object passing session, day_name, day_id timetable.append( Day( sessions, day['day_name'], day['day_id'] ) ) return timetable def get_day(tt, day_name, week): days = list(filter(lambda day: day.day_name == day_name, tt)) try: return days[0] if days[0].week_id == week else days[1] except IndexError: return Day([], day_name, 0) ```
{ "source": "JohnAZoidberg/misc", "score": 3 }
#### File: misc/k_means/k_means.py ```python from math import sqrt import numpy as np import matplotlib.pyplot as plt import random # import seaborn as sns # sns.set() def get_points(): data = np.array([[0, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 1], [0, 0, 1, 0, 0, 1, 1, 0], [0, 0, 0, 0, 1, 1, 0, 1]]) # get the indices where data is 1 return np.argwhere(data == 1) def draw_clusters(centroids, clusters): # plt.figure(figsize=(10, 10)) colors = ["blue", "green", "red", "cyan", "magenta", "yellow"] if len(clusters) > len(colors): raise Exception("Too many clusters - not enough colors") for i, points in enumerate(clusters): color = colors.pop() x, y = points.T plt.scatter(x, y, color=color) plt.scatter(*centroids[i], color="black") # for centroid in centroids: # plt.scatter(*centroid, color="black") plt.show() def distance(point, other): return sqrt(pow(point[0] - other[0], 2) + pow(point[1] - other[1], 2)) def assign_to_cluster(k, points, centroids): clusters = [[] for _ in xrange(k)] for x, y in points: closest = (0, centroids[0]) for i, c in enumerate(centroids[1:], start=1): if distance((x, y), c) < distance((x, y), closest[1]): closest = (i, c) clusters[closest[0]].append([x, y]) return np.array([np.array(c) for c in clusters]) def move_centroids(clusters): centroids = [] for cluster in clusters: x = np.mean(cluster.T[0]) y = np.mean(cluster.T[1]) centroids.append((x, y)) return centroids def kmeans(k, points): x, y = points.T limits = (np.max(x), np.max(y)) centroids = [(random.uniform(0, limits[0]), random.uniform(0, limits[1])) for _ in xrange(k)] while True: print centroids clusters = assign_to_cluster(k, points, centroids) new_centroids = move_centroids(clusters) if new_centroids == centroids: centroids = new_centroids break centroids = new_centroids return centroids, clusters if __name__ == "__main__": points = get_points() centroids, clusters = kmeans(2, points) draw_clusters(centroids, clusters) ```
{ "source": "JohnAZoidberg/python-redfish-utility", "score": 2 }
#### File: extensions/COMMANDS/CommitCommand.py ```python """ Commit Command for RDMC """ from argparse import SUPPRESS from redfish.ris.rmc_helper import NothingSelectedError from rdmc_helper import ReturnCodes, InvalidCommandLineErrorOPTS, FailureDuringCommitError,\ NoChangesFoundOrMadeError, NoCurrentSessionEstablished class CommitCommand(): """ Constructor """ def __init__(self): self.ident = { 'name':'commit', 'usage': None, 'description':'commit [OPTIONS]\n\n\tRun to apply all changes made during' ' the current session\n\texample: commit', 'summary':'Applies all the changes made during the current session.', 'aliases': [], 'auxcommands': ["LogoutCommand", "RebootCommand"] } self.cmdbase = None self.rdmc = None self.auxcommands = dict() def commitfunction(self, options=None): """ Main commit worker function :param options: command line options :type options: list. """ self.commitvalidation() self.rdmc.ui.printer("Committing changes...\n") if options: if options.biospassword: self.rdmc.app.current_client.bios_password = options.biospassword try: failure = False commit_opp = self.rdmc.app.commit() for path in commit_opp: if self.rdmc.opts.verbose: self.rdmc.ui.printer('Changes are being made to path: %s\n' % path) if next(commit_opp): failure = True except NothingSelectedError: raise NoChangesFoundOrMadeError("No changes found or made during commit operation.") else: if failure: raise FailureDuringCommitError('One or more types failed to commit. Run the ' 'status command to see uncommitted data. ' 'if you wish to discard failed changes refresh the ' 'type using select with the --refresh flag.') if options.reboot: self.auxcommands['reboot'].run(options.reboot) self.auxcommands['logout'].run("") def run(self, line, help_disp=False): """ Wrapper function for commit main function :param line: command line input :type line: string. """ if help_disp: self.parser.print_help() return ReturnCodes.SUCCESS try: (options, _) = self.rdmc.rdmc_parse_arglist(self, line) except (InvalidCommandLineErrorOPTS, SystemExit): if ("-h" in line) or ("--help" in line): # self.rdmc.ui.printer(self.ident['usage']) return ReturnCodes.SUCCESS else: raise InvalidCommandLineErrorOPTS("") self.commitfunction(options) #Return code return ReturnCodes.SUCCESS def commitvalidation(self): """ Commit method validation function """ try: _ = self.rdmc.app.current_client except: raise NoCurrentSessionEstablished("Please login and make setting" " changes before using commit command.") def definearguments(self, customparser): """ Wrapper function for new command main function :param customparser: command line input :type customparser: parser. """ if not customparser: return self.cmdbase.add_login_arguments_group(customparser) customparser.add_argument( '--reboot', dest='reboot', help="Use this flag to perform a reboot command function after"\ " completion of operations. For help with parameters and"\ " descriptions regarding the reboot flag, run help reboot.", default=None ) ``` #### File: COMMANDS/REQUIREDCOMMANDS/ExitCommand.py ```python """ Exit Command for rdmc """ import sys from rdmc_helper import ReturnCodes, InvalidCommandLineErrorOPTS class ExitCommand(): """ Exit class to handle exiting from interactive mode """ def __init__(self): self.ident = { 'name':'exit', 'usage': None, 'description':'Run to exit from the interactive shell\n\texample: exit', 'summary':'Exits from the interactive shell.', 'aliases': ['quit'], 'auxcommands': ["LogoutCommand"] } #self.rdmc = rdmcObj #self.logoutobj = rdmcObj.commands_dict["LogoutCommand"](rdmcObj) self.cmdbase = None self.rdmc = None self.auxcommands = dict() def run(self, line, help_disp=False): """If an argument is present, print help else exit :param line: command line input :type line: string. """ if help_disp: self.parser.print_help() return ReturnCodes.SUCCESS try: (_, args) = self.rdmc.rdmc_parse_arglist(self, line) except (InvalidCommandLineErrorOPTS, SystemExit): if ("-h" in line) or ("--help" in line): return ReturnCodes.SUCCESS else: raise InvalidCommandLineErrorOPTS("") if not args or not line: self.auxcommands['logout'].run("") #System exit sys.exit(ReturnCodes.SUCCESS) else: self.rdmc.ui.error("Exit command does not take any parameters.\n") raise InvalidCommandLineErrorOPTS("Invalid command line arguments.") def definearguments(self, customparser): """ Wrapper function for new command main function :param customparser: command line input :type customparser: parser. """ if not customparser: return ``` #### File: extensions/PERSISTENT MEMORY COMMANDS/ClearPendingConfigCommand.py ```python from __future__ import absolute_import from rdmc_helper import ReturnCodes, InvalidCommandLineError, InvalidCommandLineErrorOPTS,\ NoContentsFoundForOperationError, \ NoChangesFoundOrMadeError, LOGGER from .lib.RestHelpers import RestHelpers class ClearPendingConfigCommand(): """ Command to clear pending config tasks""" def __init__(self): self.ident = { 'name':'clearpmmpendingconfig', 'usage': None, 'description':"Clear pmm pending config tasks\n" "\texample: clearpmmpendingconfig", 'summary':"Clear pending config tasks", 'aliases': [], 'auxcommands': [] } self.cmdbase = None self.rdmc = None self.auxcommands = dict() def get_memory_chunk_tasks(self): """ Function to retrieve Memory Chunk Tasks :returns: Retrieved Memory Chunk Tasks """ # Retrieving tasks members tasks = RestHelpers(rdmcObject=self.rdmc).retrieve_task_members() if tasks: # Filtering out Memory Chunk Tasks memory_chunk_tasks = RestHelpers(rdmcObject=self.rdmc).filter_task_members(tasks) if memory_chunk_tasks: return memory_chunk_tasks self.rdmc.ui.printer("No pending configuration tasks found.\n\n") return [] def delete_tasks(self, memory_chunk_tasks, verbose=False): """ Function to delete pending configuration tasks :param memory_chunk_tasks: Pending confguration tasks. :type memory_chunk_tasks: list :param verbose: Toggles verbose mode, which print task IDs as individual tasks are deleted. :type verbose: Boolean :returns: None """ for task in memory_chunk_tasks: data_id = task.get("@odata.id") task_id = task.get("Id") resp = RestHelpers(rdmcObject=self.rdmc).delete_resource(data_id) if resp: if verbose: self.rdmc.ui.printer("Deleted Task #{}".format(task_id)+"\n") else: raise NoChangesFoundOrMadeError("Error occured while deleting " "task #{}".format(task_id)) return None def run(self, line, help_disp=False): """ Wrapper function for new command main function :param line: command line input :type line: string. """ if help_disp: self.parser.print_help() return ReturnCodes.SUCCESS LOGGER.info("Clear Pending Configuration: %s", self.ident['name']) # pylint: disable=unused-variable try: (options, args) = self.rdmc.rdmc_parse_arglist(self, line) except (InvalidCommandLineErrorOPTS, SystemExit): if ("-h" in line) or ("--help" in line): # self.rdmc.ui.printer(self.ident['usage']) return ReturnCodes.SUCCESS else: raise InvalidCommandLineError("Failed to parse options") if args: raise InvalidCommandLineError("Chosen flag doesn't expect additional arguments") # Raise exception if server is in POST if RestHelpers(rdmcObject=self.rdmc).in_post(): raise NoContentsFoundForOperationError("Unable to retrieve resources - " "server might be in POST or powered off") memory_chunk_tasks = self.get_memory_chunk_tasks() self.delete_tasks(memory_chunk_tasks, verbose=True) return ReturnCodes.SUCCESS def definearguments(self, customparser): """ Wrapper function for new command main function :param customparser: command line input :type customparser: parser. """ if not customparser: return self.cmdbase.add_login_arguments_group(customparser) ```
{ "source": "JohnAZoidberg/YoutubeRSS", "score": 3 }
#### File: YoutubeRSS/youtuberss/fetcher.py ```python import json import sqlite3 import requests import converter BASEURL = 'https://www.googleapis.com/youtube/v3' # TODO prevent from running to long and fetch only 50 more than are in the DB class Fetcher: def __init__(self, config_file): with open(config_file) as f: config = json.load(f) api_key = config["api_key"] basefolder = config["flask_root"] self.database_path = config["db_path"] self.api_suffix = '&key=' + api_key self.converturl = basefolder + 'converter/file/' pass def _build_url(self, request): return BASEURL + request + self.api_suffix def _extract_video_info(self, vid, conn): video = {} snippet = vid['snippet'] video["published_date"] = snippet['publishedAt'] video["title"] = snippet['title'] video["id"] = vid['snippet']['resourceId']['videoId'] video["file_url"] = self.converturl + video["id"] video["description"] = snippet['description'] video["url"] = 'https://www.youtube.com/watch?v=' + video["id"] # get size and duration info = self._get_cached_video_info(video["id"], conn) video["length"] = info["size"] video["duration"] = info["duration"] return video def get_data(self, url): itemJson = requests.get(url).json() channel = itemJson['items'][0] podcast = {} podcast["url"] = 'https://www.youtube.com/channel/' + channel['id'] podcast["thumbnail"] = channel['snippet']['thumbnails']['high']['url'] podcast["title"] = channel['snippet']['title'] podcast["description"] = channel['snippet']['description'] upload_playlist = \ channel['contentDetails']['relatedPlaylists']['uploads'] return podcast, upload_playlist def get_channel_data(self, channelId): url = self._build_url('/channels?' + 'part=snippet%2CcontentDetails&id=' + channelId) return self.get_data(url) def get_user_data(self, name): url = self._build_url('/channels?' + 'part=snippet%2CcontentDetails&forUsername=' + name) return self.get_data(url) def get_playlist_data(self, uploadPlaylist): url = self._build_url('/playlists?part=snippet&id=' + uploadPlaylist) itemJson = requests.get(url).json() playlist = itemJson['items'][0]['snippet'] podcast = {} podcast["url"] = 'https://www.youtube.com/playlist?list=' + \ uploadPlaylist podcast["thumbnail"] = playlist['thumbnails']['high']['url'] podcast["title"] = playlist['title'] podcast["description"] = playlist['description'] return podcast, uploadPlaylist def get_videos(self, playlist_id, limit=None): conn = sqlite3.connect(self.database_path) conn.execute(''' CREATE TABLE IF NOT EXISTS videos (id VARCHAR PRIMARY KEY NOT NULL, size VARCHAR NOT NULL, duration INT NOT NULL );''') conn.commit() url = self._build_url('/playlistItems' + '?part=snippet%2CcontentDetails' + '&maxResults=50&playlistId=' + playlist_id) vids = [] newest_date = None next_page = '' counter = 0 limit = None if limit is None else int(limit) while (limit is None or counter < limit): # We are limited to 50 results. # If the user subscribed to more than 50 channels # we have to make multiple requests here # which can only be fetched one after another. data = requests.get(url + next_page).json() vidsBatch = data['items'] for vid in vidsBatch: try: print "VideoId: ", vid['snippet']['resourceId']['videoId'] video = self._extract_video_info(vid, conn) except IOError: continue except: print "VideoId: ", vid['snippet']['resourceId']['videoId'] conn.commit() continue # raise print "VideoId: ", vid['snippet']['resourceId']['videoId'] vids.append(video) if newest_date is None: newest_date = video['published_date'] elif video['published_date'] > newest_date: newest_date = video['published_date'] counter += 1 if limit is not None and counter >= limit: break try: # loop until there are no more pages next_page = '&pageToken=' + data['nextPageToken'] except KeyError: break conn.commit() conn.close() return vids, newest_date def _get_cached_video_info(self, video_id, conn): cur = conn.execute('''SELECT id, size, duration FROM videos WHERE id = ?''', (video_id,)) video = cur.fetchone() if video is None: info = converter.get_video_info(video_id, action="size") conn.execute( '''INSERT INTO videos (id, size, duration) VALUES (?, ?, ?)''', (video_id, info['size'], info["duration"]) ) return info else: return {"id": video_id, "size": video[1], "duration": video[2]} ```
{ "source": "johnb30/atlas", "score": 4 }
#### File: atlas/page/connectors.py ```python import datetime def add_entry(collection, text, title, url, date, website, lang): """ Function that creates the dictionary of content to add to a MongoDB instance and inserts the information into an external data store. Parameters ---------- collection : pymongo Collection. Collection within MongoDB that in which results are stored. text : String. Text from a given webpage. text_feats : Dict. Features returned by the hermes API. title : String. Title of the news story. url : String. URL of the webpage from which the content was pulled. date : String. Date pulled from the RSS feed. website : String. Nickname of the site from which the content was pulled. Returns ------- object_id : String """ to_insert = make_entry(collection, text, title, url, date, website, lang) object_id = collection.insert(to_insert) return object_id def make_entry(collection, text, title, url, date, website, lang): """ Function that creates the dictionary of content to add to an external data store. Parameters ---------- text : String. Text from a given webpage. title : String. Title of the news story. url : String. URL of the webpage from which the content was pulled. date : String. Date pulled from the RSS feed. website : String. Nickname of the site from which the content was pulled. Returns ------- to_inser : Dictionary. Dictionary of text and other content. """ if lang == 'arabic': toInsert = {"url": url, "title": title, "source": website, "date": date, "date_added": datetime.datetime.utcnow(), "content_ar": text, "content_en": '', "stanford": 0, "geo": 0, "language": lang} elif lang == 'english': trees = [] stanford_coded = 0 geo_info = {} topic_info = {} full_stanford = {} toInsert = {"url": url, "title": title, "source": website, "date": date, "date_added": datetime.datetime.utcnow(), "content_en": text, "content_ar": '', "stanford": stanford_coded, "geo_info": geo_info, "topic_info": topic_info, "full_stanford": full_stanford, "parsed_sents": trees, "language": lang} return toInsert ``` #### File: atlas/rss/utilities.py ```python import glob import os import pika import redis from ConfigParser import ConfigParser def make_redis(host='localhost'): r = redis.StrictRedis(host=host, port=6379, db=0) return r def make_queue(host='localhost'): connection = pika.BlockingConnection(pika.ConnectionParameters( host=host)) channel = connection.channel() channel.queue_declare(queue='scraper_queue', durable=True) return channel def parse_config(): """Function to parse the config file.""" config_file = glob.glob('config.ini') if config_file: print 'Found a config file in working directory' else: cwd = os.path.abspath(os.path.dirname(__file__)) config_file = os.path.join(cwd, 'default_config.ini') print 'No config found. Using default.' config_dict = dict() parser = ConfigParser(allow_no_value=True) parser.read(config_file) for section in parser.sections(): for option in parser.options(section): config_dict[option] = parser.get(section, option) # handle special case of URL 'proxies' comma delimited list plist = config_dict.get('proxy_list') config_dict['proxy_list'] = plist.split(',') if type(plist) is str else [] return config_dict ```
{ "source": "johnb30/mordecai", "score": 2 }
#### File: mordecai/resources/easter_egg.py ```python from flask.ext.restful import Resource output = """ _ _ _ _ _ _ _ _ _ /\_\/\_\ _ /\ \ /\ \ /\ \ /\ \ /\ \ / /\ /\ \ / / / / //\_\ / \ \ / \ \ / \ \____ / \ \ / \ \ / / \ \ \ \ /\ \/ \ \/ / // /\ \ \ / /\ \ \ / /\ \_____\ / /\ \ \ / /\ \ \ / / /\ \ /\ \_\ / \____\__/ // / /\ \ \ / / /\ \_\ / / /\/___ // / /\ \_\ / / /\ \ \ / / /\ \ \ / /\/_/ / /\/________// / / \ \_\ / / /_/ / // / / / / // /_/_ \/_/ / / / \ \_\ / / / \ \ \ / / / / / /\/_// / // / / / / // / /__\/ // / / / / // /____/\ / / / \/_/ / / /___/ /\ \ / / / / / / / / // / / / / // / /_____// / / / / // /\____\/ / / / / / /_____/ /\ \ / / / / / / / / // / /___/ / // / /\ \ \ \ \ \__/ / // / /______ / / /________ / /_________/\ \ \ ___/ / /__ \/_/ / / // / /____\/ // / / \ \ \ \ \___\/ // / /_______\/ / /_________\/ / /_ __\ \_\/\__\/_/___\ \/_/ \/_________/ \/_/ \_\/ \/_____/ \/__________/\/____________/\_\___\ /____/_/\/_________/ "She may not look like much, but she's got it where it counts, kid. I've made a lot of special modifications myself." """ class EasterEgg(Resource): def get(self): return output ``` #### File: mordecai/resources/utilities.py ```python from __future__ import print_function from __future__ import unicode_literals import os import sys import glob from mitie import * from elasticsearch_dsl import Search from ConfigParser import ConfigParser from elasticsearch import Elasticsearch from elasticsearch_dsl.query import MultiMatch # read in config file __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) config_file = glob.glob(os.path.join(__location__, '../config.ini')) parser = ConfigParser() parser.read(config_file) mitie_directory = parser.get('Locations', 'mitie_directory') mitie_ner_model = parser.get('Locations', 'mitie_ner_model') def setup_mitie(): sys.path.append(mitie_directory) ner_model = named_entity_extractor(mitie_ner_model) return ner_model def setup_es(): try: if 'Server' in parser.sections(): es_ip = parser.get('Server', 'geonames') else: es_ip = os.environ['ELASTIC_PORT_9200_TCP_ADDR'] es_url = 'http://{}:{}/'.format(es_ip, '9200') CLIENT = Elasticsearch(es_url) S = Search(CLIENT) return S except Exception as e: print('Problem parsing config file. {}'.format(e)) def talk_to_mitie(text, ner_model): # Function that accepts text to MITIE and gets entities and HTML in response text = text.encode("utf-8") tokens = tokenize(text) tokens.append(' x ') # eventually, handle different NER models. entities = ner_model.extract_entities(tokens) out = [] for e in entities: range = e[0] tag = e[1] score = e[2] entity_text = str(" ").join(tokens[i] for i in range) out.append({u'tag': unicode(tag), u'text': entity_text, u'score': score}) for e in reversed(entities): range = e[0] tag = e[1] newt = tokens[range[0]] if len(range) > 1: for i in range: if i != range[0]: newt += str(' ') + tokens[i] newt = (str('<span class="mitie-') + tag + str('">') + newt + str('</span>')) tokens = tokens[:range[0]] + [newt] + tokens[(range[-1] + 1):] del tokens[-1] html = str(' ').join(tokens) htmlu = unicode(html.decode("utf-8")) return {"entities": out, "html": htmlu} def mitie_context(text, ner_model): # Function that accepts text to MITIE and returns entities # (and +/- 3 words of context) text = text.encode("utf-8") tokens = tokenize(text) # eventually, handle different NER models. entities = ner_model.extract_entities(tokens) out = [] for e in entities: range = e[0] tag = e[1] score = e[2] entity_text = str(" ").join(tokens[i] for i in range) beg_token = min(range) end_token = max(range) context = [] for i in [3, 2, 1]: try: context.append(tokens[beg_token - i]) except: pass try: context.append(tokens[end_token + i]) except: pass out.append({u'tag': unicode(tag), u'text': entity_text, u'score': score, u'context': context}) return {"entities": out} def query_geonames(conn, placename, country_filter): country_lower = [x.lower() for x in country_filter] q = MultiMatch(query=placename, fields=['asciiname', 'alternativenames']) res = conn.filter('term', country_code3=country_lower).query(q).execute() out = {'hits': {'hits': []}} keys = [u'admin1_code', u'admin2_code', u'admin3_code', u'admin4_code', u'alternativenames', u'asciiname', u'cc2', u'coordinates', u'country_code2', u'country_code3', u'dem', u'elevation', u'feature_class', u'feature_code', u'geonameid', u'modification_date', u'name', u'population', u'timzeone'] for i in res: i_out = {} for k in keys: i_out[k] = i[k] out['hits']['hits'].append(i_out) return out # e.g.: query_geonames("Aleppo", ["IRQ", "SYR"]) def query_geonames_featureclass(conn, placename, country_filter, feature_class): country_lower = [x.lower() for x in [country_filter]] feature_lower = [x.lower() for x in feature_class] q = MultiMatch(query=placename, fields=['asciiname', 'alternativenames']) res = conn.filter('term', country_code3=country_lower).filter('term', feature_class=feature_lower).query(q).execute() out = {'hits': {'hits': []}} keys = [u'admin1_code', u'admin2_code', u'admin3_code', u'admin4_code', u'alternativenames', u'asciiname', u'cc2', u'coordinates', u'country_code2', u'country_code3', u'dem', u'elevation', u'feature_class', u'feature_code', u'geonameid', u'modification_date', u'name', u'population', u'timzeone'] for i in res: i_out = {} for k in keys: i_out[k] = i[k] out['hits']['hits'].append(i_out) return out # e.g.: query_geonames_featureclass("Aleppo", ["IRQ", "SYR"], ["P"]) ```
{ "source": "johnb30/petrarch", "score": 3 }
#### File: petrarch/petrarch/utilities.py ```python from __future__ import print_function from __future__ import unicode_literals import os import logging import corenlp import dateutil.parser import PETRglobals from collections import defaultdict, Counter def stanford_parse(event_dict): logger = logging.getLogger('petr_log') # What is dead can never die... print("\nSetting up StanfordNLP. The program isn't dead. Promise.") logger.info('Setting up StanfordNLP') core = corenlp.StanfordCoreNLP(PETRglobals.stanfordnlp, properties=_get_data('data/config/', 'petrarch.properties'), memory='2g') total = len(list(event_dict.keys())) print( "Stanford setup complete. Starting parse of {} stories...".format(total)) logger.info( 'Stanford setup complete. Starting parse of {} stories.'.format(total)) for i, key in enumerate(event_dict.keys()): if (i / float(total)) * 100 in [10.0, 25.0, 50, 75.0]: print('Parse is {}% complete...'.format((i / float(total)) * 100)) for sent in event_dict[key]['sents']: logger.info('StanfordNLP parsing {}_{}...'.format(key, sent)) sent_dict = event_dict[key]['sents'][sent] if len(sent_dict['content']) > 512 or len( sent_dict['content']) < 64: logger.warning( '\tText length wrong. Either too long or too short.') pass else: try: stanford_result = core.raw_parse(sent_dict['content']) s_parsetree = stanford_result['sentences'][0]['parsetree'] if 'coref' in stanford_result: sent_dict['coref'] = stanford_result['coref'] # TODO: To go backwards you'd do str.replace(' ) ', ')') sent_dict['parsed'] = _format_parsed_str(s_parsetree) except Exception as e: print('Something went wrong. ¯\_(ツ)_/¯. See log file.') logger.warning( 'Error on {}_{}. ¯\_(ツ)_/¯. {}'.format(key, sent, e)) print('Done with StanfordNLP parse...\n\n') logger.info('Done with StanfordNLP parse.') return event_dict def story_filter(story_dict, story_id): """ One-a-story filter for the events. There can only be only one unique (DATE, SRC, TGT, EVENT) tuple per story. Parameters ---------- story_dict: Dictionary. Story-level dictionary as stored in the main event-holding dictionary within PETRARCH. story_id: String. Unique StoryID in standard PETRARCH format. Returns ------- filtered: Dictionary. Holder for filtered events with the format {(EVENT TUPLE): {'issues': [], 'ids': []}} where the 'issues' list is optional. """ filtered = defaultdict(dict) story_date = story_dict['meta']['date'] for sent in story_dict['sents']: sent_dict = story_dict['sents'][sent] sent_id = '{}_{}'.format(story_id, sent) if 'events' in sent_dict: events = story_dict['sents'][sent]['events'] for event in events: # do not print unresolved agents try: if event[0][0] != '-' and event[1][0] != '-': alist = [story_date] alist.extend(event) event_tuple = tuple(alist) filtered[event_tuple] if 'issues' in sent_dict: filtered[event_tuple]['issues'] = Counter() issues = sent_dict['issues'] for issue in issues: filtered[event_tuple]['issues'][ issue[0]] += issue[1] # Will keep track of this info, but not necessarily write it # out filtered[event_tuple]['ids'] = [] filtered[event_tuple]['ids'].append(sent_id) except IndexError: pass else: pass return filtered def _format_parsed_str(parsed_str): parsed = parsed_str.split('\n') parsed = [line.strip() + ' ' for line in [line1.strip() for line1 in parsed if line1] if line] parsed = [line.replace(')', ' ) ').upper() for line in parsed] treestr = ''.join(parsed) return treestr def _format_datestr(date): datetime = dateutil.parser.parse(date) date = '{}{:02}{:02}'.format(datetime.year, datetime.month, datetime.day) return date def _get_data(dir_path, path): """Private function to get the absolute path to the installed files.""" cwd = os.path.abspath(os.path.dirname(__file__)) joined = os.path.join(dir_path, path) out_dir = os.path.join(cwd, joined) return out_dir def _get_config(config_name): cwd = os.path.abspath(os.path.dirname(__file__)) out_dir = os.path.join(cwd, config_name) return out_dir def init_logger(logger_filename): logger = logging.getLogger('petr_log') logger.setLevel(logging.INFO) cwd = os.getcwd() logger_filepath = os.path.join(cwd, logger_filename) fh = logging.FileHandler(logger_filepath, 'w') formatter = logging.Formatter('%(levelname)s %(asctime)s: %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) logger.info('Running') ```
{ "source": "johnbachman/bax_insertion_paper", "score": 2 }
#### File: bid_bim_nbd_release/mcmc/conv_list.py ```python import os import numpy as np import cPickle import sys from bax_insertion.data.parse_bid_bim_nbd_release import nbd_residues import subprocess def save_last_position(mcmc_filename, pos_filename): # Get the sampler with open(mcmc_filename) as f: print("Loading %s" % mcmc_filename) (gf, sampler) = cPickle.load(f) # Get last position last_pos = sampler.chain[:,:,-1,:] with open(pos_filename, 'w') as f: # Get a default random meed np.random.seed(1) rs = np.random.get_state() print("Writing position to %s" % pos_filename) cPickle.dump((last_pos, rs), f) # Iterate over the activators for activator in ['Bid', 'Bim']: # Iterate over the NBD residues for nbd_residue in nbd_residues: # Iterate over the replicates for rep_ix, rep_num in enumerate(range(1, 4)): # Iterate over confs for num_confs in range(2, 6): filename_base = 'pt_data1_%s_NBD_%s_r%s_%sconfs' % \ (activator, nbd_residue, rep_num, num_confs) fit_filename = filename_base + '.fit' mcmc_filename = filename_base + '.mcmc' out_filename = filename_base + '.fit.out' err_filename = filename_base + '.fit.err' pos_filename = filename_base + '.fit.pos' posx_filename = pos_filename + 'x' if not os.path.isfile(mcmc_filename): continue # Read the outputfile print("-------") converged = False try: #print("Opening %s" % out_filename) with open(out_filename) as outfile: lines = outfile.readlines() # Search the file backwards for i in xrange(1, len(lines) + 1): if lines[-i].startswith('-- Converged!') or \ lines[-i].startswith('Passes: True'): converged = True break print("%s %s" % (out_filename, "Converged" if converged else "Not converged")) except: print("Could not open %s" % out_filename) # Check for a position file if os.path.isfile(pos_filename): print("Found %s" % pos_filename) position_filename = pos_filename elif os.path.isfile(posx_filename): print("Found %s" % posx_filename) position_filename = posx_filename else: print("Missing %s and %s" % (pos_filename, posx_filename)) save_last_position(mcmc_filename, posx_filename) # If not converged, submit if not converged: if sys.argv[1] == 'qsub': cmd_list = ['qsub', '-b', 'y', '-cwd', '-V', '-o', out_filename, '-e', err_filename, '-pe', 'orte', '32', 'mpirun', 'python', '../../../pt/run_pt.py', fit_filename, '1', position_filename] print ' '.join(cmd_list) subprocess.call(cmd_list) elif sys.argv[1] == 'bsub': cmd_list = ['bsub', '-q', 'parallel', '-n', '10', '-W', '100:00', '-N', '-o', out_filename, '-a', 'openmpi', 'mpirun.lsf', 'python', '-m', 'bax_insertion.pt.run_pt', fit_filename, '1', position_filename] print ' '.join(cmd_list) subprocess.call(cmd_list) else: raise Exception("Invalid scheduler command") ``` #### File: bax_insertion/plots/nbd_bax_analysis.py ```python import csv import itertools import collections from matplotlib import pyplot as plt import numpy as np import scipy.stats import scipy.signal # For low-pass filtering in derivatives function import matplotlib.patches as mpatches import matplotlib.lines as mlines from bax_insertion.util import set_fig_params_for_publication, fontsize, \ format_axis, moving_average from bax_insertion.util.error_propagation import calc_ratio_mean_sd import bax_insertion.util.calculate_error_variance as cev #from bax_insertion.util import fitting #import bax_insertion.plots.titration_fits as tf #from bax_insertion.models.nbd.multiconf import Builder line_colors = {'Bid': 'r', 'Bim': 'b'} dtype_line_colors = {'Release':'r', 'NBD':'g', 'FRET':'b'} line_styles = {1:':', 2:'-', 3:'--'} rep_colors = {1:'r', 2:'g', 3:'b'} # Create lookup dict for sites site_region = dict( map(lambda s: (s, 'nterm'), ['3', '5', '15', '36', '40', '47']) + map(lambda s: (s, 'bh3'), ['54', '62', '68', '79']) + map(lambda s: (s, 'h56'), ['120', '122', '126', '138', '151']) + map(lambda s: (s, 'h9'), ['175', '179', '184', '188'])) # Color code the points based on the region of the protein color_dict = collections.OrderedDict([ ('nterm', 'purple'), ('bh3', 'red'), ('h56', 'green'), ('h9', 'blue')]) def _mean_sd(p_name, builder, pysb_fit): """Given the named parameter and the fit result, get mean and SE.""" p = builder.model.parameters[p_name] p_index = builder.model.parameters.index(p) p_est_index = builder.estimate_params.index(p) p_mean = pysb_fit.params[p_index] cov_x = pysb_fit.result[1] if cov_x is not None: p_sd = np.sqrt(cov_x[p_est_index, p_est_index] * np.var(pysb_fit.residuals)) else: p_sd = np.nan return (p_mean, p_sd) class FitResult(object): """A helper class for returning and displaying fit results. param_dict is a dict mapping parameter name to a tuple of the mean and standard error for the parameter from the fit. """ def __init__(self, builder, activator, nbd_site, rep_index, measurement, param_dict, t, y): self.builder = builder self.activator = activator self.nbd_site = nbd_site self.rep_index = rep_index self.measurement = measurement self.param_dict = param_dict self.t = t self.y = y def param_result_as_string_list(self, param_name): """Useful for making CSV files.""" p_mean = self.param_dict[param_name][0] p_se = self.param_dict[param_name][1] return [self.activator, self.nbd_site, str(self.rep_index), self.measurement, param_name, str(p_mean), str(p_se)] def timecourse_filename(self): return '%s_%s_r%s_%s.csv' % (self.activator, self.nbd_site, \ str(self.rep_index), self.measurement) def plot_all(df, nbd_residues, datatypes, activators=None, replicates=None, file_basename=None, normalize_nbd=False): """Release should be first in the list of datatypes.""" if datatypes[0] != 'Release': raise ValueError("Release should be first in the datatypes list.") # Some definitions # Define some default values if activators is None: activators = ['Bid', 'Bim'] if replicates is None: replicates = (1, 2, 3) num_subplots = len(datatypes) # Labels and titles for each datatype ylabels = {'Release': '% Dye Release', 'NBD': 'F/$F_0$', 'FRET': '% FRET'} # Every mutant gets its own plot for nbd_index, nbd_site in enumerate(nbd_residues): if len(datatypes) == 2: fig_width = 11 elif len(datatypes) == 3: fig_width = 14 fig = plt.figure(figsize=(fig_width, 5)) fig.set_tight_layout(True) # Define the subplot titles titles = {'Release': r'Dye release for NBD-%s-Bax' % nbd_site, 'NBD': 'NBD F/$F_0$ for NBD-%s-Bax' % nbd_site, 'FRET': 'FRET, NBD-%s-Bax' % nbd_site} # Every datatype gets its own subplot for dtype_ix, dtype in enumerate(datatypes): # There is no NBD/FRET curve for WT Bax, so skip if (dtype == 'NBD' and nbd_site == 'WT') or \ (dtype == 'FRET' and nbd_site == 'WT'): continue plt.subplot(1, num_subplots, dtype_ix + 1) # Activators and replicates are separate lines on the same plot for activator in activators: # Iterate over replicates... for i in replicates: # Get the data t = df[(activator, dtype, nbd_site, i, 'TIME')] v = df[(activator, dtype, nbd_site, i, 'VALUE')] # TODO Do the normalization here if desired TODO if normalize_nbd: v = v / v[0] plt.plot(t, v, label='%s Rep %d' % (activator, i), color=line_colors[activator], linestyle=line_styles[i]) plt.xlabel('Time (sec)') plt.ylabel(ylabels[dtype]) plt.title(titles[dtype]) plt.legend(loc='lower right') # Datatype-specific formatting if dtype == 'Release': plt.ylim([0, 100]) if file_basename: plt.savefig('%s_%s.pdf' % (file_basename, nbd_site)) plt.savefig('%s_%s.png' % (file_basename, nbd_site)) def plot_all_by_replicate(df, nbd_residues, datatypes, activators=None, replicates=None, file_basename=None, normalize_nbd=False): """Release should be first in the datatypes list.""" if datatypes[0] != 'Release': raise ValueError("Release should be first in the datatypes list.") # Define some default values if activators is None: activators = ['Bid', 'Bim'] if replicates is None: replicates = (1, 2, 3) # Every mutant gets its own plot for nbd_index, nbd_site in enumerate(nbd_residues): for activator in activators: plt.figure(figsize=(14, 5)) # Each replicate gets its own subplot ax2_list = [] nbd_max = -np.inf nbd_min = np.inf for rep in replicates: # Make the release plot plt.subplot(1, 3, rep) ax1 = plt.gca() ax2 = ax1.twinx() ax2_list.append(ax2) for dtype in datatypes: # Skip WT for NBD and FRET if (dtype == 'NBD' and nbd_site == 'WT') or \ (dtype == 'FRET' and nbd_site == 'WT'): continue # Get the data t = df[(activator, dtype, nbd_site, rep, 'TIME')] v = df[(activator, dtype, nbd_site, rep, 'VALUE')] # Set the axis if dtype == 'NBD': if normalize_nbd: v = v / v[0] ax = ax2 if np.max(v) > nbd_max: nbd_max = np.max(v) if np.min(v) < nbd_min: nbd_min = np.min(v) elif dtype == 'Release' or dtype == 'FRET': ax = ax1 else: raise ValueError("Unknown datatype: %s" % dtype) # Plot the data if dtype == 'FRET': ax.plot(t, v, label='%s, %s' % (activator, dtype), color=dtype_line_colors[dtype], linestyle='', marker='.') else: ax.plot(t, v, label='%s, %s' % (activator, dtype), color=dtype_line_colors[dtype]) # Adjust and label the figure ax1.set_ylim([0, 100]) if 'Release' in datatypes and 'FRET' in datatypes: ax1.set_ylabel('% FRET, % Release') else: ax1.set_ylabel('% Release') ax2.set_xlabel('Time (sec)') ax2.set_ylabel('NBD $F/F_0$') ax2.set_title('NBD-%s-Bax, %s, Rep %d' % (nbd_site, activator, rep)) ax1_lines, ax1_labels = ax1.get_legend_handles_labels() ax2_lines, ax2_labels = ax2.get_legend_handles_labels() ax2.legend(ax1_lines + ax2_lines, ax1_labels + ax2_labels, loc='lower right', prop={'size':8}) plt.xticks([0, 1000, 2000, 3000, 4000]) # Give all plots same range for NBD for ax2 in ax2_list: if not ((dtype == 'NBD' and nbd_site == 'WT') or \ (dtype == 'FRET' and nbd_site == 'WT')): ax2.set_ylim([nbd_min * 0.95, nbd_max * 1.05]) plt.subplots_adjust(wspace=0.4, left=0.06, right=0.95) # Output file, if desired if file_basename: plt.savefig('%s_%s_%s.pdf' % (file_basename, nbd_site, activator)) plt.savefig('%s_%s_%s.png' % (file_basename, nbd_site, activator)) def calc_barplot_width(num_sites, rmarg=0.13, lmarg=0.11): # I found that these numbers worked for a 4 inch wide figure with the # given relative left and right margins and 19 sites. This allows the # same proportions for endpoint plots with different numbers of sites. abs_left = 4 * lmarg abs_right = 4 * rmarg abs_middle = 4 * (1 - lmarg - rmarg) abs_per_site = abs_middle / 19. fig_width = abs_per_site * num_sites + abs_left + abs_right rel_left = abs_left / float(fig_width) rel_right = 1 - (abs_right / float(fig_width)) return (fig_width, rel_left, rel_right) def plot_nbd_endpoints(df, nbd_sites, datatype='NBD', last_n_pts=3, file_basename=None, normalize_nbd=False, activators=None): replicates = range(1, 4) if activators is None: activators = ['Bid', 'Bim'] # Filter out the WT residue from the list, if its there nbd_sites_no_wt = [s for s in nbd_sites if s != 'WT'] # Matrix for storing the endpoints for all mutants, replicates n_endpts = np.zeros((len(nbd_sites_no_wt), len(replicates))) # Figure setup set_fig_params_for_publication() if datatype == 'NBD': if normalize_nbd: yaxis_label = 'NBD F/$F_0$' (fig_width, rel_left, rel_right) = \ calc_barplot_width(len(nbd_sites_no_wt)) else: yaxis_label = 'NBD fluorescence (RFU)' # If we're not normalizing the NBD values, then the additional 0s # will push the axis label off the left-hand side. Therefore we # adjust the left margin accordingly. (fig_width, rel_left, rel_right) = \ calc_barplot_width(len(nbd_sites_no_wt), lmarg=0.13) elif datatype == 'FRET': yaxis_label = '\% FRET' (fig_width, rel_left, rel_right) = \ calc_barplot_width(len(nbd_sites_no_wt)) else: raise Exception('Invalid datatype: %s' % datatype) plt.figure(file_basename, figsize=(fig_width, 1.5), dpi=300) plt.ylabel(yaxis_label, fontsize=fontsize) bar_colors = {'Bid': 'gray', 'Bim': 'black'} # Bar X position offset to center bars when only one activator if len(activators) == 1: offset = 0.5 else: offset = 0 # For both activators... for act_ix, activator in enumerate(activators): # Now iterate over all of the mutants for nbd_index, nbd_site in enumerate(nbd_sites_no_wt): # Iterate over the replicates for this mutant # Note that rep_num is the 1-indexed number of the replicate # (1, 2, 3) whereas the index is the 0-based index into the array # for the replicates (0, 1, 2) for rep_index, rep_num in enumerate(replicates): # Get the release data ny = df[(activator, datatype, nbd_site, rep_num, 'VALUE')].values # Filter out the NaNs, if any # Fill in entry for this replicate with mean over last n pts if normalize_nbd: endpt_vals = np.nanmean(ny[-last_n_pts:] / ny[0]) else: endpt_vals = np.nanmean(ny[-last_n_pts:]) n_endpts[nbd_index, rep_index] = endpt_vals # Bar plot of NBD endpoint plt.bar(np.arange(nbd_index*3 + act_ix, (nbd_index*3) + 1 + act_ix) + offset, np.mean(n_endpts[nbd_index, :]), width=1, color=bar_colors[activator], linewidth=0, ecolor='k', capsize=1.5, yerr=np.std(n_endpts[nbd_index, :], ddof=1)) x_lbound = -1 x_ubound = len(nbd_sites_no_wt) * 3 # Add horizontal gridlines if datatype == 'NBD': plt.hlines(range(0, 6), x_lbound, x_ubound, color='0.85', zorder=1, linewidth=0.5) elif datatype == 'FRET': plt.hlines(0, x_lbound, x_ubound, color='0.85', zorder=1, linewidth=0.5) # Format the plot plt.subplots_adjust(left=rel_left, bottom=0.10, right=rel_right, top=0.94) ax = plt.gca() ax.set_xlim([x_lbound, x_ubound]) ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('left') ax.xaxis.set_tick_params(which='both', labelsize=fontsize, pad=2, length=2, width=0.5) ax.yaxis.set_tick_params(which='both', direction='out', labelsize=fontsize, pad=0, length=2, width=0.5) ax.xaxis.labelpad = 2 ax.yaxis.labelpad = 2 ax.set_xticks(np.arange(1, 1 + len(nbd_sites_no_wt) * 3, 3)) ax.set_xticklabels(nbd_sites_no_wt) # Create legend with rectangles to match colors of bars if len(activators) > 1: bid_patch = mpatches.Patch(color=bar_colors['Bid'], label='cBid') bim_patch = mpatches.Patch(color=bar_colors['Bim'], label='Bim') leg = plt.legend(handles=[bid_patch, bim_patch], bbox_to_anchor=(1.02, 0.5), loc='center left', borderaxespad=0., prop={'size': fontsize}, handlelength=1) leg.draw_frame(False) # Output the file, if desired if file_basename: plt.savefig('%s.pdf' % file_basename) plt.savefig('%s.png' % file_basename) def plot_release_endpoints(df, nbd_sites, normalized_to_wt=False, last_n_pts=3, file_basename=None, activators=None): # Check for nonsense if normalized_to_wt and 'WT' not in nbd_sites: raise ValueError("Cannot normalized to WT release if WT is not in the " "dataset!") replicates = range(1, 4) if activators is None: activators = ['Bid', 'Bim'] # If we're normalizing to WT, filter the WT entry from the site list if normalized_to_wt: nbd_sites_filt = [s for s in nbd_sites if s != 'WT'] else: nbd_sites_filt = nbd_sites # Matrix for storing the endpoints for all mutants, replicates r_endpts = np.zeros((len(nbd_sites_filt), len(replicates))) # Figure setup set_fig_params_for_publication() (fig_width, rel_left, rel_right) = \ calc_barplot_width(len(nbd_sites_filt)) plt.figure(file_basename, figsize=(fig_width, 1.5), dpi=300) # Set the yaxis label according to whether we're normalizing if normalized_to_wt: ylabel_str = r'\% Dye Release' + '\n(normalized to WT)' else: ylabel_str = r'\% Dye Release' plt.ylabel(ylabel_str, fontsize=fontsize, multialignment='center') # Bar colors for the different activators bar_colors = {'Bid': 'gray', 'Bim': 'black'} # Bar X position offset to center bars when only one activator if len(activators) == 1: offset = 0.5 else: offset = 0 # For both activators... for act_ix, activator in enumerate(activators): # Get the wild type release as a baseline, averaging over last n pts if normalized_to_wt: wt_endpts = [] for rep_num in replicates: ry = df[(activator, 'Release', 'WT', rep_num, 'VALUE')].values wt_endpts.append(np.mean(ry[-last_n_pts:])) wt_mean = np.mean(wt_endpts) wt_sd = np.std(wt_endpts, ddof=1) # Now iterate over all of the mutants for nbd_index, nbd_site in enumerate(nbd_sites_filt): # Iterate over the replicates for this mutant # Note that rep_num is the 1-indexed number of the replicate # (1, 2, 3) whereas the index is the 0-based index into the array # for the replicates (0, 1, 2) for rep_index, rep_num in enumerate(replicates): # Get the release data ry = df[(activator, 'Release', nbd_site, rep_num, 'VALUE')].values # Fill in entry for this replicate with mean over last n pts r_endpts[nbd_index, rep_index] = np.mean(ry[-last_n_pts:]) # Bar plot of release endpoint # Calculate percent release relative to wild type rel_mean = np.mean(r_endpts[nbd_index, :]) rel_sd = np.std(r_endpts[nbd_index, :], ddof=1) if normalized_to_wt: (rel_mean, rel_sd) = \ calc_ratio_mean_sd(rel_mean, rel_sd, wt_mean, wt_sd) rel_mean *= 100 rel_sd *= 100 plt.bar(np.arange(nbd_index*3 + act_ix, (nbd_index*3) + 1 + act_ix) + offset, rel_mean, width=1, color=bar_colors[activator], linewidth=0, ecolor='k', capsize=1.5, yerr=rel_sd) # Add horizontal gridlines x_lbound = -1 x_ubound = len(nbd_sites_filt) * 3 # Format the plot plt.subplots_adjust(left=rel_left, bottom=0.10, right=rel_right, top=0.94) ax = plt.gca() ax.set_xlim([x_lbound, x_ubound]) ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('left') ax.xaxis.set_tick_params(which='both', labelsize=fontsize, pad=2, length=2, width=0.5) ax.yaxis.set_tick_params(which='both', direction='out', labelsize=fontsize, pad=0, length=2, width=0.5) ax.xaxis.labelpad = 2 ax.yaxis.labelpad = 2 ax.set_xticks(np.arange(1, 1 + len(nbd_sites_filt) * 3, 3)) ax.set_xticklabels(nbd_sites_filt) if len(activators) > 1: # Create legend with rectangles to match colors of bars bid_patch = mpatches.Patch(color=bar_colors['Bid'], label='cBid') bim_patch = mpatches.Patch(color=bar_colors['Bim'], label='Bim') leg = plt.legend(handles=[bid_patch, bim_patch], bbox_to_anchor=(1.02, 0.5), loc='center left', borderaxespad=0., prop={'size': fontsize}, handlelength=1) leg.draw_frame(False) # Add hlines every 20 percent until the top of the plot is reached (ymin, ymax) = ax.get_ylim() plt.hlines(range(20, int(ymax), 20), x_lbound, x_ubound, color='0.85', zorder=1, linewidth=0.5) # Output the file, if desired if file_basename: plt.savefig('%s.pdf' % file_basename) plt.savefig('%s.png' % file_basename) def plot_initial_rate_fits(df, nbd_sites, activator, num_pts=4, plot=False): replicates = range(1, 4) fit_results =[] # Lists for storing all of the various fits, slopes r_slopes_all = np.zeros((len(nbd_sites), len(replicates))) n_slopes_all = np.zeros((len(nbd_sites), len(replicates))) r_errs_all = np.zeros((len(nbd_sites), len(replicates))) n_errs_all = np.zeros((len(nbd_sites), len(replicates))) n_max_all = np.zeros((len(nbd_sites), len(replicates))) # Iterate over all of the mutants for nbd_index, nbd_site in enumerate(nbd_sites): # Iterate over the replicates for this mutant # Note that rep_num is the 1-indexed number of the replicate # (1, 2, 3) whereas the index is the 0-based index into the array for # the replicates (0, 1, 2) for rep_index, rep_num in enumerate(replicates): # Get the release data rt = df[(activator, 'Release', nbd_site, rep_num, 'TIME')].values ry = df[(activator, 'Release', nbd_site, rep_num, 'VALUE')].values # Fit line to first n pts r_lin = scipy.stats.linregress(rt[0:num_pts], ry[0:num_pts]) # Store the slope of the line r_slope = r_lin[0] r_slopes_all[nbd_index, rep_index] = r_slope r_int = r_lin[1] # Intercept # Uncertainty associated with the slope r_slope_err = r_lin[4] r_errs_all[nbd_index, rep_index] = r_slope_err # Store fit result tb_param_dict = {'Initial rate (first %d pts)' % num_pts : (r_slope, r_slope_err)} fit_results.append(FitResult(None, activator, nbd_site, rep_num, 'Tb release', tb_param_dict, None, None)) # Now do the NBD slope calculation, but ignore the WT (since there # is no NBD label) if nbd_site == 'WT': n_max_all[nbd_index, rep_index] = 0 n_errs_all[nbd_index, rep_index] = 0 n_slopes_all[nbd_index, rep_index] = 0 else: # Get the NBD data nt = df[(activator, 'NBD', nbd_site, rep_num, 'TIME')].values ny = df[(activator, 'NBD', nbd_site, rep_num, 'VALUE')].values # Fit line to first n pts n_lin = scipy.stats.linregress(nt[0:num_pts], ny[0:num_pts]) # Maximum NBD F/F0 n_max_all[nbd_index, rep_index] = np.max(ny) # Slope and intercept n_slope = n_lin[0] n_slopes_all[nbd_index, rep_index] = n_slope n_int = n_lin[1] # Intercept # Uncertainty associated with slope n_slope_err = n_lin[4] n_errs_all[nbd_index, rep_index] = n_slope_err # Store fit result nbd_param_dict = {'Initial rate (first %d pts)' % num_pts : (n_slope, n_slope_err)} fit_results.append(FitResult(None, activator, nbd_site, rep_num, 'NBD', nbd_param_dict, None, None)) if plot: # Make subpanel showing linear fit for release slope plt.figure('%s, NBD-%s-Bax initial rates' % (activator, nbd_site), figsize=(12, 5)) # Dye release slope subplot plt.subplot(1, 2, 1) # Plot the data plt.plot(rt[0:num_pts], ry[0:num_pts], linestyle='', marker='o', color=rep_colors[rep_num]) # Plot the fit plt.plot(rt[0:num_pts], r_int + r_slope * rt[0:num_pts], color=rep_colors[rep_num], label='%s Rep %d' % (activator, rep_num)) plt.title('NBD-%s-Bax, Tb initial rate' % (nbd_site)) plt.legend(loc='lower right') # Make subpanel showing linear fit for NBD slope if plot and nbd_site != 'WT': plt.subplot(1, 2, 2) # Plot the data plt.plot(nt[0:num_pts], ny[0:num_pts], linestyle='', marker='o', color=rep_colors[rep_num]) # Plot the fit plt.plot(nt[0:num_pts], n_int + n_slope * nt[0:num_pts], color=rep_colors[rep_num], label='%s Rep %d' % (activator, rep_num)) plt.xlabel('Time (sec)') plt.ylabel('$F/F_0$') plt.title('NBD-%s-Bax, NBD initial rate' % (nbd_site)) plt.legend(loc='lower right') return fit_results class InitialRateSamples(object): def __init__(self, r_slopes, n_slopes, n_maxes, wt_r_slopes, time): self.r_slopes = r_slopes self.n_slopes = n_slopes self.n_maxes = n_maxes self.time = time self.wt_r_slopes = wt_r_slopes def release_avg_std(self): r_slope_avgs = np.mean(self.r_slopes, axis=2) r_slope_stds = np.std(self.r_slopes, axis=2, ddof=1) return (r_slope_avgs, r_slope_stds) def release_avg_std_wt_normalized(self): if np.any(np.isnan(self.wt_r_slopes)): raise ValueError("Can't normalize to WT because there are " "missing entries for initial WT release " "rates (found NaNs in the matrix).") (wt_r_avgs, wt_r_stds) = self.wt_release_avg_std() (r_slope_avgs, r_slope_stds) = self.release_avg_std() r_norm_avgs = np.zeros(r_slope_avgs.shape) r_norm_stds = np.zeros(r_slope_stds.shape) for act_ix in range(r_slope_avgs.shape[0]): for nbd_index in range(r_slope_avgs.shape[1]): (r_norm_avgs[act_ix, nbd_index], r_norm_stds[act_ix, nbd_index]) = calc_ratio_mean_sd( r_slope_avgs[act_ix, nbd_index], r_slope_stds[act_ix, nbd_index], wt_r_avgs[act_ix], wt_r_stds[act_ix]) return (r_norm_avgs, r_norm_stds) def release_slopes_wt_normalized(self): """Get the release for each individual replicate normalized to the WT release at the timepoint.""" if np.any(np.isnan(self.wt_r_slopes)): raise ValueError("Can't normalize to WT because there are " "missing entries for initial WT release " "rates (found NaNs in the matrix).") (wt_r_avgs, wt_r_stds) = self.wt_release_avg_std() r_slopes_norm = np.zeros(self.r_slopes.shape) for act_ix in range(r_slopes_norm.shape[0]): r_slopes_norm[act_ix] = self.r_slopes[act_ix] / wt_r_avgs[act_ix] return r_slopes_norm def wt_release_avg_std(self): wt_r_avgs = np.mean(self.wt_r_slopes, axis=1) wt_r_stds = np.std(self.wt_r_slopes, axis=1, ddof=1) return (wt_r_avgs, wt_r_stds) def nbd_avg_std(self): n_slope_avgs = np.mean(self.n_slopes, axis=2) n_slope_stds = np.std(self.n_slopes, axis=2, ddof=1) return (n_slope_avgs, n_slope_stds) def nbd_norm_slopes(self): return (self.n_slopes / self.n_maxes) * 100 def nbd_norm_avg_std(self): n_norm_slopes = self.nbd_norm_slopes() n_norm_slope_avgs = np.mean(n_norm_slopes, axis=2) n_norm_slope_stds = np.std(n_norm_slopes, axis=2, ddof=1) return (n_norm_slope_avgs, n_norm_slope_stds) def calc_initial_rate_samples(df, nbd_sites, timepoint_ix=4, normalize_nbd=False): """Get initial NBD/Tb release values from the data at the given timepoint. Returns an instance of InitialRateSamples containing the data at the given timepoint for all of the mutants/replicates. If normalize_nbd is set, then the raw NBD fluorescence data is converted to F/F0 values. """ replicates = range(1, 4) activators = ['Bid', 'Bim'] nbd_sites_filt = [s for s in nbd_sites if s != 'WT'] # Lists for storing all of the various fits, slopes r_slopes = np.zeros((len(activators), len(nbd_sites_filt), len(replicates))) n_slopes = np.zeros((len(activators), len(nbd_sites_filt), len(replicates))) n_maxes = np.zeros((len(activators), len(nbd_sites_filt), len(replicates))) wt_r_slopes = np.zeros((len(activators), len(replicates))) # For both Bid and Bim... for act_ix, activator in enumerate(activators): # Get release data for WT as a reference if 'WT' in nbd_sites: for rep_index, rep_num in enumerate(replicates): ry = df[(activator, 'Release', 'WT', rep_num, 'VALUE')].values wt_r_slopes[act_ix, rep_index] = ry[timepoint_ix] # If we don't have an entry for WT, put a NaN into the matrix else: for rep_index, rep_num in enumerate(replicates): wt_r_slopes[act_ix, rep_index] = ry[timepoint_ix] = np.nan # Iterate over all of the mutants for nbd_index, nbd_site in enumerate(nbd_sites_filt): # Iterate over the replicates for this mutant. Note that rep_num is # the 1-indexed number of the replicate (1, 2, 3) whereas the index # is the 0-based index into the array for the replicates (0, 1, 2) for rep_index, rep_num in enumerate(replicates): # Get the release data rt = df[(activator, 'Release', nbd_site, rep_num, 'TIME')].values ry = df[(activator, 'Release', nbd_site, rep_num, 'VALUE')].values time = rt[timepoint_ix] # Store the y value at the given timepoint r_slopes[act_ix, nbd_index, rep_index] = ry[timepoint_ix] # Get the NBD data nt = df[(activator, 'NBD', nbd_site, rep_num, 'TIME')].values ny = df[(activator, 'NBD', nbd_site, rep_num, 'VALUE')].values # Normalize the NBD data if normalize_nbd: ny = ny / ny[0] f0 = 1.0 else: f0 = ny[0] # Maximum NBD F/F0 # Because NBD-47-Bax actually decreases in fluorescence, we # use the change relative to the minimum. if nbd_site == '47': n_slopes[act_ix, nbd_index, rep_index] = \ f0 - ny[timepoint_ix] n_maxes[act_ix, nbd_index, rep_index] = f0 - np.min(ny) else: n_slopes[act_ix, nbd_index, rep_index] = \ ny[timepoint_ix] - f0 n_maxes[act_ix, nbd_index, rep_index] = np.max(ny) - f0 # Save the results in the initial rate structure irs = InitialRateSamples(r_slopes, n_slopes, n_maxes, wt_r_slopes, time) return irs def plot_initial_rate_samples(df, nbd_sites, timepoint_ix=4, file_basename=None, normalized_to_wt=True): """Plot characteristics of initial rates. """ set_fig_params_for_publication() # Important lists replicates = range(1, 4) activators = ['Bid', 'Bim'] nbd_sites_filt = [s for s in nbd_sites if s != 'WT'] # Get the initial rate data (copy over to local variables for legacy # reasons) irs = calc_initial_rate_samples(df, nbd_sites, timepoint_ix, normalize_nbd=True) if normalized_to_wt: (r_slope_avgs, r_slope_stds) = irs.release_avg_std_wt_normalized() r_slopes = irs.release_slopes_wt_normalized() else: (r_slope_avgs, r_slope_stds) = irs.release_avg_std() r_slopes = irs.r_slopes (n_slope_avgs, n_slope_stds) = irs.nbd_avg_std() n_norm_slopes = irs.nbd_norm_slopes() (n_norm_slope_avgs, n_norm_slope_stds) = irs.nbd_norm_avg_std() time = irs.time # Bar plots of initial points ------------------------------------ fig_names = {'Release': '%s_init_release_bar' % file_basename, 'NBD': '%s_init_nbd_bar' % file_basename} if normalized_to_wt: ylabels = {'Release': 'Dye release at %d sec\n(fold-change over WT)' % time, 'NBD': '\\%% of Max NBD F/$F_0$ at %d sec' % time} else: ylabels = {'Release': '\\%% Dye release at %d sec' % time, 'NBD': '\\%% of Max NBD F/$F_0$ at %d sec' % time} # Make both Release and NBD bar plots for dtype in ['Release', 'NBD']: fig_name = fig_names[dtype] # Get the width of the figure based on the number of sites (fig_width, rel_left, rel_right) = \ calc_barplot_width(len(nbd_sites_filt)) plt.figure(fig_name, figsize=(fig_width, 1.5), dpi=300) plt.ylabel(ylabels[dtype], fontsize=fontsize, multialignment='center') bar_colors = {'Bid': 'gray', 'Bim': 'black'} # Iterate over the activators for act_ix, activator in enumerate(activators): for nbd_index, nbd_site in enumerate(nbd_sites_filt): # Get the appropriate data if dtype == 'Release': yval = r_slope_avgs[act_ix, nbd_index] yerr = r_slope_stds[act_ix, nbd_index] elif dtype == 'NBD': yval = n_norm_slope_avgs[act_ix, nbd_index] yerr = n_norm_slope_stds[act_ix, nbd_index] else: raise ValueError('Unknown datatype: %s' % dtype) # Plot the data plt.bar(range(nbd_index*3 + act_ix, (nbd_index*3) + 1 + act_ix), yval, yerr=yerr, width=1, color=bar_colors[activator], linewidth=0, ecolor='k', capsize=1.5) x_lbound = -1 x_ubound = len(nbd_sites_filt) * 3 # Add line showing wild type plt.hlines(0, x_lbound, x_ubound, linewidth=0.5) plt.subplots_adjust(left=rel_left, bottom=0.10, right=rel_right, top=0.94) # Set bounds ax = plt.gca() ax.set_xlim([x_lbound, x_ubound]) # Format the plot ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('left') ax.xaxis.set_tick_params(which='both', labelsize=fontsize, pad=2, length=2, width=0.5) ax.yaxis.set_tick_params(which='both', direction='out', labelsize=fontsize, pad=0, length=2, width=0.5) ax.xaxis.labelpad = 2 ax.yaxis.labelpad = 2 ax.set_xticks(np.arange(1, 1 + len(nbd_sites_filt) * 3, 3)) ax.set_xticklabels(nbd_sites_filt) # Create legend with rectangles to match colors of bars bid_patch = mpatches.Patch(color=bar_colors['Bid'], label='cBid') bim_patch = mpatches.Patch(color=bar_colors['Bim'], label='Bim') leg = plt.legend(handles=[bid_patch, bim_patch], bbox_to_anchor=(1.02, 0.5), loc='center left', borderaxespad=0., prop={'size': fontsize}, handlelength=1) leg.draw_frame(False) # Output the file, if desired if file_basename: plt.savefig('%s.pdf' % fig_name) plt.savefig('%s.png' % fig_name) # 2D scatter plot of NBD/Tb rates, no normalization ---------------------- for act_ix, activator in enumerate(activators): fig_name = "%s_init_scatter_no_norm_%s" % (file_basename, activator) plt.figure(fig_name, figsize=(2, 2), dpi=300) plt.errorbar(r_slope_avgs[act_ix], n_slope_avgs[act_ix], xerr=r_slope_stds[act_ix], yerr=n_slope_stds[act_ix], marker='o', color='k', markersize=3, linestyle='', capsize=1.5) plt.xlabel('Dye release at %d sec' % time) plt.ylabel('delta F/$F_0$ at %d sec' % time) x_offset = 0.4 y_offset = 0.04 for nbd_index, nbd_site in enumerate(nbd_sites_filt): plt.text(r_slope_avgs[act_ix, nbd_index] + x_offset, n_slope_avgs[act_ix, nbd_index] + y_offset, nbd_site, fontsize=fontsize) ax = plt.gca() ybounds = ax.get_ylim() #plt.vlines(wt_avg, ybounds[0], ybounds[1], linestyle='--') format_axis(ax) plt.subplots_adjust(left=0.17, bottom=0.15) #if file_basename: # plt.savefig('%s.pdf' % fig_name) # 2D scatter plot of NBD/Tb rates, normalized ---------------------------- # Make two separate plots, one for each activator for act_ix, activator in enumerate(activators): fig_name = "%s_init_scatter_norm_%s" % (file_basename, activator) plt.figure(fig_name, figsize=(2, 2), dpi=300) plt.xlabel('Dye release at %d sec\n(fold-change over WT)' % time) plt.ylabel('\\%% of Max NBD F/$F_0$ at %d sec' % time) # Iterate over the sites, plotting one point at a time for nbd_index, nbd_site in enumerate(nbd_sites_filt): # Get color for site based on region pt_color = color_dict[site_region[nbd_site]] # Plot a point on the scatterplot plt.errorbar(r_slope_avgs[act_ix, nbd_index], n_norm_slope_avgs[act_ix, nbd_index], xerr=r_slope_stds[act_ix, nbd_index], yerr=n_norm_slope_stds[act_ix, nbd_index], marker='', color=pt_color, linestyle='', markersize=2, capsize=1) #plt.vlines(wt_avg, np.min(n_slope_avgs), np.max(n_slope_avgs), # linestyle='--') # Filter out the BH3 region data for linear fit x_pts = [] y_pts = [] for nbd_index, nbd_site in enumerate(nbd_sites_filt): # Skip residues in the BH3 region if site_region[nbd_site] == 'bh3': continue # If not in BH3 region, add to list of points for rep_ix, rep_num in enumerate(replicates): x_pts.append(r_slopes[act_ix, nbd_index, rep_ix]) y_pts.append(n_norm_slopes[act_ix, nbd_index, rep_ix]) # Turn the lists into numpy arrays x_pts = np.array(x_pts) y_pts = np.array(y_pts) # Fit the filtered data to a line, allowing free intercept linfit = scipy.stats.linregress(x_pts, y_pts) plt.plot(x_pts, x_pts * linfit[0] + linfit[1], color='k', zorder=1) print linfit # Format the plot ax = plt.gca() format_axis(ax) plt.subplots_adjust(left=0.22, bottom=0.19, right=0.95, top=0.95) ybounds = ax.get_ylim() ax.set_ylim(min(0, ybounds[0]), ybounds[1]) # Create legend with lines to match colors of points n_patch = mlines.Line2D([], [], color=color_dict['nterm'], label='N-term') bh3_patch = mlines.Line2D([], [], color=color_dict['bh3'], label='BH3') a56_patch = mlines.Line2D([], [], color=color_dict['h56'], label='$\\alpha$5-6') a9_patch = mlines.Line2D([], [], color=color_dict['h9'], label='$\\alpha 9$') leg = plt.legend(handles=[n_patch, bh3_patch, a56_patch, a9_patch], loc='lower right', borderaxespad=0., prop={'size': fontsize}, handlelength=2, handletextpad=0.2, labelspacing=0.5) leg.draw_frame(False) # Draw residue number text for BH3 residues only for nbd_index, nbd_site in enumerate(nbd_sites_filt): (x_lbound, x_ubound) = plt.xlim() x_range = x_ubound - x_lbound x_offset = x_range * -0.07 y_offset = 1.15 # Select residues if site_region[nbd_site] == 'bh3': # Get color for site text based on region pt_color = color_dict[site_region[nbd_site]] # Draw text plt.text(r_slope_avgs[act_ix, nbd_index] + x_offset, n_norm_slope_avgs[act_ix, nbd_index] + y_offset, nbd_site, color=pt_color, fontsize=fontsize) # Save the fig, if desired if file_basename: plt.savefig('%s.pdf' % fig_name) plt.savefig('%s.png' % fig_name) # Plot of all replicates for act_ix, activator in enumerate(activators): plt.figure(activator) for nbd_index, nbd_site in enumerate(nbd_sites_filt): for rep_ix, rep_num in enumerate(replicates): pt_color = color_dict[site_region[nbd_site]] # Plot point plt.plot(r_slopes[act_ix, nbd_index, rep_ix], n_norm_slopes[act_ix, nbd_index, rep_ix], marker='o', linestyle='', color=pt_color) return def plot_rank_changes(means1, sds1, means2, sds2, nbd_sites): ubounds1 = means1 + sds1 lbounds1 = means1 - sds1 ubounds2 = means2 + sds2 lbounds2 = means2 - sds2 ubounds = np.vstack([ubounds1, ubounds2]).T lbounds = np.vstack([lbounds1, lbounds2]).T means = np.vstack([means1, means2]).T plt.figure() num_colors = ubounds.shape[0] colors = color_list = plt.cm.Set3(np.linspace(0, 1, num_colors)) for i in range(ubounds.shape[0]): if nbd_sites[i] in ['175', '179', '184', '188']: #if nbd_sites[i] in ['3', '5', '15', '36', '40', '47']: color='k' else: color=colors[i] plt.fill_between([1, 2], ubounds[i], lbounds[i], color=color, alpha=0.2) plt.plot([1, 2], means[i], color=color) plt.text(0.95, means[i, 0], nbd_sites[i], color='k', fontsize=8) plt.text(2.05, means[i, 1], nbd_sites[i], color='k', fontsize=8) plt.xlim(0.5, 2.5) def plot_bid_vs_bim_release(df, nbd_sites, dtype='Release', file_basename=None): replicates = range(1, 4) activators = ['Bid', 'Bim'] # Get the length of the timecourses for nbd_index, nbd_site in enumerate(nbd_sites): color_ix = 0 for act_ix, activator in enumerate(activators): # Initialization for WT wt_slice = df[activator][dtype]['WT'] wt_numpts = wt_slice.shape[0] wt_y = np.zeros((wt_numpts, len(replicates))) # Initialization for mutant mut_slice = df[activator][dtype][nbd_site] mut_numpts = mut_slice.shape[0] mut_y = np.zeros((mut_numpts, len(replicates))) # Iterate over reps and get data for rep_ix, rep_num in enumerate(replicates): # Only get the time coordinates for the first rep if rep_ix == 0: wt_time = wt_slice[rep_num]['TIME'].values mut_time = mut_slice[rep_num]['TIME'].values wt_y[:, rep_ix] = wt_slice[rep_num]['VALUE'].values mut_y[:, rep_ix] = mut_slice[rep_num]['VALUE'].values # Now get the averages and SDs wt_avg = np.mean(wt_y, axis=1) wt_sd = np.std(wt_y, axis=1, ddof=1) wt_ubound = wt_avg + wt_sd wt_lbound = wt_avg - wt_sd mut_avg = np.mean(mut_y, axis=1) mut_sd = np.std(mut_y, axis=1, ddof=1) mut_ubound = mut_avg + mut_sd mut_lbound = mut_avg - mut_sd #num_colors = 4 #colors = plt.cm.Set3(np.linspace(0, 1, num_colors)) colors = ['r', 'm', 'b', 'g'] fig_name = 'bid_bim_tc_comp_%s' % nbd_site # Plot the ratio plt.figure(fig_name, figsize=(10, 10)) plt.subplot(1, 2, 1) (ratio_avg, ratio_sd) = \ calc_ratio_mean_sd(mut_avg, mut_sd, wt_avg, wt_sd) plt.plot(wt_time, ratio_avg, color=colors[color_ix], label=activator) plt.fill_between(wt_time, ratio_avg + ratio_sd, ratio_avg - ratio_sd, alpha=0.5, color=colors[color_ix]) plt.legend(loc='upper right', fontsize=10) plt.ylim(0, 5) # Plot the raw timecourses for WT and mutant # Plot the mutant plt.subplot(1, 2, 2) plt.plot(wt_time, mut_avg, color=colors[color_ix], label='%s, NBD-%sC-Bax' % (activator, nbd_site)) plt.fill_between(wt_time, mut_ubound, mut_lbound, color=colors[color_ix], alpha=0.2) color_ix += 1 # Plot the WT plt.plot(wt_time, wt_avg, color=colors[color_ix], label='%s, WT Bax' % activator) plt.fill_between(wt_time, wt_ubound, wt_lbound, color=colors[color_ix], alpha=0.3) plt.legend(loc='lower right', fontsize=10) color_ix += 1 if file_basename: plt.savefig('%s_%s.pdf' % (file_basename, fig_name)) plt.savefig('%s_%s.png' % (file_basename, fig_name)) def calc_release_peaks(df, nbd_sites, activators=None, replicates=None, window=1, csv_filename=None): """Measure the lag phase of the release data. Takes the derivative of the release data for the given set of activators, NBD sites, and replicates, and gets the time associated with the peak of the derivative. Returns ------- Dictionary containing keys of the form (activator, nbd_site, replicate) mapped to the times of the maximum rate of release. """ # Set some defaults if activators is None: activators = ['Bid', 'Bim'] if replicates is None: replicates = range(1, 4) peak_dict = collections.OrderedDict() # Initialize the filter b, a = scipy.signal.butter(1, 0.2) for activator, nbd_site, rep_index in \ itertools.product(activators, nbd_sites, replicates): key = (activator, nbd_site, rep_index) # Get the data rt = df[(activator, 'Release', nbd_site, rep_index, 'TIME')].values ry = df[(activator, 'Release', nbd_site, rep_index, 'VALUE')].values # Apply the filter # Filter the timecourse r_filt = scipy.signal.filtfilt(b, a, ry) r_avg = moving_average(r_filt, n=window) # Take the derivative r_diff = np.diff(r_avg) # When we take the derivative, the size of the array shrinks by # one, because we are calculating the differences between neighboring # elements. So if the data is [0, 1, 3, 4, 5], the derivatives will # be [1, 2, 1, 1], and the maximum of the derivative array will be at # index 1, which corresponds to the difference of two and the entry of # three in the original array. If we adopt the convention that the # index to use for the maximum slope is the latter of the two values # used in calculating the difference, this means we need to add one to # the index associated with the maximum value of the diff array. r_max_tpt = np.argmax(r_diff) + 1 peak_dict[key] = rt[r_max_tpt] if csv_filename: with open(csv_filename, 'w') as csv_file: csv_writer = csv.writer(csv_file, delimiter=',') for key, value in peak_dict.iteritems(): line = list(key) line.append(value) csv_writer.writerow(line) return peak_dict def plot_example_derivatives(df, activator, nbd_site, rep_index, window=1, normalize_nbd=False, plot_filename=None, plot_tb_peak=False): set_fig_params_for_publication() # Create an order 3 lowpass butterworth filter. b, a = scipy.signal.butter(1, 0.2) # RELEASE DERIVATIVE rt = df[(activator, 'Release', nbd_site, rep_index, 'TIME')].values ry = df[(activator, 'Release', nbd_site, rep_index, 'VALUE')].values # Filter the timecourse r_filt = scipy.signal.filtfilt(b, a, ry) r_avg = moving_average(r_filt, n=window) # Take the derivative r_diff = np.diff(r_avg) # Peak release derivative r_max_tpt = np.argmax(r_diff) + 1 peak_pt = rt[r_max_tpt] # NBD DERIVATIVE nt = df[(activator, 'NBD', nbd_site, rep_index, 'TIME')].values ny = df[(activator, 'NBD', nbd_site, rep_index, 'VALUE')].values # Normalize NBD to F/F0 if normalize_nbd: ny = ny / float(ny[0]) # Filter n_filt = scipy.signal.filtfilt(b, a, ny) n_avg = moving_average(n_filt, n=window) # Take derivative n_diff = np.diff(n_avg) # PLOT fig = plt.figure(figsize=(1.5, 1.5), dpi=300) ax = fig.gca() n_diff_norm = n_diff / np.max(np.abs(n_diff)) r_diff_norm = r_diff / np.max(np.abs(r_diff)) ax.plot(nt[1+window-1:], n_diff_norm, label=r'$\frac{d}{dt}$ NBD') ax.plot(rt[1+window-1:], r_diff_norm, color='r', label=r'$\frac{d}{dt}$ Tb') ax.set_xlabel('Time (sec)') ax.set_ylabel(r'\% Max Rate') #ax.set_title('%s, NBD-%s-Bax normalized derivative' % (activator, nbd_site)) ax.set_ylim(-0.25, 1.1) (xmin, xmax) = (0, 2000) ax.set_xlim(xmin, xmax) plt.hlines(0, xmin, xmax, linestyle='-') plt.subplots_adjust(left=0.27, bottom=0.19) plt.legend(loc='upper right', fontsize=fontsize, frameon=False) ymin, ymax = plt.ylim() format_axis(ax) if plot_tb_peak: plt.vlines(peak_pt, ymin, ymax, color='gray', alpha=0.5) if plot_filename: plt.savefig('%s.pdf' % plot_filename) plt.savefig('%s.png' % plot_filename, dpi=300) def plot_derivatives(df, nbd_sites, normalize_nbd=False): replicates = range(1, 4) num_pts = 4 window = 1 # For moving average activators = ['Bid', 'Bim'] # Create an order 3 lowpass butterworth filter. b, a = scipy.signal.butter(1, 0.2) for nbd_index, nbd_site in enumerate(nbd_sites): for activator in activators: # We store the list of timepoints where the release derivative # reaches its peak so that we can plot lines for all three with # the same upper and lower y-coordinates. peak_pts = [] for rep_index in replicates: rt = df[(activator, 'Release', nbd_site, rep_index, 'TIME')].values ry = df[(activator, 'Release', nbd_site, rep_index, 'VALUE')].values # Filter the timecourse r_filt = scipy.signal.filtfilt(b, a, ry) r_avg = moving_average(r_filt, n=window) # Take the derivative r_diff = np.diff(r_avg) # See comment in calc_release_peaks, above r_max_tpt = np.argmax(r_diff) + 1 peak_pts.append(rt[r_max_tpt]) # Calculate max NBD slope, but not for WT if nbd_site != 'WT': nt = df[(activator, 'NBD', nbd_site, rep_index, 'TIME')].values ny = df[(activator, 'NBD', nbd_site, rep_index, 'VALUE')].values # Normalize NBD to F/F0 if normalize_nbd: ny = ny / float(ny[0]) # Filter n_filt = scipy.signal.filtfilt(b, a, ny) n_avg = moving_average(n_filt, n=window) # Take derivative n_diff = np.diff(n_avg) # Terbium subplot plt.figure('%s, NBD-%s-Bax derivative' % (activator, nbd_site), figsize=(12, 5)) plt.subplot(1, 2, 1) plt.plot(rt[1+window-1:], r_diff, color=rep_colors[rep_index], label='%s Rep %d' % (activator, rep_index)) plt.ylabel('dRel/dt (% rel $sec^{-1}$)') plt.title('%s, NBD-%s-Bax, Tb derivative' % (activator, nbd_site)) plt.legend(loc='upper right') if nbd_site != 'WT': # NBD subplot plt.subplot(1, 2, 2) plt.plot(nt[1+window-1:], n_diff, color=rep_colors[rep_index], label='%s Rep %d' % (activator, rep_index)) plt.xlabel('Time (sec)') plt.ylabel('dNBD/dt ($F/F_0\ sec^{-1}$)') plt.title('%s, NBD-%s-Bax, NBD derivative' % (activator, nbd_site)) plt.legend(loc='upper right') # Plot normalized derivatives plt.figure('%s, NBD-%s-Bax normalized derivative' % (activator, nbd_site)) n_diff_norm = n_diff / np.max(np.abs(n_diff)) r_diff_norm = r_diff / np.max(np.abs(r_diff)) plt.plot(rt[1+window-1:], r_diff_norm, color=rep_colors[rep_index], linestyle=line_styles[2], label='%s Rep %d' % (activator, rep_index)) plt.plot(nt[1+window-1:], n_diff_norm, color=rep_colors[rep_index], linestyle=line_styles[3]) plt.xlabel('Time (sec)') plt.ylabel('% max rate') plt.title('%s, NBD-%s-Bax normalized derivative' % (activator, nbd_site)) plt.legend(loc='upper right') # Add vertical lines to the normalized derivative plot plt.figure('%s, NBD-%s-Bax normalized derivative' % (activator, nbd_site)) ymin, ymax = plt.ylim() plt.vlines(peak_pts, ymin, ymax) # Call tight_layout for the Tb/NBD 2-panel figure plt.figure('%s, NBD-%s-Bax derivative' % (activator, nbd_site)) plt.tight_layout() def welch_t_test(means1, sds1, means2, sds2): n1 = 3 n2 = 3 t_numer = means1 - means2 sq_sum = ((sds1**2)/n1) + ((sds2**2)/n2) t_denom = np.sqrt(sq_sum) t = t_numer / t_denom print t v_numer = sq_sum ** 2 v1 = n1 - 1.0 v2 = n2 - 1.0 v_denom = ((sds1 ** 4) / ((n1**2) * v1)) / ((sds2 ** 4) / ((n2**2) * v2)) v = v_numer / v_denom print v p_val = scipy.stats.t.sf(t, v) print p_val def student_t_test(means1, sds1, means2, sds2, n): n = float(n) t_numer = np.abs(means1 - means2) sx1x2 = np.sqrt(0.5*(sds1**2 + sds2**2)) t_denom = sx1x2 * np.sqrt(2/n) t = t_numer / t_denom print t p_val = scipy.stats.t.sf(t, n - 1) print p_val * 2 return p_val * 2 # -- Model fits -- params_dict = {'c1_to_c2_k': 1e-4, 'c1_scaling': 2, 'c0_to_c1_k': 2e-3} def plot_2conf_fits(df, nbd_sites, activator, dtype='NBD', replicates=None, normalize_nbd=False): if replicates is None: replicates = range(1, 4) fit_results = [] # Filter out the WT residue, if present in the list nbd_sites_filt = [s for s in nbd_sites if s != 'WT'] for nbd_index, nbd_site in enumerate(nbd_sites_filt): k1_means = [] k1_sds = [] for rep_index in replicates: nt = df[(activator, dtype, nbd_site, rep_index, 'TIME')].values ny = df[(activator, dtype, nbd_site, rep_index, 'VALUE')].values # Normalize NBD to F/F0 if dtype == 'NBD' and normalize_nbd: ny = ny / ny[0] plt.figure('%s, NBD-%s-Bax Fits' % (activator, nbd_site), figsize=(6, 5)) builder = Builder(params_dict=params_dict) builder.build_model_multiconf(2, ny[0], normalized_data=True) # Rough guesses for parameters # Guess that the final scaling is close to the final data value builder.model.parameters['c1_scaling'].value = ny[-1] # Rough guess for the timescale builder.model.parameters['c0_to_c1_k'].value = 1e-3 pysb_fit = fitting.fit_pysb_builder(builder, 'NBD', nt, ny) plt.plot(nt, ny, linestyle='', marker='.', color=rep_colors[rep_index]) plt.plot(nt, pysb_fit.ypred, label='%s Rep %d' % (activator, rep_index), color=rep_colors[rep_index]) plt.xlabel('Time (sec)') plt.ylabel('$F/F_0$') plt.title('NBD $F/F_0$ fits, NBD-%s-Bax' % nbd_site) plt.legend(loc='lower right') # Calculate stderr of parameters (doesn't account for covariance) (k1_mean, k1_sd) = _mean_sd('c0_to_c1_k', builder, pysb_fit) k1_means.append(k1_mean) k1_sds.append(k1_sd) (c1_mean, c1_sd) = _mean_sd('c1_scaling', builder, pysb_fit) param_dict = {'c0_to_c1_k': (k1_mean, k1_sd), 'c1_scaling': (c1_mean, c1_sd)} fit_results.append(FitResult(builder, activator, nbd_site, rep_index, dtype, param_dict, nt, pysb_fit.ypred)) plt.figure('%s, NBD-%s-Bax Fits' % (activator, nbd_site)) plt.tight_layout() plt.figure("Fitted k1") nreps = len(replicates) plt.bar(range(nbd_index*(nreps+1), (nbd_index*(nreps+1)) + nreps), k1_means, yerr=k1_sds, width=1, color='r', ecolor='k') num_sites = len(nbd_sites_filt) plt.figure("Fitted k1") plt.ylabel('Fitted k1 ($sec^{-1}$)') ax = plt.gca() ax.set_xticks(np.arange(1.5, 1.5 + num_sites * 4, 4)) ax.set_xticklabels(nbd_sites_filt) return fit_results def plot_3conf_fits(df, nbd_sites, activator, dtype='NBD', replicates=None, normalize_nbd=False, do_plot=True): # Filter out the WT residue, if present in the list nbd_sites_filt = [s for s in nbd_sites if s != 'WT'] if replicates is None: replicates = range(1, 4) fit_results = [] for nbd_index, nbd_site in enumerate(nbd_sites_filt): k1_means = [] k2_means = [] k1_sds = [] k2_sds = [] for rep_index in replicates: print("Fitting %s, %s, %s" % (activator, nbd_site, rep_index)) rt = df[(activator, 'Release', nbd_site, rep_index, 'TIME')].values ry = df[(activator, 'Release', nbd_site, rep_index, 'VALUE')].values nt = df[(activator, dtype, nbd_site, rep_index, 'TIME')].values ny = df[(activator, dtype, nbd_site, rep_index, 'VALUE')].values # Filter out any Nans nt_nonan = nt[~np.isnan(ny)] ny_nonan = ny[~np.isnan(ny)] # Normalize NBD to F/F0 if dtype == 'NBD' and normalize_nbd: ny_nonan = ny_nonan / ny_nonan[0] """ plt.figure() plt.plot(rt, ry) plt.figure() plt.plot(nt, ny) plt.figure() plt.plot(nt, ry / ny) ry_norm = (ry - np.min(ry)) / (np.max(ry) - np.min(ry)) ny_norm = (ny - np.min(ny)) / (np.max(ny) - np.min(ny)) plt.figure() plt.plot(rt, ry_norm, color='g') plt.plot(rt, ny_norm, color='b') """ # Fit the release timecourse twoexp = tf.TwoExpLinear() #twoexp = tf.TwoExp() params = twoexp.fit_timecourse(rt, ry) # Set up the NBD/FRET model builder = Builder(params_dict=params_dict) builder.build_model_multiconf(3, ny_nonan[0], normalized_data=True) # Add some initial guesses # Guess that the scaling value for the final conformation is close # to the final data value builder.model.parameters['c2_scaling'].value = ny_nonan[-1] # Guess that the scaling value for the intermediate conformation # is close to the value at ~300 sec c1_timescale_seconds = 300 c1_timescale_index = np.where(nt > 300)[0].min() builder.model.parameters['c1_scaling'].value = \ ny_nonan[c1_timescale_index] # Rough guesses for the timescales of the first and second # transitions builder.model.parameters['c0_to_c1_k'].value = 0.025 builder.model.parameters['c1_to_c2_k'].value = 5e-4 # The FRET data contains many negative values, so don't log-transform # parameters if that's what we're fitting log_transform = False if dtype == 'FRET' else False # Do the fit pysb_fit = fitting.fit_pysb_builder(builder, 'NBD', nt_nonan, ny_nonan, log_transform=log_transform) if do_plot: plt.figure('%s, %s, NBD-%s-Bax Fits' % (activator, dtype, nbd_site), figsize=(12, 5)) # Plot the release with fits plt.subplot(1, 2, 1) plt.plot(rt, ry, linestyle='', marker='.', color=rep_colors[rep_index]) plt.plot(rt, twoexp.fit_func(rt, params), label='%s Rep %d' % (activator, rep_index), color=rep_colors[rep_index]) plt.xlabel('Time (sec)') plt.ylabel('% Tb release') plt.title('%% Tb release fits, NBD-%s-Bax' % nbd_site) plt.legend(loc='lower right') # Plot the NBD with fits plt.subplot(1, 2, 2) plt.plot(nt_nonan, ny_nonan, linestyle='', marker='.', color=rep_colors[rep_index]) plt.plot(nt_nonan, pysb_fit.ypred, label='%s Rep %d' % (activator, rep_index), color=rep_colors[rep_index]) plt.xlabel('Time (sec)') plt.ylabel('$F/F_0$') plt.title('NBD $F/F_0$ fits, NBD-%s-Bax' % nbd_site) plt.legend(loc='lower right') plt.figure('%s, %s, NBD-%s-Bax Fits' % (activator, dtype, nbd_site)) plt.tight_layout() # Calculate stderr of parameters (doesn't account for covariance) (k1_mean, k1_sd) = _mean_sd('c0_to_c1_k', builder, pysb_fit) (k2_mean, k2_sd) = _mean_sd('c1_to_c2_k', builder, pysb_fit) (c1_mean, c1_sd) = _mean_sd('c1_scaling', builder, pysb_fit) (c2_mean, c2_sd) = _mean_sd('c2_scaling', builder, pysb_fit) param_dict = {'c0_to_c1_k': (k1_mean, k1_sd), 'c1_scaling': (c1_mean, c1_sd), 'c1_to_c2_k': (k2_mean, k2_sd), 'c2_scaling': (c2_mean, c2_sd)} fit_results.append(FitResult(builder, activator, nbd_site, rep_index, dtype, param_dict, nt, pysb_fit.ypred)) k1_means.append(k1_mean) k2_means.append(k2_mean) k1_sds.append(k1_sd) k2_sds.append(k2_sd) if do_plot: plt.figure("Fitted k1/k2") nreps = len(replicates) K = (2 * nreps) + 1 # A shorthand constant plt.bar(range(nbd_index*K, (nbd_index*K) + nreps), k1_means, yerr=k1_sds, width=1, color='r', ecolor='k') plt.bar(range(nbd_index*K+nreps, (nbd_index*K) + (2*nreps)), k2_means, yerr=k2_sds, width=1, color='g', ecolor='k') if do_plot: num_sites = len(nbd_sites_filt) plt.figure("Fitted k1/k2") plt.ylabel('Fitted k1/k2 ($sec^{-1}$)') ax = plt.gca() ax.set_xticks(np.arange(3, 3 + num_sites * 7, 7)) ax.set_xticklabels(nbd_sites_filt) return fit_results def plot_nbd_error_estimates(df, nbd_sites, dtype='NBD', activators=None, replicates=None, last_n_pts=50, fit_type='cubic', plot=True, normalize_nbd=False): # Filter out the WT residue, if present in the list nbd_sites_filt = [s for s in nbd_sites if s != 'WT'] # Set some defaults if activators is None: activators = ['Bid', 'Bim'] if replicates is None: replicates = (1, 2, 3) for nbd_index, nbd_site in enumerate(nbd_sites_filt): for act_ix, activator in enumerate(activators): residuals_reps = [] for rep_index, rep_num in enumerate(replicates): ny = df[activator, dtype, nbd_site, rep_num, 'VALUE'].values # Normalize NBD to F/F0 if dtype == 'NBD' and normalize_nbd: ny = ny / ny[0] # Get the error value and the fig (if not figure desired, then # fig will be None (residuals, fig) = cev.calc_err_var(ny, last_n_pts=last_n_pts, fit_type=fit_type, plot=plot) residuals_reps.append(residuals) # If we're plotting, we should have a figure object, and if # not, then not assert ((plot is None) == (fig is None)) # Add title info to plot nbd_err = np.std(residuals, ddof=1) if plot: fig.subplots_adjust(top=0.86) fig.text(0.5, 0.95, 'Est. Error for %s, %s, %sC-Bax, rep %d: %f' % (activator, dtype, nbd_site, rep_num, nbd_err), verticalalignment='top', horizontalalignment='center') # If there is more than one replicates, combine the three residuals # replicates into one big set of residuals if len(replicates) == 1: continue pooled_residuals = np.array(residuals_reps).flatten() pooled_err = np.std(pooled_residuals, ddof=1) if plot: fig = plt.figure(figsize=(8, 5)) # Plot of fit and distribution of residuals plt.subplot(1, 2, 1) plt.hist(pooled_residuals) plt.title('Histogram of pooled residuals') plt.subplot(1, 2, 2) scipy.stats.probplot(pooled_residuals, dist='norm', plot=plt) plt.title('Quantile-quantile plot vs. normal') plt.tight_layout() plt.subplots_adjust(top=0.86) fig.text(0.5, 0.95, 'Est. Error of %s for %s, %sC-Bax: %f' % (activator, dtype, nbd_site, pooled_err), verticalalignment='top', horizontalalignment='center') if __name__ == '__main__': from bax_insertion.plots.bid_bim_fret_nbd_release.preprocess_data \ import df_pre, nbd_residues #from bax_insertion.data.parse_bid_bim_fret_nbd_release import df, nbd_residues plt.ion() plot_nbd_endpoints(df_pre, nbd_residues, datatype='FRET', last_n_pts=10, file_basename=None, normalize_nbd=False) #import pickle #with open('data2.pck', 'w') as f: #pickle.dump((df, nbd_residues), f) #with open('data2.pck') as f: # (df, nbd_residues) = pickle.load(f) #plot_release_endpoints(df, nbd_residues, normalized_to_wt=True, # last_n_pts=3, file_basename=None) #plot_initial_rate_samples(df, nbd_residues, timepoint_ix=20, # file_basename=None, normalized_to_wt=True) #plot_example_derivatives(df, 'Bid', '15', 1) #plot_derivatives(df, ['WT']) #plot_nbd_error_estimates(df, ['68'], last_n_pts=80, fit_type='cubic') #plot_release_endpoints(df, nbd_residues, normalized_to_wt=True) #plot_bid_vs_bim_release(df, nbd_residues) #plot_nbd_error_estimates(df, ['54', '62', '68']) #irs = calc_initial_rate_samples(df, nbd_residues, timepoint_ix=15) #(r_slope_avgs, r_slope_stds) = irs.release_avg_std() #(n_slope_avgs, n_slope_stds) = irs.nbd_avg_std() #nbd_sites_filt = [s for s in nbd_residues if s != 'WT'] #plot_rank_changes(r_slope_avgs[0], r_slope_stds[0], # r_slope_avgs[1], r_slope_stds[1], nbd_sites_filt) #plot_rank_changes(n_slope_avgs[0], n_slope_stds[0], # n_slope_avgs[1], n_slope_stds[1], nbd_sites_filt) #(ra, rs) = irs.release_avg_std_wt_normalized() #p_vals = student_t_test(ra[0], rs[0], ra[1], rs[1], 3) #print p_vals < 0.1 ``` #### File: bax_insertion/pt/generate_model_ensemble_fit_files.py ```python import os import sys from copy import copy from itertools import product, izip import yaml from bax_insertion.models import multiconf def model_product(model_dict): """A function to take the cross product of all feature implementations and return the set of dicts specifying one implementation for each feature.""" return [dict(zip(model_dict, x)) for x in product(*model_dict.values())] def generate_files(args, basename): # Get the dict specifying the model ensemble feature set m = args['model'] # Get the set of dicts specifying each individual implementation m_ensemble = model_product(m) dependencies_list = [] for m in m_ensemble: # Multiconf model, supercedes any other model features if 'multiconf' in m or 'multiconf_nbd_fret' in m: multiconf_type = 'multiconf' if 'multiconf' in m \ else 'multiconf_nbd_fret' # Is the NBD data normalized? norm_data = m['normalized_nbd_data'] # Number of confs and whether the model is reversible try: num_confs = int(m[multiconf_type]) reversible = False # If it's not an int, assume it's two-element list with a flag # specifying a reversible model, indicated by 'rev' except TypeError: num_confs = int(m[multiconf_type][0]) rev = m[multiconf_type][1] if rev == 'rev': reversible = True else: raise Exception('Unknown multiconf model flag %s' % rev) # We don't need to build the model just to get the model name if reversible: model_name = '%dconfsrev' % num_confs else: model_name = '%dconfs' % num_confs # Mechanistic model else: # If Bid doesn't get to the membrane, activation by bound Bid will # never happen if 'bidtranslocation' in m and 'activation' in m and \ m['bidtranslocation'] == 0 and m['activation'] == 2: continue # If activation is pseudo-first order (not Bid-dependent) don't use # models where we waste steps on translocating Bid if 'bidtranslocation' in m and 'activation' in m and \ m['activation'] == 1 and m['bidtranslocation'] != 0: continue # If we're monitoring NBD as resulting from a dimer, but # dimerization doesn't happen, then we'll get nothing if 'nbd' in m and 'dimerization' in m and \ (m['nbd'] == 2 or m['nbd'] == 3 or m['nbd'] == 4) and \ m['dimerization'] == 0: continue # If we're monitoring NBD as resulting from a tBid/Bax complex, # then make sure that tBid/Bax complex can form if 'nbd' in m and 'activation' in m and \ m['nbd'] == 4 and m['activation'] == 1: continue # If Bid FRET involves a complex of tBid with both mBax and iBax # (implementation 2) then make sure we have three-step activation, # which allows tBid to bind to iBax if 'bidfret' in m and 'activation' in m and \ m['bidfret'] == 2 and not m['activation'] == 3: continue # It doesn't matter which builder is instantiated here because # the build_model_from_dict function is in the superclass, core. from bax_insertion.models import one_cpt bd = one_cpt.Builder() bd.build_model_from_dict(m) model_name = bd.model.name # Build up the new yaml dict by copying all fitting parameters over... yaml_dict = copy(args) # ...and then filling in the parameters specifying this particular model yaml_dict['model'] = m model_filename = '%s_%s' % (basename, model_name) with open('%s.fit' % model_filename, 'w') as output_file: output_file.write(yaml.dump(yaml_dict, default_flow_style=False)) dependencies_list.append(model_filename) # Now write the file with the dependencies of the overall target on the # list of .mcmc files deps_filename = '%s.deps.txt' % basename with open(deps_filename, 'w') as deps_file: mcmc_file_list = ['%s.mcmc' % fname for fname in dependencies_list] base_target = os.path.basename(basename) # Strip off the directory info deps_file.write('%s: ' % base_target) # Strip off the directory info deps_file.write(' '.join(mcmc_file_list)) if __name__ == '__main__': if len(sys.argv) == 1: print("Please specify the name of the .yaml file with the model " "features to fit.") sys.exit(1) # Open the master .yaml file specifying the model ensemble ens_filename = sys.argv[1] with open(ens_filename) as ens_file: args = yaml.load(ens_file) # Get the basename for the created files basedir = os.path.dirname(ens_filename) filename = os.path.basename(ens_filename) basename = filename.split('.')[0] basename = os.path.join(basedir, basename) generate_files(args, basename) ``` #### File: bax_insertion/util/emcee_fit.py ```python import sys import cPickle import warnings import numpy as np from scipy.stats import pearsonr from matplotlib import pyplot as plt import emcee from emcee.utils import MPIPool from pysb.integrate import Solver from bax_insertion.models import multiconf def posterior(position, gf): """A generic log posterior function.""" post_val = prior(position, gf) + likelihood(position, gf) return post_val def negative_posterior(position, gf): """A generic negative log posterior function. Use the negative log posterior when using a minimization (rather than probability maximization) algorithm. """ post_val = prior(position, gf) + likelihood(position, gf) print("posterior: %s" % post_val) return -post_val def prior(position, gf): """A generic prior function.""" prior_prob = 0 for i, prior in enumerate(gf.priors): prior_prob += prior.pdf(position[i]) return -prior_prob def likelihood(position, gf): # A generic objective function # The cumulative error over all timecourses err = 0 obs_func = getattr(gf.builder, 'obs_func', None) # Iterate over each condition (1st dimension of the data matrix) for cond_ix in range(gf.data.shape[0]): # Create a placeholder for a time offset, if there is one timeoffset = None # Set the parameters appropriately for the simulation: # Iterate over the globally fit parameters for g_ix, p in enumerate(gf.builder.global_params): p.value = 10 ** position[g_ix] if p.name == 'timeoffset': timeoffset = 10 ** position[g_ix] # Iterate over the locally fit parameter_s for l_ix, p in enumerate(gf.builder.local_params): ix_offset = len(gf.builder.global_params) + \ cond_ix * len(gf.builder.local_params) p.value = 10 ** position[l_ix + ix_offset] # Now fill in the initial condition parameters if gf.params is not None: for p_name, values in gf.params.iteritems(): p = gf.builder.model.parameters[p_name] p.value = values[cond_ix] # Reset the timespan by adding one additional pt at the beginning if timeoffset: tspan = np.insert(gf.time, 0, -timeoffset) else: tspan = gf.time # Now run the simulation if callable(obs_func): ydict = obs_func(tspan) else: gf.solver.tspan = tspan gf.solver.run() if gf.use_expr: ydict = gf.solver.yexpr else: ydict = gf.solver.yobs # Calculate the squared error over all the observables for obs_ix, obs_name in enumerate(gf.obs_name): # Get the observable timecourse from the dict/recarray ysim = ydict[obs_name] # If we're using a time offset, skip the first point (the offset) # for the purposes of comparing to data if timeoffset: ysim = ysim[1:] # If integrator fails to converge, the results will contain NaN if np.any(np.isnan(ysim)): err = -np.inf continue # Get the data slice we want data = gf.data[cond_ix, obs_ix, :] # Get the appropriate SD for this data slice sigma = gf.data_sigma[cond_ix, obs_ix] # Calculate the log-likelihood loglkl = ((data - ysim) ** 2) / (2. * sigma ** 2) # Filter out the NaNs... filt_loglkl = loglkl[~np.isnan(loglkl)] # Take the sum err += -np.sum(filt_loglkl) return err class GlobalFit(object): """Fit of PySB model to a set of multiple timecourses, with a mix of globally and locally fit parameters. Parameters ---------- builder : pysb.builder.Builder Builder containing the model to fit. Should contain an attribute builder.global_params for the parameters that are to be fit globally. time : np.array The time vector. data : Three-dimensional np.array The experimental timecourses to fit. The first dimension corresponds to the number of experimental conditions; the second dimension corresponds to the number of observables (in a given timecourse set); the third dimension corresponds to the timepoints. data_sigma : np.array Array of values with dimension corresponding to data indicating the standard deviation of the data. params : dict of lists, or None The keys to the dict should be names of parameters in the PySB model (e.g., initial conditions); each value should be a list containing values for the parameter for each of the entries in the data list. The length of each value in the dict should match the length of the data list. If None, indicates that there are no local initial conditions. obs_name : string The name of the model observable to compare against the data. obs_type : string, "Expression" or "Observable" Indicates whether the named expression/observable specified by obs_name is to be found in the model's set of Expression objects or Observable objects. Attributes ---------- result : None or scipy.optimize.minimize fit result object The result field is initialized to None and is assigned the results of fitting after the :py:meth:`fit` method completes successfully. use_expr : boolean Based on the obs_type argument. True if the named observable is an Expression, False if it is an Observable. priors : list of priors solver : pysb.integrate.Solver A solver object used to run the model. """ def __init__(self, builder, time, data, data_sigma, params, obs_name, obs_type='Expression'): # Check that the dimensions of everything that has been provided matches # Check that the time vector matches the 3rd dimension of the data # vector if len(time) != data.shape[2]: raise ValueError("Length of time vector must match the length " "of each data vector.") # Check that we don't have more than one condition but only set of # initial conditions if params is None and data.shape[0] != 1: raise ValueError("There are no initial condition parameters but " "there is more than one condition in the data " "matrix.") # Check that the number of initial conditions specified in the params # dict matches the first dimension of the data matrix if params is not None: for p, vals in params.iteritems(): if not len(vals) == data.shape[0]: raise ValueError("Each parameter in the params dict must " "have an entry for each entry in the " "data list.") # Check that the number of observables matches the 2nd dimension of # the data matrix if len(obs_name) != data.shape[1]: raise ValueError("The number of observables (%s) must match the " "second dimension of the data matrix (%s)" % (len(obs_name), data.shape[1])) # Check that there is a sigma in the data_sigma matrix for every # timecourse in data if data_sigma.shape[0] != data.shape[0] and \ data_sigma.shape[1] != data.shape[1]: raise ValueError("data_sigma must specify an error SD for every " "timecourse in the data matrix.") self.builder = builder self.time = time self.data = data self.data_sigma = data_sigma self.params = params self.obs_name = obs_name self.result = None if obs_type == 'Expression': self.use_expr = True elif obs_type == 'Observable': self.use_expr = False else: raise ValueError('obs_type must be Expression or Observable.') if self.builder.model.parameters.get('timeoffset'): use_time_offset = True else: use_time_offset = False self.init_solver(use_time_offset=use_time_offset) # Used to keep track of the number of steps run self.nstep = 0 # Build up a list of priors corresponding to the global and local # parameters self.priors = [] # Iterate over the globally fit parameters for g_ix, p in enumerate(self.builder.global_params): try: prior_index = self.builder.estimate_params.index(p) self.priors.append(self.builder.priors[prior_index]) except ValueError: raise ValueError( 'The parameter %s, in global_params, must also be ' 'present in estimate_params.' % p.name) # Iterate over the locally fit parameters for data_ix, data in enumerate(self.data): for l_ix, p in enumerate(self.builder.local_params): try: prior_index = self.builder.estimate_params.index(p) self.priors.append(self.builder.priors[prior_index]) except ValueError: raise ValueError( 'The parameter %s, in local_params, must also be ' 'present in estimate_params.') def __getstate__(self): # Clear solver since it causes problems with pickling state = self.__dict__.copy() if 'solver' in state: del state['solver'] return state def __setstate__(self, state): # Re-init the solver which we didn't pickle self.__dict__.update(state) if self.builder.model.parameters.get('timeoffset'): use_time_offset = True else: use_time_offset = False self.init_solver(use_time_offset=use_time_offset) def init_solver(self, use_time_offset=False): """Initialize solver from model and tspan.""" Solver._use_inline = True # If we're using a time offset, note that it doesn't matter what value # goes in here, since it will be filled in by the fitting. if use_time_offset: tspan = np.insert(self.time, 0, 0) else: tspan = self.time self.solver = Solver(self.builder.model, tspan) def plot_func_single(self, x, data_ix, ax=None, alpha=1.0): x = 10 ** x s = Solver(self.builder.model, self.time) # Set the parameters appropriately for the simulation: # Iterate over the globally fit parameters for g_ix, p in enumerate(self.builder.global_params): p.value = x[g_ix] # Iterate over the locally fit parameters for l_ix, p in enumerate(self.builder.local_params): ix_offset = len(self.builder.global_params) + \ data_ix * len(self.builder.local_params) p.value = x[l_ix + ix_offset] # Now fill in the initial condition parameters for p_name, values in self.params.iteritems(): p = self.builder.model.parameters[p_name] p.value = values[data_ix] # Now run the simulation s.run() # Plot the observable if ax is None: ax = plt.gca() if self.use_expr: ax.plot(self.time, s.yexpr[self.obs_name], color='r', alpha=alpha) else: ax.plot(self.time, s.yobs[self.obs_name], color='r', alpha=alpha) def plot_func(self, x, ax=None, obs_ix=0, plot_args=None, normalize_to_f0=False): """Plots the timecourses with the parameter values given by x. Parameters ---------- x : np.array or list The parameters to use for the plot, in log10 space.These should be in the same order used by the objective function: globally fit parameters first, then a set of local parameters for each of the timecourses being fit. normalize_to_f0: boolean If True, divides the observable trajectory by the initial value before plotting. Defaults to False. """ if plot_args is None: plot_args = {} if ax is None: ax = plt.gca() # Iterate over each entry in the data array for cond_ix in range(self.data.shape[0]): self.set_parameters(x, obs_ix=obs_ix, cond_ix=cond_ix) # Now run the simulation self.solver.run() # Plot the observable obs_colors = ['r', 'g', 'b', 'k'] obs_name = self.obs_name[obs_ix] # Get from either yexpr or yobs if self.use_expr: yplot = self.solver.yexpr[obs_name] else: yplot = self.solver.yobs[obs_name] # Normalize the curve if necessary if normalize_to_f0: yplot = yplot / float(yplot[0]) # Plot ax.plot(self.solver.tspan, yplot, **plot_args) def set_parameters(self, x, obs_ix=0, cond_ix=0, plot_args=None): """Sets the parameter values in the model for simulation. Parameters ---------- x : np.array or list The parameters to use, in log10 space.These should be in the same order used by the objective function: globally fit parameters first, then a set of local parameters for each of the timecourses being fit. """ x = 10 ** x timeoffset = None # Set the parameters appropriately for the simulation: # Iterate over the globally fit parameters for g_ix, p in enumerate(self.builder.global_params): p.value = x[g_ix] if p.name == 'timeoffset': timeoffset = x[g_ix] # Iterate over the locally fit parameters for l_ix, p in enumerate(self.builder.local_params): ix_offset = len(self.builder.global_params) + \ cond_ix * len(self.builder.local_params) p.value = x[l_ix + ix_offset] # Now fill in the initial condition parameters if self.params is not None: for p_name, values in self.params.iteritems(): p = self.builder.model.parameters[p_name] p.value = values[cond_ix] # Fill in the time offset, if there is one if timeoffset: self.solver.tspan = np.insert(self.time, 0, -timeoffset) def get_residuals(self, x, obs_ix=0, plot_args=None): """Gets the residuals with the parameter values given by x. Parameters ---------- x : np.array or list The parameters to use for the simulation, in log10 space. These should be in the same order used by the objective function: globally fit parameters first, then a set of local parameters for each of the timecourses being fit. """ if plot_args is None: plot_args = {} num_conditions = self.data.shape[0] num_timepoints = self.data.shape[2] residuals = np.zeros((num_conditions, num_timepoints)) for cond_ix in range(num_conditions): self.set_parameters(x, obs_ix=obs_ix, cond_ix=cond_ix) # Run the simulation self.solver.run() # Get the simulated timecourse obs_name = self.obs_name[obs_ix] if self.use_expr: y = self.solver.yexpr[obs_name] else: y = self.solver.yobs[obs_name] # Calculate the residuals data = self.data[cond_ix, obs_ix, :] residuals[cond_ix, :] = data - y return residuals def ens_sample(gf, nwalkers, burn_steps, sample_steps, threads=1, pos=None, random_state=None): """Samples from the posterior function using emcee.EnsembleSampler. The EnsembleSampler containing the chain is stored in gf.sampler. Note that parameters are log10-transformed during fitting, so the parameter values returned from the walk must be exponentiated to get them back to untransformed values (e.g., 10 ** gf.sampler.flatchain) Parameters ---------- gf : emcee_fit.GlobalFit GlobalFit object containing the timepoints, data, builder object, Solver, etc. nwalkers : int Number of walkers to use in the emcee sampler. burn_steps : int Number of burn-in steps. sample_steps : int Number of sampling steps. threads : int Number of threads to use for parallelization. Default is 1. pos : numpy.array Matrix of initial positions for the chain. If None (default) random positions are chosen from the prior. Assigning a position allows previously run chains to be extended. random_state : random state for Mersenne Twister PRNG The random state to use to initialize the sampler's pseudo-random number generator. Can be used to continue runs from previous ones. """ # Initialize the parameter array with initial values (in log10 units) # Number of parameters to estimate ndim = (len(gf.builder.global_params) + (len(gf.data) * len(gf.builder.local_params))) # Initialize the walkers with starting positions drawn from the priors # Note that the priors are in log10 scale already, so they don't # need to be transformed here if pos is None: p0 = np.zeros((nwalkers, ndim)) for walk_ix in range(nwalkers): for p_ix in range(ndim): p0[walk_ix, p_ix] = gf.priors[p_ix].random() else: p0 = pos # Create the sampler object sampler = emcee.EnsembleSampler(nwalkers, ndim, posterior, args=[gf], threads=threads) if random_state is not None: sampler.random_state = random_state print "Burn in sampling..." pos, prob, state = sampler.run_mcmc(p0, burn_steps, storechain=False) sampler.reset() print "Main sampling..." sampler.run_mcmc(pos, sample_steps) print "Done sampling." return sampler def ens_mpi_sample(gf, nwalkers, burn_steps, sample_steps, pos=None, random_state=None): pool = MPIPool(loadbalance=True) if not pool.is_master(): pool.wait() sys.exit(0) # Initialize the parameter array with initial values (in log10 units) # Number of parameters to estimate ndim = (len(gf.builder.global_params) + (len(gf.data) * len(gf.builder.local_params))) # Initialize the walkers with starting positions drawn from the priors # Note that the priors are in log10 scale already, so they don't # need to be transformed here if pos is None: p0 = np.zeros((nwalkers, ndim)) for walk_ix in range(nwalkers): for p_ix in range(ndim): p0[walk_ix, p_ix] = gf.priors[p_ix].random() else: p0 = pos # Create the sampler object sampler = emcee.EnsembleSampler(nwalkers, ndim, posterior, args=[gf], pool=pool) if random_state is not None: sampler.random_state = random_state print "Burn in sampling..." pos, prob, state = sampler.run_mcmc(p0, burn_steps, storechain=False) sampler.reset() print "Main sampling..." sampler.run_mcmc(pos, sample_steps) # Close the pool! pool.close() print "Done sampling." return sampler def pt_mpi_sample(gf, ntemps, nwalkers, burn_steps, sample_steps, thin=1, pool=None, betas=None, pos=None, random_state=None, pos_filename=None, convergence_interval=50): pool = MPIPool(loadbalance=True) if not pool.is_master(): pool.wait() sys.exit(0) return pt_sample(gf, ntemps, nwalkers, burn_steps, sample_steps, thin=thin, pool=pool, betas=betas, pos=pos, random_state=random_state, pos_filename=pos_filename, convergence_interval=convergence_interval) def pt_sample(gf, ntemps, nwalkers, burn_steps, sample_steps, thin=1, pool=None, betas=None, pos=None, random_state=None, pos_filename=None, convergence_interval=50): """Samples from the posterior function. The emcee sampler containing the chain is stored in gf.sampler. Note that parameters are log10-transformed during fitting, so the parameter values returned from the walk must be exponentiated to get them back to untransformed values (e.g., 10 ** gf.sampler.flatchain) Parameters ---------- ntemps : int The number of temperature to use in the temperature ladder. nwalkers : int Number of walkers to use in the emcee sampler. burn_steps : int Number of burn-in steps. sample_steps : int Number of sampling steps. thin : int Thinning interval; saves only every thin number of steps. Default is 1 (saves all steps, no thinning). pool : pool object Pool object for parallelization. Can be instance of emcee.utils.MPIPool or multiprocessing.pool (or other pool-like object implementing map method). betas : np.array Array containing the values to use for beta = 1/temperature. pos : numpy.array Matrix of initial positions for the chain. If None (default) random positions are chosen from the prior. Assigning a position allows previously run chains to be extended. random_state : random state for Mersenne Twister PRNG The random state to use to initialize the sampler's pseudo-random number generator. Can be used to continue runs from previous ones. """ if pos_filename is None: warnings.warn('pos_filename was not specified, will not be able to ' 'save intermediate burn-in positions.') # Initialize the parameter array with initial values (in log10 units) # Number of parameters to estimate ndim = (len(gf.builder.global_params) + (len(gf.data) * len(gf.builder.local_params))) # Initialize the walkers with starting positions drawn from the priors # Note that the priors are in log10 scale already, so they don't # need to be transformed here if pos is None: p0 = np.zeros((ntemps, nwalkers, ndim)) for temp_ix in range(ntemps): for walk_ix in range(nwalkers): for p_ix in range(ndim): p0[temp_ix, walk_ix, p_ix] = gf.priors[p_ix].random() else: print pos.shape print ntemps print nwalkers print ndim if pos.shape[-1] != ndim: raise ValueError('The position file must contain %s ndim ' 'parameters, not %s' % (ndim, p0.shape[-1])) if pos.shape == (ntemps, nwalkers, ndim): print("Setting initial position to contents of file.") p0 = pos else: print("Setting initial position to low temp samples.") p0 = np.zeros((ntemps, nwalkers, ndim)) pos_nwalkers = pos.shape[1] pos_samples = pos[0] for temp_ix in range(ntemps): # Generate a set of random indices walker_indices = np.random.randint(0, pos_nwalkers, size=nwalkers) for walk_ix in range(nwalkers): p0[temp_ix, walk_ix, :] = \ pos_samples[walker_indices[walk_ix], :] # Create the sampler sampler = emcee.PTSampler(ntemps, nwalkers, ndim, likelihood, prior, loglargs=[gf], logpargs=[gf], pool=pool, betas=betas) # The PTSampler is implemented as a generator, so it is called in a for # loop # If we're not doing any burn-in, jump straight to sampling if burn_steps == 0: print "Main sampling..." nstep = 0 for p, lnprob, lnlike in sampler.sample(p0, iterations=sample_steps, thin=thin): if nstep % 10 == 0: print "nstep %d of %d, MAP: %f" % (nstep, sample_steps, np.max(lnprob[0])) nstep +=1 # Otherwise, do the burn-in first else: print "Burn in sampling..." nstep = 0 done = False last_ti = None print_interval = 1 cur_start_position = p0 abs_tol = 3.0 # The maximum allowable difference for convergence rel_tol = 0.1 # The fraction of the err allowable for convergence # Run the chain for rounds of convergence_interval steps; at the end # of each round, check for convergence. If converged, go on to main # sampling. If not, reinitialize sampler and run again. Running the # sampler in small rounds like this reduces the amount of memory # needed to just enough to store the chain for 1 round. while not done: if (burn_steps - nstep) < convergence_interval: num_iterations = burn_steps - nstep else: num_iterations = convergence_interval # Don't run again if we've already run more than the prescribed # number of burn in steps if num_iterations <= 0: break; for p, lnprob, lnlike in sampler.sample(cur_start_position, iterations=num_iterations, storechain=True): # Increase the step counter by 1 since by the time we've gotten # here we've run an iteration of the sampler nstep += 1 if nstep % print_interval == 0: print("nstep %d of %d, MAP: %f, mean post %f" % (nstep, burn_steps, np.max(lnprob[0]), np.mean(lnprob[0]))) print sampler.tswap_acceptance_fraction # Save the current position if pos_filename is not None: with open(pos_filename, 'w') as f: rs = np.random.get_state() cPickle.dump((p, rs), f) nstep += 1 # If this is our first time checking convergence, set the TI # value and continue if last_ti is None: (last_ti, last_ti_err) = \ sampler.thermodynamic_integration_log_evidence() print "-- Initial TI value: %f, %f" % (last_ti, last_ti_err) else: (cur_ti, cur_ti_err) = \ sampler.thermodynamic_integration_log_evidence() diff = np.abs(last_ti - cur_ti) print("-- Last: %f, %f Current: %f Diff: %f" % (last_ti, last_ti_err, cur_ti, diff)) # Check for convergence if diff < abs_tol and cur_ti_err < abs_tol and \ last_ti_err < abs_tol and \ diff < (last_ti_err * rel_tol) and \ check_convergence_corr(sampler, 0, None, pval_threshold=0.001): print "-- Converged!" done = True else: last_ti = cur_ti last_ti_err = cur_ti_err # Reset the initial position to our last position cur_start_position = p # Reset the sampler sampler.reset() print "Main sampling..." nstep = 0 for p, lnprob, lnlike in sampler.sample(p, lnprob0=lnprob, lnlike0=lnlike, iterations=sample_steps, thin=thin): # Increase the step counter by 1 since by the time we've gotten here # we've run an iteration of the sampler nstep += 1 if nstep % 5 == 0: print "nstep %d of %d, MAP: %f, mean post %f" % \ (nstep, burn_steps, np.max(lnprob[0]), np.mean(lnprob[0])) print sampler.tswap_acceptance_fraction # Save the current position if pos_filename is not None: with open(pos_filename, 'w') as f: rs = np.random.get_state() cPickle.dump((p, rs), f) (final_ti, final_ti_err) = \ sampler.thermodynamic_integration_log_evidence() print("-- Final TI: %f, %f --" % (final_ti, final_ti_err)) # Close the pool! if pool is not None: pool.close() print "Done sampling." return sampler def geweke_convergence(sampler, burn_frac=0.1, sample_frac=0.5, p_threshold=0.05): # Define a few useful numbers ntemps = sampler.chain.shape[0] num_steps = sampler.chain.shape[2] num_params = sampler.chain.shape[3] burn_ubound = int(burn_frac * num_steps) nburn = burn_ubound - 1 sample_lbound = int(sample_frac * num_steps) nsample = num_steps - sample_lbound converged = True # We've converged until we prove otherwise # Calculation of the test statistic def T_func(xm, xvar, nx, ym, yvar, ny): T = (xm - ym) / np.sqrt(xvar / float(nx) + yvar / float(ny)) return np.abs(T) # Iterate over all temperatures for temp_ix in range(0, ntemps): print "Temp %d" % temp_ix # Iterate over all parameters for p_ix in range(num_params): # Get burn-in and sample steps burn_steps = sampler.chain[temp_ix, :, 0:burn_ubound, p_ix] sample_steps = sampler.chain[temp_ix, :, sample_lbound:, p_ix] # Calculate means and variances burn_mean = np.mean(burn_steps) sample_mean = np.mean(sample_steps) burn_var = np.var(burn_steps) sample_var = np.var(sample_steps) T = T_func(sample_mean, sample_var, nsample, burn_mean, burn_var, nburn) if T < p_threshold: plt.ion() plt.figure() plt.plot(sampler.chain[temp_ix, :, :, p_ix].T, alpha=0.1) plt.plot(np.mean(sampler.chain[temp_ix, :, :, p_ix], axis=0)) print("T = %f: not converged!" % T) converged = False else: print("T = %f" % T) # Now, check for convergence of product # g = (x_i - X)(y_i - Y) for q_ix in range(p_ix): print "param %d by %d" % (p_ix, q_ix) p_steps = sampler.chain[temp_ix, :, :, p_ix] q_steps = sampler.chain[temp_ix, :, :, q_ix] g_steps = (p_steps - np.mean(p_steps)) * \ (q_steps - np.mean(q_steps)) g_burn_steps = g_steps[:, 0:burn_ubound] g_sample_steps = g_steps[:, sample_lbound:] g_burn_mean = np.mean(g_burn_steps) g_sample_mean = np.mean(g_sample_steps) g_burn_var = np.var(g_burn_steps) g_sample_var = np.var(g_sample_steps) T = T_func(g_sample_mean, g_sample_var, nsample, g_burn_mean, g_burn_var, nburn) if T < p_threshold: plt.ion() plt.figure() plt.plot(sampler.chain[temp_ix, :, :, p_ix].T, alpha=0.1) plt.plot(np.mean(sampler.chain[temp_ix, :, :, p_ix], axis=0)) print("T = %f: not converged!" % T) converged = False else: print("T = %f" % T) return converged def check_convergence_corr(sampler, start_step, end_step, pval_threshold=0.2): # Only do the check if we've got enough steps if sampler.lnprobability is None: print "sampler.lnprobability is None." return lnpost = sampler.lnprobability[:, :, start_step:end_step] ntemps = lnpost.shape[0] nwalkers = lnpost.shape[1] nsteps = lnpost.shape[2] step_indices = np.repeat(np.arange(0, nsteps), nwalkers) pass_arr = np.zeros(ntemps) for temp_ix in range(0, ntemps): pts = lnpost[temp_ix].flatten(order='F') (rval, pval) = pearsonr(step_indices, pts) print "Temp %d: r = %f, p = %f" % (temp_ix, rval, pval) if rval < 0 or pval > pval_threshold: pass_arr[temp_ix] = True passes = np.all(pass_arr) print "Passes: ", passes return np.all(pass_arr) def global_fit_from_args(args): ### DATA # Import the module containing the data data_args = args['data'] __import__(data_args['module']) data_module = sys.modules[data_args['module']] # Get the relevant variables from the module containing the data data_var = data_module.__dict__[data_args['data_var']] data_sigma_var = data_module.__dict__[data_args['data_sigma_var']] time_var = data_module.__dict__[data_args['time_var']] # Get the name of the variable containing the initial conditions vector, # which may not exist ic_var_name = data_args['initial_condition_var'] if ic_var_name is None: ic_var = None else: ic_var = data_module.__dict__[ic_var_name] ### MODEL # Call the appropriate model-building macro # If there is a multiconf attribute, that trumps any other attribute # and determines that this is a multiconf model if 'scaling_prior_type' in args['model']: spt = args['model']['scaling_prior_type'] if spt not in ['normal', 'linear']: raise ValueError('scaling_prior_type must be one of normal, ' 'linear') else: spt = 'linear' if 'multiconf' in args['model'] or 'multiconf_nbd_fret' in args['model']: # Determine the multiconf type multiconf_type = 'multiconf' if 'multiconf' in args['model'] \ else 'multiconf_nbd_fret' bd = multiconf.Builder() # Number of confs and whether the model is reversible try: num_confs = int(args['model'][multiconf_type]) reversible = False # If it's not an int, assume it's two-element list with a flag # specifying a reversible model, indicated by 'rev' except TypeError: num_confs = int(args['model'][multiconf_type][0]) rev = args['model'][multiconf_type][1] if rev == 'rev': reversible = True else: raise Exception('Unknown multiconf model flag %s' % rev) norm_data = args['model']['normalized_nbd_data'] # Try to get the parameters for the bounds of the data # (may not be present if the data is normalized) try: nbd_ubound = data_module.__dict__[data_args['nbd_ubound']] except KeyError: nbd_ubound = None try: nbd_lbound = data_module.__dict__[data_args['nbd_lbound']] except KeyError: nbd_lbound = None try: nbd_f0 = data_module.__dict__[data_args['nbd_f0']] except KeyError: nbd_f0 = 1. if multiconf_type == 'multiconf': bd.build_model_multiconf(num_confs, nbd_f0, nbd_lbound, nbd_ubound, normalized_data=norm_data, reversible=reversible, scaling_prior_type=spt) elif multiconf_type == 'multiconf_nbd_fret': bd.build_model_multiconf_nbd_fret(num_confs, nbd_f0, nbd_lbound, nbd_ubound, normalized_data=norm_data, reversible=reversible, scaling_prior_type=spt) # Check the builder: one_cpt or lipo_sites #elif 'builder' in args['model'] and \ # args['model']['builder'] == 'lipo_sites': # bd = lipo_sites.Builder() # bd.build_model_from_dict(args['model']) # If the builder is one_cpt or is not specified else: assert False bd = one_cpt.Builder() bd.build_model_from_dict(args['model']) # Set the initial conditions for ic_name, ic_value in args['global_initial_conditions'].iteritems(): bd.model.parameters[ic_name].value = ic_value ### PARAMETERS TO FIT if args['global_params'] == 'all': bd.global_params = bd.estimate_params bd.local_params = [] else: bd.global_params = [bd.model.parameters[p_name] for p_name in args['global_params']] bd.local_params = [bd.model.parameters[p_name] for p_name in args['local_params']] local_ic_name = args['local_initial_condition'] if ic_var is None or local_ic_name is None: params = None else: params = {local_ic_name: ic_var} # Create the global fit instance gf = GlobalFit(bd, time_var, data_var, data_sigma_var, params, args['model_observable']) return gf ``` #### File: bax_insertion/util/error_propagation.py ```python import numpy as np def calc_ratio_sd(numer_mean, numer_sd, denom_mean, denom_sd, num_samples=10000): """Calculates the variance of a ratio of two normal distributions with the given means and standard deviations.""" numer_samples = numer_mean + (numer_sd * np.random.randn(num_samples)) denom_samples = denom_mean + (denom_sd * np.random.randn(num_samples)) ratio_samples = numer_samples / denom_samples return np.std(ratio_samples) def calc_ratio_mean_sd(numer_mean, numer_sd, denom_mean, denom_sd, num_samples=10000): """Calculates the variance of a ratio of two normal distributions with the given means and standard deviations.""" # If we're dealing with a numpy array: if isinstance(numer_mean, np.ndarray) and \ isinstance(denom_mean, np.ndarray) and \ isinstance(numer_sd, np.ndarray) and \ isinstance(denom_sd, np.ndarray): num_pts = numer_mean.shape[0] numer_samples = numer_mean + (numer_sd * np.random.randn(num_samples, num_pts)) denom_samples = denom_mean + (denom_sd * np.random.randn(num_samples, num_pts)) # Otherwise, assume we're dealing with a number else: numer_samples = numer_mean + (numer_sd * np.random.randn(num_samples)) denom_samples = denom_mean + (denom_sd * np.random.randn(num_samples)) ratio_samples = numer_samples / denom_samples return (np.mean(ratio_samples, axis=0), np.std(ratio_samples, axis=0)) ```
{ "source": "johnbachman/bayessb", "score": 3 }
#### File: bayessb/bayessb/parallel_tempering.py ```python from bayessb import MCMC, MCMCOpts import numpy as np import math class PT_MCMC(object): """Implementation of parallel tempering algorithm. See Geyer, "Maximum likelihood Markov Chain Monte Carlo", 1991. In this algorithm, a series of chains are run at different temperatures in parallel. They execute normally (following the Metropolis algorithm) for n steps (defined by the parameter ``swap_period``) and then a swap is proposed between two chains that neighbor each other in temperature. If it is accepted, each chain adopts the position of the other. Since the swap is symmetric, detailed balance and ergodicity is maintained (when one considers that the parameter space is now the Cartesian product of the parameter spaces for all chains). In this implementation, a :py:class:`PT_MCMC` object is used to contain all of the chains (as instances of :py:class:`bayessb.MCMC`) and manage their execution, performing swaps when appropriate. Temperatures are given as minimum and maximum values; the intermediate values are interpolated on a log scale. So if ``min_temp`` is 1, and ``max_temp`` is 100, with three temperatures, the temperatures used are 1, 10, 100. Parameters ---------- opts: bayessb.MCMCOpts Used to initialize all of the :py:class:`bayessb.MCMC` chains in the temperature series. num_chains : int The number of chains/temperatures to run. Too many temperatures will make swapping inefficient; too few temperatures will make swaps unlikely to be accepted. max_temp : number The highest temperature in the series. min_temp : number The lowest temperature in the series. Should usually be 1 (the default). swap_period : int Number of steps of "regular" (Metropolis) MCMC to perform for each chain before proposing a swap. """ def __init__(self, opts, num_chains, max_temp, min_temp=1, swap_period=20): self.options = opts self.max_temp = max_temp self.min_temp = min_temp self.swap_period = swap_period self.iter = 0 """Current step iteration (runs to ``nsteps``).""" self.chains = [] """The set of chains in the temperature series.""" # Calculate the temperature series temps = np.logspace(np.log10(min_temp), np.log10(max_temp), num_chains) # Initialize each of the chains for i, temp in enumerate(temps): chain = MCMC(opts) chain.options.T_init = temp chain.initialize() chain.iter = chain.start_iter self.chains.append(chain) # Initialize arrays for storing swap info num_swaps = self.options.nsteps / swap_period self.swap_proposals = np.zeros((num_swaps, 2)) """Each swap proposal is stored as [i, j] row in this array.""" self.pi_xi = np.zeros(num_swaps) """The posterior of chain i at the position of i.""" self.pi_xj = np.zeros(num_swaps) """The posterior of chain i at the position of j.""" self.pj_xi = np.zeros(num_swaps) """The posterior of chain j at the position of i.""" self.pj_xj = np.zeros(num_swaps) """The posterior of chain j at the position of j.""" self.delta_test_posteriors = np.zeros(num_swaps) """The posterior probability ratio for swap/noswap.""" self.swap_alphas = np.zeros(num_swaps) """The random number used to accept/reject the swap.""" self.swap_accepts = np.zeros(num_swaps, dtype=bool) """Booleans indicating accepted swaps.""" self.swap_rejects = np.zeros(num_swaps, dtype=bool) """Booleans indicating rejected swaps.""" self.swap_iter = 0 """Current swap iteration (runs to ``nsteps / swap_period``)""" def estimate(self): """Parallel tempering MCMC algorithm (see Geyer, 1991).""" while self.iter < self.options.nsteps: # Check if it's time to propose a swap swap_index = None if self.iter >= self.swap_period and \ self.iter % self.swap_period == 0: swap_index = self.propose_swap() # Perform Metropolis step for each chain for i, chain in enumerate(self.chains): # If we have swapped (or tried to swap) chains, skip the # Metropolis step for the swapped chains for this round if swap_index is not None and \ (i == swap_index or i == swap_index+1): continue else: self.metropolis_step(chain) # Call user-callback step function on the first chain in the series # to track execution if self.chains[0].options.step_fn: self.chains[0].options.step_fn(self.chains[0]) self.iter += 1 def propose_swap(self): """Performs the temperature-swapping step of the PT algorithm. Returns ------- If there is an accepted swap, returns the index of the lower of the two chains. Returns None if there is no swap accepted. """ # Idea is to pick two neighboring chains to swap, so we # randomly pick the one with the lower index i = np.random.randint(len(self.chains)-1) j = i+1 # First, we introduce a slight shorthand chain_i = self.chains[i] chain_j = self.chains[j] # We treat the swap as just another way of making a jump proposal. chain_i.test_position = chain_j.position chain_j.test_position = chain_i.position (chain_i.test_posterior, chain_i.test_prior, chain_i.test_likelihood) =\ chain_i.calculate_posterior(position=chain_j.position) (chain_j.test_posterior, chain_j.test_prior, chain_j.test_likelihood) =\ chain_j.calculate_posterior(position=chain_i.position) # We determine the "net" change in posterior for the two chains # in the swapped position vs. the unswapped position. # Since calculations are in logspace, the ratio becomes a difference: pi_xi = chain_i.accept_posterior pj_xj = chain_j.accept_posterior pi_xj = chain_i.test_posterior pj_xi = chain_j.test_posterior delta_posterior = (pi_xj + pj_xi) - (pi_xi + pj_xj) # Decide whether to accept the swap: similar to Metropolis # If the swap is an increase in probability, do it. if delta_posterior < 0: self.accept_swap(i, j) # Otherwise, choose a random sample to decide whether to swap: else: swap_alpha = self.chains[0].random.rand() self.swap_alphas[self.swap_iter] = swap_alpha # Accept the swap if math.e ** -delta_posterior > swap_alpha: self.accept_swap(i, j) # Reject the swap else: #print "Reject %d, %d" % (i, j) self.swap_rejects[self.swap_iter] = 1 chain_i.reject_move() chain_j.reject_move() # Log some interesting variables for chain in (chain_i, chain_j): chain.positions[chain.iter,:] = chain.position #chain.test_position chain.priors[chain.iter] = chain.accept_prior chain.likelihoods[chain.iter] = chain.accept_likelihood chain.posteriors[chain.iter] = chain.accept_posterior chain.delta_test_posteriors[chain.iter] = delta_posterior chain.sigmas[chain.iter] = chain.sig_value chain.ts[chain.iter] = chain.T # Log some more interesting info just about the swaps. # Ultimately, it could be possible to extract most of this information # from the chains themselves, but this is certainly easier. self.swap_proposals[self.swap_iter,:] = (i, j) self.pi_xi[self.swap_iter] = pi_xi self.pi_xj[self.swap_iter] = pi_xj self.pj_xi[self.swap_iter] = pj_xi self.pj_xj[self.swap_iter] = pj_xj self.delta_test_posteriors[self.swap_iter] = chain.delta_posterior # Increment the swap count self.swap_iter += 1 chain_i.iter += 1 chain_j.iter += 1 return i def accept_swap(self, i, j): """Do necessary bookkeeping for accepting the proposed swap.""" #print "Accept %d, %d" % (i, j) self.chains[i].accept_move() self.chains[j].accept_move() self.swap_accepts[self.swap_iter] = 1 def metropolis_step(self, chain): """Perform a Metropolis update step on the given chain.""" # Get a new position chain.test_position = chain.generate_new_position() # Choose test position and calculate posterior there (chain.test_posterior, chain.test_prior, chain.test_likelihood)\ = chain.calculate_posterior(chain.test_position) # Decide whether to accept the step chain.delta_posterior = chain.test_posterior - chain.accept_posterior if chain.delta_posterior < 0: chain.accept_move() else: alpha = chain.random.rand() chain.alphas[chain.iter] = alpha; # log the alpha value if math.e ** -chain.delta_posterior > alpha: chain.accept_move() else: chain.reject_move() # Log some interesting variables chain.positions[chain.iter,:] = chain.position #chain.test_position chain.priors[chain.iter] = chain.accept_prior chain.likelihoods[chain.iter] = chain.accept_likelihood chain.posteriors[chain.iter] = chain.accept_posterior chain.delta_test_posteriors[chain.iter] = chain.delta_posterior chain.sigmas[chain.iter] = chain.sig_value chain.ts[chain.iter] = chain.T chain.iter += 1 ``` #### File: bayessb/report/__init__.py ```python from texttable import Texttable import TableFactory as tf from inspect import ismodule from bayessb.multichain import MCMCSet import cPickle import inspect import scipy.cluster.hierarchy from matplotlib import pyplot as plt from matplotlib import cm from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg import numpy as np from StringIO import StringIO from collections import OrderedDict reporter_dict = {} class Report(object): """.. todo:: document this class """ def __init__(self, chain_filenames, reporters, names=None, burn=0): """Create the Report object and run all reporter functions. Parameters ---------- chain_filenames : OrderedDict of lists of MCMC filenames. The keys in the dict are the names of the groups of chains, sorted by name. These should ideally be descriptive abbreviations, indicating the type of model, number of steps run in each chain, etc. The entries in the dict are lists of filenames of pickled MCMC objects, representing completed MCMC estimation runs for the given model/data. reporters : mixed list of reporter functions and/or modules The reporter functions should take an instance of bayessb.MCMCSet.multichain as an argument and return an instance of pysb.report.Result. For inclusion in the report results table. If a module is included in the list, any reporter functions included in the module (i.e., functions decorated with @pysb.report.reporter) will be identified and applied to the chains. names : optional, list of strings Names to be used as the column headers in the report results table. If not provided, the keys from the chains dict are used as the column names. burn : int Number of steps to discard from the beginning of the chain. """ self.chain_filenames = OrderedDict() """dict of lists of MCMC filenames, sorted by name.""" for key in sorted(chain_filenames): self.chain_filenames[key] = chain_filenames[key] self.module_names = [] """List of module names that parallels that of the reporter names.""" self.reporters = [] """List of reporter functions to run on the chains.""" self.names = None """List of the different types of models/fits reported on.""" self.results = [] """List of lists containing the results of reporter execution.""" self.burn = burn """Number of steps to discard from the beginning of the chain.""" # Unpack reporter modules, adding any reporter functions found for reporter in reporters: if ismodule(reporter): self.reporters += reporter_dict[reporter.__name__] if hasattr(reporter, 'reporter_group_name'): module_name = reporter.reporter_group_name else: module_name = reporter.__name__ self.module_names += [module_name] * \ len(reporter_dict[reporter.__name__]) else: self.reporters.append(reporter) # FIXME FIXME Fix this to sniff out the module for the # reporter function that was passed in self.module_names.append("Not given") # Initialize reporter names and module names if names is None: self.names = [n.replace('_', ' ') for n in self.chain_filenames.keys()] else: self.names = names # Run the reports reporter_names = [r.reporter_name for r in self.reporters] for chain_list_name, chain_list in self.chain_filenames.iteritems(): self.get_results_for_chain_set(chain_list_name, chain_list) # Transpose the results list self.results = zip(*self.results) def get_results_for_chain_set(self, chain_list_name, chain_list): """Takes a list of filenames for a group of chains, initializes an MCMCSet object, and calls all of the reporters on the MCMCSet. Deferred the loading of MCMCSet objects to this function because it means that only one set of chains needs to be included in memory at any one time. """ print "Loading chains for %s..." % chain_list_name mcmc_set = MCMCSet(chain_list_name) # Load the chain files mcmc_list = [] for filename in chain_list: mcmc_list.append(cPickle.load(open(filename))) # Prune and pool the chains in the list mcmc_set.initialize_and_pool(mcmc_list, self.burn) print "Running reporters for %s..." % chain_list_name result = [] for reporter in self.reporters: result.append(reporter(mcmc_set)) self.results.append(result) def get_text_table(self, max_width=80): """Return the report results as a pretty-printed text table.""" # TODO This will have to be written because structure of results # table has changed tt = Texttable(max_width=max_width) tt.header(self.header_names) text_results = [[r.value if hasattr(r, 'value') else r for r in r_list] for r_list in self.results] tt.add_rows(text_results, header=False) return tt.draw() def write_pdf_table(self, filename): """Writes the results table to a PDF file. Parameters ---------- filename : string The name of the output filename. """ # TODO This will have to be written because structure of results # table has changed lines = [] for row in self.results: lines.append(tf.TableRow(*map(tf.Cell, row))) rowmaker = tf.RowSpec(*map(tf.ColumnSpec, self.header_names)) table = tf.PDFTable('Results', headers=rowmaker) f = open(filename, 'wb') f.write(table.render(lines)) def write_html_table(self, filename): """Writes the results table to a HTML file. Parameters ---------- filename : string The name of the output filename. """ lines = [] for i, row in enumerate(self.results): html_row = [] html_row.append(self.reporters[i].name) for result in row: # Here we assume it's a pysb.report.Result object if result.link is None: html_row.append(result.value) else: html_row.append('<a href=\'%s\'>%s</a>' % (result.link, result.value)) lines.append(tf.TableRow(*map(tf.Cell, html_row))) rowmaker = tf.RowSpec(*map(tf.ColumnSpec, self.header_names)) table = tf.HTMLTable('Results', headers=rowmaker) f = open(filename, 'wb') f.write(table.render(lines)) def write_html_table_with_links(self, filename): """A manual re-write of HTML table export to allow inclusion of hyperlinks (the TableFactory version escapes the markup) """ # Add some formatting for the overall page lines = """<!DOCTYPE html> <html> <head> <style type="text/css"> body { font-family: sans-serif; font-size: 10pt} table { border-collapse: collapse; } th { align: left; font-weight: bold; vertical-align: top} td, th { border: 1px solid #aaa; padding: 0.2em; } </style> </head> <body>""" lines += "<table>" # Add two empty columns to headers to allow for reporter and module headers = ['', ''] + self.names header_string = "<tr><th>" header_string += '</th><th>'.join(headers) header_string += "</th></tr>" lines += header_string prev_module_name = None for i, row in enumerate(self.results): html_row = [] html_row_string = '<tr>' cur_module_name = self.module_names[i] # Group the results for a reporter group into a rowspan if prev_module_name != cur_module_name: rowspan = 1 while (i + rowspan) < len(self.module_names) and \ self.module_names[i+rowspan] == cur_module_name: rowspan += 1 html_row_string += '<th rowspan="%d">%s</th>' % \ (rowspan, cur_module_name) prev_module_name = cur_module_name # Add the row header showing the name of the current reporter. # If the reporter has an "evidence" field associated with it, # create a link to a page describing the evidence if (hasattr(self.reporters[i], 'reporter_evidence') and self.reporters[i].reporter_evidence is not None): evidence_filename = '%s_evidence.html' % \ self.reporters[i].__name__ evidence_str = """ <html> <head><title>Evidence for %s</title> <style type="text/css"> img { max-width : 400px; max-height : 400px; } body { font-family: sans-serif; font-size: 10pt} h1 { font-weight : bold; font-size : 14pt; } </style> </head> <body> <p><h1>Evidence that %s</h1> """ % (self.reporters[i].reporter_name, self.reporters[i].reporter_name) evidence_str += self.reporters[i].reporter_evidence.get_html() evidence_str += "</body></html>" with open(evidence_filename, 'w') as f: f.write(evidence_str) reporter_html = '<th><a href="%s">%s</a></th>' % \ (evidence_filename, self.reporters[i].reporter_name) else: reporter_html = '<th>%s</th>' % self.reporters[i].reporter_name html_row_string += reporter_html # Add the HTML-ified result for result in row: html_row.append(result.get_html()) html_row_string += '\n'.join(html_row) html_row_string += '</tr>\n\n' lines += html_row_string lines += "</table>" # Add closing tags lines += "</body></html>" f = open(filename, 'wb') f.write(lines) def write_tsv(self, filename): """Write the transposed results table as a tab-separated file. Transposition of the results table puts the models in rows and the attributes in the columns, which is more suitable for most machine-learning/analysis algorithms. """ output = StringIO() # Add the header line output.write('model_name\t') output.write('\t'.join([r.func_name for r in self.reporters])) output.write('\n') # Transpose the results list results = zip(*self.results) for model_name, result_row in zip(self.names, results): output.write(model_name + '\t') output.write('\t'.join([r.get_text() for r in result_row])) output.write('\n') with open(filename, 'w') as f: f.write(output.getvalue()) def cluster_by_maximum_likelihood(self): """Cluster the models based on maximum_likelihood.""" # Get the maximum likelihood row from the results table ml_results = None for i, reporter in enumerate(self.reporters): if reporter.func_name == "maximum_likelihood": ml_results = self.results[i] if ml_results is None: raise Exception("Couldn't find the row in the " "results table for the maximum likelihood " "test.") # Get the maximum likelihood row from the results table tBidBax_monotonic_results = None for i, reporter in enumerate(self.reporters): if reporter.func_name == "tBid_Bax_monotonically_increasing": tBidBax_monotonic_results = self.results[i] if tBidBax_monotonic_results is None: raise Exception("Couldn't find the row in the " "results table for the tBidBax monotonically " "increasing test.") # Get the maximum likelihood row from the results table iBax_monotonic_results = None for i, reporter in enumerate(self.reporters): if reporter.func_name == "iBax_monotonically_increasing": iBax_monotonic_results = self.results[i] if iBax_monotonic_results is None: raise Exception("Couldn't find the row in the " "results table for the iBax monotonically " "increasing test.") total_ml = np.sum([r.value for r in ml_results]) combined_results = [] # FIXME Need a better way of normalizing the max likelihood #combined_results.append([r.value / total_ml for r in ml_results]) combined_results.append([np.log10(r.value/2) for r in ml_results]) combined_results.append([r.value for r in tBidBax_monotonic_results]) combined_results.append([r.value for r in iBax_monotonic_results]) combined_results = np.array(combined_results) # Calculate distances between models based on tests num_results = combined_results.shape[1] D1 = scipy.zeros([num_results, num_results]) for i in range(num_results): for j in range(num_results): D1[i, j] = np.linalg.norm(combined_results[:,i] - combined_results[:,j]) # Compute and plot first dendrogram fig = plt.figure(figsize=(8,8)) ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6]) Y = scipy.cluster.hierarchy.linkage(D1, method='centroid') Z1 = scipy.cluster.hierarchy.dendrogram(Y, orientation='right', labels=[n.split(' ')[0] + ' ' + n.split(' ')[2] for n in self.names]) ax1.set_xticks([]) ax1.yaxis.tick_left() # Calculate distances between tests based on models num_results = combined_results.shape[0] D2 = scipy.zeros([num_results, num_results]) for i in range(num_results): for j in range(num_results): D2[i, j] = np.linalg.norm(combined_results[i,:] - combined_results[j,:]) # Compute and plot second dendrogram ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2]) Y = scipy.cluster.hierarchy.linkage(D2, method='centroid') Z2 = scipy.cluster.hierarchy.dendrogram(Y, labels=['Max likelihood', 'tBidBax monotonic', 'iBax monotonic']) ax2.xaxis.tick_top() ax2.set_yticks([]) # Plot distance matrix. axmatrix = fig.add_axes([0.3,0.1,0.6,0.6]) idx1 = Z1['leaves'] idx2 = Z2['leaves'] D = np.zeros(combined_results.shape) for i in range(combined_results.shape[0]): for j in range(combined_results.shape[1]): D[i,j] = combined_results[idx2[i], idx1[j]] im = axmatrix.matshow(D.T, aspect='auto', origin='lower', cmap=cm.YlGnBu) axmatrix.set_xticks([]) axmatrix.set_yticks([]) # Plot colorbar. axcolor = fig.add_axes([0.91,0.1,0.02,0.6]) plt.colorbar(im, cax=axcolor) fig.show() fig.savefig('dendrogram.png') class Result(object): """Stores the results associated with the execution of a reporter function. Parameters ---------- value : anything The return value of a reporter function. link : string String representing a hyperlink, e.g. to information or visualizations supporting the reporter result. expectation : anything (optional) The expected value of the reporter. """ def __init__(self, value, link, expectation=None): self.value = value self.link = link self.expectation = expectation def get_text(self): """Returns a text representation of the result.""" result_str = '' if isinstance(self.value, float): result_str = '%-.2f' % self.value elif isinstance(self.value, bool): if self.value: result_str = 'True' else: result_str = 'False' else: result_str = str(self.value) return result_str def get_html(self): """Returns the default HTML string for the table cell to contain the result. Returns ------- string A string containing the HTML for the table cell, including the opening and closing (<td>...</td>) tags. """ # Format the result result_str = self.get_text() if self.link is not None: result_str = '<a href="%s">%s</a>' % (self.link, result_str) return '<td>%s</td>' % result_str class FloatListResult(Result): """Implements formatting for a list of floating point values. In particular, specifies the precision at which they should be displayed. Parameters ---------- value : anything The return value of a reporter function. link : string String representing a hyperlink, e.g. to information or visualizations supporting the reporter result. precision : int (optional) The number of decimal places to display for each entry in the list of values. Default is 2. """ def __init__(self, value, link, precision=2): Result.__init__(self, value, link) self.precision = precision def get_text(self): """Returns the text representation of the floating point list. The string representation of the floating point list is of the form "<td>[xxx.xx, x.xx, xx.xx, ...]</td>, where the precision (number of x's after decimal point) is controlled by the value assigned to the property ``precision``. """ # FIXME Finish comments if self.value is None: result_str = str(self.value) else: format_str = '%%.%dg' % self.precision result_str = '[' result_str += ', '.join([format_str % f for f in self.value]) result_str += ']' return result_str def get_html(self): """Returns the HTML string for the table cell to contain the result. The string representation of the floating point list is of the form "<td>[xxx.xx, x.xx, xx.xx, ...]</td>, where the precision (number of x's after decimal point) is controlled by the value assigned to the property ``precision``. Returns ------- string A string containing the HTML for the table cell, including the opening and closing (<td>...</td>) tags. """ result_str = self.get_text() if self.link is not None: result_str = '<a href="%s">%s</a>' % (self.link, result_str) return '<td>%s</td>' % result_str class ThumbnailResult(Result): """A result that is an img that should be displayed as a thumbnail. Results of this type have no value associated with them, so the ``value`` field is set to ``None``. """ def __init__(self, thumbnail_link, img_link): """Create the FloatListResult object. Parameters ---------- thumbnail_link : string Path to the filename of the thumbnail image. img_link : string Path to the filename of the full-size image. """ if thumbnail_link is None or img_link is None: raise ValueError("Arguments to ThumbnailResult.__init__() " "cannot be None.") Result.__init__(self, None, img_link) self.thumbnail_link = thumbnail_link def get_html(self): """Returns the HTML string for the table cell to contain the result. The string representation for the thumbnail is of the form ``<td><a href="..."><img ...></a></td>``, with the anchor tag linking to the full-size image. Returns ------- string A string containing the HTML for the table cell, including the opening and closing (<td>...</td>) tags. """ return '<td><a href="%s"><img src="%s" /></a></td>' % \ (self.link, self.thumbnail_link) class MeanSdResult(Result): """A result whose value is expressed as a mean and standard deviation. For example, to summarize a distribution which can be viewed by accessing the associated link. For these results, the "value" attribute is set to the mean; the SD is stored in the additional attribute ``sd``. Parameters ---------- mean : float The mean value associated with the result. sd : float The standard deviation associated with the result. link : string Path to the filename of any additional data. precision : int (optional) The number of decimal places to use when displaying the mean and standard deviation. Default is 3. """ def __init__(self, mean, sd, link, precision=3): if mean is None or sd is None or sd < 0: raise ValueError("Invalid argument to MeanSdResult constructor.") Result.__init__(self, mean, link) self.sd = sd self.precision = precision def get_html(self): """Returns the HTML string for the table cell to contain the result. The string representation for the thumbnail is of the form ``<td><a href="...">mean &plusmn; sd</a></td>``, with the anchor tag linking to the full-size image. Returns ------- string A string containing the HTML for the table cell, including the opening and closing (<td>...</td>) tags. """ format_str = '<td><a href="%%s">%%.%dg &plusmn; %%.%dg</a></td>' % \ (self.precision, self.precision) return format_str % (self.link, self.value, self.sd) class FuzzyBooleanResult(Result): """Stores the result of a yes/no test applied to a chain by sampling. Color-codes the result of the boolean test as red (bad) or green (good) depending on its deviation from the expected value. """ def __init__(self, value, link, expectation): if value is None or expectation is None: raise ValueError("value and expectation arguments cannot be None.") if not isinstance(value, float): raise ValueError("value must be a float.") if not isinstance(expectation, float): raise ValueError("value must be a float.") Result.__init__(self, value, link, expectation) def get_html(self): """Returns the default HTML string for the table cell to contain the result. Returns ------- string A string containing the HTML for the table cell, including the opening and closing (<td>...</td>) tags. """ # Format the result result_str = '%-.2f' % self.value if self.link is not None: result_str = '<a href="%s">%s</a>' % (self.link, result_str) error = abs(self.value - self.expectation) c_map = cm.get_cmap('RdYlGn') rgba = c_map(1 - error) color_str = "#%02x%02x%02x" % tuple([v*255 for v in rgba[0:3]]) return '<td style="background: %s">%s</td>' % (color_str, result_str) # DECORATOR def reporter(name, evidence=None): """Decorator for reporter functions. Sets the ``name`` field of the function to indicate its name. The name of the reporter function is meant to be a human-readable name for use in results summaries. The decorator also adds the reporter function to the package-level variable ``reporter_dict``, which keeps track of all reporter functions imported (and decorated) thus far. The ``reporter_dict`` is indexed by the name of the module containing the reporter function, and each key maps to a list of reporter functions. Parameters ---------- name : string The human-readable name for the reporter function. evidence : Evidence The evidence for the reporter. Returns ------- The decorated reporter function. """ if callable(name): raise TypeError("The reporter decorator requires a name argument.") def wrap(f): # Keep track of all reporters in the package level reporter_dict reporter_mod_name = inspect.getmodule(f).__name__ reporter_list = reporter_dict.setdefault(reporter_mod_name, []) reporter_list.append(f) f.reporter_name = name f.reporter_evidence = evidence return f return wrap ``` #### File: bayessb/report/reporters.py ```python import numpy as np from matplotlib import pyplot as plt from bayessb.report import reporter, Result, FloatListResult, ThumbnailResult from bayessb import convergence from StringIO import StringIO from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib import cm from matplotlib.font_manager import FontProperties from bayessb.multichain import NoPositionsException reporter_group_name = "Estimation" num_samples = 100 @reporter('Number of chains') def num_chains(mcmc_set): return Result(len(mcmc_set.chains), None) @reporter('Estimation parameters') def estimation_parameters(mcmc_set): chain = mcmc_set.chains[0] opts = chain.options output = StringIO() output.write("<html><head /><body><pre>") output.write("model: %s\n" % opts.model.name) output.write("use_hessian: %s\n" % opts.use_hessian) output.write("hessian_period: %s\n" % opts.hessian_period) output.write("hessian_scale: %s\n" % opts.hessian_scale) output.write("norm_step_size: %s\n" % opts.norm_step_size) output.write("anneal_length: %s\n" % opts.anneal_length) output.write("T_init: %s\n" % opts.T_init) output.write("thermo_temp: %s\n" % opts.thermo_temp) output.write("accept_rate_target: %s\n" % opts.accept_rate_target) output.write("sigma_max: %s\n" % opts.sigma_max) output.write("sigma_min: %s\n" % opts.sigma_min) output.write("sigma_step: %s\n" % opts.sigma_step) output.write("sigma_adj_interval: %s\n" % opts.sigma_adj_interval) output.write("initial_values: %s\n" % opts.initial_values) output.write("</pre></body></html>") # Write the estimation parameter description to a file param_file_name = '%s_estimation_params.html' % mcmc_set.name with open(param_file_name, 'w') as f: f.write(output.getvalue()) return Result(None, param_file_name) @reporter('<NAME>') def convergence_criterion(mcmc_set): """Returns the vector of Gelman-Rubin convergence criterion values and a link to an HTML file containing plots of the traces of the walk for each parameter fitted.""" # Prepare html for page showing plots of parameter traces html_str = "<html><head><title>Parameter traces for %s</title></head>\n" \ % mcmc_set.name html_str += "<body><p>Parameter traces for %s</p>\n" \ % mcmc_set.name img_str_list = [] # Useful variables num_estimate = mcmc_set.chains[0].num_estimate fontP = FontProperties() fontP.set_size('small') legend_kwargs = {'prop':fontP, 'ncol':1, 'bbox_to_anchor':(1, 1), 'fancybox': True, 'shadow': True} # Make plot of posterior fig = Figure() ax = fig.gca() for i, chain in enumerate(mcmc_set.chains): color = cm.jet(i/float(num_estimate - 1)) label = 's%d' % chain.options.seed if chain.pruned: line = ax.plot(chain.thinned_steps, chain.posteriors, color=color, label=label) else: line = ax.plot(chain.posteriors, color=color, label=label) ax.set_title("Posterior traces") ax.legend(loc='upper left', **legend_kwargs) posterior_plot_filename = '%s_posterior_trace.png' % mcmc_set.name canvas = FigureCanvasAgg(fig) fig.set_canvas(canvas) fig.savefig(posterior_plot_filename) # Make plots of parameter traces for i in range(num_estimate): param_name = mcmc_set.chains[0].options.estimate_params[i].name fig = Figure() ax = fig.gca() for j, chain in enumerate(mcmc_set.chains): color = cm.jet(j/float(num_estimate - 1)) label = 's%d' % chain.options.seed if chain.pruned: line = ax.plot(chain.thinned_steps, chain.positions[:,i], color=color, label=label) else: line = ax.plot(chain.positions[:, i], color=color, label=label) ax.set_title("Parameter: %s" % param_name) ax.legend(loc='upper left', **legend_kwargs) plot_filename = '%s_trace_%s.png' % (mcmc_set.name, param_name) canvas = FigureCanvasAgg(fig) fig.set_canvas(canvas) fig.savefig(plot_filename) img_str_list.append(plot_filename) # Make the html file html_str += '<a href="%s"><img src="%s" width=400 /></a>' % \ (posterior_plot_filename, posterior_plot_filename) html_str += '\n'.join([ '<a href="%s"><img src="%s" width=400 /></a>' % (i, i) for i in img_str_list]) html_str += "</body></html>" html_filename = '%s_convergence.html' % mcmc_set.name with open(html_filename, 'w') as f: f.write(html_str) return FloatListResult(convergence.convergence_criterion(mcmc_set), html_filename) @reporter('Maximum likelihood') def maximum_likelihood(mcmc_set): # Get the maximum likelihood try: (max_likelihood, max_likelihood_position) = mcmc_set.maximum_likelihood() except NoPositionsException as npe: return Result(None, None) return show_fit_at_position(mcmc_set, max_likelihood, max_likelihood_position, 'max_likelihood') @reporter('Maximum posterior') def maximum_posterior(mcmc_set): # Get the maximum posterior try: (max_posterior, max_posterior_position) = mcmc_set.maximum_posterior() except NoPositionsException as npe: return Result(None, None) return show_fit_at_position(mcmc_set, max_posterior, max_posterior_position, 'max_posterior') def show_fit_at_position(mcmc_set, fit_value, position, fit_name): """Create the result page showing the fit quality at the given position. Parameters ---------- mcmc_set : MCMCSet object The set of MCMC chains fit_value : float The quality of fit at the given position. position : numpy.array Array of (log10-transformed) parameter values at the given position. fit_name : string A shorthand name for the fit position, e.g., "max_likelihood". Should conform to rules of Python variable naming (no spaces, doesn't start with a number, etc.). Returns ------- A result object containing the fit value and the link to the accompanying HTML plot page, if any. """ # If the MCMC object does not have a fit_plotting_function defined # (for example, if it is a base MCMC object), then don't create a # plot for visualization. if not hasattr(mcmc_set.chains[0], 'fit_plotting_function'): return Result(fit_value, None) # Prepare html for page showing plots at position html_str = "<html><head><title>Simulation of %s " \ "with %s parameter values</title></head>\n" \ % (mcmc_set.name, fit_name) html_str += "<body><p>Simulation of %s with %s " \ "parameter values</p>\n" % (mcmc_set.name, fit_name) # Show the plot vs. the data at the position fig = mcmc_set.chains[0].fit_plotting_function(position=position) img_filename = '%s_%s_plot.png' % (mcmc_set.name, fit_name) fig.savefig(img_filename) fig.savefig(img_filename.replace('.png', '.pdf')) html_str += '<p><img src="%s" /></p>' % img_filename chain0 = mcmc_set.chains[0] """ # Show the plot of all observables at the position tspan = chain0.options.tspan observables = chain0.options.model.observables x = chain0.simulate(position=position, observables=True) fig = Figure() ax = fig.gca() lines = [] for o in observables: line = ax.plot(tspan, x[o.name]) lines += line ax.set_title("Observables at %s" % fit_name) fig.legend(lines, [o.name for o in observables], 'lower right') canvas = FigureCanvasAgg(fig) fig.set_canvas(canvas) img_filename = '%s_%s_species.png' % (mcmc_set.name, fit_name) fig.savefig(img_filename) html_str += '<p><img src="%s" /></p>' % img_filename """ # Print the parameter values for the position as a dict that can be # used to override the initial values html_str += '<pre>%s_params = {\n' % fit_name for i, p in enumerate(chain0.options.estimate_params): html_str += "\t'%s': %.17g,\n" % \ (p.name, 10 ** position[i]) html_str += '}</pre>' html_str += '</body></html>' # Create the html file html_filename = '%s_%s_plot.html' % (mcmc_set.name, fit_name) with open(html_filename, 'w') as f: f.write(html_str) return Result(fit_value, html_filename) @reporter('Sample fits') def sample_fits(mcmc_set): fig = Figure() ax = fig.gca() plot_filename = '%s_sample_fits.png' % mcmc_set.name thumbnail_filename = '%s_sample_fits_th.png' % mcmc_set.name # Make sure we can call the method 'get_observable_timecourses' if not hasattr(mcmc_set.chains[0], 'get_observable_timecourses') or \ not hasattr(mcmc_set.chains[0], 'plot_data'): return Result('None', None) # Plot the original data mcmc_set.chains[0].plot_data(ax) # Plot a sampling of trajectories from the original parameter set try: for i in range(num_samples): position = mcmc_set.get_sample_position() timecourses = mcmc_set.chains[0].get_observable_timecourses( position=position) for obs_name, timecourse in timecourses.iteritems(): ax.plot(timecourse[0], timecourse[1], color='g', alpha=0.1, label=obs_name) except NoPositionsException as npe: pass canvas = FigureCanvasAgg(fig) fig.set_canvas(canvas) fig.savefig(plot_filename) fig.savefig(plot_filename.replace('.png', '.pdf')) fig.savefig(thumbnail_filename, dpi=10) return ThumbnailResult(thumbnail_filename, plot_filename) @reporter('Marginals') def marginals(mcmc_set): """Returns the vector of Gelman-Rubin convergence criterion values and a link to an HTML file containing plots of the traces of the walk for each parameter fitted.""" # Prepare html for page showing plots of parameter traces html_str = "<html><head><title>Marginal distributions for " \ "%s</title></head>\n" % mcmc_set.name html_str += "<body><p>Marginal distributions for for %s</p>\n" \ % mcmc_set.name img_str_list = [] # Make plots of parameter traces for i in range(mcmc_set.chains[0].num_estimate): param_name = mcmc_set.chains[0].options.estimate_params[i].name fig = Figure() ax = fig.gca() # Build a list of arrays containing positions for this parameter chains_for_param = [] for chain in mcmc_set.chains: # Don't try to plot marginals for a chain with no accepted steps! if len(chain.positions) > 0: chains_for_param.append(chain.positions[:,i]) # Plot the marginals ax.hist(chains_for_param, histtype='step', bins=25) ax.set_title("Parameter: %s" % param_name) plot_filename = '%s_marginal_%s.png' % (mcmc_set.name, param_name) canvas = FigureCanvasAgg(fig) fig.set_canvas(canvas) fig.savefig(plot_filename) img_str_list.append(plot_filename) # Make the html file html_str += '\n'.join([ '<a href="%s"><img src="%s" width=400 /></a>' % (i, i) for i in img_str_list]) html_str += "</body></html>" html_filename = '%s_marginals.html' % mcmc_set.name with open(html_filename, 'w') as f: f.write(html_str) return Result(None, html_filename) ``` #### File: examples/earm/earm_1_3_standalone.py ```python import numpy import scipy.weave, scipy.integrate import collections import itertools import distutils.errors _use_inline = False # try to inline a C statement to see if inline is functional try: scipy.weave.inline('int i;', force=1) _use_inline = True except distutils.errors.CompileError: pass Parameter = collections.namedtuple('Parameter', 'name value') Observable = collections.namedtuple('Observable', 'name species coefficients') Initial = collections.namedtuple('Initial', 'param_index species_index') class Model(object): def __init__(self): self.y = None self.yobs = None self.integrator = scipy.integrate.ode(self.ode_rhs, ) self.integrator.set_integrator('vode', method='bdf', with_jacobian=True, rtol=1e-3, atol=1e-6) self.y0 = numpy.empty(60) self.ydot = numpy.empty(60) self.sim_param_values = numpy.empty(206) self.parameters = [None] * 206 self.observables = [None] * 6 self.initial_conditions = [None] * 19 self.parameters[0] = Parameter('L_0', 3000) self.parameters[1] = Parameter('pR_0', 1000) self.parameters[2] = Parameter('flip_0', 2000) self.parameters[3] = Parameter('pC8_0', 10000) self.parameters[4] = Parameter('BAR_0', 1000) self.parameters[5] = Parameter('pC3_0', 10000) self.parameters[6] = Parameter('pC6_0', 10000) self.parameters[7] = Parameter('XIAP_0', 100000) self.parameters[8] = Parameter('PARP_0', 1e+06) self.parameters[9] = Parameter('Bid_0', 60000) self.parameters[10] = Parameter('Mcl1_0', 20000) self.parameters[11] = Parameter('Bax_0', 80000) self.parameters[12] = Parameter('Bcl2_0', 30000) self.parameters[13] = Parameter('Mito_0', 500000) self.parameters[14] = Parameter('mCytoC_0', 500000) self.parameters[15] = Parameter('mSmac_0', 100000) self.parameters[16] = Parameter('pC9_0', 100000) self.parameters[17] = Parameter('Apaf_0', 100000) self.parameters[18] = Parameter('kf1', 4e-07) self.parameters[19] = Parameter('kr1', 1e-06) self.parameters[20] = Parameter('kc1', 0.01) self.parameters[21] = Parameter('kf2', 1e-06) self.parameters[22] = Parameter('kr2', 0.001) self.parameters[23] = Parameter('kf3', 1e-07) self.parameters[24] = Parameter('kr3', 0.001) self.parameters[25] = Parameter('kc3', 1) self.parameters[26] = Parameter('kf4', 1e-06) self.parameters[27] = Parameter('kr4', 0.001) self.parameters[28] = Parameter('kf5', 1e-07) self.parameters[29] = Parameter('kr5', 0.001) self.parameters[30] = Parameter('kc5', 1) self.parameters[31] = Parameter('kf6', 1e-07) self.parameters[32] = Parameter('kr6', 0.001) self.parameters[33] = Parameter('kc6', 1) self.parameters[34] = Parameter('kf7', 1e-07) self.parameters[35] = Parameter('kr7', 0.001) self.parameters[36] = Parameter('kc7', 1) self.parameters[37] = Parameter('kf8', 2e-06) self.parameters[38] = Parameter('kr8', 0.001) self.parameters[39] = Parameter('kc8', 0.1) self.parameters[40] = Parameter('kf9', 1e-06) self.parameters[41] = Parameter('kr9', 0.001) self.parameters[42] = Parameter('kc9', 20) self.parameters[43] = Parameter('kf10', 1e-07) self.parameters[44] = Parameter('kr10', 0.001) self.parameters[45] = Parameter('kc10', 1) self.parameters[46] = Parameter('kf11', 1e-06) self.parameters[47] = Parameter('kr11', 0.001) self.parameters[48] = Parameter('kf12', 1e-07) self.parameters[49] = Parameter('kr12', 0.001) self.parameters[50] = Parameter('kc12', 1) self.parameters[51] = Parameter('kf13', 0.01) self.parameters[52] = Parameter('kr13', 1) self.parameters[53] = Parameter('kf14', 0.0001) self.parameters[54] = Parameter('kr14', 0.001) self.parameters[55] = Parameter('kf15', 0.0002) self.parameters[56] = Parameter('kr15', 0.001) self.parameters[57] = Parameter('kf16', 0.0001) self.parameters[58] = Parameter('kr16', 0.001) self.parameters[59] = Parameter('kf17', 0.0002) self.parameters[60] = Parameter('kr17', 0.001) self.parameters[61] = Parameter('kf18', 0.0001) self.parameters[62] = Parameter('kr18', 0.001) self.parameters[63] = Parameter('kf19', 0.0001) self.parameters[64] = Parameter('kr19', 0.001) self.parameters[65] = Parameter('kc19', 1) self.parameters[66] = Parameter('kf20', 0.0002) self.parameters[67] = Parameter('kr20', 0.001) self.parameters[68] = Parameter('kc20', 10) self.parameters[69] = Parameter('kf21', 0.0002) self.parameters[70] = Parameter('kr21', 0.001) self.parameters[71] = Parameter('kc21', 10) self.parameters[72] = Parameter('kf22', 1) self.parameters[73] = Parameter('kr22', 0.01) self.parameters[74] = Parameter('kf23', 5e-07) self.parameters[75] = Parameter('kr23', 0.001) self.parameters[76] = Parameter('kc23', 1) self.parameters[77] = Parameter('kf24', 5e-08) self.parameters[78] = Parameter('kr24', 0.001) self.parameters[79] = Parameter('kf25', 5e-09) self.parameters[80] = Parameter('kr25', 0.001) self.parameters[81] = Parameter('kc25', 1) self.parameters[82] = Parameter('kf26', 1) self.parameters[83] = Parameter('kr26', 0.01) self.parameters[84] = Parameter('kf27', 2e-06) self.parameters[85] = Parameter('kr27', 0.001) self.parameters[86] = Parameter('kf28', 7e-06) self.parameters[87] = Parameter('kr28', 0.001) self.parameters[88] = Parameter('kf31', 0.001) self.parameters[89] = Parameter('kdeg_Mcl1', 0.0001) self.parameters[90] = Parameter('kdeg_AMito', 0.0001) self.parameters[91] = Parameter('kdeg_C3_U', 0) self.parameters[92] = Parameter('ks_L', 0) self.parameters[93] = Parameter('kdeg_L', 2.9e-06) self.parameters[94] = Parameter('kdeg_pR', 2.9e-06) self.parameters[95] = Parameter('ks_pR', 0.000435) self.parameters[96] = Parameter('kdeg_flip', 2.9e-06) self.parameters[97] = Parameter('ks_flip', 0.00087) self.parameters[98] = Parameter('kdeg_pC8', 2.9e-06) self.parameters[99] = Parameter('ks_pC8', 0.00435) self.parameters[100] = Parameter('kdeg_BAR', 2.9e-06) self.parameters[101] = Parameter('ks_BAR', 0.000435) self.parameters[102] = Parameter('kdeg_pC3', 2.9e-06) self.parameters[103] = Parameter('ks_pC3', 0.00435) self.parameters[104] = Parameter('kdeg_pC6', 2.9e-06) self.parameters[105] = Parameter('ks_pC6', 0.00435) self.parameters[106] = Parameter('kdeg_XIAP', 2.9e-06) self.parameters[107] = Parameter('ks_XIAP', 0.0435) self.parameters[108] = Parameter('kdeg_PARP', 2.9e-06) self.parameters[109] = Parameter('ks_PARP', 0.435) self.parameters[110] = Parameter('kdeg_Bid', 2.9e-06) self.parameters[111] = Parameter('ks_Bid', 0.0261) self.parameters[112] = Parameter('ks_Mcl1', 0.3) self.parameters[113] = Parameter('kdeg_Bax', 2.9e-06) self.parameters[114] = Parameter('ks_Bax', 0.0348) self.parameters[115] = Parameter('kdeg_Bcl2', 2.9e-06) self.parameters[116] = Parameter('ks_Bcl2', 0.01305) self.parameters[117] = Parameter('kdeg_Mito', 2.9e-06) self.parameters[118] = Parameter('ks_Mito', 0.2175) self.parameters[119] = Parameter('kdeg_mCytoC', 2.9e-06) self.parameters[120] = Parameter('ks_mCytoC', 0.2175) self.parameters[121] = Parameter('kdeg_mSmac', 2.9e-06) self.parameters[122] = Parameter('ks_mSmac', 0.0435) self.parameters[123] = Parameter('kdeg_Apaf', 2.9e-06) self.parameters[124] = Parameter('ks_Apaf', 0.0435) self.parameters[125] = Parameter('kdeg_pC9', 2.9e-06) self.parameters[126] = Parameter('ks_pC9', 0.0435) self.parameters[127] = Parameter('kdeg_L_pR', 2.9e-06) self.parameters[128] = Parameter('ks_L_pR', 0) self.parameters[129] = Parameter('kdeg_DISC', 2.9e-06) self.parameters[130] = Parameter('ks_DISC', 0) self.parameters[131] = Parameter('kdeg_DISC_flip', 2.9e-06) self.parameters[132] = Parameter('ks_DISC_flip', 0) self.parameters[133] = Parameter('kdeg_DISC_pC8', 2.9e-06) self.parameters[134] = Parameter('ks_DISC_pC8', 0) self.parameters[135] = Parameter('kdeg_C8', 2.9e-06) self.parameters[136] = Parameter('ks_C8', 0) self.parameters[137] = Parameter('kdeg_BAR_C8', 2.9e-06) self.parameters[138] = Parameter('ks_BAR_C8', 0) self.parameters[139] = Parameter('kdeg_C8_pC3', 2.9e-06) self.parameters[140] = Parameter('ks_C8_pC3', 0) self.parameters[141] = Parameter('kdeg_Bid_C8', 2.9e-06) self.parameters[142] = Parameter('ks_Bid_C8', 0) self.parameters[143] = Parameter('kdeg_C3', 2.9e-06) self.parameters[144] = Parameter('ks_C3', 0) self.parameters[145] = Parameter('kdeg_tBid', 2.9e-06) self.parameters[146] = Parameter('ks_tBid', 0) self.parameters[147] = Parameter('kdeg_C3_pC6', 2.9e-06) self.parameters[148] = Parameter('ks_C3_pC6', 0) self.parameters[149] = Parameter('kdeg_C3_XIAP', 2.9e-06) self.parameters[150] = Parameter('ks_C3_XIAP', 0) self.parameters[151] = Parameter('kdeg_C3_PARP', 2.9e-06) self.parameters[152] = Parameter('ks_C3_PARP', 0) self.parameters[153] = Parameter('kdeg_Mcl1_tBid', 2.9e-06) self.parameters[154] = Parameter('ks_Mcl1_tBid', 0) self.parameters[155] = Parameter('kdeg_Bax_tBid', 2.9e-06) self.parameters[156] = Parameter('ks_Bax_tBid', 0) self.parameters[157] = Parameter('kdeg_C6', 2.9e-06) self.parameters[158] = Parameter('ks_C6', 0) self.parameters[159] = Parameter('ks_C3_U', 0) self.parameters[160] = Parameter('kdeg_CPARP', 2.9e-06) self.parameters[161] = Parameter('ks_CPARP', 0) self.parameters[162] = Parameter('kdeg_aBax', 2.9e-06) self.parameters[163] = Parameter('ks_aBax', 0) self.parameters[164] = Parameter('kdeg_C6_pC8', 2.9e-06) self.parameters[165] = Parameter('ks_C6_pC8', 0) self.parameters[166] = Parameter('kdeg_MBax', 2.9e-06) self.parameters[167] = Parameter('ks_MBax', 0) self.parameters[168] = Parameter('kdeg_Bcl2_MBax', 2.9e-06) self.parameters[169] = Parameter('ks_Bcl2_MBax', 0) self.parameters[170] = Parameter('kdeg_Bax2', 2.9e-06) self.parameters[171] = Parameter('ks_Bax2', 0) self.parameters[172] = Parameter('kdeg_Bax2_Bcl2', 2.9e-06) self.parameters[173] = Parameter('ks_Bax2_Bcl2', 0) self.parameters[174] = Parameter('kdeg_Bax4', 2.9e-06) self.parameters[175] = Parameter('ks_Bax4', 0) self.parameters[176] = Parameter('kdeg_Bax4_Bcl2', 2.9e-06) self.parameters[177] = Parameter('ks_Bax4_Bcl2', 0) self.parameters[178] = Parameter('kdeg_Bax4_Mito', 2.9e-06) self.parameters[179] = Parameter('ks_Bax4_Mito', 0) self.parameters[180] = Parameter('ks_AMito', 0) self.parameters[181] = Parameter('kdeg_AMito_mCytoC', 2.9e-06) self.parameters[182] = Parameter('ks_AMito_mCytoC', 0) self.parameters[183] = Parameter('kdeg_AMito_mSmac', 2.9e-06) self.parameters[184] = Parameter('ks_AMito_mSmac', 0) self.parameters[185] = Parameter('kdeg_ACytoC', 2.9e-06) self.parameters[186] = Parameter('ks_ACytoC', 0) self.parameters[187] = Parameter('kdeg_ASmac', 2.9e-06) self.parameters[188] = Parameter('ks_ASmac', 0) self.parameters[189] = Parameter('kdeg_cCytoC', 2.9e-06) self.parameters[190] = Parameter('ks_cCytoC', 0) self.parameters[191] = Parameter('kdeg_cSmac', 2.9e-06) self.parameters[192] = Parameter('ks_cSmac', 0) self.parameters[193] = Parameter('kdeg_Apaf_cCytoC', 2.9e-06) self.parameters[194] = Parameter('ks_Apaf_cCytoC', 0) self.parameters[195] = Parameter('kdeg_XIAP_cSmac', 2.9e-06) self.parameters[196] = Parameter('ks_XIAP_cSmac', 0) self.parameters[197] = Parameter('kdeg_aApaf', 2.9e-06) self.parameters[198] = Parameter('ks_aApaf', 0) self.parameters[199] = Parameter('kdeg_Apop', 2.9e-06) self.parameters[200] = Parameter('ks_Apop', 0) self.parameters[201] = Parameter('kdeg_Apop_pC3', 2.9e-06) self.parameters[202] = Parameter('ks_Apop_pC3', 0) self.parameters[203] = Parameter('kdeg_Apop_XIAP', 2.9e-06) self.parameters[204] = Parameter('ks_Apop_XIAP', 0) self.parameters[205] = Parameter('__source_0', 1) self.observables[0] = Observable('Bid_unbound', [9], [1]) self.observables[1] = Observable('PARP_unbound', [8], [1]) self.observables[2] = Observable('mSmac_unbound', [15], [1]) self.observables[3] = Observable('tBid_total', [29, 33, 34], [1, 1, 1]) self.observables[4] = Observable('CPARP_total', [37], [1]) self.observables[5] = Observable('cSmac_total', [53, 55], [1, 1]) self.initial_conditions[0] = Initial(0, 0) self.initial_conditions[1] = Initial(1, 1) self.initial_conditions[2] = Initial(2, 2) self.initial_conditions[3] = Initial(3, 3) self.initial_conditions[4] = Initial(4, 4) self.initial_conditions[5] = Initial(5, 5) self.initial_conditions[6] = Initial(6, 6) self.initial_conditions[7] = Initial(7, 7) self.initial_conditions[8] = Initial(8, 8) self.initial_conditions[9] = Initial(9, 9) self.initial_conditions[10] = Initial(10, 10) self.initial_conditions[11] = Initial(11, 11) self.initial_conditions[12] = Initial(12, 12) self.initial_conditions[13] = Initial(13, 13) self.initial_conditions[14] = Initial(14, 14) self.initial_conditions[15] = Initial(15, 15) self.initial_conditions[16] = Initial(17, 16) self.initial_conditions[17] = Initial(16, 17) self.initial_conditions[18] = Initial(205, 18) if _use_inline: def ode_rhs(self, t, y, p): ydot = self.ydot scipy.weave.inline(r''' ydot[0] = -p[93]*y[0] - p[18]*y[0]*y[1] + p[88]*y[21] + p[19]*y[19] + p[92]*y[18]; ydot[1] = -p[94]*y[1] - p[18]*y[0]*y[1] + p[88]*y[21] + p[19]*y[19] + p[95]*y[18]; ydot[2] = -p[96]*y[2] - p[21]*y[2]*y[21] + p[22]*y[22] + p[97]*y[18]; ydot[3] = -p[98]*y[3] - p[23]*y[21]*y[3] - p[34]*y[3]*y[35] + p[24]*y[23] + p[35]*y[39] + p[99]*y[18]; ydot[4] = -p[100]*y[4] - p[26]*y[24]*y[4] + p[27]*y[25] + p[101]*y[18]; ydot[5] = -p[102]*y[5] - p[79]*y[5]*y[57] - p[28]*y[24]*y[5] + p[80]*y[58] + p[29]*y[26] + p[103]*y[18]; ydot[6] = -p[104]*y[6] - p[31]*y[28]*y[6] + p[32]*y[30] + p[105]*y[18]; ydot[7] = p[39]*y[31] - p[106]*y[7] - p[84]*y[57]*y[7] - p[86]*y[53]*y[7] - p[37]*y[28]*y[7] + p[85]*y[59] + p[87]*y[55] + p[38]*y[31] + p[107]*y[18]; ydot[8] = -p[108]*y[8] - p[40]*y[28]*y[8] + p[41]*y[32] + p[109]*y[18]; ydot[9] = -p[110]*y[9] - p[43]*y[24]*y[9] + p[44]*y[27] + p[111]*y[18]; ydot[10] = -p[89]*y[10] - p[46]*y[10]*y[29] + p[47]*y[33] + p[112]*y[18]; ydot[11] = -p[113]*y[11] - p[48]*y[11]*y[29] + p[49]*y[34] + p[114]*y[18]; ydot[12] = -p[115]*y[12] - p[53]*y[12]*y[40] - p[57]*y[12]*y[42] - p[61]*y[12]*y[44] + p[54]*y[41] + p[58]*y[43] + p[62]*y[45] + p[116]*y[18]; ydot[13] = p[90]*y[47] - p[117]*y[13] - p[63]*y[13]*y[44] + p[64]*y[46] + p[118]*y[18]; ydot[14] = -p[119]*y[14] - p[66]*y[14]*y[47] + p[67]*y[48] + p[120]*y[18]; ydot[15] = -p[121]*y[15] - p[69]*y[15]*y[47] + p[70]*y[49] + p[122]*y[18]; ydot[16] = -p[123]*y[16] - p[74]*y[16]*y[52] + p[75]*y[54] + p[124]*y[18]; ydot[17] = -p[125]*y[17] - p[77]*y[17]*y[56] + p[78]*y[57] + p[126]*y[18]; ydot[18] = 0; ydot[19] = -p[20]*y[19] - p[127]*y[19] + p[18]*y[0]*y[1] - p[19]*y[19] + p[128]*y[18]; ydot[20] = p[185]*y[50] + p[181]*y[48] + p[183]*y[49] + p[187]*y[51] + p[123]*y[16] + p[193]*y[54] + p[199]*y[57] + p[203]*y[59] + p[201]*y[58] + p[100]*y[4] + p[137]*y[25] + p[113]*y[11] + p[170]*y[42] + p[172]*y[43] + p[174]*y[44] + p[176]*y[45] + p[178]*y[46] + p[155]*y[34] + p[115]*y[12] + p[168]*y[41] + p[110]*y[9] + p[141]*y[27] + p[143]*y[28] + p[151]*y[32] + p[91]*y[36] + p[149]*y[31] + p[147]*y[30] + p[157]*y[35] + p[164]*y[39] + p[135]*y[24] + p[139]*y[26] + p[160]*y[37] + p[131]*y[22] + p[133]*y[23] + p[93]*y[0] + p[127]*y[19] + p[166]*y[40] + p[89]*y[10] + p[153]*y[33] + p[117]*y[13] + p[108]*y[8] + p[106]*y[7] + p[195]*y[55] + p[197]*y[56] + p[162]*y[38] + p[189]*y[52] + p[191]*y[53] + p[96]*y[2] + p[119]*y[14] + p[121]*y[15] + p[102]*y[5] + p[104]*y[6] + p[98]*y[3] + p[125]*y[17] + p[94]*y[1] + p[145]*y[29]; ydot[21] = p[20]*y[19] + p[25]*y[23] - p[21]*y[2]*y[21] - p[23]*y[21]*y[3] - p[88]*y[21] + p[22]*y[22] + p[24]*y[23] + p[130]*y[18]; ydot[22] = -p[131]*y[22] + p[21]*y[2]*y[21] - p[22]*y[22] + p[132]*y[18]; ydot[23] = -p[25]*y[23] - p[133]*y[23] + p[23]*y[21]*y[3] - p[24]*y[23] + p[134]*y[18]; ydot[24] = p[45]*y[27] + p[25]*y[23] + p[30]*y[26] + p[36]*y[39] - p[135]*y[24] - p[43]*y[24]*y[9] - p[26]*y[24]*y[4] - p[28]*y[24]*y[5] + p[44]*y[27] + p[27]*y[25] + p[29]*y[26] + p[136]*y[18]; ydot[25] = -p[137]*y[25] + p[26]*y[24]*y[4] - p[27]*y[25] + p[138]*y[18]; ydot[26] = -p[30]*y[26] - p[139]*y[26] + p[28]*y[24]*y[5] - p[29]*y[26] + p[140]*y[18]; ydot[27] = -p[45]*y[27] - p[141]*y[27] + p[43]*y[24]*y[9] - p[44]*y[27] + p[142]*y[18]; ydot[28] = p[81]*y[58] + p[30]*y[26] + p[33]*y[30] + p[42]*y[32] - p[143]*y[28] - p[31]*y[28]*y[6] - p[37]*y[28]*y[7] - p[40]*y[28]*y[8] + p[32]*y[30] + p[38]*y[31] + p[41]*y[32] + p[144]*y[18]; ydot[29] = p[45]*y[27] + p[50]*y[34] - p[145]*y[29] - p[46]*y[10]*y[29] - p[48]*y[11]*y[29] + p[47]*y[33] + p[49]*y[34] + p[146]*y[18]; ydot[30] = -p[33]*y[30] - p[147]*y[30] + p[31]*y[28]*y[6] - p[32]*y[30] + p[148]*y[18]; ydot[31] = -p[39]*y[31] - p[149]*y[31] + p[37]*y[28]*y[7] - p[38]*y[31] + p[150]*y[18]; ydot[32] = -p[42]*y[32] - p[151]*y[32] + p[40]*y[28]*y[8] - p[41]*y[32] + p[152]*y[18]; ydot[33] = -p[153]*y[33] + p[46]*y[10]*y[29] - p[47]*y[33] + p[154]*y[18]; ydot[34] = -p[50]*y[34] - p[155]*y[34] + p[48]*y[11]*y[29] - p[49]*y[34] + p[156]*y[18]; ydot[35] = p[33]*y[30] + p[36]*y[39] - p[157]*y[35] - p[34]*y[3]*y[35] + p[35]*y[39] + p[158]*y[18]; ydot[36] = p[39]*y[31] - p[91]*y[36] + p[159]*y[18]; ydot[37] = p[42]*y[32] - p[160]*y[37] + p[161]*y[18]; ydot[38] = p[50]*y[34] - p[162]*y[38] - p[51]*y[38] + p[52]*y[40] + p[163]*y[18]; ydot[39] = -p[36]*y[39] - p[164]*y[39] + p[34]*y[3]*y[35] - p[35]*y[39] + p[165]*y[18]; ydot[40] = -p[166]*y[40] + p[51]*y[38] - p[53]*y[12]*y[40] - 1.0*p[55]*pow(y[40], 2) - p[52]*y[40] + p[54]*y[41] + 2*p[56]*y[42] + p[167]*y[18]; ydot[41] = -p[168]*y[41] + p[53]*y[12]*y[40] - p[54]*y[41] + p[169]*y[18]; ydot[42] = -p[170]*y[42] + 0.5*p[55]*pow(y[40], 2) - p[57]*y[12]*y[42] - 1.0*p[59]*pow(y[42], 2) - p[56]*y[42] + p[58]*y[43] + 2*p[60]*y[44] + p[171]*y[18]; ydot[43] = -p[172]*y[43] + p[57]*y[12]*y[42] - p[58]*y[43] + p[173]*y[18]; ydot[44] = -p[174]*y[44] + 0.5*p[59]*pow(y[42], 2) - p[61]*y[12]*y[44] - p[63]*y[13]*y[44] - p[60]*y[44] + p[62]*y[45] + p[64]*y[46] + p[175]*y[18]; ydot[45] = -p[176]*y[45] + p[61]*y[12]*y[44] - p[62]*y[45] + p[177]*y[18]; ydot[46] = -p[65]*y[46] - p[178]*y[46] + p[63]*y[13]*y[44] - p[64]*y[46] + p[179]*y[18]; ydot[47] = p[65]*y[46] + p[68]*y[48] + p[71]*y[49] - p[90]*y[47] - p[66]*y[14]*y[47] - p[69]*y[15]*y[47] + p[67]*y[48] + p[70]*y[49] + p[180]*y[18]; ydot[48] = -p[68]*y[48] - p[181]*y[48] + p[66]*y[14]*y[47] - p[67]*y[48] + p[182]*y[18]; ydot[49] = -p[71]*y[49] - p[183]*y[49] + p[69]*y[15]*y[47] - p[70]*y[49] + p[184]*y[18]; ydot[50] = p[68]*y[48] - p[185]*y[50] - p[72]*y[50] + p[73]*y[52] + p[186]*y[18]; ydot[51] = p[71]*y[49] - p[187]*y[51] - p[82]*y[51] + p[83]*y[53] + p[188]*y[18]; ydot[52] = p[76]*y[54] - p[189]*y[52] + p[72]*y[50] - p[74]*y[16]*y[52] - p[73]*y[52] + p[75]*y[54] + p[190]*y[18]; ydot[53] = -p[191]*y[53] + p[82]*y[51] - p[86]*y[53]*y[7] - p[83]*y[53] + p[87]*y[55] + p[192]*y[18]; ydot[54] = -p[76]*y[54] - p[193]*y[54] + p[74]*y[16]*y[52] - p[75]*y[54] + p[194]*y[18]; ydot[55] = -p[195]*y[55] + p[86]*y[53]*y[7] - p[87]*y[55] + p[196]*y[18]; ydot[56] = p[76]*y[54] - p[197]*y[56] - p[77]*y[17]*y[56] + p[78]*y[57] + p[198]*y[18]; ydot[57] = p[81]*y[58] - p[199]*y[57] + p[77]*y[17]*y[56] - p[79]*y[5]*y[57] - p[84]*y[57]*y[7] - p[78]*y[57] + p[80]*y[58] + p[85]*y[59] + p[200]*y[18]; ydot[58] = -p[81]*y[58] - p[201]*y[58] + p[79]*y[5]*y[57] - p[80]*y[58] + p[202]*y[18]; ydot[59] = -p[203]*y[59] + p[84]*y[57]*y[7] - p[85]*y[59] + p[204]*y[18]; ''', ['ydot', 't', 'y', 'p']) return ydot else: def ode_rhs(self, t, y, p): ydot = self.ydot ydot[0] = -p[93]*y[0] - p[18]*y[0]*y[1] + p[88]*y[21] + p[19]*y[19] + p[92]*y[18] ydot[1] = -p[94]*y[1] - p[18]*y[0]*y[1] + p[88]*y[21] + p[19]*y[19] + p[95]*y[18] ydot[2] = -p[96]*y[2] - p[21]*y[2]*y[21] + p[22]*y[22] + p[97]*y[18] ydot[3] = -p[98]*y[3] - p[23]*y[21]*y[3] - p[34]*y[3]*y[35] + p[24]*y[23] + p[35]*y[39] + p[99]*y[18] ydot[4] = -p[100]*y[4] - p[26]*y[24]*y[4] + p[27]*y[25] + p[101]*y[18] ydot[5] = -p[102]*y[5] - p[79]*y[5]*y[57] - p[28]*y[24]*y[5] + p[80]*y[58] + p[29]*y[26] + p[103]*y[18] ydot[6] = -p[104]*y[6] - p[31]*y[28]*y[6] + p[32]*y[30] + p[105]*y[18] ydot[7] = p[39]*y[31] - p[106]*y[7] - p[84]*y[57]*y[7] - p[86]*y[53]*y[7] - p[37]*y[28]*y[7] + p[85]*y[59] + p[87]*y[55] + p[38]*y[31] + p[107]*y[18] ydot[8] = -p[108]*y[8] - p[40]*y[28]*y[8] + p[41]*y[32] + p[109]*y[18] ydot[9] = -p[110]*y[9] - p[43]*y[24]*y[9] + p[44]*y[27] + p[111]*y[18] ydot[10] = -p[89]*y[10] - p[46]*y[10]*y[29] + p[47]*y[33] + p[112]*y[18] ydot[11] = -p[113]*y[11] - p[48]*y[11]*y[29] + p[49]*y[34] + p[114]*y[18] ydot[12] = -p[115]*y[12] - p[53]*y[12]*y[40] - p[57]*y[12]*y[42] - p[61]*y[12]*y[44] + p[54]*y[41] + p[58]*y[43] + p[62]*y[45] + p[116]*y[18] ydot[13] = p[90]*y[47] - p[117]*y[13] - p[63]*y[13]*y[44] + p[64]*y[46] + p[118]*y[18] ydot[14] = -p[119]*y[14] - p[66]*y[14]*y[47] + p[67]*y[48] + p[120]*y[18] ydot[15] = -p[121]*y[15] - p[69]*y[15]*y[47] + p[70]*y[49] + p[122]*y[18] ydot[16] = -p[123]*y[16] - p[74]*y[16]*y[52] + p[75]*y[54] + p[124]*y[18] ydot[17] = -p[125]*y[17] - p[77]*y[17]*y[56] + p[78]*y[57] + p[126]*y[18] ydot[18] = 0 ydot[19] = -p[20]*y[19] - p[127]*y[19] + p[18]*y[0]*y[1] - p[19]*y[19] + p[128]*y[18] ydot[20] = p[185]*y[50] + p[181]*y[48] + p[183]*y[49] + p[187]*y[51] + p[123]*y[16] + p[193]*y[54] + p[199]*y[57] + p[203]*y[59] + p[201]*y[58] + p[100]*y[4] + p[137]*y[25] + p[113]*y[11] + p[170]*y[42] + p[172]*y[43] + p[174]*y[44] + p[176]*y[45] + p[178]*y[46] + p[155]*y[34] + p[115]*y[12] + p[168]*y[41] + p[110]*y[9] + p[141]*y[27] + p[143]*y[28] + p[151]*y[32] + p[91]*y[36] + p[149]*y[31] + p[147]*y[30] + p[157]*y[35] + p[164]*y[39] + p[135]*y[24] + p[139]*y[26] + p[160]*y[37] + p[131]*y[22] + p[133]*y[23] + p[93]*y[0] + p[127]*y[19] + p[166]*y[40] + p[89]*y[10] + p[153]*y[33] + p[117]*y[13] + p[108]*y[8] + p[106]*y[7] + p[195]*y[55] + p[197]*y[56] + p[162]*y[38] + p[189]*y[52] + p[191]*y[53] + p[96]*y[2] + p[119]*y[14] + p[121]*y[15] + p[102]*y[5] + p[104]*y[6] + p[98]*y[3] + p[125]*y[17] + p[94]*y[1] + p[145]*y[29] ydot[21] = p[20]*y[19] + p[25]*y[23] - p[21]*y[2]*y[21] - p[23]*y[21]*y[3] - p[88]*y[21] + p[22]*y[22] + p[24]*y[23] + p[130]*y[18] ydot[22] = -p[131]*y[22] + p[21]*y[2]*y[21] - p[22]*y[22] + p[132]*y[18] ydot[23] = -p[25]*y[23] - p[133]*y[23] + p[23]*y[21]*y[3] - p[24]*y[23] + p[134]*y[18] ydot[24] = p[45]*y[27] + p[25]*y[23] + p[30]*y[26] + p[36]*y[39] - p[135]*y[24] - p[43]*y[24]*y[9] - p[26]*y[24]*y[4] - p[28]*y[24]*y[5] + p[44]*y[27] + p[27]*y[25] + p[29]*y[26] + p[136]*y[18] ydot[25] = -p[137]*y[25] + p[26]*y[24]*y[4] - p[27]*y[25] + p[138]*y[18] ydot[26] = -p[30]*y[26] - p[139]*y[26] + p[28]*y[24]*y[5] - p[29]*y[26] + p[140]*y[18] ydot[27] = -p[45]*y[27] - p[141]*y[27] + p[43]*y[24]*y[9] - p[44]*y[27] + p[142]*y[18] ydot[28] = p[81]*y[58] + p[30]*y[26] + p[33]*y[30] + p[42]*y[32] - p[143]*y[28] - p[31]*y[28]*y[6] - p[37]*y[28]*y[7] - p[40]*y[28]*y[8] + p[32]*y[30] + p[38]*y[31] + p[41]*y[32] + p[144]*y[18] ydot[29] = p[45]*y[27] + p[50]*y[34] - p[145]*y[29] - p[46]*y[10]*y[29] - p[48]*y[11]*y[29] + p[47]*y[33] + p[49]*y[34] + p[146]*y[18] ydot[30] = -p[33]*y[30] - p[147]*y[30] + p[31]*y[28]*y[6] - p[32]*y[30] + p[148]*y[18] ydot[31] = -p[39]*y[31] - p[149]*y[31] + p[37]*y[28]*y[7] - p[38]*y[31] + p[150]*y[18] ydot[32] = -p[42]*y[32] - p[151]*y[32] + p[40]*y[28]*y[8] - p[41]*y[32] + p[152]*y[18] ydot[33] = -p[153]*y[33] + p[46]*y[10]*y[29] - p[47]*y[33] + p[154]*y[18] ydot[34] = -p[50]*y[34] - p[155]*y[34] + p[48]*y[11]*y[29] - p[49]*y[34] + p[156]*y[18] ydot[35] = p[33]*y[30] + p[36]*y[39] - p[157]*y[35] - p[34]*y[3]*y[35] + p[35]*y[39] + p[158]*y[18] ydot[36] = p[39]*y[31] - p[91]*y[36] + p[159]*y[18] ydot[37] = p[42]*y[32] - p[160]*y[37] + p[161]*y[18] ydot[38] = p[50]*y[34] - p[162]*y[38] - p[51]*y[38] + p[52]*y[40] + p[163]*y[18] ydot[39] = -p[36]*y[39] - p[164]*y[39] + p[34]*y[3]*y[35] - p[35]*y[39] + p[165]*y[18] ydot[40] = -p[166]*y[40] + p[51]*y[38] - p[53]*y[12]*y[40] - 1.0*p[55]*pow(y[40], 2) - p[52]*y[40] + p[54]*y[41] + 2*p[56]*y[42] + p[167]*y[18] ydot[41] = -p[168]*y[41] + p[53]*y[12]*y[40] - p[54]*y[41] + p[169]*y[18] ydot[42] = -p[170]*y[42] + 0.5*p[55]*pow(y[40], 2) - p[57]*y[12]*y[42] - 1.0*p[59]*pow(y[42], 2) - p[56]*y[42] + p[58]*y[43] + 2*p[60]*y[44] + p[171]*y[18] ydot[43] = -p[172]*y[43] + p[57]*y[12]*y[42] - p[58]*y[43] + p[173]*y[18] ydot[44] = -p[174]*y[44] + 0.5*p[59]*pow(y[42], 2) - p[61]*y[12]*y[44] - p[63]*y[13]*y[44] - p[60]*y[44] + p[62]*y[45] + p[64]*y[46] + p[175]*y[18] ydot[45] = -p[176]*y[45] + p[61]*y[12]*y[44] - p[62]*y[45] + p[177]*y[18] ydot[46] = -p[65]*y[46] - p[178]*y[46] + p[63]*y[13]*y[44] - p[64]*y[46] + p[179]*y[18] ydot[47] = p[65]*y[46] + p[68]*y[48] + p[71]*y[49] - p[90]*y[47] - p[66]*y[14]*y[47] - p[69]*y[15]*y[47] + p[67]*y[48] + p[70]*y[49] + p[180]*y[18] ydot[48] = -p[68]*y[48] - p[181]*y[48] + p[66]*y[14]*y[47] - p[67]*y[48] + p[182]*y[18] ydot[49] = -p[71]*y[49] - p[183]*y[49] + p[69]*y[15]*y[47] - p[70]*y[49] + p[184]*y[18] ydot[50] = p[68]*y[48] - p[185]*y[50] - p[72]*y[50] + p[73]*y[52] + p[186]*y[18] ydot[51] = p[71]*y[49] - p[187]*y[51] - p[82]*y[51] + p[83]*y[53] + p[188]*y[18] ydot[52] = p[76]*y[54] - p[189]*y[52] + p[72]*y[50] - p[74]*y[16]*y[52] - p[73]*y[52] + p[75]*y[54] + p[190]*y[18] ydot[53] = -p[191]*y[53] + p[82]*y[51] - p[86]*y[53]*y[7] - p[83]*y[53] + p[87]*y[55] + p[192]*y[18] ydot[54] = -p[76]*y[54] - p[193]*y[54] + p[74]*y[16]*y[52] - p[75]*y[54] + p[194]*y[18] ydot[55] = -p[195]*y[55] + p[86]*y[53]*y[7] - p[87]*y[55] + p[196]*y[18] ydot[56] = p[76]*y[54] - p[197]*y[56] - p[77]*y[17]*y[56] + p[78]*y[57] + p[198]*y[18] ydot[57] = p[81]*y[58] - p[199]*y[57] + p[77]*y[17]*y[56] - p[79]*y[5]*y[57] - p[84]*y[57]*y[7] - p[78]*y[57] + p[80]*y[58] + p[85]*y[59] + p[200]*y[18] ydot[58] = -p[81]*y[58] - p[201]*y[58] + p[79]*y[5]*y[57] - p[80]*y[58] + p[202]*y[18] ydot[59] = -p[203]*y[59] + p[84]*y[57]*y[7] - p[85]*y[59] + p[204]*y[18] return ydot def simulate(self, tspan, param_values=None, view=False): if param_values is not None: # accept vector of parameter values as an argument if len(param_values) != len(self.parameters): raise Exception("param_values must have length %d" % len(self.parameters)) self.sim_param_values[:] = param_values else: # create parameter vector from the values in the model self.sim_param_values[:] = [p.value for p in self.parameters] self.y0.fill(0) for ic in self.initial_conditions: self.y0[ic.species_index] = self.sim_param_values[ic.param_index] if self.y is None or len(tspan) != len(self.y): self.y = numpy.empty((len(tspan), len(self.y0))) if len(self.observables): self.yobs = numpy.ndarray(len(tspan), zip((obs.name for obs in self.observables), itertools.repeat(float))) else: self.yobs = numpy.ndarray((len(tspan), 0)) self.yobs_view = self.yobs.view(float).reshape(len(self.yobs), -1) # perform the actual integration self.integrator.set_initial_value(self.y0, tspan[0]) self.integrator.set_f_params(self.sim_param_values) self.y[0] = self.y0 t = 1 while self.integrator.successful() and self.integrator.t < tspan[-1]: self.y[t] = self.integrator.integrate(tspan[t]) t += 1 for i, obs in enumerate(self.observables): self.yobs_view[:, i] = \ (self.y[:, obs.species] * obs.coefficients).sum(1) if view: y_out = self.y.view() yobs_out = self.yobs.view() for a in y_out, yobs_out: a.flags.writeable = False else: y_out = self.y.copy() yobs_out = self.yobs.copy() return (y_out, yobs_out) ``` #### File: examples/earm/thermodynamic_integration.py ```python from __future__ import division import bayessb import numpy as np import scipy.integrate import matplotlib.pyplot as plt import itertools import multiprocessing import sys from fit_1_3_standalone import build_opts def run_chain(args): temperature, sample = args # Start with master option set, then override temperature and seed opts = master_opts.copy() opts.thermo_temp = temperature opts.seed = sample # Build an MCMC object and run it mcmc = bayessb.MCMC(opts) mcmc.run() # Return likelihoods of accepted moves in the latter half of the walk num_likelihoods = mcmc.acceptance // 2 return mcmc.likelihoods[mcmc.accepts][num_likelihoods:] def print_progress_bar(fraction): percentage = fraction * 100 bar_size = int(fraction * 50) sys.stdout.write('%3d%% [%-51s]\r' % (percentage, '=' * bar_size + '>')) sys.stdout.flush() if __name__ == '__main__': print "Performing thermodynamic integration:" # Build master option set master_opts = build_opts() # Don't print anything out, as we'll have many simultaneous workers master_opts.step_fn = None # Choose the number of temperatures to sample and chains to run at each num_temps = 8 num_chains = 3 # Sample temperatures on a log scale, from 1e-3 to 1 temperatures = np.logspace(-3, 0, num_temps) # Produce tuples of input arguments to run_chain inputs = itertools.product(temperatures, xrange(num_chains)) # Launch a parallel processing pool to run the chains pool = multiprocessing.Pool() result = pool.map_async(run_chain, inputs) # Print a progress bar while the pool is still working num_chunks = result._number_left while not result.ready(): try: outputs = result.get(timeout=1) except multiprocessing.TimeoutError: pass except KeyboardInterrupt as e: pool.terminate() raise print_progress_bar((num_chunks - result._number_left) / num_chunks), print pool.close() pool.join() # Calculate mean of likelihoods from all chains at each temperature, and # standard deviation on the means from each chain at each temperature likelihood_means = np.empty_like(temperatures) likelihood_stds = np.empty_like(temperatures) for i, temperature in enumerate(temperatures): likelihood_sets = [] for c in xrange(num_chains): # Extract the right likelihood vectors from the pool output, # negating the values to obtain positive log-likelihood values likelihood_sets.append(-1 * outputs[i * num_chains + c]) # Mean of all likelihood values likelihood_means[i] = np.mean(np.hstack(likelihood_sets)) # Standard deviation on the means likelihood_stds[i] = np.std(map(np.mean, likelihood_sets)) # Produce a number of sampled trajectories from the means and stds num_samples = 1000 sample_iter = itertools.imap(np.random.normal, likelihood_means, likelihood_stds, itertools.repeat(num_samples)) # FIXME this needlessly creates an intermediate list samples = np.array(list(sample_iter)).T # Integrate sampled trajectories to obtain log-evidence i.e. # log(P(Data|Model)) log_evidences = scipy.integrate.simps(samples, temperatures) # Plot histogram of evidence values counts, bins, _ = plt.hist(np.exp(log_evidences), bins=40) print 'Histogram of evidence values:' for b, c in zip(bins, counts): print '%-8.3g: %d' % (b, c) plt.xlabel('Evidence') plt.ylabel('Count') plt.show() ```
{ "source": "johnbachman/belpy", "score": 3 }
#### File: assemblers/cx/hub_layout.py ```python import json import math import random import networkx from collections import defaultdict def get_aspect(cx, aspect_name): """Return an aspect given the name of the aspect""" if isinstance(cx, dict): return cx.get(aspect_name) for entry in cx: if list(entry.keys())[0] == aspect_name: return entry[aspect_name] def edge_type_to_class(edge_type): """Return the edge class for layout purposes based on the edge type""" edge_type = edge_type.lower() if 'amount' in edge_type: return 'amount' if edge_type in ('activation', 'inhibition'): return 'activity' if edge_type == 'complex': return 'complex' else: return 'modification' def classify_nodes(graph, hub: int): """Classify each node based on its type and relationship to the hub.""" node_stats = defaultdict(lambda: defaultdict(list)) for u, v, data in graph.edges(data=True): # This means the node is downstream of the hub if hub == u: h, o = u, v if data['i'] != 'complex': node_stats[o]['up'].append(-1) else: node_stats[o]['up'].append(0) # This means the node is upstream of the hub elif hub == v: h, o = v, u if data['i'] != 'complex': node_stats[o]['up'].append(1) else: node_stats[o]['up'].append(0) else: continue node_stats[o]['interaction'].append(edge_type_to_class(data['i'])) node_classes = {} for node_id, stats in node_stats.items(): up = max(set(stats['up']), key=stats['up'].count) # Special case: if up is not 0 then we should exclude complexes # from the edge_type states so that we don't end up with # (-1, complex, ...) or (1, complex, ...) as the node class interactions = [i for i in stats['interaction'] if not (up != 0 and i == 'complex')] edge_type = max(set(interactions), key=interactions.count) node_type = graph.nodes[node_id]['type'] node_classes[node_id] = (up, edge_type, node_type) return node_classes def get_attributes(aspect, id): """Return the attributes pointing to a given ID in a given aspect.""" attributes = {} for entry in aspect: if entry['po'] == id: attributes[entry['n']] = entry['v'] return attributes def cx_to_networkx(cx): """Return a MultiDiGraph representation of a CX network.""" graph = networkx.MultiDiGraph() for node_entry in get_aspect(cx, 'nodes'): id = node_entry['@id'] attrs = get_attributes(get_aspect(cx, 'nodeAttributes'), id) attrs['n'] = node_entry['n'] graph.add_node(id, **attrs) for edge_entry in get_aspect(cx, 'edges'): id = edge_entry['@id'] attrs = get_attributes(get_aspect(cx, 'edgeAttributes'), id) attrs['i'] = edge_entry['i'] graph.add_edge(edge_entry['s'], edge_entry['t'], key=id, **attrs) return graph def get_quadrant_from_class(node_class): """Return the ID of the segment of the plane corresponding to a class.""" up, edge_type, _ = node_class if up == 0: return 0 if random.random() < 0.5 else 7 mappings = {(-1, 'modification'): 1, (-1, 'amount'): 2, (-1, 'activity'): 3, (1, 'activity'): 4, (1, 'amount'): 5, (1, 'modification'): 6} return mappings[(up, edge_type)] def get_coordinates(node_class): """Generate coordinates for a node in a given class.""" quadrant_size = (2 * math.pi / 8.0) quadrant = get_quadrant_from_class(node_class) begin_angle = quadrant_size * quadrant r = 200 + 800*random.random() alpha = begin_angle + random.random() * quadrant_size x = r * math.cos(alpha) y = r * math.sin(alpha) return x, y def get_layout_aspect(hub, node_classes): """Get the full layout aspect with coordinates for each node.""" aspect = [{'node': hub, 'x': 0.0, 'y': 0.0}] for node, node_class in node_classes.items(): if node == hub: continue x, y = get_coordinates(node_class) aspect.append({'node': node, 'x': x, 'y': y}) return aspect def get_node_by_name(graph, name): """Return a node ID given its name.""" for id, attrs in graph.nodes(data=True): if attrs['n'] == name: return id def add_semantic_hub_layout(cx, hub: str): """Attach a layout aspect to a CX network given a hub node.""" graph = cx_to_networkx(cx) hub_node = get_node_by_name(graph, hub) node_classes = classify_nodes(graph, hub_node) layout_aspect = get_layout_aspect(hub_node, node_classes) cx['cartesianLayout'] = layout_aspect if __name__ == '__main__': with open('CDK13.cx', 'r') as fh: cx = json.load(fh) add_semantic_hub_layout(cx, 'CDK13') ``` #### File: assemblers/pysb/export.py ```python import logging import networkx from pysb.export import export logger = logging.getLogger(__name__) def export_sbgn(model): """Return an SBGN model string corresponding to the PySB model. This function first calls generate_equations on the PySB model to obtain a reaction network (i.e. individual species, reactions). It then iterates over each reaction and and instantiates its reactants, products, and the process itself as SBGN glyphs and arcs. Parameters ---------- model : pysb.core.Model A PySB model to be exported into SBGN Returns ------- sbgn_str : str An SBGN model as string """ import lxml.etree import lxml.builder from pysb.bng import generate_equations from indra.assemblers.sbgn import SBGNAssembler logger.info('Generating reaction network with BNG for SBGN export. ' + 'This could take a long time.') generate_equations(model) sa = SBGNAssembler() glyphs = {} for idx, species in enumerate(model.species): glyph = sa._glyph_for_complex_pattern(species) if glyph is None: continue sa._map.append(glyph) glyphs[idx] = glyph for reaction in model.reactions: # Get all the reactions / products / controllers of the reaction reactants = set(reaction['reactants']) - set(reaction['products']) products = set(reaction['products']) - set(reaction['reactants']) controllers = set(reaction['reactants']) & set(reaction['products']) # Add glyph for reaction process_glyph = sa._process_glyph('process') # Connect reactants with arcs if not reactants: glyph_id = sa._none_glyph() sa._arc('consumption', glyph_id, process_glyph) else: for r in reactants: glyph = glyphs.get(r) if glyph is None: glyph_id = sa._none_glyph() else: glyph_id = glyph.attrib['id'] sa._arc('consumption', glyph_id, process_glyph) # Connect products with arcs if not products: glyph_id = sa._none_glyph() sa._arc('production', process_glyph, glyph_id) else: for p in products: glyph = glyphs.get(p) if glyph is None: glyph_id = sa._none_glyph() else: glyph_id = glyph.attrib['id'] sa._arc('production', process_glyph, glyph_id) # Connect controllers with arcs for c in controllers: glyph = glyphs[c] sa._arc('catalysis', glyph.attrib['id'], process_glyph) sbgn_str = sa.print_model().decode('utf-8') return sbgn_str def export_kappa_im(model, fname=None): """Return a networkx graph representing the model's Kappa influence map. Parameters ---------- model : pysb.core.Model A PySB model to be exported into a Kappa IM. fname : Optional[str] A file name, typically with .png or .pdf extension in which the IM is rendered using pygraphviz. Returns ------- networkx.MultiDiGraph A graph object representing the influence map. """ from .kappa_util import im_json_to_graph kappa = _prepare_kappa(model) imap = kappa.analyses_influence_map() im = im_json_to_graph(imap) for param in model.parameters: try: im.remove_node(param.name) except: pass if fname: agraph = networkx.nx_agraph.to_agraph(im) agraph.draw(fname, prog='dot') return im def export_kappa_cm(model, fname=None): """Return a networkx graph representing the model's Kappa contact map. Parameters ---------- model : pysb.core.Model A PySB model to be exported into a Kappa CM. fname : Optional[str] A file name, typically with .png or .pdf extension in which the CM is rendered using pygraphviz. Returns ------- npygraphviz.Agraph A graph object representing the contact map. """ from .kappa_util import cm_json_to_graph kappa = _prepare_kappa(model) cmap = kappa.analyses_contact_map() cm = cm_json_to_graph(cmap) if fname: cm.draw(fname, prog='dot') return cm def export_cm_network(model): """Return a networkx graph of the model's Kappa contact map. Parameters ---------- model : pysb.Model A PySB model whose Kappa contact graph is to be generated. Returns ------- networkx.Graph An undirected networkx graph representing the contact map. """ from .kappa_util import cm_json_to_networkx kappa = _prepare_kappa(model) cmap = kappa.analyses_contact_map() g = cm_json_to_networkx(cmap) return g def _prepare_kappa(model): """Return a Kappa STD with the model loaded.""" import kappy kappa = kappy.KappaStd() model_str = export(model, 'kappa') kappa.add_model_string(model_str) kappa.project_parse() return kappa ``` #### File: indra/databases/efo_client.py ```python from indra.databases.obo_client import OboClient _client = OboClient(prefix='efo') def get_efo_name_from_efo_id(efo_id): """Return the EFO name corresponding to the given EFO ID. Parameters ---------- efo_id : str The EFO identifier to be converted. Example: "0005557" Returns ------- efo_name : str The EFO name corresponding to the given EFO identifier. """ return _client.get_name_from_id(efo_id) def get_efo_id_from_efo_name(efo_name): """Return the EFO identifier corresponding to the given EFO name. Parameters ---------- efo_name : str The EFO name to be converted. Example: "gum cancer" Returns ------- efo_id : str The EFO identifier corresponding to the given EFO name. """ return _client.get_id_from_name(efo_name) ``` #### File: indra/databases/identifiers.py ```python import re import logging from indra.resources import load_resource_json logger = logging.getLogger(__name__) identifiers_url = 'https://identifiers.org' # These are just special cases of name spaces where the mapping from INDRA to # identifiers.org is not a question of simplecapitalization. identifiers_mappings = { 'UP': 'uniprot', 'UPPRO': 'uniprot.chain', 'UPISO': 'uniprot.isoform', 'REFSEQ_PROT': 'refseq', 'PF': 'pfam', 'IP': 'interpro', 'ECCODE': 'ec-code', 'NONCODE': 'noncodev4.rna', 'LNCRNADB': 'rnacentral', 'MIRBASEM': 'mirbase.mature', 'EGID': 'ncbigene', 'NCBI': 'ncibgene', 'HGNC_GROUP': 'hgnc.genefamily', 'LINCS': 'lincs.smallmolecule', 'PUBCHEM': 'pubchem.compound', 'CHEMBL': 'chembl.compound', 'CTD': 'ctd.chemical', 'CVCL': 'cellosaurus', } # These are namespaces used by INDRA that don't have corresponding # identifiers.org entries non_registry = { 'SDIS', 'SCHEM', 'SFAM', 'SCOMP', 'SIGNOR', 'HMS-LINCS', 'NXPFA', 'OMIM', 'LSPCI', 'UPLOC', 'BFO', 'CCLE' } # These are namespaces that can appear in db_refs but are actually not # representing grounding. non_grounding = { 'TEXT', 'TEXT_NORM' } # These are reverse mappings from identifiers.org namespaces to INDRA # namespaces identifiers_reverse = { v: k for k, v in identifiers_mappings.items() } # We have to patch this one because it is ambiguous identifiers_reverse['ncbigene'] = 'EGID' # These are only the URLs that are strictly prefixes and not more complicated # patterns. This is because some downstream code uses these as prefixes # rather than arbitrary patterns. url_prefixes = { # Biology namespaces 'NXPFA': 'https://www.nextprot.org/term/FA-', 'SIGNOR': 'https://signor.uniroma2.it/relation_result.php?id=', 'LSPCI': 'https://labsyspharm.github.io/lspci/', # WM namespaces 'UN': 'https://github.com/clulab/eidos/wiki/JSON-LD#Grounding/', 'WDI': 'https://github.com/clulab/eidos/wiki/JSON-LD#Grounding/', 'FAO': 'https://github.com/clulab/eidos/wiki/JSON-LD#Grounding/', 'HUME': ('https://github.com/BBN-E/Hume/blob/master/resource/ontologies' '/hume_ontology/'), 'CWMS': 'http://trips.ihmc.us/', 'SOFIA': 'http://cs.cmu.edu/sofia/', } def get_ns_from_identifiers(identifiers_ns): """"Return a namespace compatible with INDRA from an identifiers namespace. For example, this function can be used to map 'uniprot' to 'UP'. Parameters ---------- identifiers_ns : str An identifiers.org standard namespace. Returns ------- str or None The namespace compatible with INDRA's internal representation or None if the given namespace isn't an identifiers.org standard. """ reg_entry = identifiers_registry.get(identifiers_ns.lower()) if not reg_entry: return None mapping = identifiers_reverse.get(identifiers_ns.lower()) if mapping: return mapping else: return identifiers_ns.upper() def get_ns_id_from_identifiers(identifiers_ns, identifiers_id): """Return a namespace/ID pair compatible with INDRA from identifiers. Parameters ---------- identifiers_ns : str An identifiers.org standard namespace. identifiers_id : str An identifiers.org standard ID in the given namespace. Returns ------- (str, str) A namespace and ID that are valid in INDRA db_refs. """ reg_entry = identifiers_registry.get(identifiers_ns.lower()) db_ns = get_ns_from_identifiers(identifiers_ns) if db_ns is None: return None, None db_id = identifiers_id if reg_entry['namespace_embedded']: if not identifiers_id.startswith(identifiers_ns.upper()): db_id = '%s:%s' % (identifiers_ns.upper(), identifiers_id) return db_ns, db_id def get_identifiers_ns(db_name): """Map an INDRA namespace to an identifiers.org namespace when possible. Example: this can be used to map 'UP' to 'uniprot'. Parameters ---------- db_name : str An INDRA namespace to map to identifiers.org Returns ------- str or None An identifiers.org namespace or None if not available. """ mapped_db_name = identifiers_mappings.get(db_name, db_name.lower()) if mapped_db_name not in identifiers_registry: return None return mapped_db_name def get_url_prefix(db_name): """Return the URL prefix for a given namespace.""" identifiers_ns = get_identifiers_ns(db_name) if identifiers_ns: identifiers_entry = identifiers_registry.get(identifiers_ns) if not identifiers_entry['namespace_embedded']: return '%s/%s:' % (identifiers_url, identifiers_ns.lower()) else: return '%s/' % identifiers_url else: if db_name in url_prefixes: return url_prefixes[db_name] return None def get_identifiers_url(db_name, db_id): """Return an identifiers.org URL for a given database name and ID. Parameters ---------- db_name : str An internal database name: HGNC, UP, CHEBI, etc. db_id : str An identifier in the given database. Returns ------- url : str An identifiers.org URL corresponding to the given database name and ID. """ # This is the case where we have a prefix that we can simply attach the # db_id to to get the desired URL. if db_name == 'CHEMBL': db_id = ensure_chembl_prefix(db_id) elif db_name == 'CHEBI': db_id = ensure_chebi_prefix(db_id) prefix = get_url_prefix(db_name) if prefix: return '%s%s' % (prefix, db_id) # Otherwise, we have to handle some special cases bel_scai_url = 'https://arty.scai.fraunhofer.de/artifactory/bel/namespace/' if db_name == 'LINCS': if db_id.startswith('LSM-'): # Lincs Small Molecule ID url = identifiers_url + '/lincs.smallmolecule:%s' % db_id elif db_id.startswith('LCL-'): # Lincs Cell Line ID url = identifiers_url + '/lincs.cell:%s' % db_id else: # Assume LINCS Protein url = identifiers_url + '/lincs.protein:%s' % db_id elif db_name == 'CHEMBL': if not db_id.startswith('CHEMBL'): db_id = 'CHEMBL%s' % db_id url = identifiers_url + '/chembl.compound:%s' % db_id elif db_name == 'HMS-LINCS': url = 'http://lincs.hms.harvard.edu/db/sm/%s-101' % db_id # Special cases with no identifiers entry elif db_name == 'SCHEM': url = bel_scai_url + 'selventa-legacy-chemicals/' + \ 'selventa-legacy-chemicals-20150601.belns' elif db_name == 'SCOMP': url = bel_scai_url + 'selventa-named-complexes/' + \ 'selventa-named-complexes-20150601.belns' elif db_name == 'SFAM': url = bel_scai_url + 'selventa-protein-families/' + \ 'selventa-protein-families-20150601.belns' elif db_name == 'TEXT' or db_name == 'TEXT_NORM': return None else: logger.warning('Unhandled name space %s' % db_name) url = None return url def parse_identifiers_url(url): """Retrieve database name and ID given the URL. Parameters ---------- url : str An identifiers.org URL to parse. Returns ------- db_name : str An internal database name: HGNC, UP, CHEBI, etc. corresponding to the given URL. db_id : str An identifier in the database. """ # Try matching by string pattern db_ns, db_id = None, None url_pattern = \ r'(?:https?)://identifiers.org/([A-Za-z0-9.-]+)(/|:)([A-Za-z0-9:_.-]+)' match = re.match(url_pattern, url) if match is not None: g = match.groups() if len(g) == 3: pattern_ns, pattern_id = g[0], g[2] db_ns, db_id = get_ns_id_from_identifiers(pattern_ns, pattern_id) if db_ns == 'HGNC': if db_id.startswith('HGNC:'): db_id = db_id[5:] # If we got UP and UPPRO, return UPPRO if db_ns == 'UP' and '#PRO_' in url: db_ns = 'UPPRO' db_id = url[url.find('PRO_'):] if db_ns and db_id: return db_ns, db_id for ns, prefix in url_prefixes.items(): if url.startswith(prefix): return ns, url[len(prefix):] # Handle other special cases for part in ['/lincs.smallmolecule', '/lincs.cell', '/lincs.protein']: if part in url: return 'LINCS', url[(url.find(part) + len(part) + 1):] if '/chembl.compound' in url: return 'CHEMBL', url[ (url.find('/chembl.compound') + len('/chembl.compound:')):] if 'lincs.hms.harvard.edu' in url: return 'HMS-LINCS', url[len('http://lincs.hms.harvard.edu/db/sm/'):-4] if 'selventa-legacy-chemicals/' in url: return 'SCHEM', None if 'selventa-named-complexes/' in url: return 'SCOMP', None if 'selventa-protein-families/' in url: return 'SFAM', None else: logger.warning('Could not parse URL %s' % url) return None, None def namespace_embedded(db_ns: str) -> bool: """Return true if this namespace requires IDs to have namespace embedded. This function first maps the given namespace to an identifiers.org namespace and then checks the registry to see if namespaces need to be embedded in IDs. If yes, it returns True. If not, or the ID can't be mapped to identifiers.org, it returns False Parameters ---------- db_ns : The namespace to check. Returns ------- : True if the namespace is known to be embedded in IDs of this namespace. False if unknown or known not to be embedded. """ identifiers_ns = get_identifiers_ns(db_ns) if identifiers_ns: identifiers_entry = identifiers_registry.get(identifiers_ns) if identifiers_entry['namespace_embedded']: return True return False def ensure_prefix_if_needed(db_ns: str, db_id: str) -> str: """Return an ID ensuring a namespace prefix if known to be needed. Parameters ---------- db_ns : The namespace associated with the identifier. db_id : The original identifier. Returns ------- : The identifier with namespace embedded if needed. """ if namespace_embedded(db_ns): return ensure_prefix(db_ns, db_id) return db_id def ensure_prefix(db_ns, db_id, with_colon=True): """Return a valid ID that has the given namespace embedded. This is useful for namespaces such as CHEBI, GO or BTO that require the namespace to be part of the ID. Note that this function always ensures that the given db_ns is embedded in the ID and can handle the case whene it's already present. Parameters ---------- db_ns : str A namespace. db_id : str An ID within that namespace which should have the namespace as a prefix in it. with_colon: Optional[bool] If True, the namespace prefix is followed by a colon in the ID (e.g., CHEBI:12345). Otherwise, no colon is added (e.g., CHEMBL1234). Default: True """ if db_id is None: return None colon = ':' if with_colon else '' if not db_id.startswith(f'{db_ns}{colon}'): return f'{db_ns}{colon}{db_id}' return db_id def ensure_chebi_prefix(chebi_id): """Return a valid CHEBI ID that has the appropriate CHEBI: prefix.""" return ensure_prefix('CHEBI', chebi_id) def ensure_chembl_prefix(chembl_id): """Return a valid CHEMBL ID that has the appropriate CHEMBL prefix.""" return ensure_prefix('CHEMBL', chembl_id, with_colon=False) identifiers_registry = load_resource_json('identifiers_patterns.json') ``` #### File: sources/bel/api.py ```python import zlib import json import pybel import logging import requests from functools import lru_cache import pybel.constants as pc from pybel.io.sbel import add_sbel_row from .processor import PybelProcessor logger = logging.getLogger(__name__) version = 'v1.0.0' branch = 'https://github.com/cthoyt/selventa-knowledge/raw/' \ '{}/selventa_knowledge/{}' large_corpus_url = branch.format(version, 'large_corpus.bel.nodelink.json.gz') small_corpus_url = branch.format(version, 'small_corpus.bel.nodelink.json.gz') def process_small_corpus(): """Return PybelProcessor with statements from Selventa Small Corpus. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in its statements attribute. """ return process_pybel_network(network_type='graph_jsongz_url', network_file=small_corpus_url) def process_large_corpus(): """Return PybelProcessor with statements from Selventa Large Corpus. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in its statements attribute. """ return process_pybel_network(network_type='graph_jsongz_url', network_file=large_corpus_url) def process_pybel_network(network_type, network_file, **kwargs): """Return PybelProcessor by processing a given network file. Parameters ---------- network_type : str The type of network that network_file is. The options are: belscript, json, cbn_jgif, graph_pickle, and graph_jsongz_url. Default: graph_jsongz_url network_file : str Path to the network file/URL to process. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. """ if network_type == 'belscript': return process_belscript(network_file, **kwargs) elif network_type == 'json': return process_json_file(network_file) elif network_type == 'cbn_jgif': return process_cbn_jgif_file(network_file) elif network_type == 'graph_jsongz_url': if not network_file: network_file = large_corpus_url logger.info('Loading %s' % network_file) res = requests.get(network_file) res.raise_for_status() contentb = zlib.decompress(res.content, zlib.MAX_WBITS | 32) content = contentb.decode('utf-8') graph = pybel.from_nodelink_jsons(content) return process_pybel_graph(graph) elif network_type == 'graph_pickle': graph = pybel.from_pickle(network_file) return process_pybel_graph(graph) else: raise ValueError('Unknown network type: %s' % network_type) def process_pybel_neighborhood(entity_names, network_type='graph_jsongz_url', network_file=None, **kwargs): """Return PybelProcessor around neighborhood of given genes in a network. This function processes the given network file and filters the returned Statements to ones that contain genes in the given list. Parameters ---------- entity_names : list[str] A list of entity names (e.g., gene names) which will be used as the basis of filtering the result. If any of the Agents of an extracted INDRA Statement has a name appearing in this list, the Statement is retained in the result. network_type : Optional[str] The type of network that network_file is. The options are: belscript, json, cbn_jgif, graph_pickle, and graph_jsongz_url. Default: graph_jsongz_url network_file : Optional[str] Path to the network file/URL to process. If not given, by default, the Selventa Large Corpus is used via a URL pointing to a gzipped PyBEL Graph JSON file. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. """ bp = process_pybel_network(network_type, network_file, **kwargs) filtered_stmts = [] filter_names = set(entity_names) for stmt in bp.statements: found = False for agent in stmt.agent_list(): if agent is not None: if agent.name in filter_names: found = True if found: filtered_stmts.append(stmt) bp.statements = filtered_stmts return bp def process_bel_stmt(bel: str, squeeze: bool = False): """Process a single BEL statement and return the PybelProcessor or a single statement if ``squeeze`` is True. Parameters ---------- bel : str A BEL statement. See example below. squeeze : Optional[bool] If squeeze and there's only one statement in the processor, it will be unpacked. Returns ------- statements : Union[Statement, PybelProcessor] A list of INDRA statments derived from the BEL statement. If squeeze is true and there was only one statement, the unpacked INDRA statement will be returned. Examples -------- >>> from indra.sources.bel import process_bel_stmt >>> bel_s = 'kin(p(FPLX:MEK)) -> kin(p(FPLX:ERK))' >>> process_bel_stmt(bel_s, squeeze=True) Activation(MEK(kinase), ERK(), kinase) """ r = pybel.parse(bel) # make sure activations in the right place for a, b in [(pc.SOURCE, pc.SOURCE_MODIFIER), (pc.TARGET, pc.TARGET_MODIFIER)]: side = r[a] for c in [pc.MODIFIER, pc.EFFECT, pc.FROM_LOC, pc.TO_LOC, pc.LOCATION]: if c in side: r.setdefault(b, {})[c] = side.pop(c) graph = pybel.BELGraph() add_sbel_row(graph, r) bp = process_pybel_graph(graph) if squeeze and len(bp.statements) == 1: return bp.statements[0] return bp @lru_cache(maxsize=100) def process_pybel_graph(graph): """Return a PybelProcessor by processing a PyBEL graph. Parameters ---------- graph : pybel.struct.BELGraph A PyBEL graph to process Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. """ bp = PybelProcessor(graph) bp.get_statements() if bp.annot_manager.failures: logger.warning('missing %d annotation pairs', sum(len(v) for v in bp.annot_manager.failures.values())) return bp def process_belscript(file_name, **kwargs): """Return a PybelProcessor by processing a BEL script file. Key word arguments are passed directly to pybel.from_path, for further information, see pybel.readthedocs.io/en/latest/io.html#pybel.from_path Some keyword arguments we use here differ from the defaults of PyBEL, namely we set `citation_clearing` to False and `no_identifier_validation` to True. Parameters ---------- file_name : str The path to a BEL script file. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. """ if 'citation_clearing' not in kwargs: kwargs['citation_clearing'] = False if 'no_identifier_validation' not in kwargs: kwargs['no_identifier_validation'] = True pybel_graph = pybel.from_bel_script(file_name, **kwargs) return process_pybel_graph(pybel_graph) def process_json_file(file_name): """Return a PybelProcessor by processing a Node-Link JSON file. For more information on this format, see: http://pybel.readthedocs.io/en/latest/io.html#node-link-json Parameters ---------- file_name : str The path to a Node-Link JSON file. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. """ pybel_graph = pybel.from_nodelink_file(file_name, check_version=False) return process_pybel_graph(pybel_graph) def process_cbn_jgif_file(file_name): """Return a PybelProcessor by processing a CBN JGIF JSON file. Parameters ---------- file_name : str The path to a CBN JGIF JSON file. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. """ with open(file_name, 'r') as jgf: return process_pybel_graph(pybel.from_cbn_jgif(json.load(jgf))) ``` #### File: sources/drugbank/api.py ```python import logging from typing import Optional, Sequence, Union from xml.etree import ElementTree from .processor import DrugbankProcessor logger = logging.getLogger(__name__) def process_from_web( username: Optional[str] = None, password: Optional[str] = None, version: Optional[str] = None, prefix: Union[None, str, Sequence[str]] = None, ) -> DrugbankProcessor: """Get a processor using :func:`process_xml` with :mod:`drugbank_downloader`. Parameters ---------- username : The DrugBank username. If not passed, looks up in the environment ``DRUGBANK_USERNAME``. If not found, raises a ValueError. password : The <PASSWORD>Bank password. If not passed, looks up in the environment ``DRUGBANK_PASSWORD``. If not found, raises a ValueError. version : The DrugBank version. If not passed, uses :mod:`bioversions` to look up the most recent version. prefix : The prefix and subkeys passed to :func:`pystow.ensure` to specify a non-default location to download the data to. Returns ------- DrugbankProcessor A DrugbankProcessor instance which contains a list of INDRA Statements in its statements attribute that were extracted from the given DrugBank version """ import drugbank_downloader et = drugbank_downloader.parse_drugbank( username=username, password=password, version=version, prefix=prefix, ) return process_element_tree(et) def process_xml(fname): """Return a processor by extracting Statements from DrugBank XML. Parameters ---------- fname : str The path to a DrugBank XML file to process. Returns ------- DrugbankProcessor A DrugbankProcessor instance which contains a list of INDRA Statements in its statements attribute that were extracted from the given XML file. """ logger.info('Loading %s...' % fname) et = ElementTree.parse(fname) return process_element_tree(et) def process_element_tree(et): """Return a processor by extracting Statement from DrugBank XML. Parameters ---------- et : xml.etree.ElementTree An ElementTree loaded from the DrugBank XML file to process. Returns ------- DrugbankProcessor A DrugbankProcessor instance which contains a list of INDRA Statements in its statements attribute that were extracted from the given ElementTree. """ logger.info('Extracting DrugBank statements...') dp = DrugbankProcessor(et) dp.extract_statements() return dp ``` #### File: sources/eidos/server.py ```python import sys import json from flask import Flask, request from indra.sources.eidos.reader import EidosReader app = Flask(__name__) @app.route('/process_text', methods=['POST']) def process_text(): text = request.json.get('text') if not text: return {} res = er.process_text(text) return json.dumps(res) @app.route('/reground', methods=['POST']) def reground(): text = request.json.get('text') ont_yml = request.json.get('ont_yml') if not ont_yml: from indra_world.ontology import world_ontology ont_yml = world_ontology.dump_yml_str() topk = request.json.get('topk', 10) is_canonicalized = request.json.get('is_canonicalized', False) if not text: return [] if isinstance(text, str): text = [text] res = er.reground_texts(text, ont_yml, topk=topk, is_canonicalized=is_canonicalized) return json.dumps(res) if __name__ == '__main__': port = int(sys.argv[1]) if len(sys.argv) > 1 else 6666 er = EidosReader() er.process_text('hello') # This is done to initialize the system app.run(host='0.0.0.0', port=port) ``` #### File: sources/hypothesis/api.py ```python __all__ = ['process_annotations', 'get_annotations', 'upload_annotation', 'upload_statement_annotation', 'statement_to_annotations'] import logging import requests from indra.config import get_config from .processor import HypothesisProcessor from .annotator import statement_to_annotations logger = logging.getLogger(__name__) base_url = 'https://api.hypothes.is/api/' api_key = get_config('HYPOTHESIS_API_KEY') headers = {'Authorization': 'Bearer %s' % api_key, 'Accept': 'application/vnd.hypothesis.v1+json', 'content-type': 'application/json'} indra_group = get_config('HYPOTHESIS_GROUP') def send_get_request(endpoint, **params): """Send a request to the hypothes.is web service and return JSON response. Note that it is assumed that `HYPOTHESIS_API_KEY` is set either as a configuration entry or as an environmental variable. Parameters ---------- endpoint : str The endpoint to call, e.g., `search`. params : kwargs A set of keyword arguments that are passed to the `requests.get` call as `params`. """ if api_key is None: return ValueError('No API key set in HYPOTHESIS_API_KEY') res = requests.get(base_url + endpoint, headers=headers, params=params) res.raise_for_status() return res.json() def send_post_request(endpoint, **params): """Send a post request to the hypothes.is web service and return JSON response. Note that it is assumed that `HYPOTHESIS_API_KEY` is set either as a configuration entry or as an environmental variable. Parameters ---------- endpoint : str The endpoint to call, e.g., `search`. params : kwargs A set of keyword arguments that are passed to the `requests.post` call as `json`. """ if api_key is None: return ValueError('No API key set in HYPOTHESIS_API_KEY') res = requests.post(base_url + endpoint, headers=headers, json=params) res.raise_for_status() return res.json() def upload_annotation(url, annotation, target_text=None, tags=None, group=None): """Upload an annotation to hypothes.is. Parameters ---------- url : str The URL of the resource being annotated. annotation : str The text content of the annotation itself. target_text : Optional[str] The specific span of text that the annotation applies to. tags : list[str] A list of tags to apply to the annotation. group : Optional[str] The hypothesi.is key of the group (not its name). If not given, the HYPOTHESIS_GROUP configuration in the config file or an environmental variable is used. Returns ------- json The full response JSON from the web service. """ if group is None: if indra_group: group = indra_group else: raise ValueError('No group provided and HYPOTHESIS_GROUP ' 'is not set.') params = { 'uri': url, 'group': group, 'text': annotation, } if target_text: params['target'] = [{ 'source': [url], 'selector': [ {'type': 'TextQuoteSelector', 'exact': target_text} ] }] if tags: params['tags'] = tags permissions = {'read': ['group:%s' % group]} params['permissions'] = permissions res = send_post_request('annotations', **params) return res def upload_statement_annotation(stmt, annotate_agents=True): """Construct and upload all annotations for a given INDRA Statement. Parameters ---------- stmt : indra.statements.Statement An INDRA Statement. annotate_agents : Optional[bool] If True, the agents in the annotation text are linked to outside databases based on their grounding. Default: True Returns ------- list of dict A list of annotation structures that were uploaded to hypothes.is. """ annotations = statement_to_annotations(stmt, annotate_agents=annotate_agents) for annotation in annotations: annotation['tags'].append('indra_upload') upload_annotation(**annotation) return annotations def get_annotations(group=None): """Return annotations in hypothes.is in a given group. Parameters ---------- group : Optional[str] The hypothesi.is key of the group (not its name). If not given, the HYPOTHESIS_GROUP configuration in the config file or an environmental variable is used. """ if group is None: if indra_group: group = indra_group else: raise ValueError('No group provided and HYPOTHESIS_GROUP ' 'is not set.') # Note that this batch size is the maximum that the API allows, therefore # it makes sense to run queries with this fixed limit. limit = 200 offset = 0 annotations = [] while True: logger.info('Getting up to %d annotations from offset %d' % (limit, offset)) res = send_get_request('search', group=group, limit=limit, offset=offset) rows = res.get('rows', []) if not rows: break annotations += rows offset += len(rows) logger.info('Got a total of %d annotations' % len(annotations)) return annotations def process_annotations(group=None, reader=None, grounder=None): """Process annotations in hypothes.is in a given group. Parameters ---------- group : Optional[str] The hypothesi.is key of the group (not its name). If not given, the HYPOTHESIS_GROUP configuration in the config file or an environmental variable is used. reader : Optional[None, str, Callable[[str], Processor]] A handle for a function which takes a single str argument (text to process) and returns a processor object with a statements attribute containing INDRA Statements. By default, the REACH reader's process_text function is used with default parameters. Note that if the function requires extra parameters other than the input text, functools.partial can be used to set those. Can be alternatively set to :func:`indra.sources.bel.process_text` by using the string "bel". grounder : Optional[function] A handle for a function which takes a positional str argument (entity text to ground) and an optional context key word argument and returns a list of objects matching the structure of gilda.grounder.ScoredMatch. By default, Gilda's ground function is used for grounding. Returns ------- HypothesisProcessor A HypothesisProcessor object which contains a list of extracted INDRA Statements in its statements attribute, and a list of extracted grounding curations in its groundings attribute. Example ------- Process all annotations that have been written in BEL with: .. code-block:: python from indra.sources import hypothesis processor = hypothesis.process_annotations(group='Z8RNqokY', reader='bel') processor.statements # returns: [Phosphorylation(AKT(), PCGF2(), T, 334)] If this example doesn't work, try joining the group with this link: https://hypothes.is/groups/Z8RNqokY/cthoyt-bel. """ annotations = get_annotations(group=group) hp = HypothesisProcessor(annotations, reader=reader, grounder=grounder) hp.extract_statements() hp.extract_groundings() return hp ``` #### File: sources/indra_db_rest/api.py ```python __all__ = ['get_statements', 'get_statements_for_papers', 'get_statements_for_paper', 'get_statements_by_hash', 'get_statements_from_query', 'submit_curation', 'get_curations'] from indra.util import clockit from indra.statements import Complex, SelfModification, ActiveForm, \ Translocation, Conversion from indra.sources.indra_db_rest.query import * from indra.sources.indra_db_rest.processor import DBQueryStatementProcessor from indra.sources.indra_db_rest.util import make_db_rest_request, get_url_base @clockit def get_statements(subject=None, object=None, agents=None, stmt_type=None, use_exact_type=False, limit=None, persist=True, timeout=None, strict_stop=False, ev_limit=10, sort_by='ev_count', tries=3, use_obtained_counts=False, api_key=None): """Get Statements from the INDRA DB web API matching given agents and type. You get a :py:class:`DBQueryStatementProcessor <indra.sources.indra_db_rest.processor.DBQueryStatementProcessor>` object, which allow Statements to be loaded in a background thread, providing a sample of the "best" content available promptly in the ``sample_statements`` attribute, and populates the statements attribute when the paged load is complete. The "best" is determined by the ``sort_by`` attribute, which may be either 'belief' or 'ev_count' or None. Parameters ---------- subject/object : str Optionally specify the subject and/or object of the statements you wish to get from the database. By default, the namespace is assumed to be HGNC gene names, however you may specify another namespace by including "@<namespace>" at the end of the name string. For example, if you want to specify an agent by chebi, you could use "CHEBI:6801@CHEBI", or if you wanted to use the HGNC id, you could use "6871@HGNC". agents : list[str] A list of agents, specified in the same manner as subject and object, but without specifying their grammatical position. stmt_type : str Specify the types of interactions you are interested in, as indicated by the sub-classes of INDRA's Statements. This argument is *not* case sensitive. If the statement class given has sub-classes (e.g. RegulateAmount has IncreaseAmount and DecreaseAmount), then both the class itself, and its subclasses, will be queried, by default. If you do not want this behavior, set use_exact_type=True. Note that if max_stmts is set, it is possible only the exact statement type will be returned, as this is the first searched. The processor then cycles through the types, getting a page of results for each type and adding it to the quota, until the max number of statements is reached. use_exact_type : bool If stmt_type is given, and you only want to search for that specific statement type, set this to True. Default is False. limit : Optional[int] Select the maximum number of statements to return. When set less than 500 the effect is much the same as setting persist to false, and will guarantee a faster response. Default is None. persist : bool Default is True. When False, if a query comes back limited (not all results returned), just give up and pass along what was returned. Otherwise, make further queries to get the rest of the data (which may take some time). timeout : positive int or None If an int, block until the work is done and statements are retrieved, or until the timeout has expired, in which case the results so far will be returned in the response object, and further results will be added in a separate thread as they become available. Block indefinitely until all statements are retrieved. Default is None. strict_stop : bool If True, the query will only be given `timeout` time to complete before being abandoned entirely. Otherwise the timeout will simply wait for the thread to join for `timeout` seconds before returning, allowing other work to continue while the query runs in the background. The default is False. ev_limit : Optional[int] Limit the amount of evidence returned per Statement. Default is 10. sort_by : Optional[str] Str options are currently 'ev_count' or 'belief'. Results will return in order of the given parameter. If None, results will be turned in an arbitrary order. tries : Optional[int] Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 3. use_obtained_counts : Optional[bool] If True, evidence counts and source counts are reported based on the actual evidences returned for each statement in this query (as opposed to all existing evidences, even if not all were returned). Default: False api_key : Optional[str] Override or use in place of the API key given in the INDRA config file. Returns ------- processor : :py:class:`DBQueryStatementProcessor` An instance of the DBQueryStatementProcessor, which has an attribute ``statements`` which will be populated when the query/queries are done. """ query = EmptyQuery() def add_agent(ag_str, role): if ag_str is None: return nonlocal query if '@' in ag_str: ag_id, ag_ns = ag_str.split('@') else: ag_id = ag_str ag_ns = 'NAME' query &= HasAgent(ag_id, ag_ns, role=role) add_agent(subject, 'subject') add_agent(object, 'object') if agents is not None: for ag in agents: add_agent(ag, None) if stmt_type is not None: query &= HasType([stmt_type], include_subclasses=not use_exact_type) if isinstance(query, EmptyQuery): raise ValueError("No constraints provided.") return DBQueryStatementProcessor(query, limit=limit, persist=persist, ev_limit=ev_limit, timeout=timeout, sort_by=sort_by, tries=tries, strict_stop=strict_stop, use_obtained_counts=use_obtained_counts, api_key=api_key) @clockit def get_statements_by_hash(hash_list, limit=None, ev_limit=10, sort_by='ev_count', persist=True, timeout=None, strict_stop=False, tries=3, api_key=None): """Get Statements from a list of hashes. Parameters ---------- hash_list : list[int or str] A list of statement hashes. limit : Optional[int] Select the maximum number of statements to return. When set less than 500 the effect is much the same as setting persist to false, and will guarantee a faster response. Default is None. ev_limit : Optional[int] Limit the amount of evidence returned per Statement. Default is 100. sort_by : Optional[str] Options are currently 'ev_count' or 'belief'. Results will return in order of the given parameter. If None, results will be turned in an arbitrary order. persist : bool Default is True. When False, if a query comes back limited (not all results returned), just give up and pass along what was returned. Otherwise, make further queries to get the rest of the data (which may take some time). timeout : positive int or None If an int, return after `timeout` seconds, even if query is not done. Default is None. strict_stop : bool If True, the query will only be given `timeout` time to complete before being abandoned entirely. Otherwise the timeout will simply wait for the thread to join for `timeout` seconds before returning, allowing other work to continue while the query runs in the background. The default is False. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 3. api_key : Optional[str] Override or use in place of the API key given in the INDRA config file. Returns ------- processor : :py:class:`DBQueryStatementProcessor` An instance of the DBQueryStatementProcessor, which has an attribute `statements` which will be populated when the query/queries are done. """ return DBQueryStatementProcessor(HasHash(hash_list), limit=limit, ev_limit=ev_limit, sort_by=sort_by, persist=persist, timeout=timeout, tries=tries, strict_stop=strict_stop, api_key=api_key) def get_statements_for_paper(*args, **kwargs): from warnings import warn warn("`get_statements_for_paper` has been replaced with " "`get_statements_for_papers`.", DeprecationWarning) return get_statements_for_papers(*args, **kwargs) @clockit def get_statements_for_papers(ids, limit=None, ev_limit=10, sort_by='ev_count', persist=True, timeout=None, strict_stop=False, tries=3, filter_ev=True, api_key=None): """Get Statements extracted from the papers with the given ref ids. Parameters ---------- ids : list[str, str] A list of tuples with ids and their type. For example: ``[('pmid', '12345'), ('pmcid', 'PMC12345')]`` The type can be any one of 'pmid', 'pmcid', 'doi', 'pii', 'manuscript_id', or 'trid', which is the primary key id of the text references in the database. limit : Optional[int] Select the maximum number of statements to return. When set less than 500 the effect is much the same as setting persist to false, and will guarantee a faster response. Default is None. ev_limit : Optional[int] Limit the amount of evidence returned per Statement. Default is 10. filter_ev : bool Indicate whether evidence should have the same filters applied as the statements themselves, where appropriate (e.g. in the case of a filter by paper). sort_by : Optional[str] Options are currently 'ev_count' or 'belief'. Results will return in order of the given parameter. If None, results will be turned in an arbitrary order. persist : bool Default is True. When False, if a query comes back limited (not all results returned), just give up and pass along what was returned. Otherwise, make further queries to get the rest of the data (which may take some time). timeout : positive int or None If an int, return after `timeout` seconds, even if query is not done. Default is None. strict_stop : bool If True, the query will only be given `timeout` time to complete before being abandoned entirely. Otherwise the timeout will simply wait for the thread to join for `timeout` seconds before returning, allowing other work to continue while the query runs in the background. The default is False. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 3. api_key : Optional[str] Override or use in place of the API key given in the INDRA config file. Returns ------- processor : :py:class:`DBQueryStatementProcessor` An instance of the DBQueryStatementProcessor, which has an attribute `statements` which will be populated when the query/queries are done. """ return DBQueryStatementProcessor(FromPapers(ids), limit=limit, ev_limit=ev_limit, sort_by=sort_by, persist=persist, timeout=timeout, tries=tries, filter_ev=filter_ev, strict_stop=strict_stop, api_key=api_key) @clockit def get_statements_from_query(query, limit=None, ev_limit=10, sort_by='ev_count', persist=True, timeout=None, strict_stop=False, tries=3, filter_ev=True, use_obtained_counts=False, api_key=None): """Get Statements using a Query. Example ------- >>> >> from indra.sources.indra_db_rest.query import HasAgent, FromMeshIds >> query = HasAgent("MEK", "FPLX") & FromMeshIds(["D001943"]) >> p = get_statements_from_query(query, limit=100) >> stmts = p.statements Parameters ---------- query : :py:class:`Query` The query to be evaluated in return for statements. limit : Optional[int] Select the maximum number of statements to return. When set less than 500 the effect is much the same as setting persist to false, and will guarantee a faster response. Default is None. ev_limit : Optional[int] Limit the amount of evidence returned per Statement. Default is 10. filter_ev : bool Indicate whether evidence should have the same filters applied as the statements themselves, where appropriate (e.g. in the case of a filter by paper). sort_by : Optional[str] Options are currently 'ev_count' or 'belief'. Results will return in order of the given parameter. If None, results will be turned in an arbitrary order. persist : bool Default is True. When False, if a query comes back limited (not all results returned), just give up and pass along what was returned. Otherwise, make further queries to get the rest of the data (which may take some time). timeout : positive int or None If an int, return after ``timeout`` seconds, even if query is not done. Default is None. strict_stop : bool If True, the query will only be given `timeout` time to complete before being abandoned entirely. Otherwise the timeout will simply wait for the thread to join for `timeout` seconds before returning, allowing other work to continue while the query runs in the background. The default is False. use_obtained_counts : Optional[bool] If True, evidence counts and source counts are reported based on the actual evidences returned for each statement in this query (as opposed to all existing evidences, even if not all were returned). Default: False tries : Optional[int] Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 3. api_key : Optional[str] Override or use in place of the API key given in the INDRA config file. Returns ------- processor : :py:class:`DBQueryStatementProcessor` An instance of the DBQueryStatementProcessor, which has an attribute `statements` which will be populated when the query/queries are done. """ return DBQueryStatementProcessor(query, limit=limit, ev_limit=ev_limit, sort_by=sort_by, persist=persist, timeout=timeout, tries=tries, filter_ev=filter_ev, strict_stop=strict_stop, use_obtained_counts=use_obtained_counts, api_key=api_key) def submit_curation(hash_val, tag, curator_email, text=None, source='indra_rest_client', ev_hash=None, pa_json=None, ev_json=None, api_key=None, is_test=False): """Submit a curation for the given statement at the relevant level. Parameters ---------- hash_val : int The hash corresponding to the statement. tag : str A very short phrase categorizing the error or type of curation, e.g. "grounding" for a grounding error, or "correct" if you are marking a statement as correct. curator_email : str The email of the curator. text : str A brief description of the problem. source : str The name of the access point through which the curation was performed. The default is 'direct_client', meaning this function was used directly. Any higher-level application should identify itself here. ev_hash : int A hash of the sentence and other evidence information. Elsewhere referred to as `source_hash`. pa_json : None or dict The JSON of a statement you wish to curate. If not given, it may be inferred (best effort) from the given hash. ev_json : None or dict The JSON of an evidence you wish to curate. If not given, it cannot be inferred. api_key : Optional[str] Override or use in place of the API key given in the INDRA config file. is_test : bool Used in testing. If True, no curation will actually be added to the database. """ data = {'tag': tag, 'text': text, 'email': curator_email, 'source': source, 'ev_hash': ev_hash, 'pa_json': pa_json, 'ev_json': ev_json} url = 'curation/submit/%s' % hash_val if is_test: qstr = '?test' else: qstr = '' resp = make_db_rest_request('post', url, qstr, data=data, api_key=api_key) return resp.json() def get_curations(hash_val=None, source_hash=None, api_key=None): """Get the curations for a specific statement and evidence. If neither hash_val nor source_hash are given, all curations will be retrieved. This will require the user to have extra permissions, as determined by their API key. Parameters ---------- hash_val : Optional[int] The hash of a statement whose curations you want to retrieve. source_hash : Optional[int] The hash generated for a piece of evidence for which you want curations. The `hash_val` must be provided to use the `source_hash`. api_key : Optional[str] Override or use in place of the API key given in the INDRA config file. Returns ------- curations : list A list of dictionaries containing the curation data. """ url = 'curation/list' if hash_val is not None: url += f'/{hash_val}' if source_hash is not None: url += f'/{source_hash}' elif source_hash is not None: raise ValueError("A hash_val must be given if a source_hash is given.") resp = make_db_rest_request('get', url, api_key=api_key) return resp.json() def get_statement_queries(stmts, fallback_ns='NAME', pick_ns_fun=None, **params): """Get queries used to search based on a statement. In addition to the stmts, you can enter any parameters standard to the query. See https://github.com/indralab/indra_db/rest_api for a full list. Parameters ---------- stmts : list[Statement] A list of INDRA statements. fallback_ns : Optional[str] The name space to search by when an Agent in a Statement is not grounded to one of the standardized name spaces. Typically, searching by 'NAME' (i.e., the Agent's name) is a good option if (1) An Agent's grounding is missing but its name is known to be standard in one of the name spaces. In this case the name-based lookup will yield the same result as looking up by grounding. Example: MAP2K1(db_refs={}) (2) Any Agent that is encountered with the same name as this Agent is never standardized, so looking up by name yields the same result as looking up by TEXT. Example: xyz(db_refs={'TEXT': 'xyz'}) Searching by TEXT is better in other cases e.g., when the given specific Agent is not grounded but we have other Agents with the same TEXT that are grounded and then standardized to a different name. Example: Erk(db_refs={'TEXT': 'Erk'}). Default: 'NAME' pick_ns_fun : Optional[function] An optional user-supplied function which takes an Agent as input and returns a string of the form value@ns where 'value' will be looked up in namespace 'ns' to search for the given Agent. **params : kwargs A set of keyword arguments that are added as parameters to the query URLs. """ def pick_ns(ag): # If the Agent has grounding, in order of preference, in any of these # name spaces then we look it up based on grounding. for ns in ['FPLX', 'HGNC', 'UP', 'CHEBI', 'GO', 'MESH']: if ns in ag.db_refs: dbid = ag.db_refs[ns] return '%s@%s' % (dbid, ns) # Otherwise we fall back on searching by NAME or TEXT # (or any other given name space as long as the Agent name can be # usefully looked up in that name space). return '%s@%s' % (ag.name, fallback_ns) pick_ns_fun = pick_ns if not pick_ns_fun else pick_ns_fun queries = [] url_base = get_url_base('statements/from_agents') non_binary_statements = (Complex, SelfModification, ActiveForm, Translocation, Conversion) for stmt in stmts: kwargs = {} if not isinstance(stmt, non_binary_statements): for pos, ag in zip(['subject', 'object'], stmt.agent_list()): if ag is not None: kwargs[pos] = pick_ns_fun(ag) else: for i, ag in enumerate(stmt.agent_list()): if ag is not None: kwargs['agent%d' % i] = pick_ns_fun(ag) kwargs['type'] = stmt.__class__.__name__ kwargs.update(params) query_str = '?' + '&'.join(['%s=%s' % (k, v) for k, v in kwargs.items() if v is not None]) queries.append(url_base + query_str) return queries ``` #### File: tests/test_obo_clients/test_ido_client.py ```python from indra.databases import ido_client def test_ido_client_loaded(): """Test the IDO client is loaded.""" assert 'ido' == ido_client._client.prefix assert ido_client._client.entries assert ido_client._client.name_to_id def test_lookup(): """Test IDO name and identifier lookup.""" name = ido_client.get_ido_name_from_ido_id("0000403") assert "parasite role" == name, name identifier = ido_client.get_ido_id_from_ido_name("parasite role") assert "0000403" == identifier, identifier if __name__ == '__main__': test_lookup() ``` #### File: indra/tests/test_preassembler.py ```python import os import unittest from indra.preassembler import Preassembler, render_stmt_graph, \ flatten_evidence, flatten_stmts from indra.sources import reach from indra.statements import * from indra.ontology.bio import bio_ontology try: from indra_world.ontology import load_world_ontology world_ontology = load_world_ontology(default_type='flat') has_indra_world = True except ImportError: has_indra_world = False from indra.preassembler import RefinementFilter, OntologyRefinementFilter def test_duplicates(): src = Agent('SRC', db_refs={'HGNC': '11283'}) ras = Agent('RAS', db_refs={'FA': '03663'}) st1 = Phosphorylation(src, ras) st2 = Phosphorylation(src, ras) pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa.combine_duplicates() assert len(pa.unique_stmts) == 1 def test_duplicates_copy(): src = Agent('SRC', db_refs={'HGNC': '11283'}) ras = Agent('RAS', db_refs={'FA': '03663'}) st1 = Phosphorylation(src, ras, evidence=[Evidence(text='Text 1')]) st2 = Phosphorylation(src, ras, evidence=[Evidence(text='Text 2')]) stmts = [st1, st2] pa = Preassembler(bio_ontology, stmts=stmts) pa.combine_duplicates() assert len(pa.unique_stmts) == 1 assert len(stmts) == 2 assert len(stmts[0].evidence) == 1 assert len(stmts[1].evidence) == 1 def test_duplicates_sorting(): mc = ModCondition('phosphorylation') map2k1_1 = Agent('MAP2K1', mods=[mc]) mc1 = ModCondition('phosphorylation', 'serine', '218') mc2 = ModCondition('phosphorylation', 'serine', '222') mc3 = ModCondition('phosphorylation', 'serine', '298') map2k1_2 = Agent('MAP2K1', mods=[mc1, mc2, mc3]) mapk3 = Agent('MAPK3') st1 = Phosphorylation(map2k1_1, mapk3, position='218') st2 = Phosphorylation(map2k1_2, mapk3) st3 = Phosphorylation(map2k1_1, mapk3, position='218') stmts = [st1, st2, st3] pa = Preassembler(bio_ontology, stmts=stmts) pa.combine_duplicates() assert len(pa.unique_stmts) == 2 def test_combine_duplicates(): raf = Agent('RAF1') mek = Agent('MEK1') erk = Agent('ERK2') p1 = Phosphorylation(raf, mek, evidence=Evidence(text='foo')) p2 = Phosphorylation(raf, mek, evidence=Evidence(text='bar')) p3 = Phosphorylation(raf, mek, evidence=Evidence(text='baz')) p4 = Phosphorylation(raf, mek, evidence=Evidence(text='beep')) p5 = Phosphorylation(mek, erk, evidence=Evidence(text='foo2')) p6 = Dephosphorylation(mek, erk, evidence=Evidence(text='bar2')) p7 = Dephosphorylation(mek, erk, evidence=Evidence(text='baz2')) p8 = Dephosphorylation(mek, erk, evidence=Evidence(text='beep2')) p9 = Dephosphorylation(Agent('SRC'), Agent('KRAS'), evidence=Evidence(text='beep')) stmts = [p1, p2, p3, p4, p5, p6, p7, p8, p9] pa = Preassembler(bio_ontology, stmts=stmts) pa.combine_duplicates() # The statements come out sorted by their matches_key assert len(pa.unique_stmts) == 4, len(pa.unique_stmts) num_evs =[len(s.evidence) for s in pa.unique_stmts] assert pa.unique_stmts[0].matches(p6) # MEK dephos ERK assert num_evs[0] == 3, num_evs[0] assert pa.unique_stmts[1].matches(p9) # SRC dephos KRAS assert num_evs[1] == 1, num_evs[1] assert pa.unique_stmts[2].matches(p5) # MEK phos ERK assert num_evs[2] == 1, num_evs[2] assert pa.unique_stmts[3].matches(p1) # RAF phos MEK assert num_evs[3] == 4, num_evs[3] def test_combine_evidence_exact_duplicates(): raf = Agent('RAF1') mek = Agent('MEK1') p1 = Phosphorylation(raf, mek, evidence=Evidence(text='foo')) p2 = Phosphorylation(raf, mek, evidence=Evidence(text='bar')) p3 = Phosphorylation(raf, mek, evidence=Evidence(text='bar')) stmts = [p1, p2, p3] pa = Preassembler(bio_ontology, stmts=stmts) pa.combine_duplicates() # The statements come out sorted by their matches_key assert len(pa.unique_stmts) == 1 assert len(pa.unique_stmts[0].evidence) == 2 assert set(ev.text for ev in pa.unique_stmts[0].evidence) == \ set(['foo', 'bar']) def test_combine_evidence_exact_duplicates_different_raw_text(): raf1 = Agent('RAF1', db_refs={'TEXT': 'Raf'}) raf2 = Agent('RAF1', db_refs={'TEXT': 'RAF'}) mek = Agent('MEK1') p1 = Phosphorylation(raf1, mek, evidence=Evidence(text='foo')) p2 = Phosphorylation(raf1, mek, evidence=Evidence(text='bar')) p3 = Phosphorylation(raf2, mek, evidence=Evidence(text='bar')) stmts = [p1, p2, p3] pa = Preassembler(bio_ontology, stmts=stmts) pa.combine_duplicates() # The statements come out sorted by their matches_key assert len(pa.unique_stmts) == 1 assert len(pa.unique_stmts[0].evidence) == 3 assert set(ev.text for ev in pa.unique_stmts[0].evidence) == \ set(['foo', 'bar', 'bar']) def test_superfamily_refinement(): """A gene-level statement should be supported by a family-level statement.""" src = Agent('SRC', db_refs={'HGNC': '11283'}) ras = Agent('RAS', db_refs={'FPLX': 'RAS'}) nras = Agent('NRAS', db_refs={'HGNC': '7989'}) st1 = Phosphorylation(src, ras, 'tyrosine', '32') st2 = Phosphorylation(src, nras, 'tyrosine', '32') pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # The top-level list should contain only one statement, the gene-level # one, supported by the family one. assert len(stmts) == 1, stmts assert (stmts[0].equals(st2)) assert (len(stmts[0].supported_by) == 1) assert (stmts[0].supported_by[0].equals(st1)) def test_superfamily_refinement_isa_or_partof(): src = Agent('SRC', db_refs={'HGNC': '11283'}) prkag1 = Agent('PRKAG1', db_refs={'HGNC': '9385'}) ampk = Agent('AMPK', db_refs={'FPLX': 'AMPK'}) st1 = Phosphorylation(src, ampk, 'tyrosine', '32') st2 = Phosphorylation(src, prkag1, 'tyrosine', '32') pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # The top-level list should contain only one statement, the gene-level # one, supported by the family one. assert len(stmts) == 1 assert stmts[0].equals(st2) assert len(stmts[0].supported_by) == 1 assert stmts[0].supported_by[0].equals(st1) def test_modification_refinement(): """A more specific modification statement should be supported by a more generic modification statement.""" src = Agent('SRC', db_refs={'HGNC': '11283'}) nras = Agent('NRAS', db_refs={'HGNC': '7989'}) st1 = Phosphorylation(src, nras, 'tyrosine', '32') st2 = Phosphorylation(src, nras) pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # The top-level list should contain only one statement, the more specific # modification, supported by the less-specific modification. assert len(stmts) == 1 assert stmts[0].equals(st1) assert len(stmts[0].supported_by) == 1 assert stmts[0].supported_by[0].equals(st2) def test_modification_refinement_residue_noenz(): erbb3 = Agent('Erbb3') st1 = Phosphorylation(None, erbb3) st2 = Phosphorylation(None, erbb3, 'Y') pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa.combine_related() assert len(pa.related_stmts) == 1 def test_modification_refinement_noenz(): """A more specific modification statement should be supported by a more generic modification statement.""" src = Agent('SRC', db_refs={'HGNC': '11283'}) nras = Agent('NRAS', db_refs={'HGNC': '7989'}) st1 = Phosphorylation(src, nras, 'tyrosine', '32') st2 = Phosphorylation(None, nras, 'tyrosine', '32') pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # The top-level list should contain only one statement, the more specific # modification, supported by the less-specific modification. assert len(stmts) == 1 assert stmts[0].equals(st1) assert len(stmts[0].supported_by) == 1 assert stmts[0].supported_by[0].equals(st2) assert stmts[0].supported_by[0].supports[0].equals(st1) def test_modification_refinement_noenz2(): """A more specific modification statement should be supported by a more generic modification statement. Similar to test_modification_refinement_noenz for statements where one argument is associated with a component in the hierarchy (SIRT1 in this case) but the other is not (BECN1). """ sirt1 = Agent('SIRT1', db_refs={'HGNC':'14929', 'UP':'Q96EB6', 'TEXT':'SIRT1'}) becn1 = Agent('BECN1', db_refs={'HGNC': '1034', 'UP': 'Q14457', 'TEXT': 'Beclin 1'}) st1 = Deacetylation(sirt1, becn1) st2 = Deacetylation(None, becn1) pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # The top-level list should contain only one statement, the more specific # modification, supported by the less-specific modification. assert (len(stmts) == 1) assert (stmts[0].equals(st1)) assert (len(stmts[0].supported_by) == 1) assert (stmts[0].supported_by[0].equals(st2)) assert (stmts[0].supported_by[0].supports[0].equals(st1)) def test_modification_norefinement_noenz(): """A more specific modification statement should be supported by a more generic modification statement.""" src = Agent('SRC', db_refs={'HGNC': '11283'}) nras = Agent('NRAS', db_refs={'HGNC': '7989'}) st1 = Phosphorylation(src, nras) st2 = Phosphorylation(None, nras, 'Y', '32', evidence=[Evidence(text='foo')]) pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # Modification is less specific, enzyme more specific in st1, therefore # these statements shouldn't be combined. assert len(stmts) == 2 assert len(stmts[1].evidence)==1 def test_modification_norefinement_subsfamily(): """A more specific modification statement should be supported by a more generic modification statement.""" src = Agent('SRC', db_refs={'HGNC': '11283'}) nras = Agent('NRAS', db_refs={'HGNC': '7989'}) ras = Agent('RAS', db_refs={'FPLX': 'RAS'}) st1 = Phosphorylation(src, nras) st2 = Phosphorylation(src, ras, 'Y', '32', evidence=[Evidence(text='foo')]) pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # Modification is less specific, enzyme more specific in st1, therefore # these statements shouldn't be combined. assert len(stmts) == 2 assert len(stmts[0].evidence) == 1, stmts def test_modification_norefinement_enzfamily(): """A more specific modification statement should be supported by a more generic modification statement.""" mek = Agent('MEK') raf = Agent('RAF') braf = Agent('BRAF') st1 = Phosphorylation(raf, mek, 'Y', '32', evidence=[Evidence(text='foo')]) st2 = Phosphorylation(braf, mek) pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # Modification is less specific, enzyme more specific in st1, therefore # these statements shouldn't be combined. assert len(stmts) == 2 assert len(stmts[1].evidence)==1 def test_bound_condition_refinement(): """A statement with more specific bound context should be supported by a less specific statement.""" src = Agent('SRC', db_refs={'HGNC': '11283'}) gtp = Agent('GTP', db_refs={'CHEBI': '15996'}) nras = Agent('NRAS', db_refs={'HGNC': '7989'}) nrasgtp = Agent('NRAS', db_refs={'HGNC': '7989'}, bound_conditions=[BoundCondition(gtp, True)]) st1 = Phosphorylation(src, nras, 'tyrosine', '32') st2 = Phosphorylation(src, nrasgtp, 'tyrosine', '32') # The top-level list should contain only one statement, the more specific # modification, supported by the less-specific modification. pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() assert len(stmts) == 1 assert stmts[0].equals(st2) assert len(stmts[0].supported_by) == 1 assert stmts[0].supported_by[0].equals(st1) def test_bound_condition_norefinement(): """A statement with more specific bound context should be supported by a less specific statement.""" src = Agent('SRC', db_refs={'HGNC': '11283'}) gtp = Agent('GTP', db_refs={'CHEBI': '15996'}) nras = Agent('NRAS', db_refs={'HGNC': '7989'}) nrasgtp = Agent('NRAS', db_refs={'HGNC': '7989'}, bound_conditions=[BoundCondition(gtp, True)]) st1 = Phosphorylation(src, nras, 'tyrosine', '32') st2 = Phosphorylation(src, nrasgtp) pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() # The bound condition is more specific in st2 but the modification is less # specific. Therefore these statements should not be combined. assert len(stmts) == 2 def test_bound_condition_deep_refinement(): """A statement with more specific bound context should be supported by a less specific statement.""" src = Agent('SRC', db_refs={'HGNC': '11283'}) gtp1 = Agent('GTP', db_refs={'CHEBI': '15996'}) gtp2 = Agent('GTP', mods=[ModCondition('phosphorylation')], db_refs = {'CHEBI': '15996'}) nrasgtp1 = Agent('NRAS', db_refs={'HGNC': '7989'}, bound_conditions=[BoundCondition(gtp1, True)]) nrasgtp2 = Agent('NRAS', db_refs={'HGNC': '7989'}, bound_conditions=[BoundCondition(gtp2, True)]) st1 = Phosphorylation(src, nrasgtp1, 'tyrosine', '32') st2 = Phosphorylation(src, nrasgtp2, 'tyrosine', '32') # The top-level list should contain only one statement, the more specific # modification, supported by the less-specific modification. pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related() assert len(stmts) == 1 assert stmts[0].equals(st2) assert len(stmts[0].supported_by) == 1 assert stmts[0].supported_by[0].equals(st1) def test_complex_refinement(): ras = Agent('RAS') raf = Agent('RAF') mek = Agent('MEK') st1 = Complex([ras, raf]) st2 = Complex([mek, ras, raf]) pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa.combine_related() assert len(pa.unique_stmts) == 2 assert len(pa.related_stmts) == 2 def test_complex_agent_refinement(): ras = Agent('RAS') raf1 = Agent('RAF', mods=[ModCondition('ubiquitination', None, None, True)]) raf2 = Agent('RAF', mods=[ModCondition('ubiquitination', None, None, False)]) st1 = Complex([ras, raf1]) st2 = Complex([ras, raf2]) pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa.combine_related() assert len(pa.unique_stmts) == 2 assert len(pa.related_stmts) == 2 def test_mod_sites_refinement(): """A statement with more specific modification context should be supported by a less-specific statement.""" # TODO assert True def test_binding_site_refinement(): """A statement with information about a binding site for an interaction between two proteins should be supported by a statement without this information.""" # TODO assert True def test_activating_substitution_refinement(): """Should only be refinement if entities are a refinement and all fields match.""" mc1 = MutCondition('12', 'G', 'D') mc2 = MutCondition('61', 'Q', 'L') nras1 = Agent('NRAS', mutations=[mc1], db_refs={'HGNC': '7989'}) nras2 = Agent('NRAS', mutations=[mc2], db_refs={'HGNC': '7989'}) ras = Agent('RAS', mutations=[mc1], db_refs={'FPLX': 'RAS'}) st1 = ActiveForm(ras, 'gtpbound', True, evidence=Evidence(text='bar')) st2 = ActiveForm(nras1, 'gtpbound', True, evidence=Evidence(text='foo')) st3 = ActiveForm(nras2, 'gtpbound', True, evidence=Evidence(text='bar')) st4 = ActiveForm(nras1, 'phosphatase', True, evidence=Evidence(text='bar')) st5 = ActiveForm(nras1, 'gtpbound', False, evidence=Evidence(text='bar')) assert st2.refinement_of(st1, bio_ontology) assert not st3.refinement_of(st1, bio_ontology) assert not st4.refinement_of(st1, bio_ontology) assert not st5.refinement_of(st1, bio_ontology) assert not st1.refinement_of(st2, bio_ontology) assert not st3.refinement_of(st2, bio_ontology) assert not st4.refinement_of(st2, bio_ontology) assert not st5.refinement_of(st2, bio_ontology) assert not st1.refinement_of(st3, bio_ontology) assert not st2.refinement_of(st3, bio_ontology) assert not st4.refinement_of(st3, bio_ontology) assert not st5.refinement_of(st3, bio_ontology) assert not st1.refinement_of(st4, bio_ontology) assert not st2.refinement_of(st4, bio_ontology) assert not st3.refinement_of(st4, bio_ontology) assert not st5.refinement_of(st4, bio_ontology) assert not st1.refinement_of(st5, bio_ontology) assert not st2.refinement_of(st5, bio_ontology) assert not st3.refinement_of(st5, bio_ontology) assert not st4.refinement_of(st5, bio_ontology) def test_translocation(): st1 = Translocation(Agent('AKT'), None, None) st2 = Translocation(Agent('AKT'), None, 'plasma membrane') st3 = Translocation(Agent('AKT'), None, 'nucleus') pa = Preassembler(bio_ontology, stmts=[st1, st2, st3]) pa.combine_related() assert len(pa.related_stmts) == 2, pa.related_stmts def test_grounding_aggregation(): braf1 = Agent('BRAF', db_refs={'TEXT': 'braf', 'HGNC': '1097'}) braf2 = Agent('BRAF', db_refs={'TEXT': 'BRAF'}) braf3 = Agent('BRAF', db_refs={'TEXT': 'Braf', 'UP': 'P15056'}) braf4 = Agent('BRAF', db_refs={'TEXT': 'B-raf', 'UP': 'P15056', 'HGNC': '1097'}) st1 = Phosphorylation(None, braf1) st2 = Phosphorylation(None, braf2) st3 = Phosphorylation(None, braf3) st4 = Phosphorylation(None, braf4) pa = Preassembler(bio_ontology, stmts=[st1, st2, st3, st4]) unique_stmts = pa.combine_duplicates() assert len(unique_stmts) == 3, unique_stmts def test_grounding_aggregation_complex(): mek = Agent('MEK') braf1 = Agent('BRAF', db_refs={'TEXT': 'braf', 'HGNC': '1097'}) braf2 = Agent('BRAF', db_refs={'TEXT': 'BRAF', 'dummy': 'dummy'}) braf3 = Agent('BRAF', db_refs={'TEXT': 'Braf', 'UP': 'P15056'}) st1 = Complex([mek, braf1]) st2 = Complex([braf2, mek]) st3 = Complex([mek, braf3]) pa = Preassembler(bio_ontology, stmts=[st1, st2, st3]) unique_stmts = pa.combine_duplicates() assert len(unique_stmts) == 3, unique_stmts def test_render_stmt_graph(): braf = Agent('BRAF', db_refs={'HGNC': '1097'}) mek1 = Agent('MAP2K1', db_refs={'HGNC': '6840'}) mek = Agent('MEK', db_refs={'FPLX':'MEK'}) # Statements p0 = Phosphorylation(braf, mek) p1 = Phosphorylation(braf, mek1) p2 = Phosphorylation(braf, mek1, position='218') p3 = Phosphorylation(braf, mek1, position='222') p4 = Phosphorylation(braf, mek1, 'serine') p5 = Phosphorylation(braf, mek1, 'serine', '218') p6 = Phosphorylation(braf, mek1, 'serine', '222') stmts = [p0, p1, p2, p3, p4, p5, p6] pa = Preassembler(bio_ontology, stmts=stmts) pa.combine_related() graph = render_stmt_graph(pa.related_stmts, reduce=False) # One node for each statement assert len(graph.nodes()) == 7 # Edges: # p0 supports p1-p6 = 6 edges # p1 supports p2-p6 = 5 edges # p2 supports p5 = 1 edge # p3 supports p6 = 1 edge # p4 supports p5-p6 = 2 edges # (p5 and p6 support none--they are top-level) # 6 + 5 + 1 + 1 + 2 = 15 edges assert len(graph.edges()) == 15 def test_flatten_evidence_hierarchy(): braf = Agent('BRAF') mek = Agent('MAP2K1') st1 = Phosphorylation(braf, mek, evidence=[Evidence(text='foo')]) st2 = Phosphorylation(braf, mek, 'S', '218', evidence=[Evidence(text='bar')]) pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa.combine_related() assert len(pa.related_stmts) == 1 flattened = flatten_evidence(pa.related_stmts) assert len(flattened) == 1 top_stmt = flattened[0] assert len(top_stmt.evidence) == 2 assert 'bar' in [e.text for e in top_stmt.evidence] assert 'foo' in [e.text for e in top_stmt.evidence] assert len(top_stmt.supported_by) == 1 supporting_stmt = top_stmt.supported_by[0] assert len(supporting_stmt.evidence) == 1 assert supporting_stmt.evidence[0].text == 'foo' supporting_stmt.evidence[0].text = 'changed_foo' assert supporting_stmt.evidence[0].text == 'changed_foo' assert 'changed_foo' not in [e.text for e in top_stmt.evidence] assert 'foo' in [e.text for e in top_stmt.evidence] assert {ev.annotations.get('support_type') for ev in top_stmt.evidence} \ == {'direct', 'supported_by'} def test_flatten_evidence_multilevel(): braf = Agent('BRAF') mek = Agent('MAP2K1') st1 = Phosphorylation(braf, mek, evidence=[Evidence(text='foo')]) st2 = Phosphorylation(braf, mek, 'S', evidence=[Evidence(text='bar')]) st3 = Phosphorylation(braf, mek, 'S', '218', evidence=[Evidence(text='baz')]) pa = Preassembler(bio_ontology, stmts=[st1, st2, st3]) pa.combine_related() assert len(pa.related_stmts) == 1 flattened = flatten_evidence(pa.related_stmts) assert len(flattened) == 1 top_stmt = flattened[0] assert len(top_stmt.evidence) == 3, len(top_stmt.evidence) anns = [ev.annotations['support_type'] for ev in top_stmt.evidence] assert anns.count('direct') == 1 assert anns.count('supported_by') == 2 def test_flatten_evidence_hierarchy_supports(): braf = Agent('BRAF') mek = Agent('MAP2K1') st1 = Phosphorylation(braf, mek, evidence=[Evidence(text='foo')]) st2 = Phosphorylation(braf, mek, 'S', '218', evidence=[Evidence(text='bar')]) pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa_stmts = pa.combine_related(return_toplevel=False) assert len(pa_stmts) == 2 flattened = flatten_evidence(pa_stmts, collect_from='supports') assert len(flattened) == 2 top_stmt = flattened[1] assert len(top_stmt.evidence) == 1 assert 'bar' in [e.text for e in top_stmt.evidence] assert len(top_stmt.supported_by) == 1 supporting_stmt = top_stmt.supported_by[0] assert len(supporting_stmt.evidence) == 2 assert set([e.text for e in supporting_stmt.evidence]) == {'foo', 'bar'} def test_flatten_stmts(): st1 = Phosphorylation(Agent('MAP3K5'), Agent('RAF1'), 'S', '338') st2 = Phosphorylation(None, Agent('RAF1'), 'S', '338') st3 = Phosphorylation(None, Agent('RAF1')) st4 = Phosphorylation(Agent('PAK1'), Agent('RAF1'), 'S', '338') st5 = Phosphorylation(None, Agent('RAF1'), evidence=Evidence(text='foo')) pa = Preassembler(bio_ontology, stmts=[st1, st2, st3, st4, st5]) pa.combine_duplicates() pa.combine_related() assert len(pa.related_stmts) == 2 assert len(flatten_stmts(pa.unique_stmts)) == 4 assert len(flatten_stmts(pa.related_stmts)) == 4 def test_complex_refinement_order(): st1 = Complex([Agent('MED23'), Agent('ELK1')]) st2 = Complex([Agent('ELK1', mods=[ModCondition('phosphorylation')]), Agent('MED23')]) pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa.combine_duplicates() pa.combine_related() assert len(pa.related_stmts) == 1 def test_activation_refinement(): subj = Agent('alcohol', db_refs={'CHEBI': 'CHEBI:16236', 'HMDB': 'HMDB00108', 'PUBCHEM': '702', 'TEXT': 'alcohol'}) obj = Agent('endotoxin', db_refs={'TEXT': 'endotoxin'}) st1 = Inhibition(subj, obj) st2 = Activation(subj, obj) pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa.combine_duplicates() assert len(pa.unique_stmts) == 2 pa.combine_related() assert len(pa.related_stmts) == 2 def test_homodimer_refinement(): egfr = Agent('EGFR') erbb = Agent('ERBB2') st1 = Complex([erbb, erbb]) st2 = Complex([erbb, egfr]) pa = Preassembler(bio_ontology, stmts=[st1, st2]) pa.combine_duplicates() assert len(pa.unique_stmts) == 2 pa.combine_related() assert len(pa.related_stmts) == 2 def test_return_toplevel(): src = Agent('SRC', db_refs={'HGNC': '11283'}) nras = Agent('NRAS', db_refs={'HGNC': '7989'}) st1 = Phosphorylation(src, nras, 'tyrosine', '32') st2 = Phosphorylation(src, nras) pa = Preassembler(bio_ontology, stmts=[st1, st2]) stmts = pa.combine_related(return_toplevel=True) assert len(stmts) == 1 assert len(stmts[0].supported_by) == 1 assert len(stmts[0].supported_by[0].supports) == 1 stmts = pa.combine_related(return_toplevel=False) assert len(stmts) == 2 ix = 1 if stmts[0].residue else 0 assert len(stmts[1-ix].supported_by) == 1 assert len(stmts[1-ix].supported_by[0].supports) == 1 assert len(stmts[ix].supports) == 1 assert len(stmts[ix].supports[0].supported_by) == 1 def test_conversion_refinement(): ras = Agent('RAS', db_refs={'FPLX': 'RAS'}) hras = Agent('HRAS', db_refs={'HGNC': '5173'}) gtp = Agent('GTP') gdp = Agent('GDP') st1 = Conversion(ras, gtp, gdp) st2 = Conversion(hras, gtp, gdp) st3 = Conversion(hras, [gtp, gdp], gdp) st4 = Conversion(hras, [gdp, gtp], gdp) pa = Preassembler(bio_ontology, stmts=[st1, st2, st3, st4]) toplevel_stmts = pa.combine_related() assert len(toplevel_stmts) == 2 @unittest.skipUnless(has_indra_world, 'indra_world not available') def test_influence_duplicate(): gov = 'wm/concept/causal_factor/social_and_political/government' agr = 'wm/concept/causal_factor/agriculture/crop_production' cgov = Event(Concept('government', db_refs={'WM': [(gov, 1.0)]})) cagr = Event(Concept('agriculture', db_refs={'WM': [(agr, 1.0)]})) print(cgov.matches_key()) stmt1 = Influence(cgov, cagr, evidence=[Evidence(source_api='eidos1')]) stmt2 = Influence(cagr, cgov, evidence=[Evidence(source_api='eidos2')]) stmt3 = Influence(cgov, cagr, evidence=[Evidence(source_api='eidos3')]) pa = Preassembler(world_ontology, [stmt1, stmt2, stmt3]) unique_stmts = pa.combine_duplicates() unique_stmts = sorted(unique_stmts, key=lambda x: len(x.evidence)) assert len(unique_stmts) == 2 assert len(unique_stmts[0].evidence) == 1 assert len(unique_stmts[1].evidence) == 2, unique_stmts sources = [e.source_api for e in unique_stmts[1].evidence] assert set(sources) == {'eidos1', 'eidos3'} @unittest.skipUnless(has_indra_world, 'indra_world not available') def test_influence_refinement(): tran = 'wm/concept/causal_factor/access/infrastructure_access/'\ 'transportation' ship = 'wm/concept/causal_factor/access/infrastructure_access/' \ 'transportation/shipping' agr = 'wm/concept/causal_factor/economic_and_commerce/' \ 'economic_activity/livelihood' ctran = Event(Concept('transportation', db_refs={'WM': [(tran, 1.0)]})) cship = Event(Concept('trucking', db_refs={'WM': [(ship, 1.0)]})) cagr = Event(Concept('agriculture', db_refs={'WM': [(agr, 1.0)]})) stmt1 = Influence(ctran, cagr, evidence=[Evidence(source_api='eidos1')]) stmt2 = Influence(cship, cagr, evidence=[Evidence(source_api='eidos2')]) stmt3 = Influence(cagr, ctran, evidence=[Evidence(source_api='eidos3')]) pa = Preassembler(world_ontology, [stmt1, stmt2, stmt3]) rel_stmts = pa.combine_related() assert len(rel_stmts) == 2, rel_stmts truck_stmt = [st for st in rel_stmts if st.subj.concept.name == 'trucking'][0] assert len(truck_stmt.supported_by) == 1 assert truck_stmt.supported_by[0].subj.concept.name == 'transportation' def test_find_contradicts(): st1 = Inhibition(Agent('a'), Agent('b')) st2 = Activation(Agent('a'), Agent('b')) st3 = IncreaseAmount(Agent('a'), Agent('b')) st4 = DecreaseAmount(Agent('a'), Agent('b')) st5 = ActiveForm(Agent('a', mods=[ModCondition('phosphorylation', None, None, True)]), 'kinase', True) st6 = ActiveForm(Agent('a', mods=[ModCondition('phosphorylation', None, None, True)]), 'kinase', False) pa = Preassembler(bio_ontology, [st1, st2, st3, st4, st5, st6]) contradicts = pa.find_contradicts() assert len(contradicts) == 3 for s1, s2 in contradicts: assert {s1.uuid, s2.uuid} in ({st1.uuid, st2.uuid}, {st3.uuid, st4.uuid}, {st5.uuid, st6.uuid}) def test_find_contradicts_refinement(): ras = Agent('RAS', db_refs={'FPLX': 'RAS'}) kras = Agent('KRAS', db_refs={'HGNC': '6407'}) hras = Agent('HRAS', db_refs={'HGNC': '5173'}) st1 = Phosphorylation(Agent('x'), ras) st2 = Dephosphorylation(Agent('x'), kras) st3 = Dephosphorylation(Agent('x'), hras) pa = Preassembler(bio_ontology, [st1, st2, st3]) contradicts = pa.find_contradicts() assert len(contradicts) == 2 for s1, s2 in contradicts: assert {s1.uuid, s2.uuid} in ({st1.uuid, st2.uuid}, {st1.uuid, st3.uuid}) def test_preassemble_related_complex(): ras = Agent('RAS', db_refs={'FPLX': 'RAS'}) kras = Agent('KRAS', db_refs={'HGNC': '6407'}) hras = Agent('HRAS', db_refs={'HGNC': '5173'}) st1 = Complex([kras, hras]) st2 = Complex([kras, ras]) st3 = Complex([hras, kras]) st4 = Complex([ras, kras]) pa = Preassembler(bio_ontology, [st1, st2, st3, st4]) uniq = pa.combine_duplicates() assert len(uniq) == 2 top = pa.combine_related() assert len(top) == 1 @unittest.skipUnless(has_indra_world, 'indra_world not available') def test_normalize_opposites(): concept1 = 'wm/concept/causal_factor/food_security/food_stability' concept2 = 'wm/concept/causal_factor/food_insecurity/food_instability' concept3 = ('wm/concept/causal_factor/crisis_and_disaster/' 'environmental_disasters/natural_disaster/flooding') # First test the inherently positive being the main grounding dbr = {'WM': [(concept1, 1.0), (concept2, 0.5), (concept3, 0.1)]} ev = Event(Concept('x', db_refs=dbr), delta=QualitativeDelta(polarity=1)) pa = Preassembler(world_ontology, stmts=[ev]) pa.normalize_opposites(ns='WM') # We are normalizing to food supply since that is the inherently # positive concept assert pa.stmts[0].concept.db_refs['WM'][0] == \ (concept1, 1.0), pa.stmts[0].concept.db_refs['WM'] assert pa.stmts[0].concept.db_refs['WM'][1] == \ (concept1, 0.5), pa.stmts[0].concept.db_refs['WM'] assert pa.stmts[0].concept.db_refs['WM'][2] == \ (concept3, 0.1), pa.stmts[0].concept.db_refs['WM'] assert pa.stmts[0].delta.polarity == 1 # Next test the inherently negative being the main grounding dbr = {'WM': [(concept2, 1.0), (concept1, 0.5), (concept3, 0.1)]} ev = Event(Concept('x', db_refs=dbr), delta=QualitativeDelta(polarity=1)) pa = Preassembler(world_ontology, stmts=[ev]) pa.normalize_opposites(ns='WM') # We are normalizing to food supply since that is the inherently # positive concept assert pa.stmts[0].concept.db_refs['WM'][0] == \ (concept1, 1.0), pa.stmts[0].concept.db_refs['WM'] assert pa.stmts[0].concept.db_refs['WM'][1] == \ (concept1, 0.5), pa.stmts[0].concept.db_refs['WM'] assert pa.stmts[0].concept.db_refs['WM'][2] == \ (concept3, 0.1), pa.stmts[0].concept.db_refs['WM'] assert pa.stmts[0].delta.polarity == -1 @unittest.skipUnless(has_indra_world, 'indra_world not available') def test_normalize_opposites_influence(): concept1 = 'wm/concept/causal_factor/food_security/food_stability' concept2 = 'wm/concept/causal_factor/food_insecurity/food_instability' dbr1 = {'WM': [(concept1, 1.0), (concept2, 0.5)]} dbr2 = {'WM': [(concept2, 1.0), (concept1, 0.5)]} stmt = Influence(Event(Concept('x', db_refs=dbr1), delta=QualitativeDelta(polarity=1)), Event(Concept('y', db_refs=dbr2), delta=QualitativeDelta(polarity=-1))) pa = Preassembler(world_ontology, stmts=[stmt]) pa.normalize_opposites(ns='WM') assert pa.stmts[0].subj.delta.polarity == 1 assert pa.stmts[0].obj.delta.polarity == 1 @unittest.skipUnless(has_indra_world, 'indra_world not available') def test_normalize_opposites_association(): concept1 = 'wm/concept/causal_factor/food_security/food_stability' concept2 = 'wm/concept/causal_factor/food_insecurity/food_instability' dbr1 = {'WM': [(concept1, 1.0), (concept2, 0.5)]} dbr2 = {'WM': [(concept2, 1.0), (concept1, 0.5)]} stmt = Association([Event(Concept('x', db_refs=dbr1), delta=QualitativeDelta(polarity=1)), Event(Concept('y', db_refs=dbr2), delta=QualitativeDelta(polarity=-1))]) pa = Preassembler(world_ontology, stmts=[stmt]) pa.normalize_opposites(ns='WM') assert pa.stmts[0].members[0].delta.polarity == 1 assert pa.stmts[0].members[1].delta.polarity == 1 def test_agent_text_storage(): A1 = Agent('A', db_refs={'TEXT': 'A'}) A2 = Agent('A', db_refs={'TEXT': 'alpha'}) B1 = Agent('B', db_refs={'TEXT': 'bag'}) B2 = Agent('B', db_refs={'TEXT': 'bug'}) C = Agent('C') D = Agent('D') inp = [ Complex([A1, B1], evidence=Evidence(text='A complex bag.')), Complex([B2, A2], evidence=Evidence(text='bug complex alpha once.')), Complex([B2, A2], evidence=Evidence(text='bug complex alpha again.')), Complex([A1, C, B2], evidence=Evidence(text='A complex C bug.')), Phosphorylation(A1, B1, evidence=Evidence(text='A phospo bags.')), Phosphorylation(A2, B2, evidence=Evidence(text='alpha phospho bugs.')), Conversion(D, [A1, B1], [C, D], evidence=Evidence(text='D: A bag -> C D')), Conversion(D, [B1, A2], [C, D], evidence=Evidence(text='D: bag a -> C D')), Conversion(D, [B2, A2], [D, C], evidence=Evidence(text='D: bug a -> D C')), Conversion(D, [B1, A1], [C, D], evidence=Evidence(text='D: bag A -> C D')), Conversion(D, [A1], [A1, C], evidence=Evidence(text='D: A -> A C')) ] pa = Preassembler(bio_ontology, inp) unq1 = pa.combine_duplicates() assert len(unq1) == 5, len(unq1) assert all([len(ev.annotations['prior_uuids']) == 1 for s in unq1 for ev in s.evidence if len(s.evidence) > 1]),\ 'There can only be one prior evidence per uuid at this stage.' ev_uuid_dict = {ev.annotations['prior_uuids'][0]: ev.annotations['agents'] for s in unq1 for ev in s.evidence} for s in inp: raw_text = [ag.db_refs.get('TEXT') for ag in s.agent_list(deep_sorted=True)] assert raw_text == ev_uuid_dict[s.uuid]['raw_text'],\ str(raw_text) + '!=' + str(ev_uuid_dict[s.uuid]['raw_text']) # Now run pa on the above corpus plus another statement. inp2 = unq1 + [ Complex([A1, C, B1], evidence=Evidence(text='A complex C bag.')) ] pa2 = Preassembler(bio_ontology, inp2) unq2 = pa2.combine_duplicates() assert len(unq2) == 5, len(unq2) old_ev_list = [] new_ev = None for s in unq2: for ev in s.evidence: if ev.text == inp2[-1].evidence[0].text: new_ev = ev else: old_ev_list.append(ev) assert all([len(ev.annotations['prior_uuids']) == 2 for ev in old_ev_list]) assert new_ev assert len(new_ev.annotations['prior_uuids']) == 1 def test_agent_coordinates(): path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'reach_coordinates.json') stmts = reach.process_json_file(path).statements pa = Preassembler(bio_ontology, stmts) unique_stmt = pa.combine_duplicates()[0] agent_annots = [ev.annotations['agents'] for ev in unique_stmt.evidence] assert all(a['raw_text'] == ['MEK1', 'ERK2'] for a in agent_annots) assert {tuple(a['coords']) for a in agent_annots} == {((21, 25), (0, 4)), ((0, 4), (15, 19))} @unittest.skipUnless(has_indra_world, 'indra_world not available') def test_association_duplicate(): ev1 = Event(Concept('a')) ev2 = Event(Concept('b')) ev3 = Event(Concept('c')) # Order of members does not matter st1 = Association([ev1, ev2], evidence=[Evidence(source_api='eidos1')]) st2 = Association([ev1, ev3], evidence=[Evidence(source_api='eidos2')]) st3 = Association([ev2, ev1], evidence=[Evidence(source_api='eidos3')]) st4 = Association([ev2, ev3], evidence=[Evidence(source_api='eidos4')]) st5 = Association([ev2, ev3], evidence=[Evidence(source_api='eidos5')]) eidos_ont = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../sources/eidos/eidos_ontology.rdf') pa = Preassembler(world_ontology, [st1, st2, st3, st4, st5]) unique_stmts = pa.combine_duplicates() assert len(unique_stmts) == 3 assert len(unique_stmts[0].evidence) == 2 assert len(unique_stmts[1].evidence) == 1 assert len(unique_stmts[2].evidence) == 2 sources = [e.source_api for e in unique_stmts[0].evidence] assert set(sources) == {'eidos1', 'eidos3'} @unittest.skipUnless(has_indra_world, 'indra_world not available') def test_association_refinement(): unrelated = 'wm/concept/causal_factor/wild_food_sources' parent = 'wm/concept/causal_factor/health_and_life' child = 'wm/concept/causal_factor/health_and_life/' \ 'living_condition/food_safety' parent_event = Event(Concept('parent', db_refs={'WM': [(parent, 1.0)]})) unrelated_event = \ Event(Concept('unrelated', db_refs={'WM': [(unrelated, 1.0)]})) child_event = Event(Concept('child', db_refs={'WM': [(child, 1.0)]})) st1 = Association([parent_event, unrelated_event], evidence=[Evidence(source_api='eidos1')]) st2 = Association([unrelated_event, parent_event], evidence=[Evidence(source_api='eidos2')]) st3 = Association([parent_event, child_event], evidence=[Evidence(source_api='eidos3')]) st4 = Association([unrelated_event, child_event], evidence=[Evidence(source_api='eidos4')]) pa = Preassembler(world_ontology, [st1, st2, st3, st4]) unique_stmts = pa.combine_duplicates() assert len(unique_stmts) == 3 top_level_stmts = pa.combine_related() assert len(top_level_stmts) == 2, top_level_stmts names = {tuple(sorted(e.concept.name for e in stmt.members)): stmt for stmt in top_level_stmts} stmt = names[('child', 'unrelated')] assert len(stmt.supported_by) == 1 assert {e.concept.name for e in stmt.supported_by[0].members} == \ {'parent', 'unrelated'} @unittest.skipUnless(has_indra_world, 'indra_world not available') def test_matches_key_fun(): from indra.statements import WorldContext, RefContext def has_location(stmt): if not stmt.context or not stmt.context.geo_location or \ not stmt.context.geo_location.db_refs.get('GEOID'): return False return True def event_location_matches(stmt): if isinstance(stmt, Event): if not has_location(stmt): context_key = None else: context_key = stmt.context.geo_location.db_refs['GEOID'] matches_key = str((stmt.concept.matches_key(), context_key)) else: matches_key = stmt.matches_key() return matches_key def event_location_refinement(st1, st2, ontology, entities_refined): if isinstance(st1, Event) and isinstance(st2, Event): ref = st1.refinement_of(st2, ontology) if not ref: return False if not has_location(st2): return True elif not has_location(st1) and has_location(st2): return False else: return st1.context.geo_location.db_refs['GEOID'] == \ st2.context.geo_location.db_refs['GEOID'] context1 = WorldContext(geo_location=RefContext('x', db_refs={'GEOID': '1'})) context2 = WorldContext(geo_location=RefContext('x', db_refs={'GEOID': '2'})) health = 'wm/concept/causal_factor/health_and_life' e1 = Event(Concept('health', db_refs={'WM': [(health, 1.0)]}), context=context1, evidence=Evidence(text='1', source_api='eidos')) e2 = Event(Concept('health', db_refs={'WM': [(health, 1.0)]}), context=context2, evidence=Evidence(text='2', source_api='eidos')) e3 = Event(Concept('health', db_refs={'WM': [(health, 1.0)]}), context=context2, evidence=Evidence(text='3', source_api='eidos')) pa = Preassembler(world_ontology, [e1, e2, e3], matches_fun=event_location_matches, refinement_fun=event_location_refinement) unique_stmts = pa.combine_duplicates() assert len(unique_stmts) == 2, unique_stmts from indra.tools.assemble_corpus import run_preassembly stmts = run_preassembly([e1, e2, e3], matches_fun=event_location_matches, refinement_fun=event_location_refinement) assert len(stmts) == 2, stmts def test_uppro_assembly(): ag1 = Agent('x', db_refs={'UP': 'P01019', 'UPPRO': 'PRO_0000032457'}) ag2 = Agent('y', db_refs={'UP': 'P01019', 'UPPRO': 'PRO_0000032458'}) assert ag1.get_grounding() == ('UPPRO', ag1.db_refs['UPPRO']) assert ag2.get_grounding() == ('UPPRO', ag2.db_refs['UPPRO']) stmt1 = Phosphorylation(None, ag1) stmt2 = Phosphorylation(None, ag2) assert stmt1.matches_key() != stmt2.matches_key() pa = Preassembler(bio_ontology, [stmt1, stmt2]) unique_stmts = pa.combine_duplicates() assert len(unique_stmts) == 2, unique_stmts from indra.tools import assemble_corpus as ac stmts = ac.map_grounding([stmt1, stmt2]) pa = Preassembler(bio_ontology, stmts) unique_stmts = pa.combine_duplicates() assert len(unique_stmts) == 2 def test_split_idx(): ras = Agent('RAS', db_refs={'FPLX': 'RAS'}) kras = Agent('KRAS', db_refs={'HGNC': '6407'}) hras = Agent('HRAS', db_refs={'HGNC': '5173'}) st1 = Phosphorylation(Agent('x'), ras) st2 = Phosphorylation(Agent('x'), kras) st3 = Phosphorylation(Agent('x'), hras) pa = Preassembler(bio_ontology) maps = pa._generate_id_maps([st1, st2, st3]) assert (1, 0) in maps, maps assert (2, 0) in maps, maps assert pa._comparison_counter == 2 pa = Preassembler(bio_ontology) maps = pa._generate_id_maps([st1, st2, st3], split_idx=1) assert (2, 0) in maps, maps assert (1, 0) not in maps, maps assert pa._comparison_counter == 1 def test_refinement_filters(): ras = Agent('RAS', db_refs={'FPLX': 'RAS'}) kras = Agent('KRAS', db_refs={'HGNC': '6407'}) hras = Agent('HRAS', db_refs={'HGNC': '5173'}) st1 = Phosphorylation(Agent('x'), ras) st2 = Phosphorylation(Agent('x'), kras) st3 = Phosphorylation(Agent('x'), hras) # This filters everything out so no comparisons will be done class FilterEmpty(RefinementFilter): def get_less_specifics(self, stmt, possibly_related): return set() # This is a superset of all comparisons constrained by the ontology # so will not change what the preassembler does internally class FilterAll(RefinementFilter): def get_less_specifics(self, stmt, possibly_related): shs = set(self.shared_data['stmts_by_hash']) - {stmt.get_hash()} if possibly_related is not None: shs &= possibly_related return shs # No comparisons here pa = Preassembler(bio_ontology, stmts=[st1, st2, st3]) pa.combine_related( filters=[OntologyRefinementFilter(ontology=bio_ontology), FilterEmpty()]) assert pa._comparison_counter == 0 # The same number of comparisons here as without the filter pa = Preassembler(bio_ontology, stmts=[st1, st2, st3]) pa.combine_related( filters=[OntologyRefinementFilter(ontology=bio_ontology), FilterAll()]) assert pa._comparison_counter == 2, pa._comparison_counter # Just to make sure lists of more than one filter are correctly handled pa = Preassembler(bio_ontology, stmts=[st1, st2, st3]) pa.combine_related( filters=[ FilterAll(), FilterEmpty(), OntologyRefinementFilter(bio_ontology) ]) assert pa._comparison_counter == 0, pa._comparison_counter # Now try adding more statement types st4 = Activation(Agent('x'), ras) st5 = Activation(Agent('x'), kras) st6 = Activation(Agent('x'), hras) # The same number of comparisons here as without the filter pa = Preassembler(bio_ontology, stmts=[st1, st2, st3, st4, st5, st6]) pa.combine_related( filters=[OntologyRefinementFilter(bio_ontology), FilterAll() ]) assert pa._comparison_counter == 4, pa._comparison_counter pa = Preassembler(bio_ontology, stmts=[st1, st2, st3, st4, st5, st6]) pa.combine_related( filters=[FilterAll(), OntologyRefinementFilter(bio_ontology) ]) assert pa._comparison_counter == 4, pa._comparison_counter # Just to make sure lists of more than one filter are correctly handled pa = Preassembler(bio_ontology, stmts=[st1, st2, st3, st4, st5, st6]) pa.combine_related( filters=[ FilterAll(), FilterEmpty(), OntologyRefinementFilter(bio_ontology) ]) assert pa._comparison_counter == 0, pa._comparison_counter ``` #### File: indra/tests/test_pysb_assembler.py ```python import xml.etree.ElementTree as ET from indra.assemblers.pysb import PysbAssembler import indra.assemblers.pysb.assembler as pa from indra.assemblers.pysb.assembler import Policy, Param from indra.assemblers.pysb.preassembler import PysbPreassembler from indra.assemblers.pysb.export import export_cm_network from indra.assemblers.pysb.kappa_util import get_cm_cycles from indra.statements import * from pysb import bng, WILD, Monomer, Annotation from pysb.testing import with_model from nose.tools import raises def test_pysb_assembler_complex1(): member1 = Agent('BRAF') member2 = Agent('MEK1') stmt = Complex([member1, member2]) pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 2 assert len(model.monomers) == 2 def test_pysb_assembler_complex2(): member1 = Agent('BRAF') member2 = Agent('MEK1') member3 = Agent('ERK1') stmt = Complex([member1, member2, member3]) pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 6 assert len(model.monomers) == 3 def test_pysb_assembler_complex3(): hras = Agent('HRAS') member1 = Agent('BRAF', bound_conditions=[BoundCondition(hras, True)]) member2 = Agent('MEK1') stmt = Complex([member1, member2]) pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 2 assert len(model.monomers) == 3 def test_pysb_assembler_complex_twostep(): member1 = Agent('BRAF') member2 = Agent('MEK1') stmt = Complex([member1, member2]) pa = PysbAssembler([stmt]) model = pa.make_model(policies='two_step') assert len(model.rules) == 2 assert len(model.monomers) == 2 def test_pysb_assembler_complex_multiway(): member1 = Agent('BRAF') member2 = Agent('MEK1') member3 = Agent('ERK1') stmt = Complex([member1, member2, member3]) pa = PysbAssembler([stmt]) model = pa.make_model(policies='multi_way') assert len(model.rules) == 2 assert len(model.monomers) == 3 def test_pysb_assembler_actsub(): stmt = ActiveForm(Agent('BRAF', mutations=[MutCondition('600', 'V', 'E')]), 'activity', True) pa = PysbAssembler([stmt]) model = pa.make_model(policies='two_step') assert len(model.rules) == 0 assert len(model.monomers) == 1 def test_pysb_assembler_phos_noenz(): enz = None sub = Agent('MEK1') stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 0 assert len(model.monomers) == 0 def test_pysb_assembler_dephos_noenz(): enz = None sub = Agent('MEK1') stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 0 assert len(model.monomers) == 0 def test_pysb_assembler_phos1(): enz = Agent('BRAF') sub = Agent('MEK1') stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_pysb_assembler_phos2(): hras = Agent('HRAS') enz = Agent('BRAF', bound_conditions=[BoundCondition(hras, True)]) sub = Agent('MEK1') stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 3 def test_pysb_assembler_phos3(): hras = Agent('HRAS') erk1 = Agent('ERK1') enz = Agent('BRAF', bound_conditions=[BoundCondition(hras, True)]) sub = Agent('MEK1', bound_conditions=[BoundCondition(erk1, True)]) stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 4 def test_pysb_assembler_phos4(): hras = Agent('HRAS') erk1 = Agent('ERK1') enz = Agent('BRAF', bound_conditions=[BoundCondition(hras, True)]) sub = Agent('MEK1', bound_conditions=[BoundCondition(erk1, False)]) stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 4 def test_pysb_assembler_autophos1(): enz = Agent('MEK1') stmt = Autophosphorylation(enz, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 1 def test_pysb_assembler_autophos2(): raf1 = Agent('RAF1') enz = Agent('MEK1', bound_conditions=[BoundCondition(raf1, True)]) stmt = Autophosphorylation(enz, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_pysb_assembler_autophos3(): egfr = Agent('EGFR') enz = Agent('EGFR', bound_conditions=[BoundCondition(egfr, True)]) stmt = Autophosphorylation(enz, 'tyrosine') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 1 def test_pysb_assembler_transphos1(): egfr = Agent('EGFR') enz = Agent('EGFR', bound_conditions=[BoundCondition(egfr, True)]) stmt = Transphosphorylation(enz, 'tyrosine') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 1 def test_pysb_assembler_act1(): egfr = Agent('EGFR') subj = Agent('GRB2', bound_conditions=[BoundCondition(egfr, True)]) obj = Agent('SOS1') stmt = Activation(subj, obj) pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 3 def test_pysb_assembler_dephos1(): phos = Agent('PP2A') sub = Agent('MEK1') stmt = Dephosphorylation(phos, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_pysb_assembler_dephos2(): phos = Agent('PP2A') raf1 = Agent('RAF1') sub = Agent('MEK1', bound_conditions=[BoundCondition(raf1, True)]) stmt = Dephosphorylation(phos, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 3 def test_pysb_assembler_gef1(): gef = Agent('SOS1') ras = Agent('HRAS') stmt = Gef(gef, ras) pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_pysb_assembler_gap1(): gap = Agent('NF1') ras = Agent('HRAS') stmt = Gap(gap, ras) pa = PysbAssembler([stmt]) model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_pysb_assembler_actmod1(): mek = Agent('MEK') erk = Agent('ERK') stmts = [] mc1 = ModCondition('phosphorylation', 'serine', '218') mc2 = ModCondition('phosphorylation', 'serine', '222') stmts.append(ActiveForm(Agent('MEK', mods=[mc1, mc2]), 'activity', True)) stmts.append(Phosphorylation(mek, erk, 'threonine', '185')) stmts.append(Phosphorylation(mek, erk, 'tyrosine', '187')) pa = PysbAssembler(stmts) model = pa.make_model() assert len(model.rules) == 2 assert len(model.monomers) == 2 model = pa.make_model(policies='two_step') assert len(model.rules) == 5 def test_pysb_assembler_actmod2(): mek = Agent('MEK', activity=ActivityCondition('activity', True)) erk = Agent('ERK') stmts = [] stmts.append(ActiveForm(Agent( 'MEK', mods=[ModCondition('phosphorylation', 'serine', '218')]), 'activity', True)) stmts.append(ActiveForm(Agent( 'MEK', mods=[ModCondition('phosphorylation', 'serine', '222')]), 'activity', True)) stmts.append(Phosphorylation(mek, erk, 'threonine', '185')) stmts.append(Phosphorylation(mek, erk, 'tyrosine', '187')) pa = PysbAssembler(stmts) model = pa.make_model() assert len(model.rules) == 4 assert len(model.monomers) == 2 model = pa.make_model(policies='two_step') assert len(model.rules) == 9 def test_pysb_assembler_phos_twostep1(): enz = Agent('BRAF') sub = Agent('MEK1') stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model(policies='two_step') assert len(model.rules) == 3 assert len(model.monomers) == 2 def test_pysb_assembler_twostep_mixed(): member1 = Agent('BRAF') member2 = Agent('RAF1') st1 = Complex([member1, member2]) st2 = Phosphorylation(Agent('MAP2K1'), Agent('MAPK3')) pa = PysbAssembler([st1, st2]) pa.make_model(policies='two_step') assert len(pa.model.rules) == 5 assert len(pa.model.monomers) == 4 def test_pysb_assembler_phos_twostep_local(): enz = Agent('BRAF') sub = Agent('MEK1') stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model(policies='two_step') assert len(model.rules) == 3 assert len(model.monomers) == 2 def test_pysb_assembler_phos_twostep_local_to_global(): enz = Agent('BRAF') sub = Agent('MEK1') stmt = Phosphorylation(enz, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model(policies='two_step') # This call should have reverted to default policy model = pa.make_model() assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_pysb_assembler_dephos_twostep1(): phos = Agent('PP2A') sub = Agent('MEK1') stmt = Dephosphorylation(phos, sub, 'serine', '222') pa = PysbAssembler([stmt]) model = pa.make_model(policies='two_step') assert len(model.rules) == 3 assert len(model.monomers) == 2 def test_statement_specific_policies(): enz = Agent('BRAF') sub = Agent('MEK1') phos = Agent('PP2A') stmt1 = Phosphorylation(enz, sub, 'serine', '222') stmt2 = Dephosphorylation(phos, sub, 'serine', '222') policies = {'Phosphorylation': 'two_step', 'Dephosphorylation': 'interactions_only'} pa = PysbAssembler([stmt1, stmt2]) model = pa.make_model(policies=policies) assert len(model.rules) == 4 assert len(model.monomers) == 3 def test_unspecified_statement_policies(): enz = Agent('BRAF') sub = Agent('MEK1') phos = Agent('PP2A') stmt1 = Phosphorylation(enz, sub, 'serine', '222') stmt2 = Dephosphorylation(phos, sub, 'serine', '222') policies = {'Phosphorylation': 'two_step', 'other': 'interactions_only'} pa = PysbAssembler([stmt1, stmt2]) model = pa.make_model(policies=policies) assert len(model.rules) == 4 assert len(model.monomers) == 3 def test_activity_activity(): subj = Agent('KRAS') obj = Agent('BRAF') stmt = Activation(subj, obj) pa = PysbAssembler([stmt]) model = pa.make_model(policies='interactions_only') assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_activity_activity2(): subj = Agent('KRAS') obj = Agent('BRAF') stmt = Activation(subj, obj) pa = PysbAssembler([stmt]) model = pa.make_model(policies='one_step') assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_activity_activity2(): subj = Agent('Vemurafenib') obj = Agent('BRAF') stmt = Inhibition(subj, obj) pa = PysbAssembler([stmt]) model = pa.make_model(policies='interactions_only') assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_activity_activity3(): subj = Agent('Vemurafenib') obj = Agent('BRAF') stmt = Inhibition(subj, obj) pa = PysbAssembler([stmt]) model = pa.make_model(policies='one_step') assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_rule_name_str_1(): s = pa.get_agent_rule_str(Agent('BRAF')) assert s == 'BRAF' def test_rule_name_str_2(): a = Agent('GRB2', bound_conditions=[BoundCondition(Agent('EGFR'), True)]) s = pa.get_agent_rule_str(a) assert s == 'GRB2_EGFR' def test_rule_name_str_3(): a = Agent('GRB2', bound_conditions=[BoundCondition(Agent('EGFR'), False)]) s = pa.get_agent_rule_str(a) assert s == 'GRB2_nEGFR' def test_rule_name_str_4(): a = Agent('BRAF', mods=[ModCondition('phosphorylation', 'serine')]) s = pa.get_agent_rule_str(a) assert s == 'BRAF_phosphoS' def test_rule_name_str_5(): a = Agent('BRAF', mods=[ModCondition('phosphorylation', 'serine', '123')]) s = pa.get_agent_rule_str(a) assert s == 'BRAF_phosphoS123' def test_neg_act_mod(): mc = ModCondition('phosphorylation', 'serine', '123', False) st1 = ActiveForm(Agent('BRAF', mods=[mc]), 'activity', True) braf = Agent('BRAF', activity=ActivityCondition('active', True)) st2 = Phosphorylation(braf, Agent('MAP2K2')) pa = PysbAssembler([st1, st2]) pa.make_model(policies='one_step') assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.monomer.name == 'BRAF' assert braf.site_conditions == {'S123': ('u', WILD)} def test_pos_agent_mod(): mc = ModCondition('phosphorylation', 'serine', '123', True) st = Phosphorylation(Agent('BRAF', mods=[mc]), Agent('MAP2K2')) pa = PysbAssembler([st]) pa.make_model(policies='one_step') assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.monomer.name == 'BRAF' assert braf.site_conditions == {'S123': ('p', WILD)} def test_neg_agent_mod(): mc = ModCondition('phosphorylation', 'serine', '123', False) st = Phosphorylation(Agent('BRAF', mods=[mc]), Agent('MAP2K2')) pa = PysbAssembler([st]) pa.make_model(policies='one_step') assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.monomer.name == 'BRAF' assert braf.site_conditions == {'S123': ('u', WILD)} def test_mut(): mut = MutCondition('600', 'V', 'E') st = Phosphorylation(Agent('BRAF', mutations=[mut]), Agent('MEK')) pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.monomer.name == 'BRAF' assert braf.site_conditions == {'V600': 'E'} def test_mut_missing1(): mut = MutCondition('600', 'V', None) st = Phosphorylation(Agent('BRAF', mutations=[mut]), Agent('MEK')) pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.monomer.name == 'BRAF' assert braf.site_conditions == {'V600': 'X'} def test_mut_missing2(): mut = MutCondition('600', None, 'E') st = Phosphorylation(Agent('BRAF', mutations=[mut]), Agent('MEK')) pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.monomer.name == 'BRAF' assert braf.site_conditions == {'mut600': 'E'} def test_mut_missing3(): mut = MutCondition(None, 'V', 'E') st = Phosphorylation(Agent('BRAF', mutations=[mut]), Agent('MEK')) pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.monomer.name == 'BRAF' assert braf.site_conditions == {'V': 'E'} def test_mut_missing4(): mut = MutCondition(None, None, None) st = Phosphorylation(Agent('BRAF', mutations=[mut]), Agent('MEK')) pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.monomer.name == 'BRAF' assert braf.site_conditions == {'mut': 'X'} def test_agent_loc(): st = Phosphorylation(Agent('BRAF', location='cytoplasm'), Agent('MEK')) pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] braf = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert braf.site_conditions == {'loc': 'cytoplasm'} def test_translocation(): st = Translocation(Agent('FOXO3A'), 'nucleus', 'cytoplasm') pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] f1 = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert f1.site_conditions == {'loc': 'nucleus'} f2 = r.product_pattern.complex_patterns[0].monomer_patterns[0] assert f2.site_conditions == {'loc': 'cytoplasm'} assert r.rate_forward.name == 'kf_foxo3a_nucleus_cytoplasm_1' def test_translocation_to(): st = Translocation(Agent('FOXO3A'), None, 'nucleus') pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] f1 = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert f1.site_conditions == {'loc': 'cytoplasm'} f2 = r.product_pattern.complex_patterns[0].monomer_patterns[0] assert f2.site_conditions == {'loc': 'nucleus'} assert r.rate_forward.name == 'kf_foxo3a_cytoplasm_nucleus_1' def test_phos_atpdep(): st = Phosphorylation(Agent('BRAF'), Agent('MEK'), 'S', '222') pa = PysbAssembler([st]) pa.make_model(policies='atp_dependent') assert len(pa.model.rules) == 5 def test_set_context(): st = Phosphorylation(Agent('MAP2K1'), Agent('MAPK3')) pa = PysbAssembler([st]) pa.make_model() assert pa.model.parameters['MAP2K1_0'].value == pa.default_initial_amount assert pa.model.parameters['MAPK3_0'].value == pa.default_initial_amount pa.set_context('A375_SKIN') assert pa.model.parameters['MAP2K1_0'].value > 10000 assert pa.model.parameters['MAPK3_0'].value > 10000 def test_set_context_monomer_notfound(): st = Phosphorylation(Agent('MAP2K1'), Agent('XYZ')) pa = PysbAssembler([st]) pa.make_model() assert pa.model.parameters['MAP2K1_0'].value == pa.default_initial_amount assert pa.model.parameters['XYZ_0'].value == pa.default_initial_amount pa.add_default_initial_conditions(100) assert pa.model.parameters['MAP2K1_0'].value == 100 assert pa.model.parameters['XYZ_0'].value == 100 pa.set_context('A375_SKIN') assert pa.model.parameters['MAP2K1_0'].value > 10000 assert pa.model.parameters['XYZ_0'].value == pa.default_initial_amount def test_set_context_celltype_notfound(): st = Phosphorylation(Agent('MAP2K1'), Agent('MAPK3')) pa = PysbAssembler([st]) pa.make_model() pa.set_context('XYZ') def test_annotation(): st = Phosphorylation(Agent('BRAF', db_refs = {'UP': 'P15056'}), Agent('MAP2K2', db_refs = {'HGNC': '6842'})) pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.annotations) == 5 def test_annotation_regamount(): st1 = IncreaseAmount(Agent('BRAF', db_refs = {'UP': 'P15056'}), Agent('MAP2K2', db_refs = {'HGNC': '6842'})) st2 = DecreaseAmount(Agent('BRAF', db_refs = {'UP': 'P15056'}), Agent('MAP2K2', db_refs = {'HGNC': '6842'})) pa = PysbAssembler([st1, st2]) pa.make_model() assert len(pa.model.annotations) == 8 def test_print_model(): st = Phosphorylation(Agent('MAP2K1'), Agent('MAPK3')) pa = PysbAssembler([st]) pa.make_model() pa.save_model('/dev/null') def test_save_rst(): st = Phosphorylation(Agent('MAP2K1'), Agent('MAPK3')) pa = PysbAssembler([st]) pa.make_model() pa.save_rst('/dev/null') def test_export_model(): st = Phosphorylation(Agent('MAP2K1'), Agent('MAPK3')) pa = PysbAssembler([st]) pa.make_model() exp_str = pa.export_model('kappa') assert exp_str exp_str = pa.export_model('bngl') assert exp_str exp_str = pa.export_model('sbml', file_name='/dev/null') assert exp_str def test_assemble_export_sbgn(): # Add various statements to test their assembly st = Phosphorylation(Agent('BRAF'), Agent('MAP2K1')) mc = ModCondition('phosphorylation', None, None, True) st2 = Activation(Agent('MAP2K1', mods=[mc]), Agent('MAPK1')) st3 = Complex([Agent('MAPK1'), Agent('DUSP6')]) st4 = DecreaseAmount(None, Agent('DUSP6')) pa = PysbAssembler([st, st2, st3, st4]) pa.make_model() # Export to SBGN model = pa.export_model('sbgn') assert model is not None # Test that the right elements are there in the result et = ET.fromstring(model) from indra.assemblers.sbgn.assembler import sbgn_ns sbgn_nss = {'s': sbgn_ns} glyphs = et.findall('s:map/s:glyph', namespaces=sbgn_nss) glyph_classes = [g.attrib.get('class') for g in glyphs] assert glyph_classes.count('macromolecule') == 6 assert glyph_classes.count('complex') == 2 assert glyph_classes.count('process') == 10 return pa def test_name_standardize(): n = pa._n('.*/- ^&#@$') assert isinstance(n, str) assert n == '__________' n = pa._n('14-3-3') assert isinstance(n, str) assert n == 'p14_3_3' n = pa._n('\U0001F4A9bar') assert isinstance(n, str) assert n == 'bar' def test_generate_equations(): st = Phosphorylation(Agent('MAP2K1'), Agent('MAPK3')) pa = PysbAssembler([st]) pa.make_model() bng.generate_equations(pa.model) def test_non_python_name_phos(): st = Phosphorylation(Agent('14-3-3'), Agent('BRAF kinase')) pa = PysbAssembler([st]) pa.make_model() names = [m.name for m in pa.model.monomers] assert 'BRAF_kinase' in names assert 'p14_3_3' in names bng.generate_equations(pa.model) def test_non_python_name_bind(): st = Complex([Agent('14-3-3'), Agent('BRAF kinase')]) pa = PysbAssembler([st]) pa.make_model() bng.generate_equations(pa.model) def test_decreaseamount_one_step(): subj = Agent('KRAS') obj = Agent('BRAF') st1 = DecreaseAmount(subj, obj) st2 = DecreaseAmount(None, obj) pa = PysbAssembler([st1, st2]) model = pa.make_model(policies='one_step') assert len(model.rules) == 2 assert len(model.monomers) == 2 def test_decreaseamount_interactions_only(): subj = Agent('KRAS') obj = Agent('BRAF') st1 = DecreaseAmount(subj, obj) st2 = DecreaseAmount(None, obj) pa = PysbAssembler([st1, st2]) model = pa.make_model(policies='interactions_only') assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_increaseamount_one_step(): subj = Agent('KRAS') obj = Agent('BRAF') st1 = IncreaseAmount(subj, obj) st2 = IncreaseAmount(None, obj) pa = PysbAssembler([st1, st2]) model = pa.make_model(policies='one_step') assert len(model.rules) == 2 assert len(model.monomers) == 2 def test_increaseamount_interactions_only(): subj = Agent('KRAS') obj = Agent('BRAF') st1 = IncreaseAmount(subj, obj) st2 = IncreaseAmount(None, obj) pa = PysbAssembler([st1, st2]) model = pa.make_model(policies='interactions_only') assert len(model.rules) == 1 assert len(model.monomers) == 2 def test_missing_catalytic_default_site(): c8 = Agent('CASP8', activity=ActivityCondition('catalytic', True)) c3 = Agent('CASP3') stmt = Activation(c8, c3, 'catalytic') # Interactions only pa = PysbAssembler([stmt]) model = pa.make_model(policies='interactions_only') # One step pa = PysbAssembler([stmt]) model = pa.make_model(policies='one_step') # Two step pa = PysbAssembler([stmt]) model = pa.make_model(policies='two_step') def test_missing_transcription_default_site(): p53 = Agent('TP53', activity=ActivityCondition('transcription', True)) bax = Agent('BAX') stmt = Activation(p53, bax) # Interactions only pa = PysbAssembler([stmt]) model = pa.make_model(policies='interactions_only') # One step pa = PysbAssembler([stmt]) model = pa.make_model(policies='one_step') # Two step pa = PysbAssembler([stmt]) model = pa.make_model(policies='two_step') def test_translocation_loc_special_char(): st = Translocation(Agent('KSR1'), 'cytoplasm', 'cell surface') pa = PysbAssembler([st]) pa.make_model() assert len(pa.model.rules) == 1 r = pa.model.rules[0] f1 = r.reactant_pattern.complex_patterns[0].monomer_patterns[0] assert f1.site_conditions == {'loc': 'cytoplasm'} f2 = r.product_pattern.complex_patterns[0].monomer_patterns[0] assert f2.site_conditions == {'loc': 'cell_surface'} assert r.rate_forward.name == 'kf_ksr1_cytoplasm_cell_surface_1' @with_model def test_get_mp_with_grounding(): foo = Agent('Foo', db_refs={'HGNC': 'foo'}) a = Agent('A', db_refs={'HGNC': '6840'}) b = Agent('B', db_refs={'HGNC': '6871'}) Monomer('A_monomer') Monomer('B_monomer') Annotation(A_monomer, 'https://identifiers.org/hgnc:6840') Annotation(B_monomer, 'https://identifiers.org/hgnc:6871') mps = list(pa.grounded_monomer_patterns(model, foo)) assert len(mps) == 0 mps = list(pa.grounded_monomer_patterns(model, a)) assert len(mps) == 1, mps assert mps[0].monomer == A_monomer mps = list(pa.grounded_monomer_patterns(model, b)) assert len(mps) == 1 assert mps[0].monomer == B_monomer @with_model def test_get_mp_with_grounding_2(): a1 = Agent('A', mods=[ModCondition('phosphorylation', None, None)], db_refs={'HGNC': '6840'}) a2 = Agent('A', mods=[ModCondition('phosphorylation', 'Y', '187')], db_refs={'HGNC': '6840'}) Monomer('A_monomer', ['phospho', 'T185', 'Y187'], {'phospho': 'y', 'T185': ['u', 'p'], 'Y187': ['u', 'p']}) Annotation(A_monomer, 'https://identifiers.org/hgnc:6840') A_monomer.site_annotations = [ Annotation(('phospho', 'y'), 'phosphorylation', 'is_modification'), Annotation(('T185', 'p'), 'phosphorylation', 'is_modification'), Annotation(('Y187', 'p'), 'phosphorylation', 'is_modification'), Annotation('T185', 'T', 'is_residue'), Annotation('T185', '185', 'is_position'), Annotation('Y187', 'Y', 'is_residue'), Annotation('Y187', '187', 'is_position') ] mps_1 = list(pa.grounded_monomer_patterns(model, a1)) assert len(mps_1) == 3 mps_2 = list(pa.grounded_monomer_patterns(model, a2)) assert len(mps_2) == 1 mp = mps_2[0] assert mp.monomer == A_monomer assert mp.site_conditions == {'Y187': ('p', WILD)} # TODO Add test for unmodified agent! # TODO Add test involving multiple (possibly degenerate) modifications! # TODO Add test for generic double phosphorylation def test_phospho_assemble_grounding(): a = Agent('MEK1', db_refs={'HGNC': '6840'}) b = Agent('ERK2', db_refs={'HGNC': '6871'}) b_phos = Agent('Foo', mods=[ModCondition('phosphorylation', None, None)], db_refs={'HGNC': '6871'}) st1 = Phosphorylation(a, b, 'T', '185') # One step def check_policy(policy): pysb_asmb = pa.PysbAssembler([st1]) model = pysb_asmb.make_model(policies=policy) mps = list(pa.grounded_monomer_patterns(model, b_phos)) assert len(mps) == 1 assert mps[0].monomer.name == 'ERK2' assert mps[0].site_conditions == {'T185': ('p', WILD)} for policy in ('one_step', 'interactions_only', 'two_step', 'atp_dependent'): check_policy(policy) def test_get_grounded_agents_from_model(): mek = Agent('MEK1', db_refs={'HGNC': '6840'}) erk = Agent('ERK2', db_refs={'HGNC': '6871'}) erk_phos = Agent('ERK2', db_refs={'HGNC': '6871'}, mods=[ModCondition('phosphorylation')]) erk_phos_y187 = Agent('ERK2', db_refs={'HGNC': '6871'}, mods=[ModCondition('phosphorylation', 'Y', '187')]) phos_stmt = Phosphorylation(mek, erk) phos_y187_stmt = Phosphorylation(mek, erk, 'Y', '187') pysba = pa.PysbAssembler([phos_stmt, phos_y187_stmt]) pysb_model = pysba.make_model() agents_by_mp, mps_by_rule = pa.get_grounded_agents(pysb_model) assert isinstance(agents_by_mp, dict) assert isinstance(mps_by_rule, dict) model_agents = agents_by_mp.values() model_keys = set([ag.matches_key() for ag in model_agents]) # TODO add other types of agent conditions here # TODO do we expect a different agent for af? test_keys = set([mek.matches_key(), erk_phos.matches_key(), erk_phos_y187.matches_key()]) assert len(model_keys.intersection(test_keys)) == 3 def test_phospho_mod_grounding(): a = Agent('MEK1', mods=[ModCondition('phosphorylation', 'S', '218'), ModCondition('phosphorylation', 'S', '222')], db_refs={'HGNC': '6840'}) b = Agent('ERK2', db_refs={'HGNC': '6871'}) a_phos = Agent('Foo', mods=[ModCondition('phosphorylation', None, None)], db_refs={'HGNC': '6840'}) st1 = Phosphorylation(a, b, 'T', '185') pysb_asmb = pa.PysbAssembler([st1]) model = pysb_asmb.make_model(policies='one_step') mps = list(pa.grounded_monomer_patterns(model, a_phos)) assert len(mps) == 2 assert mps[0].monomer.name == 'MEK1' assert mps[1].monomer.name == 'MEK1' sc = [mp.site_conditions for mp in mps] assert {'S218': ('p', WILD)} in sc assert {'S222': ('p', WILD)} in sc # Check if we get the doubly phosphorylated MonomerPattern mps = list(pa.grounded_monomer_patterns(model, a)) assert len(mps) == 1 assert mps[0].monomer.name == 'MEK1' assert mps[0].site_conditions == {'S218': ('p', WILD), 'S222': ('p', WILD)} def test_multiple_grounding_mods(): mek = Agent('MEK1', db_refs={'HGNC': '6840'}) erk = Agent('ERK2', db_refs={'HGNC': '6871'}) cbl = Agent('CBL', db_refs={'HGNC': '1541'}) ub_phos_erk = Agent( 'ERK2', mods=[ModCondition('phosphorylation', None, None), ModCondition('ubiquitination', None, None)], db_refs={'HGNC': '6871'}) st1 = Phosphorylation(mek, erk, 'T', '185') st2 = Phosphorylation(mek, erk, 'Y', '187') st3 = Ubiquitination(cbl, erk, 'K', '40') st4 = Ubiquitination(cbl, erk, 'K', '50') pysb_asmb = pa.PysbAssembler([st1, st2, st3, st4]) model = pysb_asmb.make_model(policies='one_step') mps = list(pa.grounded_monomer_patterns(model, ub_phos_erk)) assert len(mps) == 4 assert mps[0].monomer.name == 'ERK2' assert mps[1].monomer.name == 'ERK2' assert mps[2].monomer.name == 'ERK2' assert mps[3].monomer.name == 'ERK2' def test_grounded_active_pattern(): a = Agent('A', db_refs={'HGNC': '1234'}) b = Agent('B', db_refs={'HGNC': '5678'}) b_phos = Agent('B', mods=[ModCondition('phosphorylation', 'S', '100')], db_refs={'HGNC': '5678'}) b_act = Agent('B', activity=ActivityCondition('activity', True), db_refs={'HGNC': '5678'}) st1 = Phosphorylation(a, b, 'S', '100') st2 = ActiveForm(b_phos, 'activity', True) pysba = PysbAssembler([st1, st2]) model = pysba.make_model(policies='one_step') mps = list(pa.grounded_monomer_patterns(model, b_act)) def _check_mod_assembly(mod_class): subj = Agent('KRAS') obj = Agent('BRAF') st1 = mod_class(subj, obj) pa = PysbAssembler([st1]) model = pa.make_model(policies='interactions_only') assert len(model.rules) == 1 assert len(model.monomers) == 2 pa = PysbAssembler([st1]) model = pa.make_model(policies='one_step') assert len(model.rules) == 1 assert len(model.monomers) == 2 pa = PysbAssembler([st1]) model = pa.make_model(policies='two_step') assert len(model.rules) == 3 assert len(model.monomers) == 2 def test_modification_assembly(): classes = AddModification.__subclasses__() + \ RemoveModification.__subclasses__() for mod_class in classes: _check_mod_assembly(mod_class) def test_rule_annotation(): a = Agent('A', db_refs={'HGNC': '1234'}) b = Agent('B', db_refs={'HGNC': '5678'}) def check_rule_annotation(stmt, policy): pa = PysbAssembler([stmt]) model = pa.make_model(policies=policy) subj = [ann.object for ann in model.annotations if ann.predicate == 'rule_has_subject'] obj = [ann.object for ann in model.annotations if ann.predicate == 'rule_has_object'] assert len(subj) == 1 assert subj[0] == 'A' assert len(obj) == 1 assert obj[0] == 'B' classes = AddModification.__subclasses__() + \ RemoveModification.__subclasses__() for mod_class in classes: stmt = mod_class(a, b) check_rule_annotation(stmt, 'one_step') check_rule_annotation(stmt, 'two_step') # Check ATP dependent phosphorylation stmt = Phosphorylation(a, b) check_rule_annotation(stmt, 'atp_dependent') stmt = Activation(a, b) check_rule_annotation(stmt, 'one_step') #Skip Autophosphorylation and Transphosphorylation for now #Gef #Gap def test_activeform_site(): a = Agent('A', db_refs={'HGNC': '1234'}) b = Agent('B', db_refs={'HGNC': '5678'}) b_phos = Agent('B', mods=[ModCondition('phosphorylation', 'Y', '200')], db_refs={'HGNC': '5678'}) st1 = Phosphorylation(a, b, 'S', '100') st2 = ActiveForm(b_phos, 'kinase', True) pa = PysbAssembler([st1, st2]) model = pa.make_model(policies='one_step') # TODO Do the same for mutation condition # TODO Localization condition # TODO Bound condition # TODO Unphosphorylated/unmodified forms (try ubiquitinated/acetylated lysine) def test_activation_subj1(): """No subject activity is defined.""" st = Activation(Agent('a'), Agent('b')) pa = PysbAssembler([st]) pa.make_model() assert pa.model.monomers['a'].sites == [] left = pa.model.rules[0].reactant_pattern subj_left = left.complex_patterns[0].monomer_patterns[0] right = pa.model.rules[0].product_pattern subj_right = right.complex_patterns[0].monomer_patterns[0] assert subj_left.site_conditions == {} assert subj_right.site_conditions == {} def test_activation_subj2(): """Subject activity is defined explicitly.""" a_act = Agent('a', activity=ActivityCondition('activity', True)) st = Activation(a_act, Agent('b')) st2 = ActiveForm(Agent('a', mods=[ModCondition('phosphorylation')]), 'activity', True) pa = PysbAssembler([st, st2]) pa.make_model() assert pa.model.monomers['a'].sites == ['phospho'] left = pa.model.rules[0].reactant_pattern subj_left = left.complex_patterns[0].monomer_patterns[0] right = pa.model.rules[0].product_pattern subj_right = right.complex_patterns[0].monomer_patterns[0] assert subj_left.site_conditions == {u'phospho': (u'p', WILD)} assert subj_right.site_conditions == {u'phospho': (u'p', WILD)} def test_activation_subj3(): """Subject activity is defined implicitly by another statement.""" a_act = Agent('a', activity=ActivityCondition('activity', True)) st = Activation(a_act, Agent('b')) st2 = Activation(Agent('c'), Agent('a')) pa = PysbAssembler([st, st2]) pa.make_model() assert len(pa.model.rules) == 2 assert pa.model.monomers['a'].sites == ['activity'] left = pa.model.rules[0].reactant_pattern subj_left = left.complex_patterns[0].monomer_patterns[0] right = pa.model.rules[0].product_pattern subj_right = right.complex_patterns[0].monomer_patterns[0] assert subj_left.site_conditions == {u'activity': (u'active')} assert subj_right.site_conditions == {u'activity': (u'active')} def test_activation_subj4(): """Subject activity is defined both explicitly and implicitly.""" a_act = Agent('a', activity=ActivityCondition('activity', True)) st = Activation(a_act, Agent('b')) st2 = Activation(Agent('c'), Agent('a')) st3 = ActiveForm(Agent('a', mods=[ModCondition('phosphorylation')]), 'activity', True) pa = PysbAssembler([st, st2, st3]) pa.make_model() assert set(pa.model.monomers['a'].sites) == set(['activity', 'phospho']) left = pa.model.rules[0].reactant_pattern subj_left = left.complex_patterns[0].monomer_patterns[0] right = pa.model.rules[0].product_pattern subj_right = right.complex_patterns[0].monomer_patterns[0] assert subj_left.site_conditions == {u'phospho': (u'p', WILD)} assert subj_right.site_conditions == {u'phospho': (u'p', WILD)} def test_pysb_preassembler_replace_activities1(): st1 = ActiveForm(Agent('a', location='nucleus'), 'activity', True) st2 = Phosphorylation(Agent('a', activity=ActivityCondition('activity', True)), Agent('b')) ppa = PysbPreassembler([st1, st2]) ppa.replace_activities() assert len(ppa.statements) == 2 assert ppa.statements[1].enz.location == 'nucleus' def test_pysb_preassembler_replace_activities2(): a_act = Agent('a', activity=ActivityCondition('activity', True)) st = Activation(a_act, Agent('b')) st2 = Activation(Agent('c'), Agent('a')) ppa = PysbPreassembler([st, st2]) ppa.replace_activities() assert len(ppa.statements) == 2 def test_pysb_preassembler_replace_activities3(): p = Agent('PPP2CA') bc = BoundCondition(p, False) erk = Agent('ERK') mek1 = Agent('MEK', mods=[ModCondition('phosphorylation', None, None, True)]) mek2 = Agent('MEK', activity=ActivityCondition('activity', True), bound_conditions=[bc]) st2 = ActiveForm(mek1, 'activity', True) st1 = Phosphorylation(mek2, erk) ppa = PysbPreassembler([st1, st2]) ppa.replace_activities() assert len(ppa.statements) == 2 assert ppa.statements[0].enz.mods assert ppa.statements[0].enz.bound_conditions def test_phos_michaelis_menten(): stmt = Phosphorylation(Agent('MEK'), Agent('ERK')) pa = PysbAssembler([stmt]) pa.make_model(policies='michaelis_menten') assert len(pa.model.parameters) == 4 def test_deubiq_michaelis_menten(): stmt = Deubiquitination(Agent('MEK'), Agent('ERK')) pa = PysbAssembler([stmt]) pa.make_model(policies='michaelis_menten') assert len(pa.model.parameters) == 4 def test_act_michaelis_menten(): stmt = Activation(Agent('MEK'), Agent('ERK')) stmt2 = Inhibition(Agent('DUSP'), Agent('ERK')) pa = PysbAssembler([stmt, stmt2]) pa.make_model(policies='michaelis_menten') assert len(pa.model.parameters) == 7 def test_increaseamount_hill(): stmt = IncreaseAmount(Agent('TP53'), Agent('MDM2')) pa = PysbAssembler([stmt]) pa.make_model(policies='hill') pa.save_model() assert len(pa.model.parameters) == 5 def test_convert_nosubj(): stmt = Conversion(None, [Agent('PIP2')], [Agent('PIP3')]) pa = PysbAssembler([stmt]) pa.make_model() assert len(pa.model.parameters) == 3 assert len(pa.model.rules) == 1 assert len(pa.model.monomers) == 2 # We need to make sure that these are Kappa-compatible, and the easiest # way to do that is by making a ModelChecker and getting the IM without # error from indra.explanation.model_checker import PysbModelChecker pmc = PysbModelChecker(pa.model) pmc.get_im() def test_convert_subj(): stmt = Conversion(Agent('PIK3CA'), [Agent('PIP2')], [Agent('PIP3')]) pa = PysbAssembler([stmt]) pa.make_model() assert len(pa.model.parameters) == 4 assert len(pa.model.rules) == 1 assert len(pa.model.monomers) == 3 # We need to make sure that these are Kappa-compatible, and the easiest # way to do that is by making a ModelChecker and getting the IM without # error from indra.explanation.model_checker import PysbModelChecker pmc = PysbModelChecker(pa.model) pmc.get_im() def test_activity_agent_rule_name(): stmt = Phosphorylation(Agent('BRAF', activity=ActivityCondition('kinase', True)), Agent('MAP2K1', activity=ActivityCondition('activity', False))) pa = PysbAssembler([stmt]) pa.make_model() assert pa.model.rules[0].name == \ 'BRAF_kin_phosphorylation_MAP2K1_act_inact_phospho', \ pa.model.rules[0].name def test_policy_object(): stmt = Phosphorylation(Agent('a'), Agent('b')) pa = PysbAssembler([stmt]) pol = Policy('two_step') model = pa.make_model(policies={stmt.uuid: pol}) assert len(model.rules) == 3 assert str(pol) == 'Policy(two_step)' def test_policy_parameters(): pol = Policy('two_step', parameters={'kf': Param('a', 1.0), 'kr': Param('b', 2.0), 'kc': Param('c', 3.0)}) # Make sure we can correctly stringify here assert str(pol) stmt = Deubiquitination(Agent('a'), Agent('b')) pa = PysbAssembler([stmt]) model = pa.make_model(policies={stmt.uuid: pol}) assert model.parameters['c'].value == 3.0 @raises(pa.UnknownPolicyError) def test_policy_object_invalid(): stmt = Phosphorylation(Agent('a'), Agent('b')) pa = PysbAssembler([stmt]) model = pa.make_model(policies={'xyz': Policy('two_step')}) assert len(model.rules) == 3 def test_mod_parameter(): stmt = Phosphorylation(Agent('a'), Agent('b')) pol = Policy('one_step', parameters={'kf': Param('my_kf_param', 0.99)}) pa = PysbAssembler([stmt]) model = pa.make_model(policies={stmt.uuid: pol}) assert model.parameters['my_kf_param'].value == 0.99 def test_policy_multiple(): pol1 = Policy('michaelis_menten', parameters={'Km': Param('my_Km', 1.0), 'kc': Param('my_kc', 1e-1)}) pol2 = Policy('one_step', parameters={'kf': Param('d', 10.0)}) stmt1 = Inhibition(Agent('a'), Agent('b')) stmt2 = Translocation(Agent('a'), 'cytoplasm', 'nucleus') pa = PysbAssembler([stmt1, stmt2]) model = pa.make_model(policies={stmt1.uuid: pol1, stmt2.uuid: pol2}) assert model.parameters['d'].value == 10.0 print(model.expressions['a_deactivates_b_activity_rate']) print(model.rules) def test_kappa_im_export(): stmts = [Activation(Agent('a'), Agent('b')), Activation(Agent('b', activity=ActivityCondition('activity', True)), Agent('c'))] pa = PysbAssembler(stmts) pa.make_model() graph = pa.export_model('kappa_im', '/dev/null') assert len(graph.nodes) == 2 assert len(graph.edges) == 1 def test_kappa_cm_export(): stmts = [Complex([Agent('a'), Agent('b')])] pa = PysbAssembler(stmts) pa.make_model() graph = pa.export_model('kappa_cm', '/dev/null') assert len(graph.nodes()) == 2 assert len(graph.edges()) == 1 def test_contact_map_cycles_1(): stmts = [Complex([Agent('a'), Agent('b')]), Complex([Agent('a'), Agent('c')]), Complex([Agent('b'), Agent('c')])] pa = PysbAssembler(stmts) pa.make_model() graph = export_cm_network(pa.model) assert len(graph.nodes()) == 9, len(graph.nodes) assert len(graph.edges()) == 9, len(graph.edges) cycles = get_cm_cycles(graph) assert len(cycles) == 1, cycles assert cycles[0] == ['a(b)', 'b(a)', 'b(c)', 'c(b)', 'c(a)', 'a(c)'] def test_contact_map_cycles_2(): erk1 = Agent('MAPK1', db_refs={'HGNC': '6871'}) erk2 = Agent('MAPK3', db_refs={'HGNC': '6877'}) # In this case there will be no cycles because the binding site on x # for ERK1 and ERK2 is generated to be competitive. stmts = [Complex([Agent('x'), erk1]), Complex([Agent('x'), erk2]), Complex([erk1, erk2])] pa = PysbAssembler(stmts) pa.make_model() graph = export_cm_network(pa.model) assert len(graph.nodes()) == 8, len(graph.nodes) assert len(graph.edges()) == 8, len(graph.edges) cycles = get_cm_cycles(graph) assert not cycles, cycles ```
{ "source": "johnbachman/covid-19", "score": 2 }
#### File: covid_19/disease_maps/minerva_client.py ```python import json import requests default_map_name = 'covid19map' base_url = 'https://%s.elixir-luxembourg.org/minerva/api/' def get_config(map_name=default_map_name): url = (base_url % map_name) + 'configuration/' res = requests.get(url) res.raise_for_status() return res.json() def get_project_id_from_config(config): options = config.get('options', []) for option in options: if option.get('type') == 'DEFAULT_MAP': return option.get('value') return None def get_models(project_id, map_name=default_map_name): url = (base_url % map_name) + ('projects/%s/models/' % project_id) res = requests.get(url) res.raise_for_status() return res.json() def get_model_elements(model_id, project_id, map_name=default_map_name): url = (base_url % map_name) + \ ('projects/%s/models/%s/' % (project_id, model_id)) + \ 'bioEntities/elements/?columns=id,name,type,references' res = requests.get(url) res.raise_for_status() return res.json() def get_all_model_elements(models, project_id, map_name=default_map_name): all_elements = [] for model in models: model_id = model['idObject'] model_elements = get_model_elements(model_id, project_id, map_name) all_elements += model_elements return all_elements def get_element_references(element): refs = element.get('references', []) return [(ref.get('type'), ref.get('resource')) for ref in refs] def get_all_valid_element_refs(map_name=default_map_name): config = get_config(map_name) project_id = get_project_id_from_config(config) models = get_models(project_id, map_name) all_model_elements = get_all_model_elements(models, project_id, map_name) element_refs = [get_element_references(element) for element in all_model_elements] valid_element_refs = [ref for ref in element_refs if ref] return valid_element_refs ``` #### File: covid_19/eidos/eidos_indra_assembly.py ```python import os import pickle import indra.tools.assemble_corpus as ac from indra.tools.live_curation import Corpus from collections import Counter from indra.preassembler.custom_preassembly import agent_name_stmt_type_matches def norm_name(name): return '_'.join(sorted(list(set(name.lower().split())))) def make_fake_wm(stmts): for stmt in stmts: for agent in stmt.agent_list(): agent.db_refs['WM'] = [(norm_name(agent.name), 1.0)] def filter_name_frequency(stmts, k=2): norm_names = [] for stmt in stmts: for agent in stmt.agent_list(): norm_names.append(norm_name(agent.name)) cnt = Counter(norm_names) names = {n for n, c in cnt.most_common() if c >= k} new_stmts = [] for stmt in stmts: found = True for agent in stmt.agent_list(): if norm_name(agent.name) not in names: found = False break if found: new_stmts.append(stmt) return new_stmts if __name__ == '__main__': stmts_pkl = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir, os.pardir, 'stmts' 'eidos_statements_influence.pkl') with open(stmts_pkl, 'rb') as fh: stmts = pickle.load(fh) make_fake_wm(stmts) stmts = filter_name_frequency(stmts, k=2) assembled_stmts = \ ac.run_preassembly(stmts, matches_fun=agent_name_stmt_type_matches) meta_data = ('This corpus was assembled from ~30k ' 'papers related to Covid-19.') corpus = Corpus(assembled_stmts, raw_statements=stmts, meta_data=meta_data) corpus_name = 'covid-20200319-ontfree' corpus.s3_put(corpus_name) ``` #### File: covid-19/covid_19/preprocess.py ```python import os import csv import sys import json import time import re import urllib import logging import tarfile from os.path import abspath, dirname, join, isdir import pandas as pd from indra.util import zip_string logger = logging.getLogger(__name__) baseurl = 'https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/' def get_latest_available_date(): """Get the date of the latest CORD19 dataset upload.""" req = urllib.request.Request((baseurl + 'historical_releases.html')) with urllib.request.urlopen(req) as response: page_content = response.read() latest_date = re.search( r'<i>Latest release: (.*?)</i>', str(page_content)).group(1) logger.info('Latest data release is %s' % latest_date) return latest_date latest_date = get_latest_available_date() # For processing latest data # latest_date = '2020-06-15' # For processing a different date manually data_dir = join(dirname(abspath(__file__)), '..', 'data') basepath = join(data_dir, latest_date) metadata_file = join(basepath, 'metadata.csv') doc_gz_path = os.path.join(basepath, 'document_parses.tar.gz') doc_df = None def download_metadata(): """Download metadata file only.""" # Create missing directories if not os.path.exists(data_dir): os.mkdir(data_dir) if not os.path.exists(basepath): os.mkdir(basepath) if not os.path.exists(metadata_file): logger.info('Downloading metadata') md_url = baseurl + '%s/metadata.csv' % latest_date urllib.request.urlretrieve(md_url, metadata_file) logger.info('Latest metadata is available in %s' % metadata_file) def download_latest_data(): """Download metadata and document parses.""" download_metadata() if not os.path.exists(doc_gz_path): logger.info('Downloading document parses') doc_url = baseurl + '%s/document_parses.tar.gz' % latest_date urllib.request.urlretrieve(doc_url, doc_gz_path) logger.info('Latest data is available in %s' % basepath) def get_all_texts(): """Return a dictionary mapping json filenames with full text contents.""" texts_by_file = {} logger.info('Extracting full texts from all document json files...') tar = tarfile.open(doc_gz_path) members = tar.getmembers() for m in members: f = tar.extractfile(m) doc_json = json.loads(f.read().decode('utf-8')) text = get_text_from_json(doc_json) texts_by_file[m.name] = text tar.close() return texts_by_file def get_zip_texts_for_entry(md_entry, texts_by_file, zip=True): texts = [] if md_entry['pdf_json_files']: filenames = [s.strip() for s in md_entry['pdf_json_files'].split(';')] pdf_texts = [] for filename in filenames: if texts_by_file.get(filename): pdf_texts.append(texts_by_file[filename]) else: logger.warning('Text for %s is missing' % filename) combined_text = '\n'.join(pdf_texts) if zip: combined_text = zip_string(combined_text) texts.append(('cord19_pdf', 'fulltext', combined_text)) if md_entry['pmc_json_files']: filename = md_entry['pmc_json_files'] if texts_by_file.get(filename): text = texts_by_file[filename] else: logger.warning('Text for %s is missing' % filename) if zip: text = zip_string(text) texts.append(('cord19_pmc_xml', 'fulltext', text)) if md_entry['abstract']: text = md_entry['abstract'] if zip: text = zip_string(text) texts.append(('cord19_abstract', 'abstract', text)) return texts def get_metadata_df(): file_data = [] hashes = [] """ for content_type, content_path in paths.items(): for filename in os.listdir(content_path): if filename.endswith('.json'): file_hash = filename.split('.')[0] hashes.append(file_hash) file_data.append((content_path, content_type)) file_df = pd.DataFrame(file_data, index=hashes, dtype='str', columns=['content_path', 'content_type']) """ dtype_dict = { 'cord_uid': 'object', 'sha': 'object', 'source_x': 'object', 'title': 'object', 'doi': 'object', 'pmcid': 'object', 'pubmed_id': 'object', 'license': 'object', 'abstract': 'object', 'publish_time': 'object', 'authors': 'object', 'journal': 'object', 'mag_id': 'object', 'who_covidence_id': 'object', 'arxiv_id': 'object', 'pdf_json_files': 'object', 'pmc_json_files': 'object', 'url': 'object', 's2_id': 'object', } md = pd.read_csv(metadata_file, dtype=dtype_dict, parse_dates=['publish_time']) md = md.where(md.notnull(), None) #file_data = metadata.join(file_df, 'sha') #return file_data return md def get_ids(id_type): """Get unique article identifiers from the dataset. Parameters ---------- id_type : str Dataframe column name, e.g. 'pubmed_id', 'pmcid', 'doi'. Returns ------- list of str List of unique identifiers in the dataset, e.g. all unique PMCIDs. """ global doc_df if doc_df is None: doc_df = get_metadata_df() unique_ids = list(doc_df[~pd.isna(doc_df[id_type])][id_type].unique()) return unique_ids def get_text_from_json(doc_json): text = '' text += doc_json['metadata']['title'] text += '.\n' if 'abstract' in doc_json: for p in doc_json['abstract']: text += p['text'] text += '\n' for p in doc_json['body_text']: text += p['text'] text += '\n' for cap_dict in doc_json['ref_entries'].values(): text += cap_dict['text'] text += '\n' return text def dump_text_files(output_dir, doc_df): # TODO this needs to be updated with new df structure and code updates sha_ix = 1 path_ix = 15 title_ix = 3 abs_ix = 8 # Start by dumping full texts dumped_rows = set() text_df = doc_df[~pd.isna(doc_df.content_path)] ft_counter = 0 for row in text_df.itertuples(): ix = row[0] json_file = f'{join(row[path_ix], row[sha_ix])}.json' text = get_text_from_json(json_file) output_file = join(output_dir, f'CORD19_DOC_{ix}.txt') #output_file = f'{join(output_dir, row[sha_ix])}.txt' with open(output_file, 'wt') as f: f.write(text) ft_counter += 1 dumped_rows.add(ix) # Then look at the abstracts abstract_df = doc_df[pd.isna(doc_df.content_path) & ~pd.isna(doc_df.abstract)] for row in abstract_df.itertuples(): ix = row[0] # If we've already dumped full text, skip it if ix in dumped_rows: continue text = row[title_ix] text += '.\n' text += row[abs_ix] output_file = join(output_dir, f'CORD19_DOC_{ix}.txt') with open(output_file, 'wt') as f: f.write(text) # Finally, dump the metadata to a CSV file doc_df.to_csv(join(output_dir, 'metadata.csv')) def get_metadata_dict(): df = get_metadata_df() return df.to_dict(orient='records') def fix_doi(doi): if doi is None: return None prefixes = ['http://dx.doi.org/', 'doi.org/'] for prefix in prefixes: if doi.startswith(prefix): doi = doi[len(prefix):] return doi def fix_pmid(pmid): if pmid is None: return None if not pmid.isdigit(): pmid = None return pmid def get_text_refs_from_metadata(entry): mappings = { 'cord_uid': 'CORD19_UID', 'sha': 'CORD19_SHA', 'doi': 'DOI', 'pmcid': 'PMCID', 'pubmed_id': 'PMID', 'who_covidence_id': 'WHO_COVIDENCE', 'mag_id': 'MICROSOFT' } text_refs = {} for key, ref_key in mappings.items(): val = entry.get(key) if key == 'doi': val = fix_doi(val) elif key == 'pubmed_id': val = fix_pmid(val) if val and not pd.isnull(val): # Temporary patch to remove float suffixes if val.endswith('.0'): val = val[:-2] text_refs[ref_key] = val return text_refs ```
{ "source": "johnbachman/deft", "score": 3 }
#### File: adeft/modeling/label.py ```python from adeft.recognize import AdeftRecognizer class AdeftLabeler(object): """Class for labeling corpora Parameters ---------- grounding_dict : dict of dict of str Dictionary mapping shortforms to grounding_map dictionaries mapping longforms to groundings Attributes ---------- recognizers : list of py:class`adeft.recognize.AdeftRecognizer` List of recognizers for each shortform to be considered. Each recognizer identifies longforms for a shortform by finding defining matches to a defining pattern (DP) """ def __init__(self, grounding_dict): self.grounding_dict = grounding_dict self.recognizers = [AdeftRecognizer(shortform, grounding_map) for shortform, grounding_map in grounding_dict.items()] def build_from_texts(self, texts): """Build labeled corpus from a list of texts Labels texts based on defining patterns (DPs) Parameters ---------- texts : list of str List of texts to build corpus from Returns ------- corpus : list of tuple Contains tuples for each text in the input list which contains a defining pattern. Multiple tuples correspond to texts with multiple defining patterns for longforms with different groundings. The first element of each tuple contains the training text with all defining patterns replaced with only the shortform. The second element contains the groundings for longforms matched with a defining pattern. """ corpus = [] for text in texts: data_points = self._process_text(text) if data_points: corpus.extend(data_points) return corpus def _process_text(self, text): """Returns training data and label corresponding to text if found The training text corresponding to an input text is obtained by stripping out all occurences of (<shortform>). It is possible that longforms are matched with the standard pattern. In this case, multiple datapoints are returned each with different labels but the same training text. Parameters ---------- text : str Fulltext to build datapoint from, if possible. Returns ------- datapoints : list of tuple or None Returns None if no label can be found by matching the standard pattern. Otherwise, returns a list of pairs containing the training text and a label for each label appearing in the input text matching the standard pattern. """ groundings = set() for recognizer in self.recognizers: groundings.update(recognizer.recognize(text)) if not groundings: return None for recognizer in self.recognizers: text = recognizer.strip_defining_patterns(text) datapoints = [(text, grounding) for grounding in groundings] return datapoints ``` #### File: adeft/nlp/nlp.py ```python import os import re import json from collections import defaultdict from nltk.stem.snowball import EnglishStemmer class WatchfulStemmer(object): """Wraps the nltk.snow EnglishStemmer. Keeps track of the number of times words have been mapped to particular stems by the wrapped stemmer. Extraction of longforms works with stemmed tokens but it is necessary to recover actual words from stems. Attributes ---------- __snowball : :py:class:`nltk.stem.snowball.EnglishStemmer` counts : defaultdict of defaultdict of int Contains the count of the number of times a particular word has been mapped to from a particular stem by the wrapped stemmer. Of the form counts[stem:str][word:str] = count:int """ def __init__(self): self.__snowball = EnglishStemmer() self.counts = defaultdict(lambda: defaultdict(int)) def stem(self, word): """Returns stemmed form of word. Adds one to count associated to the computed stem, word pair. Parameters ---------- word : str text to stem Returns ------- stemmed : str stemmed form of input word """ stemmed = self.__snowball.stem(word) self.counts[stemmed][word] += 1 return stemmed def most_frequent(self, stemmed): """Return the most frequent word mapped to a given stem Parameters ---------- stemmed : str Stem that has previously been output by the wrapped snowball stemmer. Returns ------- output : str or None Most frequent word that has been mapped to the input stem or None if the wrapped stemmer has never mapped the a word to the input stem. Break ties with lexicographic order """ words = list(self.counts[stemmed].items()) if words: words.sort(key=lambda x: x[1], reverse=True) candidates = [word[0] for word in words if word[1] == words[0][1]] output = min(candidates) else: raise ValueError('stem %s has not been observed' % stemmed) return output def tokenize(text): """Simple word tokenizer based on a regular expression pattern Everything that is not a block of alphanumeric characters is considered as a separate token. Parameters ---------- text : str Text to tokenize Returns ------- tokens : list of tuple Tokens in the input text along with their text coordinates. Each tuple has a token as the first element and the tokens coordinates as its second element. """ pattern = re.compile(r'\w+|[^\s\w]') matches = re.finditer(pattern, text) return [(m.group(), (m.start(), m.end()-1)) for m in matches] def untokenize(tokens): """Return inverse of the Adeft word tokenizer The inverse is inexact. For simplicity, all white space characters are replaced with a space. An exact inverse is not necessary for adeft's purposes. Parameters ---------- tokens : list of tuple List of tuples of the form (word, (start, end)) giving tokens and coordinates as output by Adeft's word tokenizer Returns ------- output : str The original string that produced the input tokens, with the caveat that every white space character will be replaced with a space. """ # Edge cases: input text is empty string or only has one token if len(tokens) == 0: return '' elif len(tokens) == 1: return tokens[0][0] # This looks messy but is simple conceptually. # At each step add the current token and a number of spaces determined # by the coordinates of the previous token and the current token. output = [tokens[0][0]] + [' ']*(tokens[1][1][0] - tokens[0][1][1] - 1) for index in range(1, len(tokens)-1): output.append(tokens[index][0]) output.extend([' ']*(tokens[index+1][1][0] - tokens[index][1][1] - 1)) output.append(tokens[-1][0]) return ''.join(output) stopwords_min = set(['a', 'an', 'the', 'and', 'or', 'of', 'with', 'at', 'from', 'into', 'to', 'for', 'on', 'by', 'be', 'been', 'am', 'is', 'are', 'was', 'were', 'in', 'that', 'as']) with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'stopwords.json'), 'r') as f: english_stopwords = json.load(f) ``` #### File: deft/adeft/util.py ```python import re from unicodedata import category from adeft.nlp import tokenize def get_candidate_fragments(text, shortform, window=100): """Return candidate longform fragments from text Identifies candidate longforms by searching for defining patterns (DP) in the text. Candidate longforms consist of non-punctuation tokens within a specified range of characters before the DP up until either the start of the text, the end of a previous DP or optionally a token from a set of excluded tokens. Parameters ---------- text : str Text to search for defining patterns (DP) shortform : str Shortform to disambiguate window : Optional[int] Specifies range of characters before a defining pattern (DP) to consider when finding longforms. If set to 30, candidate longforms would be taken from the string "ters before a defining pattern". Default: 100 """ # Find defining patterns by matching a regular expression matches = re.finditer(r'\(\s*%s\s*\)' % shortform, text) # Keep track of the index of the end of the previous # Longform candidates cannot contain a previous DP and any text # before them end_previous = -1 result = [] for match in matches: # coordinates of current match span = match.span() # beginning of window containing longform candidate left = max(end_previous+1, span[0]-window) # fragment of text in this window fragment = text[left:span[0]] result.append(fragment) end_previous = span[1] return result def get_candidate(fragment, exclude=None): """Return tokens in candidate fragment up until last excluded word Parameters ---------- fragment : str The fragment to return tokens from. exclude : Optional[set of str] Terms that are to be excluded from candidate longforms. Default: None """ if exclude is None: exclude = set() tokens = [token.lower() for token, _ in tokenize(fragment) if len(token) > 1 or not category(token).startswith('P')] index = len(tokens) # Take only tokens from end up to but not including the last # excluded in the fragment while index > 0: index -= 1 if tokens[index] in exclude: tokens = tokens[index+1:] break return tokens ```
{ "source": "johnbachman/famplex_site", "score": 3 }
#### File: famplex_site/famplex_web/load_data.py ```python import csv from os.path import join, dirname def load_grounding_map(filename): gm_rows = load_csv(filename) gm_tuples = [] g_map = {} for row in gm_rows: gm_tuples.append(tuple(row)) key = row[0] db_refs = {'TEXT': key} keys = [entry for entry in row[1::2] if entry != ''] values = [entry for entry in row[2::2] if entry != ''] if len(keys) != len(values): print('ERROR: Mismatched keys and values in row %s' % str(row)) continue else: db_refs.update(dict(zip(keys, values))) if len(db_refs.keys()) > 1: g_map[key] = db_refs else: g_map[key] = None return g_map, tuple(gm_tuples) def load_equivalences(filename): equivalences = {} rows = load_csv(filename) for row in rows: fplx_id = row[2] equiv = (row[0], row[1]) if fplx_id not in equivalences: equivalences[fplx_id] = [equiv] else: equivalences[fplx_id].append(equiv) return equivalences def load_relationships(filename): relationships = [] rows = load_csv(filename) for row in rows: relationships.append(((row[0], row[1]), row[2], (row[3], row[4]))) return relationships def load_entities(filename): entities = [] rows = load_csv(filename) for row in rows: entities.append(row[0]) return entities def load_csv(filename): filename = join(dirname(__file__), filename) with open(filename) as fh: csvreader = csv.reader(fh, delimiter=',', quotechar='"') rows = [row for row in csvreader] return rows def load_synonyms(gm): synonyms = {} for syn, db_refs in gm.items(): for db, db_id in db_refs.items(): if db == 'FPLX': if db_id in synonyms: synonyms[db_id].append(syn) else: synonyms[db_id] = [syn] return synonyms relationships = load_relationships('relations.csv') equivalences = load_equivalences('equivalences.csv') gm, gm_tuples = load_grounding_map('grounding_map.csv') entities = load_entities('entities.csv') synonyms = load_synonyms(gm) ```
{ "source": "johnbachman/genewalk", "score": 2 }
#### File: genewalk/genewalk/cli.py ```python import gc import os import sys import copy import pickle import random import logging import argparse import numpy as np from genewalk import __version__ from genewalk.nx_mg_assembler import load_network from genewalk.gene_lists import read_gene_list from genewalk.deepwalk import run_walks from genewalk.null_distributions import get_rand_graph, \ get_null_distributions from genewalk.perform_statistics import GeneWalk from genewalk import logger as root_logger, default_logger_format, \ default_date_format from genewalk.resources import ResourceManager logger = logging.getLogger('genewalk.cli') default_base_folder = os.path.join(os.path.expanduser('~/'), 'genewalk') def create_project_folder(base_folder, project): project_folder = os.path.join(base_folder, project) logger.info('Creating project folder at %s' % project_folder) if not os.path.exists(project_folder): os.makedirs(project_folder) return project_folder def save_pickle(obj, project_folder, prefix): fname = os.path.join(project_folder, '%s.pkl' % prefix) logger.info('Saving into %s...' % fname) with open(fname, 'wb') as fh: pickle.dump(obj, fh) def load_pickle(project_folder, prefix): fname = os.path.join(project_folder, '%s.pkl' % prefix) logger.info('Loading %s...' % fname) with open(fname, 'rb') as fh: return pickle.load(fh) def main(): parser = argparse.ArgumentParser( description='Run GeneWalk on a list of genes provided in a text ' 'file.') parser.add_argument('--version', action='version', version='GeneWalk %s' % __version__, help='Print the version of GeneWalk and exit.') parser.add_argument('--project', help='A name for the project which ' 'determines the folder within the ' 'base folder in which the ' 'intermediate and final results ' 'are written. Must contain only ' 'characters that are valid in ' 'folder names.', required=True) parser.add_argument('--genes', help='Path to a text file with a list of ' 'genes of interest, for example' 'differentially expressed genes. ' 'The type of gene identifiers used in ' 'the text file are provided in the ' 'id_type argument.', required=True) parser.add_argument('--id_type', help='The type of gene IDs provided in the text file ' 'in the genes argument. Possible values are: ' 'hgnc_symbol, hgnc_id, ensembl_id, and mgi_id.', choices=['hgnc_symbol', 'hgnc_id', 'ensembl_id', 'mgi_id'], required=True) parser.add_argument('--stage', default='all', help='The stage of processing to run. Default: ' '%(default)s', choices=['all', 'node_vectors', 'null_distribution', 'statistics']) parser.add_argument('--base_folder', default=default_base_folder, help='The base folder used to store GeneWalk ' 'temporary and result files for a given project.' ' Default: %(default)s') parser.add_argument('--network_source', default='pc', help='The source of the network to be used.' 'Possible values are: pc, indra, edge_list, and ' 'sif. In case of indra, edge_list, and sif, ' 'the network_file argument must be specified.' ' Default: %(default)s', choices=['pc', 'indra', 'edge_list', 'sif']) parser.add_argument('--network_file', default=None, help='If network_source is indra, this argument ' 'points to a Python pickle file in which a list ' 'of INDRA Statements constituting the network ' 'is contained. In case network_source is ' 'edge_list or sif, ' 'the network_file argument points to a text file ' 'representing the network.') parser.add_argument('--nproc', default=1, type=int, help='The number of processors to use in a ' 'multiprocessing environment. Default: ' '%(default)s') parser.add_argument('--nreps_graph', default=3, type=int, help='The number of repeats to run when calculating ' 'node vectors on the GeneWalk graph. ' 'Default: %(default)s') parser.add_argument('--nreps_null', default=3, type=int, help='The number of repeats to run when calculating ' 'node vectors on the random network graphs ' 'for constructing the null distribution. ' 'Default: %(default)s') parser.add_argument('--alpha_fdr', default=1, type=float, help='The false discovery rate to use when ' 'outputting the final statistics table. ' 'If 1 (default), all similarities are output, ' 'otherwise only the ones whose false discovery ' 'rate are below this parameter are included. ' 'Default: %(default)s') parser.add_argument('--save_dw', default=False, type=bool, help='If True, the full DeepWalk object for each ' 'repeat is saved in the project folder. This can ' 'be useful for debugging but the files are ' 'typically very large. Default: %(default)s') parser.add_argument('--random_seed', default=None, type=int, help='If provided, the random number generator is ' 'seeded with the given value. This should only ' 'be used if the goal is to deterministically ' 'reproduce a prior result obtained with the same ' 'random seed.') args = parser.parse_args() # Now we run the relevant stage of processing project_folder = create_project_folder(args.base_folder, args.project) # Add a logger specific to the project and processing stage log_file = os.path.join(project_folder, 'genewalk_%s.log' % args.stage) formatter = logging.Formatter(default_logger_format, datefmt=default_date_format) project_log_handler = logging.FileHandler(log_file) project_log_handler.setFormatter(formatter) root_logger.addHandler(project_log_handler) if args.random_seed: logger.info('Running with random seed %d' % args.random_seed) random.seed(a=int(args.random_seed)) # Make sure we have all the resource files rm = ResourceManager(base_folder=args.base_folder) rm.download_all() if args.stage in ('all', 'node_vectors'): genes = read_gene_list(args.genes, args.id_type) save_pickle(genes, project_folder, 'genes') MG = load_network(args.network_source, args.network_file, genes, resource_manager=rm) save_pickle(MG.graph, project_folder, 'multi_graph') for i in range(args.nreps_graph): logger.info('%s/%s' % (i + 1, args.nreps_graph)) DW = run_walks(MG.graph, workers=args.nproc) # Pickle the node vectors (embeddings) and DW object if args.save_dw: save_pickle(DW, project_folder, 'deepwalk_%d' % (i + 1)) nv = copy.deepcopy(DW.model.wv) save_pickle(nv, project_folder, 'deepwalk_node_vectors_%d' % (i + 1)) # Delete the DeepWalk object to clear memory del DW, nv gc.collect() if args.stage in ('all', 'null_distribution'): MG = load_pickle(project_folder, 'multi_graph') srd = [] for i in range(args.nreps_null): logger.info('%s/%s' % (i + 1, args.nreps_null)) RG = get_rand_graph(MG) DW = run_walks(RG, workers=args.nproc) # Pickle the node vectors (embeddings) and DW object if args.save_dw: save_pickle(DW, project_folder, 'deepwalk_rand_%d' % (i + 1)) nv = copy.deepcopy(DW.model.wv) save_pickle(nv, project_folder, 'deepwalk_node_vectors_rand_%d' % (i + 1)) # Delete the DeepWalk object to clear memory del DW gc.collect() # Calculate the null distributions srd += get_null_distributions(RG, nv) del nv gc.collect() srd = np.asarray(sorted(srd)) save_pickle(srd, project_folder, 'genewalk_rand_simdists') if args.stage in ('all', 'statistics'): MG = load_pickle(project_folder, 'multi_graph') genes = load_pickle(project_folder, 'genes') nvs = [load_pickle(project_folder, 'deepwalk_node_vectors_%d' % (i + 1)) for i in range(args.nreps_graph)] null_dist = load_pickle(project_folder, 'genewalk_rand_simdists') GW = GeneWalk(MG, genes, nvs, null_dist) df = GW.generate_output(alpha_fdr=args.alpha_fdr, base_id_type=args.id_type) fname = os.path.join(project_folder, 'genewalk_results.csv') logger.info('Saving final results into %s' % fname) df.to_csv(fname, index=False, float_format='%.3e') if __name__ == '__main__': main() ``` #### File: genewalk/genewalk/resources.py ```python import os import gzip import shutil import logging import urllib.request logger = logging.getLogger('genewalk.resources') class ResourceManager(object): def __init__(self, base_folder=None): self.base_folder = base_folder if base_folder else \ os.path.join(os.path.expanduser('~'), 'genewalk') self.resource_folder = self._get_resource_folder() logger.info('Using %s as resource folder.' % self.resource_folder) def get_go_obo(self): fname = os.path.join(self.resource_folder, 'go.obo') if not os.path.exists(fname): download_go(fname) return fname def get_goa_gaf(self): fname = os.path.join(self.resource_folder, 'goa_human.gaf') if not os.path.exists(fname): url_goa = ('http://geneontology.org/gene-associations/' 'goa_human.gaf.gz') download_gz(fname, url_goa) return fname def get_pc(self): fname = os.path.join(self.resource_folder, 'PathwayCommons11.All.hgnc.sif') if not os.path.exists(fname): url_pc = ('http://www.pathwaycommons.org/archives/PC2/v11/' 'PathwayCommons11.All.hgnc.sif.gz') download_gz(fname, url_pc) return fname def _get_resource_folder(self): resource_dir = os.path.join(self.base_folder, 'resources') if not os.path.isdir(resource_dir): try: os.makedirs(resource_dir) except Exception: logger.warning(resource_dir + ' already exists') return resource_dir def download_all(self): self.get_go_obo() self.get_goa_gaf() self.get_pc() def download_go(fname): url = 'http://snapshot.geneontology.org/ontology/go.obo' logger.info('Downloading %s into %s' % (url, fname)) urllib.request.urlretrieve(url, fname) def download_gz(fname, url): logger.info('Downloading %s and extracting into %s' % (url, fname)) gz_file = fname + '.gz' urllib.request.urlretrieve(url, gz_file) with gzip.open(gz_file, 'rb') as fin: with open(fname, 'wb') as fout: shutil.copyfileobj(fin, fout) if __name__ == '__main__': # Download all the resources if this script is run directly ResourceManager().download_all() ```
{ "source": "johnbachman/indra_network_search", "score": 3 }
#### File: indra_network_search/tests/test_api.py ```python import logging import unittest from indra_network_search.api import app logger = logging.getLogger('api test') class IndraNetworkServiceTest(unittest.TestCase): def setUp(self): app.testing = True self.app = app.test_client() def tearDown(self): pass def query_test(self): """Test a query to empty network""" query = { 'source': 'BRCA1', 'target': 'BRCA2', 'stmt_filter': [], 'edge_hash_blacklist': [], 'node_filter': ['hgnc', 'fplx'], 'node_blacklist': [], 'path_length': False, 'sign': 'no_sign', 'weighted': False, 'bsco': 0.0, 'curated_db_only': False, 'fplx_expand': False, 'k_shortest': 1, 'two_way': False } resp = self.app.post('query/submit', json=query) resp_json = resp.get_json()['result'] logger.info('Response: %s' % resp_json) assert resp.status_code == 200 assert resp_json.keys() == {'paths_by_node_count', 'common_targets', 'common_parents', 'timeout'} assert isinstance(resp_json['paths_by_node_count'], dict) assert isinstance(resp_json['common_targets'], list) assert isinstance(resp_json['common_parents'], dict) assert isinstance(resp_json['timeout'], bool) def test_query_endpoint(self): """Test if endpoint responds NOTE: only tests that the query was received by the API and that it was properly formatted. """ resp = self.app.post('query/submit', json={'test': 'api'}) logger.info('api response: %s' % repr(resp)) assert resp.status_code == 200 assert resp.get_json() assert resp.get_json().get('result', None) assert resp.get_json().get('result') == 'api test passed' ``` #### File: indra_network_search/tests/test_indra_network.py ```python import logging import unittest import numpy as np import pandas as pd from collections import defaultdict from depmap_analysis.network_functions.net_functions import \ sif_dump_df_to_digraph from indra_network_search.net import IndraNetwork logger = logging.getLogger(__name__) # Get dataframe df = pd.DataFrame() # Add custom row to df that can be checked later test_edge = ('GENE_A', 'GENE_B') test_medge = (*test_edge, 0) test_node = test_edge[0] test_hash: int = 1234567890 belief: float = 0.987654321 test_type = 'Activation' test_row = { 'agA_ns': 'TEST', 'agA_id': '1234', 'agA_name': test_edge[0], 'agB_ns': 'TEST', 'agB_id': '2345', 'agB_name': test_edge[1], 'stmt_type': test_type, 'evidence_count': 1, 'stmt_hash': test_hash } test_source: str = 'pc11' test_evidence = {test_hash: {test_source: 1}} test_belief = {test_hash: belief} df = df.append(test_row, ignore_index=True) dg = sif_dump_df_to_digraph( df, strat_ev_dict=test_evidence, belief_dict=test_belief, include_entity_hierarchies=False ) class TestNetwork(unittest.TestCase): def setUp(self): self.df = df self.indra_network = IndraNetwork(indra_dir_graph=dg) self.indra_network.verbose = 2 def test_network_search(self): query = { 'source': test_edge[0], 'target': test_edge[1], 'stmt_filter': [], 'edge_hash_blacklist': [], 'node_filter': ['test'], 'node_blacklist': [], 'path_length': False, 'sign': 'no_sign', 'weighted': False, 'bsco': 0.0, 'curated_db_only': False, 'fplx_expand': False, 'k_shortest': 1, 'two_way': True, 'mesh_ids': [], 'strict_mesh_id_filtering': False, 'const_c': 1, 'const_tk': 10, 'terminal_ns': [], } result = self.indra_network.handle_query(**query) logger.info('Got result: %s' % result) assert result['timeout'] is False assert isinstance(result['paths_by_node_count'], (dict, defaultdict)) assert 2 in result['paths_by_node_count']['forward'] assert not result['paths_by_node_count']['backward'] assert len(result['paths_by_node_count']['forward'][2]) == 1 assert isinstance(result['paths_by_node_count']['forward'][2][0], (dict, defaultdict)) path_dict = result['paths_by_node_count']['forward'][2][0] assert path_dict['path'] == list(test_edge) assert isinstance(path_dict['cost'], str) assert isinstance(path_dict['sort_key'], str) stmts = path_dict['stmts'] assert isinstance(stmts, list) assert isinstance(stmts[0][test_type], list) assert isinstance(stmts[0][test_type][0], dict) assert stmts[0]['subj'], stmts[0]['obj'] == test_edge stmt_dict = stmts[0][test_type][0] assert isinstance(stmt_dict['weight'], (np.longfloat, float)) assert stmt_dict['stmt_type'] == test_row['stmt_type'] assert str(stmt_dict['stmt_hash']) == str(test_row['stmt_hash']), \ f"stmt_dict['stmt_hash']={stmt_dict['stmt_hash']}, test_row[" \ f"'stmt_hash']={test_row['stmt_hash']}" assert stmt_dict['evidence_count'] == test_row['evidence_count'] assert isinstance(stmt_dict['source_counts'], dict) assert stmt_dict['source_counts'] == test_evidence assert stmt_dict['source_counts'][test_source] == \ test_evidence[test_source] assert isinstance(stmt_dict['curated'], bool) assert stmt_dict['curated'] is True assert stmt_dict['belief'] == test_belief def test_query_handling(self): result = self.indra_network.handle_query(test=True) assert {'paths_by_node_count', 'common_targets', 'common_parents', 'timeout'} == set(result.keys()) assert isinstance(result['paths_by_node_count'], dict) assert not result['paths_by_node_count'].get('forward', False) assert not result['paths_by_node_count'].get('backward', False) assert isinstance(result['common_targets'], list) assert isinstance(result['common_parents'], dict) assert result['timeout'] is False def test_dir_edge_structure(self): # Get an edge from test DB e = None for e in self.indra_network.dir_edges: if e != test_edge: break # Check basic edge assert isinstance(e, tuple) assert len(e) == 2 # Check edge dict edge_dict = self.indra_network.dir_edges[e] edge_dict_test = self.indra_network.dir_edges[test_edge] assert isinstance(edge_dict, dict) assert isinstance(edge_dict_test, dict) assert isinstance(edge_dict['belief'], (np.longfloat, float)) assert isinstance(edge_dict_test['belief'], (np.longfloat, float)) assert isinstance(edge_dict['weight'], np.longfloat) assert isinstance(edge_dict_test['weight'], np.longfloat) # Check stmt meta data list stmt_list = edge_dict['statements'] test_stmt_list = edge_dict_test['statements'] assert isinstance(stmt_list, list) assert isinstance(test_stmt_list, list) assert isinstance(stmt_list[0], dict) assert isinstance(test_stmt_list[0], dict) # Check stmt meta data assert isinstance(stmt_list[0]['weight'], (float, np.longfloat)) assert isinstance(test_stmt_list[0]['weight'], (float, np.longfloat)) assert isinstance(stmt_list[0]['stmt_type'], str) assert test_stmt_list[0]['stmt_type'] == 'TestStatement' assert isinstance(stmt_list[0]['stmt_hash'], int) assert test_stmt_list[0]['stmt_hash'] == 1234567890 assert isinstance(stmt_list[0]['evidence_count'], int) assert test_stmt_list[0]['evidence_count'] == 1 assert isinstance(stmt_list[0]['source_counts'], dict) assert isinstance(test_stmt_list[0]['source_counts'], dict) assert len(test_stmt_list[0]['source_counts']) == 1 assert test_source in test_stmt_list[0]['source_counts'] assert test_stmt_list[0]['source_counts'][test_source] == 1 assert isinstance(stmt_list[0]['curated'], bool) assert test_stmt_list[0]['curated'] is True assert isinstance(stmt_list[0]['belief'], (float, np.longfloat)) assert isinstance(test_stmt_list[0]['belief'], (float, np.longfloat)) assert test_stmt_list[0]['belief'] == 0.987654321 def test_multi_dir_edge_structure(self): # Get an edge from test DB e = None for e in self.indra_network.mdg_edges: if e != test_medge: break # Check basic edge assert isinstance(e, tuple) assert len(e) == 3 # Check edge dict edge_dict = self.indra_network.mdg_edges[e] edge_dict_test = self.indra_network.mdg_edges[test_medge] assert isinstance(edge_dict, dict) assert isinstance(edge_dict_test, dict) assert isinstance(edge_dict['belief'], (np.longfloat, float)) assert isinstance(edge_dict_test['belief'], (np.longfloat, float)) assert edge_dict_test['belief'] == 0.987654321 assert isinstance(edge_dict['weight'], (np.longfloat, float)) assert isinstance(edge_dict_test['weight'], (np.longfloat, float)) assert isinstance(edge_dict['stmt_type'], str) assert edge_dict_test['stmt_type'] == 'TestStatement' assert isinstance(edge_dict['stmt_hash'], int) assert edge_dict_test['stmt_hash'] == 1234567890 assert isinstance(edge_dict['evidence_count'], int) assert edge_dict_test['evidence_count'] == 1 assert isinstance(edge_dict['source_counts'], dict) assert isinstance(edge_dict_test['source_counts'], dict) assert len(edge_dict_test['source_counts']) == 1 assert test_source in edge_dict_test['source_counts'] assert edge_dict_test['source_counts'][test_source] == 1 assert isinstance(edge_dict['curated'], bool) assert edge_dict_test['curated'] is True def test_nodes(self): # Get a db node node = None for node in self.indra_network.nodes: if node != test_node: break # Check nodes node_dict = self.indra_network.nodes[node] test_node_dict = self.indra_network.nodes[test_node] assert isinstance(node_dict, dict) assert isinstance(test_node_dict, dict) assert isinstance(node_dict['ns'], str) assert test_node_dict['ns'] == 'TEST' assert isinstance(node_dict['id'], str) assert test_node_dict['id'] == '1234' ```
{ "source": "johnbachman/nf_model", "score": 2 }
#### File: nf_model/mech_model/processor.py ```python import os import sys from collections import OrderedDict, defaultdict from indra.sources import trips from pysb import Observable #kappa from indra.tools import assemble_corpus as ac #from indra.explanation.model_checker import remove_im_params from indra.preassembler import flatten_evidence from pysb.integrate import ScipyOdeSimulator import numpy as np from matplotlib import pyplot as plt from indra.util import plot_formatting as pf import pickle from indra.statements import * from indra.assemblers.english.assembler import _assemble_agent_str #from indra.explanation.model_checker import _add_modification_to_agent from indra.tools import assemble_corpus as ac from pysb.export import export from indra.sources import indra_db_rest as idr from indra_db import client import logging logger = logging.getLogger(__name__) class NlModelProcessor(object): def __init__(self, model_file, cache_dir=None, trips_endpoint='drum-dev', extra_stmts=None): if cache_dir is None: cache_dir = '_cache' if extra_stmts is None: extra_stmts = [] self.model_file = model_file self.extra_stmts = extra_stmts self.cache_dir = cache_dir self.trips_endpoint = trips_endpoint self.model_lines = {} self.statements = [] self.stmts_by_group = {} def scrape_model_text(self): """Get text from model .rst file grouped by subheading. Returns ------- dict Dictionary mapping heading title to a list of lines. """ with open(self.model_file, 'rt') as f: lines = [line.strip() for line in f.readlines()] # Filter out empty lines and section headings model_lines = OrderedDict() for ix, line in enumerate(lines): if not line: continue if line.startswith('===') or line.startswith('#'): continue if ix < len(lines) - 1 and lines[ix+1].startswith('==='): group_name = line continue else: if group_name in model_lines: model_lines[group_name].append(line) else: model_lines[group_name] = [line] self.model_lines = model_lines return self.model_lines def get_statements(self, output_file=None): """Get the full set of model statements including extra statements. Optionally dumps a pickle of statements to given output file. Parameters ---------- output_file : str File to save the statements. Returns ------- list of INDRA Statements """ stmts_by_group = self.get_stmts_by_group() self.statements = [s for stmts_by_line in stmts_by_group.values() for stmt_list in stmts_by_line.values() for s in stmt_list] # Dump the statements if output_file is not None: ac.dump_statements(self.statements, output_file) return self.statements def get_stmts_by_group(self, output_file=None): """Read lines in model and store statements in dict keyed by group. Optionally dumps the dictionary of statements by group to a file. Parameters ---------- output_file : str File to save the dictionary of statements indexed by group. Returns ------- dict of lists of statements Dictionary mapping heading titles to lists of INDRA Statements. """ # Get the sentences from the model model_lines = self.scrape_model_text() # Read text stmts_by_group = OrderedDict() # Iterate over each group of sentences for group_name, lines in model_lines.items(): stmts_by_line = OrderedDict() print("Processing group '%s'..." % group_name) for ix, line in enumerate(lines): print("%d of %d: processing '%s'..." % (ix+1, len(lines), line)) stmts = self.process_text_with_cache(line) stmts_by_line[line] = stmts stmts_by_group[group_name] = stmts_by_line # Add the extra statements if self.extra_stmts: stmts_by_group['extra'] = OrderedDict() stmts_by_group['extra']['extra'] = self.extra_stmts self.stmts_by_group = stmts_by_group # Dump the statements if output_file is not None: with open(output_file, 'wb') as f: pickle.dump(self.stmts_by_group, f) return self.stmts_by_group def process_text_with_cache(self, text): """Wrapper around trips.process_text that caches statements. Parameters ---------- text : str Text to be processed by TRIPS. Returns ------- list of INDRA Statements List of INDRA Statements from processing the text. """ text_no_space = text.replace(' ', '') text_no_space = text_no_space.replace('.', '') cache_filename = text_no_space + '.pkl' cache_path = os.path.join(self.cache_dir, cache_filename) if os.path.isfile(cache_path): print('Loading cached stmts: %s' % cache_filename) with open(cache_path, 'rb') as f: stmts = pickle.load(f) else: # Alternative use 'drum-dev' tp = trips.process_text(text, service_endpoint=self.trips_endpoint) stmts = tp.statements # If no statements produced, emit warning if not stmts: logger.warning(f'No statements for "{text}"') print(f'No statements for "{text}"') else: logger.info(f'Saving {len(stmts)} stmts in {cache_filename}') with open(cache_path, 'wb') as f: pickle.dump(stmts, f) return stmts # Reverse effect for translocation? # Checks: # -- growth factor stimulation increases: # - phospho-EGFR # - Active RAS # - Phospho-ERK # - FOS/JUN expression # - phospho-S6 # Add complexes as binding statements # Re-write statements grounded to BE complexes to contain bound conditions # (PI3K, AP1) ```
{ "source": "johnbachman/OmicsIntegrator", "score": 3 }
#### File: OmicsIntegrator/tests/test_load_graph.py ```python import os, sys, tempfile, pytest # Create the path to forest relative to the test_load_graph.py path path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'scripts')) if not path in sys.path: sys.path.insert(1, path) del path from forest_util import loadGraph def write_valid_graph(tmpf): '''Write a valid .sif file INPUT: tmpf - a temporary file ''' tmpf.write('A\tpp\tB\n') tmpf.write('B\tpd\tC\n') tmpf.write('C\tpd\tD\n') tmpf.write('D\tpd\tC\n') tmpf.write('A\tpp\tE\n') class TestLoadGraph: def test_valid_graph(self): sifFilename= tempfile.NamedTemporaryFile(suffix='.sif', delete=False) try: # Write the network file write_valid_graph(sifFilename) finally: sifFilename.close() # Load the DiGraph graph = loadGraph(sifFilename.name) # Check that the DiGraph has the expected properties assert graph.order() == 5, "Unexpected number of nodes" assert graph.size() == 7, "Unexpected number of edges" # Check that the DiGraph has the expected edges assert graph.has_edge('A','B') assert graph.has_edge('B','A') assert graph.has_edge('B','C') assert graph.has_edge('C','D') assert graph.has_edge('D','C') assert graph.has_edge('A','E') assert graph.has_edge('E','A') # Remove because delete=False above os.remove(sifFilename.name) def test_invalid_edge_type(self): sifFilename= tempfile.NamedTemporaryFile(suffix='.sif', delete=False) try: # Write the network file write_valid_graph(sifFilename) # Add another line with an invalid edge sifFilename.write('A\tdd\tF\n') finally: sifFilename.close() # Load the DiGraph and expect an Exception for the invalid edge with pytest.raises(Exception): loadGraph(sifFilename.name) # Remove because delete=False above os.remove(sifFilename.name) def test_invalid_columns(self): sifFilename= tempfile.NamedTemporaryFile(suffix='.sif', delete=False) try: # Write the network file write_valid_graph(sifFilename) # Add another line with an extra column sifFilename.write('A\tdd\tF\t0.85\n') finally: sifFilename.close() # Load the DiGraph and expect an Exception for the extra column with pytest.raises(Exception): loadGraph(sifFilename.name) # Remove because delete=False above os.remove(sifFilename.name) ``` #### File: OmicsIntegrator/tests/test_score.py ```python import os, sys # Create the path to forest relative to the test_score.py path path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'scripts')) if not path in sys.path: sys.path.insert(1, path) del path from forest import score class TestScore: def test_muGreaterThanZero(self): try: score(2, 0, 0) except ValueError: assert 1 else: assert 0 try: score(2, -1, 0) except ValueError: assert 1 else: assert 0 def test_whenValueOne(self): assert score(1, 1, 0) == 0 def test_musquaredFalse(self): assert score(2, 2, 0) == -4 def test_musquaredTrue(self): assert score(2, 2, 1) == -8 ```
{ "source": "johnbachman/protmapper", "score": 3 }
#### File: protmapper/protmapper/cli.py ```python import csv import argparse from protmapper.api import * def process_input(fname): sites = [] with open(fname, 'r') as fh: for idx, row in enumerate(csv.reader(fh)): if len(row) != 4: raise ValueError('Line %d of %s doesn\'t have 4 elements.' % (idx, fname)) sites.append(row) return sites def dump_output(fname, mapped_sites): rows = [mapped_sites[0].attrs] rows += [ms.to_list() for ms in mapped_sites] with open(fname, 'w') as fh: writer = csv.writer(fh) writer.writerows(rows) def main(): parser = argparse.ArgumentParser( description='Run Protmapper on a list of proteins with residues and ' 'sites provided in a text file.') parser.add_argument('input', help=('Path to an input file. The input file is a text file in ' 'which each row consists of four comma separated values, ' 'with the first element being a protein ID, the second, ' 'the namespace in which that ID is valid (uniprot or hgnc),' 'third, an amino acid represented as a single capital letter, ' 'and fourth, a site position on the protein.')) parser.add_argument('output', help=('Path to the output file to be generated. Each line of the ' 'output file corresponds to a line in the input file. Each line' 'represents a mapped site produced by Protmapper.')) parser.add_argument('--peptide', help=('If given, the third element of each row of the input file is a ' 'peptide (amino acid sequence) rather than a single amino acid ' 'residue. In this case, peptide-oriented mappings are ' 'applied. In this mode the following boolean arguments are ' 'ignored.'), action='store_true') parser.add_argument('--no_methionine_offset', help=( 'If given, will not check for off-by-one errors in site position (' 'possibly) attributable to site numbering from mature proteins after ' 'cleavage of the initial methionine.'), action='store_true') parser.add_argument('--no_orthology_mapping', help=( 'If given, will not check sequence positions for known modification ' 'sites in mouse or rat sequences (based on PhosphoSitePlus data).'), action='store_true') parser.add_argument('--no_isoform_mapping', help=( 'If given, will not check sequence positions for known modifications ' 'in other human isoforms of the protein (based on PhosphoSitePlus ' 'data).'), action='store_true') args = parser.parse_args() # Separate call to make function testable run_main(args) def run_main(args): mapping_kwargs = { 'do_methionine_offset': False if args.no_methionine_offset else True, 'do_orthology_mapping': False if args.no_orthology_mapping else True, 'do_isoform_mapping': False if args.no_isoform_mapping else True } pm = ProtMapper() sites = process_input(args.input) if args.peptide: # We have to make the positions ints here sites = [tuple(s[:3] + [int(s[3])]) for s in sites] mapped_sites = [pm.map_peptide_to_human_ref(*site) for site in sites] else: mapped_sites = pm.map_sitelist_to_human_ref(sites, **mapping_kwargs) dump_output(args.output, mapped_sites) if __name__ == '__main__': main() ``` #### File: protmapper/tests/test_phosphosite_client.py ```python from nose.plugins.attrib import attr from protmapper.phosphosite_client import map_to_human_site, sites_only, \ PspMapping def test_map_mouse_to_human(): mouse_up_id = 'Q61337' psp = map_to_human_site(mouse_up_id, 'S', '112') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'Q92934' # Human ref seq assert psp.mapped_res == 'S' assert psp.mapped_pos == '75' assert psp.motif == 'EIRSRHSSYPAGTED' assert psp.respos == 7 def test_isoform_mapping_from_human(): up_id = 'P29353' psp = map_to_human_site(up_id, 'Y', '239') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'P29353' # Human ref seq assert psp.mapped_res == 'Y' assert psp.mapped_pos == '349' assert psp.motif == 'EEPPDHQYYNDFPGK' assert psp.respos == 7 def test_mapping_from_human_isoform(): up_id = 'P29353-2' psp = map_to_human_site(up_id, 'Y', '239') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'P29353' # Human ref seq assert psp.mapped_res == 'Y' assert psp.mapped_pos == '349' assert psp.motif == 'EEPPDHQYYNDFPGK' assert psp.respos == 7 def test_isoform_mapping_from_mouse(): up_id = 'P98083' # Mouse SHC1 psp = map_to_human_site(up_id, 'Y', '239') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'P29353' # Human ref seq assert psp.mapped_res == 'Y' assert psp.mapped_pos == '349' assert psp.motif == 'EEPPDHQYYNDFPGK' assert psp.respos == 7 def test_mapping_from_human_ref(): up_id = 'P29353' # SHC1 psp = map_to_human_site(up_id, 'Y', '349') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'P29353' # Human ref seq assert psp.mapped_res == 'Y' assert psp.mapped_pos == '349' assert psp.motif == 'EEPPDHQYYNDFPGK' assert psp.respos == 7 def test_mapping_from_human_ref_iso_id(): up_id = 'P29353-1' # SHC1 psp = map_to_human_site(up_id, 'Y', '349') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'P29353' # Human ref seq assert psp.mapped_res == 'Y' assert psp.mapped_pos == '349' assert psp.motif == 'EEPPDHQYYNDFPGK' assert psp.respos == 7 def test_mapping_from_mouse_isoform(): up_id = 'Q8CI51-3' psp = map_to_human_site(up_id, 'S', '105') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'Q96HC4' # Human ref seq assert psp.mapped_res == 'S' assert psp.mapped_pos == '214' assert psp.motif == 'PTVTSVCSETSQELA' assert psp.respos == 7 def test_no_site_in_human_ref(): psp = map_to_human_site('Q01105', 'S', '9') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'Q01105-2' assert psp.mapped_res == 'S' assert psp.mapped_pos == '9' assert psp.motif == 'SAPAAKVSKKELNSN' assert psp.respos == 7 """ def test_wrong_residue(): # SL6A3 T53 -> S53 psp = map_to_human_site('Q01959', 'T', '53') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'Q01959' assert psp.mapped_res == 'S' assert psp.mapped_pos == '53' assert psp.motif == 'TLTNPRQSPVEAQDR' assert psp.respos == 7 """ def test_smpd1_s508(): # The site is invalid, but PSP doesn't know that psp = map_to_human_site('P17405', 'S', '508') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'P17405' assert psp.mapped_res == 'S' assert psp.mapped_pos == '508' assert psp.motif == 'DGNYSGSSHVVLDHE' assert psp.respos == 7 def test_set_s9(): psp = map_to_human_site('Q01105', 'S', '9') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'Q01105-2' assert psp.mapped_res == 'S' assert psp.mapped_pos == '9' def test_h2afx_s139(): psp = map_to_human_site('P16104', 'S', '139') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'P16104' assert psp.mapped_res == 'S' assert psp.mapped_pos == '139' assert psp.motif == 'GKKATQASQEY' assert psp.respos == 7 def test_motif_processing(): # Make sure that site motifs with prepended underscores have the residue # position assigned accordingly psp = map_to_human_site('P68431', 'T', '3') assert isinstance(psp, PspMapping) assert psp.mapped_id == 'P68431' assert psp.mapped_res == 'T' assert psp.mapped_pos == '3' assert psp.motif == 'ARTKQTARKS' assert psp.respos == 2 def test_sites_only(): sites = sites_only() # These checks make sure that the sites are constructed from the data # dictionaries as expected assert ('Q8CI51-3', 'S', '105') in sites assert ('Q8CI51', 'T', '80') in sites assert ('Q8CI51-3', 'T', '80') not in sites assert ('P29353', 'Y', '427') in sites assert ('P29353', 'Y', '317') in sites assert ('P29353-2', 'Y', '317') in sites assert ('P29353-2', 'Y', '427') not in sites # Check the -1 isoforms are also included assert ('P28661-1', 'S', '28') in sites def test_explicit_ref_isoforms(): psp = map_to_human_site('Q9Y2K2', 'S', '551') assert psp.mapped_id == 'Q9Y2K2' assert psp.mapped_res == 'S' assert psp.mapped_pos == '493' psp = map_to_human_site('Q14155', 'S', '672') assert psp.mapped_id == 'Q14155' assert psp.mapped_res == 'S' assert psp.mapped_pos == '694' psp = map_to_human_site('O15027', 'T', '220') assert psp.mapped_id == 'O15027' assert psp.mapped_res == 'T' assert psp.mapped_pos == '415' psp = map_to_human_site('Q16555', 'S', '627') assert psp.mapped_id == 'Q16555' assert psp.mapped_res == 'S' assert psp.mapped_pos == '522' def test_ref_seq_not_found(): psp = map_to_human_site('P10636', 'S', '202') assert psp.mapped_id == 'P10636' assert psp.mapped_res == 'S' assert psp.mapped_pos == '519' ```
{ "source": "johnbachman/pykeen", "score": 2 }
#### File: pykeen/models/base.py ```python import inspect import logging from abc import abstractmethod from collections import defaultdict from typing import Any, ClassVar, Collection, Dict, Iterable, List, Mapping, Optional, Set, Type, Union import pandas as pd import torch from torch import nn from ..losses import Loss, MarginRankingLoss, NSSALoss from ..regularizers import NoRegularizer, Regularizer from ..tqdmw import tqdm from ..triples import TriplesFactory from ..typing import MappedTriples from ..utils import NoRandomSeedNecessary, get_embedding, resolve_device, set_random_seed from ..version import get_version __all__ = [ 'Model', 'EntityEmbeddingModel', 'EntityRelationEmbeddingModel', 'MultimodalModel', ] logger = logging.getLogger(__name__) UNSUPPORTED_FOR_SUBBATCHING = ( # must be a tuple nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm, ) def _extend_batch( batch: MappedTriples, all_ids: List[int], dim: int, ) -> MappedTriples: """Extend batch for 1-to-all scoring by explicit enumeration. :param batch: shape: (batch_size, 2) The batch. :param all_ids: len: num_choices The IDs to enumerate. :param dim: in {0,1,2} The column along which to insert the enumerated IDs. :return: shape: (batch_size * num_choices, 3) A large batch, where every pair from the original batch is combined with every ID. """ # Extend the batch to the number of IDs such that each pair can be combined with all possible IDs extended_batch = batch.repeat_interleave(repeats=len(all_ids), dim=0) # Create a tensor of all IDs ids = torch.tensor(all_ids, dtype=torch.long, device=batch.device) # Extend all IDs to the number of pairs such that each ID can be combined with every pair extended_ids = ids.repeat(batch.shape[0]) # Fuse the extended pairs with all IDs to a new (h, r, t) triple tensor. columns = [extended_batch[:, i] for i in (0, 1)] columns.insert(dim, extended_ids) hrt_batch = torch.stack(columns, dim=-1) return hrt_batch class Model(nn.Module): """A base module for all of the KGE models.""" #: A dictionary of hyper-parameters to the models that use them _hyperparameter_usage: ClassVar[Dict[str, Set[str]]] = defaultdict(set) #: The default strategy for optimizing the model's hyper-parameters hpo_default: ClassVar[Mapping[str, Any]] #: The default loss function class loss_default: ClassVar[Type[Loss]] = MarginRankingLoss #: The default parameters for the default loss function class loss_default_kwargs: ClassVar[Optional[Mapping[str, Any]]] = dict(margin=1.0, reduction='mean') #: The instance of the loss loss: Loss #: The default regularizer class regularizer_default: ClassVar[Type[Regularizer]] = NoRegularizer #: The default parameters for the default regularizer class regularizer_default_kwargs: ClassVar[Optional[Mapping[str, Any]]] = None #: The instance of the regularizer regularizer: Regularizer def __init__( self, triples_factory: TriplesFactory, loss: Optional[Loss] = None, predict_with_sigmoid: bool = False, automatic_memory_optimization: Optional[bool] = None, preferred_device: Optional[str] = None, random_seed: Optional[int] = None, regularizer: Optional[Regularizer] = None, ) -> None: """Initialize the module. :param triples_factory: The triples factory facilitates access to the dataset. :param loss: The loss to use. If None is given, use the loss default specific to the model subclass. :param predict_with_sigmoid: Whether to apply sigmoid onto the scores when predicting scores. Applying sigmoid at prediction time may lead to exactly equal scores for certain triples with very high, or very low score. When not trained with applying sigmoid (or using BCEWithLogits), the scores are not calibrated to perform well with sigmoid. :param automatic_memory_optimization: If set to `True`, the model derives the maximum possible batch sizes for the scoring of triples during evaluation and also training (if no batch size was given). This allows to fully utilize the hardware at hand and achieves the fastest calculations possible. :param preferred_device: The preferred device for model training and inference. :param random_seed: A random seed to use for initialising the model's weights. **Should** be set when aiming at reproducibility. :param regularizer: A regularizer to use for training. """ super().__init__() # Initialize the device self._set_device(preferred_device) # Random seeds have to set before the embeddings are initialized if random_seed is None: logger.warning('No random seed is specified. This may lead to non-reproducible results.') elif random_seed is not NoRandomSeedNecessary: set_random_seed(random_seed) if automatic_memory_optimization is None: automatic_memory_optimization = True # Loss if loss is None: self.loss = self.loss_default(**self.loss_default_kwargs) else: self.loss = loss # TODO: Check loss functions that require 1 and -1 as label but only self.is_mr_loss = isinstance(self.loss, MarginRankingLoss) # Regularizer if regularizer is None: regularizer = self.regularizer_default( device=self.device, **(self.regularizer_default_kwargs or {}), ) self.regularizer = regularizer self.is_nssa_loss = isinstance(self.loss, NSSALoss) # The triples factory facilitates access to the dataset. self.triples_factory = triples_factory ''' When predict_with_sigmoid is set to True, the sigmoid function is applied to the logits during evaluation and also for predictions after training, but has no effect on the training. ''' self.predict_with_sigmoid = predict_with_sigmoid # This allows to store the optimized parameters self.automatic_memory_optimization = automatic_memory_optimization @property def can_slice_h(self) -> bool: """Whether score_h supports slicing.""" return _can_slice(self.score_h) @property def can_slice_r(self) -> bool: """Whether score_r supports slicing.""" return _can_slice(self.score_r) @property def can_slice_t(self) -> bool: """Whether score_t supports slicing.""" return _can_slice(self.score_t) @property def modules_not_supporting_sub_batching(self) -> Collection[nn.Module]: """Return all modules not supporting sub-batching.""" return [ module for module in self.modules() if isinstance(module, UNSUPPORTED_FOR_SUBBATCHING) ] @property def supports_subbatching(self) -> bool: # noqa: D400, D401 """Does this model support sub-batching?""" return len(self.modules_not_supporting_sub_batching) == 0 @abstractmethod def _reset_parameters_(self): # noqa: D401 """Reset all parameters of the model in-place.""" raise NotImplementedError def reset_parameters_(self) -> 'Model': # noqa: D401 """Reset all parameters of the model and enforce model constraints.""" self._reset_parameters_() self.to_device_() self.post_parameter_update() return self def __init_subclass__(cls, **kwargs): """Initialize the subclass while keeping track of hyper-parameters.""" super().__init_subclass__(**kwargs) # Keep track of the hyper-parameters that are used across all # subclasses of BaseModule for k in cls.__init__.__annotations__.keys(): if k not in Model.__init__.__annotations__: Model._hyperparameter_usage[k].add(cls.__name__) @property def num_entities(self) -> int: # noqa: D401 """The number of entities in the knowledge graph.""" return self.triples_factory.num_entities @property def num_relations(self) -> int: # noqa: D401 """The number of unique relation types in the knowledge graph.""" return self.triples_factory.num_relations def _set_device(self, device: Union[None, str, torch.device] = None) -> None: """Set the Torch device to use.""" self.device = resolve_device(device=device) def to_device_(self) -> 'Model': """Transfer model to device.""" self.to(self.device) self.regularizer.to(self.device) torch.cuda.empty_cache() return self def to_cpu_(self) -> 'Model': """Transfer the entire model to CPU.""" self._set_device('cpu') return self.to_device_() def to_gpu_(self) -> 'Model': """Transfer the entire model to GPU.""" self._set_device('cuda') return self.to_device_() def predict_scores(self, triples: torch.LongTensor) -> torch.FloatTensor: """Calculate the scores for triples. This method takes head, relation and tail of each triple and calculates the corresponding score. Additionally, the model is set to evaluation mode. :param triples: shape: (number of triples, 3), dtype: long The indices of (head, relation, tail) triples. :return: shape: (number of triples, 1), dtype: float The score for each triple. """ # Enforce evaluation mode self.eval() scores = self.score_hrt(triples) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores def predict_scores_all_tails( self, hr_batch: torch.LongTensor, slice_size: Optional[int] = None, ) -> torch.FloatTensor: """Forward pass using right side (tail) prediction for obtaining scores of all possible tails. This method calculates the score for all possible tails for each (head, relation) pair. Additionally, the model is set to evaluation mode. :param hr_batch: shape: (batch_size, 2), dtype: long The indices of (head, relation) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :return: shape: (batch_size, num_entities), dtype: float For each h-r pair, the scores for all possible tails. """ # Enforce evaluation mode self.eval() if slice_size is None: scores = self.score_t(hr_batch) else: scores = self.score_t(hr_batch, slice_size=slice_size) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores def predict_heads( self, relation_label: str, tail_label: str, add_novelties: bool = True, remove_known: bool = False, ) -> pd.DataFrame: """Predict tails for the given head and relation (given by label). :param relation_label: The string label for the relation :param tail_label: The string label for the tail entity :param add_novelties: Should the dataframe include a column denoting if the ranked head entities correspond to novel triples? :param remove_known: Should non-novel triples (those appearing in the training set) be shown with the results? On one hand, this allows you to better assess the goodness of the predictions - you want to see that the non-novel triples generally have higher scores. On the other hand, if you're doing hypothesis generation, they may pose as a distraction. If this is set to True, then non-novel triples will be removed and the column denoting novelty will be excluded, since all remaining triples will be novel. Defaults to false. The following example shows that after you train a model on the Nations dataset, you can score all entities w.r.t a given relation and tail entity. >>> from pykeen.pipeline import pipeline >>> result = pipeline( ... dataset='Nations', ... model='RotatE', ... ) >>> df = result.model.predict_heads('accusation', 'brazil') """ tail_id = self.triples_factory.entity_to_id[tail_label] relation_id = self.triples_factory.relation_to_id[relation_label] rt_batch = torch.tensor([[relation_id, tail_id]], dtype=torch.long, device=self.device) scores = self.predict_scores_all_heads(rt_batch) scores = scores[0, :].tolist() rv = pd.DataFrame( [ (entity_id, entity_label, scores[entity_id]) for entity_label, entity_id in self.triples_factory.entity_to_id.items() ], columns=['head_id', 'head_label', 'score'], ).sort_values('score', ascending=False) if add_novelties or remove_known: rv['novel'] = rv['head_id'].map(lambda head_id: self._novel(head_id, relation_id, tail_id)) if remove_known: rv = rv[rv['novel']] del rv['novel'] return rv def predict_tails( self, head_label: str, relation_label: str, add_novelties: bool = True, remove_known: bool = False, ) -> pd.DataFrame: """Predict tails for the given head and relation (given by label). :param head_label: The string label for the head entity :param relation_label: The string label for the relation :param add_novelties: Should the dataframe include a column denoting if the ranked tail entities correspond to novel triples? :param remove_known: Should non-novel triples (those appearing in the training set) be shown with the results? On one hand, this allows you to better assess the goodness of the predictions - you want to see that the non-novel triples generally have higher scores. On the other hand, if you're doing hypothesis generation, they may pose as a distraction. If this is set to True, then non-novel triples will be removed and the column denoting novelty will be excluded, since all remaining triples will be novel. Defaults to false. The following example shows that after you train a model on the Nations dataset, you can score all entities w.r.t a given head entity and relation. >>> from pykeen.pipeline import pipeline >>> result = pipeline( ... dataset='Nations', ... model='RotatE', ... ) >>> df = result.model.predict_tails('brazil', 'accusation') """ head_id = self.triples_factory.entity_to_id[head_label] relation_id = self.triples_factory.relation_to_id[relation_label] batch = torch.tensor([[head_id, relation_id]], dtype=torch.long, device=self.device) scores = self.predict_scores_all_tails(batch) scores = scores[0, :].tolist() rv = pd.DataFrame( [ (entity_id, entity_label, scores[entity_id]) for entity_label, entity_id in self.triples_factory.entity_to_id.items() ], columns=['tail_id', 'tail_label', 'score'], ).sort_values('score', ascending=False) if add_novelties or remove_known: rv['novel'] = rv['tail_id'].map(lambda tail_id: self._novel(head_id, relation_id, tail_id)) if remove_known: rv = rv[rv['novel']] del rv['novel'] return rv def _novel(self, h, r, t) -> bool: """Return if the triple is novel with respect to the training triples.""" triple = torch.tensor(data=[[h, r, t]], dtype=torch.long, device=self.triples_factory.mapped_triples.device) return (triple == self.triples_factory.mapped_triples).all(dim=1).any().item() def predict_scores_all_relations( self, ht_batch: torch.LongTensor, slice_size: Optional[int] = None, ) -> torch.FloatTensor: """Forward pass using middle (relation) prediction for obtaining scores of all possible relations. This method calculates the score for all possible relations for each (head, tail) pair. Additionally, the model is set to evaluation mode. :param ht_batch: shape: (batch_size, 2), dtype: long The indices of (head, tail) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :return: shape: (batch_size, num_relations), dtype: float For each h-t pair, the scores for all possible relations. """ # Enforce evaluation mode self.eval() if slice_size is None: scores = self.score_r(ht_batch) else: scores = self.score_r(ht_batch, slice_size=slice_size) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores def predict_scores_all_heads( self, rt_batch: torch.LongTensor, slice_size: Optional[int] = None, ) -> torch.FloatTensor: """Forward pass using left side (head) prediction for obtaining scores of all possible heads. This method calculates the score for all possible heads for each (relation, tail) pair. Additionally, the model is set to evaluation mode. :param rt_batch: shape: (batch_size, 2), dtype: long The indices of (relation, tail) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :return: shape: (batch_size, num_entities), dtype: float For each r-t pair, the scores for all possible heads. """ # Enforce evaluation mode self.eval() ''' In case the model was trained using inverse triples, the scoring of all heads is not handled by calculating the scores for all heads based on a (relation, tail) pair, but instead all possible tails are calculated for a (tail, inverse_relation) pair. ''' if not self.triples_factory.create_inverse_triples: if slice_size is None: scores = self.score_h(rt_batch) else: scores = self.score_h(rt_batch, slice_size=slice_size) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores ''' The PyKEEN package handles _inverse relations_ by adding the number of relations to the index of the _native relation_. Example: The triples/knowledge graph used to train the model contained 100 relations. Due to using inverse relations, the model now has an additional 100 inverse relations. If the _native relation_ has the index 3, the index of the _inverse relation_ is 4 (id of relation + 1). ''' rt_batch_cloned = rt_batch.clone() rt_batch_cloned.to(device=rt_batch.device) # The number of relations stored in the triples factory includes the number of inverse relations # Id of inverse relation: relation + 1 rt_batch_cloned[:, 0] = rt_batch_cloned[:, 0] + 1 # The score_t function requires (entity, relation) pairs instead of (relation, entity) pairs rt_batch_cloned = rt_batch_cloned.flip(1) if slice_size is None: scores = self.score_t(rt_batch_cloned) else: scores = self.score_t(rt_batch_cloned, slice_size=slice_size) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores def post_parameter_update(self) -> None: """Has to be called after each parameter update.""" self.regularizer.reset() def regularize_if_necessary(self, *tensors: torch.FloatTensor) -> None: """Update the regularizer's term given some tensors, if regularization is requested. :param tensors: The tensors that should be passed to the regularizer to update its term. """ if self.training: self.regularizer.update(*tensors) def compute_mr_loss( self, positive_scores: torch.FloatTensor, negative_scores: torch.FloatTensor, ) -> torch.FloatTensor: """Compute the mean ranking loss for the positive and negative scores. :param positive_scores: shape: s, dtype: float The scores for positive triples. :param negative_scores: shape: s, dtype: float The scores for negative triples. :raises RuntimeError: If the chosen loss function does not allow the calculation of margin ranking :return: dtype: float, scalar The margin ranking loss value. """ if not self.is_mr_loss: raise RuntimeError( 'The chosen loss does not allow the calculation of margin ranking' ' losses. Please use the compute_loss method instead.' ) y = torch.ones_like(negative_scores, device=self.device) return self.loss(positive_scores, negative_scores, y) + self.regularizer.term def compute_label_loss( self, predictions: torch.FloatTensor, labels: torch.FloatTensor, ) -> torch.FloatTensor: """Compute the classification loss. :param predictions: shape: s The tensor containing predictions. :param labels: shape: s The tensor containing labels. :return: dtype: float, scalar The label loss value. """ return self._compute_loss(tensor_1=predictions, tensor_2=labels) def compute_self_adversarial_negative_sampling_loss( self, positive_scores: torch.FloatTensor, negative_scores: torch.FloatTensor, ) -> torch.FloatTensor: """Compute self adversarial negative sampling loss. :param positive_scores: shape: s The tensor containing the positive scores. :param negative_scores: shape: s Tensor containing the negative scores. :raises RuntimeError: If the chosen loss does not allow the calculation of self adversarial negative sampling losses. :return: dtype: float, scalar The loss value. """ if not self.is_nssa_loss: raise RuntimeError( 'The chosen loss does not allow the calculation of self adversarial negative sampling' ' losses. Please use the compute_self_adversarial_negative_sampling_loss method instead.' ) return self._compute_loss(tensor_1=positive_scores, tensor_2=negative_scores) def _compute_loss( self, tensor_1: torch.FloatTensor, tensor_2: torch.FloatTensor, ) -> torch.FloatTensor: """Compute the loss for functions requiring two separate tensors as input. :param tensor_1: shape: s The tensor containing predictions or positive scores. :param tensor_2: shape: s The tensor containing target values or the negative scores. :raises RuntimeError: If the chosen loss does not allow the calculation of margin label losses. :return: dtype: float, scalar The label loss value. """ if self.is_mr_loss: raise RuntimeError( 'The chosen loss does not allow the calculation of margin label' ' losses. Please use the compute_mr_loss method instead.' ) return self.loss(tensor_1, tensor_2) + self.regularizer.term @abstractmethod def score_hrt(self, hrt_batch: torch.LongTensor) -> torch.FloatTensor: """Forward pass. This method takes head, relation and tail of each triple and calculates the corresponding score. :param hrt_batch: shape: (batch_size, 3), dtype: long The indices of (head, relation, tail) triples. :raises NotImplementedError: If the method was not implemented for this class. :return: shape: (batch_size, 1), dtype: float The score for each triple. """ raise NotImplementedError def score_t(self, hr_batch: torch.LongTensor) -> torch.FloatTensor: """Forward pass using right side (tail) prediction. This method calculates the score for all possible tails for each (head, relation) pair. :param hr_batch: shape: (batch_size, 2), dtype: long The indices of (head, relation) pairs. :return: shape: (batch_size, num_entities), dtype: float For each h-r pair, the scores for all possible tails. """ logger.warning( 'Calculations will fall back to using the score_hrt method, since this model does not have a specific ' 'score_t function. This might cause the calculations to take longer than necessary.' ) # Extend the hr_batch such that each (h, r) pair is combined with all possible tails hrt_batch = _extend_batch(batch=hr_batch, all_ids=list(self.triples_factory.entity_to_id.values()), dim=2) # Calculate the scores for each (h, r, t) triple using the generic interaction function expanded_scores = self.score_hrt(hrt_batch=hrt_batch) # Reshape the scores to match the pre-defined output shape of the score_t function. scores = expanded_scores.view(hr_batch.shape[0], -1) return scores def score_h(self, rt_batch: torch.LongTensor) -> torch.FloatTensor: """Forward pass using left side (head) prediction. This method calculates the score for all possible heads for each (relation, tail) pair. :param rt_batch: shape: (batch_size, 2), dtype: long The indices of (relation, tail) pairs. :return: shape: (batch_size, num_entities), dtype: float For each r-t pair, the scores for all possible heads. """ logger.warning( 'Calculations will fall back to using the score_hrt method, since this model does not have a specific ' 'score_h function. This might cause the calculations to take longer than necessary.' ) # Extend the rt_batch such that each (r, t) pair is combined with all possible heads hrt_batch = _extend_batch(batch=rt_batch, all_ids=list(self.triples_factory.entity_to_id.values()), dim=0) # Calculate the scores for each (h, r, t) triple using the generic interaction function expanded_scores = self.score_hrt(hrt_batch=hrt_batch) # Reshape the scores to match the pre-defined output shape of the score_h function. scores = expanded_scores.view(rt_batch.shape[0], -1) return scores def score_r(self, ht_batch: torch.LongTensor) -> torch.FloatTensor: """Forward pass using middle (relation) prediction. This method calculates the score for all possible relations for each (head, tail) pair. :param ht_batch: shape: (batch_size, 2), dtype: long The indices of (head, tail) pairs. :return: shape: (batch_size, num_relations), dtype: float For each h-t pair, the scores for all possible relations. """ logger.warning( 'Calculations will fall back to using the score_hrt method, since this model does not have a specific ' 'score_r function. This might cause the calculations to take longer than necessary.' ) # Extend the ht_batch such that each (h, t) pair is combined with all possible relations hrt_batch = _extend_batch(batch=ht_batch, all_ids=list(self.triples_factory.relation_to_id.values()), dim=1) # Calculate the scores for each (h, r, t) triple using the generic interaction function expanded_scores = self.score_hrt(hrt_batch=hrt_batch) # Reshape the scores to match the pre-defined output shape of the score_r function. scores = expanded_scores.view(ht_batch.shape[0], -1) return scores def get_grad_params(self) -> Iterable[nn.Parameter]: """Get the parameters that require gradients.""" # TODO: Why do we need that? The optimizer takes care of filtering the parameters. return filter(lambda p: p.requires_grad, self.parameters()) def to_embeddingdb(self, session=None, use_tqdm: bool = False): """Upload to the embedding database. :param session: Optional SQLAlchemy session :param use_tqdm: Use :mod:`tqdm` progress bar? :rtype: embeddingdb.sql.models.Collection """ from embeddingdb.sql.models import Embedding, Collection if session is None: from embeddingdb.sql.models import get_session session = get_session() collection = Collection( package_name='pykeen', package_version=get_version(), dimensions=self.embedding_dim, ) embeddings = self.entity_embeddings.weight.detach().cpu().numpy() names = sorted( self.triples_factory.entity_to_id, key=self.triples_factory.entity_to_id.get, ) if use_tqdm: names = tqdm(names, desc='Building SQLAlchemy models') for name, embedding in zip(names, embeddings): embedding = Embedding( collection=collection, curie=name, vector=list(embedding), ) session.add(embedding) session.add(collection) session.commit() return collection @property def num_parameter_bytes(self) -> int: """Calculate the number of bytes used for all parameters of the model.""" return sum(p.numel() * p.element_size() for p in self.parameters(recurse=True)) def save_state(self, path: str) -> None: """Save the state of the model. :param path: Path of the file where to store the state in. """ torch.save(self.state_dict(), path) def load_state(self, path: str) -> None: """Load the state of the model. :param path: Path of the file where to load the state from. """ self.load_state_dict(torch.load(path, map_location=self.device)) class EntityEmbeddingModel(Model): """A base module for most KGE models that have one embedding for entities.""" def __init__( self, triples_factory: TriplesFactory, embedding_dim: int = 50, loss: Optional[Loss] = None, predict_with_sigmoid: bool = False, automatic_memory_optimization: Optional[bool] = None, preferred_device: Optional[str] = None, random_seed: Optional[int] = None, regularizer: Optional[Regularizer] = None, ) -> None: """Initialize the entity embedding model. :param embedding_dim: The embedding dimensionality. Exact usages depends on the specific model subclass. .. seealso:: Constructor of the base class :class:`pykeen.models.Model` """ super().__init__( triples_factory=triples_factory, automatic_memory_optimization=automatic_memory_optimization, loss=loss, preferred_device=preferred_device, random_seed=random_seed, regularizer=regularizer, predict_with_sigmoid=predict_with_sigmoid, ) self.embedding_dim = embedding_dim self.entity_embeddings = get_embedding( num_embeddings=triples_factory.num_entities, embedding_dim=self.embedding_dim, device=self.device, ) class EntityRelationEmbeddingModel(EntityEmbeddingModel): """A base module for KGE models that have different embeddings for entities and relations.""" def __init__( self, triples_factory: TriplesFactory, embedding_dim: int = 50, relation_dim: Optional[int] = None, loss: Optional[Loss] = None, predict_with_sigmoid: bool = False, automatic_memory_optimization: Optional[bool] = None, preferred_device: Optional[str] = None, random_seed: Optional[int] = None, regularizer: Optional[Regularizer] = None, ) -> None: """Initialize the entity embedding model. :param relation_dim: The relation embedding dimensionality. If not given, defaults to same size as entity embedding dimension. .. seealso:: Constructor of the base class :class:`pykeen.models.Model` .. seealso:: Constructor of the base class :class:`pykeen.models.EntityEmbeddingModel` """ super().__init__( triples_factory=triples_factory, automatic_memory_optimization=automatic_memory_optimization, loss=loss, preferred_device=preferred_device, random_seed=random_seed, regularizer=regularizer, predict_with_sigmoid=predict_with_sigmoid, embedding_dim=embedding_dim, ) # Default for relation dimensionality if relation_dim is None: relation_dim = embedding_dim self.relation_dim = relation_dim self.relation_embeddings = get_embedding( num_embeddings=triples_factory.num_relations, embedding_dim=self.relation_dim, device=self.device, ) def _can_slice(fn) -> bool: return 'slice_size' in inspect.getfullargspec(fn).args class MultimodalModel(EntityRelationEmbeddingModel): """A multimodal KGE model.""" ``` #### File: pykeen/stoppers/early_stopping.py ```python import dataclasses import logging from dataclasses import dataclass from typing import Any, Callable, List, Mapping, Optional, Union import numpy from .stopper import Stopper from ..evaluation import Evaluator from ..models.base import Model from ..trackers import ResultTracker from ..triples import TriplesFactory from ..utils import fix_dataclass_init_docs __all__ = [ 'smaller_than_any_buffer_element', 'larger_than_any_buffer_element', 'EarlyStopper', 'StopperCallback', ] logger = logging.getLogger(__name__) def smaller_than_any_buffer_element(buffer: numpy.ndarray, result: float, delta: float = 0.) -> bool: """Decide if a result is better than at least one buffer element, where smaller is better. :param buffer: The last results to compare against (excluding the current result). :param result: The current result. :param delta: The minimum improvement. :return: Whether the result is at least delta better than at least one value in the buffer. """ worst_in_window = buffer.max() baseline = worst_in_window - delta return result < baseline def larger_than_any_buffer_element(buffer: numpy.ndarray, result: float, delta: float = 0.) -> bool: """Decide if a result is better than at least one buffer element, where larger is better. :param buffer: The last results to compare against (excluding the current result). :param result: The current result. :param delta: The minimum improvement. :return: Whether the result is at least delta better than at least one value in the buffer. """ worst_in_window = buffer.min() baseline = worst_in_window + delta return result > baseline StopperCallback = Callable[[Stopper, Union[int, float]], None] @fix_dataclass_init_docs @dataclass class EarlyStopper(Stopper): """A harness for early stopping.""" #: The model model: Model = dataclasses.field(repr=False) #: The evaluator evaluator: Evaluator #: The triples to use for evaluation evaluation_triples_factory: Optional[TriplesFactory] #: Size of the evaluation batches evaluation_batch_size: Optional[int] = None #: Slice size of the evaluation batches evaluation_slice_size: Optional[int] = None #: The number of epochs after which the model is evaluated on validation set frequency: int = 10 #: The number of iterations (one iteration can correspond to various epochs) #: with no improvement after which training will be stopped. patience: int = 2 #: The name of the metric to use metric: str = 'hits_at_k' #: The minimum improvement between two iterations delta: float = 0.005 #: The metric results from all evaluations results: List[float] = dataclasses.field(default_factory=list, repr=False) #: A ring buffer to store the recent results buffer: numpy.ndarray = dataclasses.field(init=False) #: A counter for the ring buffer number_evaluations: int = 0 #: Whether a larger value is better, or a smaller larger_is_better: bool = True #: The criterion. Set in the constructor based on larger_is_better improvement_criterion: Callable[[numpy.ndarray, float, float], bool] = None #: The result tracker result_tracker: Optional[ResultTracker] = None #: Callbacks when training gets continued continue_callbacks: List[StopperCallback] = dataclasses.field(default_factory=list, repr=False) #: Callbacks when training is stopped early stopped_callbacks: List[StopperCallback] = dataclasses.field(default_factory=list, repr=False) #: Did the stopper ever decide to stop? stopped: bool = False def __post_init__(self): """Run after initialization and check the metric is valid.""" # TODO: Fix this # if all(f.name != self.metric for f in dataclasses.fields(self.evaluator.__class__)): # raise ValueError(f'Invalid metric name: {self.metric}') if self.evaluation_triples_factory is None: raise ValueError('Must specify a validation_triples_factory or a dataset for using early stopping.') if self.larger_is_better: self.improvement_criterion = larger_than_any_buffer_element else: self.improvement_criterion = smaller_than_any_buffer_element self.buffer = numpy.empty(shape=(self.patience,)) # Dummy result tracker if self.result_tracker is None: self.result_tracker = ResultTracker() def should_evaluate(self, epoch: int) -> bool: """Decide if evaluation should be done based on the current epoch and the internal frequency.""" return 0 == ((epoch - 1) % self.frequency) @property def number_results(self) -> int: """Count the number of results stored in the early stopper.""" return len(self.results) def should_stop(self) -> bool: """Evaluate on a metric and compare to past evaluations to decide if training should stop.""" # Evaluate metric_results = self.evaluator.evaluate( model=self.model, mapped_triples=self.evaluation_triples_factory.mapped_triples, use_tqdm=False, batch_size=self.evaluation_batch_size, slice_size=self.evaluation_slice_size, ) # After the first evaluation pass the optimal batch and slice size is obtained and saved for re-use self.evaluation_batch_size = self.evaluator.batch_size self.evaluation_slice_size = self.evaluator.slice_size self.result_tracker.log_metrics( metrics=metric_results.to_flat_dict(), step=self.number_evaluations, prefix='validation', ) result = metric_results.get_metric(self.metric) # Only check if enough values are already collected if self.number_evaluations >= self.patience: # Stop if the result did not improve more than delta for patience epochs. if not self.improvement_criterion(buffer=self.buffer, result=result, delta=self.delta): logger.info(f'Stopping early after {self.number_evaluations} evaluations with {self.metric}={result}') for stopped_callback in self.stopped_callbacks: stopped_callback(self, result) self.stopped = True return True # Update ring buffer self.buffer[self.number_evaluations % self.patience] = result self.number_evaluations += 1 # Append to history self.results.append(result) for continue_callback in self.continue_callbacks: continue_callback(self, result) return False def get_summary_dict(self) -> Mapping[str, Any]: """Get a summary dict.""" return dict( frequency=self.frequency, patience=self.patience, delta=self.delta, metric=self.metric, larger_is_better=self.larger_is_better, results=self.results, stopped=self.stopped, ) ``` #### File: pykeen/tests/test_leakage.py ```python import itertools as itt import unittest import numpy as np from pykeen.triples import TriplesFactory from pykeen.triples.leakage import Sealant, get_candidate_inverse_relations class TestLeakage(unittest.TestCase): """Tests for identifying inverse relationships and leakage.""" def test_count_inverse_frequencies(self): """Test counting inverse frequencies. Note, for r3, there are three triples, but the inverse triples are only counted once. """ t = [ ['a', 'r1', 'b'], # ['b', 'r2', 'c'], ['c', 'r2_inverse', 'b'], ['d', 'r2', 'e'], ['e', 'r2_inverse', 'd'], # ['g', 'r3', 'h'], ['h', 'r3_inverse', 'g'], ['i', 'r3', 'j'], ['k', 'r3', 'l'], ] triples_factory = TriplesFactory(triples=np.array(t, dtype=np.str)) frequencies = get_candidate_inverse_relations(triples_factory, minimum_frequency=0.0, symmetric=False) self.assertEqual( { ('r2', 'r2_inverse'): (2 / 2), ('r2_inverse', 'r2'): (2 / 2), ('r3', 'r3_inverse'): (1 / 3), ('r3_inverse', 'r3'): (1 / 1), }, dict(frequencies), ) def test_find_leak_assymetric(self): """Test finding test leakages with an asymmetric metric.""" n = 100 test_relation, test_relation_inverse = 'r', 'r_inverse' train_generated = list(itt.chain.from_iterable(( [ [str(i), test_relation, str(j + 1 + n)], [str(j + 1 + n), test_relation_inverse, str(i)], ] for i, j in zip(range(n), range(n)) ))) train_non_inverses = [ ['a', 'fine', 'b'], ['b', 'fine', 'c'], ] forwards_extras = [ ['-1', test_relation, '-2'], # this one leaks! ['-3', test_relation, '-4'], ] inverse_extras = [ ['-5', test_relation_inverse, '-6'], ] train = train_generated + train_non_inverses + forwards_extras + inverse_extras test = [ ['-2', test_relation_inverse, '-1'], # this one was leaked! ] train_factory = TriplesFactory(triples=np.array(train, dtype=np.str)) test_factory = TriplesFactory(triples=np.array(test, dtype=np.str)) sealant = Sealant(train_factory, symmetric=False) expected_forwards_frequency = n / (n + len(forwards_extras)) expected_inverse_frequency = n / (n + len(inverse_extras)) self.assertGreater(len(forwards_extras), len(inverse_extras)) self.assertLess(expected_forwards_frequency, expected_inverse_frequency, msg='Forwards frequency should be higher than inverse frequency') self.assertEqual( { (test_relation, test_relation_inverse): expected_forwards_frequency, (test_relation_inverse, test_relation): expected_inverse_frequency, }, dict(sealant.candidate_inverse_relations), ) self.assertIn(test_relation, sealant.inverses) self.assertEqual(test_relation_inverse, sealant.inverses[test_relation]) self.assertIn(test_relation_inverse, sealant.inverses) self.assertEqual(test_relation, sealant.inverses[test_relation_inverse]) self.assertIn( test_relation_inverse, sealant.inverse_relations_to_delete, msg='The wrong relation was picked for deletion', ) test_leaked = sealant.get_inverse_triples(test_factory) self.assertEqual(1, len(test_leaked)) self.assertEqual(('-2', test_relation_inverse, '-1'), tuple(test_leaked[0])) ``` #### File: pykeen/tests/test_pipeline.py ```python import unittest from pykeen.models import TransE from pykeen.models.base import Model from pykeen.pipeline import PipelineResult, pipeline from pykeen.regularizers import NoRegularizer, PowerSumRegularizer class TestPipeline(unittest.TestCase): """Test the pipeline.""" def test_pipeline(self): """Test the pipeline on TransE and nations.""" pipeline_result = pipeline( model='TransE', dataset='nations', ) self.assertIsInstance(pipeline_result, PipelineResult) self.assertIsInstance(pipeline_result.model, Model) self.assertIsInstance(pipeline_result.model.regularizer, NoRegularizer) def test_specify_regularizer(self): """Test a pipeline that uses a regularizer.""" pipeline_result = pipeline( model=TransE, dataset='nations', regularizer='powersum', ) self.assertIsInstance(pipeline_result, PipelineResult) self.assertIsInstance(pipeline_result.model, Model) self.assertIsInstance(pipeline_result.model.regularizer, PowerSumRegularizer) ```
{ "source": "John-Backwell/Crypto_price_prediction", "score": 3 }
#### File: John-Backwell/Crypto_price_prediction/combined_models.py ```python from math import comb from sys import exc_info import numpy as np from numpy.core.numeric import count_nonzero import pandas as pd from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from binary_classification_models import get_lasso_weights_scores from binary_classification_models import find_strongest_weighted_features from sklearn import linear_model from sklearn.ensemble import RandomForestClassifier from regression_models import plot_price_predictions from sklearn import tree def calculate_combined_model_accuracy(excel_file_1, excel_file_2, model_1,model_2,df_name,threshhold_func,func_arg2): """Combines a binary classification model with a regression model, and creates a combined decisions array that only holds values for where the models agreed: IE the binary model classified it as a predicted price rise, and the regression model predicted a price higher than the current closing price. Args: excel_file_1 excel_file_2 model_1 model_2 df_name threshhold_func func_arg2 Returns: combined decisions array, accuracy of combined decisions, what percentage of total opportunities for trading where taken by the combined model, actual values on whether price rose or fell. """ indices = get_lasso_weights_scores(excel_file_1,df_name,threshhold_func,func_arg2) df_1 = pd.read_csv(excel_file_1) df_2 = pd.read_csv(excel_file_2) X_1 = df_1[df_1.columns[10:]] X_1 = X_1.drop(X_1.columns[indices], axis=1) Y_1 = df_1["is higher lower"] X_2 = df_2[df_2.columns[10:]] Y_2 = df_2["next close"] split_num = round(0.9*len(X_1)) X_train_1, X_test_1 = X_1[0:split_num], X_1[split_num:] Y_train_1, Y_test_1 = Y_1[0:split_num], Y_1[split_num:] model_1.fit(X_train_1,Y_train_1) Y_predict_1 = model_1.predict(X_test_1) #print(accuracy_score(Y_test_1, Y_predict_1)*100) X_train_2, X_test_2 = X_2[0:split_num], X_2[split_num:] Y_train_2, Y_test_2 = Y_2[0:split_num], Y_2[split_num:] model_2.fit(X_train_2,Y_train_2) Y_predict_2 = model_2.predict(X_test_2) #print(mean_squared_error(Y_test_2, Y_predict_2,squared= False)) combined_decisions = [] close = df_2['close'] close = close[split_num:].tolist() for index, value in enumerate(Y_predict_1): if Y_predict_1[index] == 1 and Y_predict_2[index]>= close[index]: combined_decisions.append((index,1)) elif Y_predict_1[index] == 0 and Y_predict_2[index]<= close[index]: combined_decisions.append((index,0)) return combined_decisions, calculate_accuracy(combined_decisions,Y_test_1.tolist()), (len(combined_decisions)/len(Y_test_1)*100),Y_predict_1,Y_predict_2 def calculate_accuracy(combined_decisions, Y_test_1): """calculates percentage accuracy of a combined decisions array Args: combined_decisions: predicted values for combined model Y_test_1: True values Returns: percentage accuracy of predictions """ total_decisions = len(combined_decisions) correct_decisions = 0 for index, decision in combined_decisions: if decision == Y_test_1[index]: correct_decisions +=1 return correct_decisions / total_decisions * 100 def simulate_trading_period_naive(decisions, excel_file, starting_cash, starting_BTC): """Comparing the percentage profitability of a naive trading strategy (in this case buying and selling 1 BTC at a time) against just holding the starting BTC and cash throughout the test period. Args: decisions: decisions array excel_file starting_cash: how much cash the model starts with starting_BTC: how much btc the model starts with Returns: the percentage profit of the model compared to holding, how much BTC it ends test period with, how much cash """ running_BTC = starting_BTC running_cash = starting_cash price_df = pd.read_csv(excel_file) split_num = round(0.9*len(price_df)) close = price_df['close'] close = close[split_num:].tolist() for index, value in decisions: if value == 1: running_BTC, running_cash = buy_BTC(running_BTC,running_cash,close[index],1) elif value == 0: running_BTC, running_cash = sell_BTC(running_BTC,running_cash,close[index],1) percentage_profit = (((running_BTC * close[-1]) + running_cash) - ((starting_BTC * close[-1]) + starting_cash))/((starting_BTC * close[-1]) + starting_cash) return percentage_profit * 100, running_BTC,running_cash def buy_BTC(current_BTC, current_cash, price,num): if current_cash >= price * num: current_BTC = current_BTC + num current_cash = current_cash - (num *price) return current_BTC,current_cash def sell_BTC(current_BTC, current_cash, price,num): if current_BTC >= num: current_BTC = current_BTC - num current_cash = current_cash + (num*price) return current_BTC, current_cash if __name__ == "__main__": results = calculate_combined_model_accuracy("preprocessed_price_data_robust_features.csv","non_binary_all_features_minmax.csv",RandomForestClassifier(),tree.DecisionTreeRegressor(),"minMax",find_strongest_weighted_features,10) print(results[1]) print(results[24]) decisions = results[0] print(simulate_trading_period_naive(decisions,"preprocessed_price_data_robust_features.csv",10000000,10)) single_model_decisions = enumerate(results[-2]) regressor_predictions = enumerate(results[-1]) price_df = price_df = pd.read_csv("non_binary_all_features_minmax.csv") close = price_df['close'] split_num = round(0.9*len(price_df)) close = close[split_num:].tolist() regressor_decisions = [] for index, value in regressor_predictions: if value >= close[index]: regressor_decisions.append((index, 1)) else: regressor_decisions.append((index,0)) print(simulate_trading_period_naive(single_model_decisions,"preprocessed_price_data_robust_features.csv",10000000,10)) print(simulate_trading_period_naive(regressor_decisions,"non_binary_all_features_minmax.csv",10000000,10)) ``` #### File: John-Backwell/Crypto_price_prediction/regression_models.py ```python from textwrap import indent import numpy as np import pandas as pd from sklearn import neighbors from sklearn import linear_model from sklearn.preprocessing import PolynomialFeatures from sklearn import kernel_ridge from sklearn import tree from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt from binary_classification_models import get_lasso_weights_scores from binary_classification_models import find_strongest_weighted_features def generate_models(): #same format as in binary classifcation but different models used model_names = ["KNeighborsRegressor","LinearRegression","Lasso", "BayesRidge","KernalRidge","SGD","DecisionTree"] models = [neighbors.KNeighborsRegressor(),linear_model.LinearRegression(), linear_model.Lasso(alpha = 0.1,max_iter=100000),linear_model.BayesianRidge(), kernel_ridge.KernelRidge(alpha=0.1), linear_model.SGDRegressor(max_iter=100000),tree.DecisionTreeRegressor()] models_and_names = zip(model_names, models) return models_and_names def run_models(X_train, X_test, Y_train, Y_test, models_list, dataframe_name): results = [] for type, model in models_list: model.fit(X_train, Y_train) Y_predict = model.predict(X_test) mse = mean_squared_error(Y_test, Y_predict,squared= False) results.append([type, mse, dataframe_name]) plot_price_predictions(Y_predict, Y_test,type,type) title = type + " focused" plot_price_predictions(Y_predict[-100:],Y_test[-100:],type,title) return results def test_models_all_features(excel_file: str, dfs_name: str): models_and_names = generate_models() all_results = [] df = pd.read_csv(excel_file) X = df[df.columns[10:]] Y = df["next close"] split_num = round(0.9*len(X)) # 90/10 split on train / test X_train, X_test = X[0:split_num], X[split_num:] Y_train, Y_test = Y[0:split_num], Y[split_num:] all_results.append(run_models(X_train, X_test, Y_train, Y_test, models_and_names, dfs_name)) return all_results def plot_price_predictions(Y_predict, Y_true,title, saveName): x = [i for i in range(len(Y_predict))] plt.plot(x,Y_predict,'r-',label = 'Predicted Price') plt.plot(x,Y_true,'b-',label = 'Actual Price') plt.xlabel("Time") plt.ylabel("Price (USD)") plt.title = title plt.legend(loc="upper left") plt.savefig(saveName) plt.close() if __name__ == "__main__": dfs_name = "MinMax normalisation" print(test_models_all_features("non_binary_all_features_minmax.csv",dfs_name)) ```
{ "source": "johnbaillieul/Vision_based_Navigation_TTT", "score": 2 }
#### File: Vision_based_Navigation_TTT/nodes/optical_flow.py ```python import rospy from sensor_msgs.msg import Image from Vision_based_Navigation_TTT.msg import OpticalFlow from cv_bridge import CvBridgeError, CvBridge import cv2 import sys import numpy as np ################################################################################ # Extreme left and extreme right x_init_el = 0 y_init_el = 0 y_end_el = 0 y_init_er = 0 x_end_er = 0 y_end_er = 0 # Left and right x_end_l = 0 y_end_l = 0 y_init_l = 0 y_end_r = 0 x_init_r = 0 y_init_r = 0 def set_limit(img_width, img_height): # Extreme left and extreme right global x_init_el global y_init_el global y_end_el x_init_el = 0 y_init_el = 0 y_end_el = int(7.5 * img_height / 12) global x_end_er global y_end_er global y_init_er x_end_er = int(img_width) y_end_er = int(7.5 * img_height / 12) y_init_er = 0 # Left and right global x_end_l global y_end_l global y_init_l x_end_l = int(4 * img_width / 12) y_end_l = int(7 * img_height / 12) y_init_l = int(1 * img_height / 12) global x_init_r global y_init_r global y_end_r x_init_r = int(8 * img_width / 12) y_init_r = int(1 * img_height / 12) y_end_r = int(7 * img_height / 12) ################################################################################ def draw_optical_flow_field(gray_image, points_old, points_new, flow, dt): color_img = cv2.cvtColor(gray_image, cv2.COLOR_GRAY2BGR) color_red = [0, 255, 0] # bgr colorspace linewidth = 3 print("Old points " + str(len(points_old))) print("New points " + str(len(points_new))) for i in range(len(points_new)): x_init = points_old[i, 0] y_init = points_old[i, 1] x_end = points_new[i, 0] y_end = points_new[i, 1] cv2.line(color_img, (x_init, y_init), (x_end, y_end), color_red, linewidth) cv2.namedWindow('Optical Flow', cv2.WINDOW_NORMAL) cv2.resizeWindow('Optical Flow', (600, 600)) cv2.imshow('Optical Flow', color_img) cv2.waitKey(10) ################################################################################ class OFCalculator: def __init__(self, param): ########## IMPORTANT PARAMETERS: ########## self.image_sub_name = "front/image_raw" self.num_ext_features = 250 self.num_cen_features = 100 self.min_feat_threshold = 1.0 ########################################### # Initialize Image acquisition self.bridge = CvBridge() # Verbose self.show = int(param) # Previous Image self.prev_image = None # Previous key points self.prev_kps = np.array([], dtype='f') # Previous time instant self.prev_time = 0 # Masks self.roi_el = np.array([]) self.roi_er = np.array([]) self.roi_c = np.array([]) # Params for ShiTomasi corner detection # self.feature_params = dict(maxCorners=600, # qualityLevel=0.15, # minDistance=0, # blockSize=10) # <NAME> Optic Flow parameters self.lk_params = dict(winSize=(15, 15), maxLevel=3, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # ORB Detector/Descriptor initialization self.orb_extreme = cv2.ORB_create(self.num_ext_features) self.orb_center = cv2.ORB_create(self.num_cen_features) # To enable the tracking self.tracking = False self.min_num_features = (2*self.num_ext_features + self.num_cen_features)/2 # Raw Image Subscriber Jackal PointGrey self.image_sub = rospy.Subscriber(self.image_sub_name, Image, self.callback) # Optical flow message Publisher self.optic_flow_pub = rospy.Publisher("optical_flow", OpticalFlow, queue_size=10) def callback(self, data): rospy.loginfo(rospy.get_caller_id() + "ok1") try: curr_image = self.bridge.imgmsg_to_cv2(data, "mono8") except CvBridgeError as e: print(e) return # Get time stamp secs = data.header.stamp.secs nsecs = data.header.stamp.nsecs curr_time = float(secs) + float(nsecs) * 1e-9 frequency = 1.0 / (curr_time - self.prev_time) print("Frequency: " + str(frequency)) if self.prev_image is None: self.prev_image = curr_image self.prev_time = curr_time set_limit(data.width, data.height) # creating ROI self.roi_el = curr_image[y_init_el:y_end_el, x_init_el:x_end_l] self.roi_er = curr_image[y_init_er:y_end_er, x_init_r:x_end_er] self.roi_c = curr_image[y_init_l:y_end_r, x_end_l:x_init_r] keypoints_el = np.array([]) keypoints_el = np.append(keypoints_el, self.orb_extreme.detect(self.roi_el)) if (x_init_el != 0) or (y_init_el != 0): for i in range(np.size(keypoints_el)): tmp = list(keypoints_el[i].pt) tmp[0] += x_init_el tmp[1] += y_init_el keypoints_el[i].pt = tuple(tmp) keypoints_er = np.array([]) keypoints_er = np.append(keypoints_er, self.orb_extreme.detect(self.roi_er)) if (x_init_r != 0) or (y_init_er != 0): for i in range(np.size(keypoints_er)): tmp = list(keypoints_er[i].pt) tmp[0] += x_init_r tmp[1] += y_init_er keypoints_er[i].pt = tuple(tmp) keypoints_c = np.array([]) keypoints_c = np.append(keypoints_c, self.orb_center.detect(self.roi_c)) if (x_end_l != 0) or (y_init_l != 0): for i in range(np.size(keypoints_c)): tmp = list(keypoints_c[i].pt) tmp[0] += x_end_l tmp[1] += y_init_l keypoints_c[i].pt = tuple(tmp) keypoints = np.array([]) keypoints = np.append(keypoints, keypoints_el) keypoints = np.append(keypoints, keypoints_er) keypoints = np.append(keypoints, keypoints_c) if np.size(keypoints) > 0: p0 = cv2.KeyPoint_convert(keypoints) self.prev_kps = np.float32(p0.reshape(-1, 1, 2)) self.tracking = True else: self.prev_kps = np.array([], dtype='f') print("Features detected: 0") return if self.tracking: tracked_features, status, error = cv2.calcOpticalFlowPyrLK(self.prev_image, curr_image, self.prev_kps, None, **self.lk_params) # Select good points good_kps_new = tracked_features[status == 1] good_kps_old = self.prev_kps[status == 1] print("len matches "+ str(len(good_kps_new))) if len(good_kps_new) < self.min_feat_threshold*np.size(self.prev_kps): self.tracking = False self.prev_kps = np.array([], dtype='f') elif np.size(good_kps_new) <= self.min_num_features: self.tracking = False self.prev_kps = np.array([], dtype='f') else: # Get time between images dt = curr_time - self.prev_time # Calculate flow field flow = good_kps_new - good_kps_old # print("Flow: " + str(flow)) # Draw the flow field if self.show == 1: draw_optical_flow_field(curr_image, good_kps_old, good_kps_new, flow, dt) # Publish Optical Flow data to rostopic msg = OpticalFlow() msg.header.stamp.secs = secs msg.header.stamp.nsecs = nsecs msg.height = data.height msg.width = data.width msg.dt = dt # in msec msg.x = good_kps_old[:, 0] msg.y = good_kps_old[:, 1] msg.vx = flow[:, 0] / dt msg.vy = flow[:, 1] / dt self.optic_flow_pub.publish(msg) self.prev_image = curr_image self.prev_kps = np.float32(good_kps_new.reshape(-1, 1, 2)) self.prev_time = curr_time else: print("new keyframe!") # creating ROI self.roi_el = curr_image[y_init_el:y_end_el, x_init_el:x_end_l] self.roi_er = curr_image[y_init_er:y_end_er, x_init_r:x_end_er] self.roi_c = curr_image[y_init_l:y_end_r, x_end_l:x_init_r] keypoints_el = np.array([]) keypoints_el = np.append(keypoints_el, self.orb_extreme.detect(self.roi_el)) if (x_init_el != 0) or (y_init_el != 0): for i in range(np.size(keypoints_el)): tmp = list(keypoints_el[i].pt) tmp[0] += x_init_el tmp[1] += y_init_el keypoints_el[i].pt = tuple(tmp) keypoints_er = np.array([]) keypoints_er = np.append(keypoints_er, self.orb_extreme.detect(self.roi_er)) if (x_init_r != 0) or (y_init_er != 0): for i in range(np.size(keypoints_er)): tmp = list(keypoints_er[i].pt) tmp[0] += x_init_r tmp[1] += y_init_er keypoints_er[i].pt = tuple(tmp) keypoints_c = np.array([]) keypoints_c = np.append(keypoints_c, self.orb_center.detect(self.roi_c)) if (x_end_l != 0) or (y_init_l != 0): for i in range(np.size(keypoints_c)): tmp = list(keypoints_c[i].pt) tmp[0] += x_end_l tmp[1] += y_init_l keypoints_c[i].pt = tuple(tmp) keypoints = np.array([]) keypoints = np.append(keypoints, keypoints_el) keypoints = np.append(keypoints, keypoints_er) keypoints = np.append(keypoints, keypoints_c) if np.size(keypoints) > 0: p0 = cv2.KeyPoint_convert(keypoints) self.prev_kps = np.float32(p0.reshape(-1, 1, 2)) self.tracking = True else: self.prev_kps = np.array([], dtype='f') print("Features detected: 0") self.prev_image = curr_image self.prev_time = curr_time def optical_flow(param): rospy.init_node("optical_flow", anonymous=False) OFCalculator(param) rospy.spin() if __name__ == '__main__': if len(sys.argv) < 2: parameter = str(0) print("Parameter = 1, verbose mode") else: parameter = sys.argv[1] optical_flow(parameter) ``` #### File: Vision_based_Navigation_TTT/scripts/Bernoulli_Textures.py ```python import random import numpy as np import cv2 def create_image(p): # let's create a heigth x width matrix with all pixels in black color heigth = 1080 width = 1920 diameter = 50 x_correction = int(0.7 * diameter / 2) y_correction = int(0.7 * diameter / 2) img = np.ones((heigth, width, 3), np.uint8)*255 hcount = int(diameter/2) while hcount < (heigth-3): wcount = int(diameter/2) while wcount < (width-3): if random.uniform(0, 1) >= (1-p): shape = random.uniform(0, 3) if shape < 1.0: cv2.circle(img, (wcount, hcount), int(diameter/2), [0, 0, 0], -1) elif shape < 2.0: cv2.rectangle(img, (wcount - x_correction, hcount - y_correction), (wcount + x_correction, hcount + y_correction), [0, 0, 0], -1) else: pt1 = (wcount, hcount-y_correction) pt2 = (wcount-x_correction, hcount+y_correction) pt3 = (wcount+x_correction, hcount+y_correction) triangle_cnt = np.array([pt1, pt2, pt3]) cv2.drawContours(img, [triangle_cnt], 0, (0, 0, 0), -1) # img[hcount, wcount] = [255, 255, 255] wcount += diameter hcount += diameter p = int(p * 100) # save our image as a "jpg" image cv2.imwrite("bernoulli" + str(p) + "M" + ".png", img) if __name__ == '__main__': create_image(0.08) ```
{ "source": "johnbanq/minecraft-symbol-analyzer", "score": 3 }
#### File: johnbanq/minecraft-symbol-analyzer/analyzer_viewer.py ```python import pickle from pprint import pprint from my_analyzer.analysis_result import AnalysisResult, AnalysisClass, FunctionDecl, VariableDecl, SimpleSymbolDecl def view_my_analyzed(analyzed: AnalysisResult): for var in analyzed.variables: print(var.class_name+' '+var.symbol[2]) pprint("total of %i variables"%len(analyzed.variables)) def main(): with open("data/analyzed.pk", 'rb') as af: result = pickle.load(af) view_my_analyzed(result) if __name__ == '__main__': main() ```
{ "source": "johnbanq/modl", "score": 2 }
#### File: modl/decomposition/image.py ```python from math import sqrt import time from modl.feature_extraction.image import LazyCleanPatchExtractor from modl.input_data.image import scale_patches from sklearn.base import BaseEstimator from sklearn.utils import check_random_state, gen_batches from .dict_fact import DictFact class ImageDictFact(BaseEstimator): methods = {'masked': {'G_agg': 'masked', 'Dx_agg': 'masked'}, 'dictionary only': {'G_agg': 'full', 'Dx_agg': 'full'}, 'gram': {'G_agg': 'masked', 'Dx_agg': 'masked'}, # 1st epoch parameters 'average': {'G_agg': 'average', 'Dx_agg': 'average'}, 'reducing ratio': {'G_agg': 'masked', 'Dx_agg': 'masked'}} settings = {'dictionary learning': {'comp_l1_ratio': 0, 'code_l1_ratio': 1, 'comp_pos': False, 'code_pos': False, 'with_std': True, 'with_mean': True}, 'NMF': {'comp_l1_ratio': 0, 'code_l1_ratio': 1, 'comp_pos': True, 'code_pos': True, 'with_std': True, 'with_mean': False}} def __init__(self, method='masked', setting='dictionary learning', patch_size=(8, 8), batch_size=100, buffer_size=None, step_size=1e-3, n_components=50, alpha=0.1, learning_rate=0.92, reduction=10, n_epochs=1, random_state=None, callback=None, max_patches=None, verbose=0, n_threads=1, ): self.n_threads = n_threads self.step_size = step_size self.verbose = verbose self.callback = callback self.random_state = random_state self.n_epochs = n_epochs self.reduction = reduction self.learning_rate = learning_rate self.alpha = alpha self.n_components = n_components self.batch_size = batch_size self.method = method self.setting = setting self.patch_size = patch_size self.buffer_size = buffer_size self.max_patches = max_patches def fit(self, image, y=None): self.random_state = check_random_state(self.random_state) if self.method != 'sgd': method = ImageDictFact.methods[self.method] G_agg = method['G_agg'] Dx_agg = method['Dx_agg'] reduction = self.reduction optimizer = 'variational' else: optimizer = 'sgd' reduction = 1 G_agg = 'full' Dx_agg = 'full' setting = ImageDictFact.settings[self.setting] comp_l1_ratio = setting['comp_l1_ratio'] code_l1_ratio = setting['code_l1_ratio'] comp_pos = setting['comp_pos'] code_pos = setting['code_pos'] with_std = setting['with_std'] with_mean = setting['with_mean'] if self.buffer_size is None: buffer_size = self.batch_size * 10 else: buffer_size = self.buffer_size self.dict_fact_ = DictFact(n_epochs=self.n_epochs, random_state=self.random_state, n_components=self.n_components, comp_l1_ratio=comp_l1_ratio, learning_rate=self.learning_rate, comp_pos=comp_pos, optimizer=optimizer, step_size=self.step_size, code_pos=code_pos, batch_size=self.batch_size, G_agg=G_agg, Dx_agg=Dx_agg, reduction=reduction, code_alpha=self.alpha, code_l1_ratio=code_l1_ratio, tol=1e-2, callback=self._callback, verbose=self.verbose, n_threads=self.n_threads) if self.verbose: print('Preparing patch extraction') patch_extractor = LazyCleanPatchExtractor( patch_size=self.patch_size, max_patches=self.max_patches, random_state=self.random_state) patch_extractor.fit(image) n_patches = patch_extractor.n_patches_ self.patch_shape_ = patch_extractor.patch_shape_ if self.verbose: print('Fitting dictionary') init_patches = patch_extractor.partial_transform(batch= self.n_components) init_patches = _flatten_patches(init_patches, with_std=with_std, with_mean=with_mean, copy=False) self.dict_fact_.prepare(n_samples=n_patches, X=init_patches) for i in range(self.n_epochs): if self.verbose: print('Epoch %i' % (i + 1)) if i >= 1: if self.verbose: print('Shuffling dataset') permutation = self.dict_fact_.shuffle() patch_extractor.shuffle(permutation) buffers = gen_batches(n_patches, buffer_size) if self.method == 'gram' and i == 4: self.dict_fact_.set_params(G_agg='full', Dx_agg='average') if self.method == 'reducing ratio': reduction = 1 + (self.reduction - 1) / sqrt(i + 1) self.dict_fact_.set_params(reduction=reduction) for j, buffer in enumerate(buffers): buffer_size = buffer.stop - buffer.start patches = patch_extractor.partial_transform(batch=buffer) patches = _flatten_patches(patches, with_mean=with_mean, with_std=with_std, copy=False) self.dict_fact_.partial_fit(patches, buffer) return self def transform(self, patches): with_std = ImageDictFact.settings[self.setting]['with_std'] with_mean = ImageDictFact.settings[self.setting]['with_mean'] patches = _flatten_patches(patches, with_mean=with_mean, with_std=with_std, copy=True) return self.dict_fact_.transform(patches) def score(self, patches): with_std = ImageDictFact.settings[self.setting]['with_std'] with_mean = ImageDictFact.settings[self.setting]['with_mean'] patches = _flatten_patches(patches, with_mean=with_mean, with_std=with_std, copy=True) return self.dict_fact_.score(patches) @property def n_iter_(self): # Property for callback purpose return self.dict_fact_.n_iter_ @property def time_(self): # Property for callback purpose return self.dict_fact_.time_ @property def components_(self): # Property for callback purpose components_shape = (self.n_components,) + self.patch_shape_ return self.dict_fact_.components_.reshape( components_shape) def _callback(self, *args): if self.callback is not None: self.callback(self) def _flatten_patches(patches, with_mean=True, with_std=True, copy=False): n_patches = patches.shape[0] patches = scale_patches(patches, with_mean=with_mean, with_std=with_std, copy=copy) patches = patches.reshape((n_patches, -1)) return patches class DictionaryScorer: def __init__(self, test_data, info=None): self.start_time = time.clock() self.test_data = test_data self.test_time = 0 self.time = [] self.cpu_time = [] self.score = [] self.iter = [] self.info = info def __call__(self, dict_fact): test_time = time.clock() score = dict_fact.score(self.test_data) self.test_time += time.clock() - test_time this_time = time.clock() - self.start_time - self.test_time self.time.append(this_time) self.score.append(score) self.iter.append(dict_fact.n_iter_) self.cpu_time.append(dict_fact.time_) if self.info is not None: self.info['time'] = self.cpu_time self.info['score'] = self.score self.info['iter'] = self.iter ``` #### File: modl/plotting/image.py ```python import numpy as np import matplotlib.cm as cm from math import ceil, sqrt def plot_patches(fig, patches): if patches.ndim == 4: channel_step = patches.shape[3] // 3 # patches = np.concatenate([np.sum(patches[:, :, :, i * channel_step: # (i + 1) * channel_step], # axis=3)[..., np.newaxis] # for i in range(3)], axis=3) if patches.shape[3] == 1: patches = patches[:, :, :, 0] elif patches.shape[3] >= 3: patches = patches[:, :, :, :3] patches = np.rollaxis(patches, 3, 2).reshape( (patches.shape[0], patches.shape[1], patches.shape[2] * 3)) patches = patches[:256] side_size =ceil(sqrt(patches.shape[0])) for i, patch in enumerate(patches): ax = fig.add_subplot(side_size, side_size, i + 1) ax.imshow( patch, interpolation='nearest') ax.set_xticks(()) ax.set_yticks(()) fig.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) return fig def plot_single_patch(ax, patch, x=3, y=3, positive=True, average=False): if not positive: patch -= patch.mean(axis=(0, 1))[np.newaxis, np.newaxis, :] n_channel = x * y patch = patch.copy() std = np.sqrt((patch ** 2).sum(axis=(0, 1))) std[std == 0] = 0 patch /= std[np.newaxis, np.newaxis, :] channel_step = patch.shape[2] // n_channel if average: patch = np.concatenate([np.sum(patch[:, :, i * channel_step: (i + 1) * channel_step], axis=2)[..., np.newaxis] for i in range(n_channel)], axis=2) patch = patch[:, :, np.linspace(0, patch.shape[2] - 1, n_channel).astype('int')] squares_patch = np.zeros( (x * patch.shape[0], y * patch.shape[1])) idx = 0 for i in range(x): for j in range(y): if idx < patch.shape[2]: squares_patch[i * patch.shape[0]:(i + 1) * patch.shape[0], j * patch.shape[1]:(j + 1) * patch.shape[1]] = patch[:, :, idx] idx += 1 ax.imshow(squares_patch, interpolation='nearest') for j in range(1, y): ax.axvline(j * patch.shape[1], c='white', linewidth=1) for i in range(1, x): ax.axhline(i * patch.shape[0] - 1, c='white', linewidth=1) ax.set_xticks(()) ax.set_yticks(()) for side in ["top", "right", "left", "bottom"]: ax.spines[side].set_visible(False) return ax ``` #### File: math/tests/test_enet.py ```python import numpy as np from numpy import sqrt from numpy.testing import assert_array_almost_equal, assert_almost_equal from sklearn.utils import check_random_state from modl.utils.math.enet import enet_norm, enet_projection, enet_scale def _enet_norm_for_projection(v, gamma): return np.sum(v * (1 + gamma / 2 * v)) def enet_norm_slow(v, l1_ratio=0.1): if l1_ratio == 0: return sqrt(np.sum(v ** 2)) b_abs = np.abs(v) return np.sum(b_abs * (l1_ratio + b_abs * (1 - l1_ratio))) def enet_projection_slow(v, radius=1, l1_ratio=0.1): """Projection on the elastic-net ball **References:** <NAME>, <NAME>, <NAME>, <NAME>, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) """ random_state = check_random_state(None) if l1_ratio == 0: return v / sqrt(np.sum(v ** 2)) gamma = 2 / l1_ratio - 2 radius /= l1_ratio m = v.shape[0] b_abs = np.abs(v) norm = _enet_norm_for_projection(b_abs, gamma) if norm <= radius: return v else: s = 0 rho = 0 U = np.arange(m) mask = np.ones(m, dtype=np.bool) mask_non_zero = mask.nonzero()[0] while mask_non_zero.shape[0] != 0: k = random_state.randint(mask_non_zero.shape[0]) idx = mask_non_zero[k] k = U[idx] sel = b_abs < b_abs[k] G = U[~sel * mask] d_rho = G.shape[0] d_s = _enet_norm_for_projection(b_abs[G], gamma) if s + d_s - (rho + d_rho) * (1 + gamma / 2 * b_abs[k]) * b_abs[k]\ < radius * (1 + gamma * b_abs[k]) ** 2: s += d_s rho += d_rho mask *= sel else: mask *= ~sel mask[idx] = False mask_non_zero = mask.nonzero()[0] if gamma != 0: a = gamma ** 2 * radius + gamma * rho * 0.5 b_ = 2 * radius * gamma + rho c = radius - s l = (-b_ + np.sqrt(b_ ** 2 - 4 * a * c)) / (2*a) else: l = (s - radius) / rho b_sign = np.sign(v) b_sign[b_sign == 0] = 1 return b_sign * np.maximum(np.zeros_like(b_abs), b_abs - l)\ / (1 + l * gamma) def test_slow_enet_norm(): norms = np.zeros(10) norms2 = np.zeros(10) random_state = check_random_state(0) for i in range(10): a = random_state.randn(10000) norms[i] = enet_norm_slow(a, l1_ratio=0.1) norms2[i] = (1 - 0.1) * (a ** 2).sum() + 0.1 * np.abs(a).sum() assert_array_almost_equal(norms, norms2) def test_slow_enet_projection_norm(): norms = np.zeros(10) random_state = check_random_state(0) for i in range(10): a = random_state.randn(10000) b = np.asarray(enet_projection_slow(a, radius=1, l1_ratio=0.1)) norms[i] = enet_norm_slow(b, l1_ratio=0.1) assert_array_almost_equal(norms, np.ones(10)) def test_enet_projection_norm(): random_state = check_random_state(0) norms = np.zeros(10) for i in range(10): a = random_state.randn(20000) a /= np.sqrt(np.sum(a ** 2)) c = np.zeros(20000) enet_projection(a, c, 1, 0.15) norms[i] = enet_norm(c, l1_ratio=0.15) assert_array_almost_equal(norms, np.ones(10)) def test_enet_projection(): c = np.empty((10, 100)) b = np.empty((10, 100)) random_state = check_random_state(0) for i in range(10): a = random_state.randn(100) b[i, :] = enet_projection_slow(a, radius=1, l1_ratio=0.1) enet_projection(a, c[i], radius=1, l1_ratio=0.1) assert_array_almost_equal(c, b, 4) def test_fast_enet_l2_ball(): random_state = check_random_state(0) norms = np.zeros(10) for i in range(10): a = random_state.randn(100) c = np.zeros(100) enet_projection(a, c, 2, 0.0) norms[i] = np.sqrt(np.sum(c ** 2)) assert_array_almost_equal(norms, np.ones(10) * sqrt(2)) for i in range(10): a = random_state.randn(100) a /= np.sqrt(np.sum(a ** 2)) * 10 enet_projection(a, c, 2, 0.0) assert_array_almost_equal(a, c) def test_enet_l1_ball(): random_state = check_random_state(0) norms = np.zeros(10) for i in range(10): a = random_state.randn(100) b = np.zeros(100) enet_projection(a, b, 1, 1.0) norms[i] = np.sum(np.abs(b)) assert_array_almost_equal(norms, np.ones(10)) def test_enet_scale(): random_state = check_random_state(0) a = random_state.randn(100) for r in [1., 2.]: for l1_ratio in [0., 0.5, 1.]: enet_scale(a, l1_ratio, r) norm = enet_norm(a, l1_ratio) assert_almost_equal(norm, r) ``` #### File: recsys/tests/test_cross_validation.py ```python import scipy.sparse as sp from numpy.testing import assert_equal from modl.utils.recsys.cross_validation import ShuffleSplit def test_shuffle_split(): X = [[3, 0, 0, 1], [2, 0, 5, 0], [0, 4, 3, 0], [0, 0, 2, 0]] X = sp.coo_matrix(X) cv = ShuffleSplit(n_iter=10) for X_tr, X_te in cv.split(X): assert_equal(X.shape, X_tr.shape) assert_equal(X.shape, X_te.shape) assert_equal(X.data.shape[0], X_tr.data.shape[0] + X_te.data.shape[0]) ``` #### File: modl/utils/system.py ```python import os def get_cache_dirs(cache_dir=None): """ Returns the directories in which modl stores its cache This is typically useful for the end-user to check where the cache is stored. Parameters ---------- cache_dir: string, optional Path of the cache directory. Used to force cache storage in a specified location. Default: None Returns ------- paths: list of strings Paths of the dataset directories. Notes ----- This function retrieves the datasets directories using the following priority : 1. the keyword argument data_dir 2. the global environment variable SHARED_CACHE 3. the user environment variable CACHE 4. modl_data in the user home folder """ paths = [] # Check data_dir which force storage in a specific location if cache_dir is not None: paths.extend(cache_dir.split(os.pathsep)) # If data_dir has not been specified, then we crawl default locations if cache_dir is None: global_data = os.getenv('SHARED_CACHE') if global_data is not None: paths.extend(global_data.split(os.pathsep)) local_data = os.getenv('CACHE') if local_data is not None: paths.extend(local_data.split(os.pathsep)) paths.append(os.path.expanduser('~/cache')) return paths def get_output_dir(data_dir=None): """ Returns the directories in which cogspaces store results. Parameters ---------- data_dir: string, optional Path of the data directory. Used to force data storage in a specified location. Default: None Returns ------- paths: list of strings Paths of the dataset directories. Notes ----- This function retrieves the datasets directories using the following priority : 1. the keyword argument data_dir 2. the global environment variable OUTPUT_MODL_DIR 4. output/modl in the user home folder """ paths = [] # Check data_dir which force storage in a specific location if data_dir is not None: return str(data_dir) else: # If data_dir has not been specified, then we crawl default locations output_dir = os.getenv('MODL_OUTPUT') if output_dir is not None: return str(output_dir) return os.path.expanduser('~/output/modl') ```
{ "source": "johnbanq/psbody-mesh-build-script", "score": 3 }
#### File: psbody-mesh-build-script/install_psbody/infra.py ```python import argparse import contextlib import logging import os import re import shutil import stat import subprocess import sys from logging import getLogger from typing import List # global variables # log = getLogger("install_script") do_not_cleanup = False yes_everything = False # functions # def get_do_not_cleanup(): # TODO: do it the right way return do_not_cleanup def install_script_main( package_name, prepare_environment, execute_build, validate_build ): """ entry point(main function) of the entire build script. this function accepts: * a context managers function: prepare_environment * a function: execute_build * a function: validate_build ideally, you should: * put git clone & dependency install in prepare_environment * put build logic in execute_build * put tests in validate_build the build process is structured as follows: * detect conda environment * run prepare_environment() * re-activate conda environment to refresh environment variables * run execute_build() * run cleanup in prepare_environment() * re-activate conda environment to refresh environment variables * run validate_build() note: the re-activation sequence is used to give conda a chance to update all the environs note: and it is done by using a trampoline script, note: and indicating its in reactivated environment by additional environment """ global do_not_cleanup, yes_everything # parse arguments # parser = argparse.ArgumentParser(description='%s installation script' % package_name) parser.add_argument( '--no-cleanup', action='store_true', help='do not cleanup the dependencies & files when exiting, helpful for debugging' ) parser.add_argument( '--verbose', action='store_true', help='print debug log along the way' ) parser.add_argument( '--yes', action='store_true', help='say yes to all options in the install' ) parser.add_argument( '--environment', type=str, default="prepare_environment", help='INTERNAL FLAG: DO NOT TOUCH, used to indicate reactivated environment' ) args = parser.parse_args() # apply arguments # do_not_cleanup = args.no_cleanup yes_everything = args.yes if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) script_path = os.path.abspath(__file__) segments = os.path.normpath(script_path).split(os.path.sep) has_pyz = any([s.endswith(".pyz") for s in segments]) if has_pyz: # because os.path treats C:// as 'C:', '', concat segments will lead to wrong path! while not segments[-1].endswith(".pyz"): script_path = os.path.dirname(script_path) segments.pop() # main # if args.environment == "prepare_environment": env_name = detect_conda_environment() log.debug("setting up prepare_environment") with prepare_environment(): run_with_reactivated_environment( env_name, [ "python", script_path, *sys.argv[1:], "--environment", "execute_build" ], cleanup=not do_not_cleanup ) log.debug("tearing down prepare_environment") run_with_reactivated_environment( env_name, [ "python", script_path, *sys.argv[1:], "--environment", "validate_build" ], cleanup=not do_not_cleanup ) elif args.environment == "execute_build": log.debug("running execute_build") execute_build() elif args.environment == "validate_build": log.debug("running validate_build") validate_build() def detect_conda_environment(): """ detect the current conda environment, and return its name """ log.info("detecting conda environment") env_name = parse_conda_info("active environment") log.debug("detected environment name: %s", env_name) if env_name == "None": log.fatal("you are not in a conda environment! Try conda activate base to enter the base environment!") raise RuntimeError("cannot run the script outside a conda environment!") else: log.info("detected environment: %s", env_name) return env_name def detect_conda_activate_script(): """ detect the path to conda activate script, used in trampoline to activate environment """ log.debug("detecting conda activation script location") base_folder = parse_conda_info("base environment") if base_folder.endswith(")"): base_folder = base_folder[:base_folder.rfind("(")] base_folder = base_folder.strip() if os.name != "nt": script = os.path.join(base_folder, "bin", "activate") else: script = os.path.join(base_folder, "Scripts", "activate.bat") log.debug("detected: %s", script) return script def parse_conda_info(key: str): """ parse value of a key in the output of conda info :rtype: str """ try: result = run(["conda", "info"], stdout=subprocess.PIPE) except subprocess.CalledProcessError as e: log.fatal("could not run conda info, do you have conda installed?") raise e lines = result.stdout.decode(encoding=sys.getdefaultencoding()).splitlines() lines = [re.match("%s +: +(?P<value>.*)" % key, line.strip()) for line in lines] lines = [line for line in lines if line] assert len(lines) == 1, "exactly 1 %s line expected, but got %i !" % (key, len(lines)) value = lines[0].group("value").strip() return value TRAMPOLINE_SCRIPT_WINDOWS = """\ @echo off @call %(activate_script_path)s %(environment)s if errorlevel 1 exit 1 %(command)s if errorlevel 1 exit 1 """ TRAMPOLINE_SCRIPT_BASH = """\ #!/usr/bin/env bash source %(activate_script_path)s %(environment)s %(command)s """ def run_with_reactivated_environment(env_name: str, commands: List[str], cleanup=True): """ run with re-activated conda environment """ if os.name == "nt": script_name = ".bqinstall.trampoline.bat" else: script_name = ".bqinstall.trampoline.sh" try: # write script # with open(script_name, "w") as f: log.debug("writing trampoline script: %s", f.name) template = TRAMPOLINE_SCRIPT_WINDOWS if os.name == "nt" else TRAMPOLINE_SCRIPT_BASH template = template % { "activate_script_path": detect_conda_activate_script(), "environment": env_name, "command": (" ".join(commands)) } for line in template.splitlines(): line = line.strip() f.write(line+os.linesep) # run script # log.debug("jumping into the trampoline, wee!") if os.name == "nt": run([script_name], stdout=None, stderr=None) # force stdout & stderr else: run(["chmod", "+x", script_name]) run(["./" + script_name], stdout=None, stderr=None) # force stdout & stderr finally: if cleanup and os.path.exists(script_name): os.unlink(script_name) def run(*args, **kwargs): """ utils for running subprocess.run, will remain silent until something when wrong note: will auto enable shell on windows as most commands seems to require it to function on Github CI """ try: # enable shell on windows if os.name == "nt": kwargs["shell"] = True # override-able stdout/stderr config normal_pipe_or_not = None if log.getEffectiveLevel() == logging.DEBUG else subprocess.PIPE kwargs["stdout"] = kwargs.get("stdout", normal_pipe_or_not) kwargs["stderr"] = kwargs.get("stderr", normal_pipe_or_not) return subprocess.run(*args, **kwargs, check=True) except subprocess.CalledProcessError as e: log.error("error while executing: %s", str(e.args)) log.error("stdout: \n%s", e.stdout.decode("UTF-8") if e.stdout else "None") log.error("stderr: \n%s", e.stderr.decode("UTF-8") if e.stderr else "None") raise e @contextlib.contextmanager def inside_git_repository(repo_url, repo_hash=None, dir_name=".bqinstall.repo", cleanup=True): """ clone a git repo into the specified directory and cd into it, then cleanup on exit :type cleanup: bool :type dir_name: str :type repo_url: str :type repo_hash: str | None """ if os.path.exists(dir_name): log.debug("path exists, removing it") rmtree_git_repo(dir_name) run(["git", "clone", repo_url, dir_name]) os.chdir(dir_name) run(["git", "checkout", repo_hash if repo_hash else ""]) try: yield finally: os.chdir("..") if cleanup: rmtree_git_repo(dir_name) def rmtree_git_repo(dirpath: str): # note: because you can't programmatically delete .git on windows in the naive way # see: https://my.oschina.net/hechunc/blog/3078597 def readonly_handler(func, path, execinfo): exc, exc_inst, _ = execinfo if os.name == "nt" and isinstance(exc_inst, PermissionError) and exc_inst.args[0] == 13: os.chmod(path, stat.S_IWRITE) func(path) else: raise shutil.rmtree(dirpath, onerror=readonly_handler) def upgrade_pip(): def enhance_on_win(lst): if os.name == "nt": # make windows happy and stop blocking us lst.insert(-2, "--user") return lst run(enhance_on_win(["python", "-m", "pip", "install", "--upgrade", "pip"])) ``` #### File: psbody-mesh-build-script/install_psbody/__main__.py ```python import contextlib import os import shutil from infra import log, install_script_main, run, inside_git_repository, upgrade_pip, \ get_do_not_cleanup from install_pyopengl import install_pyopengl # preparing environment # REPO_URL = "https://github.com/johnbanq/mesh.git" REPO_REVISION = "0d876727d5184161ed085bd3ef74967441b0a0e8" REPO_DIR = ".bqinstall.mpi-is.mesh" @contextlib.contextmanager def psbody_prepare_environment(): with inside_git_repository( repo_url=REPO_URL, repo_hash=REPO_REVISION, dir_name=REPO_DIR, cleanup=not get_do_not_cleanup() ): install_cxx_compiler() install_boost() install_pyopengl() yield def install_cxx_compiler(): # note: this has to be permanently installed as uninstalling it caused an regression run(["conda", "install", "-y", "-c", "conda-forge", "cxx-compiler"]) def install_boost(): log.info("installing boost") run(["conda", "install", "-y", "boost"]) # execute build # def psbody_execute_build(): log.info("installing python dependencies") # we need a newer pip to do all the installation upgrade_pip() run([ "pip", "install", "--upgrade", "-r", "requirements.txt" ]) log.info("running setup.py") if os.name == "nt": boost_location = os.path.join(os.environ["CONDA_PREFIX"], "Library", "include") else: boost_location = os.path.join(os.environ["CONDA_PREFIX"], "include") run([ "pip", "install", "--no-deps", '--install-option=--boost-location=%s' % boost_location, "--verbose", "--no-cache-dir", "." ]) # run tests # def psbody_validate_build(): log.info("running tests") with inside_git_repository( repo_url=REPO_URL, repo_hash=REPO_REVISION, dir_name=REPO_DIR, cleanup=not get_do_not_cleanup() ): # fix the stupid CRLF issue shutil.rmtree("data") run(["git", "checkout", "data"]) log.info("running tests") if os.name == "nt": run(["python", "-m", "unittest", "-v"]) else: run(["make", "tests"]) log.info("all test passed, installation successful!") # main # if __name__ == '__main__': install_script_main( package_name="psbody", prepare_environment=psbody_prepare_environment, execute_build=psbody_execute_build, validate_build=psbody_validate_build ) ```
{ "source": "johnbarneta/netmiko", "score": 3 }
#### File: examples/configuration_changes/config_changes_to_device_list.py ```python from __future__ import print_function, unicode_literals import sys from netmiko import ConnectHandler from getpass import getpass def usage(ext): # exit with description and command line example print("\nInput file should contain list of switch IP addresses.") print("Commands should be the commands you wish to run on your") print('network devices enclosed in "quotes".') print( "Results key: # = enable mode, * = successful command", "w = write mem, ! = command failure", ) print("\nusage:") print( ("\n%s <input file>" % sys.argv[0]), '"command1"', '"command2"', '"command3"', "wr", ) sys.exit(ext) def get_cmd_line(): if len(sys.argv) < 2: usage(0) cmdlist = sys.argv[2:] try: with open(sys.argv[1], "r") as f: switchip = f.read().splitlines() f.close() except (IndexError, IOError): usage(0) return switchip, cmdlist def main(): inputfile, config_commands = get_cmd_line() print("Switch configuration updater. Please provide login information.\n") # Get username and password information. username = input("Username: ") password = getpass("Password: ") enasecret = getpass("Enable Secret: ") print("{}{:<20}{:<40}{:<20}".format("\n", "IP Address", "Name", "Results"), end="") for switchip in inputfile: ciscosw = { "device_type": "cisco_ios", "ip": switchip.strip(), "username": username.strip(), "password": password.strip(), "secret": enasecret.strip(), } print() print("{:<20}".format(switchip.strip()), end="", flush=True) try: # Connect to switch and enter enable mode. net_connect = ConnectHandler(**ciscosw) except Exception: print("** Failed to connect.", end="", flush=True) continue prompt = net_connect.find_prompt() # Print out the prompt/hostname of the device print("{:<40}".format(prompt), end="", flush=True) try: # Ensure we are in enable mode and can make changes. if "#" not in prompt[-1]: net_connect.enable() print("#", end="", flush=True) except Exception: print("Unable to enter enable mode.", end="", flush=True) continue else: for cmd in config_commands: # Make requested configuration changes. try: if cmd in ("w", "wr"): output = net_connect.save_config() print("w", end="", flush=True) else: output = net_connect.send_config_set(cmd) if "Invalid input" in output: # Unsupported command in this IOS version. print("Invalid input: ", cmd, end="", flush=True) print("*", end="", flush=True) except Exception: # Command failed! Stop processing further commands. print("!") break net_connect.disconnect() if __name__ == "__main__": main() ``` #### File: use_cases/case18_structured_data_genie/genie_show_mac_nxos.py ```python from getpass import getpass from pprint import pprint from netmiko import ConnectHandler PASSWORD = getpass() def main(): conn = ConnectHandler( host="nxos1.lasthop.io", device_type="cisco_nxos", username="username", password=PASSWORD, ) output = conn.send_command("show mac address-table", use_genie=True) pprint(output) if __name__ == "__main__": main() ``` #### File: use_cases/case18_structured_data_genie/genie_textfsm_combined_ex1.py ```python from getpass import getpass from pprint import pprint from netmiko import ConnectHandler PASSWORD = getpass() def main(): conn = ConnectHandler( host="cisco1.lasthop.io", # "cisco_xe" device type will cause textfsm to not return structured data device_type="cisco_xe", username="username", password=PASSWORD, ) # Setting both `use_textfsm` and `use_genie` to True will try textfsm first # if structured data is returned genie will be ignored. If textfsm does not # return structured data netmiko will try to parse with genie output = conn.send_command("show version", use_textfsm=True, use_genie=True) # genie structured data returned pprint(output) if __name__ == "__main__": main() ``` #### File: netmiko/cisco/cisco_nxos_ssh.py ```python import re import time import os from netmiko.cisco_base_connection import CiscoSSHConnection from netmiko.cisco_base_connection import CiscoFileTransfer class CiscoNxosSSH(CiscoSSHConnection): def session_preparation(self): """Prepare the session after the connection has been established.""" self._test_channel_read(pattern=r"[>#]") self.ansi_escape_codes = True self.set_base_prompt() self.disable_paging() self.set_terminal_width(command="terminal width 511") # Clear the read buffer time.sleep(0.3 * self.global_delay_factor) self.clear_buffer() def normalize_linefeeds(self, a_string): """Convert '\r\n' or '\r\r\n' to '\n, and remove extra '\r's in the text.""" newline = re.compile(r"(\r\r\n|\r\n)") # NX-OS fix for incorrect MD5 on 9K (due to strange <enter> patterns on NX-OS) return newline.sub(self.RESPONSE_RETURN, a_string).replace("\r", "\n") def check_config_mode(self, check_string=")#", pattern="#"): """Checks if the device is in configuration mode or not.""" return super().check_config_mode(check_string=check_string, pattern=pattern) class CiscoNxosFileTransfer(CiscoFileTransfer): """Cisco NXOS SCP File Transfer driver.""" def __init__( self, ssh_conn, source_file, dest_file, file_system="bootflash:", direction="put", socket_timeout=10.0, ): self.ssh_ctl_chan = ssh_conn self.source_file = source_file self.dest_file = dest_file self.direction = direction if file_system: self.file_system = file_system else: raise ValueError("Destination file system must be specified for NX-OS") if direction == "put": self.source_md5 = self.file_md5(source_file) self.file_size = os.stat(source_file).st_size elif direction == "get": self.source_md5 = self.remote_md5(remote_file=source_file) self.file_size = self.remote_file_size(remote_file=source_file) else: raise ValueError("Invalid direction specified") self.socket_timeout = socket_timeout def check_file_exists(self, remote_cmd=""): """Check if the dest_file already exists on the file system (return boolean).""" if self.direction == "put": if not remote_cmd: remote_cmd = f"dir {self.file_system}{self.dest_file}" remote_out = self.ssh_ctl_chan.send_command_expect(remote_cmd) search_string = r"{}.*Usage for".format(self.dest_file) if "No such file or directory" in remote_out: return False elif re.search(search_string, remote_out, flags=re.DOTALL): return True else: raise ValueError("Unexpected output from check_file_exists") elif self.direction == "get": return os.path.exists(self.dest_file) def remote_file_size(self, remote_cmd="", remote_file=None): """Get the file size of the remote file.""" if remote_file is None: if self.direction == "put": remote_file = self.dest_file elif self.direction == "get": remote_file = self.source_file if not remote_cmd: remote_cmd = f"dir {self.file_system}/{remote_file}" remote_out = self.ssh_ctl_chan.send_command(remote_cmd) # Match line containing file name escape_file_name = re.escape(remote_file) pattern = r".*({}).*".format(escape_file_name) match = re.search(pattern, remote_out) if match: file_size = match.group(0) file_size = file_size.split()[0] if "No such file or directory" in remote_out: raise IOError("Unable to find file on remote system") else: return int(file_size) @staticmethod def process_md5(md5_output, pattern=r"= (.*)"): """Not needed on NX-OS.""" raise NotImplementedError def remote_md5(self, base_cmd="show file", remote_file=None): if remote_file is None: if self.direction == "put": remote_file = self.dest_file elif self.direction == "get": remote_file = self.source_file remote_md5_cmd = f"{base_cmd} {self.file_system}{remote_file} md5sum" return self.ssh_ctl_chan.send_command(remote_md5_cmd, max_loops=1500).strip() def enable_scp(self, cmd=None): raise NotImplementedError def disable_scp(self, cmd=None): raise NotImplementedError ```
{ "source": "johnbarney/Securitas", "score": 3 }
#### File: johnbarney/Securitas/securitas.py ```python import datetime import os import re import boto3 # Get today's date TODAY = datetime.datetime.utcnow().date() # AWS Administrator's group AWS_ADMIN = os.environ['AWS_ADMIN'] # Boto3 Clients IAM_CLIENT = boto3.client('iam') IAM_RESOURCE = boto3.resource('iam') SES_CLIENT = boto3.client('ses') # Regex that verifies a valid email address EMAIL_REGEX = re.compile(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)") # Creates a list of users with valid emails as usernames USERS = [] if not re.match(EMAIL_REGEX, AWS_ADMIN): raise ValueError('AWS Admin address is not a valid email!') for u in IAM_CLIENT.list_users()['Users']: if re.match(EMAIL_REGEX, u['UserName']): USERS.append(u) else: print(f"User {u['UserName']}. Skipping...") # Checks for API Key compliance def keyrotation(event, context): for u in USERS: # Get all key pairs for a user key_pairs = IAM_CLIENT.list_access_keys(UserName=u['UserName']) for key_pair in key_pairs['AccessKeyMetadata']: # Only audit key pairs that are Active if key_pair['Status'] == 'Active': Id = key_pair['AccessKeyId'] # 60 day warning if (key_pair['CreateDate'].date() - TODAY) == datetime.timedelta(-60): __compose_email(recipient=u['UserName'], subject="AWS Key expire in 30 days!", body=f"Your AWS Key {Id} will expire and " "will be deleted in 30 days. You can " "create a new key pair at any time via " "the console at any time. Please email " f"{AWS_ADMIN} with any questions.") # 5 day warning elif (key_pair['CreateDate'].date() - TODAY) == datetime.timedelta(-85): __compose_email(recipient=u['UserName'], subject="AWS Key expire in 5 days!", body=f"Your AWS Key {Id} will expire and " "will be deleted in 5 days. You can " "create a new key pair at any time via " "the console at any time. Please email " f"{AWS_ADMIN} with any questions.") # one day warning elif (key_pair['CreateDate'].date() - TODAY) == datetime.timedelta(-89): __compose_email(recipient=u['UserName'], subject="AWS Key expire tomorrow!", body=f"Your AWS Key {Id} will expire and " "will be deleted tomorrow. You can " "create a new key pair at any time via " "the console at any time. Please email " f"{AWS_ADMIN} with any questions.") # Delete key elif (key_pair['CreateDate'].date() - TODAY) < datetime.timedelta(-90): delete = IAM_RESOURCE.AccessKey( u['UserName'], key_pair['AccessKeyId']).delete() __compose_email(recipient=u['UserName'], subject="AWS Key expired!", body=f"Your AWS Key {Id} was over 90 days " "old and has been deleted. You can create " "a new key pair at any time via the " "console at any time. Please email " f"{AWS_ADMIN} with any questions.") return {"message": "Finished key pair audit successfully."} # Checks for MFA Compliance def mfacheck(event, context): for u in USERS: device_list = IAM_CLIENT.list_mfa_devices(UserName=u['UserName']) if len(device_list['MFADevices']) == 0: __compose_email(recipient=u['UserName'], subject="No MFA Device found!", body="Your AWS account has no MFA device " "associated. Please create one as soon as possible" f"! Please email {AWS_ADMIN} with any questions. " "https://docs.aws.amazon.com/IAM/latest/UserGuide" "/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user") return {"message": "Finished MFA audit successfully."} # Pre-built email call def __compose_email(recipient, subject, body): return SES_CLIENT.send_email( Source=AWS_ADMIN, Destination={ 'ToAddresses': [ recipient ], 'BccAddresses': [ AWS_ADMIN ] }, Message={ 'Subject': { 'Charset': 'UTF-8', 'Data': subject }, 'Body': { 'Text': { 'Charset': 'UTF-8', 'Data': body }, 'Html': { 'Charset': 'UTF-8', 'Data': body } } }, ReplyToAddresses=[ AWS_ADMIN ], ReturnPath=AWS_ADMIN ) ```
{ "source": "johnbartels/deploy", "score": 3 }
#### File: johnbartels/deploy/baseScript.py ```python import os import sys import subprocess import argparse import json ''' This script will house various common methods ''' #- General Purpose print command: def println(s): print (str(s)) #- Call .flush(); to see output in jenkins job's console output while script is executing as opposed to on completion: sys.stdout.flush() #- General purpose run command: def runcommand(command, show_command=True, throwOnFailure=True): if show_command is True: println('command: %s' % (str(command))) output = None returncode = None try: p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) output = p.communicate()[0] returncode = p.returncode except Exception, exc: println('***Command Error: %s' % (str(command))) println(exc.message) if returncode != 0 and throwOnFailure is True: println('***Error in command, exiting. Command: %s\n' % (command)) println('Output: %s\n' % (str(output))) raise Exception("Command_Error") return output, returncode def parse_args(): #- Parse command line args: parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--num_items', help='Number of Items.', default=5, type=int) parser.add_argument('--job_dir', help='Directory to get size of.', default='/var/build/jenkins/jobs/myjobname') args = parser.parse_args() return args args = parse_args() ```
{ "source": "johnbartholomew/bookwyrm", "score": 3 }
#### File: fedireads/activitypub/status.py ```python from uuid import uuid4 from fedireads.settings import DOMAIN def get_rating(review): ''' activitypub serialize rating activity ''' status = get_status(review) status['inReplyToBook'] = review.book.local_id status['fedireadsType'] = review.status_type status['rating'] = review.rating status['content'] = '%d star rating of "%s"' % ( review.rating, review.book.title) return status def get_quotation(quotation): ''' fedireads json for quotations ''' status = get_status(quotation) status['inReplyToBook'] = quotation.book.local_id status['fedireadsType'] = quotation.status_type status['quote'] = quotation.quote return status def get_quotation_article(quotation): ''' a book quotation formatted for a non-fedireads isntance (mastodon) ''' status = get_status(quotation) content = '"%s"<br>-- <a href="%s">"%s"</a>)<br><br>%s' % ( quotation.quote, quotation.book.local_id, quotation.book.title, quotation.content, ) status['content'] = content return status def get_review(review): ''' fedireads json for book reviews ''' status = get_status(review) status['inReplyToBook'] = review.book.local_id status['fedireadsType'] = review.status_type status['name'] = review.name status['rating'] = review.rating return status def get_comment(comment): ''' fedireads json for book reviews ''' status = get_status(comment) status['inReplyToBook'] = comment.book.local_id status['fedireadsType'] = comment.status_type return status def get_rating_note(review): ''' simple rating, send it as a note not an artciel ''' status = get_status(review) status['content'] = 'Rated "%s": %d stars' % ( review.book.title, review.rating, ) status['type'] = 'Note' return status def get_review_article(review): ''' a book review formatted for a non-fedireads isntance (mastodon) ''' status = get_status(review) if review.rating: status['name'] = 'Review of "%s" (%d stars): %s' % ( review.book.title, review.rating, review.name ) else: status['name'] = 'Review of "%s": %s' % ( review.book.title, review.name ) return status def get_comment_article(comment): ''' a book comment formatted for a non-fedireads isntance (mastodon) ''' status = get_status(comment) status['content'] += '<br><br>(comment on <a href="%s">"%s"</a>)' % \ (comment.book.local_id, comment.book.title) return status def get_status(status): ''' create activitypub json for a status ''' user = status.user uri = status.remote_id reply_parent_id = status.reply_parent.remote_id \ if status.reply_parent else None image_attachments = [] books = list(status.mention_books.all()[:3]) if hasattr(status, 'book'): books.append(status.book) for book in books: if book and book.cover: image_path = book.cover.url image_type = image_path.split('.')[-1] image_attachments.append({ 'type': 'Document', 'mediaType': 'image/%s' % image_type, 'url': 'https://%s%s' % (DOMAIN, image_path), 'name': 'Cover of "%s"' % book.title, }) status_json = { 'id': uri, 'url': uri, 'inReplyTo': reply_parent_id, 'published': status.published_date.isoformat(), 'attributedTo': user.remote_id, # TODO: assuming all posts are public -- should check privacy db field 'to': ['https://www.w3.org/ns/activitystreams#Public'], 'cc': ['%s/followers' % user.remote_id], 'sensitive': status.sensitive, 'content': status.content, 'type': status.activity_type, 'attachment': image_attachments, 'replies': { 'id': '%s/replies' % uri, 'type': 'Collection', 'first': { 'type': 'CollectionPage', 'next': '%s/replies?only_other_accounts=true&page=true' % uri, 'partOf': '%s/replies' % uri, 'items': [], # TODO: populate with replies } } } return status_json def get_replies(status, replies): ''' collection of replies ''' id_slug = status.remote_id + '/replies' return { '@context': 'https://www.w3.org/ns/activitystreams', 'id': id_slug, 'type': 'Collection', 'first': { 'id': '%s?page=true' % id_slug, 'type': 'CollectionPage', 'next': '%s?only_other_accounts=true&page=true' % id_slug, 'partOf': id_slug, 'items': [get_status(r) for r in replies], } } def get_replies_page(status, replies): ''' actual reply list content ''' id_slug = status.remote_id + '/replies?page=true&only_other_accounts=true' items = [] for reply in replies: if reply.user.local: items.append(get_status(reply)) else: items.append(reply.remote_id) return { '@context': 'https://www.w3.org/ns/activitystreams', 'id': id_slug, 'type': 'CollectionPage', 'next': '%s&min_id=%d' % (id_slug, replies[len(replies) - 1].id), 'partOf': status.remote_id + '/replies', 'items': [items] } def get_favorite(favorite): ''' like a post ''' return { '@context': 'https://www.w3.org/ns/activitystreams', 'id': favorite.remote_id, 'type': 'Like', 'actor': favorite.user.remote_id, 'object': favorite.status.remote_id, } def get_unfavorite(favorite): ''' like a post ''' return { '@context': 'https://www.w3.org/ns/activitystreams', 'id': '%s/undo' % favorite.remote_id, 'type': 'Undo', 'actor': favorite.user.remote_id, 'object': { 'id': favorite.remote_id, 'type': 'Like', 'actor': favorite.user.remote_id, 'object': favorite.status.remote_id, } } def get_boost(boost): ''' boost/announce a post ''' return { '@context': 'https://www.w3.org/ns/activitystreams', 'id': boost.remote_id, 'type': 'Announce', 'actor': boost.user.remote_id, 'object': boost.boosted_status.remote_id, } def get_add_tag(tag): ''' add activity for tagging a book ''' uuid = uuid4() return { '@context': 'https://www.w3.org/ns/activitystreams', 'id': str(uuid), 'type': 'Add', 'actor': tag.user.remote_id, 'object': { 'type': 'Tag', 'id': tag.remote_id, 'name': tag.name, }, 'target': { 'type': 'Book', 'id': tag.book.local_id, } } def get_remove_tag(tag): ''' add activity for tagging a book ''' uuid = uuid4() return { '@context': 'https://www.w3.org/ns/activitystreams', 'id': str(uuid), 'type': 'Remove', 'actor': tag.user.remote_id, 'object': { 'type': 'Tag', 'id': tag.remote_id, 'name': tag.name, }, 'target': { 'type': 'Book', 'id': tag.book.local_id, } } ``` #### File: fedireads/models/user.py ```python from django.contrib.auth.models import AbstractUser from django.db import models from django.dispatch import receiver from fedireads import activitypub from fedireads.models.shelf import Shelf from fedireads.settings import DOMAIN from fedireads.signatures import create_key_pair from .base_model import FedireadsModel class User(AbstractUser): ''' a user who wants to read books ''' private_key = models.TextField(blank=True, null=True) public_key = models.TextField(blank=True, null=True) inbox = models.CharField(max_length=255, unique=True) shared_inbox = models.CharField(max_length=255, blank=True, null=True) federated_server = models.ForeignKey( 'FederatedServer', on_delete=models.PROTECT, null=True, ) outbox = models.CharField(max_length=255, unique=True) summary = models.TextField(blank=True, null=True) local = models.BooleanField(default=True) fedireads_user = models.BooleanField(default=True) localname = models.CharField( max_length=255, null=True, unique=True ) # name is your display name, which you can change at will name = models.CharField(max_length=100, blank=True, null=True) avatar = models.ImageField(upload_to='avatars/', blank=True, null=True) following = models.ManyToManyField( 'self', symmetrical=False, through='UserFollows', through_fields=('user_subject', 'user_object'), related_name='followers' ) follow_requests = models.ManyToManyField( 'self', symmetrical=False, through='UserFollowRequest', through_fields=('user_subject', 'user_object'), related_name='follower_requests' ) blocks = models.ManyToManyField( 'self', symmetrical=False, through='UserBlocks', through_fields=('user_subject', 'user_object'), related_name='blocked_by' ) favorites = models.ManyToManyField( 'Status', symmetrical=False, through='Favorite', through_fields=('user', 'status'), related_name='favorite_statuses' ) remote_id = models.CharField(max_length=255, null=True, unique=True) created_date = models.DateTimeField(auto_now_add=True) updated_date = models.DateTimeField(auto_now=True) manually_approves_followers = models.BooleanField(default=False) @property def activitypub_serialize(self): return activitypub.get_actor(self) class UserRelationship(FedireadsModel): ''' many-to-many through table for followers ''' user_subject = models.ForeignKey( 'User', on_delete=models.PROTECT, related_name='%(class)s_user_subject' ) user_object = models.ForeignKey( 'User', on_delete=models.PROTECT, related_name='%(class)s_user_object' ) # follow or follow_request for pending TODO: blocking? relationship_id = models.CharField(max_length=100) class Meta: abstract = True constraints = [ models.UniqueConstraint( fields=['user_subject', 'user_object'], name='%(class)s_unique' ), models.CheckConstraint( check=~models.Q(user_subject=models.F('user_object')), name='%(class)s_no_self' ) ] def get_remote_id(self): ''' use shelf identifier in remote_id ''' base_path = self.user_subject.remote_id return '%s#%s/%d' % (base_path, self.status, self.id) class UserFollows(UserRelationship): @property def status(self): return 'follows' @classmethod def from_request(cls, follow_request): return cls( user_subject=follow_request.user_subject, user_object=follow_request.user_object, relationship_id=follow_request.relationship_id, ) class UserFollowRequest(UserRelationship): @property def status(self): return 'follow_request' class UserBlocks(UserRelationship): @property def status(self): return 'blocks' class FederatedServer(FedireadsModel): ''' store which server's we federate with ''' server_name = models.CharField(max_length=255, unique=True) # federated, blocked, whatever else status = models.CharField(max_length=255, default='federated') # is it mastodon, fedireads, etc application_type = models.CharField(max_length=255, null=True) application_version = models.CharField(max_length=255, null=True) @receiver(models.signals.pre_save, sender=User) def execute_before_save(sender, instance, *args, **kwargs): ''' populate fields for new local users ''' # this user already exists, no need to poplate fields if instance.id or not instance.local: return # populate fields for local users instance.remote_id = 'https://%s/user/%s' % (DOMAIN, instance.username) instance.localname = instance.username instance.username = '%s@%s' % (instance.username, DOMAIN) instance.actor = instance.remote_id instance.inbox = '%s/inbox' % instance.remote_id instance.shared_inbox = 'https://%s/inbox' % DOMAIN instance.outbox = '%s/outbox' % instance.remote_id if not instance.private_key: instance.private_key, instance.public_key = create_key_pair() @receiver(models.signals.post_save, sender=User) def execute_after_save(sender, instance, created, *args, **kwargs): ''' create shelves for new users ''' if not instance.local or not created: return shelves = [{ 'name': 'To Read', 'identifier': 'to-read', }, { 'name': 'Currently Reading', 'identifier': 'reading', }, { 'name': 'Read', 'identifier': 'read', }] for shelf in shelves: Shelf( name=shelf['name'], identifier=shelf['identifier'], user=instance, editable=False ).save() ``` #### File: bookwyrm/fedireads/outgoing.py ```python from datetime import datetime from urllib.parse import urlencode from django.db import IntegrityError, transaction from django.http import HttpResponseNotFound, JsonResponse from django.views.decorators.csrf import csrf_exempt import requests from fedireads import activitypub from fedireads import models from fedireads.broadcast import broadcast from fedireads.status import create_review, create_status from fedireads.status import create_quotation, create_comment from fedireads.status import create_tag, create_notification, create_rating from fedireads.remote_user import get_or_create_remote_user @csrf_exempt def outbox(request, username): ''' outbox for the requested user ''' if request.method != 'GET': return HttpResponseNotFound() try: user = models.User.objects.get(localname=username) except models.User.DoesNotExist: return HttpResponseNotFound() # paginated list of messages if request.GET.get('page'): limit = 20 min_id = request.GET.get('min_id') max_id = request.GET.get('max_id') # filters for use in the django queryset min/max filters = {} # params for the outbox page id params = {'page': 'true'} if min_id is not None: params['min_id'] = min_id filters['id__gt'] = min_id if max_id is not None: params['max_id'] = max_id filters['id__lte'] = max_id page_id = user.outbox + '?' + urlencode(params) statuses = models.Status.objects.filter( user=user, **filters ).select_subclasses().all()[:limit] return JsonResponse( activitypub.get_outbox_page(user, page_id, statuses, max_id, min_id) ) # collection overview size = models.Status.objects.filter(user=user).count() return JsonResponse(activitypub.get_outbox(user, size)) def handle_account_search(query): ''' webfingerin' other servers ''' user = None domain = query.split('@')[1] try: user = models.User.objects.get(username=query) except models.User.DoesNotExist: url = 'https://%s/.well-known/webfinger?resource=acct:%s' % \ (domain, query) response = requests.get(url) if not response.ok: response.raise_for_status() data = response.json() for link in data['links']: if link['rel'] == 'self': try: user = get_or_create_remote_user(link['href']) except KeyError: return HttpResponseNotFound() return user def handle_follow(user, to_follow): ''' someone local wants to follow someone ''' activity = activitypub.get_follow_request(user, to_follow) broadcast(user, activity, direct_recipients=[to_follow]) def handle_unfollow(user, to_unfollow): ''' someone local wants to follow someone ''' relationship = models.UserFollows.objects.get( user_subject=user, user_object=to_unfollow ) activity = activitypub.get_unfollow(relationship) broadcast(user, activity, direct_recipients=[to_unfollow]) to_unfollow.followers.remove(user) def handle_accept(user, to_follow, follow_request): ''' send an acceptance message to a follow request ''' with transaction.atomic(): relationship = models.UserFollows.from_request(follow_request) follow_request.delete() relationship.save() activity = activitypub.get_accept(to_follow, follow_request) broadcast(to_follow, activity, privacy='direct', direct_recipients=[user]) def handle_reject(user, to_follow, relationship): ''' a local user who managed follows rejects a follow request ''' relationship.delete() activity = activitypub.get_reject(to_follow, relationship) broadcast(to_follow, activity, privacy='direct', direct_recipients=[user]) def handle_shelve(user, book, shelf): ''' a local user is getting a book put on their shelf ''' # update the database models.ShelfBook(book=book, shelf=shelf, added_by=user).save() activity = activitypub.get_add(user, book, shelf) broadcast(user, activity) # tell the world about this cool thing that happened verb = { 'to-read': 'wants to read', 'reading': 'started reading', 'read': 'finished reading' }[shelf.identifier] message = '%s "%s"' % (verb, book.title) status = create_status(user, message, mention_books=[book]) status.status_type = 'Update' status.save() if shelf.identifier == 'reading': read = models.ReadThrough( user=user, book=book, start_date=datetime.now()) read.save() elif shelf.identifier == 'read': read = models.ReadThrough.objects.filter( user=user, book=book, finish_date=None).order_by('-created_date').first() if not read: read = models.ReadThrough( user=user, book=book, start_date=datetime.now()) read.finish_date = datetime.now() read.save() activity = activitypub.get_status(status) create_activity = activitypub.get_create(user, activity) broadcast(user, create_activity) def handle_unshelve(user, book, shelf): ''' a local user is getting a book put on their shelf ''' # update the database row = models.ShelfBook.objects.get(book=book, shelf=shelf) row.delete() activity = activitypub.get_remove(user, book, shelf) broadcast(user, activity) def handle_import_books(user, items): ''' process a goodreads csv and then post about it ''' new_books = [] for item in items: if item.shelf: desired_shelf = models.Shelf.objects.get( identifier=item.shelf, user=user ) if isinstance(item.book, models.Work): item.book = item.book.default_edition if not item.book: continue _, created = models.ShelfBook.objects.get_or_create( book=item.book, shelf=desired_shelf, added_by=user) if created: new_books.append(item.book) activity = activitypub.get_add(user, item.book, desired_shelf) broadcast(user, activity) if item.rating or item.review: review_title = "Review of {!r} on Goodreads".format( item.book.title, ) if item.review else "" handle_review( user, item.book, review_title, item.review, item.rating, ) for read in item.reads: read.book = item.book read.user = user read.save() if new_books: message = 'imported {} books'.format(len(new_books)) status = create_status(user, message, mention_books=new_books) status.status_type = 'Update' status.save() create_activity = activitypub.get_create( user, activitypub.get_status(status)) broadcast(user, create_activity) return status def handle_rate(user, book, rating): ''' a review that's just a rating ''' builder = create_rating fr_serializer = activitypub.get_rating ap_serializer = activitypub.get_rating_note handle_status(user, book, builder, fr_serializer, ap_serializer, rating) def handle_review(user, book, name, content, rating): ''' post a review ''' # validated and saves the review in the database so it has an id builder = create_review fr_serializer = activitypub.get_review ap_serializer = activitypub.get_review_article handle_status( user, book, builder, fr_serializer, ap_serializer, name, content, rating) def handle_quotation(user, book, content, quote): ''' post a review ''' # validated and saves the review in the database so it has an id builder = create_quotation fr_serializer = activitypub.get_quotation ap_serializer = activitypub.get_quotation_article handle_status( user, book, builder, fr_serializer, ap_serializer, content, quote) def handle_comment(user, book, content): ''' post a comment ''' # validated and saves the review in the database so it has an id builder = create_comment fr_serializer = activitypub.get_comment ap_serializer = activitypub.get_comment_article handle_status( user, book, builder, fr_serializer, ap_serializer, content) def handle_status(user, book_id, \ builder, fr_serializer, ap_serializer, *args): ''' generic handler for statuses ''' book = models.Edition.objects.get(id=book_id) status = builder(user, book, *args) activity = fr_serializer(status) create_activity = activitypub.get_create(user, activity) broadcast(user, create_activity, software='fedireads') # re-format the activity for non-fedireads servers remote_activity = ap_serializer(status) remote_create_activity = activitypub.get_create(user, remote_activity) broadcast(user, remote_create_activity, software='other') def handle_tag(user, book, name): ''' tag a book ''' tag = create_tag(user, book, name) tag_activity = activitypub.get_add_tag(tag) broadcast(user, tag_activity) def handle_untag(user, book, name): ''' tag a book ''' book = models.Book.objects.get(id=book) tag = models.Tag.objects.get(name=name, book=book, user=user) tag_activity = activitypub.get_remove_tag(tag) tag.delete() broadcast(user, tag_activity) def handle_reply(user, review, content): ''' respond to a review or status ''' # validated and saves the comment in the database so it has an id reply = create_status(user, content, reply_parent=review) if reply.reply_parent: create_notification( reply.reply_parent.user, 'REPLY', related_user=user, related_status=reply, ) reply_activity = activitypub.get_status(reply) create_activity = activitypub.get_create(user, reply_activity) broadcast(user, create_activity) def handle_favorite(user, status): ''' a user likes a status ''' try: favorite = models.Favorite.objects.create( status=status, user=user ) except IntegrityError: # you already fav'ed that return fav_activity = activitypub.get_favorite(favorite) broadcast( user, fav_activity, privacy='direct', direct_recipients=[status.user]) def handle_unfavorite(user, status): ''' a user likes a status ''' try: favorite = models.Favorite.objects.get( status=status, user=user ) except models.Favorite.DoesNotExist: # can't find that status, idk return fav_activity = activitypub.get_unfavorite(favorite) broadcast(user, fav_activity, direct_recipients=[status.user]) def handle_boost(user, status): ''' a user wishes to boost a status ''' if models.Boost.objects.filter( boosted_status=status, user=user).exists(): # you already boosted that. return boost = models.Boost.objects.create( boosted_status=status, user=user, ) boost.save() boost_activity = activitypub.get_boost(boost) broadcast(user, boost_activity) def handle_update_book(user, book): ''' broadcast the news about our book ''' book_activity = activitypub.get_book(book) update_activity = activitypub.get_update(user, book_activity) broadcast(user, update_activity) def handle_update_user(user): ''' broadcast editing a user's profile ''' actor = activitypub.get_actor(user) update_activity = activitypub.get_update(user, actor) broadcast(user, update_activity) ``` #### File: tests/connectors/test_fedireads_connector.py ```python from dateutil import parser from django.test import TestCase import json import pathlib from fedireads import models from fedireads.connectors.fedireads_connector import Connector from fedireads.connectors.abstract_connector import SearchResult, get_date class FedireadsConnector(TestCase): def setUp(self): models.Connector.objects.create( identifier='example.com', connector_file='fedireads_connector', base_url='https://example.com', books_url='https://example.com', covers_url='https://example.com/images/covers', search_url='https://example.com/search?q=', ) self.connector = Connector('example.com') work_file = pathlib.Path(__file__).parent.joinpath( '../data/fr_work.json') edition_file = pathlib.Path(__file__).parent.joinpath( '../data/fr_edition.json') self.work_data = json.loads(work_file.read_bytes()) self.edition_data = json.loads(edition_file.read_bytes()) def test_is_work_data(self): self.assertEqual(self.connector.is_work_data(self.work_data), True) self.assertEqual(self.connector.is_work_data(self.edition_data), False) def test_get_edition_from_work_data(self): edition = self.connector.get_edition_from_work_data(self.work_data) self.assertEqual(edition['url'], 'https://example.com/book/122') def test_get_work_from_edition_data(self): work = self.connector.get_work_from_edition_date(self.edition_data) self.assertEqual(work['url'], 'https://example.com/book/121') def test_format_search_result(self): datafile = pathlib.Path(__file__).parent.joinpath('../data/fr_search.json') search_data = json.loads(datafile.read_bytes()) results = self.connector.parse_search_data(search_data) self.assertIsInstance(results, list) result = self.connector.format_search_result(results[0]) self.assertIsInstance(result, SearchResult) self.assertEqual(result.title, '<NAME> and <NAME>') self.assertEqual(result.key, 'https://example.com/book/122') self.assertEqual(result.author, '<NAME>') self.assertEqual(result.year, 2017) def test_get_date(self): date = get_date(self.edition_data['published_date']) expected = parser.parse("2017-05-10T00:00:00+00:00") self.assertEqual(date, expected) ``` #### File: tests/status/test_quotation.py ```python from django.test import TestCase from fedireads import models from fedireads import status as status_builder class Quotation(TestCase): ''' we have hecka ways to create statuses ''' def setUp(self): self.user = models.User.objects.create_user( 'mouse', '<EMAIL>', 'mouseword') self.book = models.Edition.objects.create(title='Example Edition') def test_create_quotation(self): quotation = status_builder.create_quotation( self.user, self.book, 'commentary', 'a quote') self.assertEqual(quotation.quote, 'a quote') self.assertEqual(quotation.content, 'commentary') def test_quotation_from_activity(self): activity = { 'id': 'https://example.com/user/mouse/quotation/13', 'url': 'https://example.com/user/mouse/quotation/13', 'inReplyTo': None, 'published': '2020-05-10T02:38:31.150343+00:00', 'attributedTo': 'https://example.com/user/mouse', 'to': [ 'https://www.w3.org/ns/activitystreams#Public' ], 'cc': [ 'https://example.com/user/mouse/followers' ], 'sensitive': False, 'content': 'commentary', 'type': 'Note', 'attachment': [ { 'type': 'Document', 'mediaType': 'image//images/covers/2b4e4712-5a4d-4ac1-9df4-634cc9c7aff3jpg', 'url': 'https://example.com/images/covers/2b4e4712-5a4d-4ac1-9df4-634cc9c7aff3jpg', 'name': 'Cover of \'This Is How You Lose the Time War\'' } ], 'replies': { 'id': 'https://example.com/user/mouse/quotation/13/replies', 'type': 'Collection', 'first': { 'type': 'CollectionPage', 'next': 'https://example.com/user/mouse/quotation/13/replies?only_other_accounts=true&page=true', 'partOf': 'https://example.com/user/mouse/quotation/13/replies', 'items': [] } }, 'inReplyToBook': self.book.remote_id, 'fedireadsType': 'Quotation', 'quote': 'quote body' } quotation = status_builder.create_quotation_from_activity( self.user, activity) self.assertEqual(quotation.content, 'commentary') self.assertEqual(quotation.quote, 'quote body') self.assertEqual(quotation.book, self.book) self.assertEqual( quotation.published_date, '2020-05-10T02:38:31.150343+00:00') ``` #### File: tests/status/test_review.py ```python from django.test import TestCase from fedireads import models from fedireads import status as status_builder class Review(TestCase): ''' we have hecka ways to create statuses ''' def setUp(self): self.user = models.User.objects.create_user( 'mouse', '<EMAIL>', 'mouseword') self.book = models.Edition.objects.create(title='Example Edition') def test_create_review(self): review = status_builder.create_review( self.user, self.book, 'review name', 'content', 5) self.assertEqual(review.name, 'review name') self.assertEqual(review.content, 'content') self.assertEqual(review.rating, 5) review = status_builder.create_review( self.user, self.book, '<div>review</div> name', '<b>content', 5) self.assertEqual(review.name, 'review name') self.assertEqual(review.content, 'content') self.assertEqual(review.rating, 5) def test_review_rating(self): review = status_builder.create_review( self.user, self.book, 'review name', 'content', -1) self.assertEqual(review.name, 'review name') self.assertEqual(review.content, 'content') self.assertEqual(review.rating, None) review = status_builder.create_review( self.user, self.book, 'review name', 'content', 6) self.assertEqual(review.name, 'review name') self.assertEqual(review.content, 'content') self.assertEqual(review.rating, None) def test_review_from_activity(self): activity = { 'id': 'https://example.com/user/mouse/review/9', 'url': 'https://example.com/user/mouse/review/9', 'inReplyTo': None, 'published': '2020-05-04T00:00:00.000000+00:00', 'attributedTo': 'https://example.com/user/mouse', 'to': [ 'https://www.w3.org/ns/activitystreams#Public' ], 'cc': [ 'https://example.com/user/mouse/followers' ], 'sensitive': False, 'content': 'review content', 'type': 'Article', 'attachment': [], 'replies': { 'id': 'https://example.com/user/mouse/review/9/replies', 'type': 'Collection', 'first': { 'type': 'CollectionPage', 'next': 'https://example.com/user/mouse/review/9/replies?only_other_accounts=true&page=true', 'partOf': 'https://example.com/user/mouse/review/9/replies', 'items': [] } }, 'inReplyToBook': self.book.remote_id, 'fedireadsType': 'Review', 'name': 'review title', 'rating': 3 } review = status_builder.create_review_from_activity( self.user, activity) self.assertEqual(review.content, 'review content') self.assertEqual(review.name, 'review title') self.assertEqual(review.rating, 3) self.assertEqual(review.book, self.book) self.assertEqual( review.published_date, '2020-05-04T00:00:00.000000+00:00') ```
{ "source": "JohnBarton27/MovieMalarkey", "score": 3 }
#### File: MovieMalarkey/src/main.py ```python from flask import Flask, make_response, render_template, request from flask_socketio import SocketIO, join_room, leave_room, send, emit import os from urllib.parse import unquote from movie import Movie from room import Room from user import User app = Flask(__name__, template_folder=os.path.abspath('../templates')) socketio = SocketIO(app) rooms = [] users = [] def _get_user(username): for user in users: if user.name == username: return user def _get_user_from_room(username, room): for user in room.users: if user.name == username: return user def _get_room(room_code): for room in rooms: if room.code == room_code: return room @app.route('/') def index(): return render_template('index.html') @app.route('/roomSearch', methods=['POST']) def new_user(): user = User(request.args.get('nickname')) resp = make_response(render_template('roomSearch.html', user=user)) resp.set_cookie('user_name', user.name) return resp @app.route('/newRoom', methods=['POST']) def new_room(): user = User(request.cookies.get('user_name')) room = Room(user) rooms.append(room) resp = make_response(room.code) resp.set_cookie('room', room.code) return resp @app.route('/submitGuess', methods=['POST']) def submit_guess(): room = _get_room(request.cookies.get('room')) # Handle non-existent room if not room: return 'false' data = unquote(str(request.data)) # Grab everything after '=' and strip off trailing single quote (') guess = data.split('=')[-1][:-1] user = _get_user_from_room(request.cookies.get('user_name'), room) user.current_answer = guess # Acknowledge submission to other users for guesser in room.users: socketio.send({'event': 'user-answered', 'room': room.serialize()}, json=True, to=guesser.socket_client) # Send the host the guess socketio.send({'event': 'user-guess', 'room': room.serialize(full=True)}, json=True, to=room.current_round.judge.socket_client) # All users have submitted if room.all_guesses_submitted: # Progress room to the VOTING phase room.open_voting() # Send non-full room to guessers for user in room.current_round.guessers: socketio.send({'event': 'all-guesses-submitted', 'room': room.serialize()}, json=True, to=user.socket_client) # Send full room to judge socketio.send({'event': 'all-guesses-submitted', 'room': room.serialize(full=True)}, json=True, to=room.current_round.judge.socket_client) return 'Success' @app.route('/revealGuess', methods=['POST']) def reveal_guess(): room = _get_room(request.cookies.get('room')) user = _get_user_from_room(request.args.get('username'), room) answer_to_reveal = room.current_round.movie.plot if user == room.current_round.judge else user.current_answer print(f'Revealing "{answer_to_reveal}"...') socketio.send({'event': 'guess-reveal', 'plot': answer_to_reveal}, json=True, to=room.code) return "Success" @app.route('/vote', methods=['POST']) def vote(): room = _get_room(request.cookies.get('room')) user = _get_user_from_room(request.cookies.get('user_name'), room) data = unquote(str(request.data)) user.current_vote = data.split('=')[-1][:-1] if user.current_vote == room.current_round.movie.plot: # Correct Guess - voter gets 2 points room.current_round.give_points(2, user) pass else: # Incorrect Guess for guesser in room.current_round.guessers: if user.current_vote == guesser.current_answer and user != guesser: # 'guesser' gets one point for 'tricking' voter (unless they voted for their own answer, in which case # they get nothing room.current_round.give_points(1, guesser) break if room.current_round.all_votes_in: # This was the last voter - move to the reveal socketio.send({'event': 'full-reveal', 'room': room.serialize(full=True)}, json=True, to=room.code) room.end_round() return "Success" @app.route('/checkRoomCode') def check_room_code(): room = _get_room(request.args.get('code')) # Handle non-existent room if not room: return 'false' resp = make_response('true') resp.set_cookie('room', room.code) return resp @app.route('/startGame') def start_game(): # TODO add handling to make sure at least 3 people have joined the room room = _get_room(request.args.get('code')) # Handle non-existent room if not room: return 'Room not found' room.start() resp = make_response(room.serialize()) socketio.send({'event': 'start-game', 'room': room.serialize()}, json=True, to=room.code) # Start the first round start_round() return resp @app.route('/startRound', methods=['POST']) def start_round(): room_code = request.args.get('code') for room in rooms: if room.code == room_code: # Found the room room.start_round() # TODO Add handling to ensure the room doesn't ever see the same movie twice movie = Movie.get_random() room.current_round.movie = movie # Send title & plot to host socketio.send({'event': 'movie', 'room': room.serialize(), 'title': movie.title, 'plot': movie.plot}, json=True, to=room.current_round.judge.socket_client) # Send notification to guessers that the judge is selecting a movie title for guesser in room.current_round.guessers: socketio.send({'event': 'judge-selecting', 'room': room.serialize()}, json=True, to=guesser.socket_client) return 'Started round!' return 'Room not found' @app.route('/skipMovie', methods=['POST']) def skip_movie(): """ The judge didn't like the movie they were presented with, so give them a new one. Returns: str: response string """ room = _get_room(request.args.get('code')) movie = Movie.get_random() room.current_round.movie = movie # Send title & plot to host socketio.send({'event': 'movie', 'room': room.serialize(), 'title': movie.title, 'plot': movie.plot}, json=True, to=room.current_round.judge.socket_client) return 'Started round!' @app.route('/openGuesses', methods=['POST']) def open_guesses(): """ "Opens" the guessing for other users - this means the judge has found a suitable title/plot and is ready for users to start guessing. Returns: Response """ room = _get_room(request.cookies.get('room')) room.open_guessing() # Send title to rest of users for guesser in room.current_round.guessers: socketio.send({'event': 'movie-title', 'title': room.current_round.movie.title}, json=True, to=guesser.socket_client) return 'Opened guessing!' @app.route('/play') def enter_room(): room_code = request.cookies.get('room') for room in rooms: if room.code == room_code: resp = make_response(render_template('room.html', room=room.serialize())) return resp return f'<h1>No room {room_code} found!</h1>' @socketio.on('join_room') def connect(data): user = User(request.cookies.get('user_name')) user.socket_client = request.sid current_code = data['room'] for open_room in rooms: if open_room.code == current_code: open_room.add_user(user) users.append(user) room = open_room join_room(room.code) # TODO remove 'plot' from movies if not sending to judge if room.current_round and room.current_round.judge and user == room.current_round.judge: print(f'This user ({user.name}) is the current judge!') # Send full (including current answers) to judge - this handles the judge refreshing their page and # "re-joining" the game send({'event': 'new-user', 'username': user.name, 'room': room.serialize(full=True)}, json=True, to=room.current_round.judge.socket_client) # Send the judge joining event to all other users (but not the judge, or this would wipe the answers # the judge has) for guesser in room.current_round.guessers: send({'event': 'new-user', 'username': user.name, 'room': room.serialize()}, json=True, to=guesser.socket_client) else: send({'event': 'new-user', 'username': user.name, 'room': room.serialize()}, json=True, to=room.code) print(f'{user.name} joined {room.code} ({user.socket_client})') break @socketio.on('disconnect') def disconnect(): print('Disconnected!') if __name__ == "__main__": socketio.run(app, host="0.0.0.0", port=8010, debug=True) ``` #### File: MovieMalarkey/src/room.py ```python import random import string from enum import Enum from round import Round from user import User class Phase(Enum): JOINING = 'JOINING' SELECTING = 'SELECTING' GUESSING = 'GUESSING' VOTING = 'VOTING' class Room: """ Class for representing "Rooms" """ def __init__(self, creator: User): """ Initializer for a Room object Args: creator (User): User who created the Room """ self.host = creator self.users = [creator] self.rounds = [] self.code = Room.generate_code() self.started = False self.phase = Phase.JOINING def __repr__(self): return self.code def __str__(self): return f'{self.code} (Users: {len(self.users)})' def __eq__(self, other): return self.code == other.code def __hash__(self): return hash(self.code) @property def all_guesses_submitted(self): """ Checks to see if all guesses for the round have been submitted. Returns: bool: True if all 'guessers' have submitted an answer; False if at least one has not guessed """ return all(user.current_answer for user in self.current_round.guessers) @property def current_round(self) -> Round: """ Gets the current (or most recent) round, if there is one. Returns: Round: Current (or most recent) round """ if len(self.rounds) == 0: # No rounds have been started return None # Return last round return self.rounds[-1] @property def previous_round(self) -> Round: """ Gets the previous round, if there is one. Returns: Round: Previous round """ if len(self.rounds) <= 1: # No previous rounds return None # Return previous round return self.rounds[-2] def add_user(self, user: User): """ Add the given user to this Room (handles ensuring no duplicate users) Args: user (User): User to add to this room Returns: None """ # TODO add handling to stop users from joining an already-started game ('Spectator' mode?) if user not in self.users: self.users.append(user) return # Ensure user is fully populated if user.socket_client: for existing_user in self.users: if existing_user == user: existing_user.socket_client = user.socket_client return def start_round(self): """ Starts a new round in this room Returns: None """ self.rounds.append(Round(self, len(self.rounds) + 1)) self.current_round.judge = self.select_next_judge() self.phase = Phase.SELECTING def open_guessing(self): """ Opens the guessing for users in the room. Progresses the phase to GUESSING. Returns: None """ self.phase = Phase.GUESSING def open_voting(self): """ Opens the voting for users in eht room. Progresses the phase to VOTING. Returns: None """ self.phase = Phase.VOTING def end_round(self): """ Cleanup method for when a round ends (clears all answers, etc.) Returns: None """ self.current_round.end() # Wipe all answers for user in self.users: user.current_answer = None @staticmethod def generate_code(): """ Generates a random room code Returns: str: Unique room code """ # TODO ensure certain words (curse words, etc.) are not given as room codes chars = string.ascii_uppercase for i in range(0, 10): chars += str(i) code = ''.join(random.choice(chars) for i in range(4)) # TODO ensure code is not already in use return code def serialize(self, full=False): return { 'code': self.code, 'host': self.host.serialize(), 'round': self.current_round.serialize(full=full) if self.current_round else '', 'started': str(self.started), 'users': [user.serialize(full=full) for user in self.users], 'phase': self.phase.name } def start(self): """ Starts a game in this room Returns: None """ self.started = True def stop(self): """ Stops/Ends the game in this room Returns: None """ self.started = False def select_next_judge(self): """ Selects the next judge for this room. This normally selects judges in a round-robin pattern. If there has not been a previous room (and this is therefore picking the 'first' judge), it selects one randomly. Returns: User: The next judge for this Room """ if not self.previous_round: # If this is our first round, pick a random user from the room return random.choice(self.users) index = self.users.index(self.previous_round.judge) index += 1 if index == len(self.users): # We were at the 'last' user, so loop around & restart return self.users[0] return self.users[index] ```
{ "source": "JohnBat26/dp-agent", "score": 2 }
#### File: dp-agent/core/transform_config.py ```python import sys from os import getenv from itertools import chain from copy import deepcopy from pathlib import Path import yaml from config import * ANNOTATORS = [ANNOTATORS_1, ANNOTATORS_2, ANNOTATORS_3] # generate component url for service in chain(*ANNOTATORS, SKILL_SELECTORS, SKILLS, RESPONSE_SELECTORS, POSTPROCESSORS): if 'url' not in service: host = service['name'] if getenv('DPA_LAUNCHING_ENV') == 'docker' else service['host'] service['url'] = f"{service['protocol']}://{host}:{service['port']}/{service['endpoint']}" DB_HOST = 'mongo' if getenv('DPA_LAUNCHING_ENV') == 'docker' else DB_HOST def _get_config_path(component_config: dict) -> dict: component_config = deepcopy(component_config) raw_path = component_config.get('path', None) if not raw_path: return component_config config_path = Path(raw_path) if not config_path.is_absolute(): config_path = Path(__file__).resolve().parents[2] / config_path if isinstance(config_path, Path) and config_path.is_file(): component_config['path'] = config_path else: raise FileNotFoundError(f'config {raw_path} does not exists') return component_config _run_config_path: Path = Path(__file__).resolve().parent / 'config.yaml' _component_groups = ['SKILLS', 'ANNOTATORS', 'SKILL_SELECTORS', 'RESPONSE_SELECTORS', 'POSTPROCESSORS'] _module = sys.modules[__name__] if _run_config_path.is_file(): with _run_config_path.open('r', encoding='utf-8') as f: config: dict = yaml.safe_load(f) if config.get('use_config', False) is True: config = config.get('agent_config', {}) MAX_WORKERS = config.get('MAX_WORKERS', MAX_WORKERS) DB_NAME = config.get('DB_NAME', DB_NAME) DB_HOST = config.get('HOST', DB_HOST) DB_PORT = config.get('PORT', DB_PORT) for group in _component_groups: setattr(_module, group, list(map(_get_config_path, config.get(group, [])))) ``` #### File: dp-agent/state_formatters/dp_formatters.py ```python from typing import List, Any def base_input_formatter(state: List): """This state_formatter takes the most popular fields from Agent state and returns them as dict values: * last utterances: a list of last utterance from each dialog in the state * last_annotations: a list of last annotation from each last utterance * utterances_histories: a list of lists of all utterances from all dialogs * annotations_histories: a list of lists of all annotations from all dialogs * dialog_ids: a list of all dialog ids * user_ids: a list of all user ids, each dialog have a unique human participant id Args: state: dialog state Returns: formatted dialog state """ utterances_histories = [] last_utts = [] annotations_histories = [] last_annotations = [] dialog_ids = [] user_ids = [] for dialog in state: utterances_history = [] annotations_history = [] for utterance in dialog['utterances']: utterances_history.append(utterance['text']) annotations_history.append(utterance['annotations']) last_utts.append(utterances_history[-1]) utterances_histories.append(utterances_history) last_annotations.append(annotations_history[-1]) annotations_histories.append(annotations_history) dialog_ids.append(dialog['id']) user_ids.extend([utt['user']['id'] for utt in state[0]['utterances']]) return {'dialogs': state, 'last_utterances': last_utts, 'last_annotations': last_annotations, 'utterances_histories': utterances_histories, 'annotation_histories': annotations_histories, 'dialog_ids': dialog_ids, 'user_ids': user_ids} def last_utterances(payload, model_args_names): utterances = base_input_formatter(payload)['last_utterances'] return {model_args_names[0]: utterances} def base_skill_output_formatter(payload): """Works with a single batch instance Args: payload: one batch instance Returns: a formatted batch instance """ return payload def base_annotator_formatter(payload: Any, model_args_names=('x',), mode='in'): if mode == 'in': return last_utterances(payload, model_args_names) if mode == 'out': return payload def ner_formatter(payload: Any, model_args_names=('x',), mode='in'): if mode == 'in': return last_utterances(payload, model_args_names) if mode == 'out': return {'tokens': payload[0], 'tags': payload[1]} def sentiment_formatter(payload: Any, model_args_names=('x',), mode='in'): if mode == 'in': return last_utterances(payload, model_args_names) if mode == 'out': return [el for el in payload] def chitchat_odqa_formatter(payload: Any, model_args_names=('x',), mode='in'): if mode == 'in': return last_utterances(payload, model_args_names) if mode == 'out': class_name = payload[0] if class_name in ['speech', 'negative']: response = ['chitchat'] else: response = ['odqa'] return response def odqa_formatter(payload: Any, model_args_names=('question_raw',), mode='in'): if mode == 'in': return last_utterances(payload, model_args_names) if mode == 'out': return [{"text": payload[0], "confidence": 0.5}] def chitchat_formatter(payload: Any, model_args_names=('q',), mode='in'): if mode == 'in': return last_utterances(payload, model_args_names) if mode == 'out': return [{"text": payload[0], "confidence": 0.5}] def chitchat_example_formatter(payload: Any, model_args_names=("utterances", 'annotations', 'u_histories', 'dialogs'), mode='in'): if mode == 'in': parsed = base_input_formatter(payload) return {model_args_names[0]: parsed['last_utterances'], model_args_names[1]: parsed['last_annotations'], model_args_names[2]: parsed['utterances_histories'], model_args_names[3]: parsed['dialogs']} if mode == 'out': return {"text": payload[0], "confidence": payload[1], "name": payload[2]} ```
{ "source": "johnbayko/hicp", "score": 2 }
#### File: python/default_app/reception.py ```python from hicp import HICP, newLogger, EventType, Message, Panel, Window, Label, Button, TextField, Selection, SelectionItem from hicp import App, AppInfo from apps.test.test import TestApp from apps.testml.testml import TestAppML class ButtonSwitchAppHandler: def __init__(self, app_name=None): self.logger = newLogger(type(self).__name__) self.__app_name = app_name def set_app_name(self, app_name): self.__app_name = app_name def update(self, hicp, event_message, component): if self.__app_name is not None: hicp.switch_app(self.__app_name) class AppSelectionHandler: def __init__(self, buttonHandler, start_button, app_desc_label, app_text_ids): self.__button_handler = buttonHandler self.__start_button = start_button self.__app_desc_label = app_desc_label self.__app_text_ids = app_text_ids def update(self, hicp, event_message, selection): items = selection.get_selected_item_list() # Should be one selected item, but check to be sure. if 0 == len(items): return item = items[0] app = item.item self.__button_handler.set_app_name(app.app_name) (app_name_id, app_desc_id) = self.__app_text_ids[app] self.__start_button.set_text_id(app_name_id) self.__start_button.update() self.__app_desc_label.set_text_id(app_desc_id) self.__app_desc_label.update() class Reception(App): def __init__(self): self.__logger = newLogger(type(self).__name__) @classmethod def get_app_name(cls): return 'reception' @classmethod def get_app_info(cls): app_name = cls.get_app_name() display_name = [('Reception', 'en')] desc = [('List apps for user to choose.', 'en')] return AppInfo(app_name, display_name, desc) def connected(self, hicp): self.__logger.debug("reception connected") hicp.text_direction(hicp.RIGHT, hicp.DOWN) # debug WINDOW_TITLE_ID = hicp.add_text_get_id("App list") SELECT_APP_ID = hicp.add_text_get_id("Select app:") TEST_APP_ID = hicp.add_text_get_id("Test") TEST_APP_ML_ID = hicp.add_text_get_id("Test Multi-language") window = self.new_app_window() window.set_text_id(WINDOW_TITLE_ID) hicp.add(window) select_app_label = Label() select_app_label.set_text_id(SELECT_APP_ID) window.add(select_app_label, 0, 0) # Show found apps app_panel = Panel() window.add(app_panel, 0, 1) (group, subgroup) = hicp.get_text_group() app_text_ids = {} # Sort them first unsorted_app_info = [] for app_info in hicp.get_all_app_info().values(): app_name = app_info.display_name.get_text(group, subgroup) app_name_id = hicp.add_text_selector_get_id(app_info.display_name) unsorted_app_info.append((app_name_id, app_info)) app_desc = app_info.description.get_text(group, subgroup) app_desc_id = hicp.add_text_selector_get_id(app_info.description) app_text_ids[app_info] = (app_name_id, app_desc_id) sorted_app_info = hicp.sort(unsorted_app_info) # Make app description label to add later. app_desc = Label() # Make start button to add later # Selection handler updates this: start_button_handler = ButtonSwitchAppHandler() start_button = Button() # Add app selection list. app_selection = Selection() app_selection.set_presentation(Selection.SCROLL) app_selection.set_selection_mode(Selection.SINGLE) # Add app names to selection list, using sorted app info index as id. app_items = [] item_id = 0 for (app_name_id, app_info) in sorted_app_info: # Skip adding button for this app. if app_info.app_name != self.get_app_name(): app_item = SelectionItem(item_id, app_name_id, item=app_info) app_items.append(app_item) item_id += 1 app_selection.add_items(app_items) app_selection.set_selected_list([0]) app_selection.set_handler( EventType.CHANGED, AppSelectionHandler(start_button_handler, start_button, app_desc, app_text_ids) ) app_panel.add(app_selection, 0, 0) items = app_selection.get_selected_item_list() # Should be one selected item, but check to be sure. if 0 < len(items): initial_item = items[0] initial_app = initial_item.item start_button_handler.set_app_name(initial_app.app_name) (initial_name_id, initial_desc_id) = app_text_ids[initial_app] else: initial_item = None initial_name_id = \ initial_desc_id = hicp.add_text_get_id('None') # Add app description label here. app_desc.set_text_id(initial_desc_id) app_panel.add(app_desc, 1, 0) # Add start button here. start_button.set_text_id(initial_name_id) start_button.set_handler( EventType.CLICK, start_button_handler ) start_button.set_size(1, 1) app_panel.add(start_button, 0, 1) ``` #### File: python/hicp/message.py ```python import re from hicp.logger import newLogger class Message: # Constants EVENT = "event" COMMAND = "command" # Events CHANGED = "changed" CLICK = "click" CLOSE = "close" # Commands ADD = "add" MODIFY = "modify" REMOVE = "remove" # Events and commands AUTHENTICATE = "authenticate" CONNECT = "connect" DISCONNECT = "disconnect" # Headers # TODO: Maybe make individual event classes? ATTRIBUTES = "attributes" APPLICATION = "application" CATEGORY = "category" CONTENT = "content" EVENTS = "events" GUI = "gui" HEIGHT = "height" ID = "id" ITEMS = "items" METHOD = "method" MODE = "mode" PRESENTATION = "presentation" PARENT = "parent" PASSWORD = "password" PLAIN = "plain" POSITION = "position" SELECTED = "selected" SIZE = "size" TEXT = "text" TEXT_DIRECTION = "text-direction" USER = "user" VISIBLE = "visible" WIDTH = "width" # These should be user visible. Move to Component or TextField (or parent, # when TextPanel is added). # ATTRIBUTES attributes # CONTENT - already defined. BOLD = "bold" FONT = "font" ITALIC = "italic" LAYOUT = "layout" SIZE = "size" UNDERLINE = "underline" # ATTRIBUTES FONT attributes SERIF = "serif" SANS_SERIF = "sans-serif" SERIF_FIXED = "serif-fixed" SANS_SERIF_FIXED = "sans-serif-fixed" # ATTRIBUTES LAYOUT attributes BLOCK = "block" INDENT_FIRST = "indent-first" INDENT_REST = "indent-rest" LIST = "list" # EVENTS attributes ENABLED = "enabled" DISABLED = "disabled" UNSELECT = "unselect" # MODE attributes SINGLE = "single" MULTIPLE = "multiple" # PRESENTATION attributes SCROLL = "scroll" TOGGLE = "toggle" DROPDOWN = "dropdown" # TEXT_DIRECTION atributes LEFT = "left" RIGHT = "right" UP = "up" DOWN = "down" LENGTH_RE = re.compile("(length) *= *(\d+)") BOUNDARY_RE = re.compile("(boundary) *=(.*)\r\n") ESC_RE = re.compile("(\033)(.)") LAST_ESC_RE = re.compile("(\033.[^\033]*)*(\033.)") def __init__(self, in_stream=None): # These may be null. self.logger = newLogger(type(self).__name__) self.disconnected = False # May be EVENT or COMMAND. self.__type = None # "event: " or "command: " value. self.__type_value = None self.__headers = {} if in_stream is None: # No message to read in - probably making one to send. return # Read headers into the header dict. line_cnt = 0 try: while True: line = self.readline(in_stream) if line == "\r\n" or line == "": # End of message or EOF. if 0 >= line_cnt: # Message not even started, nothing to read. # Probably disconnected. self.disconnected = True self.set_type(self.EVENT, self.DISCONNECT) return break line_cnt = line_cnt + 1 # Split into key and value. header_key = "" header_value = "" # Check for ":: " multi-line data section. header_split_idx = line.find(":: ") if 0 < header_split_idx: header_key = line[0:header_split_idx] # Skip ":: " 3 chracters. termination_criterion = line[header_split_idx + 3:] # Length or boundary termination criterion? if 0 <= termination_criterion.find("length"): length_match = \ self.LENGTH_RE.search(termination_criterion) length = int(length_match.group(2), 10) # header_value is the next length bytes (unless # EOF is encountered). header_value = in_stream.read(length) # There must be a terminating CR LF, so read to # the end of the input line (extra is discarded). self.readline(in_stream) elif 0 <= termination_criterion.find("boundary"): boundary_match = \ self.BOUNDARY_RE.search(termination_criterion) boundary = boundary_match.group(2) # Boundary is either CR LF <text> or <text>. if '' == boundary: # Boundary is CR LF plus next line. # The boundary excludes the next CR LF in the # string returned by readline(), but it's # easier to find the boundary if they are # included. boundary = self.readline(in_stream) # This lets us compare the full line to the # boundary string, so indicate that. full_line_boundary = True else: full_line_boundary = False # Read until boundary + CR LF is read. header_value_list = [] prev_line_eol_esc = False while 1: header_value_part = self.readline(in_stream) # Remove any escapes, but keep track of # index of last one. (header_value_unescaped, esc_cnt) = \ self.ESC_RE.subn("\\2", header_value_part) if 0 < esc_cnt: # String had escapes. last_esc_match = \ self.LAST_ESC_RE.search(header_value_part) after_last_esc_index = last_esc_match.end(2) else: # No esc in string. after_last_esc_index = 0 if full_line_boundary: if header_value_unescaped == boundary \ and False == prev_line_eol_esc \ and 0 == esc_cnt: # Found the boundary. header value doesn't # include this line. # The final CR LF is also not included, # Remove it from the last header value list # string. header_value_list[-1] = \ header_value_list[-1][:-2] break else: # Check for boundary. Should always be at end # of the line, but accept it if not - discard # rest of line. boundary_index = \ header_value_unescaped.find(boundary) if 0 <= boundary_index \ and after_last_esc_index <= boundary_index: # Found end of line boundary. Remove # boundary and add to header value list. header_value_no_boundary = \ header_value_unescaped[ : boundary_index] header_value_list = \ header_value_list + [header_value_no_boundary] break # No boundary found, add to header value list header_value_list = \ header_value_list + [header_value_unescaped] prev_line_eol_esc = \ (after_last_esc_index >= len(header_value_part) - 2) # Convert list to single string. header_value = ''.join(header_value_list) else: # No termination criterion. Leave header value # blank. pass else: # Check for ": " single line data value. header_split_idx = line.find(": ") if 0 < header_split_idx: # This is a valid header. header_key = line[:header_split_idx] # Skip ": " 2 chracters, and omit CR LF at the end. header_value = line[header_split_idx + 2:-2] else: # No ": " or ":: ". Let header key be input line # (without CR LF) and leave value as "". header_key = line[:-2] if header_key: if 1 == line_cnt: # First line always "event: " or "command: " self.set_type(header_key, header_value) else: self.add_header(header_key, header_value) else: # Ignore non headers. Maybe log an error in the # future. self.logger.debug("non-header") # debug pass except ConnectionResetError: # Connection closed, interpret as diconnect event. self.disconnected = True self.set_type(self.EVENT, self.DISCONNECT) # Read until CR LF is found. def readline(self, in_stream): # Some systems may stop at CR (or LF), doesn't guarantee next is # LF (or previous is CR), so loop until both are read. line = "" while True: line_part = in_stream.readline() if not line_part: # EOF break if line_part[-1] == "\x0d": # Ended at CR, try to get a LF as well. At EOF, read # will return "", and this will loop back up to the # readline above where the EOF will be detected. line = line + line_part + in_stream.read(1) else: line = line + line_part if line[-2] == "\x0d" and line[-1] == "\x0a": # Found a CR LF combination, this is the end of the line. break return line def write(self, out_stream): if out_stream is None: raise UnboundLocalError("out_stream required, not defined") out_stream.write(self.__type + ": " + self.__type_value + "\r\n") # Write all headers for header_key in list(self.__headers.keys()): header_value = self.__headers[header_key] # If value has "\r\n" within it, output as data block, # otherwise as simple header. if -1 == header_value.find("\r\n"): # Simple header field. out_stream.write(header_key + ": " + header_value + "\r\n") else: # Data block. out_stream.write(header_key + ":: boundary=\r\n--\r\n") # Escape boundary ("\r\n--"), and single ESC. esc_header_value = \ header_value.\ replace('\033', '\033\033').\ replace('\r\n--', '\033\r\n--') out_stream.write(esc_header_value) # Write out terminator sequence and extra "\r\n" as # block terminator. out_stream.write("\r\n--\r\n") # Write end of message blank line out_stream.write("\r\n") out_stream.flush() def set_type(self, message_type, value): self.__type = message_type self.__type_value = value def get_type(self): return self.__type def get_type_value(self): return self.__type_value def clear(self): self.__headers.clear() def get_header(self, header_key): "Return value for key, or None if no header with that key, or key is None." if header_key is None: return None try: # Header keys are stored as lower case. header_value = self.__headers[header_key.lower()] except KeyError: self.logger.debug("Header not found key: " + header_key) # debug for header_key in list(self.__headers.keys()): # debug header_value = self.__headers[header_key] # debug self.logger.debug("get_header " + header_key + ": " + header_value) # debug header_value = None return header_value def add_header(self, header_key, header_value): if not isinstance(header_key, str): raise TypeError("header key must be a string") if not isinstance(header_value, str): raise TypeError("header value must be a string") # Store keys as lower case. header_key = header_key.lower() # Special case check: EVENT and COMMAND are not headers, they're # message types, so redirect them. if Message.EVENT == header_key or Message.COMMAND == header_key: self.set_type(header_key, header_value) else: self.__headers[header_key.lower()] = header_value def log(self, msg): self.logger.debug(msg) ```
{ "source": "johnbeard/doc-convert", "score": 3 }
#### File: common/pydevhelp/devhelp.py ```python import lxml.etree as ET class Keyword(object): def __init__(self, name, link, type): self.name = name self.link = link self.type = type def getXml(self): e = ET.Element('keyword', attrib={'name':self.name, 'link':self.link, 'type':self.type}) return e class Subsection(object): def __init__(self, name, link): self.name = name self.link = link self.subs = [] def addSub(self, sub): self.subs.append(sub) def getXml(self): e = ET.Element('sub', attrib={'name':self.name, 'link':self.link}) for s in self.subs: e.append(s.getXml()); return e class FunctionList(object): def __init__(self): # list of keyword items self.functions = [] def addKeyword(self, kw): self.functions.append(kw) def getXml(self): e = ET.Element('functions') for f in self.functions: e.append(f.getXml()) return e class ChapterList(object): def __init__(self): # list of keyword items self.chapters = [] def addChapter(self, sub): self.chapters.append(sub) def getXml(self): e = ET.Element('chapters') for f in self.chapters: e.append(f.getXml()) return e class DevhelpBook(object): xmlVersion = 2 xmlns="http://www.devhelp.net/book" def __init__(self, name, title, base, link, language=None, author=""): self.name = name self.title = title self.base = base self.link = link self.language = language self.author = author self.funcs = FunctionList() self.chaps = ChapterList() def getXml(self): tree = ET.Element('book', attrib= { 'language':self.language, 'author':self.author, 'name':self.name, 'title':self.title, 'base':self.base, 'link':self.link, 'version':str(self.xmlVersion) }) tree.append(self.chaps.getXml()) tree.append(self.funcs.getXml()) return ET.ElementTree(tree) def addChapter(self, sub): self.chaps.addChapter(sub) def addKeyword(self, kw): self.funcs.addKeyword(kw) def write(self, fn): tree = self.getXml() tree.write(fn, encoding='utf-8', standalone=False, pretty_print=True) ``` #### File: juce/python/juce_dox.py ```python import pydevhelp.devhelp as devhelp import pydevhelp.dox_tagfile import os import argparse import lxml.html as HTML def getModules(fileList): """ These aren't in the tag file, and they don't even come out properly in Doxygen XML, just just manually mess with the files """ modList = {} for d in fileList: readModuleCrumbs(d, modList) mod = devhelp.Subsection("Modules", modList['modules']['href']) addModules(mod, modList['modules']) return mod def addModules(parent, module): for m in module['sub']: submod = module['sub'][m] s = devhelp.Subsection(m, submod['href']) parent.addSub(s) addModules(s, submod) def readModuleCrumbs(file, modList): html = HTML.parse(file) # <li class="navelem"><a class="el" href="dir_e05d7e2b1ecd646af5bb94391405f3b5.html">modules</a></li><li class="navelem"><a class="el" href="dir_fd421517ec8f709274e931dda731313f.html">juce_core</a></li><li class="navelem"><a class="el" href="dir_0d31e411142695dc4add552e9ff0c68a.html">streams</a></li> </ul> crumbs = html.iterfind("//li[@class='navelem']/a[@class='el']") currMod = modList # add the crumbs to the module list, adding each level if not # there already for c in crumbs: name = c.text if name not in currMod: currMod[name] = {'name':name, 'href': c.attrib['href'], "sub": {}} currMod = currMod[name]["sub"] class JuceDoc(object): def __init__(self, doc_src, doc_root): self.dsrc = doc_src self.db = devhelp.DevhelpBook(title = "JUCE 4.3.0 Reference Manual", name = "juce-doc", base = doc_root, link = "index.html", language = "c++") mods = self.getModules() self.db.addChapter(mods) tf = pydevhelp.dox_tagfile.DoxygenTagFile(os.path.join(self.dsrc, 'juce.tag'), filterFunc=self.filterTags) tf.extractKeywords( lambda kw: self.db.addKeyword(kw)) nsChap = devhelp.Subsection('Namespaces', 'index.html') tf.extractNamespaces(lambda ns: nsChap.addSub(ns)) self.db.addChapter(nsChap) classChap = devhelp.Subsection('Classes', 'classes.html') tf.extractClasses(None, lambda s: classChap.addSub(s)) self.db.addChapter(classChap) def filterTags(self, tree): # the juce namespace is a bit wierd and just duplicates a subset of the classes for remove in tree.xpath("/tagfile/compound[@kind='namespace' and name = 'juce']"): remove.getparent().remove(remove) # get rid of one of the duplicate littlfoot namespaces for remove in tree.xpath("/tagfile/compound[@kind='namespace' and name = 'juce::littlefoot']"): remove.getparent().remove(remove) def getModules(self): """ These aren't in the tag file, and they don't even come out properly in Doxygen XML, just just manually mess with the files """ fileList = [os.path.join(self.dsrc, d) for d in os.listdir(self.dsrc) if d.startswith('dir_')]; mod = getModules(fileList) return mod def output(self, fn): data = self.db.write(fn) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Convert JUCE Doxygen documentation into devhelp documentation') parser.add_argument('-d', '--doc-src', metavar='DOCSRC', type=str, required=True, help='the root of existing generated JUCE Doxygen documentation (e.g. "doxygen/doc" under your JUCE path, or an installed location in /usr/share/doc)') parser.add_argument('-r', '--doc-root', metavar='DOCROOT', type=str, required=True, help='the root of the documentation when installed (probably an installed location in /usr/share/doc)') parser.add_argument('-o', '--output', metavar='OUTFILE', type=str, default='juce-doc.devhelp2', help='output devhelp2 file, default is current dir file called juce-doc.devhelp2') args = parser.parse_args() jd = JuceDoc(args.doc_src, args.doc_root) jd.output(args.output) ```
{ "source": "johnbeckettn2e/sysrepo", "score": 2 }
#### File: tests/ConcurrentHelpers/TestManager.py ```python from __future__ import print_function # -*- coding: utf-8 -*- __author__ = "<NAME> <<EMAIL>>, <NAME> <<EMAIL>>" __copyright__ = "Copyright 2016, Cisco Systems, Inc." __license__ = "Apache 2.0" # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from multiprocessing import Process, Manager import os import sys import signal class TestManager: """ Class manages the testers and helps them to execute steps in synchronized order. Each tester is executed in a separeted process. """ def __init__(self): self.manager = Manager() self.lock = self.manager.Lock() self.process_done = self.manager.Semaphore(0) self.queue = self.manager.Queue() self.sub_proc = self.manager.Queue() self._setup() def _setup(self): self.testers = [] self.next_steps = [] self.proc_ids = [] self.subprocToKill = [] def add_tester(self, tester): self.testers.append(tester) def start_processes(self, rand_sleep): """create process for each tester""" self.pids = self.manager.Array('l', range(len(self.testers))) for id in range(len(self.testers)): self.process_done.release() next_s = self.manager.Semaphore(0) p = Process(target=self.testers[id].run, args=(self.process_done, next_s, rand_sleep, self.lock, self.sub_proc, self.pids, id, self.queue)) self.proc_ids.append(p) self.next_steps.append(next_s) p.start() self.pids[id] = p.pid def wait_for_processes(self): """wait for all process to finish""" for p in self.proc_ids: p.join() p.terminate() self.lock.acquire() self.lock.release() def run(self, rand_sleep=True): """Execute tester steps""" self.start_processes(rand_sleep) step = -1 will_continue = range(len(self.next_steps)) wait_for = range(len(self.next_steps)) while True: if step >= 0: print("\n\n=================== TestManager step", step, "testers:", wait_for, file=sys.stderr) for _ in wait_for: self.process_done.acquire() if step >= 0: proc, name, status = self.queue.get() print(("Received ", proc, name, status), file=sys.stderr) if status == True: will_continue.append(proc) elif isinstance(status, BaseException): print("Error in tester", proc, name, "step", step) for p in self.proc_ids: p.terminate() while not self.sub_proc.empty(): pid = self.sub_proc.get() try: os.kill(pid, signal.SIGKILL) except: pass raise status if len(will_continue) == 0: break for id in will_continue: self.next_steps[id].release() wait_for = will_continue[:] will_continue = [] step += 1 self.wait_for_processes() ```
{ "source": "JohnBee/SnakeAi", "score": 4 }
#### File: SnakeAi/snake_engine/engine.py ```python from random import randint class Engine: def __init__(self, world_width=10, world_height=10): ''' Initialise the snake engine where all game operations will take place. :param world_width: Width of the game world the snake should roam :param world_height: Height of the game world the snake should roam ''' self.world_width = world_width self.world_height = world_height self.food = [] ## Initialise the snake self.snake = Snake(world_width // 2, world_height // 2, 4) self.score = 0 self.game_end = False # place the first piece of food self.add_food() def reset(self): self.food = [] ## Initialise the snake self.snake = Snake(self.world_width // 2, self.world_height // 2, 4) self.score = 0 self.game_end = False # place the first piece of food self.add_food() def make_move(self, input_move): old_head = (self.snake.head[0], self.snake.head[1]) if input_move == 0: self.snake.move_forward(self) elif input_move == 1: self.snake.turn_left(self) elif input_move == 2: self.snake.turn_right(self) # add food if it's been eaten reward = 0 if not self.food: self.score += 1 reward += 10 if not self.add_food(): self.game_end # return reward for making this move # if closer to food, increase reward, else decrease new_head = (self.snake.head[0], self.snake.head[1]) food = (self.food[0][0], self.food[0][1]) # taxicab geometry old_dist = abs(food[0] - old_head[0]) + abs(food[1] - old_head[1]) new_dist = abs(food[0] - new_head[0]) + abs(food[1] - new_head[1]) if new_dist < old_dist: reward += 1 else: reward -= 1 return reward def export_game_state(self): ''' Exports the game state :return: a dictionary with set values representing the game state ''' return {"score": self.score, "world_width": self.world_width, "world_height": self.world_height, "food": self.food, "snake_direction": self.snake.direction, "snake_body": self.snake.body, "snake_head": self.snake.head, "snake_size": self.snake.length, "game_end": self.game_end} def import_game_state(self, game_state): ''' Import a game state to load :param game_state: a dictionary with the defined :return: True or false depending on if it was successful in loading the game state ''' try: self.score = game_state["score"] self.world_width = game_state["world_width"] self.world_height = game_state["world_height"] self.food = game_state["food"] self.snake.body = game_state["snake_body"] self.snake.head = game_state["snake_head"] self.snake.direction = game_state["snake_direction"] self.snake.length = game_state["snake_length"] self.game_end = game_state["game_end"] except KeyError as error: print("Missing game state argument!") print(error) return False return True def add_food(self): ''' Add food to the game world, possible locations are only where the snake isn't :return: True or False depending if food was able to be added, if it false then the game must be complete. ''' possible_locations = [(x, y) for x in range(self.world_width) for y in range(self.world_height)] for s_not_possible in self.snake.body + self.food: if s_not_possible in possible_locations: possible_locations.remove(s_not_possible) if not possible_locations: return False else: # select a possible location self.food.append(possible_locations[randint(0, len(possible_locations) - 1)]) return True def output_world(self): ''' Output the game world as a list of list of characters to the parsed by AI or printed :return: ''' out = [] for y in range(self.world_height): out.append([]) for x in range(self.world_width): if (x, y) not in self.food and (x, y) not in self.snake.body: out[-1].append(".") elif (x, y) in self.food: out[-1].append("o") elif (x, y) in self.snake.body: if (x, y) == self.snake.body[0]: if self.snake.direction == 0: out[-1].append(">") if self.snake.direction == 1: out[-1].append("^") if self.snake.direction == 2: out[-1].append("<") if self.snake.direction == 3: out[-1].append("v") else: out[-1].append("#") return out def pretty_print_world(self): for y in self.output_world(): print(" ".join(y)) class Snake: def __init__(self, pos_x=0, pos_y=0, length=3): # init tail of given length self.head = (pos_x, pos_y) self.direction = 0 # 0 = right, 1 = up, 2 = left, 3 = down self.length = length self.body = self.gen_tail(pos_x, pos_y, self.length) def turn_left(self, engine): self.direction = (self.direction + 1) % 4 self.move_forward(engine) def turn_right(self, engine): self.direction = (self.direction - 1) % 4 self.move_forward(engine) def move_forward(self, engine): if self.direction == 0: self.body = [(self.head[0] + 1, self.head[1])] + self.body elif self.direction == 1: self.body = [(self.head[0], self.head[1] - 1)] + self.body elif self.direction == 2: self.body = [(self.head[0] - 1, self.head[1])] + self.body elif self.direction == 3: self.body = [(self.head[0], self.head[1] + 1)] + self.body # check if head not on food then don't increase snake length if self.body[0] not in engine.food: self.body.pop() else: # eat the food engine.food.remove(self.body[0]) engine.score += 1 self.head = self.body[0] # check if dead if len([a for a in self.body if a == self.head]) > 1: engine.game_end = True if self.head[1] < 0 or self.head[0] < 0 or self.head[0] >= engine.world_width or self.head[1] >= engine.world_height: engine.game_end = True @staticmethod def gen_tail(head_x, head_y, length=3): return [(x, head_y) for x in range(head_x, head_x - length, -1)] def play_game(): e = Engine() # draw game state while not e.game_end: e.pretty_print_world() move = None while move is None: move = int(input("Enter 0 or 1 or 2 for no change, turn left or turn right: ")) if move in [0,1,2]: e.make_move(move) else: print(f"Invalid move: {move}") move = None if __name__ == "__main__": play_game() ```